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Abstract In this paper, a direct procedure to identify interaction forces between self-adhesive flexible poly-
meric films is developed. High-resolution photographs of the deformed shape within and outside the zone of
adhesive interaction are taken at different instances of the T-peel test. To describe the deformed centerline, an
approximate analytical solution to the equations of the nonlinear beam theory is derived. The obtained function
is the exponential sum satisfying both kinematic and static boundary conditions for the T-peel configuration.
The interaction forces computed with the developed function satisfy equilibrium conditions. The procedure
provides characteristics of the adhesive interaction such as the energy of adhesion, maximum force and crit-
ical opening displacement. Furthermore, the developed direct approach is applicable to generate the whole
traction–separation curve.

Keywords Self-adhesive film · Traction–separation curve · Work of adhesion · Beam theory · Peel test

1 Introduction

Adhesive flexible films arewidely used inmany industry branches, for examplemultifunctional layered devices
[5,6,34], photovoltaic and glass laminates [8,9,24,32] as well as packaging, protection and transportation
[19,20]. In application to the packaging, the important properties of films include strength of the sealed seam
and peel ability. On the one hand, the films and the sealing seam must meet the given strength requirements
such that the integrity of the packaging is guaranteed. On the other hand, the packagingmust be easily peelable,
i.e., it must be possible to open it by hand applying a small force. For the optimal design of a packaging system,
for the selection of materials and the evaluation of functionality, a thorough understanding of a peeling process,
a problem-oriented modeling and analysis of the composite strength, and robust computational methods are
required.

The opening of peeling systems is a complex fracture mechanical process for which a closed relationship
between manufacturing conditions, microstructure and strength properties does not yet exist [21]. In practice,
experiments are performed to determine the peel force of a given system. Examples include T-peel tests [22], V-
peel tests [18] and fixed-arm peel tests [23]. However, most standardized test methods do not give direct access
to the adhesion properties, such as adhesion energy, critical opening displacement and maximum adhesion
force. They also provide only limited insights into the adhesion mechanisms of the composite. For this reason,
advanced measuring methods have been developed in recent years to investigate the behavior of the process
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zone during the peeling process. Examples are digital image correlation (DIC) systems [11,30] and in situ
X-ray tomography [27].

The widely used approach in analysis of peel systems is to formulate a constitutive equation for the
interaction force as a function of the opening displacement. Traction–separation laws (also knownas cohesive or
adhesive zone models) were developed in the fracture mechanics [25,26]. The crucial point is the identification
of parameters in the traction–separation law from the results of peel tests. The standard procedure is to
assume a specific idealized shape of the traction–separation curve, like rectangular, triangular, polynomial or
exponential [25,26], to simulate a peel test and to identify parameters by the comparison of the computed
force–displacement diagram with the experimental one, e.g., [19]. Once the traction–separation law is given,
the peeling process can be simulated applying a finite element code by meshing the interaction zone with
cohesive elements; see, e.g., [13,16,19,31].

In many applications, the type of the traction–separation law is not known a priori. An example is the
peeling of self-adhesive thin polymeric films having relatively long-range force interactions [3,22]. In this
case, it is useful to generate the traction–separation curve from the results of measurements. Based on the
curve a suitable, possibly non-local constitutive law should be formulated and identified. To obtain a traction–
separation curve, digital images of the deformed film and/or results of DIC measurements of deformation
fields inside and outside the adhesive process zone must be available from peel tests. Then the forces required
to produce the given deformation can be evaluated applying the theories of beams, plates and shells.

In order to compute the interaction force distribution, experimental data on the deformed configurationmust
be approximated such that higher-order derivatives are accessible. A classical example is a small deflection of
a double cantilever beam, where the fourth-order derivative of the deflection function is required to compute
the distributed force. As discussed in [22], the standard approaches, for example polynomial series, B-splines,
etc., can be used to approximate the deformed line of the film y(x) and its first derivative y′(x)with satisfactory
accuracy. However, significant errors are obtained by computing the higher-order derivatives. In [22], the local
curvature of a thin film is evaluated numerically applying the power series approximation for the deflection
of the centerline. The results show non-physical oscillations and are not applicable to compute the adhesive
forces. For this reason, the direct approach to evaluate the traction–separation cure was usually rejected in the
previous studies [3,22].

In this paper, we address an alternative procedure to describe the deformed centerline of the film. To this
end, an approximate analytical solution to the equations of the nonlinear beam theory will be derived and
utilized to fit the deformation curves from experiments. High-resolution photographs of the deformed shape
within and outside the zone of adhesive interaction at different instances of T-peel test will be applied. An
important feature of the developed approximations is that they satisfy kinematic and static boundary conditions
for the T-peeling. Furthermore, the obtained interaction forces satisfy equilibrium conditions. The results of
the proposed direct approach will we compared with those based on the direct variational methods discussed
in the literature.

2 Governing equations

Figure 1a illustrates flexible films subjected to T-peel loading. Under the assumption of slow quasi-static
peeling, the horizontal forces in the clamps are negligible. Furthermore, as long as the peel configuration
remains symmetric, i.e., the deformed configuration of the lower film is the mirror reflection of the upper one,
the horizontal components of the interaction forces do not arise.

Figure 1b illustrates qualitatively the distributed interaction force q between the films. One feature is the
long-range force interaction usually both inside and outside the contact zone. For cohesive peel systems, for
example low-density polyethylene/isotactic polybutene-1 films, micro-crazes and fibrils are usually formed in
the process zone [21]. In this paper, adhesive peel systems are considered. In this case, no process zone could
be recognized, even with electron microscopy. Nevertheless, relatively long-range interactions are identified in
[22]. Entanglement of single polymer chains, adsorption and electrostatic forces can be assumed asmechanisms
of interaction. The aim of this paper is to identify the distributed force q due to these mechanisms from the
deformed line of the peel arm. In this section, we present governing equations to describe the equilibrium
configurations of thin flexible films. To this end, the nonlinear theory of inextensible rods [1,2] will be applied.

Let s be the arc-length parameter in the deformed state characterizing positions of cross sections of the
deformed film and let x and y be the corresponding Cartesian coordinates (Fig. 1).

The actual orientation of any cross section is described by the angle ψ(s) (Fig. 2), while ϕ(s) is the angle
between the tangent to the deformed line and the x-axis.
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(a) (b)

Fig. 1 Deformed configuration of films subjected to T-peeling. a Loading and deformed shape, b force distribution within the
zone of adhesive interaction

Fig. 2 Cross section with the coordinate s

The tangent and the normal unit vectors to the deformed centerline are specified by ttt and nnn, respectively.
For a cross section with coordinates x , y and the rotation angle ψ , the lower point of the cling layer is defined
by the following coordinates (Fig. 2)

xc = x − h

2
sinψ, yc = y − h

2
cosψ (1)

The following kinematical relations are valid

dy

ds
= sin ϕ,

dx

ds
= cosϕ, y′ = tan ϕ, (. . .)′ = d(. . .)

dx
(2)

Figure 3 illustrates a free body diagram for a part of a film defined by the coordinates s1 and s2 within the
adhesive zone.

The mechanical interactions between the cross sections are characterized by the normal force N , the shear
force Q and the bending moment M . Applying the balances of forces and moments for the line element with
arbitrary coordinates s1 and s2, the following equilibrium conditions can be derived

dH

ds
= 0,

dV

ds
= −q,

dM

ds
= Q + h

2
q sinψ, (3)
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Fig. 3 Free body diagram for a part of the film inside the zone of adhesive interaction

where H is the horizontal and V the vertical component of the force vector, respectively. Integrating Eq. (3)1
provides H = const, and the integration constant is zero since the force F is applied in the vertical direction.
With H = 0, both the following relations for the normal and the shear force can be established

N = −V sin ϕ, Q = V cosϕ (4)

For the analysis of T-peeling, let us apply the theory of inextensible rods [2] by assuming that the axial strain
of the centerline is negligible. Below this assumption will be justified based on photographs of the deformed
shape of the peel arm. For the shear force and the bendingmoment, the constitutive equations can be formulated
as follows

M = ∂W

∂(χ)
, χ = dψ

ds
,

Q = ∂W

∂γ
, γ = ψ − ϕ , (5)

where W is the strain energy density per unit length of the undeformed film, χ is the curvature and γ is the
transverse shear strain. By specifying the strain energy density, Eqs. (2)–(5) together with boundary conditions
can be applied to find the deformed configuration of the beam for the known forces F and q . Vice versa, if y,
λ and ψ are known then the distributed adhesive force q can be evaluated from Eqs. (2)–(5).

For the distributed force q , we assume that a potential U exists such that

q = dU
dyc

(6)

The strain energy density is a function of three arguments including χ , γ and ψ . Taking its derivative with
respect to the coordinate s and applying constitutive equations (5), we obtain

dW

ds
= N

d

ds
+ Q

dγ

ds
+ M

dχ

ds
(7)

With Eqs. (3)–(5), (7) takes the following form

d

ds
(W − Mχ − N ) = −q

dyc
ds

(8)

Equation (8) is the conservation law for the nonlinear beam theory. Within the three-dimensional theory of
elasticity, similar Eshelby-type conservation laws are discussed in [15,17].

Taking into account Eq. (6), the following integral of Eq. (8) can be derived

W + U − Mχ − N = C, (9)

where C is a constant. In [22], it is shown that by analogy to the J -integral in fracture mechanics the quantity
� = Mχ + N − W provides the energy release rate for T-peeling of flexible films. For s = l, we obtain
�(l) = F . Therefore, the following relationship between the peel force Fpeel and the specific energy of
adhesion ϒ is derived

Fpeel = ϒb, (10)

where b is the width of the film. Equation (10) was derived by Rivlin [29] for inextensible films. Let us note
that the integral of the type (9) can also be derived for hyperelastic films undergoing finite axial deformations.
The generalized relationship for the work of adhesion is presented in [10].
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Fig. 4 Schematic of T-peel test configuration

3 Experimental setup

Figure 4 illustrates the sketch of the T-peel configuration and the constituent layers of the films. The films with
the thicknesses of 23 μm were fabricated from polyethylene. They exhibit self-adhesive behavior because of
the coextruded polymer cling material. The T-peel tests were performed according to the ASTM 1876 standard
applying a Zwick tensile testing machine. The initial distance between the clamps was 60mm with the peel
rate of 100 mm/min. For sample preparation, two similar polymer films were pressed to each other by a roll
with the mass of 1 kg. The dimensions of the specimens were b = 25mm and l = 65mm. Videos of the peeling
were recorded with a digital USB microscope camera (frame rate of 10 frames/s). The camera was located
perpendicular to the transverse view of the specimen and the grips during the peel test (Fig. 4). The results
of peel tests are presented as the measured force vs opening diagrams, providing the value of the peel force
Fpeel as illustrated in Fig. 5. In addition, photographs of the deformed configuration were taken at different
time instances during the peeling. From the self-adhesive polyethylene film with the thickness of 23 μm , 5
samples were prepared to be tested under T-peeling. The whole test procedure of each test was recorded by a
microscopic camera which provided the deformation pictures of the films. Finally, from each test 5 pictures
were randomly chosen to be evaluated. Figure 6 illustrates the approximation of the average deformation
centerline, and the light blue range represents the variations in the film deformation in 25 pictures from 5 tests.
From the images, the deformed centerlines of the film were approximated by the B-spline technique applying
Rhino® software. Figure 6 shows the approximations results and the averaged centerline which will be used
for the identification.

4 Procedure to identify interaction forces

In order to formulate the robust identification procedure, let us simplify (2)–(5) applying the following assump-
tion. The deformed centerlines obtained from tests show that the thickness of the film is much less than the
length of the film within the zone of non-zero curvature. Furthermore, for the considered T-peeling we expect
that the transverse shear deformation is small and can be neglected. Therefore, in this study we apply the shear
rigid model, by setting γ = 0.
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Fig. 5 Idealized force vs opening diagram for pell force evaluation

Fig. 6 Approximations of deformed centerlines

Setting ψ = ϕ and applying Eq. (2), the local curvature can be expressed as follows

χ = dϕ

ds
= d(sin ϕ)

dx
= −d(cosϕ)

dy
(11)

Assuming the linear elastic response of the peel arm, the bending moment is proportional to the curvature

M = Bχ, (12)

where B is the bending stiffness. With the assumed small strain ε and negligible transverse shear deformation,
Eq. (9) yields

U − 1

2
Mχ − N = C (13)

Applying the boundary conditions N = 0, M = 0 and setting U = 0 for the left free edge of the film, we
obtain C = 0 and

U = 1

2
Mχ + N (14)
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Specifying � = cosϕ, the following expressions can be derived from Eqs. (2)–(6) and (12)

M = −B�•, N = B
1 − �2

�
�••,

V = −B

√
1 − �2

�
�••,

U = B

[
1

2
�•2 + 1 − �2

�
�••

]
, (15)

where

(. . .)• = d(. . .)

dy

In order to compute the interaction force distribution q(y), we need to approximate the function�(y) from the
deformed configuration of the beam centerline. High-quality vector images of the deformed films and B-spline
approximations provide both the deformed line y(x) and its first derivative y′(x) with satisfactory accuracy.
However, the experimental curves generated from images usually have a scatter of the order of magnitude
of the film thickness. This leads to the loss of accuracy by computing the higher derivatives. As shown in
[22], non-physical oscillations are observed for the curvature, if the deformed centerline is approximated by
polynomials. Due to the fact that third derivatives are required to compute the force potential U , the direct
approach was rejected in [3,22].

An alternative procedure could be to approximate the deformed line based on the equations of the beam
theory. However, closed-form solutions to Eqs. (2)–(6) are only available for the geometrically linear case
(small strains and cross-sectional rotations) and special types of the traction–separation laws, e.g., linear,
triangular or piecewise linear laws [7,33].

To derive a suitable approximation for the function �(y), let us assume that for a part of the beam the
interaction force is negligible. By setting q = 0, Eq.(3)2 can be integrated providing V = const. With the
boundary conditions for s = l, we obtain the vertical force V = −Fpeel. The normal force is computed from
Eq. (4)1 as follows

N = Fpeel sin ϕ (16)

For q = 0, the force potential takes the constant value U = U0. The energy integral (14) takes the form

U0 = 1

2
Mχ + Fpeel sin ϕ (17)

With the boundary condition M = 0 for s = l and ϕ = π/2, we obtain U0 = Fpeel. Taking into account Eq.
(12), the energy integral (17) can be formulated as follows

1

2
Bχ2 = Fpeel(1 − sin ϕ) (18)

Let us note that Eq. (18) is known as the energy integral of Euler’s elastica; see, for example, [2]. It can be
used to compute the function � for the part of the film. Indeed from Eq. (18), we obtain

1

2
B�•2 = Fpeel(1 −

√
1 − �2) (19)

Taking into account that � is a decreasing function, we obtain

�• = −
√
2F̃peel

(
1 −

√
1 − �2

)1/2
, F̃peel = Fpeel

B
(20)

By integration, the following relation between � and y is derived

(�) =
√
2F̃peel(y − y0), (�) =

�∫
�0

dξ(
1 − √

1 − ξ2
)1/2 , �0 = cosϕ0 (21)



636 K. Naumenko, B. Bagheri

Fig. 7 Functions x(y) and cosϕ(y) identified from digital images of centerline

where y0 and ϕ0 are the opening and the corresponding angle of rotation for a point of the beam with the
coordinate s0. The integral in(�) can be formulated in a closed analytical form in terms of elliptic functions.
For the purpose of the identification, it is useful to approximate the solution (21) by the use of elementary
functions. Indeed the solution (21) is only valid for a part of the beamwhere the interaction forces are negligible.
For this part, the angle of rotation is close to π/2 and we can assume�2 � � < 1. In this case, the differential
equation (21) takes the simplified form

�• = −
√
F̃peel�, (22)

with the solution

�(y) = A exp(−αy), α =
√
F̃peel (23)

where A is the integration constant. The function (23) approximates the cross-sectional rotation only for a part
of the beam and satisfies the boundary condition N = Fpeel for the top right edge. To improve the accuracy,
let us assume the following two-term approximation

�(y) = A exp(−αy) + B exp(−βy), β > α (24)

Applying the boundary conditions for the left edge of the beam �(0) = 1 and �•(0) = 0, we obtain

A = β

β − α
, B = − α

β − α

To find β, the least-squares method can be applied.
Figure 7 illustrates the plots of functions x(y) and cosϕ(y).
For the identification, the centerline of the filmwas digitized from a photograph applying Rhino® software.

With the B-spline approximations of y(x) the first derivative y′(x) and the function

cosϕ = 1√
1 + y′2

were evaluated numerically. Figure 8 illustrates the approximations according to the closed-form solution
(21) for the beam without the interaction forces. With the normalized peel force F̃peel = 3.23 and by setting
y0 = 2.6 mm, �0 = 0.03 the closed-form solution agrees well with experimental data for the right part of the
beam having the opening within the range 1.6 mm < y < 2.6 mm. For the same peel force but with y0 = 0.02
mm and �0 = 0.98, the solution meets well the experimental data for the right edge of the beam as well as
for the openings within the range 0.02 mm < y < 0.04 mm (Fig. 9). Plots of the exponential approximation
(23) with the same peel force and A = 1.013 are presented in Figs 8 and 9 . We observe that the exponential
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Fig. 8 Function cosϕ(y) identified from digital images of centerline and approximated by Eqs. (21) and (23)

Fig. 9 Function cosϕ(y) identified from digital images of centerline and approximated by Eqs (23) and (24)

approximation almost coincides with the closed-form solution for y0 = 0.02 mm and �0 = 0.98 (Fig. 8). Let
us note that both the closed-form solution and the single-term approximation describe the function cosϕ for a
clamped cantilever beam without adhesive interaction. These approximations do not agree with experimental
data for the left part of the beam (Fig. 9). Applying the two-term exponential sum (24), the boundary conditions
for the left edge of the beam are satisfied. With β = 127, the function cosϕ for a wide range of openings y is
well approximated (Fig. 9).

With the proposed functions �(y), the distributed interaction force q can be now computed as follows

q = B

[
− 1

�2�••�• + 1 − �2

�
�•••

]
(25)

Figure 10 illustrates the results of identification applying the single-term and two-term exponential approx-
imations. As expected, the single-term approximation (23) leads to the negligible interaction forces for the
whole beam. The two-term exponential sum (23) provides the physically correct distribution of q vs y.
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Fig. 10 Interaction distributed forces q vs opening y evaluated different approaches

Both the maximum force qmax/B = 72 1/mm3 and the critical opening y∗ ≈ 0.075 mm are identified. The
obtained values indicate that self-adhesive polymeric films exhibit a relatively long-range interaction forces.
Long-range force interactions were also identified in [3,22] for similar cling materials. In [3], the distributed
force q was approximated by the power series with respect to the x-coordinate and the coefficients in the series
were computed from the complementary energy variational functional by the Ritz method. For the comparison,
the results obtained in [3] are plotted in Fig. 10 by the dashed line. We observe that the maximum force and
the critical opening agree approximately by the direct and the complementary energy approaches.

Equation (25) provides q as a function of the separation y. In order to compute the force distribution along
the arc-length parameter s, the function s(y) is required. From Eq. (2)1, the following differential equation
can be derived

s• = 1

sin ϕ
= 1√

1 − �2
(26)

After integration, we obtain

s(y) =
y∫

0

dξ√
1 − �2(ξ)

The interaction forces identified with the exponential sum (23) satisfy the equilibrium conditions. Indeed
the equilibrium condition for the forces can be formulated as follows

l∫
0

q(s)ds = Fpeel (27)

With Eqs. (3) and (15), we obtain

l∫
0

q(s)ds = −
l∫

0

dV

ds
ds = V (0) − V (l) = B

√
1 − �2

�
�••

∣∣∣y=ymax

y=0

For y = 0, we have � = 1, while for βy � 1

�(y) = β

β − α
exp(−αy), ⇒ �••

�
= α2 = F̃peel
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Consequently, for y = ymax
√
1 − �2

�
�•• = F̃peel,

and Eq. (27) is satisfied. On the other hand, taking the top right point of the beam as the reference point, the
equilibrium condition for the moments takes the form

l∫
0

q(s)(xl − x)ds = Fpeel
h

2
, (28)

where xl is the x-coordinate of the right top point of the beam. With Eqs (3) and (15) and by integration by
parts, we obtain

l∫
0

q(s)(xl − x)ds = V (0)xl −
xl∫
0

V dx = V (0)xl − M(xl) + M(0) + h

2

∫ ymax

0
qdy

With dyc = (1 + χh/2)dy ≈ dy and∫ ymax

0
qdy =

∫ ymax

0

dU
dyc

dy ≈ U(ymax) − U(0) = Fpeel

we finally obtain
l∫

0

q(s)(xl − x)ds − Fpeel
h

2
= V (0)xl − M(xl) + M(0) (29)

For the two-term exponential sum (24), the boundary conditions V (0) = 0, M(0) = 0 and M(ymax) = 0 are
satisfied. Therefore, the derived interaction force q satisfies the equilibrium condition (28).

Equations (23) and (24) are special cases of the exponential sum which can be applied to approximate a
function f (x) as follows

f (x) =
n∑

k=1

Ak exp(μk x) (30)

Applications of exponential sums in various physics and engineering problems aswell as algorithms to compute
coefficients Ak and exponents μk are discussed in [4,14,28], among others. For the problem considered in this
paper, the two-term sum (24) is applied and the adding of an additional exponential term does not lead to an
improvement of approximation. Indeed, to identify constants in higher-order exponential terms photographs
within the process zone of peeling with higher resolution are required. Furthermore, the applied shear rigid
beam theory may lead to inaccurate results as the length of the analyzed process zone becomes comparable
with the film thickness.

5 Conclusions

An important step in the analysis of adhesive strength and delamination in layered systems is to identify
traction–separation behavior. To this end, a traction–separation law should be formulated and identified from
experimental data.

This paper addresses the direct procedure to evaluate the interaction forces between thin flexible polymeric
films within the adhesive zone. Toward this goal, high-resolution photographs of the deformed shape within
and outside the zone of adhesive interaction were taken at different time instances during T-peeling. From
the digitized images, the deformed centerline is approximated by B-splines and the cross-sectional rotation
ϕ is evaluated numerically. The exponential sum is applied to approximate � = cosϕ as the function of the
opening y. It satisfies kinematic and static boundary conditions for the T-peel test configuration. Applying the
nonlinear theory of shear rigid beams, the force of interaction is evaluated directly by taking the derivatives
of the given function �. The resulting distribution q(y) satisfies equilibrium conditions for the forces and
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moments. Furthermore, it provides the important characteristics of the adhesive interaction including the
maximum force and the critical opening.

Based on the results, we may conclude as follows:

– In order to extract the traction–separation curve from the results of T-peel tests, accurate approximation
of the deformed peel arm centerline is required. The smooth differentiable approximation function should
satisfy kinematic and static boundary conditions as well as equilibrium conditions for both the forces and
moments.

– The identified traction–separation curve shows distributed forces outside the contact zone. This indicates
the non-locality of the adhesive force interaction between the considered films.

Further studies should be related to formulate an appropriate non-local traction–separation law to describe
the adhesive force interactions. Examples are recently discussed within the peridynamics modeling of layered
systems [12].With thedeveloped traction–separation law, simulations of thepeel processes shouldbeperformed
by a finite element code.
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7. Dimitri, R., Cornetti, P.,Mantič, V., Trullo,M., De Lorenzis, L.:Mode-I debonding of a double cantilever beam: a comparison

between cohesive crack modeling and finite fracture mechanics. Int. J. Solids Struct. 124, 57–72 (2017)
8. Dupont, S.R., Oliver, M., Krebs, F.C., Dauskardt, R.H.: Interlayer adhesion in roll-to-roll processed flexible inverted polymer

solar cells. Sol. Energy Mater. Sol. Cells 97, 171–175 (2012)
9. Eisenträger, J., Naumenko, K., Altenbach, H., Köppe, H.: Application of the first-order shear deformation theory to the

analysis of laminated glasses and photovoltaic panels. Int. J. Mech. Sci. 96, 163–171 (2015)
10. Eremeyev, V.A., Naumenko, K.: A relationship between effective work of adhesion and peel force for thin hyperelastic films

undergoing large deformation. Mech. Res. Commun. 69, 24–26 (2015)
11. Fedele,R.,Raka,B.,Hild, F., Roux, S.: Identification of adhesive properties in glare assemblies using digital image correlation.

J. Mech. Phys. Solids 57(7), 1003–1016 (2009)
12. Gao, Y., Oterkus, S.: Fully coupled thermomechanical analysis of laminated composites by using ordinary state based

peridynamic theory. Compos. Struct. 207, 397–424 (2019)
13. Gialamas, P., Völker, B., Collino, R.R., Begley, M.R., McMeeking, R.M.: Peeling of an elastic membrane tape adhered to a

substrate by a uniform cohesive traction. Int. J. Solids Struct. 51(18), 3003–3011 (2014)
14. Holmström, K., Petersson, J.: A review of the parameter estimation problem of fitting positive exponential sums to empirical

data. Appl. Math. Comput. 126(1), 31–61 (2002)
15. Kienzler, R., Herrmann, G.: Mechanics in Material Space: with Applications to Defect and Fracture Mechanics. Springer,

Berlin (2012)
16. Kim, K.S., Aravas, N.: Elastoplastic analysis of the peel test. Int. J. Solids Struct. 24(4), 417–435 (1988)

http://creativecommons.org/licenses/by/4.0/


A direct approach to evaluate interaction forces 641

17. Maugin, G.A.: Material Inhomogeneities in Elasticity. Chapman Hall, London (1993)
18. Menga, N., Afferrante, L., Pugno, N., Carbone, G.: The multiple V-shaped double peeling of elastic thin films from elastic

soft substrates. J. Mech. Phys. Solids 113, 56–64 (2018)
19. Nase,M., Langer, B., Baumann, H.J., Grellmann,W., Geißler, G., Kaliske,M.: Evaluation and simulation of the peel behavior

of polyethylene/polybutene-1 peel systems. J. Appl. Polym. Sci. 111(1), 363–370 (2009)
20. Nase, M., Langer, B., Grellmann, W.: Fracture mechanics on polyethylene/polybutene-1 peel films. Polym. Testing 27(8),

1017–1025 (2008)
21. Nase, M., Rennert, M., Henning, S., Zankel, A., Naumenko, K., Grellmann, W.: Fracture mechanics characterisation of

peelfilms. In: Deformation and Fracture Behaviour of Polymer Materials, pp. 271–281. Springer (2017)
22. Nase, M., Rennert, M., Naumenko, K., Eremeyev, V.A.: Identifying traction-separation behavior of self-adhesive polymeric

films from in situ digital images under t-peeling. J. Mech. Phys. Solids 91, 40–55 (2016)
23. Nase, M., Zankel, A., Langer, B., Baumann, H.J., Grellmann, W., Poelt, P.: Investigation of the peel behavior of

polyethylene/polybutene-1 peel films using in situ peel tests with environmental scanning electron microscopy. Polymer
49(25), 5458–5466 (2008)

24. Naumenko, K., Eremeyev, V.A.: A layer-wise theory of shallow shells with thin soft core for laminated glass and photovoltaic
applications. Compos. Struct. 178, 434–446 (2017)

25. Needleman, A.: Some issues in cohesive surface modeling. Procedia IUTAM 10, 221–246 (2014)
26. Park, K., Paulino, G.H.: Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces.

Appl. Mech. Rev. 64(6), 060802 (2011)
27. Pettersson, S., Engqvist, J., Hall, S., Toft, N., Hallberg, H.: Peel testing of a packaging material laminate studied by in-situ

x-ray tomography and cohesive zone modeling. Int. J. Adhes. Adhes. 95, 102428 (2019)
28. Potts, D., Tasche,M.: Nonlinear approximation by sums of nonincreasing exponentials. Appl. Anal. 90(3–4), 609–626 (2011)
29. Rivlin, R.S.: The effective work of adhesion. In: G.I. Barenblatt, D.D. Joseph (eds.) Collected Papers of R.S. Rivlin, vol. 2,

pp. 2611–2614 (1997)
30. Ruybalid, A., Hoefnagels, J., van der Sluis, O., van Maris, M., Geers, M.: Mixed-mode cohesive zone parameters from

integrated digital image correlation on micrographs only. Int. J. Solids Struct. 156, 179–193 (2019)
31. Wei, Y., Hutchinson, J.: Interface strength, work of adhesion and plasticity in the peel test. Int. J. Fract. 1(93), 315–333

(1998)
32. Weps,M.,Naumenko,K.,Altenbach,H.:Unsymmetric three-layer laminatewith soft core for photovoltaicmodules. Compos.

Struct. 105, 332–339 (2013)
33. Williams, J., Hadavinia, H.: Analytical solutions for cohesive zone models. J. Mech. Phys. Solids 50(4), 809–825 (2002)
34. Yim,M.J., Paik,K.W.:Recent advances on anisotropic conductive adhesives (ACAs) for flat panel displays and semiconductor

packaging applications. Int. J. Adhes. Adhes. 26(5), 304–313 (2006)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	A direct approach to evaluate interaction forces between self-adhesive polymeric films subjected to T-peeling
	Abstract
	1 Introduction
	2 Governing equations
	3 Experimental setup
	4 Procedure to identify interaction forces
	5 Conclusions
	Acknowledgements
	References




