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Abstract Polygonal finite elements offer an increased freedom in terms of mesh generation at the price of
more complex, often rational, shape functions. Thus, the numerical integration of rational interpolants over
polygonal domains is one of the challenges that needs to be solved. If, additionally, strong discontinuities are
present in the integrand, e.g., when employing fictitious domain methods, special integration procedures must
be developed. Therefore, we propose to extend the conventional quadtree-decomposition-based integration
approach by image compression techniques. In this context, our focus is on unfitted polygonal elements using
Wachspress shape functions. In order to assess the performance of the novel integration scheme, we investigate
the integration error and the compression rate being related to the reduction in integration points. To this end,
the area and the stiffness matrix of a single element are computed using different formulations of the shape
functions, i.e., global and local, and partitioning schemes. Finally, the performance of the proposed integration
scheme is evaluated by investigating two problems of linear elasticity.

Keywords Fictitious domain methods · Polygonal finite element method · Polygonal finite cell method ·
Discontinuous integrands · Compressed quadtree-decomposition

1 Introduction

The traditional finite element method (FEM) offers a robust and well-studied approach for simulating a large
variety of physical phenomena governed by partial differential equations [1,2]. Nonetheless, throughout the
years, several extensions have been developed in order to increase the accuracy, widen the field of application
and decrease the computation time. In this contribution, we focus on the combination of two such extensions,
namely the fictitious domain approach and polygonal elements employing shape functions based on generalized
barycentric coordinates. In this context, we propose an efficient solution for computing piece-wise rational
integrals arising in the expressions for the element matrices.

1.1 Fictitious domain methods

In the conventional FEM, the computational mesh has to conform to the boundary of the domain of interest. As
this is one particular bottleneck in the simulation pipeline, extensive research has been devoted to extending
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the FEM to unfitted discretizations that do not necessarily conform to geometric features of the given problem.
One possibility to exploit this idea is utilized in the extended finite element (XFEM) [3,4] and the generalized
finite element methods (GFEM) [4,5], where, e.g., an accurate modeling of crack propagation can be achieved.
On the other hand, in the context of fictitious domain methods, geometrically highly complex domains are
embedded into a larger computational domain of simple shape to achieve a straightforward mesh generation
process [6–8]. Representatives of this class of methods are the cut finite element method (cutFEM) [9–12], the
Cartesian grid finite element method (cgFEM) [13], the fixed grid finite element method (Fg-FEM) [14,15]
and the finite cell method (FCM) [16–19]. All of these approaches generally lead to elements intersected by
geometric features, and therefore, the application of unfitted meshes inherently involves the computation of
discontinuous integrals. Thus, an accurate computation of the element matrices of intersected elements is one
of the key factors determining the success of this class of methods.

1.2 Polytopal finite element method

The conventional FEM is based on finite elements of simple shapes, such as triangles and quadrilaterals in 2D
and tetrahedrons and hexagons (less often pyramids and wedges) in 3D. The usage of polygonal and polyhedral
finite elements offers additional advantages when it comes to enhanced mesh generation procedures, such as
transition elements for avoiding hanging nodes [20,21] and the derivation of conformal polygonal elements
in an originally non-conformal mesh [22–24]. Furthermore, polygonal elements enable a straightforward
discretization and modeling of polycrystalline [25] and rock materials [26]. In the remainder, we follow the
theory of conformal polygonal finite element methods based on generalized barycentric coordinates [27,28].
However, we have to keep in mind that other polygonal/polyhedral element formulations based on, e.g., the
Voronoi cell finite element method (VCFEM) [25,29], the virtual element method (VEM) [30,31] and the
scaled boundary finite element method (SBFEM) [32–34], are also possible. An extensive description of these
and other related approaches can be found in the review article by Perumal [35]. The main challenges of the
polytopal FEM can be seen in the lack of commercial and free mesh generation software, construction of
appropriate (high-order) interpolants and in the need for accurate numerical integration schemes.

1.3 Motivation

The investigation of polygonal elements in the context of fictitious domain concept is an exotic combination
which further widens the application fields of these methods. A useful feature of such a combination is, e.g., the
flexible insertion andmodification of voids and inclusions in already existing FE-meshes, consisting completely
or partially of polygonal elements. Non-conformal polygonal meshes were already investigated by Duczek and
Gabbert [36] in the context of the polygonal finite cell method (poly-FCM). In this case, multiple challenges
have to be tackled regarding the numerical integration due to (i) the polygonal shape of the integration domain,
(ii) the strong discontinuity within the element and (iii) the generally non-polynomial integrand over the
element domain, computed by the linear combination of polygonal basis functions. In the remainder of this
article, we especially consider rational shape functions, such as theWachspress interpolant [37]. Consequently,
the computation of the element matrices in unfitted polygonal meshes involves integrals of the following form

∫
Ωpoly

αR dΩ, (1)

where Ωpoly is a polygonal region, R a rational function and α a step function making the integrand discon-
tinuous. In this contribution, we follow the poly-FCM approach by Duczek and Gabbert [36] which uses a
quadtree-decomposition-based integration scheme for computing Eq. (1) over the intersected elements. As an
extension to their approach, we implement and investigate the novel numerical integration scheme proposed
by Petö et al. [38] that compresses the integration sub-cells resulting from the quadtree-decomposition (QTD)
to achieve reduced computational times. Since this latter approach leads to a lower integration point density in
the polygonal elements, a special focus is placed on the integration accuracy when computing Eq. (1). Further-
more, note that similar discontinuous rational integrands arise also in case of traditional finite elements when
they are (i) distorted and (ii) intersected by domain interfaces. Therefore, the findings regarding the effect of
the compressed QTD-based integration scheme have ramifications beyond the scope of polygonal elements.
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The remainder of this article is structured in the following way: First, in Sect. 2, the fictitious domain
approach and the discretization of the weak form via an unfitted polygonal mesh is outlined in the context
of linear elasticity. Then, in Sect. 3, the polygonal shape functions are discussed briefly, while in Sect. 4 the
different integration schemes over polygonal elements are elaborated with special attention to discontinuous
integrands (see Ref. [38]). Finally, in Sects. 5, 6 and 7, the influence of the proposed integration scheme on
(i) the resulting number of integration points, (ii) the reduction in computational time and (iii) the integration
accuracy is investigated by means of various examples.

2 Fictitious domain approach for polygonal elements

Consider the weak form of a second-order boundary value problem over the domain Ω with its corresponding
boundary ∂Ω [2,39]

B(u, v) = F(v), (2)

where in case of linear elasticity, u is the displacement field and v is a test function. Denoting the elasticity
matrix in Voigt notation by C, the standard strain-displacement operator by L, the body forces in Ω by b and
the surface tractions on the Neumann boundary ΓN ⊂ ∂Ω by t̂ , the bilinear B and linear F functionals are
expressed as

B(u, v) =
∫

Ω

(Lv)T · C · Lu dΩ and (3)

F(u, v) =
∫

Ω

vT · b dΩ +
∫

ΓN

vT · t̂ dΓ. (4)

Note that the Neumann boundary conditions are already incorporated in Eq. (4), while the Dirichlet boundary
conditions, i.e., the prescribed displacements û, are realized by an additional condition u(x) = û(x)∀x ∈ ΓD.

2.1 Fundamentals

In fictitious domain methods, the original problem stated in Eq. (2) is not solved over the domain Ω , but over
an extended domain Ωe ⊃ Ω . In the following, we refer to the original domain as the physical domain Ωphys,
while the domain extending Ωphys to Ωe we call fictitious domain Ωfict = Ωe\Ωphys (see Fig. 1). There are
numerous methods that are based on this approach. Here, we follow the general description used in the finite
cell method (FCM) [16–19], for which a first extension to polygonal meshes (poly-FCM) was already outlined
by Duczek and Gabbert [36]. Assuming that Ωfict provides zero stiffness and that it is not subjected to any
body forces and surface tractions, the weak form over the extended domain reads [16,40]

Be(u, v) = Fe(v), (5)

where the bilinear and linear functionals

Be(u, v) =
∫

Ωe

(Lv)T · αC · Lu dΩ and (6)

Fe(v) =
∫

Ωe

vT · αb dΩ +
∫

ΓN

vT · t̂ dΓ (7)

are formulatedwith the help of the indicator function α given in Eq. (8). In order to avoid severe ill-conditioning
of the system matrices, a small value α � 1 is assigned to the integration points in Ωfict [41]. According to
Fries and Belytschko [4], such a possible ill-conditioning is expected only for cut elements that exhibit a large
difference between the areas of Ωphys and Ωfict.

α(x) =
{
1.0, ∀x ∈ Ωphys

0.0 (in practice : α � 1), ∀x ∈ Ωfict
(8)



756 M. Petö et al.

Fig. 1 Fictitious domain concept

Fig. 2 Unfitted polygonal mesh over the extended domain Ωe

2.2 Discretization of the weak form

The discretization of the weak form over the extended domain Ωe generally results in an unfitted mesh where
the elements are located either completely inside the physical or fictitious domains, or they are intersected
by the boundary ∂Ω . While fictitious elements can be discarded, physical elements are treated as standard
polygonal finite elements. The bottleneck of the unfitted discretization is seen in the cut elements (Fig. 2),
where (i) the implementation of the boundary conditions and (ii) the computation of element matrices require
special care. For more information regarding the first issue, we refer to Refs. [7,8,42,43]. The computation
of the cut element matrices—constituting the main focus of this article—will be discussed in greater detail in
Sect. 4.2.

Similar to the standard FEM [1,2], the fields u(x) and v(x) are approximated by a linear combination
of the shape functions {N polys

i (ξ)}nvi=1 (see Sect. 3) and nodal values {ui }nvi=1 and {vi }nvi=1 over each polygonal
element

u(x) =
nv∑
i=1

Npoly
i (ξ)ui and v(x) =

nv∑
i=1

Npoly
i (ξ)vi . (9)

Then, following the Bubnov–Galerkin approach, the global system of equations is assembled based on the
individual element contributions. The system of equations given in Eq. (10), where K , U and F are the
global stiffness matrix, nodal displacement vector and nodal force vector, respectively, is solved by standard
approaches

KU = F. (10)

3 Polygonal shape functions

Let us consider a two-dimensional polygonal element with nv vertices {xi }nvi=1 given in the globalΩ
poly
x space.

Each global polygonal elementΩpoly
x has its corresponding reference space, the so-called canonical polygonal

element Ω
poly
ξ defined in the local coordinate system ξ = [ξ1, ξ2]T, as depicted in Fig. 3. The domain Ω

poly
ξ
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Fig. 3 A polygonal element in its local Ω
poly
ξ and global Ω

poly
x configurations transformed by the geometry mapping Qξ→x

given in Eq. (17)

is a regular polygon, where the coordinates of the i th vertex are defined on a unit circle by

ξ1i = cos(2π · i/nv) and ξ2i = sin(2π · i/nv). (11)

Numerous efforts have been made in order to derive interpolants that can be used as shape functions for
polygonal elements. These approaches differ in the dimension (polygon or polyhedron) and in the assumptions
on their shapes (regular, irregular-convex or irregular-concave) as well as in their computational complexities.
In this paper, only a short introduction is given to the available shape functions; for detailed information
see Refs. [36,44]. In order to apply the shape functions in a finite element computation, they must fulfil the
requirements for a Galerkin approximant, i.e.,

non-negativeness : 0 ≤ φi (x) ≤ 1 (12)

interpolation nodal data : φi (x j ) = δi j (13)

partition of unity :
nv∑
i=1

φi (x) = 1 (14)

linear completeness :
nv∑
i=1

φi (ξ)xi = x (15)

where φi denotes the interpolant corresponding to node i . Most approaches use generalized barycentric coor-
dinates

φi (x) = wi (x)∑nv
j=1 w j (x)

, (16)

as the basis for deriving suitable interpolants, where wi is a weighting function associated with node i that
can be computed in numerous ways. As a first approach, Wachspress proposed a rational basis for convex
polygons [45], where wi is computed based on area computations in the polygonal domain. A MATLAB
implementation for this approach can be found in Ref. [46]. The original formulation of the Wachspress shape
functions was later simplified byMeyer et al. [47] proposing amethod that relies on vector operations only, thus
reducing possible round-off errors. Finally, the extension of theWachspress shape functions to convexpolytopes
was established by Warren [48]. Computing wi based on the mean value coordinates (MVC), introduced by
Floater [49] enables a formulation for both convex and concave polygonal domains. TheMVCwas extended to
three dimensions as well [50,51]. Another approach for computing wi is based on natural element or Laplace
coordinates [27,52], both of which are widely used in the natural element method. Tabarraei and Sukumar [28]
provided symbolically pre-computed Laplacian shape functions for regular polygons up to nv = 8, over which
they are identical to the Wachspress shape function [27]. A polygonal interpolant that is not based on Eq. (16)
can be constructed by using the maximum entropy approach proposed by Sukumar [53,54], which has been
also extended to quadratic Serendipity-type shape functions by Rand et al. [55].

In the remainder, we use the rational basis functions proposed byWachspress as polygonal shape functions
N poly(ξ) = φ(ξ). These functions are defined in the reference space over the canonical element. Based on the
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isoparametric concept, the geometry mapping fromΩ
poly
ξ toΩ

poly
x (Fig. 3) is achieved by a linear combination

of basis functions {N poly
i (ξ)}nvi=1 and nodal positions {xi = [x1i , x2i ]T}nvi=1 in the global space

x = Qξ→x (ξ) =
nv∑
i=1

N poly
i (ξ)

[
x1i
x2i

]
. (17)

4 Numerical integration techniques for polygonal elements

Considering standard finite elements, quadrature rules are readily available both in two and three dimensions,
while the integration over polytopal elements ismore challenging. Note that the need for an accurate integration
over polytopal domains does not only arise in FEMs using polygonal/polyhedral elements, but also in immersed
boundary methods, where the intersected FEs often contain polytopal sub-domains due to the discontinuity.
Numerous contributions have beenmade for developing accurate integration schemes for polynomial functions
over such domains. One may transform the integral over the complicated polytopal domain into surface or line
integrals using the divergence theorem [56–59], or derive special quadrature rules for the polytopal domains
via solving the moment fitting equations [60–64,64]. A third approach, especially used in the polygonal
FEM [27,28,36,65,66], is based on partitioning the polygonal elements into a set of triangular or quadrilateral
sub-domains with readily available quadrature rules.1 This approach is discussed in the next sub-section in
greater detail.

4.1 Partitioning scheme

The most common approach regarding the sub-division for integration purposes is to split the polygonal
element with nv vertices into nv triangular or quadrilateral sub-domains [36]. A third option is to partition the
polygonal element into special triangular and quadrilateral regions that are distorted in such a way that only one
or two adjacent edges are skewed and use the quadrature formulae derived by Sarada and Nagaraja [67]. In the
following, we focus on the first two approaches due to their popularity and the possibility of a straightforward
extension by using tetrahedra in 3D. The reference space for the triangular and quadrilateral sub-domains
is denoted by Ω tri

η and Ω
quad
η , respectively. In this case, standard quadrature rules can be applied where

η = [η1, η2]T refers to the local coordinates. In general, the sub-division of a polygonal element can be
executed either in the global or in the local space. If shape functions are easily constructed for the global
polygon, e.g., when using Wachspress,2 MVC or maximum entropy shape functions, it is a natural choice to
perform the integration in the global element. On the other hand, if it is more advantageous to define the shape
functions overΩpoly

ξ , which is the case for the Laplace shape functions [27,66], the partitioning for integration
purposes should be performed in the canonical element [28]. In the following, both the partitioning based on
the global Ωpoly

x and local polygonal (canonical) elements Ω
poly
ξ are discussed.

4.1.1 Sub-division of the global polygonal element

One approach is to directly sub-divide the global polygonal element Ωpoly
x into triangular Ω tri

x or quadrilateral

Ω
quad
x sub-domains [27,66]. The relation of these domains to their local spaces, Ω tri

η and Ω
quad
η , is established

bymeans of a simple linear/bilinear geometrymapping x = Qη→x (η), as depicted in Fig. 4a. Consequently, the

integral of an arbitrary function F over Ω
poly
x is computed for the triangular and quadrilateral decompositions

by

1 Note that this sub-division serves integration purposes only and, therefore, does not add any degrees of freedom (DOFs) to
the system.

2 Note that the Wachspress shape function requires Ω
poly
x to be a convex polygon.
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(a)

(b)

Fig. 4 Example for the globalΩpoly
x and localΩpoly

ξ quadrilateral partitioning schemes. The domain with purple colour highlights
a single quadrilateral sub-domain in different spaces using the geometry mappings indicated by the arrows. The decomposition
into triangular sub-domains follows analogously. a Sub-division of the polygonal element in the global space. The integration
over the sub-element requires one mapping. b Sub-division of the polygonal element in its reference space. The integration over
the sub-element requires two mappings. (Color figure online)

∫
Ω

poly
x

FdΩ =
nv∑
i=1

∫ 1

0

∫ 1−η1

0
F |J (i)

η→x | dη1dη2 and (18)

∫
Ω

poly
x

FdΩ =
nv∑
i=1

∫ 1

−1

∫ 1

−1
F |J (i)

η→x | dη1dη2, (19)

respectively, where |J (i)
η→x | is the determinant of the Jacobian matrix J (i)

η→x of the geometry mapping Qη→x .
Since Qη→x can be realized via standard linear/bilinear FE shape functions, the determinant of its Jacobian
matrix is

|J (i)
η→x | =

{
const. for triangular sub-domain
a0 + a1η1 + a2η2 for quadrilateral sub-domain

, (20)

where a0, a1 and a2 are constants depending on the coordinates of the corner vertices of the sub-domain
Ω

quad(i)
x .

4.1.2 Sub-division of the local polygonal element

Another approach is to perform the partitioning in the local space of the polygonal element Ω
poly
ξ , resulting

in Ω tri
ξ and Ω

quad
ξ [26–28,36,66]. In this case, the relation between Ω

poly
ξ an Ω

poly
x is established based

on a geometry mapping x = Qξ→x (ξ) using the rational polygonal shape functions according to Eq. (17).
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Compared to the first approach, an additional second mapping ξ = Qη→ξ (η) from Ω
tri/quad
η to Ω

tri/quad
ξ is

needed. Here, standard linear/bilinear shape functions are sufficient. An example for subdividing a polygonal
element into quadrilateral sub-elements is depicted in Fig. 4b. Taking both geometry mappings into account,
the integral of the function F over Ω

poly
x can be transformed into

∫
Ω

poly
x

FdΩ =
∫

Ω
poly
ξ

F |Jξ→x |dΩ =
nv∑
i=1

∫ 1

0

∫ 1−η1

0
F |J (i)

η→ξ ||Jξ→x | dη1dη2 (21)

∫
Ω

poly
x

FdΩ =
∫

Ω
poly
ξ

F |Jξ→x |dΩ =
nv∑
i=1

∫ 1

−1

∫ 1

−1
F |J (i)

η→ξ ||Jξ→x | dη1dη2 (22)

for the triangular and quadrilateral decompositions, respectively. Considering the geometry mapping Q(i)
η→ξ

for the sub-domain i ∈ [1; nv]with standard linear/bilinear FE shape functions, the determinant of its Jacobian
matrix is the form

|J (i)
η→ξ | =

{
const. for triangular sub-domain
b0 + b1η1 + b2η2 for quadrilateral sub-domain

, (23)

whereb0,b1 andb2 are constants dependingon the coordinates of the corner vertices of the sub-domainΩ
quad(i)
ξ .

Furthermore, due to the use of Wachspress shape functions for the geometry mapping, the determinant |Jξ→x |
is a rational function regardless of the shape of the sub-domains.

Comparing Eqs. (18) and (19) to Eqs. (22) and (21), it is clear that the sub-division of the global element
leads to integrands of lower complexity. Consequently, using the same quadrature rule in Ω

tri/quad
η , Eqs. (18)

and (19) can be computed with higher accuracy than Eqs. (22) and (21). On the other side, since Ω
poly
ξ is the

same for all global polygonal elements, the shape functions can be written and computed more conveniently
in the local space of the polygonal element. A comparison of the integration quality for the two partitioning
schemes using different polygonal shape functions and number of integration points can be found in the work
by Sukumar and Tabarraei [27]. In the context of linear elasticity, Taberraei and Sukumar [28] use the triangular
partitioning scheme in the local coordinate system, where in each triangle 25 integration points are used for
an accurate computation of the integrals similar to Eq. (21).

4.2 Considering discontinuous integrands

The integration techniques discussed in the previous section allow for a simple and robust computation of
continuous integrals over polygonal elements. However, if the integrand is discontinuous, more sophisticated
integration techniques are required to guarantee highly accurate results. Discontinuous integrands generally
arise in the extended finite element method (XFEM) [4,68], the generalized finite element method (GFEM) [4,
5,69], and in the fictitious domains methods [7,8,70], such as the cut finite element method (cutFEM) [9–12],
Cartesian grid finite element method (cgFEM) [13], fixed grid finite element method (Fg-FEM) [14,15] and
finite cell method (FCM) [16–19]. There are numerous techniques that are commonly used in these methods
for computing the discontinuous integrals. These techniques are, e.g., based on (i) the derivation of unique
quadrature rules using moment fitting techniques [64,71,72], (ii) finding an equivalent polynomial that has
the same integral value as the discontinuous integral [73,74], (iii) reducing the dimensionality of the integral
by applying the divergence theorem [57], or (iv) the construction of a local integration mesh (LIM) for better
capturing the domains Ωphys and Ωfict in the cut element. The construction of an LIM consisting of boundary-
conforming sub-regions has obvious benefits in terms of integration accuracy [12,75–79]; however, we will
concentrate on an LIM based on the quadtree-decomposition (QTD) of the intersected domains that does not
conform to the boundary [17,80]. Although this technique results in a poorer convergence, it does not require
finding the discontinuity within the elemental domain often involving the solution of a nonlinear system of
equations [77]. In our opinion, this approach fits better into the general philosophy of fictitious domainmethods.
Furthermore, it works robustly regardless of the geometry description that is provided and the dimensionality
of the problem.
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Fig. 5 Numerical integration in the cut polygonal element based on the quadtree-decomposition (k = 3) of the quadrilateral
sub-domains in the canonical element

4.2.1 Quadtree-decomposition

Using theQTD in a two-dimensional setting, each triangular/quadrilateral sub-domain of the polygonal element
undergoes a successive decomposition into a set of triangular/quadrilateral sub-domains called sub-cells with
decreased size and increased density in the vicinity of the discontinuity ∂Ω . Similar to the classification of
the global elements, the resulting unfitted sub-cells can also be classified as physical, fictitious and cut as
depicted in Fig. 5. The QTD algorithm with triangular sub-cells is outlined in Refs. [36,81]. In the remainder,
the focus is kept on the partitioning of the polygonal elements into quadrilateral sub-domains for which the
compression algorithms are readily available (Sect. 4.2.2) [38]. The QTD is performed in the local-space of
the cut quadrilateral sub-domains Ω

quad
η by repeating the following three steps for each cut sub-cell until the

refinement level k of the QTD is reached:

1. Split the given sub-cell into four equal-sized quadrants representing four new sub-cells.
2. Map the four new sub-cells to the global polygonal element Ωpoly

x using:
(a) Qη→x (polygon partitioning was performed in Ω

poly
x ; Sect. 4.1.1),

(b) a combination of Qη→ξ and Qξ→x (polygon partitioning was performed in Ω
poly
ξ ; Sect. 4.1.2).

3. Determine for each sub-cell whether it is cut by the boundary or not and mark the cut sub-cells for further
decomposition. This procedure is executed in the global space.

Each created sub-cell is defined in its own local space Ωsc
ζ with the coordinate system ζ = [ζ1, ζ2]T. The

relation of the reference sub-cell to the corresponding sub-cell in the η-space Ωsc
η is achieved by the geometry

mapping η = Qζ→η(ζ ), as depicted in Fig. 5. Considering nv quadrilateral domains in the polygonal element,
each of which containing nsc sub-cells resulting from the QTD, the integral of the piece-wise rational function
αR over the cut polygonal element Ωpoly

x is computed as the sum of integrals over the individual quadrilateral
sub-cells by Eqs. (24) and (25) for the local and global partitions of an element, respectively

∫
Ω

poly
x

αR dΩ =
nv∑
i=1

nsc∑
j=1

∫ 1

−1

∫ 1

−1
αR |J ( j)

ζ→η|︸ ︷︷ ︸
const.

|J (i)
η→ξ |︸ ︷︷ ︸
linear

|Jξ→x |︸ ︷︷ ︸
rational

dζ1dζ2, (24)

∫
Ω

poly
x

αR dΩ =
nv∑
i=1

nsc∑
j=1

∫ 1

−1

∫ 1

−1
αR |J ( j)

ζ→η|︸ ︷︷ ︸
const.

|J (i)
η→x |︸ ︷︷ ︸
linear

dζ1dζ2. (25)

While for each sub-cell |J ( j)
ζ→η| has a constant value due to the simple geometry mapping Qζ→η [17], the

non-constant terms are functions of the mapped coordinates. During the numerical integration in each sub-cell,
a Gaussian quadrature rule is applied using n × n integration points as depicted for a single sub-cell in Fig. 5
with n = 3.
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Fig. 6 Numerical integration in the cut polygonal element based on the IBR compression technique (same example as depicted
in Fig. 5)

4.2.2 Sub-cell compression schemes

Although the QTD-based integration scheme allows for a robust and fully automatic computation of dis-
continuous integrals, its main drawback is seen in the exponentially increasing number of sub-cells as the
refinement level k increases. This leads to high numerical costs both for performing the QTD itself and for
computing the integrals over the sub-cells [82], especially for nonlinear problems [83]. As a solution to this
problem, Petö et al. [38] introduced a novel approach based on image compression techniques for reducing
the number of integration points and consequently the computational time. In the following, the main idea of
this method is briefly discussed; for further information, we refer to the original article [38]. The compression
algorithm is inserted directly between the QTD and the numerical integration stages as an intermediate step
and requires only minor modification in an already existing code. There are several algorithms that can be
used for the compression of two-dimensional sub-cells, such as the run-length encoding (RLE), image block
representation (IBR) and minimal rectangular partition (MRP) [84–86]. Among these methods, the IBR (see
Fig. 6) is the most suitable choice combining high compression rates, a low computational overhead and low
implementational effort. If the QTD-based integration is used, the discontinuity in the integrals is captured by
agglomerating integration points in the vicinity of the boundary. For the sake of consistency, the cut sub-cells
are generally not subjected to the compression step.

Let the compression rate λ = nafterIP /nbeforeIP define the ratio of the number of integration points before
nbeforeIP and after nafterIP the compression, where a successful compression is indicated by λ-values below one.
Distributing n×n integration points in the physical, fictitious and cut sub-cells, the compression ratio λ for the
IBR algorithm is depicted by the black dashed curve in Fig. 7 based on the example shown in Fig. 6. Note that
already for smaller refinement levels k, a significant compression can be achieved (λ ≈ 0.7 for k = 3) and that
λ is independent from n. However, according to Abedian et al. [83,87], the fictitious integration points, whose
only purpose is to prevent a possible ill-conditioning of the system matrices, can be replaced by a significantly
smaller set of integration points. Following this reduction in fictitious integration points (RFIP) approach and
only considering the physical integration points after the compression, even better results can be achieved,
requiring only 30–40% of the original integration points, as depicted by the solid lines in Fig. 7.

In Ref. [38], a piece-wise polynomial integrand is assumed for which it was shown, that compressing only
the physical sub-cells but not the cut ones, the same accuracy can be obtained as with the standard QTD-based
integration scheme; however, with significantly less computational time. If the discontinuous integrand is not a
piece-wise polynomial but a piece-wise rational function, the integration accuracy of the Gaussian quadrature
depends on the density of the integration points in all integration sub-domains. That is to say, it is not enough to
monitor the integration regions where the integrand is discontinuous (cut sub-cells), but it is equally important
to guarantee an accurate integration in the physical sub-cells, where the integrand is continuous. Therefore,
when compressing the physical sub-cells, a deterioration of the integration accuracy is expected due to the
rational nature of the integrand function. The actual effect due to the compression is examined in detail in
Sects. 5, 6, and 7.
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Fig. 7 Compression rates λ for the IBR algorithm when considering either all integration points in the polygonal element after
the compression (black dashed line) or only the physical ones (solid lines)

5 Integration error

The integration error introduced when computing the integrals in Eqs. (24) and (25) is caused by the fact, that
neither rational nor discontinuous functions can be integrated exactly via standard Gaussian quadrature rules.
In the following, the errors in integration accuracy caused by the rational and discontinuous nature of the
integrands are denoted by eR and eD, respectively. Using a QTD-based integration scheme, for the integral
over all sub-cells

I (eR, eD) = Iphys(eR) + Icut(eR, eD) (26)

holds, where Iphys and Icut denote the integrals over the physical and cut sub-cells, respectively. Note that
while Iphys only depends on eR, for Icut both eR and eD are relevant. Since the compressed sub-cells generally
have a decreased integration point density compared to the uncompressed ones (see Figs. 5 and 6), using the
same integration order results in an increased error eR when compression is used. However, following the
approach by Petö et al. [38] and only compressing the physical sub-cells, this affects Iphys only while Icut is
unchanged. In order to investigate the influence of the compression (particularly based on the IBR algorithm)
on the integration accuracy, in Sects. 5.1 and 5.2 the area and stiffness matrix of the cut polygonal element
depicted in Figs. 5 and 6 are computed.3 The vertices V of the distorted polygonal element in the global space
as well as the center xc of the unit circle (r = 1) introducing the discontinuity are given as:

V =
{[

2.7
2.0

]
,

[
2.0
3.0

]
,

[
0.5
1.0

]
,

[
1.8
0.5

]
,

[
2.5
1.0

]}
, xc =

[
3
2

]
. (27)

Furthermore, since partitioning the polygonal element in the global and local spaces (see Sects. 4.1.1 and
4.1.2) generally leads to different integral formulations, the effect of the IBR compression is examined for
both settings using quadrilateral sub-domains. Throughout the simulations in this article rational Wachspress
shape functions [27] are used, which can be also formulated directly over the convex global element enabling
a simpler and less error-prone numerical integration.

3 The quality of the results depends on the degree of distortion of the polygonal element and not its number of vertices.
Nonetheless, the qualitative characteristics of the curves presented in this section are generally valid.
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5.1 Numerical example: Error in the area approximation

The approximate solution for the area A is obtained via Eqs. (24) and (25), where for the current example
R = 1 applies. Based on the model of the single polygonal element given in Eq. (27), a reference solution
for the area can be computed analytically resulting in Aref = 2.286616571808802 which can be used for
computing the error eA by Eq. (28), where in case of a QTD-based integration A = Aphys + Acut holds

eA =
∣∣∣∣ Aref − A

Aref

∣∣∣∣ × 100% =
∣∣∣∣1 − Aphys

Aref
− Acut

Aref

∣∣∣∣ × 100%. (28)

5.1.1 Local sub-division scheme

The approximation quality when using a local partitioning scheme is depicted in Fig. 8 for various refinement
levels k = 1, 2, . . . , 15 and integration orders with n = 1, 2, 5 and 10 integration points per direction. Based
on Eq. (28), the ratios

ρphys = (1 − Aphys/Aref) × 100% (29)

ρcut = Acut/Aref × 100%, (30)

depicted in Fig. 8a and b are introduced. Both values show an exponential convergence as the number of
refinement levels k is increased. In case of ρcut, the number of integration points per direction n plays a role
for small values of k only, while for ρphys its effect is only significant for rather large values of k. Using n = 1
results in such a poor integration over the large physical sub-cells that the ratio ρphys cannot be further improved
after a certain refinement level (k = 4), resulting in a poor convergence of the entire error eA as depicted in
Fig. 8c. Since ρcut is not affected by the compression, the increased error in eA when a compression is used
is directly correlated to ρphys. Nonetheless, not only that increasing n results in an improved convergence of
ρphys and consequently of eA in general, but also the small differences between the results obtained with and
without compression vanish, even for slightly increased n, as depicted in Fig. 8d.

5.1.2 Global sub-division scheme

As a comparison, we perform the same computations for the second case, where the polygonal element Ωpoly
x

is subdivided in the global space; see a Eq. (25). In this case, no rational mapping from Ω
poly
ξ to Ω

poly
x has to

be considered. Therefore, when computing the area (R = 1), the chosen rational polygonal shape function
does not play any role. The accuracy of the computation of the area depends solely on how well |Jη→x | in
Eq. (19) can be integrated. Since |Jη→x | is a linear function as given in Eq.20, the accuracy of the Gaussian
quadrature over the physical sub-cells is recovered already for a single integration point (n = 1) per sub-cell.
Consequently, the same accuracy is obtained regardless of the number of integration points and whether a
compression was performed or not. This can be seen in Fig. 9a where all curves for n = 1, 2, 5 and 10 are
overlapping for the uncompressed and compressed sub-cells. Nonetheless, due to the discontinuous integrals
over the cut sub-cells, the influence of n is still present as observed in Fig. 9b. Here, the relative error in the
area approximation eA improves for increased values of n.

5.2 Numerical example: Error in the stiffness matrix

In this sub-section, the integration accuracy for computing the stiffnessmatrix is investigated using the same cut
polygonal element and integration approaches as in the previous section. For this computation, a homogeneous
material with a Young’s modulus of E = 209.9MPa and a Poisson’s ratio of ν = 0.29 is chosen and a
plane-stress state is assumed. In the following, we denote the polygonal shape functions defined over Ω

poly
x

by N̂ (poly)
i (x) while for the shape functions over Ω

poly
ξ the notation N (poly)

i (ξ) is used. Applying the same

notation to the stiffness matrices in the global and local formulations, the variables K̂ and K are introduced,
respectively. The components of K̂ typically contain integrals of the form

k̂ =
∫

Ω
poly
x

∂ N̂ (poly)
i (x)

∂xm

∂ N̂ (poly)
j (x)

∂xn
dΩ, (31)
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(a) (b)

(c) (d)

Fig. 8 Effect of the compression on the integration accuracy when computing the area of the physical domain in a cut polygonal
element. The sub-division is performed in the local space. a Ratio ρphys based on Eq. (29). b Ratio ρcut based on Eq. (30). c eA,
ρphys and ρcut for n = 1. d Error eA based on Eq. (28)

while the components of K are expressed by more complex integrals due to the change in variables:

k =
∫

Ω
poly
ξ

(
∂ξ1

∂xm

∂N (poly)
i (ξ)

∂ξ1
+ ∂ξ2

∂xm

∂N (poly)
i (ξ)

∂ξ2

)

×
⎛
⎝ ∂ξ1

∂xm

∂N (poly)
j (ξ)

∂ξ1
+ ∂ξ2

∂xm

∂N (poly)
j (ξ)

∂ξ2

⎞
⎠ |Jξ→x | dΩ. (32)

In both cases, i, j = 1, 2, . . . , nv and m, n = 1, 2. The rational derivatives of the Wachspress shape functions
can be found in Ref. [46], where the given formulae also apply to the global shape functions. In the following,
for computing K̂ the global partition-based approach given in Eq. (25) is used, while for K the integrals are
solved via the local approach in Eq. (24). For evaluating the convergence in the stiffness matrices, we use the
formula [2]
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(a) (b)

Fig. 9 Ratio ρphys and error eA for the global sub-division scheme. a Ratio ρphys based on Eq. (29). b Error eA based on Eq. (28)

eK = ||K ref − K ||L2

||K ref ||L2

× 100%, (33)

where for the 2nv×2nv-dimensional stiffness matrix of a two-dimensional polygonal element with nv vertices,
the standard L2-norm || · ||L2 is defined as

||K ||L2 =
⎛
⎝ 2nv∑

i=1

2nv∑
j=1

|Ki j |2
⎞
⎠

1/2

. (34)

The reference values for the global and local approaches are obtained by using a highly accurate integration
with k = 15 and n = 50 resulting in the norms

||K̂ ref ||L2 = 2.587287053379724 × 105 and (35)

||K ref ||L2 = 2.582566542956506 × 105. (36)

The results obtainedwith andwithout compression are depicted for the global and local formulations in Fig. 10a
and b, respectively. Note that since for the two plots two different reference values were used, K̂ ref and K ref , the
errors cannot be directly compared. However, it can be observed that due to the significantly simpler integral
formulations of the global approach, the integration accuracy is affected only marginally by the compression.
In contrast, the integrand in case of the local formulation contains extra mappings and inverse Jacobian terms,
resulting in a more complex rational expression. Consequently, the deterioration of the integration accuracy
can be clearly observed when the compression is used.

6 Numerical example: Perforated plate

So far, the integration error with and without the compression of sub-cells was investigated only on the element
level. In this section, the effect of the integration error is investigated in the context of finite element analysis
by solving a linear elastic problem (see Fig. 11a), using unfitted polygonal meshes with different element sizes,
such as the one depicted in Fig. 11b. The assumedmaterial properties are the same as the ones given in Sect. 5.2.
For the decomposition, the QTD-approach is used without and with the IBR compression. In both cases, a
possible ill-conditioning of the system matrices is avoided by using the RFIP approach [38,83,87], requiring
only a negligible number of fictitious integration points. For the approximation of the displacement field,
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(a) (b)

Fig. 10 Error in the L2-norm of the stiffness matrix for various refinement levels k and integration points n per direction and
sub-cell. a Error eK in the global formulation. b Error eK in the local formulation

(a) (b)

Fig. 11 Problem of a statically loaded perforated plate and its exemplary discretization by an unfitted mesh consisting of quadri-
lateral, pentagonal, hexagonal and heptagonal polygonal elements. a Problem definition. b Unfitted polygonal mesh

rational Wachspress shape functions are used. In the remainder of the article, the polygonal shape functions
are defined in the local space of the elements Ω

poly
ξ due to the following reasons:

1. According to Sect. 5, the integration quality in polygonal elements is visibly affected by the compression
of sub-cells, while this influence is not observed in polygonal elements employing global shape functions.
Since the effect of reducing the number of integration points is the main focus of this article, locally
defined shape functions allow for a more stringent investigation of the compressed QTD.

2. Not all polygonal shape function can be defined over arbitrarily distorted polygonal elements in the global
space. The rational Wachspress interpolant is a suitable representative, which can be defined in the global
space; however, it requires the element to be convex.

3. In most FE softwares, the shape functions are commonly generated in the local space of the implemented
elements.
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(a) (b)

Fig. 12 Error in the energy norm eE during h-refinement using different refinement levels k of the QTD and number of integration
points per direction n. In each plot, the theoretical convergence rate for linear shape functions is depicted. For n = 5 and 10 in
sub-figure (b), the theoretical convergence rate is already obtained in the depicted DOF-range, and therefore, these curves are
overlapping. a k = 0 (no QTD). b k = 3. (Color figure online)

Considering the reasons mentioned above, we employ a local partitioning scheme, which is aligned with the
definition of the shape functions in Ω

poly
ξ . Consequently, integrals of the form given in Eq. (24) have to be

solved.

6.1 Convergence in the energy norm

The quality of the results is measured by the relative error eE in the energy norm || · ||E according to [2]

eE = ||uref − u||E
||uref ||E =

√∣∣∣∣Be(uref , uref) − Be(u, u)

Be(uref , uref)

∣∣∣∣ × 100[%], (37)

for which the reference value 1/2 Be(uref , uref) = 0.7021812127 from Ref. [16] is used. The corresponding
results are depicted in Fig. 12 for various settings, also including the case k = 0 where no integration sub-
cells are used (Fig. 12a). Considering a uniform h-refinement of the given problem with linear elements, the
theoretical optimal convergence rate in the energy norm is algebraic with the factor β = 1/2 [2,16]. In the
following, the effect of the integration accuracy of the piece-wise rational integrands on the convergence rate
is discussed, while focusing on the terms piece-wise (Sect. 6.1.1) and rational (Sect. 6.1.2), separately.

6.1.1 Effect of the discontinuity

Using k = 0 with low-order quadrature rules results in a poor convergence; however, increasing the value
of n quickly leads to an improved solution quality as both the rational and discontinuous parts of the piece-
wise rational integrands are integrated more accurately, leading to decreased errors eD and eR (cf. Sect. 5).
For n = 10 the theoretical convergence rate is basically obtained (magenta curve in Fig. 12a). Although in
case of k = 0, no QTD is performed both the physical and cut polygonal elements are partitioned once for
integration purposes (to facilitate the use of standard Gaussian quadrature rules) as depicted in Fig. 4b. Despite
the optimal convergence rate, using k = 0 with a globally increased quadrature order is extremely inefficient.
As an example, the discretization by 40,000 elements is investigated for the settings k = 0, n = 10 (magenta
curve Fig. 12a) and k = 3, n = 2 (red curve in Fig. 12b). While in both cases an optimal convergence and
an error eE < 1% is reached, the first settings results in 230,700 integration points in total and 9 times more
computational time for generating the stiffness matrices than the second setting.

Performing a QTD with k = 3 (Fig. 12b) does not only lead to better results due to the more accurate
resolution of the boundary, but the results are obtained much more efficiently as the number of integration
points is not increased everywhere, but only in the vicinity of the discontinuity. With the reduced error eD in
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case of k = 3, the optimal convergence rate is already obtained for n = 2 basically in the entire investigated
DOF-range. The fast recovery of the theoretical convergence rate with increasing n is explained by the fact that
only low-order elements are used. That is to say, due to the relatively poor approximation of the displacement
field by low-order elements the integration error caused by the discontinuous integrand in cut elements is
balanced with the discretization error. Since the optimal convergence rate is already obtained for k = 3, using
higher refinement levels k > 3 enabling an even better resolution of the boundary is not meaningful and results
in the same curves as depicted in Fig. 12b.

6.1.2 Effect of the rational integrand

The stationary value of the curve n = 1 (blue) in Fig. 12b is caused by the inaccurate integration of the rational
functions present in the whole computational domain, i.e., both in the physical and cut elements, which leads to
an error eR dominating the entire solution quality. This phenomenon has been already discussed with respect
to Figs. 8 and 10, revealing the higher importance of eR over eD for small values of n. Although the stationary
state is not yet reached, but essentially the start of this effect can be observed also for the curve n = 2 (red)
in Fig. 12b due to the same reason. Furthermore, since the depicted curves in Fig. 12b are identical to the ones
obtained with higher refinement levels k, the conjecture that the deterioration of the convergence rates for
n = 1 and 2 are not caused by eD is confirmed. On the contrary, for the curves when k = 0 (Fig. 12a), where
the discontinuity is approximated very poorly, the sub-optimal convergence is caused not only by eR, but also
by eD, resulting in the difference between Fig. 12a and b.

6.2 Efficiency of the compression

Although on the element level in Sect. 5 the effect of the compression was clearly detected for the local
definition of the shape functions and partitioning of the element, for the current example, basically no loss
in accuracy resulting from the compression can be observed in the wide range of investigated discretizations.
What is evenmore, for achieving the same accuracy, only 55–38%of the original integration points are required
by the compressed QTD, depending on the chosen integration settings (see Fig. 13). Note that while in case of
Fig. 7 the compression was compared to a QTDwhere all sub-cells and integration points are considered, in the
current case, the comparison is made to a QTD where the fictitious integration points are already considerably
reduced by the RFIP approach [38,83,87]. Nonetheless, still a remarkable compression is achieved, even when
k = 3 and n = 2 is used.

Moreover, the overall reduction in the computational time is not only influenced by the number of resulting
integration points after the compression, but also by the time invested for performing the compression itself. The
spent time depends on the complexity of the algorithm for detecting cut sub-cells and on the implementation
quality of theQTDprocedure. In the ideal case, the additional time should be always smaller than the time saved
during the integration over the compressed QTD [38]. The time savings for computing the element matrices
are depicted in Fig. 14 for three different settings. In all three cases, a discretization by 40,000 elements is
used, representing the first stage where an error eE ≤ 1% is obtained (Fig. 12). Already for the simplest
meaningful setting a reduction in computational time is possible, which can be even further increased once a
higher refinement level k and quadrature rule by n × n integration points are used (Fig. 14).

Remark 1 In this example, Wachspress’ shape function defined in the canonical element was investigated in
particular, for which a clear deterioration in the integration accuracy due to the IBR compression was shown
on the element level (see Sect. 5). Nonetheless, when embedded into an FE analysis, the compression had
marginal effects on the solution quality and already when n ≥ 2 was used, optimal convergence rates were
obtained (see Fig. 12b). As such results cannot be further improved, the same performance of the globally
defined shape functions is very likely, which were only tested on the element level in Sect. 5 and no negative
effects resulting from the compression were shown.

Remark 2 Note that regarding the quality of the results and the success of the compression, the fact that
only low-order polygonal shape functions are used plays a significant role. If high-order shape functions are
utilized, the optimal convergence rates would not be achieved already for k = 3 and especially not for k = 0.
Also, from Sect. 5 it is known that the effect on the integration accuracy of the compression is present on
the element level. In our opinion, the fact that it is hardly detectable in the results of the simulation is due to
the reason that the introduced integration error is dominated by the discretization error due to the low-order
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(a) (b) (c)

Fig. 13 Compression ratio λ for various mesh sizes, refinement levels k and integration points per direction n. a k = 3. b k = 5.
c k = 7

Fig. 14 Time requirements for the computation of the element matrices (physical and cut) for a compressed compared to an
uncompressed QTD. For all three cases, a discretization by 40,000 elements is used. The colours in the bars indicate the time
proportions spent on the computation of the physical and cut element matrices. (Color figure online)

shape functions; however, this statement requires further research. Furthermore, it has already been shown in
Ref. [38] that the computational time can be significantly reduced for higher refinement levels k and polynomial
degrees p. Regarding high-order elements also high-order quadrature rules have to be used which correlates
with an increase in n (investigated in this contribution). Due to the low-order polygonal shape functions,
lower values of k and n already suffice for obtaining an optimal algebraic convergence rate. While a reduction
in computational time is possible even for k = 3 with n = 2, as it is shown in Fig. 14, the full potential
of the compression scheme is expected to emerge for unfitted polygonal meshes once high-order polygonal
interpolants are available, where an accurate numerical integration is of utmost importance.

7 Numerical example: Porous multicrystalline domain

In this section, a porousmulticrystalline domain depicted in Fig. 15a is investigated,where theYoung’smodulus
varies linearly for each grain depending on the grain size from 50.000 (smallest) to 250.000MPa (largest), as
indicated by the greyscale coloring. While setting up an FE-mesh for such domain is cumbersome, a Cartesian
FC-mesh would lead to oscillatory stress fields and reduced convergence properties due to the inaccurate
capturing of the material interfaces [88,89]. Hence, the computational mesh is obtained by assigning for each
grain a single polygonal element. The magnitude of the displacement field of such a domain is depicted in
Fig. 15c. The void regions are introduced through the fictitious domain concept, leading to cut polygonal
elements indicated by yellow color in Fig. 15a. The corresponding displacement field of the porous material
is shown in Fig. 15d.
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(a) (b)

(c) (d)

Fig. 15 Numerical example of a porous multicrystalline domain with a computational mesh and b solution characteristics when
the IBR compression scheme is used. The magnitude of the displacement fields is depicted for a computational domain c without
and d with the ellipsoidal cavities. In both cases, a scaling factor of 59.48 is used, while the dashed lines indicate the contours
of the undeformed bodies. a Multicrystalline domain with void regions. The same boundary conditions apply as in the problem
depicted in Fig. 11. bError in the strain energy according to Eq. (38) (blue), reduction in integration points (red) and computational
time (purple). c Displacements without void regions (umin = 0mm, umin = 3.83 · 10−3 mm). d Displacements with void regions
(umin = 0mm, umin = 6.75 · 10−3 mm). (Color figure online)

For studying the effect of the IBR compression, a constant discretization is used in conjunction with
various refinement levels k and n × n integration points per sub-cell. The corresponding results are depicted
in Fig. 15b, where the IBR compression using only the physical integration points is compared to the standard
QTD utilizing all the integration points (both physical and fictitious, cf. Fig. 7). A possible ill-conditioning
during the simulation with compression is avoided by using the approach introduced by Abedian et al. [83,87].
Note that for the current example no reference solution exists. Therefore, instead of using Eq. (37), the relative
deviation in the strain energy due the reduction in integration points is measured by
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ΔSE =
∣∣∣∣Be(uQTD, uQTD) − Be(uIBR, uIBR)

Be(uQTD, uQTD)

∣∣∣∣ × 100[%], (38)

where uQTD and uIBR are the approximated displacement fields (for a given k and n) without compression and
with the IBR compression scheme, respectively. There are two important facts to be noted regarding ΔSE in
Fig. 15b: First, the differences are growingwith increasing k until they reach a stationary value. This is in perfect
agreement with the general behavior of the compression which has a higher compression rate λ for increasing
values of k (see Fig. 7 and red curves in Fig. 15b). It is clear that a better compression leads to less integration
points and therefore, to higher differences in the integral values. Once the compression ratio λ reaches a
stationary value, the deviations ΔSE also converge to a finite maximum value. Second, despite the growing
nature ofΔSE in Fig. 15b, themaximum deviation is marginal already for n = 2 (ΔSE = 0.0057%). It is crucial
to emphasize that due to the lack of a reference solution, ΔSE in Eq. (38) expresses only a relative difference
between the two approximate solutions uQTD and uIBR. AlthoughΔSE may increase for higher values of k, the
error compared to the real solution (see eE in Sect. 6) is not increasing and generally, both uQTD and uIBR are
more accurate when a higher refinement level k is used. In terms of efficiency of the compression, a significant
compression ratio λ could be obtained requiring only 25.75% of the integration points in its converged state
(red curves in Fig. 15b). However, the time savings during the numerical integration are reduced by the time
investment for performing the compression, and therefore, the saving in computation time τ (purple curves in
Fig. 15b) cannot reach the same rates as λ. In the current example for n = 2, this means about 10% time saving
during the computation of the element matrices. While τ can be even more significant, i.e., even smaller when
more integration points are used [38], such settings are not required for low-order polygonal shape functions,
as also concluded at the end of the previous numerical example.

8 Conclusion

Following the poly-FCM approach proposed by Duczek and Gabbert [36] and the fundamental concept of
polygonal elements based on generalized barycentric coordinates [27,28], the enhanced numerical integration
scheme based on compressed quadtree-decompositions introduced by Petö et al. [38] was investigated in
the context of unfitted polygonal meshes. The straightforward implementation of this novel approach for
polygonal meshes was clearly demonstrated and the resulting integral formulations over the compressed
local integration mesh were discussed both for local and global sub-divisions of polygonal elements. Since
the compression procedure leads to a decreased integration point density for integrating discontinuous non-
polynomial functions, the effect of the compression on the integration qualitywas investigated, with a particular
focus on the rational shape functions proposed by Wachspress. The influence of the compression on the
integration quality was clearly detectable on the element level based on a local definition of the shape functions
and a local decomposition of the polygonal element. On the contrary, for globally defined shape functions and
partitioning schemes, the area approximation and the computation of the stiffness matrix are written in a
much simpler form, for which the compression resulted basically in no errors. When embedded into an entire
simulation of a linear elasticity problem, the compression had a negligible effect on the quality of the results,
while requiring 26–55% of the original integration points. In conclusion, the compression is compatible
with unfitted polygonal meshes with piece-wise rational integrands and it is able to achieve similar results
as described in Ref. [38] in the context of the standard FCM with Cartesian meshes and polynomial shape
functions. However, the lack of proper high-order polygonal shape functions constitutes a significant limitation,
bothwith respect to the achievable convergence rates and the exploitation of the full potential of the compressed
QTD-based integration scheme.
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