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Abstract
How spiking activity reverberates through neuronal networks, how evoked and spontaneous activity interacts and blends,
and how the combined activities represent external stimulation are pivotal questions in neuroscience. We simulated minimal
models of unstructured spiking networks in silico, asking whether and how gentle external stimulation might be subsequently
reflected in spontaneous activity fluctuations. Consistent with earlier findings in silico and in vitro, we observe a privileged
subpopulation of ‘pioneer neurons’ that, by their firing order, reliably encode previous external stimulation. We also confirm
that pioneer neurons are ‘sensitive’ in that they are recruited by small fluctuations of population activity. We show that
order-based representations rely on a ‘chain’ of pioneer neurons with different degrees of sensitivity and thus constitute an
emergent property of collective dynamics. The forming of such representations is greatly favoured by a broadly heterogeneous
connection topology—a broad ‘middle class’ in degree of connectedness. In conclusion, we offer a minimal model for the
representational role of pioneer neurons, as observed experimentally in vitro. In addition, we show that broadly heterogeneous
connectivity enhances the representational capacity of unstructured networks.

Keywords Spiking networks · Neural code · Neural representation · Neural dynamics · Synchronization events · Leader
neurons · Pioneer neurons · Motifs · Heterogeneous random connectivity

Author summary

Simultaneous recordings of spiking activity from many neu-
rons sometimes reveal subsets of privileged neurons that
spike in a stereotypical order. Such repeating ‘motifs’ are
expressed both by cortical networks in vivo and by cul-
tured networks of cortical neurons in vitro, but neither their
origin nor their function (if any) are understood. Here, we
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reproduce the dynamical features and representational capac-
ity observed in vitro, with simulations of highly detailed,
biologically plausible networks. Network connectivity was
unstructured (random) and ‘broadly heterogeneous’, in that
numbers of incoming and outgoing connections differed
widely (and independently) between neurons. With this con-
nectivity, numerous neurons were poised just below spiking
threshold and retained full synaptic resources, thus being
sensitive to one part, and influential on another part, of the
network. During rising activity, these neurons funnel activity
‘many-to-one-to-many’, spiking in orderly sequences. Many
different sequences can form, depending on the context of
network activity at initiation. This explains both the emer-
gence of repeating ‘motifs’ during periods of rising activity
and the capacity of such ‘motifs’ to reliably and compactly
represent gentle external inputs. We conclude that spiking
‘motifs’ in privileged neurons can emerge robustly and be
highly informative, given sufficiently heterogeneous connec-
tivity.
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1 Introduction

An important question in theoretical neuroscience is how
externally evoked activity interacts with the spontaneous
activity reverberating through neural networks. Closely
related questions are how network topology shapes this inter-
action (touching on structure–function relationships) and
how the blending of evoked and spontaneous activity rep-
resents external stimulation (touching on the ‘neural code’)
(Rieke 2008; Decharms and Zador 2000; Thorpe et al. 2001;
Ponulak and Kasinski 2011).

We address these issues by simulating in silico spiking
neural networks (SNNs) with synaptic depression and differ-
ent types of unstructured (random) connectivity. Although
representing a drastic oversimplification of cortical net-
works in vivo, randomly connected SNNs have contributed
considerably to our understanding of neural function (Shep-
herd 2003). They provide generic models for experimentally
observed dynamics of cortical activity associated with phe-
nomena such as short-term memory, attentional biasing, or
decision-making (Rolls 2008; Rolls andDeco 2010). In addi-
tion, SNNs deepen our understanding of such phenomena
because their activity dynamics can often be described ana-
lytically in terms of mean-field theory (Feng 2003; Gerstner
et al. 2014).

Randomly connected SNNs have long been studied exper-
imentally by harvesting, dissociating, and culturing mature
cortical neurons in vitro on the substrate of multi-electrode
arrays (MEA), so that a small fraction of spiking activity
may be monitored (O(0.1%) of all neurons) (Morin et al.
2005; Marom and Shahaf 2002). The spontaneous activity of
in vitro networks exhibits intrinsic fluctuations of all sizes,
ranging from long quiescent spells to sudden synchronization
events (‘network spikes’, NSs). Depending on the balance of
excitation and inhibition, in vitro networks may operate near,
below, or above a regime of self-organized criticality (SOC),
where fluctuations are distributed in a scale-freemanner (Bak
et al. 1988; Jensen 1998; Beggs and Plenz 2003; Pasquale
et al. 2008; Gigante et al. 2015). However, many experimen-
tal studies have elected to focus on a super-critical regime,
in which periods of comparatively small activity fluctuations
alternate with all-encompassing synchronization events.

Several recent studies have investigated the gradual build-
up of activity immediately prior to synchronization events
(NS), as this build-up exhibits interesting features with pos-
sible functional implications. Firstly, the growing activity
propagates on reproducible paths, triggering a particular
sequence of spikes in a certain subset of neurons (pioneer
neurons) (Eytan and Marom 2006; Rolston et al. 2007). Sec-
ondly, the recruitment order of pioneer neurons is informative
about prior perturbations by external stimulation (Shahaf
et al. 2008). Specifically, when external stimulation is deliv-
ered to alternative sites, the stimulated site may be reliably

decoded from the recruitment order of pioneer neurons (Ker-
many et al. 2010). Thirdly, the information encoded in the
gradual build-up of activity may be propagated to other net-
works. For example, the stimulated site in an upstream in
vitro network, which sparsely projects to a downstream in
vitro network, may be reliably decoded from the activity of
the latter network (Levy et al. 2012). Taken together, these
observations raise the intriguing possibility that evenunstruc-
tured neural networks express an order-based representation,
encoding past external stimulation in the activity of a privi-
leged class of pioneer neurons.

Repeating ‘motifs’ in the sequence of neuronal recruit-
ment have been reported also in vivo in sensory cortex
(Luczak et al. 2007; Luczak and Barthó 2012; Luczak and
MacLean 2012), in prefrontal and parietal cortex (Peyrache
et al. 2010; Rajan et al. 2016), and in hippocampus (Mat-
sumoto et al. 2013; Stark et al. 2015). As the same ‘motifs’
appear in spontaneous and evoked activities, they are con-
sidered an emergent property of local circuits (Luczak and
MacLean 2012; Rajan et al. 2016). The possible functional
significance of reproducible spike ordering, for example in
the formation of memory patterns, is an active topic of
research (Contreras et al. 2013; Stark et al. 2015; Rajan et al.
2016).

Numerous theoretical studies have investigated the col-
lective spiking dynamics of unstructured networks (Tsodyks
et al. 2000; Brunel 2000; Loebel and Tsodyks 2002; Wiede-
mann and Lüthi 2003; Persi et al. 2004a, b; Vladimirski
et al. 2008; Gritsun et al. 2008, 2010, 2011; Zbinden
2011; Masquelier and Deco 2013; Luccioli et al. 2014;
Gigante et al. 2015). Typically, these studies have com-
bined leaky integrate-and-fire neurons (Tuckwell 2005) with
depleting ‘resources of excitability’, such as spike frequency
adaptation (Koch 1999) or frequency-dependent synapses
(Tsodyks et al. 1998). Different types of collective dynam-
ics may be obtained (synchronous, asynchronous, critical,
supra-critical, etc.), depending on balance of excitatory and
inhibitory resources and the dynamics of resource depletion
(Poil et al. 2012). Several studies have focused on the supra-
critical regime characterized by large synchronization events
(Tsodyks et al. 2000; Loebel and Tsodyks 2002;Wiedemann
and Lüthi 2003; Vladimirski et al. 2008; Luccioli et al. 2014;
Masquelier and Deco 2013; Gigante et al. 2015). Interest-
ingly, even excitable systems that do not expressly incor-
porate depleting resources may produce ‘extreme’ activity
events [(e.g. networks of FitzHugh–Nagumo units, Ansmann
et al. (2013)].

The emergence of pioneer neurons was first predicted by
Tsodyks et al. (2000). Ensuring heterogeneity by provid-
ing for different (effective) firing thresholds, these authors
described a subpopulation of neurons that fires reliably dur-
ing the build-up towards a synchronization event. Extending
these results, pioneers with intermediate firing thresholds
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were shown to be critical for the generation of synchro-
nization events (Vladimirski et al. 2008). More detailed
investigations suggested that pioneers tend to combine low
firing thresholds with unusually dense outgoing connectivity
(Zbinden 2011). The formation of highly connected ‘leader’
neurons could be favoured by activity-dependent plasticity
(Effenberger et al. 2015). In summary, previous work estab-
lished pioneers as ‘a critical subpopulation of intermediate
excitability that conveys synaptic drive from active to silent
cells’ (Vladimirski et al. 2008).

The primary focus of the present work lies on the repre-
sentational capacity of pioneer neurons and on the interaction
between spontaneous activity dynamics and weak exter-
nal stimulation. Specifically, we investigated the conditions
under which unstructured networks express pioneer neurons
that form an order-based representation of prior stimulation.
Another difference to previous studies is that we compare the
effect of different types of random connectivities on pioneer
neurons and their representational capacity. In particular, we
consider ‘homogeneous random’ (Erdös–Rényi) connectiv-
ity, ‘scale-free’ connectivity (Barabási and Albert 1999), and
introduce a novel type of ‘heterogeneous random’ connec-
tivity.

We show that the gradual build-up of activity towards a
synchronization event proceeds in a reproducible manner,
recruiting identifiable pioneer neurons in a particular order,
consistent with experimental findings (Eytan and Marom
2006). We also show that this recruitment order is highly
informative about the location of prior external stimulation,
again consistent with experimental findings (Shahaf et al.
2008; Kermany et al. 2010). Additionally, we show that
the formation of order-based representations is favoured by
broadly heterogeneous connectivity, with a broad ‘middle
class’ in terms of connectedness.

2 Results

We begin by describing macroscopic dynamics of networks
of spiking neurons and synapses with short-term plasticity,
focusing on spontaneous fluctuations of activity and on the
effect of gentle external stimulation (Sect. 2.1). Next, we
characterize pioneer neurons in terms of their sensitivity to,
and influence on, activity fluctuations and in terms of their
contribution to network amplification (Sect. 2.2). We then
compare the representation of gentle external stimulation
by different aspects of population activity, including by pio-
neer neurons (Sect. 2.3). We then go on to show empirically
that some types of random connectivity express the macro-
scopic and microscopic activity regimes in question more
robustly and reliably than other types (Sect. 2.4). Finally, we
investigate the reasons why broadly heterogeneous connec-

tion topologies favour order-based representations bypioneer
neurons (Sect. 2.5).

2.1 Macroscopic behaviour

We studied networks of leaky integrate-and-fire neurons
with different kinds of random connectivities. Excitatory and
inhibitory synapses were conductance-based with short-term
depression and facilitation (Tsodyks et al. 1998). Networks
were small and comprised 400 excitatory and 100 inhibitory
neurons (see Sects. 4, 4.1, 4.1.1, 4.1.2).

This section describes spontaneous activity and activity
evoked by gentle external stimulation. Following previous
studies (Gigante et al. 2015; Tsodyks et al. 2000; Masque-
lier and Deco 2013; Loebel and Tsodyks 2002; Vladimirski
et al. 2008;Wiedemann andLüthi 2003; Luccioli et al. 2014),
we focused on network architectures that combine low aver-
age activity with bimodal activity fluctuations (‘all-or-none’
synchronization events). Many interesting and instructive
analyses can be anchored on the synchronization events
expressed in this super-critical dynamical regime.

To understand qualitative differences between connection
topologies, we consider three types of random connectivity:
homogeneous random networks of Erdös–Rényi type, scale-
free networks with explicit hubs, and a novel type of ‘broadly
heterogeneous’ networks without explicit hubs (see Sects. 4,
4.1, 4.1.3). For all network types, mean connection density
was 20%.

2.1.1 Spontaneous activity

Representative periods of spontaneous activity are illustrated
in Fig. 1a, b. The generally low level of activity is briefly
interrupted by spontaneous synchronization events (network
spikes, NSs), which recruit nearly all excitatory neurons at
least once. Network spikes occur at somewhat irregular inter-
vals (coefficient of variation cv ≈ 0.6) and with frequencies
O(1Hz) (due to a suitable balance between excitation and
inhibition, see Sect. 4). Although the network is determin-
istic, sparse connectivity ensures (apart from NS) irregular
and asynchronous activity in many neurons (Brunel 2000;
Mattia and Del Giudice 2002). The average power spec-
tral density of individual neuron firing (apart from NS) is
shown in Fig. 1c and resembles the power spectrum of Pois-
son spikes with a refractory period (which here corresponds
to excised periods of NS) (Spiridon and Gerstner 1999).
As random connectivity entails some non-uniformity in all
three network types, the power spectral densities of individ-
ual neurons are quite diverse (Pena et al. 2018), with some
neurons firing more frequently and regularly (albeit at dif-
ferent rates) and others firing more rarely and irregularly.
Finite-size fluctuations of population activity (Brunel 2000;
Mattia and Del Giudice 2002) induce pairwise correlations
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between individual neuron spikes (apart from NS), which on
average are moderate for homogeneous and scale-free net-
works (ρhom = 0.29 ± 0.21, ρsf = 0.18 ± 0.18) and weak
for heterogeneous networks (ρhet = 0.01 ± 0.013).

A telling characteristic of spontaneous population activ-
ity is the size distribution of positive fluctuations (Fig. 2a).
Following earlier studies, we investigated networks with
bimodally distributed fluctuations, where larger fluctuations
constitutedNSanddistinctly smaller fluctuations represented
the intervening periods. This bimodal dynamics allowed NS
to be identified unambiguously. In heterogeneous random
networks, larger and smaller fluctuations were separated
less widely than in other network types. Rates of excita-
tory neuron spikes and NS were comparable (2.1 ± 3.0Hz
and 1.7 ± 3.1Hz, respectively). In homogeneous random
and scale-free networks, NSs were considerably larger, with
many neurons contributing multiple spikes to each NS.
Accordingly, the rate of neuron spikes (1.0 ± 1.5Hz and
1.2 ± 1.1Hz, respectively) was several times larger than the
rate ofNS (0.4±1.6Hz and 0.2±1.1Hz). In all three network
types, inhibitory neurons fired continuously at 30 ± 1Hz.

2.1.2 Evoked activity

A representative combination of spontaneous and evoked
activities is shown in Fig. 3a. External stimulation was deliv-
ered by forcing simultaneous spikes in a small number of
excitatory neurons (see Sects. 4, 4.5). As the effectiveness of
stimulation varied considerably with the number and identity
of target neurons, we simulated multiple (O(101)) network
realizations to ensure representative results. To keep evoked
and spontaneous NS as comparable as possible, we opted for
a comparatively ‘gentle’ stimulation targeting a small set of
neurons (O(101)).

To classifyNS as ‘evoked’ or ‘spontaneous’, we compared
the times of stimulation to the times of preceding and suc-
ceeding NS (Gigante et al. 2014). Helpfully, when intervals
to the succeeding NS (‘time to the next NS’) were plotted
against intervals from the preceding NS (‘time since last
NS’), two distinct clusters emerged (Fig. 3b, red dots), which
was not the case for surrogate events (black dots). NS clas-
sified as ‘evoked’ clustered on the lower right (below blue
band, long after the previous NS and shortly after stimula-
tion), whereas NS classified as ‘spontaneous’ clustered on
top (above blue band, long after stimulation). Presumably,
this clustering arose because even unsuccessful stimulation
consumed some synaptic resources, delaying subsequent
spontaneous NS.

2.2 Pioneer neurons

We now turn to microscopic activity of individual neu-
rons, especially pioneer neurons. Although all network types

express pioneer neurons, heterogeneous networks produce
them in far greater number (see Sect. 2.4). Accordingly, pio-
neer neurons are most easily characterized in heterogeneous
networks. For this reason, all simulations in this and the fol-
lowing section are based on heterogeneous networks.

Due to random variations of connectivity, excitatory neu-
rons fire with consistently different mean rates. The least
active neurons never discharge, many neurons fire one spike
per NS, and the most active neurons fire several spikes per
NS. In most neurons, nearly all spikes are associated with
NS and very few spikes occur during intervening periods.
Due to this close association with NS, one may identify the
‘first spike’ of a particular neuron within a particular NS, at
least for all but the most active neurons. This is illustrated
in Fig. 2b, which shows a raster of individual neuron spikes,
relative to peak activity of the next NS. Individual neuron
spikes are sorted vertically by mean firing rate (sorted neu-
ron ID). Note that the resulting spike raster is reminiscent of
the letter ‘π ’. The ‘left leg’ comprises spikes shortly before
(and thus associated with) the next NS. The ‘right leg’ com-
prises spikes long before the next NS and thus presumably
associated with the last NS. For all but the most active neu-
rons, the two ‘legs’ are distinct, so that ‘first spikes’ can be
identified without ambiguity (rightmost spikes in ‘left leg’).

The first-spike latency of individual neurons, relative to
the nearest NS, is illustrated in Fig. 4a. It is evident that
firing latency decreases systematically with mean activity.
The least active neurons consistently fire after NS (positive
latencies, ID 6 to 55). Neurons with intermediate activity
(55 < ID < 260) consistently fire with the NS (near-zero
latencies). (The ordering of these neurons is effectively ran-
dom, as they exhibit exactly identical levels of activity.)More
active neurons (260 < ID < 320) fire consistently before the
NS (negative latencies). The most active neurons (320 < ID)
fire at all times (both positive and negative latencies).

Accordingly, we tentatively identify ‘pioneers’ as neurons
with a consistently negative spike latency relative to NS, in
other words, with a standard deviation of latency smaller
than the mean negative latency. Specifically, ‘consistency’
of latency can be defined as mean negative latency 〈−τ 〉
divided by standard deviation of latency std(τ ):

1/CV(τ ) = 〈−τ 〉/std(τ ). (1)

In networks with heterogeneous connectivity, neurons with
sorted IDs from approximately 260 to approximately 320
tend to have 1/CV(τ ) � 1 (Fig. 4a). This provisional cri-
terion will suffice for heterogeneous networks. For the final
two sections, where we will compare networks with different
connectivities, we will redefine ‘pioneers’ in more general
terms (see Sect. 2.4).

Why should firing latency growmore negative with higher
mean activity? A simple explanation is differential ‘sensitiv-
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Fig. 1 Spontaneous activity. a
Spike rasters of excitatory
neurons for the three network
types (representative examples)
with NS (red stars). b
Corresponding spike counts (bin
width 100ms) with NS (dashed
red lines). c Power spectral
densities of single neuron
activity between NS, compared
to Poisson spikes with the same
average rate (black lines). The
omission of NS periods is
reflected in reduced power at
low frequencies (colour figure
online)
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Fig. 2 Bimodality of activity and relation of individual spikes to nearest
NS. a Histogram of peak activation values during spontaneous activity
fluctuations (100 s simulations). Relative activity in multiples of mean
firing rate Amean (from left: 1.20Hz, 0.99Hz, and 1.43Hz, respec-
tively). b Individual neuron spikes, relative to the next NS, during
100 s of spontaneous activity. Excitatory neurons are sorted vertically
by mean firing rate (sorted neuron ID), with the least active neuron at

bottom and the most active neuron on top. Individual neuron spikes are
represented by black dots. Formost neurons, spikes fall into two distinct
classes: shortly before or long before the next NS (left and right columns
of black dots, respectively). A heuristic latency criterion (t0 = −80ms,
red lines) readily distinguishes these classes. Thus, the ‘first spike dur-
ing a NS’ is well defined (i.e. rightmost dots in left column), for all but
the most active neurons (colour figure online)

ity’, that is, different probabilities that small fluctuations of
population activity evoke a spike. More ‘sensitive’ neurons
would be recruited more frequently and thus show higher
mean activity. By the same token, more ‘sensitive’ neurons
would be recruited earlier by the rising activity preceding a
NS. Accordingly, the observed link between firing latency
and mean activity is consistent with differential ‘sensitivity’.

To test this hypothesis, we established in simulations the
individual distribution of membrane potential V for each

excitatory neuron, during intervals without NS (absolute
latency |τ | > 35ms). For convenience, we illustrate the
results for a hypothetical potential V �, which is identical
to V except in that it is never reset (and thus avoids discon-
tinuities at threshold). As expected, the distribution of the �

potential shifted systematically with mean activity (Fig. 4b).
In the range of pioneers (260 < ID < 320), the mean value
〈V �〉 was just about one standard deviation below thresh-
old voltage Vth. Below this range, 〈V �〉 was consistently and
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Fig. 3 Evoked activity. a Superposition of spontaneous and evoked
activities (example sequence). External stimulation forced simultaneous
spikes in 5 randomly chosen excitatory neurons, at random time points
(Poisson rate 0.4Hz), here marked by dashed red lines. Stimulation that
succeeded (failed) to evoke a NS is marked by ‘+’ (‘−’). Spontaneous
NSs are denoted by ‘�’. bClassification of evoked and spontaneous NS.
For each stimulation event, time to the next NS is plotted against time
since last NS (red dots). For comparison, a null distribution is shown
for an identical number of randomly timed, surrogate events (black
dots). Stimulation events (red dots) form two distinct clusters (above
and below blue bar), permitting us to classify stimulation events with
high probability as either successful (below) or unsuccessful (above). In
contrast, surrogate events are distributed continuously. Based on 120 s
simulation of a heterogeneous random network, with stimulation rate
equal to spontaneous NS rate (colour figure online)

well below threshold Vϑ , and above this range, 〈V �〉 is con-
sistently and well above threshold.

The ‘sensitivity’ of neurons with 〈V �〉 < Vϑ may be
quantified in terms of the standard deviation of star volt-
age, std(V �), relative to distance between its mean, 〈V �〉 and
threshold Vϑ

CV(V �) = std(V �)/[Vϑ − 〈
V �

〉]. (2)

This measure will prove useful further below (see Sect. 2.5).
To further clarify the relation between individual neuron

spikes and fluctuations of population activity, we computed
the average population activity Γi (τ ) preceding a single neu-
ron spike, over and above mean population activity (see
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(sorted neuron ID). Red shading marks the pioneer range (ID 260 to
320). a Latency of individual neuron first spikes, relative to the asso-
ciated NS. Zero latency (yellow line) is defined by peak activity of
the associated NS. Neurons in the pioneer range fire reliably before the
NS (negative latencies). Colour scale indicates fraction ofmaximal den-
sity. bDistribution of V � voltage in individual neurons, during intervals
without NS, relative to firing threshold (horizontal red line). Neurons in
the pioneer range havemembrane potential just below threshold. Colour
scale indicates fraction of maximal density. c Average deviation Γi(τ )

of population activity at lag τ , conditioned on individual spikes of neu-
ron i (see text and Sect. 4). Spikes of neurons in the pioneer range are
consistently preceded by positive deviations. Note that deviation Γi(τ )

is not defined below ID 260 (colour figure online)

Sect. 4, Fig. 4c). To avoid contamination by NS, the anal-
ysis was based exclusively on periods between NS (1000 s
simulation). The results revealed that spikes of the earliest
pioneers (280 < ID < 320) were preceded by positive
deviations of population activity (amplitude ∼ 1.5Hz, range
−60 · · · − 40ms), or in other words, by ∼ 30 additional
excitatory spikes over a ∼ 20ms period.

Pioneers may be not just sensitive to, but also influential
on, population activity. To assess the potential influence of
pioneers on population activity, we established the synap-
tic effectiveness over all efferent projections. As a first step,
we computed the probability density of recovered synaptic
resources for the efferent projections of each excitatory neu-
ron, during intervals without NS (absolute latency |τ | >

35ms, Fig. 5a). Unsurprisingly, synaptic resources proved
to be more depleted in more active neurons. However, pio-
neers, which rarely fire between NS, retained at least 75 %
of their synaptic resources. As a second step, we assessed
the post-synaptic impact of a neuron by computing the aver-
age post-synaptic potential elicited by single spikes (Fig. 5b)
and by repeated (Poisson) spikes (Fig. 5c) of the neuron in
question (see Sect. 4, Spike-triggered population activity).
Additionally, we also show (Fig. 5d, e) the summed effect
on the post-synaptic potential of a single spike. The addi-
tional variability reflects the heterogeneity of connectivity
(in- and out-degree). Neither analysis suggested that pioneer
neurons are uniquely influential. However, the analysis did
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Fig. 5 Influence of excitatory neurons. Red shading marks the pioneer
range (ID 260 to 320). a Probability density of synaptic resources R,
average over all efferent synapses of a given neuron, during intervals
betweenNS.Resources decreasemonotonicallywithmean activity. The
most active neurons to retain substantial resources are neurons in the
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show pioneer neurons to be the most active and sensitive
neurons that also retain substantial synaptic resources and
therefore emit influential single spikes. In neurons that are
even more active, the influence of single spikes is smaller,
even though the combined influence of all spikes is larger.

Following (Zbinden 2011), we tried to relate the ‘influ-
ence’ of individual pioneer spikes on subsequent population
activity and the number of efferent projections of the neuron
in question. Although pioneers exhibited widely different
influences, we found no straightforward relation to imme-
diate connectivity (e.g. in terms of a standard definition of
in-degree, out-degree, or ‘hubs’). In our hands, pioneer neu-
rons exhibit intermediate degrees of both afferent and efferent
connectivities (and certainly are not ‘hubs’ in the sense of
(Wills and Meyer 2019)) (see also Fig. 12). Apparently, the
‘influence’ of pioneers depends on non-local connectivity
spanning multiple sequential connections, both direct and
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with different spontaneous NS rates (dashed lines). NSs cease when
neurons in the pioneer range are silenced. Typically, NSs are recovered
when neurons above this range are silenced (e.g. blue trace). b Silencing
pioneer neurons elevates threshold for triggering NS. Threshold pop-
ulation activity (in Hz), after silencing neurons N ≤ ID ≤ N + 30.
Two realizations are shown (blue and green traces). Over much of the
pioneer range, only a lower bound for the threshold could be established
(dashed traces), because even the largest observed fluctuations failed to
trigger a NS (colour figure online)

indirect. This non-local connectivity is a network property
and not straightforward to quantify.

In a further attempt to assess ‘influentialness’, we selec-
tively silenceddifferent groupsof excitatoryneurons (Tsodyks
et al. 2000). Remarkably, silencing early pioneers (290 ≤
ID ≤ 320) eliminated large synchronization events (> 14.5
times mean activity), leaving only far smaller activity fluc-
tuations (< 5.0 times mean activity) (Fig. 6a). Silencing
either less active neurons (ID < 290) or more active neu-
rons (360 < ID) did not have this drastic effect. Evidently,
pioneers were uniquely influential in terms of initiating
large synchronization events. Interestingly, this cannot be
attributed to disproportionate post-synaptic impact. As men-
tioned, pioneers were not exceptional when post-synaptic
impact of Poisson firing was compared (Fig. 5c, d). Note,
however, that such steady-statemeasures are unlikely to fully
capture the ‘runaway’ dynamics of NS initiation.

To assess the possibility of differential contributions to the
dynamics of NS initiation, we estimated thresholds for NS
initiation in partially silenced networks (see Sect. 4). To this
end, we established the bimodal distribution of peak activ-
ities during fluctuations of spontaneous activity (compare
Fig. 2b), which reveals a low range of smaller fluctuations
and a high range of full-blown NS. Threshold was defined
as the largest observed value in the low range. Silencing a
group of neurons reduces effective connectivity and recur-
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rent amplification, which is expected to elevate threshold for
NS initiation. If all neurons contribute similarly to amplifica-
tion, silencing any group would elevate thresholds similarly.
If some neurons contribute more than others, silencing some
groups would elevate threshold differentially. The observed
effect of silencing different groups of neurons is shown in
Fig. 6b. Clearly, the threshold of NS initiation was elevated
disproportionately by silencing pioneer neurons. Over much
of the pioneer range, the threshold was elevated to ‘ceiling’,
in the sense that even the largest observed activity fluctua-
tions failed to trigger a NS.

We conclude that pioneers are exceptional in combining
high ‘sensitivity’ to fluctuations of activity and in contribut-
ing prominently to network amplification. High ‘sensitivity’
is a consequence of the membrane potential hovering just
below threshold, and large ‘influence’ is partially a conse-
quence of largely recovered synaptic resources. However,
the disproportionate contribution of pioneer neurons to the
‘runaway’ dynamics ofNS initiation does not appear to be the
result of any single neuron property (such as connectedness).
This issue will be revisited in Sect. 2.5.

2.3 Order-based representation

This section compares the representation of external stim-
ulation by different aspects of neuronal activity associated
with synchronization events (NS). Following (Kermany et al.
2010), we consider two spike-based and two rate-based
encoding schemes by a set of n neurons (see Sects. 4, 4.5).
The spike-based schemes are, firstly, the times t1, . . . tn of
the first spike of each neuron following stimulation (‘spike
times’) and, secondly, the rank order o1, . . . on of the first
spike of each neuron following stimulation (‘spike order’).
The rate-based schemes are, thirdly, the mean spike rate
c1, . . . cn of each neuron during the 100ms following stimu-
lation (‘neuronal rates’) and, fourthly, the temporal profile of
the combined spike rate r1, . . . , r50 of all n neurons during
50 successive time bins of 2ms duration following stimu-
lation (‘temporal rates’). For simplicity, we consider only
stimulation attempts that were successful in eliciting a NS.
The average activity following successful and unsuccessful
stimulation is illustrated in Supplementary Figure.

External stimulation was delivered to k = 5 groups of
excitatory neurons, each comprising s = 10 neurons cho-
sen randomly. We refer to each group of target neurons as
a ‘stimulation site’, although of course there is no spatial
location in our simulated networks. Stimulation was deliv-
ered at random sites and random times reflecting a Poisson
process (compare Fig. 3a). Stimulation rate was set at 1Hz,
in order to obtain more evoked than spontaneous NS. Four
heterogeneous networks were simulated over a duration of
300 s. The classification of stimulation sites was non-trivial,
because only synaptically mediated activity was analysed.

The enforced spikes which constituted the stimulation were
disregarded.

To assess the quality of representation by different groups
of neurons, we established classification performance sepa-
rately for non-overlapping groups of n = 10 activity-sorted
neurons (sorted ID [1, . . . , n], [n + 1, . . . , 2n], [2n +
1, . . . , 3n], and so on); see Fig. 7. Classification perfor-
mance was far better for the two spike-based schemes (‘spike
time’ and ‘spike order’) than for the two rate-based schemes
(‘neuronal rates’ and ‘temporal rates’). Interestingly, clas-
sification performance peaked when decoding was based
(in part) on pioneer neurons. Performance of the rate-based
scheme barely exceeded chance.

Interpolating between rate-based and spike-based decod-
ing schemes, we divided the activity to be decoded (n = 10
neurons over 100ms) into k time bins to obtain a rate vector
of length n k. Performance in decoding stimulation site on
the basis of this vector peaked at k = 20 bins and for sets
of neurons in the pioneer range (Fig. 8), demonstrating that
decoding performance hinges on sufficient time resolution.
In principle, performance is expected to stabilize for even
higher resolutions (larger k). The diminishing performance
for k = 40 and k = 100 is an artefact due to incomplete
convergence of the classifier.

The exceptional representational capacity of pioneer neu-
rons became even more evident when the similarity of two
‘spike orders’ o1, . . . on and o′

1, . . . o
′
n was quantified. To this

end, we modified the ‘Levenshtein edit distance’ (Leven-
shtein 1966) and measured ‘spike order similarity’ (SOS) by
means of ameasure based on permutations (see Sect. 4). Note
that SOS may be computed for any pair of NS, spontaneous
or evoked. Sorting all observed NS by class (‘spontaneous’,
‘evoked at site 1’, ‘evoked at site 2’, and so on), the results
were collected into the average similarity matrices shown
in Fig. 9a–d. To assess the representational capacity of pio-
neers, we computed such matrices from the SOS of both
pioneers and non-pioneers. Non-pioneers were chosen ran-
domly from the range [60, 260] and pioneers from the range
[260, 320]). For non-pioneers, SOS was high for all pairs
of NS, spontaneous or evoked (Fig. 9a, b), as these neurons
spiked consistently and over a broad range of latencies (com-
pare Fig. 4). In contrast, the SOS of pioneers was generally
high for NS evoked at the same site and low for NS evoked
at different sites (Fig. 9c, d). Clearly, pioneers were excep-
tional in that their ‘spike order’ was both unusually variable
and unusually informative about stimulation site.

To corroborate these observations and to comprehensively
compare all groups of excitatory neurons, we established the
distribution of spike order similarity (SOS), both within and
between classes of NS. As before, NS classes are understood
to be ‘spontaneous’, ‘evoked at site 1’, ‘evoked at site 2’, and
so on. Given two distributions of SOS values, with means
μ1,2 and standard deviations σ1,2, we expressed their ‘dis-
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Fig. 7 Classification performance of different decoding schemes, based
on different groups of neurons. Red shading marks the pioneer range
(ID 260 to 320). Results for ‘spike time’, ‘spike order’, ‘neuronal rates’,
and ‘temporal rates’ are shown separately. Percentage of correct classi-

fication α(N ) of one of the five stimulated locations is shown, based on
the activity of neurons with sorted ID [N , N+10]. Chance performance
is 20% (colour figure online)

tance’ in terms of the z-score, z = |μ2 − μ1|/(σ1 + σ2).
The results are shown in Fig. 9e, f, for the two experiments
with k = 5 and k = 12 stimulation sites, respectively. In
both experiments, the difference between ‘within-class’ and
‘between-class’ distributions was most pronounced when
SOSwas computed for pioneers (ID260 to 320). This demon-
strates conclusively that the ‘spike order’ of pioneers was
more informative about stimulation site than that of any other
group of excitatory neurons.

The above results hold for networks with heterogeneous
random connectivity. In analogous in silico experiments with
homogeneous or scale-free networks, we encountered no
significant representational capacity. Stimulation sites could
not be decoded by either spike-based or rate-based encod-
ing schemes, from either pioneer neurons or other groups
of excitatory neurons. Although all network types expressed
pioneer neurons, as defined by spike latency, only the pio-
neer neurons of heterogeneous networks appeared to form an
order-based representation. To better understand the reasons
why order-based representations are favoured by hetero-
geneous connectivity, we investigated and compared the
macroscopic and microscopic dynamics of all three network
types in more detail.

2.4 Role of connection topology

To investigate the influence of connection topology on the
macroscopic and microscopic activity described above, we
simulated O(104) random networks with homogeneous, het-
erogeneous, and scale-free connectivity. Specifically, we
systematically varied both absolute strength and relative
strength of excitatory and inhibitory connectivity, choos-
ing range of variation such that the desired macroscopic
behaviour (all-or-none synchronization events) was covered
in all three cases.

The combined effects of excitatory and inhibitory connec-
tion strength on macroscopic network activity are illustrated
in Fig. 10. Strength of excitation and inhibition is expressed
by multiplicative factors rE and rI, respectively, relative to
the connection strengths in a prototypical network. In other
words, the four average connection strengths ωee, ωie , ωei,
and ωii, varied as ωee = rE ω̄ee, ωie = rE ω̄ie , ωei = rI ω̄ei,
and ωii = rI ω̄ii, where ω̄ee, ω̄ie , ω̄ei, and ω̄ii are the con-
nectivities of a (suitably chosen) prototypical network. Note
that this two-parameter variation of connectivity suffices to
cover all relevant dynamical regimes (Gigante et al. 2015).

Macroscopic activity was characterized in terms of the
average interval between consecutive NS, TINSI, the coef-
ficient of variation of this interval, CVINSI, and the ratio
between maximal activity and mean activity, Amax/Amean.
The latter quantity is a convenient proxy for all-or-none
synchronization events, as its value increases with the size
and decreases with the frequency of such events. A value
larger than thirty, Amax/Amean � 30, was taken to indicate
pronounced synchronization events (‘all-or-none’ NS). The
values of TINSI and CVINSI were obtained directly from the
sequence of detected activity peaks (threshold θ = 0.5Amax,
see Sect. 4).

As shown in Fig. 10, all three types of connectivity exhibit
a transitional regime (marked by blue dashed curves) for
a certain balance of excitation and inhibition (‘E/I ratio’).
In this transitional regime, synchronization events are infre-
quent (maximal TINSI) and occur at irregular intervals (large
CVINSI), and maximal activity far exceeds mean activity
(large Amax/Amean). These features resemble the experimen-
tally observed activity of in vitro networks (Eytan andMarom
2006; Shahaf et al. 2008; Kermany et al. 2010).

Above the transition, dominant inhibition creates an ‘asyn-
chronous’ regime, inwhich synchronization events are small,
infrequent, and irregular (small Amax/Amean, due to small
Amax). Below the transition, dominant excitation creates a
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Fig. 8 Interpolation between rate-based and spike-based decoding. The
activity of groups of n = 10 neurons over 100ms was analysed in k
time bins, forming a rate vector of length k · n. Decoding performance
is shown for different groups of neurons and different bin sizes

‘tonic’ regime, in which synchronization events are large,
frequent, and regular (small Amax/Amean again, but now due
to large Amean).

To investigate the transitional regionmore closely,we sim-
ulated networks of all three types of connectivity at selected
values, (rE, rI), of relative connection strength (red dots in
Fig. 10c). For each (rE, rI) value pair and network type,
we established the fraction of pioneer neurons (Fig. 11a).
This fraction was consistently and significantly higher in
heterogeneous networks than in homogeneous or scale-free
networks. On average, this fraction was 22% in heteroge-
neous networks, but only 11% and 9% in homogeneous and
scale-free networks, respectively.
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Fig. 9 Matrices of average ‘spike order similarity’ (SOS) during dif-
ferent NS. Observed NSs were classified as ‘spontaneous’ (S), ‘evoked
at site 1’ (E1), ‘evoked at site 2’ (E2), and so on, and class boundaries
between sorted NS are marked by red lines. a–d Representative sets of
non-pioneer or pioneer neurons, average SOS of pairs of NS (fraction of
maximal similarity, colour scale) a Non-pioneer SOS, five stimulation
sites (k = 5 and n = 10). b Non-pioneer SOS, twelve stimulation sites
(k = 12 and n = 30). c Pioneer SOS, five stimulation sites (k = 5 and
n = 10). d Pioneer SOS, twelve stimulation sites (k = 12 and n = 30).
e, f Distance between SOS distributions (mean and standard deviation
of z-score), within-class and between-class, for sets of neurons with
contiguous ID starting with N ∈ {1, . . . 393}. e Five stimulation sites
and sets of ten neurons (k = 5 and n = 10, contiguous ID in range
[N , N + n − 1]). f Twelve stimulation sites and sets of thirty neurons
(k = 5 and n = 10, contiguous ID in range [N , N + n]) (colour figure
online)

Here, we defined pioneer neurons in terms of a combined
‘consistency of latency’ criterion CV(τ ) < 0.64 and ‘sen-
sitivity’ criterion |CV(V �)| > 0.64. This definition applies
equally to all network types and agreed almost perfectly with
our previous definition of pioneers (sorted ID from 260 to
320) in the case heterogeneous networks (see Fig. 13b). The
additional ‘sensitivity’ criterion served to exclude neurons
which fire ‘consistently’ around the peak of the NS.

Macroscopic dynamics differed not only between network
types but even between different realizations of the same
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type, due to the randomness of connectivity. Figure 11b
illustrates values (rE, rI) for which a majority of realiza-
tions produced NS. It is evident that heterogeneous networks
expressed NS over a broader range of (rE, rI) values than
homogeneous or scale-free networks.

Furthermore, different topologies expressed highly dis-
parate dynamics for identical (rE, rI) values. For example,
NS rates differed up to fivefold between topologies. Figure
11c illustrates the ratios of NS rates observed in all ordered
topology pairs that expressed NS at identical (rE, rI) values.

In conclusion, all three types of connectivity expressed
the dynamical regimes that are typical for excitatory–
inhibitory networks (Gigante et al. 2015): (i) a transition
region of balanced excitation/inhibition, with large synchro-
nization events occurring infrequently and irregularly, (ii)
an inhibition-dominated ‘asynchronous’ regime, with small
synchronization events occurring infrequently and irregu-
larly, and (iii) an excitation-dominated ‘tonic’ regime, large
activity fluctuations arising frequently and regularly. How-
ever, there also were important quantitative differences.
Firstly, heterogeneous networks featured a broader transi-
tional region of (rE, rI) values, in which large synchroniza-
tion events are expressed (Fig. 11b). Secondly, heterogeneous
networks comprised a larger fraction of pioneer neurons
(≈ 20%) than homogeneous or scale-free networks (≈ 10%)
(Fig. 11a). Apparently, heterogeneous connectivity stabi-
lizes both macroscopic and microscopic features of activity
dynamics.

2.5 Connection topology and order-based
representation

The previous section investigated networks with identical
connection strengths but rather dissimilar dynamics. As a
complementary approach, we also investigated networks
with similar macroscopic dynamics expressed by different
connection strengths. Specifically, we chose excitatory and
inhibitory connection strengths such as to ensure compara-
ble rates of spontaneous activity (ν ≈ 1Hz/neuron) and
network spikes (NSs) (νNS ≈ 0.6Hz) from all topologies
(seeMethods).Heterogeneous networks require significantly
weaker excitation (ωee,0 = 1.0 nS) than homogeneous net-
works (ωee,0 = 1.15 nS) or scale-free networks (ωee,0 =
1.45 nS) to express similar macroscopic dynamics. Appar-
ently, heterogeneous networks amplify activity fluctuations
more effectively than other networks, so that smaller fluctu-
ations suffice to trigger NS initiation. The reasons for this
heightened sensitivity (amplification gain), and its relation
to order-based representations, will become clear below.

Our analysis focused on the self-reinforcing build-up of
activity immediately prior to synchronization events (NS),
particularly on the orderly and reproducible recruitment
of pioneer neurons during this build-up. Specifically, we

examined the differences between network topologies (het-
erogeneous, homogeneous, scale-free) at three levels of
description, proceeding from afferent connectivity to the dis-
tribution of membrane voltage and finally to the distribution
spike times (relative to NS).

We began by comparing the afferent connectivity of
individual neurons and different network topologies. The
number of excitatory and inhibitory inputs (‘excitatory in-
degree’ Dexc and ‘inhibitory in-degree’ Dinh) differed not
only between neurons but also between topologies, as shown
in Fig. 12a, b. Unsurprisingly, afferent connectivities were
distributed more broadly in heterogeneous networks. The
positions of neurons in the pioneer range (ranked ID 260
to 320) are marked for one representative heterogeneous net-
work (red circles, Fig. 12a, b). Asmentioned in Sect. 2.2, pio-
neers were not distinguished by exceptionally high degrees
of connectivity and therefore were not ‘hubs’ in the sense of
(Wills and Meyer 2019). If anything, pioneers were charac-
terized by above average values of the ‘effective afference
ratio’, ωee,0Dexc/Dinh (Fig. 12c).

The afferent connectivity of a neuron determined the
distribution of its membrane potential V or star voltage
V � (hypothetical membrane potential without spikes, estab-
lished during periods without NS). Although the distribution
of star voltage may depend on many factors, in our networks
the standard deviation of V � depended mainly on excitatory
inputs (‘excitatory in-degree’ Dexc), whereas the mean of V �

depended mainly on inhibitory inputs (‘inhibitory in-degree’
Dinh), as illustrated in Fig. 12d, e. These approximate depen-
dencies held for all network topologies (regression lines in
Fig. 12d, e).

As discussed in Sect. 2.2, the probability that an incre-
ment of population activity triggers a particular neuron spike
depended on the distribution P(V �), relative to firing thresh-
old Vϑ , of the neuron in question. Neuronal ‘sensitivity’ may
be quantified in terms of standard deviation of star voltage,
std(V �), relative to its mean distance to threshold Vϑ (Eq. 2).
Crucially, neuronal sensitivity was distributed differently in
networks of different topologies (Fig. 12f). In homogeneous
and scale-free networks, the bulk of the neuronal population
exhibited low sensitivity (CV ≈ 0.0 − 0.4) or intermedi-
ate sensitivity (CV ≈ 0.4 − 1.0), with only a small portion
exhibiting high sensitivity (CV � 1.0). In heterogeneous
networks, an even larger fraction exhibited low sensitivity
(CV ≈ 0.0−0.4), with a correspondingly smaller fraction of
intermediate sensitivity (CV ≈ 0.4 − 1.0), but with a com-
parable number of neurons of high sensitivity (CV � 1.0,
inset in Fig. 12f). In all networks, the most sensitive neurons
constituted the pioneers (symbols in Fig. 12f).

As illustrated in Fig. 13, spiking behaviour closely fol-
lowed sensitivity CV(V �). On the one hand, the mean
latencies increased systematically with sensitivity (Fig. 13a).
Although this held for all networks, the relation was most
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Fig. 10 Macroscopic dynamics,
excitation/inhibition strength,
and type of connectivity.
Dynamical characteristics of
synchronization events, for
different types of connectivity
and for different absolute and
relative strengths of excitation,
rE, and inhibition, rI. Blue,
dashed curves indicate the
transitional region which, for
each type of connectivity,
separates the
inhibition-dominated regime of
‘tonic’ dynamics from the
excitation-dominated regime
‘asynchronous’ dynamics (see
text). Red dots mark the (rE, rI)
value pairs further investigated
in Fig. 11. a Average interval
between NS, TINSI; b coefficient
of variation of interval, CVINSI;
c activity ratio, Amax/Amean
(colour figure online)
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Fig. 11 Macroscopic dynamics
at selected connection strengths:
rE and rI. Fraction of pioneer
neurons and NS rates in
networks with
rE ∈ {1.0, 1.4, 18} and
rI ∈ {0.8, 1.0, . . . , 1.6, 1.8} (red
dots in Fig. 10c). a Percentage
of pioneer neurons in networks
of different topologies, for
selected values (rE, rI) (see
text). b Consistent NS in
different network realizations.
Value pairs (rE, rI) that
produced NS in ≥ 50% of
realizations. c Disparity of NS
rates in networks with different
topologies, but identical values
of (rE, rI). Ratio of NS rates,
sorted by reference rate, for all
ordered topology pairs. For
example, at three identical value
pairs (rE, rI), NS rates fhom and
fhet could be established for
homogeneous and
heterogeneous networks. Ratios
fhet/ fhom are shown against
fhom (black circles) and ratios
fhom/ fhet against fhet (red
diamonds) (colour figure online)
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Fig. 12 Afferent connectivity and star voltage V � during periods
without NS, for different network topologies. Colours distinguish het-
erogeneous (red), homogeneous (blue), and scale-free topology (black).
Symbols mark pioneer neurons in a representative realization. a Dis-
tribution of afferent excitation, Dexc, averaged over multiple network
realizations. b Distribution of afferent inhibition, Dinh, averaged over
multiple network realizations. c Distribution of ‘effective afference

ratio’, ωee,0Dexc/Dinh, averaged over multiple network realizations. d
Dependence of the standard deviation of star voltage, std (V �) on Dexc.
Regression curves indicate proportionality std(V �) ≈ 2.1 × 107 V

S ·√
Dexc·ωee,0. eDependenceofmean star voltage, 〈V �〉, on Dinh.Regres-

sion line indicates proportionality 〈V �〉 ≈ −0.12mV ·Dinh −48.3mV.
fDistribution of sensitivity, CV(V �), with right tail on logarithmic scale
(inset) (colour figure online)

pronounced in heterogeneous networks, where neurons with
a broad range of sensitivities spiked over a correspondingly
broad range of latencies. On the other hand, the consistency
of latencies also increased systematically with sensitivity
(Fig. 13b). This effect, too, was most pronounced in het-
erogeneous network. To summarize, we found that the most
sensitive neurons fire both at the earliest latencies and with
the highest degree of consistency.

The effect of the membrane potential distribution P(V �)

on the spike latency distribution P(τ ) was most apparent
in pioneer neurons of heterogeneous networks (red circles in
Fig. 13a, b). Crucially, pioneers did not form a compact group
clustered around particular values of sensitivity. Instead, pio-
neers were heterogeneous in that they were spread over a
broad range of (high) sensitivity CV(V �), over a correspond-
ingly broad range of negative spike latencies, 〈−τ 〉, but with
a uniformly high consistency of latency, 1/CV(τ ). In homo-
geneous and scale-free networks, the situation appeared
different in that the bulk of the neuronal population clus-
tered more narrowly with smaller mean latencies and lower
consistency of latencies.

Thus, the distinguishing characteristic of heterogeneous
networks appeared to be that neurons formed a continu-
ous ‘chain’, which ranged from the highest sensitivity (and
most negative, i.e. earliest, latency) to the lowest sensitiv-

ity (and latest latency). The neurons at the beginning of this
‘chain’ (highest sensitivity/earliest latency) also exhibited the
highest consistency of latency (highest 1/CV(τ )) and were
the pioneers defined earlier (red circles in Fig. 13a, b). In
other words, when a heterogeneous networks initiated NS,
a ‘chain’ of pioneer neurons was recruited in a consistent
rank order of decreasing latencies (from earliest to latest).
In contrast, when other networks (homogeneous, scale-free)
initiate NS, neurons were recruited less consistently and over
a narrower range of latencies.

The above analysis showed a continuous ‘chain’ of neu-
rons over all levels sensitivity in heterogeneous networks, but
not in homogeneous or scale-free networks. The existence of
this ‘chain of sensitivity’ explains both why pioneer neurons
in heterogeneous networks are recruited in a reproducible
rank order andwhy heterogeneous networks exhibited higher
sensitivity (amplification gain) than other networks.

We conclude by highlighting a final emergent property
of heterogeneous networks, namely the comparatively slow
initiation of NS. As evident from Fig. 13a, the time course
of NS initiation extended over approximately 40ms in het-
erogeneous networks, compared to approximately 20ms in
homogeneous or scale-free networks. The comparatively
slow initiation could have been due to a combination of fac-
tors, including the ‘chain of sensitivity’ andweaker excitation
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sensitivity CV(V �) during periods without NS. b Comparison of con-
sistency of latency 1/CV(τ ) and sensitivity CV(V �). The sensitivity
consistency criterion (dashed lines) for pioneers and the sorted ID cri-
terion largely overlap (discrepancies are marked by red circles). c, d
Isolated effects of network topology (for identical time course of popu-
lation activity). Corresponding comparisons of latency, consistency, and
sensitivity when an identical, rigid time course of population activity is
prescribed for all network topologies (colour figure online)

ωee,0. To verify that the ‘chain of sensitivity’ was a cause
(and not a consequence) of slow initiation, we compared
the microscopic dynamics of spike latencies in different net-
work types for identical slow time courses of NS initiation.
Specifically, we artificially prescribed a slow time course of
population activity and predicted the resulting distributions
of spike latencies, p(τ ), with a simplified theory (see Sect. 4,
toy theory for spike latencies). This revealed how connection
topology ‘distorted’ the prescribed population time course.

The results are shown in Fig. 13c, d. The differential
effects of connectivity, obtained with a rigid time course,
agreed qualitatively with those observed for the native time
course of each network type (Fig. 13a, b). In spite of the
slow time course, neurons in homogeneous and scale-free
networks expressed a narrower range of latencies (Fig. 13c),
and a narrower range of consistency of latency (Fig. 13d),
than neurons in heterogeneous networks. Thus, the charac-
teristics of a continuous ‘chain’—from the highest to the
lowest sensitivities and earliest to latest latencies, with the
earliest latencies being also the most consistent—were less
pronounced in homogeneous and scale-free networks, even

when a slow time course was imposed. We conclude that
the ‘chain of sensitivity’, which neurons formed in heteroge-
neous networks, is not exclusively a consequence of slower
NS initiation. Instead, this ‘chain’ is presumably a con-
tributing cause of slower NS initiation, together with weaker
excitation. A more complete theory, which could more fully
elucidate the consequences of network topology, remains a
task for future work.

3 Discussion

Over the past decade, compelling evidence has come to light
that even unstructured networks of cortical neurons in vitro
are capable of encoding and propagating information about
past external stimulation (Eytan and Marom 2006; Shahaf
et al. 2008; Kermany et al. 2010; Levy et al. 2012). Specifi-
cally, such networks appear to encode information in terms
of the ordering of individual spikes from a privileged group
of neurons, termed pioneer neurons. If even unstructured,
in vitro networks—which, in contrast to structured cortical
networks in vivo, have not been shaped by either neural
development, sensory inputs, or reinforcement learning—
possess such representational capabilities, this may have
considerable implications for our general understanding of
neural function. For cortical neuronal networks, in vivomight
well subserve their individual functions roles by exploit-
ing, extending, or customizing such intrinsic representational
capabilities.Machine learning applications such as ‘reservoir
computing’ further underline the functional possibilities of
unstructured, recurrent networks, at least in combinationwith
suitable decoding schemes (Maass et al. 2002; Jaeger and
Haas 2004; Lukosevicius and Jaeger 2009).

Here, we show that the representational capabilities of
unstructured networks observed in vitro emerge robustly
under minimal assumptions. Firstly, we show that a network
of excitatory and inhibitory spiking neurons with frequency-
dependent synapses robustly expresses pioneer neurons,
provided only that degree of connectivity varies broadly
across the network. Secondly, we show that pioneer neurons
reliably represent the site of prior external stimulation, in that
the order of individual spikes depends characteristically on
stimulation site. The same is not true for any other cohort
of excitatory neurons. In a forthcoming publication, we will
report additionally that sparse projections from ‘upstream’ to
‘downstream’ networks can efficiently propagate the infor-
mation encoded by pioneer neurons (Bauermeister et al.
2015).

Several previous studies have thematized the emergence
of pioneer neurons in unstructured networks (Tsodyks et al.
2000; Vladimirski et al. 2008; Zbinden 2011). In these stud-
ies, heterogeneity among excitatory neurons was obtained
by means of variable (effective) firing thresholds, whereas
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connectivity remained homogeneously random (i.e. Erdös–
Rényi type). Sorting excitatory neurons by average activity,
Tsodyks and colleagues (Tsodyks et al. 2000) showed that
a cohesive cohort of neurons with intermediate activity fires
reliably in advance of large synchronization events (‘network
spikes’, NSs). The same authors suspected these pioneer neu-
rons to operate close to firing threshold and showed that the
de-afferentiation of pioneer neurons reduces the rate of NS
disproportionately. Vladimirski and colleagues (Vladimirski
et al. 2008) analysed the effect of heterogeneous firing thresh-
olds with a mean-field description of collective dynamics,
confirming the importance of neurons with intermediate
activity and demonstrating that heterogeneity ensures com-
parable dynamical instability in different network realiza-
tions. Finally, Zbinden (Zbinden 2011) sought to differentiate
between neurons of intermediate activity in terms of affer-
ent and efferent connectivity, reporting that influence on NS
grows with the number of efferent projections.

Operationally, ‘pioneer neurons’ are defined as neurons
that fire consistently during NS initiation (Fig. 4). Pio-
neer neurons are highly consequential for the macroscopic
network dynamics (Tsodyks et al. 2000) and form a ‘a crit-
ical subpopulation of intermediate excitability that conveys
synaptic drive from active to silent cells’ (Vladimirski et al.
2008). Our results confirm that pioneers enhance a network’s
ability to amplify spontaneous fluctuations of population
activity. When pioneers (but not other excitatory neurons)
are silenced, the threshold for evoking NS is elevated dra-
matically, essentially eliminating NS from the spontaneous
dynamics [(Tsodyks et al. 2000) and Fig. 6]. When con-
nection topologies are compared that comprise pioneers in
smaller or larger numbers, weaker excitatory coupling suf-
fices for similar macroscopic dynamics when pioneers are
numerous than when they are few (Sect. 2.5).

The distinguishing features of pioneer neurons are not
readily apparent. Pioneers exhibit intermediate overall activ-
ity well as intermediate degrees of both afferent and efferent
connectivities (Fig. 12). Thus, contrary to (Zbinden 2011),
pioneers are not ‘hubs’ in any sense of the term (Wills and
Meyer 2019).

The membrane potential of pioneers hovers just below
firing threshold (Figs. 4b, 12e)with comparatively small vari-
ance (Fig. 12d). As a result, pioneers are sensitive to positive
fluctuations of population activity (Fig. 4c). The degree of
‘sensitivity’ may be inferred from the time of spiking (neg-
ative latency) before a subsequent NS and grows with the
coefficient of variation of the membrane potential (Fig. 13a).
Importantly, pioneers spikes are not merely early but also
highly consistent (smallest standard deviation of latency, see
Fig. 13b).

The dynamical importance of pioneer neurons cannot be
fully understood in terms of single neuron properties. To
gain a fuller understanding, we compared pioneer neurons

in the context of different connection topologies. Specifi-
cally, we considered two (opposite) extreme cases and one
intermediate case of connectivity. In the intermediate case,
different degrees of connectivity (from zero to maximum)
were equally numerous in the network (‘heterogeneous
random’ connectivity). In one extreme case, all neurons
exhibited the same (average) degree of connectivity (‘homo-
geneous random’ or Erdös–Rényi connectivity). In the other
extremecase, a small number of neurons exhibited exception-
ally high connectivity, while the majority had below average
connectivity (‘scale-free’ connectivity (Barabási and Albert
1999)).

All investigated connectivities generated network spikes
(NSs) at certain ratios of excitation and inhibition, as well
as a cohort of moderately active neurons firing consistently
prior toNS (Figs. 10, 11). In quantitative terms, however, het-
erogeneous networks stood apart from the others: NSs were
expressed at lower ratios of excitation to inhibition (Fig. 10c),
indicating higher network sensitivity/amplification gain, and
pioneer neuronswere expressed numerously and consistently
over a wider range of excitation and inhibition (Fig. 11a, b).
In short, the macroscopic and microscopic phenomenology
(i.e. NS and pioneers) was more reproducible over different
levels of excitation/inhibition and over random realizations
of connectivity.

Motivated by experimental evidence from unstructured
networks in vitro (Kermany et al. 2010), we investigated
the representational capacity of pioneer neurons. In hetero-
geneous random networks, the ordering of pioneer spikes
during NS initiation was highly context-dependent: order-
ing was largely random before spontaneous NS, but turned
more stereotypical before NS evoked by external stimula-
tion (Fig. 9c, d). Moreover, stereotypical spike ordering was
characteristic for each of several alternative stimulation sites,
reliably identifying the stimulation site (Fig. 7). Other mea-
sures of population activity, such as the average activity
profile of individual neurons (‘neuronal rates’) or the tem-
poral profile of population activity (‘temporal rates’), were
largely uninformative.

Surprisingly, spike ordering during NS initiation revealed
a clear-cut difference between pioneer and non-pioneer
neurons. Apart from pioneers, no other cohort of excita-
tory neurons showed any context dependence in their spike
order. Instead, the recruitment order of other neuron cohorts
remained highly stereotypical during NS initiation, whether
‘spontaneous’ or ‘evoked’ (Figs. 7, 9a, b).

In networks with homogeneous or scale-free connectivity,
where pioneers are less numerous, no context dependence of
pioneer recruitment could be observed. However, the com-
parison is awkward because different connectivities produce
highly dissimilar macroscopic dynamics for given (aver-
age) connection strengths (Fig. 11c). To compare networks
with similar macroscopic dynamics, we suitably adjusted
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excitatory connection strength, choosing less excitation for
heterogeneous than for homogeneous and for scale-free con-
nectivity (Figs. 12, 13).

This more careful comparison revealed that pioneers in
heterogeneous networks did not constitute a uniform group,
but rather formed a continuous ‘chain’ of neurons with dif-
ferent sensitivities (as measured by CV(V �), Fig. 13a). The
beginning of this chain was formed by the neurons with high-
est sensitivity and earliest latency and its continuation by
neuronswith progressively lower sensitivity and later latency.
Importantly, firing latencies were highly consistent along
much of this chain (as measured by 1/CV(τ ), Fig. 13b). The
combination or early latency and high consistency explained
why the ‘chain’ of pioneer neurons was recruited in a con-
sistent rank order of decreasing latencies (from earliest to
latest) during NS initiation (see below).

In homogeneous and scale-free networks, neuron proper-
ties weremore uniform and themajority of neurons occupied
a comparatively narrow range of both sensitivity and spike
latency (Fig. 13a). Moreover, firing latencies were substan-
tially less consistent (Fig. 13b). Taken together, this explained
why pioneer neurons in other networks were not recruited in
a consistent rank order.

Thus, representational capacity and context-dependent
recruitment order are emergent properties of collective
dynamics and a consequence of the ‘chain of sensitivity’
formed by pioneer neurons in heterogeneous networks. This
‘chain of sensitivity’ also explains why heterogeneous con-
nectivity exhibits higher network sensitivity (amplification
gain) than others, so that comparable macroscopic dynamics
is obtained with weaker excitation.

A schematic summary of our conclusion is illustrated in
Fig. 14. The key point is that pioneer neurons propagate
activity ‘many-to-one-to-many’. Many spikes are needed to
elicit a single pioneer spike (e.g. approximately 30 additional
spikes in the excitatory population precede each pioneer
spike, Fig. 4c), which in turn elicits many subsequent spikes.
As both afferent and efferent connectivities are partial and
random, a pioneer may be sensitive to one subpopulation
and may convey activity to an independent subpopulation
(Fig. 14a). This ‘many-to-one-to-many’ propagation is effec-
tive only in a shortwindowof time, before population activity
has risen too high. During this window, pioneer spikes recruit
subpopulations, which would in turn recruit other pioneer
spikes, and so on, in a largely orderly sequence prescribed
by afferent and efferent connectivity (Fig. 14b, c). In the
absence of external stimulation, random fluctuations deter-
mine the initiation point of this orderly sequence, scrambling
the recruitment order. In contrast, external stimulation pre-
scribes a specific initiation point and produces a reproducible
sequence which is informative about the stimulation site.

Note also that other excitatory neurons (non-pioneers) are
less sensitive and recruited only when population activity is

a

b c

Fig. 14 Many-to-one-to-many propagation of activity by pioneer neu-
rons (highly schematic). a Four pioneer neurons are illustrated (blue,
green, yellow, red), receiving afferent input from the left, and emit-
ting efferent output to the right. Vertical columns of neurons represent
the network as a whole. Afferent and efferent projections involve
independent and random subpopulations of the network. b External
stimulation (red bolt) of a specific subpopulation propagates, via a par-
ticular pioneer, to another subpopulation, starting an orderly sequence
(green → blue → red → yellow). c External stimulation of another
subpopulation propagates via another pioneer, starting another orderly
sequence (red → yellow → green → blue) (colour figure online)

already higher and a NS is well underway (Fig. 4a, b). At this
point, any information about NS initiation has been washed
out by surging excitation. This explains why the majority
of excitatory neurons spike with deterministic latencies, but
carry little or no information about the site of external stim-
ulation.

In conclusion, we have presented a minimal model for
the representational capacity of a privileged class of neurons
in unstructured networks, which provide a highly efficient
order-based representation of external inputs. We term this
model ‘minimal’ because it assumes only broadly hetero-
geneous connectivity in addition to standard neuron and
synapse models (integrate-and-fire neurons and frequency-
dependent conductance synapses). Thus, our results com-
plement the results of other studies, which introduced het-
erogeneity by other means, for example inhomogeneous
or dynamic background currents, or inhomogeneous or
dynamic firing thresholds (Persi et al. 2004b; Gritsun et al.
2011; Masquelier and Deco 2013; Gigante et al. 2015;
Rajan et al. 2016). Cortical networks in vivo presumably
incorporate multiple kinds of heterogeneity, both in terms
of connectivity (Landau et al. 2016) and in terms of rest-
ing potential or firing threshold (Harrison et al. 2015).
Frequency-dependent synapses were necessary for obtain-
ing for the supra-critical dynamics (i.e. large synchronization
events) which is characteristic for in vitro networks (Eytan
and Marom 2006; Shahaf et al. 2008; Kermany et al. 2010).
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Extending these results to the subcritical dynamics of in vivo
networks presents an interesting challenge for future work
(Priesemann et al. 2014).

We believe that our findings offer a deeper understand-
ing of both the mechanisms underlying, and the possible
functional significance of, repeating ‘motifs’ in the sequence
of neuronal recruitment, as experimentally observed both in
vitro (Eytan and Marom 2006; Rolston et al. 2007; Shahaf
et al. 2008; Kermany et al. 2010) and in vivo in sensory
cortex (Luczak et al. 2007; Luczak and Barthó 2012; Luczak
andMacLean 2012), prefrontal and parietal cortex (Peyrache
et al. 2010; Rajan et al. 2016), and in hippocampus (Mat-
sumoto et al. 2013; Stark et al. 2015). We show how such
repeating ‘motifs’ can result from a local interaction of cel-
lular and synaptic conductances, as hypothesized by several
authors (Luczak and MacLean 2012; Rajan et al. 2016), and
demonstrate their potential functional significance as a highly
compact and efficient representation of previous external
inputs (Contreras et al. 2013; Stark et al. 2015; Rajan et al.
2016).

4 Methods

4.1 Network design and parameters

We simulated the collective activity of assemblies of 400
excitatory and 100 inhibitory neurons (leaky integrate-and-
fire, LIF) (Tuckwell 2005), connected randomly by means of
conductance synapses with short-term dynamics (Tsodyks
et al. 1998). Spontaneous activity was evoked by a uniform
and constant background current injected into all neurons. As
neuronmodels were identical, the only source of heterogene-
ity was the connectivity (20 % mean density). Three types
of connectivity were investigated: ‘homogeneous random’
(Erdös–Rényi), ‘scale-free’ (Barabási and Albert 1999), and
‘heterogeneous random’.

A neural simulator was programmed in C and verified
against existing simulators, as well as by reproducing the
results of (Tsodyks et al. 2000). Time was discretized in
steps of 0.5ms, and numerical integration was performed
with the first-order exponential integration method. To com-
pute power spectra, smaller integration steps of 0.1ms were
used. To ensure representative results, we investigated multi-
ple realizations of every network architecture (typicallymore
than 10). Each type of connectivity expressed generally con-
sistent behaviour, although event rates and average activity
levels varied between realizations.

4.1.1 Neurons

The time-dependent membrane voltage V was governed by
the differential equation

dV

dt
(t) = EL − V (t)

τm
+ Rm Ib

τm
+ Rm Isyn(t)

τm
, (3)

where EL is the leak reversal potential, τm is the mem-
brane time constant, Rm is the membrane resistance, Ib is
the background current, and Isyn is the synaptic current; see
below.Whenever the voltage reached the threshold Vϑ , it was
reset immediately to Vres, where it remained for a refractory
period τref . The parameters of the neuron model were as
follows: EL = −70mV; τm = 30ms for excitatory neu-
rons and τm = 10ms for inhibitory neurons; Rm = 40M¨
for excitatory neurons and Rm = 50M¨ for inhibitory neu-
rons; Ib = 525 pA for excitatory neurons and Ib = 420 pA
for inhibitory neurons; Vϑ = −50mV; Vres = −65mV;
τref = 3ms for excitatory neurons and τref = 2ms for
inhibitory neurons. Note that the background currents raise
the equilibrium potential over the threshold level, ensuring
spontaneous activity (with hypothetical rates νexc = 12 Hz
and νinh = 36 Hz in the absence of connectivity). Note fur-
ther that themodel is definedwithout noise. Initial membrane
voltageswere assigned randomly from the interval [Vres, Vϑ ].
To avoid onset artefacts, the initial two seconds of activity
were ignored.

4.1.2 Synapses

The synaptic state is described by four time-dependent vari-
ables (Tsodyks et al. 1998): the instantaneous fractions of
recovered, active, and inactive (synaptic) resources (R(t),
E(t), and I (t), respectively) and the fraction of resources
u(t) recruited by presynaptic spikes. These non-dimensional
variables satisfy the following equations:

dR

dt
(t) = I (t)

τrec
− u(t + ε)R(t − ε)ρ(t), (4)

dE

dt
(t) = − E(t)

τI
+ u(t + ε)R(t − ε)ρ(t), (5)

dI

dt
(t) = E(t)

τI
− I (t)

τrec
, (6)

R(t) + E(t) + I (t) = 1, (7)
du

dt
(t) = −u(t)

τfacil
+U (1 − u(t − ε))ρ(t), (8)

where ρ(t) := ∑
i δ(t−ti ) is the Dirac comb associatedwith

the spike train of the presynaptic neuron. The axonal conduc-
tion delay was uniform and 0.5ms. τrec is the recovery time
constant; τI is the inactivation time constant; τfacil is the facil-
itation time constant; and U is a parameter associated with
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resource utilization. Parameter values are as follows (sub-
script ‘ee’ stands for ‘excitatory-to-excitatory’, ‘ie’ stands
for ‘excitatory-to-inhibitory’, ‘ei’ stands for ‘inhibitory-to-
excitatory’, ‘ii’ stands for ‘inhibitory-to-inhibitory’): τI,ee =
τI,ie = 3ms and τI,ei = τI,ii = 10ms; the values for U ,
τrec, and τfacil were randomly chosen and hence varied from
synapse to synapse. Values were chosen from Gaussian dis-
tributions with mean Uee = Uei = 0.3; Uie = Uii = 0.04;
τrec,ee = τrec,ei = 0.8 s; τrec,ie = τrec,ii = 0.1 s; τfacil,ie =
τfacil,ii = 1 s. The standard deviation of each distribution was
half the respective mean. However, Gaussian distributions
were clipped and restricted to a physically possible range
( i.e. positive values for time constants and values between
zero and unity forU ). For ee- and ei synapses, τfacil was zero
(no facilitation).

The synaptic current Isyn,i of the i th neurons was

Isyn,i (t) = gexc,i (t)(Eexc − V (t)) + ginh,i (t)(Einh − V (t)),

(9)

where the reversal potentials were chosen as Eexc = 0 and
Einh = −70mV.The conductances gexc,i and ginh,i are given
by

gexc,i (t) =
∑

j exc

wi j Ei j (t) (10)

ginh,i (t) =
∑

j inh

wij Eij(t), (11)

where the sum is over all excitatory (inhibitory respectively)
neurons. wij is the matrix of synaptic weights, and Eij is the
(time-dependent) matrix of resources in the active state.

The assignment of neuron and synapse parameters was
modelled on (Tsodyks et al. 2000).

4.1.3 Connectivity matrix

In homogeneous random (Erdös–Rényi) networks, each
ordered neuron pair (i, j) formed a synaptic connection i →
j with 20 % probability. Over all neurons, the degree of con-
nectivity thus followed a Gaussian distribution. Scale-free
networks were obtained with the ‘preferential attachment’
procedure (Barabási andAlbert 1999), such that connectivity
followed a power-law distribution with a mean connectivity
of 20 %. Heterogeneous random networks were generated
as follows. Every neuron i was individually assigned four
random numbers, λpre,exc, λpost,exc, λpre,inh, and λpost,inh,
each drawn independently from the interval [0, δ], where
δ = 0.2 is the mean connection density. In a second step,
every ordered neuron pair i, j was individually assigned two
random numbers, ξ and η, drawn independently from [0, 1].
An excitatory projection j → i was established, if neuron

j was excitatory and ξ < λpre,exc. Similarly, an inhibitory
projection j → i was established, if j was inhibitory and
ξ < λpre,inh. Projections i → j were established if j was
excitatory and η < λpost,exc, or if j was inhibitory and
η < λpost,inh. This procedure resulted in a random graph
with mean connection density of 20 %. Heterogeneity arises
because each neuron exhibits an individual connection den-
sity, with independent out-degree and in-degree.

Established projections were assigned a synaptic weight
wij, each chosen randomly and independently froma (clipped)
Gaussian distribution with mean ω and standard deviation
ω/2 (clipping ensured wij > 0). Not established projec-
tions were assigned wij = 0. Mean values were chosen
such as to obtain spontaneous activity with pronounced syn-
chronization events (‘network spikes’, see below) at rates of
O(100 Hz). Specifically, we chose ωee,0 = 1150 pS, ωei,0 =
8500 pS, ωie,0 = 5 pS, and ωii,0 = 200 pS for homoge-
neous random networks; ωee,0 = 1450 pS, ωei,0 = 9500 pS,
ωie,0 = 5 pS, and ωii,0 = 200 pS for scale-free networks;
and ωee,0 = 1000 pS, ωei,0 = 8500 pS, ωie,0 = 5 pS, and
ωii,0 = 200 pS for heterogeneous random networks.

Almost all realizations of random connectivity resulted in
spontaneous network activity including large synchroniza-
tion events. Thiswas the case for≈ 90%of the homogeneous
random networks, ≈ 80 % of the scale-free networks, and
≈ 100 % of the heterogeneous random networks. In the
remaining realizations, spontaneous activity failed to ignite
network spikes (in an all-or-none fashion). The activity of our
three networks was asynchronous irregular as shown by the
high frequency limit of the respective power spectral densi-
ties of the unfiltered population activity (cf. Fig 1c) (Spiridon
and Gerstner 1999).

4.2 Power spectra and cross-correlation

For the computation of power spectra and cross-correlations,
we divided a long simulation (O(103) s, resolution 0.1 ms,
withNS removed) into bins of length T = 20 s, thus creating
an ensemble of ≈ 50 time traces. For computation of power
spectra of individual neurons,we computed the Fourier trans-
form

ρ̃i (ω) =
∫
dtρi (t) exp (iωt) (12)

of the spike trains of each neuron i , integrated over single
bins. The power spectrum Si ( f ) of the activity of the i th
excitatory neuron was then determined as

Si ( f ) =
〈|ρ̃i (2π f )|2〉

T
, (13)

where the average is taken over the ensemble of bins. This
was averaged over excitatory neurons to yield Fig. 1c.
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For the computation of cross-correlations, we determined
the normalized ‘scalar product’

Ci j (τ ) =
〈∫
dtρi (t)ρ j (t + τ)

〉

√〈∫
dtρ2

i (t)
〉
√〈∫

dtρ2
j (t)

〉 (14)

for each pair of distinct neurons i and j which discharge
at least once between NS. The integral is again over sin-
gle bins, and the average is over the ensemble of all bins.
Spike trains were regularized by square-shaped kernels with
awidth of 0.5 ms. Thenwe considered the ensemble of cross-
correlations Ci j (0) at lag τ = 0 for each pair of distinct
excitatory neurons which both discharge between NS. For
this ensemble, the mean and standard deviation were stated.

4.3 Histograms and densities

Histograms and densities were computed as follows. In
Figs. 1b and 2a, rectangular bins of, respectively, 50ms and 2
(relative activity) were used. In all other cases, densities were
estimated with Gaussian kernels. Kernel width and sampling
resolution for population activity (spike density) were 3ms
and 0.1ms, respectively. For latency distributions, the corre-
sponding values were 0.8ms and 0.1ms, with approximately
400 samples per kernel. For voltage distributions, they were
0.1mV and 10 ¯V, with 20, 000 samples. For the fraction of
recovered resources R, kernel width and voltage distribution
were 0.05 and 0.01, with O(104) samples.

Recovered resources Ri (t) of neuron i were averaged over
synapses i → j to Ni post-synaptic neurons j

Ri (t) =
∑

j R ji (t)

Ni
, (15)

where R ji (t) is recovered resources of synapse i → j at
time t . Densities pi (R) were established over all time points
excludingNS (i.e. time pointsmore than 35ms before or after
a NS).

Population activity is understood to be activity of the exci-
tatory subpopulation and is sometimes given as absolute
activity (in Hz) and sometimes as relative activity (i.e. in
units of the average activity level).

4.4 Network spikes, peak activities, and synchrony
thresholds

Network spikes (NSs) are large bursts of excitatory activity
separated by long periods of low activity. We defined NS
with respect to a high threshold (half the maximal activity):
θhigh = 0.5 · max[A(t)], where A(t) is excitatory activity
in Hz. Beginning and end [ti , t f ] of a NS were defined as
successive crossings of θhigh by A(t) from below and from

above. For each NS, we determined duration tNS = t f − ti
and peak activity Amax.

Note that this definition captures only large bursts of activ-
ity. Smaller fluctuations were detected with a lower threshold
θlow = 1.1·mean(A). The distribution of peak activities Amax

could bemonomodal or bimodal. Bimodal distributions indi-
cated ‘all-or-none’ synchronization events, consistent with a
super-critical regime (Gigante et al. 2015). Typically, prob-
ability density was divided between low values (< 10 times
mean activity) and high values (> 40 times mean activity),
with zero density in between.

The largest ‘low’ values constitute a lower bound for the
‘threshold’ of NS initiation, as any intermediate values must
have resulted in ‘runaway’ amplification to a ‘high’ value.
Specifically, we determined this ‘threshold’ as the largest
observed value of the lower concentration of probability
mass. In sufficiently long simulations, this empirical value
should provide a close lower bound for the ‘true’ threshold.

To characterize activity between NS, we exclude NS by
omitting 35ms of activity before and after peak activity. This
value reflects the shape of NS, which is highly stereotypical
(not shown).

4.5 Encoding of external stimulation

To assess the extent to which network activity encodes exter-
nal stimulation, we perturbed spontaneous network activity
in some simulations. External stimulation targeted particular
subsets of excitatory neurons (10 or 30 randomly selected
neurons) and forced a single spike in each target neuron.
Each subset of targets was considered a ‘stimulation site’
and up to 12 non-overlapping sites were used. Subsequent
network activity (i.e. 100ms of activity, exclusive of the
forced spikes) was characterized in terms of four features,
following (Kermany et al. 2010). Two features were based
on firing rates ai (t) of neurons i : temporal profile of pop-
ulation activity A(t) = ∑

i ai (t), and spatial profile of
population activity Ai = ∫

ai (t)dt . Two further features
were based on spiking activity of neurons i in the interval
between stimulation and the subsequent NS: timing of first
spikes ti , and rank order of first spikes oi . Rank order was
obtained by sorting negative spike latencies with respect to
the subsequent NS (for example, the negative latency vector
(−20ms,−10ms,−15ms,−17ms) would yield the rank
order vector (1, 4, 3, 2)).

To analyse the information encoded by different activity
features, simulations were divided into a training and a test
set. Following (Kermany et al. 2010), the training set was
used to train a support vector machine (SVM, from Python
library LIBSVM, module ‘sklearn’ (Chang and Lin 2011))
to classify the stimulated location on the basis a particular
feature. The test set was used to determine classification per-
formance (fraction of correct classifications of the stimulated
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site), providing a lower bound for the ‘true’ information about
stimulation site encoded by a particular activity feature.

4.6 Silencing of neurons

To assess the relative importance of different subsets of exci-
tatory neurons, we wished to render ineffective the members
of any particular subset. To do so, we retained the spikes
of such neurons but suppressed all post-synaptic effects. A
reduced frequency of NS in partially de-afferentiated net-
works revealed the relative importance of the manipulated
subset of neurons.

4.7 Spike-triggered average population activity

To assess the relation between population activity and indi-
vidual neuron spikes, we computed the ‘spike-triggered
deviation’ Γi (τ ) as follows

Γi (τ ) =
∫

(A(t) − 〈A〉) ρi (t − τ)dt
∫

ρi (t)dt
, (16)

where A(t) is time-dependent population activity, 〈A〉 is its
temporal mean, ρi (t) is the spike sequence (Dirac comb) of
neuron i , and τ is the latency between activity time t and
spike time t − τ . The computation was restricted to peri-
ods between NS and the normalization term

∫
ρi (t)dt is the

number of spikes fired by neuron i between NS. In principle,
Γi (τ )measures influence on (τ > 0), as well as sensitivity to
(τ < 0), population activity of neuron i . However, as many
neurons spike only shortly beforeNS,wemostly obtain infor-
mation about negative latencies, that is, about sensitivity to
population activity. For this reason, the spike-triggered devi-
ation in Fig. 4c is restricted to negative latencies. Moreover,
it is defined only for (sorted) neuron ID > 260, as less active
neurons never spike between NS.

4.8 Estimation of post-synaptic effects

Toestimate the differential effect of neuron i onpost-synaptic
neurons j throughout the network, we proceeded as follows.
For every synaptic target j , we formed the difference Wji ≡
V ′
j − Vj between the hypothetical star voltage V ′

j (t) that
would have resulted from a single additional spike of neuron
i at time tsp and the actual the star voltage Vj (t), which may
be approximated as

Wji(t) ≈ τIUwRm(Eexc − 〈
Vj

〉
)

(τm − τI)(1 +Uτrecνi )
Θ(t − tsp)

[
e−(t−tsp)/τm − e−(t−tsp)/τI

]
, (17)

where νi is the asynchronous firing rate of neuron i (between
NS),

〈
Vj

〉
is the expected star voltage of neuron j , and τI,U ,

w, and τrec are parameters of the synapse in question. Note
that we neglect conduction delays and assume the driving
force to be constant. The expression for Wji(t) peaks at time

tmax = τmτI

(τm − τI)
log

(
τm

τI

)
, (18)

so that the post-synaptic potential in neuron j that is triggered
by the additional spike in neuron i at time tsp is Wji(tmax).
The cumulative post-synaptic effect of all spikes in neuron i
is given by the stationary limit

〈
Wji

〉
ss = Rmw(Eexc − 〈

Vj
〉
)τIUνi

1 +Uτrecνi
, (19)

which is approximately equal to τm · νi · Wji(tmax).
In Fig 5b, c, the differential effects of neuron i are averaged

over all Ni post-synaptic neurons j

PSPi ≡ 1

Ni

∑

j

W ji (tmax), 〈PSPi 〉ss ≡ 1

Ni

∑

j

〈
Wji

〉
ss .

(20)

In Fig. 5d, e, the products PSPi · Ni and 〈PSPi 〉ss Ni are
plotted (summed effect).

4.9 Modification of Levenshtein edit distance

To quantify dissimilarity in the rank order or ‘first spikes’
observed in different contexts, we modified the Levenshtein
edit distance (Levenshtein 1966) used in previous studies
(Shahaf et al. 2008). The Levenshtein metric is useful for
strings with same and/or different ‘letters’; in the present
situation, all rank order strings contain the same ‘letters’
(because all neurons fire at least one spike and rare missing
spikes can be ‘filled in’ at the highest rank). Now consider
two strings s1s2 . . . sn and sπ(1)sπ(2) . . . sπ(n), where π is an
appropriately chosen permutation. Then the number of inver-
sions L , which is the number pairs (i, j) such that i < j
but π(i) > π( j), ranges from 0 (if strings are identical) to
L = n(n−1)

2 (if strings are inverted). Accordingly,we adopted

Ln =
(
1 − 2L

n(n − 1)

)
100% (21)

as normalized measure of similarity.
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4.10 Determination of the fraction of pioneer
neurons

We determined the number of pioneers at different points
in the excitation–inhibition landscape as follows (Fig. 11a).
Pioneers should have small CV (τ ) and large CV (V �). Con-
sequently, we adopted an operational criterion and counted
all neurons as pioneers which have CV (τ ) < 0.64 and
|CV (V �)| > 0.64. The choice of these two values approxi-
mately detected the neurons with sorted ID between 260 and
320 as the pioneers in the heterogeneous case (at relative
weights rE = rI = 1).

4.11 Toy theory for latency statistics

The comparison of latency statistics with the ones expected
from identical time course of population activity (Fig. 13c,
d) proceeded as follows. The idea was to obtain a simple
and qualitative prediction for latency distributions under the
assumption that the activity shape of NS and hence the ‘acti-
vation function’ of individual neurons are identical, so that a
first-order prediction for the characteristic deviation of laten-
cies is obtained.

To simplify as much as possible, we employed a ‘toy the-
ory’ in which themembrane voltage of all neurons undergoes
an identical, time-dependent translation u(t) along the volt-
age axis. Specifically, the distribution of � voltage changes
over time

p(t, V ) = 1√
2πσ 2

exp

(

− [V − 〈V 〉 − u(t)]2

2σ 2

)

, (22)

as prescribed by

u(t) = α exp

(

− t2

2σ 2
NS

)

. (23)

Here, σ is the standard deviation of the membrane star volt-
age, 〈V 〉 is the average level of the same quantity between
NS, andα = 0.56 mVandσNS = 23 msdetermine the shape
of the activation function u(t). The values were identical for
all topologies, but were chosen to approximate the compar-
atively slow time course of NS in heterogeneous networks.
Next, we approximate the firing statistics relative to NS by
the probability flux through threshold, if it is positive, and by
zero otherwise:

p(τ ) =
[
d

dτ

∫ ∞

Vϑ

p(τ, V )dV

]

+
, (24)

where [·]+ denotes half-wave rectification.The resulting sim-
ple theory reads

p(τ ) = N [μ̇(τ )]+ exp

(

− [Vϑ − 〈V 〉 − u(τ )]2

2σ 2

)

, (25)

where N is a normalization factor, and was used in order to
obtain simple predictions for the statistics of the latency of
individual neurons.
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