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Structural equation modeling (SEM) has become a quasi-standard tool for analyzing 
complex inter-relationships between observed and latent variables. Two conceptu-
ally different approaches to SEM have been proposed: factor- vs. component-based 
SEM. Factor-based SEM approximates latent variables by common factors as in 
common factor analysis, whereas component-based SEM regards them as weighted 
composites of observed variables as in multivariate statistics such as canonical cor-
relation analysis and principal component analysis. Factor-based SEM is represented 
by covariance structure analysis, whereas composite-based SEM includes gener-
alized structured component analysis (GSCA; Hwang and Takane 2004), partial 
least squares (PLS; Lohmöller 1989), regularized generalized canonical correla-
tion analysis (Tenenhaus and Tenenhaus 2011), and several others. Although fac-
tor-based SEM remains prevalent in practice, numerous methodological advances 
(e.g., Hwang et al. 2010; Suk and Hwang 2016; Schlittgen et al. 2016) and tutorial 
articles, which have made the methods accessible to applied researchers (e.g., Hair 
et al. 2019, 2020; Sarstedt et al. 2019), have contributed to component-based SEM’s 
growing popularity in recent years.

Parallel to these developments, recent research in psychometrics calls the cen-
tral tenets of the common factor model into question. For example, Rigdon (2016, 
p. 602) notes that “common factor proxies cannot be assumed to carry greater sig-
nificance than composite proxies in regard to the existence or nature of concep-
tual variables.” Similarly, Rhemtulla et al. (2020) observe that “there is a grow-
ing appreciation within some areas of psychology that the latent variable model 
may not be the right model to capture relations between many psychological con-
structs and their observed indicators.” This notion has been echoed in numerous 
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other publications in a variety of fields (e.g., Hair and Sarstedt 2019; Henseler 
et al. 2014; Rigdon 2012; Rigdon et al. 2017). More fundamentally, Rigdon et al. 
(2019) show that the indeterminacy of common factors creates a band of (metro-
logical) uncertainty in the relationship between the factor inside the model and 
any variable outside the model—including the conceptual variable that the factor 
seeks to represent (Steiger 1979). The standard treatment of construct measures 
in covariance structure analysis—such as using only few indicators to measure 
a construct—increases factor indeterminacy and hence the degree of metrologi-
cal uncertainty, hindering the replicability of behavioral science research (Rigdon 
et  al. 2020). These results do not imply that component-based SEM techniques 
excel covariance structure analysis per se. However, they cast doubt on the uni-
versal applicability of the common factor model.

While there has always been a controversy between factor-based and composite-
based approaches to SEM, recently, the tenor of this controversy has become more 
intense. Whereas some researchers strongly advocate the use of component-based 
SEM (Sarstedt et al. 2016), others believe that this approach should be abandoned 
(Rönkkö et  al. 2016). The debates also led to a diversification of the composite-
based SEM community, with differing viewpoints on the nature of measurement, the 
role of model fit, and the methods’ scope of application. For example, Hwang et al. 
(2017) proposed GSCA with measurement errors incorporated, called GSCAM, 
which aims to estimate the parameters of factor-based SEM via GSCA. Similarly, 
whereas some researchers stress the need to consider model fit metrics, others 
emphasize statistics for assessing a model’s out-of-sample predictive accuracy (Cho 
et al. 2019; Hair et al. 2019; Shmueli et al. 2019).

In light of these controversies and debates, composite-based SEM is at the cross-
roads. The following years will show under which conditions composite-based-SEM 
methods will routinely be used and how sustainable their current popularity will be. 
With these developments in mind, this special issue of Behaviormetrika seeks to 
serve as a platform for advancing and furthering our understanding of composite-
based SEM methods.

The lead article in this special issue by Hwang et al. (2020) contrasts PLS–SEM 
and GSCA, arguably the most prominent composite-based SEM methods in the 
field. After the conceptual comparison of the two approaches, the authors present 
the result of a concept analysis of methodological research on PLS–SEM and GSCA 
to identify dominant topics that characterize the joint research domain. The results 
illustrate the field’s maturation, showing, for example, that researchers have become 
aware of the conceptual differences between composite and factor models and their 
implications for the methods’ performance. Based on the results, the authors iden-
tify numerous research avenues for research on composite-based SEM methods.

Tying in with this lead article, Cho and Choi (2020) offer a comparison of 
PLS–SEM and GSCA on the grounds of a simulation study. For this purpose, the 
authors propose a new data generation approach where components are constructed 
to explain the variances of their indicators as well as those of endogenous compo-
nents. Their simulation study considers different measurement model set-ups and 
PLS–SEM-based estimation modes. Their result pattern is similar to Hair et  al.’s 
(2017), in that GSCA recovers measurement model parameters more effectively than 
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PLS–SEM, while both approaches perform very similarly with regard to structural 
model parameter recovery.

The third paper in this special issue illustrates the use of GSCA in the specific 
context of brain connectivity research. Using data collected during encoding of 
source memory in a functional magnetic resonance imaging (fMRI) study, Jung 
et al. (2020) demonstrate how to specify and evaluate a fully and bidirectionally con-
nected structural model of brain connectivity using GSCA. This application to fMRI 
data nicely ties in with the increasing number of studies that use composite-based 
SEM in fields other than the social sciences to explore natural/biological phenomena 
(Sarstedt 2019). Based on their results, the authors discuss various implications for 
future extensions of the GSCA approach.

The fourth paper by Ryoo et  al. (2020) offers such an extension by combining 
GSCA with optimal scaling and fuzzy clustering to capture unobserved class-level 
heterogeneity in the data. The authors test their new approach on real-world data 
to show that it yields the same results as maximum likelihood-based latent class 
analysis, while avoiding identification issues. The new approach, therefore, nicely 
expands the applicability and capability of latent class analysis in composite-based 
SEM.

The final paper in this special issue by Schamberger et al. (2020) offers a robust 
variant of standard PLS–SEM and consistent PLS–SEM (PLSc-SEM). Their simu-
lation study with various population models and simulation conditions underlines 
the efficacy of the approach to reliably recover model estimates in the presence of 
outliers.

We are confident that the papers in this special issue will trigger significant 
interest in the field and inspire exciting follow-up research. We would like to thank 
Behaviormetrika’s Editor-in-Chief, Maomi Ueno, for giving us the opportunity to 
edit this special issue. In addition, we would like to thank the numerous reviewers 
without whom this special issue would not have been possible—thank you!
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