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Abstract
The amygdala is a central hub for fear learning assessed by Pavlovian fear conditioning. Indeed, the prevailing hypothesis that
learning and memory are mediated by changes in synaptic strength was shown most convincingly at thalamic and cortical
afferents to the lateral amygdala. The neurotrophin brain-derived neurotrophic factor (BDNF) is known to regulate synaptic
plasticity and memory formation in many areas of the mammalian brain including the amygdala, where BDNF signalling via
tropomyosin-related kinase B (TrkB) receptors is prominently involved in fear learning. This review updates the current under-
standing of BDNF/TrkB signalling in the amygdala related to fear learning and extinction. In addition, actions of proBDNF/
p75NTR and NGF/TrkA as well as NT-3/TrkC signalling in the amygdala are introduced.
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Abbreviations
7,8-DHF 7,8-Dihydroxyflavone
ACC Anterior cingulate cortex
BA Basal amygdala
BDNF Brain-derived neurotrophic factor
BLA Basolateral amygdala
CaMKIV Calcium/calmodulin-dependent kinase IV
CE Central amygdala
CEl Lateral central amygdala
CEm Medial central amygdala
CREB cAMP response element–binding protein
CS Conditioned stimulus
GABA Gamma-aminobutyric acid
LA Lateral amygdala
LTP Long-term potentiation
MAPK Mitogen-activated protein kinase
MGm Medial geniculate body
mPFC Medial prefrontal cortex
NT-3 Neurotrophin-3
NT-4/5 Neurotrophin-4/5

PC7 Proprotein convertase 7
PI-3 kinase Phosphatidylinositol-3 kinase
PIN Posterior intralaminar nucleus
PLCγ Phospholipase C gamma
PVT Paraventricular thalamic nucleus
SG Suprageniculate nucleus
Shc Specific adaptor protein
Ras Specific small GTPase
TrkA Tropomyosin-related kinase A
TrkB Tropomyosin-related kinase B
TrkC Tropomyosin-related kinase C
US Unconditioned stimulus

Introduction

The amygdala is a telencephalic group of diverse, intercon-
nected nuclei in the brain (Pitkanen et al. 1997; Knapska et al.
2007) that has been implicated in a wide variety of functions
like emotion, motivation, learning and memory (Aggleton
1993; LeDoux 2000; Seymour and Dolan 2008; Pape and
Pare 2010; Tye 2018). This region, located near the temporal
pole of the mammalian cerebral hemisphere, is generally di-
vided into several nuclei according to neuroanatomical and
cytoarchitectural characteristics (Swanson and Petrovich
1998; Pitkanen et al. 2000; Sah et al. 2003; LeDoux 2007).
Among these, the basolateral complex of the amygdala
(BLA), which includes the lateral (LA) and basal (BA) nuclei
and the central amygdala (CE), divided into the lateral (CEl)
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and medial (CEm) parts, are critically involved in learning and
memory of fearful events as assessed commonly by fear con-
ditioning. In this experimental model, an initially neutral con-
ditioned stimulus (CS), such as a light or tone, is contingently
paired with an innately aversive unconditioned stimulus (US),
routinely a foot-shock (Fendt and Fanselow 1999; Davis and
Whalen 2001; Maren 2001; Maren and Quirk 2004). After a
successful association between CS and US during the training
phase, the CS can provoke defensive responses like freezing
behaviour independently of the US (Rodrigues et al. 2004;
Johansen et al. 2011; Tovote et al. 2015; Izquierdo et al.
2016). The neural circuits underlying this form of Pavlovian
fear conditioning have been thoroughly investigated (Pape
and Pare 2010). According to the prevailing model, the
association about CS and US takes place in the LA, where
sensory information representing the CS or US, respectively,
converge (Sigurdsson et al. 2007). Indeed, damage or
functional inactivation of the LA impairs acquisition and
expression of fear responses to the CS (Gale et al. 2004;
Sigurdsson et al. 2007 and references therein). Subsequently,
activation of LA neurons upon CS presentation triggers fear
responses by recruitment of CE and its projections to the brain
stem and hypothalamus (Fendt and Fanselow 1999; Fanselow
and Poulos 2005; Davis and Whalen 2001; Maren 2005;
Sigurdsson et al. 2007). Beyond a role in relaying
information from LA to downstream effectors, the CE is
meanwhile considered as an integral site of plasticity and
integration for fear and reward learning (Pare et al. 2004;
Ehrlich et al. 2009; Duvarci and Pare 2014; Fadok et al.
2018; Tye 2018). Moreover, recent data demonstrate that fear
memory relies on a broadly distributed network, including
several brain regions, e.g., hippocampus, cortex and
periaqueductal grey (Balleine and Killcross 2006; Ehrlich
et al. 2009; Marek et al. 2013; Duvarci and Pare 2014;
Herry and Johansen 2014; Yu et al. 2017; Aschauer and
Rumpel 2018; Grössl et al. 2018; Headley et al. 2019;
Ressler and Maren 2019; Sun et al. 2020).

According to the cellular hypothesis of cued fear learning,
CS-US convergence induces associative plasticity in LA pro-
jection neurons, leading to enhanced cellular activity upon CS
presentation alone (Blair et al. 2001; Sigurdsson et al. 2007;
Sah et al. 2008; Pape and Pare 2010; Johansen et al. 2012;
Sears et al. 2014). Indeed, neural responses to the CS are
enhanced in the LA in vivo and in vitro after fear learning
(for review and references, see Schafe et al. 2001;
Sigurdsson et al. 2007; Sah et al. 2008; Johansen et al.
2012). In addition, induction of long-term potentiation
(LTP) as a cellular model for learning and memory, was de-
scribed after high-frequency stimulation of auditory
afferences to the LA in vivo and in vitro (Blair et al. 2001;
Sigurdsson et al. 2007; Sah et al. 2008; Johansen et al. 2012;
Sears et al. 2014). In fact, this LTP was occluded in slices
prepared from rodents after fear learning (Pape and Pare

2010; Hong et al. 2011; Meis et al. 2018 and references
therein). Furthermore, LTP and fear conditioning share nu-
merous molecular mechanisms (Rodrigues et al. 2004;
Johansen et al. 2011). Therefore, strong evidence corroborates
LTP as a cellular mechanism of fear learning in the amygdala
(Sigurdsson et al. 2007; Sah et al. 2008; Luchkina and
Bolshakov 2019), thus motivating detailed studies of the
physiology and pathophysiology of fear learning.

Distribution of BDNF/TrkB in the amygdala

Several neurotrophins and their cognate receptors have been
identified, with TrkA (tropomyosin-related kinase A) recep-
tors preferentially activated by NGF (nerve growth factor),
TrkB receptors activated by BDNF as well as NT-4/5
(neurotrophin-4/5) and TrkC receptors by NT-3
(neurotrophin-3) (Barbacid 1995; Edelmann et al. 2014).

While many findings regarding BDNF/TrkB signalling in
cellular aspects of learning were initially reported for hippo-
campal and cortical circuits, BDNF/TrkB pathways in the
amygdala emerged soon thereafter to be prominently involved
in fear learning (see below). TrkB receptor as well as BDNF
mRNA and protein were detected at moderate to high levels in
various amygdala subnuclei (Masana et al. 1993; Altar et al.
1994; Conner et al. 1997; Yan et al. 1997; Krause et al. 2008).
Besides BDNF, TrkB receptors can also be activated byNT-4/
5. Although expression of NT-4/5 has been reported in the
postnatal hippocampus, neocortex, cerebellum and thalamus
(Friedman et al. 1998), prominent expression of NT-4/5 in the
amygdala has thus far not been reported. Moreover, at vari-
ance with BDNF, NT-4/5 is spared from the regulated path-
way of secretion (Lessmann and Brigadski 2009). Therefore,
BDNF is considered the main ligand of TrkB receptors in the
rodent amygdala. This view is corroborated by the finding that
BDNF expression was increased in the amygdala after fear
conditioning, while NT-4/5 expression remained unchanged
(see below).

Sensory information representing the CS and US, respec-
tively, enters the LA from thalamic and cortical regions.
Thalamic projections to LA include the medial division of
the medial geniculate body (MGm), the posterior intralaminar
nucleus (PIN) and the suprageniculate nucleus (SG) (Farb and
LeDoux 1997). In addition, MGm and PIN represent areas of
acoustic and nociceptive convergence (LeDoux et al. 1987)
and may therefore also transmit somatosensory US input to
the LA (Pape and Pare 2010). These thalamic neurons exhibit
BDNF expression in their soma and fibres (Kawamoto et al.
1996; Conner et al. 1997; Furukawa et al. 1998). Furthermore,
auditory information about the CS is transferred to LA by the
temporal association cortex (Mascagni et al. 1993; Romanski
and LeDoux 1993; Shi and Cassell 1997; McDonald 1998),
which also shows substantial BDNF expression (Conner et al.
1997). US inputs to LA are less well described but may
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include various midline thalamic nuclei and the anterior cin-
gulate cortex (ACC) (Herry and Johansen 2014). In the cin-
gulate cortex, light to moderate BDNF immunoreactivity as
well as heavy staining for BDNF mRNA was detected
(Kawamoto et al. 1996; Conner et al. 1997; Furukawa et al.
1998). In addition, the pontine parabrachial nucleus and the
paraventricular thalamic nucleus were identified as a major
source of BDNF for the lateral nucleus of the central amygdala
(Conner et al. 1997; Penzo et al. 2015). Accordingly, histo-
chemical evidence supports a prominent role for BDNF/TrkB
signalling at pre- and postsynaptic sites within the amygdala.

Role of amygdala BDNF/TrkB signalling in cued fear
learning

Several lines of evidence reveal a substantial contribution of
BDNF/TrkB signalling in fear learning (as reviewed by
Rattiner et al. 2005; Cowansage et al. 2010; Musumeci and
Minichiello 2011; Andero et al. 2014; Ehrlich and Josselyn
2016). After cued fear conditioning, BDNF mRNA was tran-
siently elevated in the rodent BLA, while NGF, NT-4/5 and
NT3 expression remained unchanged (Rattiner et al. 2004a;
Jones et al. 2007). Specifically, a selective increase in BDNF
transcripts containing exons I and III was detected (Rattiner
et al. 2004b; Ou and Gean 2007). Upregulation of BDNF
expression after fear conditioning required calcium influx,
protein kinase A, calcium/calmodulin-dependent kinase IV
(CaMKIV) and cAMP response element–binding protein
(CREB) phosphorylation (Ou and Gean 2007).

In parallel, levels of BDNF protein as well as TrkB receptor
phosphorylation were temporarily increased after fear condi-
tioning in the BLA (Ou and Gean 2006). In particular, fear
conditioning resulted in the interaction between TrkB and
Shc, followed by a transient increase in Ras bound to Shc
and activation of mitogen-activated protein kinase (MAPK)
and phosphatidylinositol-3 (PI-3) kinase (Ou and Gean 2006).
Recently, a transient increase in BDNF levels after fear con-
ditioning was also demonstrated in mice subjected to chronic
social defeat stress. Subsequently, these mice could be classi-
fied as ‘susceptible’ or ‘resistant’, according to their social
interaction behaviour. Interestingly, susceptible mice showed
an elevated increase in BDNF protein in the BLA after fear
training as well as elevated cued fear learning compared with
resistant mice (Chou et al. 2014). Likewise, a positive corre-
lation between the expression of conditioned fear and amyg-
dala BDNF levels was reported in wild-type mice (Yee et al.
2007; Endres and Lessmann 2012). Therefore, individual
BLA BDNF protein levels seem to be related to cued fear
learning abilities. In addition, activation of TrkB receptors
by application of exogenous BDNF into the BLA or by sys-
temic administration of the TrkB receptor agonist 7,8-
dihydroxyflavone (7,8-DHF) enhanced fear learning (Ou
and Gean 2006; Andero et al. 2011). Interestingly, proteolytic

cleavage of proBDNF by plasmin was required for fear learn-
ing (Ou and Gean 2007), supporting a role for mature BDNF
in this process. Furthermore, lower levels of mature BDNF
were detected in the amygdala and hippocampus of proprotein
convertase 7 (PC7) knockout mice, presumably due to re-
duced proBDNF processing. Indeed, PC7 knockout mice
were impaired in cued fear learning and this deficit could be
rescued by systemic administration of the TrkB agonist 7,8-
DHF (Wetsel et al. 2013).

Importantly, inhibition of BDNF/TrkB signalling in the
amygdala impaired fear memory. This was shown by overex-
pression of a non-functional, truncated TrkB receptor in the
BLA, as well as by local BLA infusion of a tyrosine kinase
inhibitor or TrkB ligand scavenger, respectively (Rattiner
et al. 2004a; Ou and Gean 2006; Ou et al. 2010). In addition,
the BDNF protein level increased a second time at 12 h after
fear conditioning and this peak in BDNF expression was
shown to be required for memory persistence (Ou et al. 2010).

In conclusion, BDNF mRNA expression as well as BDNF
protein levels are elevated after cued fear learning.
Subsequently, BDNF activates TrkB receptors as indicated
by the increased TrkB phosphorylation after fear conditioning.
Concurrently, fear learning and BDNF levels are positively
correlated. The need for BDNF/TrkB signalling in fear learn-
ing is further accentuated by impaired fear memory when
BDNF/TrkB signalling is blocked before fear training.

Additional evidence for the critical involvement of BDNF/
TrkB signalling in cued fear learning and memory was gained
by examination of genetic mouse models. Fear learning was
impaired in mice carrying a point mutation in the Y816
(PLCγ) or Y515 (Shc) phosphorylation site of the TrkB re-
ceptor, respectively (Musumeci et al. 2009). The PLCγ site
seemed to facilitate the acquisition of conditioned fear re-
sponses, while the Shc site was mainly involved in memory
consolidation (Musumeci et al. 2009). Interestingly, overex-
pression of TrkB receptors led to selective activation of the
TrkB-PLCγ pathway, while cued fear learning remained un-
altered when tested 24 h after fear conditioning (Koponen
et al. 2004). This may point to a specific role of TrkB-Shc
signalling in amygdala-dependent fear learning under these
experimental conditions.

Another possibility to study BDNF signalling in behav-
ioural tasks is the use of genetic models that display a reduc-
tion in BDNF levels or BDNF secretion. Interestingly, contro-
versial results were reported concerning cued fear learning in
distinct transgenic lines. For instance, cued fear learning was
impaired or retained depending on the time of induction of
forebrain-restricted BDNF knockout mice (Gorski et al. 2003;
Monteggia et al. 2004). Mice carrying a point mutation in the
BDNF gene (BDNFVal/Met or BDNFMet/Met), which drives the
expression of Met-BDNF and leads to decreased activity-
dependent BDNF secretion (Egan et al. 2003), showed intact
cued fear learning (Chen et al. 2006; Soliman et al. 2010).
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However, cued fear responses in human BDNF Met allele
carriers (BDNFVal/Met or BDNFMet/Met) were unaffected or
impaired when assessed by skin conductance response or
fear-potentiated startle, respectively (Chen et al. 2006;
Soliman et al. 2010; Lonsdorf et al. 2010). Previous studies
reported intact cued fear learning in heterozygous BDNF+/−

mice (Liu et al. 2004; Chen et al. 2006; Karpova et al. 2011)
while reduced conditioned fear responses were observed in
BDNF+/− rats (Harris et al. 2016). Moreover, we could show
that young adult BDNF+/− mice develop an age-dependent
fear learning deficit starting at 3 months postnatally, which
could be attributed to a deficit in memory consolidation
(Endres and Lessmann 2012; Meis et al. 2018). This learning
deficit was rescued when a stronger fear conditioning protocol
was executed (Endres and Lessmann 2012). Taken together,
the impact of chronic BDNF depletion on cued fear learning is
highly variable. This may relate to delayed and/or altered de-
velopment and compensatory mechanisms under conditions
of reduced BDNF availability, which may rely on the extent,
time and region of BDNF depletion. Furthermore, a critical
threshold level of BDNF may be required for fear processing
through modulation of synaptic plasticity (see e.g., Korte et al.
1995), which may in turn depend on species, age or the
employed behavioural approach, respectively.

Another important aspect to evaluate the above-mentioned
discrepancies is the fact that adult BDNF+/−mice, albeit show-
ing intact short-term memory, displayed a continuous loss in
fear memory precision with ongoing time after fear training.
Moreover, these BDNF+/− mice were unable to discriminate
tones associated with foot-shock (CS+) from tones not paired
with the aversive US (CS−) in a discriminative fear learning
task (Meis et al. 2018). In line with these observations, human
Met allele carriers took longer to recognize that the neutral cue
was not associated with an aversive stimulus (Soliman et al.
2010) and showed enhanced generalization of cued fear to a
novel context (Muhlberger et al. 2014). Diminished fear spec-
ificity was also recognized in forebrain-restricted BDNF
knockout mice, which showed enhanced freezing prior to pre-
sentation of the CS (pre-CS) with similar freezing levels to
pre-CS or CS, respectively (Gorski et al . 2003).
Correspondingly, a fear-generalized mouse model displayed
lower levels of BDNF in the BLA immediately after fear con-
ditioning with high US intensity, which lasted at least 2 weeks
(Asim et al. 2020). Thus, several lines of evidence support a
significant role of BDNF/TrkB signalling in memory preci-
sion and cued fear discrimination.

Cellular mechanisms of amygdala BDNF/TrkB signal-
ling in cued fear learning

Several studies support the notion that BDNF/TrkB signalling
contributes significantly to cue-dependent fear learning by
enhancing synaptic plasticity in the amygdala. Specifically,

in vitro recordings revealed support of LTP by BDNF/TrkB
signalling at thalamic and cortical afferents to LA (see Fig. 1).
These projections transmit convergent sensory information
about the CS and US to the LA and are as thus essential for
fear learning (Sigurdsson et al. 2007; Pape and Pare 2010;
Johansen et al. 2012). Specifically, LTP was blocked by ap-
plication of a scavenger for endogenous BDNF (i.e., TrkB
receptor bodies) at thalamic afferents to LA, as assessed by
whole-cell recordings from LA projection neurons. Moreover,
inclusion of the tyrosine kinase inhibitor K252a in the pipette
solution prevented the induction of LTP, which suggests a
postsynaptic site of action of BDNF in mediating plasticity
at this synaptic input (Meis et al. 2012). Application of
K252a also abolished LTP induction at cortico-LA synapses
in field potential recordings obtained from slices of adult mice
(Meis et al. 2018). In line with these results, field potential
recordings demonstrated impaired LTP at the thalamic input
to LA in mice carrying point mutations at either the Shc or the
PLCγ docking site of TrkB (Musumeci et al. 2009).

Interestingly, chronic BDNF reduction to about 50% of
wild-type levels in BDNF+/− mice lead to impaired LTP at
thalamic afferents to LA, whereas LTP at the cortical input
to LA was unaffected. However, intact cortico-LA LTP was
present at 3 months of age and beyond, when a fear memory
consolidation deficit was observed in BDNF+/− mice (Endres
and Lessmann 2012; Meis et al. 2012, 2018). In wild-type
mice, fear learning induced consolidation-relevant synaptic
plasticity at cortico-LA synapses in vivo, which occluded in-
duction of ex vivo LTP at 4 and 24 h after training. These
long-term changes as well as occlusion of LTP were absent in
BDNF+/−mice, which did not show intact memory consolida-
tion. Therefore, synaptic plasticity as a prerequisite for fear
memory consolidation, which might take place inside and
outside of the amygdala, seems to be absent in young adult
BDNF+/− mice (3–4 months of age) (Meis et al. 2018).

The LA is highly interconnected with the BA (Pitkanen
et al. 1997), which is also implicated in fear learning
(Amano et al. 2011). Consistently, synaptic plasticity at LA–
BL synapses was impaired in TrkB/PLCγ mutant mice
(Musumeci et al. 2009). At cortical inputs to BA, LTP was
inhibited by application of the BDNF scavenger TrkB-IgG,
while administration of exogenous BDNF or 7,8-DHF facili-
tated LTP induction in this pathway (Li et al. 2011). In line
with these results, chronic treatment with 7,8-DHFwas report-
ed to enhance the activation of phosphorylated TrkB at the
Y515 and Y816 sites. Concurrently, synaptic plasticity in the
basolateral amygdala was facilitated and age-related declines
in fear learning were prevented in rats at the age of 25 months
(Zeng et al. 2012).

Beside glutamatergic synaptic transmission, BDNF/TrkB
signalling also regulates GABAergic neurotransmission
(Gottmann et al. 2009), which closely controls excitatory cir-
cuits in the amygdala and thereby critically regulates fear
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learning (Pare et al. 2003; Ehrlich et al. 2009; Duvarci and
Pare 2014; Letzkus et al. 2015; Krabbe et al. 2018; Lucas and
Clem 2018). In particular, BDNF/TrkB signalling was shown
to induce rapid internalization of GABAARα1 subunits in
amygdala cell cultures, which was supposed to elicit a tran-
sient hyper-excitability in the amygdala, thereby contributing
to cellular mechanisms of memory consolidation (Mou et al.
2011, 2013). Indeed, many findings support a pivotal role for
disinhibition of principal LA neurons as a permissive factor in
fear conditioning (Duvarci and Pare 2014). Nevertheless,
BDNF+/− mice displayed neither impaired basal synaptic
GABAergic transmission nor altered inhibitory synaptic plas-
ticity in the LA. However, positive modulation of interneuron
activity by noradrenaline was significantly decreased by
chronic BDNF reduction (Meis et al. 2019). In line with these
results, BDNF depletion also abolished facilitation of synaptic
GABAergic transmission by serotonin (Daftary et al. 2012).
In conclusion, BDNF signalling may contribute directly as
well as indirectly (i.e., via altered neuromodulation) to the
regulation of inhibitory synaptic circuits in the amygdala.
Transient disinhibition may facilitate fear learning, while a
chronic BDNF deficit might destabilize the balance between
inhibition and excitation and impair amygdala function.

Beside the basolateral amygdala, the central nucleus is now
considered as an important site of associative plasticity involved

in fear memory (Ehrlich et al. 2009; Fadok et al. 2018). Recent
evidence indicates a significant role of the paraventricular nu-
cleus of the thalamus (PVT) in fear memory consolidation and
retrieval (Arruda-Carvalho and Clem 2015; Do Monte et al.
2016). Consistent with the expression of BDNF in the PVT
(Conner et al. 1997), relevance of BDNF/TrkB signalling in
the PVT/CE circuitry was detected (Penzo et al. 2015).
Specifically, selective deletion of either BDNF expression in
the PVT or TrkB receptors in CEl neurons similarly impaired
fear learning, while infusion of BDNF into the CEl enhanced
fear learning and elicited unconditioned fear responses (Penzo
et al. 2015). At the cellular level, absence of TrkB receptors in
somatostatin-positive CEl neurons prevented the fear
conditioning–induced strengthening of excitatory synaptic trans-
mission in these cells, while bath application of BDNFmarkedly
increased their spiking probability in vitro (for details, see Penzo
et al. 2015). These BDNF/TrkB mediated changes seem to ap-
pear parallel to dopamine-dependent changes in CEl synaptic
transmission (Groessl et al. 2018) highlighting the importance of
fine tuning between BDNF and neuromodulator signalling in
shaping fear memories. Moreover, these results emphasize the
critical contribution of BDNF/TrkB signalling in distinct
subnuclei of the amygdala during fear processing.

In conclusion, BDNF/TrkB signalling increases excitatory
synaptic transmission in different subnuclei of the amygdala

Fig. 1 Cellular actions of BDNF
in the amygdala. Schematic
representation of afferents to
different subnuclei of the
amygdala that probably contain
BDNF (green). Numbers depict
cellular effects of BDNF/TrkB
signalling on synaptic plasticity/
cellular activity shown for the
respective synapse. 1: Meis et al.
2012; Musumeci et al. 2009, 2:
Mou et al. 2011, 3: Meis et al.
2018, 4: Musumeci et al. 2009, 5:
Li et al. 2011, 6: Penzo et al.
2015. ACC: anterior cingulate
cortex, PVT: paraventricular
thalamic nucleus, PBN:
parabrachial nucleus (modified
from Paxinos and Franklin 2001)
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and enables LTP. At GABAergic synapses, acute BDNF/
TrkB signalling may lead to reduced inhibition and elevated
excitability necessary for memory formation, while chronic
BDNF reduction results in impaired interaction of
GABAergic synaptic transmission with modulatory transmit-
ters like noradrenaline and serotonin.

Amygdala BDNF/TrkB signalling and cued fear
extinction

After fear learning, repeated exposure to the conditioned stim-
ulus alone leads to diminished fear responses (Myers and
Davis 2007; Pape and Pare 2010; Milad and Quirk 2012;
Singewald and Holmes 2019; Sangha et al. 2020). This pro-
cess, termed fear extinction learning (see Fig. 2), involves
several brain areas, particularly the amygdala, hippocampus
and the medial prefrontal cortex (PFC) (Singewald et al. 2015;
Maren and Holmes 2016; Singewald and Holmes 2019;
Marek et al. 2019). Extinguished fear may reappear after ex-
posure to the US (reinstatement), in contexts different from
the context where extinction training took place (renewal), or
with passing of time (spontaneous recovery) (Singewald and
Holmes 2019). Therefore, it is generally accepted that fear
extinction relies on the generation of a new inhibitorymemory
that actively supresses the original one. Several studies
established the prominent role of intercalated inhibitory amyg-
dala neurons and the infralimbic mPFC in this process (Pape
and Pare 2010; Duvarci and Pare 2014). Additionally, recent
observations support the notion that alterations induced by

fear learning may be reversed by extinction learning (Quirk
et al. 2010; Herry et al. 2010; Sangha 2015; An et al. 2017).

A critical contribution of BDNF signalling in extinction was
recently demonstrated. BDNF+/−mice display an age-dependent
deficit in extinction learning (Psotta et al. 2013). Similarly,
BDNFVal/Met or BDNFMet/Met mice as well as human
Met allele carriers were impaired in extinguishing a conditioned
fear response, associated with abnormal fronto-amygdala activ-
ity in humans (Soliman et al. 2010). In line with these results,
systemic injection of 7,8-DHF promoted extinction learning
(Andero et al. 2011). Ample evidence supports the prominent
role of BDNF signalling in the hippocampus and infralimbic
PFC in the formation of fear extinction memories (Heldt et al.
2007; Peters et al. 2010; Rosas-Vidal et al. 2014; Singewald
et al. 2015), with downstream effects on BDNF signalling oc-
curring in the amygdala. BDNF protein levels were initially
increased in the ventral hippocampus after extinction training,
preceding extinction-induced expression of BDNF in the BA
(Rosas-Vidal et al. 2014). Thus, BDNF signalling was sug-
gested to be recruited subsequently by afferents from the ventral
hippocampus to the BA. Inhibition of BDNF/TrkB signalling by
infusion of a dominant-negative TrkB receptor into the BLA
prior to extinction training impaired retention of extinction
memory (Chhatwal et al. 2006). Interestingly, chronic treatment
with the antidepressant drug fluoxetine resulted in enduring loss
of conditioned fear memory when combined with extinction
training in adult mice (Karpova et al. 2011). In parallel, BDNF
mRNA levels were increased in the amygdala and hippocam-
pus, suggesting that BDNF signalling in the BLA is critically

Fig. 2 Simplified scheme of cued
fear extinction learning. Relapse
of extinguished fear may occur
after exposure to the US
(reinstatement), in contexts
different from the extinction
training context, for example the
original fear context (renewal), or
with passing of time (spontaneous
recovery). Freezing is depicted as
mouse surrounded by star-shaped
edges. Different colours represent
different contexts
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involved in fear extinction. Fear erasure, measured as impaired
fear renewal after extinction learning, was not observed in flu-
oxetine treated BDNF+/− mice but was mimicked by overex-
pression of BDNF in the BLA from the end of extinction train-
ing onward (Karpova et al. 2011). It was suggested that fluox-
etine treatment reactivates juvenile-like plasticity in the amyg-
dala through local BDNF action (Karpova et al. 2011; Umemori
et al. 2018). Similarly, combining administration of an amphet-
amine derivative (3,4-methylenedioxymethamphetamine, ‘ec-
stasy’) with extinction training, significantly increased BDNF
expression in the amygdala and facilitated fear extinction mem-
ory induced by a suboptimal training paradigm (Young et al.
2015). Interruption of BDNF signalling in the basolateral com-
plex by local infusion of a BDNF neutralizing antibody blocked
this enhancing effect on fear extinction by amphetamine treat-
ment (Young et al. 2015). Besides facilitation of fear extinction
memory by BDNF actions in the amygdala, BLA TrkB recep-
tors situated at BLA afferents presynaptic to the infralimbic PFC
were reported to facilitate fear extinction memory (Li et al.
2017). Overall, evidence indicates significant contribution of
BDNF signalling in the amygdala to fear extinction memory,
while the underlying BDNF/TrkB regulated cellular mecha-
nisms are thus far poorly resolved.

ProBDNF/p75NTR signalling in the amygdala

Neurotrophins are at first synthesized as precursor proteins,
which are processed to the mature form by proteolytic cleav-
age (Lessmann and Brigadski 2009). As recently recognized,
pro-neurotrophins, the cleaved pro-domain as well as mature
neurotrophins exert distinct cellular functions (compare
Brigadski et al., Kojima et al. in this issue). Specifically,
pro-neurotrophins interact with the p75 neurotrophin receptor
(p75NTR) and often induce effects that oppose those of ma-
ture neurotrophins when binding to their cognate Trk recep-
tors (for reviews, see Costa et al. 2018; Sasi et al. 2017; Zanin
et al. 2017; Gibon and Barker 2017; Notaras and van den
Buuse 2018; Becker et al. 2018; Von Bohlen und Halbach
and Von Bohlen und Halbach 2018). In line with the role of
p75NTR signalling in apoptosis during neuronal differentia-
tion, p75NTR is widely expressed in the developing nervous
system and is substantially downregulated in adulthood (Roux
and Barker 2002; Underwood and Coulson 2008; Ibanez and
Simi 2012; Foltran and Diaz 2016). Immunoblotting revealed
the presence of p75NTR in the adult murine amygdala
(Algamal et al. 2018; Colyn et al. 2019) while a lack of
p75NTR expression was detected by immunohistochemistry
(Giza et al. 2018). These seemingly contradictory findings
might reflect the complex technical requirements for the de-
tection of low p75NTR expression levels in the adult brain (as
suggested by Baho et al. 2019). Interestingly, constitutive
p75NTR knockout mice showed augmented cholinergic in-
nervation of the amygdala (Busch et al. 2017). In addition,

the dopaminergic and serotoninergic transmitter system as
well as synaptic plasticity within this structure were altered
(Busch et al. 2017). However, p75NTR knockout mice
displayed equal fear responses as their wild-type littermates
in contextual or cued fear learning paradigms (Busch et al.
2017). These results are in line with the requirement of pro-
teolytic cleavage of proBDNF to mature BDNF in the amyg-
dala during fear learning, as well as the consolidation of
defeat-related memories, indicating the prominent role of ma-
ture BDNF in aversive learning (Ou and Gean 2007; Dulka
et al. 2016). However, chronic stress exposure was reported to
modulate the proBDNF/p75NTR system. Specifically, the
levels of p75NTR as well as proBDNF were significantly
reduced in amygdala lysates when tested directly after repeat-
ed unpredictable stress (Algamal et al. 2018). In contrast,
chronic social defeat stress led to enhanced proBDNF expres-
sion in the BLA following an aversive social stimulus 1 month
afterwards (Colyn et al. 2019). Thus, stress appears to be
accompanied by an acute and long-lasting imbalance in the
regulation of proBDNF/p75NTR expression in the amygdala.
Overall, proBDNF/p75NTR-signalling seems to be still func-
tional in the adult amygdala. However, the actions of its sig-
nalling pathways in amygdala circuits remain unresolved.

Role of other neurotrophins in amygdala function

Conflicting results are available about the distribution of TrkA
receptors in the amygdala. While initially neither TrkA recep-
tor mRNA nor immunoreactive cells for TrkA receptors were
detected (Gibbs and Pfaff 1994; Sobreviela et al. 1994, 1998),
more recently, moderate to strong expression levels were de-
scribed in the medial and central amygdala (Badowska-
Szalewska et al. 2006). The latter study reported regulation
of TrkA and NGF immunoreactivity by chronic or acute
stress, respectively (Badowska-Szalewska et al. 2006).
Labelled NGF-positive cells as well as TrkA receptors were
also detected in the BLA (Conti et al. 2009). Both NGF and
TrkA protein expression was elevated after chronic exposure
to brief non-injurious seizures evoked by minimal electrocon-
vulsive shock and may thereby contribute to neuroprotective
effects of NGF (Conti et al. 2009). Likewise, reward sensiti-
zation resulted in upregulation of NGF mRNA expression in
the CE (Bie et al. 2012), while stress treatment or maternal
deprivation, respectively, was followed by reduced NGF con-
tent in the amygdala (Lang et al. 2004; Reus et al. 2011). In
conditional knockout mice lacking TrkA receptors, amygdala-
dependent learning tasks were reported to be intact in young
and intermediate-aged mice (Muller et al. 2012), while a
forebrain-specific conditional TrkA knockout mouse line
displayed impaired cued fear learning (Sanchez-Ortiz et al.
2012). These conflicting results were attributed to the extent
of dysfunction of the cholinergic circuitry, differences in
mouse genetic background or distinct properties of different

167Cell Tissue Res (2020) 382:161–172



Cre lines used in the two studies, respectively (as discussed by
Muller et al. 2012). Therefore, NGF/TrkA signalling in the
amygdala seems to be linked to stress, reward and neuropro-
tection, while amygdala-dependent learning may be affected
indirectly by NGF/TrkA function during development of cho-
linergic fibres from the basal forebrain, which constitutes the
main cholinergic input to the amygdala.

While neither NT-3 mRNA nor immunoreactive neurons
were found in the amygdala (Phillips et al. 1990; Krause
et al. 2008), cells positive for TrkC mRNA are widely distrib-
uted in LA, BA or CE, respectively, showing intermediate
expression levels (Altar et al. 1994; Hassink et al. 1999;
Dierssen et al. 2006; Krause et al. 2008). In addition, NT-3
protein was detected in homogenized amygdala tissue (Yee
et al. 2007; Reus et al. 2011; Yamada-Goto et al. 2012).
TrkC signalling might be essential for maturation and synap-
togenesis of amygdala neuronal circuitry during postnatal de-
velopment (as discussed by Krause et al. 2008) and the main-
tenance of neuronal integrity during ageing in the amygdala
(von Bohlen und Halbach et al. 2003). In addition, TrkC was
recently related to synaptic organization and fine tuning of
neural connectivity (Naito et al. 2017). In the amygdala, NT-
3 content was modulated by maternal deprivation and diet-
induced obesity but did not correlate with the expression of
conditioned fear (Yee et al. 2007; Reus et al. 2011; Yamada-
Goto et al. 2012). Overall, the physiological relevance of NT-
3/TrkC signalling in the amygdala is not completely under-
stood (Krause et al. 2008). Remarkably, amygdala function
may be indirectly regulated by NT-3/TrkC signalling subse-
quently to trophic effects of NT-3 on noradrenergic neurons in
the locus coeruleus (Dierssen et al. 2006).

Conclusions

Accumulating evidence indicates that BDNF/TrkB signalling
in the amygdala plays a pivotal role in fear learning and mem-
ory as well as fear extinction. In the amygdala circuitry,
BDNF/TrkB signalling contributes significantly to synaptic
plasticity, which is widely accepted as a cellular mechanism
underlying fear memory learning. In addition, downstream
molecular signalling pathways triggered by TrkB activation
are well documented. However, actions of BDNF/TrkB sig-
nalling in amygdala synaptic processes involved in fear ex-
tinction learning are far less understood. While behavioural
studies suggest a significant contribution of BDNF signalling
within the amygdala in extinction learning, analysis of the
underlying cellular mechanisms warrants further studies.
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