Studies Toward the Synthesis of the Dihydropyran Fragment of Neosorangicin A

Dissertation
zur Erlangung des akademischen Grades

Doctor rerum naturalium

(Dr. rer. nat.)

von	M. Ing. Rositsa Stoykova
geb. am	27.09.1991 in Ruse, Bulgarien

genehmigt durch die Fakultät für Verfahrens- und Systemtechnik der Otto-von-Guericke-Universität Magdeburg

Promotionskommission: Prof. Dr.-Ing. Andreas Seidel-Morgenstern (Vorsitz)
Prof. Dr. rer. nat. Dieter Schinzer (Gutachter)
Prof. Dr. rer. nat. Edgar Haak (Gutachter)
Prof. Dr. rer. nat. Martin E. Maier (Gutachter)
eingereicht am:
01.07.2021

Promotionskolloquium am: 17.11.2021

Abstract

Neosorangicin A $\mathbf{2}$ is a novel type of macrocyclic natural product which was first discovered in 2017, and the total synthesis of which is of great interest to the community. Therefore, the main objective of this thesis was to develop the synthesis of the $\mathrm{C}(1)-\mathrm{C}(12)$ dihydropyran fragment of neosorangicin A .

The retrosynthetic analysis of the dihydropyran fragment $\mathbf{1 5 5}$ envisioned two main strategies for incorporating the side chain. The first was with the use of an alkyne as a precursor and the second was adopting a ketone. Starting from D-galactose 237, alkynes $\mathbf{1 7 5}, \mathbf{1 7 8}$ and $\mathbf{1 7 9}$ were synthesized on a multigram scale. In order to furnish the dihydropyran fragment 155, alkynes 175, 178 and 179 took part in a zirconocene-catalyzed methylalumination reaction. Unfortunately, under the explored conditions none of the alkynes successfully yielded the desired products. Therefore, homopropargylic alcohol $\mathbf{1 8 6}$ was synthesized, using alkyne $\mathbf{1 7 5}$ and epoxide 157. Alcohol $\mathbf{1 8 6}$ then took part in a hydroalumination, hydrosulfuration and hydrostannylation reactions. None of these approaches, however, yielded the desired product 188.

The second approach towards the dihydropyran fragment 155 necessitated the synthesis of ketones 205, 206, 207 and 208. Starting from D-galactose 237, ketones 205, 206, 207 and 208 were synthesized on a multigram scale. We then first investigated the Julia-Kocienski olefination for the synthesis of the trisubstituted olefins 211, 212, 213 and 214. For this purpose, sulfones 209 and 210 were synthesized on a multigram scale starting from cis-2butene 278 and acetaldehyde 279. Many attempts were made in order to couple ketones 205, 206, 207 and 208 with sulfone 209 , but none of them resulted in the successful synthesis of the corresponding trisubstituted olefins 211, 212, 213 and 214. However, while using ketones 205, 206, 207 and 208 and sulfone 210 we were able to isolate the desired olefins 211, 212, 213 and 214, although we were only able to mainly isolate the Z-isomers. Inversion of the reaction partners in the Julia-Kocienski olefination was not possible under the explored conditions, since the Mitsunobu thioetherification of alcohols 215, 216 and 217 was unsuccessful. Next a Takai olefination of ketones 205, 206, 207 and 208 was explored. Surprisingly, ketones 205, 206 and 207 yielded the corresponding Z-vinyl iodides Z-227, Z-228 and Z-229. However, towards the end of the thesis, ketone $\mathbf{2 0 8}$ when subjected to the Takai olefination furnished the E-vinyl iodide \boldsymbol{E}-230.

Zussamenfassung

Neosorangicin A 2 ist ein neuartiger makrozyklischer Naturstoff, der erstmals im Jahr 2017 entdeckt wurde und dessen Totalsynthese von großem Interesse für die Community ist. Daher war das Hauptziel dieser Arbeit, die Synthese des C(1) - C(12) Dihydropyranfragmentes des Moleküls von Neosorangicin A zu entwickeln.

Die retrosynthetische Analyse des Dihydropyranfragmentes $\mathbf{1 5 5}$ sah zwei Hauptstrategien für die Einbindung der Seitenkette vor. Die erste war die Verwendung eines Alkins als Zwischenprodukt und die zweite der Einsatz eines Ketons. Ausgehend von D-Galaktose 237 wurden die Alkine 175, 178 und 179 im Multigramm-Maßstab synthetisiert. Um das Dihydropyranfragment $\mathbf{1 5 5}$ zu erhalten, nahmen die Alkine 175, $\mathbf{1 7 8}$ und $\mathbf{1 7 9}$ an einer Zirconocen-katalysierten Methylaluminierungsreaktion teil. Leider lieferte unter den untersuchten Bedingungen keines der Alkine erfolgreich die gewünschten Produkte. Daher wurde Homoropargylalkohol 186 unter Verwendung des Alkins $\mathbf{1 7 5}$ und des Epoxids 157 synthetisiert. Der Alkohol 186 nahm dann an einer Hydroaluminierungs-, Hydrosulfurierungsund Hydrostannylierungsreaktion teil. Keiner dieser Ansätze lieferte jedoch das Produkt 188.

Der zweite Ansatz zum Dihydropyranfragment 155 erforderte die Synthese der Ketone 205, 206, 207 und 208. Ausgehend von D-Galaktose 237 wurden die Ketone 205, 206, 207 und 208 im Multigramm-Maßstab synthetisiert. Anschließend untersuchten wir zunächst die Julia-Kocienski-Olefinierung zur Synthese der trisubstituierten Olefine 211, 212, 213 und 214. Dazu wurden die Sulfone 209 und 210 im Multigramm-Maßstab ausgehend von cis-2-Buten 278 und Acetaldehyd 279 synthetisiert. Es wurden viele Versuche unternommen, um die Ketone 205, 206, 207 und 208 mit dem Sulfon 209 zu koppeln, aber keiner davon führte zu einer erfolgreichen Synthese der entsprechenden trisubstituierten Olefine 211, 212, 213 und 214. Bei der Verwendung der Ketone 205, 206, 207 und 208 und des Sulfons 210 konnten wir jedoch die gewünschten Olefine 211, 212, 213 und 214 isolieren. Leider isolierten wir hauptsächlich die Z-Isomere. Die Inversion der Reaktionspartner bei der Julia-Kocienski-Olefinierung war unter den untersuchten Bedingungen nicht möglich, da die Mitsunobu-Thioetherifizierung der Alkohole 215, 216 und 217 nicht erfolgreich war. Als nächstes wurde eine Takai-Olefinierung der Ketone 205, 206, 207 und 208 untersucht. Überraschenderweise ergaben die Ketone 205, 206 und 207 die entsprechenden Z-Vinyliodide Z-227, Z-228 und Z-229. Gegen Ende der Arbeit lieferte jedoch das Keton 208 bei der Takai-Olefinierung das E-Vinyliodid \boldsymbol{E}-230.

Table of Contents

List of abbreviations i

1. Background 1
1.1. Introduction 1
1.2. Neosorangicins: A prospective solution 2
1.3. Fermentation process of neosorangicin A 4
1.4. Structural similarities between neosorangicin A and sorangicin A 4
1.5. Current progress towards the synthesis of sorangicin A 5
1.5.1. Total synthesis of Smith et al. 5
1.5.2. Formal synthesis of Crimmins et al. 9
1.5.3. Synthesis of the dihydropyran moiety 15
1.6. Synthesis of Schinzer et al. - current progress 24
1.6.1. Synthesis of the tetrahydropyran fragment $\mathbf{1 1 7}$ 24
1.6.2. Synthesis of the dioxabicyclooctane fragment $\mathbf{1 1 6}$ 25
1.6.3. Synthesis of the dihydropyran fragment $\mathbf{1 1 8}$ 28
1.6.4. Synthesis of the carboxylic acid containing side chain $\mathbf{1 1 9}$ 29
2. Objectives of the thesis 30
3. Theoretical part 31
3.1. Incorporation of the side chain 32
3.1.1. Attempt to introduce the side chain via carboalumination 32
3.1.2. Attempt to introduce the side chain via hydrometallation 38
3.1.3. Julia-Kocienski olefination 43
3.1.4. Takai olefination 50
3.2. Syntheses of the precursors 53
3.2.1. Synthesis of alkyne $\mathbf{1 7 5}$ and ketone 205 53
3.2.2. Synthesis of alkyne $\mathbf{1 7 8}$ and ketone 206 57
3.2.3. Synthesis of alkyne $\mathbf{1 7 9}$ and ketone $\mathbf{2 0 7}$ 61
3.2.4. Synthesis of ketone 208 65
3.2.5. Synthesis of the side chain 66
4. Summary and outlook. 71
4.1. Summary 71
4.2. Outlook 72
5. Experimental part 74
5.1. Materials and methods 74
5.2. Experimental procedures 75
6. References 127
7. Appendix - NOESY NMR spectra for confirmation of stereochemistry 134

List of abbreviations

Å	angstrom
Ac	acetyl
Act	activator
aq	aqueous
AQN	anthraquinone
ATR	attenuated total reflection
Bn	benzyl
bp	boiling point
BT	benzothiazole-2-yl
Bu	butyl
c	concentration
$c a$.	circa (approximately)
calcd.	calculated
cat.	catalytic
CBS	Corey-Bakshi-Shibata reagent
Cp	cyclopentadienyl
CSA	camphorsulfonic acid
DCE	1,1-dichloroethane
DCM	dichloromethane
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DEAD	diethyl azodicarboxylate
DET	diethyl tartrate
DHQ	dihydroquinine
DHQD	dihydroquinidine
DIAD	diisopropyl azodicarboxylate
DIBAL-H	diisobutylaluminum hydride
DIPEA	diisopropylethylamine
DMAP	N,N-4-dimethylaminopyridine
DME	1,2-dimethoxyethane
DMF	N,N-dimethylformamide
DMP	Dess-Martin periodinane
DMPU	N, N-dimethyl propylene urea

DMSO dimethylsulfoxide
DPP diphenylpyrazinopyridazine
dr diastereomeric ratio
$\mathrm{E}^{+} \quad$ electrophile (denotes any electrophile in general)
EDTA ethylenediaminetetraacetic acid
e.g. exempli gratia (for example)
epi epimer
ESI electrospray ionization
Et ethyl
et al. et alia (and others)
FT-IR Fourier transform infrared
G1 Grubbs first generation catalyst
G2 Grubbs second generation catalyst
gem geminal
$\mathrm{h} \quad$ hours (length of reaction time)
HCAI health care-associated infections
HG2 Hoveyda-Grubbs second generation catalyst
HMPA hexamethylphosphoric acid triamide (hexamethylphosphoramide)
HRMS high resolution mass spectrometry
$i \quad$ iso
i.e. id est (that is)
IC_{50} half-inhibitory concentration
Icr isocaranyl
Ipc isopinocamphenyl
IR infrared
IUPAC International Union of Pure and Applied Chemistry
KHMDS potassium bis(trimethylsilyl)amide
LAH lithium aluminum hydride
LDA lithium diisopropylamide
LiHMDS lithium bis(trimethylsilyl)amide
M molar (concentration of solutions)
mCPBA meta chloroperbenzoic acid
Me methyl
MIC minimum inhibitory concentration

MOM	methoxymethyl
Mp	melting point
MPLC	medium pressure liquid chromatography
MPM	methoxy(phenylthio)methyl
MS	molecular sieves
Ms	mesyl (methanesulfonyl)
n	normal (e.g. unbranched alkyl chain)
NaHMDS	sodium bis(trimethylsilyl)amide
NBS	N -bromosuccinimide
NCS	N -chlorosuccinimide
NMO	N-methylmorpholine oxide
NMR	nuclear magnetic resonance
NOESY	nuclear Overhauser effect spectroscopy
ox.	oxidation
p	para
PG	protecting group
Ph	phenyl
PHAL	phthalazine
Piv	pivaloyl
PMB	p-methoxybenzyl
PPTS	pyridinium p-toluenesulfonate
Pr	propyl
PT	1-phenyl-1H-tetrazole-5-yl
PTSA	p-toluenesulfonic acid
Py	pyridine
PYDZ	pyridazine
PYR	pyridine-2-yl
Red-Al ${ }^{\text {® }}$	sodium bis(2-methoxyethoxy) aluminum hydride
RNA	ribonucleic acid
RP	reversed-phase
RT	room temperature
s	secondary
sat.	saturated
t, tert	tertiary

TBABr	tetra- n-butylammonium bromide
TBAF	tetra- n-butylammonium fluoride
TBAI	tetra- n-butylammonium iodide
TBDPS	t-butyldiphenylsilyl
TBS	t-butyldimethylsilyl
TBT	1 -tert-butyl- $1 H$-tetrazole-5-yl
TES	triethylsilyl
Tf	trifluoromethanesulfonyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin-layer chromatography
TMOF	trimethyl orthoformate
TMS	trimethylsilyl
TOF	time-of-flight
TPAP	tetra- n-propylammonium perruthenate
Ts	p-toluenesulfonyl
UV	ultraviolet
WHO	World Health Organization

1. Background

1.1. Introduction

Infectious diseases have been a major problem since ancient times. Bacterial infections rival wars in the total number of deaths they cause, and recent problems like antibiotic resistance are expected to only make things worse, with some experts ${ }^{[1]}$ forecasting up to 10 million annual deaths from "superbugs" by 2050. As access to healthcare improves all around the world, health care-associated infections (HCAI), or "nosocomial" infections are increasingly finding themselves under the spotlight. In the summary "The Burden of Health Care-Associated Infection Worldwide" published by the World Health Organization (WHO), HCAI is defined as: "An infection occurring in a patient during the process of care in a health-care facility which was not present or incubating at the time of admission. This includes infections acquired in the hospital but appearing after discharge, and also occupational infections among staff.י" ${ }^{[2]}$

The gathering of reliable data on HCAI is a hard process, making it difficult to determine the exact number of patients suffering from nosocomial infections. According to a systematic review conducted by $\mathrm{WHO}^{[2]}$ for the period $1995-2008$, HCAI prevalence in developed countries was found to vary between 5.1% (Norway) and 11.6% (Canada). In the USA, 1.7 million patients suffer from hospital diseases, while in Europe the number is around 2.5 times higher ($4,131,000$ patients). The sources of information in the developing countries are more limited since only 23 out of 147 developing countries are reported to have a functioning national surveillance system. The data reveals that the spread of hospital infections in these countries vary in the range of 5.7% (Latvia) - 19.1% (Albania) but is above 10% in most cases.
$30-35 \%$ of the nosocomial infections are caused by the so called ESKAPE pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. ${ }^{[2]}$. ESKAPE is an acronym derived from the first letters of the most common pathogens that are resistant to more than three (or even all) clinical antibiotics - a cause for great concern in the clinical and scientific communities. Since the effectiveness of the existing antibiotics is decreasing and bacteria develop resistance faster than new antibiotics are released to the market, there is a great necessity for the discovery and development of new antibiotics. However, the synthesis of new antibiotics remains one of the great challenges of modern organic chemistry.

1.2. Neosorangicins: A prospective solution

Myxobacteria are a prolific source of biologically active natural products. They are soildwelling bacteria with a unique social life. Myxobacteria form swarms and move by gliding on solid surfaces when the environmental conditions are appropriate. However, when the nutrients are scarce the bacteria cooperate with each other and agglomerate in specific fruiting bodies. The myxobacteria can be divided in two groups depending on their nutritional behavior. The first group are the so-called predators who lyse whole living cells of other microorganisms using lytic enzymes, and the second group are the cellulose-decomposers which are represented by the Sorangium and Byssovorax genera ${ }^{[3]}$. In 1985 Höfle et al. ${ }^{[4]}$ isolated sorangicin A 1 (Figure 1) from the So ce12 strain of myxobacterium Soranginium cellulosum. In 2017 Müller et al. ${ }^{[5]}$ isolated neosorangicin A 2 (Figure 1) from another strain (So ce439) of the myxobacterium Soranginium cellulosum. This novel type of macrocyclic natural product is a prospective solution to the problem of antibiotic resistance. Neosorangicins are early-stage drug candidates currently in the preclinical phase. They show antibacterial activity towards both Gram-positive and Gram-negative pathogens, including Enterococcus spp., Staphylococcus aureus (MRSA/VISA), Streptococcus pneumoniae, Acinetobacter sp., Pseudomonas aeruginosa, Escherichia coli. Neosorangicin A is currently of great interest due to the fact that it has weak or no cross-resistance to rifampicin, a commonly prescribed antibiotic, especially against Gram-negative bacteria. In addition, neosorangicin A has a higher and broader spectrum of activity towards both Gram-positive and Gram-negative bacteria when compared to sorangicin A.

Figure 1: Chemical structures of sorangicin A 1 and neosorangicin A 2
Neosorangicin A was found to be chemically and biologically similar to sorangicin A. However, it is the first derivative of this type known to be active against Gram-negative bacteria. Neosorangicin A has a 10-fold better activity on Staphylococcus aureus Newman in vitro compared to sorangicin A. Neosorangicin A also shows efficient intracellular activity
against Staphylococcus aureus Newman in human macrophages. It causes a 3-Log reduction of the total bacterial load in human macrophages while not expressing any apparent toxicity towards them. The minimum inhibitory concentration (MIC) values on S. aureus Newman are found to be $0.01,0.13,0.01 \mu \mathrm{~g} / \mathrm{ml}$ for neosorangicin A , sorangicin A and rifampicin respectively. The MIC values of neosorangicin A, sorangicin A and rifampicin (as a reference antibiotic) on a panel of selected Gram-positive and Gram-negative bacteria are represented in Table 1.

Table 1: MIC values for neosorangicin A (neosor A), sorangicin A (sor A), and rifampicin (rif) on various bacteria ${ }^{[5]}$

Bacteria species	neosor A	sor A	rif
Enterococcus faecalis DSM-20478	0.5	2	6.4
Enterococcus faecium DSM-20477	8	16	>6.4
Staphylococcus aureus ATCC29213	0.01	0.03	0.01
Staphylococcus aureus DSM-346	0.25	1	0.006
Staphylococcus aureus Newman	0.01	0.13	0.01
Staphylococcus aureus Newman (rif resistant)	>64	>64	>6.4
Streptococcus pneumoniae DSM-11865 (PRSP)	0.5	32	0.1
Acinetobacter baumannii DSM-30008	8	8	1.6
Escherichia coli DSM-1116	8	16	6.4
Escherichia coli DSM-1116 + 3 $\mu \mathrm{g} / \mathrm{ml}$ PMBN	0.25	0.25	0.4
Escherichia coli DSM-26863 (tolC3)	2	8	6.4
Escherichia coli (TolC-deficient)	1	8	6.4
Klebsiella pneumoniae DSM-30104	8	16	6.4
Pseudomonas aeruginosa PA-14	33	67	-
Pseudomonas aeruginosa DSM-1128	8	32	>6.4

As shown in Table 1, the MIC values of neosorangicin A against pathogens like Enterococcus spp., S. aureus, S. pneumoniae, A. baumannii, E. coli and P. aeruginosa are in the mid ng/ml and low $\mu \mathrm{g} / \mathrm{ml}$ area, indicating excellent inhibitory activity against Gram-positive as well as Gram-negative bacteria. On average, neosorangicin A is more active than sorangicin A by a factor of 2-10. However, both neosorangicin A and sorangicin A are not active towards rifampicin-resistant S. aureus Newman - suggesting that those compounds have overlying binding sites on the RNA polymerase. For Escherichia coli pathogens, the activity of both neosorangicin A and sorangicin A increases when sub-inhibitory concentrations of polymyxin B nonapeptide (PMBN) are added. Furthermore, for efflux-deficient E. coli mutants the MIC of neosorangicin A decreases. The in vitro tests on S. aureus RNA polymerase determined the half-inhibitory concentrations (IC_{50}) for neosorangicin A, sorangicin A and rifampicin, as
$0.06 \pm 0.01 \mu \mathrm{M}, 0.21 \pm 0.12 \mu \mathrm{M}$, and $0.03 \pm 0.02 \mu \mathrm{M}$ respectively. These results confirm that neosorangicin A demonstrates higher activity than sorangicin A.

1.3. Fermentation process of neosorangicin A

Soranginium cellulosum strain So ce 439 was stored at $-80^{\circ} \mathrm{C}$ and it was reactivated in 20 ml of liquid medium containing 0.5% soy peptone, 0.2% yeast extract, $0.1 \% \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.1 \%$ $\mathrm{CaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, 10 \%$ glucose $\cdot 7 \mathrm{H}_{2} \mathrm{O}$ and $8 \mathrm{mg} / \mathrm{l} \mathrm{Na}-\mathrm{Fe}-E D T A$. The culture was used for fermentation of the So ce439 strain in the same liquid medium as above but including also 2% amberlite XAD-16 resin. After completion of the fermentation process the XAD resin (1.71 kg) was sieved out and recovered. The XAD adsorber resin was first extracted with methanol/ $/ \mathrm{H}_{2} \mathrm{O}$ (3/7) and then again with pure methanol. The extracts were combined and evaporated to an aqueous mixture, which was diluted with water and extracted three times with ethyl acetate. The organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure to yield 5.3 g of crude extract. This crude extract was redissolved in methanol containing $1 \% \mathrm{H}_{2} \mathrm{O}$ and extracted three times with heptane. After evaporation of the combined organic layers under reduced pressure, 3.91 g of enriched crude extract were obtained. The enriched crude extract was taken in methanol and filtered through a Strata-column $(10 \mathrm{~g}, 55 \mu \mathrm{~m}, 70 \AA$) two times. After evaporation of the methanol, 3.45 g of crude extract were isolated. Finally, the crude extract was purified by RP-MPLC and 247 mg of pure neosorangicin A were obtained. The biotechnological production of neosorangicin A gives rather low yields, making the development of a multi-gram scale synthetic route of great practical and research interest ${ }^{[5]}$.

1.4. Structural similarities between neosorangicin A and sorangicin A

Neosorangicin A and sorangicin A can be considered as analogues based on their chemical similarities. Both compounds comprise of a characteristic bicyclic ether, a trisubstituted dihydropyran with a carbon side chain (carboxylic in the case of sorangicin A, and alcoholic in the case of neosorangicin A) and a tetrasubstituted tetrahydropyran moiety, which are incorporated in a 31-membered lactone. In addition, the macrocyclic lactone is highly unsaturated including a very sensitive (E, Z, Z)-trienoate linkage which in sorangicin A is theorized to be the cause for the instability of the natural product towards certain reagents. Based on the structural similarity, the synthesis of neosorangicin A can therefore be accomplished in a way that is analogous to that of sorangicin A.

1.5. Current progress towards the synthesis of sorangicin A

1.5.1. Total synthesis of Smith et al.

The first and so far the only successful total synthesis of sorangicin A $\mathbf{1}$ was achieved by the group of Amos B. Smith III in $2009^{[6,7]}$. The retrosynthesis of Smith et al. is shown in Scheme 1, where the molecule of sorangicin A 1 was split into four key building blocks: dioxabicyclooctane fragment 3, tetrahydropyran 4, dihydropyran fragment $\mathbf{6}$ and the Z, Z-diene 5. They first used a Julia-Kocienski olefination for the coupling of the dioxabicyclooctane fragment $\mathbf{3}$ with the tetrahydropyran $\mathbf{4}$, which upon a second Julia-Kocienski olefination was linked to the dihydropyran fragment $\mathbf{6}$. For incorporation of the (E, Z, Z)-trienoate system they used a Stille coupling between $\mathbf{3}$ and the Z, Z-diene $\mathbf{5}$. The last step was the macrolactonization and the ring closure under suitable conditions.

Scheme 1: Retrosynthetic approach of Smith et al. ${ }^{[6,7]}$ towards sorangicin A 1
The first Julia-Kocienski olefination turned out to be very challenging with respect to yields and stereoselectivity. Several combinations between bases and solvents were tested, the results of which are summarized in Table 2.

Table 2: Julia-Kocienski olefination between the dioxabicyclooctane fragment 3 and the tetrahydropyran fragment 4

Base	Solvents	Yield	E / Z ratio	Recovered sulfone	Recovered aldehyde
LiHMDS	DMF/HMPA (3:1)	24%	E-only	63%	36%
NaHMDS	DME/HMPA (3:1)	40%	$3.6: 1$	39%	23%
KHMDS	DME	54%	$2.0: 1$	0%	0%
LDA	DMF/HMPA (3:1)	11%	E-only	38%	42%
t-BuLi	DMF/HMPA (3:1)	39%	E-only	39%	13%

Using Jacobsen conditions (LiHMDS as a base and DMF/HMPA as a solvent mixture) the yield of the E-olefin 7 was low (24%) but the stereoselectivity was excellent, with only the
desired E-isomer observed in the product (Scheme 2). The replacement of the Li-ion with a Na-ion in the base resulted in a higher yield (40\%) but lower E / Z stereoselectivity (3.6:1). Surprisingly, when the standard E-selective conditions (KHMDS in DME) were used the observed E / Z stereoselectivity was the poorest (2.0:1), but provided the highest yield (54\%). The most suitable conditions with regards to both yield and stereoselectivity turned out to be the use of t-BuLi as a base and a mixture of DMF/HMPA as a solvent. This resulted in the formation of the steoreochemically pure E-olefin 7 in 39% yield.

Scheme 2: Formation of C(29) - C(30) and C(15) - C(16) trans olefins using Julia-Kocienski olefination

The second Julia-Kocienski olefination between sulfone 8 and aldehyde 9 was also troublesome. The use of LiHMDS as a base and a solvent mixture of DMF/HMPA (3:1) resulted in 30% yield and no E / Z stereoselectivity. Comparably low yield (28\%) was also observed when KHMDS in DME was used, but in this case only the desired E-isomer $\mathbf{1 0}$ was isolated (Scheme 2). Those results necessitated the inversion of the coupling partners. Sulfone 14 was obtained from (-)-10-epi-6 as shown in Scheme 3. Compound 6 was first globally desilylated and then the primary alcohol was chemoselectively silylated to yield alcohol $\mathbf{1 1}$. Ley oxidation of compound 11, followed by Luche reduction generated alcohol 12, which had inverted stereochemistry at the $\mathrm{C}(10)$ center. Silylation of compound $\mathbf{1 2}$ and a selective deprotection of the primary alcohol furnished compound 13. Mitsunobu thioetherification of
alcohol 13 and subsequent oxidation of the formed thioether afforded sulfone 14 (46% over eight steps).

Scheme 3: Synthesis of sulfone 14
Aldehyde $\mathbf{1 5}$ was prepared from compound $\mathbf{7}$ via a two-step sequence of desilylation and DessMartin oxidation. Sulfone $\mathbf{1 4}$ and aldehyde $\mathbf{1 5}$ were then coupled using KHMDS in DME. Under these conditions and after desilylation E-olefin 16 was isolated in 86% yield with the desired stereochemistry at $\mathrm{C}(10)$ (Scheme 4).

Scheme 4: Julia-Kocienski olefination between aldehyde 15 and sulfone 14
For the introduction of the sensitive (E, Z, Z)-trienoate moiety, the stable stannyl dienoate $\mathbf{5}$ and compound $\mathbf{1 6}$ took part in a Stille coupling reaction. The desired product $\mathbf{1 7}$ was isolated in
88% yield, although a large excess of $\mathrm{Ph}_{2} \mathrm{PO}_{2} \mathrm{NBu}_{4}$ (12 eq.) was necessary in order to avoid an E / Z isomerization. Geometrical isomerization was also not observed in the following hydrolysis of $\mathbf{1 7}$ to the trienoacid $\mathbf{1 8}$ with LiOH in THF (Scheme 5).

Scheme 5: Introduction of the (E,Z,Z)- trienoate moiety to obtain compound 18

The macrocyclization step was also very critical since the possibility of significant isomerization was high. Two mild conditions were used to obtain the necessary (E, Z, Z)-configured macrolactone 20: the Yonemitsu modification of the Yamaguchi conditions and the Evans-modified Mukaiyama protocol. Although those conditions resulted in solving the challenging step of macrolactonization, compound 20 was contaminated with small amounts of unwanted geometric isomers which were difficult to separate. To circumvent this problem, the modified Mukaiyama reagent 19, which has a non-nucleophilic counterion (i.e., tetrafluoroborate) was adopted (Scheme 6). The use of 19 resulted in minimum isomerization (ca. < 4\%) and the macrolide 20 was furnished in high yield (85\%).

Scheme 6: Macrocyclization of compound 18
In the next step the MOM protecting group was removed with TBSOTf and the tert-butyl ester was converted into the corresponding ester without destroying and/or isomerizing the highly sensitive (E, Z, Z)-trienoate linkage. Sorangicin A 1 could then be obtained by treating the crude product with 4 N HCl in THF with 70% yield for the last two steps (Scheme 7).

Scheme 7: Final deprotection steps from the total synthesis of sorangicin A 1

1.5.2. Formal synthesis of Crimmins et al.

The synthetic approach of Crimmins et al. ${ }^{[8]}$ towards the synthesis of sorangicin A $\mathbf{1}$ is shown in Scheme 8. They fragmented the molecule to the following three key building blocks: dioxabicyclooctane 21, tetrahydropyran 22 and dihydropyran 23 or $\mathbf{2 4}$. Comparing to the previously described approach by Smith et al. ${ }^{[6,7]}$, it can be seen that Crimmins et al. disconnected the fragments in the same manner, but planned to use cross metathesis for the formation of the $\mathrm{C}(29)-\mathrm{C}(30)$ and $\mathrm{C}(15)-\mathrm{C}(16)$ trans olefins.

Scheme 8: Retrosynthetic approach of Crimmins et al. ${ }^{[8]}$ towards sorangicin A 1
The first cross metathesis was to form the $\mathrm{C}(29)-\mathrm{C}(30)$ double bond. Before this can be accomplished compound 21 was subjected to acylation, ozonolysis and methylenation, a three-step process which afforded compound 25 in 85% overall yield (Scheme 9).

Scheme 9: Synthesis of compound 25

Compound 22 was also modified prior to the cross-metathesis step. Compound 22 was first converted to the corresponding aldehyde using modified Swern conditions, which allowed the selective deprotection and oxidation of the primary TES-ether. Vinyl iodide $\mathbf{2 6}$ was converted in situ to the vinyl zinc species which was added to the previously obtained aldehyde in a stereo controlled manner using Felkin-Anh addition ($8: 1 \mathrm{dr}$). The obtained 1,2-diol was finally protected as an acetonide in further two steps. The yield of the four-step sequence to convert compound 22 into compound 27 was 66% (Scheme 10).

Scheme 10: Synthesis of compound 27
The cross-metathesis between the dioxabicyclooctane 25 and tetrahydropyran 27 was accomplished by the use of Grubbs second generation (G2) catalyst and afforded compound $\mathbf{2 8}$ in $\mathbf{4 0 \%}$ yield. Compound $\mathbf{2 8}$ was subjected to TIPS-deprotection and Lindlar reduction as well as a replacement of the Piv protecting group with a PMB protecting group generating compound 29. In further two steps the TBS-ether in compound 29 was exchanged for a MOM-ether to obtain compound 30. The six-step sequence of converting compound $\mathbf{2 8}$ to compound $\mathbf{3 0}$ was accomplished in 55\% overall yield (Scheme 11).

Scheme 11: Cross-metathesis between dioxabicyclooctane fragment 25 and tetrahydropyran fragment 27

The second cross-metathesis was between compound $\mathbf{3 0}$ and dihydropyran 31. In this reaction Hoveyda-Grubbs second generation (HG2) catalyst was used. The desired product $\mathbf{3 2}$ was obtained in a low yield (16%). This was expected to be due to the formation of homodimer of the dihydropyran fragment $\mathbf{3 1}$ as well as of compound $\mathbf{3 0}$. Regardless of the low yield of the metathesis reaction compound $\mathbf{3 2}$ was transformed to compound $\mathbf{3 3}$ in three steps with a 31% overall yield (Scheme 12).

Scheme 12: Second cross-metathesis between compound 30 and dihydropyran fragment 31
Due to the low yield from the second cross-metathesis reaction, Crimmins et al. decided to use Julia-Kocienski olefination instead for the $\mathrm{C}(15)-\mathrm{C}(16)$ bond formation. To be able to perform this task some modifications of the previously used strategy for connecting the dioxabicyclooctane fragment and the tetrahydropyran fragment were necessary. First, compound $\mathbf{2 1}$ was converted into compound $\mathbf{3 4}$ in 82% yield via a three-step reaction sequence, consisting of PMB-protection, Johnson-Lemieux oxidation and Wittig olefination. Compound 34 and compound 22 were subjected to cross metathesis, using Grubbs second generation (G2) catalyst (Scheme 13). These conditions have yielded compound $\mathbf{3 5}$ in 77% as a single E-isomer.

Scheme 13: Cross-metathesis between dioxabicyclooctane fragment 34 and tetrahydropyran fragment 22

Compound 35 took part in a modified Swern oxidation which afforded the selective deprotection of the alcohol at $\mathrm{C}(21)$ and its subsequent oxidation to the corresponding aldehyde. The so formed aldehyde reacted in the next step with the vinyl zinc species formed from the vinyl iodide $\mathbf{3 6}$ to provide compound $\mathbf{3 7}$ in 61% overall yield. Manipulation of the protecting groups in $\mathbf{3 7}$ resulted in the formation of compound $\mathbf{3 8}$ in 45% yield over four steps (Scheme 14).

Scheme 14: Synthesis of compound 38

The next step was to utilize the vinyl iodide moiety. This was accomplished by oxidative cleavage of the PMB protecting group in compound 38, followed by a Dess-Martin oxidation of the primary alcohol and finally a Takai olefination. The E / Z stereoselectivity in the Takai reaction was $4: 1$ and after a purification by column chromatography the desired E-vinyl iodide 7 was obtained in 28% yield over three steps. The final aldehyde $\mathbf{1 5}$ necessary for the JuliaKocienski olefination was obtained in 68% yield over two steps (Scheme 15) from compound 7 by deprotecting the TBS-group via TBAF and oxidation of the primary alcohol using DessMartin periodinane (DMP).

Scheme 15: Synthesis of aldehyde 15

Modification of the synthetic route towards the dihydropyran moiety was also necessary. To afford the necessary sulfone 14 , compound 39 was added to acetaldehyde silyl ether $\mathbf{4 0}$ using Lewis acid. This generated aldehyde $\mathbf{2 4}$ as a single diastereomer in 82% yield. Aldehyde $\mathbf{2 4}$ was subjected successively to a reduction with NaBH_{4}, MOM-deprotection and TBS-protection to afford the bis-TBS ether 41 (83% yield over three steps). In four steps and with 72% yield over four reactions the PMB-ether was converted to tert-butyl ester $\mathbf{6}$. Ester 6 took part in a three-step sequence in order to furnish sulfone 14, which was identical to that obtained by Smith et al. ${ }^{[6,7]}$, in 52% overall yield. The final step was Julia-Kocienski olefination between aldehyde 15 and sulfone 14, using the already described protocol by Smith et al. Using this method, the $\mathrm{C}(1)-\mathrm{C}(38)$ fragment $\mathbf{3 3}$ was obtained in 79% yield (Scheme 16).

Scheme 16: Synthesis of the dihydropyran moiety 14 and Julia-Kocienski olefination between compound 14 and compound 15

1.5.3. Synthesis of the dihydropyran moiety

1.5.3.1. Synthesis of Smith et al.

The synthetic approach of Smith et al. ${ }^{[6,7]}$ towards the dihydropyran fragment of sorangicin A 1 started with the formation of enone 46 and vinyl bromide 50 . Enone 46 was obtained via a hetero Diels-Alder reaction between aldehyde 43 and the Danishefsky diene 44 (Scheme 17). The reaction was promoted by chromium(III) complex 45 and afforded enone 46 in 98% yield.

Scheme 17: Synthesis of enone 46
The synthesis of the vinyl bromide $\mathbf{5 0}$ adopted as a first step a Myers alkylation between amide 47 and alkyl iodide 48 and compound 49 was obtained in 99% yield (>20:1 dr). The amide 49
was then subjected successively to reduction, Corey-Fuchs homologation and hydrozirconation/bromination and the vinyl bromide $\mathbf{5 0}$ was formed in $\mathbf{6 5 \%}$ yield over four steps (Scheme 18).

1. i. $\mathrm{LiAlH}(\mathrm{OEt})_{3}$, ii. $\mathrm{TFA}, 1 \mathrm{~N} \mathrm{HCl}$
2. $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$
3. n-BuLi, Mel

4. i. $\mathrm{Cp}_{2} \mathrm{ZrHCl}$, ii. NBS

65\% (4 steps)
Scheme 18: Synthesis of the vinyl bromide 50

The cuprate, derived from the vinyl bromide 50, reacted with enone 46 in the presence of TESCl to furnish the enol ether $\mathbf{5 1}$ in 77% yield. Oxidation of $\mathbf{5 1}$ according to the Rubottom protocol and conversion of the TES-ether to a TBS-ether yielded compound 52 (51% over three steps). Next the enolate of compound $\mathbf{5 2}$ was formed using LDA/HMPA, which was followed by enol triflate formation using Comin's reagent. Finally, a palladium-catalyzed reduction afforded diene 41 in 77% yield over two steps. Compound (-)-10-epi-6 was formed from diene 41 by cleavage of the PMB-ether using DDQ, followed by a two-step oxidation (first DessMartin then Pinnick oxidation) and a tert-butyl ester formation (69% over four steps). Selective removal of the primary TBS protecting group in (-)-10-epi-6 followed by a Dess-Martin oxidation led to the formation of aldehyde $\mathbf{9}$ in 70% yield over two steps (Scheme 19).

Scheme 19: Synthesis of aldehyde 9

1.5.3.2. Synthesis of Crimmins et al.

Crimmins et al. ${ }^{[8]}$ reported in 2011 as a part of their formal synthesis an approach towards the synthesis of the $\mathrm{C}(1)-\mathrm{C}(15)$ fragment of sorangicin $\mathrm{A} \mathbf{1}$. Aldehyde $\mathbf{5 3}$ was adopted as a starting material. It was subjected to Wittig olefination, reduction and oxidation reactions to give finally the trisubstituted olefin $\mathbf{5 5}$ in $\mathbf{9 2 \%}$ overall yield. Aldehyde $\mathbf{5 5}$ was exposed to a Brown alkoxyallylation to obtain as a product the syn-1,2-diol 57 (96% yield). The diol 57 reacted with acrolein diethyl acetal to afford an intermediate diene, which was subjected to a ring-closing metathesis with Grubbs second generation (G2) catalyst and resulted in the formation of the mixed acetal 39 in 72% yield over two steps ($1: 1 \mathrm{dr}$). The mixed acetal 39 took part in a Hosomi-Sakurai reaction with allylTMS in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to obtain the allylated product 23 as a single diastereomer in 92% yield. To furnish the dihydropyran fragment 58, compound 23 was subjected subsequently to an oxidative cleavage of the PMB-ether, DessMartin oxidation, Pinnick oxidation and an ester formation. Ester 58 was obtained in 57% overall yield. Cleavage of the MOM-ether in compound $\mathbf{5 8}$ and subsequent TBS-protection led to the formation of compound $\mathbf{3 1}$ in 93% yield over two steps (Scheme 20).

Scheme 20: Synthesis of dihydropyran fragment 31

1.5.3.3. Synthesis of Lee et al.

Lee et al. ${ }^{[9]}$ proposed two synthetic approaches towards the dihydropyran fragment of sorangicin A 1. The first approach used alcohol 59 as a starting material. It was converted to a glycolic acid and subsequently to a pivalic anhydride. The so formed anhydride then reacted with (R)-3-lithio-4-benzyl-2-oxazolidinone (prepared in situ from (R)-4-benzyl-2oxazolidinone 60 and n-BuLi) to produce N-glycolyloxazolidinone 61 (80% over three steps). Compound 61 reacted with acrolein to furnish the hydroxy compound 62 (73% yield, $93: 7 \mathrm{dr}$) which underwent a TBS-protection and reductive cleavage of the chiral auxiliary in order to form compound 63 (80% yield over two steps). The desired dihydropyran fragment $\mathbf{6 4}$ was finally furnished in 86% yield using an olefinic ring-closing metathesis in the presence of Grubbs first generation (G1) catalyst (Scheme 21).

Scheme 21: Synthesis of compound 64, starting from compound 59

The second approach towards the dihydropyran fragment started from the chiral oxazolidinone 65 which participated in an aldol addition with acrolein to obtain the syn-aldol alcohol in 84% yield (92:8 dr). This was then protected as a TBS-ether to afford compound $\mathbf{6 6}$ in 91% yield. Reductive removal of the chiral auxiliary, followed by a TBS-protection and an oxidative removal of the MPM protecting group yielded alkenyl alcohol 67 in 77% over three steps. In the next step, diene $\mathbf{6 9}$ was formed in 67% yield ($98: 2 \mathrm{dr}$) by a reaction between the allylic carbonate $\mathbf{6 8}$ which was treated with trimethylphosphite-modified Wilkinson catalyst and the copper(I) alkoxide derived from alcohol 67. Finally, desilylation of the primary alcohol gave alcohol 63, which was followed by an olefinic ring-closing metathesis in the presence of Grubbs first generation (G1) catalyst to furnished the desired dihydropyran 64 in 65% yield over two steps (Scheme 22).

Scheme 22: Synthesis of compound 64, starting from compound 65

1.5.3.4. Synthesis of Srihari et al.

In 2013, Srihari et al. ${ }^{[10]}$ published a stereoselective approach towards the $\mathrm{C}(1)-\mathrm{C}(16)$ segment of sorangicin A 1. They started from geraniol $\mathbf{7 0}$ which was converted in three steps to aldehyde

71, which in turn was subjected to a Wittig olefination with ylide $\mathbf{5 4}$ to give ester $\mathbf{7 2}$ (64% yield over four steps). Ester 72 was converted to the Weinreb amide 74, using N, O dimethylhydroxylamine 73, and then to the α, β-unsaturated ketone 75 in 88% yield over two steps. Aldehyde 76 was obtained through chemoselective epoxidation of compound 75 followed by an oxidative cleavage with NaIO_{4} (88% over two steps). Upon treatment of aldehyde $\mathbf{7 6}$ with ylide 77, compound 78 was furnished in 90% yield (Scheme 23).

Scheme 23: Synthesis of ketone 78
Using Noyori's asymmetric transfer hydrogenation protocol (Scheme 24), ketone 78 was stereoselectively reduced with the use of ruthenium catalyst $\mathbf{8 0}$ to alcohols $\mathbf{8 1}$ and $\mathbf{8 2}$ in 95% yield as an inseparable diastereomeric mixture (5:1 dr). In contrast, while using (R)-Me-CBS catalyst $\mathbf{7 9}$ for the stereoselective reduction of ketone 78, alcohols $\mathbf{8 1}$ and $\mathbf{8 2}$ were obtained in lower yield (90%) and lower diastereoselectivity (4:1 dr).

a) $\mathbf{7 9}, \mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}$, THF, 90% ($4: 1 \mathrm{dr}$)
b) $\mathbf{8 0}, t$-BuOK, i-PrOH, 95%, (5:1 dr)

Scheme 24: Synthesis of alcohol 81 and alcohol 82

Alcohols 81 and $\mathbf{8 2}$ were stereoselectively reduced to the furfuryl alcohols $\mathbf{8 3}$ and 84 . The pyranone lactol was then formed by subjecting compounds $\mathbf{8 3}$ and $\mathbf{8 4}$ to an Achmatowicz oxidative rearrangement. The two diastereomers 85 and 86 of the pyranone lactol were separated easily at this stage via column chromatography. The alcohol group in $\mathbf{8 5}$ was then acetylated with a yield of 95%. The obtained acetate 87 was allylated at room temperature and under solvent-free conditions with allylTMS in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ to yield compound $\mathbf{8 8}$ (88% yield). Allylation of compound 87 in DCM and lower temperatures ($-78{ }^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$) resulted in lower yields and major formation of byproducts. Stereo- and chemoselective reduction of compound $\mathbf{8 8}$ under Luche's conditions afforded the desired dihydropyran moiety 89 in 94% yield (Scheme 25).

Scheme 25: Synthesis of dihydropyran fragment 89

1.5.3.5. Synthesis of Raghavan et al.

Raghavan et al. ${ }^{[11]}$ reported in 2016 the employment of gold(I)-catalyzed cyclisation of an allenic alcohol to furnish the $\mathrm{C}(1)-\mathrm{C}(15)$ fragment of sorangicin $\mathrm{A} \mathbf{1}$. For their synthetic approach, Raghavan et al. used as a starting material sulfide $\mathbf{9 0}$ which was protected as a benzyl ether 91. The benzyl ether 91 was converted to α-chloro sulfide 92 which reacted with the alkynylzinc reagent 94 , prepared from compound 93 , to give the propargylic sulfide 95 in 65% overall yield ($4.5: 5.5 \mathrm{dr}$). Sulfide 95 underwent reduction and hydrogenation to form alcohol $\mathbf{9 6}$ in 86% yield. Swern oxidation of $\mathbf{9 6}$ yielded aldehyde $\mathbf{9 7}$ in 90%. Compound 97 reacted with the Bestmann reagent 98 in an Ohira-Bestmann modification of the Seyferth-Gilbert homologation to furnished alkyne 99 (84% yield). Methylation of compound 99 afforded
alkyne $\mathbf{1 0 0}$ which in turn reacted with Schwartz reagent and upon quenching with iodine gave iodoalkene 101 (76% over two steps) (Scheme 26).

Scheme 26: Synthesis of iodoalkene 101
Aldehyde 112 was synthesized starting from D-tartaric acid 102 which was converted into chloroacetonide $\mathbf{1 0 3}$ in four steps. Upon treatment with LiNH_{2} the chloroacetonide $\mathbf{1 0 3}$ was transformed into an alkynol, which was protected as a MOM-ether $\mathbf{1 0 4}$ (81% yield over two steps). The MOM-ether $\mathbf{1 0 4}$ reacted with the Weinreb amide $\mathbf{1 0 5}$ to give ketone 106, which after a stereoselective Noyori reduction using catalyst 107, yielded alcohol 108 in 71% over two steps. Using Myers-Movassaghi protocol, alcohol $\mathbf{1 0 8}$ was converted to allene $\mathbf{1 1 1}$ in 83% yield. Allene 111 was then subjected to a PMB-deprotection followed by a Dess-Martin oxidation to obtain aldehyde $\mathbf{1 1 2}$ in 83% yield over two steps (Scheme 27).

Scheme 27: Synthesis of aldehyde 112
The reaction between the alkenyllithium derived from iodoalkene $\mathbf{1 0 1}$ and aldehyde $\mathbf{1 1 2}$ was highly sensitive to the reaction conditions with respect to yield and diastereoselectivity. The best results were obtained when an equimolar mixture of ZnCl_{2} and aldehyde $\mathbf{1 1 2}$ was added at $-78{ }^{\circ} \mathrm{C}$ to the alkenyllithium, followed by immediate warming to $0^{\circ} \mathrm{C}$ and quenching after 10 min . These conditions gave alcohol $\mathbf{1 1 4}$ in $\mathbf{6 0 \%}$ yield ($7: 3 \mathrm{dr}$). The undesired alcohol $\mathbf{1 1 3}$ was converted to the desired compound $\mathbf{1 1 4}$ via oxidation with DMP and subsequent Noyori hydrogenation (75% yield over two steps, 9:1 dr). The final transformation of the allenic alcohol $\mathbf{1 1 4}$ to dihydropyran $\mathbf{1 1 5}$ was accomplished using $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)_{2}$ in the presence of AgSbF_{6} in 62% yield (Scheme 28).

Scheme 28: Synthesis of dihydropyran fragment 115

1.6. Synthesis of Schinzer et al. - current progress

The retrosynthetic analysis of Schinzer et al. ${ }^{[12,13]}$ towards the sorangicin A $\mathbf{1}$ is shown in Scheme 29. They split the molecule into four key fragments: dioxabicyclooctane fragment 116, tetrahydropyran fragment 117, dihydropyran fragment 118 and side chain fragment $\mathbf{1 1 9 .}$

Scheme 29: Retrosynthetic approach of Schinzer et al. ${ }^{[12,13]}$ towards sorangicin A 1

1.6.1. Synthesis of the tetrahydropyran fragment $\mathbf{1 1 7}$

Schinzer et al. ${ }^{[12]}$ used 1,3-propanediol $\mathbf{1 2 0}$ as a starting material for the synthesis of the tetrahydropyran fragment 117. Selective protection of one of the alcohol groups in diol $\mathbf{1 2 0}$ as a TBS-ether, followed by Swern oxidation afforded aldehyde 121 in 79\% yield over two steps. Aldehyde $\mathbf{1 2 1}$ took part in an asymmetric crotylboration using (Z)-but-2-ene to yield the corresponding alcohol, which was then protected as a TIPS-ether 122 (60% over two steps). The terminal alkene moiety was dihydroxylated using OsO_{4} and both diastereomers $\mathbf{1 2 3}$ and

124 were isolated in $2: 1$ ratio (Scheme 30). Comparable diastereoselectivity was achieved while using AD-mix- α or AD-mix- β.

Scheme 30: Synthesis of diols 123 and 124
Diol 123 was protected as an acetonide using PTSA, acetone, and copper(II) sulfate, and simultaneously a selective deprotection of the primary alcohol took place. This was followed by Ley's oxidation and yielded aldehyde $\mathbf{1 2 5}$ in 62% over two steps. Aldehyde $\mathbf{1 2 5}$ then took place in a Z-selective Horner-Wadsworth-Emmons reaction with the Still-Gennari reagent to afford the corresponding ester as a single diastereomer. The ester was then reduced with DIBAL-H to alcohol 126 in 90% yield over two steps. Selective Sharpless epoxidation of alcohol $\mathbf{1 2 6}$ followed by a protection of the primary alcohol as a Bn-ether gave compound $\mathbf{1 2 7}$ in 45% yield over two steps. Finally, the tetrahydropyran fragment 117 was obtained from compound $\mathbf{1 2 7}$ via a ring-closing-epoxide-opening sequence in 82% yield (Scheme 31).

Scheme 31: Synthesis of tetrahydropyran fragment 117

1.6.2. Synthesis of the dioxabicyclooctane fragment $\mathbf{1 1 6}$

Schinzer et al. ${ }^{[12,13]}$ proposed two synthetic approaches towards the dioxabicyclooctane fragment $\mathbf{1 1 6}$ of sorangicin A 1. The first approach towards the dioxabicyclooctane fragment 116 was according to Scheme 32. Alcohol $\mathbf{1 2 8}$ was obtained using the same procedure as the
tetrahydropyran fragment (see Chapter 1.6.1), but starting from diol 124. The primary alcohol in compound $\mathbf{1 2 8}$ was protected as a TIPS-ether, the secondary alcohol as a PMB-ether, and finally TBAF-deprotection of the TIPS-ethers furnished the corresponding diol. The primary alcohol in this diol was protected as a TIPS-ether and the secondary alcohol $\mathbf{1 2 9}$ was obtained in 49% yield over four steps. The mesylation of alcohol $\mathbf{1 2 9}$ resulted in the formation of the dioxabicyclooctane fragment $\mathbf{1 1 6}$ (28% yield) and the mesylate $\mathbf{1 3 0}$ (59% yield). Mesylate $\mathbf{1 3 0}$ was then subjected to deprotection of the PMB-ether, followed by a cyclisation to obtain the desired dioxabicyclooctane fragment $\mathbf{1 1 6}$ in 45\% yield over two steps.

Scheme 32: Synthesis of dioxabicyclooctane fragment 116
The second approach to the dioxabicyclooctane fragment started from (S)-4-benzyl-1,3-oxazolidin-2-thion 131. Thion 131 was subjected to acylation with propionylchloride, which resulted in the formation of the corresponding ketone. The ketone then took part in an Evans anti-aldol reaction with aldehyde 132, followed by a removal of the TMS protecting group, which furnished alcohol $\mathbf{1 3 3}$ in 90% yield over 3 steps. Alcohol $\mathbf{1 3 3}$ was then acetylated in order to obtain compound $\mathbf{1 3 4}$ (99% yield). Compound $\mathbf{1 3 4}$ was subjected to a cyclisation under a cleavage of the auxiliary using NaHMDS, forming the keto lactone which was then methylated to afford compound $\mathbf{1 3 5}$ in 65% yield over two steps. Reduction of compound $\mathbf{1 3 5}$ with DIBAL-H yielded dihydropyranone 136 in 70\% (Scheme 33).

Scheme 33: Synthesis of dihydropyranone 136
Compound $\mathbf{1 3 7}$ was added to dihydropyranone 136, using scandium triflate as a catalyst to obtain compound $\mathbf{1 3 8}$ (72%, 6:1 dr). Stereoselective reduction of the carbonyl group with lithium triethylborohydride yielded the axial alcohol, and a reduction of the ester carbonyl group with DIBAL-H generated diol 139 in 82% yield. Diol 139 was subjected to a TBS-deprotection and protection as an acetonide in a one-pot reaction. The acetonide was acetylated and then hydrolyzed to diol 140 in another one-pot reaction (70% over two steps). The primary alcohol of diol $\mathbf{1 4 0}$ was protected as a TIPS-ether and the secondary as a triflate, giving compound $\mathbf{1 4 1}$ in $\mathbf{7 6 \%}$ yield over two steps. Compound 141 reacted with TBAF in THF, which allowed the deprotection of the TIPS-ether and initiated the formation of epoxide $\mathbf{1 4 2}$. Addition of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and methanol caused deacetylation and epoxide opening, followed by a cyclisation to obtain the desired dioxabicyclooctane fragment 144 (62\% yield). Parikh-Doering oxidation of the primary alcohol in compound 144 followed by a Colvin rearrangement furnished alkyne 145 (62% over two steps), which was necessary for the later elaboration of the E, Z, Z-triene moiety (Scheme 34).

Scheme 34: Synthesis of alkyne 145

1.6.3. Synthesis of the dihydropyran fragment $\mathbf{1 1 8}$

The synthesis of Schinzer et al. ${ }^{[12]}$ of the dihydropyran fragment $\mathbf{1 1 8}$ adopted L-glucose $\mathbf{1 4 6}$ as a starting material. In a one-pot reaction the L-glucose was converted to tri- O-acetyl-L-glucal, which was subsequently deprotected with $\mathrm{Et}_{3} \mathrm{~N} / \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ to obtain the corresponding triol. The so formed triol then took part in a carbon Ferrier rearrangement to yield diol 147 (68% over three steps). TBS-protection of both hydroxyl groups in compound 147, followed by a Sharpless asymmetric dihydroxylation and oxidative cleavage of the vicinal diol afforded aldehyde 148 in 70% yield over two steps. Substituting $\mathrm{OsO}_{4} / \mathrm{NMO}$ in place of AD-mix- β during the dihydroxylation step decreased the yield of aldehyde $\mathbf{1 4 8}$ to 54% over two steps. Aldehyde 148 was then protected as an acetal 149 with a yield of 94%. Compound 149 underwent a selective deprotection of the primary alcohol generating compound $\mathbf{1 5 0}$. Swern oxidation of alcohol 150, followed by a Grignard addition with MeMgBr and an oxidation with DMP resulted in the formation of the desired dihydropyran fragment $\mathbf{1 1 8}$ with a yield of 57\% over four steps (Scheme 35).

Scheme 35: Synthesis of dihydropyran fragment 118

1.6.4. Synthesis of the carboxylic acid containing side chain $\mathbf{1 1 9}$

The construction of the side chain by Schinzer et al. ${ }^{[12]}$ was achieved starting from 6-heptanoic acid chloride 152. This was coupled with the Seebach auxiliary 151 and then alkylated using MeI to obtain compound 154 in a 66% yield over two steps. The Seebach auxiliary was cleaved via reduction with LAH to furnish the side chain 119 in 95% yield (Scheme 36).

Scheme 36: Synthesis of the side chain 119

2. Objectives of the thesis

Neosorangicin A 2 is a novel type of antibiotic and our group focused on its total synthesis. As already discussed before, the bicyclooctane fragment as well as the tetrahydropyran fragment of neosorangicin A $\mathbf{2}$ are identical to the ones in sorangicin A $\mathbf{1}$ (see Figure 1 in Chapter 1.2). In Chapter 1.6.1 and Chapter 1.6.2 we also saw that reliable synthetic approaches for these two key fragments have already been broadly studied and developed by previous members of the group. However, due to the structural differences between neosorangicin A 2 and sorangicin A 1, the synthesis of the dihydropyran and the side chain fragments (as described in Chapter 1.6.3 and Chapter 1.6.4) cannot be directly used for the total synthesis of neosorangicin A 2. Therefore, the main objective of this thesis is the synthesis of the dihydropyran fragment of neosorangicin A 2. The synthesis of this fragment is quite challenging since it contains four stereogenic centers and an E-trisubstituted double bond in an α-position to the dihydropyran ring. The main focus of the current work is to develop a short synthetic pathway towards the dihydropyran fragment, with respect to maximal length of a single linear sequence. Moreover, this pathway should be high yielding and reproducible. Last, but not the least the established synthetic route towards the dihydropyran fragment of neosorangicin A should be scaled-up to a multigram scale.

3. Theoretical part

The retrosynthetic approach towards neosorangicin A $\mathbf{2}$ was similar to that of sorangicin A 1, due to the structural similarities between the two molecules. The molecule of neosorangicin A $\mathbf{2}$ was split into three key building blocks: dioxabicyclooctane fragment 116, tetrahydropyran 117, and dihydropyran fragment 154 (Scheme 37). The following chapters describe the efforts toward the synthesis of the $\mathrm{C}(1)-\mathrm{C}(12)$ dihydropyran fragment $\mathbf{1 5 4}$, since this fragment forms the main objective of this thesis.

Scheme 37: Retrosynthetic approach towards neosorangicin A by Schinzer et al.
Since this thesis explored the synthesis of the dihydropyran fragment 154 using multiple synthetic strategies, in interests of readability, the following chapters are organized in reverse order of the synthetic steps. We will therefore begin with connecting the $\mathrm{C}(1)-\mathrm{C}(5)$ side chain of the dihydropyran fragment 154, and work backwards to describe the various strategies we followed in synthesizing the necessary precursors from commercially available compounds. Although the stereochemical configuration of the dihydropyran ring of neosorangicin A can be derived from L-galactose, we used D-galactose as a starting point in our synthesis for two reasons. Most importantly, D-galactose is ca. 3000 times less ${ }^{1}$ expensive to source commercially, making synthetic strategies that incorporate the conversion of D-galactose to L-galactose more attractive. However, this conversion is time consuming and also limits the amount of starting material available in the early steps of the synthesis. Once a reliable and reproducible synthetic route has been demonstrated to work using D-galactose, we expect that it can be applied to its enantiomer L-galactose with no changes required apart from the additional step of its conversion. However, since our synthesis builds on D-galactose, it is

[^0]necessary to preserve homochiral relationships within the molecule because interaction effects may affect the outcomes of various synthetic strategies.

3.1. Incorporation of the side chain

Based on the biological experiments carried by Müller et al. with isolated neosorangicin A $\mathbf{2}^{[5]}$, the side chain of the molecule is responsible for the biological activity. In contrast to sorangicin A $\mathbf{1}$ the side chain of neosorangicin A $\mathbf{2}$ is shorter and doesn't contain a carboxylic acid. Although relatively short, the side chain is synthetically challenging since it contains two stereo centers and a trisubstituted E-double bond in an α-position to the dihydropyran ring. Considering all of the characteristic features of the side chain, we envisioned two prospective coupling strategies for incorporating the side chain and obtaining the dihydropyran moiety with the desired stereochemistry as shown in general formula 155 (Scheme 38). The first is via a carbometallation reaction using alkyne 156 and epoxide 157 and the second uses a Julia-Kocienski olefination between methyl ketone 158 and sulfone 159.

155

Scheme 38: Retrosynthesis of the dihydropyran fragment 155

3.1.1. Attempt to introduce the side chain via carboalumination

One possibility to obtain the necessary trisubstituted E-double bond and at the same time obtain the necessary stereochemistry at $\mathrm{C}(2)$ and $\mathrm{C}(3)$ is via a carbometallation of an alkyne with general formula 156 and opening of epoxide 157 through a nucleophilic addition (Scheme 38). One advantage of this method is the fact that it allows for control over the geometry at the double bond by choosing a suitable metal, which gives rise to the syn-product in the carbometallation step. The stereochemistry at $\mathrm{C}(2)$ and $\mathrm{C}(3)$ is determined by the stereochemistry of the epoxide used for the nucleophilic attack. Another advantage of the
carbometallation method is the fact that it has the minimum length for the longest linear sequence.

The general mechanism of carbometallation is shown in Scheme 39. The carbon-metal σ-bond in 160 reacts with the carbon-carbon π-bond of the alkyne triple bond in $\mathbf{1 6 1}$. This leads to the formation of a new carbon-carbon σ-bond and a carbon-metal σ-bond ${ }^{[14,15]}$. The carbon-metal bond can then react further with a variety of electrophiles generating products 164 and/or 165 . Highly geometrically pure products can be obtained as a result of the carbometallation of alkynes. The syn- or anti-addition can be influenced by the choice of a suitable metal, since some metals (e.g. aluminium, titanium, copper, etc.) give preferentially the syn-product 162, while others (e.g. lithium, magnesium, zinc, etc.) yield the anti-addition product 163.

Scheme 39: General mechanism of the carbometallation of alkynes

For our purposes two conditions should be met: first, the carbometallation should afford the syn-product and second, a methyl group should be added in an α-position to the dihydropyran ring. Since zirconocene dichloride catalyzed carboalumination ${ }^{[16,17]}$ fulfilled both these conditions, it was the method of choice for the carbometallation of an alkyne with a general formula 156. The aluminium reagent necessary for the addition of the methyl group was trimethyl aluminium which should yield the syn-alkenylalane. The mechanism of the Zr-catalyzed carboalumination of alkynes was described in detail by Negishi et al. ${ }^{[14,15,17,18]}$ (Scheme 40).

Scheme 40: Mechanism of zirconocene-catalyzed carboalumination of alkynes

First, the active catalytic species 167 is formed by transmetallation of a methyl group from aluminium to zirconium. The aluminium then abstracts a chloride from the zirconium species, forming a cationic zirconium species, which is associated with an anionic aluminum complex. The zirconium cation coordinates then to alkyne $\mathbf{1 6 8}$ forming intermediate 169 and a migratory insertion of a methyl group generates intermediate 170. Next, the vinyl zirconium species 170 undergoes a reversible but stereoretentive transmetallation with an organoaluminium to provide the alkenylalane 172, and to regenerate the zirconocene dichloride catalyst ${ }^{[14,15,17,18]}$ (Scheme 40). Alkenylalane $\mathbf{1 7 2}$ is not nucleophilic enough to deliver organic groups to electrophilic substrates. However, upon activation by a nucleophile like n-BuLi (Scheme 41), the resulting aluminate $\mathbf{1 7 3}$ is highly nucleophilic. It adds to electrophiles such as $\mathbf{1 5 7}$ with retention of configuration at the migration carbon, generating products such as $\mathbf{1 7 4}{ }^{[19]}$. Thus, stereospecific methylalumination followed by nucleophilic attack provides a method for the stereospecific synthesis of trisubstituted olefins from alkynes.

Scheme 41: General mechanism for epoxide opening via nucleophilic substitution
Our initial approach was using alkyne 175, obtained from D-galactose 237 (see Chapter 3.2.1) in nine steps with an overall yield of 28%, and the commercially available epoxide 157. The
terminal alkyne $\mathbf{1 7 5}$ was subjected to a one-pot reaction of methylalumination with trimethyl aluminium and catalytic amount of zirconocene dichloride. This was followed by a nucleophilic activation with n-BuLi of the formed alkenylalane, and finally a nucleophilic addition to epoxide $\mathbf{1 5 7}^{[19]}$ (Scheme 42).

Several conditions have been tried with respect to the formation of the active catalytic species and are summarized in Table 3. Unfortunately, none of our efforts resulted in the formation of the expected product 176. In all cases we were able to isolate only the starting materials. It is worth noting that neither catalytic ${ }^{[19,20]}$ nor stochiometric ${ }^{[21,22]}$ amounts of zirconocene dichloride resulted in any improvement. Raising the temperature from $0^{\circ} \mathrm{C}$ to room temperature ${ }^{[15,20,21]}$ as well as the addition of water ${ }^{[19,20,23]}$ to accelerate the reaction rate also did not result in any positive outcome.

Scheme 42: Attempted one-pot synthesis of compound 176
Table 3: Reaction conditions for the attempted one-pot synthesis of alkyne 175

Entry	Educt	Conditions	Product (yield)
1		$\mathrm{Me}_{3} \mathrm{Al}$ (4 eq) $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(0.07 \mathrm{eq})$ $\mathrm{H}_{2} \mathrm{O}$ (1.3 eq) DCM $2 \mathrm{~h},-41^{\circ} \mathrm{C}$	 (0\%)
2	175	$\mathrm{Me}_{3} \mathrm{Al}$ (2 eq) $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(0.5 \mathrm{eq})$ $\mathrm{H}_{2} \mathrm{O}(1.5 \mathrm{eq})$ DCE $30 \mathrm{~min}, 0^{\circ} \mathrm{C}$; ON, RT	176 (0\%)
3	175	$\begin{aligned} & \mathrm{Me}_{3} \mathrm{Al}(2 \mathrm{eq}) \\ & \mathrm{Cp}_{2} \mathrm{ZrCl}_{2}(1 \mathrm{eq}) \\ & \mathrm{DCM} \\ & 48 \mathrm{~h}, \mathrm{RT} \end{aligned}$	176 (0\%)

Since all our efforts to produce $\mathbf{1 7 6}$ with the one-pot method failed to give the desired results, we tried to better understand each of the individual steps comprising the one-pot reaction to identify the cause for failure. To this purpose, we decided first to trap the vinylalane as iodide 177 (Scheme 43), and in a second step, to open and add epoxide $\mathbf{1 5 7}$ to the vinyl iodide 177.

This strategy also proved to be unsuccessful and resulted only in the reisolation of the educt 175. Neither an increase of temperature ${ }^{[24]}$ nor an increase in the amount of zirconocene dichloride ${ }^{[15,25]}$ resulted in the formation of the desired vinyl iodide $\mathbf{1 7 7}$. These results led us to the conclusion that the formation of the alkenylalane was obstructed by either steric or electronic factors, resulting in the unsuccessful reactions observed.

Scheme 43: Attempted synthesis of vinyl iodide 177

Analyzing the previously obtained results we identified two regions of alkyne $\mathbf{1 7 5}$ that might be responsible for the previously described synthetic obstacles: the first was the protecting group (blue region) and the second was the allylic side chain (yellow region). To test these hypotheses, we synthesized two further alkynes ($\mathbf{1 7 8}$ and 179) in which only one of the two regions has been modified in order to identify the cause for failure of the carboalumination synthetic strategy (Scheme 44).

Scheme 44: Investigating the two suspected causes of failure of the carboalumination step
First, we investigated the influence of the protecting group on the carboalumination reaction. For that purpose, we obtained alkyne $\mathbf{1 7 8}$ in ten steps in 25% overall yield, starting from D-galactose (see Chapter 3.2.2). Alkyne $\mathbf{1 7 8}$ was subjected to a zirconocene-catalyzed carboalumination. Unfortunately, none of the changes in the reaction conditions (temperature ${ }^{[20,21]}$, stochiometric ratios of the reactants ${ }^{[15,21]}$, solvents ${ }^{[20,24]}$, or the addition of water ${ }^{[19,23]}$) resulted in the formation of the trisubstituted olefin $\mathbf{1 8 0}$ or the vinyl iodide $\mathbf{1 8 1}$ (Scheme 45). Most importantly, as in the case of the TBS-protected alkyne 175, we were able to recover only the starting material 178, which indicated that the alkenylalane formation was not taking place. These results refute the hypothesis that the protecting group is responsible for the failure of the reaction.

Scheme 45: Attempts for carboalumination of alkyne 178

In order to investigate the influence of the allylic side chain on the carboalumination reaction we synthesized alkyne 179 in twelve steps and with 15% overall yield, using D-galactose as a starting material (see Chapter 3.2.3). In this case the carboalumination ${ }^{[17]}$ proceeded with a full conversion of the starting material. However, the isolated product didn't correspond either to compound 182 or to compound 183 (Scheme 46).

Scheme 46: Attempts for carboalumination of alkyne 179
As a summary we can conclude that alkynes of general formula 156, where $\mathrm{PG}=\mathrm{TBS}, \mathrm{MOM}$ and $\mathrm{R}=$ allyl, $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OCH}_{3}\right)_{2}$, proved to be unsuitable for the desired carbometallation reaction under the examined conditions.

3.1.2. Attempt to introduce the side chain via hydrometallation

Another approach for obtaining compound $\mathbf{1 5 5}$ is with the use of a homopropargylic alcohol 185, which can be obtained by opening epoxide 157 and adding it to alkyne of general formula 184 (Scheme 47). A methyl group can be then added to the triple bond of alcohol $\mathbf{1 8 5}$ in order to obtain the trisubstituted E-olefin 155 .

Scheme 47: Synthesis of homopropargylic alcohols with general formula 185

Using alkyne 175 and the commercially available epoxide 157 in the presence of $n-\mathrm{BuLi}$ and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}^{[26-28]}$, homopropargylic alcohol 186 was obtained with a yield of 71% (Table 4, entries $1-5$). The use of analogous conditions for alkyne $\mathbf{1 7 8}$ and epoxide $\mathbf{1 5 7}$ didn't result in the formation of the expected homopropargylic alcohol 187 even after optimization of the reaction conditions (Table 4, entries 6 and 7).

Table 4: Optimization of the reaction conditions for the synthesis of homopropargylic alcohols

Entry	Substrate	Conditions	Product (yield)
1		$\begin{aligned} & \hline \mathbf{1 5 7}(1 \mathrm{eq}) \\ & n-\mathrm{BuLi}(1 \mathrm{eq}) \\ & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{eq}) \\ & 2 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	
2	175	$\begin{aligned} & \mathbf{1 5 7}(1 \mathrm{eq}) \\ & n-\mathrm{BuLi}(1.4 \mathrm{eq}) \\ & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1 \mathrm{eq}) \\ & 2 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	186 (54\%)
3	175	$\begin{aligned} & \mathbf{1 5 7}(1.1 \mathrm{eq}) \\ & n-\mathrm{BuLi}^{(2 \mathrm{eq})} \\ & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.1 \mathrm{eq}) \\ & 2 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	186 (57\%)
4	175	$\begin{aligned} & \mathbf{1 5 7}(1.5 \mathrm{eq}) \\ & n-\mathrm{BuLi}^{(2 \mathrm{eq})} \\ & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.4 \mathrm{eq}) \\ & 3 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	186 (64\%)
5	175	$\begin{aligned} & \mathbf{1 5 7}(1.4 \mathrm{eq}) \\ & n-\mathrm{BuLi}(3 \mathrm{eq}) \\ & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{eq}) \\ & 2 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	186 (71\%)

Entry	Substrate	Conditions	Product (yield)
6		$\begin{aligned} & \hline \mathbf{1 5 7}(1 \mathrm{eq}) \\ & n-\operatorname{BuLi}(2 \mathrm{eq}) \\ & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(1.4 \mathrm{eq}) \\ & 3 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	
7	178	$\begin{aligned} & 157(1.5 \mathrm{eq}) \\ & n-\mathrm{BuLi}(3 \mathrm{eq}) \\ & \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{eq}) \\ & 3 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	187 (0\%)

Next, a hydrometallation of homopropargylic alcohol $\mathbf{1 8 6}$ should afford a compound with a general formula 188 (Scheme 48). The leaving group should be introduced in an α-position of the dihydropyran ring and should be replaced with a methyl group in a following step.

Scheme 48: General scheme for the introduction of a leaving group ($L G$) in an α-position of the dihydropyran ring

Several approaches, including hydroalumination, hydrosulfuration, hydrostannylation, etc. are described in the literature ${ }^{[29-35]}$ for the introduction of different leaving groups. In our case two main factors should be considered: first, we have a homopropargylic alcohol and second, we have a dihydropyran ring in an α-position to the triple bond. These two limiting factors together with the necessary E-geometry of the final trisubstituted double bond narrowed down the synthetic approaches we could choose from for accomplishing this challenging task.

3.1.2.1. Hydroalumination of $\mathbf{1 8 6}$ via Red-Al ${ }^{\circledR}$

The first method we explored was the hydroalumination approach. The anti-hydroalumination of homopropargylic alcohols with high stereoselectivity can be observed while using sodium bis(2-methoxyethoxy)aluminium hydride (Red-Al ${ }^{\circledR}$) as a reducing agent. Generally, the high stereoselectivity of the reaction can be explained by the formation of an intermediate alkenyl aluminate $\mathbf{1 9 0}$ which is formed after the trans addition of aluminium-hydrogen to the triple bond of homopropargylic alcohol 189 (Scheme 49) ${ }^{[29]}$.

Scheme 49: Mechanism of the hydroalumination with Red-Al ${ }^{\circledR}$ of homopropargylic alcohols
The reaction of homopropargylic alcohol 186 with Red- Al^{\circledR} in refluxing $\mathrm{THF}^{[29]}$ and afterwards treatment with iodine at $-78^{\circ} \mathrm{C}$ didn't result in the formation of the desired product 192 (Scheme 50). Thus, several variations of the reaction conditions were explored and are summarized in Table 5 . Unfortunately, all the attempted reactions resulted only in the recovery of the educt 186. As a conclusion we can say that the hydroalumination of the homopropargylic alcohol $\mathbf{1 8 6}$ induced by the coordinatively saturated nucleophilic reagent Red-Al ${ }^{\circledR}$ appeared to be ineffective.

Scheme 50: Attempt to synthesize 192 via hydroalumination with Red-Al ${ }^{\circledR}$

Table 5: Reaction conditions for the attempted hydroalumination of homopropargylic alcohol 186 via Red-Al ${ }^{\circledR}$

Entry	Educt	Conditions	Product (yield)
1		$\begin{aligned} & \hline \mathrm{Red}-\mathrm{Al}^{\circledR}(3 \mathrm{eq}) \\ & \mathrm{I}_{2}(2.4 \mathrm{eq}) \\ & 30 \mathrm{~min}, \mathrm{RT} \end{aligned}$	 (0\%)
2	186	$\begin{aligned} & {\mathrm{Red}-\mathrm{Al}^{\circledR}(1.2 \mathrm{eq})}_{\mathrm{I}_{2}(2.4 \mathrm{eq})}^{1.5 \mathrm{~h}, \mathrm{RT}} \end{aligned}$	192 (0\%)
3	186	$\begin{aligned} & {\mathrm{Red}-\mathrm{Al}^{\circledR}(3 \mathrm{eq})}^{\mathrm{I}_{2}(2.4 \mathrm{eq})} \\ & 1.5 \mathrm{~h}, \mathrm{RT} \end{aligned}$	192 (0\%)
4	186	$\begin{aligned} & \mathrm{Red}^{-\mathrm{Al}^{®}}(3 \mathrm{eq}) \\ & \mathrm{I}_{2}(2.4 \mathrm{eq}) \\ & 1.5 \mathrm{~h}, \text { reflux } \end{aligned}$	192 (0\%)
5	186	$\begin{aligned} & {\operatorname{Red}-\mathrm{Al}^{\circledR}}^{(4 \mathrm{eq})} \\ & \mathrm{I}_{2}(6 \mathrm{eq}) \\ & 30 \mathrm{~min}, \mathrm{RT} \end{aligned}$	192 (0\%)

3.1.2.2. Hydroalumination of $\mathbf{1 8 6}$ via Me 3 Al and DIBAL-H or DIBAL-H only

 Another possibility for the anti-hydroalumination of the homopropargylic alcohol $\mathbf{1 8 9}$ is its sequential treatment with $\mathrm{Me}_{3} \mathrm{Al}$ and DIBAL- $\mathrm{H}^{[30]}$ or the use of DIBAL-H both as metalating and hydroaluminating agent ${ }^{[30]}$. In contrast to the hydroalumination with Red- Al^{\circledR}, the hydroalumination with $\mathrm{Me}_{3} \mathrm{Al}$ and DIBAL-H or DIBAL-H only is non-stereoselective in its initial addition step to generate intermediate 193. The observed E / Z ratios are obtained after an additional chelation-controlled isomerization step, furnishing intermediate 194 (Scheme 51).

Scheme 51: Mechanism of the hydroalumination via DIBAL-H of homopropargylic alcohols

Unfortunately, when applied towards our homopropargylic alcohol 186 (Scheme 52), neither of these hydroalumination conditions ($\mathrm{Me}_{3} \mathrm{Al}$ and DIBAL-H ${ }^{[30]}$ or DIBAL-H only ${ }^{[30]}$) resulted in the formation of the expected product 192. These results suggested that a probable cause for failure might be either the steric hindrance of the triple bond or the electronic effects of the dihydropyran ring and/or the homopropargylic alcohol group.

Scheme 52: Attempt to synthesize 192 via hydroalumination with DIBAL-H

3.1.2.3. Hydrosulfuration of $\mathbf{1 8 6}$ via n-BuSH

Another possibility for the addition of a leaving group at the triple bond of the homopropargylic alcohol 186 would be a hydrosulfuration. Successful addition of BuS-group to propargylic alcohols has already been described ${ }^{[31,32]}$, but the addition of the BuS-group occurs in an α-position to the secondary alcohol. We decided to examine if an addition will occur in the case of homopropargylic alcohol 186, and if yes, will the addition occur at a β - or a γ-position to the secondary alcohol group. We carried out the hydrosulfuration of alcohol 186 with the use of n-BuSH and KOH in DMF (Scheme 53). Unfortunately, even after stirring the reaction
for 3 days at $50^{\circ} \mathrm{C}$, we didn't observe the formation of compound 195 and we were able to recover only the educt $\mathbf{1 8 6}$.

Scheme 53: Attempt to synthesize 195 via hydrosulfuration

3.1.2.4. Hydrostannylation of $\mathbf{1 8 6}$ via $n_{-B} u_{3} S n H$

Hydrostannylation is another possible way for the addition of a leaving group (SnBu_{3}-group) at the triple bond of the homopropargylic alcohol 186. The reaction was done using n - $\mathrm{Bu}_{3} \mathrm{SnH}$ and $\mathrm{PdCl}_{2}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}$ as a catalyst ${ }^{[33-35]}$. It is worth noting that the tributyltin hydride should be added dropwise in order to minimize the homocoupling reaction. The homopropargylic alcohol 186 reacted under these conditions to yield a new compound, which was detected by TLC. The newly formed compound was purified, but the observed yield of 17% was not satisfactory. Analysis via NMR-spectroscopy showed that addition did in fact take place, but not as expected. The SnBu_{3}-group added to the double bond from the allylic side chain instead of the homopropargylic triple bond and as a result instead of compound 196 we isolated compound 197 (Scheme 54). These results led us to the conclusion that the allylic side chain participates in a competing side reaction, hence we were not able to obtain the desired product 196.

Scheme 54: Attempt to synthesize 196 via hydrostannylation

3.1.3. Julia-Kocienski olefination

At this point several other strategies appeared to be a sensible choice for furnishing the necessary trisubstituted E-double bond. Amongst them reactions like Wittig, Horner-Wadsworth-Emmons and Julia-Kocienski olefinations were the most promising. Literature search ${ }^{[36]}$ and previous efforts from our group ${ }^{[37]}$ narrowed down the choice to the JuliaKocienski olefination. The exact mechanistic pathway is not yet known, but Scheme 55 describes a general mechanism with benzothiazole-2-yl (BT) sulfones as an example. Besides BT, pyridine-2-yl (PYR), 1-phenyl-1 H-tetrazole-5-yl (PT), 1-tert-butyl-1 H-tetrazole-5-yl (TBT) are widely used as activating groups (Figure 2). The α-metalated benzothiazolyl sulfone nucleophile 198 adds to the carbonyl electrophile 199 to form the diastereomeric pair of synand anti- β-alkoxy sulfone intermediates 200. Syn-200 and anti-200 can undergo a spontaneous Smiles rearrangement forming spirocyclic intermediates trans-201 and cis-201, respectively. Trans- and cis-201 in turn open to generate syn- and anti- β-aryloxy sulfinates 202, respectively. Elimination of sulfur dioxide and a lithium aryloxide 204 from the syn-202 leads to the formation of Z-alkene 203, whereas anti-202 yields the E-alkene $203{ }^{[38-40]}$ (Scheme 55).

Scheme 55: Mechanism of the Julia-Kocienski olefination

BT

PYR

PT

TBT

Figure 2: Activating groups commonly used in the Julia-Kocienski olefination (benzothiazole--2-yl (BT), pyridine-2-yl (PYR), 1-phenyl-1H-tetrazole-5-yl (PT), 1-tert-butyl-1H-tetrazole-5-yl (TBT))

The E / Z-ratio in this type of olefination is mainly influenced by two factors: the sulfone activating group and the cation of the base used. Our efforts were aimed at obtaining the necessary E-configuration, which is favored by phenyltetrazolyl and benzylthiazolyl activating groups as well as the presence of a Li-cation in the base ${ }^{[38-41]}$. All reagents and reaction conditions explored for the Julia-Kocienski olefination are summarized in Table 6.

Table 6: Reagent screening for the Julia-Kocienski olefination
Entry

Entry	Educt	Sulfone	Conditions	Product (yield)
5	205	210 (1 eq)	$\begin{aligned} & \mathrm{LiHMDS}(1.4 \mathrm{eq})^{1} \\ & \mathrm{CeCl}_{3}(0.4 \mathrm{eq}) \\ & \mathrm{DCM} \\ & 1 \mathrm{~h},-42^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathbf{2 1 1} \\ & (8 \%, E / Z=1: 16) \end{aligned}$
6	205	210 (1 eq)	$\begin{aligned} & \text { NaHMDS }(1.4 \mathrm{eq})^{1} \\ & \text { THF } \\ & 3 \mathrm{~h},-78{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathbf{2 1 1} \\ & (0 \%) \end{aligned}$
7			$\begin{aligned} & \text { LiHMDS }(1.4 \mathrm{eq})^{1} \\ & \text { THF } \\ & 3 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	
8	206	209 (1 eq)	LiHMDS (1.4 eq) ${ }^{1}$ DMF/HMPA (4:1 v/v) $30 \mathrm{~min},-42^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{2 1 2} \\ & (0 \%) \end{aligned}$
9	206	209 (1.2 eq)	LiHMDS (1.4 eq$)^{1}$ $\mathrm{CeCl}_{3}(0.4 \mathrm{eq})$ DCM $1 \mathrm{~h},-42^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{2 1 2} \\ & (0 \%) \end{aligned}$
10	206	209 (1 eq)	KHMDS (1.2 eq$)^{1}$ THF $2 \mathrm{~h},-78^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{2 1 2} \\ & (0 \%) \end{aligned}$
11	206	209 (1 eq)	KHMDS (1.2 eq$)^{1}$ 18-crown-6 (2 eq) THF $1 \mathrm{~h},-78{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{2 1 2} \\ & (0 \%) \end{aligned}$
12			$\begin{aligned} & \operatorname{LiHMDS}(1.4 \mathrm{eq})^{1} \\ & \text { THF } \\ & 3 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	
13	206 (1.4 eq)	210 (1 eq)	LiHMDS (1.4 eq$)^{2}$ THF $4 \mathrm{~h},-78^{\circ} \mathrm{C}$	212 (53\%, Z-only; $E / Z=1: 14$)
14	206	210 (1 eq)	$\begin{aligned} & \mathrm{LiHMDS}(1.4 \mathrm{eq})^{1} \\ & \mathrm{CeCl}_{3}(0.4 \mathrm{eq}) \\ & \mathrm{DCM} \\ & 1 \mathrm{~h},-42^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathbf{2 1 2} \\ & (34 \%, Z \text {-only; } E / Z=1: 12) \end{aligned}$

Entr	Educt	Sulfone	Conditions	Product (yield)
15	206	210 (1 eq)	KHMDS (1.4 eq) ${ }^{1}$ THF $3 \mathrm{~h},-78^{\circ} \mathrm{C}$	$\begin{aligned} & \hline \mathbf{2 1 2} \\ & (0 \%) \end{aligned}$
16	206	210 (1 eq)	NaHMDS (1.4 eq$)^{1}$ THF $3 \mathrm{~h},-78^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{2 1 2} \\ & (0 \%) \end{aligned}$
17			$\begin{aligned} & \operatorname{LiHMDS}(1.4 \mathrm{eq})^{1} \\ & \text { THF } \\ & 4 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	
18	207	209 (1.2 eq)	LiHMDS (1.4 eq$)^{1}$ DMF/HMPA (4:1 v/v) $1 \mathrm{~h},-42^{\circ} \mathrm{C}$	$\begin{aligned} & \mathbf{2 1 3} \\ & (0 \%) \end{aligned}$
19	207	209 (1.2 eq)	LiHMDS (1.4 eq$)^{1}$ $\mathrm{CeCl}_{3}(0.4 \mathrm{eq})$ THF $1 \mathrm{~h},-42^{\circ} \mathrm{C}$	$\begin{aligned} & 213 \\ & (0 \%) \end{aligned}$
20	207 (2.2 eq)	209 (1 eq)	$\begin{aligned} & \operatorname{LDA}(1 \mathrm{eq})^{1} \\ & \mathrm{CeCl}_{3}(1.02 \mathrm{eq}) \\ & \mathrm{THF} \\ & 1 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathbf{2 1 3} \\ & (0 \%) \end{aligned}$
21	207	209 (1 eq)	$\begin{aligned} & \text { NaHMDS }(1.4 \mathrm{eq})^{1} \\ & \text { THF } \\ & 4 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathbf{2 1 3} \\ & (0 \%) \end{aligned}$
22			$\begin{aligned} & \operatorname{LiHMDS}(1.4 \mathrm{eq})^{1} \\ & \text { THF } \\ & 4 \mathrm{~h},-78^{\circ} \mathrm{C} \end{aligned}$	$(38 \%, Z \text {-only; } E / Z=1: 20)$
23	207	210 (1 eq)	LiHMDS (1.4 eq$)^{1}$ $\mathrm{CeCl}_{3}(0.4 \mathrm{eq})$ DCM $1 \mathrm{~h},-42^{\circ} \mathrm{C}$	$\begin{aligned} & 213 \\ & (5 \%, Z \text {-only; } E / Z=1: 20) \end{aligned}$
24	207	210 (1 eq)	$\begin{aligned} & \text { NaHMDS }(1.4 \mathrm{eq})^{1} \\ & \text { THF } \\ & 3 \mathrm{~h},-78{ }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \mathbf{2 1 3} \\ & (0 \%) \end{aligned}$

Entry
${ }^{1}$ Premetallation conditions (base added to the sulfone and then the ketone was added)
2 'Barbier' conditions (base added to a mixture of the sulfone and the ketone)
Using ketone 205 (obtained from D-galactose 237 in ten steps with an overall yield of 28% see Chapter 3.2.1) and phenyltetrazolyl sulfone 209 (obtained from cis-2-butene 278 and acetaldehyde $\mathbf{2 7 9}$ in four steps with an overall yield of 49% - see Chapter 3.2.5) we tried JuliaKocienski olefination with a variety of bases (LiHMDS ${ }^{[42-44]}$, $\mathrm{NaHMDS}^{[42,45]}, \mathrm{LDA}^{[36,46]}$) as well as with the addition of additives such as anhydrous $\mathrm{CeCl}_{3}{ }^{[36,44,46]}$ for the precomplexation of ketone $\mathbf{2 0 5}$ (Table 6, entries 1 - 3). Unfortunately, no formation of the desired product 211 was observed by TLC in any of the cases. Entries 1 and 2 resulted in the reisolation of the starting materials, whereas a detectable decomposition of sulfone 209 was observed in the case of entry 3 (Table 6). Although Julia-Kocienski olefination is well known to be compatible with a great variety of functional groups ${ }^{[36,43,45-48]}$, we decided to study the steric effects of the protecting group at the secondary alcohol as well as the effect of the allylic side chain on the Julia-Kocienski olefination.

The steric effects of the protecting group on the Julia-Kocienski reaction was studied by replacing the bulky TBS-group with the smaller MOM-group. The obtained MOM-protected ketone 206 (obtained from D-galactose 237 in eleven steps with an overall yield of 36% - see Chapter 3.2.2) then took part in a Julia-Kocienski olefination reaction with the phenyltetrazolyl sulfone 209 (Table 6, entries 7 -11). Entries 7 - 9 incorporate LiHMDS as a base for the
formation of the metalated sulfone nucleophile. Entry 7 uses $\operatorname{THF}^{[36,42,44]}$ as a solvent, entry 8 - the more polar DMF and HMPA ${ }^{[43]}$ as a cosolvent and entry 9 uses THF as a solvent and anhydrous $\mathrm{CeCl}_{3}{ }^{[44]}$ for the precomplexation of ketone 206. Formation of the desired product 212 was observed in none of the cases, and it was only possible to recover the educts 206 and 209. We then tried conditions that promote the dissociation of the metal cation from the sulfone anion - KHMDS in THF ${ }^{[41,42,47]}$ and KHMDS in THF in the presence of 18-crown-6 ${ }^{[43]}$ (Table 6 , entries 10 and 11). Those conditions also didn't yield the desired product $\mathbf{2 1 2}$ and led only to the reisolation of the educts 206 and 209.

To study the effect of the allylic group we used two different strategies. The first was to convert the double bond to an aldehyde and then protect the carbonyl group in the form of a dimethyl acetal in order to obtain ketone 207 (synthesized from D-galactose 237 in thirteen steps with an overall yield of 14% - see Chapter 3.2.3). The results from the Julia-Kocienski olefination between ketone $\mathbf{2 0 7}$ and the phenyltetrazolyl sulfone $\mathbf{2 0 9}$ are summarized in Table 6 (entries $17-21$). The use of LiHMDS in THF ${ }^{[36,42,44]}$, LiHMDS in the polar DMF with HMPA ${ }^{[43]}$ as a cosolvent, or LiHMDS in THF in the presence of an activator (anhydrous $\mathrm{CeCl}_{3}{ }^{[44]}$) didn't produce the expected product 213. Using LDA and $\mathrm{CeCl}_{3}{ }^{[36,44,46]}$ for the precomplexation of ketone $\mathbf{2 0 7}$ or changing the counter-cation in the base to Na-cation ${ }^{[41,43]}$ also didn't yield product 213. Under all of the examined reaction conditions we observed no change in either the sulfone $\mathbf{2 0 9}$ or the ketone 207 and we were able to recover them at the end of the reaction.

The second strategy that we adopted for studying the effect of the allylic group was using ketone 208 (obtained from D-galactose 237 in ten steps with an overall yield of 10% - see Chapter 3.2.4). This allows us to perform first the Julia-Kocienski olefination and then at a later stage to incorporate the allylic side chain via Ferrier rearrangement. Ketone 208 was reacted with phenyltetrazolyl sulfone 209 (Table 6, entry 25) in the presence of LiHMDS ${ }^{[36,42,44]}$ as a base, but formation of the desired product 214 was not observed. No change in either the sulfone $\mathbf{2 0 9}$ or the ketone $\mathbf{2 0 8}$ was detected by TLC and we were able to recover both starting materials at the end of the reaction.

Analyzing the obtained results so far, we decided as a next step to investigate the influence of the aromatic activator of the sulfone on the Julia-Kocienski olefination, thus we synthesized benzylthiazolyl sulfone 210 (obtained from cis-2-butene 278 and acetaldehyde 279 in four steps with an overall yield of 43% - see Chapter 3.2.5). Each of the previously discussed ketones 205, 206, 207 and 208 was reacted with benzylthiazolyl sulfone $\mathbf{2 1 0}$ under three
different conditions (Table 6, entries $4-6,12-16,22-24$ and $26-27$). The conditions we chose for conducting these olefinations are: first, LiHMDS in $\mathrm{THF}^{[36,42,44]}$ since the Li^{+} counter-cation is mostly preferred when E-olefins are the target products; second, LiHMDS with addition of anhydrous $\mathrm{CeCl}_{3}{ }^{[44]}$ for precomplexation of the ketone; and third, NaHMDS or KHMDS in $\mathrm{THF}^{[41-43,47]}$ since the Na^{+}or the K^{+}counter-cation will promote the dissociation of the metal cation from the sulfone anion.

Ketones 205, 206, 207 and $\mathbf{2 0 8}$ reacted with benzylthiazolyl sulfone $\mathbf{2 1 0}$ using LiHMDS as a base in THF ${ }^{[36,42,44]}$ and yielded the respective products \boldsymbol{Z}-211 (18% yield), \boldsymbol{Z}-212 (46% yield), Z-213 (38\% yield) and Z-214 (6\% yield). In all four cases the reaction was very stereo specific (E / Z ratios between $1: 12$ to $1: 25$, see Table 6) and mainly one isomer was observed. After detailed analysis of the obtained NMR-results and more specifically the ones obtained from the NOESY NMRs (see Chapter 7), we established that the major observed isomer in every case was the Z-trisubstituted olefin. In all of the cases a coupling signal between the protons of the methyl group and the olefinic proton was observed, which confirmed the Z-geometry of the double bond. Applying the 'Barbier' protocol ${ }^{[39,40]}$ and using LiHMDS as a base resulted in better yield, but a comparable E / Z ratio and compound \mathbf{Z}-212 was obtained in 53% yield whereas compound \boldsymbol{Z}-214 was furnished with a yield of 25%. When LiHMDS with addition of anhydrous $\mathrm{CeCl}_{3}{ }^{[44]}$ was used for the Julia-Kocienski olefination we observed lower yields compared to the ones with LiHMDS alone ($\mathbf{Z - 2 1 1}, 8 \%$ yield; $\boldsymbol{Z}-\mathbf{2 1 2}, 34 \%$ yield; $\boldsymbol{Z} \mathbf{- 2 1 3}, \mathbf{5 \%}$ yield), but the relative E / Z ratio was preserved with the Z-isomer being favored (see Table 6). The lower yields are presumably due to the self-condensation of the benzylthiazolyl sulfone, most probably due to the high net electrophilicity of the benzylthiazolyl activator. The use of NaHMDS or KHMDS in THF ${ }^{[41-43,47]}$ for the olefination between ketones 205, 206 and 207 and sulfone $\mathbf{2 1 0}$ didn't result in the formation of the expected products 211, 212 and $\mathbf{2 1 3}$ respectively and fast self-condensation of the benzothiazolyl sulfone was detected by TLC.

At that point a logical solution appeared to be the inversion of the coupling partners for the Julia-Kocienski olefination - the DHP-fragment as a sulfone part, and the side chain as the carbonyl component. However, that was not possible since we were not able to synthesize the phenyltetrazolyl sulfones 219, 220 and 221 from the corresponding secondary alcohols 215, 216 and 217 via a Mitsunobu thioetherification followed by an oxidation of the thioether (Table 7).

Table 7: Attempted synthesis of sulfones 219, 220 and 221
Entry
3.1.4. Takai olefination

Another strategy to furnish the E-trisubstituted double bond is with the use of a ketone, which can be converted to E-alkenyl iodide via Takai olefination. The desired E-olefin can then be obtained via a cuprate addition to epoxide 157.

The exact mechanism of the Takai olefination is not fully known. However, the proposed mechanism of the Takai olefination is depicted in Scheme 56. The haloform 222/chromium(II) chloride $\left(\mathrm{CHX}_{3} / \mathrm{CrCl}_{2}\right)$ system is first converted to the gem-dichromium intermediate 224, which is nucleophilic and attacks the carbonyl group in compound 199 to form the β-oxychromium species 225. The corresponding alkenes \boldsymbol{E}-226 and Z-226 are then formed from 225 by an elimination ${ }^{[38,49]}$.

Scheme 56: Mechanism of the Takai olefination
Ketones 205, 206, 207, and $\mathbf{2 0 8}$ (see chapters 3.2.1 through 3.2.4 for their synthesis) took place in a Takai olefination, using CrCl_{2} and $\mathrm{CHI}_{3}{ }^{[50-52]}$ (Table 8). Surprisingly, however, the Takai olefination of ketones 205, 206, and 207 yielded Z-vinyl iodides Z-227 (76\% yield), Z-228 (51% yield) and $Z-229$ (62% yield) respectively as the major isomers (E / Z ratios varying between $1: 10$ to $1: 13$, see Table 8). The major isolated isomer was the E-vinyl iodide \boldsymbol{E}-230 (47% yield) only in the case of ketone 208. These results were verified by the NOESY NMRs (see Chapter 7). Coupling signal between the methyl group and the olefinic proton was observed in vinyl iodides $\mathbf{2 2 7}, \mathbf{2 2 8}$ and $\mathbf{2 2 9}$, which confirmed the Z-geometry of the double bond. In the case of iodide $\mathbf{2 3 0}$ a lack of a coupling signal between the methyl group and the olefinic proton in the NOESY NMR confirmed the E-configuration of the vinyl iodide \boldsymbol{E}-230. It is noteworthy that the Takai olefination was highly stereospecific towards either the Z - or the E-isomer.

Analyzing the previously described results it has been established that the change of the protecting group from TBS- to MOM-group as well as the transformation of the double bond to a dimethylacetal did not have an effect on the diastereoselectivity of the Takai olefination. Only when the allylic side chain was not present was the E / Z diastereomeric ratio in favor of the E-isomer. These observations led us to the conclusion that not the steric effect of the protecting group, but the presence of an allylic side chain is the reason why the Takai olefination unexpectedly yielded the Z-isomer.

Table 8: Takai olefination of ketones 205, 206, 207 and 208
Entry

The exploratory work for the incorporation of the neosorangicin A side chain turned out to be a far greater synthetic challenge than initially expected. It has been demonstrated in this chapter that neither carboalumination nor hydrometallation approaches succeeded in the synthesis of compound 155. The Julia-Kocienski olefination using phenyltetrazolyl sulfone 209 and a variety of ketones also failed to produce the desired results. However, the Julia-Kocienski olefination with the use of benzylthiazolyl sulfone $\mathbf{2 1 0}$ and ketones 205, 206, 207, and 208 yielded the corresponding Z-trisubstituted olefins with great stereospecificity. The Takai olefination of ketones $\mathbf{2 0 5}, \mathbf{2 0 6}$, and 207 resulted in the formation of the corresponding Z-vinyl iodides with high E / Z diastereomeric ratios. Towards the end of this thesis Takai olefination of ketone 208, yielded E-vinyl iodide 230. It is expected that iodide $\mathbf{2 3 0}$ can be transformed to the target molecule via a cuprate addition to epoxide 157, TBS-protection of the free alcohol group, bis MOM-deprotection and a Ferrier carboalumination. However, considering the previous
obstacles, this transformation is expected to be a challenging effort both in terms of synthesis and optimization.

3.2. Syntheses of the precursors

In order to carry out the experiments described in Chapter 3.1, it was necessary to synthesize the nine precursors used, since they were not commercially available. Chapters 3.2.1 through 3.2.5 describe the established gram scale synthesis of each of these precursors as well as the explored optimizations.

3.2.1. Synthesis of alkyne $\mathbf{1 7 5}$ and ketone $\mathbf{2 0 5}$

The retrosynthesis of alkyne $\mathbf{1 7 5}$ and ketone $\mathbf{2 0 5}$ is shown in Scheme 57. The necessary alkyne $\mathbf{1 7 5}$ can be obtained from aldehyde $\mathbf{2 3 1}$ via a Colvin rearrangement. Ketone $\mathbf{2 0 5}$ can also be obtained from aldehyde $\mathbf{2 3 1}$ via a two-step sequence of a Grignard reaction and a Dess-Martin oxidation. Aldehyde 231 can be afforded via a Swern oxidation of primary alcohol 232, which in turn can be obtained from compound $\mathbf{2 3 3}$ via a selective TBS-deprotection of the primary alcohol. Compound $\mathbf{2 3 3}$ is easily accessible from allylglycal $\mathbf{2 3 5}$ in a two-step sequence of cleavage of the acetyl protecting groups to yield diol 234 and a subsequent bis TBS-protection. Allylglycal 235 can be obtained from D-galactal 236 via a Ferrier rearrangement. D-galactal 236 in turn can be synthesized from D-galactose 237 in a three-step sequence of pentaacetylation, hydrobromination and zinc reduction.

Scheme 57: Retrosynthesis of alkyne 175 and ketone 205
D-galactose was adopted as the starting material since it is cost and time effective. The enantiomer L-galactose is more expensive and converting the D-galactose to L-galactose is a tedious process. These were the two main factors taken in consideration when we chose to
carry out the preliminary exploratory work with the D-galactose. After establishing reliable and reproducible procedures, the synthesis could be repeated starting from L-galactose.

D-galactal $\mathbf{2 3 6}$ was first synthesized via a one-pot reaction from D-galactose $\mathbf{2 3 7}{ }^{[53-55]}$ in $\mathbf{3 0 \%}$ yield according to Scheme 58.

Scheme 58: One-pot synthesis of D-galactal 236
Starting from D-galactose 237, another approach towards D-galactal 236 included a three-step sequence of pentaacetylation, hydrobromination and zinc reduction (Scheme 59).

Scheme 59: General scheme for the three-step synthesis of D-galactal 236
First, using acetic anhydride and DMAP in pyridine ${ }^{[56-58]}$ peracetylated galactose $\mathbf{2 3 8}$ was obtained. The following hydrobromination step was done either with $\mathrm{PBr}_{3}{ }^{[59-61]}$ in DCM or with $33 \% \mathrm{HBr} / \mathrm{AcOH}$ in $\mathrm{DCM}^{[57,58,62]}$ and yielded compound 239. Finally, D-galactal 236 was obtained via a reduction with zinc dust in a $2: 1$ mixture of acetone and saturated $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution ${ }^{[63-65]}$. We found that using $33 \% \mathrm{HBr} / \mathrm{AcOH}$ for the hydrobromination resulted in slightly better yields on a gram scale (66% versus 61%) over the three steps (Scheme 60).
2. $\mathrm{PBr}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{DCM}$

66\% (3 steps)

Scheme 60: Three-step synthesis of D-Galactal 236
D-galactal $\mathbf{2 3 6}$ then participated in a classical carbon Ferrier rearrangement in order to obtain allylglycal 235. The reaction was initiated by a Lewis acid (TMSOTf) ${ }^{[66-68]}$, which allowed the
formation of the resonance-stable oxocarbenium ion $\mathbf{2 4 0}{ }^{[69]}$, which was then subjected to a nucleophilic attack with the use of allyltrimethylsilane. This resulted in the final nucleophilic substituted product $\mathbf{2 3 5}$, which was obtained with a yield of 95% (Scheme 61).

Scheme 61: Mechanism of the carbon Ferrier rearrangement for the synthesis of 235
Allylglycal 235 was subjected to a manipulation of the protecting groups. First, a cleavage of the acetyl protecting groups using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH}^{[70,71]}$ yielded diol 234 in a nearly quantitative yield (98%). Subsequent protection of both alcohol groups in diol 234 as TBS-ethers using TBSCl and imidazole in $\mathrm{DCM}^{[72-74]}$ afforded compound $\mathbf{2 3 3}$ with a yield of 95\% (Scheme 62).

Scheme 62: Acetyl deprotection of 235 and TBS-protection of diol 234

The primary alcohol in compound $\mathbf{2 3 3}$ was selectively deprotected using mild deprotecting conditions such as $\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ in 3:1:1 ratio $^{[75-77]}$, which yielded alcohol 232 in 35% (Table 9, entry $1-2$). Since the yield was not that high, three further methods for the selective deprotection of the primary alcohol in compound 233 were explored. First, a mixture of $\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ in 2:1:7 ratio ${ }^{[78]}$ was used and compound 232 was obtained with a yield of 52% (Table 9, entry $3-4$). The deprotection of the TBS-ether with PPTS in $\mathrm{MeOH}^{[77,80]}$ afforded alcohol 232 in 55\% yield (Table 9, entry 5-7). The best yield, however, was observed with CSA as a deprotecting agent in a $1: 1$ mixture of $\mathrm{DCM} / \mathrm{MeOH}^{[12,81]}$. Optimization of the reaction conditions (amount of CSA and reaction time) finally furnished the primary alcohol 232 in 70% yield (Table 9 , entry $8-12$).

Table 9: Reagent screening and optimization of the reaction conditions for the selective deprotection of the primary alcohol in compound 233

Entry	Conditions	Yield
1	$\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ (3:1:1)	33\%
	$2 \mathrm{~h}, 0^{\circ} \mathrm{C} ; 10 \mathrm{~h}, \mathrm{RT}$	
2	$\mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}$ (3:1:1)	35\%
	$30 \mathrm{~min}, 0^{\circ} \mathrm{C} ; 2 \mathrm{~h}, \mathrm{RT}$	
3	$\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}$ (2:1:7)	44\%
	$1.5 \mathrm{~h}, \mathrm{RT}$	
4	$\mathrm{HCOOH} / \mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}(2: 1: 7)$	52\%
	20 min , RT	
5	PPTS (1.3 eq), MeOH	33\%
	30 min , RT	
6	PPTS (1.3 eq), MeOH	46\%
	$1.5 \mathrm{~h}, \mathrm{RT}$	
7	PPTS (1.3 eq), MeOH	55\%
	$2.5 \mathrm{~h}, \mathrm{RT}$	
8	CSA (0.1 eq), DCM/MeOH = 1:1	70\%
	$30 \min , 0^{\circ} \mathrm{C}$	
9	CSA (0.3 eq), DCM/MeOH = 1:1	68\%
	$10 \mathrm{~min}, 0^{\circ} \mathrm{C}$	
10	CSA (0.3 eq), $\mathrm{DCM} / \mathrm{MeOH}=1: 1$	69\%
	$30 \mathrm{~min}, 0^{\circ} \mathrm{C}$	
11	CSA (0.5 eq), DCM/ $\mathrm{MeOH}=1: 1$	59\%
	$15 \mathrm{~min}, 0^{\circ} \mathrm{C}$	
12	CSA (0.9 eq), DCM/MeOH = 1:1	50\%
	$45 \mathrm{~min}, 0^{\circ} \mathrm{C}$	

Alcohol $\mathbf{2 3 2}$ was then oxidized to aldehyde $\mathbf{2 3 1}$ using Dess-Martin oxidation ${ }^{[82,83]}$. The isolated yields of the product were moderate -59%. However, Swern oxidation ${ }^{[84-86]}$ afforded aldehyde 231 in an excellent yield -88% (Scheme 63).

Scheme 63: Synthesis of 231 via Swern oxidation

Alkyne $\mathbf{1 7 5}$ can then be synthesized from aldehyde 231 via the so-called Colvin rearrangement ${ }^{[43,87,88]}$. In this reaction $\mathrm{TMSC}(\mathrm{Li}) \mathrm{N}_{2}$, prepared in situ from TMSCHN_{2} and n-BuLi, attacks the carbonyl carbon atom in compound $\mathbf{2 3 1}$ and forms the α-diazoalkoxide 241. Elimination of TMSOLi and expulsion of N_{2} from alkoxide $\mathbf{2 4 1}$ (in either order) affords the intermediate alkylidene carbene intermediate 242. The carbene 242 then undergoes 1,2-rearrangement ${ }^{[89,90]}$ to form the corresponding alkyne $\mathbf{1 7 5}$ (Scheme 64). Aldehyde 231 was successfully transformed via the Colvin rearrangement to the homologous alkyne $\mathbf{1 7 5}$ with a yield of 77%.

Scheme 64: Mechanism of the Colvin rearrangement for the synthesis of alkyne 175
Carbaldehyde $\mathbf{2 3 1}$ can also be transformed to ketone $\mathbf{2 0 5}$ in a two-step sequence of Grignard reaction for the introduction of the necessary methyl group and consequent oxidation of alcohol 215. The Grignard reaction between the carbaldehyde $\mathbf{2 3 1}$ and $\mathrm{MeMgBr}^{[36,91]}$ easily afforded alcohol 215 in an excellent yield ($92 \%, 5: 1 \mathrm{dr}$). The alcohol 215 was then oxidized, using a Dess-Martin oxidation ${ }^{[92-94]}$. This gave ketone 205 with a yield of 85% (Scheme 65).

Scheme 65: Synthesis of ketone 205
3.2.2. Synthesis of alkyne $\mathbf{1 7 8}$ and ketone 206

The retrosynthetic approach towards alkyne $\mathbf{1 7 8}$ and ketone 206 is shown in Scheme 66. Alkyne $\mathbf{1 7 8}$ can be obtained from aldehyde $\mathbf{2 4 3}$ via a Colvin rearrangement or an Ohira-Bestmann modification of the Seyferth-Gilbert homologation. Ketone 206 can also be obtained from aldehyde 243 via a Grignard reaction, followed by a Dess-Martin oxidation. Aldehyde $\mathbf{2 4 3}$ can be afforded via a Swern oxidation of the primary alcohol 244. Alcohol 244
can be obtained either from compound $\mathbf{2 4 5}$ or compound $\mathbf{2 4 6}$ via a TBS- or a TIPS-deprotection respectively. Compound $\mathbf{2 4 5}$ is easily accessible from diol $\mathbf{2 3 4}$ in a two-step sequence. First, a selective mono TBS-protection of the primary alcohol group can yield compound 247, which can then be protected as a MOM-ether. On the other hand, a selective mono TIPS-protection of the primary alcohol group in diol 234 can yield compound 248. The secondary alcohol 248 can then be protected as a MOM-ether to form compound 246.

Scheme 66: Retrosynthesis of alkyne 178 and ketone 206
Diol 234 was subjected to a selective protection of the primary alcohol as a TBS-ether, using TBSCl and imidazole ${ }^{[70,95,96]}$. This furnished the secondary alcohol 247 with a yield of 80%. The consequent protection of the secondary alcohol 247 as a MOM-ether, using MOMCl and DIPEA ${ }^{[97,98]}$ gave compound 245 with a yield of 97%. The following TBS-deprotection of compound 245 with $\mathrm{TBAF}^{[99-101]}$ resulted in the isolation of the primary alcohol $\mathbf{2 4 4}$ in 96% yield (Scheme 67).

Scheme 67: Synthesis of alcohol 244 via compounds 247 and 245

The obtained results with the TBS-protection of the primary alcohol were satisfactory, although the mono TBS-protection was not always a smooth reaction. In most of the cases a mixture of the mono TBS-protected product, the bis TBS-protected side product and the starting material was observed. Thus, a second approach for the protection of the primary alcohol in diol 234 was investigated. The primary alcohol in compound $\mathbf{2 3 4}$ was protected as TIPS-ether, using TIPSCl and imidazole ${ }^{[102-104]}$. This resulted in the formation of alcohol 248 with a very high yield (89%) as well as with a greater selectivity. The crude mixture was containing just the mono TIPS-protected product and a small amount of unreacted starting material. The following MOM-protection of the secondary alcohol 248 using MOMCl, DIPEA and a catalytic amount of DMAP ${ }^{[105,106]}$ furnished compound 246 in 96% yield. Finally, the TIPS-group was cleaved by the use of $\mathrm{TBAF}^{[103,107,108]}$ to obtain the primary alcohol $\mathbf{2 4 4}$ in 94% yield (Scheme 68).

Scheme 68: Synthesis of alcohol 244 via compounds 248 and 246
In conclusion the TIPS-protection of the primary alcohol appeared to be better since the overall yield over 3 steps was a bit higher (80% overall yield versus 75% overall yield, while using TBS-group), it was more selective, but most importantly it was more reproducible.

Primary alcohol 244 was then oxidized using Swern oxidation ${ }^{[38,109]}$ to yield aldehyde 243 in 87% yield. This was followed by a Colvin rearrangement ${ }^{[43,87,88]}$ in order to obtain alkyne 178 (Scheme 69). Unfortunately, using this method the isolated yields for compound 178 were rather low (27% yield).

Scheme 69: Synthesis of alkyne $\mathbf{1 7 8}$ via Colvin rearrangement

Another possibility to synthesize alkyne $\mathbf{1 7 8}$ from aldehyde $\mathbf{2 4 3}$ is the Ohira-Bestmann modification of the Seyferth-Gilbert homologation ${ }^{[89]}$, the mechanism for which is shown in Scheme 70. The reaction is usually carried out with potassium carbonate in methanol. This generates small amounts of alkoxide, which attacks the carbonyl group in the dimethyl (1-diazo-2-oxopropyl)phosphonate (Bestmann reagent) 98 and forms intermediate 249. Expulsion of methyl acetate leads to the formation of the dimethyl (diazomethyl)phosphonate anion 250. Anion 250 then attacks the carbonyl group of an aldehyde (or aryl ketone) 199 forming adduct 251. Alkoxide 251 closes to give an oxaphosphetane 252, which upon cycloelimination furnishes a stable phosphate anion and a thermally unstable diazoalkene 253. Diazoalkene 253, upon expulsion of N_{2} forms alkylidene carbene 254. The carbene $\mathbf{2 5 4}$ then undergoes a 1,2-alkyl shift to generate the corresponding alkyne $\mathbf{2 5 5}{ }^{[38,110,111]}$.

Scheme 70: Mechanism of the Ohira-Bestmann reaction
Aldehyde 243 took part in an Ohira-Bestmann variation ${ }^{[112-114]}$ of the Seyferth-Gilbert homologation and alkyne $\mathbf{1 7 8}$ was furnished in 59% yield (Scheme 71).

Scheme 71: Synthesis of alkyne 178 via Ohira-Bestmann reaction
Ketone 206 was synthesized according to Scheme 72. The previously obtained carbaldehyde 243 took place in a Grignard reaction with $\mathrm{MeMgBr}^{[36,91]}$ to give the secondary alcohol 216
(95%, $4: 1 \mathrm{dr}$). Finally, alcohol 216 underwent a Dess-Martin oxidation ${ }^{[92-94]}$ to give the necessary ketone 206 with a yield of 87%.

Scheme 72: Synthesis of ketone 206

3.2.3. Synthesis of alkyne $\mathbf{1 7 9}$ and ketone 207

The retrosynthetic approach towards alkyne $\mathbf{1 7 9}$ and ketone $\mathbf{2 0 7}$ is shown in Scheme 73. Alkyne $\mathbf{1 7 9}$ can be obtained from aldehyde $\mathbf{2 5 6}$ either via Colvin rearrangement or via Ohira-Bestmann modification of the Seyferth-Gilbert homologation. Ketone 207 can be synthesized from aldehyde 256 via Grignard reaction followed by Dess-Martin oxidation. Aldehyde 256 can be furnished from the primary alcohol 257, using a Swern oxidation. Selective deprotection of the primary TBS-ether in compound 258 will yield alcohol 257. Compound $\mathbf{2 5 8}$ can be afforded from aldehyde $\mathbf{2 5 9}$ via an acetalization. Aldehyde $\mathbf{2 5 9}$ is easily formed from the previously obtained compound $\mathbf{2 3 3}$ using dihydroxylation to generate diol $\mathbf{2 6 0}$, followed by an oxidative cleavage of the diol.

Scheme 73: Retrosynthesis of alkyne 179 and ketone 207
Previously obtained compound $\mathbf{2 3 3}$ was subjected to a Sharpless asymmetric dihydroxylation and consequent oxidative cleavage of the formed 1,2-diol $\mathbf{2 6 0}{ }^{[115,116]}$. We decided to use Sharpless asymmetric dihydroxylation of compound 233, since previous attempts using $\mathrm{OsO}_{4} / \mathrm{NMO}$ by other members of our group ${ }^{[12,37]}$ gave lower yields. The mechanism of the Sharpless dihydroxylation starts with the formation of a complex 262 between the in situ
generated OsO_{4} and the $(\mathrm{DHQD})_{2} \mathrm{PHAL} 261$ ligand. Other ligands such as $(\mathrm{DHQ})_{2} \mathrm{PHAL}$, $(\mathrm{DHQD})_{2} \mathrm{PYDZ},(\mathrm{DHQD})_{2} \mathrm{AQN},(\mathrm{DHQD})_{2} \mathrm{DPP}$ etc. can be also used instead of the (DHQD) ${ }_{2} \mathrm{PHAL}^{[117]}$. The active catalyst possesses a U-shaped binding pocket for the OsO_{4} complex as seen in 264. In this way the OsO_{4} is held in a chiral environment, which sterically hinders the approach of only one side of the olefin 263. A [3+2]-cycloaddition yields the osmylate ester 265. Upon basic hydrolysis of intermediate 265, diol 267, reduced osmate 266, and the ligand 261 are formed. Osmate 266 is then oxidized to OsO_{4} with potassium ferricyanide 268 ${ }^{[118]}$ (Scheme 74).

Scheme 74: Mechanism of the Sharpless dihydroxylation with (DHQD) $)_{2}$ PHAL 261 as a ligand The Sharpless asymmetric dihydroxylation of compound 233 was performed with the commercially available AD-mix- β, containing $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{~K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}$ and (DHQD) ${ }_{2} \mathrm{PHAL}$, in $1: 1$ mixture of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}^{[12,119,120]}$. The subsequent oxidative cleavage of diol 260 was carried out with NaIO_{4} as an oxidant and 2,6-lutidine as a base in a solvent mixture of $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1)^{[121]}$. The reaction conditions explored and their overall yields are given in Table 10. Using the conditions described in Table 10, entry 6 aldehyde 259 was obtained in two steps from compound $\mathbf{2 3 3}$ with an overall yield of 80%.

Table 10: Optimization of the reaction conditions for the synthesis of compound 259

Entry	Conditions for dihydroxylation	Conditions for cleavage of the diol	Overall yield
1	AD-mix- β (2 eq) $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ $48 \mathrm{~h}, 0^{\circ} \mathrm{C}$	NaIO_{4} (4 eq) 2,6-lutidine (2 eq) t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ 3 h , RT	35\%
2	AD-mix- β (3 eq) $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ $48 \mathrm{~h}, \mathrm{RT}$	NaIO_{4} (4 eq) 2,6-lutidine (2 eq) t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ 3 h , RT	55\%
3	AD-mix- β (2 eq) $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ $48 \mathrm{~h}, \mathrm{RT}$	NaIO_{4} (4 eq) 2,6-lutidine (2 eq) t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ 3 h , RT	62\%
4	AD-mix- β (1.4 eq) $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ $24 \mathrm{~h}, \mathrm{RT}$	NaIO_{4} (4 eq) 2,6-lutidine (2 eq) t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ 3 h , RT	69\%
5	AD-mix- β (2 eq) $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ $12 \mathrm{~h}, \mathrm{RT}$	NaIO_{4} (4 eq) 2,6-lutidine (2 eq) t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ 3 h , RT	72\%
6	AD-mix- β (2 eq) $t-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ $24 \mathrm{~h}, \mathrm{RT}$	NaIO_{4} (4 eq) 2,6-lutidine (2 eq) t - $\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}=1: 1$ 3 h , RT	80\%

Aldehyde 259 was then further protected as an acetal (Scheme 75). The acetalization of aldehyde 259, using TMOF and catalytic amount of PTSA ${ }^{[12,122,123]}$, generated compound 258 with a yield of 98%. The selective deprotection of the primary alcohol in acetal $\mathbf{2 5 8}$ was accomplished using $\mathrm{CSA}^{[12]}$ as a deprotecting agent. Several conditions have been explored and summarized in Table 11, where entry 2 gave the best results for obtaining the necessary alcohol 257 (68\% yield).

Scheme 75: Synthesis of compound 257

Table 11: Reagent optimization for the synthesis of compound 257

Entry	Deprotecting agent	Reaction time	Temperature	Yield
1	CSA $(0.1 \mathrm{eq})$	30 min	$0^{\circ} \mathrm{C}$	55%
2	CSA $(0.6 \mathrm{eq})$	30 min	$0^{\circ} \mathrm{C}$	68%
3	CSA $(0.9 \mathrm{eq})$	20 min	$0^{\circ} \mathrm{C}$	59%

Alcohol 257 can be also obtained in one step from aldehyde $\mathbf{2 5 9}$ via a simultaneous acetalization and deprotection of the primary alcohol. This was achieved by the use of iodine and methanol ${ }^{[124]}$ and the necessary alcohol 257 was furnished in 47% yield (Scheme 76). This method is convenient with respect to number of reactions and purification steps, but the isolated yields were lower than the previously described two-step approach (47% vs. 66% in 2 steps).

Scheme 76: Synthesis of alcohol 257 in one step from aldehyde 259
Swern oxidation ${ }^{[12,82,109]}$ of alcohol $\mathbf{2 5 7}$ yielded aldehyde $\mathbf{2 5 6}$ in $\mathbf{6 8 \%}$ yield. Aldehyde $\mathbf{2 5 6}$ was then subjected to a Colvin rearrangement ${ }^{[87-89]}$ and alkyne $\mathbf{1 7 9}$ was isolated with a yield of 58%. However, better results (72% yield) were obtained while using the Ohira-Bestmann protocol ${ }^{[112-114]}$ of the Seyferth-Gilbert homologation (Scheme 77).

Scheme 77: Synthesis of alkyne 179
Previously obtained aldehyde $\mathbf{2 5 6}$ can be easily converted to ketone 207 (64% yield over 2 steps) using Grignard reaction with $\mathrm{MeMgBr}^{[12,36,91]}$ to obtain the secondary alcohol 269, which was then subjected to a Dess-Martin oxidation ${ }^{[12,92,93]}$ (Scheme 78).

Scheme 78: Synthesis of ketone 207

3.2.4. Synthesis of ketone 208

The retrosynthetic approach towards ketone $\mathbf{2 0 8}$ is shown in Scheme 79. Ketone $\mathbf{2 0 8}$ can be synthesized from alcohol 217 via a Dess-Martin oxidation, which is in turn synthesized from aldehyde $\mathbf{2 7 0}$ via a Grignard reaction. Aldehyde $\mathbf{2 7 0}$ can be furnished from the primary alcohol 271, using a Dess-Martin oxidation. Deprotection of the primary TBS-ether in compound 272 can yield alcohol 271. Compound 272 can be afforded from triol 274 via a selective TBS-protection of the primary alcohol to yield diol 273, followed by a bis MOM-protection. Triol 274 is easily accessible from the previously obtained D-galactal 236 through cleavage of the three acetyl groups.

Scheme 79: Retrosynthesis of ketone 208
Previously obtained D-galactal 236 was deacetylated, using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol ${ }^{[125,126]}$, yielding triol 274 in a nearly quantitative yield (99% yield). The TBS-protection of the primary alcohol in triol 274 was performed with TBSCl and imidazole in $\mathrm{DMF}^{[127-129]}$ and furnished diol 273 in 49% yield. Better results were obtained while using TBSCl and triethylamine in 10:1 mixture of acetonitrile/DMF ${ }^{[130]}$. These conditions afforded diol $\mathbf{2 7 3}$ with a yield of 70% (Scheme 80).

Scheme 80: Synthesis of diol 273
The bis MOM-protection of diol 273 was done using MOMCl, DIPEA and a catalytic amount of DMAP ${ }^{[131-133]}$. The reaction was smooth, but the isolation of the product 272 was troublesome. Quenching the reaction with either a saturated NaHCO_{3} solution or water caused a decomposition of product 272. The decomposition during the work-up process was registered by TLC, and it was also observed that the decomposition was more severe at larger scales. On 200 mg scale and quenching with a saturated NaHCO_{3} solution, compound 272 was isolated in 56% yield, while on a 2.2 g scale the target product 272 was obtained in just 15% yield. The solution to this problem was to concentrate the reaction mixture upon completion of the reaction and then directly purify it by a column chromatography on silica gel. This method furnished compound $\mathbf{2 7 2}$ with a yield of 98%. The following TBS-deprotection of compound 272 with TBAF in THF ${ }^{[129,132,134]}$ yielded alcohol 271 with a yield of 86% (Scheme 81).

Scheme 81: Synthesis of alcohol 271
Alcohol 271 was oxidized with Dess-Martin periodinane ${ }^{[135-137]}$ to obtain aldehyde 270 (68\%), which was converted to the alcohol 217 via a Grignard reaction ${ }^{[138,139]}$ ($56 \%, 1.5: 1 \mathrm{dr}$). The ketone 208 was finally generated from alcohol 217 via a Dess-Martin oxidation ${ }^{[140,141]}$ with a yield of 66% (Scheme 82).

Scheme 82: Synthesis of ketone 208

3.2.5. Synthesis of the side chain

The retrosynthesis of sulfones $\mathbf{2 0 9}$ and $\mathbf{2 1 0}$ is shown in Scheme 83. Sulfone $\mathbf{2 0 9}$ as well as $\mathbf{2 1 0}$ can be synthesized from alcohol 275 via a Mitsunobu thioetherification followed by an
oxidation of the corresponding thioether. Reductive ozonolysis of olefin $\mathbf{2 7 6}$ can yield alcohol 275 in one step. Olefin 276 can in turn be obtained from alcohol 277 via a TBS-protection of the secondary alcohol. Alcohol 277 can be easily synthesized from the commercially available cis-2-butene $\mathbf{2 7 8}$ and acetaldehyde $\mathbf{2 7 9}$ via crotylboration of the carbonyl compound.

Scheme 83: Retrosynthetic approach towards sulfones 209 and 210
The synthesis of the side chain started from the commercially available cis-2-butene $\mathbf{2 7 8}$ and acetaldehyde 279. First, cis-2-butene 278 reacts with a Schlosser's base to generate the stable crotylpotassium anion 280, which is then trapped with methoxydiisopinocamphenylborane to give the dialkylborane intermediate 281. Intermediate $\mathbf{2 8 1}$ is highly Lewis acidic, hence the addition of boron trifluoride etherate $\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$ is necessary in order to cleave the methoxide anion from the ate complex and generate the crotyldialkylborane 282. Borane 282 is too sensitive to be isolated and in order to avoid isomerization it is immediately treated with the carbonyl compound (acetaldehyde 279) and a chair-like transition state 283 is reached. Upon alkaline hydrogen peroxide workup, the secondary alcohol 277 is furnished ${ }^{[142-146]}$ (Scheme 84).

Scheme 84: Mechanism of the crotylboration of aldehyde 279
Alcohol 277 was purified by vacuum distillation and immediately protected as a TBS-ether, since it was a very volatile liquid. The TBS-protection of the secondary OH-group of alcohol 277 under standard conditions (TBSCl and imidazole ${ }^{[147,148]}$) yielded alkene 276 (70% over
two steps). Reductive ozonolysis ${ }^{[149-152]}$ of olefin 276 afforded the primary alcohol 275 in 78\% yield (Scheme 85).

Scheme 85: Synthesis of alcohol 275
Alcohol 275 was then converted to a phenyltetrazolyl sulfone $\mathbf{2 0 9}$ or a benzylthiazolyl sulfone 210 via a one-pot reaction of a Mitsunobu thioetherification, followed by a chemoselective oxidation of the corresponding thioethers 284 and $\mathbf{2 8 5}{ }^{[153-155]}$. The Mitsunobu reaction was performed using the redox couple of triphenylphosphine and diethylazodicarboxylate (DEAD) ${ }^{[43,48]}$ and the chemoselective oxidation of thioethers $\mathbf{2 8 4}$ and $\mathbf{2 8 5}$ was carried out with aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ and a catalytic amount of $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}^{[42-44]}$. These conditions furnished the phenyltetrazolyl sulfone $\mathbf{2 0 9}$ with a yield of 89% and the benzylthiazolyl sulfone $\mathbf{2 1 0}$ with a yield of 78\% (Scheme 86).

Scheme 86: Synthesis of phenyltetrazolyl sulfone 209 and benzylthiazolyl sulfone 210
This chapter explored the synthesis of nine precursors required for the synthesis of the $\mathrm{C}(1)-\mathrm{C}(12)$ dihydropyran fragment, and also the optimization of the synthetic routes. The number of steps and the overall yield for each of these precursors are summarized in Table 12.

Table 12: Synthesis and yield of the precursors

| Entry | Educt(s) | Product | Number of steps | Overall yield |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | | | | |
| | | | | |

Entry	Educt(s)	Product	Number of steps	Overall yield
2	D-galactose 237		10	28\%
3	D-galactose 237		10	25\%
4	D-galactose 237		11	36\%
5	D-galactose 237		12	15\%
6	D-galactose 237		13	14\%
7	D-galactose 237		10	10\%
8	$\underset{278}{ }+\underset{279}{ }=0$		4	49\%
9	cis-2-butene 278, acetaldehyde 279			43\%

The precursors were then used to introduce the side chain using four main synthetic strategies. Incorporating the side chain via carboalumination and hydrometallation were found to be unsuccessful. In the case of hydrostannylation, we found out that a reaction occurred, but unexpectedly, the double bond from the allylic side chain was found to participate in the reaction. The Julia-Kocienski olefination using the phenyltetrazolyl sulfone was unsuccessful,
and the benzylthiazolyl sulfone was found to preferentially yield the undesired Z-isomer. The Takai olefination yielded the undesired Z-isomer in most cases, but using ketone 208 successfully resulted in the isolation of the E-isomer in 47% yield and high stereoselectivity. Reflecting on the results of the multiple synthetic strategies we have attempted in the generation of compound $\mathbf{1 5 5}$, we expect that the main cause for deviation from the literature is the presence of the allylic side chain and not the size of the protecting group. This is because exchanging the bulky TBS-group for a MOM-group had no effect, while the absence of the allylic side chain resulted in the formation of the compound with the desired stereochemistry when subjected to the Takai olefination.

Reflecting on the results from the Takai olefination, we expect that compound $\mathbf{2 3 0}$ can be used to synthesize compound $\mathbf{1 5 5}$ in four steps. However, given the fact that many of our synthetic strategies failed despite being well-supported in the literature leads us to believe that the proposed four-step synthesis is likely to be challenging both in execution and in optimization.

4. Summary and outlook

4.1. Summary

The main objective of this thesis was the synthesis of the $\mathrm{C}(1)-\mathrm{C}(12)$ dihydropyran fragment of neosorangicin A . This is to be used as a starting material for the further investigations on the coupling with the other substructures of neosorangicin A. Therefore, a synthetic strategy that is high yielding and reproducible on a multigram scale needed to be developed.

The early retrosynthetic analysis of dihydropyran fragment 155 envisioned two main strategies for incorporating the side chain. The first was with the use of an alkyne as an intermediate compound and the second was adopting a ketone. Starting from D-galactose 237, alkynes 175 (28%, nine steps), 178 (25%, ten steps) and $\mathbf{1 7 9}$ (15%, twelve steps) were synthesized on a multigram scale. In order to furnish the dihydropyran fragment 155, alkynes 175, 178 and $\mathbf{1 7 9}$ took part in a zirconocene-catalyzed methylalumination reaction. Unfortunately, under the explored conditions none of the alkynes successfully yielded the desired products. This necessitated a slight deviation in the synthetic strategy, and the synthesis of homopropargylic alcohols $\mathbf{1 8 6}$ and 187 was attempted. The opening of the commercially available epoxide 157 and its addition to alkyne $\mathbf{1 7 8}$ in order to obtain the propargylic alcohol $\mathbf{1 8 7}$ was unsuccessful. However, while using alkyne 175 we were able to successfully generate homopropargylic alcohol 186 with a yield of 71%. Homopropargylic alcohol 186 took part in hydroalumination (via Red-Al ${ }^{\circledR}$, via $\mathrm{Me}_{3} \mathrm{Al}$ and DIBAL-H or via DIBAL-H only), hydrosulfuration (via n-BuSH) and hydrostannylation (via $n-\mathrm{Bu}_{3} \mathrm{SnH}$) reactions. However, none of these approaches yielded the desired product 188.

Due to the unsuccessful attempts to synthesize the dihydropyran fragment $\mathbf{1 5 5}$ using an alkyne as an intermediate, we then tried to use a ketone as a precursor for obtaining the target molecule 155 instead. Starting from D-galactose 237, ketones 205 (28%, ten steps), 206 (36%, eleven steps), 207 (14%, thirteen steps) and $\mathbf{2 0 8}$ (10%, ten steps) were synthesized on a multigram scale.

First, we investigated the Julia-Kocienski olefination for the synthesis of the trisubstituted olefins 211, 212, 213 and 214. For this purpose, sulfones 209 (49%, four steps) and 210 (43%, four steps) were synthesized on a multigram scale starting from cis-2-butene 278 and acetaldehyde 279. Many attempts were made in order to couple ketones 205, 206, 207 and 208 with sulfone 209 but none of them resulted in the successful synthesis of the corresponding trisubstituted olefins 211, 212, 213 and 214. However, while using ketones 205, 206, 207 and

208 and sulfone 210 we were able to isolate the desired dihydropyran fragment $\mathbf{1 5 5}$ in each case. Unfortunately, after a detailed analysis of the obtained analytical data it turned out that we were able to isolate mainly the Z-isomers. However, the achieved stereoselectivity, although opposite of what we were aiming for, was excellent with E / Z ratios ranging from 1:12 to 1:25. Olefin Z-211 was obtained in $\mathbf{1 8 \%}$ yield, \boldsymbol{Z}-212 - in $\mathbf{5 3} \%$ yield, $\boldsymbol{Z} \mathbf{- 2 1 3}$ - in 38% yield and \boldsymbol{Z} $\mathbf{2 1 4}$ - in 25% yield. The inversion of the reaction partners was not possible under the explored conditions, since the Mitsunobu thioetherification of alcohols 215, 216 and 217 was unsuccessful.

Next, a Takai olefination of ketones 205, 206, 207 and 208 was explored. Ketones 205, 206 and 207 surprisingly yielded the corresponding Z-vinyl iodides Z-227, Z-228 and Z-229, which was confirmed by the analytical data collected. Although the yields were moderate, the stereoselectivity was excellent. Vinyl iodide $\mathbf{Z - 2 2 7}$ was isolated in 76% yield $(E / Z=1: 13)$, $\mathbf{Z - 2 2 8}$ - in 51% yield $(E / Z=1: 10)$ and $\mathbf{Z - 2 2 9}$ - in 62% yield $(E / Z=1: 12)$. Surprisingly towards the end of the thesis, ketone 208, when subjected to the Takai olefination, furnished the E-vinyl iodide $\boldsymbol{E}-\mathbf{2 3 0}$ in 47% yield $(E / Z=9: 1)$.

4.2. Outlook

Towards the end of this thesis E-vinyl iodide $\boldsymbol{E} \mathbf{- 2 3 0}$ was synthesized. This result is a good starting point for further investigations as a cuprate addition of epoxide $\mathbf{1 5 7}$ to the vinyl iodide $\boldsymbol{E}-\mathbf{2 3 0}$ can afford the corresponding trisubstituted olefin. This olefin after a protection of the free alcohol group, followed by a deprotection of the MOM-ethers can be subjected to a Ferrier rearrangement to generate the necessary dihydropyran fragment $\mathbf{1 5 5}$.

Another possibility that one can try for the coupling of the ketones 205, 206, 207 and 208 is the Wittig olefination. The main limitation of the traditional Wittig olefination is that the reaction proceeds mainly via the erythro betaine intermediate, which leads to the Z-alkene. However, the Schlosser modification of the Wittig olefination overcomes this problem by using phenyllithium at low temperatures. This allows the conversion of the erythro betaine to the threo betaine and results in the formation of the E-alkene. The necessary phosphonium ylide for the Schlosser modification can be obtained from the already synthesized alcohol 275. First, a halogenation of 275 can yield the corresponding alkyl halide, which can react with triphenylphosphine and $n-\mathrm{BuLi}$ in order to furnish the necessary phosphonium ylide.

Another approach to the dihydropyran fragment 155 can be the reaction between ketones 205, 206, 207 and 208 with the Li-compound of the side chain. This can form a diastereomeric
mixture of the corresponding alcohols, which after a selective elimination (i.e. with Burgess reagent) can lead to the formation of the trisubstituted E-double bond. The necessary Li-compound for this transformation can easily be obtained from alcohol 275. Tosylation of the free alcohol group in $\mathbf{2 7 5}$, followed by a nucleophilic substitution with NaI and acetone can yield the corresponding iodide. This iodide when reacted with t-BuLi can generate in situ the necessary Li-compound of the side chain.

5. Experimental part

5.1. Materials and methods

All reactions involving air- and moisture-sensitive compounds were carried out under nitrogen atmosphere in a flame dried glassware. Generally, all reactions were carried out only in dry, absolute solvents. Tetrahydrofuran (THF) and diethyl ether were dried with sodium/benzophenone and dichloromethane (DCM) was dried with calcium hydride under nitrogen and were freshly distilled before use. All other reaction solvents were purchased either in a dry form over molecular sieves or, if possible, in a reagent grade quality and were used without any further purification.

The commercially available fine chemicals were used without further purification. Liquid reagents and solutions were added through a septum or in a nitrogen counter-current, using commercially available plastic injection syringes. Solid reagents, when possible, were dissolved in the corresponding solvent and added through a septum, otherwise they were directly added in a nitrogen counter-current. Air-sensitive solids were measured and filled under argon atmosphere in a LABmaster 130 glove box from M. Braun GmbH.

The preparative column chromatography was performed using Macherey-Nagel Silica Gel $60 \mathrm{M}(0.040-0.063 \mathrm{~mm})$. If applicable, the column chromatography was accelerated with a slight excess pressure, approx. $0.2-0.4$ bar. The specified solvent mixtures are given in volume ratios.

POLYGRAM SIL G/UV 254 prefabricated TLC plates with fluorescent indicator from the company Macherey-Nagel have been used for the analytical thin layer chromatography (TLC). The separated substances were detected by irradiation with UV light with a wavelength of 254 nm or staining with vanillin or potassium permanganate reagent and subsequent warming with a heat gun.

Vanillin reagent: 8.6 g vanillin were dissolved in 200 ml ethanol and 2.5 ml concentrated sulfuric acid was added slowly.

Potassium permanganate reagent: 3 g potassium permanganate and 20 g potassium carbonate were dissolved in 300 ml water and $5 \mathrm{ml} 5 \%$ sodium hydroxide solution was added.

The nomenclature was done according to the IUPAC rules using the software ChemBioDraw Ultra 13.0. The end-of-line hyphenation of the chemical names follows the recommendations of IUPAC from $2020{ }^{[156]}$.

The ${ }^{1} \mathbf{H}$ - and ${ }^{13} \mathbf{C}$-NMR spectra were measured either on Brucker AVIII 400 MHz or on Brucker AV Neo 600 MHz spectrometer. The used solvent is reported for each spectrum and the chemical shifts (δ) are reported in [ppm] from tetramethylsilane, referenced to the solvent resonance resulting from incomplete deuteration $\left(\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}-\mathrm{NMR}=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}-\mathrm{NMR}=\right.$ $77.16 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}:{ }^{1} \mathrm{H}-\mathrm{NMR}=3.31,{ }^{13} \mathrm{C}-\mathrm{NMR}=49.00 ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}:{ }^{1} \mathrm{H}-\mathrm{NMR}=2.05$, ${ }^{13} \mathrm{C}-\mathrm{NMR}=29.84,206.26$). The signal multiplicity is abbreviated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of doublet of doublet, $\mathrm{ddt}=$ doublet of doublet of triplet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{br}=$ broad signal .

The high-resolution mass spectra (HRMS) were measured either on Waters Xevo G2 TOF spectrometer, using electrospray ionization (ESI) technique or on Finnigan MAT 95 spectrometer, using electron ionization (EI).

The IR-spectra were measured on Vertex 70V FT-IR spectrometer, using attenuated total reflection (ATR) technique. The position of the absorption bands is given in wavenumbers ($\tilde{\mathrm{v}}$) $\left[\mathrm{cm}^{-1}\right]$. The relative intensity of the bands is abbreviated as follows: $\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, br = broad signal.

The melting points ($\mathbf{M p}$) were measured on a BÜCHI B-540 melting point apparatus.
The specific optical rotations were measured on an Anton Paar MCP150 polarimeter at 589 nm and at a concentration (c) in [g/100 ml].

5.2. Experimental procedures

Synthesis of (2R,3R,4R)-2-(acetoxymethyl)-3,4-dihydro-2H-pyran-3,4-diyl diacetate 236

Method A: HBr in glacial acetic acid ($33 \% \mathrm{w} / \mathrm{w}, 0.07 \mathrm{~mol}$) was added dropwise at $0^{\circ} \mathrm{C}$ to a suspension of D-galactose $237(10 \mathrm{~g}, 0.06 \mathrm{~mol})$ in acetic anhydride (37 ml). After the addition, the reaction mixture was slowly warmed to room temperature and stirred for another 2 h . Additional HBr in glacial acetic acid ($33 \% \mathrm{w} / \mathrm{w}, 0.26 \mathrm{~mol}$) was added dropwise and the reaction mixture was stirred overnight at room temperature, after which it was cooled to $0{ }^{\circ} \mathrm{C}$ and anhydrous $\mathrm{NaOAc}(20.03 \mathrm{~g}, 0.24 \mathrm{~mol})$ was added. In another flask, $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(1.66 \mathrm{~g}$, 6.66 mmol) and zinc dust ($124.86 \mathrm{~g}, 1.91 \mathrm{~mol}$) were suspended in a buffer of $\mathrm{NaOAc} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
($94.42 \mathrm{~g}, 0.69 \mathrm{~mol}$), water (100 ml), and acetic acid (150 ml), and the above solution was added to it while stirring vigorously. After stirring overnight at room temperature, the reaction mixture was filtered through Celite. The residue was washed with ethyl acetate. The filtrate was washed with water, saturated NaHCO_{3} solution and water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Column chromatography on silica gel (pentane/diethyl ether 2:1) yielded galactal 236 as a pale-yellow oil ($4.54 \mathrm{~g}, 30 \%$). The analytical data for compound $\mathbf{2 3 6}$ is given below.

Method B: To a suspension of D-galactose $237(25 \mathrm{~g}, 0.14 \mathrm{~mol})$ in pyridine ($140 \mathrm{ml}, 1.73 \mathrm{~mol}$) were added acetic anhydride ($98 \mathrm{ml}, 1.04 \mathrm{~mol}$) and catalytic amount of DMAP (848 mg , 6.94 mmol). After stirring overnight at room temperature, the reaction mixture was quenched with methanol and diluted with ethyl acetate. After separation of the phases, the organic layer was washed with water, 1 M HCl solution, saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude pentaacetylgalactose 238 $(57.03 \mathrm{~g})$ was used in the next reaction without further purification. The analytical data for compound $\mathbf{2 3 8}$ is given below.
$\mathrm{PBr}_{3}(34.67 \mathrm{ml}, 0.37 \mathrm{~mol})$ was added dropwise at $0^{\circ} \mathrm{C}$ to a solution of pentaacetylgalactose 238 $(57.03 \mathrm{~g}, 0.15 \mathrm{~mol})$ in a mixture of $\mathrm{DCM}(200 \mathrm{ml})$ and water (14 ml). After the addition, the mixture was slowly warmed to room temperature. After stirring for 1.5 h , the reaction was quenched with water and extracted with ethyl acetate. The combined organic layers were washed with saturated NaHCO_{3} solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The resultant crude product $239(50.54 \mathrm{~g})$ was directly used for the next step without any further purification. The analytical data for compound $\mathbf{2 3 9}$ is given below.

Compound 239 ($50.54 \mathrm{~g}, 0.12 \mathrm{~mol}$) was dissolved in acetone (200 ml) and saturated $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution (100 ml). Zinc dust ($100.48 \mathrm{~g}, 1.54 \mathrm{~mol}$) was added to the above solution and the reaction mixture was stirred for 5 h at room temperature. Upon completion of the reaction followed by TLC, the resulting mixture was filtered and the remaining zinc was washed with ethyl acetate. The filtrate was washed with water, saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica gel (pentane/diethyl ether 2:1) yielded galactal 236 as a pale-yellow oil ($22.89 \mathrm{~g}, 61 \%$ over three steps). The analytical data for compound 236 is given below.

Method C: To a suspension of D-galactose $237(50 \mathrm{~g}, 0.28 \mathrm{~mol}$) in pyridine ($279 \mathrm{ml}, 3.47 \mathrm{~mol}$) were added acetic anhydride ($196 \mathrm{ml}, 2.08 \mathrm{~mol}$) and catalytic amount of DMAP (1.70 g ,
13.88 mmol). After stirring overnight at room temperature, the reaction mixture was quenched with methanol and diluted with ethyl acetate. After separation of the phases, the organic layer was washed with water, 1 M HCl solution, saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude pentaacetylgalactose $\mathbf{2 3 8}$ $(107.74 \mathrm{~g})$ was used in the next reaction without further purification. The analytical data for compound $\mathbf{2 3 8}$ is given below.

HBr in glacial acetic acid $(33 \% \mathrm{w} / \mathrm{w}, 2.07 \mathrm{~mol})$ was added at room temperature to pentaacetylgalactose $\mathbf{2 3 8}(107.74 \mathrm{~g}, 0.28 \mathrm{~mol})$. The reaction was stirred for 1 h and diluted with DCM. The organic phase was washed with water, saturated NaHCO_{3} solution and brine. The organic layer was dried over MgSO_{4} and the solvent was removed in vacuo. The resultant crude product $\mathbf{2 3 9}$ (106.24 g) was directly used for the next step without any further purification. The analytical data for compound $\mathbf{2 3 9}$ is given below.

Compound 239 ($106.24 \mathrm{~g}, 0.26 \mathrm{~mol}$) was dissolved in acetone (300 ml) and saturated $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ solution (150 ml). Zinc dust ($211.22 \mathrm{~g}, 3.23 \mathrm{~mol}$) was added to the above solution and the reaction mixture was stirred for 5 h at room temperature. Upon completion of the reaction followed by TLC, the resulting mixture was filtered and the remaining zinc was washed with ethyl acetate. The filtrate was washed with water, saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica gel (pentane/diethyl ether 2:1) yielded galactal 236 as a pale-yellow oil (49.72 g, 66\% over three steps). The analytical data for compound $\mathbf{2 3 6}$ is given below.

Analytical data for compound 238:
${ }^{1}$ H-NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.38-6.35(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.48(\mathrm{~m}, 1 \mathrm{H}), 5.33-5.31(\mathrm{~m}$, $2 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.04(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}$, $3 \mathrm{H}), 2.00$ ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=170.5,170.3,170.3,170.0,169.1,89.8,68.9,67.5,67.5$, 66.5, 61.4, 21.0, 20.8, 20.8, 20.7, 20.7

The analytical data agree with those in the literature ${ }^{[157]}$.

Analytical data for compound 239:
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.69(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{dd}, J=3.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.40$ (dd, $J=10.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=$ $11.5,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=11.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.02$ (s, 3H)
${ }^{13} \mathbf{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=170.5,170.2,170.1,169.9,88.2,71.2,68.1,67.9,67.1,61.0$, 20.9, 20.8, 20.7, 20.7

The analytical data agree with those in the literature ${ }^{[158]}$.
Analytical data for compound 236:
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.43(\mathrm{dd}, J=6.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.54-5.50(\mathrm{~m}, 1 \mathrm{H}), 5.42-$ $5.38(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{ddd}, J=6.3,2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=11.6,7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=11.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=170.6,170.3,170.2,145.5,98.9,72.9,64.0,63.8,62.0,20.9$, 20.8, 20.7
 (m), 1062 (m), 1030 (s$), 986$ (m), 965 (m), 922 (m), 895 (m), 863 (w), 836 (w), 812 (w), 745 (w), 716 (w), 686 (w), 669 (w), 642 (w), 624 (w), 604 (w), 566 (w), 544 (w), 495 (w), 477 (w), 455 (w), 409 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{7} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}:$calcd. 295.0794, found 295.0784
$[\boldsymbol{\alpha}]_{D}^{20}=-15^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
The analytical data agree with those in the literature ${ }^{[159]}$.

Synthesis of [(2R,3R,6R)-3-acetoxy-6-allyl-3,6-dihydro-2H-pyran-2-yl]methyl acetate 235

A solution of galactal $236(16.82 \mathrm{~g}, 0.06 \mathrm{~mol})$ in acetonitrile (150 ml) was cooled to $0^{\circ} \mathrm{C}$, and allyltrimethylsilane ($14.71 \mathrm{ml}, 0.09 \mathrm{~mol}$) and trimethylsilyltriflate ($13.45 \mathrm{ml}, 0.07 \mathrm{~mol}$) were
added to it. Saturated NaHCO_{3} solution was added after 45 min , and the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and the solvent was removed in vacuo. Purification of the residue by column chromatography on silica gel (pentane/diethyl ether 3:1) gave compound $\mathbf{2 3 5}$ as a colourless oil ($14.88 \mathrm{~g}, 95 \%$).

Note: In order to fully characterize the product, the crude mixture was purified as described above. However, this purification step can be omitted, since the purity of the crude compound was high enough to be directly used in the following reaction.
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.04(\mathrm{dd}, J=10.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{ddd}, J=10.3,5.1,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.83(\mathrm{ddt}, J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.08(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{dd}, J=5.1,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.15(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.31$ - 2.25 (m, 1H), 2.07 ($\mathrm{s}, 3 \mathrm{H}$), 2.05 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=170.9,170.7,134.9,134.0,122.1,117.8,72.4,68.1,64.0$, 63.1, 36.9, 21.0, 20.9

IR (ATR): $\tilde{v}=3656$ (w), 3078 (w), 3043 (w), 2980 (w), 2890 (w), 1733 (s), 1642 (w), 1436 (w), 1370 (m), 1223 (s), 1189 (m), 1150 (w), 1079 (m), 1046 (m), 1026 (m), 982 (w), 955 (m), 912 (m), 863 (w), 834 (w), 799 (w), 750 (m), 645 (w), 605 (w), 560 (w), 519 (w), 509 (w), 481 (w), 453 (w), 429 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{5} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 277.1052, found 277.1044
$[\alpha]_{D}^{20}=-241^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
The analytical data agree with those in the literature ${ }^{[160]}$.

Synthesis of (2R,3R,6R)-6-allyl-2-(hydroxymethyl)-3,6-dihydro-2H-pyran-3-ol 234

Acetate 235 ($14.41 \mathrm{~g}, 0.06 \mathrm{~mol}$) was dissolved in methanol (200 ml) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.57 \mathrm{~g}$, 11.33 mmol) was added to the solution. The reaction mixture was stirred for 2 h at room temperature. It was quenched with freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with ethyl acetate. After separation of the phases, the aqueous layer was extracted multiple times
with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification of the crude material by column chromatography on silica gel (n-hexane/ethyl acetate 1:1) gave diol 234 as white crystals ($9.49 \mathrm{~g}, 98 \%$).

Note: In order to fully characterize the product, the crude mixture was purified as described above. However, this purification step can be omitted, since the purity of the crude compound was high enough to be directly used in the following reaction.
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.01(\mathrm{ddd}, J=10.2,5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=10.2,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.82$ (ddt, $J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.31-4.26(\mathrm{~m}, 1 \mathrm{H}), 3.89$ (dd, $J=5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.75(\mathrm{~m}, 3 \mathrm{H}), 2.68(\mathrm{~s} \mathrm{br}, 2 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.23$ (m, 1H)
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.4,132.9,126.3,117.7,72.8,71.9,62.8,62.8,36.8$

IR (ATR): $\tilde{v}=3360$ (w br), 3262 (w br), 3069 (w), 3030 (w), 2968 (w), 2933 (w), 2914 (w), 2873 (w), 1995 (w), 1835 (w), 1724 (w), 1704 (w), 1637 (w), 1435 (w), 1408 (w), 1385 (w), 1360 (w), 1347 (w), 1329 (w), 1297 (w), 1257 (w), 1227 (w), 1186 (w), 1140 (w), 1115 (w), 1102 (w), 1061 (m), 1020 (m), 1004 (w), 982 (w), 963 (w), 929 (w), 914 (m), 864 (m), 801 (w), 740 (m), 695 (w), 660 (w), 618 (w), 565 (w), 515 (w), 490 (w), 467 (w), 413 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 193.0841, found 193.0834
$\mathbf{M p}=51-53{ }^{\circ} \mathrm{C}$
$[\alpha]_{D}^{20}=-286^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
The analytical data agree with those in the literature ${ }^{[67]}$.

Synthesis of $\{[(2 R, 3 R, 6 R)-6$-allyl-2-\{[(tert-butyldimethylsilyl) oxy $]$ methyl $\}$-3,6-dihydro--2H-pyran-3-yl]oxy\}(tert-butyl)dimethylsilane 233

Imidazole ($10.12 \mathrm{~g}, 0.15 \mathrm{~mol}$) and $\operatorname{TBSCl}(21.01 \mathrm{~g}, 0.14 \mathrm{~mol})$ were added to a solution of diol $234(7.91 \mathrm{~g}, 0.05 \mathrm{~mol})$ in $\mathrm{DCM}(75 \mathrm{ml})$. The reaction mixture was stirred overnight at room
temperature. Upon completion of the reaction (indicated by TLC), water was added, the layers were separated, and the aqueous phase was extracted with DCM. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. Purification of the crude material by column chromatography on silica gel (pentane/diethyl ether 50:1) afforded compound 233 as a colourless oil ($17.68 \mathrm{~g}, 95 \%$).
${ }^{1} H-N M R\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=5.90-5.79(\mathrm{~m}, 3 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=7.9$, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dt}, J=3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.70(\mathrm{~m}, 3 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.21$ $(\mathrm{m}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C - N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.8,131.7,127.2,117.2,74.1,71.3,63.4,61.8,37.8,26.1$, $26.0,18.5,18.4,-4.1,-4.5,-5.1,-5.2$

IR (ATR): $\tilde{v}=3079$ (w), 3035 (w), 2955 (w), 2929 (w), 2886 (w), 2857 (w), 1644 (w), 1541 (w), 1472 (w), 1436 (w), 1389 (w), 1361 (w), 1347 (w), 1327 (w), 1252 (m), 1189 (w), 1144 (w), 1094 (m), 1062 (m), 1017 (w), 1005 (w), 938 (w), 914 (w), 874 (m), 832 (s), 773 (s), 728 (w), 677 (w), 666 (w), 639 (w), 603 (w), 573 (w), 516 (w), 484 (w), 457 (w), 419 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{21} \mathrm{H}_{43} \mathrm{O}_{3} \mathrm{Si}^{+}=[\mathrm{M}+\mathrm{H}]^{+}\right.$: calcd. 399.2751, found 399.2747
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}=-133^{\circ}\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of [(2R,3R,6R)-6-allyl-3-[(tert-butyldimethylsilyl)oxy]-3,6-dihydro-2H-pyran--2-yl]methanol 232

Method A: Water (1 ml) and acetic acid (3 ml) were added to a solution of compound 233 ($200 \mathrm{mg}, 0.50 \mathrm{mmol}$) in THF $(1 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and was allowed to slowly warm to room temperature. After 2 h , the volatiles were removed in vacuo and the excess water was removed by azeotropic distillation with toluene. The crude residue was purified by column chromatography on silica gel (pentane/diethyl ether 3:1) to yield alcohol 232 as a colourless oil ($50 \mathrm{mg}, 35 \%$).

Method B: Water (1 ml) and formic acid (2 ml) were added to a solution of compound 233 ($280 \mathrm{mg}, 0.70 \mathrm{mmol}$) in acetonitrile (7 ml). After 20 min the reaction was quenched with saturated NaHCO_{3} solution and extracted with ethyl acetate. The combined organic layers were washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Column chromatography on silica gel (pentane/diethyl ether 3:1) yielded alcohol 232 as a colourless oil ($103 \mathrm{mg}, 52 \%$).

Method C: Compound 233 ($200 \mathrm{mg}, 0.50 \mathrm{mmol}$) was dissolved in methanol (5 ml) and PPTS ($164 \mathrm{mg}, 0.65 \mathrm{mmol}$) was added to this solution at ambient temperature. After 2.5 h the reaction was quenched by the addition of water and diluted with diethyl ether. The layers were separated and the aqueous phase was extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 3:1) to obtain alcohol $\mathbf{2 3 2}$ as a colourless oil ($78 \mathrm{mg}, 55 \%$).

Method D: CSA $(1.03 \mathrm{~g}, 4.43 \mathrm{mmol})$ was added to a solution of compound $233(17.68 \mathrm{~g}$, $0.04 \mathrm{~mol})$ in a $1: 1$ mixture of $\mathrm{DCM}(100 \mathrm{ml})$ and methanol $(100 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After stirring for 30 min at $0^{\circ} \mathrm{C}$, the reaction mixture was quenched with triethylamine ($247 \mathrm{ml}, 1.77 \mathrm{~mol}$) and was allowed to slowly warm to room temperature. The solution was concentrated under reduced pressure and the residue was purified by column chromatography on silica gel (pentane/diethyl ether 3:1) to give primary alcohol $\mathbf{2 3 2}$ as a colourless oil ($8.84 \mathrm{~g}, 70 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=5.87-5.78(\mathrm{~m}, 3 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.25(\mathrm{~m}$, $1 \mathrm{H}), 4.20-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{dt}, J=7.8,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{ddd}, J=55.1,11.4,5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}$ br, 1H), $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.5,131.5,126.9,117.6,73.2,70.9,64.5,62.3,37.9,25.9$, 18.3, -4.1, -4.6

IR (ATR): $\tilde{v}=3441$ (w br), 3077 (w), 3036 (w), 2954 (w), 2929 (w), 2887 (w), 2857 (w), 1642 (w), 1469 (w), 1436 (w), 1409 (w), 1390 (w), 1361 (w), 1348 (w), 1324 (w), 1253 (w), 1188 (w), 1073 (m), 1004 (w), 919 (m), 878 (m), 834 (m), 799 (w), 774 (m), 728 (w), 678 (w), 649 (w), 606 (w), 570 (w), 518 (w), 456 (w), 418 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}^{+}=[\mathrm{M}+\mathrm{Na}]^{+}\right.$: calcd. 307.1705, found 307.1696
$[\alpha]_{D}^{20}=-128^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2S,3R,6R)-6-allyl-3-[(tert-butyldimethylsilyl)oxy]-3,6-dihydro-2H-pyran--2-carbaldehyde 231

Method A: $\mathrm{NaHCO}_{3}(390 \mathrm{mg}, 4.64 \mathrm{mmol})$ and DMP ($984 \mathrm{mg}, 2.32 \mathrm{mmol}$) were added to a solution of alcohol $\mathbf{2 3 2}(330 \mathrm{mg}, 1.16 \mathrm{mmol})$ in $\mathrm{DCM}(8 \mathrm{ml})$ at ambient temperature. After 3 h the reaction was quenched with a saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The layers were separated and the aqueous phase was extracted with DCM. The combined organic extracts were washed with water and brine, dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica gel (pentane/diethyl ether 15:1) afforded aldehyde 231 as a pale-yellow oil (191 mg, 59\%).

Method B: Oxalyl chloride ($4.80 \mathrm{ml}, 0.06 \mathrm{~mol}$) was dissolved in DCM (100 ml) and the solution was cooled to $-78^{\circ} \mathrm{C}$. DMSO ($5.96 \mathrm{ml}, 0.08 \mathrm{~mol}$) dissolved in DCM (40 ml) was added to this solution dropwise. After stirring the reaction mixture for 45 min at $-78^{\circ} \mathrm{C}$, a solution of alcohol $232(7.96 \mathrm{~g}, 0.03 \mathrm{~mol})$ in DCM (100 ml) was added dropwise and the stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$. Finally, triethylamine ($27.30 \mathrm{ml}, 0.20 \mathrm{~mol}$) was added dropwise and after 20 min the reaction mixture was slowly warmed to room temperature. It was quenched with $5 \% \mathrm{KHSO}_{4}$ solution and the aqueous layer was extracted with DCM. The combined organic layers were dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 15:1) to give aldehyde $\mathbf{2 3 1}$ as a pale-yellow oil ($6.92 \mathrm{~g}, 88 \%$).

Note: In order to fully characterize the product, the crude mixture was purified as described above. However, it is better to omit this purification step, since the compound has been observed to decompose during both purification and storage.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=9.75(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.77(\mathrm{~m}, 3 \mathrm{H}), 5.13-5.07(\mathrm{~m}, 2 \mathrm{H})$, $4.52-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.47-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H})$, 2.31 - 2.25 (m, 1H), 0.87 ($\mathrm{s}, 9 \mathrm{H}$), 0.09 ($\mathrm{s}, 3 \mathrm{H}), 0.08$ ($\mathrm{s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=202.0,133.9,131.0,127.0,117.8,78.2,71.6,64.4,38.4$, 25.8, 18.2, -4.3, -4.7

IR (ATR): $\tilde{v}=3078$ (w), 3039 (w), 2954 (w), 2930 (w), 2887 (w), 2857 (w), 1737 (w), 1642 (w), 1471 (w), 1436 (w), 1410 (w), 1389 (w), 1362 (w), 1346 (w), 1321 (w), 1254 (w), 1190 (w), 1099 (m), 1079 (m), 1029 (w), 990 (m), 937 (w), 916 (w), 863 (m), 836 (s), 812 (w), 776 (s), 726 (w), 677 (w), 606 (w), 554 (w), 481 (w), 451 (w), 426 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{3} \mathrm{SiNH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 300.1995, found 300.1987 $[\alpha]_{D}^{20}=-115^{\circ}\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of $\{[(2 R, 3 R, 6 R)$-6-allyl-2-ethynyl-3,6-dihydro-2H-pyran-3-yl]oxy\}(tert--butyl)dimethylsilane 175

Trimethylsilyldiazomethane (2.0 M in hexane) ($3.16 \mathrm{ml}, 6.32 \mathrm{mmol}$) was dissolved in THF $(20 \mathrm{ml})$ and the solution was cooled to $-78^{\circ} \mathrm{C}$. At this temperature a 2.5 M solution of $n-\mathrm{BuLi}$ in hexane ($2.53 \mathrm{ml}, 6.32 \mathrm{mmol}$) was added dropwise. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, a solution of aldehyde $231(1.19 \mathrm{~g}, 4.21 \mathrm{mmol})$ in THF (20 ml) was added. After stirring for 1 h , the mixture was slowly warmed to room temperature and stirred for an additional 3 h . Finally, the reaction was quenched with freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous layer was extracted with ethyl acetate. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After purification by column chromatography on silica gel (pentane/diethyl ether 100:1) alkyne $\mathbf{1 7 5}$ was obtained as a colourless oil (906 mg , 77%).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.82(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75-5.71(\mathrm{~m}, 1 \mathrm{H})$, $5.69-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{ddd}, J=6.0,2.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.39(\mathrm{~m}$, $2 \mathrm{H}), 2.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=134.1,129.6,128.6,117.6,79.4,74.7,69.7,67.8,64.9,39.3$, 25.9, 18.3, -4.5, -4.6

IR (ATR): $\tilde{v}=3732$ (w), 3311 (w), 3078 (w), 3040 (w), 2956 (w), 2929 (w), 2889 (w), 2857 (w), 1643 (w), 1470 (w), 1433 (w), 1389 (w), 1359 (w), 1348 (w), 1320 (w), 1254 (m), 1188 (w), 1110 (m), 1074 (m), 1006 (w), 995 (w), 975 (w), 956 (w), 940 (w), 914 (w), 888 (w), 866 (m), 836 (m), 801 (w), 774 (m), 679 (m), 656 (m), 627 (m), 571 (w), $520(\mathrm{w}), 442(\mathrm{w}), 420(\mathrm{w})$

HRMS (ESI) (m/z) $\left[\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}^{+}=[\mathrm{M}+\mathrm{H}]^{+}\right.$: calcd. 279.1780, found 279.1780
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}=-51^{\circ}\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2S,3S)-5-[(2R,3R,6R)-6-allyl-3-[(tert-butyldimethylsilyl)oxy]-3,6-dihydro--2H-pyran-2-yl]-3-methylpent-4-yn-2-ol 186

A 2.5 M solution of $n-\mathrm{BuLi}$ in hexane $(1.98 \mathrm{ml}, 4.96 \mathrm{mmol})$ was added dropwise to a solution of alkyne $\mathbf{1 7 5}(460 \mathrm{mg}, 1.65 \mathrm{mmol})$ in THF (30 ml) at $-78^{\circ} \mathrm{C}$. After stirring the reaction mixture for $20 \mathrm{~min}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.62 \mathrm{ml}, 4.96 \mathrm{mmol})$ was added dropwise. After 15 min , epoxide $157(0.21 \mathrm{ml}, 2.31 \mathrm{mmol})$ was added to the above solution and the stirring was continued for another 3 h at $-78^{\circ} \mathrm{C}$. A saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added upon completion of the reaction (indicated by TLC). The mixture was extracted with ethyl acetate and the combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (pentane/diethyl ether 9:1) to give homopropargylic alcohol $\mathbf{1 8 6}$ as a colourless oil ($411 \mathrm{mg}, 71 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.81(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.67(\mathrm{~m}, 1 \mathrm{H})$, $5.64-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.76-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.60-3.51$ $(\mathrm{m}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, J=6.9,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 1.21(\mathrm{dd}, J=6.1$, $4.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.17$ (dd, $J=7.0,3.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91$ (s, 3H), 0.90 ($\mathrm{s}, 6 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=134.2,129.4,128.8,117.6,87.9,78.8,71.2,69.6,67.9,65.4$, $39.3,35.3,25.9,21.2,18.3,17.5,-4.5,-4.6$

IR (ATR): $\tilde{v}=3485$ (w br), 3078 (w), 3038 (w), 2956 (w), 2930 (w), 2886 (w), 2857 (w), 1643 (w), 1464 (w), 1389 (w), 1348 (w), 1319 (w), 1254 (w), 1179 (w), 1164 (w), 1107 (m), 1068 (m), 1004 (w), 993 (w), 962 (w), 938 (w), 914 (w), 896 (w), 865 (m), 835 (m), 775 (m), 745 (w), 729 (w), 693 (w), 678 (w), 660 (w), 617 (w), 591 (w), 568 (w), 553 (w), 538 (w), 509 (w), 478 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 373.2175, found 373.2168
$[\alpha]_{D}^{20}=-53^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2S,3S)-5-((2R,3R,6R)-3-((tert-butyldimethylsilyl)oxy)-6-(2-(tributyl-stannyl)propyl)-3,6-dihydro-2H-pyran-2-yl)-3-methylpent-4-yn-2-ol 197

Bis(triphenylphosphine)palladium(II) chloride ($4 \mathrm{mg}, 0.01 \mathrm{mmol}$) was added to a solution of alcohol 186 in THF (5 ml). To this solution, $n-\mathrm{Bu}_{3} \mathrm{SnH}(0.09 \mathrm{ml}, 0.34 \mathrm{mmol})$ was added dropwise over 10 min . After stirring for 2 h at room temperature, the mixture was extracted with ethyl acetate. The combined organic layers were washed with freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/diethyl ether 9:1) to give compound 197 as a colourless oil ($32 \mathrm{mg}, 17 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.69-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.56(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.69(\mathrm{~m}$, $1 \mathrm{H}), 4.42-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.36-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.67$ $-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 6 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.25(\mathrm{~m}, 7 \mathrm{H}), 1.21(\mathrm{t}, J=6.3$ $\mathrm{Hz}, 3 \mathrm{H}), 1.18(\mathrm{dd}, J=6.8,5.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.92-0.87(\mathrm{~m}, 18 \mathrm{H}), 0.81(\mathrm{t}, J=8.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.10(\mathrm{~s}$, $6 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=129.2,127.0,86.5,77.9,70.0,68.6,66.6,64.4,38.5,34.2$, $28.2,26.4,24.8,21.5,20.0,17.1,16.4,12.7,7.8,7.7,-5.7,-5.8$

HRMS (ESI) (m/z) $\left[\mathrm{C}_{32} \mathrm{H}_{62} \mathrm{O}_{3} \mathrm{SiSnNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 657.3414, found 657.3408

Synthesis of 1-[(2R,3R,6R)-6-allyl-3-[(tert-butyldimethylsilyl)oxy]-3,6-dihydro-2H-py-ran-2-yl]ethan-1-ol 215

A 3.0 M solution of methylmagnesium bromide in diethyl ether ($8.64 \mathrm{ml}, 25.92 \mathrm{mmol}$) was added dropwise to a stirred solution of aldehyde $231(2.44 \mathrm{~g}, 8.64 \mathrm{mmol})$ in THF (50 ml) at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and it was slowly warmed to room temperature. The reaction mixture was quenched with $5 \% \mathrm{KHSO}_{4}$ solution and extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture was purified by column chromatography on silica gel (pentane/diethyl ether 10:1) to afford alcohol 215 as a colourless oil and as a mixture of diastereomers ($2.36 \mathrm{~g}, 92 \%, 5: 1 \mathrm{dr}$).

The analytical data for the major isomer is as follows:
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.93-5.77(\mathrm{~m}, 3 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{dd}, J=9.1$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{dd}, J=6.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 2.46-2.36$ $(\mathrm{m}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$ ${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.8,132.8,126.1,117.6,75.9,72.5,67.5,63.9,36.8,26.0$, 18.2, 18.0, -3.3, -4.4

IR (ATR): $\tilde{v}=3496$ (w br), 3077 (w), 3036 (w), 2988 (w), 2955 (w), 2929 (w), 2885 (w), 2857 (w), 1642 (w), 1470 (w), 1465 (w), 1436 (w), 1404 (w), 1391 (w), 1360 (w), 1342 (w), 1319 (w), 1253 (w), 1190 (w), 1167 (w), 1112 (m), 1068 (m), 1045 (m), 1005 (w), 989 (w), 961 (w), 939 (m), 911 (m), 888 (w), 864 (w), 834 (m), 809 (w), 774 (m), 730 (w), 684 (w), 648 (w), 607 (w), 573 (w), 532 (w), 522 (w), 500 (w), 487 (w), 454 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{16} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 299.2042, found 299.2043
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-182^{\circ}\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}, 5: 1 \mathrm{dr}\right)$

Synthesis of 1-[(2S,3R,6R)-6-allyl-3-[(tert-butyldimethylsilyl)oxy]-3,6-dihydro-2H-pyran-

 -2-yl]ethan-1-one 205

Alcohol 215 ($1.28 \mathrm{~g}, 4.29 \mathrm{mmol}$) was dissolved in DCM (40 ml) at room temperature. $\mathrm{NaHCO}_{3}(1.44 \mathrm{~g}, 17.15 \mathrm{mmol})$ and DMP ($3.64 \mathrm{~g}, 8.58 \mathrm{mmol}$) were added to this solution and the mixture was stirred for 4 h . After completion of the reaction (indicated by TLC), saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added and the stirring was continued for additional 10 min . The layers were separated and the aqueous layer was extracted with DCM. The combined organic layers were washed with saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by column chromatography on silica gel (pentane/diethyl ether 50:1) afforded ketone 205 as a colourless oil ($1.08 \mathrm{mg}, 85 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.94-5.89(\mathrm{~m}, 2 \mathrm{H}), 5.83(\mathrm{ddt}, J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.48-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.27-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ - $2.34(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=209.6,134.4,132.3,125.8,117.6,78.2,72.8,64.0,36.9$, 28.2, 25.9, 18.2, -4.0, -4.7

IR (ATR): $\tilde{v}=3078$ (w), 3038 (w), 3005 (w), 2955 (w), 2930 (w), 2894 (w), 2858 (w), 1719 (w), 1642 (w), 1471 (w), 1415 (w), 1354 (w), 1317 (w), 1254 (w), 1229 (w), 1188 (w), 1109 (m), 1069 (m), 1027 (w), 997 (w), 963 (w), 937 (w), 900 (m), 835 (m), 803 (w), 776 (m), 749 (w), 726 (w), 684 (w), 648 (w), 617 (w), 600 (w), 564 (w), 546 (w), 510 (w), 495 (w), 466 (w), 442 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 319.1705, found 319.1704
$[\alpha]_{D}^{20}=-193^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of $\{[(2 R, 3 R, 6 R)-6$-allyl-2-[(Z)-1-iodoprop-1-en-2-yl]-3,6-dihydro-2H-pyran-

-3-yl]oxy\}(tert-butyl)dimethylsilane 227

A solution of ketone $205(150 \mathrm{mg}, 0.51 \mathrm{mmol})$ and iodoform ($598 \mathrm{mg}, 1.52 \mathrm{mmol}$) in THF $(4 \mathrm{ml})$ was added to a solution of chromium(II) chloride ($684 \mathrm{mg}, 5.57 \mathrm{mmol}$) in THF (3 ml). The mixture was stirred overnight at room temperature. After completion of the reaction (indicated by TLC) the reaction mixture was quenched with water and stirred for another 10 min . The mixture was extracted with diethyl ether, washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude mixture ($E / Z=1: 13$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 50:1) to yield Z-vinyl iodide 227 as a colourless oil ($162 \mathrm{mg}, 76 \%$).
${ }^{1} H-N M R\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right): \delta=6.34-6.33(\mathrm{~m}, 1 \mathrm{H}), 5.98-5.92(\mathrm{~m}, 2 \mathrm{H}), 5.86(\mathrm{ddt}, J=$ $17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.00(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.26(\mathrm{~m}, 1 \mathrm{H})$, $4.20-4.18(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07$ (s, 3H), 0.06 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 150 \mathrm{MHz}\right): \delta=145.7,135.9,132.7,127.3,117.2,78.8,76.3,73.6,64.8$, 37.5, 26.3, 22.5, 18.6, -3.7, -4.3

IR (ATR): $\tilde{v}=3077$ (w), 3035 (w), 2953 (w), 2928 (w), 2886 (w), 2856 (w), 1641 (w), 1625 (w), 1573 (w), 1554 (w), 1469 (w), 1435 (w), 1413 (w), 1390 (w), 1359 (w), 1324 (w), 1283 (w), 1252 (w), 1190 (w), 1109 (m), 1068 (m), 1031 (w), 1005 (w), 960 (w), 915 (m), 891 (w), 868 (w), 834 (m), 809 (w), 772 (m), 750 (w), 730 (w), 675 (w), 645 (w), 612 (w), 588 (w), 567 (w), 520 (w), 505 (w), 470 (w), 446 (w), 419 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{IO}_{2} \mathrm{Si}^{+}=[\mathrm{M}+\mathrm{H}]^{+}\right.$: calcd. 421.1060, found 421.1056
$[\alpha]_{D}^{20}=-186^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of $\{[(2 R, 3 R, 6 R)-6$-allyl-2-[(4S,5S,Z)-5-[(tert-butyldimethylsilyl)oxy]-4-methyl-

 hex-2-en-2-yl]-3,6-dihydro-2H-pyran-3-yl]oxy\}(tert-butyl)dimethylsilane 211

Method A: LiHMDS (1 M in THF) $(0.17 \mathrm{ml}, 0.17 \mathrm{mmol})$ was slowly added at $-42^{\circ} \mathrm{C}$ to a solution of sulfone 210 ($50 \mathrm{mg}, 0.12 \mathrm{mmol}$) in DCM (2 ml). After 30 min cerium(III) chloride ($12 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added and subsequently a solution of ketone 205 ($37 \mathrm{mg}, 0.12 \mathrm{mmol}$) in DCM (3 ml) was added dropwise. The reaction mixture was stirred for 1 h before it was allowed to slowly warm to room temperature. The reaction was quenched with a freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the mixture was extracted with DCM . The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture ($E / Z=1: 16$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 100:1) to yield compound 211 as a colourless oil ($5 \mathrm{mg}, 8 \%$).

Method B: LiHMDS (1 M in THF) $(0.35 \mathrm{ml}, 0.35 \mathrm{mmol})$ was slowly added at $-78^{\circ} \mathrm{C}$ to a solution of sulfone $\mathbf{2 1 0}$ ($100 \mathrm{mg}, 0.25 \mathrm{mmol}$) in THF (6 ml). After 1 h a solution of ketone $\mathbf{2 0 5}$ ($74 \mathrm{mg}, 0.25 \mathrm{mmol}$) in THF (8 ml) was added dropwise. The reaction mixture was stirred for 4 h before it was allowed to slowly warm to room temperature. After this, water was added and the mixture was extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture ($E / Z=1: 17$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 100:1) to yield compound 211 as a colourless oil ($21 \mathrm{mg}, 18 \%$).
${ }^{1} H-N M R\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right): \delta=5.97-5.82(\mathrm{~m}, 3 \mathrm{H}), 5.17(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-$ $5.00(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=3.8,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$

[^1]IR (ATR): $\tilde{v}=3078$ (w), 3034 (w), 2956 (w), 2929 (w), 2883 (w), 2857 (w), 1738 (w), 1642 (w), 1470 (w), 1463 (w), 1408 (w), 1389 (w), 1371 (w), 1322 (w), 1293 (w), 1252 (m), 1212 (w), 1188 (w), 1158 (w), 1095 (m), 1058 (m), 1025 (m), 1006 (w), 983 (w), 960 (w), 933 (m), 916 (m), 867 (w), 834 (m), 806 (m), 772 (m), 746 (m), 685 (w), 664 (w), 619 (w), 611 (w), 595 (w), 568 (w), 510 (w), 481 (w), 457 (w), 438 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{27} \mathrm{H}_{52} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{NH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 498.3799, found 498.3791
$[\alpha]_{D}^{20}=-115^{\circ}\left(\mathrm{c}=0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2R,3R,6R)-6-allyl-2-\{[(tert-butyldimethylsilyl)oxy]methyl\}-3,6-dihydro--2H-pyran-3-ol 247

TBSCl ($4.82 \mathrm{~g}, 31.99 \mathrm{mmol}$) was added to a solution of Diol $234(4.95 \mathrm{~g}, 29.08 \mathrm{mmol})$ and imidazole ($2.97 \mathrm{~g}, 43.62 \mathrm{mmol}$) in DMF (50 ml) at $0^{\circ} \mathrm{C}$. After 30 minutes, the solution was slowly warmed to room temperature, and stirred for an additional 2 h . The reaction was quenched with saturated NaHCO_{3} solution and extracted with diethyl ether. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Purification of the crude mixture by column chromatography on silica gel (pentane/diethyl ether 3:1) afforded compound 247 as a colourless oil ($6.65 \mathrm{~g}, 80 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.05(\mathrm{ddd}, J=10.2,5.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dd}, J=10.2,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.94$ (dd, $J=5.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=9.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dt}, J=5.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ (dd, $J=9.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{~s}$ br, 1H), $0.90(\mathrm{~s}$, 9H), 0.09 ($\mathrm{s}, 3 \mathrm{H}$), 0.08 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.6,132.9,126.7,117.5,73.0,72.0,63.0,62.4,37.1,26.0$, 18.4, -5.2, -5.3

IR (ATR): $\tilde{v}=3444$ (w br), 3078 (w), 3035 (w), 2953 (w), 2929 (w), 2885 (w), 2856 (w), 1642 (w), 1469 (w), 1434 (w), 1405 (w), 1391 (w), 1362 (w), 1329 (w), 1253 (w), 1186 (w), 1144 (w), 1089 (m), 1047 (m), 996 (w), 978 (w), 963 (w), 939 (w), 914 (w), 865 (m), 833 (s), 815 (m), 775 (m), 743 (m), 689 (w), 665 (w), 598 (w), 572 (w), 515 (w), 492 (w), 458 (w), 419 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{15} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}^{+}=[\mathrm{M}+\mathrm{H}]^{+}\right.$: calcd. 285.1886, found 285.1877 $[\alpha]_{\boldsymbol{D}}^{20}=-157^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

The analytical data agree with those in the literature ${ }^{[95]}$.

Synthesis of $\{[(2 R, 3 R, 6 R)$-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-yl]meth-oxy\}(tert-butyl)dimethylsilane 245

DIPEA ($10.18 \mathrm{ml}, 58.44 \mathrm{mmol})$ and MOMCl ($3.99 \mathrm{ml}, 52.60 \mathrm{mmol}$) were added to a solution of compound $247(6.65 \mathrm{~g}, 23.38 \mathrm{mmol})$ in $\mathrm{DCM}(80 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 40 min before it was slowly warmed to room temperature and stirred overnight. After completion of the reaction (indicated by TLC), the reaction was quenched with water. After separation of the phases, the aqueous phase was extracted with DCM and the combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification by column chromatography on silica gel (pentane/diethyl ether 20:1) yielded compound 245 as a colourless oil ($7.44 \mathrm{~g}, 97 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.03(\mathrm{ddd}, J=10.3,5.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=10.3,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.12-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{dd}, J=8.8,6.7 \mathrm{~Hz}$, 2H), $4.32-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=5.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H})$, $2.45-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.7,133.3,124.9,117.3,96.3,72.6,72.0,67.1,62.0,55.6$, 37.3, 26.0, 18.4, -5.2, -5.3

IR (ATR): $\tilde{v}=3077$ (w), 3038 (w), 2952 (w), 2929 (w), 2885 (w), 2857 (w), 2823 (w), 2775 (w), 1641 (w), 1471 (w), 1464 (w), 1439 (w), 1399 (w), 1389 (w), 1361 (w), 1327 (w), 1298 (w), 1253 (w), 1213 (w), 1188 (w), 1149 (w), 1098 (m), 1086 (m), 1037 (m), 1005 (w), 997 (w), 936 (w), 915 (w), 834 (m), 815 (w), 775 (m), 740 (w), 710 (w), 680 (w), 665 (w), 594 (w), 516 (w), 492 (w), 465 (w), 442 (w), 418 (w)

HRMS (ESI) (m / z) $\left[\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 351.1968, found 351.1959
$[\alpha]_{\boldsymbol{D}}^{20}=-161^{\circ}\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2R,3R,6R)-6-allyl-2-\{[(triisopropylsilyl)oxy]methyl\}-3,6-dihydro-2H-pyran--3-ol 248

TIPSCl ($10.03 \mathrm{ml}, 46.88 \mathrm{mmol}$) was added dropwise to a solution of Diol 234 (5.32 g , $31.26 \mathrm{mmol})$ and imidazole $(4.26 \mathrm{~g}, 62.51 \mathrm{mmol})$ in $\mathrm{DCM}(175 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 15 min , the solution was slowly warmed to room temperature and stirred for another 4 h . The reaction was quenched with a saturated solution of NaHCO_{3} and extracted with DCM. The combined organic layers were washed with 1 M HCl solution and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to obtain alcohol 248 as a colourless oil $(9.10 \mathrm{~g}, 89 \%)$.
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.06(\mathrm{ddd}, J=10.2,5.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dd}, J=10.2,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.86$ (ddt, $J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.99$ (dd, $J=5.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.82(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.98$ (s br, 1H), $1.15-1.06$ (m, 21H)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.6,132.8,126.6,117.4,73.0,72.0,63.2,62.4,37.2,18.1$, 12.0

IR (ATR): $\tilde{v}=3443$ (w br), 3078 (w), 3035 (w), 2941 (w), 2866 (w), 1642 (w), 1463 (w), 1435 (w), 1385 (w), 1367 (w), 1328 (w), 1251 (w), 1185 (w), 1093 (m), 1072 (m), 1047 (m), 995 (w), 980 (w), 915 (w), 881 (m), 816 (w), 779 (w), 744 (w), 680 (m), 657 (m), 573 (w), 524 (w), 494 (w), 457 (w), 444 (w), 419 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 349.2175, found 349.2168 $[\boldsymbol{\alpha}]_{D}^{20}=-135^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of $\{[(2 R, 3 R, 6 R)$-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-yl]methoxy\}triisopropylsilane 246

DMAP ($232 \mathrm{mg}, 1.90 \mathrm{mmol}$), DIPEA ($5.78 \mathrm{ml}, 47.39 \mathrm{mmol}$) and MOMCl $(4.63 \mathrm{ml}$, $42.65 \mathrm{mmol})$ were successively added to a solution of alcohol $248(6.19 \mathrm{~g}, 18.96 \mathrm{mmol})$ in DCM (125 ml) at room temperature and the mixture was stirred overnight. After completion of the reaction (indicated by TLC), the reaction mixture was quenched with saturated NaHCO_{3} solution and diluted with DCM. After separation of the phases, the aqueous phase was extracted with DCM and the combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude mixture was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to obtain compound 246 as a colourless oil ($6.73 \mathrm{~g}, 96 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.05(\mathrm{ddd}, J=10.2,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=10.2,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.85(\mathrm{ddt}, J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.72(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=5.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.76(\mathrm{~m}$, $3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 21 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.7,133.3,125.0,117.3,96.4,72.6,72.0,67.0,62.3,55.6$, 37.3, 18.1, 12.0

IR (ATR): $\tilde{v}=3078$ (w), 3037 (w), 2941 (w), 2887 (w), 2866 (w), 2823 (w), 2774 (w), 1642 (w), 1464 (w), 1385 (w), 1367 (w), 1326 (w), 1251 (w), 1212 (w), 1150 (m), 1103 (m), 1088 (m), 1037 (s), 995 (m), 936 (w), 915 (m), 881 (m), 844 (w), 785 (m), 740 (w), 681 (m), 658 (m), 567 (w), 550 (w), 523 (w), 494 (w), 458 (w), 443 (w), 419 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 393.2437, found 393.2424
$[\alpha]_{D}^{20}=-124^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of [(2R,3R,6R)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-yl]methanol 244

Method A: A 1 M solution of TBAF in THF ($45.29 \mathrm{ml}, 45.29 \mathrm{mmol}$) was added dropwise to a solution of compound $245(7.44 \mathrm{~g}, 22.65 \mathrm{mmol})$ in THF (100 ml) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 15 min at $0^{\circ} \mathrm{C}$ before it was slowly warmed to room temperature and stirred for another 1 h . Upon completion of the reaction (indicated by a TLC), the reaction mixture was quenched with water and diluted with ethyl acetate. After separation of the phases, the aqueous phase was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mixture was purified by column chromatography on silica gel (pentane/diethyl ether 1:2) to afford alcohol 244 as a colourless oil ($4.64 \mathrm{~g}, 96 \%$).

Method B: A 1 M solution of TBAF in THF ($35.19 \mathrm{ml}, 35.19 \mathrm{mmol}$) was added dropwise to a solution of compound $246(6.52 \mathrm{~g}, 17.59 \mathrm{mmol})$ in THF $(75 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2.5 h at $0^{\circ} \mathrm{C}$, and quenched with a freshly prepared $\mathrm{NH}_{4} \mathrm{Cl}$ solution before it was diluted with water and diethyl ether. After separation of the phases, the aqueous phase was extracted with diethyl ether. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography on silica gel (pentane/diethyl ether 1:3) to yield alcohol 244 as a colourless oil ($3.55 \mathrm{~g}, 94 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.02(\mathrm{ddd}, J=10.3,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=10.3,2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddt}, J=17.1,10.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{dd}, J=11.4,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.74(\mathrm{dd}, J=11.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.25(\mathrm{~m}, 1 \mathrm{H})$, 2.08 ($\mathrm{s} \mathrm{br}, 1 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=134.5,133.6,124.0,117.7,96.0,72.1,71.7,67.9,62.3,55.9$, 37.2

IR (ATR): $\tilde{v}=3446$ (w br), 3076 (w), 3037 (w), 2932 (w), 2889 (w), 2848 (w), 2824 (w), 2780 (w), 1641 (w), 1468 (w), 1439 (w), 1395 (w), 1349 (w), 1300 (w), 1212 (w), 1188 (w), 1148 (m), 1080 (m), 1029 (s), 984 (m), 913 (m), 875 (w), 840 (w), 790 (w), 741 (w), 716 (w), 685 (w), 637 (w), 518 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 237.1103, found 237.1098
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-191^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2S,3R,6R)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-carbaldehyde 243

Oxalyl chloride ($2.05 \mathrm{ml}, 23.94 \mathrm{mmol}$) was dissolved in DCM (30 ml) and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. DMSO ($2.27 \mathrm{ml}, 31.92 \mathrm{mmol}$) dissolved in DCM (15 ml) was added dropwise to this solution and the reaction mixture was stirred for 45 min at $-78^{\circ} \mathrm{C}$. A solution of alcohol $244(3.42 \mathrm{~g}, 15.96 \mathrm{mmol})$ in DCM (30 ml) was subsequently added dropwise and the stirring was continued for 1 h at $-78^{\circ} \mathrm{C}$. Finally, triethylamine ($15.57 \mathrm{ml}, 0.11 \mathrm{~mol}$) was added dropwise and the solution was stirred for 20 min at $-78^{\circ} \mathrm{C}$ before it was slowly warmed to room temperature. The reaction was then quenched with $6 \% \mathrm{KHSO}_{4}$ solution and the aqueous layer was extracted with DCM . The organic layer was dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 2:1) to give aldehyde 243 as a colourless oil ($2.96 \mathrm{~g}, 87 \%$).

Note: In order to fully characterize the product, the crude mixture was purified as described above. However, it is better to omit this purification step, since the compound has been observed to decompose during both purification and storage.
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.71(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{ddd}, J=10.4,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.98$ (ddd, $J=10.4,2.8,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddt}, J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.08(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}$, 3 H), $2.47-2.27$ (m, 2H)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=201.6,133.8,133.3,123.9,118.0,95.9,76.5,72.5,67.8$, 55.9, 37.6

IR (ATR): $\tilde{v}=3077$ (w), 3041 (w), 2930 (w), 2893 (w), 2847 (w), 2825 (w), 2780 (w), 1736 (m), 1642 (w), 1466 (w), 1440 (w), 1392 (w), 1378 (w), 1322 (w), 1292 (w), 1274 (w), 1213 (w), 1190 (w), 1149 (m), 1090 (m), 1032 (s), 995 (m), 916 (m), 876 (w), 851 (w), 817 (w), 790 (w), 741 (w), 639 (w), 601 (w), 557 (w), 485 (w), 440 (w), 419 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{4} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 235.0946, found 235.0940
$[\alpha]_{D}^{20}=-215^{\circ}\left(\mathrm{c}=0.8\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2R,3R,6R)-6-allyl-2-ethynyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran 178

Method A: Trimethylsilyldiazomethane (2.0 M in hexane) $(0.53 \mathrm{ml}, 1.06 \mathrm{mmol}$) was dissolved in THF (5 ml) and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. A 2.5 M solution of $n-\mathrm{BuLi}$ in hexane ($0.42 \mathrm{ml}, 1.06 \mathrm{mmol}$) was added dropwise and the mixture was stirred for 30 min at $-78^{\circ} \mathrm{C}$. A solution of aldehyde $243(150 \mathrm{mg}, 0.71 \mathrm{mmol})$ in THF (5 ml) was added and the stirring was continued for 1 h . The mixture was slowly warmed to room temperature and was stirred for an additional 3 h . The reaction was quenched with a freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution before the aqueous layer was extracted with ethyl acetate. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After purification by column chromatography on silica gel (pentane/diethyl ether 5:1) alkyne $\mathbf{1 7 8}$ was obtained as a colourless oil ($39 \mathrm{mg}, 27 \%$).

Method B: A solution of aldehyde $243(1.56 \mathrm{~g}, 7.35 \mathrm{mmol})$ in $\mathrm{MeOH}(60 \mathrm{ml})$ was added to a solution of Bestmann reagent (10% solution in acetonitrile) ($21.18 \mathrm{ml}, 8.82 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(2.03 \mathrm{~g}, 14.70 \mathrm{mmol})$ in MeOH . The reaction mixture was stirred for 2.5 h at room temperature and was then quenched with saturated NaHCO_{3} solution and extracted with diethyl ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude
material was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to obtain alkyne $\mathbf{1 7 8}$ as a colourless oil ($901 \mathrm{mg}, 59 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=5.86-5.73(\mathrm{~m}, 3 \mathrm{H}), 5.15-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.95(\mathrm{dd}, J=5.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.31-$ $4.26(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.27(\mathrm{~m}, 2 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=133.9,130.8,125.8,117.7,96.9,79.5,74.8,70.6,69.9,66.1$, 56.2, 39.1

IR (ATR): $\tilde{v}=3288$ (w), 3077 (w), 3041 (w), 3002 (w), 2935 (w), 2891 (w), 2846 (w), 2827 (w), 2781 (w), 1641 (w), 1469 (w), 1441 (w), 1392 (w), 1353 (w), 1305 (w), 1263 (w), 1215 (w), 1150 (m), 1106 (m), 1042 (s), 988 (m), 959 (w), 915 (m), 889 (w), 872 (w), 825 (w), 799 (w), 710 (w), 656 (m), 630 (m), 521 (w), 442 (w), 419 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 231.0997, found 231.0996 $[\alpha]_{D}^{20}=-102^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of 1-((2R,3R,6R)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-

-2-yl)ethan-1-ol 216

A 3 M solution of MeMgBr in diethyl ether $(6.60 \mathrm{ml}, 19.79 \mathrm{mmol})$ was added to a solution of aldehyde $\mathbf{2 4 3}(1.40 \mathrm{~g}, 6.60 \mathrm{mmol})$ in THF $(50 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 1 h , before it was allowed to slowly warm to room temperature. The reaction mixture was stirred overnight and quenched with saturated NaHCO_{3} solution and extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture was purified by column chromatography on silica gel (pentane/diethyl ether 2:1) to yield alcohol 216 as a colourless oil ($1.43 \mathrm{~g}, 95 \%, 4: 1 \mathrm{dr}$).

The analytical data for the major isomer is as follows:
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.08(\mathrm{ddd}, J=10.3,5.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=10.2,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddt}, J=17.0,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.79(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.62(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.39(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=7.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=5.4$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (dd, $J=7.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (s, 3H), 2.87 (s br, 1H), $2.49-2.36$ (m, 1H), $2.31-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.24-1.20(\mathrm{~d}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=134.6,134.1,124.1,117.8,95.3,75.6,72.9,66.9,66.8,55.9$, 36.6, 17.7

IR (ATR): $\tilde{v}=3491$ (w br), 3075 (w), 3038 (w), 2975 (w), 2931 (w), 2891 (w), 2824 (w), 1641 (w), 1439 (w), 1402 (w), 1375 (w), 1362 (w), 1341 (w), 1320 (w), 1262 (w), 1230 (w), 1212 (w), 1189 (w), 1148 (m), 1078 (m), 1030 (s), 1001 (m), 985 (m), 914 (m), 895 (m), 848 (w), 825 (w), 803 (w), 744 (w), 715 (w), 636 (w), 612 (w), 573 (w), 556 (w), 497 (w), 478 (w), 463 (w), 447 (w), 412 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 251.1259, found 251.1258
$[\alpha]_{D}^{20}=-284^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}, 4: 1 \mathrm{dr}\right)$

Synthesis of 1-[(2S,3R,6R)-6-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran--2-yl]ethan-1-one 206

Alcohol 216 ($1.30 \mathrm{~g}, 5.69 \mathrm{mmol}$) was dissolved in DCM (60 ml) at room temperature. $\mathrm{NaHCO}_{3}(1.91 \mathrm{~g}, 22.78 \mathrm{mmol})$ and DMP $(4.83 \mathrm{~g}, 11.39 \mathrm{mmol})$ were added to this solution and the mixture was stirred for 4 h at room temperature. The reaction was quenched with a saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and stirred for another 10 min . The layers were separated and the aqueous layer was extracted with DCM. The combined organic layers were washed with saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated under reduced pressure. Purification of the residue by column chromatography on silica gel (pentane/diethyl ether 6:1) gave ketone 206 as a colourless oil ($1.12 \mathrm{~g}, 87 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.06(\mathrm{ddd}, J=10.3,5.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=10.3,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.84(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51-4.46(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.38$ (m, 1H), 2.30-2.25(m, 1H), 2.27 ($\mathrm{s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=209.0,134.2,133.7,123.9,117.7,95.9,76.9,73.2,67.5$, 55.7, 36.7, 27.7

IR (ATR): $\tilde{v}=3659$ (w), 3077 (w), 3039 (w), 2980 (w), 2930 (w), 2890 (w), 2845 (w), 2825 (w), 2778 (w), 1715 (m), 1641 (w), 1470 (w), 1438 (w), 1417 (w), 1394 (w), 1352 (w), 1323 (w), 1273 (w), 1210 (w), 1187 (w), 1149 (m), 1105 (m), 1089 (m), 1029 (s), 989 (m), 955 (m), 915 (m), 869 (w), 850 (w), 816 (w), 742 (m), 708 (w), 638 (w), 615 (w), 592 (w), 545 (w), 495 (w), 467 (w), 448 (w), 414 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 249.1103, found 249.1094 $[\alpha]_{D}^{20}=-283^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2R,3R,6R)-6-allyl-2-[(Z)-1-iodoprop-1-en-2-yl]-3-(methoxymethoxy)-3,6-di-hydro-2H-pyran 228

A solution of ketone 206 ($150 \mathrm{mg}, 0.66 \mathrm{mmol}$) and iodoform ($600 \mathrm{mg}, 1.52 \mathrm{mmol}$) in THF (4 ml) was added to a solution of chromium(II) chloride ($693 \mathrm{mg}, 5.63 \mathrm{mmol}$) in THF (4 ml). The reaction mixture was stirred overnight at room temperature. Upon completion of the reaction (indicated by TLC), it was quenched with water and stirred for another 10 min before it was diluted with diethyl ether. The layers were separated and the aqueous layer was extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and the volatiles were removed in vacuo. The crude mixture ($E / Z=1: 10$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 10:1) in order to obtain Z-vinyl iodide 228 as a pale-yellow oil ($118 \mathrm{mg}, 51 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right): \delta=6.39-6.37(\mathrm{~m}, 1 \mathrm{H}), 6.04(\mathrm{ddd}, J=10.3,5.0,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.99(\mathrm{dd}, J=10.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{ddt}, J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.01(\mathrm{~m}$, $2 \mathrm{H}), 4.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.27$ $(\mathrm{m}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=4.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H})$, 1.89 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 150 \mathrm{MHz}\right): \delta=145.7,135.9,133.6,125.4,117.2,96.0,78.6,75.3,73.7$, 68.7, 55.6, 37.6, 22.2

IR (ATR): $\tilde{v}=3075$ (w), 3038 (w), 2979 (w), 2927 (w), 2888 (w), 2851 (w), 2845 (w), 2823 (w), 2776 (w), 1727 (w), 1640 (w), 1625 (w), 1465 (w), 1438 (w), 1415 (w), 1376 (w), 1355 (w), 1327 (w), 1281 (w), 1251 (w), 1228 (w), 1211 (w), 1190 (w), 1148 (m), 1101 (m), 1081 (m), 1033 (m), 995 (m), 963 (w), 915 (m), 874 (w), 848 (w), 841 (w), 799 (w), 742 (w), 678 (w), 641 (w), 621 (w), 610 (w), 590 (w), 580 (w), 543 (w), 524 (w), 487 (w), 454 (w), 444 (w), 418 (w), 412 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{IO}_{3} \mathrm{NH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 368.0723, found 368.0720
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-219^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of $\{[(2 S, 3 S, Z)-5-[(2 R, 3 R, 6 R)-6-a l l y l-3-(m e t h o x y m e t h o x y)-3,6-d i h y d r o-2 H-p y-~$ ran-2-yl]-3-methylhex-4-en-2-yl]oxy\}(tert-butyl)dimethylsilane 212

Method A: LiHMDS (1 M in THF) $(0.17 \mathrm{ml}, 0.17 \mathrm{mmol})$ was slowly added at $-42^{\circ} \mathrm{C}$ to a solution of sulfone $\mathbf{2 1 0}$ ($49 \mathrm{mg}, 0.12 \mathrm{mmol}$) in DCM (2 ml). After 30 min cerium(III) chloride $(12 \mathrm{mg}, 0.05 \mathrm{mmol})$ was added and subsequently a solution of ketone $206(28 \mathrm{mg}$, 0.012 mmol) in DCM (3 ml) was added dropwise. The reaction mixture was stirred for 1 h and was allowed to slowly warm to room temperature. The reaction was quenched with a freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the mixture was extracted with DCM. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The
crude mixture ($E / Z=1: 12$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 20:1) to yield compound 212 as a colourless oil ($17 \mathrm{mg}, 34 \%$).

Method B: LiHMDS (1 M in THF) $\left(0.15 \mathrm{ml}, 0.15 \mathrm{mmol}\right.$) was slowly added at $-78^{\circ} \mathrm{C}$ to a solution of sulfone 210 ($51 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (2 ml). A solution of ketone 206 (24 mg , 0.11 mmol) in THF (3 ml) was added dropwise after 1 h . The reaction mixture was stirred for 3 h before it was allowed to slowly warm to room temperature. Water was subsequently added and the mixture was extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture $(E / Z=1: 14$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 20:1) to yield compound 212 as a colourless oil ($20 \mathrm{mg}, 46 \%$).

Method C: LiHMDS (1 M in THF) $(0.27 \mathrm{ml}, 0.27 \mathrm{mmol})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$ to a solution of sulfone $210(76 \mathrm{mg}, 0.19 \mathrm{mmol})$ and ketone $206(60 \mathrm{mg}, 0.27 \mathrm{mmol})$ in THF $(5 \mathrm{ml})$. The reaction mixture was warmed to room temperature after 4 h and water was added. The mixture was extracted with diethyl ether and the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture ($E / \mathrm{Z}=1: 14$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to yield compound 212 as a colourless oil ($41 \mathrm{mg}, 53 \%$).
${ }^{1} H-N M R\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right): \delta=6.02(\mathrm{ddd}, J=10.3,5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{dd}, J=10.3$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87$ (ddt, $J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.15(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.00(\mathrm{~m}, 2 \mathrm{H})$, $4.65(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.25(\mathrm{~m}$, $1 \mathrm{H}), 3.87(\mathrm{dd}, J=5.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 2 \mathrm{H})$, $2.33-2.27(\mathrm{~m}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~d}, J=6.72 \mathrm{~Hz}$, $3 \mathrm{H}), 0.91$ ($\mathrm{s}, 9 \mathrm{H}), 0.07$ ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 150 \mathrm{MHz}\right): \delta=136.2,134.4,133.5,131.9,126.0,117.0,96.4,73.4$, $73.4,70.7,70.6,55.4,40.9,37.5,26.3,22.9,21.2,18.7,17.0,-4.0,-4.6$

IR (ATR): $\tilde{v}=3077$ (w), 3037 (w), 2955 (w), 2928 (w), 2888 (w), 2857 (w), 2822 (w), 2774 (w), 1738 (w), 1641 (w), 1462 (w), 1448 (w), 1371 (w), 1296 (w), 1253 (w), 1212 (w), 1187 (w), 1150 (w), 1126 (w), 1096 (m), 1034 (m), 1004 (w), 984 (w), 960 (w), 939 (w), 916 (w), 889 (w), 835 (m), 808 (w), 773 (m), 741 (w), 711 (w), 665 (w), 641 (w), 612 (w), 590 (w), 560 (w), 494 (w), 482 (w), 438 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{23} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{SiNH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 428.3196 , found 428.3196
$[\alpha]_{D}^{20}=-109^{\circ}\left(\mathrm{c}=0.5\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of $3-[(2 R, 5 R, 6 R)-5-[($ tert-butyldimethylsilyl $)$ oxy $]-6-\{[($ tert-butyldimethyl-silyl)oxy]methyl\}-5,6-dihydro-2H-pyran-2-yl]propane-1,2-diol 260

Compound $233(12.38 \mathrm{~g}, 0.03 \mathrm{~mol})$ was dissolved in a $1: 1$ mixture of tert-butanol (140 ml) and water (140 ml). AD-mix- $\beta(48.37 \mathrm{~g}, 0.06 \mathrm{~mol})$ was added to this solution and the reaction mixture was stirred for 26 h at room temperature. Upon completion of the reaction (indicated by TLC), $\mathrm{Na}_{2} \mathrm{SO}_{3}(7.04 \mathrm{~g}, 0.06 \mathrm{~mol})$ was added and the reaction mixture was stirred for another 1 h at room temperature. The solution was subsequently diluted with ethyl acetate and the layers were separated. The aqueous layer was extracted with ethyl acetate and the combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue (14.84 g) was used without any further purification in the next step.
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.86-5.74(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.03(\mathrm{~m}$, $1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.68(\mathrm{~m}, 3 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.38$ (s br, 2H), $1.93-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.58(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$, 0.07 ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=132.2,126.8,73.7,70.5,69.2,65.9,63.6,62.9,34.6,26.2$, 25.9, 18.7, -4.0, -4.6, -5.2, -5.3

Synthesis of $2-[(2 R, 5 R, 6 R)-5-[(t e r t-b u t y l d i m e t h y l s i l y l) o x y]-6-\{[(t e r t-b u t y l d i m e t h y l-$ silyl)oxy]methyl\}-5,6-dihydro-2H-pyran-2-yl]acetaldehyde 259

2,6-lutidine ($8.04 \mathrm{ml}, 0.07 \mathrm{~mol}$) and $\mathrm{NaIO}_{4}(29.30 \mathrm{~g}, 0.014 \mathrm{~mol})$ were added to a solution of diol $260(14.84 \mathrm{~g}, 0.03 \mathrm{~mol})$ in a $1: 1$ mixture of tert-butanol $(100 \mathrm{ml})$ and water $(100 \mathrm{ml})$. The reaction mixture was stirred for 3 h at room temperature before water and DCM were added. After separation of the organic layer, the aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography on silica gel (pentane/diethyl ether 15:1) gave aldehyde $\mathbf{2 5 9}$ as a colourless oil ($9.90 \mathrm{~g}, 80 \%$ over two steps).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=9.81(\mathrm{dd}, J=2.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.87(\mathrm{ddd}, J=10.2,4.2,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80(\mathrm{ddd}, J=10.2,2.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.82$ - 3.70 (m, 3H), 2.73 (ddd, $J=16.3,8.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.52 (ddd, $J=16.3,4.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 0.89 (s, 9H), 0.88 (s, 9H), 0.08 (s, 6H), 0.06 (s, 6H)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=201.0,130.3,128.3,74.3,67.3,63.1,61.6,46.7,26.1,26.0$, 18.5, 18.3, -4.1, -4.5, -5.1, -5.2

IR (ATR): $\tilde{v}=3037$ (w), 2954 (w), 2929 (w), 2886 (w), 2857 (w), 2721 (w), 1728 (w), 1470 (w), 1389 (w), 1361 (w), 1327 (w), 1253 (m), 1217 (w), 1188 (w), 1143 (w), 1095 (m), 1060 (m), 1006 (w), 937 (w), 870 (m), 833 (m), 774 (m), 668 (w), 566 (w), 500 (w), 472 (w), 418 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 423.2363, found 423.2362
$[\alpha]_{D}^{20}=-125^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of tert-butyl\{[(2R,3R,6R)-3-[(tert-butyldimethylsilyl)oxy]-6-(2,2-dimethoxy-ethyl)-3,6-dihydro-2H-pyran-2-yl]methoxy $\}$ dimethylsilane 258

TMOF ($18.96 \mathrm{ml}, 0.17 \mathrm{~mol}$) was added to a solution of aldehyde $\mathbf{2 5 9}(9.90 \mathrm{~g}, 24.71 \mathrm{mmol})$ and PTSA ($470 \mathrm{mg}, 2.47 \mathrm{mmol}$) in DCM (100 ml) in the presence of $3 \AA$ molecular sieves. After stirring 3 h at room temperature, the reaction mixture was quenched with $\mathrm{NaHCO}_{3}(830 \mathrm{mg}$, 9.88 mmol). After 30 min of vigorous stirring, the solution was filtered and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 15:1) to obtain acetal 258 as a colourless oil ($10.79 \mathrm{~g}, 98 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.84-5.76(\mathrm{~m}, 2 \mathrm{H}), 4.62(\mathrm{dd}, J=8.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-$ $4.35(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.82-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{ddd}$, $J=14.1,10.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{ddd}, J=14.1,8.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H})$, 0.07 (s, 12H)
${ }^{13} \mathbf{C - N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=132.3,126.8,102.5,73.8,68.7,63.4,62.4,54.7,52.9,36.0$, $26.1,26.0,18.5,18.4,-4.0,-4.5,-5.1,-5.2$

IR (ATR): $\tilde{v}=3035$ (w), 2953 (w), 2929 (w), 2887 (w), 2857 (w), 1469 (w), 1388 (w), 1362 (w), 1327 (w), 1253 (w), 1191 (w), 1095 (m), 1060 (m), 1016 (w), 1006 (m), 964 (w), 937 (w), 903 (w), 870 (w), 833 (m), 773 (m), 729 (w), 676 (w), 628 (w), 591 (w), 569 (w), 519 (w), 492 (w), 455 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{22} \mathrm{H}_{46} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{NH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}:$calcd. 464.3228 , found 464.3225 $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-97^{\circ}\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of [(2R,3R,6R)-3-[(tert-butyldimethylsilyl)oxy]-6-(2,2-dimethoxyethyl)-3,6-di-hydro-2H-pyran-2-yl]methanol 257

Method A: Iodine ($16 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added to a solution of aldehyde $\mathbf{2 5 9}$ (250 mg , 0.62 mmol) in $\mathrm{MeOH}(7 \mathrm{ml})$. The reaction mixture was stirred for 3.5 h at room temperature before it was diluted with diethyl ether and the phases separated. The combined organic layers were washed with $5 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and saturated NaHCO_{3} solution, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 1:1) to afford alcohol 257 as a colourless oil ($98 \mathrm{mg}, 47 \%$).

Method B: Compound $\mathbf{2 5 8}(10.75 \mathrm{~g}, 24.06 \mathrm{mmol})$ was dissolved in a $1: 1$ mixture of DCM $(100 \mathrm{ml})$ and methanol $(100 \mathrm{ml})$. The solution was cooled to $0^{\circ} \mathrm{C}$ and CSA $(3.35 \mathrm{~g}$, 14.44 mmol) was added. After 30 min the reaction was quenched with triethylamine $(134.15 \mathrm{ml}, 0.96 \mathrm{~mol})$. The reaction mixture was subsequently concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 1:1) to yield alcohol 257 as a colourless oil ($5.46 \mathrm{~g}, 68 \%$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.85-5.75(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{dd}, J=7.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dt}$, $J=9.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.89-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}$, $3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 1.90(\mathrm{ddd}, J=14.1,9.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{ddd}, J=14.3$, $7.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=131.9,126.6,102.4,73.0,68.5,64.4,62.4,53.7,51.0,35.9$, 25.9, 18.3, -4.1, -4.6

IR (ATR): $\tilde{v}=3446$ (w), 3035 (w), 2953 (w), 2930 (w), 2887 (w), 2857 (w), 2834 (w), 1468 (w), 1447 (w), 1389 (w), 1362 (w), 1327 (w), 1253 (w), 1192 (w), 1122 (m), 1101 (m), 1056 (m), 1004 (m), 966 (w), 928 (m), 879 (w), 834 (m), 795 (w), 774 (m), 729 (w), 678 (w), 623 (w), 594 (w), 569 (w), 509 (w), 494 (w), 459 (w), 446 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 355.1917, found 355.1918 $[\alpha]_{D}^{20}=-147^{\circ}\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2S,3R,6R)-3-[(tert-butyldimethylsilyl)oxy]-6-(2,2-dimethoxyethyl)-3,6-di-hydro-2H-pyran-2-carbaldehyde 256

A solution of DMSO ($2.56 \mathrm{ml}, 36.09 \mathrm{mmol}$) in DCM $(15 \mathrm{ml})$ was added at $-78^{\circ} \mathrm{C}$ to a solution of oxalyl chloride ($2.32 \mathrm{ml}, 27.07 \mathrm{mmol}$) in DCM (50 ml). After 45 min , a solution of alcohol $257(5.00 \mathrm{~g}, 15.04 \mathrm{mmol})$ in $\mathrm{DCM}(30 \mathrm{ml})$ was added dropwise. The reaction mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ before triethylamine ($16.77 \mathrm{ml}, 0.12 \mathrm{~mol}$) was added. The stirring was continued for 20 min before the mixture was allowed to slowly warm to room temperature. The reaction was quenched with $6 \% \mathrm{KHSO}_{4}$ solution and extracted with DCM. The combined organic layers were dried over MgSO_{4} and the volatiles were evaporated under reduced pressure. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 3:1) to obtain aldehyde 256 as a colourless oil ($3.37 \mathrm{~g}, \mathbf{6 8 \%}$).

Note: In order to fully characterize the product, the crude mixture was purified as described above. However, it is better to omit this purification step, since the compound has been observed to decompose during both purification and storage.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=9.73(\mathrm{~s}, 1 \mathrm{H}), 5.85(\mathrm{dt}, J=10.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{dd}, J=$ $10.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.61-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (s, 3H), $3.32(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.07$ ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=201.9,131.8,126.3,102.1,77.7,69.2,64.2,54.3,52.9,36.6$, 25.8, 18.2, -4.2, -4.7

IR (ATR): $\tilde{v}=3038$ (w), 2990 (w), 2953 (w), 2930 (w), 2896 (w), 2857 (w), 2831 (w), 1738 (m), 1696 (w), 1469 (w), 1446 (w), 1388 (w), 1364 (w), 1323 (w), 1254 (w), 1192 (w), 1100 (m), 1061 (m), 988 (m), 937 (w), 905 (w), 856 (m), 836 (m), 776 (m), 728 (w), 677 (w), 624 (w), 607 (w), 572 (w), 557 (w), 498 (w), 480 (w), 445 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{5} \mathrm{SiNH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 348.2206, found 348.2203
$[\boldsymbol{\alpha}]_{D}^{20}=-119^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of tert-butyl\{[(2R,3R,6R)-6-(2,2-dimethoxyethyl)-2-ethynyl-3,6-dihydro-2H-py-ran-3-yl]oxy\}dimethylsilane 179

Method A: Trimethylsilyldiazomethane (2.0 M in hexane) ($0.34 \mathrm{ml}, 0.68 \mathrm{mmol}$) was dissolved in THF (10 ml) and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. A 2.5 M solution of $n-\mathrm{BuLi}$ in hexane $(0.27 \mathrm{ml}, 0.68 \mathrm{mmol})$ was added dropwise and the mixture was stirred for 30 min at $-78{ }^{\circ} \mathrm{C}$. Subsequently, a solution of aldehyde $\mathbf{2 5 6}(150 \mathrm{mg}, 0.45 \mathrm{mmol})$ in THF (5 ml) was added. After 1 h , the mixture was slowly warmed to room temperature and was stirred for another 3 h . Finally, the reaction was quenched with a freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the aqueous layer was extracted with ethyl acetate. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. After purification by column chromatography on silica gel (pentane/diethyl ether 10:1) alkyne 179 was obtained as a colourless oil ($86 \mathrm{mg}, 58 \%$).

Method B: A solution of aldehyde $256(1.00 \mathrm{~g}, 3.03 \mathrm{mmol})$ in $\mathrm{MeOH}(10 \mathrm{ml})$ was added at room temperature to a solution of Bestmann reagent (10% solution in acetonitrile) (8.72 ml , $3.63 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(836 \mathrm{mg}, 6.05 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{ml})$. After 1.5 h , the reaction was quenched with saturated NaHCO_{3} solution and extracted with diethyl ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. After purification by column chromatography on silica gel (pentane/diethyl ether 10:1) alkyne 179 was obtained as a colourless oil ($710 \mathrm{mg}, 72 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=5.71(\mathrm{dt}, J=10.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.62(\mathrm{~m}, 1 \mathrm{H}), 4.72$ (dd, $J=5.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=7.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.42-4.38(\mathrm{~m}$, $1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 2.37(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.74(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.11$ (s, 3H), 0.10 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=130.2,128.1,102.1,79.3,74.7,67.5,67.3,64.9,54.1,53.2$, 38.3, 25.9, 18.3, -4.5, -4.6

IR (ATR): $\tilde{v}=3311$ (w), 3279 (w), 3039 (w), 2954 (w), 2930 (w), 2895 (w), 2857 (w), 2832 (w), 1469 (w), 1447 (w), 1390 (w), 1362 (w), 1345 (w), 1322 (w), 1253 (w), 1189 (w), 1109 (m), 1074 (m), 1060 (m), 1006 (w), 987 (w), 971 (w), 940 (w), 900 (w), 866 (m), 837 (m), 808 (w), 774 (m), 723 (w), 680 (w), 656 (w), 629 (w), 571 (w), 553 (w), 515 (w), 463 (w), 439 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{O}_{4} \mathrm{SiNH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 344.2257, found 344.2257
$[\boldsymbol{\alpha}]_{D}^{20}=-49^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of 1-[(2R,3R,6R)-3-[(tert-butyldimethylsilyl)oxy]-6-(2,2-dimethoxyethyl)-3,6-di-hydro-2H-pyran-2-yl]ethan-1-ol 269

A 3 M solution of MeMgBr in diethyl ether $(8.07 \mathrm{ml}, 24.21 \mathrm{mmol})$ was added dropwise to a solution of aldehyde $256(2.00 \mathrm{~g}, 6.05 \mathrm{mmol})$ in THF (20 ml) at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ before it was slowly warmed to room temperature. The reaction was quenched with $5 \% \mathrm{KHSO}_{4}$ solution and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. After purification by column chromatography on silica gel (pentane/diethyl ether 2:1) alcohol 269 was obtained as a colourless oil ($1.53 \mathrm{~g}, 73 \%, 1.1: 1 \mathrm{dr}$).
${ }^{1} H-N M R\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=5.91-5.76(\mathrm{~m}, 4 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.49(\mathrm{~m}$, $1 \mathrm{H}), 4.44-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{dd}, J=8.0,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}$, $1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s} \mathrm{br}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=133.0,132.0,126.5,126.1,102.8,102.2,75.8,75.8,70.1$, $68.4,67.5,66.7,65.3,64.1,54.3,53.8,53.2,52.8,36.6,34.8,26.0,25.9,20.0,18.3,18.2,18.2$, -3.3, -3.8, -4.3, -4.4

IR (ATR): $\tilde{v}=3500$ (w), 3035 (w), 2955 (w), 2930 (w), 2895 (w), 2887 (w), 2857 (w), 2833 (w), 1739 (w), 1657 (w), 1610 (w), 1469 (w), 1389 (w), 1362 (w), 1323 (w), 1253 (w), 1193 (w), 1122 (m), 1050 (m), 1006 (w), 991 (w), 965 (w), 939 (w), 906 (w), 887 (w), 854 (w), 835 (m), 808 (w), $774(\mathrm{~m}), 729(\mathrm{w}), 681(\mathrm{w}), 645(\mathrm{w}), 598(\mathrm{w}), 568(\mathrm{w}), 545(\mathrm{w}), 510(\mathrm{w}), 492(\mathrm{w})$, 458 (w), 419 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{17} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 369.2073, found 369.2075
$[\alpha]_{D}^{20}=-145^{\circ}\left(\mathrm{c}=0.7 \mathrm{in} \mathrm{CHCl}_{3}, 1.1: 1 \mathrm{dr}\right)$

Synthesis of 1-[(2S,3R,6R)-3-[(tert-butyldimethylsilyl)oxy]-6-(2,2-dimethoxyethyl)-3,6-di-hydro-2H-pyran-2-yl]ethan-1-one 207

Alcohol $269(1.50 \mathrm{~g}, 4.33 \mathrm{mmol})$ was dissolved in $\mathrm{DCM}(40 \mathrm{ml}) . \mathrm{NaHCO}_{3}(1.45 \mathrm{~g}$, 17.31 mmol) and DMP ($3.67 \mathrm{~g}, 8.66 \mathrm{mmol}$) were added to this solution and the reaction mixture was stirred overnight at room temperature. The reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and after 10 min it was extracted with DCM . The combined organic layers were washed with saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to yield ketone 207 as a colourless oil ($1.31 \mathrm{~g}, 88 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=5.90-5.84(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.24(\mathrm{dd}, J=4.6$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.84(\mathrm{~m}$, $1 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=209.4,132.5,125.7,102.2,78.1,70.0,64.0,54.1,52.7,35.0$, 28.1, 25.9, 18.2, -4.1, -4.7

IR (ATR): $\tilde{v}=3038$ (w), 2955 (w), 2930 (w), 2895 (w), 2857 (w), 2832 (w), 1720 (w), 1471 (w), 1416 (w), 1389 (w), 1352 (w), 1316 (w), 1254 (w), 1226 (w), 1192 (w), 1111 (m), 1061 (m), 1031 (m), 993 (w), 966 (w), 938 (w), 900 (m), 850 (m), 835 (m), 804 (w), 776 (m), 748 (m), 726 (w), 682 (w), 645 (w), 607 (w), 564 (w), 547 (w), 496 (w), 471 (w), 441 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SiNH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 362.2363, found 362.2364
$[\alpha]_{D}^{20}=-223^{\circ}\left(\mathrm{c}=0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of tert-butyl\{[(2R,3R,6R)-6-(2,2-dimethoxyethyl)-2-[(Z)-1-iodoprop-1-en-2-yl]--3,6-dihydro-2H-pyran-3-yl]oxy\}dimethylsilane 229

A solution of ketone $207(150 \mathrm{mg}, 0.44 \mathrm{mmol})$ and iodoform ($514 \mathrm{mg}, 1.31 \mathrm{mmol}$) in THF (4 ml) was added to a solution of chromium(II) chloride ($589 \mathrm{mg}, 4.79 \mathrm{mmol}$) in THF (3 ml). The reaction mixture was stirred overnight at room temperature. Upon completion of the reaction (indicated by TLC), it was quenched with water and extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude mixture ($E / Z=1: 12$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to afford vinyl iodide 229 as a colourless oil ($126 \mathrm{mg}, 62 \%$).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right): \delta=6.35-6.33(\mathrm{~m}, 1 \mathrm{H}), 5.96-5.90(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{dd}, J=$ $8.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=4.4,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.31(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 1 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H})$, 0.06 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 150 \mathrm{MHz}\right): \delta=145.8,133.1,127.1,102.8,78.7,76.2,70.7,64.9,53.6$, 52.7, 35.7, 26.3, 22.5, 18.6, -3.7, -4.3

IR (ATR): $\tilde{v}=3035$ (w), 2989 (w), 2952 (w), 2928 (w), 2896 (w), 2886 (w), 2856 (w), 2831 (w), 1624 (w), 1464 (w), 1444 (w), 1389 (w), 1361 (w), 1327 (w), 1282 (w), 1252 (w), 1192 (w), 1111 (m), 1059 (m), 1006 (w), 919 (w), 887 (w), 855 (w), 835 (m), 809 (m), 773 (m), 749 (m), 730 (w), 676 (w), 568 (w), 550 (w), 474 (w), 443 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{IO}_{4} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 491.1090, found 491.1088
$[\alpha]_{D}^{20}=-143^{\circ}\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of tert-butyl\{[(2R,3R,6R)-2-[(4S,5S,Z)-5-[(tert-butyldimethylsilyl)oxy]--4-methylhex-2-en-2-yl]-6-(2,2-dimethoxyethyl)-3,6-dihydro-2H-pyran-3-yl]oxy\}dimethylsilane 213

Method A: LiHMDS (1 M in THF) $(0.17 \mathrm{ml}, 0.17 \mathrm{mmol})$ was slowly added at $-42^{\circ} \mathrm{C}$ to a solution of sulfone $\mathbf{2 1 0}$ ($50 \mathrm{mg}, 0.12 \mathrm{mmol}$) in DCM (2 ml). After 30 min , cerium(III) chloride ($12 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added and a solution of ketone $207(43 \mathrm{mg}, 0.12 \mathrm{mmol})$ in DCM $(3 \mathrm{ml})$ was subsequently added dropwise. The reaction mixture was stirred for 1 h and allowed to slowly warm to room temperature. The reaction was quenched with a freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and the mixture was extracted with DCM. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture ($E / Z=1: 20$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 8:1) to yield compound 213 as a colourless oil ($3 \mathrm{mg}, \mathbf{5 \%}$).

Method B: LiHMDS (1 M in THF) $(0.17 \mathrm{ml}, 0.17 \mathrm{mmol})$ was slowly added at $-78^{\circ} \mathrm{C}$ to a solution of sulfone $210(50 \mathrm{mg}, 0.12 \mathrm{mmol})$ in THF (3 ml). A solution of ketone $207(43 \mathrm{mg}$, 0.12 mmol) in THF (4 ml) was added dropwise after 1 h . The reaction mixture was stirred for 4 h before it was allowed to slowly warm to room temperature. Water was subsequently added and the mixture was extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture $(E / Z=1: 20$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 8:1) to yield compound 213 as a colourless oil ($25 \mathrm{mg}, \mathbf{3 8 \%}$).
${ }^{1} H-N M R\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right): \delta=5.93(\mathrm{ddd}, J=10.3,4.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=10.3$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.21-5.17(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=7.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ $-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=4.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H})$, $2.44-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.14$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}$, $3 \mathrm{H}), 0.08$ ($\mathrm{s}, 6 \mathrm{H}$)
${ }^{13} \mathbf{C}-$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 150 \mathrm{MHz}\right): \delta=134.82,132.85,131.73,127.86,103.19,73.28,71.41$, $70.23,67.26,53.75,52.81,40.87,35.73,26.31,23.13,21.69,18.70,18.69,16.97,-3.81,-3.95$, -4.33, -4.52

IR (ATR): $\tilde{v}=3032$ (w), 2955 (w), 2928 (w), 2897 (w), 2857 (w), 1730 (w), 1692 (w), 1659 (w), 1463 (w), 1386 (w), 1370 (w), 1323 (w), 1253 (w), 1192 (w), 1154 (w), 1112 (m), 1096 (m), 1057 (m), 1033 (m), 1025 (m), 984 (w), 961 (w), 933 (m), 834 (m), 806 (m), 773 (m), 750 (m), 684 (w), 665 (w), 606 (w), 566 (w), 544 (w), 502 (w), 485 (w), 459 (w), 441 (w), 419 (w) HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{O}_{5} \mathrm{Si}_{2} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 551.3564, found 551.3564 $[\alpha]_{D}^{20}=-77^{\circ}\left(\mathrm{c}=0.6\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2R,3R,4R)-2-(hydroxymethyl)-3,4-dihydro-2H-pyran-3,4-diol 274

Compound $236(18.20 \mathrm{~g}, 0.07 \mathrm{~mol})$ was dissolved in methanol $(100 \mathrm{ml})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(2.77 \mathrm{~g}$, 20.06 mmol) was added. The solution was stirred overnight at room temperature. Upon completion of the reaction (indicated by TLC), the volatiles were evaporated in vacuo. The crude material was purified by column chromatography on silica gel (ethyl acetate/methanol 95:5) to obtain triol 274 as white crystals ($9.64 \mathrm{~g}, 99 \%$).

Note: In order to fully characterize the product, the crude mixture was purified as described above. However, this purification step can be omitted, since the purity of the crude compound was high enough to be directly used in the following reaction.
${ }^{1} H-N M R\left(\mathrm{CD}_{3} \mathrm{OD}, 600 \mathrm{MHz}\right): \delta=6.35(\mathrm{dd}, J=6.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dt}, J=6.3,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.87(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=11.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=$ $11.4,5.4 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13}$ C-NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 150 \mathrm{MHz}\right): \delta=145.2,103.8,78.7,66.5,65.4,62.4$

IR (ATR): $\tilde{v}=3423$ (w br), 3318 (w br), 3195 (w br), 3061 (w), 2980 (w), 2955 (w), 2927 (w), 2892 (w), 2883 (w), 2326 (w), 2064 (w), 1747 (w), 1642 (w), 1453 (w), 1397 (w), 1378 (w), 1358 (w), 1333 (w), 1250 (w), 1236 (w), 1219 (w), 1148 (w), 1115 (w), 1068 (w), 1054 (w), 1017 (m), 967 (w), 957 (w), 929 (w), 903 (w), 859 (w), 809 (w), 757 (w), 684 (w), 613 (w), 565 (w), 551 (w), 511 (w), 492 (w), 459 (w), 436 (w), 420 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 169.0477, found 169.0470
$\mathbf{M p}=98-104^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}=-21^{\circ}\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CH}_{3} \mathrm{OH}\right)$

Synthesis of (2R,3R,4R)-2-\{[(tert-butyldimethylsilyl)oxy]methyl\}-3,4-dihydro-2H-pyran-

-3,4-diol 273

Method A: Imidazole ($205 \mathrm{mg}, 3.01 \mathrm{mmol}$) was added to a solution of triol 274 (200 mg , $1.37 \mathrm{mmol})$ in DMF (5 ml) and the solution was cooled to $0^{\circ} \mathrm{C} . \mathrm{TBSCl}(206 \mathrm{mg}, 1.37 \mathrm{mmol})$ was added dropwise and after 30 min the reaction was allowed to warm to room temperature. The reaction was quenched with water and diluted with ethyl acetate after 8 h . After separation of the phases, the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO_{4} and the volatiles were evaporated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 1:3) to yield diol 273 as a colourless oil ($175 \mathrm{mg}, 49 \%$).

Method B: Triol 274 ($9.50 \mathrm{~g}, 0.07 \mathrm{~mol}$) was dissolved in a $10: 1$ mixture of acetonitrile $(200 \mathrm{ml})$ and DMF (20 ml). Triethylamine ($16.31 \mathrm{ml}, 0.12 \mathrm{~mol}$) and $\operatorname{TBSCl}(14.70 \mathrm{~g}, 0.10 \mathrm{~mol})$ were added to the above solution. After stirring for 40 min at room temperature the reaction mixture was directly purified by column chromatography on silica gel (pentane/diethyl ether 1:3) in order to afford diol 273 as a colourless oil ($11.80 \mathrm{~g}, 70 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.38(\mathrm{dd}, J=6.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dt}, J=6.2,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.33-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=3.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}$, $J=10.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 2.77(\mathrm{~s} \mathrm{br}, 1 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.10$ (s, 6H)
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=144.7,103.2,75.9,66.2,64.3,63.6,25.9,18.4,-5.3,-5.4$
IR (ATR): $\tilde{v}=3374$ (w br), 3068 (w), 2953 (w), 2929 (w), 2885 (w), 2857 (w), 1646 (w), 1469 (w), 1406 (w), 1392 (w), 1361 (w), 1252 (m), 1233 (m), 1189 (w), 1142 (w), 1102 (m), 1066 (m), 1030 (m), 1006 (w), 973 (w), 938 (w), 910 (w), 834 (s), 775 (m), 686 (w), 664 (w), 623 (w), 571 (w), 516 (w), 477 (w), 432 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{SiNa}^{+}=[\mathrm{M}+\mathrm{Na}]^{+}\right.$: calcd. 283.1342, found 283.1343
$[\alpha]_{D}^{20}=6^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
The analytical data agree with those in the literature ${ }^{[127]}$.

Synthesis of $\{[(2 R, 3 R, 4 R)$-3,4-bis(methoxymethoxy)-3,4-dihydro-2H-pyran-2-yl]meth-oxy\}(tert-butyl)dimethylsilane 272

Diol 273 ($11.50 \mathrm{~g}, 0.04 \mathrm{~mol}$) was dissolved in DCM (130 ml). DMAP ($1.08 \mathrm{~g}, 8.83 \mathrm{mmol}$), DIPEA ($29.63 \mathrm{ml}, 0.24 \mathrm{~mol}$) and MOMCl $(23.96 \mathrm{ml}, 0.22 \mathrm{~mol})$ were consecutively added to this solution. The reaction mixture was stirred overnight at room temperature and upon completion (indicated by TLC) it was concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to yield compound 272 as a colourless oil ($15.02 \mathrm{~g}, 98 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=6.37(\mathrm{dd}, J=6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ - $4.74(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.40-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.13-4.11(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.00$ $(\mathrm{m}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=10.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{dd}, J=10.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~s}$, $3 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=144.3,100.8,97.2,95.1,77.7,69.0,68.9,61.5,56.1,55.7$, 26.0, 18.5, -5.1, -5.2

IR (ATR): $\tilde{v}=2980$ (w), 2930 (w), 2887 (w), 2857 (w), 2823 (w), 1644 (w), 1469 (w), 1444 (w), 1396 (w), 1362 (w), 1299 (w), 1253 (w), 1236 (w), 1215 (w), 1148 (m), 1098 (m), 1071 (m), 1030 (s), 1006 (m), 958 (m), 917 (m), 835 (s), 775 (m), 729 (w), 695 (w), 664 (w), 598 (w), 574 (w), 536 (w), 504 (w), 473 (w), 458 (w), 441 (w), 419 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 371.1866, found 371.1861 $[\boldsymbol{\alpha}]_{D}^{20}=-21^{\circ}\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of [(2R,3R,4R)-3,4-bis(methoxymethoxy)-3,4-dihydro-2H-pyran-2-yl]methanol 271

Compound $272(12.50 \mathrm{~g}, 0.04 \mathrm{~mol})$ was dissolved in THF (75 ml) and the solution was cooled to $0^{\circ} \mathrm{C}$. A 1 M solution of TBAF in THF $(71.73 \mathrm{ml}, 0.07 \mathrm{~mol})$ was slowly added before stirring for another 2 h . The reaction was quenched with a freshly prepared saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 1:2) to obtain alcohol 271 as white crystals ($7.25 \mathrm{~g}, 86 \%$).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.37(\mathrm{dd}, J=6.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ $-4.75(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.38-4.34(\mathrm{~m}, 1 \mathrm{H}), 4.14-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{dd}, J$ $=11.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s} \mathrm{br}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=144.6,100.1,97.7,95.5,76.2,70.6,68.4,61.0,56.4,55.8$
IR (ATR): $\tilde{v}=3259$ (w br), 3069 (w), 2985 (w), 2954 (w), 2937 (w), 2897 (w), 2827 (w), 1642 (w), 1474 (w), 1442 (w), 1397 (w), 1362 (w), 1332 (w), 1301 (w), 1259 (w), 1230 (w), 1212 (w), 1140 (w), 1118 (w), 1098 (w), 1080 (w), 1021 (w), 978 (w), 935 (w), 910 (w), 844 (w), 804 (w), 731 (w), 693 (w), 667 (w), 615 (w), 599 (w), 574 (w), 506 (w), 487 (w), 444 (w), 415 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 257.1001, found 257.1001
$\mathbf{M p}=71-74{ }^{\circ} \mathrm{C}$
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}=-87^{\circ}\left(\mathrm{c}=0.9\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2S,3R,4R)-3,4-bis(methoxymethoxy)-3,4-dihydro-2H-pyran-2-carbaldehyde 270

Alcohol 271 ($7.00 \mathrm{~g}, 0.03 \mathrm{~mol}$) was dissolved in $\mathrm{DCM}(100 \mathrm{ml})$ before $\mathrm{NaHCO}_{3}(10.04 \mathrm{~g}$, $0.12 \mathrm{~mol})$ and DMP ($25.35 \mathrm{~g}, 0.06 \mathrm{~mol}$) were added to the solution. The reaction was stirred overnight at room temperature and quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The mixture was stirred for another 10 min before it was extracted with DCM. The combined organic layers were washed with saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 1:1) to afford aldehyde 270 as a colourless oil ($4.70 \mathrm{~g}, 68 \%$).

Note: In order to fully characterize the product, the crude mixture was purified as described above. However, it is better to omit this purification step, since the compound has been observed to decompose during both purification and storage.
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=9.75(\mathrm{~s}, 1 \mathrm{H}), 6.50(\mathrm{dd}, J=6.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=$ $6.1,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=4.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H})$ ${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=197.7,144.8,100.3,96.7,95.3,78.9,72.8,66.7,56.2,55.8$ IR (ATR): $\tilde{v}=3072$ (w), 2945 (w), 2894 (w), 2846 (w), 2826 (w), 2789 (w), 1735 (w), 1681 (w), 1644 (w), 1598 (w), 1468 (w), 1444 (w), 1396 (w), 1377 (w), 1235 (w), 1215 (w), 1147 (m), 1099 (m), 1020 (s), 972 (m), 948 (m), 914 (m), 818 (w), 782 (w), 754 (w), 735 (w), 693 (w), 583 (w), 429 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{6} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 255.0845, found 255.0844
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-35^{\circ}\left(\mathrm{c}=0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of 1-[(2R,3R,4R)-3,4-bis(methoxymethoxy)-3,4-dihydro-2H-pyran-2-yl]ethan--1-ol 217

A 3 M solution of MeMgBr in diethyl ether ($12.14 \mathrm{ml}, 36.43 \mathrm{mmol}$) was added dropwise to a solution of aldehyde $270(4.23 \mathrm{~g}, 18.21 \mathrm{mmol})$ in THF $(75 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 2 h before it was slowly warmed to room temperature. The reaction was quenched with $5 \% \mathrm{KHSO}_{4}$ solution and extracted with ethyl acetate. The combined organic extracts were washed with brine, dried over MgSO_{4} and the volatiles were evaporated under reduced pressure. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 1:1) to obtain alcohol 217 as a colourless oil ($2.54 \mathrm{~g}, 56 \%, 1.5: 1 \mathrm{dr}$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.46(\mathrm{dd}, J=6.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=6.2,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.97$ (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.76-4.70$ $(\mathrm{m}, 6 \mathrm{H}), 4.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.25-4.22(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.15(\mathrm{~m}$, $1 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.47$ (s, 3H), 3.41 (s, 3H), 3.39 (s, 6H), 3.00 ($\mathrm{br}, 1 \mathrm{H}$), 2.81 (s br, 1 H), 1.30 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$), $1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=144.8,144.5,100.2,100.1,98.6,97.4,95.4,95.3,80.9,80.5$, $70.4,69.7,69.4,69.3,66.5,65.1,56.5,56.3,55.8,55.7,19.8,17.9$

IR (ATR): $\tilde{v}=3458$ (w br), 3071 (w), 2987 (w), 2935 (w), 2894 (w), 2849 (w), 2825 (w), 2785 (w), 1648 (w), 1466 (w), 1445 (w), 1398 (w), 1368 (w), 1307 (w), 1267 (w), 1233 (w), 1214 (w), 1146 (m), 1097 (m), 1024 (s), 1008 (s), 915 (m), 882 (w), 860 (w), 819 (w), 746 (w), 721 (w), 693 (w), 614 (w), 595 (w), 579 (w), 499 (w), 467 (w), 432 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 271.1158, found 271.1163
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}=-90^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}, 1.5: 1 \mathrm{dr}\right)$

Synthesis of 1-((2S,3R,4R)-3,4-bis(methoxymethoxy)-3,4-dihydro-2H-pyran-2-yl)ethan--1-one 208

DMP ($8.23 \mathrm{~g}, 19.41 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(3.26 \mathrm{~g}, 38.83 \mathrm{mmol})$ were added to a solution of alcohol $217(2.41 \mathrm{~g}, 9.71 \mathrm{mmol})$ in $\mathrm{DCM}(50 \mathrm{ml})$. The reaction was stirred overnight at room temperature and was quenched with saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution. The mixture was stirred for another 10 min before it was extracted with DCM. The combined organic extracts were washed with saturated NaHCO_{3} solution and brine, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 1:1) to yield ketone 208 as a colourless oil ($1.57 \mathrm{~g}, 66 \%$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=6.48(\mathrm{dd}, J=6.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ (dt, $J=6.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.47-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.44-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=1.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H})$, 3.33 (s, 3H), 2.33 (s, 3H)
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=206.2,144.0,101.4,97.2,95.1,81.3,70.3,69.1,56.3,55.8$, 28.0

IR (ATR): $\tilde{v}=3074$ (w), 2980 (w), 2951 (w), 2934 (w), 2894 (w), 2848 (w), 2825 (w), 1722 (m), 1648 (w), 1584 (w), 1469 (w), 1443 (w), 1417 (w), 1395 (w), 1356 (w), 1295 (w), 1235 (w), 1215 (m), 1148 (m), 1099 (m), 1020 (s), 978 (m), 964 (m), 915 (m), 890 (w), 837 (w), 785 (w), 744 (w), 720 (w), 691 (w), 666 (w), 631 (w), 564 (w), 495 (w), 482 (w), 429 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{6} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 269.1001, found 269.1000
$[\alpha]_{D}^{20}=-90^{\circ}\left(\mathrm{c}=1.2\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2R,3R,4R)-2-[(E)-1-iodoprop-1-en-2-yl]-3,4-bis(methoxymethoxy)-3,4-di-hydro-2H-pyran 230

A solution of ketone $208(100 \mathrm{mg}, 0.41 \mathrm{mmol})$ and iodoform ($480 \mathrm{mg}, 1.22 \mathrm{mmol}$) in THF (4 ml) was added to a solution of chromium(II) chloride ($549 \mathrm{mg}, 4.47 \mathrm{mmol}$) in THF (3 ml). The reaction mixture was stirred overnight at room temperature. The mixture was quenched with water upon completion of the reaction (indicated by TLC) and extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The crude mixture ($E / Z=9: 1$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 2:1) to yield E-vinyl iodide $\mathbf{2 3 0}$ as a colourless oil ($71 \mathrm{mg}, 47 \%$).
${ }^{1} H$-NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right): \delta=6.44-6.43(\mathrm{~m}, 1 \mathrm{H}), 6.38(\mathrm{dd}, J=6.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.84$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.72(\mathrm{~m}, 2 \mathrm{H}), 4.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.51$ (d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{dd}, J=1.07,0.70$ Hz, 3H)
${ }^{13} \mathbf{C}-$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 150 \mathrm{MHz}\right): \delta=144.3,144.1,102.3,97.7,95.6,80.3,79.2,71.1,69.0$, 56.0, 55.5, 22.0

IR (ATR): $\tilde{v}=3092$ (w), 3072 (w), 2989 (w), 2947 (w), 2929 (w), 2891 (w), 2844 (w), 2823 (w), 2781 (w), 1650 (m), 1467 (w), 1442 (w), 1396 (w), 1363 (w), 1349 (w), 1297 (w), 1234 (m), 1213 (m), 1140 (m), 1099 (m), 1015 (s), 947 (m), 914 (m), 889 (m), 862 (w), 820 (w), 797 (w), 737 (w), 717 (m), 694 (w), 679 (w), 600 (w), 579 (w), 534 (w), 507 (w), 478 (w), 441 (w), 417 (w)

HRMS (ESI) (m/z) [C $\left.\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{IO}_{5} \mathrm{Na}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}:$calcd. 393.0175, found 393.0175 $[\boldsymbol{\alpha}]_{D}^{20}=-19^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of $\{[(2 S, 3 S, Z)-5-[(2 R, 3 R, 4 R)-3,4-b i s(m e t h o x y m e t h o x y)-3,4-d i h y d r o-2 H-p y r a n-~$ -2-yl]-3-methylhex-4-en-2-yl]oxy $\}($ tert-butyl)dimethylsilane 214

Method A: LiHMDS (1 M in THF) $(0.18 \mathrm{ml}, 0.18 \mathrm{mmol})$ was slowly added at $-78^{\circ} \mathrm{C}$ to a solution of sulfone $\mathbf{2 1 0}$ ($50 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (3 ml). After 1 h a solution of ketone $\mathbf{2 0 8}$ ($31 \mathrm{mg}, 0.13 \mathrm{mmol}$) in THF (4 ml) was added dropwise. The reaction mixture was stirred for 4 h and was allowed to slowly warm to room temperature. Water was subsequently added and the mixture was extracted with diethyl ether. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture ($E / Z=1: 23$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to yield compound 214 as a colourless oil ($3 \mathrm{mg}, 6 \%$).

Method B: LiHMDS (1 M in THF) $(0.20 \mathrm{ml}, 0.20 \mathrm{mmol})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$ to a stirred solution of sulfone $\mathbf{2 1 0}(56 \mathrm{mg}, 0.14 \mathrm{mmol})$ and ketone $\mathbf{2 0 8}(48 \mathrm{mg}, 0.20 \mathrm{mmol})$ in THF $(5 \mathrm{ml})$. The reaction mixture was warmed to room temperature after 4 h and water was added. The mixture was extracted with diethyl ether and the combined organic extracts were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude mixture ($E / Z=1: 25$, determined by NMR) was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to yield compound 214 as a colourless oil ($15 \mathrm{mg}, \mathbf{2 5 \%}$).
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 600 \mathrm{MHz}\right): \delta=6.37(\mathrm{dd}, J=6.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.86$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.67(\mathrm{~m}, 2 \mathrm{H})$, $4.65(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.35$ (s, 3H), $3.34(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$, $0.93(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 150 \mathrm{MHz}\right): \delta=144.9,133.3,132.9,101.9,97.9,95.6,76.7,73.3,72.2$, $71.0,56.2,55.4,40.6,26.3,23.0,21.2,18.7,16.5,-4.0,-4.6$

IR (ATR): $\tilde{v}=3070$ (w), 2956 (w), 2929 (w), 2890 (w), 2857 (w), 2824 (w), 1649 (w), 1462 (w), 1394 (w), 1371 (w), 1300 (w), 1252 (w), 1234 (w), 1214 (w), 1151 (w), 1096 (w), 1023 (m), 982 (w), 963 (w), 940 (w), 919 (w), 888 (w), 836 (m), 808 (w), 774 (w), 750 (w), 722 (w), 691 (w), 666 (w), 614 (w), 600 (w), 582 (w), 554 (w), 518 (w), 478 (w), 437 (w), 420 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{SiNa}\right]^{+}=[\mathrm{M}+\mathrm{Na}]^{+}$: calcd. 453.2648, found 453.2646 $[\alpha]_{D}^{20}=-46^{\circ}\left(\mathrm{c}=0.3\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of (2S,3S)-3-methylpent-4-en-2-ol 277

Cis-2-butene 278 ($6.51 \mathrm{ml}, 74.32 \mathrm{mmol}$) and $n-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane) $(17.84 \mathrm{ml}$, $44.59 \mathrm{mmol})$ were slowly added to a suspension of t-BuOK ($5.00 \mathrm{~g}, 44.59 \mathrm{mmol}$) in THF $(30 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-42^{\circ} \mathrm{C}$ and then it was recooled to $-78^{\circ} \mathrm{C}$. A solution of (+)-methoxydiisopinocamphenylborane ($16.46 \mathrm{~g}, 52.02 \mathrm{mmol}$) in diethyl ether $(30 \mathrm{ml})$ was added dropwise. After stirring the reaction for 30 min at $-78^{\circ} \mathrm{C}, \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$ $(6.42 \mathrm{ml}, 52.02 \mathrm{mmol})$ was added dropwise, followed by a dropwise addition of acetaldehyde 279 ($3.34 \mathrm{ml}, 59.45 \mathrm{mmol}$) in diethyl ether (3 ml). After 3 h , the reaction was quenched with a 2 M NaOH solution and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$. The reaction mixture was subsequently stirred for 1 h under reflux. The layers were then separated and the aqueous layer was extracted with diethyl ether. The combined organic extracts were washed with water and brine, dried over MgSO_{4} and concentrated in vacuo ($500 \mathrm{mbar}, 40^{\circ} \mathrm{C}$ water bath). The residual liquid was carefully fractionated to give 6.04 g (bp $50-75^{\circ} \mathrm{C} / 94 \mathrm{mbar}, 81 \%$ yield, $>96 \%$ purity by ${ }^{1} \mathrm{H}-/{ }^{13} \mathrm{C}-\mathrm{NMR}$) of alcohol 277 as a colourless liquid.
${ }^{1} H-N M R\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.82-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.11-5.04(\mathrm{~m}, 2 \mathrm{H}), 3.71-3.64(\mathrm{~m}$, $1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~s}, 1 \mathrm{H}), 1.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=140.6,115.6,70.9,44.9,20.0,14.8$

IR (ATR): $\tilde{v}=3358$ (w), 3080 (w), 2971 (w), 2931 (w), 2878 (w), 1640 (w), 1454 (w), 1417 (w), 1398 (w), 1373 (w), 1345 (w), 1307 (w), 1270 (w), 1247 (w), 1176 (w), 1141 (w), 1087 (w), 1040 (w), 996 (w), 968 (w), 913 (m), 871 (w), 839 (w), 816 (w), 776 (w), 745 (w), 697 (w), 672 (w), 640 (w), 610 (w), 598 (w), 569 (w), 558 (w), 550 (w), $520(\mathrm{w}), 492(\mathrm{w}), 474(\mathrm{w})$, 442 (w), 422 (w)

HRMS (ESI) $(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{ONH}_{4}\right]^{+}=\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: calcd. 118.1232, found 118.1226
$[\alpha]_{D}^{20}=-18^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
The analytical data agree with those in the literature ${ }^{[161]}$.

Synthesis of tert-butyldimethyl\{[(2S,3S)-3-methylpent-4-en-2-yl]oxy\}silane 276

Alcohol 277 ($5.00 \mathrm{~g}, 49.92 \mathrm{mmol}$) was dissolved in DCM (30 ml). Imidazole (6.12 g , $89.86 \mathrm{mmol})$ and $\mathrm{TBSCl}(11.29 \mathrm{~g}, 74.88 \mathrm{mmol})$ were added and the reaction mixture was stirred overnight at room temperature. The reaction was quenched with water and extracted with DCM. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by column chromatography on silica gel (pentane) to yield compound 276 as a colourless liquid $(9.17 \mathrm{~g}, 86 \%)$.
${ }^{1} \mathbf{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=5.80(\mathrm{ddd}, J=17.6,10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-4.96(\mathrm{~m}, 2 \mathrm{H})$, $3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=141.7,114.1,72.1,45.7,26.0,21.1,18.3,15.6,-4.2,-4.6$
IR (ATR): $\tilde{v}=3080$ (w), 2957 (w), 2930 (w), 2886 (w), 2858 (w), 1641 (w), 1463 (w), 1416 (w), 1373 (w), 1294 (w), 1253 (w), 1217 (w), 1187 (w), 1172 (w), 1142 (w), 1097 (w), 1057 (w), 1040 (w), 1006 (w), 977 (w), 956 (w), 940 (w), 912 (w), 896 (w), 832 (m), 811 (w), 772 (m), 669 (w), 602 (w), 575 (w), 517 (w), 505 (w), 486 (w), 457 (w), 418 (w)

HRMS (EI, 70 eV$)(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{12} \mathrm{H}_{27} \mathrm{OSi}^{+}=[\mathrm{M}+\mathrm{H}]^{+}:\right.$calcd. 215.4320, found 215.4317
$[\alpha]_{D}^{20}=-7^{\circ}\left(\mathrm{c}=1.1\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

The analytical data agree with those in the literature ${ }^{[147]}$.

Synthesis of (2S,3S)-3-[(tert-butyldimethylsilyl)oxy]-2-methylbutan-1-ol 275

Compound 276 ($7.00 \mathrm{~g}, 32.65 \mathrm{mmol}$) was dissolved in a $1: 1$ mixture of DCM (40 ml) and methanol (40 ml), and the solution was cooled to $-78^{\circ} \mathrm{C}$. Ozone was bubbled through the solution until it turned blue, and the excess ozone was purged with oxygen until the solution became colourless again. The solution was warmed to $0^{\circ} \mathrm{C}$ before $\mathrm{NaBH}_{4}(3.71 \mathrm{~g}$, 97.94 mmol) was added portion-wise. After 3 h , the reaction was quenched with water and extracted with DCM. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (pentane/diethyl ether 5:1) to obtain alcohol 275 as a colourless liquid (5.58 g , $78 \%)$.
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=4.02-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=10.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50$ (dd, $J=10.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}$ br, 1 H), $1.99-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{dd}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88$ (s, 9H), 0.78 (d, J = 7.1 Hz, 3H), 0.08 (s, 3H), 0.07 ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathbf{C}$-NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=72.4,65.8,40.9,25.9,18.4,18.1,12.5,-4.4,-5.0$
IR (ATR): $\tilde{v}=3299$ (w), 2957 (w), 2930 (w), 2885 (w), 2858 (w), 1651 (w), 1534 (w), 1451 (w), 1409 (w), 1388 (w), 1253 (w), 1187 (w), 1157 (w), 1108 (w), 1092 (w), 1043 (w), 961 (w), 942 (w), 901 (w), 835 (w), 814 (w), 774 (w), 742 (w), 677 (w), 600 (w), 551 (w), 478 (w), 467 (w), 419 (w)

HRMS $(\mathrm{EI}, 70 \mathrm{eV})(\mathrm{m} / \mathrm{z})\left[\mathrm{C}_{11} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{Si}\right]^{+}=[\mathrm{M}+\mathrm{H}]^{+}$: calcd. 219.1780, found 219.1785
$[\boldsymbol{\alpha}]_{D}^{20}=11^{\circ}\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$
The analytical data agree with those in the literature ${ }^{[162]}$.

Synthesis of 5-(((2R,3S)-3-((tert-butyldimethylsilyl)oxy)-2-methylbutyl)sulfonyl)-1-phe-nyl-1H-tetrazole 209

1-phenyl-1 H -tetrazol-5-thiol ($1.47 \mathrm{~g}, 8.24 \mathrm{mmol}$) and triphenylphosphine ($2.16 \mathrm{~g}, 8.24 \mathrm{mmol}$) were added to a solution of alcohol $275(1.50 \mathrm{~g}, 6.87 \mathrm{mmol})$ in THF $(40 \mathrm{ml})$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and DEAD ($1.28 \mathrm{ml}, 8.24 \mathrm{mmol}$) was added dropwise. After 1 h the reaction was warmed to room temperature and ethanol (10 ml) was added. A solution of ammonium molybdate tetrahydrate $(1.70 \mathrm{~g}, 1.37 \mathrm{mmol})$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(14.03 \mathrm{ml}$, 0.14 mol) in ethanol (25 ml) was subsequently added, and the reaction was stirred overnight at room temperature. After completion of the reaction (indicated by TLC), it was diluted with water and DCM. The layers were separated and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 8:1) to yield phenyltetrazolyl sulfone 209 as a colourless oil (2.50 g , 89\%).
${ }^{1} \mathbf{H}-\mathbf{N M R}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=7.70-7.57(\mathrm{~m}, 5 \mathrm{H}), 4.03(\mathrm{dd}, J=14.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-$ $3.97(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=14.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, 1.09 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=154.2,133.3,131.6,129.8,125.3,70.2,58.8,35.1,25.9$, 19.6, 18.1, 14.5, -4.2, -4.8

IR (ATR): $\tilde{v}=3435$ (w), 3412 (w), 3314 (w), 3073 (w), 2976 (w), 2950 (w), 2930 (w), 2886 (w), 2857 (w), 1733 (w), 1594 (w), 1496 (w), 1467 (w), 1408 (w), 1389 (w), 1371 (w), 1339 (w), 1319 (w), 1250 (w), 1207 (w), 1155 (w), 1126 (w), 1109 (w), 1087 (w), 1075 (w), 1040 (w), 1028 (w), 1010 (w), 985 (w), 963 (w), 955 (w), 942 (w), 926 (w), 904 (w), 833 (w), 801 (w), 767 (m), 722 (w), 708 (w), 689 (w), 670 (w), 632 (w), 603 (w), 571 (w), 558 (w), 538 (w), 519 (w), 504 (w), 471 (w), 448 (w)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{SSi}^{+}=[\mathrm{M}+\mathrm{H}]^{+}\right.$: calcd. 411.1886, found 411.1877
$[\boldsymbol{\alpha}]_{D}^{20}=-3^{\circ}\left(\mathrm{c}=1.0\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

Synthesis of 2-\{[(2R,3S)-3-[(tert-butyldimethylsilyl)oxy]-2-methylbutyl]sulfonyl\}benzo[d]thiazole 210

1,3-benzothiazole-2-thiol ($1.84 \mathrm{~g}, 10.99 \mathrm{mmol}$) and triphenylphosphine ($2.88 \mathrm{~g}, 10.99 \mathrm{mmol}$) were added to a solution of alcohol $275(2.00 \mathrm{~g}, 9.16 \mathrm{mmol})$ in THF $(60 \mathrm{ml})$. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and $\operatorname{DEAD}(1.71 \mathrm{ml}, 10.99 \mathrm{mmol})$ was added dropwise. After 1 h , the reaction was warmed to room temperature and ethanol (15 ml) was added. A solution of ammonium molybdate tetrahydrate $(2.26 \mathrm{~g}, 1.83 \mathrm{mmol})$ and 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(18.71 \mathrm{ml}$, 0.18 mol) in ethanol (40 ml) was subsequently added. The reaction was stirred overnight at room temperature, and upon completion of the reaction (indicated by TLC), it was diluted with water and DCM. The layers were separated and the aqueous layer was extracted with DCM. The combined organic layers were washed with brine, dried over MgSO_{4} and concentrated in vacuo. The crude material was purified by column chromatography on silica gel (pentane/diethyl ether 8:1) to yield benzothiazolyl sulfone $\mathbf{2 1 0}$ as a colourless oil ($2.84 \mathrm{~g}, \mathbf{7 8 \%}$).
${ }^{1} \mathbf{H}-$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta=8.23-8.20(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.00(\mathrm{~m}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~m}$, $1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=14.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=$ $14.4,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.79$ (s, 9H), 0.01 ($\mathrm{s}, 3 \mathrm{H}$), $-0.03(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta=166.6,152.9,137.0,128.1,127.7,125.7,122.4,70.4,57.3$, 35.6, 25.8, 19.2, 18.1, 15.0, -4.4, -4.9

IR (ATR): $\tilde{v}=2954$ (w), 2929 (w), 2884 (w), 2856 (w), 1555 (w), 1471 (w), 1423 (w), 1405 (w), 1385 (w), 1330 (m), 1252 (w), 1206 (w), 1180 (w), 1146 (m), 1124 (w), 1102 (m), 1085 (m), 1066 (w), 1027 (m), 1007 (w), 956 (w), 914 (w), 833 (m), 799 (w), 774 (m), 760 (m), 729 (m), 688 (w), 667 (w), 631 (m), 617 (m), 592 (w), 569 (w), 533 (w), 520 (w), 494 (w), 475 (w), 432 (m)

HRMS (ESI) (m/z) $\left[\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NO}_{3} \mathrm{~S}_{2} \mathrm{Si}^{+}=[\mathrm{M}+\mathrm{H}]^{+}\right.$: calcd. 400.1436, found 400.1437
$[\alpha]_{D}^{20}=-8^{\circ}\left(\mathrm{c}=0.7\right.$ in $\left.\mathrm{CHCl}_{3}\right)$

6. References

[1] R. Rappuoli, D. E. Bloom, S. Black, Nature 2017, 552, 165-167.
[2] World Health Organization, Report on the Burden of Endemic Health Care-Associated Infection Worldwide Clean Care Is Safer Care, 2011.
[3] K. Mohr, Microorganisms 2018, 6, 84.
[4] R. Jansen, D. Schummer, H. Irschik, G. Höfle, Liebigs Ann. der Chemie 1990, 1990, 975-988.
[5] R. Müller, N. Zaburannyi, J. Herrmann, R. Jansen, K. Mohr, S. Karwehl, Novel Sorangicin Antibiotic, 2020, EP3498714A1.
[6] A. B. Smith, S. Dong, J. B. Brenneman, R. J. Fox, J. Am. Chem. Soc. 2009, 131, 12109-12111.
[7] A. B. Smith, S. Dong, R. J. Fox, J. B. Brenneman, J. A. Vanecko, T. Maegawa, Tetrahedron 2011, 67, 9809-9828.
[8] M. T. Crimmins, M. W. Haley, E. A. O'Bryan, Org. Lett. 2011, 13, 4712-4715.
[9] H. P. Su, W. L. Hyo, Bull. Korean Chem. Soc. 2008, 29, 1661-1662.
[10] Y. Sridhar, P. Srihari, Org. Biomol. Chem. 2013, 11, 4640.
[11] S. Raghavan, S. Nyalata, J. Org. Chem. 2016, 81, 10698-10706.
[12] D. Schinzer, C. Schulz, O. Krug, Synlett 2004, 2004, 2689-2692.
[13] L. Michaelis, D. Schinzer, Synlett 2014, 25, 951-954.
[14] E. Negishi, Z. Tan, 2004, pp. 139-176.
[15] E. Negishi, D. E. Van Horn, T. Yoshida, J. Am. Chem. Soc. 1985, 107, 6639-6647.
[16] J. F. Normant, A. Alexakis, Synthesis (Stuttg). 1981, 1981, 841-870.
[17] S. Xu, E. Negishi, Acc. Chem. Res. 2016, 49, 2158-2168.
[18] T. Yoshida, E. Negishi, J. Am. Chem. Soc. 1981, 103, 4985-4987.
[19] G. Wang, N. Yin, E. Negishi, Chem. - A Eur. J. 2011, 17, 4118-4130.
[20] G. Zhu, E. Negishi, Chem. - A Eur. J. 2008, 14, 311-318.
[21] H. H. Patel, M. S. Sigman, J. Am. Chem. Soc. 2016, 138, 14226-14229.
[22] E. Negishi, A. O. King, W. L. Klima, W. Patterson, A. Silveira, J. Org. Chem. 1980, 45, 2526-2528.
[23] P. Wipf, S. Lim, Angew. Chemie Int. Ed. English 1993, 32, 1068-1071.
[24] W. Tang, E. V. Prusov, Angew. Chemie - Int. Ed. 2012, 51, 3401-3404.
[25] S. Ma, E. Negishi, J. Org. Chem. 1997, 62, 784-785.
[26] H. Sommer, J. Y. Hamilton, A. Fürstner, Angew. Chemie Int. Ed. 2017, 56, 6161-
6165.
[27] V. Morozova, K. Moriya, P. Mayer, P. Knochel, Chem. - A Eur. J. 2016, 22, 99629965.
[28] G. Valot, D. Mailhol, C. S. Regens, D. P. O'Malley, E. Godineau, H. Takikawa, P. Philipps, A. Fürstner, Chem. - A Eur. J. 2015, 21, 2398-2408.
[29] B. Crousse, M. Alami, G. Linstrumelle, Synlett 1997, 1997, 992-994.
[30] S. Ma, F. Liu, E. Negishi, Tetrahedron Lett. 1997, 38, 3829-3832.
[31] L. Jeanne-Julien, G. Masson, E. Astier, G. Genta-Jouve, V. Servajean, J.-M. Beau, S. Norsikian, E. Roulland, J. Org. Chem. 2018, 83, 921-929.
[32] M. See Waters, J. A. Cowen, J. C. McWilliams, P. E. Maligres, D. Askin, Tetrahedron Lett. 2000, 41, 141-144.
[33] A. Shamim, C. S. Barbeiro, B. Ali, H. A. Stefani, ChemistrySelect 2016, 1, 56535659.
[34] A. Hamze, O. Provot, J. D. Brion, M. Alami, J. Org. Chem. 2007, 72, 3868-3874.
[35] I. Meana, A. C. Albéniz, P. Espinet, Adv. Synth. Catal. 2010, 352, 2887-2891.
[36] K. Tsubone, K. Hashizume, H. Fuwa, M. Sasaki, Tetrahedron 2011, 67, 6600-6615.
[37] O. Krug, Studien Zur Totalsynthese Der Sorangicine, Cuvillier Verlag, 2005.
[38] L. Kurti, B. Czakó, Strategic Applications of Named Reactions in Organic Synthesis, Elsevier, 2005.
[39] P. R. Blakemore, Olefination of Carbonyl Compounds by Main-Group Element Mediators, Elsevier Ltd., 2014.
[40] P. R. Blakemore, J. Chem. Soc. Perkin 12002, 2, 2563-2585.
[41] G. Sakaine, G. Smits, J. Org. Chem. 2018, 83, 5323-5330.
[42] D. X. Tan, Z. J. Xu, H. J. Chen, Y. Wu, J. You, European J. Org. Chem. 2016, 2016, 946-957.
[43] P. Liu, E. N. Jacobsen, J. Am. Chem. Soc. 2001, 123, 10772-10773.
[44] F. Lindner, S. Friedrich, F. Hahn, J. Org. Chem. 2018, 83, 14091-14101.
[45] A. B. Smith, B. M. Brandt, Org. Lett. 2001, 3, 1685-1688.
[46] H. Fuwa, K. Ishigai, K. Hashizume, M. Sasaki, J. Am. Chem. Soc. 2012, 134, 1198411987.
[47] A. B. Smith, I. G. Safonov, R. M. Corbett, J. Am. Chem. Soc. 2001, 123, 1242612427.
[48] A. Fettes, E. M. Carreira, Angew. Chemie Int. Ed. 2002, 41, 4098-4101.
[49] J. J. Li, Name Reactions: A Collection of Detailed Mechanisms and Synthetic

Applications Fifth Edition, Springer International Publishing, 2014.
[50] A. Gómez-Palomino, M. Pellicena, K. Krämer, P. Romea, F. Urpí, G. Aullón, J. M. Padrón, Org. Biomol. Chem. 2017, 15, 1842-1862.
[51] A. K. Ghosh, N. Ma, K. A. Effenberger, M. S. Jurica, Org. Lett. 2014, 16, 3154-3157.
[52] M. Pellicena, K. Krämer, P. Romea, F. Urpí, Org. Lett. 2011, 13, 5350-5353.
[53] D. K. Maiti, S. Halder, P. Pandit, N. Chatterjee, D. De Joarder, N. Pramanik, Y. Saima, A. Patra, P. K. Maiti, J. Org. Chem. 2009, 74, 8086-8097.
[54] S. Das, N. Parekh, B. Mondal, S. Sen Gupta, ACS Macro Lett. 2016, 5, 809-813.
$[55]$ B. K. Shull, Z. Wu, M. Koreeda, J. Carbohydr. Chem. 1996, 15, 955-964.
[56] D. Wahler, O. Boujard, F. Lefèvre, J. L. Reymond, Tetrahedron 2004, 60, 703-710.
[57] M. A. Maier, C. G. Yannopoulos, N. Mohamed, A. Roland, H. Fritz, V. Mohan, G. Just, M. Manoharan, Bioconjug. Chem. 2003, 14, 18-29.
[58] K. E. Moog, M. Barz, M. Bartneck, F. Beceren-Braun, N. Mohr, Z. Wu, L. Braun, J. Dernedde, E. A. Liehn, F. Tacke, T. Lammers, H. Kunz, R. Zentel, Angew. Chemie Int. Ed. 2017, 56, 1416-1421.
[59] J. Zeng, G. Sun, W. Yao, Y. Zhu, R. Wang, L. Cai, K. Liu, Q. Zhang, X. W. Liu, Q. Wan, Angew. Chemie - Int. Ed. 2017, 56, 5227-5231.
[60] K. Du, X. Cao, P. Zhang, H. Zheng, Bioorganic Med. Chem. Lett. 2014, 24, 53185320.
[61] S. C. Timmons, D. L. Jakeman, Org. Lett. 2007, 9, 1227-1230.
[62] F. Cateni, P. Bonivento, G. Procida, M. Zacchigna, L. G. Favretto, G. Scialino, E. Banfi, Eur. J. Med. Chem. 2008, 43, 210-221.
[63] X. Meng, X. Lian, X. Li, Q. Ya, T. Li, Y. Zhang, Y. Yang, Y. Zhang, Carbohydr. Res. 2020, 493, 108034.
[64] W. Xu, H. Yang, Y. Liu, Y. Hua, B. He, X. Ning, Z. Qin, H. M. Liu, F. W. Liu, Synth. 2017, 49, 3686-3691.
[65] J. Zhao, S. Wei, X. Ma, H. Shao, Carbohydr. Res. 2010, 345, 168-171.
[66] K. Toshima, G. Matsuo, T. Ishizuka, Y. Ushiki, M. Nakata, S. Matsumura, J. Org. Chem. 1998, 63, 2307-2313.
[67] K. Toshima, T. Ishizuka, G. Matsuo, M. Nakata, Tetrahedron Lett. 1994, 35, 56735676.
[68] R. Nakamura, K. Tanino, M. Miyashita, Org. Lett. 2003, 5, 3579-3582.
[69] R. J. Ferrier, O. A. Zubkov, in Org. React., John Wiley \& Sons, Inc., Hoboken, NJ, USA, 2003, pp. 569-736.
[70] R. Nakamura, K. Tanino, M. Miyashita, Org. Lett. 2003, 5, 3579-3582.
[71] K. C. Nicolaou, M. E. Duggan, C. K. Hwang, J. Am. Chem. Soc. 1989, 111, 66666675.
[72] J. H. Roireau, R. J. Rosano, N. C. Lazzara, T. Chen, J. Bajsa-Hirschel, K. K. Schrader, S. O. Duke, D. Wykoff, R. M. Giuliano, J. Agric. Food Chem. 2020, 68, 9906-9916.
[73] E. H. Kelley, T. F. Jamison, Org. Lett. 2019, 21, 8027-8030.
[74] P. Srihari, N. Hari Krishna, Y. Sridhar, A. Kamal, Beilstein J. Org. Chem. 2014, 10, 3122-3126.
[75] R. Crouch, A. Williams, Synth. Commun. 2006, 36, 959-964.
[76] W.-R. Li, S.-Y. Han, M. M. Joullié, Tetrahedron 1993, 49, 785-802.
[77] R. D. Crouch, Tetrahedron 2013, 69, 2383-2417.
[78] K. Sapkota, F. Huang, Synlett 2019, 30, 1895-1898.
[79] M. Pazó, A. Zúñiga, M. Pérez, G. Gómez, Y. Fall, Tetrahedron Lett. 2015, 56, 37743776.
[80] O. Hartmann, M. Kalesse, Org. Lett. 2012, 14, 3064-3067.
[81] M. Popadynec, H. Gibbard, J. S. Clark, Org. Lett. 2020, 22, 3734-3738.
[82] K. C. Nicolaou, D. Rhoades, S. M. Kumar, 2018, DOI 10.1021/jacs.8b04634.
[83] K. Umeno, T. Oishi, Asian J. Org. Chem. 2020, 9, 1597-1601.
[84] K. C. Nicolaou, D. Rhoades, M. Lamani, M. R. Pattanayak, S. M. Kumar, 2016, 8-11.
[85] K. Suzuki, T. Nakata, 2002, 2001-2003.
[86] M. Isobe, Y. Funabashi, Y. Ichikawa, S. Mio, T. Goto, Tetrahedron Lett. 1984, 25, 2021-2024.
[87] Q. Tu, Z. Wang, Z. Zhang, J. Huang, Z. Yang, Org. Lett. 2021, 23, 4088-4093.
[88] G. Dayaker, T. Durand, L. Balas, Chem. - A Eur. J. 2014, 20, 2879-2887.
[89] D. Habrant, V. Rauhala, A. M. P. Koskinen, Chem. Soc. Rev. 2010, 39, 2007.
[90] E. W. Colvin, B. J. Hamill, J. Chem. Soc. Perkin Trans. 1 1977, 869.
$[91] \quad$ B. Thirupathi, D. K. Mohapatra, Org. Biomol. Chem. 2016, 14, 6212-6224.
[92] L. Zhu, R. Tong, Org. Lett. 2015, 17, 1966-1969.
[93] L. Zhu, Y. Liu, R. Ma, R. Tong, Angew. Chemie - Int. Ed. 2015, 54, 627-632.
[94] R. Premraj, M. D. McLeod, G. W. Simpson, Heterocycles an Int. J. Rev. Commun. Heterocycl. Chem. 2012, 85, 2949-2976.
[95] N. M. A. J. Kriek, E. Van der Hout, P. Kelly, K. E. Van Meijgaarden, A. Geluk, T. H. M. Ottenhoff, G. A. Van der Marel, M. Overhand, J. H. Van Boom, A. R. P. M. Valentijn, H. S. Overkleeft, European J. Org. Chem. 2003, 2418-2427.
[96] H. Yamada, M. Adachi, T. Nishikawa, Chem. Commun. 2013, 49, 11221-11223.
[97] G. Pazos, M. Pérez, Z. Gándara, G. Gómez, Y. Fall, Org. Biomol. Chem. 2014, 12, 7750-7757.
[98] P.-F. Koh, T.-P. Loh, Green Chem. 2015, 17, 3746-3750.
[99] A. K. Ghosh, K. Lv, N. Ma, E. L. Cárdenas, K. A. Effenberger, M. S. Jurica, Org. Biomol. Chem. 2016, 14, 5263-5271.
[100] A. Maheswara Reddy, G. Sabitha, S. Katukuri, RSC Adv. 2015, 5, 35746-35752.
[101] C. Lagisetti, M. V. Yermolina, L. K. Sharma, G. Palacios, B. J. Prigaro, T. R. Webb, ACS Chem. Biol. 2014, 9, 643-648.
[102] H. Fuwa, M. Nakajima, J. Shi, Y. Takeda, T. Saito, M. Sasaki, Org. Lett. 2011, 13, 1106-1109.
[103] J. Guillaume, T. Seki, T. Decruy, K. Venken, D. Elewaut, M. Tsuji, S. Van Calenbergh, Org. Biomol. Chem. 2017, 15, 2217-2225.
[104] Z. Liu, R. Bittman, Org. Lett. 2012, 14, 620-623.
[105] P. G. M. Wuts, T. W. Greene, Greene's Protective Groups in Organic Synthesis, John Wiley
\& Sons, 2006.
[106] L. N. Mander, M. M. McLachlan, J. Am. Chem. Soc. 2003, 125, 2400-2401.
[107] M. Sasaki, K. Iwasaki, K. Arai, J. Org. Chem. 2021, 86, 4580-4597.
[108] N. Osato, H. Onoue, Y. Toma, K. Torikai, M. Ebine, M. Satake, T. Oishi, Chem. Lett. 2018, 47, 265-268.
[109] G. Tojo, M. Ferna, Oxidation of Alcohols to Aldehydes and Ketones, 2006.
[110] J. C. Gilbert, U. Weerasooriya, J. Org. Chem. 1979, 44, 4997-4998.
[111] J. C. Gilbert, U. Weerasooriya, Chem. Informationsd. 1982, 13, 1837-1845.
[112] A. K. Ghosh, S. R. Allu, G. C. Reddy, A. G. Lopez, P. Mendez, M. S. Jurica, Org. Biomol. Chem. 2021, 19, 1365-1377.
[113] A. L. Fraser, S. K. Menzies, E. F. B. King, L. B. Tulloch, E. R. Gould, M. K. Zacharova, T. K. Smith, G. J. Florence, ACS Infect. Dis. 2018, 4, 560-567.
[114] B. Wang, D. D. McClosky, C. T. Anderson, G. Chen, Carbohydr. Res. 2016, 433, 5462.
[115] H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.
[116] M. Schroder, Chem. Rev. 1980, 80, 187-213.
[117] K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, D. Xu, X. L. Zhang, J. Org. Chem. 1992, 57, 2768-2771.
[118] E. J. Corey, A. Guzman-Perez, M. C. Noe, Tetrahedron Lett. 1995, 36, 3481-3484.
[119] P. Wipf, Y. Kim, D. M. Goldstein, J. Am. Chem. Soc. 1995, 117, 11106-11112.
[120] P. Wipf, Y. Uto, S. Yoshimura, Chem. - A Eur. J. 2002, 8, 1670-1681.
[121] W. Yu, Y. Mei, Y. Kang, Z. Hua, Z. Jin, Org. Lett. 2004, 6, 3217-3219.
[122] H. W. Choi, F. G. Fang, H. Fang, D. S. Kim, S. R. Mathieu, R. T. Yu, Org. Lett. 2017, 19, 6092-6095.
[123] I. Hanna, P. Wlodyka, J. Org. Chem. 1997, 62, 6985-6990.
[124] B. K. Banik, M. Chapa, J. Marquez, M. Cardona, Tetrahedron Lett. 2005, 46, 23412343.
[125] A. K. Singh, R. Venkatesh, J. Kandasamy, Synth. 2019, 51, 4215-4230.
[126] R. Xiao, E. L. Dane, J. Zeng, C. J. McKnight, M. W. Grinstaff, J. Am. Chem. Soc. 2017, 139, 14217-14223.
[127] D. J. Keith, S. D. Townsend, J. Am. Chem. Soc. 2019, 141, 12939-12945.
[128] Y. Dai, J. Zheng, Q. Zhang, Org. Lett. 2018, 20, 3923-3927.
[129] Y.-H. Jeong, Y. Kim, H. Song, Y. S. Chung, S. B. Park, H.-S. Kim, PLoS One 2014, 9, e87030.
[130] J. Lv, T. Luo, D. Zou, H. Dong, European J. Org. Chem. 2019, 2019, 6383-6395.
[131] P. Saidhareddy, S. Ajay, A. K. Shaw, RSC Adv. 2014, 4, 4253-4259.
[132] G. Sabitha, S. S. S. Reddy, J. S. Yadav, Tetrahedron Lett. 2010, 51, 6259-6261.
[133] A. K. Singh, J. Kandasamy, Org. Biomol. Chem. 2018, 16, 5107-5112.
[134] Y. Kim, K. Oh, H. Song, D. S. Lee, S. B. Park, J. Med. Chem. 2013, 56, 7100-7109.
[135] D. Lu, S. Zhu, L. F. Sobala, G. Bernardo-Seisdedos, O. Millet, Y. Zhang, J. JiménezBarbero, G. J. Davies, M. Sollogoub, Org. Lett. 2018, 20, 7488-7492.
[136] A. Roberto, B. Francesco, C. Paolo, L. Luigi, 2020.
[137] J. Ma, Y. Zhao, S. Ng, J. Zhang, J. Zeng, A. Than, P. Chen, X. W. Liu, Chem. - A Eur. J. 2010, 16, 4533-4540.
[138] A. Maria, B. Eric, D. J. D, F. Michael, I. David, M. Michael, M. Kelly, O. Augustine, L. S. G. Y, W. N. S, 2016.
[139] R. R. Copp, B. P. Mundy, Synth. Commun. 1989, 19, 2851-2857.
[140] Q. Li, Y. S. Xu, G. A. Ellis, T. S. Bugni, Y. Tang, R. P. Hsung, Tetrahedron Lett. 2013, 54, 5567-5572.
[141] K. K. Duncan, K. Otrubova, D. L. Boger, Bioorganic Med. Chem. 2014, 22, 27632770.
[142] J. Hassfeld, U. Eggert, M. Kalesse, Synthesis (Stuttg). 2005, 1183-1199.
[143] H. Lachance, D. G. Hall, Org. React. 2009, 1-574.
[144] H. C. Brown, K. S. Bhat, J. Am. Chem. Soc. 1986, 108, 293-294.
[145] H. C. Brown, K. S. Bhat, J. Am. Chem. Soc. 1986, 108, 5919-5923.
[146] S. C. Jonnalagadda, P. Suman, A. Patel, G. Jampana, A. Colfer, 2016, pp. 67-122.
[147] L. Fang, J. Yang, F. Yang, Org. Lett. 2010, 12, 3124-3127.
[148] S. Sengupta, T. Sim, European J. Org. Chem. 2014, 2014, 5063-5070.
[149] S. Spindler, L. M. Wingen, M. Schönenbroicher, M. Seul, M. Adamek, S. Essig, M. Kurz, N. Ziemert, D. Menche, Org. Lett. 2021, 23, 1175-1180.
[150] J. T. Feutrill, G. A. Holloway, F. Hilli, H. M. Hügel, M. A. Rizzacasa, Tetrahedron Lett. 2000, 41, 8569-8572.
[151] A. Takle, P. Kocieński, Tetrahedron 1990, 46, 4503-4516.
[152] S. G. Van Ornum, R. M. Champeau, R. Pariza, Chem. Rev. 2006, 106, 2990-3001.
[153] M. Usman, X. W. Zhang, D. Wu, Z. H. Guan, W. B. Liu, Org. Chem. Front. 2019, 6, 1905-1928.
[154] S. Fletcher, Org. Chem. Front. 2015, 2, 739-752.
[155] T. Y. S. But, P. H. Toy, Chem. - An Asian J. 2007, 2, 1340-1355.
[156] A. J. Dijkstra, K.-H. Hellwich, R. M. Hartshorn, J. Reedijk, E. Szabo, Pure Appl. Chem. 2021, 93, 47-68.
[157] M. A. Maier, C. G. Yannopoulos, N. Mohamed, A. Roland, H. Fritz, V. Mohan, G. Just, M. Manoharan, Bioconjug. Chem. 2003, 14, 18-29.
[158] K. Descroix, G. K. Wagner, Org. Biomol. Chem. 2011, 9, 1855-1863.
[159] W. Pilgrim, P. V. Murphy, Org. Lett. 2009, 11, 939-942.
[160] R. Balamurugan, S. R. Koppolu, Tetrahedron 2009, 65, 8139-8142.
[161] C. H. Burgos, E. Canales, K. Matos, J. A. Soderquist, J. Am. Chem. Soc. 2005, 127, 8044-8049.
[162] D. A. Evans, A. M. Ratz, B. E. Huff, G. S. Sheppard, J. Am. Chem. Soc. 1995, 117, 3448-3467.

7. Appendix - NOESY NMR spectra for confirmation of stereochemistry

\{[(2R,3R,6R)-6-allyl-2-[(4S,5S,Z)-5-[(tert-butyldimethylsilyl)oxy]-4-methylhex-2-en-2-yl]-3,6-dihydro-2H-pyran-3-yl]oxy\}(tert-butyl)dimethylsilane 211

$\{[(2 S, 3 S, Z)-5-[(2 R, 3 R, 6 R)-6$-allyl-3-(methoxymethoxy)-3,6-dihydro-2H-pyran-2-yl]-3-methylhex-4-en-2-yl]oxy\}(tert-butyl)dimethylsilane 212

tert-butyl $\{[(2 R, 3 R, 6 R)-2-[(4 S, 5 S, Z)-5-[($ tert-butyldimethylsilyl)oxy]-4-methylhex-2-en-2-yl]-6-(2,2-dimethoxyethyl)-3,6-dihydro-2H-pyran-3-yl]oxy)dimethylsilane 213

$\{[(2 S, 3 S, Z)-5-[(2 R, 3 R, 4 R)-3,4-$ bis(methoxymethoxy)-3,4-dihydro-2H-pyran-2-yl]-3-methylhex-4-en-2-yl]oxy\}(tert-butyl)dimethylsilane 214

136 |Appendix - NOESY NMR spectra for confirmation of stereochemistry
\{[(2R,3R,6R)-6-allyl-2-[(Z)-1-iodoprop-1-en-2-yl]-3,6-dihydro-2H-pyran-3-yl]oxy\}(tertbutyl)dimethylsilane 227

($2 R, 3 R, 6 R$)-6-allyl-2-[(Z)-1-iodoprop-1-en-2-yl]-3-(methoxymethoxy)-3,6-dihydro-2Hpyran 228

tert-butyl $\{[(2 R, 3 R, 6 R)$-6-(2,2-dimethoxyethyl)-2-[(Z)-1-iodoprop-1-en-2-yl]-3,6-dihydro-2H-pyran-3-yl]oxy\}dimethylsilane 229

($2 R, 3 R, 4 R$)-2-[(E)-1-iodoprop-1-en-2-yl]-3,4-bis(methoxymethoxy)-3,4-dihydro- $2 H$ pyran 230

[^0]: ${ }^{1}$ Prices from https://www.carbosynth.com/ as of 01.07.2021 (63 EUR per kilogram vs 190 EUR per gram)

[^1]: ${ }^{13} \mathbf{C}$-NMR $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}, 150 \mathrm{MHz}\right): \delta=136.20,134.91,132.46,131.70,128.13,116.99,73.29$, $73.06,71.55,67.19,40.91,37.71,26.31,26.30,23.11,21.70,18.70,18.69,17.02,-3.81,-3.96$, -4.35, -4.53

