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Abstract The main aim of this work is to track the evolution of the stiffness tetrad during large plastic strain.
Therefore, the framework of a general finite plasticity theory is developed. Some special cases are examined,
and the case of a material plasticity theory is considered more closely. Its main feature is that the elasticity law
changes during plastic deformations, forwhichwedevelop an approach.As samplematerials,weuse three types
of fiber-reinforced composites. For numerical experiments and verification of the model’s predictions, finite
element simulations of representative volume elements for uni-, bi- and tri-directional reinforced materials
with periodic boundary conditions are used. From these, we extract the stiffness tetrads before and after
large deformations of the material. We quantify the change of the stiffness tetrads due to the fiber reorientation.
Finally, we propose an analytical evolutionwith three parameters that account reasonably well for the evolution
of the stiffness tetrad.

Keywords Stiffness tetrad ·Fibermaterials ·Large plastic strain ·Anisotropy ·Line elements ·Representative
volume element · Multiplicative decomposition · Isomorphy concept

1 Introduction

The objective of this article is to develop a phenomenological finite plasticity theory which describes the
evolution of the elastic anisotropy. We assume to have only small elastic strains. Therefore, we use a linear
law for the elastic part of our modeling approach. This is reasonable because the focus of this work lies in
the evolution of anisotropic behavior during large plastic deformations. A related but fully fleshed out theory
for the evolution of the stiffness tetrad exists for crystal plasticity. Then, one can resort to a single crystal
elasticity reference law and needs to consider only orientation changes, summarized as texture evolution in
polycrystals. The crystal orientation distribution evolves due to the lattice spin, and the effective elasticity
is estimated by orientation averages of the single crystal stiffness. For this setting, textbook knowledge is
available, e.g., [8,25,27].
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In other cases, the assumption of a constant elasticity reference law is not applicable, for example, when
the elastic directors deform with the material. The setting in which the directors of elasticity move with the
material is referred to as material plasticity after [4,11] due to the fact that the elastic directors behave like
material line elements. The most obvious example is fiber-reinforced materials. For the orientation distribution
evolution of short fibers in viscous flow, theories have been developed, starting from the seminal work [15] to
industrial application [21].

Mathematically, the difference to the usual large strain plasticity theorywith amultiplicative decomposition
of the deformation gradient is that the evolution of the stiffness tetrad and of the stress-free placement during
plastic deformation is decoupled. To work out the details, we motivate and extend the usual equations by a
second-order tensor which accounts for the evolution of the stiffness tetrad. We also compare this extension
to the isomorphy concept after [2–4,10,23,28,29,31]. They have developed a finite plasticity theory which
bases on the transformation of the elastic law during yielding. For many materials, it is known that the elastic
behavior remains almost unchanged during large plastic deformations in the sense that in every elastic region
after any plastic deformation the local elastic law is obtained from a push forward of the elastic reference
law. Examples are crystal plasticity and isotropic von Mises plasticity. In both ways, we end up with the same
equation for a general plasticity theory. We identify four special cases for this equation, one being the equation
of our material plasticity theory.

Next, we like to compare to some other similar approaches from the literature. Boehler [5] proposed
an invariant formulation of anisotropic constitutive equations. Within these equations, several scalar-valued
functions appear which have to be identified in experimental investigations. In our work, we have to identify
only three scalars. They can easily be determined using our RVE calculations which is rather simple and
fast. Pastor et al. [24] use the formulation of Boehler [5] to define isotropic problems associated with origi-
nally orthotropic ones. Again, it is necessary to determine anisotropy coefficients and equations to define the
association between the isotropic and the anisotropic problems. Menzel and Steinmann [22] started with the
multiplicative elastoplasticity. Additionally, we also used the isomorphy concept as a second access to our
equation. They introduce additional symmetric arguments into the scalar-valued isotropic tensor functions and
develop a modular framework of the fundamental covariance relation. Again, a number of symmetric tensorial
fields of second-order and scalar-valued internal variables are necessary which, in contrast to our approach,
leads to much greater identification effort. Lu and Papadopoulos [19] also introduced a covariant formulation
of anisotropic finite plasticity. Theoretical results are carried out, and structural tensors for characterizing the
anisotropy are introduced. In contrast to our work, the evolution of the anisotropy during the deformation is
not mentioned. In [16,17], the covariant formulation of Lu and Papadopoulos for describing the evolution of
the anisotropy is mentioned. Tey uses a convected-type evolution equation for the structural tensors and an
additional constitutive equation for the plastic spin. A close match-up with the experimental results of Kim
and Yin [18] was reached. In [14], an elastoplastic constitutive model for orthotropic materials at large strain
is presented. Within the theory, an evolution of the anisotropy axes due to rigid rotations is modeled. They also
use the multiplicative decomposition of the deformation gradient and a quadratic yield function formulated in
terms of the Mandel stress tensor.

In our work, we will develop the framework of a general finite plasticity. Some special cases are examined,
and the case of a material plasticity theory is considered more closely. Its main feature is that the elasticity law
changes during plastic deformations, for which we develop an approach.

To identify and compare the stiffness tetrads before and after large plastic deformations, a representative
volume element (RVE) [13] with a fibrousmicrostructure is generated. Uni-, bi- and tri-directionally reinforced
samples are considered using periodic boundary conditions. On the micro-scale, a standard isotropic elastic–
plastic material model without hardening is used.

After calculating the effective stiffnesses of the different material samples, we investigate their evolution
during different deformations. It turns out that it is possible to denote the change of the stiffness with sufficient
accuracy using one additional second-order tensor. After investigating the change in the stiffness tetrads, we
finally propose an analytical evolution equation for this tensor.

Notation

A direct notation is preferred. Vectors are denoted as bold minuscules like v = vi ei . Summation over repeated
indices is implied. ei are orthonormal base vectors for which ei · e j = δi j holds, with the Kronecker symbol
δi j . The dyadic product and scalar contractions are denoted by (a ⊗ b ⊗ c) : (d ⊗ e) = (b · d)(c · e)a, with
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a dot being the usual scalar product between vectors. Second-order tensors are written as bold majuscules,
like T = Ti j ei ⊗ e j . The scalar contractions are carried out such that the positive definiteness is inherited to
tensors, i.e., A : A = Ai j Ai j ≥ 0. When the product is clear from the context, as in a = Ab, the single scalar
dot is occasionally omitted. In the case of multiple scalar contractions, as in T = K : E, we will always write
the dots for better comprehensibility.

Normalized Voigt notation Fourth-order tensors play a central role in this work. They are denoted by
blackboard bold letters, like the stiffness tetrad K. It has the subsymmetries and the major symmetry, which
implies

Ki jkl = Ki jlk = K jikl = Kkli j , (1)

where the components are given w.r.t. the base tetrads ei ⊗ e j ⊗ ek ⊗ el . A more convenient representation is
obtained by introducing the symmetric base dyads

B1 = ex ⊗ ex B2 = ey ⊗ ey (2)

B3 = ez ⊗ ez B4 = 1√
2

(ex ⊗ ey + ey ⊗ ex ) (3)

B5 = 1√
2

(ex ⊗ ez + ez ⊗ ex ) B6 = 1√
2

(ey ⊗ ez + ez ⊗ ey), (4)

for which Bi : B j = δi j , i, j = 1 . . . 6.W.r.t. the base tetrads Bi ⊗B j the components Ki j ofK = Ki j Bi ⊗B j
can be arranged in a symmetric 6×6 matrix, for which the usual rules of matrix calculus hold since the basis is
orthonormal. The normalization has been used implicitly firstly by [30], rediscovered by [20], and popularized
by [32] in its non-normalized form, see also [6,9]. Other bases are not used in this work.

Rayleigh product We further make use of the Rayleigh product, which is defined between a second-order
tensor and a tensor of arbitrary order,

A ∗
〈n〉
K = Ki . . . p

︸ ︷︷ ︸

n indices

(Aei ) ⊗ . . . ⊗ (Aep)
︸ ︷︷ ︸

n times

, Ki . . . p
︸ ︷︷ ︸

n indices

=
〈n〉
K · . . . ·

︸︷︷︸

n dots

ei ⊗ . . . ⊗ ep
︸ ︷︷ ︸

n times

. (5)

It changes the basis while keeping the components, which can be used, e.g., to represent rotations. For second-
order tensors, it can bewritten as A∗T = AT AT. It is associative in the first factor, i.e., (AB)∗K = A∗(B∗K),
and linear in the second factor, i.e., A ∗ (K1 + αK2) = A ∗ K1 + αA ∗ K2.

Differences between tetrads Differences between stiffness tetrads are normalized w.r.t. K1, where K0 is
the initial stiffness and K1 the stiffness after plastic deformation. Depending on the context, K1 is the result
of a numerical RVE experiment or a phenomenological model prediction, for whichK1 can be replaced by an
expression withK0. To quantify a deviation, we take the Euclidean norm. The Euclidean norm of a fourth-order
tensor is calculated by the square root of the fourfold contraction of the tensor with itself. For example, the
normalized difference between a phenomenological model prediction and an RVE result is given by

‖KRVE
1 − K

Model
1 ‖/‖KRVE

1 ‖. (6)

Another interesting result is the change of stiffness due to plastic deformations, i.e., the difference between
initial and current stiffnesses.

2 Plasticity theory with the evolution of the stiffness tetrad

As explained in introduction, the aim of this work is to develop a phenomenological finite plasticity theory
that describes the evolution of anisotropy. To explain this idea, a comparison with the known crystal plasticity
theory is helpful. In the latter case, under plastic deformations, the crystal structure develops differently than the
material (see Fig. 1a). In the theory of material plasticity, the opposite occurs. If there is a plastic deformation
in the fiber and the matrix material, the fibers will deform together with the material and not differently. This
means that the anisotropy induced by the fibers, in contrast to the crystal lattice, is firmly bonded with the
material. The best example here is a fiber-reinforced material (see Fig. 1b).
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crystal lattice
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ers
(a) Crystal Plastictiy

deformedundeformed

fibers
(b) Material Plasticity

Fig. 1 Introduction of a material plasticity theory with fibers deforming together with the material on the right-hand side. The
classical crystal plasticity theory is depicted on the left-hand side. Here, the orientation of the crystal lattice remains the same
with respect to the shear direction and slip plane normal while the material deforms

current placementreference placement stress-free placement

Fp Fe

F

2PK

T RP
2PK

T SF T

Fig. 2 Scheme for introducing the used placements, stress tensors and the multiplicative decomposition

2.1 Derivation of the theory with the multiplicative decomposition

For creating a phenomenological model for a material plasticity theory, we start with the kinematics. We
define the reference placement, the stress-free placement and the current placement shown in Fig. 2. The
multiplicative decomposition of the deformation gradient F (see, e.g., [1,7]) is

F = FeFp . (7)

Next, we choose a general elastic law in the stress-free placement with a material stress tensor
mat
T , the

stiffness tetrad of the material as a tensor of fourth-orderK and a strain measure. We use the Seth strain tensors

Em = 1

m
(Cm/2

e − I) (8)

with “m” being a real parameter and “e” marking the elastic part of a variable [26]. A general framework can
simply be set up by postulating quadratic elastic strain energy in terms of the Seth strain tensors,

w = 1

2

4
K :: Em ⊗ Em , (9)

We assumed small elastic deformations, such that it is sufficient to account only for the quadratic term in
the strain energy. It would be possible to present our proposal with a general potential. A generalization could
be obtained by a series expansion of the strain energy:

w = 1

2

4
K :: Em ⊗ Em

+ 1

3

6
K ::: Em ⊗ Em ⊗ Em

+ 1

4

8
K :::: Em ⊗ Em ⊗ Em ⊗ Em

+ · · · . (10)
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One could then approach the change of all higher-order K tensors similar to our strategy for K (4th order)
given below. It would be interesting to assess the quality of such an approach, but it this beyond the scope of
our work. The elastic law is

mat
T = K : Em . (11)

We write the elastic part Ce as

Ce = FT
e Fe = F−T

p FTFF−1
p = F−T

p CF−1
p . (12)

We now insert this equation into Eq. (8) and expand the I with Fp to

Em = 1

m
((F−T

p CF−1
p )m/2 − F−T

p FT
p FpF−1

p ) . (13)

If we confine to the special case m = 2, it is possible to factor out Fp, and thus, we can further simplify to

Em = 1

2
F−T
p (C − FT

p Fp)F−1
p . (14)

The choice m=2 results in further simplifications. The stress tensor
mat
T becomes

2PK
T SF in the stress-free

placement. This also allows for a simple conversion to the Cauchy stresses T . The next step is to introduce
our ansatz for capturing the evolution of the anisotropy axes during the plastic deformation. We know that the
anisotropy axes transform by vectors. We will call the initial vector a0 and the vector of the transformed axis
a. Second-order tensors transform tangent vectors that represent line elements. We will name this tensor PK
with

a = PKa0 . (15)

Let us consider a transversal isotropic material. From representation theory, we can write the material stiffness
tetrad K

ti of this material as

K
ti = c1I + c2 I ⊗ I + c3a ⊗ a ⊗ a ⊗ a

+ c4(I ⊗ a ⊗ a)sym + c5(a ⊗ I ⊗ a)sym, (16)

where “sym” is the symmetrization according to Eq. (1). Because we know this representation and there is
only one vector a, we can transform the whole stiffness tetrad by transforming the vector a. In other cases,
we either do not know the representation theorem or it changes during plastic deformation due to a change
of the symmetry class (e.g., cubic symmetry). Because our theory has to be valid for all possible material
symmetries, we have to make a simplification. In Eq. (16), we identify the summand with c3 as the part
capturing the main anisotropy features. The structure is similar to the Rayleigh product so we decide to
directly apply the transformation PK to the whole stiffness tetrad K

K = PK ∗ K0. (17)

PK is defined in the stress-free placement and transforms the stiffness tetrad. It is not a change of placement.
Furthermore, it is now possible to summarize Fp and PK in the following equation and compare it with other
theories. In the stress-free placement, the second Piola–Kirchhoff stresses are

2PK
T SF = (PK ∗ K0) : 1

2
F−T
p (C − FT

p Fp)F−1
p . (18)

With the transformation between the stress-free placement and the reference placement using Fp and its
determinant Jp

2PK
T RP = F−1

p

2PK
T SFF−T

p Jp (19)

we can factor out Fp and summarize with PK. We consider only isochoric plastic deformation and therefore
Jp = 1. Finally, we end up with the following equation for the second Piola–Kirchhoff stresses in the reference
placement

2PK
T RP = 1

2

(

F−1
p PK

)

∗ K0 :
(

C − FT
p F

−1
p

)

(20)
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2.2 Derivation of the theory with the isomorphy concept

We want to find another access to Eq. (20) and start with a physically linear elastic law according to St.Venant–
Kirchhoff

mat
T = k0 (C) = 1

2
Kp : (

C − Cup
)

. (21)

Denoting k0 as a constant elastic reference law and kp as the current elastic law describing the material at any
given time, the isomorphism P holds for the elastic law of an elasto-plastic material

mat
T = kp (C) = Pk0

(

PTCP
)

PT . (22)

Substituting Eq. (21) into Eq. (22), one obtains the generalized form of a plasticity theory with isomorphic
elastic ranges according to [4, p.285ff]. P is also called a plastic transformation and describes the change of
the stress-free placement (Cu0) and the stiffness tetrad (K0)

2PK
T RP = kp (C) = 1

2
(P ∗ K0) :

(

C − P−T ∗ Cu0

)

. (23)

For our theory, the constant elastic reference law has to be replaced. A generalization of the isomorphy concept
is to choose twodifferent plastic transformations PK and PC,where PC transforms the stress-free configuration
and PCPK transforms the elastic stiffness into the stress-free configuration:

2PK
T RP = kp (C) = 1

2
(PCPK ∗ K0) :

(

C − P−T
C ∗ Cu0

)

. (24)

With the relation

PC = F−1
p , (25)

we obtain Eq. (20) for our general plasticity theory. In this equation, the isomorphy condition no longer holds
because there are two different plastic transformations. With Orth+ defining the special orthogonal group
(rotational group with determinant +1) and PK ∈ Orth+, we are able to combine both transformations to one.
This is always possible for crystals where PK ∈ Orth+ always holds. We now want to examine this equation
for possible special cases.

2.3 Special cases for the general equation

In this subsection, we use the special unimodular group “Unim+,” defining all tensors with determinant equal
to +1. The special linear group “Inv+” defines all invertible tensors with positive determinant. By choosing
PK = PC = I, it is clear that this will lead to an elasticity theory which can be used for elastic materials or
the elastic range of a material (see Table 1, column 1)

2PK
T = 1

2
K : (C − I) . (26)

In the case that PK = I and PC ∈ Unim+, we will obtain the isomorphy concept which is, e.g., applicable as
crystal plastictiy theory as described in [4] where only one plastic transformation exists (see Table 1, column
2)

2PK
T = 1

2
PC ∗ K :

(

C − P -T
C P−1

C

)

. (27)

By choosing PK ∈ Inv+ and PC = I, one would describe evolving material properties without a deformation
of the material. This could be applicable to the description of some recrystallization processes where PK = Q
(see Table 1, column 3)

2PK
T = 1

2
PK ∗ K : (C − I) . (28)

Q is an orthogonal tensor of second order and refers to a rotation. We refer to a recrystallization process on
the micro-scale, where each material point has just one lattice orientation. This lattice orientation can change
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Table 1 Overview of possible special cases for Eq. (29)

Elasticity Crystal plasticity Evolving material Material plasticity

PK = I PK = I PK ∈ Inv+ PK ∈ Inv+
PC = I PC ∈ Unim+ PC = I PC ∈ Unim+

Saint Venant–Kirchhoff Crystal structure is pre-
served under plastic defor-
mations

Evolving material proper-
ties

Different evolution of mate-
rial properties and stress-
free placement

Elastic materials Materials with crystal struc-
ture

Recrystallization (PK =
Q)

Fiber-reinforced materials

by recrystallization, namely when grain boundaries move upon coarse grain annealing. The local orientation
change can be expressed by a single orthogonal tensor. On themacro-scale, the orientation distribution evolves,
which is, of course, not captured by a single second-order tensor. The last possible combination is to allow
for a different evolution of PK and PC and thus a different evolution of material properties and the stress-free
placement. In this case, one can describe, e.g., fiber-reinforced materials with the idea of a material plasticity
theory explained in the following (see Table 1, column 4). The final equation for our theory is

2PK
T = 1

2
(PCPK) ∗ K :

(

C − P−T
C P−1

C

)

. (29)

3 Representative volume elements

In this section, we present the representative volume elements (RVEs) used in this article. We modeled uni-
directional, bi-directional and tri-directional fiber-reinforcedmaterials all having differentmaterial symmetries.
These are purely academic examples with the aim of analyzing the development of the stiffness tetrads. Of
course, realmaterials look different. To create themeshedRVEwith the finite element softwareAbaqus, various
individual steps are necessary.We used the scripting language Python which is able to access Abaqus functions
and developed a script to generate the RVEs. All simulations are displacement controlled by prescribing the
components of the effective displacement gradient H and using periodic boundary conditions as described
in [12]. In all simulations, we used the 20 nodes quadratic elements C3D20. We also ensured that no large
effective volume dilatations occur during the FE simulations by

• prescribing only isochoric effective final deformations,
• allowing for free lateral straining such that no volumetric straining is enforced,
• prescribe a strain path without intermediate large volumetric strains that may occur when ramping up the
effective displacement gradient linearly.

The RVE has two phases, namely the matrix and the fiber material. For both materials, we use an elastic–
plastic material model for large deformations using the isomorphy concept as described, e.g., in [4]. The
isotropic elastic–plastic material has the material parameters Young’s modulus E , the Poisson’s ratio ν and the
yield stress σF. The three parameters have different values for the matrix and the fiber material. The model is
implemented as UMAT subroutine into Abaqus. The elastic behavior is described by the St. Venant–Kirchhoff
law. We have an isotropic yield condition following the J2 theory by von Mises and a flow rule using the
principle of maximum plastic dissipation. We do not incorporate compressible materials in our work. The
main focus of our work lies in the anisotropy. Since volume changes are isotropic deformations, they do not
contribute to the anisotropic changes. We also neglect viscosity, relaxation and the like. This is a strength
of our method and a necessary simplification. If we mix too many effects, it will not be possible to identify
individual contributions to the overall behavior. Here, we are concerned with the evolution of the elastic
anisotropy due to a fiber reorientation due to plasticity. After having identified a reasonable approach and
finding the parameters, it is possible to construct a more sophisticated model, for example, by adding a viscous
contribution or hardening. But for identification purposes, we need to consider only the effect that we seek to
model. The following sections show the different RVEs.
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Fig. 3 RVE with uni-directional reinforcement. left: fiber parts, middle: matrix parts, right: assembly

X

Y

Z X

Y

Z

Fig. 4 One unit cell of the uni-directional RVEwith effectively transversal isotropic symmetry, left undeformed and right deformed

3.1 Uni-directional reinforcement

The first RVE is supposed to have an initially effectively transversal isotropic material symmetry. Therefore,
we choose an uni-directional reinforced material with circular fibers in a hexagonal arrangement in z direction.
In Fig. 3, the unit cell is shown. The parts depicted in Fig. 3 are defined in dependency of the fiber volume
fraction. Additionally, in Fig. 4 the meshed RVE is depicted in an undeformed and a deformed state.

3.2 Bi-directional reinforcement

The second RVE will have a tetragonal symmetry. For the sake of simplicity, the RVE for this material will
have the shape of a cube. The cube is bi-directionally reinforced in the direction of x and y with fibers that
have a square cross section. Figure 5 shows the unit cell. The generation of the meshed RVE is similar to the
procedure of the uni-directionally reinforced RVE. In Fig. 6, the meshed RVE is depicted in an undeformed
and deformed state.

3.3 Tri-directional reinforcement

The third RVEwill be tri-directionally reinforced and exhibit initially a cubic symmetry. The RVE is nearly the
same as for the bi-directional reinforcement, but now there are fibers three perpendicular directions. In Fig. 7,
the unit cell is shown. In Fig. 8, the meshed RVE is depicted in an undeformed and a deformed situation.
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Fig. 5 RVE with bi-directional reinforcement. left: fiber parts, middle: matrix parts, right: assembly
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Fig. 6 One unit cell of the bi-directional RVE with effectively tetragonal symmetry, left undeformed and right deformed
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Fig. 7 RVE with tri-directional reinforcement. left: fiber parts, middle: matrix parts, right: assembly
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Fig. 8 One unit cell of the tri-directional RVE with effectively cubic symmetry, left undeformed and right deformed



1380 M. Weber

Δ
2PK
T i

⎧⎨
⎩

2PK
T 0 ← H0 →

G
E0

⎫⎬
⎭Δ

G
Ei+ ΔHi

2PK
T i ← = Hi →

G
Ei

Fig. 9 Scheme to determine the test stresses �
2PK
T i and the test strains �

G
Ei out of the test displacements �H i for calculating the

stiffness tetrad K

4 The effective stiffness: RVE calculations

4.1 RVE setup and extraction of the stiffness tetrads

In this section, we present a method to determine the effective stiffness of arbitrary inhomogeneous materials
before and after large deformations. We will use the defined RVEs (see Sect. 3) to perform test deformations
G
E and use the resulting

2PK
T stresses to calculate the stiffness tetrad K during the post processing. To track

the evolution of the stiffness tetrads K, we have to determine the stiffness of the undeformed material (K0)
and the stiffness tetrad of a deformed material after a large plastic deformation (K1). The effective stiffness
tetrads will be calculated and compared in the reference placement, and therefore, we use the effective second

Piola–Kirchhoff stresses
2PK
T and the effective Green strain tensor

G
E. If the theory of material plasticity holds,

there will be a second-order tensor PK which transforms the stiffness K0 of the undeformed material to K1
after a large plastic deformation.

For calculating the stiffness tetrads, we use the difference quotient out of six test calculations. Within the
test calculations, six different small elastic test strains δi with i=1,…,6 are applied to the presented materials
(RVEs). With the definitions

• H0: displacement gradient of the unloaded placement
• �H i : displacement gradients of the 6 different elastic deformations

and the scheme in Fig. 9,
we are able to calculate a stiffness tetrad by the equation

�
2PK
T i = K : �

G
Ei . (30)

The scheme is carried out at the (average) stress-free placement. To get to this placement,we unload component-
wise and obtain the macroscopic PC. It turns out that due to the small elastic strains the difference between PC
and the deformation gradient F−1 is very small. This simplifies greatly the empirical approach, since we can
in essence avoid an independent evolution of PC but take PC = F−1 instead. The equation is implemented
in a Mathematica script which comes with this article as supplementary material.

4.2 Test cases

We specified different material parameters for the matrix and the fiber material as shown in Table 2. These
parameters were chosen as an academic example.

Ten different test deformations were examined as depicted in Table 3. Whenever a strain component is not
specified, it is implied to adjust freely such that the corresponding effective reaction stress is zero. In Eq. 31,

Table 2 Material parameters for the matrix and fiber material

Material Young’s modulus E (GPa) Poisson’s ratio ν Yield stress σF (MPa)

Matrix 10 0.3 100
Fiber 100 0.3 200
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Table 3 Overview of the deviation ||K1 − PCPK ∗ K0|| / ||K1|| in % of the stiffness tetrads for the four suggested choices of
PK (P−1

C , I , Pnum
3 and Pnum

9 ) and the analytical Pana
3 for the three RVEs. The value of γ and ε is each 0.5. (Color figure online)

Deformation PK Uni-directional Bi-directional Tri-directional

tension Hxx

P−1
C 133.0 91.8 97.9
I 5.3 4.5 2.5

P ana
3 5.3 4.5 2.5

P num
3 1.4 1.1 1.0

P num
9 1.4 1.1 0.9

tension Hyy

P−1
C 99.5 91.8 97.9
I 3.21 4.5 2.5

P ana
3 3.2 4.5 2.5

P num
3 1.7 1.1 1.0

P num
9 1.7 1.1 0.9

tension Hzz

P−1
C 90.6 115.4 97.9
I 0.1 2.1 2.5

P ana
3 0.1 2.1 2.5

P num
3 0.1 1.2 1.0

P num
9 0.1 1.2 0.9

shear Hxy

P−1
C 67.3 68.0 59.6
I 7.7 23.6 22.6

P ana
3 6.2 7.5 6.8

P num
3 4.3 6.4 6.1

P num
9 3.8 3.6 1.9

shear Hyx

P−1
C 68.8 68.2 59.6
I 5.7 23.5 22.6

P ana
3 5.6 6.9 6.8

P num
3 3.7 6.3 6.1

P num
9 2.6 3.5 1.9

shear Hxz

P−1
C 67.2 56.1 59.6
I 35.2 1.5 22.6

P ana
3 14.2 1.5 6.8

P num
3 14.2 0.8 6.1

P num
9 1.1 0.6 1.9

shear Hzx

P−1
C 66.2 57.9 59.6
I 0.5 29.4 22.6

P ana
3 0.4 11.4 6.8

P num
3 0.1 11.2 6.1

P num
9 0.0 1.4 1.9

shear Hyz

P−1
C 65.8 56.8 59.6
I 36.6 1.7 22.6

P ana
3 15.1 1.7 6.8

P num
3 14.7 0.6 6.1

P num
9 0.9 0.4 1.9

shear Hzy

P−1
C 66.3 57.9 59.6
I 0.5 29.4 22.6

P ana
3 0.4 13.0 6.8

P num
3 0.1 11.2 6.1

P num
9 0.0 1.4 1.9

mix Hxy , Hxz , Hxx

P−1
C 128.8 117.1 109.5
I 33.5 22.6 33.7

P ana
3 14.3 7.7 12.3

P num
3 13.8 7.4 10.6

P num
9 3.2 2.9 3.6

we chose three elongation tests

H1 =
⎡

⎣

0.5 0 0
0 − 0
0 0 −

⎤

⎦ ei ⊗ e j , H2 =
⎡

⎣

− 0 0
0 0.5 0
0 0 −

⎤

⎦ ei ⊗ e j , H3 =
⎡

⎣

− 0 0
0 − 0
0 0 0.5

⎤

⎦ ei ⊗ e j . (31)

In this case, we always deform the material parallel or perpendicular to the fiber direction. With the free lateral
straining, this corresponds to a uniaxial tensile state. Next, we choose six shear tests which lead to different



1382 M. Weber

deformation modes depending on the shear mode and the chosen material (32)

H4 =
⎡

⎣

0 0.5 0
0 0 0
0 0 0

⎤

⎦ ei ⊗ e j , H5 =
⎡

⎣

0 0 0.5
0 0 0
0 0 0

⎤

⎦ ei ⊗ e j , H6 =
⎡

⎣

0 0 0
0.5 0 0
0 0 0

⎤

⎦ ei ⊗ e j ,

H7 =
⎡

⎣

0 0 0
0 0 0.5
0 0 0

⎤

⎦ ei ⊗ e j , H8 =
⎡

⎣

0 0 0
0 0 0
0.5 0 0

⎤

⎦ ei ⊗ e j , H9 =
⎡

⎣

0 0 0
0 0 0
0 0.5 0

⎤

⎦ ei ⊗ e j . (32)

They can lead to a transport of the fibers with and without an effect on the symmetry and to a change of the
fiber direction. We will discuss this in the next subsection. The last test (33) combines one tensile and two
shear tests and acts as the worst case

H10 =
⎡

⎣

0.5 0.5 0.5
0 − 0
0 0 −

⎤

⎦ ei ⊗ e j . (33)

4.3 Results

We want to show some results for the uni-directional material. First, we perform a tensile test in fiber direction
with 50% nominal strain and compare the values in the stiffness tetrads (given in GPa). We see in the case of
uni-axial tension in Eq. (34) that there is no difference between K0 and K1.

P−1
C ∗ K1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

35 14 15 0 0 0
35 15 0 0 0

73 0 0 0
23 0 0

23 0
sym 21

⎤

⎥

⎥

⎥

⎥

⎥

⎦

GPaBi ⊗ B j

= K0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

35 14 15 0 0 0
35 15 0 0 0

73 0 0 0
23 0 0

23 0
sym 21

⎤

⎥

⎥

⎥

⎥

⎥

⎦

GPaBi ⊗ B j (34)

The second example is a shear test with Hxy = 0.5 perpendicular to the fibers (Eq. (35)). We see that there is
a difference between both stiffnesses, which implies that for certain deformations the stiffness tetrad evolves.

P−1
C ∗ K1 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

35 13 14 0 0 0
39 16 0 0 0

73 0 0 0
20 0 0

22 0
sym 25

⎤

⎥

⎥

⎥

⎥

⎥

⎦

GPaBi ⊗ B j


=K0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

35 14 15 0 0 0
35 15 0 0 0

73 0 0 0
23 0 0

23 0
sym 21

⎤

⎥

⎥

⎥

⎥

⎥

⎦

GPaBi ⊗ B j (35)

The reason is that we change the material symmetry during the deformation. The following three examples
will show the deviation between the initial stiffness tetradK0 and the stiffness tetradK1 measured after a large
deformation. We will investigate the three characteristic shear tests Hxy , Hxz and Hzx .
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X

Y

Z

Fig. 10 Shear with Hxy = 0.5

XY

Z

Fig. 11 Shear with Hxz = 0.5

XY

Z

Fig. 12 Shear with Hzx = 0.5

We see that the deviation of the stiffness tetrad K1 from K0 can be considerable. A shear parallel to the
fiber normal plane with γ = 0.5 results in a deviation by approximately 35%. In the next section, we propose
an analytical approach for predicting the evolution of K.

The first case is the shear test with Hxy . Figure 10 shows that we have a transport of the fibers which leads
to a change of the symmetry. The fiber direction remains the same. This type of deformation leads to a change
of about 8% between the stiffnesses.

||K1 − PC ∗ K0|| / ||K1|| = 7.7% (36)

In Fig. 11, we see the shear test Hxz = 0.5 and no transport of the fibers. Instead, the fiber direction changes
which leads to a change of the symmetry. We find the largest change in the stiffness tetrad as shown in Eq. (37).

||K1 − PC ∗ K0|| / ||K1|| = 35.2% (37)

The shear test Hzx = 0.5 is depicted in Fig. 12 and shows that we have a transport of fibers in the fiber
direction. The fiber direction remains the same so this motion has nearly no effect on the symmetry

||K1 − PC ∗ K0|| / ||K1|| = 0.5% (38)
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5 Analytical evolution equation

In Sect. 4, we presented a method to determine the stiffness tetrads before and after large plastic strains.
The results show that the stiffness tetrad changes significantly, and that this change cannot be predicted by
the plastic transformation PC of the isomorphy concept. Therefore, we decide to use the theory of material
plasticity (see Sect. 2)

2PK
T = 1

2
(PCPK) ∗ K :

(

C − P−T
C P−1

C

)

(39)

using two different plastic transformations PC and PK. When we think of the form of the evolution laws for
PK and PC, we need to distinguish the scales. On the micro-scale in the RVE, we locally use the von Mises
flow rule, which is thermodynamically consistent. On the macro-scale, the empirical evolution of PK alone
that we propose is not enough to assess the thermodynamic consistency. Due to PC = F−1, i.e. Fe = I , we
have a rigid plastic process in which, somewhat paradoxically, we track the evolution of the stiffness indirectly
by tracking the evolution of PK. In the present form, the approach is only applicable when the strain process
is given. This may be enough for estimating the stiffness evolution in a forming process. To use the approach
in a boundary value problem, we have to drop the simplification PC = F−1 to be able to calculate stresses
and search the equilibrium. In that case, we need to complete the set of equations by adding a flow rule for
the evolution of PC, for example by flow in direction of maximum plastic dissipation. Then thermodynamic
consistency may be checked. On a side note, we believe that the approach is thermodynamically safe for
reasonable flow rules. In any case, errors due to the potential violation of thermodynamic consistency are
probably much smaller than errors due to the overall simplicity of the approach.

5.1 Evolution of the transformation PC

Following our assumptions, we have only small elastic strains. This directly leads us to the major simplification
that

PC ≈ F−1 . (40)

This simplification has already been underpinned by the results in Sect. 4. The difference between PC and
F−1 is very small and a result of the difference of order of magnitude between the yield stress σF and the
Young’s modulus E in the two phases.

5.2 Finding a suitable transformation

The aim is to finally develop an evolution equation for the transformation PK of the stiffness tetradK. To find
this evolution equation, we want to study different possibilities. The first and one of the easiest approaches
will be to choose PK = P−1

C . This would mean that the stiffness tetrad does not transform during a plastic
transformation in contrast to the unloaded placement which will transform accordingly to PC. The second
choice will be PK = I . This is the known isomorphy case and we already know that this approach will fail.
For small plastic transformations, we can expect only a slight deviation while for large plastic deformations it
will increase. The third possibility, we want to study, is to numerically fit a second-order tensor P modifying
the known transformation PC. We will use two different sets of nonzero components. The numerically best fit
is calculated with a minimization procedure in Mathematica. In the first case, we choose to take all possible
nine components of a second-order tensor and call it PK = Pnum

9 with

Pnum
9 =

⎡

⎣

Pxx Pxy Pxz
Pyx Pyy Pyz
Pzx Pzy Pzz

⎤

⎦ ei ⊗ e j . (41)

If the scalar contraction of PC with a second-order tensor is able to track the evolution of the stiffness tetrad,
we will get the exact results for the numerical fit of this choice. The second choice is to consider only the main
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3 PK=Pnum
3 PK=Pnum

9

Fig. 13 Deviation of the measured stiffness tetrad from the respective modeling approach for the tri-directional reinforcement.
The choice PK = P−1

C is clearly the worst, followed by elastic isomorphy PK = I . With Pnum
3 having three degrees of freedom,

a significant improvement is reached. The improvement using Pnum
9 with 9 free values is not much better. The analytical approach

Pana
3 is almost as good as the corresponding numerical fit Pnum

3 with 3 parameters. (Color figure online)

diagonal components and call this transformation PK = Pnum
3

Pnum
3 =

⎡

⎣

Pxx 0 0
0 Pyy 0
0 0 Pzz

⎤

⎦ ei ⊗ e j . (42)

This means we limit the field of application to materials having their anisotropic axes perpendicular to each
other, where the directions of anisotropy are along ei . The main point of this idea is that PK transforms the
original stiffness tetrad K0 in the reference placement. Only afterwards, the transformation PC is applied.
To compare the different choices, we choose the tri-directionally reinforced material as example material.
The material properties are the same as in the foregoing sections. We perform a shear test, a tensile test and
the combined test of two shears and one tension and compare the deviation of the initial stiffness K0 and
the stiffness K1 after the deformation (see Sect. 4). The deviation of the measured stiffness tetrad from the
respective modeling approach for the tri-directional reinforcement is depicted in Fig. 13.

The choice PK = P−1
C is clearly the worst. There is no agreement if we do not transform the initial stiffness

tetrad after such large deformations. With the approach of elastic isomorphy PK = I , we find still a large
deviation for the shear test and the combined test. In this case, the anisotropy of the stiffness tetrad is changed
during the deformation. During the tensile test, the choice of PK = I works because during this deformation,
the symmetry of the material is not changed. Using the transformation PK = PK3 with the three degrees of
freedom, a significant improvement is reached. The improvement using Pnum

9 is not much better. The main
results of this section are: Firstly, it turns out that it is possible to approximate the evolution of the stiffness
tetrad with sufficient accuracy using one second-order tensor. Secondly, we find the best compromise between
accuracy and effort with PK = Pnum

3 .

5.3 Evolution of the transformation PK

To derive an analytical evolution equation for Ṗ
ana
3 , we use the pullback Lref = F−1LF of the velocity

gradient L = ḞF−1, motivated by the fact that the fiber directions are constant in the reference placement

Lref = F−1 Ḟ . (43)

There is no direct physical interpretation for the pull-back of the velocity gradient, just like there is no direct
physical interpretation for the reference placement or any other quantity that is pulled back. Nevertheless,
they are mathematical auxiliary quantities that may be used. The main purpose of such pulled back material
quantities is to formulate constitutive laws in accordance with the principles of material modeling, specifically
the principle of invariance under superimposed rigid body motions. For this reason, the St. Venant–Kirchhoff
law is used, with K0 defined in the reference placement. Consequently, when modifying the elastic law, we
need to do it in the reference placement, but of course, the actual deformation determines its evolution. Hence,



1386 M. Weber

we need to realize some kind of pull-back of a kinematic variable to model the evolution of K0. We could
also have used a push-forward of the elasticity law where then the evolution of F ∗K0 is tracked, but then we
would mix the change of K due to rigid rotations with the change due to the deformation. It is precisely for
this separation of effects that we describe the evolution of K0 in the reference placement.

Since wewant to make the approach as simple as possible, it should be linear. In Sect. 4.3, we have seen that
shear has the greatest influence on the anisotropy change. Looking at a single fiber, there is always transverse
isotropy. Hence, the shear directions in the cross-sectional plane are equal; we determine the shear rate by the
theorem of Pythagoras to get the amount of the shear rate. To derive the evolution of the three main diagonal
entries of

Ṗ
ana
3 =

⎡

⎣

Ṗxx 0 0
0 Ṗyy 0
0 0 Ṗzz

⎤

⎦ ei ⊗ e j , (44)

we take the Euclidean norm of the corresponding components of Lref following Eq. (45)

Ṗii = ki
√

L ref 2
i+1 i + L ref 2

i+2 i . (45)

This gives basically the magnitude of the shear rate in the plane with normal vector ei . The simulations have
shown that this is the most dominant contribution to the evolution of the stiffness tetrad, see Sect. 4.3, Eq. (37).
It implies that the inclination of the fiber due to shear is the same in any shear direction. The coefficients ki
depend on the material parameters and on the volume fractions of the fibers in direction i (ki = 0 if there is
no fiber in direction i). The indices i + 1 and i + 2 are taken modulo 3 which results in

Ṗxx = k1
√

L ref 2
yx + L ref 2

zx (46)

Ṗyy = k2
√

L ref 2
zy + L ref 2

xy (47)

Ṗzz = k3
√

L ref 2
xz + L ref 2

yz . (48)

We have to determine the coefficients once for the chosen material. Therefore, we use RVE calculations for
the three characteristic shear tests Hyx (k1), Hxy (k2) and Hxz (k3) and take the i’th entry in the numerically
best Pnum

3 for ki . We verified the analytical evolution equation of PK by using the new strain path of the mixed
test Hxy , Hxz and Hxx . Afterwards, we used these constants to calculate all other tests. In Fig. 13, we finally
show the results of the analytically calculated PK = Pana

3 . It turns out that the analytical solution is very close
to the numerical best Pnum

3 . This is a highly satisfying result because the assumptions and simplifications we
made were extensive. First, we assumed that a second-order tensor connected with the Rayleigh product to
the fourth-order stiffness tetrad is enough to capture the evolution of the stiffness tetrad during a symmetry
changing deformation. Secondly, we reduced the number of free components within the second-order tensor
from nine to three in order to be able to find an analytical evolution equation which is easy to access. Our
approach clearly gives better results than the known isomorphy concept and the multiplicative decomposition
where the material stiffness transforms accordingly to the stress-free placement. In Table 3, we provide the
results of all three different materials and ten different tests.

Finally, we like to represent and discuss the evolution of the stiffness tetrad during the transformation
with the chosen second-order tensor Pana

3 . For this purpose, we use the shear test Hxz on the uni-directional
reinforced material as depicted in Fig. 14.

Wewill analyze the 21 different components of the stiffness tetrad itself and additionally the six Eigenvalues
of the stiffness tetrad. In Fig. 15, we see the change of the components during the shear test. Additionally, we
show the index arrangement of the Voigt notation for a stiffness tetrad K, the absolute values of K0 and K1 in
Fig. 16.

Because the shear test is in the 1–3 planes, we see the largest change in the components “xxxx” and “zzzz”
marked in dark red, in the components containing two times “x” and “z,” namely “xxzz” and “xzxz” marked
in red and in the two components “xxxz” and “zzxz” marked in light red. All other components containing
at least one time the second index are marked in blue. In dark blue, we marked the components with a large
change of nearly 100%. These components were zero in the initial stiffnessK0 and changed to some big value
in K1. The components are “yyxz” and “xyyz.’ The components with a medium change are “xxyy.” “yyzz,”
“xyxy” and “yzyz” are marked in blue. The component “yyyy” has an initial value but zero change and is
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Fig. 14 Shear test Hxz = 0.5 on the uni-directional reinforced material
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Fig. 15 Evolution of the components of the stiffness tetrad of the uni-directional reinforced material during a shear test Hxz .
(Color figure online)

marked in light blue. All values with a zero initial value and zero change are marked in black and are “xxxy,”
“yyxy,” “zzxy,” “xyxz,” “xxyz,” “yyyz,” “zzyz” and “xzyz.”

In Fig. 17, we additionally investigated the evolution of the Eigenvalues during the deformation. We
sorted them in descending order from the largest one (dark red) to the smallest one (dark blue). Because the
Eigenvalues are free of any rotation, we clearly see that the stiffness tetrad evolves and the symmetry changes.

6 Summary

Finally, we like to summarize the article. In Sect. 1, we give an overview of similar works to help you better
understand our article. We introduce the topic of our work and explain the structure of the following article.

In Sect. 2, we postulated a general equation for different plasticity theories. We explained two different
ways to access this general equation. First, we start with the multiplicative decomposition of the deformation
gradient. The second access to our theory is given by the isomorphy concept. We formulated four special cases
for the obtained general equation and summarized them. One of the special cases is the so-called material
plasticity theory. Here, we allowed a different evolution of the material symmetry within the stiffness tetrad
and of the stress-free placement. We were also able to account for an evolution of the stiffness tetrad. The
special case of fibers moving as material line elements is examined more closely.

We set up a numerical laboratory to investigate the material plasticity theory in Sect. 3. An elastic–plastic
material model for large deformations using the isomorphy concept on the micro-scale was applied for the
RVE calculations. We defined different material parameters within this model for the matrix and the fiber
phase. For these calculations, we used the finite element program Abaqus with its scripting language Python.
The computer algebra system Mathematica was used for the post-processing.
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Kij =

⎛
⎜⎜⎜⎜⎜⎝

xxxx xxyy xxzz xxxy xxxz xxyz
yyyy yyzz yyxy yyxz yyyz

zzzz zzxy zzxz zzyz
xyxy xyxz xyyz

xzxz xzyz
sym yzyz

⎞
⎟⎟⎟⎟⎟⎠

K0 =

⎛
⎜⎜⎜⎜⎜⎝

35 14 15 0 0 0
35 15 0 0 0

73 0 0 0
21 0 0

23 0
sym 23

⎞
⎟⎟⎟⎟⎟⎠

GPa Bi ⊗ Bj

K1 =

⎛
⎜⎜⎜⎜⎜⎝

53 16 25 0 -30 0
35 12 0 -8 0

51 0 -36 0
26 0 -9

44 0
sym 19

⎞
⎟⎟⎟⎟⎟⎠

GPa Bi ⊗ Bj

Fig. 16 Matrices: evolution of the components of the stiffness tetrad of the uni-directional reinforced material during a shear test
Hxz . (Color figure online)
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Fig. 17 Evolution of the Eigenvalues of the stiffness tetrad of the uni-directional reinforced material during a shear test Hxz .
(Color figure online)

Using three different RVEs for modeling an uni-directional, a bi-directional and a tri-directional reinforced
material with different material symmetries, we were able to determine the effective stiffness of these materials
in Sect. 4. Therefore, we implemented and validated a method to measure material stiffness tetrads using the
difference quotient. The results lead us to our material plasticity theory as discussed in Sect. 2. We need a
second-order tensor PK which transforms between K1 and K0. It will predict the evolution of the stiffness
tetrad during a plastic deformation of an anisotropic material which changes the material symmetry.

In Sect. 5,we found that it is possible to predict the evolution of the stiffness tetrad during large deformations
using one second-order tensor PK within the equation of our material plasticity theory:

2PK
T = 1

2
(PCPK) ∗ K :

(

C − P−T
C P−1

C

)

. (49)

We ascertained an analytical evolution equation to predict this tensor PK with only three free variables. This
is valid for a class of fiber-reinforced materials having fiber angles of 90° with a sufficient accuracy.

Finally, we like to give an outlook. With our theory, we are able to predict the evolution of the stiffness
tetrad during large plastic deformations. For this purpose, we finally used a second order tensor with three free
variables which is, for us, the best compromise between accuracy and applicability. For more accurate results
or materials with a micro-structure different to our 90° scheme, one could use more free variables. One can
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also investigate the third special case within our general equation for plasticity theories. Here, it is possible to
describe evolving material properties.
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