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Abstract
In this paper, we will consider a geometrically exact Cosserat beam model taking into ac-
count the industrial challenges. The beam is represented by a framed curve, which we
parametrize in the configuration space S

3
� R

3 with semi-direct product Lie group struc-
ture, where S

3 is the set of unit quaternions. Velocities and angular velocities with respect
to the body-fixed frame are given as the velocity vector of the configuration. We introduce
internal constraints, where the rigid cross sections have to remain perpendicular to the cen-
ter line to reduce the full Cosserat beam model to a Kirchhoff beam model. We derive the
equations of motion by Hamilton’s principle with an augmented Lagrangian. In order to
fully discretize the beam model in space and time, we only consider piecewise interpolated
configurations in the variational principle. This leads, after approximating the action inte-
gral with second order, to the discrete equations of motion. Here, it is notable that we allow
the Lagrange multipliers to be discontinuous in time in order to respect the derivatives of
the constraint equations, also known as hidden constraints. In the last part, we will test our
numerical scheme on two benchmark problems that show that there is no shear locking ob-
servable in the discretized beam model and that the errors are observed to decrease with
second order with the spatial step size and the time step size.

Keywords Geometrically exact beam model · Geometric integrator · Variational integrator

1 Introduction

The present work aims to study a geometrically exact Cosserat rod model using a structure
preserving variational integrator for constrained systems on Lie groups. This model of a
Cosserat rod goes back to the seminal work of Simo on the geometrically exact modeling
of beams [31] that is one of the standard references in this field. Following the approach
of Linn, Lang, and others [16, 23], we aim at numerically efficient methods that have the
potential to be used in real-time applications [16] as well as in system simulation [29].
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Internal constraints may be introduced to enforce the rigid cross sections to remain per-
pendicular to the center line. In that way, some of the high-frequency solution components
are eliminated and the full Cosserat beam model is reduced to a Kirchhoff beam model [17].
Space discretization results in equations of motion that form differential-algebraic equations
(DAEs) of index 3 and may be solved efficiently by standard methods in this field [15]. The
parametrization of rotations by unit quaternions helps to avoid singularities in simulation
scenarios with large rotations and reduces the number of arithmetic operations per function
evaluation (compared to mathematically equivalent approaches) [15]. On the contrary, the
corresponding configuration space is nonlinear and normalization conditions need to be en-
forced during time integration at each time step if the equations of motion are embedded
in higher dimensional linear spaces [30]. As an alternative to this brute force approach, the
nonlinear structure of the configuration space may be addressed directly using Lie group
integrators [9, 19, 33]. The performance of Lie group integrators may depend strongly on
the specific Lie group formulation [5] with clear benefits for formulations that are based on
the special Euclidean group [26, 34]. For rotations being parametrized by unit quaternions,
the corresponding Lie groups are multiples of the semi-direct product S3

�R
3, see [11, 19].

This semi-direct product (as well as the special Euclidean group) refers to rigid body mo-
tions in space and its application in beam theory helps to reduce the risk of locking phenom-
ena [21, 34], see also the last part of the present paper. Recently published paper [21] follows
a very similar approach, while using higher order integration schemes but being restricted to
the unconstrained case. In the present paper, however, the straightforward incorporation of
internal and external constraints allows, e.g., enforcing the cross sections to remain normal
to the centerline tangent such that transverse shearing is inhibited, see also [15, 17] as well
as Sect. 3.5 below.

Our research was inspired by industrial challenges that are studied in the Horizon 2020
Marie Skłodowska-Curie Innovative training network “THREAD” [10]. Twelve European
research groups aim at new modeling and simulation techniques for highly flexible structures
in system dynamics [3]. In fact, the applications of rod model simulation in the industries are
numerous and various, ranging from cable harnesses in automotive applications and endo-
scopes in biomedical engineering via yarns in braiding machines to ropeway systems [10]. In
industrial applications, static and quasistatic solution techniques are still dominating, but the
THREAD project will also result in efficient and numerically stable methods for dynamic
problems.

To this end, we consider coarse grid discretizations that preserve certain geometrical
properties of the equations of motion and achieve numerical stability in that way [9]. Fol-
lowing the framework of variational integration in space and time [8, 19], we discretize the
action integral before solving the variational problem, which proves to be favorable in long-
term simulation [24]. Internal or external constraints introduce extra terms in the Lagrangian
that finally result in constraint equations and constraint forces in the fully discretized model
that may be considered, e.g., by (nearly) energy preserving methods from molecular dynam-
ics [1, 12]. Restricting the analysis to low order methods, we get discrete equations of rather
simple structure that are tailored to low or moderate accuracy requirements. Constraints are
enforced in a stable way using a discontinuous approximation of the Lagrange multipli-
ers [11] that allows enforcing the constraints and hidden constraints at the level of position
and at the level of velocity coordinates simultaneously.

In this paper, we will use the well-known ingredients of Lie group structured configu-
ration spaces, variational integrators, and numerical treatment of DAEs, to find a way of
simulating thin beams efficiently and accurately at the same time. Following the approaches
of Cardona, Zupan, Brüls, and others [4, 6, 37, 38], we try to provide this investigation in a
language that is close to the implementation with entities that bear a physical meaning.
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The remaining part of the paper is organized as follows: In Sect. 2, we present the config-
uration space. We define in detail the Lie group and its operations. In particular, we explain
how to use unit quaternions to describe rotation and which operations we can perform with
them. The tools needed in the following study are mentioned. In Sect. 3, we derive the con-
tinuous equations of motion for the Cosserat beam model. We evaluate the expression for
the kinetic and potential energy and we also consider the constraint as a different kind of
energy, such that we are able to write the action integral. Using the action integral, we can
apply the variational principle to obtain the continuous equations of motion. In Sect. 4, we
are able to fully discretize the equations both in space and in time. We directly discretize the
equations after applying the Hamilton’s principle. Finally, in Sect. 5 we present our numer-
ical experiments. We analyze how the steps in arc length and the time step sizes influence
the errors.

2 A Lie group structured configuration space

In this section, we will discuss configuration spaces with Lie group structure in general,
the configuration space S

3
� R

3 in particular, and how we can find a Lie group structure
of a configuration space. Lie groups are well researched theoretically [36]. They also have
been applied in numerical integrations [14], and especially in the description of mechanical
systems [4, 18, 26] and beams in particular [7, 8, 20, 33]. Note that for Lie groups, we
will use the notations of Brüls et al. [4–6]. This notation, as well as the notation for unit
quaternions, is intentionally implementation oriented avoiding notational shortcuts such that
it becomes very clear how formulae must be or should be implemented.

Position Let us first consider the position of a mass point in space. Usually, the set R3 is used
as a configuration space, where any x ∈R

3 is a possible position of the mass point. Now let
us instead consider x ∈ R

3 as a translation of the mass point from some reference position.
Now we can apply two of these translations x,y ∈ R

3, leading us to the concatenation
x + y ∈ R

3. It can be seen that with this operation +, the configuration space R
3 actually

becomes a linear Lie group (R3,+) with identity element 0 ∈R
3 and inversion x �→ −x.

Orientation Now we consider the orientation of a rigid body in space. Here, we will use
unit quaternions

S
3 = {p ∈R

4 : ‖p‖2 = 1}

in order to represent orientation, where ‖ • ‖2 is the Euclidean norm. As before, we consider
any p ∈ S

3 to represent a rotation from some reference configuration of the rigid body.
Concatenation of two unit quaternions p,q ∈ S

3 leads to the quaternion multiplication

p ∗ q =
[

p0q0 − p� · q
p0q + q0p + p × q

]
∈ S

3,

where each of the quaternions p,q ∈ S
3 are decomposed into their scalar (or real) parts

p0, q0 ∈R and their vector (or imaginary) parts p,q ∈R
3 with

p =
[
p0

p

]
, q =

[
q0

q

]
.
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Note that the quaternion multiplication is also defined for non-unit quaternions in R
4. Again,

we end up with a Lie group (S3,∗) with identity element e = [1,0,0,0]� and inversion
p = [p0,p

�]� �→ p−1 = [p0,−p�]�.1 This Lie group, in contrast to the linear Lie group, is
not commutative. Further, we define the rotation R(p) a of a vector a ∈ R

3 with respect to
a unit quaternion p ∈ S

3 as
[

0
R(p) a

]
= p ∗

[
0
a

]
∗ p−1.

Note that antipodal unit quaternions p,−p ∈ S
3 represent the same rotation:

R(p) a = R(−p) a

for all p ∈ S
3 and a ∈R

3.2

Rigid bodies Now we repeat the above process with a rigid body in space, that has an ori-
entation p ∈ S

3 and a position x ∈ R
3. Now we consider (p,x) with p ∈ S

3, x ∈ R
3 to be a

rigid body motion

M(p,x) : R3 →R
3, a �→ x + R(p) a.

The concatenation of two of these rigid body motions associated with the tuples (p1,x1)

and (p2,x2), where p1,p2 ∈ S
3, x1,x2 ∈R

3, leads us to an operation

(p1,x1) ◦ (p2,x2) = (
p1 ∗ p2, x1 + R(p1) x2

)
,

since the rotation R is linear in its vector argument and it holds R(p1) R(p2) a = R(p1 ∗
p2) a. It can be easily seen that the operation ◦ is smooth and has an identity element
e = ([1,0,0,0]�,0), each element having an inverse and the inversion is also smooth. Since
S

3 and R
3 are clearly smooth manifolds, (S3

� R
3,◦) is a Lie group. We will call the Lie

group (S3
� R

3,◦) or, by abuse of notation S
3
� R

3, because it is not a direct product of
the Lie groups (S3,∗) and (R3,+) but rather a semi-direct product [11]. The dimension of
S

3
�R

3 is n = 6, since it has dimension six as a smooth manifold. If we would have used
rotation matrices SO(3) instead of unit quaternions to characterize rotation or orientation
respectively, we would have arrived at the special Euclidean Lie group (SE(3), ·).
Derivative vectors We consider now configuration spaces G with dimension n that have a
Lie group structure (G,◦) with an identity element e ∈ G. If we consider a differentiable
curve q(t) ∈ G, each derivative is an element of the corresponding tangent space: q̇(t) ∈
Tq(t)G. The Lie group structure now gives us the possibility to express q̇(t) as

q̇(t) = dLq(t)(e) v(t),

where v(t) ∈ TeG is an element of the tangent space at e for all t and dLq(t)(e) is the dif-
ferential of the left translation defined by Lq1(q2) = q1 ◦ q2. The tangent space TeG = g

1The quaternions with positive magnitude R
4 \ 0 also form a Lie group (R4 \ 0,∗) with identity element

e = [1,0,0,0] and inversion p = [p0,p�]� �→ p−1 = [p0,−p�]�/‖p‖2
2. The map p = [p0,p�]� �→ p−1 =

[p0,−p�]� for arbitrary quaternions p is called conjugation and it coincides with the inversion on S
3.

2The Lie group (S3,∗) is isomorphic to the complex-valued matrix Lie group (SU(2), ·) and the map p �→
R(p) = [R(p) e1,R(p) e2,R(p) e3], which is called the Euler map, provides a double cover of the matrix
Lie group of rotation matrices SO(3).
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is called the Lie algebra of G. Instead of handling elements v(t) ∈ g of an abstract tan-
gent space, we will express v(t) as the velocity vector v(t) ∈ R

n, which bears a physical
meaning [4, 37]. The identification of g and R

n is done by choosing a linear vector space
isomorphism •̃ : Rn → TeG. This concept can be applied to arbitrary real variables other
than time t in which case we speak of a derivative vector.

In the case of S3
�R

3, we have

dL(p,x)

[̃
Ω

U

]
=

(
1

2
p ∗

[
0
Ω

]
, R(p) U

)

and the physical meaning is that Ω ∈ R
3 is the angular velocity and U ∈ R

3 is the velocity
of a rigid body described by the configuration (p,x). Note that both Ω and U are expressed
with respect to the body-fixed frame {R(p) e1,R(p) e2,R(p) e3}.
Exponential map Now we will define the exponential map ẽxp : Rn → G. For a v ∈ R

n,
ẽxp(v) ∈ G is defined by the solution qv(1) = ẽxp(v) of the initial value problem [36]

q̇v(t) = dLqv(t)(e) ṽ, qv(0) = e.

Usually, the exponential map exp : TeG → G is used, but since we are using the concept of
velocity vectors, ẽxp as the concatenation of exp and the tilde operator is easier to handle. If
we consider a differentiable curve v(t) ∈R

n, then the derivative of ẽxp
(
v(t)

)
is given by

d

dt
ẽxp

(
v(t)

) = dL
ẽxp

(
v(t)

) ˜
(

T
(
v(t)

)
v̇(t)

)
, (1)

where T : Rn → R
n×n is called the tangent operator.3 In the Lie group S

3
�R

3, the expo-
nential map is given by

ẽxp

([
Ω

U

])
=

([
cos ‖Ω‖2

2
Ω

‖Ω‖2
sin ‖Ω‖2

2

]
, TS3(−Ω) · U

)

for [Ω�,U�]� 	= 0 and ẽxp(0) = ([1,0,0,0]�,0). Here, TS3 is the tangent operator that is
associated with the Lie group (S3,∗) as well as with the Lie group of rotation matrices
(SO(3), ·). The tangent operator for S3

�R
3 actually coincides with the tangent operator for

the Lie group (SE(3), ·), which can be found in [5]. Further, we will also need the inverse
T−1(x) = (

T(x)
)−1

of the tangent operator. The tangent operators that are not already defined
here and their inverses are given in the Appendix.

Logarithm The exponential map ẽxp is injective in a neighborhood of the origin.4 We call
the inverse function the logarithm l̃og which maps Lie group elements g ∈ G that are suf-
ficiently close to the identity element e ∈ G back to R

n such that ẽxp
(
l̃og(g)

) = g. For the
Lie group S

3
�R

3, the logarithm is given by

l̃og
(
(p,x)

) =
[

l̃og
S3(p)

T−1
(−l̃og

S3(p)
) · x

]

3The tangent operator T(v) is tailored to the practical implementation in terms of velocity vectors [4]. Usu-
ally, the right-trivialized tangent of d exp is used to express the derivative of the exponential map [14, 27]. It
holds d exp̃v w̃ = T(−v) · w, making T correspond to the left-trivialized tangent of exp.
4To be more precise, ẽxp is a local diffeomorphism in a neighborhood of 0.
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for (p,x) ∈ S
3
�R

3 sufficiently close to the identity element, where l̃og
S3 is the logarithm

of the Lie group (S3,∗) and is given in the Appendix.

Hat operator We will now introduce the hat operator •̂ : Rn →R
n×n by the relation

˜̂a · b = d2

dsdt
σa(s) ◦ σb(t) ◦ σa(−s)

∣∣
s=t=0

,

where σa and σb are differentiable curves in G with σa(0) = σb(0) = e and velocity vectors
a and b at the origin, respectively. We can see that the hat operator is actually the adjoint
operator formulated in the language of velocity vectors with the relation5

adã (̃b) = ˜̂a · b.

In fact, the hat operator is used to write down the tangent operator as well as its inverse in a
series from which the closed expressions can be derived:

T(w) =
∞∑

k=0

(−1)k

(k + 1)! ŵ
k, T−1(w) =

∞∑
k=0

(−1)kBk

k! ŵk,

where Bk are the Bernoulli numbers with B1 = −1/2, see [25]. In the case of the Lie group
S

3
�R

3, we have

[̂
Ω

U

]
=

[
skw(Ω) 0
skw(U) skw(Ω)

]

for Ω,U ∈R
3. Like the tangent operator, the hat operator of S3

�R
3 coincides with the hat

operator of SE(3), [33].

Derivative vectors of bivariate functions Let us now consider a function q : R2 → G that
is differentiable and has derivative vectors x(x, y),y(x, y) ∈ R

n with respect to x and y,
respectively. Then there is this very nice relationship between the partial derivatives of the
derivative vectors:

x̂(x, y) · y(x, y) = d

dy
x(x, y) − d

dx
y(x, y), (2)

see, e.g., [5], where this was used with d/dy being the variation and x = t .

A differential operator Now we will consider functions Ψ : G → R
k whose arguments are

elements of a Lie group. The derivative dΨ (g) : TgG → R
k for g ∈ G is then a linear func-

tion on the tangent space TgG. We can formulate dΨ (g) in the language of velocity vectors
and introduce the differential operator D, where DΨ (g) is defined by

DΨ (g) · w = dΨ (g) dLg(e) w̃

5Often, the Lie bracket [̃a, b̃] = ad̃a (̃b) is used in literature. It can be seen that it is an alternating bilinear
map that fulfills the Jacobi identity, making (g, [•,•]) a proper Lie algebra.
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for all w ∈R
k . The actual expression for DΨ (g) can often be calculated easily by consider-

ing a differentiable curve q(t) ∈ G with velocity vectors v(t) and considering

d

dt
Ψ
(
q(t)

) = DΨ
(
q(t)

) · v(t).

We can use the differential operator D in order to calculate the derivative of the logarithm:

Dl̃og(q) = T−1
(
l̃og(q)

)
(3)

for all q ∈ G close enough to the identity. This can be shown by differentiating ẽxp
(
l̃og(q)

) =
q and using (1). Furthermore, we can calculate the derivative of nonlinear differences by

Dq0 l̃og(q−1
0 ◦ q1) = −T−1

(−l̃og(q−1
0 ◦ q1)

)
, (4a)

Dq1 l̃og(q−1
0 ◦ q1) = T−1

(
l̃og(q−1

0 ◦ q1)
)
. (4b)

Interpolation Lastly, we will introduce an interpolation function

Ip(ξ ;a, b) = a ◦ ẽxp
(
ξ l̃og(a−1 ◦ b)

)
, ξ ∈R, a, b ∈ G, (5)

that is a smooth mapping in ξ with constant derivative vectors l̃og(a−1 ◦ b):

d

dξ
Ip(ξ ;a, b) = dLIp(ξ ;a,b)

˜l̃og(a−1 ◦ b) (6)

and it holds Ip(0;a, b) = a and Ip(1;a, b) = b. In the context of the linear Lie group
(Rn,+), where ẽxp and l̃og are the identity maps, Ip is just the regular linear interpola-
tion, making Ip a generalization of linear interpolation to Lie groups. For more information
on Lie group interpolation see, e.g., [34].

3 The continuous equations of motion

In this section, we consider the continuous equations of motions of a constrained Cosserat
beam. This model was originally formulated by Simo [31] and then reformulated by Lang
and Linn [15, 17]. A similar approach to our was followed in [9, 33], where the authors had
used rotation matrices instead of unit quaternions. Celledoni et al. [7] had used quaternions
but not semi-directly linked with the positions in order to describe an unconstrained Cosserat
beam model.

3.1 Geometrically exact beams

We consider the Cosserat beam to be a framed curve or, in the context of our Lie group, a
curve q(•, t) ∈ S

3
�R

3 at each time instant t . The configuration q(s, t) = (
p(s, t),x(s, t)

)
then describes the position x(s, t) ∈ R

3 and the orientation p(s, t) ∈ S
3 of the cross section

at s. We assume that s represents the arc-length of the undeformed beam and that deforma-
tion of the cross section is negligible, such that it can be considered rigid.

The velocity vectors v(s, t) ∈ R
6 then contain the velocity U(s, t) ∈ R

3 and the angular
velocity Ω(s, t) ∈ R

3 of the rigid cross section expressed with respect to the body-fixed
frame:

v(s, t) =
[
Ω(s, t)

U(s, t)

]
.
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In the same way, we can consider the derivative vectors w(s, t) with respect to the spatial
parameter s:

q ′(s, t) = d

ds
q(s, t) = dLq(s,t) w̃(s, t).

In a similar way as before, w(s, t) contains the stress Γ (s, t) ∈ R
3 and material curvature

K(s, t) ∈ R
3 expressed with respect to the body-fixed frame:

w(s, t) =
[
K(s, t) + K∗(s)
Γ (s, t) + Γ ∗(s)

]
.

Here, K∗(s) ∈ R
3 and Γ ∗(s) ∈ R

3 are the material curvature and stress of the undeformed
beam. We will summarize those two quantities to

w∗(s) =
[
K∗(s)
Γ ∗(s)

]
.

3.2 Energies

We will now give expressions for kinetic and potential energy of the Cosserat beam model.
The kinetic energy T at each time instance t is given by the integral of a kinetic energy
density

T
(
v(s, t)

) = 1

2
v�(s, t) · M · v(s, t)

= ρ

2
Ω�(s, t) ·

⎡
⎣I1

I2

J

⎤
⎦ · Ω(s, t) + Aρ

2
U�(s, t) · U(s, t),

where M ∈R
6×6 is a mass matrix given by

M = diag(ρI1, ρI2, ρJ, ρA,ρA,ρA),

where ρ > 0 is the material density, A > 0 is the area of the cross section, I1, I2, J > 0 are
the principal moments of inertia of the infinitely thin cross section. Of course, this assumes
that the material is homogeneous and the shape of the cross section does not change. The
kinetic energy is then given by

T
(
v(•, t)

) =
Lˆ

0

T
(
v(s, t)

)
ds = 1

2

Lˆ

0

v�(s, t) · M · v(s, t)ds.

Now we give the potential energy U under the assumption of linear material behaviour.
As before, the potential energy is given by the integral over the whole beam of the potential
energy density

U
(
w(s, t)

) = 1

2

(
w(s, t) − w∗(s)

)� · C · (w(s, t) − w∗(s)
)

= 1

2
K�(s, t) ·

⎡
⎣EI1

EI2

GJ

⎤
⎦ · K(s, t)
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+ 1

2
Γ �(s, t) ·

⎡
⎣GA1

GA2

EA

⎤
⎦ · Γ (s, t).

Here, the matrix C ∈R
6×6 is a diagonal matrix

C = diag(EI1,EI2,GJ, GA1,GA2,EA),

that contains the moduli E,G > 0 as well as the moments of inertia I1, I2, J > 0 and the area
A > 0 of the cross section. The quantities A1 > 0 and A2 > 0 are often identified with the
product of the area A with some Timoshenko shear correction factors. In practice, the prod-
ucts EI1, EI2, GJ, GA1, GA2 and EA are determined experimentally instead of calculated
from I1, I2, J,A and the experimentally obtained moduli and Timoshenko shear correction
factors. The potential energy is given by

U
(
w(•, t)

) =
L̂

0

U
(
w(s, t)

)
ds = 1

2

Lˆ

0

(
w(s, t) − w∗(s)

)� · C · (w(s, t) − w∗(s)
)
ds.

3.3 Derivation of the equations of motion

We want to derive a constrained Cosserat beam model that can be used to reduce the full
Cosserat model, e.g., to a Kirchhoff beam model. In case that the quantities GA1 and GA2

are very large, the problem becomes very stiff. By reducing the full Cosserat model to a
Kirchhoff model, we neglect the shearing and therefore remove the stiffness resulting from
these large parameters. In order to introduce such constraints, we will require Ψ

(
w(s, t)

) =
0 ∈ R

k for all admissible s, t with some function Ψ .6 We will later derive the equations of
motion of the beam by a variational principle with an augmented Lagrangian. In order to
simplify the notation, we introduce the quantity

C
(
w(•, t),λ(•, t)

) =
L̂

0

Ψ�(w(s, t)
) · λ(s, t)ds

that contains the constraint-related terms. Here λ(s, t) ∈R
k are Lagrange multipliers.

Now we can define the action integral

S (q,λ) =
teˆ

t0

T
(
v(•, t)

) − U
(
w(•, t)

) − C
(
w(•, t),λ(•, t)

)
dt

with augmented Lagrangian.
We introduce the generalized internal force densities

G(s, t) = C · (w(s, t) − w∗(s)
)+ DΨ�(w(s, t)

) · λ(s, t).

The first term characterizes general internal force densities arising from bending, torsion,
extension, as well as shearing and the second term characterizes generalized internal con-
straint force densities.

6Note that q(•, t) describes the configuration of the beam, such that the constraints could be written as
0(•) = Φ

(
q(•, t)), where Φ

(
q(s, t)

) = Ψ
(
w(s, t)

)
and 0(•) is the constant zero function in s.
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Since we are considering a beam that is free on both ends, we assume that the generalized
internal force densities vanish at both ends of the beam:

G(0, t) = G(L, t) = 0, t ∈ [t0, te].

We call these natural boundary conditions. Now we can derive the equations of motion by
Hamilton’s principle [24], see also [15, 18, 22]

0 = δS (q,λ) (7)

with an augmented Lagrangian. As before, we use the concept of derivative vectors for the
variation:

δq(s, t) = dLq(s,t)(e) δ̃q(s, t).

The boundary conditions for the derivative vectors with respect to the variation are assumed
to be

δq(s, t0) = δq(s, te) = 0, s ∈ [0,L]. (8)

Now we can interchange variation and double integration, use (2) with respect to time and
space, apply partial integration and end up with, by omitting the arguments s and t ,

0 =
teˆ

t0

L̂

0

v� · M · δv − (
(w − w∗)� · C + λ� · DΨ (w)

) · δw − Ψ�(w) · δλdsdt

=
teˆ

t0

L̂

0

[
v� · M · v̂ − v̇� · M − G · ŵ + G′] · δq − Ψ�(w) · δλdsdt,

since the boundary terms of the partial integrations vanish due to the natural boundary con-
ditions of the beam and (8). The term δw can be expressed by w and δq by using (2). The
above equation has to hold for all variations δq(s, t) and δλ(s, t), and, therefore, the factors
of those variations have to vanish, leading us to the continuous equations of motion

M · v̇(s, t) = v̂(s, t)
� · M · v(s, t) + G′(s, t) − ŵ(s, t)

� · G(s, t), (9a)

0 = Ψ
(
w(s, t)

)
(9b)

for all s ∈ (0,L) and t ∈ (t0, te).

3.4 Generalizations

As in [17], external forces are added by

0 = δS (q,λ) +
teˆ

t0

L̂

0

F�(s, t, q) · δq(s, t)dsdt, (10)
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where F (s, t, q) is a density of external generalized forces that may depend on s, t , q as
well as any derivatives of q . Applying the same technique as before, we end up with the
equations of motion

M · v̇(s, t) = v̂(s, t)
� · M · v(s, t) + G′(s, t) − ŵ(s, t)

� · G(s, t) + F (s, t, q),

0 = Ψ
(
w(s, t)

)
,

where we have just added the term F (s, t, q) to the right hand side of the dynamic equa-
tions (9a).

A viscoelastic beam could be simulated by adding damping. This can be incorporated by

0 = δS (q,λ) − 2

teˆ

t0

Lˆ

0

ẇ�
(s, t) · D · δw(s, t)dsdt (11)

with a diagonal matrix D ∈ R
6×6, containing dissipative material constants [15, 17]. Here,

the term 2D · ẇ(s, t) could also be interpreted as the derivative of a dissipative power density

ẇ�
(s, t) · D · ẇ(s, t)

with respect to ẇ(s, t). Treating the additional integral in the same way as before, we arrive
at the same equations of motion (9a), (9b), but with generalized internal forces

G(s, t) = C · (w(s, t) − w∗(s)
)+ 2D · ẇ(s, t) + DΨ�(w(s, t)

) · λ(s, t).

3.5 Internal constraints

In the case of a Kirchhoff beam model, we require the cross sections to be perpendicular
to the center line, so the first two components of the material stress vector Γ (s, t) have to
vanish. This is equivalent to

0 = Ψ
(
w(s, t)

) :=
[

1 0 0
0 1 0

]
· Γ (s, t) =

[
0 0 0 1 0 0
0 0 0 0 1 0

]
· (w(s, t) − w∗(s)

)
.

In the case of an inextensible Kirchhoff beam model, we also require that the beam remains
parametrized by arc-length and therefore Γ (s, t) = 0, which is equivalent to

0 = Ψ
(
w(s, t)

) := Γ (s, t) =
⎡
⎣0 0 0 1 0 0

0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎦ · (w(s, t) − w∗(s)

)
.

3.6 Equations of motion in the inertial frame

The equations of motion (9a), (9b) may not look familiar to the reader. If, however, we
consider an unconstrained beam, separate equation (9a), into two equations in R

3 and
formulate them with respect to the inertial frame by applying the rotation p(s, t) from
q(s, t) = (

p(s, t),x(s, t)
)
, we end up with the familiar equations
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ρAu̇ = ∂sf ,

ρ(i · ω̇ + ω × (i · ω)
) = ∂sm + ∂sx × f ,

with internal moments m(s, t) ∈R
3 and forces f (s, t) ∈ R

3, the velocity u(s, t) = ẋ(s, t) ∈
R

3, the angular velocity ω(s, t) ∈ R
3 as well as the inertia tensor i(s, t) ∈ R

3×3 with respect
to the inertial frame:

[
R
(
p−1(s, t)

)
m(s, t)

R
(
p−1(s, t)

)
f (s, t)

]
= G(s, t),

[
R
(
p−1(s, t)

)
ω(s, t)

R
(
p−1(s, t)

)
u(s, t)

]
=

[
Ω(s, t)

U(s, t)

]
= v(s, t),

(
R
(
p−1(s, t)

)
a
)� ·

⎡
⎣I1 0 0

0 I2 0
0 0 J

⎤
⎦ · R(

p−1(s, t)
)
b = a� · i(s, t) · b

for all a,b ∈ R
3. We prefer, however, to look at the equations of motion in slightly more

complicated form (9a), (9b) because it agrees well with our choice of configuration space
and, more importantly, the mass matrix M is constant unlike the inertia tensor i(s, t).

4 The fully discretized equations of motion

In this section, we will concentrate on the discretization of the Cosserat beam. In order to do
this, we will heavily rely on the toolbox of variational integrators [24]. A similar approach
was used in [8, 9, 20].

4.1 Discretization of the functional space

In order to obtain fully discrete equations of motion of the constrained beam, we will reduce
the number of functions that we consider in the variational principle (7). First, we consider
a spatial grid

0 = s0 < s1 < · · · < sK = L

as well as a time grid

t (0) < t(1) < · · · < t(N) = t (e)

with step sizes

�sk = sk+1 − sk, and �t(n) = t (n+1) − t (n).

Furthermore, we define the midpoints of the spatial grid

sk+1/2 = sk + sk+1

2

as well as the interior of the space-time grid cells

C
(n)
k = (sk, sk+1) × (t (n), t (n+1)).
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We consider only trajectories qd that take the form

qd(s, t) = Ip

(
t − t (n)

�t(n)
; Ip

( s − sk

�sk

;q(n)
k , q

(n)

k+1

)
, Ip

( s − sk

�sk

;q(n+1)
k , q

(n+1)

k+1

))

for s ∈ [sk, sk+1], t ∈ [t (n), t (n+1)], which are interpolations of the data (sk, t
(n), q

(n)
k ) in the

Lie group [34]. The trajectory qd is of course continuous everywhere on [0,L] × [t (0), t (e)]
and its degrees of freedom are its values at the grid points qd(sk, t

(n)) = q
(n)
k ∈ G for

k = 0, . . . ,K and n = 0, . . . ,N . Notice, however, that qd is only almost everywhere dif-
ferentiable: The spatial derivative does not have to exist at all spatial grid points s = sk and
the time derivative does likewise not have to exist at all time grid point t = t (n). On the con-
trary, inside a grid cell C

(n)
k , the spatial derivatives are constant along a fixed time t∗ and the

time derivatives are constant along a fixed arc length s∗. More importantly, we give names
to the spatial derivative along the spatial grid points and to the time derivative along the time
grid points, again using the concept of derivative and velocity vectors:

(qd)′(s, t (n)) = dLqd(s,t(n))
˜
w

(n)
k+1/2

, s ∈ (sk, sk+1),

q̇d(sk, t) = dLqd(sk ,t)
˜
v

(n+1/2)

k , t ∈ (t (n), t (n+1))

with using (6),

w
(n)
k+1/2

= l̃og
(
(q

(n)
k )−1 ◦ q

(n)

k+1

)
�sk

, (12a)

v
(n+1/2)

k = l̃og
(
(q

(n)
k )−1 ◦ q

(n+1)
k

)
�t(n)

. (12b)

Furthermore, we define the derivative vectors with respect to space of the undeformed con-
figuration of the beam

w∗
k+1/2

= w∗(sk+1/2).

We do not need to assume a special kind of function for the Lagrange multipliers λ, but
we allow the Lagrange multipliers λd(s, t), corresponding to the trajectories qd(s, t), to be
discontinuous in time at all time grid points t = t (n). We give the following names to their
one-sided limits around t (n) in the middle of the spatial grid points:

λ
(n,+)
k+1/2

= lim
ε→0
ε>0

λd
(
sk+1/2, t

(n) + ε
)

and λ
(n,−)
k+1/2

= lim
ε→0
ε>0

λd
(
sk+1/2, t

(n) − ε
)
.

We will later see that both limits are required to respect the hidden constraints.

4.2 Derivation of the discrete equations of motion

Now we split up the action integral

S (qd,λd) =
K−1∑
k=0

N−1∑
n=0

¨

C
(n)
k

L (qd,λd)dsdt
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in order to approximate the integral of the Lagrange function over a space-time grid cell

¨

C
(n)
k

L (qd,λd)dsdt =
t(n+1)ˆ

t(n)

sk+1ˆ

sk

T
(
vd(s, t)

)
dsdt −

sk+1ˆ

sk

t(n+1)ˆ

t(n)

U
(
wd(s, t)

)
dtds

−
sk+1ˆ

sk

t(n+1)ˆ

t(n)

Ψ�(wd) · λddtds.

Here we have used the linearity of the integral and interchanged the order of integration in
one of the terms. In order to do this we have chosen to apply the trapezoidal rule to the inner
integrals and the midpoint rule to the outer integrals:

t(n+1)ˆ

t(n)

sk+1ˆ

sk

T
(
vd(s, t)

)
dsdt ≈ �t(n) �sk

2

[
T
(
vd(sk, t

(n+1/2))
)+ T

(
vd(sk+1, t

(n+1/2))
)]

,

sk+1ˆ

sk

t(n+1)ˆ

t(n)

U
(
wd(s, t)

)
dsdt ≈ �t(n) �sk

2

[
U
(
wd(sk+1/2, t

(n))
)+ U

(
wd(sk+1/2, t

(n+1))
)]

,

sk+1ˆ

sk

t(n+1)ˆ

t(n)

Ψ�(wd) · λddtds ≈ �t(n) �sk

2

[
Ψ�(w

(n)
k+1/2

) · λ(n,+)
k+1/2

+ Ψ�(w
(n+1)
k+1/2

) · λ(n+1,−)
k+1/2

]
.

Using these second-order accurate approximations, we can now define a discrete Lagrangian

L d
(
q

(n)
k , q

(n)

k+1, q
(n+1)
k , q

(n+1)

k+1 ,λ
(n,+)
k+1/2

,λ
(n+1,−)
k+1/2

)

= �t(n) �sk

2

[
T
(
vd(sk, t

(n+1/2))
) + T

(
vd(sk+1, t

(n+1/2))
)− U

(
wd(sk+1/2, t

(n))
)

− U
(
wd(sk+1/2, t

(n+1))
)− Ψ�(w

(n)
k+1/2

) · λ(n,+)
k+1/2

− Ψ�(w
(n+1)
k+1/2

) · λ(n+1,−)
k+1/2

]

= �t(n) �sk

4

[
(v

(n+1/2)

k )� · M · v(n+1/2)

k + (v
(n+1/2)

k+1 )� · M · v(n+1/2)

k+1

− (w
(n)
k+1/2

− w∗
k+1/2

)� · C · (w(n)
k+1/2

− w∗
k+1/2

) − (w
(n+1)
k+1/2

− w∗
k+1/2

)� · C · (w(n+1)
k+1/2

− w∗
k+1/2

)

− 2Ψ�(w
(n)
k+1/2

) · λ(n,+)
k+1/2

− 2Ψ�(w
(n+1)
k+1/2

) · λ(n+1,−)
k+1/2

]
.

Further, we will use the abbreviation

L
(n,n+1)

k,k+1 = L d
(
q

(n)
k , q

(n)

k+1, q
(n+1)
k , q

(n+1)

k+1 ,λ
(n,+)
k+1/2

,λ
(n+1,−)
k+1/2

)
in order to keep the notation easier to read. Due to the earlier second-order approximations,
we now know that ¨

C
(n)
k

L (qd,λd)dsdt ≈ L
(n,n+1)

k,k+1
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as well as

S (qd,λd) ≈
K−1∑
k=0

N−1∑
n=0

L (n,n+1)

k,k+1 .

We call the sum over all discrete Lagrangians the discrete action

S d
(
(q

(n)
k )k,n, (λ

(n,+)
k+1/2

)k,n, (λ
(n,−)
k+1/2

)k,n

)
=

K−1∑
k=0

N−1∑
n=0

L (n,n+1)

k,k+1 ,

which depends on all discrete configurations q
(n)
k as well as on all one-sided limits of the

Lagrange multipliers λ
(n,±)
k+1/2

.
Now we continue along the lines of variational integrators and derive the discretized

equations of motion by finding a stationary point of the discrete action with

δq
(0)
k = δq

(N)
k = 0,

the standard assumption for the variation of the endpoints in time:

0 = δS d
((

q
(n)
k

)
k,n

,
(
λ

(n,+)
k+1/2

)
k,n

,
(
λ

(n,−)
k+1/2

)
k,n

)
=

K−1∑
k=0

N−1∑
n=0

δL n,n+1
k,k+1

=
K−1∑
k=0

N−1∑
n=0

D1L
(n,n+1)

k,k+1 · δq(n)
k + D2L

(n,n+1)

k,k+1 · δq(n)

k+1 + D3L
(n,n+1)

k,k+1 · δq(n+1)
k

+ D4L
(n,n+1)

k,k+1 · δq(n+1)

k+1 + d5L
(n,n+1)

k,k+1 · δλ(n,+)
k+1/2

+ d6L
(n,n+1)

k,k+1 · δλ(n+1,−)
k+1/2

.

Here, DjL
(n,n+1)

k,k+1 and djL
(n,n+1)

k,k+1 refer to the derivative with respect to the j -th argument of

the function L d(q
(n)
k , q

(n)

k+1, q
(n+1)
k , q

(n+1)

k+1 ,λ
(n,+)
k+1/2

,λ
(n+1,−)
k+1/2

). Now we will use the linearity of
the sum, shift the indices and use the assumption on the variation of endpoints in time and
end up with

0 =
K∑

k=0

N−1∑
n=1

(D1L
(n,n+1)

k,k+1 + D2L
(n,n+1)

k−1,k + D3L
(n−1,n)

k,k+1 + D4L
(n−1,n)

k−1,k ) · δq(n)
k

+
K−1∑
k=0

N−1∑
n=0

[
d5L

(n,n+1)

k,k+1 · δλ(n,+)
k+1/2

+ d6L
(n,n+1)

k,k+1 · δλ(n+1,−)
k+1/2

]

by defining the missing discrete Lagrangian derivatives as zero in order to facilitate the
notation:

D1L
(n,n+1)

K,K+1 = D2L
(n,n+1)

−1,0 = D3L
(n−1,n)

K,K+1 = D4L
(n−1,n)

−1,0 = 0.

Since the above equation has to hold for all variations, we obtain the discrete equations of
motion in the form

D1L
(n,n+1)

k,k+1 + D2L
(n,n+1)

k−1,k + D3L
(n−1,n)

k,k+1 + D4L
(n−1,n)

k−1,k = 0, (13a)

d5L
(n,n+1)

k,k+1 = 0, ( k 	= K ) (13b)
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d6L
(n,n+1)

k,k+1 = 0, ( k 	= K ) (13c)

for k = 0, . . . ,K and n = 1, . . . ,N − 1. We can now rearrange the first equation to

−D1L
(n,n+1)

k,k+1 − D2L
(n,n+1)

k−1,k = D3L
(n−1,n)

k,k+1 + D4L
(n−1,n)

k−1,k .

The left and right hand side of the equation define two canonical momenta p
(n,+)
k and p

(n,−)
k ,

respectively. The equation can thus be interpreted as an instance of momentum match-
ing [24], leading to well-defined values of the momenta at the node. Here, we identify the
moments by using mass matrix M multiplied with velocities v

(n)
k instead: This means we

have

−D1L
(n,n+1)

k,k+1 − D2L
(n,n+1)

k−1,k = (
M · v(n)

k

)� = D3L
(n−1,n)

k,k+1 + D4L
(n−1,n)

k−1,k . (14)

This approach is called a discrete Legendre transform [24] and the transformation from
momenta to velocities can be considered the application of the inverse continuous Legendre
transform.

Now we can consider the left hand equation and the right hand equation of (14) indepen-
dently and get, by shifting n by one in the right hand equation

(
M · v(n)

k

)� = −D1L
(n,n+1)

k,k+1 − D2L
(n,n+1)

k−1,k , (15a)
(
M · v(n+1)

k

)� = D3L
(n,n+1)

k,k+1 + D4L
(n,n+1)

k−1,k . (15b)

Note, that we extend the validity of the equation (15a) to n = 0 and (15b) to n = N − 1 by
arguing that we could have started already at t (−1) = t (0) − ε and ended at t (n+1) = t (n) + ε

with some 0 < ε 
 1.
In order to obtain the derivatives of the Lagrangian, we will need the derivatives of the

velocity vectors v
(n+1/2)

k and w
(n)
k+1/2

with respect to the q
(n)
k by which they are defined, see (4a),

(4b) and (12a), (12b):

D
q

(n)
k

v
(n+1/2)

k = −1

�t(n)
T−1

(−�t(n)v
(n+1/2)

k

)
, D

q
(n+1)
k

v
(n+1/2)

k = 1

�t(n)
T−1

(
�t(n)v

(n+1/2)

k

)
,

D
q

(n)
k

w
(n)
k+1/2

= −1

�sk

T−1
(−�skw

(n)
k+1/2

)
, D

q
(n)
k+1

w
(n)
k+1/2

= 1

�sk

T−1
(
�skw

(n)
k+1/2

)
.

Now, the derivatives of the discrete Lagrangian can be written as

D1L
(n,n+1)

k,k+1 = 1

2

[
−�sk(v

(n+1/2)

k )� · M · T−1(−�t(n)v
(n+1/2)

k )

+ �t(n)
(
w

(n)
k+1/2

− w∗(sk+1/2)
)� · C · T−1(−�skw

(n)
k+1/2

)

+ �t(n)(λ
(n,+)
k+1/2

)� · DΨ (w
(n)
k+1/2

) · T−1(−�skw
(n)
k+1/2

)

]
,

D2L
(n,n+1)

k,k+1 = 1

2

[
−�sk(v

(n+1/2)

k+1 )� · M · T−1(−�t(n)v
(n+1/2)

k+1 )

− �t(n)
(
w

(n)
k+1/2

− w∗(sk+1/2)
)� · C · T−1(�skw

(n)
k+1/2

)

− �t(n)(λ
(n,+)
k+1/2

)� · DΨ (w
(n)
k+1/2

) · T−1(�skw
(n)
k+1/2

)

]
,
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D3L
(n,n+1)

k,k+1 = 1

2

[
�sk(v

(n+1/2)

k )� · M · T−1(�t(n)v
(n+1/2)

k )

+ �t(n)
(
w

(n+1)
k+1/2

− w∗(sk+1/2)
)� · C · T−1(−�skw

(n+1)
k+1/2

)

+ �t(n)(λ
(n+1,−)
k+1/2

)� · DΨ (w
(n+1)
k+1/2

) · T−1(−�skw
(n+1)
k+1/2

)

]
,

D4L
(n,n+1)

k,k+1 = 1

2

[
�sk(v

(n+1/2)

k+1 )� · M · T−1(�t(n)v
(n+1/2)

k+1 )

− �t(n)
(
w

(n+1)
k+1/2

− w∗(sk+1/2)
)� · C · T−1(�skw

(n+1)
k+1/2

)

− �t(n)(λ
(n+1,−)
k+1/2

)� · DΨ (w
(n+1)
k+1/2

) · T−1(�skw
(n+1)
k+1/2

)

]
,

0 = d5L
(n,n+1)

k,k+1 = −�sk �t(n)

2
Ψ�(w

(n)
k+1/2

),

0 = d6L
(n,n+1)

k,k+1 = −�sk �t(n)

2
Ψ�(w

(n+1)
k+1/2

).

We can see that the derivatives of the discrete Lagrangian with respect to the two different
Lagrange multipliers, λ

(n,+)
k+1/2

and λ
(n,−)
k+1/2

, both give us the same constraint equation only with
shifted index n. We will drop one of the redundant equations and instead replace it by the
constraint equation on velocity level

0 = −�sk �t(n)

2
DΨ (w

(n+1)
k+1/2

) · ẇ(n+1)
k+1/2

. (16)

This constraint (16) is often called the hidden constraint, because it can be revealed by
differentiating the constraint equation on position level with respect to time. Assuming that
v

(n)
k actually approximates the velocity vector of q

(n)
k with respect to time, we define

d

dt
wd(sk+1/2, t)

∣∣
t=t(n) ≈ ẇ

(n)
k+1/2

:= 1

�sk

[
T−1

(
�skw

(n)
k+1/2

) · v(n)

k+1 − T−1
(−�skw

(n)
k+1/2

) · v(n)
k

]
.

Now, we can put equations (15a), (15b), (13c), (16), (12a), as well as (12b) together and
obtain – by using the derivatives of the discrete Lagrangian – the full discrete equations of
motion

q
(n+1)
k = qk ◦ ẽxp(�t(n)v

(n+1/2)

k ), (17a)

M · v(n)
k = �sk + �sk−1

2
T−�(−�t(n)v

(n+1/2)

k ) · M · v(n+1/2)

k

− �t(n)

2

[
T−�(−�skw

(n)
k+1/2

) · G(n,+)
k+1/2

− T−�(�sk−1w
(n)
k−1/2

) · G(n,+)
k−1/2

]
,

⎫⎪⎪⎬
⎪⎪⎭

(17b)

0 = −�sk �t(n)

2
Ψ (w

(n+1)
k+1/2

), ( k 	= K ) (17c)
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M · v(n+1)
k = �sk + �sk−1

2
T−�(�t(n)v

(n+1/2)

k ) · M · v(n+1/2)

k

+ �t(n)

2

[
T−�(−�skw

(n+1)
k+1/2

) · G(n+1,−)
k+1/2

− T−�(�sk−1w
(n+1)
k−1/2

) · G(n+1,−)
k−1/2

]
,

⎫⎪⎪⎬
⎪⎪⎭
(17d)

0 = −�sk �t(n)

2
DΨ (w

(n+1)
k+1/2

) · ẇ(n+1)
k+1/2

, ( k 	= K ) (17e)

for k = 0, . . . ,K and n = 0, . . . ,N − 1. Here G
(n,±)
k+1/2

are internal generalized forces given by

G
(n,±)
k+1/2

= C · (wk+1/2 − w∗
k+1/2

) + DΨ�(w
(n)
k+1/2

) · λ(n,±)
k+1/2

for n = 0, . . . ,N and k = 1, . . . ,K − 1. All quantities in (17a)–(17e) with lower index −1,
−1/2, K + 1/2 or K +1 are defined to vanish in order to facilitate notation; e.g., equation (17b)
for k = 0 takes the form

M · v(n)

0 = �s0

2
T−�(−�t(n)v

(n+1/2)

0 ) · M · v(n+1/2)

0 − �t(n)

2
T−�(−�s0w

(n)
1/2

) · G(n,+)
1/2

.

4.3 Generalizations

External forces Now using the variational principle (10) instead of Hamilton’s one (7), we
will consider external forces. Since we already know how to treat δS , we will focus on
the second term. We insert the trajectories qd, split the integration interval, approximate
F (qd, s, t) on C

(n)
k by

´ sk+1
sk

F (qd, s, t)ds/�sk , use the trapezoidal rule for the remaining
integral and finally shift indices:

teˆ

t0

Lˆ

0

F�(qd, s, t) · δq(s, t)dsdt =
K−1∑
k=0

N−1∑
n=0

¨

C
(n)
k

F�(qd, s, t) · δq(s, t)dsdt

≈
K−1∑
k=0

N−1∑
n=0

�sk �t(n)

4

(
(F

(n)
k+1/2

)� · (δq(n)
k + δq

(n)

k+1) + (F
(n+1)
k+1/2

)� · (δq(n+1)
k + δq

(n+1)

k+1 )
)

=
K∑

k=0

N−1∑
n=1

1

4

(
�t(n)(�skF

(n)
k+1/2

+ �sk−1F
(n)
k−1/2

) + �t(n−1)(�skF
(n)
k+1/2

+ �sk−1F
(n)
k−1/2

)
)�

︸ ︷︷ ︸
=:F (n)

k

·δq(n)
k ,

where

F
(n)
k+1/2

= 1

�sk

sk+1ˆ

sk

F (qd, s, t (n))ds

for k = 1, . . . ,K − 1 and n = 0, . . . ,N and the terms vanish for lower indices less than 0 or
greater than K . Now the term F (n)

k will appear on the left hand side of (13a) and when this
equation gets rearranged, we make sure that the products with �t(n) come to the left side
and the products with �t(n−1) to the right side of (14). This will lead to the extra term

−�t(n)

2
· �skF

(n)
k+1/2

+ �sk−1F
(n)
k−1/2

2
(18a)
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on the right hand side of (17b), as well as

�t(n)

2
· �skF

(n+1)
k+1/2

+ �sk−1F
(n+1)
k−1/2

2
(18b)

on the right hand side of (17d).

Internal damping Now we will consider internal damping of the beam. In order to do this,
we will use the variational principle (11). Again, we insert qd and approximate the remaining
integral, since we already dealt with δS (qd,λd). We know that the derivative vectors of
qd(s, t (n)) are constant w

(n)
k+1/2

for s ∈ (sk, sk+1) and that ẇ
(n)
k+1/2

≈ d/dt wd(sk+1/2, t
(n)). We split

the integration range and subsequently apply the midpoint rule in space and the trapezoidal
rule in time:

teˆ

t0

L̂

0

(
ẇd

(s, t)
)� · D · δ(wd(s, t)

)
dsdt

=
K−1∑
k=0

N−1∑
n=0

¨

C
(n)
k

(
ẇd

(s, t)
)� · D · δ(wd(s, t)

)
dsdt

≈
K−1∑
k=0

N−1∑
n=0

�sk �t(n)

2

(
(ẇ

(n)
k+1/2

)� · D · δ(w(n)
k+1/2

) + (ẇ
(n+1)
k+1/2

)� · D · δ(w(n+1)
k+1/2

)ds

)
.

Now we can calculate the variations of w
(n)
k+1/2

using (4a), (4b) and end up, by shifting
indices, with

=
K∑

k=0

N−1∑
n=1

(
�t(n)

2

(
(ẇ

(n)
k−1/2

)� · D · T−1(�sk−1w
(n)
k−1/2

) − (ẇ
(n)
k+1/2

)� · D · T−1(−�skw
(n)
k+1/2

)
)

+ �t(n−1)

2

(
(ẇ

(n)
k−1/2

)� · D · T−1(�sk−1w
(n)
k−1/2

) − (ẇ
(n)
k+1/2

)� · D · T−1(−�skw
(n)
k+1/2

)
)) · δq(n)

k ,

where all quantities with lower index less than 0 or more than K vanish. As in the case of
external forces, we make sure that the extra terms that have the factor �t(n) get written on
the left hand side of (14) and the terms with factor �t(n−1) on the right hand side of (14).
We notice, however, that in the equations of motion, the transposed inverse of the tangent
operator can be factored, leading to the exact same equations of motion (17a)–(17e), where
the generalized internal forces now include the damping term:

G
(n,±)
k+1/2

= C · (w(n)
k+1/2

− w∗
k+1/2

) + 2D · ẇ(n)
k+1/2

+ DΨ�(w
(n)
k+1/2

) · λ(n,±)
k+1/2

,

where all quantities with lower index less than 0 or more than K vanish.

Implementation We have formulated a high-level Algorithm 1 to solve the equations of
motion (17a)–(17e). Note that the system in line 5 is linear if there are no external forces
that depend on time-derivatives of q . In that case, the Newton-Raphson iteration requires
exactly one step. The starting values can be chosen by quantities that are already known
from the previous time step or the current time step. It is noteworthy that the Jacobians
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Algorithm 1 Solution of the discrete equations of motion

Require: Starting values q
(0)
k , v

(0)
k for k = 0, . . . ,K

1: for n = 0, . . . ,N − 1 do
2: Formulate all occurrences of q

(n+1)
k in (17b), (17c) with v

(n+1⁄2)
k by using (17a).

3: Solve the obtained system with respect to (v
(n+1⁄2)
k )Kk=0, (λ

(n,+)
k+1⁄2 )K−1

k=0 by the Newton-Raphson method.

4: Calculate q
(n+1)
k by (17a) for all k = 0, . . . ,K .

5: Solve the system (17c-17d) with respect to (v
(n+1)
k )Kk=0, (λ

(n+1,−)
k+1⁄2 )K−1

k=0 .

6: end for

of the systems in lines 3 and 5 have band structure [2, 15] if the equations and unknowns
are ordered with ascending spatial index k including the constraint equations and Lagrange
multipliers. Therefore, the linear systems that appear in the Newton-Raphson method can
be solved very efficiently.

5 Numerical experiments

In this section, we will consider two different numerical benchmark problems. The first
one will be a heavily damped beam that is rolled up to form a circle. The computations
of the benchmark problem often give faulty results if locking is present in the numerical
approximation [28]. We will see that in our case, no locking can be observed. The second
benchmark will be the so-called flying spaghetti [32], where we will study the influence of
the spatial step size as well as the time step size on the overall accuracy of the approximate
solution obtained by the numerical scheme.

We have implemented the equations of motion derived in Sect. 4 by applying the existing
numerical scheme RATTLie [12] to the spatially discretized beam model in a method of lines
approach [13].

5.1 Roll-up

We consider an unconstrained Cosserat beam of length L = 10 and material properties
GA1 = GA2 = EA = 104, EI1 = EI2 = GI = 500, Aρ = 1, I1 = I2 = J = 10 as well as vis-
coelastic parameters D = diag(100,100,100,100,100,100). The beam is clamped at s = 0,
where we prescribe x(0, t) = 0 and p(0, t) = [1,0,1,0]�/

√
2 for all times t ≥ 0. To the

initially straight beam x(s,0) = sL and p(s,0) = [1,0,1,0]�/
√

2, we apply a constant ex-
ternal torque M = [0,2πEI1/L,0]� to the free end s = L. The discretization is done with
an equidistant spatial grid with K = 8 and constant time steps of �t = 2−10 ≈ 9.7×10−4. In
Fig. 1, we have shown snapshots of the center line; and, in Fig. 2, we have shown the norm
of the distance between the two endpoints (p

(n)

0 ,x
(n)

0 ) and (p
(n)
K ,x

(n)
K ) as well as the norm of

the velocity vectors [(Ω (n)
K )�, (U

(n)
K )�]�. It can be seen that after a few seconds, the beam is

almost at rest due to the relatively high internal damping. We observe an equilibrium where
the cross sections of both ends are almost in the same position and orientation. It is known
that if a beam model has shear locking, the bending stiffness is largely overestimated and
the beam would not complete the ring [28]. Since this behavior cannot be observed here
even for this very coarse spatial discretization, we can conclude that shear locking is not
present in our beam model. The recently published paper [21] describes a similar experi-
ment. Furthermore, the authors of [21] prove that there is no locking in their model because
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Fig. 1 Roll-up of viscoelastic beam: Snapshots of the calculated configuration of the beam at
t = 0,0.5,1,1.5,2,3,30

Fig. 2 Roll-up of viscoelastic beam: The left plot shows the distance ‖x(n)
0 −x

(n)
K

‖2 +‖p(n)
0 +p

(n)
K

‖2 of the

configurations of the left and right end of the beam over time t (n) . Notice that due to the 360° rotation of the

right end, the unit quaternion p
(n)
K

approaches the antipodal −p
(n)
0 which encode the same orientation. The

right plot shows the norm ‖v(n)
K

‖2 of the velocity vector of the right end of the beam over time t (n)

of the semi-direct product structure of the unit dual quaternions used in [21], similar to the
structure of S3

�R
3 used in the present paper.7

5.2 Flying spaghetti

Now we will apply our discretization to the flying spaghetti benchmark [32], in order
to numerically observe the order of convergence in space and time. The flying spaghetti
benchmark consists of an initially straight beam of length L = 10 with material parameters:
GA1 = GA2 = EA = 104, EI1 = EI2 = GJ = 50, Aρ = 1, and ρI1 = ρI2 = ρJ = 10. Both
ends of the beam are free, and at the end, where s = 0, forces and moments are applied,
ramping up from t = 0 to t = 2.5 and then decreasing from t = 2.5 to t = 5. A schematic
description of the initial configuration and the applied moments can be found in Fig. 3. In
Fig. 4, we have provided snapshots of the configuration of the beam. In this paper, we used a
Kirchhoff beam model for the flying spaghetti by constraining the full Cosserat beam model
as described in the above sections.

7The Lie group of unit dual quaternions is isomorphic to S
3
�R

3, see [11].
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Fig. 3 Description of the flying spaghetti benchmark [32]: Initial position as well as applied forces and
moments on the left and the magnitude of the forces and moments on the right

Fig. 4 Flying spaghetti: Snapshots of the configuration with N = 8 beam segments at t = 0,2,3,4, . . . ,15
and the trajectory of the end points

In Fig. 5, we have considered the benchmark problem with equidistant spatial grid with
K = 8 and varied step size �t of the equidistant time grid. The maximal absolute discrete
L2 error in q is defined by

max
n=0,...,N

√√√√ 1

7(K + 1)

K∑
k=0

‖q(n)
k − Q

(n)
k ‖2

2,

where Q
(n)
k ≈ q(sk, t

(n)) is the reference solution. Accordingly, the maximal absolute dis-
crete L2 error in v can be defined. Note that we are using here differences of Lie group
elements, but only for getting a grasp of the magnitude of the errors not for computing any
values of the numerical solution! We can see in Fig. 5 that the slope of the errors in q and
v over the time step size �t is approximately two. This means that we can observe second
order convergence behaviour numerically.

In Fig. 6, we have considered the flying spaghetti with equidistant time grid with �t =
2−12 ≈ 2.5×10−4 and varied the number of equidistant spatial grid points K . This time,
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Fig. 5 Flying spaghetti: Maximum of absolute error over time step size �t with K = 8 beam segments. The
reference solution was calculated with �t ≈ 3.8×10−6

Fig. 6 Flying spaghetti: Maximum of absolute error over number of beam segments K with time step
�t ≈ 2.4×10−4. The reference solution was calculated with K = 265 beam segments

we have interpolated the beam in space [34] by using piecewise Lie group interpolation (5)
in q and piecewise linear interpolation in v. Then we have plotted the maximal absolute
discrete L2 error of the interpolated beam at s = 0,L/8, . . . ,8L/8. Here, we can observe
that the slope of the errors over K is approximately −2, which means that we can observe
second order convergence in space. The error in the velocity vectors v, however, starts to
saturate for larger K . This could have two reasons: All solutions were calculated with a
rather coarse time step, and, so, this error saturation could indicate that the solutions can
not become a lot more precise without reducing the time step size. The second reason could
be that piecewise linearly interpolating the velocity vectors v could be incompatible with
the way the discretization scheme was derived, where the velocity vectors of the discretized
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Fig. 7 Flying spaghetti: Change �E in mechanical energy for t ∈ [5,110], where no forces and moments are
applied. Results were calculated with �t ≈ 4.9×10−4 and �s = 0.625

configuration qd with respect to time had jumps at the time grid points and were constant in
between them.

All in all, we can observe that our discretization scheme is convergent of second order in
space and time. This is what could have been expected, since we have only used approxima-
tions of second order in the derivation of the scheme, namely Lie group interpolation of first
order (which is a generalization of linear interpolation) and the trapezoidal and midpoint
rule for approximating integrals. A rigorous mathematical analysis is, however, needed in
order to prove the claim of second order convergence.

Lastly, we have depicted the change of mechanical energy of the flying spaghetti in Fig. 7
in the conservative realm t ∈ [5,110]. As we expect from a variational discretization, there
is no systematic energy drift, see, e.g., [24], where the discrete Noether theorem is shown,
stating that a variational integrator has to conserve a perturbed energy.

6 Conclusion

We have shortly introduced the toolbox of Lie group structured configuration spaces and the
concept of velocity and derivative vectors with special attention to the Lie group of rigid
body motions S3

�R
3, where rotations are parametrized using unit quaternions S3. Then we

have described a constrained Cosserat beam model, where the configuration space S
3
�R

3

was used to describe the orientation and position of each cross section of the beam. The
constraints can be used to reduce the Cosserat beam model to a Kirchhoff beam model by
requiring the cross sections to remain perpendicular to the center line. The continuous equa-
tions of the beam were then derived using variational principles like Hamilton’s principle
with an augmented Lagrangian. Furthermore, we have discretized the infinite-dimensional
space of functions by only considering trajectories, which are given by a piecewise first or-
der Lie group interpolation. Applying again the variational principles, we arrived at the fully
discrete equations of motion. The derived discrete scheme was then tested on two benchmark
problems. We could observe that no shear locking was present in the scheme and that it can
be numerically seen to converge with second order both in space and in time.
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Appendix: Calculation of some Lie group functions

The tangent operator of the Lie group (S3,∗) is given by

TS3(Ω) = I + cos� − 1

�2
skw(Ω) + � − sin�

�3
skw(Ω) · skw(Ω)

for Ω 	= 0, � = ‖Ω‖2 and TS3(0) = I. The tangent operator for S3
�R

3, however, can be
calculated by

T
([

Ω

U

])
=

[
TS3(Ω) 0

C(Ω,U) TS3(Ω)

]
,

where the matrix C(Ω,U) is given by

C(Ω,U) = C − 1

�2
skw(U) + � − S

�3

(
skw(U) · skw(Ω) + skw(Ω) · skw(U)

)

+ Ω� · U 2 − 2C − �S

�4
skw(Ω) + Ω� · U 3S − (2 + C)�

�5
skw(Ω) · skw(Ω)

for Ω 	= 0 with the abbreviations � = ‖Ω‖2, S = sin� and C = cos� and C(0,U) =
− 1

2 skw(U).
Now we consider the inverses of the tangent operator. For the Lie group (S3,∗) it can be

obtained by

T−1
S3 (Ω) = I + 1

2
skw(Ω) + 2 − � cot(�/2)

2�2
skw(Ω) · skw(Ω)

for Ω 	= 0 with � = ‖Ω‖2 and T−1
S3 (0) = I, see [35]. In the case of (S3

�R
3,◦), we have

T−1

([
Ω

U

])
=

[
T−1
S3 (Ω) 0

A(Ω,U) T−1
S3 (Ω)

]
,

where the matrix A(Ω,U) is given by

A(Ω,U) = 1

2
skw(U) + 2 − � cot(�/2)

2�2

(
skw(U) · skw(Ω) + skw(Ω) · skw(U)

)

+ Ω� · U � sin(�) + 4 cos(�) + �2 − 4

4 sin2(�/2)�4
skw(Ω) · skw(Ω)

for 0 < � < 2π , where � = ‖Ω‖2 and A(0,U) = 1
2 skw(U), see e.g. [26].

The logarithm of (S3,∗) reads

l̃og
S3(p) = 2 arccos(p0)

p

‖p‖2

for p = [p0,p
�]� ∈ S

3 with ‖p‖2 	= 0 and l̃og
S3([1,0,0,0]�) = 0.
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