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Abstract
Synthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes with the formula [ZnLn(HL)(µ-OAc)
(NO3)2(H2O)x(MeOH)1-x]NO3 · n H2O · n MeOH [Ln = Pr (1), Nd (2)] and the crystal and molecular structure of [ZnNd(HL)
(µ-OAc)(NO3)2(H2O)] [ZnNd(HL)(OAc)(NO3)2(H2O)](NO3)2 · n H2O · n MeOH (3) are reported. The asymmetrical com-
partmental ligand (E)-2-(1-(2-((2-hydroxy-3-methoxybenzylidene)amino)-ethyl)imidazolidin-2-yl)-6-methoxyphenol (H2L) 
is formed from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intramolecular aminal formation, 
resulting in a peripheral imidazoline ring. The structures of 1–3 were revealed by X-ray crystallography. The smaller ZnII 
ion occupies the inner N2O2 compartment of the ligand, whereas the larger and more oxophilic LnIII ions are found in the 
outer O2O2’ site.

Graphic Abstract
Synthesis and structural characterization of two heterodinuclear ZnII-LnIII complexes (Ln = Pr, Nd) bearing an asymmetrical 
compartmental ligand formed in situ from N1,N3-bis(3-methoxysalicylidene)diethylenetriamine (H2valdien) through intra-
molecular aminal formation are reported.
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Introduction

Acyclic and macrocyclic Schiff base ligands are among the 
most extensively used ligands in coordination chemistry 
[1]. In general, Schiff bases can be readily prepared in 
good yields through condensation of primary amines with 
aldehyde or ketones. Owing to the ease of their synthesis, 
their versatility and ability to form stable complexes with 
almost all transition metals, Schiff base ligands have enor-
mously contributed to the development of coordination 
chemistry and their transition metal complexes have been 
particularly important in bioinorganic chemistry, magne-
tochemistry, catalysis [2–4] and biomedical and related 
applications [5].

Polydentate Schiff base chelate ligands derived from 
condensation of 2-hydroxy-3-methoxybenzaldehyde 
(o-vanillin) or derivatives as aldehyde component with 
polyamines have been exploited for the synthesis of homo- 
and heterodinuclear complexes. These have attracted 
research attention because of interesting properties such 
as magnetism and luminescence [6–18]. N1,N3-bis(3-meth-
oxysalicylidene)diethylenetriamine (H2valdien), which is 
obtained via Schiff base condensation of two equivalents 
of o-vanillin with diethylenetriamine, belongs to this 
class of ligands. After deprotonation of the phenol moie-
ties, the resulting valdien2− anion represents a compart-
mental ligand [19, 20], providing an inner binding site 
with an N3O2 donor set and an outer binding site with an 
outer O2O2’ donor set. Whereas the inner compartment is 
expected to accommodate metal ions from the 3d row, the 
outer site may bind the more oxophilic lanthanide ions [6, 
7, 21, 22]. Nevertheless, the inner compartment can also 
host lanthanide ions [8, 23–26]. Moreover, the H2valdien 
ligand has also been encountered in a chelate-spacer-
chelate bridging mode in dinuclear complexes with the 
aliphatic secondary amine linkages remaining unbound to 
the metal ions [27–30].

Herein, we report on the synthesis and structural 
characterization of two heterodinuclear ZnII-LnIII com-
plexes with the general formula [ZnLn(HL)(µ-OAc)
(NO3)2(H2O)x(MeOH)1-x]NO3 · n H2O · n MeOH [Ln = Pr 
(1), Nd (2)], containing bridging acetate ions and the 
asymmetrical compartmental ligand (E)-2-(1-(2-((2-
hydroxy-3-methoxybenzylidene)amino)-ethyl)imidazo-
lidin-2-yl)-6-methoxy-phenol (H2L) formed in situ from 
H2valdien through isomerization by intramolecular aminal 
formation, resulting in a peripheral imidazoline ring [27]. 
Such rearrangements are due to the reversibility of the 
Schiff base (imine) formation [31]. The rearranged ligand 
H2L thus formed likewise represents a compartmental 
ligand but exhibits lower symmetry and a smaller inner 
compartment than the parent H2valdien ligand. In addition, 

the structure of the serendipitously discovered compound 
[ZnNd(HL)(µ-OAc)(NO3)2(H2O)] [ZnNd(HL)(OAc)
(NO3)2(H2O)](NO3)2 · n H2O · n MeOH (3) is described.

Experimental Section

General

The H2valdien ligand was synthesised as described in the 
literature [23]. Zn(OAc)2 · 2 H2O (Fischer Scientific), 
Pr(NO3)3 · 6 H2O and Nd(NO3)3 · 6 H2O (Sigma Aldrich) 
were purchased and used as received. Methanol was of rea-
gent grade. CHN microanalysis was carried out by Mikro-
analytisches Labor Kolbe (Mülheim, Germany).

Synthesis of 1 and 2

Zn(OAc)2 · 2 H2O (0.220 g, 1.0 mmol) dissolved in 10 mL of 
methanol was added to H2valdien (0.371 g, 1.0 mmol) dis-
solved in 10 mL of acetonitrile and the mixture was stirred 
under reflux at 40 °C for 1 h. Subsequently, the yellow pre-
cipitate so formed was added to Pr(NO3)3 · 6 H2O (0.435 g, 
1.0 mmol) for 1 or Nd(NO3)3 · 6 H2O (0.438 g, 1.0 mmol) 
for 2 in 40 mL of methanol and the reaction mixture was 
refluxed for a further 3 h. The solution was then filtered and 
the filtrate was set aside undisturbed at ambient tempera-
ture. Yellow–brown crystals of 1 and yellow crystals of 2 
suitable for single-crystal X-ray diffraction were obtained 
after several days. Analytical data for the compounds are 
given below.

[ZnPr(HL)(µ-OAc)(NO3)2(H2O)0.35(MeOH)0.65]NO3 · 
2 MeOH · H2O (1; L2−  = C20H23N3O4

2−): Yield: 0.580 g 
(0.62 mmol, 62%). Anal. calcd. for C24.65H40.30N6O19PrZn 
(M = 931.00 g  mol−1): C 31.8, H 4.4, N 9.0%; found: C 
31.9, H 4.3, N 9.2%. MS(ESI+): m/z [H3L]+ calcd. for 
C20H26N3O4

+ 372.2, found 372.2, [Zn(HL)]+ calcd. for 
C20H24N3O4Zn+ 434.1, found 434.1; IR(ATR): 1640 cm–1 
(C = N stretch).

[ZnNd(HL)(µ-OAc)(NO3)2(H2O)0.75(MeOH)0.25]
NO3 · 3 MeOH (2; L2−  = C20H23N3O4

2−): Yield: 0.570 g 
(0.60 mmol, 60%). Anal. calcd. for C25.24H41.50N6NdO19Zn 
(M = 942.64  g  mol−1): C 32.2, H 4.4, N 8.9%; found: 
C 32.1, H 4.3 N 9.2%. MS(ESI+): m/z [H3L]+ calcd. for 
C20H26N3O4

+ 372.2, found 372.2, [Zn(HL)]+ calcd. for 
C20H24N3O4Zn+ 434.1, found 434.1; IR(ATR): 1640 cm–1 
(C = N stretch).

Physical Methods

Energy-dispersive X-ray spectroscopy (EDX) was under-
taken on a Hitachi S3500N scanning electron micro-
scope using a Si(Li) Pentafet Plus detector from Oxford 
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Instruments GmbH with a 25 kV excitation voltage, 600 s 
measuring time and 100 × magnification from a fine pow-
der sample sprinkled on a self-adhesive carbon guide tap. 
IR spectra were measured in the range 4000–400  cm–1 
with a Bruker ALPHA Platinum-ATR FT-IR spectrometer. 
ESI mass spectra were recorded on a Q ExactiveTM Plus 
Orbitrap mass spectrometer (Thermo Scientific, Bremen, 
Germany).

X‑ray Crystallography

The X-ray intensity data were collected on a Bruker AXS 
Kappa Mach3 APEXII diffractometer at T = 100(2) K, 
using Mo-Kα radiation (λ = 0.71073 Å) from an Incoatec 
IµS microfocus X-ray source with Helios mirrors. The 
data were processed with SAINT [32] and absorption cor-
rections were carried out with SADABS [33]. The crys-
tal structures were solved with SHELXT [34] and refined 
with SHELXL-2018/3 [35]. Disordered parts of the struc-
tures were refined with appropriate geometrical restraints 
and using free variables for the occupancies (see supple-
mentary crystallographic data). Carbon-bound hydrogen 
atoms were placed in geometrically calculated positions 
and refined using the appropriate riding model. Hydrogen 
atoms attached to nitrogen and oxygen were treated by semi-
free refinement using appropriate distance restraints. Some 
solvate methanol and water hydrogen atoms could not be 
located in the final difference Fourier map and were there-
fore excluded from the structure refinement. The structure 
of 3 was refined as an inversion twin, resulting in a Flack x 
parameter of 0.440(19) [36].

Crystal data and refinement details for 1: C25H39.68 
N6O18.34PrZn, Mr = 924.03, monoclinic, P21/n, Z = 4, 
a = 11.3498(15) Å, b = 14.8170(19) Å, c = 21.488(3) 
Å, β = 101.864(2)°, V = 3536.5(8) Å3, F(000) = 1870, 

crystal size 0.223 × 0.066 × 0.031 mm, ρcalcd = 1.735 g cm−3, 
μ = 2.125 mm−1, 2θmax = 62.22°, reflections collected/unique 
104,376 / 11,339 (Rint = 0.0522), parameters/restraints 
512/16, R1 [I > 2σ(I)] = 0.0246, wR2 (all data) = 0.0592, 
S = 1.031, Δρmax/Δρmin = 0.65/ − 0.46 e Å−3.

Crystal data and refinement details for 2: C23.94 
H35.26N6NdO18.90Zn, Mr = 919.13, monoclinic, P21/n, Z = 4, 
a = 11.3439(13) Å, b = 14.7501(18) Å, c = 21.454(3) Å, 
β = 101.914(2)°, V = 3512.4(7) Å3, F(000) = 1848, crys-
tal size 0.086 × 0.044 × 0.024 mm, ρcalcd = 1.736 g cm−3, 
μ = 2.231 mm−1, 2θmax = 62.14°, reflections collected/unique 
153,810/11,217 (Rint = 0.1000), parameters/restraints 529/85, 
R1 [I > 2σ(I)] = 0.0384, wR2 (all data) = 0.0942, S = 1.048, 
Δρmax/Δρmin = 1.48/ − 1.30 e Å−3.

Crystal data and refinement details for 3: C22H27 
N6NdO18.05Zn, Mr = 873.87, monoclinic, Pn, Z = 4, 
a = 11.2800(2) Å, b = 15.749(3) Å, c = 18.5316(8) Å, 
β = 102.908(2)°, V = 3209.0(6) Å3, F(000) = 1742, crys-
tal size 0.130 × 0.060 × 0.030 mm, ρcalcd = 1.809 g cm−3, 
μ = 2.435 mm−1, 2θmax = 66.18°, reflections collected/unique 
88,652/24,240 (Rint = 0.1126), parameters/restraints 869/2, 
R1 [I > 2σ(I)] = 0.0705, wR2 (all data) = 0.1700, S = 1.025, 
Δρmax/Δρmin = 2.08/ − 1.48 e Å−3.

Results and Discussion

The H2valdien ligand was prepared through Schiff base 
condensation of o-vanillin and diethylenetriamine in 
a 2:1 molar ratio [23]. Reaction with Zn(OAc)2 · 2 H2O 
and, subsequently, with Ln(NO)3 · 6 H2O (Ln = Pr or Nd) 
in methanol under reflux conditions afforded the heterodi-
nuclear ZnII-LnIII complexes 1 (Ln = Pr) and 2 (Ln = Nd), 
as depicted in Scheme 1. X-ray crystallography revealed 
that the H2valdien compartmental ligand underwent an 
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Scheme 1   Synthesis of 1 and 2. The coordination site on Ln occupied by water or methanol in the solid-state is represented by water only in the 
diagram for the sake of clarity. Co-crystallized solvent molecules are not shown
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isomerization through an intramolecular aminal formation 
during the complexation reaction, resulting in an imida-
zolidine ring in the periphery. This phenomenon has been 
observed previously for the H2valdien ligand and it was sug-
gested that ring contraction optimizes binding of the ZnII ion 
[27]. Some minor discrepancies between the sum formulae 
derived from elemental analysis of the bulk material as syn-
thesized and those obtained from X-ray crystallography are 
ascribed to partial loss of co-crystallized solvents on dry-
ing before analysis. The presence of Zn and respectively, Pr 
and Nd in 1 and 2 was confirmed by EDX analysis (Fig. S1 
in the supplementary material). The IR band at 1640 cm−1 
observed for both 1 and 2 (Figs. S2 and S3 in the supple-
mentary material) is assigned to the imine C = N stretch-
ing vibration and agrees well with that reported for a heter-
odinuclear ZnII-LaIII complex having the reported formula 
“[ZnLa(HL)(NO3)(S)](NO3)”, where S = H2O or C2H5OH, 
(CSD refcode: XODFOM) [27] and [Zn4Dy2(L)2(L’)2(N3)2]
Cl2 · 2 H2O (BIRXEI), [Zn4Tb2(L)2(L’)2(Cl)2][ZnN3Cl3] · 
2 H2O (BIRXOS), and [Zn4Gd2(L)2(L’)2(Cl)2][ZnN3Cl3] 
· 2 H2O (BIRZAG) [37], containing the same rearranged 
compartmental ligand (herein abbreviated H2L) and in the 
case of the latter three complexes the carbamate ligand L’, 
derived from L by the absorption of CO2 from the air in the 
presence of ZnII. In the ESI+ mass spectra of 1 and 2 (Figs. 
S4-S7 in the supplementary material), the peaks at m/z 372.2 
and 434.1 can be assigned to the fragment ions [H3L]+ and 
[Zn(HL)]+, respectively.

Figure 1 depicts the molecular structures of the cationic 
complexes in 1 and 2 in the solid-state, as determined by 
X-ray crystallography. The structures of 1 and 2 were found 
to be isostructural. The ZnII ion occupies the inner N2O2 
compartment of the rearranged ligand, whereas the LnIII ion 

is situated in the outer O2O2 compartment. The intramo-
lecular distance between the two metal ions is ca. 3.5 Å. 
The coordination sphere of the five-coordinate ZnII ion is 
best described as square-pyramidal with the imine (N1) and 
aminal nitrogen (N2) atoms and the bridging phenolate oxy-
gen atoms of the chelate ligand in the basal plane and an 
acetate oxygen atom in the apical position. The geometry 
index τ5 is 0.31 for 1 and 0.32 for 2 [38], indicating that 
the coordination geometry lies between square-pyramidal 
and trigonal–bipyramidal but closer to square-pyramidal 
(C4v symmetry). The LnIII ion is ten-coordinate with the 
two bridging phenolate and the two methoxy oxygen atoms 
of the chelate ligand occupying four coordination sites. The 
remaining positions are filled by two nitrate ions in a sym-
metrically bidentate coordination mode [39, 40], a water or 
alternatively a methanol oxygen atom (site of O13), and an 
oxygen atom of the µ-acetato-κO,O’ ligand. The coordina-
tion geometry of the LnIII ion can be best described as an 
approximate sphenocorona (C2v symmetry), as determined 
by comparison with ideal polyhedra using continuous shape 
measures [41, 42]. As structural consequence of the intra-
molecular aminal formation, the H2L compartmental ligand 
adopts a bent conformation with the mean planes of the two 
aromatic rings being almost perpendicular (dihedral angle 
ca. 80°). A similar conformation of the ligand was found 
for XODFOM. In the crystal, the aminal nitrogen atom 
N3 is protonated, making the complex cationic, and forms 
N − H···O hydrogen bonds to a methanol molecule of crystal-
lisation and a nitrate counter ion, which balances the charge.

Serendipitously, we found a crystal in one crystal-
lization batch of 2, representing an unknown methanol 
solvate hydrate of a co-crystal (3) of [ZnNd(HL)(µ-OAc)
(NO3)2(H2O)]NO3 and a structural isomer [ZnNd(HL)(OAc)

Fig. 1   Molecular structures of 1 and 2 in the crystal. Displacement 
ellipsoids are drawn at the 50% probability level. Hydrogen atoms 
(except for those attached to nitrogen), counter ions and solvent mol-

ecules are omitted for clarity. The site of O13 is occupied by water or 
methanol (not shown here for the sake of clarity) in the crystal
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(NO3)2(H2O)]NO3 (Fig. 2). In the latter, a water molecule 
occupies the apical position at ZnII and the acetato ligand 
binds solely to NdIII in a symmetrical bidentate fashion. The 
coordination geometries of NdIII and ZnII are retained in 
the two isomers. In 3, the geometry index τ5 is 0.14 for Zn1 
in [ZnNd(HL)(µ-OAc)(NO3)2(H2O)]+ and 0.43 for Zn1 in 
[ZnNd(HL)(OAc)(NO3)2(H2O)]+.

The structures of 1 and 2 appear to be isostructural with 
the above-mentioned XODFOM, which has the reported 
molecular composition “[ZnLa(HL)(NO3)3(S)](NO3)” 
(S = H2O or C2H5OH) [27], in which water and ethanol 
alternatively occupy one coordination site at LaIII. How-
ever, whereas a µ-acetato-κO,O’ ligand bridges the ZnII and 
LnIII in 1 and 2, in XODFOM a bridging nitrate ion the ZnII 
and LaIII ions is reported. The reported N−O bond of the 
non-coordinating oxygen atom of the bridging nitrate ion in 
XODFOM is unusually long at 1.429(13) Å [39, 40], and the 
corresponding atomic displacement parameters are rather 
large, which may be a warning sign for incorrect atom type 
assignment [43–45]. Taking the reported synthetic route into 
account, the presence of a bridging acetate ligand in XOD-
FOM is a possibility, since the precursor complex described 
as “[Zn(valdien)] · 1.5 CH3OH”, which was not structurally 
characterized by X-ray crystallography, was prepared from 
H2valdien and Zn(OAc)2 · 2 H2O. Considering previous 
work by Naskar et al. [29], the constitution of the precursor 
complex might have been rather [Zn2(H2valdien)2(OAc)2]. 
Elemental analysis calcd. for [Zn2(H2valdien)2(OAc)2] (C 
53.40, H 5.50, N 8.49%) differs little from that reported for 
“[Zn(valdien)] · 1.5 CH3OH” (C 53.10, H 5.80, N 8.30%) by 
Benetollo et al. [27]. We should note that the crystal struc-
ture of [Zn(valdien)] · CH3OH was published very recently 
[46], but an additional base (LiOH) was used in the synthesis 

contrary to the synthesis of “[Zn(valdien)] · 1.5 CH3OH” 
reported by Benetollo et al. The syn-syn bidentate bridg-
ing mode of the nitrate ion is known for inorganic nitrates 
[39, 47], but is rather unusual for organic or organometal-
lic nitrato complexes [40]. In this connection, we note that 
the external N−O distances in the crystal structure with the 
CSD refcode ADURAV, reportedly containing two syn-syn 
bridging bidentate nitrato ligands between LaIII and ZnII, 
at 1.506(18) and 1.52(2) Å are also suspiciously long [48]. 
This coordination mode is, in contrast, well known for car-
boxylate ions [49]. The comparable C21−C22 bond lengths 
of 1.499(3) and 1.495(6) Å in 1 and 2, respectively, and the 
corresponding atomic displacement parameters clearly sup-
port the presence of acetate ions at this site in XODFOM.

Conclusions

We have synthesized the heterodinuclear ZnII-LnIII complexes 
1 and 2 by successive treatment of the H2valdien compartmen-
tal ligand with Zn(OAc)2 · 2 H2O and, respectively, Pr(NO3)3 
· 6 H2O and Nd(NO)3 · 6 H2O, affording the asymmetrical, 
ring-contracted isomerized compartmental ligand H2L from 
H2valdien in situ. Such a rearrangement of the H2valdien 
ligand, which has been described the literature, is enabled 
through the reversibility of the Schiff base condensation. Its 
occurrence in the formation of 1 and 2 can be ascribed to a 
better accommodation of the smaller ZnII ion in the inner 
N2O2 binding site instead of the inner N3O2 site of the parent 
H2valdien. As anticipated, the LnIII ions are found in the outer 
O2O2’ compartment with counter ions and solvent molecules 
filling the remaining coordination sites of the ten-fold coor-
dinated ions. Bond lengths, atomic displacement parameters 

Fig. 2   Molecular structures of the two isomeric cations in the crys-
tal structure of [ZnNd(HL)(µ-OAc)(NO3)2(H2O)] [ZnNd(HL)(OAc)
(NO3)2(H2O)](NO3)2 ⋅ n H2O ⋅ n MeOH (3). Displacement ellipsoids 

are drawn at the 50% probability level. Hydrogen atoms (except for 
those attached to nitrogen), counter ions and solvent molecules are 
omitted for clarity
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and electron density maps resulting from the X-ray structural 
analysis provide clear evidence that the ZnII and LnIII ions 
in 1 and 2 are additionally linked by acetate anions in a syn-
syn bridging mode rather than by nitrate anions, as has been 
proposed for similar structures. Detection of the [Zn(HL)]+ 
ion but no LnIII adducts by ESI mass spectrometry suggests 
that the binding of ZnII to the inner pocket of the ligand is, as 
expected, more stable than that of the LnIII ions in the outer 
compartment. The crystal structure of 3 reveals that structural 
isomers of 2 occur.
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