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Abstract

Lawns as a landcover change substantially alter evapotranspiration, CO,, and energy exchanges and are of rising importance
considering their spatial extent. We contrast eddy covariance (EC) flux measurements collected in the Denver, Colorado, USA
metropolitan area in 2011 and 2012 over a lawn and a xeric tallgrass prairie. Close linkages between seasonal vegetation
development, energy fluxes, and net ecosystem exchange (NVEE) of CO, were found. Irrigation of the lawn modified energy
and CO, fluxes and greatly contributed to differences observed between sites. Due to greater water inputs (precipitation +
irrigation) at the lawn in this semi-arid climate, energy partitioning at the lawn was dominated by latent heat (LE) flux. As a
result, evapotranspiration (E7) of the lawn was more than double that of tallgrass prairie (2011: 639(£17) mm vs. 302(£9) mm;
2012: 584(£15) mm vs. 265(£7) mm). NEE for the lawn was characterized by a longer growing season, higher daily net uptake of
CO,, and growing season NEE that was also more than twice that of the prairie (2011: —=173(£23) g C m 2 vs. -81(x10) gC m?
2012: —73(+22) g C m 2 vs. -21(+8) g C m™?). During the drought year (2012), temperature and water stress greatly influenced
the direction and magnitude of CO, flux at both sites. The results suggest that lawns in Denver can function as carbon sinks and
conditionally contribute to the mitigation of carbon emissions - directly by CO, uptake and indirectly through effects of
evaporative cooling on microclimate and energy use.

Keywords Urban lawns - Tallgrass prairie - Net ecosystem exchange of CO2 - Evapotranspiration - Eddy-covariance method -
Drought impact

Introduction

The exchange of energy, water, and greenhouse gases of ter-
restrial ecosystems with the atmosphere and the resulting
feedbacks on climate and biogeochemical cycles has put them
in the focus of science (Heimann and Reichstein 2008; Arneth
et al. 2010). Despite extensive data on carbon dioxide (CO,)
emissions and accumulation rates in the atmosphere, some
uncertainty remains regarding size, spatial distribution, and
influencing parameters of the terrestrial sink. While the main
anthropogenic sources of CO, are reasonably well quantified,
the more diverse natural sinks of CO,, including terrestrial
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vegetation, need more study (Pacala, 2001; Clement 2004;
Canadell et al., 2007a, b; Scholes et al. 2009; Warren et al.
2011). Photosynthesis and transpiration by vegetation are key
processes regulating CO, exchange and can strongly affect the
partitioning of available energy into latent (LE) and sensible
heat (H). The uptake of CO, by vegetation varies spatially and
temporally and is strongly influenced by management
(Oncley et al. 1997; Katul et al. 2001; Leuning et al. 2004,
Ma et al. 2007; Baldocchi 2008; Davis et al. 2010; Eugster
etal. 2010). Grassland ecosystems are of great significance in
this context because they cover approximately 25% of the
terrestrial surface, contain about 20% of the global carbon
stocks and have the potential for further carbon sequestration
(Conant 2010). The prairies of the Great Plains, as the domi-
nant grasslands of North America, have been dramatically
impacted by land use change, mostly for agricultural produc-
tion (Suttie et al. 2005). Another anthropogenic impact is the
conversion to urban land use. Although urban ecosystems
currently cover a relatively small fraction of the land surface
in the United States (US) (3—5%), they are expanding rapidly
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(Alig et al. 2004; Imhoff et al. 2004; USDA 2020; United
Nations 2012). A prime example of this is the Denver,
Colorado, USA metropolitan area, which has been, and con-
tinues to be, one of the fastest growing urban areas in the US
(US Census 2010). The combination of this growth and the
intensity of anthropogenic activities within urban areas con-
tribute substantially to the rising concentrations of greenhouse
gases in the atmosphere (Pataki et al. 2006). But the hetero-
geneity of urban ecosystems makes it difficult to investigate
basic ecosystem functions and to quantify greenhouse gas
budgets, which could result in the exclusion of important sinks
and sources necessary for accurate biogeochemical modeling
(Kaye et al. 2004; Pickett et al. 2011; Bulkeley 2013).

An important component of the urban ecosystems in the
US are urban lawns, which are ubiquitous and typically occur
as monocultures in residential, recreational, and industrial set-
tings. Estimates found that lawns are the largest irrigated crop
of'the continental US, covering an area of approximately 1.9%
(Milesi et al. 2005). Assuming that most of this lawn area is
located within the US urban land cover fraction of 3—5% (see
above), lawns could occupy between 38 and 63% of US cities;
the percentage of land covered by lawns varies with popula-
tion and geographic region (Steele and Wolz 2019). For the
Denver metropolitan region, it was estimated that up to 40%
of the land surface was covered by lawns (Thienelt and
Frithauf 2007). Urban lawns are often subjected to manage-
ment practices like fertilization and irrigation which may alter
carbon cycling (Kaye et al. 2004). As natural grassland to
urban landuse change continues, there is the potential for con-
siderable changes in regional carbon and water cycles and the
need for a better understanding of the effects and impacts of
these changes. Therefore, the main goals of this study are: 1)
the analysis of diurnal fluxes of CO,, water vapor, and energy
(sensible heat) between urban lawn and prairie, and the atmo-
sphere, with regard to bio-environmental controls and tempo-
ral variability; 2) the analysis of seasonal differences in energy
partitioning, daily and seasonal evapotranspiration and net
CO, uptake, and 3) the estimation of annual carbon budgets
including direct and indirect emissions from management.

Methods
Study sites

The urban lawn site is located within the boundaries of the 86-ha
Fort Logan (FL) National Cemetery in Denver, Colorado
(39.647° N, 105.039° W, 1640 m a.s.l.). Fort Logan is in the
southwestern portion of Denver, approximately 11 km from
downtown, surrounded by mostly single-family residences with
a 1900 people/km® population density (US Census 2010)
(Fig. 1). The eddy covariance station was set up in a quiet, man-
aged area of the cemetery situated on flat terrain. Foot and vehicle

@ Springer

traffic was light as there were no graves, roads or pathways at this
site. The nearest graves and access road were 50 and 35 m dis-
tant, respectively. Fetch in the dominant wind direction (180—
230°) was between 150 and 240 m. Species composition of
vegetation was dominated by Kentucky bluegrass
(P. pratensis), tall fescue (F. arundinacea), and perennial rye-
grass (L. perenne). The lawn area was minimally managed until
2005 when application of irrigation and fertilizer began to sustain
the vegetation (C. Hutchinson, Fort Logan National Cemetery,
personal communication). Irrigation was active between May 9
and October 6 in 2011 and between April 23 and October 18 in
2012. Fertilizer was applied twice in 2011 (June 15, October 6)
and once in 2012 (July 17) and amounted to approximately
49 kg N/ha per application. During the growing season (April-
October), grass was mown to a height of about 5 cm once a week
and clippings were left at the site. Because permanent (year-
round) measurements were not permitted at Fort Logan, data
are limited to March 16-November 18 2011 and March 12—
December 12 2012. Despite this limitation, the Fort Logan site
provided an adequately sized area of homogeneous turfgrass to
conduct EC measurements, documented management as well as
alevel of protection from vandalism. Data for this site used in this
study are available in Anderson and Thienelt (2020a).

The prairie site, Rocky Flats (RF), is part of the Rocky Flats
National Wildlife Refuge (39.875° N, 105.218° W,
1860 m a.s.l.), approximately 25 km northwest of downtown
Denver. There is over 400 m of fetch in any direction from the
point of measurement. Due to restricted public access during
the past decades, the area retained a diverse natural habitat
including the rare xeric tallgrass prairie. Dominant species
included big bluestem (A. gerardi), switchgrass
(P. virgatum), and blue grama (B. gracilis) (USFWS, 2005).
Available data covers the period from January 1 2011 to
December 31 2012 (Anderson and Thienelt 2020b).

Flux and ancillary measurements

The instrument array at the urban lawn site consisted of a
sonic anemometer (CSAT-3, Campbell Scientific, USA) and
an open-path infrared gas analyzer (IRGA; LI-7500, LI-COR
Inc., USA) mounted on a tripod 1.85 m above the ground, two
soil heat flux plates at 5 cm soil depth (HFP-01, Campbell
Scientific), a soil thermocouple located above one of the soil
heat flux plates, a soil moisture probe measuring a 0—15 cm
depth profile (CS-616, Campbell Scientific) 2.45 m south of
the tripod center, a precipitation gage (Weathertronics, model
6010), a net radiometer (Q7.1 REBS, Campbell Scientific), a
pyranometer (LI-200, LI-COR Inc.), and a temperature and
humidity probe (HMP-45C, Campbell Scientific). Eddy co-
variance data were recorded at 10 Hz (sonic anemometer and
IRGA) on a datalogger (CR-1000, Campbell Scientific) along
with 30-min averages from all other instruments.
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Fig. 1 Location of the study sites in the Denver region: (a) Fort Logan and (b) Rocky Flats (map data source: © OpenStreetMap contributors, Stamen

Design, photographs by the U.S. Geological Survey)

Irrigation amounts were determined by subtracting
total water input measured by the gage at the urban
lawn from precipitation data reported from a nearby
U.S. Geological Survey (USGS) operated precipitation
gage, located approximately 2.7 km E-NE of Fort
Logan (SDT-South Denver Tower: 39.659° N,
105.013° W, 1620 m a.s.l.).

Flux measuring equipment at the prairie site consisted of a
sonic anemometer (CSAT-3, Campbell Scientific) and a
closed-path IRGA (LI-7200, LI-COR Inc.) mounted on a tow-
er 3 m above the ground. Sample air flowing through the
IRGA was drawn through a 1 m tube (inside diameter =
7.7 mm) at 19.5 LPM (actual) using a flow module (Li-
7550, LI-COR). The setup also included two soil heat flux
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plates at 5 cm soil depth (HFP-01, Campbell Scientific), two
soil thermocouples located above each of the soil heat flux
plates, and two soil moisture probes measuring a 0—15 cm
depth profile (CS-616, Campbell Scientific) located 9.5 m
southwest and 6.0 m east of the tower, a precipitation gage
(Weathertronics, model 6010), a net radiometer (Q7.1 REBS,
Campbell Scientific), a pyranometer (LI-200, LI-COR Inc.), a
quantum sensor (LI-190, LI-COR Inc.), and a temperature and
humidity probe (HMP-45C, Campbell Scientific). Eddy co-
variance data were recorded on a datalogger (CR-3000,
Campbell Scientific) at 10 Hz (sonic anemometer and
IRGA) along with 30-min averages from all other instruments.

Leaf area index (LAI) at both sites was measured at
3 locations within the flux footprint of the instrument
tower and analyzed using a leaf area meter (LI-3100,
LI-COR Inc.). LAI values were then averaged for each
sampling date. Sampling locations were randomly cho-
sen for each sampling day.

Soil heat flux at the surface (G) was derived from values
measured at 5 cm soil depth, corrected for changes in soil heat
storage in the soil volume above the heat flux plates
(Campbell Scientific, Inc. 2012).

Data processing for calculation of turbulent fluxes

Fluxes of latent heat, sensible heat, and carbon dioxide were
calculated using EddyPro software (version 4.2; LI-COR,
Inc.). Raw data (vertical wind component, CO,, water vapor,
sonic temperature) were statistically screened following
Vickers and Mabhrt (1997).

Quality control of the output data included plausibility tests
of the measured parameters and checks for instrument diag-
nostics given by the IRGA and anemometer. If the count of
diagnostic flags exceeded 10% (i.e., 1800 out of 18,000) for
any half-hour record, the record was deleted. Processed data
were also filtered for periods of insufficient turbulence, i.e.,
low friction velocity (u#x). Records when u+ was less than
0.05 m s ' at the urban lawn site or less than 0.11 m s~ ' at
the prairie site were removed. Remaining data for the energy
and CO, fluxes ranged from 64 to 80% of the total period,
varying with year and site.

Gaps were filled using an algorithm suggested by
Reichstein et al. (2005), which considers the covariation of
the calculated fluxes with meteorological parameters (incom-
ing shortwave radiation, air temperature, vapor pressure defi-
cit (VPD)) and the temporal auto-correlation of these fluxes.
Implementation of this gap-fill algorithm was aided by the
MPI-BGC online tool (MPI 2013). Vehicle and foot traffic
was minimal within the urban lawn flux footprint. While these
potential impacts were not specifically included in gap-filling,
it is likely that periods of measurable impact would be re-
moved by data quality screening.
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Calculation of annual net ecosystem exchange (NVEE) of CO,
for the urban lawn required additional gap-filling between and
outside the measuring period in 2011 and 2012. Missing days in
March 2011/2012, November 2011, and December 2012 were
filled using the method by Reichstein et al. (2005). The remain-
ing missing months (i.e., January and February 2011/2012;
December 2011) which lie outside of the growing season were
filled using a soil temperature /soil respiration regression (Fig. 2a)
assuming that CO,-uptake during these months was negligible.
Missing soil temperature data at the urban lawn were derived
using a regression between soil temperature at the prairie site
and soil temperature at the lawn (Fig. 2b).

Estimates of carbon emissions related to lawn management
are based on results published in Townsend-Small and Czimczik
(2010). Monthly emissions due to fossil fuel use were adjusted
for the aerial extent of the urban lawn and only considered for
months of active irrigation. For the prairie site, annual NEE was
calculated based on the gap-filled data for 2011 and 2012.

Uncertainties for cumulative sums of NEE and evapotranspi-
ration (E7) were estimated from the 30-min-average datasets
(including gap-filled data) using a bootstrap approach (Efron
and Tibshirani 1986). For each of the 1000 replicates, the cumu-
lative sum was calculated and 95% confidence intervals were
derived from the bootstrap distribution of cumulative sums.

Results
Environmental conditions

Denver’s high elevation and interior continental position re-
sults in a semi-arid climate with distinct seasons. Average
annual temperature in Denver is 10.4 °C with the warmest
month being July (23.4 °C) and the coldest December
(0.9 °C) (1981-2010). As a result of Denver’s distance from
major sources of moisture (e.g., the Pacific Ocean) and the
predominant westerly flows creating a rain shadow on the
eastern slope of the Rocky Mountains, precipitation is gener-
ally light and relative humidity low. Summer months are typ-
ically characterized by increased shower and thunderstorm
frequency providing a large portion of the year’s precipitation.
Average annual precipitation in Denver is 381 mm (1981—
2010) (Doesken et al. 2003; Paschke 2011; NOAA 2013a, b).

Measured temperature at both sites (Fig. 3) showed notice-
able differences between the 2011 and 2012 seasons and when
compared to Denver’s long-term average (1981-2010). In
2011, average monthly air temperatures were below average,
particularly in May, from the long-term mean (—2.8 °C for FL,
—4.0 °C for RF). Seasonal averages (April-October) were
16.3 °C for the urban lawn site and 15.7 °C for the prairie site
(Denver 1981-2010: 16.6 °C). In contrast, monthly mean
temperatures for the 2012 season were typically above-aver-
age, most notably in April and June (3.1 °C and 2.6 °C for FL;
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Fig. 2 (a) Relation between soil temperature and nighttime NEE at the urban lawn site (data: nighttime NEE when Rs< 10 W m2; Foken Quality
Control level = 1 (Foken et al., 2004)) and (b) Relation between soil temperature at the prairie (RF) and soil temperature at the urban lawn (FL)

2.1 °Cand 2.9 °C for RF). Seasonal averages were also higher
than the mean (FL: 17.4 °C; RF: 17.3 °C).

Precipitation at the lawn during the 2011 season was above
average in May (+31 mm, 155% of normal) and July (+38 mm,
167% of normal) but below average in August (—41 mm, 6% of
normal). Total seasonal precipitation (April-October) at the ur-
ban lawn was 331 mm in 2011, exceeding Denver’s long-term
mean (299 mm). During the 2012 season, precipitation was be-
low average in each month except for September (+26 mm,
205% of normal). Total seasonal precipitation was 226 mm
and considerably lower compared to the 2011 season and
Denver’s long-term mean. Total water input, P (precipitation
and irrigation), at the lawn was 1059 mm and 1107 mm in
2011 and 2012, respectively, clearly illustrating the contribution
of irrigation to available water.

Monthly precipitation sums at the prairie site (where there is
no irrigation) in 2011 showed similar deviations as the urban

500 —
C—lrrigation

N Precipitation
- = =FL2011
FL 2012
-+ RF 2011
e == RF 2012

'S
«
o

N
o
[S]

E 350 — — Denver 1981-2010
s
S 300
=2
)
£
£ 250
.
I R
2200 | e
S5 T e
-
8150 e
g
[-%
100
. ﬂ I I
- N - &N O - N = &N O - N - &N O - |~
gldlglyl g glgg(g] e gl glal g ol
o © ©O © © o O ©o ©o o o O O ©o o o| O
N N N N N N N N N N N N N N N NN
IR SiS|a| S8 Sls|a| S8 S S
T T gl e = T|T|E|lel = T T g gl o bl v
0 0 0
1) a D
a % )
2 % 2
[ (9 [
> > >
c c =
9 w 3
o o o

Apr May Jun

RF2011

Jul

lawn had from Denver’s 1981-2010 mean, e.g., in May
(+57 mm, 202% of normal), July (+41 mm, 173% of normal),
and August (=34 mm, 22% of normal). Seasonal precipitation
(April-October) totaled 411 mm with the wettest month being
May at 113 mm. In 2012, seasonal precipitation summed to
225 mm, 25% below Denver’s climatic mean for those months.
Denver’s official climate record for 2011 (NOAA
2012) showed monthly deviations that agreed well with
variations observed at the urban and prairie site.
Regarding precipitation, 2011 was a wet year (+59 mm,
115%), mainly due to above-average precipitation in May,
June, and July. In contrast, 2012 was characterized by
severe drought conditions. Average air temperature in
Denver was nearly 2 °C above the long-term mean and
intensifying drought conditions during the summer
months of June, July and August limited total precipita-
tion to 257 mm, 32% below average (NOAA 2013c).
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Energy partitioning and energy balance closure

For the following discussion, we consider this form of the
surface energy balance equation:

Ri—G-H-LE=A

where the energy flux terms are net radiation (R,,), soil heat
(G), sensible heat (H), and latent heat (LE). We consider radi-
ative fluxes toward the surface positive, while non-radiative
energy fluxes away from the surface are positive and vice
versa. The residual term (A), an indicator of lack of energy
balance closure, is 0 under ideal conditions with the assump-
tion of no measurement errors and that other biophysical
fluxes, including storage fluxes, are negligible.

Analysis of energy partitioning between April and October
using average daytime (06:00-18:00 MST) energy flux values
indicated that net radiation (R,) over the lawn was primarily
converted into latent heat (LE). The share of sensible heat (/)
was comparable to LE in April of 2011 (35% and 40%)
(Fig. 4) but by June in both years, LE clearly dominated as
daytime values amounted to 64% and 71% of R,, in 2011 and
2012, respectively. While LE accounted for 76% of R, in
August 2011, this share was down to 57% in August 2012,
coinciding with severe drought conditions and intermittent
irrigation. The residual term (A) ranged between 6 and 27%
of R, in 2011 and between 17 and 36% in 2012.

The prairie site generally showed a more balanced distri-
bution between H and LE. Midday values for H in April and
May of 2011 amounted to 47% and 42% of R,, respectively,
compared to 17% and 18% for LE. The relative share of LE
peaked in July, clearly exceeding H (47% vs. 22%). Similar to
the urban lawn, drought conditions in 2012 affected energy
partitioning, mainly during the summer: a very dry August
resulted in relative shares of H and LE of 47% and 18%,
respectively. The residual term (A) ranged between 18 and
27% of R, in 2011 and between 22 and 32% in 2012.

The analysis of energy balance closure (using ordinary
least squares linear regression — non-gapfill, quality-
controlled data only) indicated a general lack of closure.
Greatest discrepancies in energy balance (absolute values) at
both sites were usually found between midday and early af-
ternoon, the time of greatest magnitude with regard to relevant
fluxes. Including storage change in G generally increased
slopes of the derived regression lines, whereas R? remained
nearly unchanged.

Regression analysis using 30-min average data (data not
shown) yielded a slope, intercept, and R? of 0.84, —2.3, and
0.90, respectively, for the urban lawn in 2011. The energy bal-
ance ratio (EBR = X(LE + H) / 2(Rn-G)) amounted to 0.82. In
2012, the regression coefficients for slope and intercept were
0.73 and 3.1, while R® equaled 0.94. The EBR was calculated
to be 0.76. Regression analysis for the prairie resulted in very
similar results for 2011 and 2012. For 2011, slope, intercept, and
R? were 0.79, —11.4, and 0.94, respectively. In 2012, the coeffi-
cients showed little change with a slope, intercept, and R of
0.77, —10.9, and 0.95, respectively. The EBRs were
0.69 in 2011 and 0.67 in 2012. Using 24-h averages for analysis
improved energy balance closure slightly, primarily for the lawn
site (Fig. 5). Poorer energy balance closure in 2012 at both sites
may have been due to impacts of drought on footprint vegetation.

Evapotranspiration

As indicated by the energy partitioning data, £7 showed dis-
tinct seasonal courses. April daily E7 at the urban lawn aver-
aged 1.6(x0.6)mmd ' in2011 and 2.1(x0.8) mmd ' in 2012.
In comparison, prairiec E7 average daily sums, as well as
monthly sums, were approximately 50% lower (Figs. 6 and
7). Higher ET rates in the spring of 2012 compared to 2011
likely resulted from above-average temperatures and higher
monthly averages of VPD, and, in the case of the urban lawn,
an earlier start of irrigation.
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Fig. 5 Energy balance closure
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In June, average daily E7 for the lawn had increased to
41=12)mmd "in 2011 and 4.5(+1.3) mm d " in 2012, coin-
ciding with high water input from irrigation and high VPD.
Average total ET per day remained near 4.0 mm d ™' throughout
July and August in 2011, while in 2012 the respective monthly
averages decreased to 3.2(£0.8) mm d ' and 2.6(x0.7) mm d .
This decrease was paralleled by a decline in soil moisture and
LAI (Fig. 11) until mid-August as well as generally lower, inter-
mittent irrigation in comparison to the previous year. Shortly after
irrigation had stopped in October of both years, average daily £T'
dropped to about 1 mm d ™" or less.

Similar to the lawn, ET rates at the prairie increased
through the spring and early summer of 2011, peaking in
July when daily ET rates averaged 3.0(x0.7) mm d"'. In con-
trast, ET rates in 2012 reached a first peak in May before
declining again in June, paralleled by gradually decreasing
soil moisture due to a lack of precipitation (Fig. 11). This trend
continued into the first week of July when daily E7 dropped to
less than 1 mm d™'. Following strong precipitation events,
daily ET sums temporarily recovered to 2-3 mm d ", coincid-
ing with some of the highest seasonal values for LAI
(Fig. 9). In August, daily ET averaged 1.7(+£0.4) mm
d'in 2011 and 0.9(x0.3) mm d ' in 2012 which were
about half that of July’s values due to lower monthly
precipitation and soil moisture, and high VPD.

Overall, seasonal ET (April-October) at the lawn reached
639(+17) mm in 2011 with 331 mm precipitation and 728 mm
irrigation (E7/P =0.60) while in 2012 the totals were
584(x15) mm of ET with 226 mm precipitation, and
881 mm of irrigation (E7/P =0.53). The amount of water
utilized by ET of the lawn was more than twice that at the
prairie site. Here, the respective values for E7 in 2011 and
2012 were 302(£9) mm (precipitation: 412 mm, ET/P =
0.73) and 265(+7) mm (precipitation: 225 mm, ET/P = 1.18).

Net ecosystem exchange of CO,

Daily sums and cumulative trends for NEE of CO, varied
between years and sites, reflecting differing climate conditions
and management. For the lawn, daily sums of NEE in April
2011 (Fig. 8) were mainly positive (average: +0.3(x0.4) g C
m 2 d1). This indicated a net release of CO, as turbulent
fluxes away from the surface towards the atmosphere were
considered positive and vice versa. In early May there was a
distinct increase in positive daily sums following a marked
peak in soil temperature, the onset of irrigation and coinciding
with several lows of the daily light integral (DLI) (Fig. 11).
During this period, NEE approached and exceeded at times
+2gC m?2d’. Shortly after fertilization on June 15, net
uptake of CO, started to dominate (June average: —0.7
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Fig.6 Growing season cumulative and daily sums of evapotranspiration (ET) and precipitation (including lawn irrigation) at the urban lawn site (FL) (a)

and the prairie site (RF) (b) in 2011

(20.9) g C m 2 d") and continued in July, reaching a first
seasonal peak near the middle of the month when values were
closeto -3 gC m2d! (average: —1.6 (£0.9) g C m2dh.
Net CO, uptake slowed in August (average: —0.9(+0.8) g C
m > d"") which also had the highest monthly average VPD.
Net CO, uptake increased again in September and remained
high throughout the month (average: —2.1(x1.0) gCm >d ),
coinciding with the season’s highest values for LAI (Fig. 11).
Net daily uptake of CO, prevailed until the middle of October.

In contrast to 2011, the urban lawn in April 2012 (Fig. 8)
already showed discerible net uptake (average: —0.4(+0.9) g C
m 2 d"). Paralleled by increasing LAI, net uptake continued to
grow stronger in May (average: —1.9(x1.7) g C m 2 d "), but
during the last week of the month, NEE became positive, follow-
ing and overlapping with a period of practically no water input
and declining soil moisture. In the first half of July following a
spike in water input (Fig. 7), NEE became predominantly nega-
tive, indicating uptake. The remaining month was characterized
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by positive NEE, i.e., an overall loss of carbon. This period
coincided with intermittent irrigation, declining soil moisture,
high soil temperature, and a noticeable drop in LAI (Fig. 11),
all of which continued into early August. Until mid-August, daily
NEE sums were all positive, at times losses exceeded 4 g C m 2
d™' (August average: +1.3 (x1.7) g C m 2 d"). Within these
three weeks of severe drought conditions, approximately 50 g
C m 2 were released before irrigation resumed in early August.
Irrigation was again reduced at the end of August and led to a
loss of carbon lasting into early September. With heavier precip-
itation events occurring around mid-September, soil moisture
and LAI (Fig.11) recovered, net uptake of CO, started to domi-
nate again and continued throughout October (October average:
-09 #1.0)gCm2d ™.

NEE of CO; at the prairie site in April 2011 (Fig. 9) was
weak, but became increasingly negative in May (average:
—0.2 (£0.4) g C m 2 d"), especially during the second half
of the month. This trend continued into and past June
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Fig. 7 Growing season cumulative and daily sums of evapotranspiration (ET) and precipitation (including lawn irrigation) at the urban lawn site (FL) (a)

and the prairie site (RF) (b) in 2012

(average: —0.8(+0.5) g C m 2 d ") with the highest daily ac-
cumulation of carbon observed in late July when daily sums
for NEE were near —2.5 g C m 2 d”". The summer months,
from June to early August, were generally characterized by net
uptake, paralleled by increasing LAI values (Fig. 11). During
the second half of August, uptake slowed as VPD peaked, LAI
declined, and precipitation was minimal. Weak uptake contin-
ued until early October. Occasionally, uptake during the sea-
son was interrupted after heavy precipitation events, followed
by short periods of net release of CO,.

Similar to the lawn in 2012, net uptake dominated at the
prairie site by mid-April 2012 (Fig. 9) and became increasing-
ly stronger in May (average: —0.6 (£0.6) g C m > d ") coin-
ciding with increasing values of LAI (Fig. 11) and almost
regular precipitation. Late May showed the highest daily up-
take sums which approached —1.8 g C m > d'. Stronger net
uptake continued into June (average: —0.7(£0.6) g C m2dh
but became weaker as the month progressed while VPD

increased and soil moisture declined (Fig. 11). Similar to
2011, heavy precipitation events occasionally interrupted net
uptake, especially in early July. Uptake lasted until late
August but daily sums were small (average: —0.1 (£0.2) g C
m 2 d ). Net loss of CO, characterized September and
October (average: +0.3(+0.2) g C m2dh).

Overall, cumulative NEE between April and October for
the lawn was -173(£23) g C m 2 in 2011 and — 73(+22) gC
m ? in 2012. The respective sums for the prairie were —
81(£10) g Cm ?and -21(x8) g C m 2.

Comparison of annual carbon budgets

Data for annual NEE (including modeled NEE for the lawn for
months outside the measurement period) indicated that both the
lawn and tallgrass prairie sites were net sinks for CO, in 2011
and 2012 (Table 1, Fig. 10). In both years, the CO, sink strength
of the lawn was twice that of the prairie. Prolonged regional
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Table 1 Estimates for NEE at the
lawn (FL) and prairie sites (RF).

Negative numbers indicate net
carbon uptake and superscripts

Cumulative NEE (g C mfz)

indicate method of computation: a Period FL 2011 FL 2012 RF 2011 RF 2012
- data modelled using soil

temperature/night NEE regres- Jan - Feb +38* +40? +11° +7°

sion; b - gap-filled data following Mar — Nov 2190 ® _7gb _76° ~19®
Reichstein et al. (2005); ¢ - gap- N b b b
filled data including data derived ~ D€€ +21 +20 +4 +3

from soil temperature/NEE re- Growing Season (Apr-Oct) —173(x23)® ~73(+22) ® —81(+10) ® -21(+8)°
gression and gap-filling after Annual —131(£24) © —18(x22) © —61(+10)® -9(+8) ®

Reichstein et al. (2005)

drought conditions in 2012 coincided with reductions in sink
strength of approximately 85% at both locations. Moreover,
management activities for the lawn led to direct and indirect
emissions of CO, which further impacted annual budget esti-
mates. Applying the results of Townsend-Small and Czimzcik
(2010), including direct emissions from fossil fuel use (i.e., gen-
eral maintenance, mowing, aeration, etc.) resulted in a monthly
carbon offset of approximately +3 g C m 2. Indirect emissions
due to irrigation had a considerably stronger impact on the annual
carbon budget as total management emissions increased by
+53 ¢ C m 2 annually. Carbon emissions due to the production
of fertilizer further added approximately +6 g C m ~ per appli-
cation. As a result, management-related CO, emissions for the

lawn in 2011 offset annual NEFE by nearly two-thirds (—49 g C

m 2 aﬁl), while in 2012, these emissions exceeded net uptake

indicating this urban lawn was a net source of carbon (+60 g C
-2 -1

m-a ).

Discussion
Evapotranspiration
As shown in Figs. 5 and 6, the highest daily £7 sums at the

lawn and prairie sites occurred during the summer months
when the impact of parameters including precipitation,
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Fig. 8 Seasonal course of net ecosystem exchange of CO, (NEE, daily sums and cumulative) at the urban lawn site (FL) in 2011 (a) and 2012 (b) — red

arrows indicate times of fertilizer application
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Fig. 9 Seasonal course of net ecosystem exchange of CO, (NEE, daily sums and cumulative) at the prairie site (RF) in 2011 (a) and 2012 (b)

irrigation, R,,, VPD, and LAI was generally greatest (Figs. 3,
4, 11). For the lawn, this finding agrees well with Peters et al.
(2011) who reported highest average daily sums near 4 mm
d™!' during June for an unirrigated turfgrass site in
Minneapolis, Minnesota. Higher daily E7 rates for irrigated
lawns (up to 10 mm d ") were found by Feldhake et al. (1983)
for sites in Colorado and by Litvak et al. (2013) in California.
Romero and Dukes (2009) reported a span for E7 of 3—12 mm
d™! for different turfgrass species (e.g., fescue, Kentucky
bluegrass).

In comparison to the lawn, the mix of warm-season grasses
at the prairie site displayed a similar timing but lower absolute
values (<3 mm d ") for ET maxima. Here, highest ET rates
were also lower than the average (5 mm d ') reported by
Bremer et al. (2001) or the range (3.5-5 mm dh by Burba
and Verma (2005) for tallgrass prairie sites in Kansas and
Oklahoma, respectively. However, average ET rates (1.2—
2.1 mm d") between May and October at a shortgrass prairie
site in NE Colorado (Ferretti et al. 2003) compared well to the
values at this study’s prairie site (1.3-1.5 mm d "), likely due
to both prairies experiencing a similar climate.

The observed differences in management (irrigation) and
environmental conditions (e.g., soil moisture, type/
development of vegetation) between sites also affected total
ET. For the lawn, ET sums between April and October were
about 25-36% higher in comparison to the annual £7 reported

by Peters et al. (2011) for a suburban Minneapolis site dom-
inated by turfgrass (74% of land cover). Annual ET at the
prairie site (2011: 349(+9) mm; 2012: 310(+7) mm) was with-
in the span found in the literature for grasslands in North
America (e.g., Krishnan et al. (2012) reported 196-284 mm
and Burba and Verma (2005) found 637-807 mm).

Urban lawn and tallgrass prairie also differed with regard to
ET/P, an indicator for how efficiently ecosystems utilize avail-
able water. Urban ecosystems are typically characterized by
low ET/P because impervious surfaces and sewer systems
increase runoff (Moriwaki and Kanda 2004). For urban areas
containing large plots of green space, this may also be a sign
of excess water use for irrigation. For the lawn, E7/P showed
little difference between seasons (0.60 vs. 0.53) as total ET
and water input over the investigated periods were very sim-
ilar. Peters et al. (2011) in their study of suburban E7 found
ratios of 0.42-0.61 for a residential area with about one-third
turfgrass cover and of 0.62-0.85 for a recreational area with
nearly three-quarters covered by turfgrass.

In comparison to the urban lawn, E7/P for the prairie site
was higher and differed notably between years, likely a result
of thicker and generally drier soils. The £7/P value in 2011
was 0.73 but in the drought year 2012, E7/P exceeded unity
(1.18). This may have been due to a higher water-use efficien-
cy of prairie vegetation and/or its ability to access water
deeper within the soil that was stored during the previous,
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Fig. 10 Estimated annual sums (g

Cm 2a!) of NEE and carbon 100
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wetter year. Similar patterns of increasing E7/P during
drought years have been found for a semi-arid grassland in
Arizona where values ranged between 0.74-0.84 but peaked
at 1.20 during the driest year (Scott 2010). Other studies have
also reported increased E7/P for grasslands during drought
years, such as Aires et al. (2008) and Hussain et al. (2011).

Net ecosystem exchange of CO,
Urban lawn

During the 2011 season, NEE was dominated by net uptake of
CO, as more than 70% of daily NEE sums indicated net up-
take. Brief periods of net emission occurred in response to
specific environmental conditions and management. For ex-
ample, a distinct period of net emissions in mid-May 2011
coincided with a rapid increase in soil temperature (daily av-
erages increased 8.0°C within 7 days) and the start of irriga-
tion. The influence of soil temperature on soil respiration is
well established and remains a subject of research (Fang and
Moncrieff 2001; Risk et al. 2002; Hibbard et al. 2005;
Davidson et al. 2006; Graf et al. 2008; Karhu et al. 2014).
But soil respiration in most terrestrial ecosystems is also in-
fluenced by soil moisture (Risch and Frank 2007; Balogh et al.
2011; Lellei-Kovacs et al. 2011). The observed pulses of soil
CO, efflux following the re-wetting of (dry) soils (also known
as the “Birch effect” — see discussion below) have been report-
ed in other studies (e.g., Lee et al. 2004; Jarvis et al. 2007,
Chowdhury et al. 2011; Kim et al. 2012). The immediate
response of NEE to precipitation/irrigation events, however,
was difficult to estimate since data during these events was
often incomplete due to the interference of water on the open-
path IRGA instrument. Fertilization may also have led to short
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periods of net emissions or clearly reduced uptake in both
seasons as fertilizer application can considerably enhance soil
respiration (Fierer et al. 2003; Verburg et al. 2004). For most
of'the remaining period in 2011, net uptake dominated but was
not uniform in strength. NEE noticeably slowed in August
2011 despite both, high irrigation input and LAL. We observed
small, positive daily sums of NEE (net emission) during some
of the warmest days. High air temperatures and high VPD
likely stressed vegetation, reducing photosynthetic activity
and weakening uptake (Mathur et al. 2014).

NEE in 2012 appeared to be impacted by above average
heat, especially drought conditions, and lack of suffi-
cient irrigation. Above-average temperatures and earlier
vegetation development (as indicated by LAI) in spring
of 2012 led to increases in soil respiration and photo-
synthetic fluxes, resulting in greater diurnal amplitudes
of NEE compared to 2011. Irrigation was a major influ-
ence on NEE through feedbacks via soil moisture and
LAI These factors primarily determined the seasonal
course of NEE until early September, together with re-
cord high air temperatures and high VPD (Fig. 11). The
effect of irrigation limits became apparent in late May
and more so in late July/August. When irrigation was
stopped for periods of a few days or more, soil moisture
and LAI declined, photosynthetic flux was reduced and
net losses of carbon followed. The resilience of the
lawn preserved seasonal net uptake of CO, as LAI

Fig. 11 Panels from top down are: (a) Leaf area index sample average P>
(LAI), (b) daily averages of volumetric water content (VWC), (¢) vapor
pressure deficit (VPD), (d) soil temperature (Tyo;;) and (e) daily light
index (DLI) at the urban lawn site (FL) and prairie site (RF) in 2011
and 2012
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repeatedly recovered once irrigation resumed, resulting
in negative NEE, indicating uptake.

The effect of lawn-mowing on NEE could not be clearly
identified as mowing varied temporally and spatially on the
lawn. Reduced LAI may have contributed to decreased net
uptake of CO,, but data that coincided with or followed
lawn-mowing, also showed other, potentially influencing fac-
tors (e.g., high temperature, low soil moisture, low photosyn-
thetically active radiation (PAR), increased photosynthesis by
previously shaded vegetation), confounding interpretation.

To evaluate NEE of CO, at the urban lawn, data drawn for
comparison also included urban studies that contained a sig-
nificant portion of lawns (e.g., suburban neighborhoods, park
landscapes), since studies investigating NEE of lawns are still
relatively rare. Bergeron and Strachan (2011) studied NEE ata
suburban site in Montreal, Canada, where in spring (April-
May) and fall (September-November) NEE was generally
close to zero and in summer (Jun-Aug) showed an average
midday uptake of =7 pmol CO, m 2 s '. In comparison, di-
urnal averages observed at this study’s urban lawn were usu-
ally stronger, reaching up to —10.6 (spring 2012), —11.8 (fall
2011), and—13.3 pmol CO, m * s ' (summer 2011). For
other suburban sites, Kordowski and Kuttler (2010) reported
average summer NEE maxima of up to —10 umol CO,
m > s_l, while Buckley et al. (2014) working in Syracuse,
New York, found a midday average CO, flux of —11 pmol
CO, m %5 ' during the summer months. Average NEE during
June—August in suburban Baltimore, Maryland, ranged be-
tween —14 and + 10 pmol CO, m %5 ' and diurnal amplitudes
showed a sensitivity to PAR and soil temperature (Crawford
etal. 2011). NEE measured at suburban/residential sites could
also be influenced by anthropogenic emissions (e.g., traffic)
but, in general, these results compare well to this study’s data.

Studies that aim to quantify annual net carbon uptake
of turfgrass are often based on the analysis of changes
in soil carbon stocks as the carbon is mostly stored in
the soil and not in shoots or roots (Guertal 2012). Qian
and Follett (2002) investigated turfgrass sites at golf
courses of different ages (mainly in Colorado) and
found average net uptake rates of —90 to —100 g C
m 2 a~ ' during the first 30 years following establish-
ment while Qian et al. (2010) reported a narrower range
of =34 to =78 g C m 2 a '. Milesi et al. (2005) esti-
mated that turfgrass in the United States could uptake
between —36 to —100 g C m > a '. Carbon uptake for
ornamental lawns in Irvine, California, was —140 g C
m 2 a ! (Townsend-Small and Czimczik 2010). These
values compare well to the estimated annual uptake
for the urban lawn in this study in 2011 (-131(£24) g
C m? a') but also illustrated how severely summer
drought conditions impacted carbon uptake potential in
2012 (-18(x22) g C m 2 a h.
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Tallgrass prairie

Like the urban lawn, the tallgrass prairie showed substantial
NEE of CO, variability day-to-day, through the course of a
season, and between years. Similar variability has been ob-
served in various other (multi-year) studies in the Great Plains,
including changes in ecosystem function from carbon sink to
source (Frank and Dugas 2001; Sims and Bradford 2001;
Polley et al. 2008; Parton et al. 2012). These differences in
(annual) carbon budgets are often attributed to climatic vari-
ability which can directly and indirectly impact NEE, for ex-
ample, by influencing aboveground-net primary productivity
in grasslands (Knapp and Smith 2001; Flanagan et al. 2002;
Xu and Baldocchi 2004).

NEE at the prairie site during the 2011 season
followed a seasonal cycle strongly influenced by soil
moisture and temperature conditions, solar radiation,
VPD and feedbacks via LAI Diurnal cycles of NEE
in spring were weak but were evidence that rising soil
temperatures stimulated soil respiration while early veg-
etative growth initiated uptake of CO,, which strength-
ened further into the season. However, similar to the
lawn, periods of net emission were also observed, e.g.,
in May (Fig. 9), following a rapid increase in soil tem-
perature and significant precipitation but also low DLI.
The individual impact of temperature and moisture on
soil respiration is difficult to estimate as both parame-
ters have been shown to influence soil CO, efflux in
prairic ecosystems (Mielnick and Dugas 2000; Frank
and Dugas 2001; Chimner and Welker 2005). Net CO,
uptake dominated until late July/early August with ris-
ing LAI and significant precipitation input, but slowed
abruptly thereafter, likely due to stress conditions (high
temperatures and VPD, depleted soil moisture)
impacting photosynthetic activity. Cooling temperatures,
declining VPD, and moderate precipitation in early
September led to a partial recovery of net uptake, but
senescence of vegetation in early October ended net
uptake.

Anomalous climate conditions in spring and summer of
2012 impacted NEE at the prairie site. Amount and timing
of precipitation appeared as important parameters affecting
strength and direction of CO, flux (uptake/emission) and an-
nual carbon balance, a finding consistent with other studies
(e.g., Frank and Dugas 2001; Sims and Bradford 2001;
Huxman et al. 2004; Harper et al. 2005; St. Clair et al.
2009). Similar to the lawn, above-average springtime temper-
atures led to an earlier and more rapid development of vege-
tation. CO, uptake sharply increased in mid-May, enhanced
by nearly regular precipitation and a further increase in LAI.
However, vegetation vitality was impacted towards the end of
the month and into June by changing environmental condi-
tions. Lowering soil moisture with air temperature and VPD
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increasing towards annual maxima led to drastically declining
net uptake. Uptake temporarily resumed as precipitation in
early July replenished soil moisture, but as air temperatures
and VPD remained high and soil moisture decreased, daily
uptake sums gradually decreased. By the end of August,
drought conditions resulted in net emissions and the prairie
became a net source of CO, until the end of October.

NEE of CO, of the prairie displayed a distinct sensitivity in
summer to heavy precipitation events after periods of low or
no precipitation during both years. Net uptake ceased after
precipitation pulses, followed by a peak of net release of
CO, (up to 10 g C m * within one week) before uptake usually
resumed. Notable events occurred around the same time in
both years, i.e., early July and early-mid September; although
during the drought year 2012 resultant net emissions appeared
stronger. The CO, emission spike in a semiarid ecosystem
following a precipitation pulse after a dry period is known as
the “Birch effect” (Birch 1958), a subject of various studies
(e.g., Huxman et al. 2004; Parton et al. 2012) including those
in shortgrass (Munson et al. 2010) and tallgrass prairies (Liu
et al. 2002). Interest in these precipitation-induced carbon
losses is due to the fact that these events can lead to large
CO, effluxes, representing a considerable portion of annual
respiration (Ma et al. 2012).

CO, emission pulses may be the result of multiple process-
es (Maetal. 2012). Initially, the infiltration of rain into the soil
causes the physical displacement of CO,-rich air from soil
pores. The CO2 is also generated by the stimulation of micro-
bial activity by a sudden increase in soil moisture. Microbial
activity may be further enhanced by increased carbon and
nutrient availability through photo-degradation of dead bio-
mass. This latter process has been shown to cause direct
CO, emissions from litter (Rutledge et al. 2010). Parameters
such as timing and magnitude of precipitation pulses also
seem to exert an influence on respiration response (Harper
et al. 2005; Munson et al. 2010; Ma et al. 2012).

Comparing cumulative carbon uptake to other studies illus-
trates that the span in uptake observed between years at the
prairie site is not atypical. For example, Frank and Dugas
(2001), measuring NEE over 4 years at a mixed prairie site, found
that cumulative net uptake ranged between —50 to —130 g C m >
(April-October; average: —95 g C m 2). They also noted that,
similar to this study’s prairie site, seasonal variability in NEE was
clearly related to LAI/biomass responding to moisture and
temperature stress and that maximum CO, flux occurred at the
time of maximum LAI Sims and Bradford (2001) reported an
average annual uptake of =70 g C m 2 a ' for a prairie site,
comparable to this study’s prairie in 2011 (—61(x10) g C m >
a ") and emphasized the importance of the timing of precipita-
tion. Similar observations regarding the change of grasslands
from carbon sink to source in response to precipitation patterns
have been made by Meyers (2001), Ma et al. (2007) and Xu and
Baldocchi (2004). Polley et al. (2008) found that interannual

variability of net uptake was clearly reflected in average daily
NEE during the growing season which varied by more than a
factor of 3 between years, comparable to the ratio found for the
prairie site. Daily NEE sums for this study’s prairie site during the
growing season displayed a range (May—July 2011: —2.6 to
+2.1 gCm 2 d"; July-September 2012: —1.9 to +2.8 g C m ">
d™") similar to that found by Suyker and Verma (2001) (July—
August: 1.8 to +2.2 g C m > d ). For the same tallgrass site
(Suyker et al. 2003), the annual uptake was larger (—274 g C m >
a ') in comparison to this study’s xeric tallgrass prairie but severe
drought conditions also reduced annual NEE by more than 80%,
similar to what the prairie site experienced in 2012.

Impact of lawns in urban ecosystems

Reported data showed that available energy was primarily
partitioned into LE over lawns, leading to cumulative ET at
the urban lawn exceeding ET at the prairie site by more than
factor of 2 between April and October. Considering these
differences and the estimates for the land cover fraction of
lawn in Denver (~ 40%; Thienelt and Frithauf 2007), a sub-
stantial influence of watered lawns through evaporative
cooling on urban microclimate can be assumed. The cooling
effect of urban green space on air and surface temperatures has
been measured in other urban studies (Taha et al., 1991; Ca
et al. 1998; Bonan 2000; Kong et al. 2014) and may partially
help alleviate the urban heat island effect. Cooling facilitated
by vegetation may also lead to reduced carbon emissions with
lower demand for air conditioning (Ca et al. 1998; Pataki et al.
2006; Salamanca et al. 2014). Considering these potentials
may benefit urban planning when trying to adapt urban areas
to climate change, i.e., rising temperatures (Kong et al. 2014).
But urban vegetation, including lawns, receives additional en-
ergy and resource inputs associated with regular maintenance
(mowing, aerating, thatching) as well as application of syn-
thetic inputs (fertilizer/pesticides) which can equal or even
surpass that of agricultural ecosystems on a per-area basis
(Robbins and Birkenholtz 2003; Alumai et al. 2009). Frequent
irrigation can also put enormous pressure on water resources,
especially in arid and semi-arid climates (Milesi et al. 2005). At
the urban lawn site, precipitation was only 31% (2011) and 20%
(2012) of total water input between April and October and, thus,
irrigation exceeded precipitation by a factor of more than 2 and
nearly 4, respectively. Kjelgren et al. (2000) reported that irriga-
tion can amount to nearly half of annual municipal water
use. At the household level, irrigation was estimated to
account for 40-70% of domestic water use depending
on regional climate, often showing considerable poten-
tial for water conservation (Hilaire et al. 2008).
Although year-to-year climatic variability notably impact-
ed net carbon uptake, urban lawns were stronger sinks for CO,
than the xeric tallgrass prairie as seasonal NEE sums of the
lawn exceeded those of the tallgrass prairie by factors of more
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than 2 and 3 for 2011 and 2012, respectively. The observed
net uptake by urban lawns is consistent with other findings of
substantial carbon storage in urban vegetation and soils.
Churkina et al. (2010), for example, estimated that urban eco-
systems in the US contain up to 10% of total US land carbon
with 64% of this share stored in soils and a further 20% in
vegetation. Golubiewski (2006) found that urban lawns in the
Colorado Front Range had more biomass and higher carbon
storage on a per-area basis than native grassland or agricultur-
al land. Pouyat et al. (2009) reported soil organic carbon
values for lawns in Denver that in some cases were more than
double in comparison to shortgrass prairie. Thus, urbanization
can enhance carbon uptake and carbon storage, especially in
drier climates where combined higher productivity of urban
vegetation and management can boost carbon storage in soils
compared to natural ecosystems (Pataki et al. 2006; Pouyat
et al. 2006; Townsend-Small and Czimczik 2010).

Including direct and indirect carbon emissions in a more
complete accounting of the carbon budget for an urban lawn,
however, can lead to substantial offsets to measured net up-
take (Townsend-Small and Czimczik 2010; Zirkle et al.
2011). Estimated annual NEE for the urban lawn in 2011
was reduced by more than 60% when accounting for mainte-
nance emissions, indicating that the lawn had become a slight-
ly weaker carbon sink that year than the prairie site. For the
drought year 2012, maintenance emissions shifted the urban
lawn from sink to source while the prairie site remained a
(weak) net carbon sink. Besides emissions related to manage-
ment, other sources of CO, and greenhouse gases in urban
areas (e.g., traffic, industrial activities) can be assumed to fur-
ther offset potential carbon gains by urban lawns.
Without decreases in general energy use and carbon
intensity, urban ecosystems are unlikely to become sub-
stantive net carbon sinks despite harboring large carbon
pools (Golubiewski 2006; Pataki et al. 2006; Churkina
et al. 2010; Hutyra et al., 2011).

Conclusion

This study demonstrated that an urban lawn and xeric tallgrass
prairie differ notably with regard to NEE of CO,, energy
partitioning, and E7, a finding that appears most relevant con-
sidering the present rapid expansion of urban areas such as
Denver and predicted future urban growth. Vegetation acted
as an important modifier for energy partitioning as well as
rates and direction of net carbon exchange. Close links were
found between seasonal vegetation development (i.e., LAI),
energy fluxes, and NEE of CO,. In Denver’s semi-arid cli-
mate, water availability further influenced carbon and energy
exchange. Irrigation at the urban lawn site greatly contributed
to the differences in energy partitioning observed between
turfgrass and prairie as the urban lawn showed a distinct shift
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from H to LE, resulting in LE consuming, on average, more
than 50% of available energy between April and October dur-
ing the day. Greater water availability also allowed for a lon-
ger period of high daily £7 sums and resulted in considerably
higher seasonal totals over the lawn, which exceeded prairie
totals by more than a factor of 2 (2011: 639(=17) mm vs.
302(x9) mm; 2012: 584(+15) mm vs. 265(x£7) mm). Higher
productivity and vegetation density of the lawn as well as man-
agement (e.g., irrigation and fertilization) led to large differences
regarding diurnal and seasonal carbon fluxes. NEE of CO, for the
urban lawn was affected by a longer growing season with higher
daily net uptake and, hence, higher seasonal uptake sums of CO»,
exceeding those of tallgrass prairic by a factor of 2-3. Above-
average temperatures (+1.8 °C) and reduced precipitation
(—=30%) in 2012, however, influenced diurnal and seasonal NEE
at both research sites (2011: —173(#23) g C m 2 vs. -81(x10) gC
m % 2012: —73(£22) g C m 2 vs. 21(8) g C m 2. Vegetation
vitality was clearly affected by temperature and water stress during
the summer months, influencing the direction and magnitude of
CO, flux. If the net carbon uptake by the lawn we measured is
typical and given the spatial extent of urban lawns in Denver, our
findings suggest that lawns can function as important carbon sinks/
carbon pools within urban ecosystems but require considerable
amounts of irrigation, particularly in a semi-arid climate. The trans-
formation of natural grasslands to urban land uses could therefore
increase carbon storage on a per-area basis but simultaneously
strain water resources. The establishment of urban vegetation
may therefore contribute to the mitigation of carbon emissions in
urban areas to a certain degree, but assessments of the magnitude
of these effects regarding urban carbon budgets also need to inte-
grate emissions from maintenance and costs of resource allocation.
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