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The Mixed Degree of Families of Lattice
Polytopes
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Abstract. The degree of a lattice polytope is a notion in Ehrhart theory
that was studied quite intensively over previous years. It is well known
that a lattice polytope has normalized volume one if and only if its degree
is zero. Recently, Esterov and Gusev gave a complete classification result
for families of n lattice polytopes in R

n whose mixed volume equals one.
Here, we give a reformulation of their result involving the novel notion of
mixed degree that generalizes the degree similar to how the mixed volume
generalizes the volume. We discuss and motivate this terminology, also
from an algebro-geometric viewpoint, and explain why it extends a pre-
vious definition of Soprunov. We also remark how a recent combinatorial
result due to Bihan solves a related problem posed by Soprunov.
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1. Definitions and Motivation

1.1. Introduction

Lattice polytopes in R
n are called hollow (or lattice-free) [8,24] if they have no

lattice points (i.e., elements in Z
n) in their relative interiors. In this paper, we

initiate the study of large families of lattice polytopes with hollow Minkowski
sums. We observe that such a family can consist of at most n elements (Propo-
sition 4). In Theorem 5, we deduce from the main result in [15] that a family
of n lattice polytopes in R

n has mixed volume one if and only if the Minkowski
sums of all subfamilies are hollow. To measure the ‘hollowness’ of a family of
lattice polytopes, we introduce the mixed degree of a family of lattice poly-
topes. It naturally generalizes the much-studied notion of the degree of a lattice
polytope in a manner similar to how the mixed volume generalizes the normal-
ized volume (see Sect. 1.3). Our goal is to convince the reader that the mixed
degree is worthwhile to study invariant of a family of lattice polytopes. As a
first positive evidence, we note its nonnegativity (Sect. 2.1), a generalization
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of the nonnegativity of the degree, and prove the characterization of mixed
degree zero by mixed volume one (Sect. 2.2) in analogy to the characterization
of degree zero by normalized volume one. We will also explain how the defini-
tion given here generalizes an independent definition of Soprunov, and we give
a new combinatorial proof of his lower bound theorem (see Sect. 2.3).

1.2. Basic Definitions

Let us recall that a lattice polytope P ⊂ R
n is a polytope whose vertices

are elements of the lattice Z
n. Two lattice polytopes are unimodularly equiv-

alent if they are isomorphic via an affine lattice-preserving transformation.
We denote by conv(A) the convex hull of a set A ⊆ R

n. We say that P
is an n-dimensional unimodular simplex if it is unimodularly equivalent to
Δn := conv(0, e1, . . . , en), where 0 denotes the origin of R

n and e1, . . . , en the
standard basis vectors. We define the normalized volume Vol(P ) as dim(P )!
times the Euclidean volume with respect to the affine lattice given by the
intersection of Z

n and the affine span of P . Note that Vol(Δn) = 1.

Definition 1. Let P1, . . . , Pm ⊂ R
n be a finite set of lattice polytopes.

• For k ∈ Z≥1 we set [k] := {1, . . . , k}.
• For ∅ �= I ⊆ [m] we define their Minkowski sum

PI :=
∑

i∈I

Pi :=

{
∑

i∈I

xi : xi ∈ Pi for i ∈ I

}
.

We set P∅ := {0}.
• For ∅ �= A ⊂ R

n we define

AZ := A ∩ Z
n, intZ(A) := int(A) ∩ Z

n,

where the interior always denotes the relative interior (i.e., the interior
with respect to the affine span of A). Recall that the interior of a point
is considered to be the point itself, i.e., it is non-empty.

• For convenience, we say P1, . . . , Pm is proper in R
n if

dim(P1) ≥ 1, . . . ,dim(Pm) ≥ 1, dim(P[m]) = n.

One of the reasons for excluding points in a proper family is that adding
a point to a family just results in a lattice translation of their Minkowski
sum.

Throughout the paper, we identify two families of lattice polytopes if they
agree up to a simultaneous unimodular transformation of Z

n, permutations of
the factors, and (lattice) translations of the factors.

Let us state our main definition.

Definition 2. Let P1, . . . , Pm ⊂ R
n be a finite set of lattice polytopes.

• We define the mixed codegree of P1, . . . , Pm as follows:
– If there exists ∅ �= I ⊆ [m] such that intZ(PI) �= ∅, then

mcd(P1, . . . , Pm) is defined as the minimal cardinality of such I;
– otherwise, mcd(P1, . . . , Pm) := m + 1.
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Let us note that

1 ≤ mcd(P1, . . . , Pm) ≤ m + 1.

• We define the mixed degree of P1, . . . , Pm as

md(P1, . . . , Pm) := dim(P[m]) + 1 − mcd(P1, . . . , Pm).

Note that a family where one of the lattice polytopes is a point automat-
ically has mixed degree equal to the dimension of P[m]. We remark that
for a proper family

n − m ≤ md(P1, . . . , Pm) ≤ n. (1)

Example 3. Consider the following family of hollow lattice polytopes in R
2:

P1 = conv(0, e1), P2 = conv(0, e2), P3 = conv(0, e1, e2, e1 + e2),

where e1, e2 is the standard basis of R
2. Then, the Minkowski sums of any

two of these three lattice polytopes are hollow, while the Minkowski sum of
all three is not. Hence, mcd(P1, P2, P3) = 3 and md(P1, P2, P3) = 0.

1.3. Relation to the Ehrhart-Theoretic Degree

Let us explain where the definition of the mixed (co-)degree comes from. Let
P ⊂ R

n be an n-dimensional lattice polytope. The codegree of P is defined as
the smallest positive k such that intZ(kP ) �= ∅, and the degree of P is given as
n + 1 − codeg(P ). Hence, for P1 := P, . . . , Pn := P , we see1 that

mcd(P1, . . . , Pn) = codeg(P ), md(P1, . . . , Pn) = deg(P ).

This unmixed situation has been studied rather intensively (e.g., [4,17,22])
leading to applications and relations to the adjunction theory of polarized toric
varieties [1,12,13], dual defective toric varieties [14], and almost-neighborly
point configurations [23]. We hope to eventually generalize some of the achieved
results to the mixed situation.

Note that the degree of a lattice polytope P is originally defined as the
degree of the h∗-polynomial h∗

P , the numerator polynomial of the rational
generating function of the Ehrhart polynomial of P (e.g., [4]). In this case,
the relation between degree and codegree follows from Ehrhart–Macdonald
reciprocity (see [4, Remark 1.2]). We remark that a priori there are several
possibilities for how to define a generalization of the degree to families of lattice
polytopes. Here, we generalize the geometric notion of codegree instead of the
more algebraic definition of degree. It would be very interesting to find an
analogous natural interpretation for the mixed degree. Originally motivated
by tropical geometry [27], there is current research to investigate a mixed
version of the h∗-polynomial [16,18]. However, its properties are yet to be fully
understood. We caution the reader that the degree of the mixed h∗-polynomial
as defined in [16] is in general not equal to the mixed degree discussed here.
For instance, for the one-element family P1 := P with m = 1, the mixed degree
equals n or n − 1 depending on whether P has interior lattice points or not;

1We warn the reader that mcd(P ) is in general different from codeg(P ), as well as
mcd(P1, . . . , Pm) is in general different from codeg(P1 ∗ · · · ∗ Pm) (see Definition 15).
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while on the other hand, equation [16, (10)] implies that the degree of the
mixed h∗-polynomial is in this case always equal to n if n is odd.

1.4. Motivation from Algebraic Geometry

Given a proper family of lattice polytopes, it is natural to consider the following
situation. We say P1, . . . , Pm is irreducible if intZ(PI) = ∅ for any ∅ �= I � [m]
and intZ(P[m]) �= ∅. The study of irreducible families of given mixed degree
turns up in the Batyrev–Borisov construction of mirror-symmetric Calabi–
Yau complete intersections [2,3,5]. For this, let us call a proper family of
lattice polytopes P1, . . . , Pm a reflexive family if their Minkowski sum is a
reflexive polytope (up to translation), e.g., a so-called nef-partition [3]. In
this case, let us choose generic Laurent polynomials f1, . . . , fm with Newton
polytopes P1, . . . , Pm. Then, the complete intersection V of the closures of the
hypersurfaces {fi = 0} ⊂ (C∗)n in the toric Gorenstein Fano variety associated
with P[m] is a Calabi–Yau variety of dimension n − m if V is not empty (see
[2,3]). Let us assume that the reflexive family is irreducible. In this case, [3,
Corollary 3.5] implies that the dimension of V equals the mixed degree minus
one; V is non-empty if and only if the mixed degree is at least one; and V
is an irreducible variety if and only if the mixed degree is at least two. By
the so-called semi-simplicity principle for nef-partitions ([3, Section 5] and
more generally [5, Proposition 6.13]), any reflexive family can be partitioned
into irreducible reflexive subfamilies. Hence, in this toric setting, the study of
Calabi–Yau complete intersections of given dimension is closely related to the
study of irreducible families of given mixed degree.

1.5. Structure of the Paper

Section 2 contains the main results of this paper. Proofs are give in Sect. 3.

2. Results on the Mixed Degree

In this section, we describe our results on the mixed degree of a family of
lattice polytopes. We will postpone all proofs to Sect. 3.

2.1. Nonnegativity

Here is our first observation. It can be deduced from [10, Corollary 2.3] by Cox
and Dickenstein which relies on quite deep spectral sequence arguments. We
will provide an alternative self-contained, short and elementary proof.

Proposition 4. The mixed degree is nonnegative.

Let us recall how one can convex-geometrically prove nonnegativity in the
unmixed situation. Note that for an arbitrary interior point of an n-dimensional
lattice polytope P , Carathéodory’s theorem allows to find vertices v0, . . . , vn
of P such that the point is in the convex hull of these vertices. Therefore, also
(v0 + · · · + vn)/(n + 1) is in the interior of P . Hence, intZ((n + 1)P ) �= ∅,
thus, codeg(P ) ≤ n + 1, so deg(P ) ≥ 0. Hence, Proposition 4 may be seen
as a mixed version of Carathéodory’s theorem in the following sense: Given
P1, . . . , Pm lattice polytopes in R

nwith m > n, there exists a non-empty subset
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I ⊆ [m] of cardinality |I| ≤ n + 1 such that the Minkowski sum PI contains a
lattice point in its relative interior.

2.2. Mixed Degree Zero

In the unmixed case, deg(P ) = 0 if and only if Vol(P ) = 1 (see [4]). As we
will see, the analogous statement is also true in the mixed situation. This may
be regarded as favorable evidence that the definition of the mixed degree is a
reasonable generalization of the unmixed degree of a lattice polytope.

For this, let us define the (normalized) mixed volume MV(P1, . . . , Pn) of a
family P1, . . . , Pn ⊂ R

n as the coefficient of λ1 · · · λn of the homogeneous poly-
nomial voln(λ1P1+· · ·+λnPn), where voln is the standard Euclidean volume of
R

n, see [15,25]. It is nonnegative, monotone with respect to inclusion, and mul-
tilinear. Note that the mixed volume defined here is normalized such that for
an n-dimensional lattice polytope P ⊂ R

n, we have MV(P, . . . , P ) = Vol(P ).
Hence, the following result generalizes the unmixed statement.

Theorem 5. Let P1, . . . , Pn be a proper family of lattice polytopes in R
n. Then,

the following conditions are equivalent:
1. md(P1, . . . , Pn) = 0
2. MV(P1, . . . , Pn) = 1.

While the implication (1) ⇒ (2) has a short proof, the reverse implication
(2) ⇒ (1) relies on the highly non-trivial classification of n lattice polytopes
of mixed volume one by Esterov and Gusev [15]. It would be desirable to find
a direct, classification-free proof.

In the unmixed case, there is only one n-dimensional lattice polytope of
degree 0, respectively normalized volume 1, namely, the unimodular n-simplex.
Such a uniqueness result also holds in the mixed case if all lattice polytopes in
the family are full-dimensional. This is essentially a corollary to [9, Prop. 2.7].

Proposition 6. Let P1, . . . , Pm be n-dimensional lattice polytopes in R
n. Then

md(P1, . . . , Pm) = 0 if and only if m ≥ n and P1, . . . , Pm equal the same
unimodular n-simplex (up to translations).

In the low-dimensional case, the situation is more complicated. From the
results of Esterov and Gustev [15], we get an inductive description of families of
n lattice polytopes of mixed degree zero. For this, let us define for ∅ �= I ⊆ [m]
the lattice projection πI along the affine span of PI . More precisely, πI is the
R-linear map induced by the lattice surjection Z

n → Z
n/Γ, where Γ is the

subgroup that is a translate of the set of lattice points in the affine hull of PI .

Corollary 7. Let P1, . . . , Pn be a proper family of lattice polytopes in R
n. Then,

md(P1, . . . , Pn) = 0 if and only if one of the following two cases holds:
1. P1, . . . , Pn are contained in the same unimodular n-simplex (up to trans-

lations),
2. there exists an integer 1 ≤ k < n such that (up to translations and

permutation of P1, . . . , Pn) P1, . . . , Pk are contained in a k-dimensional
subspace of R

n with dim(P[k]) = k such that md(P1, . . . , Pk) = 0 and
md(π[k](Pk+1), . . . , π[k](Pn)) = 0.
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For m > n we do not yet have such a complete classification result for
all families of m lattice polytopes in R

n of mixed degree 0. However, we can
show that there are essentially only finitely many cases.

Theorem 8. Let P1, . . . , Pm be a proper family of lattice polytopes in R
n with

md(P1, . . . , Pm) = 0 and m > n. Then, one of the following two cases holds:
1. P1, . . . , Pm are contained in a unimodular n-simplex Q (up to transla-

tions),
2. the family P1, . . . , Pm belongs to a finite number of exceptions (whose

number depends only on n).
Moreover, in the first case, at most (2n − 1)(n − 1) of the polytopes in the
family are not equal to Q (up to translations). More precisely, no face of Q of
dimension j < n appears among P1, . . . , Pm more than j times (up to transla-
tions).

Remark 9. We leave it as an exercise to the reader to show that for n = 2,
there is precisely one exception in Theorem 8, namely, the family given in
Example 3. It would be interesting to know whether there are exceptional
families in Theorem 8 of length larger than n + 1.

2.3. Mixed Degree at Most One

The following lower bound theorem can be found in [6] based upon [26].

Theorem 10. (Soprunov ’07) Let P1, . . . , Pn be n-dimensional lattice polytopes.
Then

|intZ(P[n])| ≥ MV(P1, . . . , Pn) − 1.

The original proof of Theorem 10 involved the Euler–Jacobi Theorem
and Bernstein’s Theorem. In [6, Problem 1], Soprunov asked whether there
is a purely combinatorial proof. We can affirmatively answer this question in
Sect. 3.4 by reducing it to a recent result by Bihan related to the nonnegativity
of the so-called discrete mixed volume [7].

Example 11. Note that the full-dimensionality assumption in Soprunov’s lower
bound theorem cannot be removed. Consider in R

2 a unimodular 2-simplex
P1 and a line segment P2 parallel to one of the edges of P1. If P2 contains k
lattice points, then MV(P1, P2) = k − 1, while |intZ(P1 + P2)| = 0.

In the unmixed case (P1 = · · · = Pn = P ), Theorem 10 follows directly
from Ehrhart theory, see [6]. Moreover, Soprunov observes in his note that
equality is attained if and only if deg(P ) ≤ 1. This observation led him to
define in [6] a family of n-dimensional lattice polytopes P1, . . . , Pn as having
mixed degree at most 1 if equality in Theorem 10 is attained, and mixed degree
0 if P[n] has no interior lattice points. As the following result shows, this is
compatible with our definition.

Proposition 12. Let P1, . . . , Pn be n-dimensional lattice polytopes. Then
|intZ(P[n])| = MV(P1, . . . , Pn) − 1 if and only if md(P1, . . . , Pn) ≤ 1.



The Mixed Degree of Families of Lattice Polytopes 209

3. Proofs

3.1. Nonnegativity

This will be a simple consequence of basic properties of the mixed volume. For
this, let us recall a well-known alternative formula (going at least implicitly
back to [20], it can be found in this explicit form e.g. in [19, Prop. 5.2]).

Proposition 13. (Khovanskii ‘78) Let P1, . . . , Pn be lattice polytopes in R
n.

Then

MV(P1, . . . , Pn) =
∑

I⊆[n]

(−1)n−|I| |PI ∩ Z
n|.

Recall that |P∅ ∩Z
n| = 1. Using reciprocity, one gets another slightly less

well-known formula involving interior lattice points (cf. [20]).

Corollary 14. Let P1, . . . , Pn be lattice polytopes in R
n. Then

MV(P1, . . . , Pn) = 1 +
∑

∅�=I⊆[n]

(−1)dim(PI)−|I| |intZ(PI)|.

In particular, if P1, . . . , Pn are n-dimensional, then

MV(P1, . . . , Pn) = 1 +
∑

∅�=I⊆[n]

(−1)n−|I| |intZ(PI)|.

Proof. Let us denote by ehrP (t) the Ehrhart polynomial of a lattice polytope
P ⊂ R

n, i.e., ehrP (t) = |(tP )∩Z
n| for t ∈ Z≥1. Ehrhart–Macdonald reciprocity

yields

ehrP (−1) = (−1)dim(P )|intZ(P )|.
(For the case of dimension 0, recall that the interior of a lattice point is the
lattice point itself.) Applying Proposition 13 to tP1, . . . , tPn for t ∈ Z≥1 gives

tnMV(P1, . . . , Pn) = MV(tP1, . . . , tPn) = (−1)n +
∑

∅�=I⊆[n]

(−1)n−|I| ehrPI
(t).

Plugging in t = −1, then Ehrhart–Macdonald reciprocity yields

(−1)nMV(P1, . . . , Pn) = (−1)n +
∑

∅�=I⊆[n]

(−1)n−|I| (−1)dim(PI)|intZ(PI)|.

�

Proof of Proposition 4. It follows from the definition of the mixed degree that
it suffices to show nonnegativity for a proper family P1, . . . , Pn+1 in R

n. We
assume that intZ(PI) = ∅ for any ∅ �= I ⊆ [n + 1]. Consider the proper
family P1, . . . , Pn−1, Pn + Pn+1. Corollary 14 and multilinearity of the mixed
volume yield that 1 = MV(P1, . . . , Pn−1, Pn+Pn+1) = MV(P1, . . . , Pn−1, Pn)+
MV(P1, . . . , Pn−1, Pn+1). However, Corollary 14 also implies that both of these
summands equal 1, a contradiction. �
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3.2. Mixed Degree 0: The Full-Dimensional Case

Since it might be of independent interest, we provide several characterizations
of this situation. For this, let us recall the following definition.

Definition 15. The Cayley polytope of lattice polytopes P1, . . . , Pm in R
n is

defined as

P1 ∗ · · · ∗ Pm := conv(P1 × {e1}, . . . , Pm × {em}) ⊂ R
n+m

where e1, . . . , em is the standard basis of of R
m. Note that if dim(P[m]) = n,

then

dim(P1 ∗ · · · ∗ Pm) = n + m − 1.

Proposition 16. Let P1, . . . , Pn be n-dimensional lattice polytopes in R
n. Then,

the following conditions are equivalent:
1. md(P1, . . . , Pn) = 0
2. intZ(P1 + · · · + Pn) = ∅
3. MV(P1, . . . , Pn) = 1
4. P1, . . . , Pn are lattice translates of the same unimodular n-simplex
5. Vol(P1 + · · · + Pn) = nn, which is the minimal possible value
6. Vol(P1 ∗ · · · ∗ Pn) =

(
2n−1

n

)
, which is the minimal possible value

7. deg(P1 ∗ · · · ∗ Pn) = n − 1, which is the minimal possible value
We remark that otherwise deg(P1 ∗ · · · ∗ Pn) = n.

Proof. (1) ⇔ (2) follows from full-dimensionality. (1) ⇒ (3) by Corollary 14.
(3) ⇒ (4) was proven in [9, Prop. 2.7]. Clearly, (4) ⇒ (1).

(5) ⇒ (3) follows from an expression in terms of multinomial coefficients
(e.g., [25]):

Vol(P1 + · · · + Pn) =
∑

k1+···+kn=n

(
n

k1, · · · , kn

)
· MV(P (k1)

1 , . . . , P (kn)
n ),

where the sum is over all nonnegative integer n-tuples k1, . . . , kn satisfying the
condition k1 + · · ·+kn = n; moreover, P

(ki)
i means that Pi should be repeated

ki times. Since all lattice polytopes are full-dimensional, each of the mixed
volumes in the sum is positive. Let us note that, if they are all equal to 1, the
right side equals nn. For (3) ⇒ (5) note that if MV(P1, . . . , Pn) = 1, then also
each of the mixed volumes (since they are all positive) must be equal to 1 by
the Alexandrov-Fenchel inequality (e.g., [25]). Alternatively, one can directly
verify (4) ⇒ (5).

(6) ⇒ (4) uses the following formula (e.g., [11]): Vol(P1 ∗ · · · ∗ Pn) equals
the sum of MV(Pi1 , . . . , Pin) over all possible choices of unordered n-tuples
i1, . . . , in ∈ [n], where repetitions are allowed (there are

(
2n−1

n

)
such choices).

Since all lattice polytopes are full-dimensional, each of the mixed volumes
in the sum is positive. The converse (3) ⇒ (6) follows as above from the
Alexandrov–Fenchel inequality or directly by checking (4)⇒(6).

(2) ⇔ (7) is a consequence of the so-called Cayley-Trick. Consider the
lattice projection π mapping P1 ∗ · · · ∗ Pn onto Δn−1. Therefore, codeg(P1 ∗
. . . ∗ Pn) ≥ codeg(Δn−1) = n. Now, the intersection of n(P1 ∗ · · · ∗ Pn) with
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the preimage of the unique interior lattice point in nΔn−1 is unimodularly
equivalent to P1 + · · · + Pn. Therefore, we have codeg(P1 ∗ · · · ∗ Pn) > n (or
equivalently, deg(P1 ∗ · · · ∗Pn) < n) precisely when (2) is satisfied. Let us note
that in this case, by (4), P1 ∗ · · · ∗Pn

∼= Δn × Δn−1, so its degree equals n − 1.
�

Proof of Proposition 6. The implication follows from (1) and applying 1. ⇒ 4.
in Proposition 16 to any subfamily of n lattice polytopes. The reverse impli-
cation is a direct consequence of codeg(Δn) = n + 1. �

3.3. Mixed Degree 0: The Low-Dimensional Case

We used before that the mixed volume of full-dimensional polytopes is positive.
Bernstein’s criterion (described in [20], we also refer to [25, Theorem 5.1.8])
gives the precise generalization.

Lemma 17 (Bernstein–Khovanskii ‘78). MV(P1, . . . , Pn) ≥ 1 if and only if
dim(PI) ≥ |I| for all ∅ �= I ⊆ [n].

Note that in this case P1, . . . , Pn is necessarily a proper family. Let us also
recall the following well-known fact about mixed volumes (this is [15, Prop. 2],
we refer also to [25, Theorem 5.3.1]).

Lemma 18 (Esterov, Gusev ‘12). Let P1, . . . , Pn be lattice polytopes in R
n. If

P1, . . . , Pk (for 1 ≤ k ≤ n) are contained in a k-dimensional rational subspace
L of R

n, then

MV(P1, . . . , Pn) = MV(P1, . . . , Pk) · MV(P k+1, . . . , Pn),

where P i is the image of Pi under the projection along L.

Here is the (inductive) characterization of families with mixed volume
one.

Theorem 19 (Esterov, Gusev ’12). Let P1, . . . , Pn be lattice polytopes in R
n.

Then MV(P1, . . . , Pn) = 1 if and only if MV(P1, . . . , Pn) �= 0, and there
exists an integer 1 ≤ k ≤ n such that, up to translations, k of the polytopes
are faces of the same unimodular k-simplex Q, and the projection of the other
n − k simplices along Q form a family of mixed volume one.

Note that the ‘if’-direction follows from Lemmas 17 and 18 together with
the monotonicity of the mixed volume, while the ‘only if’-direction is a highly
non-trivial result.

For the proof of Theorem 5, we need the following simple observation.

Lemma 20. Let P1, . . . , Pk be faces of Δn = conv(0, e1, . . . , en) such that
dim(PI) ≥ |I| for any ∅ �= I ⊆ [k]. Then intZ(PI) = ∅ for any ∅ �= I ⊆ [k].

Proof. Let ∅ �= I ⊆ [k], and j := |I|. We note that PI ⊆ jΔn. Hence, there
exists a unique face F of jΔn such that int(PI) ⊆ int(F ). Let d := dim(F ), so
F ∼= jΔd. Since by assumption 1 ≤ j ≤ dim(PI) ≤ d, we get intZ(jΔd) = ∅,
hence, intZ(PI) = ∅. �
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Proof of Theorem 5. The direction (1) ⇒ (2) follows directly from Corol-
lary 14. For (2) ⇒ (1), we can assume by Theorem 19 and Lemma 17 that
P1, . . . , Pk (for some 1 ≤ k ≤ n) are faces of the unimodular simplex Δk ⊂ R

k,
dim(P[k]) = k, and dim(PI) ≥ |I| for any ∅ �= I ⊆ [k]. In particular, Lemma 20
yields intZ(PI) = ∅ for any ∅ �= I ⊆ [k]. This proves the statement for
k = n, so let k < n. Considering the projection along R

k, Theorem 19 implies
MV(P k+1, . . . , Pn) = 1, thus, md(P k+1, . . . , Pn) = 0 by induction. Let us
assume that there exists ∅ �= I ⊆ [n] such that intZ(PI) �= ∅, in particular,
I �⊆ [k]. We observe that P I equals P I∩{k+1,...,n} up to a translation. Hence,
intZ(P I∩{k+1,...,n}) �= ∅, a contradiction to md(P k+1, . . . , Pn) = 0. �

Remark 21. Let us note the following observation: If P1, . . . , Pk are in R
n such

that mcd(P1, . . . , Pk) = k +1, then we have k ≤ dim(P[k]) by nonnegativity of
the mixed degree.

Proof of Theorem 8. We first consider the case m = n + 1. Here, we have
intZ(PI) = ∅ for any ∅ �= I � [n + 1]. Since as in the proof of Proposi-
tion 4 we get MV(P1, . . . , Pn−1, Pn + Pn+1) = 2, Corollary 14 implies that
|intZ(P[n+1])| = 1. By a well-known result in the geometry of numbers [21],
there are up to unimodular equivalence only a finite number of lattice poly-
topes with one interior lattice point in fixed dimension n. This implies that
there are only finitely many families P1, . . . , Pn+1 with md(P1, . . . , Pn+1) = 0
up to our identification.

So, let m > n+1. Remark 21 applied to P1, . . . , Pn implies dim(P[n]) = n,
so P1, . . . , Pn+1 is proper. Let us fix P1, . . . , Pn+1 as one of the finitely many
types in the above argument. Let n + 1 < i ≤ m. By similarly considering
P1, . . . , Pn, Pi we deduce that there are only finitely many possibilities (say, N
many) for Pi up to translation. Note that N only depends on n.

Hence, we may assume that m > n + 1 + (n − 1)N . By the pigeonhole
principle, there exist Pi1 , . . . , Pin (with n + 2 ≤ i1 < · · · < in ≤ n + 2 +
(n− 1)N) that are all equal to the same lattice polytope Q up to translations.
Again, Remark 21 applied to Pi1 , . . . , Pin yields that dim(Q) = n. Moreover,
Corollary 14 implies that Vol(Q) = MV(Q, . . . , Q)= 1, i.e., Q is a unimodular
n-simplex.

Let i ∈ [m]\{i1, . . . , in} such that Pi is not contained in Q up to trans-
lations. We will show that this case cannot occur. Again, Corollary 14 yields
MV(Q, . . . , Q, Pi) = 1 (where Q is chosen n−1 times). Now, since dim(Q) = n,
Theorem 19 implies that there exists 1 ≤ k ≤ n such that k of the polytopes
Q, . . . , Q, Pi are contained up to translations in a k-dimensional unimodular
simplex S and the projection of the other (n−k) polytopes along this simplex
yields again a family of mixed volume one. Assume k > 1. In this case, one of
the Q’s would be contained in S up to translation, hence S would be equal to Q
up to translation, so k = n, and Pi would be contained in Q up to translation,
a contradiction. Therefore, k = 1, and Pi is contained in S up to translation.
Since Pi is not a point, we see that Pi = S must be a lattice interval containing
two lattice points. Since projecting Q, . . . , Q along Pi (via a lattice projection
πi) yields again a family of full-dimensional lattice polytopes of mixed volume
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one, Proposition 6 implies that πi(Q) is an (n − 1)-dimensional unimodular
simplex. In particular, we see that there must be two vertices of Q that get
mapped to the same vertex of πi(Q). Hence, since Pi lies in a fiber of πi, we
deduce that Pi is up to a translation an edge of Q, again a contradiction.

Finally, let us consider the situation that all lattice polytopes are con-
tained in a unimodular n-simplex Q up to translations. Because we have
codeg(Δj) = j+1, no face of Q of dimension j < n can appear j+1 times. This
proves the last statement in the theorem. It remains to observe the following
easily verified binomial identity

n−1∑

i=1

i

(
n + 1
i + 1

)
= (2n − 1)(n − 1).

�

3.4. Mixed Degree at Most One

Let P1, . . . , Pm be lattice polytopes in R
n. Let us define for ∅ �= I ⊆ [m]

g(I) :=
∑

∅�=J⊆I

(−1)|I|−|J| |intZ(PJ)|. (2)

Theorem 22 (Khovanskii’ 78, Bihan ’14). If P1, . . . , Pm are n-dimensional lat-
tice polytopes, then g([m]) is nonnegative.

Bihan’s proof [7, Theorem 4.15(4)] is purely combinatorial.

Remark 23. Let us assume m ≤ n, and explain why nonnegativity follows
from the algebro-geometric meaning of g([m]). Given P1, . . . , Pm, these lat-
tice polytopes are the Newton polytopes of generic Laurent polynomials
f1, . . . , fm ∈ C[x±

1 , . . . , x±
n ]. We consider the set X of their common solu-

tions in the algebraic torus (C∗)n = (C\{0})n. Let X̄ be its Zariski closure in
the projective toric variety associated to the normal fan of P[m]. Then, g([m])
equals the geometric genus of X̄ (i.e., hn−m,0(X̄)), see [20].

Example 24. As we see again from Example 11, the full-dimensionality
assumption cannot be removed from Theorem 22. In this situation, we have
|intZ(P[2])| = |intZ(P1)| = 0, while |intZ(P2)| can be arbitrarily large. Hence,
g([2]) can be arbitrarily negative.

For ∅ �= I ⊆ [m], let us now consider the following variant of g(I):

g̃(I) :=
∑

∅�=J�I

(−1)|I|−1−|J| |intZ(PJ )|.

Lemma 25. For ∅ �= I ⊆ [m],

g̃(I) =
∑

∅�=J�I

g(J).
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Proof. Möbius-inversion states that

|intZ(PI)| =
∑

∅�=J⊆I

g(J).

Therefore, the statement follows from g̃(I) = |intZ(PI)| − g(I). �
We can now give the combinatorial proof of Soprunov’s lower bound

theorem and the characterization of its equality case.

Proof of Theorem 10 and Proposition 12. Let P1, . . . , Pn be n-dimensional lat-
tice polytopes. In this case, Theorem 22 implies g(I) ≥ 0 for any ∅ �= I ⊆ [n].
Hence, Lemma 25 yields g̃([n]) ≥ 0. Now, rewriting Corollary 14 yields

MV(P1, . . . , Pn) − 1 = g([n]) = |intZ(P[n])| − g̃([n]) ≤ |intZ(P[n])|.
In particular, we have equality if and only if g̃([n]) = 0. By Lemma 25 this
is equivalent to g(I) = 0 for all ∅ �= I � [n]. By (2), this just means that
|intZ(PI)| = 0 for any ∅ �= I � [n] which is equivalent to mixed degree ≤ 1.

�
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