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Abstract Closed-form analytical representations of the rigid body orientation quaternion, angular velocity
vector and the external moment vector satisfying kinematic equations and equations of motion are derived. In
order to analyze errors of orientation algorithms for strapdown inertial navigation systems, reference models
for specific rigid body rotation cases are formulated. Based on solutions, analytical expressions for ideal
signals of angular velocity sensors in the form of quasi-coordinates are derived. For several sets of parameters,
numerical implementations of the reference models are performed and trajectories in the configuration space
of orientation parameters are presented. Numerical analysis of the drift error for the third-order orientation
algorithm is performed. The results show that the value of the accumulated drift error using the derived
two-frequency models exceeds the value of the accumulated drift error in the conventional case of a regular
precession.

Keywords Rigid body orientation · Rotation tensor · Quaternion · Trajectory in configurational space ·
Orientation algorithm · Drift error · Strapdown inertial navigation system

1 Introduction

Accurate representations of the rigid body orientation is important in design and analysis of strapdown inertial
navigation systems (SINS), which are widely used in aerospace engineering. A key step in developing the
orientation algorithm is the estimation of error in determining the orientation, when the orientation quaternions
are computed within a time cycle [tn−1, tn]. As an input for the algorithm, the signals are supplied from the
angular velocity measurements in the following form:
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θθθn =
∫ tn

tn−1

ωωω(t)dt, (1)

where ωωω(t) is the angular velocity vector and θθθn is the apparent rotation vector. A number of algorithms
for determination of orientation quaternions have been developed and discussed [6,7,13,22,25–27,35]. The
approach, presented in [7], is based on the decomposition of the particular solution of the quaternionic kinematic
equation in the Picard series by approximating of the apparent rotation vector θθθn within an interval [tn−1, tn]
by a fourth-order polynomial of finite differences. In [7], a series of algorithms for the determination of the
rotation quaternion is developed, which have different orders up to the fourth inclusive. Another approach is
based on the Taylor time series decomposition of sine and cosine functions of half true rotation angle in the
representation of the orientation quaternion components and the use the rotation vector as an intermediate
parameter [22]. This approach was first suggested in [6]. It was further developed in [7,13,22,25], among
others.

The error estimation of orientation algorithms is usually based on the use of special benchmark tests, for
which the current orientation and components of the angular velocity vector of a rigid body are presented in
a closed analytical form. To analyze the accuracy of orientation algorithms, an analytical reference model of
the conic motion is applied in [22]. The analytical SPIN-CONE model presented in [27] is widely used as a
benchmark test.

Since for benchmark tests the local or accumulated error is presented in analytical form, it can be used to
optimize the orientation algorithm for a specific test motion. Optimization of orientation algorithms for conic
motion by special tuning of the algorithm coefficients without changing its structure was proposed in [22].
Optimization is based on obtaining an analytical expression for the algorithm error in the form of a stepped
serieswith further determination of unknown coefficients, based on the condition of cutting off the highest order
terms of the series. Another method, which implements essentially the same approach, was presented in [13].
The method of optimizing algorithms for regular precession and conic motion which is based on minimizing
asymptotic estimations of computational drift error was presented in [25]. The papers [8–10,12,20,21,23,31–
33] discuss improved methods for optimization of orientation algorithms and present the results of research on
algorithm optimization under conditions of generalized conical motion, regular precession, random angular
motion, and practical issues of effective use of algorithms, including for a specific structure of SINS. Analytical
reference models that differ from cases of regular precession and conic motion are presented in [14,15]. The
improvements of orientation algorithms in conditions of vibrational conic motion are discussed in [17,18,37].
The issues of amplitude and frequency expansion of the application of orientation algorithms are presented in
[28–30].

Since conic motion and regular precession are rather specific cases of angular motion of the base of SINS,
it is of practical interest to analyze the orientation algorithms for a wide class of test motions. In this paper,
new analytical two-frequency solutions to the equations of rotation motion of a rigid body are formulated, and
referencemodels of rotation-based solutions are presented. The paper is organized as follows. In order to fix the
notation, Sect. 2 presents classical governing equations of rotation motion of rigid bodies as well as different
representations of orientation. The attention is placed on the quaternion representation. The relationships
between the rotation tensor and quaternion components are discussed. Section 3 presents analytical solutions
for several cases of rigid body motion. Special cases of the derived solutions are discussed in detail. Based on
solutions, analytical expressions for ideal signals of angular velocity sensors in the form of quasi-coordinates
are derived in Sect. 4. Numerical implementations of the reference models for several sets of parameters
are discussed in Sect. 5. Furthermore, trajectories in the configuration space of orientation parameters are
presented. Numerical analysis of the drift error for the third-order orientation algorithm is performed in Sect.
6. Finally, conclusions are drawn with respect to the value of the accumulated drift error based on the derived
two-frequency models if compared to the conventional case of regular precession, discussed in the literature.

2 Governing equations and problem statement

In order to fix our notation, let us recall the governing equations describing rotation of a rigid body. To compute
the orientation of the rigid body, the following Darboux problem should be solved [1–3,38]

ṖPP = ��� × PPP = PPP × ωωω, PPP(0) = PPP0 (2)
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where PPP is the rotation tensor, PPP ··· PPPT = III , detPPP = 1, ��� is the spatial angular velocity vector, also known
as left angular velocity [38] , ωωω = PPPT ··· ��� is the body angular velocity vector, also known as right angular
velocity, PPP0 is the initial condition and III is the second rank unit tensor.

In this paper, the direct tensor calculus in the sense of Gibbs [36] and Lagally [16] is applied. A second-
order tensor is a finite sum of dyads of vectors AAA = aaa ⊗ bbb + ccc ⊗ ddd + · · · + eee ⊗ fff . The basic operations for
dyads can be summarized as follows:

aaa ⊗ bbb ··· ccc = αaaa, α = bbb ··· ccc (3)

ccc ··· aaa ⊗ bbb = βbbb, β = ccc ··· aaa (4)

aaa ⊗ bbb ······ ccc ⊗ ddd = αβ, α = bbb ··· ccc, β = aaa ··· ddd (5)

aaa ⊗ bbb × ccc = aaa ⊗ ddd, ddd = aaa × bbb (6)

ccc × aaa ⊗ bbb = eee ⊗ bbb, eee = ccc × aaa (7)

tr (aaa ⊗ bbb) = aaa ··· bbb, (aaa ⊗ bbb)× = aaa × bbb (8)

Operations (3)-(8) are generalized for finite sums of dyads and tetrads. The direct tensor calculus is widely
used in continuum mechanics and rheology, see for example [5,19,24].

The angular momentum LLL of the rigid body with respect to the center of mass is defined as follows:

LLL = PPP ··· JJJ ref ··· ωωω = JJJ ··· ���, (9)

where JJJ ref is the tensor of inertia in the reference configuration and JJJ is the corresponding tensor in the actual
configuration defined as follows

JJJ ref = J1eee1 ⊗ eee1 + J2eee2 ⊗ eee2 + J3eee3 ⊗ eee3, JJJ = J1nnn1 ⊗ nnn1 + J2nnn2 ⊗ nnn2 + J3nnn3 ⊗ nnn3 nnni = PPP ··· eeei
where Ji , i = 1, 2, 3 are principal moments of inertia and the orthogonal unit vectors eeei and nnni are principal
directions connected with the rigid body in the reference and actual configurations, respectively. The kinetic
energy K is computed as follows:

2K = ωωω ··· JJJ ref ··· ωωω = ��� ··· JJJ ··· ��� (10)

The rotational motion of a rigid body around its center of mass is described by the following vector equation:

JJJ ··· �̇�� + ��� × JJJ ··· ��� = MMM, ���(0) = ��� 0 (11)

where MMM is the resultant moment vector acting on the body and �0 is the initial condition for the left angular
velocity. With respect to the right angular velocity vector, Eq. (11) is formulated as follows:

JJJ ref ··· ω̇ωω + ωωω × JJJ ref ··· ωωω = MMM ref , ωωω(0) = ωωω0, ωωω0 = PPPT
0 ··· ��� 0 (12)

where MMM ref = PPPT ··· MMM . The scalar products of Eq. (12) with the vectors eeei provide the following dynamic
Euler equations

J1ω̇1 − (J2 − J3) ω2ω3 = M1, (1, 2, 3) (13)

where Mi = MMM ··· nnni are components of the resultant moment vector, ωi = ωωω ··· eeei are components of the right
angular velocity vector and (1,2,3) is the symbol of circular permutation of indices.

In order to compute the orientation of a rigid body, equations of motion (11) or (12) together with Eq.
(2) by taking into account the initial conditions must be solved. The key step for the efficient solution is the
suitable representation of the rotation tensor. According to the Euler theorem, it can be represented as follows:

PPP(ϕmmm) = mmm ⊗mmm + cosϕ(III −mmm ⊗mmm) + sin ϕmmm × III , (14)

where the unit vectormmm denotes the axis of rotation and ϕ is the angle of rotation about this axis. In many cases,
the rotation tensor can be represented as a composition of three rotations (14) about three different axes [38].
Examples include the classical Euler representation and yaw-pitch-roll composition. Although compositions
of three rotations provide clear interpretations of complex angular motions and closed-form solutions can be
derived in many cases by specifying special axes of rotation [38], this representation suffers from drawbacks.
First, nonlinear implicit relations between the angles of rotation exist [38]. Second, for any composition of
three rotations, gimbal locks (the loss of one or two degrees of freedom) are unavoidable, leading to difficulties
in numerical solution procedures [11]. To avoid these drawbacks, quaternion representation of orientation
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is widely in development of orientation algorithms for SINS. To introduce the orientation quartenion, let us
consider the following abbreviations

λ0 = cos(ϕ/2), λλλ = sin(ϕ/2)mmm,

Equation (14) takes the form

PPP(λ0,λλλ) = 2λλλ ⊗ λλλ + (λ20 − λλλ ··· λλλ)III + 2λ0λλλ × III , λ20 + λλλ ··· λλλ = 1 (15)

The angular velocity vectors corresponding to the rotation tensor (15) are computed as follows:

1

2
��� = λ0λ̇λλ − λ̇0λλλ + λλλ × λ̇λλ,

1

2
ωωω = λ0λ̇λλ − λ̇0λλλ − λλλ × λ̇λλ (16)

With λ0 and the components of the vector λλλ, λi = λλλ ··· eeei the orientation quartenion 	 is introduced as follows

	 = [λ0, λ1, λ2, λ3]
In addition, the following kinematic quaternion equation can be derived

	̇ = 1

2
	 ◦ 
, (17)


 = [0, ω1, ω2, ω3] is the angular velocity quaternion, and ◦ is the quaternion multiplication symbol. For
operations of the quartenion algebra we refer to [4,34]. Once the components of the orientation quartenion are
given, the rotation tensor can be computed from Eq. (15). Vice versa, for the given rotation tensor PPP , λ0 and
λλλ can be computed from the following relations:

3λ20 + λλλ ··· λλλ = tr PPP, −4λ0λλλ = PPP×,

where (. . .)× is the vector invariant or Gibbsian cross.
For the case of free body rotation with MMM = 000, it follows that the angular momentum vector LLL takes the

constant value and Eq. (12) possesses the following scalar integrals

L2 = LLL ··· LLL = const, K = const (18)

From Eqs. (9), (10) and (18)2, the following integral can be derived [38]

2K = LLL ··· PPP ··· JJJ−1
ref ··· PPPT ··· LLL = const (19)

In general, the rotation tensor can be parameterized with three angles of rotation about three fixed axes.
In the case of free rotation, the relationship between the angles exists according to Eq. (19). Closed form
two-parametric solutions for free rotations are presented in [38].

In what follows, we derive two-frequency solutions of the system of Eqs. (13) and (17) and formulate
reference models of rigid body rotation in the form of analytical expressions for quasi-coordinates

θni = θθθ ··· eeei , i = 1, 2, 3 (20)

where the apparent rotation vector θ is defined by Eq. (1). Furthermore, we present analytical expressions
for the components of the orientation quaternion 	(t), which corresponds to the angular motions. For the
numerical implementation of the reference model, it is necessary to estimate the accumulated orientation error
obtained by the algorithm for calculating the third-order orientation quaternions.

The technique for constructing analytical reference models is based on a special representation of the
orientation quaternion by trigonometric functions of the angles of rotations, which simultaneously change
in time. This representation provides automatic fulfillment of the normalization condition for the quaternion
‖	(t)‖ = 1, corresponding to Eq. (15)2.
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3 Two-frequency solutions to the equations of rigid body rotation

3.1 First solution

Let us specify the components of the orientation quaternion as follows:

λ0(t) = η cos(kαt) cos(kβ t),

λ1(t) = ξ cos(kαt) sin(kβ t) − sin(kαt) cos(kβ t),

λ2(t) = ξ cos(kαt) cos(kβ t) + sin(kαt) sin(kβ t),

λ3(t) = η cos(kαt) sin(kβ t), (21)

where kα and kβ are frequencies, kα �= kβ . η and ξ are parameters satisfying the condition η2 + ξ2 = 1.
For the given orientation quaternion, the angular velocity quaternion is computed from the inverse kinematic

equation

(t) = 2	̃(t) ◦ 	̇(t), (22)

where 	̃(t) is the conjugate orientation quaternion. The components of the angular velocity vector are

ω1(t) = −2ηkα cos(2kβ t),

ω2(t) = 2ηkα sin(2kβ t),

ω3(t) = −2ξkα + 2kβ (23)

The proposed analytical solutions (21) and (23) to Eqs. (13) and (17) satisfy the initial conditions 	(0) =
[η, 0, ξ, 0], ωi (0) = [−2ηkα, 0, −2ξkα + 2kβ ]. In this case, the first and second components of the angular
velocity vector change according to a harmonic law, and the third component is constant, as is the case with
the classical regular precession of a transversely isotropic rigid body with (I1 = I2 �= I3). Indeed, in the case
of (I1 = I2 �= I3), the magnitude of the angular momentum vector L is constant, i.e.,

L2 = LLL ··· LLL = 4I 21 η2k2α + 4I 23 (−ξkα + kβ)2 = const

The kinetic energy K is constant too

2K = 4I1η
2k2α + 4I3(−ξkα + kβ)2 = const

However, these conditions generally do not correspond to the free rotation of a rigid body. Indeed, the proposed
solutions (21) and (23) describes a more general case of rotational motion. To show this, we will solve the
inverse problem of dynamics, that is, we will find the external moments that provide the motion of a rigid body
with components of angular velocity (23). From Eq. (13), we obtain

M1(t) = 4ηkα sin(2kβ t)[I1kβ + (I2 − I3)(ξkα − kβ)],
M2(t) = 4ηkα cos(2kβ t)[I2kβ + (I3 − I1)(−ξkα + kβ)],
M3(t) = 2η2k2α sin(4kβ t)(I1 − I2) (24)

Therefore, in the general case of an asymmetric rigid body, its rotation under the action of moments (24) is
not free. Since the kinetic energy is conserved, the power of external moments must be zero, i.e.,

MMM ··· ��� = MMM ref ··· ωωω = 0

One may verify that the moment vector with the components (24) is orthogonal to the right angular velocity
vector with the components (23).

For a transversally isotropic body in the case when I1 = I2, we find the following components of the
external moment vector that supports regular precession

M1(t) = 4ηkα sin(2kβ t)[I3kβ + (I1 − I3)ξkα]
M2(t) = 4ηkα cos(2kβ t)[I3kβ + (I1 − I3)ξkα]
M3(t) = 0 (25)
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It is obvious that only under the conditions I3kβ + (I1 − I3)ξkα = 0, kα �= 0, kβ �= 0, η �= 0 we obtain
M1(t) = M2(t) = M3(t) = 0, that is, the motion of a rigid body with components of the angular velocity
vector (23) is the classical regular precession. In this case, the parameter ξ must take the following value

ξ = I3kβ

(I3 − I1)kα

Consider the case of the solution (21) when η = 0, ξ = ±1. Then, we have a plane-free rotational motion with
a constant component of the angular velocity along the third principal axis, i.e.,

ω1(t) = 0, ω2(t) = 0, ω3(t) = −2ξkα + 2kβ (26)

The orientation quaternion takes the following form:

	(t) = [0, sin((kβ − kα)t), cos((kβ − kα)t), 0] (27)

and 	(0) = [0, 0, 1, 0] Consider the case of solution (21) when ξ = 0 and η = 1. The angular velocity
vector has the following components:

ωi (t) = [−2kα cos(2kβ t), 2kα sin(2kβ t), 2kβ ]
under the action of the moment vector

Mi (t) = [4kαkβ sin(2kβ t)(I1 − I2 + I3), 4kαkβ cos(2kβ t)(I2 + I3 − I1), 2k2α sin(4kβ t)(I1 − I2)]
The orientation quaternion (21) then takes the following form:

	(t) = [cos(kαt) cos(kβ t), − sin(kαt) cos(kβ t), sin(kαt) sin(kβ t), cos(kαt) sin(kβ t)]
For the magnitude of the angular momentum vector, we obtain

L2 = 4k2α(I 21 cos
2(2kβ t) + I 22 sin

2(2kβ t) + 4I 23 k
2
β) �= const

Therefore, the regular precession is not observed. For a transversally isotropic rigid body (I1 = I2), we have

L2 = 4I 21 k
2
α + 4I 23 k

2
β = const, 2K = 4I1k

2
α + 4I3k

2
β = const

that is, in this case of a forced regular precession.

3.2 Second solution

Let us formulate the analytical solution to the kinematic equation (17) as follows:

λ0(t) = η cos(kαt) cos(kβ t) + ξ sin(kαt) sin(kβ t),

λ1(t) = cos(kαt) sin(kβ t),

λ2(t) = sin(kαt) cos(kβ t),

λ3(t) = ξ cos(kαt) cos(kβ t) − η sin(kαt) sin(kβ t), (28)

where kα and kβ , kα �= kβ are frequencies. The parameters η and ξ must satisfy the condition η2 + ξ2 = 1.
The corresponding solution to the inverse kinematic equation (22) takes the form

ω1(t) = 2ξkα cos(2kβ t) + 2ηkβ,

ω2(t) = 2ηkα cos(2kβ t) − 2ξkβ,

ω3(t) = −2kα sin(2kβ t) (29)

Let us note that the first and second components of the angular velocity vector contain constant parts, while
the third component changes according to the harmonic law and does not depend on the parameters ξ and η.
This solution satisfies the initial conditions 	(0) = [η, 0, 0, ξ ], ωi (0) = [2ξkα + 2ηkβ, 2ηkα − 2ξkβ, 0].
Since none of the components of the angular velocity vector (29) in the general case of the parameters ξ and
η is constant, the rotation is significantly different from the cases of regular precession and conical motion.



Closed-form quaternion representations for rigid body rotation 1147

Let us find the moment vector under the action of which the motion of the rigid body has the components
of the angular velocity vector (29). According to equations of motion, we obtain

M1(t) = −4kα sin(2kβ t)[I1ξkβ − (I2 − I3)][ηkα cos(2kβ t) − ξkβ ],
M2(t) = −4kα sin(2kβ t)[I2ηkβ − (I3 − I1)][ξkα cos(2kβ t) + ηkβ ],
M3(t) = −4I3kαkβ cos(2kβ t) − 4(I1 − I2)[ξkα cos(2kβ t) + ηkβ ][ηkα cos(2kβ t) − ξkβ ] (30)

Consider a particular case of solution (28) for η = 0 and ξ = 1. The orientation quaternion takes the following
form:

	(t) = [sin(kαt) sin(kβ t), cos(kαt) sin(kβ t), sin(kαt) cos(kβ t) , cos(kαt) cos(kβ t) ],
For the angular velocity vector, we obtain

ωi (t) = [2kα cos(2kβ t), −2kβ, −2kα sin(2kβ t)]
This rotary motion is provided by the action of the moment vector with the components

Mi (t) = [−4kαkβ(I1 + I2 − I3) sin(2kβ t), 2k2α(I3 − I1) sin(4kβ t), 4kαkβ(I1 − I2 − I3) cos(2kβ t)]
The initial conditions are 	(0) = [0, 0, 0 , 1 ], ωi (0) = [2kα, −2kβ, 0]. For a transversely isotropic rigid
body with I1 = I3, we obtain that L2 = 4I 21 k

2
α +4I 22 k

2
β = const and 2K = 4I1k2α +4I2k2β = const. Therefore,

this motion is a forced regular precession. If in the expression for the model quaternion (28) the parameters
η = 1 and ξ = 0 are specified, the components of the orientation quaternion are

λ0(t) = cos(kαt) cos(kβ t),

λ1(t) = cos(kαt) sin(kβ t),

λ2(t) = sin(kαt) cos(kβ t),

λ3(t) = − sin(kαt) sin(kβ t) (31)

The corresponding angular velocity vector has the following components:

ωi (t) = [2kβ, 2kα cos(2kβ t), −2kα sin(2kβ t)] (32)

The rotational motion with the angular velocity vector (32) is provided by the action of an external moment
with the following components

M1(t) = 2k2α(I2 − I3) sin(4kβ t),

M2(t) = −4kαkβ(I1 + I2 − I3) sin(2kβ t),

M3(t) = −4kαkβ(I1 − I2 + I3) cos(2kβ t) (33)

The initial conditions are 	(0) = [1, 0, 0, 0], ωi (0) = [2kβ, 2kα, 0]. For transversally isotropic rigid body
with I2 = I3, this motion is a forced regular precession, since the magnitude of the angular momentum vector
has the form

L2 = 4I 21 k
2
β + 4I 22 k

2
α = const

The kinetic energy is computed as follows:

2K = 4I1k
2
α + 4I2k

2
β = const

The moment vector is not zero vector. Again, one may verify that the moment vector is orthogonal to the
angular velocity vector.
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3.3 Third solution

Let us define the orientation quaternion as a solution to the kinematic equation (17) as follows:

λ0(t) = μ cos(kαt) cos(kβ t) + ν sin(kαt) sin(kβ t),

λ1(t) = μ cos(kαt) sin(kβ t) − ν sin(kαt) cos(kβ t),

λ2(t) = μ sin(kαt) cos(kβ t) + ν cos(kαt) sin(kβ t),

λ3(t) = ν cos(kαt) cos(kβ t) − μ sin(kαt) sin(kβ t), (34)

where kα and kβ , kα �= kβ are frequencies. ν andμ are parameters satisfying the condition ν2+μ2 = 1.We find
that according to Eq. (22), this quaternion corresponds to the following angular velocity vector components

ωi (t) = [2kβ, 2kα cos(2kβ t), −2kα sin(2kβ t)] (35)

The initial conditions are

	(0) = [μ, 0, 0 , ν ], ωi (0) = [2kβ, 2kα, 0]
In this case, the vector components do not depend on the parametersμ and ν. Therefore, there is no relationship
between 	(0) and ωi (0), as it was in the cases of the first and second two-frequency solutions. Note that the
angular velocity vector (35), which corresponds to quaternion (34), is exactly the same as obtained earlier by
(32) for the case of quaternion (28)with the parameters η = 1 and ξ = 0. Rotationalmotionwith the orientation
(34) and the angular velocity vector components (35) is provided by the action of an external moment with
components (33). Since for μ = 1 and ν = 0, the components of the quaternion (35) coincide with the
components of the quaternion (31), the third two-frequency solution can be considered as an independent case
of integrability in quadratures to the equations of motion, which is valid for arbitrary values of the parameters
μ and ν in Eq. (34), different from the case μ = 1 and ν = 0. The considered solution is a special case of
forced regular precession according to Eqs. (28) and (29) for η = 1 and ξ = 0.

3.4 Fourth solution

The solution to Eq. (17) is represented in the following form

λ0(t) = cos(kαt) cos
2(kβ t) + sin(kαt) sin

2(kβ t),

λ1(t) = 0.5 sin(2kβ t)[cos(kαt) − sin(kαt)],
λ2(t) = 0.5 sin(2kβ t)[cos(kαt) + sin(kαt)],
λ3(t) = sin(kαt) cos

2(kβ t) − cos(kαt) sin
2(kβ t) (36)

The components of the angular velocity vector which correspond to the quaternion with components (36),
according to Eq. (22) take the following form:

ω1(t) = −2kα sin(2kβ t) + 2kβ,

ω2(t) = kα sin(4kβ t) + 2kβ cos(2kβ t),

ω3(t) = kα cos(4kβ t) − 2kβ sin(2kβ t) + kα (37)

The initial conditions of motion are

	(0) = [1, 0, 0 , 0 ], ωi (0) = [2kβ, 2kβ, 2kα]
This solution describes a motion with the following time-variable magnitude of the angular velocity vector

ω2 = ωωω ··· ωωω = 4k2α + 8k2β − 8kαkβ sin(2kβ t)

If we set kβ = 0 in (36), then (37) provides ωi = [0, 0, 2kα], which corresponds to the plane rotation with
constant velocity around the third axis and orientation quaternion 	(t) = [cos(kαt), 0, 0, sin(kαt)].

Let us consider in more detail the case of a transversally isotropic rigid body I2 = I3 under the conditions
when kα = 0. From (37), we obtain ωi (t) = [2kβ, 2kβ cos(2kβ t), −2kβ sin(2kβ t)], and the orientation
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(a)

(b)

(c)

Fig. 1 Quasi-coordinates θi versus time for the first two-frequency solution, kα = 0.15, kβ = 0.356, η = 0.8 and ξ = 0.6. a θ1
versus time, b θ2 versus time, c θ3 versus time

quaternion is	(t) = [cos2(kβ t), 0.5 sin(2kβ t), 0.5 sin(2kβ t), − sin2(kβ t)]. Since for the angular momentum
and kinetic energy, the following conditions are met

L2 = 4k2β(I 21 + I 22 ) = const, 2K = 4k2β(I1 + I2) = const

Since the external moment vector depends on time Mi (t) = [0, −4k22 I1 sin(2k2t), −4k22 I1 cos(2k2t)] �=
const, the motion can be interpreted as forced regular precession around the first axis. In the general case of a
rigid body, we will obviously have a more complex motion.
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Trajectories in the configuration space for the first two-frequency solution, kα = 0.15, kβ = 0.356, η = 0.8, ξ = 0.6. a
λ1 versus λ0, b λ2 versus λ0, c λ3 versus λ0, d λ2 versus λ1, e λ3 versus λ1, f λ3 versus λ2

4 Reference rotation models based on two-frequency solutions

4.1 First reference model

This reference model of rotation is based on analytical solution for the orientation quaternion (21) under
conditions when the parameters η and ξ as well as frequencies kα and kβ are given. They can be specified
both from considerations of existing restrictions on the magnitude of the angular velocity vector, or be the
result of approximations of the real motion of the body. The model includes analytical dependencies for
quasi-coordinates in the form:

θn1 = −η
kα

kβ

[sin(2kβ tn) − sin(2kβ tn−1)],

θn2 = −η
kα

kβ

[cos(2kβ tn) − cos(2kβ tn−1)],
θn3 = 2(kβ − ξkα)�t, (38)

where �t = tn − tn−1.

4.2 Second reference model

This model includes analytical solution for the orientation quaternion (28) with given values of η, ξ , kα and
kβ . The analytical expression for quasi-coordinates takes the following form:

θn1 = ξ
kα

kβ

[sin(2kβ tn) − sin(2kβ tn−1)] + 2ηkβ�t,
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(a)

(b)

(c)

Fig. 3 Quasi-coordinates θi versus time for the second two-frequency solution, kα = 0.15, kβ = 0.256, η = 0.8 and ξ = −0.6.
a θ1 versus time, b θ2 versus time, c θ3 versus time

θn2 = η
kα

kβ

[sin(2kβ tn) − sin(2kβ tn−1)] − 2ξkβ�t,

θn3 = kα

kβ

[cos(2kβ tn) − cos(2kβ tn−1)]. (39)

4.3 Third reference model

This model is based on the quaternion representation (34), when the numerical values of the parameters,
and frequencies, are given. The reference values of the quasi-coordinates are defined by following analytical
expressions:

θn1 = 2kβ�t,

θn2 = kα

kβ

[sin(2kβ tn) − sin(2kβ tn−1)],
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Trajectories in the configuration space for the second two-frequency solution, kα = 0.15, kβ = 0.256, η = 0.8 and
ξ = 0.6. a λ1 versus λ0, b λ2 versus λ0, c λ3 versus λ0, d λ2 versus λ1, e λ3 versus λ1, f λ3 versus λ2

θn3 = kα

kβ

[cos(2kβ tn) − cos(2kβ tn−1)] (40)

4.4 Fourth reference model

This reference rotation model is based on Eq. (36). The quasi-coordinates are computed as follows:

θn1 = kα

kβ

[cos(2kβ tn) − cos(2kβ tn−1)] + 2kβ�t

θn2 = − kα

4kβ

[cos(4kβ tn) − cos(4kβ tn−1)] + (sin(2kβ tn) − sin(2kβ tn−1)),

θn3 = kα

4kβ

[sin(4kβ tn) − sin(4kβ tn−1)] + (cos(2kβ tn) − cos(2kβ tn−1)) + kα�t (41)

5 Numerical implementation of two-frequency reference rotation models

The proposed two-frequency models are evaluated numerically for specific values of the frequencies and
parameters, the time step �t = 0.1s within the time interval of 200s. For the values of frequencies kα =
0.15, kβ = 0.356 and parameters η = 0.8, ξ = 0.6, the results of the implementation of the reference
model for the first two-frequency solution (21) and (23) in the form of dependencies of quasi-coordinates
on time and trajectories in the configuration space of orientation parameters are shown in Figs. 1 and 2,
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(a)

(b)

(c)

Fig. 5 Quasi-coordinates θi versus time for the third two-frequency solution, kα = 0.15, kβ = 0.256, ν = 0.8 and μ = 0.6. a θ1
versus time, b θ2 versus time, c θ3 versus time

respectively. Under the conditions of this implementation, the magnitude of the angular velocity vector is
assumed constant with the value of 0.583 rad/s. The set of orientation parameters in time in four-dimensional
space forms a surface inside the hypercube with vertices having coordinates (−1, 1), and the trajectories
themselves are sections of this surface by the corresponding plane. Trajectories in configuration space, as well
as the dependences of the angular velocity vector and orientation parameters on time, can be considered as an
additional phenomenological tool in the study of a specific rotational motion.

The time dependences of the quasi-coordinates for the reference model of the second two-frequency
solution (28) and (29) for the values of frequencies kα = 0.15, kβ = 0.25 and parameters η = 0.8, ξ = 0.6
are illustrated in Fig. 3. The obtained trajectories in the configuration space of orientation parameters for this
model are shown in Fig. 4. For this implementation of the reference model, the magnitude of the angular
velocity vector is also assumed constant with the value of 0.583 rad/s.
The reference model based on the third two-frequency solution (34) and (35) is implemented for the values
of frequencies kα = 0.15, kβ = 0.25, and parameters ν = 0.8, μ = 0.6. The obtained dependences of
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Trajectories in the configuration space for the third two-frequency solution, kα = 0.15, kβ = 0.256, ν = 0.8 andμ = −0.6.
a λ1 versus λ0, b λ2 versus λ0, c λ3 versus λ0, d λ2 versus λ1, e λ3 versus λ1, f λ3 versus λ2

quasi-coordinates on time and trajectories in the configuration space of orientation parameters are shown in
Figs. 5 and 6. For this implementation, the magnitude of the angular velocity vector is constant and has the
value 0.583 rad/s.

The results of the implementation of the reference model based on the fourth two-frequency solution (36)
and (37) for the frequency values kα = 0.15, kβ = 0.177 are presented by the graphs of the time dependence
of the quasi-coordinates in Fig. 7 and the trajectories in the configuration space of the orientation parameters
in Fig. 8. For this implementation, the magnitude of the angular velocity vector of a rigid body is not constant,
but its average value over the time interval was 0.583 rad/s.

Figure 9 shows the trajectories in the configuration space of the orientation parameters obtained for the
model of regular precession on the time interval with the initial conditions 	(0) = [1, 0, 0, 0] and ωi (0) =
[0, 15, −0, 356, 0, 437] rad/s. For this implementation, the constant magnitude of the angular velocity vector
with the value 0.583 rad/s was assumed. The trajectories in the configuration space of orientation parameters
for the case of regular precession have features typical for a regular motion including symmetry, repeatability,
and specific form. Comparison of the results based on the reference models of two-frequency solutions with
the results of the regular precession model allows us to conclude that the trajectories obtained for the proposed
two-frequency models in the general case of the frequency values and parameters differ significantly from the
trajectories obtained for the regular precession, and also are more complex.

6 Accuracy analysis of the third-order orientation algorithm based on reference models

Let us apply the developed implementations of the two-frequency reference models to obtain an estimate of
the accuracy of the third-order algorithm, for which the rotation quaternion �	n = [�λn:0, �λλλn] within the
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(a)

(b)

(c)

Fig. 7 Quasi-coordinates θi versus time for the fourth two-frequency solution kα = 0.15, kβ = 0.177. a θ1 versus time, b θ2
versus time, c θ3 versus time

time step [tn−1, tn] has the following form [7]

�λn0 = 1 − 1

8
θ2n

�λλλn = 1

2
θθθn

(
1 − 1

24
θ2n

)
+ 1

24
(θθθn−1 × θθθn) (42)

where θ2n = θθθn ···θθθn . The final orientation of the rigid body the time tn is calculated using the following formula:

	n = 	n−1 ◦ �	n,

where 	n = 	[θθθn], 	n−1 = 	(θθθn−1). To evaluate the accuracy of the algorithm, let us define the fatal
orientation error—the accumulated small angle of rotation (drift) δ of the calculated tripple of axes relative to
its true position, which is specified by the reference model. To this end, we apply the method for determining
the drift as proposed in [7].
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(a) (b) (c)

(d) (e) (f)

Fig. 8 Trajectories in the configuration space for the fourth two-frequency solution kα = 0.15, kβ = 0.177. a λ1 versus λ0, b λ2
versus λ0, c λ3 versus λ0, d λ2 versus λ1, e λ3 versus λ1, f λ3 versus λ2

Figure 10a–d shows plots of the drift error versus time within a time interval t ∈ [0, 2000]s, obtained with
the time step �t = 0.1s on the reference rotation models, which are based on new two-frequency solutions,
for the case |ωωω(t)| = 0.583 rad/s. For comparison, Fig. 10e shows the dependence of the drift error on time,
based on the reference model of regular precession with the initial conditions for the orientation quaternion
	(0) = [1, 0, 0, 0] and the angular velocity vector ωi (0) = [0, 15, −0, 356, 0, 437] rad/s, for which the
condition |ωωω(t)| = 0.583 rad/s is also satisfied. Analysis of the given dependences in Fig. 10 allows us to draw
the following conclusions

– The drift error under the same magnitude of the angular velocity vector for all test motions increases with
time, but its rate of increase for the derived reference models exceeds the rate of increase in the case of a
regular precession

– It is found that the worst test motion from the point of view of the drift error for the selected algorithm is
the reference model based on the first two-frequency solution

– The test motion in the form of a regular precession of a rigid body is not the worst case for analyzing the
errors of the SINS orientation algorithms.
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(a) (b) (c)

(d) (e) (f)

Fig. 9 Trajectories in the configuration space for the regular precession with initial conditions 	(0) = (1, 0, 0, 0), �ω(0) =
(0, 15, −0, 356, 0, 437) rad/s. a λ1 versus λ0, b λ2 versus λ0, c λ3 versus λ0, d λ2 versus λ1, e λ3 versus λ1, f λ3 versus λ2

7 Conclusions

Two-frequency solutions of the system of dynamic and kinematic equations of rotation of a rigid body are
derived and test motions on their basis in the form of analytical reference models are developed. The numerical
implementation of the reference models and the analysis of the obtained trajectories in the configuration space
of the orientation parameters show that the corresponding motions differ significantly from the case of regular
precession and are more complex. The implementations of the reference models are used as test motions to
estimate the drift error of the selected third-order orientation algorithm for SINS. It was found that the drift
error, which occurs in the case of the proposed models, exceeds the drift error, which is obtained for the regular
precession with the same magnitude of the angular velocity vector.
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(a)

(b)

(c)

(d)

Fig. 10 Time dependences of the drift error δ. a First reference solution, b second reference solution, c third reference solution,
d reference solution of regular precession
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