
Protocol Conformance Checking of Component-based

Systems and Service-oriented Architectures

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der
Naturwissenschaftlichen Fakultät III

(Institut für Informatik)
der Martin-Luther-Universität Halle-Wittenberg

von Herrn
Dipl.-Inform. Andreas Both

geboren am 29.06.1979 in Halle (Saale)

Gutachter:

1. Prof. Dr. Wolf Zimmermann, Martin-Luther-Universität Halle-Wittenberg, Deutschland

2. Prof. Dr. Heinrich (Heinz) W. Schmidt, Melbourne Institute of Technology, Australien

Halle (Saale), 27.11.2009 Datum der Verteidigung: 12.03.2010

Für Sannie, Annelie + 2.

iv

Acknowledgments

Finally, I am in the position to thank all the people who supported me during the last years

while I have been working on my thesis.

For giving me the chance to write this thesis I am grateful to my supervisor Professor Dr. Wolf

Zimmermann. Moreover, I thank Professor Dr. Heinz Schmidt for his very useful suggestions

and his willingness to write an expertise.

I am grateful to my colleagues of the Institute for Computer Science at the Martin Luther

University of Halle-Wittenberg for their help and discussions. Fortunately, I was able to motivate

many students to work together hardly on implementing the defined verification framework. The

“P2”-team and Stephan Prätsch had the most impact on the development and thus deserve a big

thank you.

Special thanks go to Anna Rambow, Dirk Richter, Karoline Makosch, Michael Hanke, Hen-

ning Thielemann, Hendrik Bugdoll, Martin Gleditzsch, Jacob Dölle, Stefan Noke, Jan Heichler,

Alexander Hinneburg, Sandro Wefel, Tobias Habermann, Christian Bodamer, Martin Müller,

Norman Richter, and Thomas Piskol for reading (parts of) the thesis and their suggestions for

improvements.

I thank the companies ComServ Ingenieurgesellschaft mbH and GISA GmbH for allowing

me to implement case studies. I would like to express my sincere gratitude to OR Soft Jänicke

GmbH. Their long-term support was a big cornerstone of the success of my work.

Last but not least, I would like to express my gratefulness to my family for their help and

my wife Susanne for her love and patience. Cheering me up together with my little sunshine

Annelie was a big support during the time of writing this thesis.

v

Abstract

In this thesis, an approach was developed that allows the fully automatic verification of non-

functional properties of component-based software and Service-oriented Architecture (SOA).

These properties are considered basing on the performed interactions between software compo-

nents. Precisely, the contracts – named component protocols – state, which interaction sequences

(e. g., orders, repetitions) are allowed, while calling a provided interfaces of a component. Pro-

tocols can be used to represent properties like safety and reliability. For the checking of protocol

conformance a verification process is used, whose unique feature is the usage of an abstract

behavior representation that is capable of capturing unbounded parallelism and unbounded re-

cursion.

The verification process is divided into five steps that are performed automatically. This

ensures the applicability in the scope of component-based software development, i. e., the com-

ponent characteristics are obeyed even within the verification process. During the verification

process, it is ensured that the behavior of the considered components is captured conservatively.

Thus, each contained error will be discovered with respect to the given component protocols.

The definition and implementation of the verification process focuses on the (practical) ap-

plicability of the suggested approach in an industrial context. In particular, performance and

precision of the model checking algorithm, as well as protection of business secrets and intel-

lectual properties, are considered.

Our approach makes it possible to check a given system for errors before the deployment

(static verification). This way, an important aspect of reliability is guaranteed. Besides other

scopes of applicability, it is possible to verify component-based software where components

are bound dynamically. Moreover, a generalized approach was developed with respect to the

programming languages used for implementing components. Furthermore, we show that an

integration into a (formal) software specifications process is possible, as well as the integration

into an (iterative) software development process.

The suggested approach was checked in (industrial) case studies considering several program-

ming languages. The results of the case studies show that verification is possible to consider

practical problems, even for actual projects containing several thousands lines of source code.

This is achieved by defining and implementing an efficient model checking algorithm and further

optimizations.

vii

viii

Zusammenfassung

Im Rahmen dieser Arbeit wurde ein Verfahren entwickelt, das die vollautomatische Verifika-

tion von nicht-funktionalen Eigenschaften von aus Komponenten bestehenden Programmen (ins-

besondere Service-orientierten Architekturen) erlaubt.

Die hier betrachteten nicht-funktionalen Eigenschaften sind die Interaktionen zwischen ver-

schiedenen Softwarekomponenten; genauer: in den sogenannten Protokollen wird festgelegt,

welche Aufrufe der angebotenen Schnittstellen (z. B.Reihenfolge, Wiederholungen) erlaubt sind.

Protokolle können genutzt werden, um Eigenschaften wie zum Beispiel Sicherheit und Zu-

verlässigkeit sicherzustellen.

Zur Überprüfung der Komponenten (Protokollprüfung) werden deren Abstraktionen herange-

zogen. Hierbei ist es erstmals gelungen, eine Repräsentation zu nutzen, die sowohl unbeschränkte

Parallelität, als auch unbeschränkte Rekursion darstellen kann.

Zur Verifikation dieser Protokolle wurden fünf automatische Verarbeitungsschritte definiert.

Diese stellen die Anwendbarkeit in Komponenten-orientierter Programmierung bzw. Entwick-

lung sicher, d. h. auch bei der Verifikation bleibt der Komponenten-Charakter erhalten. Es ist

sichergestellt, dass das Verhalten der Komponenten und damit des Komponenten-basierten Sys-

tems konservativ erfasst wird. Somit ist während der Modellprüfung garantiert, dass jeder Fehler

gefunden wird.

Während der Entwicklung wurde besonderer Wert auf die Anwendbarkeit des Modellprü-

fungsansatzes gelegt, so dass eine Anwendung im industriellen Kontext möglich wird. Dies

betrifft sowhl die Performance und Genauigkeit des Modellprüfungsalgorithmuses, als auch den

Schutz von Geschäftsgeheimnissen.

Mit unserem Ansatz ist es möglich, einen Beitrag zur Verifikation von Komponenten-basierten

Systemen zur Erstellungszeit zu leisten, da Systeme bereits vor der Auslieferung auf Fehler

überprüft werden können. Dies stellt einen wichtigen Beitrag zur Erstellung von zuverlässigen

Software dar. Neben anderen Anwendungsbereichen ist es darüber hinaus möglich, Systeme zu

verifzieren, die Komponenten dynamisch einbinden und deren Komponenten in verschiedenen

Programmiersprachen entwickelt wurden. Darüber hinaus wird gezeigt, dass eine Integration

dieses Ansatzes sowohl in einen (formalen) Spezifikationsprozess als auch in einen (iterativen)

Entwicklungsprozess möglich ist.

Das vorgeschlagene Verfahren wurde in umfassenden (industriellen) Fallstudien überprüft, in

denen verschiedene Programmiersprachen betrachtet wurden. Die Ergebnisse der Fallstudien

zeigen, dass mit einer effizienten Implementierung des Modellprüfungsalgorithmuses und wei-

teren Optimierungen praktische Probleme selbst dann zu lösen sind, wenn diese vollständige,

reale Projekte mit vielen tausend Quelltext-Zeilen betreffen.

ix

x

Contents

Contents

List of Figures xv

List of Examples xvii

List of Tables xxi

1. Introduction 1
1.1. Basic Problem . 2

1.2. Scientific Problem . 3

1.3. Properties of Components . 4

1.4. Test vs. Verification . 5

1.5. Verification of Component-based Software . 6

1.6. Representations of Component Behavior . 8

1.6.1. Sequential vs. Parallel Behavior . 9

1.6.2. Specification vs. Source Code Behavior 9

1.7. Problem Definition . 10

1.8. Approach to a Solution . 11

1.8.1. Correct Composition of Components 11

1.8.2. Representing the Behavior of Components 12

1.8.3. Ensuring that the Behavior of the Components matches the Specification 12

1.8.4. Developed Verification Process . 12

1.9. Structure of this Work . 14

2. Related Work 15
2.1. Classification of Approaches . 16

2.2. Detailed Discussion of Approaches . 18

2.2.1. Behavior Representations . 19

2.2.2. Constraints and Composability . 22

2.2.3. Model Checking . 23

2.3. Conclusions . 24

3. Foundations 27
3.1. Components and Component Systems . 27

3.1.1. Components . 27

3.1.2. Component Systems and Composition 33

3.1.3. Classification of Component Behavior 37

3.1.4. Cactus Stack . 39

3.2. Formal Descriptions of Behaviors . 40

3.2.1. Traditional Representations . 40

3.2.2. Process Rewrite Systems (PRS) . 44

xi

Contents

3.2.3. Hierarchy of Formal Representations 47

3.2.4. Model Checking . 49

3.3. Summary . 51

4. Protocol Conformance and Abstractions 53
4.1. Component Protocols (short: Protocol) . 53

4.2. Protocol Conformance . 56

4.3. Abstractions of Source Code . 61

4.4. Use Process Rewrite Systems as Behavioral Representation 63

4.4.1. PA-processes and Process Algebra Nets 66

4.4.2. Example Language . 66

4.4.3. Capturing Behavior with Process Rewrite Systems 66

4.5. Summary . 70

5. Verification Process 73
5.1. Step 1: Creating Single Component Abstractions 75

5.1.1. General Approach . 77

5.1.2. Creating Stripped Process Algebra Nets from a Single BPEL Process . 81

5.1.2.1. Introduction of the Web Services Business Process Execution

Language . 81

5.1.2.2. Example . 82

5.1.2.3. Generating Abstractions of BPEL Web Services 84

5.1.3. Implemented Translations to Process Rewrite Systems 86

5.1.3.1. Creating Stripped Process Algebra Nets from a Single Python

Component . 86

5.1.3.2. Creating Stripped Process Algebra Nets from a Single BPEL

Webservices . 87

5.1.3.3. Creating Stripped Process Algebra Nets From a Single PHP

Component . 87

5.1.4. Summary . 87

5.2. Step 2: Creating System Abstractions . 88

5.2.1. Process . 89

5.2.2. Restrictions . 94

5.2.3. Optimizations . 94

5.2.3.1. Contracting λ-rules . 95

5.2.4. Summary . 99

5.3. Step 3: Creating Combined Abstractions . 100

5.3.1. Process . 101

5.3.1.1. Discussion of the Model Checking Problem 101

5.3.1.2. Construction of the Combined Abstraction 102

5.3.2. Optimizations of the Combined Abstractions 107

xii

Contents

5.3.2.1. Optimizations during Creation 107

5.3.2.2. Remove Unresolvable Transition Rules 108

5.3.3. Summary . 108

5.4. Step 4: Performing Protocol Conformance Checking 109

5.4.1. False Negatives . 110

5.4.2. Reducing the Number of False Negatives 113

5.4.2.1. Basic Idea . 113

5.4.2.2. The Round-Robin Reachability Algorithm 115

5.4.2.3. Summary . 121

5.4.3. Improving Runtime of Model Checking Using PRS Properties 122

5.4.3.1. Construction of ΠPA . 124

5.4.3.2. Discovering Spurious Counterexamples 126

5.4.4. Summary . 127

5.5. Step 5: Evaluating Counterexamples . 127

5.5.1. Extending the Counterexamples . 128

5.5.2. Evaluating Extended Counterexamples 131

5.5.3. Summary . 131

6. Implemented Framework and Case Study 133
6.1. Implemented Framework . 133

6.1.1. Abstractions (short: WSA) . 134

6.1.1.1. Translation of Python Statements into PRS Transition Rules . 134

6.1.1.2. Translation of PHP Statements into PRS Transition Rules . . 134

6.1.1.3. Translation of BPEL Activities into PRS Transition Rules . . 135

6.1.1.4. Representation of PRS Transition Rules 136

6.1.1.5. Summary . 137

6.1.2. PRS Operations (short: WSO) . 137

6.1.3. Model Checker (short: WSB) . 138

6.1.4. User Interfaces (short: WSC+P2) . 139

6.1.5. Summary . 140

6.2. Considered Case Studies . 142

6.2.1. OR Soft Workbench . 142

6.2.2. EMenue.net . 144

6.2.3. Fail2Ban . 146

6.2.4. BPEL workflows . 146

6.2.5. Summary . 149

6.3. Verifying Combined Abstractions . 149

6.3.1. The Experimental Setting . 150

6.3.2. The Results . 150

6.3.3. Summary . 151

6.4. Discussion . 151

xiii

Contents

7. Method for Using Protocol Conformance Checking in Iterative Component System
Integration 155
7.1. Motivation . 155

7.2. Iterative Verification . 156

7.3. Verification Process for Iterative Development 160

7.4. Evaluating the Result of the Model Checker 161

7.5. Verification Contexts (No Callbacks Allowed) 162

7.5.1. Components with no Unbounded Required Interfaces 162

7.5.2. Components with Unbounded Provided and Unbounded Required Inter-

faces . 165

7.6. Verification Context (Allowing Callbacks) . 166

7.7. Discussion . 170

8. Conclusions and Future Work 171
8.1. Component Properties . 172

8.2. Comparison with other Approaches . 173

8.3. Implementation and Practical Applicability 175

8.4. Future Work . 175

Index of Definitions 180

Bibliography 181

A. Appendix 197
A.1. Notations Used in this Thesis . 197

A.2. Syntax of Used Programming Language . 197

A.3. More Figures, Tables and Listings . 199

A.4. Extended Consideration of Combined Abstraction 215

A.5. Used Tools . 217

xiv

List of Figures

List of Figures

1.1. Preparation and verification process (Overview). 13

3.1. Component model. 28

3.2. Interface of initial components. 33

3.3. Hierarchy of basic PRS operators. 44

3.4. Hierarchy of Process Rewrite Systems. 49

5.1. Detailed preparation and verification process. 74

5.2. Implementation of a component C, its abstraction ΠC and protocol PC 87

5.3. Schematic representation of the construction of the system abstraction. 88

5.4. Calculation of optimized transition sets. 98

5.5. Directives for construction of transition rules of a Combined Abstractions ΠC
S . . 104

5.6. Concept of a posteriori verification algorithm. 122

6.1. Overview of implemented architecture. 134

6.2. Implemented workflow. 135

6.3. Definition of Web Service interface “Abstractions”. 136

6.4. Definition of Web Service interface “PRS Operations”. 137

6.5. Definition of Web Service interface “Model checker”. 138

6.6. Definition of Web Service “user interface”. 139

6.7. Screenshot of implemented frontend “P2”. 140

6.8. Correlation of verification process and implemented components. 141

6.9. Case study: OR Soft Workbench. 143

6.10. Case study: EMenue.net. 145

6.11. Case study: Fail2Ban. 147

6.12. Case study: Web Services Business Process Execution Language. 148

7.1. Possible scenarios during development. 159

7.2. Verification processes for iterative development. 161

8.1. Overview: Verification process. 172

A.1. A Saguaro cactus (Carnegiea gigantea), wikimedia.org. 199

A.2. Limits of the decidability of linear-time logics. 200

A.3. Limits of the decidability of branching-time logics. 201

A.4. The complexity of reachability of Process Rewrite Systems. 201

xv

List of Figures

xvi

List of Examples

3.1. Set of interfaces (implementations in Example 3.2 on page 31). 30

3.2. Set of components (corresponding interfaces in Example 3.1 on page 30). We

reuse these components partly in the thesis. 31

3.3. Set of blackbox components (corresponding to Example 3.2). 32

3.4. Composite component C3 consisting of the component C1 and C2. 34

3.5. Composed blackbox components (corresponding to Example 3.2 on page 31). . 36

3.6. Growing and shrinking of a cactus stack. 41

3.7. Process-algebraic expression and corresponding cactus stack. 44

3.8. Growing of cactus stack and corresponding process-algebraic expressions. . . . 45

3.9. Transformations of process-algebraic expressions using a given set of transition

rules. 48

4.1. SSO-component and corresponding protocol. 55

4.2. Sequence diagrams (drawn using showing ΠS,C2 , use of component C2. 57

4.3. Glassbox components, where the execution results in an error. 59

4.4. Cactus stack representing erroneous execution trace (counterexample). 60

4.5. System abstraction of S and use of component as PRS. 65

4.6. Behavior not represented exactly by a Process Rewrite System. 71

5.1. ΠCstart , ΠC0 , ΠC1 and ΠC2 as Stripped Process Rewrite Systems. 76

5.2. Constructed system abstraction ΠS of a component-based software. 77

5.3. Constructed system abstraction ΠS,C2 under consideration of only the interac-

tions of component C2 in Example 5.2. 78

5.4. Erroneous execution trace (derivation). 79

5.5. Computing an abstraction of a component C. 80

5.6. Bank system implemented using BPEL. 83

5.7. Process rewrite rules of the Stripped Process Algebra Nets ΠC , ΠB and ΠL. . . 84

5.8. Rewrite rules of system abstraction ΠS,C of Example 5.7 according to the ser-

vice protocol of the Web Service C. 90

5.9. Component-based software with labeled program points. 93

5.10. Rewrite rules of abstraction ΠS,C2 according to the protocol of the component C2. 94

5.11. Contracting λ-rules. 95

5.12. Erroneous execution trace (derivation) considering component C2 only. 100

5.13. Visualization of the encoded state of the Combined Abstraction. 103

5.14. Problematic situation while dealing with a Combined Abstraction ΠC
S 105

5.15. Trace constructed by the reachability algorithm. 110

5.16. Abstraction resulting in a real false negative. 111

5.17. Abstraction containing a spurious false negative. 114

5.18. Spurious false negatives. 115

xvii

List of Examples

5.19. Adaption of Example 5.18 on page 115: language inclusion results in an im-

practical output. 116

5.20. Situation described by Property 5.3. 116

5.21. Complete information of Example 5.18 on page 115. 120

5.22. Example with four interfaces and components. 123

5.23. Constructed ΠPA from ΠPAN (ΠS,C3). 125

5.24. A computable counterexample in ΠPA. 125

5.25. Inflating number of counterexamples. 129

5.26. Extended counterexample of Example 5.25a on page 129. 130

7.1. Application assembled from three component. 157

7.2. Abstractions of the components in Example 7.1 on page 157. 158

7.3. Construction of the verification driver. 163

7.4. Verification context, we use C2 and C3 (and PC2) from Example 3.2 on page 31

and 7.2 on page 158. 165

7.5. ΠS=̂C	A⊕ΠC2⊕ΠC3⊕C	A (cf. Example 7.2 on page 158) with callbacks. . . . 167

A.1. Service for registration and confirmation of service items based on time and

material. The example is discussed intensely in [BZ09b]. 199

A.3. Program returning thread identifier as return value. 202

A.2. A more specific protocol of component C2 of Example 4.3 on page 59. 202

xviii

LIST OF ALGORITHMS

List of Algorithms

5.1. Construction of→S (needed in Definition 5.3 on page 89) 91

5.2. Contraction of λ-rules. 97

5.3. Lazy construction of the Combined Abstraction 107

5.4. Mayr’s Algorithm . 112

5.5. Round-robin reachability algorithm in pseudo code. 118

5.6. Verification algorithm in pseudo code. 124

xix

LIST OF ALGORITHMS

xx

List of Tables

List of Tables

2.1. Overview of related work. 19

3.1. Model checking results considering Process Rewrite Systems. 50

5.1. Considered BPEL activities. 82

6.1. Results of model checking. 150

6.2. Timeouts while usingMPAN in comparison toMPA +MPAN. 151

8.1. Comparison with related work (extended version of Table 2.1 on page 19). . . . 174

A.1. Overview of notations. 197

A.2. Meaning of the acronyms of the PRS-hierarchy. 200

xxi

1 Introduction

Software plays a very big role in business, industrial and and scientific environments. Nowa-

days, almost no business can be kept running and almost no research can be done without using

software. Thus, software development (and software engineering in general) plays an indis-

putably important role. It supports future trends of many parts of the information society. Per-

manent development and rigorous research on software is needed to allow the integration of

software in our daily life.

Currently, several problems exist during software development. The most important ones are:

First, the development is expensive in time and money. Second, the developed software is often

contaminated with bugs which result in inappropriate costs and delays the time to market or

reduces the customer satisfaction.

One main reason for both problems was already described in 1968 by Bauer [NR69]. The so-

called “software crisis” is caused by the problem that the effort for developing software increases

rapidly in computer power and the complexity of the problems. Consequently we have to tackle

the problem, how a correct, understandable and verifiable computer program can be written

[DDH72]. Because of these fundamental problems the special field considering software devel-

opment – named ”software engineering” – was established. This (research) field describes and

improves the technologies, processes and methods for requirements analysis, design, construc-

tion, testing, maintenance, configuration management, engineering management, engineering,

tools and development methods, quality of the software and systems [ABD+04]. The main goal

is always to provide a product (application) which ensures requested properties. These could be

in any combination: safety, security, price, performance and many more.

One current trend to fight the rising complexity of software is the use of component tech-

nologies. The goal is to create software while composing software like parts in the automotive

industry. Keywords or visions in this context are “market of components” and “software fac-

tory” [Gri93, GS03b]. One topic in component-based software engineering (CBSE) is to ensure

the functionality of a component-based software. It is assumed that all parts work as expected,

thus an error can be triggered by interactions only. Considering the composability of compo-

nents is part of current research, as for example it is unacceptable if an externally developed

B2B-component crashes, so that the business case cannot be performed. Thus, only with reli-

able composability it is possible to apply component technologies for all the purposes, where

they are needed.

Currently, composition is based on technical properties only (interfaces). Thus, non-functional

requirements (e. g., expressed as expected interaction sequences) are not considered. Conse-

quently, the component developer has to ensure that any interaction with a component is handled

in an acceptable way. This method needs large effort and will never be error-prone. Moreover,

this approach has the disadvantage that a user of a component has only textual definitions of the

purpose and expected usage of a component.

In [PTDL07] “composability analysis for replaceability, compatibility, and process confor-

mance” are entitled as one of the “most notable research challenges” for service composition in

1

1. Introduction

the near future.

To tackle this problem, component constraints (named “component protocols”) are introduced

describing the non-functional requirements for the usage of a component in a formal way. We

will extend the current state of the research, so that the practical applicability is raised.

1.1 Basic Problem

In this work we tackle one fundamental problem of software development:

“How can be guaranteed that a developed application works in the way it is ex-

pected (e. g., by the customer or user)?”

Although there is no silver bullet to solve this problem (cf. Turing-powerful programming

languages), it is worth to invest in software quality. Otherwise the costs for developing new

applications and maintaining existing software will get unacceptably high [Boe81].

During the past decades several steps of evolution were performed to raise the quality of soft-

ware, decrease costs and time to deployment. Some of these improvements with large impact are

object-oriented programming languages, descriptive database languages, development processes

like the V-model, architecture principles like n-tier architectures or model-driven architecture,

integrated development environments, generated tests and many more. We can observe a strong

tendency to develop approaches encapsulating (complicated) formal aspects behind an easier

representation.

Currently, the following approach is already widely spread and of increasing importance:

• Component-based Architecture and Service-oriented Architecture on an architectural level,

dynamical composed applications from preexisting, encapsulated components,

• text-based technologies on a communication layer (e. g., XML-RPC, SOAP, WSDL, . . .)

allowing binding of distributed components, implemented in different programming lan-

guages.

These ideas are oriented towards the (well defined) behavior of parts in hardware environments

(e. g., personal computer hardware). The goal is to allow more independence while developing

functionality (e. g., if the interface requirements are ensured, a customer has not to care about

using another graphic card). The parts can be connected without having to care about the con-

straints of the programming languages, the architecture within the component, and so on. The

used component system (cf. Section 3.1.2) takes care of the technical requirements. Besides

other aspects, this should improve the reusability and hopefully decrease the costs while devel-

oping new applications.

This approach solves some problems (e. g., the technical compatibility of components written

in any programming language), but also intensifies some others. A main problem is that the parts

used to build an application can be maintained, developed and deployed distributively. This is

no side effect, but intended. As a result no implementation exists, that can be evaluated globally,

as it was possible in former times.

2

1.2. Scientific Problem

1.2 Scientific Problem

Several schools of thought already exist considering the problem of reliable composition. Using

specifications or abstract behavior of components several properties are considered with respect

to composition. Details will be discussed in Chapter 2.

The main flaw of existing approaches is that the real behavior of the components is not con-

sidered, the possible component’s behavior cannot be captured or the architecture is restricted.

This leads to less scopes of applicability, because either the result is uncoupled from the actual

implementation or only a small set of implementations can be captured. Hence, there is a need

for a precise abstract representation of source code with the aim of using it for the evaluation of

properties. We represent this demand by the following question:

“Is it possible to capture the abstract behavior of component’s implementations

closely?”

This question has to be discussed in a more detailed way. The current state of research is to use

finite, only concurrent or only sequential behavior representations. Moreover, this leads to the

claim for a capturing of infinite behavior including the fundamental concepts of programming

languages. Precisely:

“Is it possible to apply a representation that represents parallel as well as sequential

behavior while allowing an infinite number of states?”

Having such a powerful representation is only half the battle won. Many authors use verifi-

cation techniques to proof demanded properties (comparison to test techniques in Section 1.4).

So we will do, too. However, verification is a very difficult task. Often, verification tools and

processes need a specific knowledge about the interns of a method. This reduces the applicabil-

ity in industrial contexts. From our point of view a user of a verification should only formulate

the provable question or property (without bothering about the technical details). Therefore, we

formulate the question:

“Is it possible to establish an automatic verification process?”

Last but not least, the applicability of an approach will stand or fall with the time requirements

an approach will have. This leads to the final question, which should be considered not in a

theoretic way, but in a practical way:

“It is possible to formulate the problem in such a compact way, that it is still solv-

able in adequate time?”

These scientific questions have to be evaluated and answered with respect to the parts that

should be put together. In the context of this thesis, these parts are called components or services

(cf. Section 3.1.1). Their properties are discussed in the next section.

3

1. Introduction

1.3 Properties of Components

If one intends to deal with applications assembled from components, which are possible in an

industrial environment, the following issues have to be respected (in accordance with [SGM02,

JC00, HC01, Ver01]):

• Components can be implemented using all kinds of programming paradigms. Thus, paral-

lel behavior (e. g., threads) as well as sequential behavior (e. g., recursion) could be hidden

within the behavior of a component (described below). They can communicate by inter-

actions or messages. In general, they do not share global data with other components1.

Several kinds of interactions are possible, messages could be exchanged synchronously

(blocking, cf. Section 3.1.2), asynchronously (non-blocking) or while synchronizing (e. g.,

in Web Services Business Process Execution Language, cf. Section 5.1.2).

• The main task of component-based software engineering is to put components (cf. Section

3.1.1) together to a larger part. Thus, applications can be implemented by putting parts

together. This composition (cf. Section 3.1.2) is the main task during the implementation

using components. Components can be implemented using several component systems

(cf. Section 3.1.2) and programming languages. Most of the industrial middleware allow

signature-based composition2 only.

• Components are developed context-insensitive. This means, if the technical requirements

are fulfilled, a component can be used in completely distinguished applications.

• A component has no global view on the Component-based Architecture. This means that

the component just knows the (required and provided) peers within the application. Ne-

vertheless, errors can be triggered by interaction sequences containing several components

(callbacks). Thus, an interaction with another component might lead to an interaction

with the primary component. This behavior cannot be recognized by a single component

[ZS06]. Component developers mainly just know their “own” component, the component

they have developed by themselves3. Hence, they can describe the supposed functionality

of this component.

• A component can behave stateless or stateful:

– Stateless components provide specific behavior at any time. They can be considered

as libraries (as known from operating systems), e. g., for mathematical functions.

Thus, every call to such a component is allowed. There exists one condition only:

The component has to work in the defined manner.

– Stateful components act like instances of classes in object-oriented programming. It

is possible to manipulate attributes of a component, while using its interfaces.
1A database accessible by different components can be considered as global data storage. But it can also be consid-

ered as component which other components communicate with.
2Only pieces of information about the interfaces of a component are used.
3This is even true for object-oriented programming.

4

1.4. Test vs. Verification

• Components are often developed, delivered and deployed by external parties. The source

code of a component might not be accessible (blackbox components, cf. Section 3.1.1).

Moreover, if dynamic binding of components is allowed, it is not clear which components

will be used.

Thus, the two main techniques for checking the properties of (traditional) software – test and

verification – are difficult to apply.

1.4 Test vs. Verification

One fundamental concept of checking the functionality of software is testing:

Testing is the process of executing a program with the intent of finding errors

[Mye79, MBTS04].

Tests follow a quite simple method: Values are input and the behavior of the application as well

as the output are observed and evaluated.

Tests have the advantage that it is possible to search for errors, like taking a stab in the dark

without additional information. Thus, an error has not to be anticipated, one has just to try. E. g.,

a used null pointer reference can be discovered this way.

Nevertheless, it is not easy to write appropriate tests [Whi00]. In the ideal world testing will

check every state of an application and check the computed output values against the expected

values. In this case the full program state is evaluated. If no error appears, the application works

as defined. However, this ideal process has at least two lacks:

1. The exponential rise of test cases – in both number of methods (permutations) and bit

length of the data types – leads to a number of test cases that are practically impossible to

check completely.

2. The tester needs an intention, he has to know which results are expected and which errors

could appear.

Several approaches are represented to deal with these problems. For component testing the

blackbox semantics have to be considered, which is done in [BW96, SK00], for example. The

two main goals of research in this area are to deal with the unknown behavior of components and

to recognize an acceptable cover of all test cases. But even if approaches work well for single

components (often with a given specification), there is still the problem that the components have

to be checked within a complete system. At least, after allowing dynamic binding of components

the state space explosion is a very hard problem.

Thus, tests cannot be used to prove the absence of errors [Dij69, Dij70, Mye79, MBTS04].

We have to accept errors which are left undiscovered (false positives). However, tests are a

good approach to check an implementation for errors, where it is unknown which problems can

appear. In contrast, checking if certain (known) constraints are always fulfilled, model checking

is the appropriate method [CGP99].

5

1. Introduction

The verification of software behavior was developed to ensure several properties summarized

as contracts. Verification gives the developer safety that contracts are (always) fulfilled. If a

conservative consideration is preconditioned, then every error can be discovered. This is very

important, particularly in a context with dangers for life and limbs. As software pervades every

part of nowadays industry and products, verification should be used for critical software systems

(e. g., part of nuclear plants, airplanes, medicine, . . .). However, also in business critical settings,

a need for ensuring of software behavior (e. g., for legal reasons) exists. Thus, a contract can

prevent exceptions, ensures business cases, raises safety and security and many more issues.

In contrast to testing, no false positives will appear while model checking a conservative

representation. However, constraint violations might be announced that do not appear in the

actual implementation (false negatives). It is an important task to reduce the false negatives to

an acceptable level.

Furthermore, because a large share of costs in the software life cycle is caused by maintenance

(cf. [Boe81]) it is also important to invest in software quality from an early stage of the develop-

ment process. At least before the deployment of a software, several properties should be ensured

(static verification). This is not state of the art, but topic of current research [PTDL07], especially

as the currently propagated software architectures (Service-oriented Architecture, Component-

based Architecture) focus on the reuse of software components. Especially in these architec-

tures, where programs are composed (dynamically) from components (classes, modules, Web

Services, . . .), the developer might have no clue what happens inside the imported components

or which components are imported. Often only a brief textual documentation is given. This

statement might be weakened, if we use whitebox or glassbox components (where the source

code is visible and thus can be evaluated, cf. Section 3.1.1), but it is still difficult for a developer

to ensure that the usage does not initiate some unexpected side effects, especially in the presence

of stateful components.

At least with the rise of Service-oriented Architectures since the millennium, there is a lack

of options to check the behavior of software. Service-oriented Architecture and the ancestor

Component-based Architecture can and will omit often the behavior of the integrated software

components. This blackbox semantics reduces the options to verify the behavior directly, thus a

new approach for verification is needed.

For these reasons we will focus in this work on developing a verification approach which is

applicable for component-based systems.

1.5 Verification of Component-based Software

The composition of components is relatively simple, actually. If a required interface of a compo-

nent matches the provided interface of another component (depending on the component system)

then they can be bound4. This can be done statically (at compile or deploy time) or dynamically

4Several work [BR04, YS97, BBC05] is done to allow a binding, even if the interfaces do not match directly.
Adapters are used for this purpose.

6

1.5. Verification of Component-based Software

(at run time using e. g., service repositories). The composition is signature based and does ensure

technical properties only (e. g., matching of datatypes).

As mentioned above a constraint is needed for verification. In this work, we consider the

behavior of components by their specified task. Thus, we assume that a component is created to

fulfill a specific purpose. Examples for this purpose are components which implement:

• A file manager: open, write, close file

• An account manager: registration, login, change data, logout

• An automated teller machine (ATM): insert card, input pin, choose money value, return

card

• A time recording system: save arrival time, save idle time, save departure time

• A flight booking system: choose flight, choose class, choose seat, choose meal

• An online shop: create shopping cart, add product, insert voucher code if available, add

shipping costs, finish order

• A point of sale: register good, insert zip code if wished, print receipt

• A warehouse manager: check stock, allocate product, send product to customer, reorder

product if stock is low

These examples can be extended easily5. We can conclude an importance for developing com-

ponent-based software.

As we can see, there is a strong coherence to the consideration of workflows. They are of-

ten represented by Petri nets [Pet73, Pet77, Rei85] (or representations based on Petri nets like

workflow-nets [vdA97], colored Petri nets [Jen91] and many more). The research field workflow

analysis and verification considers many properties of workflows [AAH98, Aal00, VBvdA01,

KMZB02, LL02, DDO08]. Some of these concepts are applicable, but in general the behavior

of components cannot be considered like workflows, because of the expressiveness of program-

ming languages.

If the behavior of components can be ensured in respect to the allowed input values (e. g., no

null pointer exception, checked using test technologies), then we call them reliable components.

If reliable components are assembled to an application, then it is not guaranteed that the applica-

tion works in the correct manner. Problems could be caused by the interactions of the composed

components [NM95].

Motivated by the observation that a composition of reliable components does not always re-

sult coercively in a working application, several research groups consider the relevant problems.

One solution for this problem is a dynamic verification. There, every (incoming) interaction is

checked whether it is allowed in the current state (of the component) or not. If not, the exe-

cution is aborted (and a specific exception is thrown). This approach is similar to the concept
5They could be applied while using stateless as well as stateful components.

7

1. Introduction

of pre- and postconditions (“Design by Contract” [Mey92b]), which can be checked dynami-

cally, too. A model of the components behavior is used to decide which interaction is permitted

currently. Here, this model is named component protocol (cf. Definition 4.1 on page 54). This

method results in the problem that the user of the application is still confronted with an unex-

pected exception preventing the execution which was desired primarily by the user. Thus, the

allowed behavior is checked during run time. Hence, the deployed component is not checked

for reliability.

To check the constraints of an application before the deployment, a static model checking ap-

proach is needed. Static verification means the check of the possible behaviors without executing

the application. Thus, the application can be checked before the deployment at the user space.

Hence, the user will not be confronted with an error triggered by an uncertain composition.

To our knowledge all research groups use an abstracted behavior of the components behavior,

currently. This behavior is specified by hand or is given. This can be seen as a remarkable lack,

as the behavior of the components has to be the same as the behavior of the specification6. The

mentioned behavior is represented using a formal approach, like finite state machines, push-

down automata, Petri nets and other formalism. Hence, a formal proof of the presence or ab-

sence of violations of the given constraint is possible. The chosen formalism has to represent

the behavior of the components conservatively. This means that every possible execution trace

is contained in the abstraction, too. This property ensures that every error can be found. More-

over, it is worth to discuss, which formalism is capable to deal with the fundamental concept of

programming languages: parallelism and recursion7.

1.6 Representations of Component Behavior

The representation of the behavior is a cornerstone of each approach. A less powerful repre-

sentation would not be capable to represent the components behavior conservatively with a few

restrictions only. The more powerful a representation is, the more complex behavior of real

applications can be represented. Thus, it is important to choose an appropriate representation.

Some of the well known representations are finite state machines (FSM), push-down automata

(PDA) [BS57, Cho57, Sch63, AU72, ABB97], Petri nets [Pet73, Pet77, Rei85] and process al-

gebras like Calculus of Communicating Systems (CCS) [Mil89] or Communicating Sequential

Processes (CSP) [BHR84, Hoa04].

Another requirement is the theoretical background of the representation. Since the abstraction

has to be model checked in order to prove the wished properties, at least the method for this

purpose has to exist. Considering this property, finite state representations have a significant

advantage as several model checking techniques exist that are applicable.

However, finite state representation cannot capture the behavior if (unbounded) recursion and

(unbounded) parallelism (e. g., unknown number of threads) is present. Thus, they can only be

6Ensuring the correspondence of real component behavior and abstracted behavior is hard.
7E. g., in [ZS06] it is shown, that the behavior representation has to be capable to deal with context-free languages

if recursion is allowed within the components implementation to ensure that all possible errors can be found.

8

1.6. Representations of Component Behavior

used for applications which do not contain these behaviors. There exists a rule-of-thumb that

the more powerful the representation is, the less options are available to perform formal checks.

Consequently, the most accurate representation is the source code, which is Turing-powerful (in

most programming languages). But a Turing-powerful representation cannot be model checked,

as even the reachability problem is undecidable [BL74].

1.6.1 Sequential vs. Parallel Behavior

The focus during the extension of the behavior representation goes into two dimensions. First,

parallel behavior captures the behavior of at least two processes, which can work independently

(cf. Definition 3.14). The well known threads are an example for this concept. Parallel behavior

is often represented using Petri nets (e. g., in [VdAvHvdT02], Definition 3.26), because they

have a well known theory. However, there exist several other representations which allow to

formulate parallel behavior, e. g., process algebras could be used (e. g., used in [Ada06]) and

CSP (e. g., used in [AG97]).

In the industrial practice parallel behavior is very important. At least after the spread of multi-

core computers, a representation capturing no parallel behavior will be usable for a few scopes

of applicability only.

On the other dimension sequential behavior takes place. This describes simply the need for

representing dependencies between the execution of tasks. This behavior will lead to recursion

– a fundamental concept of computer science – if a process is called in a cycle (in the simplest

way by itself). Recursion cannot be represented using finite state machines nor Petri nets nor

process algebras (like CCS or CSP), in general. A suitable representation is known as push-

down automata (cf. Definition 3.25). This representation disposes of a stack, which can be

used to store pieces of information [HU79]. Push-down automata (and relatives) are used for

representations of behavior for example in [Reu02b, Sud05, ZS06].

Mayr [May00] states, that the parallel behavior and the sequential behavior are orthogonally.

I. e., it is not possible to use a representation describing sequential behavior to describe parallel

behavior in general and vice versa.

Parallelism and recursion are two fundamental concepts of programming languages and com-

puter science in general. Hence, they have a high significance for component-based software.

Thus, we do not want to resign to represent these concepts within the component behavior.

1.6.2 Specification vs. Source Code Behavior

To our knowledge, other research groups use (human defined) specifications while evaluating the

problem of compositionality. From our point of view this might be a problem itself. If a model

checking algorithm states, that the considered behavior is obeyed, than it is still possible that an

error within the real implementation is not discovered. It is not clear, where the specification is

generated. Consequently, a given specification has to be checked, if the component’s behavior

is captured conservatively. To our knowledge this is not done. These approaches leave it to the

developers to ensure that the contract is conservative with respect to the implementation. They

9

1. Introduction

have to understand and evaluate the formal specification of the component behavior and match it

against the actual implementation to determine, which situation leads to the discovered problem.

1.7 Problem Definition

“Are components composed correctly?”

We want to develop an approach, which enables to deal with many applications in industrial

environments. Thereby, we will focus here on static verification, i. e., verification before the

execution of the application.

Derived from properties of components in industrial systems, middleware and applications,

we see the request for an approach, which eliminates the lacks of current technologies. The

following requirements are derived from the previous discussion and the context of component-

based software.

• First we have to answer the question: What means correct composition? Thus, we have to

use or define a certain formalism allowing to describe the constraint that has to be model

checked. A constraint should be signature-based, because only the interface definition of

a component is published.

• The definition of a constraint should only request little knowledge of the user. It would be

better, if the component developer has only to care about the main idea of his component.

Moreover, we assume that a task sharing might be fruitful, where another person defines

a constraint independently. E. g., a software architect or business analyst can define con-

straints without knowing the implementation.

• The approach should be capable of dealing with many (or all) component systems (cf.

Section 3.1.2). Hence, the different advantages and disadvantages should be no obstacle

for the applicability. E. g., it should be capable to deal with synchronous and asynchronous

interactions as it is allowed in different component systems.

• The approach should be able to deal with the component character (blackbox). Without

loss of generality we assume that a single developer can access the source code of a single

component only.

• Static as well as dynamic binding should be possible. The fact should be represented that

it is not predictable which (matching) component is chosen.

• Less restrictions on the representation of the component behavior are demanded. Ideally,

parallel behavior as well as sequential behavior will be possible to capture. Therewith a

larger part of possible component behavior is ascertainable leading to a higher practical

applicability.

• The model checking approach should result in a qualified answer. Thus, it is possible to

determine if and how a situation (violating the constraint) can be reached.

10

1.8. Approach to a Solution

Hence, we search for an approach for static verification ensuring the components are composed

correctly. The approach should be capable to deal with as many component systems and behav-

iors as possible. This will lead to a better practical applicability.

1.8 Approach to a Solution

The main contribution of this work is providing a verification process, that is capable to deal

with an expressive representation for component’s behavior. Moreover, the characteristics of

components and component systems are preserved. It needs an easily to understand input, de-

fined by the user of the verification process. The remaining tasks are performed automatically.

In doing so, a representation is created, processed and evaluated, that is capable to represent

unbounded parallel behavior and unbounded sequential behavior. If the component’s behavior

does not match the required properties, then meaningful counterexamples are computed using

model checking techniques.

1.8.1 Correct Composition of Components

As mentioned before, model checking requires the definition of a formal property. The applica-

tion is checked, whether a given property is fulfilled or not.

As Nierstrasz and Meijler [NM95] already have requested, a verification process (of compo-

nents) should be used to ensure the correct usage of interfaces. To our knowledge Nierstrasz uses

the term protocol firstly [Nie93, Nie95], while considering the interactions between components

(there are mostly objects).

Thus, a protocol PC of a component C in our sense describes the possible interaction se-

quences with the componentC (cf. Section 4.1). Like other approaches [AG97, Reu02b, FLNT98,

PV02] we use finite state machines to represent the constraints.

The protocol of a component can be interpreted as the workflow, the component has imple-

mented (cf. examples in Section 1.5). A component or system designer can define this protocol,

as no implementation details are contained. It is assumed that this workflow is checked inter-

nally by the component developer. In the case all local checks of the component behavior are

passed, the component is called reliable8. A composition is called correct, if the given protocols

are not violated.

If reliable components can be composed to an application, we will check whether the protocols

are obeyed. This is the main focus in this work. The problem is called “protocol conformance”

(cf. Section 4.2). If dynamical composition is possible, we only have to find a combination of

components fulfilling the requirements and obeying the protocols of the composed components.

In this case other components are not conform with the protocols of this combination.

Summarized, we consider the composition of components to ensure reliability and safety of

component-based software. Other criteria like liveness and safety are not considered.

8In this work, we assume that each available component is reliable.

11

1. Introduction

1.8.2 Representing the Behavior of Components

A big challenge is that parallel as well as sequential behavior should be captured. We use the

slightly common and less used representation named Process Rewrite Systems [May98, May00]

for this purpose. They represent a unification of the well known push-down automata and

Petri nets (cf. Section 3.2.2).

Therefore, we can represent unbounded recursion (like in push-down automata) and un-

bounded parallelism (like in Petri nets) to represent the behavior (cf. Section 5.1.1). While

parallel and sequential behavior can be captured, it is also possible to represent synchronous and

asynchronous interactions.

We will represent the behavior of each component individual, by an independent component

abstraction. This ensures the practical applicability in a context, where components are devel-

oped distributively. Moreover, we separate the contract from the component behavior, thus they

could be created independently.

The behavior of the complete component-based software is represented while combining the

component abstractions to a system abstraction. In this step the composition directives of the

considered component system are taken into account and are imitated.

1.8.3 Ensuring that the Behavior of the Components matches the Specification

Other approaches use a specification to represent the behavior of a component (cf. Chapter 2).

It is assumed implicitly that this specification represents the behavior conservatively (“abstract

behavior”). From our point of view this method reduces the practical applicability as long as no

mechanism is presented for computing the specifications.

For this reason we define a process for computing component abstractions from many pro-

gramming languages. We use compiler construction technologies for this purpose (cf. Section

4.3). The process works automatically. Thus, the correlation between the implementation and

the behavior is ensured. We assume that this method leads to a lower burden, while working

with our approach.

Here, we call the components behavior representation “component abstraction”.

1.8.4 Developed Verification Process

To ensure the desired properties the theory of Process Rewrite Systems is extended and adapted

to match the requirements of component-based software verification. Several enhancements are

performed to ensure the practical applicability.

The verification process represents the connecting method, which allows to fulfill the re-

quested requirements. It is shown in Figure 1.1.

The process is divided into five independent steps.

Step 1: An abstraction is generated for a single component. This abstraction represents the com-

ponents with all required and provided interfaces as well as the abstract behavior (cf.

Section 5.1). Only these abstractions are needed for the next step.

12

1.8. Approach to a Solution

Create component abstraction of each
component separately

Imitate component composition using
component abstractions

Combine constraint and composed
component abstractions

Model checking of representation

Evaluation of counterexamples

Figure 1.1.: Preparation and verification process.

Step 2: By obeying the directives and technical requirements of the considered component sys-

tem the single component abstraction is composed. Thereby, the composition of the user

application is imitated on the abstraction level (cf. Section 5.2).

Step 3: At this step we generate a representation which is in a form that can be model checked. A

protocol is combined with the system abstraction of the considered application (cf. Section

5.3). It results in a formal representation where each derivation from the initial state to the

final state might describe a violation of the constraint encapsulated in the protocol.

Step 4: In this step the model checking is performed finally (cf. Section 5.4). The result is either

the statement that the components are composed to an application, which ensures the pro-

tocol conformance, or execution traces are returned, which describe a protocol violation.

Protocol violations are called counterexamples.

Step 5: In the last step the counterexamples are evaluated and represented to the user of the veri-

fication process (cf. Section 5.5). He can then evaluate how this problem can appear.

The full process works automatically. Only the component protocol has to be defined by a

responsible human. Using this verification process we can ensure that the components are com-

posed correctly. Otherwise a qualified answer is returned, pointing to the concrete situation and

participating program points of each component. The definition of correctness ensures that the

interactions are performed as expected in any possible execution trace9.

9An error-free implementation of the components is assumed.

13

1. Introduction

1.9 Structure of this Work

This thesis is organized as follows:

The first chapter contains the introduction, motivation and problem definition (you have al-

most finished reading). In the following chapter we will evaluate the related work.

In the third chapter the foundations and terms of this work are described. This includes

our component model (sections 3.1.1, 3.1.2). The actual problem of this work is considered

in Chapter 4. Furthermore, we will discuss the limitations of currently used abstractions and

how we overcome some of their problems using another representation called Process Rewrite

Systems.

Chapter 5 contains the main contribution of this work: the new verification process defined

over Process Rewrite Systems. First, a brief overview of the five steps of the verification process

is given. Later, each step is discussed in detail separately (sections 5.1, 5.2, 5.3, 5.4, 5.5). In

these sections several applications and optimizations are included.

In Chapter 6 we evaluate our verification process in an (semi) industrial case study. For this

purpose we developed a component-based software implementing the verification process that

is suggest in this thesis. Using this implementation we consider source code from two industrial

partners (a powerful program implements functional extensions for SAP® ERP® systems and

an online shop), open source application and an academic case study. We will show that the

suggested verification process results in an acceptable problem size. Moreover, we discuss the

model checking problem and present results of improvements.

In Chapter 7 we extend our approach to application to widely spread iterative software devel-

opment processes. The thesis finishes with Chapter 8 containing a summary of our approach, a

consideration of the contribution and possible future work.

14

2 Related Work

The task of this work is to develop a mechanism for verifying the composition of components

to a component-based software. This contains the main problems: behavior representation and

model checking. Several problems are derived from them and the requirements of component

systems are used in practice. The following research fields are affected:

• The idea to verify the composability of parts is scope of research for a long time. Before

the rise of component technologies, there already existed parts which can be composed to

applications. E. g., libraries, modules and objects (e. g., [NTD+95]). Several approaches

exist to ensure the composability.

– Meyer [Mey88] enriches the interfaces of components with additional constraints.

The constraints are named pre- and postconditions as well as class invariants. They

are used to express the expectations and promises of each partner in a contract (used

in the programming language Eiffel [Mey92a]). Some of these constraints are used

as extension of the type system and proved statically, others are checked dynami-

cally.

– Other approaches extend the expressiveness of the type system of a programming

language. Without needing an extended definition of a constraint the polymorphic

types in functional programming languages are used to raise the level of safety in

contrast to imperative programming languages.

• The use of models for representing behavior is a quite common technique for formulating

specifications. Examples are the programming languages Haskell [JHA+99, PJHA+99,

Jon03] and Metalanguage (ML) [HMM86, MTMH97, Ull98]. Moreover, models allow

to define model checking problems and to prove properties (constraints). Well known ex-

amples are finite state machines, abstract state machines [BS03] or the different models

provided by the Unified Modeling Language (UML [RJB04]). In general, the model de-

cides about the expressiveness of an approach. Properties that could not be represented by

the chosen model are not provable.

• As mentioned before, components can be developed, sold, and deployed distributively.

The person who wants to use a component has only the information, which interfaces the

component is implementing and (hopefully) a documentation giving an intention about

the components purpose (blackbox concept). This concept has to be represented while

verifying component-based software.

• The model checking approach is another main topic. It is a common observation that a

model with higher expressiveness has less options for the applicability of model checking

technologies. E. g., for the analysis of finite state machines many logics (like LTL, CTL

or operations on the derived language) are applicable. Derived from the component im-

plementations possible in the wild, it should be ensured that sequential behavior as well

15

2. Related Work

as parallel behavior can be represented, otherwise the scope of applicability will be re-

duced strongly. In contrast, the models representing CH-0 languages (Turing-powerful

languages) of the Chomsky hierarchy [Cho56, Cho57] have no available model check-

ing technique. Thus, we have to migrate our problem to a representation, where model

checking techniques can be applied.

2.1 Classification of Approaches

In the next section, we will describe related approaches. There we present the main properties

being important for component-based software verification.

We name the approaches by the model that is used to formulate the behavior (or the con-

straint). Although not all representations are easy to compare, this allows a raw classification

about the expressiveness and the properties of the approach. We assume that a more power-

ful representation is better, as the component behavior can be represented more precisely. This

would raise the practical applicability.

We classify the approaches by the following properties formulated as questions:

I. Can recursion be modeled using the considered approach?

Recursion is a main concept of computer science. Thus, it is also important while imple-

menting component-based software. If recursion cannot be modeled the behavior has to

be restricted in that way, to prevent false positives. They can appear while a component

C1 calls another one C2 and then C2 calls C1 directly back. This problem of recursive

callbacks was described in [ZS06].

II. Can concurrent behavior be modeled using the considered approach?

Like recursion parallelism is one of the main concepts of programming languages. Concur-

rent execution has an indisputable importance in current component-based systems. It is

used to raise the performance of applications, while taking advantage of the widely spread

multi-core technology and the distributed deployment of components. E. g., implementing

threads is possible in many programming languages.

III. Can synchronous interactions (blocking) be represented?

Interactions are very important for component-based software. Sequential behavior is used

to transfer a message to another component and waits until the calculation of the result is

finished. The execution of the callee (sender of the message) is suspended (cf. Definition

3.17 on page 39).

IV. Can asynchronous interactions (non-blocking) be represented?

Asynchronous interactions are used for performing an interaction with another component,

without suspending the current execution trace. Thus, the calculations of the original com-

ponent can be performed while the result of the message is computed. In general, there

is no option to receive the calculated result directly. The caller has to call back the callee

16

2.1. Classification of Approaches

to deliver the result. If the component system allows callbacks using synchronization (cf.

Definition 3.19 on page 39), then the callee can deliver the result to the same execution

trace of the caller, that has performed the initial interaction. Moreover, if asynchronous

interactions and synchronization by interactions are possible, they can be used together to

imitate synchronous interactions if a procedure can be called only once1.

V. Is the contract separated from the behavior?

The contract (constraint) identifies the properties, that should be verified. If the contract is

separated from the representation of the behavior, it is possible to exchange the behavior

or the component, while the constraint is retained. This could be used representing the

situation during the component development, where a component designer decides the

rough purpose of the component, while the actual implementation is created later by the

component developer.

VI. Is the generated specification using source code?

If the specification of the behavior is generated by using the source code, a proveable

correlation exists between the implementation and the model. Otherwise, there exists the

problem that an answer by the model checker cannot be mapped back to the source code.

Moreover, a worse scenario can appear, when the specification captures not all possible

behavior of the source code, which could lead to false positives (applications that are clas-

sified as correct, but actually are not; cf. Definition 3.34 on page 50).

VII. Is the complete application behavior taken into account?

If just local checks are performed, it is possible that errors are not discovered where an

indirect interaction (involving at least three components) is performed. In component-

based software a single component has no survey about the influence an interaction might

have on any other component. The verification should balance this flaw to prevent false

positives resulting from indirect interactions.

VIII. Are correct interactions between two components verifiable?

If the interaction of just two (or a fixed number of) components can be considered, it is pos-

sible to verify the behavior independently. In this case interactions with other (unknown)

components are omitted. This might be useful in the common case of component-based

software engineering, where components are composed to a larger component (aggregated

component), which represents a specific behavior. Aggregated components (cf. Definition

3.9 on page 37) are easier to handle because less constraints have to be evaluated in the

next composition step.

IX. Uses the approach only provided interfaces to define the constraints?

The provided interfaces (cf. Definition 3.2 on page 29) define the signatures of the pro-

cedures that have to be implemented by the considered component. They are part of the
1In this case an asynchronous call is followed directly by a synchronization by interaction, waiting for the result.

17

2. Related Work

component specification and defined already in the design phase, in general. Hence, we

assume that the definition of a contract should be based on the provided interfaces only.

Otherwise, the constraint contains already parts of the implementation, as it defines in-

teractions performed after calling the considered component. But this is a double-edged

sword as it can be desired to restrict the implementation by the contract. Moreover, it seems

to be easier to define or derive terms for substitutability if the calls to required interfaces

are taken into account within the constraints. Thus, we cannot use this property for a rating,

it depends on the intention of the approach.

X. Is it decidable whether a component can be exchanged by another, showing the same
behavior?

Substitutability is the counterpart of composability (which we consider in this work).

While composability checks if the considered component matches the constraints of the

application, substitutability does evaluate whether a component can be exchanged by an-

other component. For this evaluation the environment has not be known. The restriction is

that the behavior is compatible. Thus, the new component should not trigger errors, if the

old component does not. The compatibility is fixed on the interactions only.

XI. Does the approach allow the formulation of non-deterministic constraints or behav-
ior?

Non-deterministic models are often more compact (e. g., finite state machines) or more

powerful (e. g., push-down automata). Thus, it could be gainful if the approach allows to

model the constraint or the behavior using non-deterministic rules.

XII. Does the approach allow more powerful constraints than finite state machines?

Many works [AG97, Reu02b, FLNT98, PV02, ZS06] use finite state machines as represen-

tation of the constraints. Finite state machines are well known models and can be handeled

easily. But they can only represent behavior which language is contained in the class CH-

3 (of the Chomsky hierarchy [Cho56, Cho57]). This restricts the expressiveness of the

constraints. E. g., a constraint demands that as many tokens have to be returned (via inter-

actions) as are reserved (via interactions) cannot be expressed using finite state machines.

Thus, it might be gainful to allow more powerful representations.

2.2 Detailed Discussion of Approaches

The classifications of the following approaches are summarized in Table 2.1. There, the sign

“Y” is used if the approaches fulfill the property. If not, “N” is used. If the property is only

fulfilled partly, “O” is used. Some attributes have no meaning for the considered approach, in

this case “/” is used.

In the following we will discuss the important properties of different approaches which are

related to this work.

18

2.2. Detailed Discussion of Approaches

approach is using I.
ca

pt
ur

e r
ec

ur
siv

e b
eh

av
io

r

II.
ca

pt
ur

e p
ar

al
le

l b
eh

av
io

r

III
. c

ap
tu

re
sy

nc
hr

on
ou

s c
al

ls

IV
. c

ap
tu

re
as

yn
ch

ro
no

us
ca

lls

V
. c

on
tra

ct
an

d
be

ha
vi

or
se

pa
ra

te
d

V
I.

us
e s

ou
rc

e c
od

e a
s b

eh
av

io
r

V
II.

ve
rif

y
co

m
pl

et
e s

ys
te

m
be

ha
vi

or

V
III

. v
er

ify
pe

er
to

pe
er

be
ha

vi
or

IX
. u

se
pr

ov
id

ed
in

te
rfa

ce
, o

nl
y

X
. c

on
sid

er
su

bs
tit

ut
ab

ili
ty

X
I.

al
lo

w
no

n-
de

te
rm

in
ism

us

X
II.

m
or

e p
ow

er
fu

l c
on

str
ai

nt
s

1. finite state machines
[YS94, YS97]

/ N Y N N N N Y N Y N N

2. CSP−
[AG97]

Y O N O Y N N Y N N Y Y

3. counter automata
[Reu02b, Reu02a]

O N / / Y N N Y N Y Y Y

4. FSM+

[PV02]
/ Y O Y N O N Y N Y Y Y

5. workflow nets
[VdAvHvdT02]

N Y O Y N N Y N N Y Y Y

6. DFSM
[SKPR04]

/ Y Y N N N / Y N Y O Y

7. non-regular protocols
[Sud05]

/ N N Y N N N Y N Y N Y

8. STS +

[PNPR05b]
/ N Y Y N O N Y N N / Y

9. context free grammars
[ZS03, ZS06]

Y N Y N Y Y Y N Y N Y N

10. eLTS
[AAA05, AAA06, AAA07]

/ N Y Y N N N Y N / Y Y

Table 2.1.: Overview of related work.

2.2.1 Behavior Representations

As mentioned before, the chosen representation has a strong influence on the expressiveness of

the approach. The research about component composability was influenced strongly by Nier-

strasz et al. and his work about the composability of object-oriented programs [Nie93, NM95,

Nie95]. The authors state the need for an explicit object interaction representation. They as-

sume that specifications of the observable behavior of objects would answer the purpose best.

The protocol contains the interactions which are receivable and also the interactions performed

by the object. The protocol is a finite state machine where transitions take place upon communi-

cations with other objects [Nie95]. Thus, it is possible to prove that a specification is compatible

to another.

Yellin and Strom [YS94, YS97] adapt the approach of Nierstrasz. They also use finite state

19

2. Related Work

machines to represent a specification of the behavior. Three kinds of procedure invocation are

allowed: asynchronous (non-blocking), synchronous (blocking) and asynchronous, where the

caller waits until the message is passed to the callee. The authors state that a main reason for

their approach was the simplicity and the avoidance of a hard or computationally hard problem.

Allen and Garlan [AG97] describe an approach similar to [YS97]. But as representation of the

behavioral specification a subset of CSP [Hoa78] is used. Thus, parallel composition is possible.

Parallel processes may interact by synchronously engaging interactions.

In [Reu02b, Reu02a] counter-constraint finite state machines are used as behavioral specifica-

tion. This allows to count the number of specific interactions with the components (cf. Section

2.2.2). Here, just the compatibility of the outgoing and incoming interactions is checked (there-

fore, no distinction of synchronous and asynchronous interactions is needed).

Plasil and Visnovsky use another extension of finite state machines to represent the behav-

ior specification [PV02], a similar approach is used in other works (e. g., [BHJ09]), too. The

representation is called behavioral protocols. This extension allows the use of two different

parallel operators. The first operator “|” defines the and-parallelism, which results in the shuffle

language of both participating processes. The second operator “||” describes the or-parallelism,

where either both processes are performed via the and-parallelism or just exactly one of the

participants performs its interactions. Moreover, synchronization during interaction is possible.

Adamek describes in [Ada06] an extension of this approach for allowing an unbounded number

of components. Each component is represented by a finite state machine. But an arbitrary num-

ber of components can communicate. The author suggests to allow to create a behavior template

at component-design time. After the actual architecture is known (the complete component-

based software can be considered), the number of components is chosen based on the level of

parallelism in the concrete architecture. Thus, the number of parallel processes is bounded at

the verification time. [PP09] is an extension of our work [BZ08b] towards behavior protocols.

However, this approach is not capable to deal with (unbounded) recursion.

In [VdAvHvdT02] a subset of Petri nets [Pet73, Pet77, Rei85] named component nets (C-

nets) is used. C-nets are workflow nets (also defined by van der Aalst et al. [vdA97, vdA98])

where a unique source place and a unique sink place are existing. Moreover, for every node

of the C-net it is valid that for every two places a firing sequence exists allowing a connection2.

Component nets inherit the strong and well known theory from Petri nets. They are very suitable

for representing parallel behavior and asynchronous interactions including synchronization. The

authors forbid that a component is bounded to more than one required interface. Moreover, a

component net has to be well formed, i. e., the call graph has a root and is strong connected. It

is not considered whether synchronous interactions can be modeled. As mentioned before, the

asynchronous interaction and synchronization can be used to simulate synchronous interactions

if a procedure can be called only at one time, which is the case here.

Schmidt et al. use a representation named Dependent Finite State Machines (DFSMs) [SKPR04].

DFSMs allow the formulation of a dependency between processes. Thus, regular languages are

2For the sound definition a transition from the source place to the sink place is added.

20

2.2. Detailed Discussion of Approaches

extended to parallel trace languages [DR95]. They can be interpreted as bounded Petri nets.

Thus, parallel behavior – in the sense of shuffle languages – can be represented as specifica-

tion. Recursion is forbidden (therefore, the complete system has not be considered, as recursive

callbacks are impossible).

Südholt [Sud05] uses “non-regular protocols” as representation. They are based on “non-

regular process types” introduced by Puntigam [Pun99]. They specify a set of messages and

constraints on acceptable sequences of these messages. The specification can contain nested

expressions, which lead to non-regular expressions. Only deterministic specifications are al-

lowed. Asynchronous interactions are allowed only, the components can be synchronized (by

coordination). Non-regular protocols are a superset of context-free grammars.

In [PNPR05a, PNPR05b] Symbolic Transition Systems (STS) [CMS02, IL01] are used to

represent the specification of a component. The purpose is here to specify the allowed behavior

and bind a generated protocol implementation on the actual implementation of the component.

Synchronous interactions as well as asynchronous interactions are allowed.

Zimmermann and Schaarschmidt [ZS03, ZS06] use a unique approach. They define no speci-

fication, but create a conservative abstraction of the component behavior. This has the advantage

that an error contained in the actual source code can be found. The behavioral abstraction of

the component and the protocol are separated. Moreover, the authors suggest an approach for

dealing with reference parameters, hence (recursive) reference callback can be represented. The

abstraction is represented by context-free grammars. Thus, sequential behavior and synchronous

procedure calls can be captured.

In [AAA05, AAA06, AAA07] a new component model “Kmelia” is introduced. The spec-

ification of the behavior of the components is represented using extended labeled transition

systems (eLTS)3. There services (not messages) are units of interactions, but the approach is

compatible to [PV02] and [Sud05].

Other approaches are predicate-based [LW94, ZW97] describing behavioral protocols with

arbitrary complexity. But this results in an uncomputable protocol conformance check.

Review

The different approaches show a clear trend. Starting with the regular expressions Nierstrasz

has used, several extensions are suggested to extend the behavior. The aim is to allow a more

concrete representation leading to a better practical applicability. Several approaches target

parallel behavior (e. g., [VdAvHvdT02, SKPR04, PV02]) to fulfill this main requirement for

dealing with components in real component systems. Others introduce sequential behavior to

allow a counting of interactions (e. g., [Reu02b, Sud05, ZS06]). But there exists no approach

allowing unbounded parallel behavior and unbounded sequential behavior in one model.

We consider the following properties worth mentioning:

• All approaches represent the control flow within the behavior only. This is a common

procedure to reduce the possibility of state space explosion.
3Extended labeled transition systems are compatible to regular labeled transition system, while using unfolding.

21

2. Related Work

• Many approaches consider only peer to peer interactions [PV02, Reu02b, Nie95]. Only

Zimmermann and Schaarschmidt [ZS03, ZS06] allow the composition of the component

abstractions to a complete representation of the component-based software.

• Another unique feature of this work is the generation of a conservative abstraction. This

eliminates the open question of the other approaches if the real implementation matches

the behavioral specification. Thus, the danger of passing an error and accepting an incor-

rect application as working is not present.

To our knowledge no representation is used for behavioral representation, which is capable

to represent unbounded parallelism (like in Petri nets) and unbounded recursion (like push-

down automata).

2.2.2 Constraints and Composability

Most of the approaches represent the constraint within the specification (behavioral protocol).

Verifying the composability is possible using language inclusion (e. g., for regular languages)

[PV02, Reu02b, SKPR04, Ada06, ZS06], reducing the problem to subtyping [Sud05], or check-

ing of representation-depended properties like deadlocks freeness [YS97, VdAvHvdT02]. For

example, Schmidt et al. use parametrized contracts [SKPR04]. They are named this way, as the

postcondition is parametrized with the precondition of the component and vice versa, thus only

the interactions between given components are considered. So, the protocol conformance can be

formulated as inclusion problem of regular languages (described by the incoming and outgoing

interactions) based on the behavioral protocol.

Although a kind of finite state machines is used, it is possible that a stronger constraint can be

formulated (e. g., in [Reu02b] the need for stronger constraints is claimed). For this purpose the

author introduces constraints counting the number of interactions, which is similar to context-

free languages (but orthogonally). While sequences of the different interactions and the number

of these interactions are captured by this constraint, it is possible to define a constraint for a

component implementing a stack or queue (where one interaction has to be performed as often

as another before). A lack of the approach is, that no distinction between a stack and a queue is

possible.

Again a unique feature is represented by Zimmermann and Schaarschmidt [ZS03, ZS06].

They use a separated finite state machine for each component as contract, which is defined

over the signatures of the provided interfaces only. The behavior of the component is defined

separately as context-free grammars (described in the previous section). Thus, it is possible

to generate for each component a statement separately, whether the component constraint is

obeyed by the complete component-based software (using the intersection operation of context-

free grammars and regular languages). Solely the complete application is taken into account,

reference parameters and recursive callbacks leading to protocol violations can be discovered.

Van der Aalst [VdAvHvdT02] also considers the complete application. The representation

of the application is checked using deadlock analysis. Thus, the components are composable, if

22

2.2. Detailed Discussion of Approaches

component interactions cannot result in a deadlock. But the author requests an acyclic callgraph,

which weakens the practical applicability.

Review

The constraint is very important. It can be used in a formal way to decide, whether the compo-

nents are composable in the sense of the contract. Thus, the contract should identify the main

property, that should be checked. If the constraint is inappropriate or difficult to implement we

will be unable to use an approach in an industrial environment.

Moreover, it has to be balanced between the requirements of the constraint, the understand-

ability and expressiveness. E. g., the behavioral protocols in the sense of [YS97, PV02, SKPR04,

Sud05, Ada06] are contained in the component behavior definition. Thus, a change of the im-

plemented behavior of the component has to be checked whether it is still captured by the spec-

ification or not. Because the constraint is defined implicitly within the component specification,

an adaption can change the protocol, too. A similar approach is used in [VdAvHvdT02]. The

constraints are defined as global properties of a composed system (composed from component

specifications). They can be validated easier as they are reducible to Petri nets problems (e. g.,

deadlock freeness of Petri nets used in [VdAvHvdT02]).

The approach of separating component contraints from the component behavior seems to be

promising. This ensures that the behavior can be changed as the component implementation is

changed. The protocol will not be affected. Moreover, the protocol can be defined for example

by a designer, without knowing the implementation. The method is formulated very clear in the

approach of Zimmermann and Schaarschmidt [ZS03, ZS06].

On the other hand stronger protocols seem to be promising to define more accurate protocols.

The idea of Reussner [Reu02b] (to allow counters) is well suited to capture scopes of applica-

bility, like the representation of stacks, queues and trust management (example in [Sud05]).

2.2.3 Model Checking

While using finite state representations one is enabled to use several model checking techniques,

e. g., temporal logics like computation tree logic (CTL), linear temporal logic (LTL), linear time

µ-calculus and many more [CGP99]. Model checking for finite state systems is well tool sup-

ported, e. g., SPIN [Hol91], PROD [Val92], JavaPathFinder [HP00, BHPV00], and many more.

In contrast, analyzing software applications can often result in a possible infinite state space.

If a representation is capable to capture a more expressive behavior (e. g., Petri nets or push-

down automata), the number of model checking possibilities shrinks and the rank of the corre-

sponding complexity classes is raising. For example, LTL model checking of finite state systems

is PSPACE-complete, while LTL for Petri nets is EXPSPACE-hard.

The verification of components should contain both important concepts: recursion and par-

allelism. Chaki et al. described in [CCK+06] a method to verify communicating recursive C

programs. This problem seems to be similar to the verification of component-based software, al-

though they considered synchronous procedure calls only. In contrast to the common approach

23

2. Related Work

of component-based software verification they consider even the data manipulation and syn-

chronization statements. The problem can be reduced to the intersection of – by C programs

described – context-free languages, which were calculated approximately by a CEGAR-loop.

There are other works [QR05, TMP08, LTKR08] which consider the verification of concurrent

programs, but these reduce the problem with bounded context switching, which results in a

bounded parallelism.

The verification of Process Rewrite Systems (a representation which is capable to represent

unbounded parallelism and unbounded recursion) is discussed in [May98, May00]. Only reach-

ability is decidable for Process Rewrite Systems. Moreover, no implementation is available.

Other works discuss the model checking of Process Rewrite Systems. While in [PST07]

overapproximations of the execution paths are generated, underapproximations of the reachable

configurations are computed in [LTKR07] (bounded model checking). In contrast to these works

we focus only on the interpretation of the information included in our representation model.

Review

The model checking problems and logics for finite state representation are well known and

well tool supported. Model checking infinite state systems is more complicated (measured in

correspondence to the model size). For this reason several works consider improvements to

reduce the size of models (e. g., [MT00, YG, Ric08]). Currently, the model checking of infinite-

state representations containing parallelism as well as recursion is considered poorly.

The more expressiveness a representation is capable to represent, the less model checking

options are available.

2.3 Conclusions

A main criterion for verification of component-based software should be the expressiveness

of the model. To represent a component behavior, we need a conservative approximation.

Currently, no approach is known, which captures unbounded parallel behavior (e. g., partly in

[VdAvHvdT02]) and unbounded recursion (e. g., [ZS06]). If these behaviors cannot be captured

the verification might miss an error which is not representable within the model. This case

is not acceptable for model checking. Thus, a less powerful representation leads to a smaller

scope of applicability, as all implementations have to be excluded, which cannot be captured

conservatively.

On the other hand, a concrete behavior representation is needed, otherwise the behavior will

not be close enough to the component behavior. This might lead to the problem that a large

number of reported errors cannot be reproduced within the source code. This will frustrate the

user of the verification process and hence reduce the applicability. The same argument can be

used to motivate the correlation between the source code and the modeled behavior.

The criteria shown in Table 2.1 on page 19 represent the main properties. The best approach

will fulfill each criterion. Thus, all “good” criteria should be integrated.

24

2.3. Conclusions

The work of Zimmermann and Schaarschmidt [ZS03, ZS06] recognize the need for stronger

formalism in comparison with finite state machines. The authors use push-down automata as

representation of the behavior. It is generated from the source code. Moreover, the constraint

definition is very simple and allows non-determinism.

Thus, we assume that this work provides a good idea, which we will use and extend, so as

many criteria will be fulfilled as possible.

25

2. Related Work

26

3 Foundations

This chapter describes the foundations of this thesis. It describes the used component model

(Section 3.1) and discusses the matter of component systems in Section 3.1.2. It contains also

a description of the properties components have. To be applicable in an industrial context, they

have to be obeyed while developing a new verification approach.

In Section 3.1.3 we describe the behavior, components may have implemented. This contains

also the kinds of interactions. Moreover, we discuss the execution model named cactus stack.

Formal representations of the component’s behavior are represented in Section 3.2. It includes

the most important representation for this work “Process Rewrite Systems”, with an overview of

their hierarchy and model checking issues.

3.1 Components and Component Systems

Components are for composition.

(Clemens Szyperski et al.

[SGM02])

3.1.1 Components

Components are a relatively new programming approach extending existing ones like object-

oriented development. Component-oriented programming is often classified as ”beyond oo-

programming” [SGM02, HC01, JJ01].

The reasons for the introduction of component-oriented programming and component-based

software engineering were summarized in [SGM02] (here discussed in a simplified way):

Object-oriented programming too often concentrates on individual objects, instead

of whole collections of objects, i. e., components. Component-oriented program-

ming requires more stringent information hiding, a more dynamic approach, and

better safety properties than object-oriented programming.

Thus, the main goals of the component concept are:

• intensify the information hiding, which is often done by introducing a blackbox concept,

• aggregates other programming structures (e. g., objects) and hides them behind a well

defined interface,

• allows using components dynamically, often described as import or choose components

dynamically during runtime,

• the components should work in the forseen manner, if it can be integrated in a software.

27

3. Foundations

component C implements I1,. . . ,Im
proc0(parType00 parName00, . . . , parType0i parName0i)
...
prock(parTypek0 parNamek0, . . . , parTypekj parNamekj)

I1

...

Im

In

...

Iq

Description:
procx represents a callable procedure
parNamexy represents a parameter of the procedure procx
parTypexy identifies the type of the parameter parNamexy,

moreover the modifier inout is allowed
Ix identifies an interface

where i, k, j, x, y ∈ N

Figure 3.1.: Component model.

In summary, component-based software engineering (CBSE) treats the process of building soft-

ware from pieces, while these pieces working together in dynamic combinations (loosly cou-

pling). The expectation is that using components as bricks to assemble an application leads to

higher quality, lower costs and better productivity.

Remark
In [Jos08] it is discussed, that components are not often reused in the manner of many users,

currently. However, for our research it makes no difference whether a component is reused by

one or many more users, although we support the reusability.

Moreover, this software should fulfill the given requirements. But the main focus is on the

composition of components (as shown in the introductory quotation).

Analogously to [SGM02], we will describe components as units of deployment, which are

reusable assets that can be (and are) sold to different customers. Thus, the main properties of

components are:

• can be deployed at distributed locations,

• multiple-use, i. e., components can be used by many other components at the same time,

thus the state of a component can be influenced by an unknown number of peers,

• non-context-specific usage, i. e., can be used in any environment providing minimal tech-

nical requirements, thus a component has to be implemented obeying that any usage is

possible,

• composable with other components (through a well defined interface), i. e., as components

can be implemented in completely different programming languages. Any behavior is

possible,

• a unit of independent deployment and versioning and encapsulated functionality (i. e.,

non-investigable through its interfaces), i. e., we have to assume a blackbox behavior,

28

3.1. Components and Component Systems

On a deployment level there exist three general types of components:

• whitebox components: The source code of the component is available, modifiable and

executable.

• glassbox components: The source code is accessible, but cannot be modified.

• blackbox components: The source code is invisible. An intensification of this property

is represented by components where even the binary code is not accessible (e. g., Web

Services).

In this work we assume that all components are blackbox components and the source code

might not be accessible. About blackbox components is known only, how they can be called.

These callable operations are described using an interface. It contains signatures of procedures.

Signatures are defined as usual:

Definition 3.1 (Signature)

A signature is defined by a pair sig = (N,O), where

N ∈ Ident is the name ,

O ⊆ Data× Ident is the list of parameters of a signature, where two distinct pa-

rameters have to have different names i, so that

∀(dk, ik), (dm, im) ∈ O ∀ k,m ∈ N : if k 6= m⇒ ik 6= im,

where Ident ⊆ Σ+ and Data is a finite set of datatypes.

The interfaces subsume signatures.

Definition 3.2 (Interface)

An interface I is a non-empty set of signatures.

Convention 3.1 (Available Interfaces)

The set I contains all available interfaces.

The signatures of the interfaces have to be implemented by procedures (e. g., Example 3.1).

The components in this work are represented using a model similar to the UML component

model. On a technical level we assume that a component is an implementation of each pro-

vided interface [Szy97]. The provided interfaces are predefined in an interface description (e. g.,

WSDL). It is possible, that a component uses provided interfaces, thus has required interfaces.

Our component model is shown in Figure 3.1. As the required and the provided interfaces are

visible, we can determine the signatures of the procedures, that are available.

Definition 3.3 (Component)

29

3. Foundations

Example 3.1: Set of interfaces (implementations in Example 3.2 on page 31).

interface Istart

begin
sync main()

end

interface Im
begin

sync m(int)
end

interface I1
begin

sync a(int i)
end

interface I2
begin

sync b(int k)
sync d()

end

interface I3
begin

sync e(int i)
sync f()

end

interface I5
begin

async q(int y)
end

interface I6
begin

sync z(out int r, int x)
end

interface I7
begin

sync set(int n)
sync calc(out int r,int m)
sync reset()

end

A component is a triple C=̂(P,R, IMP), where

P ⊆ I is the finite set of provided interfaces, i. e., interfaces of C, that

could be called by other components,

R ⊆ I is the finite set of required interfaces, i. e., interfaces, that could be

called by C,

IMP the implementation is a set of procedures containing at least the

signatures of P.

Remark (Implemented procedures of a component)

The set PC contains all procedures that are defined by the interfaces I of the component C=̂(P,
R, IMP), where I ∈ P.

Definition 3.4 (Blackbox component)

Blackbox components can be specified as tuple C=̂(P,R), because nothing is known about the

implementation (the internal procedures and the implementation of the procedures).

We make no restrictions on the location where a component is deployed. We assume here, that

components may be implemented in any imperative or object-oriented programming language.

Of course the implementation could be inaccessible (e. g., Web Service).

Example 3.2 shows a repository of eight components. In this example each component im-

plements only one interface (Example 3.1). This restriction is made for the purpose of clarity

only. There, the implementation is visible, representing the view of each component developer.

In Example 3.3 on page 32 the properties of the blackbox semantics are fulfilled, thus only

the required and provided interfaces are visible. The application designer comes up with this

scenario, while (re)using the components to assemble a new application.

We classify here two kinds of components, that are summarizing specific properties. A com-

30

3.1. Components and Component Systems

Example 3.2: Set of components (corresponding interfaces in Example 3.1 on page 30). We
reuse these components partly in the thesis.

component C2
implements Im,I2
int n = 0
begin

sync b(int k)
n =
(n+ 1)%2
n = 1

n
call a(k)

sync d()
n = 1

n−1

sync m(int i)
if i > 0 then

call a(i)

end

I1

I2

Im

component C1
implements I1
begin

sync a(int i)
if i > 0
then

call
e(i)
call f()

end

I1 I3

component C3
implements I3
begin

sync e(int i)
call
b(i− 1)

sync f()
call d()

end

I3

I2

component C4
implements Im
begin

sync m(int i)
call q(i)
read t from
file
call z(t)

end

I5

I6

Im

component C5
implements I5
begin

async q(int y)
if y == 42
then

call
reset()

end

I5

I7

component C6
implements I6
begin

sync z(int r, int x)
read i from
file
call set(x)
call calc(r,i)

end

I6

I7

component C7
implements I7
begin

sync set(int n)
save n to
database

sync calc(int r, int m)
read n from
database
r = m/n

sync reset()
n = 0
save n to
database

end

I7

component Cstart
implements Istart
begin

sync main()
choose C
implementing
I0 from
service
repository

call m()

end

I0

31

3. Foundations

Example 3.3: Set of blackbox components (corresponding to Example 3.2).

component C2
implements Im,I2
int n = 0
begin

sync b(int k)

sync d()

sync m(int i)

end

I1

I2

Im

component C1
implements I1
begin

sync a(int i)

end

I1 I3

component C3
implements I3
begin

sync e(int i)

sync f()

end

I3

I2

component C4
implements Im
begin

sync m(int i)

end

I5

I6

Im

component C5
implements I5
begin

async q(int y)

endI5

I7

component C6
implements I6
begin

sync z(int r, int x)

endI6

I7

component C7
implements I7
begin

sync set(int n)

sync calc(int r, int m)

sync reset()

endI7

component Cstart
implements Istart
begin

sync main()

end I0

32

3.1. Components and Component Systems

interface Istart

begin
sync main()

end

Figure 3.2.: Interface of initial components.

ponent containing an expression identifying an initial program point is called initial component.

In general, the initial component contains a procedure named “main” or a comparable construct.

Convention 3.2 (Interface of initial component Istart)

In this work, we request that an initial component has to implement an interface Istart containing

exactly one signature, named “main” (indecisive number of parameters), e. g., Istart (cf. Example

3.1 on page 30).

Definition 3.5 (Initial component)

A component is called initial component Cstart, if it implements an interface Istart (example

shown in Figure 3.2). Formally: Cstart=̂(P,R), where Istart ∈ P. Moreover, we state that the

“main” procedure of an initial component is not callable (through other components).

E. g., component Cstart in Example 3.3 is an initial component.

Remark
As components can implement several interfaces, an initial component can have other provided

interfaces than just Istart.

Definition 3.6 (Base component)

A base component has no required interfaces. Thus Cbase=̂(P, ∅).

Typical base components are configuration, mathematical or output components. Component

C6 in Example 3.3 is a base component.

3.1.2 Component Systems and Composition

A distributed system is one in
which the failure of a computer
you didn’t even know existed can
render your own computer
unusable.

(Leslie Lamport)
A component system defines the requirements a component has to fulfill to interact with

other components. Thus, it can be used in an application assembled in this component system.

These requirements contain technical regulations (e. g., interface definition language), as well as

semantics (e. g., synchronization on callbacks).

As a component system defines how a component has to publish its provided (and required)

33

3. Foundations

Example 3.4: Composite component C3 consisting of the component C1 and C2.

component C3
implements I0,I1

component C1
implements I0,I1

I0

I1

I2
component C2
implements I2I2

interfaces, it can be used to “connect” components. This operation is called “composition”.

The term stands for the assembly of parts (components) to a component (a “composite”) without

modifying the parts. Parts have compositional properties if the semantics of the composite can be

derived from those of the components. A componentC1 can be composed with a componentC2,

if C1 requires an interface I2, while C2 implements the same interface. The result is a composite

component. In Example 3.4 a composition is shown resulting in the composite component C3.

A composition is the connection of two or more components. We represent the composite of

components by a graph. The edges of the graph represent the bindings of a graph, where two

components can be bound, if the first requires an interface I1, while the second provides the

interface I1.

Definition 3.7 (Composition)

The composition of components is represented by a graph G = (COMP,BIND), where

COMP is a non-empty set of components Ci = (Pi,Ri),

BIND ⊆ BINDall are the bindings of a component, where
BINDall=̂{(C1, I, C2)|C1 ∈ COMP ∧ C2 ∈ COMP ∧ I ∈ (R1 ∩ P2)}.

Remark
The composite needs not to be a runnable application. It is also possible to create an aggregated

component (cf. Definition 3.9 on page 37) by composing components. Aggregated components

may not be standalone executables. This might have two reasons:

• No initial component exists within the composition G = (COMP,BIND):

∀C ∈ COMP : Istart /∈ P

• A required interface I (that is not the initial interface Istart) was not bound within G =
(COMP,BIND):

∃Iq : Iq /∈ {I : (C1, I, C2) ∈ BIND} ∧ Iq 6= Istart

34

3.1. Components and Component Systems

Remark
It is possible to bind the required interfaces to the own provided interfaces: (C, I, C) ∈ BIND.

Thus, component systems provide the technical requirements to enable interoperability bet-

ween components implemented in different programming languages and running on different

platforms. One of the main tasks of a component system is to define, how interactions are per-

formed and which kinds of interactions are allowed1. Often, they provide a base class library,

too. Examples for component systems in an industrial context are Microsoft’s COM, DCOM,

.NET [DOT], Sun’s Enterprise Java Beans (EJB) [BMH06], OMG Corba [COR01], Web Ser-

vices (WSDL, SOAP) [Web07b, Web07a], and OSGi [All09], while Fractal [BCS03] and SOFA

[BHP06] are some of the academic alternatives [LW07]. Moreover, many specialized component

systems exist, e. g., Microsoft’s Object Linking and Embedding (OLE), Bonobo [Mee01, Fri99]

and KParts [KDE]. We will not distinguish between different component systems, but develop

a generalized approach.

If components are composed at compile time or deploy time the composition is called static

(e. g., linking of libraries). Components can also be chosen at run-time. In this case the compo-

nents only import interfaces. If the set of components implementing the interfaces is finite and

known at deploy time we call it a dynamic composition (e. g., dynamically class loading). If the

set of components implementing the required interface is unknown (e. g., because an unknown

service repository is queried) we call the composition fully dynamic. The dynamic selection of

a component implementing the required interface is done using a (semi-)automatic mechanism

(e. g., service repository or UDDI in a Web Service context)2.

In general, a component C0 requiring an interface I can be connected to a component C1

implementing the interface I and afterwards C0 can perform interactions (remote procedure

calls) to C1.

A representation of the composition of the components in Example 3.3 on page 32 is shown

in Example 3.5. As component Cstart requires a component implementing interface I0, it can

either choose C0 or C4. The result of this operation is not predictable as the component is

querying a service repository (e. g., UDDI) to choose a component (e. g., by the current lower

price). In this example the composition is performed dynamically, thus we know that the set of

possible components for this operation contains just C0 and C4.

We consider two possibilities of interactions: The interaction can be performed in blocking

(synchronous) or non-blocking (asynchronous) modes. In this work, we allow that the provided

interface definition might contain the information how an interaction is performed. In that case

the definition of a remote procedure call is extended with the attribute sync for synchronous

interaction and async for asynchronous interaction. A special case of asynchronous interaction

is the synchronization of components via an interaction. In this case a component stops the

computation (execution trace) and waits for an incoming message. If the message is received it

1For this purpose serves the interface definition language (IDL), too.
2It is possible to specify extra-functional properties, which are evaluated during the selection process (e. g., response

time or price).

35

3. Foundations

Example 3.5: Composed blackbox components (corresponding to Example 3.2 on page 31).

component C2
implements Im,I2
int n = 0
begin

sync b(int k)

sync d()

sync m(int i)

end

I1

I2

Im

component C1
implements I1
begin

sync a(int i)

end

I1 I3

component C3
implements I3
begin

sync e(int i)

sync f()

end

I3

I2

component C4
implements Im
begin

sync m(int i)

end

I5

I6

Im

component C5
implements I5
begin

async q(int y)

endI5

I7

component C6
implements I6
begin

sync z(int r, int x)

endI6

I7

component C7
implements I7
begin

sync set(int n)

sync calc(int r, int m)

sync reset()

endI7

component Cstart
implements Istart
begin

sync main()

end I0

36

3.1. Components and Component Systems

can be evaluated and the execution is continued.

A composition of components can result in two kinds of results: an executable component-

based software or an aggregated component, which is not executable. To formalize these kinds

of composition, we define the unbounded required and provided interfaces.

Definition 3.8 (Unbounded interfaces)

The multisets of unbounded required interfaces RG,unbound and unbounded provided interfaces

PG,unbound of a composite G = (COMP,BIND) are defined as follows:

RG,unbound ={{q | q ∈ Ri ∧ Ci = (Pi,Ri) ∧ Ci ∈ COMP}} \ {{q | (C1, q, C2) ∈ BIND}}

PG,unbound ={{q | q ∈ Pi ∧ Ci = (Pi,Ri) ∧ Ci ∈ COMP}} \ {{q | (C1, q, C2) ∈ BIND}}

An aggregated component (often called composite component) behaves like regular compo-

nents. It is generated while composing components and binding them tightly.

Definition 3.9 (Aggregated component)

An aggregated component is defined as C = (P,R) that is based on a composition G =
(COMP,BIND), where

P = PG,unbound,

R = RG,unbound.

Thus, C might have no provided interfaces, i. e., P = ∅, or no required interfaces R = ∅.

A special case of an aggregated component is a component-based software.

Definition 3.10 (Component-based software)

An application assembled from components is called component-based software S in this work,

where S = ({Istart}, ∅) is a component or an aggregated component.

We do not restrict the component system used to create the component-based software.

Another development are Service-oriented Architectures (SOA) [Erl05, MLM+06]. The term

is used firstly in a Gartner research note [SN96, Sch96]. SOA can be seen as continuum of

component-based software engineering. For this purpose loose coupling, dynamic binding and

discoverability are declared as architectural principles3. In this work the difference between

component-based software and Service-oriented Architectures are insignificant.

3.1.3 Classification of Component Behavior

If components are blackboxes, we can only observe the interactions with other components.

The observable behavior of a component C=̂(P,R) is defined by the translation of the language

3The SOA principles are already fulfilled by CORBA, thus the difference marginalized.

37

3. Foundations

defined over the provided interfaces L(P) ⊆ P∗ into the language L(R) ⊆ R∗.

Definition 3.11 (Observable component behavior)

χ : L(P)→ L(R), where

L(P) ⊆ P∗,

L(R) ⊆ R∗.

While considering the observable behavior of all components Ci of a component-based soft-

ware S we can recognize the behavior of the component-based software.

Definition 3.12 (Observable behavior of a component-based software or aggregated component)

A language L(S) ⊆ (P1 ∪ P2 ∪ . . . ∪ Pn)∗ describes the observable behavior of a component-

based software or aggregated component S, where Ci=̂(Pi,Ri) are the contained components.

Definition 3.13 (Execution trace)

A word w ∈ L(S) (cf. Definition 3.12) is called execution trace or execution path.

If two or more components work concurrently, then they show concurrent or parallel behavior.

Definition 3.14 (Parallel behavior)

Parallel behavior describes concurrency. Thus, there exists at least two processes (execution

traces), which can be processed independently.

I. e., if an aggregated component C3 = (P3,R1 ∪ R2) (containing two components C1 =
(P1,R1) and C2 = (P2,R2), which are working concurrently) is considered, then it is not clear

if the next observable interaction was initiated by C1 or by C2, while L(R1 ∪ R2) is fixed, in

general.

Here, we restrict the parallel behavior within a component-based software considering the

interactions. Parallel behavior (Definition 3.14) where every atomic action is processed com-

pletely before the next action is processed, is called interleaving semantics.

Definition 3.15 (Interleaving semantics)

An interleaving of two execution traces ρ0, ρ1 is a topological ordering of ρ0 and ρ1.

Definition 3.16 (Sequential behavior)

We speak of sequential behavior if an execution (sub-)trace ρ0 has to be completed before the

next (sub-)trace ρ1 can be processed: ρ0ρ1. Thus, concurrency of components or within compo-

nents is not allowed. Sequential behavior is often represented by a stack (cf. Definition 3.25 on

page 43).

I. e., if no parallel behavior within a component-based software is present while considering

38

3.1. Components and Component Systems

an aggregated component C3 = (P3,R1 ∪ R2) (containing two components C1 = (P1,R1) and

C2 = (P2,R2)), then it is clear if the next observable interaction based on a fixed L(P1 ∪ P2)
will be initiated by C1 or by C2. In general, two kinds of interaction invocations between

components exist. That lead to different behavior.

Definition 3.17 (Synchronous interactions)

If a component calls a procedure synchronously, then the component waits until the callee returns

the computed result. Until this point in time the calling component stops its current calculation,

the execution trace is blocked. For this reason synchronous interactions are often called blocking

interaction. The resulting execution trace is ρ=̂ρ′0ρ1ρ
′′
0 , where ρ′0 is the execution trace before

the blocking interaction, ρ1 is the execution trace of the callee and ρ′′0 the execution trace after

the termination of the callee.

Definition 3.18 (Asynchronous interactions)

An asynchronous interaction delivers the message from a caller to a callee without stopping

the current execution trace of the calling component (non-blocking interaction). Thereafter, the

called component and the calling component work concurrently.

If ρ′0 is the execution trace of the caller before the asynchronous interaction (ρ′′0 is the exe-

cution trace of the caller after the interaction) and ρ1 is the execution trace of the callee, then

ρ=̂ρ′0.ρ2, where ρ2 is an interleaving of ρ1 and ρ′′0 .

There are different kinds of asynchronous interactions. For example the caller can wait until

the message is delivered, but not until the result is computed, or the caller can continue without

waiting for anything (“fire and forget”). Thus, we speak of a unidirectional message delivery

(e. g., in CORBA marked with the keyword oneway).

An interaction a initiated by a component C2 is called callback to the component C1, if an

interaction of C1 initially triggers the execution of interaction a. It is irrelevant if C1 calls C2

directly or indirectly.

Definition 3.19 (Callbacks)

A callback is a cycle in the considered composite G = (COMP,BIND).

If the participating interactions are performed synchronously, we talk about a recursive call-

back to component C1, because this behavior is a recursion over component boundaries.

3.1.4 Cactus Stack

As it was mentioned before, sequential behavior (Definition 3.16) can be represented using a

stack. The natural execution model for capturing unbounded recursion and unbounded concur-

rency uses states that are represented as a cactus stack.

Definition 3.20 (Cactus stack)

A cactus stack (or spaghetti stack) [HD68] is a variant of a stack which can be constructed by

attaching a stack as branch at the current top of a stack. Attached stacks are called branches. The

39

3. Foundations

top of each branch (stack) can be processed independently. An empty branch can be removed.

A state of program containing parallel processes can be represented using a cactus stack. If a

procedure call (in a process) is executed, a stack frame is pushed onto a stack. If a new parallel

process (new branch) is started (forked), a new stack grows for this process. Hence, the branches

of a cactus stack grow like the branches of a saguaro cactus4. Thus, an execution transforms

one cactus stack into a cactus stack while performing an action. Hence, a transformation step

describes a step of the interleaving semantics. An exemplary process is shown in Example 3.6.

Restriction of Execution Model

Although the execution model of cactus stacks is well known and used for representing parallel

behavior, it is not possible to represent a global pool of parallel processes. Forks of a process are

still bounded to the parent process. Precisely, the stack frame p0 placing the frame p1 that forks

the new parallel process p2 cannot be worked off, before p1 and p2 are eliminated. We represent

this dependency with the arc (curved arrows) between p1 and p2 in the following example:

p0p0

p1p1

p2p2

It is possible to warn the user of the verification process that there might be an unrepresented

behavior. This behavior has to be checked in another way. Techniques to uncover situations,

where our approach creates no conservative approximation, are not considered here.

3.2 Formal Descriptions of Behaviors

3.2.1 Traditional Representations

A simple and well known formal concept is named finite state machines.

Definition 3.21 (Finite state machine)

A finite state machine A is defined as A=̂(Q,Σ, I,→ , F), where

Q is a finite set of states,

Σ is a finite set of (atomic) actions,

I ∈ Q is the initial state,

→ ⊆ Q× Σ×Q is a finite set of transition rules,

F ⊆ Q is the set of final states.

A finite state machine defines a derivation I ⇒ f (where f ∈ F) using the following inference

rules:
(t1

a→ t2) ∈→
t1

a⇒ t2
,
t1

x⇒ t2 t2
a⇒ t3

t1
x a=⇒ t3

,

4A picture of a saguaro cactus is shown in Figure A.1.

40

3.2. Formal Descriptions of Behaviors

Example 3.6: Growing and shrinking of a cactus stack.

p1p1

p2p2
p3p3

p1 is translated into p3 and p2 is pushed

p4p4
p5p5
p3p3

p2 is translated into a fork of p4 and p5

p7p7 p4p4
p5p5
p3p3

p7 is forked by p5

p8p8
p9p9 p4p4

p5p5
p3p3

p7 is translated into p9 and p8 is pushed at p9

p8p8
p9p9

p3p3
p3p3

p5 and p4 are synchronized and translated into p3

p9p9
p3p3
p3p3

p8 is eliminated

p3p3

p9 and p3 are synchronized and eliminated

εε

p3 is eliminated

41

3. Foundations

where t1, t2, t3 ∈ Q∗, a ∈ Σ and x ∈ Σ∗.

If a finite state machine is used to represent the component behavior, then a derivation I w⇒
f defines an execution trace w. In [Nie95, PV02, Reu02b] finite state machines are used as

representation of the component behavior (cf. Chapter 2).

Definition 3.22 (Regular expression)

A regular expression R is defined as usual. It is a pattern describing every word which is ac-

cepted by the regular expression. A regular expression r=̂r′zr′′ or r=̂c, where r′ and r′′ are

also regular expressions, c ∈ Σ. The following operatorsz are allowed:

“ |” This operator separates alternatives (or).

“ ∗” The preceding element of this operator has to appear zero or more times.

“ +” The preceding element of this operator has to appear one or more times.

Moreover, parentheses are allowed for the purpose of grouping. Grouped elements are consid-

ered as atomic.

Definition 3.23 (Regular language)

A regular languageL(A) is a language, that can be accepted by a finite state machineA=̂(Q,Σ, I,
→, F). Hence, there exists a derivation within the finite state machine, so that I w⇒ f , where

w ∈ Σ∗ is the word accepted on the path and f ∈ F , we write w ∈ L(A). Moreover, a regular

expression R can be given, which describes all words contained in the language L(R). Thus,

L(A) = L(R).

Regular languages cannot describe parallel or sequential behavior in a general case. E. g., it is

only possible to represent the behavior of a limited number of parallel execution traces explicitly.

Definition 3.24 (Inverted finite state machine)

For an inverted finite state machineA=̂(Q,Σ,→, I, F) of a finite state machineA=̂(Q,Σ, I,→
, F) it is valid that if and only if w ∈ L(A), then w /∈ L(A), where w ∈ Σ∗.

Remark (Inverted regular language)

The definition follows directly from Definition 3.24 and 3.23.

To represent sequential behavior (Definition 3.16), a stack [BS57] is needed. This can be

modeled using push-down automata.

Definition 3.25 (Push-down automata (with one state))

Here, we focus on push-down automata with one state only. Every language acceptable by a

push-down automaton with one state can be accepted by a push-down automaton with several

42

3.2. Formal Descriptions of Behaviors

states [HU79] and vice versa. A push-down automaton P is defined as P =̂(Q,Σ,→, I), where

Q is a finite set of stack symbols,

Σ is a finite set of (atomic) actions,

→ ⊆ Q∗ × Σ×Q∗ is a finite set of transition rules,

I ∈ Q is the stack symbol available at the stack initially.

The following inference rules are valid (similar to Definition 3.21):

(t1
a→ t2) ∈→
t1

a⇒ t2
,
t1

x⇒ t2 t2
a⇒ t3

t1
x a=⇒ t3

where t1, t2, t3 ∈ Q∗, a ∈ Σ and x ∈ Σ∗.

A given input is evaluated stating at I . A token of the input queue can be removed if a

corresponding transition rule is used (matching action and current state). If no stack symbol is

held by the stack and the input is read completely, then the input is accepted.

Push-down automata can describe behavior containing sequential component behavior in

general. Thus, they are capable to represent unbounded recursion (including recursive call-

backs). In contrast, push-down automata cannot represent concurrent behavior in a general case

[May98]. For example, push-down automata are used as representation of component behavior

in [ZS06] (cf. Chapter 2). A well known approach to represent parallel behavior are Petri nets

([Pet73, Rei85]).

Definition 3.26 (Petri nets)

The classical Petri nets are bipartite graphs consisting of two types of nodes: “places” and

“transitions”. Places contain “token”, while transitions are used to translate tokens.

A Petri net N is defined as N=̂(Q,Σ,→, I), where

Q is a finite set of places or working symbols,

Σ is a finite set of (labeled) transitions, no name ε ∈ Σ, for

simplicity we demand that the following formula is valid:

Q ∩ Σ = ∅,
→ ⊆ (Q× Σ) ∪ (Σ×Q) is a finite multi set of arcs (flow relation),

I ⊆ Q∗ finite multiset, called “initial marking”.

The input can be considered as a multiset of working symbols, which is represented by the initial

marking. The current multiset of working symbols (tokens) is named “marking”M . A transition

a ∈ Σ can “fire” if it is valid {{q|(q, a) ∈→}} ⊆M . After a transition a has fired, the (resulting)

marking M ′ is represented by M ′=̂(M \ {{q|(q, a) ∈→}}) ∪ {{q|(a, q) ∈→}}.

43

3. Foundations

G

P S

1

Figure 3.3.: Hierarchy of basic PRS operators.

Example 3.7: Process-algebraic expression and corresponding cactus stack.

((p2||((p6||p3).p7))||((p3||p5).p9.p4)).p1

(a) Process-algebraic expression

p3p3

p5p5

p9p9

p4p4

p1p1

p7p7

p3p3p2p2

p6p6

(b) Cactus stack

In this work, we use a slightly different definition N=̂(Q,Σ,→, I), where

→ ⊆ (Q+ × Σ×Q∗) is a finite set of transition rules,

I ∈ Q is an initial input symbol (working symbol).

Transition rules eliminating a working symbol are represented by t a→ ε, where t ∈ Q×Q∗ and

a ∈ Σ. A word is accepted, if the current marking contains no token: M = ∅. The language

accepted by a Petri net P is defined as L(P) ⊆ Σ∗, thus the order of the fired transitions

leading to an empty marking is represented. It is clear, that both definitions can accept the same

languages.

Petri nets are capable to represent unbounded concurrent behavior. However, recursion cannot

be captured in general [May00]. For example, in [VdAvHvdT02] a subset of Petri nets is used

as representation of component behavior (cf. Chapter 2).

3.2.2 Process Rewrite Systems (PRS)

As mentioned above, both representations (Petri nets and push-down automata) have advan-

tages. We consider a representation which contains parallel semantics (like Petri nets) as well as

sequential semantics (like push-down automata). Therefore, in this work a representation called

Process Rewrite Systems (short PRS) is used, to represent the behavior (abstraction) of source

code. Process Rewrite Systems are defined by Mayr [May98, May00].

A cactus stack naturally represents a process-algebraic expression (and vice versa), cf. Exam-

ple 3.7. If a procedure frame p1 is called on a stack p, this is represented by p1.p. If a fork of

a process p2 on a stack p with the frame p1 happens, this is represented by (p1||p2).p. Thus,

44

3.2. Formal Descriptions of Behaviors

Example 3.8: Growing of cactus stack and corresponding process-algebraic expressions (corre-
sponding to Example 3.6 on page 41).

p1p1

p2p2
p3p3

p1 is translated into p3 and p2 is pushed
⇒ p2.p3

p4p4
p5p5
p3p3

p2 is translated into a fork of p4 and p5
⇒ (p4||p5).p3

p7p7 p4p4
p5p5
p3p3

p7 is forked by p5
⇒ (p4||p7||p5).p3

p8p8
p9p9 p4p4

p5p5
p3p3

p7 is translated into p9 and p8 is pushed at p9
⇒ (p4||(p8.p9)||p5).p3

p8p8
p9p9

p3p3
p3p3

p5 and p4 are synchronized and translated into p3
⇒ ((p8.p9)||p3).p3

p9p9
p3p3
p3p3

p8 is eliminated
⇒ (p9||p3).p3

p3p3

p9 and p3 are synchronized and eliminated
⇒ p3

εε

p3 is eliminated
⇒ ε

45

3. Foundations

we can model state transformations by transforming process-algebraic expressions into process-

algebraic expressions. Example 3.6 is extended by process-algebraic expressions in Example

3.8.

Definition 3.27 (Process-algebraic expressions)

Let PEX(Q) be the set of process-algebraic expressions over a finite set Q of atomic constants

and the binary operators “.” (associative) and “||” (commutative, associative). Formally, we

define:

PEX(Q) ={t : t ∈ Q} ∪ {t1⊗t2 : t1, t2 ∈ PEX(Q) ∧ ⊗ ∈ {., ||}}

Process Rewrite Systems are a descriptive technique for such transformations of process-

algebraic expressions into process-algebraic expressions.

Definition 3.28 (Process Rewrite Systems)

A Process Rewrite System is defined as Π=̂(Q,Σ, I,→ , F), where

Q is a finite set of atomic processes,

Σ is a finite alphabet over actions, in other words calls

to interfaces of components,

I ∈ Q is the initial process,

→⊆ PEX(Q)× Σ× PEX(Q) is a set of process rewrite rules,

F ⊆ PEX(Q) is a finite set of final processes.

Thus, Process Rewrite Systems are capable to capture component behavior containing un-

bounded recursion (like push-down automata) and unbounded parallelism (like Petri nets). Ex-

ample 3.9 on page 48 shows transformations of process-algebraic expressions.

Definition 3.29 (Empty process)

The process ε denotes the empty process. It is the identity on “||” and the identity on “.”.

Remark
Thus, it is valid ε.t = t = t.ε and ε||t = t = t||ε, where t ∈ PEX(Q).

Definition 3.30 (Derivation relation of Process Rewrite Systems)

The process rewrite rules define a derivation relation⇒∈ PEX(Q) × Σ∗ × PEX(Q) by the

following inference rules:

(t1
a→ t2) ∈→
t1

a⇒ t2
,

t1
a⇒ t2

t1.t3
a⇒ t2.t3

,
t1

a⇒ t2

t1||t3
a⇒ t2||t3

,
t1

a⇒ t2

t3||t1
a⇒ t3||t2

,
t1

x⇒ t2 t2
a⇒ t3

t1
x a=⇒ t3

,
t1

λ⇒ t1

where t1, t2, t3 ∈ PEX(Q), a ∈ Σ and x ∈ Σ∗.

46

3.2. Formal Descriptions of Behaviors

The second rule formalizes that only the frames on top of the stacks of a cactus stack can be

considered for transformations. The third and fourth rule specify that any stack in a cactus stack

can be considered (i. e., each of the processes currently being executed can be selected for state

transformations). Thus, these two rules model interleaving semantics.

3.2.3 Hierarchy of Formal Representations

Based on these operators, Mayr defined a hierarchy of formal representations containing finite

state machines, Petri nets and push-down automata. The hierarchy is called PRS-hierarchy.

These PRS classes allow the classification of Process Rewrite Systems by the appearance of

operands. He uses the following base classes:

• 1: terms are composed of atomic processes only

• P : terms are composed of atomic processes or parallel composition

• S: terms are composed of atomic processes or sequential composition

• G: terms can be formed with all operators

These classes model different behavior [May00]. Hence, it is not possible to model all behav-

ior of a parallel system using only sequential composition and vice versa (cf. Figure 3.3 on

page 44). With the four base classes, a strict hierarchy based on bisimulation was formed (cf.

Figure 3.4 on page 49), which allows us to classify all possible and sensible Process Rewrite

Systems.5 The meaning of the abbreviations is described in Table A.2.

The hierarchy classifies the PRS classes by the appearance of the operators in the transition

rules. The classes are named by the (L,R)-PRS schema, where L classifies the allowed opera-

tors on the left-hand side of the transition rules, while R classifies the allowed operators on the

right-hand side of the transition rules, where L,R ∈ {1, P, S,G}.
As we see the (1, S)-PRS allows rules which contain an atomic process at the left-hand side

and allows the sequential operator at the right-hand side. This class is equivalent to push-

down automata with one state, which accept a language, if the stack is empty. The empty stack

is represented in a (1, S)-PRS with the empty process ε. The (S, S)-PRS is the companion piece

to PDA with several states.

Process Rewrite Systems allowing the parallel operator are among others the class (P, P)-

PRS. This class is equivalent to the Petri nets. The (1, P)-PRS are Petri nets, where every

transition of the net has only one incoming arc, hence it does not contain synchronization.

Even the general Process Rewrite Systems are not Turing-powerful.

Mayr shows in [May00] that the rules of any Process Rewrite System can be transformed to

a normal form, i. e., the left-hand side and the right-hand side have one of the forms t1, t1.t2 or

t1||t2, where t1 and t2 are atomic processes, formally:

5[May00] points out that the left-hand side of a process rewrite rule must be at most as large as the right-hand side
in the sense of Figure 3.4.

47

3. Foundations

Example 3.9: Transformations of process-algebraic expressions using a given set of transition
rules (corresponding to Example 3.8 on page 45).

p1p1

p2p2
p3p3

p1 is translated into p3 and p2 is pushed
used transition rule: p1 → p2.p3
⇒ p2.p3

p4p4
p5p5
p3p3

p2 is translated into a fork of p4 and p5
used transition rule: p2 → p4||p5
⇒ (p4||p5).p3

p7p7 p4p4
p5p5
p3p3

p7 is forked by p5
used transition rule: p5 → p5||p7
⇒ (p4||p7||p5).p3

p8p8
p9p9 p4p4

p5p5
p3p3

p7 is translated into p9 and p8 is pushed at p9
used transition rule: p7 → p9.p8
⇒ (p4||(p8.p9)||p5).p3

p8p8
p9p9

p3p3
p3p3

p5 and p4 are synchronized and translated into p3
used transition rule: p1 → p2.p3
⇒ ((p8.p9)||p3).p3

p9p9
p3p3
p3p3

p8 is eliminated
used transition rule: p8 → ε
⇒ (p9||p3).p3

p3p3

p9 and p3 are synchronized and eliminated
used transition rule: p9||p9 → ε
⇒ p3

εε

p3 is eliminated
used transition rule: p3 → ε
⇒ ε

48

3.2. Formal Descriptions of Behaviors

(G,G)-PRS

(P,G)-PRS (S,G)-PRS

(P, P)-PRS (1, G)-PRS (S, S)-PRS

(1, P)-PRS (1, S)-PRS

(1, 1)-PRS

Figure 3.4.: Hierarchy of Process Rewrite Systems (cf. [May00]), classification by appearance
of operands on the left-hand side and right-hand side, (LHS,RHS)-PRS.

Definition 3.31 (Normalform of Process Rewrite Systems [May00])

A Process Rewrite System Π = (Q,Σ, I,→ , F) is in normal form, if all transition rules δ ∈→
are in normal form.

A transition rule is in normal form, if it is in one of the following forms:

p1
a→ p2.p3 called sequential rule,

p1
a→ p2||p3 called fork rule,

p1.p2
a→ p3 no name given,

p1||p2
a→ p3 called join rule,

p1
a→ p2 called chain rule,

p1
a→ ε called elimination rule.

where p1, p2, p3 ∈ Q and a ∈ Σ.

Convention 3.3 (PRS always in normal form)

We assume in this work that every Process Rewrite System has been transformed to a Process

Rewrite System in normal form.

3.2.4 Model Checking

Definition 3.32 (Model checking)

Given a model Π (e. g., push-down automaton or Petri net) and a property a model checker

decides whether the property is fulfilled by Π or not. Every part of Π which does not fulfill the

given property is called counterexample.

Not every model checker works precisely [CGJ+03].

49

3. Foundations

logic highest class, where the logic is decidable

linear-time µ-calculus (P, P)-PRS “Petri nets”

alternation-free modal µ-calculus (S, S)-PRS “push-down automata”

LTL (P, P)-PRS “Petri nets”, (S, S)-PRS “push-
down automata”

CTL (S, S)-PRS “push-down automata”

EF (branching-time temporal logic) (S,G)-PRS “PAD”

Reachability (G,G)-PRS “general PRS”

Table 3.1.: Model checking results considering Process Rewrite Systems.

Definition 3.33 (False negatives)

A false negative w is a counterexample of a model Π, where w /∈ L(Π).

False negatives appear often. They have to be checked by a human, in general. In contrast

false positives are not acceptable:

Definition 3.34 (False positives)

A false positive is a violation of a property (i. e., counterexample), which is not discovered.

Hence, the application is accepted as fulfilling the requirements while it does not. For this

reason false positives have to be excluded. A sound model checker will prevent false positives.

Model Checking of Process Rewrite Systems

Mayr has shown that the general PRS class can be model checked because reachability is decid-

able (not Turing-powerful) [May98]. Here, the reachability state STATE (cf. Definition 3.35) is

a process-algebraic expression.

Definition 3.35 (Reachability)

Given a formal representation Π, it is decidable if a STATE s of Π is computable. The definition

of this STATE differs from representation to representation. E. g.,

• a state q ∈ Q of a finite state machine (cf. Definition 3.21) is equal to the STATE,

• a marking is the STATE of a Petri net (cf. Definition 3.26),

• the stack content is the STATE of a push-down automaton with one state (cf. Definition

3.25).

Model checking several logics is always decidable for a subset of PRS classes. A brief

overview of Mayr’s results is given in Table 3.1. An extended overview is shown in Figure

A.2, A.3 and A.4.

50

3.3. Summary

3.3 Summary

In this work we will consider blackbox components. The only known attributes of them are

name, required interfaces and provided interfaces.

An important issue is composition. Components are composed while matching their inter-

faces. This is a technical requirement. Hence, the composition is based on technical require-

ments.

Errors triggered just by component interactions cannot be excluded. They appear during the

test phase or after the deployment (i. e., runtime, during usage by client). Delivering an appli-

cation, which might contain serious problems, is not acceptable for some scopes of application.

The problem might be triggered by a reused component as well as just by the composition of

components. Using tests to find these errors is difficult, at least if components are allowed to

choose peers dynamically. Moreover, tests can never be done exhaustively, in general.

51

3. Foundations

52

4 Protocol Conformance and Abstractions

In this chapter we will describe and define the problem we will solve in this work. An impor-

tant property of our approach is the distinction between the constraint of a component and the

behavior of the component-based software. We start with a formal definition of component

protocols describing the constraint which has to be fulfilled (Section 4.1). In contrast to other

works (e. g., [PV02]) considering (behavioral) protocols (cf. Chapter 2), only the contract is de-

scribed by the protocol. It contains only the callable operations. The behavior of the component

is presented separately (cf. Section 4.3).

In Section 4.2 we define the protocol conformance problem, while Section 4.3 is concerned

with, source code abstractions can be used to satisfy the requirements of the independent com-

ponent developers and the properties of the problem.

4.1 Component Protocols (short: Protocol)

Simplicity is prerequisite for
reliability.

(Edsger W. Dijkstra)

As discussed in Section 1.4 it is a difficult, expensive and error-prone task to ensure the correct

functionality by testing only. We have in mind, that the developer should not be burdened

of thinking about possible error-prone situations within the source code. Instead, he should

formulate the purpose of the considered component. We assume that this is an easier task.

A component protocol (short: protocol) describes the valid use of all callable operations (cf.

interfaces, Definition 3.2 on page 29) of a single component or instance1, respectively. It can

be used to dynamically verify (incoming remote) invocations, and also to statically verify, if the

component is always used in the manner specified by the protocol. Protocols are used e. g., to

avoid uncaught exceptions (e. g., avoid situations, where a division by zero is possible) during

the execution of a component or obey business rules (e. g., ensure a specific workflow while

interacting).

In accordance with other works (e. g., [ZS06, Reu02b, FLNT98]) we use finite state machines

(short: FSM, cf. Definition 3.21) to represent the protocol PC of a component C.

Definition 4.1 (Component protocol)

A protocol PC of a component C=̂(P,R) is a finite state machine (FSM).

The finite state machine PC=̂(QPC ,ΣPC , IPC ,→ PC , FPC) is defined as usual (cf. Definition

1We use the term component for simplification.

53

4. Protocol Conformance and Abstractions

3.21 on page 42), i. e.,

QPC is a finite set of states,

ΣPC is a finite set of atomic actions (interactions of the compo-
nents), thus it is a subset of the provided interfaces of C,

IPC ∈ QPC is the initial state,

→PC⊆ QPC × ΣPC ×QPC is a finite set of transition rules,

FPC ⊆ QPC is the set of final states.

For example, a SSO-component2 with the following actions is offered:

a. register a new account and sign in instantly,

b. sign in using an existing account,

c. optionally change password,

d. logout.

The SSO-component (Example 4.1b) could have the following business rules to ensure a safe

behavior. An unexpected situation should never be reached:

• users can log in if they already have an account or they might register for a new account

(and thus log in immediately),

• after logged in, they can change their password (as often as desired),

• the connection is closed after the user is logged out.

This business rule describes some kind of a workflow within the component. It has to be obeyed

by every caller of the component in any execution sequence. In Example 4.1 the protocol of

the SSO-component mentioned above is shown in its different representations (cf. Examples

4.1c, 4.1d, 4.1e). As the protocol can only contain atomic actions provided by the implemented

interface, the components interface is also shown (Example 4.1a).

Protocols forbid specific interaction sequences. Thus, they ensure that the component is only

used in the manner the component developer has prepared. Protocols can be used to ensure a

distinguished behavior. For example:

• ensure that a user of a component does not use the component in an unsafe manner (e. g.,

Example 4.1 describes such a restriction, in Example A.1 on page 199 a protocol derived

from an industrial case study is shown),

2Single Sign On: A component which provides the functionality of a login/logout/session management, so different
applications can use this mechanism to verify a user.

54

4.1. Component Protocols (short: Protocol)

Example 4.1: SSO-component and corresponding protocol.

interface ISSO begin
/* register and sign in */
sync a(. . .)
/* sign in */
sync b(. . .)
/* optionally change password */
sync c(. . .)
/* user logout */
sync d(. . .)

end

(a) SSO-Interface ISSO.

component CSSO

implements ISSO

begin
sync a(. . .)

sync b(. . .)

sync c(. . .)

sync d(. . .)

end

ISSO

(b) SSO-component CSSO.

PSSO=̂((a|b)c∗d)∗
(c) Protocol of CSSO as regular expression.

PSSO =(Q,Σ, I,→ , F) with

Q ={v0, v1},
Σ ={a, b, c, d},
I =v0,

→={v0
a→ v1, v0

b→ v1, v1
c→ v1, v1

d→ v0},
F ={v0}.

(d) Protocol of CSSO as finite state machine.

v0 v1
a

b

c

d

(e) Graphical representation of protocol CSSO.

• ensure that a specific interaction sequence can never appear because otherwise the appli-

cation will crash, examples are shown [ZS06, BZ08b, BZ09e],

• ensure that a legal constraint or a business rule is obeyed (examples are shown in [BZ08a,

BZ09b]).

The component developers or system designers should not be burdened with the internal view

of a component’s behavior. Therefore, we choose a component protocol representation, that

contains only callable procedures of the component. Moreover, this allows the definition of a

protocol without knowing the actual implementation. Besides that it is also possible to exchange

the component’s implementation while keeping the protocol the same. Thus, the requirements

for an integration in a design or development process are fulfilled.

Remark
In some discussions the concept of protocols is compared to the concept of “design by contract”

[Mey92b], which is lifted to the level of components. We would add to this statement that a pro-

tocol can be seen as a published workflow (sequence of operations) a corresponding component

implements. However, this leads to the restriction that data flow is omitted. For this reasons,

55

4. Protocol Conformance and Abstractions

this approach is not applicable to all kind of verification issues, e. g., the examples in [MK99]

are mostly not verifiable while using this approach.

4.2 Protocol Conformance

n the last section we discussed the constraints to be obeyed if a component is used within a

component-based software. This protocol is defined for each component, in general. Thus, the

main problem is to decide, whether all given protocols are obeyed within the behavior of the

component-based software. Hence, we consider the behavior of the full application. Here, it is

assumed that the behavior of the application S is given by the Process Rewrite System ΠS (cf.

Definition 4.7). It describes a language L(ΠS) which contains all possible interaction sequences

within S.

While verifying one protocol PC = (QPC ,ΣPC , IPC ,→ PC , FPC), we consider only the

interactions a ∈ ΣPC . We define the behavior ΠS,C which contains only interactions, that are

part of the protocol PC .

Definition 4.2 (Use of a component C in S: ΠS,C)

The use of a component C in a system S assembled from components is the set of all possi-

ble sequences of procedure invocations to C. Thus, this can be also modeled as a language

L(ΠS,C). The behavior ΠS,C describes the same behavior as ΠS , except that all interactions

performed not to C are considered as no relevant action. Hence, ΠS,C contains only symbols

identifying operations of the provided interfaces of C. All other operations are masked. We

denote ΠS,C=̂ϕC(ΠS). Thus, ϕ computes ΠS,C of ΠS considering the operations provided by

C.

The use of the component C2 in Example 3.2 on page 31 is shown schematically in Exam-

ple 4.2 using UML Sequence Diagrams [RJB04]. As it is shown in the second diagram, the

interactions between other components are still present, but not named (represented as λ). Only

interactions to the currently considered component C2 are represented in an identifiable way. In

Example 4.2b ΠS,C2 is visualized. It contains only operations of the provided interfaces of C2.

Now, it is possible to define the protocol conformance. To decide conservatively if an appli-

cation S is conform, we have to check every given protocol PCi . The protocol conformance

problem is the question, whether the protocol PC of one component C is obeyed in the compo-

nent-based software S.

Definition 4.3 (Protocol conformance)

The protocol conformance describes the relation between the interaction sequences that are con-

tained in ΠS,C and the allowed sequences of interactions:

L(ΠS,C) ⊆ L(PC)

As generalization we define the protocol conformance of a complete application.

56

4.2. Protocol Conformance

Example 4.2: Sequence diagrams (drawn using [Han07]) showing ΠS,C2 , use of component C2.

Component
C_Start

Component
C_Start

Component
C_0

Component
C_0

Component
C_1

Component
C_1

Component
C_2

Component
C_2

q(k)

Interaction might be delayed.

reset()

alt [if: perform interaction]

[else: no interaction]

z(t)

set(x)

calc(i)

(a) Specification of application interactions (corresponding to ΠS).

Component
C_Start

Component
C_Start

Component
C_0

Component
C_0

Component
C_1

Component
C_1

Component
C_2

Component
C_2

λ

Interaction might be delayed.

reset()

alt [i f : perform interact ion]

[else: no interact ion]

λ

set(x)

calc(i)

(b) Considering interactions with C2 only (corresponding to ΠS,C2).

57

4. Protocol Conformance and Abstractions

Definition 4.4 (Protocol conformance of a component-based software)

A complete application S is protocol conformant, iff for each protocol PCi of S it is valid:

L(ΠS,Ci) ⊆ L(PCi)

The statement L(ΠS,Ci) ⊆ L(PCi) can be formulated equivalently by L(ΠS,Ci) ∩ L(PCi) =
∅, where PCi is the inverted protocol (inverted finite state machine, Definition 3.24 on page 42).

Hence, we check if any sequence of interactions to Ci can be generated within S, that are

forbidden by the protocol PCi (thus are contained in PCi). If L(ΠS,Ci) ∩ L(PCi) 6= ∅ the

application S contains a protocol violation.

As a result we are interested in the concrete sequences of interactions leading to a protocol

violation. These sequences are called counterexamples. A counterexample w is a sequence of

interactions that is not allowed by protocol PC of a component, but nevertheless possible by the

behavior ΠS,C of the application S.

Definition 4.5 (Counterexample)

A counterexample in our sense is an interaction sequence w ∈ L(ΠS,Ci) ∩ L(PCi).

Remark (Static vs. dynamic evaluation of the protocol)

Protocols can be used to verify the behavior of a component-based software dynamically (i. e.,

at runtime). I. e., some mediator checks whether the next interaction is allowed and stops the

interaction sequence if not.

The static verification of a protocol checks the behavior before the application is started (e. g.,

at composition time). In this case no actual interaction is performed and the behavior is eval-

uated without execution. In this work we consider static verification, because we are strongly

interested in discovering errors before they appear during the usage by a customer.

The protocol conformance problem describes the statement whether the rules (a component

developer has established) are obeyed in the application or not. If not, we would like to de-

liver counterexamples which represent the execution trace leading to the forbidden interaction

sequence.

In Example 4.3 an example of glassbox components is shown. There exists a problem within

component C2. If the procedure calc is called directly after calling procedure reset, a division

by zero error will occur. The developer of component C2 has foreseen this problem and de-

fined a protocol for his component (Examples 4.3c, 4.3d, 4.3e). This protocol prescribes that

after calling reset the procedure set has to be called, thereafter calc can be called (in Figure

A.2 on page 202 a protocol of C2 is shown, which is more specific). Looking at the available

source code, we can discover such a situation. The variable y has to be equal to 42 (in component

C0).

The problem appears, if the execution of the asynchronous procedure call q(k) in Cstart is

delayed and interleaved with the interaction sequence set(t) and calc(x) initiated by C1. The

58

4.2. Protocol Conformance

Example 4.3: Glassbox components, where the execution results in an error (cf. Example
4.4 on page 60).

interface I0 begin
async q(int k)

end

interface I1 begin
sync z(out int r, int x)

end

interface I2 begin
sync set(int n)
sync calc(out int r, int m)
sync reset()

end

(a) Given interfaces.

component Cstart

implements Istart

begin
sync main(int k)

call q(k)
read t from file
call z(t)

end

I0

I1

component C0
implements I0
begin

async q(int y)
if y == 42 then

call reset()

end

I0

I2

component C1
implements I1
begin

sync z(int r, int x)
read i from file
call set(x)
call calc(r,i)

end

I1

I2

component C2
implements I2
begin

sync set(int n)
save n to database

sync calc(int r, int m)
read n from
database
r = m/n

sync reset()
n = 0
save n to database

end

I2

(b) Given components, composed statically.

PC2=̂(reset∗ set+ calc+)+

(c) Protocol as regular expression.

v0 v1 v2set calc

set
reset

reset set calc

(d) Protocol PC2 of component C2 in a graphical representation.

PC2 =(Q,Σ, I,→ , F), where

Q ={v0, v1, v2},
Σ ={reset, set, calc},

→={v0
reset→ v0, v0

set→ v1, v1
set→ v1, v1

calc→ v2, v2
calc→ v2, v2

set→ v1, v2
reset→ v0},

I =v0,

F ={v2}
(e) Protocol of component PC2 as FSM.

59

4. Protocol Conformance and Abstractions

Example 4.4: Cactus stack representing erroneous execution trace (counterexample) in Example
4.3b on page 59 (the labels of the frames are chosen randomly, at this point in
time).

ps0ps0

Initial program point

ps1ps1

p10p10

asynchronous call q(k) in Cstart

ps2ps2

p10p10

read t from file in Cstart

ps3ps3

p0p0 p10p10

synchronous call z(r, t) in Cstart

ps3ps3

p1p1 p10p10

read i from file in C1

ps3ps3

p2p2

p20p20
p10p10

synchronous call set(x) in C1

ps3ps3

p2p2 p10p10

set(x) terminates in C2

ps3ps3

p2p2 p11p11

if in C0

ps3ps3

p2p2 p12p12

p22p22 synchronous call reset() in C0

ps3ps3

p2p2 p12p12

reset() terminates in C2

ps3ps3

p3p3

p21p21
p12p12

synchronous call calc(r, i)) in C1

division by zero appears

60

4.3. Abstractions of Source Code

cactus stack representing this specific execution trace (k = 42) is shown in Example 4.4 on

page 60 .

While looking at the source code (whitebox or glassbox components) we can discover the

problem, but in a component-based software the components are blackboxes (premise of this

work). Thus, it is hard to consider a problem, if only blackbox components are available, as

we have no information about the behavior of the components. A verification method needs

information about the behavior.

Remark
Several research [Bei95, Edw01, Mal95, KT04] has been done about blackbox testing. How-

ever, this cannot always lead to the discovery of all existing errors as the data ranges cannot be

considered sufficiently, in the general case (state space explosion).

4.3 Abstractions of Source Code

Program testing can be used to
show the presence of bugs, but
never to show their absence!
Therefore, proof of program
correctness should depend only
upon the program text.

(Edsger W. Dijkstra

[Dij69],[Dij70])
In the previous section we have defined the protocol conformance problem. There, we used

the behavior of the component-based software to determine whether every protocol is obeyed or

not. However, we cannot assume that the source code of every component of a component-based

software is accessible, because this contradicts the nature of components, which can be exist as

blackbox components only. Moreover, it is possible that even the binary code is not accessible

(e. g., Web Services). In an industrial environment the source code is protected, because of the

encoded business secrets (intellectual property). This might result in a situation, where only

blackbox components are present. In that case no statement about the source code behavior is

provable (and the protocol conformance is undecidable). Hence, we have to choose a behavior

representation, which complies the following requirements:

• It has to be a formal behavior representation, otherwise it cannot be used for model check-

ing.

• It is not allowed to contain business secrets, hence data types and algorithms cannot be

included in the representation, otherwise it could be possible to reconstruct intellectual

properties.

• The representation has to contain every interaction with other components, or else not

every protocol violation can be found.

61

4. Protocol Conformance and Abstractions

• It has to represent the control-flow, such that it contains all possible interaction sequences.

• It has to be possible to represent synchronous as well as asynchronous interactions, be-

cause these are possible in several component systems or technologies (e. g., BPEL).

We conclude from these requirements, that we have to create a conservative representation of

the given source code capturing sequential (cf. Definition 3.16 on page 38) as well as parallel

behavior (cf. Definition 3.14 on page 38). This representation is called abstraction:

An abstraction AC (abstract behavior) of a component C has to capture every observable

behavior of C, thus at least every control flow path within C has to be considered. As represen-

tation of a component behavior the formal models shown in Section 3.2 can be used (e. g., finite

state machines, push-down automata, Petri nets and many more).

Definition 4.6 (Component abstraction)

For an abstraction AC of the component C the formula L(C) ⊆ L(AC) is valid.

An abstraction AS of an application S has to implement every executable path of S, thus

every control-flow path has to be captured.

Definition 4.7 (System abstraction)

If w ∈ L(S), then w ∈ L(AS), in other words L(S) ⊆ L(AS).

As mentioned in Section 2 it is possible to use different representations as abstraction of a

source code. The most important ones are push-down automata and Petri nets. They are used

in many works and were explored extensively (cf. Section 2). Push-down automata have signif-

icant advantages while dealing with recursion, whereas Petri nets are very suitable to represent

concurrent behavior. While capturing the behavior of a component-based software, parallel as

well as sequential behavior can appear. It is not possible to represent the behavior of a push-

down automaton in general using a Petri net, and vice versa [May00].

A source code abstraction cannot capture the behavior exactly. In that case the resulting

representation might be Turing-powerful, hence no model checking is possible. On the other

hand an abstraction often means some kind of imprecise representation. While considering

model checking (as we will do in this work), this could lead to false negatives of the abstraction.

A false negative is a counterexample (Definition 4.5 on page 58) which is computable using the

abstraction AS , but not computable in the actual implementation S.

Definition 4.8 (False negatives of an abstraction)

For a false negative w of an implementation S it is valid: w ∈ L(AS) ∧ w /∈ L(S).

False negatives often appear. If limited, they are acceptable. However, they should be reduced

as far as possible, because the check (by a human) to determine whether a counterexample is a

false negative might be very expensive.

Theorem 4.1 (False positives and conservative abstraction)

No false positives can appear, while assuming a conservative abstractionAS of an application S

62

4.4. Use Process Rewrite Systems as Behavioral Representation

(Definition 4.7) and a sound model checker (which discovers all counterexamples).

Proof (Theorem 4.1)

A sound model checker checks L(AS) ⊆ L(PC), where PC is the given constraint. Hence, it

follows that L(S) ⊆ L(PC) (Definition 4.7).

It is clear that a conservative abstraction is possible, while computing the abstraction AS of

the application S, where L(AS) = L(Pi) (where Ci=̂(Pi,Ri) are the components of S). Thus,

no false positives will appear. However, false negatives might appear. It has to be the aim to

compute a more precise abstraction. i. e., it should contain less false negatives: L(AS) \ L(S)
should be minimized.

4.4 Use Process Rewrite Systems as Behavioral Representation

As discussed in Chapter 2 a representation of the component behavior should be capable to rep-

resent parallel and sequential behavior as well as asynchronous and synchronous interactions.

Petri nets are suitable for parallel behavior and asynchronous interactions, while push-down au-

tomata are suitable for sequential behavior and synchronous interactions. To capture both behav-

ior classes, we use Process Rewrite Systems (cf. Definition 3.28 on page 46). To our knowledge

no other work uses Process Rewrite Systems for the purpose of representing component behav-

ior.

Moreover, Process Rewrite Systems have the advantage that the theory contains the backward

compatibility to other standard representations (like Petri nets and push-down automata). From

our point of view, this is a main advantage in contrast to other (expressive) representations

(e. g., Π-calculus [Mil92]3). Therefore, if a specific representation is not needed, then another

(standard) model can be used. All developed theory will be still applicable. However, it is

possible to use research results of others to improve, for example, the moel checking time.

We will use Process Rewrite Systems, to represent the interactions between considered com-

ponents and all other actions (with respect to the control flows) within the component-based

software. To describe the latter explicitly, we define λ as a special action.

Definition 4.9 (No relevant action)

We introduce a special action λ /∈ Σ. The action λ is equal to the empty word. It denotes no

action in the sense, that no interaction from one component to another is performed, which can

influence the protocol conformance.

We use the following conventions.

Convention 4.1 (λ-rules, action rules, explicit representation of λ)

• Rules of the form t
λ→ t′, where t, t′ ∈ PEX(Q), are called λ-rules.

3Furthermore, Π-calculus is Turing-powerful, thus model checking is not possible in general.

63

4. Protocol Conformance and Abstractions

• Rules of the form t
a→ t′, where a ∈ Σ, a 6= λ, and t, t′ ∈ PEX(Q), are called action

rules.

• Because λ is an explicit representation of the empty word only, we omit noting explicitly

that λ might be the action of a transition rule in the further thesis (if the meaning is clear

by the context).

Remark
Other authors (e. g., [Mil80, VdAvHvdT02]) use τ to name internal actions (or silent actions) of

a component. We use another representation of the empty word as not only internal actions are

represented by λ.

Using Process Rewrite Systems as abstraction representation makes it possible to formulate

the language described by a behavior Π (cf. Definition 4.6 on page 62) in a formal way:

Definition 4.10 (Language accepted by an abstraction)

L(Π)=̂{w : ∃f ∈ F |I w⇒ f} is the language accepted by Π = (Q,Σ, I,→ , F).

Likewise, it is possible to apply Definition 4.2 on page 56 on Process Rewrite Systems:

Definition 4.11 (Use of a component C in S in a Process Rewrite System ΠS)

The use of a component ΠS,C = (QS,C ,ΣS,C , IS,C ,→S,C , FS,C) based on a given system ab-

straction ΠS = (QS ,ΣS , IS ,→S , FS) and component C=̂(P,R) is defined as follows:

QS,C=̂QS ,

ΣS,C=̂ΣS ∩ P,

IS,C=̂P,

→S,C=̂{t1
b→ t2}, where b =

a : (t1
a→ t2) ∈ →S ∧ a ∈ P

λ : (t1
a→ t2) ∈ →S ∧ a /∈ P

,

FS,C=̂FS .

Convention 4.2 (Notation of use of component)

To mark the consideration of the interactions of one component C=̂(P,R) (in an application S),

we use the notation ΠS,C=̂ϕC(ΠS).

Example 4.5 shows the use of a component.

64

4.4. Use Process Rewrite Systems as Behavioral Representation

Example 4.5: System abstraction of S (cf. Example 4.3 on page 59) and use of component as
Process Rewrite System.

component Cstart

implements Istart

begin
sync main(int k)

call q(k)
read t from file
call z(t)

end

I0

I1

component C0
implements I0
begin

async q(int y)
if y == 42 then

call reset()

end

I0

I2

component C1
implements I1
begin

sync z(int r, int x)
read i from file
call set(x)
call calc(r,i)

end

I1

I2

component C2
implements I2
begin

sync set(int n)
save n to database

sync calc(int r, int m)
read n from
database
r = m/n

sync reset()
n = 0
save n to database

end

I2

(a) Components of Example 4.3 on page 59.

component Cstart

implements Istart

ps0
q→ p10 || ps1

ps1
λ→ ps2

ps2
z→ p0 . ps3

ps3
λ→ ε

I0

I1

component C0
implements I0

p10
λ→ p11

p10
λ→ p12

p11
reset→ p22 . p12

p12
λ→ ε

I0

I2

component C1
implements I1

p0
λ→ p1

p1
set→ p20 . p2

p2
calc→ p21 . p3

p3
λ→ ε

I1

I2

component C2
implements I2

p20
λ→ ε

p21
λ→ ε

p22
λ→ ε

I2

(b) Straight forward abstractions of application shown in Example 4.5a.

component Cstart

implements Istart

ps0
λ→ p10 || ps1

ps1
λ→ ps2

ps2
λ→ p0 . ps3

ps3
λ→ ε

I0

I1

component C0
implements I0

p10
λ→ p11

p10
λ→ p12

p11
reset→ p22 . p12

p12
λ→ ε

I0

I2

component C1
implements I1

p0
λ→ p1

p1
set→ p20 . p2

p2
calc→ p21 . p3

p3
λ→ ε

I1

I2

component C2
implements I2

p20
λ→ ε

p21
λ→ ε

p22
λ→ ε

I2

(c) Use of component C2 (cf. Example 4.5b): The action of all rules performing no call to C2 are replaced by λ (here only
component Cstart is affected).

65

4. Protocol Conformance and Abstractions

4.4.1 PA-processes and Process Algebra Nets

By looking at the PRS hierarchy in Figure 3.4 on page 49 it is obvious that searching for a

fusion of parallel concepts with sequential concepts requires to use the (P,G)-PRS “Process

Algebra Nets”4 (short: PAN) or the general PRS class (cf. Section 3.2.3 on page 47). As

mentioned before we represent only the control flow in the abstract behavior. The data flow is

omitted. In accordance with [Esp02, May00] the sequential operator on the left-hand side can

be used to represent return values of procedure calls. As we capture no data flow, the return

values are irrelevant, hence we can use Process Algebra Nets. Process Algebra Nets can handle

unbounded recursion and unbounded parallelism including synchronization.

Moreover, the (1, G)-PRS “PA-processes” (short: PA) could be interesting, if no synchroniza-

tion of concurrent control flows is allowed or captured in the abstraction.

4.4.2 Example Language

In this work we use a tiny programming language. The language definition is shown in Appendix

A.2. It is defined with the usual semantics. An example was already introduced in Example

4.3 on page 59 and in Example 4.4 on page 60.

We request that a component (keyword in exemplary source code: “component”) is used to

encapsulate procedures. It implements at least one “interface”. Signatures of procedures have

to be marked with the modifier “sync” or “async”. This defines whether a procedure has to be

called synchronously or asynchronously.

We use a cactus stack (cf. Section 3.2.2) with interleaving semantics as execution model,

i. e., every synchronous call to a procedure pushes a new frame onto the current stack, and every

asynchronous call to a procedure results in the starting of a new process (branch of cactus stack).

For simplification we allow no instances of a component in our example language.

4.4.3 Capturing Behavior with Process Rewrite Systems

In Section 3.2.2 we have shown that Process Rewrite Systems (process-algebraic expression) are

a representation of cactus stacks. In Example 4.4 on page 60 we have gone through an erroneous

execution (of the application in Example 4.3b on page 59) by using cactus stacks. In this section

we will show that the behavior of the example programming language (cf. Section 4.4.2) can be

represented using PRS transition rules.

We assume that the full source code of the application is available. The main ideas for the

construction of an abstraction ΠS = (QS ,ΣS , IS ,→S , {ε}) are (where QS = {pi : i ∈ N}):

1. Create an atomic process for each program point pi: Without loss of generality we assume,

that every control flow path of a procedure ends (implicitly) with a “return”-statement.

For “return”-statements no program point will be created.

4Caused by the fact that the grammar described by a (S, S)-PRS PDA can be accepted by a (1, S)-PRS called BPA,
which is a push-down automaton with only one state.

66

4.4. Use Process Rewrite Systems as Behavioral Representation

2. Create transition rules, that map the control flow of the application in process rewrite rules

(abstract behavior): We use the mapping function next : QS → 2QS , which results in the

program points pj ∈ Q′ (Q′ ∈ 2QS), where every pj is a possible succeeding program

point of pi ∈ QS . The mapping result contains ε if there exists a control path, that ends in

the next step (“return”-statement).

• If at a program point pi a synchronous procedure call a is performed, we create

rewrite rules pi
a→S pk . pj . We create the transition rule pi

a→S pk || pj if a is

an asynchronous procedure call. The program point pk ∈ QS identifies the initial

program point of the called procedure. If it is not known whether the procedure call

is implemented synchronously or asynchronously, both transition rules are generated

to ensure the conservative approximation.

• If at a program point pi another operation is performed, we create corresponding

rewrite rules ti
λ→ tk, where pk ∈ tk, pi ∈ ti and pk ∈ next(pi). This transition rule

has the semantics, that this operation is not interesting for the protocol verification

(data calculations).

We always update QS , when we create a new rewrite rule.

Theorem 4.2 (Conservative abstraction)

The abstraction leads to a conservative abstraction of any application S written in the example

programming language with respect to the restrictions of the execution model (cactus stack).

To prove the theorem we will define the result of next(p). We have to make a distinction,

whether the program point is placed at the end of a block or not. We assume, that the last

program point of the considered block is labeled with pe. To ensure predictable behavior, we

precise the values of the return set of next(pe) of the last statement of a “Block”. We have to

consider the following different situations:

• Procedure ::= type name “(” ParameterDefs “)” “begin” Block “end”

The following formula is valid: next(pe)=̂{ε}.

• Statement ::= “if” Expr “then” Block

Statement ::= “if” Expr “then” Block “else” Block

The following formula is valid: next(pe)=̂{pk : where pk identifies the next statement

in the statement list after the “if”-

statement}.

• Statement ::= “while” Expr “do” Block

The following formula is valid: next(pe)=̂{pi : where pi identifies the first statement

within the “while”-block}.

Proof (Theorem 4.2)

To prove the statement, we consider each possible statement. We always assume that the current

67

4. Protocol Conformance and Abstractions

program point (statement) was labeled with p0.

• “if” Expr “then” Block

The program counter can enter the block or not. Using the definition of next(p0), we

know that a pi exists identifying the initial program point of the block and a pj exists

identifying the program point, after the “if” statement5. As for each constant of the result

set of next(p0) a PRS transition rule is generated and no interaction is performed, the

following transition rules are generated:

p0
λ→ pi enter the “if”-branch

p0
λ→ pj do not enter the “if”-branch

Thus, if an execution trace w contains interactions ŵ initiated while executing the if-

branch (w=̂w′ · ŵ ·w′′), it has to be valid pi
ŵ⇒ ε. Otherwise, ŵ is empty (ŵ = λ). Hence,

w can be constructed using the abstraction.

• “if” Expr “then” Block “else” Block

The result set of next(p0) contains the initial program point of the first block pi and the

second block pj . Hence, the following transition rules are generated:

p0
λ→ pi enter the “if”-branch

p0
λ→ pj enter the “else”-branch

Thus, if an execution trace w contains interactions ŵ initiated while executing the if-

branch (w=̂w′ · ŵ · w′′), it has to be valid pi
ŵ⇒ ε. If an execution trace w contains

interactions w∗∗, initiated while executing the else-branch (w=̂w′ ·w∗∗ ·w′′′), it has to be

valid pi
w∗∗⇒ ε. Hence, w can be constructed using the abstraction.

• Statement ::= “while” Expr “do” Block

If the expression is evaluated to true, the block is entered. The constant pi represents the

initial program point of the block and pj identifies the statement following the considered

“while”-statement. The following transition represents the same behavior:

p0
λ→ pi enter the “do”-block

p0
λ→ pj skip the “do”-block

Thus, if an execution trace w contains interactions ŵ initiated while executing the while-

block (w=̂w′ · ŵ · w′′), it has to be valid pi
ŵ⇒ ε. If an execution trace is not executing

the while-block, then w∗∗ = λ (w=̂w′ ·w∗∗ ·w′′′). Hence, w can be constructed using the

abstraction.
5Note, that pj can be ε, if the next statement is a “return”-statement.

68

4.4. Use Process Rewrite Systems as Behavioral Representation

• Statement ::= “call” name “(” Parameters “)”

If the procedure call is performed asynchronously, then a new process is forked. If a

synchronous interaction is initiated, the current process waits until the result is returned.

The following rewrite rules represent this behavior:

p0
name→ pj || pi,

p0
name→ pj . pi.

where pi ∈ next(p0) and pj is the initial program point of the called method.

Thus, if name is called while executing the application S, the execution path w=̂w′ ·
name · w′′ is contained in the behavior. Because of the conservative abstraction, a

derivation of ΠS exists so that I w′⇒ t′
name=⇒ t′′

w′′⇒ ε.

As the abstract behavior of the programming language of each statement can be captured using

PRS transition rules, the example programming language is captured conservatively.

Remark (Expressions can be ignored)

In the used example programming language an expression (Expr) cannot initiate an interaction.

Thus, the computation influences the data values only. Hence, no expressions can influence the

protocol conformance while considering the abstraction. For this reason, expressions in “if”-

and “while”-statements are not represented by an extra program point.

Remark (Automatic construction)

All necessary information can be derived automatically from the source code of the component

and the interfaces (used by the component) using standard compiler construction technologies..

Remark
In [BZ08c, BZ08b] we have chosen a left-to-right evaluation order according to semantics of

Java or C# and show the creation of the components in a general way. If the evaluation order

of the considered component is implementation-dependent, one has to choose here the order

used by a compiler to capture the source code conservatively. In Example 5.5 on page 80 an

exemplary abstraction process is shown.

Convention 4.3 (Unique procedure names)

Without loss of generality we assume that the names of the remote procedures are unique, thus

these names are used as interaction at the transition rules. This restriction is just made to simplify

the notation in this work.

Remark
Process Rewrite Systems representing the abstract behavior (control flow) of an application will

not always represent the behavior exactly (cf. Example 4.6 on page 71).

69

4. Protocol Conformance and Abstractions

4.5 Summary

In this chapter we have defined the protocol conformance problem. As described, abstractions

can be used to represent the behavior of applications. As mentioned, in this work we will focus

on (P,G)-PRS called Process Algebra Nets, because they are capable to handle unbounded

recursion and unbounded parallel behavior with synchronization. They extend Petri nets with

sequential behavior. Hence, the main concepts of component systems can be represented using

Process Algebra Nets and even recursive callbacks can be captured. Moreover, we will use

PA-processes ((1, G)-PRS) if no synchronization has to be considered. We assume, that every

Process Rewrite System is transformed to a Process Rewrite System in normal form.

Based on the assumptions and definitions in this chapter, we will discuss our verification

process in the next chapter. It captures the behavior of single components and processes them.

Thereafter, a representation is created, where counterexamples can be computed.

70

4.5. Summary

Example 4.6: Behavior not represented exactly by a Process Rewrite System.

interface Istart

begin
sync main(bool k)

end

interface I0
begin

sync a()
async b(bool x)
async c()
sync d()

end

(a) Interface definition.

component Cstart

implements Istart
begin

sync main(bool k)
ps0 if k then
ps1 call a()

else
ps2 call b(k)
ps3 if not k then
ps4 call c()

else
ps5 call d()
ps6 k = true

end

I0

component C0
implements I0

begin
sync a()

p0 return
async b(bool x)

p1 return
async c()

p2 return
sync d()

p3 return
end

I0

(b) Implementation of the components (with labeled program points).

component Cstart

implements Istart

ps0
λ→ ps1

ps0
λ→ ps2

ps1
a→ p0 . ps3

ps2
b→ p1 || ps3

ps3
λ→ ps4

ps3
λ→ ps5

ps4
c→ p2 || ps6

ps5
d→ p3 . ps6

ps6
λ→ ε

I0

component C0
implements I0

p0
λ→ ε

p1
λ→ ε

p2
λ→ ε

p3
λ→ ε

I0

(c) Behavioral abstractions of the components.

a() c() this execution sequence is not possible within the actual implementation
a() d() X

b() c() X

b() d() this execution sequence is not possible within the actual implementation
c() b() X

d() b() this execution sequence is not possible within the actual implementation

(d) Possible execution sequences of the abstraction.

71

4. Protocol Conformance and Abstractions

72

5 Verification Process

Here, we describe the heart of our approach: the verification process for protocol conformance

checking.

The component abstractions of the application and the protocols that should be verified are

needed as input. Moreover, we have to know, what kind of a component system is considered to

imitate the composition of the component abstractions in the right manner. All these pieces of

information are easily accessible. The steps of the verification process work automatically.

At the end the user of the verification process gets the answer whether the application is con-

form to all given protocols or not. In the latter case, the verification results in counterexamples

visualizing the execution trace leading to the protocol violation.

In the following paragraphs, we will give a brief overview about the verification process. Later

we will discuss the verification steps in detail.

The basic process is divided into five steps (cf. Figure 5.1). These steps are described in this

section very briefly to give an overview of the whole process. In the Sections 5.1, 5.2, 5.3, 5.4

and 5.5 a detailed description of each step can be found.

The process was defined firstly in [BZ08a]. It works fully automatically. Only the verifying

protocol has to be defined manually.

Step 1: Creating Component Abstractions (Brief Description)

In the first step a representation ΠC (Stripped Process Rewrite System) of only a single com-

ponent C = (P,R) is created, containing P and R. The abstraction is created conservatively,

e. g., it captures at least the full behavior of the considered source code. An abstraction of every

component can be generated independently. The Stripped Process Rewrite Systems ΠCstart , ΠC0 ,

ΠC1 and ΠC2 in Example 4.3 on page 59 can be seen in Example 5.1 on page 76 .

The abstraction process is an extension of the concept shown in Section 4.4. The sound

description of this step can be found in Section 5.1.

Step 2: Creating System Abstractions (Brief Description)

In the second step we imitate the composition of components allowed in the considered com-

ponent system. This transformation has to fulfill the properties of the component system or

programming language, respectively.

As shown previously the system abstraction ΠS is a Process Rewrite System that represents

all the possible behavior of the created component-based software S.

The transition rules shown in Example 4.5b on page 65 describe the application behavior in

Example 4.3 on page 59 .

The sound description of this step can be found in Section 5.2.

73

5. Verification Process

component
implementation

C1

Create create
component
abstraction.

component
abstraction
SPRS ΠC1

component
implementation

C2

Create create
component
abstraction.

component
abstraction
SPRS ΠC2

. . .

. . .

component
implementation

Ci

Create create
component
abstraction.

component
abstraction
SPRS ΠCi

Imitate component composition
using component abstractions

system
abstraction

ΠS

component
protocol
PCi

Combine protocol PCi and
system abstraction ΠS,Ci

Combined
Abstraction

ΠCi

S

Model checking
of representation

counter-
examples

c

Evaluation of counterexamples

Step 1
(Section 5.1)

Step 2
(Section 5.2)

Step 3
(Section 5.3)

Step 4
(Section 5.4)

Step 5
(Section 5.5)

Figure 5.1.: Detailed preparation and verification process.

74

5.1. Step 1: Creating Single Component Abstractions

Step 3: Creating a Combined Abstraction (Brief Description)

In the third step a Process Rewrite System ΠC
S is constructed such that L(ΠC

S) ⊇ L(PC) ∩
L(ΠS,C). The Process Rewrite System ΠC

S contains all sequences of interactions that are for-

bidden by the protocol PC of one component C but nevertheless exists in the application S.

The construction of the Combined Abstraction ΠC
S was presented in our papers [BZ08c, BZ08b,

BZ08a]. We can find every error (protocol violation), because it is encoded as path from the

initial program point to the final state of ΠC
S .

The sound description of this step can be found in Section 5.3.

Step 4: Model Checking the Combined Abstraction (Brief Description)

Every derivation from the initial state of ΠC
S to the final state identifies a counterexample. It

contains all the interactions (or transition rules, respectively) resulting together in a forbidden

use of the component C in the component-based software S.

Because we are interested in an applicable verification process we have to tackle the problem

of long model checking time.

Example 4.3 on page 59 contains a counterexample (as described in Section 4.2). This coun-

terexample can be constructed using our approach. It is not possible to give the user of the

verification process only the information, that the application will crash when called with the

parameter 42 (as shown in Example 4.5 on page 65). Nevertheless, we can describe directly,

where the presented counterexample (based on the control flow) happens. Thus, the responsible

component developer can inspect the problem easily.

The sound description of this step can be found in Section 5.4.

Step 5: Evaluating Counterexamples (Brief Description)

Computed counterexamples can be false negatives, which means that they are not reproducible

in the model or in the source code. False negatives could in cases of doubt only be eliminated

by the user of the verification process while reproducing the sequences of interactions with the

components contained in a counterexample.

In this last step of the verification process we can use several techniques to reduce the number

of counterexamples, which have to be reviewed. This is useful, because the reviewing process is

very expensive.

The sound description of this step can be found in Section 5.5.

5.1 Step 1: Creating Single Component Abstractions

We define a uniform representation of a component behavior. Thus, it is possible to verify com-

ponents from any programming language, without considering programming language specific

pieces of information. These have to be considered in this step and obtained while translating it

to the Process Rewrite System representation.

75

5. Verification Process

Example 5.1: ΠCstart , ΠC0 , ΠC1 and ΠC2 of Example 4.3 on page 59 as Stripped Process Rewrite
Systems.

ΠCstart =(QCstart ,ΣCstart ,→Cstart , RCstart ,PCstart ,MCstart) with

QCstart ={ps0, ps1, ps2, ps3}
ΣCstart ={q, z}

→Cstart={ps0
λ→→ qI1,q || ps1, ps1

λ→ ps2, ps2
λ→→ qI0,z . ps3, ps3

λ→ ε, }
RCstart ={qI1,q, qI0,z}
PCstart ={}
MCstart ={}

ΠC0 =(QC0 ,ΣC0 ,→C0 , RC0 ,PC0 ,MC0) with

QC0 ={p0, p1, p2, p3}
ΣC0 ={ calc, set}

→C0={p10
λ→ p11, p10

λ→ p12, p11
λ→→ qI2,reset . p12, p12

λ→ ε, }
RC0 ={qI2,reset}
PC0 ={qI0,z}
MC0 ={qI0,z 7→ p0}

ΠC1 =(QC1 ,ΣC1 ,→C1 , RC1 ,PC1 ,MC1) with

QC1 ={p10, p11, p12}
ΣC1 ={ reset}

→C1={p0
λ→ p1, p1

λ→→ qI2,set . p2, p2
λ→→ qI2,calc . p3, p3

λ→ ε}
RC1 ={qI2,calc, qI2,set}
PC1 ={qI1,q}
MC1 ={qI1,q 7→ p10}

ΠC2 =(QC2 ,ΣC2 ,→C2 , RC2 ,PC2 ,MC2) with

QC2 ={p20, p21, p22}
ΣC2 ={}

→C2={p20
λ→ ε, p21

λ→ ε, p22
λ→ ε}

RC2 ={}
PC2 ={qI2,set, qI2,calc, qI2,reset}
MC2 ={qI2,set 7→ p20, qI2,calc 7→ p21, qI2,reset 7→ p22}

76

5.1. Step 1: Creating Single Component Abstractions

Example 5.2: Constructed system abstraction ΠS of a component-based software S assem-
bled from component abstractions ΠCstart , ΠC0 , ΠC1 and ΠC2 in Example
5.1 on page 76.

ΠS = (QS ,ΣS , IS ,→ S , FS), where

QS = {ps0, ps1, ps2, p0, p1, p2, p3, ps3, p10, p11, p12, p20, p21, p22},
ΣS = {q, z, reset, set, calc},
IS = ps0,

→S = {
ps0

q→ p10 || ps1, ps1
λ→ ps2, ps2

z→ p0 . ps3,

ps3
λ→ ε, p10

λ→ p11, p10
λ→ p12,

p11
reset→ p22 . p12, p12

λ→ ε, p0
λ→ p1,

p1
set→ p20 . p2, p2

calc→ p21 . p3, p3
λ→ ε,

p20
λ→ ε, p21

λ→ ε, p22
λ→ ε

},
FS = ε

In this chapter we will describe a general approach leading to the generation of a single com-

ponent abstraction. In the first step a representation ΠC of only a single component C = (P,R)
is created (Stripped Process Rewrite System), containing P and R. In contrast to the regular Pro-

cess Rewrite Systems a Stripped Process Rewrite Systems ΠC = (QC ,ΣC ,→C , RC , PC ,MC)
contains also a mapping MC : PC 7→ QC to program points QC identifying the provided

interfaces PC and a set RC helping identifying the calls to required interfaces. Thereafter (Sec-

tion 5.1.2), we will apply this approach to the programming language BPEL, which has a high

relevance in industrial Web Services environments. The transition rules in →C capture every

relevant control flow inside the component C. This means that for every possible transition from

a relevant program point to another one a transition rule in the Stripped Process Rewrite System

is created. At the end of the section the different implementations performed for this work are

discussed (Section 5.1.3). We will finish this chapter while considering optimizations of the

abstraction leading to equivalent behavior but less transition rules.

5.1.1 General Approach

We will create a stripped abstraction ΠC as Process Rewrite System of the component C. This

single component abstraction captures the behavior of the component without knowing any

callee or context. Hence, this abstraction is as encapsulated as the component implementation.

Definition 5.1 (Stripped Process Rewrite Systems (SPRS))

A Stripped Process Rewrite Systems ΠC = (QC ,ΣC ,→C , RC , PC ,MC) of a component C =

77

5. Verification Process

Example 5.3: Constructed system abstraction ΠS,C2 under consideration of only the interactions
of component C2 in Example 5.2.

ΠS = (QS ,ΣS , IS ,→ S , FS) where

QS = {ps0, ps1, ps2, p0, p1, p2, p3, ps3, p10, p11, p12, p20, p21, p22},
ΣS = {reset, set, calc},
IS = ps0,

→S = {
ps0

λ→ p10 || ps1, ps1
λ→ ps2, ps2

λ→ p0 . ps3,

ps3
λ→ ε, p10

λ→ p11, p10
λ→ p12,

p11
reset→ p22 . p12, p12

λ→ ε, p0
λ→ p1,

p1
set→ p20 . p2, p2

calc→ p21 . p3, p3
λ→ ε,

p20
λ→ ε, p21

λ→ ε, p22
λ→ ε

},
FS = ε

(P,R) is defined as follows:

QC is a finite set of atomic processes,

ΣC is a finite set of atomic actions,

→C⊆ PEX(QC)× (Σ] {λ})× PEX(QC) is a set of process rewrite rules,

RC ⊆ R× Sig is a finite set of required interfaces and the pro-

cedures called,

PC ⊆ I× Sig is a finite set of the signatures Sig of all inter-

faces I,
MC : PC 7→ QC is a mapping from the provided interfaces to

the atomic processes (program points) p ∈ QC
identifying the relevant initial program point of

a method.

I. e., RC contains the callable operations or procedures of the current component (e. g., “I2, a”

is a required interface of C1 in Figure 5.5b on page 80 . In the same example, “I1,m” is a

provided interface of C1.

We assume, that the full source code of the single component C is available. Nevertheless it is

not needed after the automatic abstraction process (which is performed using standard compiler

construction technologies). Then, just the constructed Stripped Process Rewrite System is used.

The main ideas for the construction of the Stripped Process Rewrite System are the same as

discussed in Section 4.4.3. We just adapt the transition rules to remote procedures to allow the

78

5.1. Step 1: Creating Single Component Abstractions

Example 5.4: Erroneous execution trace (derivation) of Example 4.5 on page 65, based on the
cactus stack translations in Example 4.4 on page 60, using the transition rules in
Example 5.2 on page 77.

ps0
q=⇒ p10 || ps1 within component Cstart

λ=⇒ p10 || ps2 within component Cstart
z=⇒ p10 || (p0.ps3) within component Cstart

λ=⇒ p10 || (p1.ps3) within component C1
set=⇒ p10 || (p20.p2.ps3) within component C1
λ=⇒ p10 || (ε.p2.ps3) within component C2
λ=⇒ p11 || (p2.ps3) within component C0

reset=⇒ (p22.p12) || (p2.ps3) within component C0
λ=⇒ (ε.p12) || (p2.ps3) within component C2
calc=⇒ p12 || (p21.p3.ps3) within component C1
λ=⇒ p12 || (ε.p3.ps3) within component C2
λ=⇒ p12||(ε.ps3) within component C1
λ=⇒ ε||ps3 within component C0
λ=⇒ ε within component Cstart

mapping to the concrete bounded component or the possible bounded components.

1. If at a program point pi a synchronous procedure call a of interface I is performed, we

create rewrite rules pi
a→ qI,a. pk

2. If procedure a of interface I is implemented asynchronously pi
a→ qI,a|| pk is generated.1

The represented constant qI,a identifies the procedure a of a component implementing the inter-

face I . Thus, it is possible to deduce the required interfaces and operations from the component

abstraction.

Example 5.5 shows such a simple abstraction process.

Convention 5.1 (Unique name procedures)

Without loss of generality we assume, that the names of the remote procedures are unique, thus

these names are used as interaction at the transition rules. This restriction is just made to simplify

the notation in this work.

Remark
One premise of the source code abstraction is to make it possible to infer from the counterexam-

1If the context is clear, we will omit the interface in the transition rule, e. g., pi
a→ qa|| pk.

79

5. Verification Process

Example 5.5: Computing an abstraction of a component C.

interface I1
begin

sync m()
end

interface I2
begin

sync a()
async b()

end

(a) Interface definitions.

component C1
implements I1

begin
sync m()

p1 if x==42 then
p2 call a()
p3 . . .
p4 call b()
p5 . . .

return
end

I1

I2

(b) Source code of a component (requiring interface I2) with labeled program points.

SPRS ΠC1=̂({p1, p2, p3, p4, p5},
{a, b},
→C1 ,

{qI1,m},
{qI2,a, qI2,b},
{qqI1,m 7→ p1}

)

where→C1=̂{ p1
λ→ p2,

p1
λ→ p3,

p2
a→ qI1,a . p3,

p3
λ→ p4,

p4
b→ qI1,b || p5,

p5
λ→ ε }

(c) Stripped Process Rewrite Systems ΠC1

80

5.1. Step 1: Creating Single Component Abstractions

ple to the source code. This property is needed to support the user of the development process

in finding the problem. For this reason we assume, that every process constant pi is unique in

the whole application. This is a theoretical restriction only as we show in Section 6.1.1.

In [BZ08b] we use PA-processes as representation of the components behavior. The assump-

tion is that neither a synchronization by interaction is allowed in the component system nor syn-

chronizations of concurrent processes within the source code have to be captured. In [BZ08a] we

show how the Web Services Business Process Execution Language (BPEL) can be represented

(described in Section 5.1.2).

Remark
As in [ZS06], we can encode reference parameters in our component abstraction too, to regard

even recursive callbacks. Also resolving the reference parameters to all possible dynamically

chosen services is possible and equal to the mentioned earlier work. We do not describe these

calculations here. For further details we refer to [ZS06].

Here, we have described the generation of an abstraction of a given source code or component,

respectively. This abstraction is conservative with one restriction: The execution model has to

be compatible with the cactus stack model (cf. Section 3.1.4).

5.1.2 Creating Stripped Process Algebra Nets from a Single BPEL Process

In this section we will describe the computation of single component abstractions of a specific

programming language. We choose Web Services Business Process Execution Language, as this

programming language is used explicitly for component-based applications. Another important

property is, that Web Services Business Process Execution Language allows an explicit synchro-

nization on a callback. Thus, we need the PRS class named Process Algebra Nets to represent

the component behavior. The solution presented here, was published in [BZ08a].

5.1.2.1 Introduction of the Web Services Business Process Execution Language

The XML-based language Web Services Business Process Execution Language (short: BPEL)2

[BPE03, BPE07] is used to specify processes, especially in a business context. Processes in

BPEL use only Web Services to import functionality.

BPEL-processes can be executable (called executable business processes). They contain every

information, that is needed to create a runnable process based only on BPEL-syntax. Abstract

business processes are only partly specified processes, so they can hide implementation details.

In this work we make no difference between both kinds.

In the following we will give a brief overview over the syntax and semantics of BPEL state-

ments, called activities. From our point of view we do not have to distinguish between WS-

BPEL 1.1 [BPE03] and WS-BPEL 2.0 [BPE07], but we focus on the WS-BPEL 1.1 standard.
2BPEL was initiated by IBM, BEA and Microsoft and is currently developed by OASIS. BPEL reach an high in-

dustrial acceptance level, thus is a de-facto-standard for business process implementation based on Web Services,
today.

81

5. Verification Process

BPEL activity short description

invoke It is possible to call methods on partners using the invoke statement, this
remote procedure call can be performed synchronously or asynchronously.
A synchronous call blocks the currently executed trace of the caller until
the callee returns the focus to the caller.

reply Using this activity a callee returns the focus to the caller.

receive If this statement exists at a program point in a BPEL process an invoked
procedure call can be received.

switch The control-flow can be influenced while using the switch statement
(converted to if in WS-BPEL 2.0).

while To repeat activities one can use this statement (moreover, WS-BPEL 2.0
allows RepeatUntil).

flow To process a set of activities in parallel traces one has to use this statement.

sequence A FIFO list of activities can be processed using this statement.

empty Nothing will happen.

Table 5.1.: Considered BPEL activities.

BPEL processes (wrapped with the process statement) create references to other Web Ser-

vices (partners) while using the command partnerlinks. We reduce our BPEL model to

the statements mentioned in Figure 5.1.

We will not consider the entities message, variable, copy and wait because they have

a data (flow) meaning, which is not (yet) considered in our approach. Moreover, we will exclude

for example event, faulthandler, pick, etc. from our consideration.

5.1.2.2 Example

In Example 5.6 an example system assembled from Web Services is given. We use a trimmed

graphical representation of BPEL and hide all irrelevant information. Moreover, we enumerate

every activity.

We see three Web Services. The service client C represents a terminal of a bank employee

responsible for credit queries. The client starts the workflow (p0) by asking the banks service B

for a credit offer (invocation of a in activity p1). The callback b sends back a personal risk, which

is used to decide (switch, activity p3) if a credit contract can be contracted (operations d and

callback e). If the risk is too high the customer will be redirected to a “loan shark”, named Web

Service L (operations c and f). This Web Service queries the bank B for the personal customer

risk, while finishing some calculations (activity p23) in parallel. Then L returns an adequate

credit offer (activity p24)3.

The protocols are given in Example 5.6.

It is likely that BPEL representations will not always be published, because they are used

often only in an in-house context and include business secrets.

3We assume that correlation is used to ensure that the right Web Service instance will be called at every time.

82

5.1. Step 1: Creating Single Component Abstractions

Example 5.6: Bank system implemented using BPEL (with protocols).

p1: invoke(async)

p2: receive

p3: risk

p4: invoke(sync)

high

p6: invoke(async)

 low

p8: receive

p10: receive

p11: invoke(async)

a

p16: receive

p17: invoke(async)

d

p13: receive

p15: reply

p14: invoke(sync)

p19: receive

p20: flow

p23: calculation

p24: reply

Client (C)

''loan shark'' (L)

Bank Service (B)

e

a

p12: reply

p21: invoke(sync)

p0 b

c

Start

p7: calculation
p5: reply

p9: reply

p18: reply

p22: calculation

 f

operation description
a get risk of credit offer
b send risk of credit offer
c get alternative credit offer
d initiate contract completion
e send contract
f get offer of alternative offeror

(a) Architecture of bank system.

PC = (be)∗ PB = (a(c|d))+ PL = f∗

(b) Protocols of Web Services given as regular expressions.

83

5. Verification Process

5.1.2.3 Generating Abstractions of BPEL Web Services

Thus, we present an approach to generate an abstract representation of a single Web Service C.

Here, we use Stripped Process Algebra Nets. This abstraction can be delivered together with the

protocol of the Web Service without revealing business logic or business secrets.

Definition 5.2 (Stripped Process Algebra Nets)

A Stripped Process Algebra Net is defined equivalently to a Stripped Process Rewrite System

(Definition 5.1 on page 78) in Section 5.1.1. This abstraction does not contain transition rules of

the form p1.p2
a→ p3. Thus, using Process Algebra Nets is sufficient.

The set PC contains all interfaces qJ,o of C where o is an operation of a callable interface

J4. MC maps the set of interfaces PC (provided by C) to the relevant atomic process of the

abstraction of the callable Web Services.

In this abstraction no transition rule of the form p1.p2
a→ p3 is allowed.

Remark
As Process Algebra Nets can capture the same semantics as Petri nets it is possible to use other

approaches (e. g., [VvdA05, Loh08, HSS05]) to represent BPEL behavior. E. g., in [Loh08] fault

handler are considered, too.

Example 5.7: Process rewrite rules of the Stripped Process Algebra Nets ΠC , ΠB and ΠL of
every single BPEL process C, B and L of Example 5.6 on page 83.

Process rewrite rules of the Stripped Process Algebra Nets (in normal form):

→C= { p0
a→ qB,a||p1, p1

λ→ ε, p2
λ→ p3,

p3
λ→ p4, p3

λ→ p6, p4
c→ qB,c.ε,

p6
d→ qB,d||p7, p7||p8

λ→ ε }

→B= { p10
λ→ p11, p11

b→ qC,b||ε, p13
λ→ p14,

p14
f→ qL,f .ε, p16

λ→ p17, p17
e→ qC,e||ε }

→L= { p19
λ→ p20, p20

λ→ p21′ ||p23′ , p21′
λ→ p21.e0,

p23′
λ→ p23.e1, p23

λ→ ε, p21
a→ qB,a.p22,

p22
λ→ ε, e0||e1

λ→ ε }

Mapping M of operations to atomic processes

MC : qC,b 7→ p2, MC : qC,e 7→ p8,

MB : qB,a 7→ p10, MB : qB,c 7→ p13, MB : qB,d 7→ p16,

ML : qL,f 7→ p19

4J encapsulates all relevant information from the partnerlink statement or WSDL file, respectively.

84

5.1. Step 1: Creating Single Component Abstractions

Because we assume, that the functionality of a single Web Service C is available in BPEL

syntax, we describe the translation of BPEL activities to process rewrite rules. The main ideas

for the construction of Stripped Process Algebra Nets are (similar to Section 5.1.1):

1. Create an atomic process for each activity pi ofC. In Example 5.6 on page 83 we already

marked the statements. Calculations (p7, p22, p23) are represented in an aggregation. This

is possible as they represent data flow only (which is not considered here).

2. Create transition rules, which map the control flow of C in process rewrite rules: We use

the mapping function next : pi → Q′ (cf. Section 5.1.1).

• If an activity pi is an invoke statement, which performs a synchronous procedure

a, we create a rewrite rule pi
a→C qJ,a . pk. If a is an asynchronous method call,

we create the rewrite rule pi
a→C qJ,a || pk, where qJ,a specifies the partner J of the

operation a, and pk ∈ next(pi).5

In our example activity p4 performs a synchronous interaction with the “Bank Ser-

vice” captured by the transition rule p4
c→ qc.p13, whereas p1 initiates an asyn-

chronous interaction: p1
a→ qa||p10.

• If the activity pi is the first in a trace of the BPEL process (receive) implementing

a provided operation qo, we will extend the mapping MC with qo 7→ pi. qo can be

determined while analyzing the partnerlink statements (or WSDL description,

respectively).

Thus, for the “Bank Service” we create the following mapping: MB = {qB,a 7→
p10, qB,c 7→ p13, qB,d 7→ p16}.

• If a next statement pj of pi is a receive statement, the BPEL process expects an

invoked operation a from a partner J (i. e., qJ,a). This results in a synchronization se-

mantics, which is captured creating the rules pi||pj
λ→ pk, with pj ∈ next(pi), pk ∈

next(pj).

The “Client” contains such a situation, represented by p7|| p8
λ→ ε.

• If a flow statement pi is used, we have to create a process rewrite rule pi
λ→ (p0.e0)

|| (p1.e1) || . . . || (pj−1.ej−1), where p0, p1, . . . , pj−1 are the j activities started by

the flow in parallel. e0, e1, . . . , ej−1 are newly created, unique atomic processes,

that mark the parallel executed activity as finished. To capture the defined flow

behavior we create also the rules e0||e1|| . . . ||ej−1
λ→ pk, where pk ∈ next(pi).

These ensure that the next activities cannot start until each activity p0, p1, . . . , pj−1

is finished.

The transition rule e0||e1
λ→ ε represents the flow statement of Web Service L.

• If a sequence statement pi is used, we have to create process rewrite rules, pi
λ→

pj .pk, with pk ∈ next(pi), where pj is the first activity performed inside pi.

Aiming simplification, sequences are omitted in the example.
5Note if we do not know how the invoke statement is implemented, we have to create both sets of rewrite rules to

ensure that we create a conservative abstraction.

85

5. Verification Process

• If at a program point pi another activity is performed, we create rewrite rules pi
λ→

pk, where pk ∈ next(pi). This transition rule has the semantics that this activity is

not interesting for the protocol verification.

These rules capture for example the transition rules, that do not influence the control

flow. E. g., the calculation p22 in Web Service L is bypassed by the transition rule

p22
λ→ ε.

Thus, the semantics is comparable to the general approach presented in Section 5.1.1. The

representation of a flow activity requires a join rule.

Remark
All these pieces of information can be derived automatically from the BPEL code of the Web

Service and the ports used by the Web Service.

Remark
In the abstraction rules shown above, the resolution of correlation settings in BPEL is not con-

sidered. We omit these details, because the concept is equal to encoding reference parameters in

[ZS06]. Reference parameters are implicitly possible in BPEL using correlation. Also resolving

the reference parameters to all possible dynamically chosen services is possible.

Using this construction we get a Stripped Process Algebra Net for every BPEL process C.

This abstraction has to be delivered together with the protocol to the partner using C. The

abstraction and the protocol could be part of the WSDL service description. In Example 5.7 on

page 84 the abstractions of the Web Services B, C and L are shown together with the mapping

MB , MC and ML.

5.1.3 Implemented Translations to Process Rewrite Systems

5.1.3.1 Creating Stripped Process Algebra Nets from a Single Python Component

We consider Python [Fou09b], because it is one of the main programming languages used by

our industrial partner (cf. Chapter 6).

Python is a dynamically-typed programming language [Fou09b]. It has a large standard li-

brary. The scopes of applicability are wide and therefore many products are developed using

Python [Pyt09]. Python allows to implement parallel behavior in form of threads. A thread

identifier can be handled as regular data (see the Listing A.3). Therefore, a conservative ab-

straction is not possible in any case using the cactus stack execution model. All interactions are

performed synchronously.

In works supervised by us [Kra08, Kra09] abstractions of Python components are generated

(only a part of the language specification was captured). The module “ast” [Fou09a] of the

Python standard library is used for this purpose. It provides the access to the abstract syntax tree

of a given application. The syntax tree contains only a rudimentary set of attributes (properties).

Therefore, the main work was to decorate the abstract syntax tree to achieve an attribute syntax

tree.

86

5.1. Step 1: Creating Single Component Abstractions

unused
information

used for
verification

component C
implements I
(Implementation)I

I1

Stripped Process Rewrite System ΠC

Abstract behavior
→C

Component information
RC ,PC ,MC

Protocol
PC

Figure 5.2.: Implementation of a component C, its abstraction ΠC and protocol PC .

5.1.3.2 Creating Stripped Process Algebra Nets from a Single BPEL Webservices

Based on the approach discussed in 5.1.2 a tool is developed, currently. The tool is part of a

diploma thesis [Hel10], which we are supervising.

Related work (e. g., [VvdA05, HSS05, Loh08] use Petri nets as representation. This has the

advantage, that events and fault handlers can be implemented in a general case.

In the diploma thesis [Hel10] Process Algebra Nets are used to discover the problems dis-

cussed in Section 5.1.2. Unfortunately, the implemented abstraction approach used there seems

reducing the capability to capture events and fault handlers (exception handlers).

5.1.3.3 Creating Stripped Process Algebra Nets From a Single PHP Component

PHP [Gro09] is an untyped programming language. It is considered in a diploma thesis, we are

supervising currently. PHP is used while evaluating case study in an online shop context (cf.

Chapter 6).

PHP allows no parallel behavior6. Therefore, push-down automata ((1, S)-PRS) are sufficient

to represent the behavior of the source code. Nevertheless, it is interesting to consider PHP

components, because they are often used steered by AJAX implementations. They allow parallel

behavior, thus the complete application can be captured only by using Process Algebra Nets (or

a higher PRS-class).

We extend a PHP to C compiler – named PHC [dVG07, BdVG09] – for our purpose.

5.1.4 Summary

In this section we have seen how source code abstractions are defined in this work. We use

an adapted Process Rewrite System (named Stripped Process Rewrite Systems) to represent the

behavior of the single component, in the sense of the component model. Hence, the required

and provided interfaces are represented in the single component abstraction, too. To our knowl-

edge this representation was not defined previously. In Figure 5.2 the correlation between a

6A few extensions exist, implementing a threading concept in PHP. None is adopted by the standard library.

87

5. Verification Process

composition in
real world

imitated
composition

· · ·

· · ·

component C1
implements I1
(Implementation)

I1 I2

SPRS
ΠC1

Protocol
PC1

component C2
implements I2
(Implementation)

I2 Ii

SPRS
ΠC2

Protocol
PC2

component Ci
implements Ii
(Implementation)

Ii I1

SPRS
ΠCi

Protocol
PCi

Figure 5.3.: Schematic representation of the construction of the system abstraction.

component’s implementation, its protocol and abstraction is represented schematically. As it is

visualized, the actual implementation is not used within the suggest approach.

The representation of the source code is more powerful than other abstractions like Petri nets

(e. g., [VdAvHvdT02]) and push-down automata (e. g., [ZS06]). Thus, it enables new options

of verification of component-based software, because it can capture unbounded parallelism and

unbounded recursion.

Moreover, we have presented an approach to capture the behavior using standard compiler

technologies. Developing tools for capturing various programming languages causes different

hitches as seen in this chapter. We have shown, that this process is possible for programming

languages (standard) object-oriented behavior (C++) as well as for dynamically typed program-

ming languages (Pyhton, PHP) and component systems with irregular communication ways (join

on receive in BPEL).

Because the abstraction is generated of exactly one single component (without knowing pos-

sible peer implementations) the source code is protected (e. g., to ensure the business secrets).

Hence, it is possible using this approach in the standard case of component-based software en-

gineering, where the implementations of the components are not available (e. g., because it is

developed by different companies).

5.2 Step 2: Creating System Abstractions

In the previous chapter we have created an abstraction of each component separately. This

component abstraction has to be assembled to an abstraction of the complete application, named

system abstraction. The system abstraction represents the behavior of the application we want to

88

5.2. Step 2: Creating System Abstractions

verify. Thus, we have to ensure, that all component abstractions are connected as the components

in the considered component-based system.

We use the information about the required and provided interfaces to resolve the possible

interactions within a component abstraction from a caller to a callee.

5.2.1 Process

Now, we will create a system abstraction of S using the Process Rewrite System representation.

Definition 5.3 (System abstraction as Process Rewrite System ΠS)

A system abstraction (as defined previously in Definition 4.7 on page 62) of a given application

based on a binding S = (COMP,BIND). Here, it is adapted as Process Rewrite System ΠS =
(QS ,ΣS , IS ,→S , {ε}), where

QS =
⋃
Ci∈COMP

QCi] {IS}

ΣS =
⋃
Ci∈COMP

ΣCi

IS /∈
⋃

Ci∈COMP
QCi

The construction of→S is discussed later.

Hence, the system abstraction represents the behavior of the component-based software S

using the standard Process Rewrite System representation. In contrast to the representation of

the single component abstraction, it has in no provided and no required interfaces.

Because we search for a terminating execution of the application S, we define ε as final

process. Thus, a derivation path IS
w⇒ ε of ΠS describes an execution path within S, which

terminates.

In Figure 5.3 the creation of a system abstraction is shown schematically. In Algorithm 5.1

on page 91 we describe how→S is computed.

There, the interfaces of the contained components are resolved (line 3 to 19) resulting in the

set of transition rules→S . This is implemented while adapting each transition rule containing a

call to a required interface (lines 8,10,12)7.

Moreover, a set of start rules is computed (line 21 to 29), ensuring the semantics of the con-

sidered application S. Depending on the component system three general cases are possible:

• line 21: If the application contains a client, then it is clear, which component has to be

started. Thus, we generate a new transition rule IS
λ→ ICi

• line 24: If it is possible, that each component starts firstly, we will generate a start rule for

each of the components. This is the general case of the one in line 21.

• line 27: We add this rule to represent that several components can start concurrently and

thus can be processed independently even in the abstraction.

7The consideration in Line 12 is needed as chain rules can be construction during optimizations.

89

5. Verification Process

Example 5.8: Rewrite rules of system abstraction ΠS,C of Example 5.7 on page 84 according
to the service protocol of the Web Service C. In rules of the form pi

a→ pj .ε or
pi

a→ pj ||ε the neutral element ε was eliminated.

IS
λ→ p0, p0

λ→ p10||p1, p1
λ→ ε,

p2
λ→ p3, p3

λ→ p4, p3
λ→ p6,

p4
λ→ p13.ε, p6

λ→ p16||p7, p7||p8
λ→ ε,

p10
λ→ p11, p11

b→ p2||ε, p13
λ→ p14,

p14
λ→ p19, p16

λ→ p17, p17
e→ p8||ε,

p19
λ→ p20, p20

λ→ p21′ ||p23′ , p21′
λ→ p21.e0,

p23′
λ→ p23.e1, p23

λ→ ε, p21
λ→ p10.p22,

p22
λ→ ε, e0||e1

λ→ ε

If a component system requires another directive describing the implementation of the start

procedures, then this case has to be added in this part of the algorithm.

Example 5.9 on page 93 visualizes a component-based software which behavior is repre-

sentable by a PA-process. In Example 5.10 on page 94 the corresponding system abstraction

ΠS,C2 is shown. In Example 5.8 a Process Algebra Net used as representation of the behavior

according to Example 5.7 on page 84.

Remark
The decision, which component of an application could or will start, depends strongly on the

component system. Thus, we need the information too, which component system is used to

build the application.

Property 5.1
If several implementations of the same (provided) interface exists, the algorithm generates a tran-

sition rule for each interface. Thus, it is represented in the system abstraction that a component

can be chosen dynamically from a given set of components.

Remark
Transition rules of the form δ=̂p1

a→ q are possible because of optimizations (e. g., Section

5.2.3.1).

After this construction we get a Process Rewrite System.

Theorem 5.1 (Correctness of construction of system abstraction)

The system abstraction ΠS
′ captures the behavior of the complete component-based software S

and contains all possible remote procedure calls.

90

5.2. Step 2: Creating System Abstractions

Algorithm 5.1: Construction of→S (needed in Definition 5.3 on page 89)
input : Set CS = {Ci : Ci = (QCi ,ΣCi ,→Ci , RCi , PCi ,MCi) is contained in S }
output :→S

→S= ∅1

M=
⋃
Ci∈CSMCi2

forall component abstractions Ci ∈ CS do3

/* qa identifies a required interface call a */4

/* qa identifies the provided interface a */5

forall δ ∈ →Ci do6

switch δ do7

case δ=̂p1
a→ qa.p28

→S=→S ∪ {p1
a→ pa.p2 : px ∈M(qa)}9

case δ=̂p1
a→ qa||p210

→S=→S ∪ {p1
a→ px||p2 : px ∈M(qa)}11

case δ=̂p1
a→ qa12

→S=→S ∪ {p1
a→ px : px ∈M(qa)}13

otherwise14

→S=→S ∪ {δ}15

end16

end17

end18

end19

/* Generating start rules */20

if Ci is the main component/the client of S then21

→S=→S ∪ {IS
λ→ ICi}22

end23

if a set of components CS of S exists, containing the components Ci that can start then24

→S=→S ∪ {IS
λ→ ICi | Ci ∈ CS}25

end26

if a set of components CS of S exists, containing the components Ci which can be27

processed independently then
→S=→S ∪ {IS

λ→S IC0 ||IC1 ||...||ICn}28

end29

Proof (Theorem 5.1)

Proof by contraction: We assume, that not the complete behavior of S is captured.

We have to consider the following cases:

1. A component abstraction ΠC is not contained in ΠS , but C is contained in S.

This problem cannot appear as in line 3 all components of S are included.

2. An execution trace of S is not included within ΠS .

Suppose that the abstraction of the component-based software ΠS is computed consider-

ing whitebox components (cf. Section 4.3). We assume, that a derivation exits for every

execution trace: I w⇒ ε. We will prove that every derivation is also computable while con-

sidering the system abstraction ΠS
′ computed from component abstractions ΠCi using

91

5. Verification Process

Algorithm 5.1. We prove it by considering the length of the interaction sequences w ∈ Σ∗

of ΠS .

|w| = 0 : If no interaction is performed in ΠS , then the execution terminates

within the initial component. The same execution is possible using ΠS
′.

|w| = 1 : If one interaction is performed a transition rule t a→ t′ ∈→ΠS (t, t′ ∈
PEX(QΠS)) is used while performing the following derivation:

I
λ⇒ΠS t

′′ a⇒ΠS t
′′′ λ⇒ΠS ε, t

′′, t′′′ ∈ PEX(QΠS)

To generate a derivation containing a an interaction has to be performed.

Such an interaction is captured by transition rules of the form p1
a→

qa⊗p2 ∈→ΠS ′ (p2 can be ε). While performing Algorithm 5.1 such a

transition rule is captured in line 8, 10 or 12. Hence, the considered

derivation is computable in ΠS
′, too.

hypothesis: The same interactions sequences w are computable in ΠS and ΠS
′

(which is assembled from single component abstractions), if |w| = n.

|w| = n+ 1 : In ΠS the following derivation is computable:

I
w⇒ t′′

a⇒ t′′′
λ⇒ ε, where a ∈ Σ

Using the induction basis, it is clear that the interaction a has to be rep-

resented by a corresponding transition rule of ΠS
′.

We have proven that every interaction sequence, which is computable using a system abstrac-

tion ΠS (which is created while considering whitebox components), is also computable using a

system abstraction ΠS
′ (which is created while assembling component abstractions).

So, we have to eliminate every action, which is not included in the protocol PCi of the com-

ponent Ci that should be checked currently. For this purpose we use Definition 4.11 on page 64

resulting in the Process Rewrite System ΠS,Ci .

Property 5.2
If several protocolsPCi ∈ PS have to be checked, then as many ΠS,Ci = (Q,ΣS,Ci , I,→S,Ci , {ε})
are created as protocols PCi = (QPCi ,ΣPCi , IPCi ,→PCi , FPCi) exist. We have that: ΣS,Ci =
ΣPCi .

92

5.2. Step 2: Creating System Abstractions

Example 5.9: Component-based software with labeled program points.

interface Istart

begin
sync main()

end

interface I1
begin

sync a()
end

interface I2
begin

async e()
end

interface I3
begin

sync b()
sync c()
sync d()

end

(a) Available interfaces of the component-based software.

component C1
implements Istart,I1

begin
sync a()

p4 call b()
p5 call e()
p6 call d()

return
sync main()

p1 read n from file
p2 call c(n)
p3 call a()

return
end

I1

I2

I3

component C2
implements I2
int x
int n

begin
sync b()

p10 n = n− 1
p11 x = 1

x
p12 if n ≥ 0 then
p13 call a()

return
sync c(int m)

p8 x = 1
p9 n = |m|+ 1

return
sync d()

p14 x = 0
return

end

I2

I1

component C3
implements I3

begin
async e()

p7 call b()
return

end

I3

I2

(b) Architecture of the application.

PC1 = a∗ PC2 = e∗ PC3 = c b∗ d∗

(c) Protocols of the composed components (as regular expressions).

93

5. Verification Process

Example 5.10: Rewrite rules of abstraction ΠS,C2 of the exemplary component-based software
S according to the protocol of the component C2 (cf. Example 5.9 on page 93).

ΠS,C2 = (QS,C2 ,ΣS,C2 , IS,C2 ,→ S,C2 , FS,C2) where

QS,C2 = {IS , p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14},
ΣS,C2 = {b, c, d},
IS,C2 = IS ,

→S,C2 = {

IS
λ→S p1, p4

b→S p10.p5, p8
λ→S p9, p12

λ→S p13,

p1
λ→S p2, p5

λ→S p7||p6, p9
λ→S ε, p12

λ→S ε,

p2
c→S p8.p3, p6

d→S p14, p10
λ→S p11, p13

λ→S p4,

p3
λ→S p4, p7

b→S p10, p11
λ→S p12, p14

λ→S ε

},
FS,C2 = {ε}

5.2.2 Restrictions

Currently, this approach can only handle components which are known (component abstractions

are accessible). These components can be bounded statically or dynamically. However, fully

dynamically chosen (fully dynamically bound) components cannot captured in the abstraction,

e. g., an imported unknown component, which is bounded while querying a dynamically chosen

service repository. If the components are chosen by dynamic input (user input, predefined data),

it is only possible to create a system containing all components, that are possible.

Remark
In [BZ09c] we have shown, how an extended verification process works dealing with compo-

nent-based software with fully dynamically chosen components. Hence, the protocol confor-

mance can be ensured in a fully dynamically context too. This approach is not described within

this thesis.

5.2.3 Optimizations

In Section 5.1 we have shown that it is possible to generate Stripped Process Rewrite System

abstractions of real source code. As we have shown, several approaches exist to perform this

generation. An important issue is the tool support. However, just a poor tool support exists

currently. Hence, we have to assume, that the computation of an abstraction might result in

an inappropriate number of transition rules. This is caused by the fact, that we catch only the

abstract behavior of the considered source code (e. g., generate a λ-rule for each statement, which

influences only the data flow), while the abstraction process has to evaluate the complete source

code to get a connected representation.

94

5.2. Step 2: Creating System Abstractions

Example 5.11: Contracting λ-rules.

given Π =(Q,Σ, I,→ , F) with

Q ={p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11}
Σ ={a, b, c, d}
I =p1

→={p1
λ→ p2, p2

a→ p3.p4, p3
λ→ p7, p4

b→ p5, p5
λ→ p6,

p6
λ→ ε, p7

c→ p8.p9, p2
d→ p10.p11, p11

λ→ ε}
F ={ε}

resulting Π′ =(Q′,Σ′, I ′,→ ′, F ′) with

Q′ ={p1, p2, p4, p7, p8, p9, p10}
Σ′ ={a, b, c, d}
I ′ =p1

→′={p1
λ→ p2, p2

a→ p7.p4, p4
b→ ε, p7

c→ p8.p9, p2
d→ p10.ε, }

F ′ ={ε}

The components of our verification architecture could be distributed (cf. Section 6.1). Thus,

the abstractions have to be transferable in acceptable time. Moreover, it might be not model

check an abstraction of an application with a high number of transition rules. Moreover, an

abstraction containing a high number of transition rules might be not model checkable. The

reason is the high effort that might occur, while performing the reachability analysis (cf. Section

5.4). Hence, an explosion of the number of transition rules should be avoided, if possible.

The statistics in Chapter 6 (case studies) show, that a significant number of transition rules

are λ-rules. These rules are contained to steer the abstract behavior (control flow) or to connect

parts of the source code. However, they do not represent interactions all interactons within the

system. As the protocol is defined for the interactions with one component only,

Because of the high number of λ-rules, we derive the need for optimizations with the goal

of reducing the transition rules. We focus on the λ-rules, as they do not influence the behavior

representing relevant interactions.

5.2.3.1 Contracting λ-rules

By definition λ-rules have no relevant behavior except, that they describe rewriting sequences

between action rules. Thus, we can reduce the number of λ-rules, since the semantics of the

control-flow in the generated abstraction is obeyed. For this purpose we will define an algorithm,

which calculates the Process Rewrite System Π′ containing the contracted transition rules. An

example is shown in Example 5.11.

We use the following auxiliary functions, which provide functionality to determine and re-

place process constants within process-algebraic terms of a Process Rewrite System Π=̂(Q,Σ, I,
→, F).

95

5. Verification Process

• for calculating, which process constants a process-algebraic term contains:8

T(ε) = {{}}

T(p) = {{p}}

T(p⊗t) = T(p) ∪ T(t)

where p ∈ Q

t ∈ PEX(Q)

⊗ ∈ {||, .}

• for computing a term where a process constant p1 is replaced by a constant p2:

Rep(p1, p2, ε) = ε

Rep(p1, p2, p3) =

p2 : p3 = p1

p3 : p3 6= p1

Rep(p1, p2, p3⊗p4) = Rep(p1, p2, p3)⊗Rep(p1, p2, p4)

where p1, p2, p3, p4 ∈ Q

⊗ ∈ {||, .}

• for determining the number of transition rules using a constant p:

#L(p) = |{t1
a→ t2 : t1

a→ t2 ∈→ ∧ p ∈ T(t1)}|

#R(p) = |{t1
a→ t2 : t1

a→ t2 ∈→ ∧ p ∈ T(t2)}|

#R(ε) = 1

For bridging over transition rules, which have no influence on the derivations of the abstraction

Π, we will compute a new set of transition rules where the old ones are replaced, without chang-

ing the semantics of the Process Rewrite System Π (right-hand side). The following example

should show the idea:

p1
λ→ p2, p2

a→ p3, p2
b→ p4||p5 ∈→Π

⇓

p1
a→ p3, p1

b→ p4||p5 ∈→Π′

We define the function TRBU to compute a new set of transition rules, while considering a λ-

rule, which is also a chain rule, and the transition rules, using the process constant generated by

8Note, the considered Process Rewrite Systems is in normal form (cf. Definition 3.31).

96

5.2. Step 2: Creating System Abstractions

Algorithm 5.2: Contraction of λ-rules.
input : Process Rewrite System ΠC=̂(QC ,ΣC ,→ C , RC , PC ,MC)
output : Process Rewrite System Π′=̂(Q′,Σ′,→ ′, R′, P ′,M′)
repeat1

→ = (→ \ TRBUR(ΠC)) ∪ TRBU(ΠC)2

→ = (→ \ TRTDR(ΠC)) ∪ TRTD(ΠC)3

until→ is not changed ;4

Π′ = ΠC5

the λ-rule:

TRBU(Π) = { Rep(p0, p1, t)
a→ t′ | (p0

λ→ p1) ∈→ ∧

p0, p1 ∈ Q ∧ p0 6= p1 ∧ p0 6= I∧

t
a→ t′ ∈→ ∧

p1 ∈ T(t) ∧

#L(p0) = 1 ∧

#R(p1) = 1 }

As it is also possible that a contraction is only possible in the reverse way, e. g.,

p1
a→ p2||p4, p3

b→ p4, p4
λ→ p5 ∈→Π

⇓

p1
a→ p2||p5, p3

b→ p5 ∈→Π′

we also define a transformation, where the λ-rule follows:

TRTD(Π) = { t
a→ Rep(p4, p5, t

′) | (p4
λ→ p5) ∈→ ∧

p4, p5 ∈ Q ∧ p4 6= p5 ∧ p4 6= I∧

t
a→ t′ ∈→ ∧

p4 ∈ T(t′) ∧

#L(p4) = 1 ∧

#R(p5) = 1 }

To calculate the set of the transition rules, that are contracted currently, we use the functions

defined in Figure 5.4. Now, it is possible to define the contraction Algorithm 5.2. Transition rules

are eliminated, if they are replaced by a transition rule calculated by TRBU(Π) or TRTD(Π). It

is clear, that no new transition rules are added, TRBU and TRTD replace transition rules.

The algorithm works in the expected way, if the same words w (interaction sequences) can be

constructed using Π and Π′.

97

5. Verification Process

TRBUR(Π) = { p0
λ→ p1 | (p0

λ→ p1) ∈→ ∧
p0, p1 ∈ Q ∧ p0 6= p1 ∧ p0 6= I∧
t
a→ t′ ∈→ ∧

p1 ∈ T(t) ∧
#L(p0) = 1 ∧
#R(p1) = 1 }

∪ { t
a→ t′| (p0

λ→ p1) ∈→ ∧
p0, p1 ∈ Q ∧ p0 6= p1 ∧ p0 6= I∧
t
a→ t′ ∈→ ∧

p1 ∈ T(t) ∧
#L(p0) = 1 ∧
#R(p1) = 1 }

TRTDR(Π) = { p4
λ→ p5 | (p4

λ→ p5) ∈→ ∧
p4, p5 ∈ Q ∧ p4 6= p5 ∧ p4 6= I∧
t
a→ t′ ∈→ ∧

p4 ∈ T(t′) ∧
#L(p4) = 1 ∧
#R(p5) = 1 }

∪ { t
a→ t′ | (p4

λ→ p5) ∈→ ∧
p4, p5 ∈ Q ∧ p4 6= p5 ∧ p4 6= I∧
t
a→ t′ ∈→ ∧

p4 ∈ T(t′) ∧
#L(p4) = 1 ∧
#R(p5) = 1 }

Figure 5.4.: Calculation of optimized transition sets.

Theorem 5.2 (Optimization is correct)

If t w⇒Π t′, then t w⇒Π′ t
′.

Proof (Theorem 5.2)

We divide the proof into the consideration of the first and the second step. Induction on the

number of replacements n ∈ N:

98

5.2. Step 2: Creating System Abstractions

n = 0 : if no transition rule is replaced, then t w⇒Π t′ and t w⇒Π′ t
′ are equal.

n ≥ 1 : suppose that t w⇒Π t′ can be decomposed as the following:

t
w′⇒Π t′′

λ⇒Π t′′′︸ ︷︷ ︸
one
λ-rule

replaced

w′′⇒Π t′︸ ︷︷ ︸
n− 1
λ-rules
replaced

, when t w
′
⇒Π t′′ does not contain

a replaced transition rules,

where w = w′ · w′′, w, w′, w′′ ∈ Σ∗, p1
λ→ p2 ∈ TRBUR(Π), p1 ∈ T(t′′), p2 ∈ T(t′′′)

by induction hypothesis t′′′ w
′′
⇒Π′ t

′

The second step (line 3) can be proven analogously.

Corollary 5.1
The result of the optimized Process Rewrite System Π′ has a less or equal number of rules as

the given Process Rewrite System Π. Formally:

| →Π′ | ≤ | →Π |

5.2.4 Summary

In this section we have shown, how we can compose single component abstractions to a system

abstraction. A system abstraction ΠS,C describes the behavior of a complete application S, but

nevertheless contains only interactions to the component C.

Using the approach in the current section we are also able to compose single component

abstractions to system abstractions (also named application abstractions). The approach is com-

posable like the component system, every component has its own abstraction. It is also able to

capture the dynamically binding of components. It contains every possibility how components

can be composed. The system abstraction can be composed according to the definitions of the

system developer too. In this case a more precise system abstraction is needed.

Note, in this step several system abstractions (one for each component protocol) are generated.

This enables optimizations. An optimization reduces the number of transition rules if a λ-rule

exists, which can be contracted. Thus, it compensates lacks of the abstraction process (e. g.,

where for each statement a process constant is created and thereafter connected with λ-rules),

too. The results of the case studies (cf. Chapter 6) show the impact of this specific approach.

Thus, we can revert to smaller system abstractions in the next chapter.

Moreover, it separates the problem for each component. Hence, the properties of the ap-

plication are not checked globally. They are checked for each component independently and

individually. We assume, that this will help the component developer as he has to tackle only

the problems appearing in his component (and does not have to care about the behavior of com-

ponents he cannot control).

99

5. Verification Process

Example 5.12: Erroneous execution trace (derivation) in Example 4.5 on page 65 consider-
ing component C2 only, based on the cactus stack translations in Example
4.4 on page 60, using the transition rules in Example 5.3 on page 78. In contrast
to the derivation in Example 5.4 on page 79 only interactions with component C2
are included here (however, the complete application abstraction is considered).

ps0
λ=⇒ p10 || ps1 within component Cstart

λ=⇒ p10 || ps2 within component Cstart

λ=⇒ p10 || (p0.ps3) within component Cstart

λ=⇒ p10 || (p1.ps3) within component C1
set=⇒ p10 || (p20.p2.ps3) within component C1
λ=⇒ p10 || (ε.p2.ps3) within component C2
λ=⇒ p11 || (p2.ps3) within component C0

reset=⇒ (p22.p12) || (p2.ps3) within component C0
λ=⇒ (ε.p12) || (p2.ps3) within component C2
calc=⇒ p12 || (p21.p3.ps3) within component C1
λ=⇒ p12 || (ε.p3.ps3) within component C2
λ=⇒ p12||(ε.ps3) within component C1
λ=⇒ ε||ps3 within component C0
λ=⇒ ε within component Cstart

5.3 Step 3: Creating Combined Abstractions

In the previous section we computed a representation of the behavior of the full application S

for each protocol PC : the system abstraction ΠS,C . In this section we will encode the protocol

conformance problem, so it is solvable by using reachability analysis9.

Earlier we motivated that a component developer can evaluate protocol violations only, if they

involve the protocol PC of “his” component C. Thus, it is the goal to inform the component

developer about the problems with “his” protocol PCi only. Based on the counterexample repre-

sented informally in Example 5.4 on page 79 , we want to provide a counterexample containing

the interactions with the considered component only (see Example 5.12).

For this reason we compute the Combined Abstraction ΠCi
S of a system abstraction ΠS,Ci and

a protocol PCi . This representation encodes the model checking problem, which we have to

solve. It enables us to find sequences of interactions not allowed by the protocol PCi .
We will discuss the properties of a (1, P)-PRS (PA-processes) and (P,G)-PRS (Process Al-

9Note, only reachability is defined for Process Algebra Nets (cf. Section 3.2.4).

100

5.3. Step 3: Creating Combined Abstractions

gebra Nets) in relation to Combined Abstractions. In Section 5.3.2 we present the result of

optimizations considering Combined Abstractions.

5.3.1 Process

5.3.1.1 Discussion of the Model Checking Problem

To verify the component-based software abstraction with respect to a component Ci, we have

to check, whether L(ΠS,Ci) ⊆ L(PCi), where L(PCi) is the regular language described by

the protocol PCi of component Ci, and L(ΠS,Ci) is the language over the actions in ΠS,Ci ,

specifying a superset of the use of Ci (cf. Definition 4.2 on page 56). In order to check L(Πi
S) ⊆

L(Pi) it is possible to check the equivalent problem L(Πi
S) ∩ L(Pi) = ∅, where L(PCi) is the

language described by the inverted FSM PCi (cf. Definition 3.24 on page 42). Unfortunately,

this question is undecidable.

Theorem 5.3 (Undecidability of protocol conformance checking problem)

It is undecidable if L(Π) ⊆ L(P), where Π is a (1, G)-PRS and L(P) is a regular language.

Proof
We can build a Büchi automaton which accepts all and only the infinite traces represented by

a linear time logic (LTL) formula φ [WVS83, VW94, LP85]. A finite state machine P can be

constructed efficiently [KMMP93, GPVW95, DGV99] so that L(φ) = L(P), where L(φ) is the

set of action sequences specified by φ. Thus if the protocol checking problem would be decid-

able, we could also decide LTL-formula model checking for (1, G)-PRS. Contradiction, because

LTL is undecidable in (1, G)-PRS PA-processes [BH96]. Therefore, it is also undecidable for

(P,G)-PRS Process Algebra Nets.

Therefore, we construct a (1, G)-PRSK which describes a languageL(K), whereL(ΠS,Ci)∩
L(PCi) ⊆ L(K). We call K Combined Abstraction. Thus, L(K) = ∅ implies L(ΠS,Ci) ⊆
L(PCi). However, there might be a sequence w ∈ L(K) so that w /∈ L(ΠS,Ci) ∩ L(PCi).

Remark
We call these sequences spurious false negatives. Details about false negatives follow in Section

5.4.1.

Corollary 5.2 (Theorem 5.3)

The protocol conformance checking is undecidable for Process Algebra Nets too, because (P,G)-

PRS are a superclass of (1, G)-PRS PA-processes.

Convention 5.2 (Notation of Combined Abstraction)

To mark, which ΠS,Ci and which protocol PCi are combined, we notate the Combined Abstrac-

tion with ΠCi
S .

101

5. Verification Process

5.3.1.2 Construction of the Combined Abstraction

In the following, we present the construction of the Combined Abstraction ΠC
S . A combination

of an inverted protocol PC (FSM) and an abstraction ΠS,C (PA) was to our knowledge defined

for the first time in our scientific paper [BZ08b]. The extension to Process Algebra Nets was

to our knowledge defined firstly in our paper [BZ08a]. We will discuss here the construction

considering Process Algebra Nets only, as this construction is backward-compatible with the

one of PA-processes.

Roughly spoken, the Combined Abstraction encodes in one model ΠC
S the parallel execu-

tion paths of the abstraction of the considered system abstraction ΠS,C and the execution paths

(which are forbidden by the considered protocol PC of C) formulated as finite state machine

PC .

Definition 5.4 (Combined Abstraction)

The Combined Abstraction is a Process Rewrite System ΠC
S = (QCS ,ΣC

S , I
C
S ,→C

S , F
C
S) com-

puted from an inverted protocol PC and a system abstraction ΠS,C . It is defined as follows:

QCS = QPC ×QS,C ×QPC is a finite set of processes,

ΣC
S = ΣPC

is a finite set of atomic actions,

ICS ∈ QCS is a start process,

→C
S ⊆ QCS × ΣC

S ×QCS is a finite set of transition rules,

FCS ⊆ QCS is a finite set of final processes.

We restrict this definition to system Abstractions represented as Process Algebra Nets or a sub-

class of Process Algebra Nets.

In accordance with [HU79] a process (vi, pj , vk) ∈ QCS encodes, that the FSM PC is in the

state vi while the system abstraction ΠS,C has the process constant pj created. The aim of

(vi, pj , vk) is, that vi
x⇒PC

vk while pj
x⇒ΠS,C ε can be performed. Thus, a process constant

of the Combined Abstraction ΠC
S encodes the current state of the considered FSM PC and the

system abstraction ΠS,C . We visualize this in Example 5.13, where the current state (cactus

stack) of ΠS,C and the inverted protocol PC after the interaction sequence a is shown. In Figure

5.13a the transformation of a cactus stack is visualized (using the transition rule p5
a→ p6).

The corresponding process-algebraic expressions before and after performing interaction a are

presented in Figure 5.13b. During this interaction the protocol has to switch accordingly the state

using the transition rule v1
a→ v2 (Figure 5.13c). To represent this corresponding a transition rule

((v1, p5, vζ)
a→ (v2, p6, vζ)) ∈ →C

S is created10. It encodes a simultaneous translation within

the abstraction and the protocol performing a (cf. Figure 5.13d).

The transition rules of the Combined Abstraction ΠC
S have the same form and semantics as

transition rules of regular Process Rewrite Systems.

10The construction of the last entry of the triple – here vζ is described in Figure 5.5 on page 104 . Here, it is present

102

5.3. Step 3: Creating Combined Abstractions

Example 5.13: Visualization of the encoded state of the Combined Abstraction.

p0p0

p1p1

p2p2 p3p3

p4p4

p5p5

p0p0

p1p1

p2p2 p3p3

p4p4

p6p6
a=⇒

(a) Transformation of cactus stack.

(p3||(((p5.p4)||p2).p1)).p0
a=⇒ (p3||(((p6.p4)||p2).p1)).p0

(b) Derivation of the abstraction ΠS,C .

v1
a=⇒ v2

(c) Derivation of the protocol PC .

(v1, p5, vζ)
a→ (v2, p6, vζ)

(d) Combined transition rule.

The construction of the transition rule →C
S follows the directives shown in Figure 5.5 (de-

scribed below) and is a generalization of the standard construction of the intersection of a finite

state machine and a push-down automaton. Thus, the chain transition rules R1
C and the set of

sequential transition rules R1
S are handled similar to create an intersection of a push-down au-

tomaton and a finite state machine in [HU79]. That means, the transition rule changes the state of

the inverted protocol as well as the state of system abstraction simultaneously, if corresponding

transition rules exist within PC and ΠS,C .

The transition rules with a parallel operator R1
P are constructed similar to R1

C . It has the

same meaning: the state of the system abstraction is changed (in this case, while forking a new

process), while the inverted protocol performs the same action a and changes the state, too. The

same principle is used to represent the semantics of elimination rules of the system abstraction as

R1
Elem is constructed. Thereby, the middle entry of the triple (representing a state of the system

abstraction) is transformed into the empty word.

We also have to deal with λ-rules, that can appear in the system abstraction ΠS,C . These rules

perform an action, that is not relevant for the currently considered inverted protocol PC . The

state of the protocol has not changed while performing a λ-rule within the system abstraction.

Thus, the transition rules of the setsRλC ,RλElem,RλSeq,RλFork andRλSync transform the state of

the Combined Abstraction, but change only the state p (middle entry of the triple) of the system

to show a sound definition.

103

5. Verification Process

R1
C = {(v, p, v′′) a−→ (v′, p′, v′′) : (v a→PC v

′) ∧ (p a→ΠS,C p
′) }

RλC = {(v, p, v′) λ→ (v, p′, v′) : (p λ→ΠS,C p
′) }

R1
Elem = {(v, p, v′′) a−→ (v′, ε, v′′) : (v a→PC v

′) ∧ (p a→ΠS,C ε) }

RλElem = {(v, p, v′) λ→ (v, ε, v′) : (p λ→ΠS,C ε) }

R1
Seq = {(v, p, v′′′) a−→ (v′, p′, v′′).(v′′, p′′, v′′′) : (v a→PC v

′) ∧ (p a→ΠS,C p
′.p′′) }

RλSeq = {(v, p, v′′) λ→ (v, p′, v′).(v′, p′′, v′′) : (p λ→ΠS,C p
′.p′′) }

R1
Fork = {(v, p, v′′) a−→ (v′, p′, v′′)||(v′, p′′, v′′) : (v a→PC v

′) ∧ (p a→ΠS,C p
′||p′′) }

RλFork = {(v, p, v′) λ→ (v, p′, v′)||(v, p′′, v′) : (p λ→ΠS,C p
′||p′′) }

R1
Sync = {(v, p, v′′)||(v, p′, v′′) a−→ (v′, p′′, v′′) : (v a→PC v

′) ∧ (p||p′ a→ΠS,C p
′′) }

RλSync = {(v, p, v′)||(v, p′, v′) λ→ (v, p′′, v′) : (p||p′ λ→ΠS,C p
′′) }

R0 = {(v, p, v′′) λ→ (v′, p, v′′) : (v a→PC v
′) }

Rε = {(v, ε, v) λ→ ε }

with v, v′, v′′, v′′′ ∈ QPC ,
p, p′, p′′ ∈ QS,C ,

a ∈ ΣPC ∧ a 6= λ

Figure 5.5.: Directives for construction of transition rules of a Combined Abstractions ΠC
S .

abstraction. The state of the inverted protocol v is unaffected.

The transition rules of the set Rε are created to simplify the model checking. Using these

rules semantics is represented explicitly, that the aimed protocol state v is reached (as first and

third entry of the triple), while meanwhile the state corresponding process constant of the system

abstraction is translated into the empty word ε (second entry). Thus this process stopped after

performing a sequence of interactions, while the protocol performs a corresponding sequence of

interactions. Hence, we can remove this process constant. Formally:

p
∗⇒ ε ∧ v

∗⇒ v′ ⇒ (v, p, v) ∗⇒ (v′, ε, v′) λ→ ε

During the transformation a problem can appear, while considering concurrent processes

(e. g., (v3, p5, v
′
3)||(v3, p4, v

′
3)). While applying a transition rule to a process constant (v3, p4, v

′
3)

the protocol state might change (e. g., to (v4, p6, v
′
3)). The second process (v3, p5, v

′
3) cannot rec-

ognize this protocol state, thus it remains in the protocol state v3. Thus in the resulting process-

algebraic term (e. g., (v3, p5, v
′
3)||(v4, p6, v

′
3)) two different protocol states are encoded, but the

protocol can only be in one state. This situation is shown in Example 5.14, the different (and

problematic) protocol states are marked. To deal with this problem we have to make it possible,

that concurrent processes can synchronize their protocol state. This synchronization cannot be

done explicitly, while the concurrent processes cannot communicate via a global communication

104

5.3. Step 3: Creating Combined Abstractions

Example 5.14: Problematic situation while dealing with a Combined Abstraction ΠC
S .

v′2, p1, εv′2, p1, ε
v′3, p2, v

′
2v′3, p2, v
′
2

v3, p4, v
′
3v3, p4, v
′
3

v3, p5, v
′
3v3, p5, v
′
3

v′2, p1, εv′2, p1, ε
v′3, p2, v

′
2v′3, p2, v
′
2

v4, p6, v
′
3v4, p6, v
′
3

v3, p5, v
′
3v3, p5, v
′
3c=⇒

(a) Transformation of a cactus stack.

(v1, p1, ε)
a⇒ (v2, p2, v

′
2).(v′2, p1, v2)

b⇒ (v3, p3, v
′
3).(v′3, p2, v

′
2).(v′2, p1, v2)

λ⇒ ((v3, p5, v
′
3)||(v3, p4, v

′
3)).(v′3, p2, v

′
2).(v′2, p1, v2)

c⇒ ((v3x , p5, v
′
3)||(v4x , p6, v

′
3)).(v′3, p2, v

′
2).(v′2, p1, v2)

(b) Corresponding derivation of the Combined Abstraction.

channel (not allowed in PRS semantics). So, we will create transition rules allowing to imitate

the adjustment of the protocol states at any time (this is an overapproximation of the behavior).

These transition rules – named sleep rules – are contained.

In the example of Example 5.14 the following action rule was used in the fourth step:

(v3, p4, v
′
3) c→ (v4, p6, v

′
3) ∈ R1

C

It is created using the transition rules (v3
a→ v4) ∈ →PC and (p4

a→ p6) ∈ →S,C . Therefore,

the requirements are fulfilled to generate a transition rule ((v3, p5, v
′
3) λ→ (v4, p5, v

′
3)) ∈ R0.

Applying this transition rule in the situation represented in the example leads to the imitation of

a protocol change in the branch. Hence, the parallel processes can be justified in relation to their

current protocol states.

Using these rules it is ensured, that each concurrent process of a process-algebraic expression

of a Combined Abstraction can be transformed into the same protocol state if another process

performs an interaction. The downside for this imprecise behavior is an overapproximation and

thus false negatives (while considering model checking, cf. Section 5.4).

The set of transition rules→C
S by unifying the sets of transition rules presented in Figure 5.5.

Formally:

→C
S =̂R1

C ∪RλC ∪R1
Elem ∪RλElem ∪R1

Seq ∪RλSeq ∪R1
Fork ∪RλFork ∪R0 ∪Rε

After constructing the transition rules of the Combined Abstraction, we obtain a Process

Rewrite System ΠC
S = (QCS ,ΣC

S , I
C
S ,→C

S , F
C
S) (we also call ΠCi

S interleaving PRS).

105

5. Verification Process

Lemma 5.1
By the construction of the Combined Abstraction a Process Rewrite System ΠC

S is computed

which is in the same class of the PRS-hierarchy (Section 3.2.3) as the Process Rewrite System

ΠS,C .

Proof (Lemma 5.1)

By the construction directives (Figure 5.5) the generated rules of ΠC
S are of the same kind as

the considered transition rule of ΠS,C . Considering the transition rules of the system abstraction

ΠS,C resulting in a transition rule of ΠC
S we get the following mapping:

• a chain rule of ΠS,C results in a chain rule of ΠC
S implied by ofR1

C andRλC ,

• a sequential rule of ΠS,C results in a sequential rule of ΠC
S by reason ofR1

Seq andRλSeq,

• a fork rule of ΠS,C results in a fork rule of ΠC
S by reason ofR1

Fork andRλFork,

• a synchronization rule of ΠS,C results in a synchronization of ΠC
S by reason ofR1

Sync and

RλSync,

Moreover, R1
Elem, RλElem, R0 and Rε contain only chain transition rules, thus the PRS class

of ΠC
S cannot be raised in comparison to the PRS class of ΠS,C . Hence, ΠC

S is contained in the

same class of the PRS-hierarchy as ΠS,C . Because the transition rules determine the PRS class

(cf. Definition 3.31).

Remark
As the directives (cf. Figure 5.5 on page 104) for creating the Combined Abstraction compute a

Process Rewrite System of the same PRS class as ΠS,C , the operation is closed.

Now, every possible interleaving sequence of the actions contained in the protocol is repre-

sented by at least one path in the Combined Abstraction ΠC
S . As we can easily see, using the

explained construction, we create false negatives, too. These will be described in Section 5.4.1.

To show, that the presented construction is correct, we prove the following theorem.

Theorem 5.4 (Correctness of construction of the Combined Abstraction ΠC
S)

The construction of a Combined Abstraction ΠC
S results in a representation, so that L(PC) ∩

L(ΠS,C) ⊆ L(ΠC
S).

Proof (Idea)

Counterexamples constructable only by sequential rules are gathered by using the rewrite rules

ofR1
C andR1

S . Without loss of generality we only have to consider action rules. If a counterex-

ample is computable while using parallel rules, we have to look at terms of the form (p1||p2).pp.
Using the construction directive computing R1

Fork the parallel traces are calculated indepen-

dently.

E. g., if a transition rule out of R1
C is applied to p1, then this trace reaches a new state v′ in the

inverted protocol automaton. However, in p2 the protocol automaton has still the old state. With

106

5.3. Step 3: Creating Combined Abstractions

Algorithm 5.3: Lazy construction of the Combined Abstraction
input : protocol PC , system abstraction ΠS,C of component C
output : Combined Abstraction ΠC

S = (QCS ,ΣC
S , I

C
S ,→ C

S , F
C
S)

PC = invert protocol PC1

→start = generate start rules as described in Figure 5.5 on page 1042

Qunres = ∅3

foreach transition rule δ in→start do4

add process constants of RHS of δ to Qunres5

end6

foreach node (v, p, v) ∈ Qunres do7
Qtmp = ∅8

generate set of transition rulesRnew as described in Figure 5.5 on page 104 such9

that (v, p, v) is contained in the process constants of the RHS of each transition rule
foreach transition rule δ ∈ Rnew do10

foreach process constant (v, p, v)′ contained in the RHS of δ do11

add (v, p, v)′ to Qtmp12

end13

end14

→C
S =→C

S ∪Rnew15

Qunres = Qtmp16

end17

a rule from R0, it is possible that p2 reaches v′, too, while using a rule out of R0. A extended

approach is presented in Appendix A.4.

Lemma 5.2 (The definition of the construction is backward compatible)

The Definition 5.4 on page 102 (Figure 5.5 on page 104) of the Combined Abstraction is appli-

cable to Process Algebra Nets. Moreover, it is applicable to the subclasses of Process Algebra

Nets in the PRS-hierarchy, because of the consideration of each transition rule class.

Proof (Lemma 5.2)

The construction of the transition rules of a Combined Abstraction is partitioned into construc-

tion directives for each type of a transition rules (Definition 3.31 on page 49). Therefore, the

irrelevant directives can be omitted, if the considered PRS representation does not allow the

corresponding kind of transition rules.

Remark
The construction considering (1, S)-PRS is compatible with the definition of an intersection of

push-down automata and finite state machines in [HU79].

5.3.2 Optimizations of the Combined Abstractions

5.3.2.1 Optimizations during Creation

We use Algorithm 5.3 to generate the transition rules of the Combined Abstraction. It imple-

ments a lazy construction as in every step the new process constants are considered only.

107

5. Verification Process

After the computation of the start transition rules, the algorithm computes in each step only

transition rules, which contain a specific term at the RHS. The set Qunres ⊆ QCS contains all pro-

cess constants, which could be generated using the existing transition rules and never contained

of the LHS of any existing transition rule. This ensures a lazy computation of the transition rules,

because only rules are computed, which possibly can be used to translate a derivation from the

initial process constant ICS into any term t: ICS
∗⇒ t.

Remark
It is possible, that Algorithm 5.3 results in no reduction of the set of transition rules in compari-

son to the formal algorithm derived from Figure 5.5 on page 104.

5.3.2.2 Remove Unresolvable Transition Rules

We subsume all transition rules from a Process Rewrite System Π = (Q,Σ, I,→ , F) having

on the left-hand side (LHS) a term which does not appear on the right-hand side (RHS) of any

other transition rule.

Using this optimization we want to remove all transition rules, translating a term t at the left-

hand side into a term t′ at the right-hand side, so that t′ can never be translated into ε. For this

purpose we use a bottom-up definition.

Definition 5.5 (Unresolvable transition rules)

A transition δ=̂t a→ t′ is unresolvable if p ∈ LHS(δ) and p w; ε.

To compute the terms that are definitely unresolvable we define the function usedConstants({p}),

which calculates the set of p′ ∈ Q (p′ ∗⇒ p and T is a set of process-algebraic expressions):

usedConstants({})=̂{}

usedConstants(T)=̂{p ∈ LHS(t→ t′) | t ∈ T ∧ (t→ t′) ∈→ ∧ p ∈ Q}

∪ usedConstants({t | t′ ∈ T ∧ (t→ t′) ∈→ ∧ t /∈ T})

Using usedConstants({t}) we define the function unresolvableConstants calculating the pro-

cess constants, which cannot be part of a derivation t′ ∗⇒ t.

unresolvableConstants(T)=̂Q \ usedConstants(T)

Here, we calculate a Process Rewrite System Π = (Q′,Σ, I,→′, F) where the set of transition

rules →′ =̂{δ ∈→ |RHS(δ) ∩ unresolvableConstants(ε) 6= ∅} and Q′=̂usedConstants(ε).

This optimization removes the transition rules, which could never be a part of a derivation path:

I
∗⇒ ε.

5.3.3 Summary

In this section we have shown how a representation – the Combined Abstraction ΠC
S – of the

model checking problem can be constructed. The Combined Abstraction encodes the protocol

108

5.4. Step 4: Performing Protocol Conformance Checking

conformance problem in a Process Rewrite System representation, so that the reachability ICS
w⇒

ε has to be checked. The Combined Abstraction is constructed while combining the derivation

paths contained in the system abstraction ΠS,C and the inverted protocol PC of component

C, thus w describes an interaction sequence contained in the system abstraction ΠS,C and in

the considered inverted protocol PC . These calculations capture the behavior conservatively.

Hence, we find every existing counterexample (no false positives can appear).

In the next section we will discuss how the model checking is performed.

5.4 Step 4: Performing Protocol Conformance Checking

In this section we discuss the model checking problem. We present the reachability algorithm

defined by Richard Mayr [May97] and discuss the problems using this algorithm. Then, we will

discuss our implementation and improvements of the model checking algorithm.

As the Combined Abstraction ΠC
S is an overapproximation (of the behavior possible in the

system abstraction ΠS and forbidden by the protocol PC), false negatives can appear. They are

discussed in Section 5.4.1.

To raise the applicability of our context we develop two optimizations. The first – an a pos-

teriori approach – improves the speed of the model checking while using the properties of the

PRS-hierarchy (Section 5.4.3). This approach is similar to a CEGAR-loop11 and was published

as [BZ09d]. In Section 5.4.2 we present an a priori approach to reduce the number of false

negatives while taking advantage of the properties of the computed Combined Abstraction. We

published this adapted model checking algorithm in [BZ09b].

The theoretical foundations for the model checking algorithm are presented in [May97].

There, the model checking problem is reduced to the reachability of Petri nets. For this purpose

the given Process Algebra Net is translated into a Petri net while considering the two process

constants on the right-hand side of a sequential rule independently. Based on Mayr’s Definition

in [May97] we formulated the Algorithm 5.4.

The algorithm is divided into two parts. The function PAN-Reachability solves the problem

for terms containing no sequential operator (Line 8) while calling a Petri nets reachability oracle

as subprocess. For this purpose the sequential rules p1
a→ p2.p3 of Π are translated iteratively to

chain transition rules p1
a→ p3 if PAN-Reachability(p2) is valid. The function translateToPar-

allelTerm tries to translate a given term t ∈ PEX(Q) into a term t′ containing no sequential

operator (Line 23). For details we refer to [May97].

The algorithm is EXPSPACE-hard, because the Petri nets reachability problem (called as

subprocess) is EXPSPACE-hard as proven by Ernst W. Mayr [May81].

An implementation of a PAN model checker using Mayr’s Algorithm was task of a diploma

thesis [Prä09] we have supervised.

Using this algorithm the protocol conformance problem can be decided. Considering the

practical applicability it is needed not to flood the user of the verification process with coun-

11Counterexample guided abstraction refinement loop [E. 00].

109

5. Verification Process

Example 5.15: Trace constructed by the reachability algorithm. It results in the counterexample
c b d b for the protocol ofC2 in Example 5.9 on page 93. For better understanding
the processes of ΠC2

S rewritten in the considered step are underlined.

A finite state machine PC2
′, that describes a subset of the inverted protocol PC2 of component

C2.
PC2

′ = ({IA, x2, x3, x4, xF }, {b, c, d}, IA, {IA
c→ x2, x2

b→ x3, x3
d→ x4, x4

b→ xF }, {xF })
We can see that L(PC2

′) ⊆ L(PC2).
Trace of ΠC2

S , constructing the protocol violation c b d b in component C2:

(IA, IS , xF) λ⇒ (IA, q1, xF) λ⇒ (IA, p2, xF)
c⇒ (x2, p8, x2).(x2, p3, xF) λ⇒ (x2, p9, x2).(x2, p3, xF) λ⇒ (x2, ε, x2).(x2, p3, xF)
λ⇒ (x2, p3, xF) λ⇒ (x2, p4, xF) b⇒ (x3, p10, x3).(x3, p5, xF)
λ⇒ (x3, p11, x3).(x3, p5, xF) λ⇒ (x3, p12, x3).(x3, p5, xF) λ⇒ (x3, ε, x3).(x3, p5, xF)
λ⇒ (x3, p5, xF) λ⇒ (x3, p7, xF)||(x3, p6, xF) d⇒ (x3, p7, xF)||(x4, p14, xF)

λ⇒ (x3, p7, xF)||(x4, ε, xF) λ⇒ (x4, p7, xF)||(x4, ε, xF) b⇒ (xF , p10, xF)||(x4, ε, xF)
λ⇒ (xF , p11, xF)||(x4, ε, xF) λ⇒ (xF , p12, xF)||(x4, ε, xF) λ⇒ (xF , p12, xF)||(xF , ε, xF)
λ⇒ (xF , p12, xF) λ⇒ (xF , ε, xF) �

terexamples, which are provable no counterexample. These counterexamples are called false

negatives. Reducing all false negatives is not possible as discussed in the next section.

5.4.1 False Negatives

The resulting counterexamples might not be real counterexamples. These counterexamples are

called false negatives.

There are two causes of false negatives:

• real false negatives: Because the component abstractions could be created without any

data-flow or control-flow analysis, it is possible that a trace will be contained in the com-

ponent abstraction, which is not possible in the implemented component. E. g., a return

value can route the control flow. Example 5.16 shows such a situation. There, the model

checker will produce the interactions sequences ab, cd, ad and cb. The latter two are possi-

ble, as the data flow is not taken into account12 (during the construction of the abstraction

of C). Thus, if we have no access to the implementation of the other components of the

component-based system, it is possible to create more false negatives. The first, fourth

and sixth counterexample in Example 4.6d on page 71 are such false negatives.

• spurious false negatives: Because we only construct an approximated intersection ΠC
S of

the language described by the component-based system ΠS,C and the considered inverted

12This abstraction can be refined easily using standard compiler construction techniques.

110

5.4. Step 4: Performing Protocol Conformance Checking

Example 5.16: Abstraction resulting in a real false negative.

interface I1
begin

sync void a()
sync void b()
sync void c()
sync void d()

end

(a) Interface I1.
PC1=̂(ab)|(cd)
(b) Protocol of component C1.

component C
implements I

begin
sync m(int x)

p0 if x ≥ 0 then
p1 call a()

else
p2 call c()
p3 if x ≥ 0 then
p4 call b()

else
p5 call d()
p6 . . .

return
end

I

I1

(c) Component C requires an implementation of interface I1.

p0
λ→ p1

p0
λ→ p2

p1
a→ qI1,a.p3

p2
c→ qI1,c.p3

p3
λ→ p4

p3
λ→ p5

p4
b→ qI1,b.p6

p5
d→ qI1,d.p6

p6
λ→ ε

(d) Transition rules of ΠC .

111

5. Verification Process

Algorithm 5.4: Mayr’s Algorithm
input : Process Algebra Net Π=̂(Q,Σ, I,→, ε)
output : Boolean reachable
/* Compute PAN reachability */1

Boolean PAN-Reachability(t ∈ PEX(Q))2

begin3

if FAIL ∈ t then4

return false5

end6

if t contains no sequential operator then7

return t⇒Πpar ε8

end9

if t=̂t1.t2 then10

return (PAN-Reachability(t1) ∧ PAN-Reachability(t2))11

end12

if t=̂t1||t2 then13

return PAN-Reachability(translateToParallelTerm(t1||t2))14

end15

end16

/* Translate a PAN term into a parallel term (Petri net) */17

PEX(Q)] {FAIL} translateToParallelTerm(t ∈ PEX(Q))18

begin19

if t=̂t1||t2 then20

return (translateToParallelTerm(t1)||translateToParallelTerm(t2))21

else if t=̂t1.t2 then22

if PAN-Reachability(t1) then23

return translateToParallelTerm(t2)24

else25

return FAIL26

end27

else28

return t29

end30

end31

/* Main */32

reachable = PAN-Reachability(I)33

protocol PC , it is possible to get false negatives. Some of the false negatives can be

reduced, e. g., by taking the protocol into account.

As counterexamples could be false negatives they have to be evaluated.

If the component code is not available, it would not be possible to reduce the real false nega-

tives. They have to be verified by the developer having access to the source code of the compo-

nent.

As spurious counterexamples are generated while computing the Combined Abstraction, they

may be erasable while evaluating the accessible pieces of information. We assume, that spurious

counterexamples are very annoying for the user of the verification process as they are caused by

112

5.4. Step 4: Performing Protocol Conformance Checking

a representation, which cannot be evaluated by the user13. Thus, we see a need for reducing the

number of spurious counterexamples. We will focus in the next section on this topic.

5.4.2 Reducing the Number of False Negatives

In the previous section we defined a CEGAR-loop improving the verification speed. For this

approach we took the advantages of the PRS-hierarchy, which classifies the Process Rewrite

System by the allowed operators. Since a counterexample is checked after it has been found, we

call such approaches a posteriori. Because of the fact that all counterexamples of a conservative

approximation have to be verified in the real software (by hand or tool supported), every spuri-

ous counterexample causes an expensive checking in detail. Thus, a large number of spurious

counterexamples reduces the practical applicability of a verification.

In this section, we improve the search for counterexamples by cutting off branches in the

search tree that definitely lead to spurious counterexamples. This is done within the model

checking algorithm, thus it is an a priori approach.

5.4.2.1 Basic Idea

A counterexample c is a sequence of interactions w used to create a derivation from the initial

constant I to the final constant ε: I w⇒ ε. This sequence has to be contained in the language of the

inverted protocol PC ′ (inverted protocol FSM), thus we can check w ∈ L(PC ′). If w /∈ L(PC ′),

we can eliminate this counterexample because it is a false negative. Using this approach we

can eliminate the counterexamples c1 and c2 of Example 5.18 on page 115 (which is a reduced

representation of the behavior of Example 5.17).

However, this check requires the explicit construction of a spurious counterexample. Here,

our goal is to avoid this explicit construction. First, this leads to a more efficient search for coun-

terexamples. Second, the method described above might give false hints to how counterexamples

can be derived. The latter is demonstrated in Example 5.19 on page 116 : The counterexample

c2 can be constructed in the same way as in Example 5.18. However, the language inclusion

check does not fail, because the word w of c2 is contained in the language of the inverted proto-

col: w = abb ∈ L(abb∗). A closer look shows, that c2 contains two transitions from the protocol

state v1 to v2 using the interaction b. As we know, this is not possible, because only one inter-

action is allowed at one point in time (interleaving semantics). This situation is confusing, since

developers might conclude erroneously from c2, that it is a false negative. Hence, this approach

looses some pieces of information about the generated counterexamples.

The idea is now: When a protocol state change happens in one of the terms where a rule is

applicable (head terms), then we first change the protocol state in the other head terms before

we continue the search. We call this heuristic the Round-robin reachability. The derivation of c0
in Example 5.18 follows this strategy.

13Moreover, it is possible that the user is not poised to do an evalution of counterexamples.

113

5. Verification Process

Example 5.17: Abstraction containing a spurious false negative.

interface I0
begin

sync n(I1 ref)
end

interface I1
begin

sync x()
sync p()
sync m()
async o(int par)

end

interface I2
begin

async a()
sync b(int par)

end

(a) Interfaces of three components.

component C0
implements I0,Istart

begin
sync main(int par)

p1 call C2a()
p2 call C2.b(par)
p3 call C1.p()

sync n(I1 ref)
p5 if . . . then
p6 call ref.m()

else
p7 call C1.o(par)
p8 call C1.p()

end

I1

I2 I0

component C1
implements I1

begin
sync x()

p9 if . . . then
p9′ call this.m()

sync p()
p10 . . .

sync m()
p11 if . . . then
p11′ call C0.n(this)

async o(int par)
p12 call C2.b(par)

end

I1

I2I0

component C2
implements I2
int v = 0

begin
async a()

p14 call C1.c()
p15 v = 1

sync b(int par)
p16 r = par /v
p17 v = v − 1

end

I1

I2

(b) Composed three components.

PC0 = n∗ PC1 = zpm∗(op|po) PC2 = (ba+)∗

(c) Protocols of three components.

114

5.4. Step 4: Performing Protocol Conformance Checking

Example 5.18: Spurious false negatives.

Given system abstraction (initial constant p0): p0
a→ p1||p1 p1

b→ ε p1
λ→ ε

Given inverted protocol (initial state v0, final state v2): v0
a→ v1 v1

b→ v2

Generated Combined Abstraction (initial constant (v0, p0, v2), only rules required for counterexamples
are shown):

(v0, p0, v2) a−→ (v1, p1, v2)||(v1, p1, v2) (v1, p1, v2) b−→ (v2, ε, v2) (v1, p1, v2) λ→ (v2, p1, v2)

(v1, p1, v2) λ→ (v1, ε, v2) (v1, ε, v2) λ→ (v2, ε, v2) (v2, p1, v2) λ→ (v2, ε, v2)

(v0, p0, v2) λ→ (v1, p0, v2) (v1, p0, v2) λ→ (v2, p0, v2)

Computed counterexamples:

c0=̂(v0, p0, v2) a⇒ (v1, p1, v2)||(v1, p1, v2) b⇒ (v1, p1, v2)||(v2, ε, v2) b⇒ (v2, p1, v2)||(v2, ε, v2)
λ⇒ (v2, ε, v2)||(v2, ε, v2) λ⇒ (v2, ε, v2) λ⇒ ε

c1=̂(v0, p0, v2) a⇒ (v1, p1, v2)||(v1, p1, v2) λ⇒ (v1, p1, v2)||(v1, ε, v2) b⇒ (v1, p1, v2)||(v2, ε, v2)
λ⇒ (v1, ε, v2)||(v2, ε, v2) b⇒ (v2, ε, v2)||(v2, ε, v2) λ⇒ (v2, ε, v2) λ⇒ ε

c2=̂(v0, p0, v2) a⇒ (v1, p1, v2)||(v1, p1, v2) b⇒ (v1, p1, v2)||(v2, ε, v2) λ⇒ (v1, p1, v2) b⇒ (v2, ε, v2) λ⇒ ε

5.4.2.2 The Round-Robin Reachability Algorithm

In this section we prove, that this heuristic does not exclude non-spurious counterexamples.

Algorithm 5.5 shows a backtracking algorithm implementing this strategy.

It uses the following notations:

• As can be seen from the inference rules defining the derivations, the derivation relation in a

term (p1.u1|| . . . ||pn.un).un+1, where n > 0, u1, . . . , un+1 ∈ PEX(Q), p1, . . . , pn ∈ Q
is only applied to one of the terms pi. Formally, we define the notion of the set of heads

H(t) for a process-algebraic term t ∈ PEX(Q) inductively as follows: The multiset of

(atomic) heads H(t) and the multiset of synchronization possibilities S(t) of a Process

Rewrite System term t is defined as follows:

H(p)=̂{{p}}

H(t1.t2)=̂H(t1)

H(t1||t2)=̂H(t1)||H(t2)

S(t)=̂{{pi||pj : pi, pj ∈ H(t), pi 6= pj ∨ ξA(t)(pi) ≥ 2}}

where p, p1, p2 ∈ Q, t1, t2 ∈ PEX(Q) and
ξA(t) denotes the number of elements in a multiset A.

Intuitively the heads are the top stack frames in a cactus stack. E. g., the heads and the

115

5. Verification Process

Example 5.19: Adaption of Example 5.18 on page 115: language inclusion results in an im-
practical output (impractical, because it is difficult to capture the invalidity of the
computed counterexample).

Given system abstraction rules (initial constant p0):

p0
a→ p1||p1, p1

b→ ε, p1
λ→ ε

Given inverted protocol (initial state v0, final state v2):

v0
a→ v1, v1

b→ v2, v2
b→ v2

A computable counterexample:
c2 of Example 5.18 on page 115

Example 5.20: Situation described by Property 5.3.

considered transition rule of Process Rewrite System:
δ=̂p3

b→ p6

p0p0

p1p1

p4p4 p2p2

p3p3p5p5

t

h = p3

H(t) = {{p3, p4, p5}}
S(t) = {{p3||p4, p3||p5}}

p0p0

p1p1

p4p4 p2p2

p6p6p5p5

t′

h′ = p6

H(t′) = {{p4, p5, p6}}
S(t′) = {{p6||p4, p6||p5}}

translation of cactus stack:

b=⇒

synchronization possibilities of t in Example 3.7 on page 44 are:

H(t) ={{p2, p3, p3, p5, p6}}

S(t) ={{p2||p3, p2||p3, p2||p5, p2||p6, p3||p3, p3||p5, p3||p6, p3||p5, p3||p6, p5||p6}}

A smaller example is part of Example 5.20. As we can see, the synchronization properties

are an overapproximation – e. g., p5||p6 cannot be transformed using Process Rewrite

System rules into the given cactus stack – but this definition satisfies our needs.

Property 5.3
If in a Process Rewrite System Π = (Q,Σ, I,→ , F) a rule δ : t1

b→ t2 (δ ∈→) is

applied to process-algebraic term t (i. e., t b⇒ t′, where t, t′ ∈ PEX(Q)), then there is a

head h ∈ H(t) or a synchronization possibility h ∈ S(t), so that t′ is obtained from t by

replacing h by h′ by the same rule δ, where h b⇒ h′ (cf. Example 5.20).

Property 5.3 states, that any action rule is either applied to a top frame of a cactus stack or

116

5.4. Step 4: Performing Protocol Conformance Checking

it synchronizes two threads (i. e., it merges two stacks into one).

• Corresponding sleep rule: A rule δ ∈ R0 of the considered Combined Abstraction ΠC
S ,

which is created by using a rule v a→ v′ of the protocol PC is called the sleep rule corre-

sponding to an action rule t1
a→ t2.

• A protocol state of a process-algebraic term is the set of protocol states. The protocol state

of a triple (v, p, v′) is v. Formally, we define the function ps(t) for a process-algebraic

term t ∈ PEX(Q) as follows: ps(t) = {v : (v, p, v′) ∈ H(t)}.

In Algorithm 5.5 it is valid: if an action rule δ is applied to one head, all other heads are

rewritten to the corresponding protocol state by using sleep rules corresponding to δ (cf. line

17-21).

At line 14 of the algorithm we choose one head h ∈ H(t) or one synchronization possibility

h ∈ S(t) of the current term t to apply δ: h a⇒ h′. Following the definition of action rules this

means that the protocol state of h could differ from the one of h′. At line 17 we ensure that all

other heads are imitating rewriting of the protocol state in h′ while applying a corresponding

sleep rule.

Thus, in every derivation step, if one action rule δ has been applied, then all heads are trans-

lated into the same protocol state by applying the corresponding sleep rules of δ to extend the

derivation d.

Hence, the problems of the language inclusion are eliminated:

• It is ensured, that only one protocol transition is performed in one derivation step of the

Combined Abstraction.

• It is checked in every derivation step, whether such a derivation will create spurious false

negatives.

The following theorem states, that each non-spurious counterexample can be constructed by

the Round-robin reachability.

Theorem 5.5
Let ΠS,C be a system abstraction (considering component C), PC is the inverted protocol of

component C, and w ∈ Σ∗, such that t w⇒ΠS,C ε for a term t ∈ PEX(QΠS,C) and v w⇒PC f for

a protocol state v ∈ QPC and a final protocol state f ∈ FPC . Then there is a process-algebraic

expression s ∈ QΠCS
over the Combined Abstraction, such that s w⇒ ε and |ps(s)| = 1, i. e., the

protocol states in the heads are equal.

The proof of Theorem 5.5 requires some technical definitions and lemmas. Let s ∈ PEX(QΠCS
)

be a process-algebraic expression over the Combined Abstraction ΠC
S . The process-algebraic ex-

pression F(s) ∈ PEX(QΠS,C) over the system abstraction ΠS,C ”forgets” the protocol states in

117

5. Verification Process

Algorithm 5.5: Round-robin reachability algorithm in pseudo code.
input : PRS term t
output : Derivation t w⇒ ε if it exists, false otherwise
if t = ε then1

return ε2

end3

letR be4

the set of rules applicable to t5

end6

foreach δ ∈ R do7

t′ = t8

switch δ do9

case t1
λ→ t210

t′= apply δ to t′11

if newReach(t′) = t′
w⇒ ε then12

return t λ⇒ t′
w⇒ ε13

end14

end15

case t1
a→ t216

choose h ∈ H(t′) ∪ S(t′)17

t′= apply δ at h of t′18

d = t a⇒ t′19

foreach h′ ∈ H(t′) ∧ ps(h′) 6= ps(t2) do20

let δ′ be21

the corresponding sleep rule of δ;22

end23

t′= apply δ′ at h′ of t′24

d = d λ⇒ t′25

end26

end27

end28

if newReach(t′ = t′
w⇒ ε then29

return d aw⇒ ε30

end31

end32

return false33

118

5.4. Step 4: Performing Protocol Conformance Checking

s. Formally:

F((v, p, v′)) = p ∀(v, p, v′) ∈ QΠCS

F(s.s′) = F(s).F(s′) ∀s, s′ ∈ PEX(QΠCS
)

F(s||s′) = F(s)||F(s′) ∀s, s′ ∈ PEX(QΠCS
)

E. g., F((v1, p2, v5)||(v1, p3, v2).(v2, p4, v5)) = p2||p3.p4. Furthermore, let F−1(t) = {s|F(s) =
t}.

The following lemma states, that ”λ-derivations” t λ⇒ΠS,C t′ in the system abstraction ΠS,C

can be transformed into corresponding λ-derivations s λ⇒ΠCS
s′ in the Combined Abstraction

ΠC
S :

Lemma 5.3
Let t, t′ ∈ PEX(QΠS,C) such that t λ⇒ΠS,C t

′. Then, for all s′ ∈ F−1(t′), there is an s ∈ F−1(t)
such that the following properties are satisfied.

1. s λ⇒ΠCS
s′ using only rules δ ∈ RλC ∪RλSeq ∪RλFork ∪RλSync.

2. (v, p, v′) ∈ H(s) iff there is a p′ ∈ QΠS,C such that either (v, p′, v′) ∈ H(s′) or (v, p, v) ∈
H(s′).

Remark
2. implies that ps(s) = ps(s′), i. e., no state change in the protocol happens.

Proof
Straightforward induction on the construction of t λ⇒ΠS,C t

′.

Lemma 5.4 states, that the Round-robin derivation can always be constructed, if there is ex-

actly one protocol state change, i. e., an action rule is applied (cf. line 17-27 in Algorithm 5.5).

Lemma 5.4
Let t1, t2 ∈ PEX(QΠS,C) two process-algebraic expressions over the system abstraction ΠS,C

such that t1
a⇒ΠS,C t2 for an a ∈ Σ by If in the protocol PC , there is a state transition v a→PC v

′,

then for any s2 ∈ F−1(t2) satisfying ps(s2) = {v′}, there is a s1 ∈ F−1(t1) such that the

following properties are satisfied:

1. ps(s1) = {v}

2. s1
a⇒ΠCS

s′
λ⇒ΠCS

s2 where s1
a⇒ΠCS

s′ uses a single rule δ ∈ R1
C∪R1

Seq∪R1
Fork∪R1

Sync

and s′ λ⇒ΠCS
s2 only uses rules δ which are corresponding sleep rules of v a→PC v

′.

Proof (of Lemma 5.4)

Case 1: δ=̂(p a→ΠS,C p
′) or δ=̂(p a→ΠS,C p′||p′′) or δ=̂(p||p′′ a→ΠS,C p′). Then, there must be

a protocol state v′′ ∈ QPC such that (v′, p′, v′′) ∈ H(s2). Suppose that H(s2) \ {(v′, p′, v′′)} =

119

5. Verification Process

Example 5.21: Complete information of Example 5.18 on page 115.

ΠS,C = ({p0, p1, p2},
{a, b},
p0,

{p0
a→ p1, p1

b→ ε, p1
λ→ ε},

{ε})
(a) System abstraction ΠS,C .

PC = ({v0, v1, v2},
{a, b},

{v0
a→ v1, v1

b→ v2},
v0,

{v2})
(b) Inverted protocol PC .

ΠC
S = ({v0, v1, v2} × {p0, p1, p2} × {v0, v1, v2},

{a, b},
(v0, p0, v2),
R1
C ∪RλC ∪R1

Fork ∪R0 ∪Rε,
{ε})

(c) Combined Abstraction ΠC
S .

R1
C = {(v1, p1, v0) b→ (v2, ε, v0), (v1, p1, v1) b→ (v2, ε, v1), (v1, p1, v2) b→ (v2, ε, v2)}

RλC = {(v0, p1, v0) λ→ (v0, ε, v0), (v0, p1, v1) λ→ (v0, ε, v1), (v0, p1, v2) λ→ (v0, ε, v2),

(v1, p1, v0) λ→ (v1, ε, v0), (v1, p1, v1) λ→ (v1, ε, v1), (v1, p1, v2) λ→ (v1, ε, v2),

(v2, p1, v0) λ→ (v2, ε, v0), (v2, p1, v1) λ→ (v2, ε, v1), (v2, p1, v2) λ→ (v2, ε, v2)}
R1
Fork = {(v0, p0, v0) a→ (v1, p1, v0)||(v1, p1, v0), (v0, p0, v1) a→ (v1, p1, v1)||(v1, p1, v1),

(v0, p0, v2) a→ (v1, p1, v2)||(v1, p1, v2)}

R0 = {(v0, p0, v0) λ→ (v1, p0, v0), (v0, p0, v1) λ→ (v1, p0, v1), (v0, p0, v2) λ→ (v1, p1, v2),

(v0, p1, v0) λ→ (v1, p1, v0), (v0, p1, v1) λ→ (v1, p1, v1), (v0, p1, v2) λ→ (v1, p1, v2),

(v1, p0, v0) λ→ (v2, p0, v0), (v1, p0, v1) λ→ (v2, p0, v1), (v1, p2, v2) λ→ (v2, p1, v2),

(v1, p1, v0) λ→ (v2, p1, v0), (v1, p1, v1) λ→ (v2, p1, v1), (v1, p1, v2) λ→ (v2, p2, v2),

(v0, ε, v0) λ→ (v1, ε, v0), (v0, ε, v1) λ→ (v1, ε, v1), (v0, ε, v2) λ→ (v1, ε, v2),

(v1, ε, v0) λ→ (v2, ε, v0), (v1, ε, v1) λ→ (v2, ε, v1), (v1, ε, v2) λ→ (v2, ε, v2)}

Rε = {(v0, ε, v0) λ→ ε, (v1, ε, v1) λ→ ε, (v2, ε, v2) λ→ ε}
(d) Non-optimized sets of transition rules of ΠC

S .

120

5.4. Step 4: Performing Protocol Conformance Checking

{(v′, p1, v1), . . . , (v′, pn, vn)}. Then a derivation s′n
λ⇒ΠCS

s′n−1
λ⇒ΠCS

. . .
λ⇒ΠCS

s′1
λ⇒ΠCS

s′0 = s2 where s′i−1 is the result of the application of the rule (v, pi, vi)
λ→ΠCS

(v′, pi, vi) at

head (v, pi, vi) of term s′i, i = n, . . . , 1. Thus, only corresponding sleep rules of v a→ΠCS
v′

are applied, and (v′, p′, v′′) ∈ H(s′n) is the only atomic process with a protocol state different

from v. By induction on the construction of t1
a⇒ΠS,C t2, one can prove that s a⇒ΠCS

s′n

using (v, p, v′′) a→ΠCS
(v′, p, v′′), (v, p, v′′)||(v, p′, v′′) a→ΠCS

(v′, p′′, v′′) for a v′′ ∈ QPC , or

(v, p, v′′) a→ΠCS
(v′, p′, v′′)||(v′, r′′, v′′), respectively.

Case 2: δ = p
a→ΠS,C p′||p′′. Then there is a protocol state v′′ ∈ QPC such that (v′, p′, v′′) ∈

H(s2), and (v′, p′′, v′′) ∈ H(s2). The rest of the proof is analogous except that H(s2) \
{{(v′, p′, v′′), (v′, p′′, v′′)}} is used.

Proof (of Theorem 5.5)

Induction on w:

w = λ: By Lemma 5.3, there is a s ∈ F−1(t) such that s λ⇒ΠS,C ε and, since v λ⇒PC f implies

v = f , H(s) = {{f}}.
w = ax: for an a ∈ Σ and x ∈ Σ∗.
Then, t ax⇒ΠS,C ε has the form t

λ⇒ΠS,C t1
a⇒ΠS,C t2

x⇒ΠS,C ε, and v w⇒PC f has the form

v
a⇒PC v

′ x⇒PC f .

By induction hypothesis, there is an s2 ∈ PEX(QΠCS
) such that s2

a⇒ΠCS
ε and |ps(s2)| = 1.

By Lemma 5.4, there is an s1 ∈ PEX(QΠCS
) such that s1

a⇒ΠCS
s2, where⇒ΠCS

is constructed

according to Round-robin reachability. By Lemma 5.3, there is an s ∈ PEX(QΠCS
) such that

s
λ⇒ΠCS

s1 only using rules ofR0 and |ps(s)| = 1. Thus s λ⇒ΠCS
s1

a⇒ΠCS
s2

x⇒ΠCS
ε.

Corollary 5.3
If w ∈ L(ΠS,C) ∩ L(PC), then there is a Round-robin reachability derivation t w⇒ΠCS

ε in the

Combined Abstraction ΠC
S , where t ∈ QΠCS

is the initial state of ΠC
S .

Hence, the reachability problem can be solved by using the Round-robin reachability and will

create fewer false negatives. This leads to a better applicability, because a component devel-

oper or quality management representative has to check a lower number of counterexamples.

Moreover, because we cut branches during the verification, it will probably be finished faster.

Finally, while considering Example 5.18 on page 115 , the counterexamples c1 and c2 are

not created while using the Round-robin reachability. This will also reduce the number of false

negatives in Example 5.22 on page 123 , because Figure 5.18 on page 115 was a simplification

of the behavior of the system abstraction shown in Example 5.3 on page 78 .

5.4.2.3 Summary

In this section we have shown, how we can use the special properties of the Combined Ab-

straction representation (defined in Section 5.3) to reduce the number of false negatives. We

call this approach Round-robin reachability, because it balances the derivation steps applied on

each parallel term. This improvement reduces the costs of the quality check, because fewer

121

5. Verification Process

Transformation PA model checkerMPA

PAN counterexample checkerMPANcounterexample found

ΠPAN ΠPA

counter-
example
candidates

next

Figure 5.6.: Concept of a posteriori verification algorithm.

counterexamples have to be reviewed to find the real errors.

Although this improved verification process cannot reduce the complexity of the verification

in a general case. We assume, that in an industrial setting the verification will be finished much

faster. Checking this assumption is part of our future work because of a lack of large examples

in the current case study.

5.4.3 Improving Runtime of Model Checking Using Process Rewrite System Prop-
erties

Using the standard reachability algorithm of Process Algebra Nets to compute statically so called

counterexamples (forbidden interactions) may result in an unacceptable verification time. The

reason for this is, that verification contains the reachability problem of Petri nets (which is

EXPSPACE-hard, cf. Section 3.2.4). Thus, improving the model checking algorithm is essential

to ensure a practical applicability.

In this section we focus on an a posteriori approach to improve the run-time of the model

checker. We take advantage of the PRS-hierarchy (cf. Section 3.2.3) to reduce the effort needed

to determine if a counterexample is contained in the Combined Abstraction. We use an approxi-

mated representation (PA-process) for this purpose. If this preparation step calculates a sequence

of interactions (named counterexample candidate), then we have to check if it is also computable

in the Combined Abstraction. Hence, this approach is similar to a CEGAR-loop (Figure 5.6).

According to the previous discussion, it is sufficient to provide an approach for checking

whether L(ΠPAN) ?= ∅ for a Process Algebra Net. Figure 5.6 shows the algorithm. First a PA-

process ΠPA is constructed, such that L(ΠPAN) ⊆ L(ΠPA). Thus, ΠPA contains all counterex-

amples of ΠPAN, but it might possibly has more counterexamples (spurious counterexamples

w ∈ L(ΠPA) \ L(ΠPAN)).

The counterexamples of ΠPA are obtained by using the model checker for PA-processesMPA.

Then each counterexample of ΠPA is checked whether it is spurious until a counterexample c′

of ΠPAN is discovered or L(ΠPA) = ∅. The latter implies, that there is no counterexample for

ΠPAN.

In order to check whether a counterexample c is spurious, a Process Algebra Net such that

ΠPA
c = abstract(ΠPAN

c) is constructed, where ΠPA
c contains only those rules of ΠPA used to

122

5.4. Step 4: Performing Protocol Conformance Checking

Example 5.22: Example with four interfaces and components.

interface I1
begin

sync r()
async j()

end

interface I2
begin

async f()
end

interface I3
begin

sync b()
sync c()
sync t()
sync x()

end

interface I4
begin

sync a()
sync d(I3 ref)

end

(a) Interfaces of considered components.

component C1
implements I1, Istart

begin
sync main()

p0 . . .
p1 call C2.f()
p2 if . . . then
p2′ call C4.a()

else
p3 call C3.x()

wait for
incoming j()

p4 call this.r()

sync r()
p5 if . . . then
p6 call C3.c()
p7 call this.r()
p7′ call C4.d(C3)

end

I3

I2 I1

I4

component C2
implements I2

begin
async f()

p8 call C3.b()
p8′ call C1.j()

end

I3

I2

I1

component C4
implements I4

begin
sync a()

p9 . . .

sync d(I3 ref)
p10 call ref.t()

end

I3

I4

component C3
implements I3

begin
sync b()

p11 . . .

sync c()
p12 . . .

sync t()
p13 . . .

sync x()
p14 . . .

end

I3

Calculations influencing only the
data flow are omitted behind “. . . ”.

The component C1 allows a
synchronization during interaction

using procedure j.

(b) Composed components.

PC1 =(r|j)∗ PC2 =f∗ PC4 =a d∗

(c) Protocols PC1, PC2 and PC4 as regular expressions.

forbidden sequences regular expression PC3 = b x∗ c+ t+

inverted finite state machine PC3 = ({v0, v1, v2, v3}, {b, c, t, x},

{v0
b→ v1, v1

x→ v1, v1
c→ v2, v2

c→ v2, v2
t→ v3, v3

t→ v3},
v0, {v3})

(d) Inverted protocol PC3.

123

5. Verification Process

Algorithm 5.6: Verification algorithm in pseudo code.
input : ΠPAN

output : Counterexamples
/* construct a PA ΠPA, so that L(ΠPAN) ⊆ L(ΠPA) */1

ΠPA = abstract(ΠPAN)2

/* compute counterexample candidate */3

c =MPA(ΠPA)4

while c 6= ”L(ΠPA) = ∅” do5

let ΠPAN
c ⊆ ΠPAN be6

a PAN, so that ΠPA
c =̂abstract(ΠPAN

c) contains only the rules used in c7

end8

c′ =MPAN(ΠPAN
c)9

if c′ 6= ”L(ΠPAN
c) = ∅” then10

return c′11

end12

/* compute next counterexample */13

c =MPA(ΠPA)14

end15

/* contains no counterexample */16

return “L(ΠPAN) = ∅”17

compute c, and ΠPAN
c only contains rules of ΠPAN. This is done by using a model checker for

Process Algebra NetsMPAN.

Thus, the size of ΠPAN
c is usually considerably smaller than the size of ΠPAN and ΠPA

c contains

a counterexample c′ iff c is not spurious. In the following, we detail and prove these claims.

5.4.3.1 Construction of ΠPA

So, we will transform the Combined Abstraction in the Process Algebra Net form ΠPAN to a

representation in the Process Algebra form ΠPA. Because we want to capture still a superset of

the behavior of ΠPAN, we have to ensure, that every sequence of interactions is still createable.

So, it has to be possible to find the counterexamples containing a synchronization rule.

Each transition rule pi||pj
a→ pk is replaced by the two rules:

pi
λ→ ε and pj

a→ pk (∗)
It is also possible to use the rules pi

a→ pk and pj
λ→ ε, because it is only important to guarantee,

that the same counterexample can be constructed (proof follows below).

Thus, all synchronization rules pi||pj
a→ pk are eliminated and a PA-process ΠPA is obtained.

However, there might be more counterexamples constructable in ΠPA as in ΠPAN (spurious coun-

terexamples).

Theorem 5.6
For each derivation c1=̂ t

w⇒ ε with application of synchronization rules there is a derivation

c2=̂ t
w⇒ ε without application of synchronization rules.

Proof

124

5.4. Step 4: Performing Protocol Conformance Checking

Example 5.23: The constructed ΠPA from ΠPAN (ΠS,C3) in Example 5.3 on page 78.

p0
λ→ p1∗||p2, p1∗

f→ p8.p1, p2
a→ p9.ε,

p2
x→ p14.p3, p1

::

λ→ p4
:::::

, p3
::

λ→ ε::::,

p4
r→ p5.ε, p1

λ→ ε, p5
λ→ ε,

p5
c→ p12.p6, p6

r→ p5.p7, p7
d→ p10.ε,

p8
b→ p11.ε, p11

λ→ ε, p12
λ→ ε,

p13
λ→ ε, p14

λ→ ε, p9
λ→ ε,

p10
t→ p13.ε

Example 5.24: A computable counterexample in ΠPA of Example 5.23 on page 125 that would
not appear in ΠPAN. Here, the method F defined in Section 5.4.2.2 was used to
simplify the transition rules of the counterexample (while “forgetting” the proto-
col states that only were available for verification reasons).

p0
λ⇒ p1∗||p2

λ⇒ (p8.p1)||p2
λ⇒ (p8.p1)||p9

b⇒ (p11.p1)||p9
λ⇒ p1||p9

λ⇒ p1
λ⇒ p4

λ⇒ p5
c⇒ p12.p6

λ⇒ p6
λ⇒ p5.p7

λ⇒ p7
λ⇒ p10

t⇒ p13
λ⇒ ε

Induction on the number of synchronization rules.

n = 0: Then c1 = c2 proofs the claim.

n > 0: If c1 contains a synchronization rule, then it has the form

c1=̂ t
u⇒ ((pi||pj)||t1).t2

a⇒ (pk||t1).t2
v⇒ ε

so that t u⇒ ((pi||pj)||t1).t2 does not contain a synchronization rule, (pk||t1).t2
v⇒ ε contains

(n− 1) synchronization rules, and w = uav. By induction hypothesis, there exists a derivation

c′2=̂ (pk||t1).t2
v⇒ ε without applying synchronization rules. Then

c2=̂ t
u⇒ ((pi||pj)||t1).t2
λ⇒ ((ε||pj)||t1).t2 = ((pj ||t1).t2)
a⇒ (pk||t1).t2

v⇒ ε︸ ︷︷ ︸
c′2

is the desired derivation without synchronization rules.

125

5. Verification Process

Corollary 5.4
L(ΠPAN) ⊆ L(ΠPA)

Remark
It is possible that L(ΠPA) contains more counterexamples than L(ΠPAN). Example 5.24 such a

situation: The counterexample of ΠPA in Example 5.23 generates the sequence b c t. This coun-

terexample can never result in a counterexample of ΠPAN in Example 5.3 on page 78, because

it uses only one part of the replaced synchronization rule (underlined in both figures). Such

spurious counterexamples should be excluded since they are not in the original model.

5.4.3.2 Discovering Spurious Counterexamples

We discover such spurious counterexamples by running the counterexample in ΠPAN in order to

detect whether it is a real one or a spurious one.

We use a Process Algebra Net model checker MPAN to check whether the counterexample

candidate is a spurious counterexample or not. However, the size of the Process Algebra Net

ΠPAN
c is in most cases much smaller than the size of ΠPAN, since only the rules in the counterex-

ample c need to be considered.

The Process Algebra Net ΠPAN
c has the transition rules (→c ∪ →sync

c)∩ →PAN
Π where →c

is the set of transition rules used in the derivation of the counterexample c and →sync
c contains

synchronization rules pi||pj
a→ pk iff pi

λ→ ε and pi
a→ pk are used in c and these two rules

stem from the transformation (∗). Then L(ΠPAN
c) ⊆ L(ΠPAN). Therefore, it is only necessary to

use the model checkerMPAN on ΠPAN
c for checking counterexamples. Since the size of ΠPAN

c is

typically much smaller than the size of ΠPAN, the model checking time is feasible even ifMPAN

is used.

Theorem 5.7
If c is a counterexample in ΠPAN, there is a counterexample c′ of ΠPA so that c is a counterexam-

ple of ΠPAN
c′ .

Proof
We proof the following stronger claim by induction on the number n of applied synchronization

rules:

Claim: If c=̂t w⇒ ε is a derivation in ΠPAN, then c is also a derivation in ΠPA
c′ where c′ is

the derivation constructed in Theorem 5.6 without synchronization rules. ΠPAN
c′ is the Process

Rewrite System as defined above.

n = 0: Since no synchronization rules are applied, c′ = c and ΠPAN
c′ contains exactly the rules

used in c′, c is also a derivation in ΠPAN
c′ .

n > 0: According to the proof of Theorem 5.6 c can be decomposed into

t
u⇒ ((pi||pj)||t1).t2︸ ︷︷ ︸

c1

a⇒ (pk||t1).t2
v⇒ ε︸ ︷︷ ︸

c2

126

5.5. Step 5: Evaluating Counterexamples

where c1 does not apply a synchronization rule, and c′ has the form

t
u⇒ ((pi||pj)||t1)︸ ︷︷ ︸

c1

.t2

λ⇒ ((ε||pi)||t1).t2 = (pi||t1).t2
a⇒ (pk||t1).t2

v⇒ ε︸ ︷︷ ︸
c′2

Since c2 contains n−1 synchronization rules by induction hypothesis, c2 is a derivation in ΠPAN
c′2

.

Let ΠPA
c1 the Process Rewrite System obtained from the rules in c1. Analogous to the case n = 0,

we can argue that c1 is a derivation in ΠPAN
c1 . The rules pi

λ→ ε and pj
a→ pk are transformed back

to pi||pj
a→ pk. Hence, c is a derivation in ΠPAN

c′ = {Q,Σ, I,→c1 ∪{pi||pj
a→ pk}∪ →c′2

, {ε}}.

This theorem guarantees, that if the Process Algebra Net contains a counterexample c, then it

will be found by the verification algorithm, since c′ becomes a counterexample candidate during

the loop.

In the Section 6.3 we show the experiences we made with this approach.

5.4.4 Summary

In this section we have shown, how the reachability analysis of Process Algebra Nets are defined

and can be improved.

Two problems appear while using Mayr’s PAN reachability for our purpose. First, the number

of false negatives increases, if we do not use all pieces of information available in the Combined

Abstraction, thus we define an extended verification algorithm named Round-robin reachability

[BZ09a]. Second, the performance of the reachability analysis results in too many timeouts

considering a high number of transition rules. As this could be a limitation for industrial case

studies we develop an a posteriori model checking approach. Thereby, we take advantage of

the well defined properties of the PRS-hierarchy [BZ09d]. PA-processes allow a conservative

approximation of the source code. A faster computation of the counterexamples is possible,

while putting up more false negatives. They are reduced with a standard Process Algebra Nets

model checker. Although the complexity class of reachability cannot be reduced using our

approach, it is possible to speed up the Process Algebra Nets model checking while reducing the

size of the input model. Experimental results are shown in Section 6.3.1.

In the next section, we will discuss the notation of counterexamples in this work. Moreover,

we describe how the counterexamples are used for leading back to the relevant program points

influencing the counterexample.

5.5 Step 5: Evaluating Counterexamples

In the previous section model checking of Process Algebra Nets was discussed. It results in

counterexamples if any protocol violation exists. Every counterexample has to be evaluated by

127

5. Verification Process

a human or by an automatic process. This is needed as we cannot guarantee, that the coun-

terexample is a real or a spurious counterexample (cf. Section 5.4.1). Here, we will discuss the

notation and the evaluation of them, leading to a better understanding at the user side.

E. g., the problem can appear, that if repetitions (or recursions) exist within a counterexample,

many slightly different counterexamples will be created. If the model checker returns a set or

sequence of counterexamples (cf. Section 5.4.3, Figure 5.6 on page 122), we do not want to

confuse the user of the verification process while listing many counterexamples that describe the

same behavior.

The problem is shown in the example of Example 5.25. There, some of the existing counterex-

amples are represented showing the interaction sequences and the derivations. As we can see,

repetitions, parallel behavior and recursion might lead to an infinite number of counterexamples.

We will define adaptions of our earlier definitions to reduce the effort needed to evaluate

counterexamples by humans. This contains the options to show the user:

1. comprehensible counterexamples,

2. compact counterexamples,

3. less counterexamples.

We will show, how these goals are ensured.

5.5.1 Extending the Counterexamples

In this work, the counterexamples contain not only the sequences of interactions. We assume,

that it will be easier for the user of our verification process, if the information is mapped directly

to the behavior of the source code.

Remark
We assume, that it will be difficult (nevertheless not impossible) to describe an automatic process

evaluating counterexamples, because then the data-flow of the actual implementation has to be

taken into account. This is resulting in testing, which might be incapable to determine the

absence of errors (i. e., determine, that the counterexample is a false negative). Thus, we can

assume, that the case has to be respected, where a human evaluates the counterexample and has

to decide if a real error exists or not.

In Definition 4.5 on page 58 we have described the formal properties a counterexample should

have. We assume here, that these minimal properties (sequences of interactions) will not last for

the evaluation by the user, because it does not explain the execution trace used to generate

the counterexample. Moreover, the number of counterexamples could be inflated, if parallel

behavior is present (Example 5.25). For this reason we define extended counterexamples.

Definition 5.6 (Extended counterexample)

128

5.5. Step 5: Evaluating Counterexamples

Example 5.25: Inflating number of counterexamples.

ΠC
S =(QCS ,ΣC

S , I
C
S ,→ C

S , F
C
S), where

QCS ={p1, p2, p3, p4} ∧ QCS ⊆ (QC ×QPC ×QC)
ΣC
S ={a, b, c, d}
ICS =p1

→C
S ={p1

a→ p2||p3, p2
b→ p1.p4, p2

g→ ε, p3
c→ p4, p4

f→ ε, p4
d→ p3}

FCS ={ε}
(a) Given Combined Abstraction ΠC

S .

agcf p1
a⇒ p2||p3

g⇒ p3
c⇒ p4

f⇒ ε (C1.a)

acgf p1
a⇒ p2||p3

c⇒ p2||p4
g⇒ p4

f⇒ ε (C1.b)

acfg p1
a⇒ p2||p3

c⇒ p2||p4
f⇒ p2

g⇒ ε (C1.c)

agcdcf p1
a⇒ p2||p3

g⇒ p3
c⇒ p4

d⇒ p3
c⇒ p4

f⇒ ε (C2.a)

acgdcf p1
a⇒ p2||p3

c⇒ p2||p4
g⇒ p4

d⇒ p3
c⇒ p4

f⇒ ε (C2.b)

acdcfg p1
a⇒ p2||p3

c⇒ p2||p4
d⇒ p2||p3

c⇒ p2||p4
f⇒ p2

g⇒ ε (C2.c)

abagcccffdcf p1
a⇒ p2||p3

b⇒ (p2.p4)||p3
a⇒ ((p2||p3).p4)||p3

g⇒
(p3.p4)||p3

c⇒ (p4.p4)||p3
c⇒ (p4.p4)||p4

c⇒ p4||p4
f⇒ p4

d⇒
p3

c⇒ p4
f⇒ ε

(C3.a)

abagcdccfff p1
a⇒ p2||p3

b⇒ (p2.p4)||p3
a⇒ ((p2||p3).p4)||p3

g⇒
(p3.p4)||p3

c⇒ (p4.p4)||p3
d⇒ (p3.p4)||p3

c⇒ (p4.p4)||p3
c⇒

(p4.p4)||p4
f⇒ p4||p4

f⇒ p4
f⇒ ε

(C3.b)

abagcddcddcfff p1
a⇒ p2||p3

b⇒ (p2.p4)||p3
a⇒ ((p2||p3).p4)||p3

g⇒
(p3.p4)||p3

c⇒ (p4.p4)||p3
d⇒ (p3.p4)||p3

d⇒ (p3.p4)||p3
c⇒

(p4.p4)||p3
d⇒ (p4.p4)||p4

d⇒ (p4.p4)||p3
c⇒ (p4.p4)||p4

f⇒
p4||p4

f⇒ p4
f⇒ ε

(C3.c)

(b) Some resulting counterexamples.

129

5. Verification Process

Example 5.26: Extended counterexample of Example 5.25a on page 129.

c`1 = (p0, w`1, T`1), where

w`1 = [a, g, c, f]

T`1 = { p1
a→ p2||p3, p2

g→ ε, p3
c→ p4, p4

f→ ε }

c`2 = (p0, w`2, T`2), where

w`2 = [a, g, c, d, c, f]

T`2 = { p1
a→ p2||p3, p2

g→ ε, p3
c→ p4, p4

d→ p3p4
f→ ε }

c`3 = (p0, w`3, T`3), where

w`3 = [a, b, a, g, c, c, c, f, f, d, c, f]

T`3 = { p1
a→ p2||p3, p2

b→ p1.p4, p2
g→ ε, p3

c→ p4, p4
d→ p3, p4

f→ ε }

An extended counterexample defines a derivation I`
w`:T`=⇒ ε, where

I` ∈ Q is an initial atomic process constant,

w`=̂(Σ× I)n is a sequence of interactions,

T` ⊆→ is the set of used transitions,

n ∈ N is the length of the counterexample .

Thus, the extended counterexample describes that the interaction a ∈ w` in the n-th step of

the derivation I`
∗⇒ ε is generated using the transition rule δ ∈ T`. This definition is an explicit

representation of the derivation path. It shows a compact representation in form of an interaction

sequence without program points.

Using this definition and the fact, that each process constant can be mapped to a unique

program point (Remark 5.1.1 on page 81) the user can browse through the program code (he

can access) to determine the problem causing the counterexample.

Moreover, extended counterexamples are used to reduce the number of counterexamples,

represented at the user interface. For this purpose every computed counterexample c`i =
(I`i, w`i, T`i) is checked against the previously existing extended counterexamples c`j =
(I`j , w`j , T`j). If a T`j exists so that T`i ⊆ T`j and I`i = I`j , then the interaction

sequence of the currently computed counterexample c`i is captured already by another coun-

terexample c`j . Hence, we will not show c`i to the user. Therefore, the number of showed

counterexamples is reduced (Example 5.26). There, three extended counterexamples are shown.

These counterexamples capture the (traditional) counterexamples shown in Figure 5.25b, pre-

cisely:

• the extended counterexample c`1 captures the counterexamples C1.a, C1.b and C1.c of

Figure 5.25b.

130

5.5. Step 5: Evaluating Counterexamples

• the extended counterexample c`2 captures the counterexamples C2.a, C2.b, C2.c (and

many more) of Figure 5.25b.

• the extended counterexample c`3 captures the counterexamples C3.a, C3.b, C3.c (and

many more) of Figure 5.25b.

Remark
An extended counterexample describes not always a single forbidden trace. It is possible that

a counterexample can be interpreted in different execution orders. We expect from the user to

evaluate repetitions, too.

5.5.2 Evaluating Extended Counterexamples

If the counterexample is caused by the overapproximation, the user can mark the counterexample

as invalid. In this case several options exist14:

• The counterexample can be used to refine the abstraction of the considered component.

Thus, this specific counterexample will never appear again. As sideeffect the verification

might speed up, because several derivations are excluded.

• The counterexample can be marked as irrelevant. In this case it is respected, that a user

might not exclude a counterexample, only assumes that it cannot appear in the actual

implementation. A combination with machine learning [GH88, BN07, Qui93] techniques

seem to be promising.

Both options will reduce the counterexamples the user is confronted with.

Remark
The latter case is used in the frontend, we have developed for the case study (cf. Chapter 6).

We choose this implementation, because we want to be sure, that every possible counterexample

will appear at the user interface. We assume, that this is the safest representation as we have no

access to the source code, which the user probably has.

5.5.3 Summary

The format we use as representation of the counterexamples allows the developer an aggregated

view on the problems contained in the source code. We assume, that this representation allows

an easy and isolated look on the component behavior. However, only long term case studies can

show, which information will be useful for the developers too.

The counterexamples can be used in a CEGAR-loop. If a counterexample was marked by

the developer as false negative, it is possible to sharpen the behavior of the abstractions or

protocols using the defined approach (but this option was not implemented within this work).

Thus, a verification run (based on this new information) might run faster and results in less

counterexamples, probably.
14The list claims not to be exhausting.

131

5. Verification Process

132

6 Implemented Framework and Case Study

In this chapter the implemented framework and the industrial partners as well as the results

of optimizations are presented. In particular, the target consideration of industrial source code

leads to specific requirements that have to be fulfilled while implementing a framework. This

framework is described in Section 6.1. In Section 6.2 the results of the optimizations are pre-

sented while considering three industrial case studies. In the same section an academic case

is introduced. It is used to compensate lacks of the industrial case studies with respect to the

properties of the verification approach. In Section 6.2 the influence of the earlier defined opti-

mizations on abstractions (created from real source code) is considered. The performance of the

optimized model checker is considered in Section 6.3.

Unfortunately, not all steps of the verification process could be evaluated within the industrial

case studies. This was a matter of time. Therefore, component protocols are available rarely.

Nevertheless, the infrastructure and the needed components are implemented completely.

6.1 Implemented Framework

While implementing the case studies several requirements have to be complied. The most im-

portant ones are:

• The industrial partner demands that no source code will be transferred over the internet

(neither decrypted nor encrypted).

• The different steps should be deployable in different locations leading to a better usage

rate (particularly with regard to the model checker).

• The parts of the verification process should be able for separate improvements.

To realize the case study and allow future use, we decided to implement a Web Service based

architecture. This ensures an independent development of the components needed for the pro-

cess. The architecture divides the tasks in four parts, which are similar to the steps of the

verification process (cf. Figure 5.1 on page 74): It consists of components implementing the

following interfaces:

• Abstractions (A): generate the single component abstractions and compose them to a ΠS

as requested by a user (discussed in Section 6.1.1),

• PRS Operations (O): hide the different abstraction services, compute Combined Abstrac-

tions and optimize Combined Abstractions and system abstractions as requested by a user

(discussed in Section 6.1.2),

• Model Checker (B): solves the model checking problem, delivers the computed counterex-

amples to the user interfaces (discussed in Section 6.1.3),

• User Interfaces (U): provides interfaces for end users, enabling a comfortable handling of

the verification process (discussed in Section 6.1.4).

133

6. Implemented Framework and Case Study

component WSC
implements

User Interface (U)

U

O

B

component WSA
implements

Abstractions (A)

A

component WSO
implements

PRS Operations (O)

A

O

component WSB
implements

Model checker (B)

B

O

U

Figure 6.1.: Overview of implemented architecture.

An overview is given in Figure 6.1. The Web Services are designed to implement the main

workflows shown in Figure 6.2 on page 135 . The main task of an end user is to get an overview

of the implementation and thereafter create a model checking scenario which is checked at the

end.

In the following the implemented Web Services are described in detail.

6.1.1 Abstractions (short: WSA)

Several works [Kra08, Kra09, Rud10, Hel10] were and are supervised during this thesis. The

aim of these works was to implement generators of source code abstractions. A brief technical

definition of this Web Service is given in Figure 6.3 on page 136 . The complete interface

definition is shown in Listing A.1.

6.1.1.1 Translation of Python Statements into PRS Transition Rules

In [Kra08, Kra09] abstractions of Python [Fou09b] applications were computed partly. The

abstraction process of Python source code is realized using the built-in Python “ast” module

[Fou09a]. This module provides a syntax tree containing no information about the behavior of

the source code, the computation of such information has to be implemented. The implementa-

tion of [Kra09] was improved vitally to make it usable for this thesis.

6.1.1.2 Translation of PHP Statements into PRS Transition Rules

In [Rud10] abstractions of applications written in PHP [Gro09] are considered, currently. Here,

the “open source PHP compiler” (PHC) [dVG07, BdVG09] was used. PHC is a well structured

and pluginable compiler frontend. It is implemented using the visitor design pattern [GHJV95].

Thus, the visitors, needed for creating statements of the target programming language are re-

134

6.1. Implemented Framework

User

User

Frontend

Frontend

WSC

WSC

WSB

WSB

WSO

WSO

WSA

WSA

Visualisation

loginUser

getComponents

getAbstraction

getAbstraction

return Abstraction

return Abstraction

showAbstraction

Model checking

verifyScenario

verifySelectedProtocols

loop [n times]

getCombinedAbstraction

getAbstraction

return Abstraction

return CombinedAbstraction

computeNextCounterexample

pushCounterexamples

loop [m times]

getCounterexamples

return Counterexamples

logoutUser

Figure 6.2.: Implemented workflow.

placed, so PRS transition rules, are computed. A preeminent property of this case study is that

parallel operators only appear in the top level tier of the architecture. However, this level was

currently not considered in [Rud10]. Hence, it was not available for evaluation.

6.1.1.3 Translation of BPEL Activities into PRS Transition Rules

In [Hel10] BPEL applications are translated into PRS transition rules, currently. For this purpose

the XML files are parsed and evaluated. The implementation captures the following activities

and handler:

• Acitivities

– Empty

– Assign

– Exit

– Invoke

– Receive

– Reply

135

6. Implemented Framework and Case Study

interface Abstractions (A)

getListOfComponents returns the list of available components
getAbstractions returns the specified Process Rewrite Systems
getComponentImplementationInformation returns a map of component’s information
getProtocol returns the specified protocol

Figure 6.3.: Definition of Web Service interface “Abstractions”.

– Rethrow

– Throw

– Wait

– Flow

– ForEach

– If

– Pick

– RepeatUntil

– Scope

– Sequence

– While

• Handler

– Fault Handler

– Event Handler

– TerminationHandler

6.1.1.4 Representation of PRS Transition Rules

The transition rules need a deeper consideration to match the requirements of the case studies.

PRS transition rules are defined in the implemented components as:

→ =̂PEX(NodeId)× Integer× PEX(NodeId)

Thus, the action is encoded as Integer. The struct NodeId is defined as:

NodeId=̂Integer× Integer× Integer× Integer

The current protocol state, the target protocol state, the current process in the system abstraction

and a unique component identifier are used to represent a process constant (NodeId). All

136

6.1. Implemented Framework

interface PRS Operations (O) extends interface Abstractions (A)

getCombinedAbstraction returns the specified Combined Abstraction

Figure 6.4.: Definition of Web Service interface “PRS Operations”.

services are implemented as Web Services. Hence, the unique component identifier can be

derived from the uniform resource identifier of the current Web Service. As we use Integer-

representations only, it is not possible to reconstruct the source code behavior using the PRS

representation. This means in effect that we cannot be sure if a real counterexample is found

while performing the case study.

Remark
The interface definitions (cf. Listings A.1, A.2, and A.3) contains much more information

(e. g., getComponentImplementation, getActionInfo, getNodeInfo), that could

be used to enrich the PRS representation at a user interface with more pieces of information

(e. g., the version of the revision control system of the component). The provider of the source

code decides which pieces of information are acceptable via these methods so that the behavior

(that might contain business secrets) is still protected.

6.1.1.5 Summary

These implementations are accessible via a Web Service interface – called shortly WSA. They

create abstractions of a given set of source code and translate them into Process Rewrite Sys-

tems. Thereby, optimizations specific for the considered programming language are performed.

The source code of the given files is never made accessible for other services, only PRS repre-

sentations are provided. Thus, one main requirement – the protection of the encoded business

logic – is achieved.

6.1.2 PRS Operations (short: WSO)

The source code analyses implemented in the distinguished Web Services (described in the pre-

vious section) make the PRS representations of the considered source code available. They

implement different optimizations to create smaller representations. It was the explicit aim to

implement optimizations of the Process Rewrite Systems. This is done by the implementation

of a Web Service called PRS Operations – abbreviated WSO.

This service is implemented as Web Service (a brief description is shown in Figure 6.4), too.

The main purpose of this service is to create a Combined Abstraction by request and provide

several optimizations for Process Rewrite Systems (a selection is discussed in Sections 5.2.3,

5.3.2). It requires a WSA implementation and implements the same interfaces as WSA (cf.

Listing A.1). The idea behind this is a possible pipes and filters architecture. It enables to join

onto optimizations implemented in future work or other groups.

137

6. Implemented Framework and Case Study

interface Model checker (B)

startSearch starts the search for counterexamples in the given Process Rewrite System
cancelTask stops a verification task
getStatus returns status of requested verification task

Figure 6.5.: Definition of Web Service interface “Model checker”.

Remark
It is clear that it would not be possible to compose many implementations of optimizations

(WSO) in a chain, as the performance might be reduced too much. Therefore, the current im-

plementation implements a strategy design pattern enabling the extension by new optimizations

within WSO, too.

Summarized, the service encapsulates the implementation of WSA. It provides the pieces of

information to the user interfaces and the model checker.

6.1.3 Model Checker (short: WSB)

The Web Service model checker was defined and implemented in [Prä09], a diploma thesis we

have supervised. After getting a task of the user interface, it solves the reachability problem for

Process Algebra Nets and delivers counterexamples to the user interfaces asynchronously. The

Web Service is called WSB shortly (definition is shown in Figure 6.5).

To our knowledge there exists no Process Algebra Nets model checker before this work. For

this reason one has to define a new framework first. In [Prä09] the Petri nets tool TINA [BRV04]

is drawn in comparison, which has in particular problems solving unbounded Petri nets (e. g.,

generic examples with less than 60 rules crashing after claiming 11 GB of RAM). Here, the goal

was to define a process, which is not as vulnerable as other Petri nets reachability toolkits. For

this reason the Petri nets reachability process (Petri nets oracle) was divided into three phases:

1. An overapproximated set of transition rules is calculated leading possibly to a derivation

I
∗⇒ ε, where I is the initial marking of the Petri net (in the PRS context the initial marking

always contains only one token). For the computation the state equation technique is used.

The result is a symbolic solution representing all possible sets of transition rules.

2. The symbolic solution of the first step is translated into a concrete allocation using an

integer linear programming solver. This is called explicit candidate ϑ.

3. In this last step the explicit candidate is checked while traversing through the Petri net. As

the explicit candidate ϑ contains specific rules that have to be used for the computation

of the counterexample, the derivation is aborted if the next derivation step is not possible

using a rule of ϑ.

138

6.1. Implemented Framework

interface User Interface (U)

appendCounterExample pushs a counterexample to the database
calculationFinished signals the completion of a specific verification task

Figure 6.6.: Definition of Web Service “user interface”.

At each step the counterexample or set of counterexamples can be marked as invalid. E. g., for

many examples it could be computed in the first phase, that no counterexample is contained

[Prä09]. This approach ensures a practical applicability. Model checking results are presented

in [Prä09].

6.1.4 User Interfaces (short: WSC+P2)

In a project [FFB+09] supervised by us, a framework was implemented using Java and C#.

It provides several alternatives for controlling and manipulating the phases of the verification

process. The framework is called “P2” which is an abbreviation of the German word “Protokoll-

Prüfung” meaning protocol checking. It was presented in [FB09].

The framework contains a server implementation (definition is shown in Figure 6.6) providing

multi-user support and an interface for interactions with other Web Services. The frontend

supports the following operations (cf. Figure 6.7):

• defining new protocols,

• showing a graphical representation of components and applications,

• defining applications and protocols (named scenarios) which should be verified,

• starting of verifications,

• evaluating delivered verifications (counterexamples) using the abstractions

• representing extended component information (e. g., author, last change, . . . 1)

Moreover, an API was implemented providing Python support. It allows to start verifications

and to evaluate counterexamples. This opens the option to an integration in the nightly checks

of the source code at the industrial partners.

The evaluation of the counterexamples is used to improve the full set of counterexamples. If

one user has marked a counterexample as invalid, all other users profit from this information

as this counterexample is marked as false negative (cf. Section 5.4.1). The more users this

counterexample exclude the less important it gets, until it disappears. This rating mechanism

should help to improve the verification results.

1The set of information is flexible and depends on the configuration by the provider of the considered WSA imple-
mentation.

139

6. Implemented Framework and Case Study

Figure 6.7.: Screenshot of implemented frontend “P2”.

This information gets weakened if the version (e. g., SVN revision number) or the abstraction

of the source code file changes (if this information is provided by the Web Service “Abstrac-

tion”).

6.1.5 Summary

In this section we have presented the framework that was implemented. The correlation between

the verification process and the implementations is sketched in Figure 6.8. The framework has

well defined interfaces. It is implemented using Web Services. Thus, it is easy extendable and

adaptable. Moreover, the main property for evaluating industrial application is ensured, as the

source code is always hidden.

The user of the verification process can use a graphical user interface (GUI) or a Python inter-

face providing the API (e. g., for frequently nightly performed verifications). The implementa-

tion of the Web Services for user interfaces omits the verification process and provides multi-user

support. It is capable to evaluate the user interactions and conclude from them whether a deliv-

ered counterexample is a false negative or not. The GUI can represent the abstract behavior of

components and composed components using a graphical representation (cf. Figure 6.7). PRS

140

6.1. Implemented Framework

component WSO
implements

PRS Operations (O)

A

O

WSA

A

WSA

A

component WSA
implements

Abstractions (A)

A

component WSB
implements

Model checker (B)

B

O

U

F

component WSC
implements

User Interface (U)

U

O

B

API

F

GUI

F

Step 1 (Section 5.1):
create component

abstractions
[Kra09, Rud10, Hel10]

Step 2 (Section 5.2):
compose system

abstractions
[Kra09, Rud10, Hel10]

Step 3 (Section 5.3):
optimizations and
create Combined

Abstraction
[BZ08b, BZ08a]

Step 4 (Section 5.4):
model checking of

Combined Abstraction
[Prä09, BZ09d, BZ09a]

Step 5 (Section 5.5):
control and evaluate

the verification process
[FFB+09]

Database

user

Figure 6.8.: Correlation of verification process (Figure 5.1 on page 74) and implemented com-
ponents.

141

6. Implemented Framework and Case Study

transition rules are represented only in this way.

To our experience a graphical representation of the considered extended counterexample is

useful for the evaluation.

6.2 Considered Case Studies

In this section we will discuss abstract behavior generated from real source code. For this pur-

pose four case studies were performed. Besides two industrial case studies (Section 6.2.1 and

Section 6.2.2), an open source application (Section 6.2.3) and an academic case study (Section

6.2.4) are considered. At each case study the optimizations described in Section 5.2.3.1 and in

Section 5.3.2.2 were processed on the given set of components.

6.2.1 OR Soft Workbench

The industrial partner – the OR Soft Jänicke GmbH (settled in Merseburg, Germany) – allowed

us to access a part of the source code used to implement the “OR Soft Workbench”. This is a

comfortable frontend for SAP® ERP and SAP® SCM (SAP® R/3® and SAP® APO, respec-

tively) written in Python [Fou09b] and C++ [ES90]. A part of product implemented in Python

was made available. This implementation is interpreted as component-based software as sev-

eral parts are composed to deployment units fitting the requirements of distinguish customers

(from the areas Chemical, Pharmaceutical, Oil and Gas, Automotive, Consumer Products and

Manufacturing).

One target in this cooperation was to check the components composed to different products

continuously (nightly checks) in the sense of correct usage. This leads to more flexibility on

combining components to new products. Moreover, a self-sufficient user of the verification pro-

cess can be sure, that the interactions with other developer groups are in the manner they expect.

Thus, we are interested in providing an integrated verification suite that allows a distributed ver-

ification by as many developers as possible. This goal was not reached finally as it is currently

not possible to consider C++ source code files.

The case study contains:

• 942 classes written in Python

• 219978 lines of code

• the largest considered scenario contains 3069 transition rules

As in Python it is possible to import each single method, we consider each class and each method

as component in our sense. 300 components are randomly chosen from the existing set of

components and considered in this part of the case study. From each of these components

a scenario is created, while including all components that are used by the randomly picked

components.

The abstraction service was implemented in [Kra08, Kra09] and strongly improved for this

thesis. The results are represented in Figure 6.9. The same figure shows a comparison of the

142

6.2. Considered Case Studies

type of transition
rules

average number of
transition rules

average number
after optimizations

reduction
rate

overall number (*) 293.27 145.26 -50.5 %
chain rules (1,1) 193.02 116.41 -39.7 %

sequential rules (1,S) 76.04 16.64 -78.1 %
elimination rules (1,0) 24.2 12.21 -49.5 %

fork rules (1,P) 0.01 0.01 0 %
synchronization rules (P,1) 0.01 0.01 0 %

(a) Comparison

∗ (1, 1) (1, S) (1, 0) (1, P) (P, 1)
0

50

100

150

200

250

300

350

400

type of transition rules

nu
m

be
ro

ft
ra

ns
iti

on
ru

le
s

(b) Comparison

λ-rules

75.2 %

action rules

24.8 %

(c) Comparison

λ-rules

25.8 %

action rules

74.3 %

(d) Comparison

Figure 6.9.: Case study: OR Soft Workbench.

143

6. Implemented Framework and Case Study

transition rules, before and after the optimization. It shows a good reduction rate of the chain

transition rules. The comparison of the λ-rules and action rules is shown in Figure 6.9c and

Figure 6.9d.

The case study shows a significant lack of parallel behavior. An evaluation of the source

code (of the considered branch of the product) shows that just at a few spots parallel behavior is

contained. A discussion with the industrial partner points out that less parallel behavior is used

in the sense of communication (in this part of the source code). Most parallel behavior is used

to improve algorithms or is part of the frontend of the “OR Soft Workbench”. Moreover, it is

contained in parts of the product that is implemented using C++, in many cases. This part could

not be evaluated yet, as no abstraction component was available that considers C++.

Only a few protocols are provided by the industrial partner. Nevertheless, one real counterex-

ample was computed describing unexpected behavior contained in the source code. It matches

the file handler pattern (open file, write values, close file).

6.2.2 EMenue.net

The second industrial partner is the ComServ Ingenieurgesellschaft mbH (settled in Halle (Saale),

Germany). They would like to get more information about the structure and execution depen-

dencies of the source code of their product “EMenue.net”. It is a web-based shop for “Meals

on Wheels” containing the administration of orders, drivers and billings. It is implemented in

PHP [Gro09] using AJAX2 technologies. The programming language PHP itself does not allow

concurrent implementations.

The case study contains:

• 263 classes with 1523 methods

• 30821 lines of code

• the largest considered scenario contains 2302 transition rules

We interpret each method and class as component, where classes are components aggregated

from components. 1068 components are considered in this part of the case study, all other

components are already reduced to one transistion rule by Web Service “Abstractions”. Here,

each component is considered separately, because the current implementation of [Rud10] does

not provide a system abstraction for all components (and their used components).

The results of the optimizations are represented in Figure 6.10. They show that a higher share

of the transition rules are chain rules. This is caused by the used tool PHC (cf. Section 6.1.1.2).

As this tool was developed for translating PHP to C++ it considers every data value. Using

visitor patterns the code generation was exchanged. Thus, for each in former times generated

C++ statement, now a PRS transition rules is computed. This leads to a significant higher

number of chain transition rules (cf. Figure 6.10d on page 145), especially in contrast to the tool

2AJAX =̂ Asynchronous JavaScript and XML.

144

6.2. Considered Case Studies

type of transition
rules

average number of
transition rules

average number
after optimizations

reduction
rate

overall number (*) 47.88 8.25 -82.8 %
chain rules (1,1) 43 3.29 -92.3 %

sequential rules (1,S) 4.26 4.04 -5.4 %
elimination rules (1,0) 0.82 0.69 -15.9 %

fork rules (1,P) 0.01 0 –
synchronization rules (P,1) 0.01 0 –

(a) Comparison

∗ (1, 1) (1, S) (1, 0) (1, P) (P, 1)
0
5

10
15
20
25
30
35
40
45
50

type of transition rules

nu
m

be
ro

ft
ra

ns
iti

on
ru

le
s

(b) Comparison

λ-rules
94 %

action rules
6 %

(c) Comparison

λ-rules

71.2 %

action rules

28.8 %

(d) Comparison

Figure 6.10.: Case study: EMenue.net.

145

6. Implemented Framework and Case Study

presented in Section 6.1.1.1 that was implemented for the purpose of generation the abstract

behavior of components only.

Because of these characteristics a reduction of the transition rules is necessary, in particular.

The results of the optimizations are shown in Figure 6.10. A strong impact of the optimizations is

visible leading to an overall reduction rate of 82.8%. Nevertheless, there are still improvements

possible, as Figure 6.10d shows a share of 71.2% of λ-rules after the optimizations.

Early results of the model checking show a good applicability. Even now a real counterex-

ample was found. Several parts of “EMenue.net” are implemented using the design patterns

similar to Martin Fowler’s Enterprise Application Architecture [Fow02]. These patterns were

formulated as component protocols. More details will be accessible in [Rud10].

6.2.3 Fail2Ban

The application “Fail2Ban” [JB09] is an instrusion prevention framework. It is used to observe

the login tries at a server and is able to prevent too many of them. Fail2Ban is an open source

program written in Python. We chose this case study because parallel behavior is included in the

source code. The same implementation was used for the abstractions process as used in Section

6.2.1. This case study considers the current version 0.84 (2009-09-07).

It contains:

• 45 python source code files

• 59 classes with 389 methods

• 5907 lines of code

• the largest considered scenario contains 4973 transition rules

As in the Section 6.2.1 classes and methods are interpreted as components.

The optimizations show a similar result as in Section 6.2.1 (Figure 6.11). Most of the λ-rules

were eliminated (Figure 6.11d).

6.2.4 BPEL workflows

The previous case studies lack of parallel behavior. For this reason several workflows imple-

mented using BPEL (cf. Section 5.1.2) are considered. The academic case study was created in

[Hel10]. It is the smallest case study:

• 68 processes (Web Services, components)

• 4560 lines of code (lines containing XML statements)

• the largest considered scenario contains 69 transition rules

The source code of this case study was created for the purpose of evaluation in the context of this

thesis only. The result of the optimizations is presented in Figure 6.12 on page 148 . It contains

as less data definitions as possible. Hence, most of the λ-rules are used to steer the control flow.

Therefore, their share after the optimization is still high as shown in Figure 6.12d.

146

6.2. Considered Case Studies

type of transition
rules

average number of
transition rules

average number
after optimizations

reduction
rate

overall number (*) 219.22 85.48 -61 %
chain rules (1,1) 120.49 47.9 -60.2 %

sequential rules (1,S) 73.82 20.45 -72.3 %
elimination rules (1,0) 24.04 16.43 -31.7 %

fork rules (1,P) 0.67 0.6 -10.4 %
synchronization rules (P,1) 0.2 0.11 -45 %

(a) Comparison

∗ (1, 1) (1, S) (1, 0) (1, P) (P, 1)
0

50

100

150

200

250

300

type of transition rules

nu
m

be
ro

ft
ra

ns
iti

on
ru

le
s

(b) Comparison

λ-rules

67.7 %

action rules

32.3 %

(c) Comparison

λ-rules
16.1 %

action rules

83.9 %

(d) Comparison

Figure 6.11.: Case study: Fail2Ban.

147

6. Implemented Framework and Case Study

type of transition
rules

average number of
transition rules

average number
after optimizations

reduction
rate

overall number (*) 12.07 5.81 -51.9 %
chain rules (1,1) 6.35 2.53 -60.2 %

sequential rules (1,S) 1.47 1.04 -29.3 %
elimination rules (1,0) 1.31 0.49 -62.6 %

fork rules (1,P) 1.31 0.9 -31.3 %
synchronization rules (P,1) 1.63 0.85 -47.9 %

(a) Comparison

∗ (1, 1) (1, S) (1, 0) (1, P) (P, 1)
0

5

10

15

type of transition rules

nu
m

be
ro

ft
ra

ns
iti

on
ru

le
s

(b) Comparison

λ-rules

67.2 %

action rules

32.8 %

(c) Comparison

λ-rules

48.3 %

action rules

51.7 %

(d) Comparison

Figure 6.12.: Case study: Web Services Business Process Execution Language.

148

6.3. Verifying Combined Abstractions

6.2.5 Summary

The source code abstractions of the case study show a significant impact on the number of

transition rules in contrast to the non-optimized abstraction. As the different implementations of

the abstraction Web Services (WSA) are very distinguish, it is difficult to determine the reason

for this observation.

We have shown at several examples (early results, not contained in this thesis), that it is

possible to reduce the many Combined Abstractions to the existing counterexamples or eliminate

all transition rules without using model checking techniques. This observation matches with

[Ric08]. It should be evaluated in future work. Nevertheless, the implemented optimizations

improve the practical applicability of the protocol conformance checking while reducing the

transition rules significantly.

The reduced number of transition rules of the optimized Process Rewrite Systems is relatively

low. After the composition to larger case studies the number of transition rules might increase

to a size that cannot be handled by the current implementation of the model checker (WSB).

Here a main advantage of our verification process has a good effect. As the number of action

rules is reduced (translated into λ-rules) while creating the specific system abstraction ΠS,C

(considering component C), it exists more potential for reducing transition rules. This has also a

positive impact on the model checking time in general. This can be reduced to the rule-of-thumb

visualizing the impact on an algorithm which is EXPSPACE-hard:

2n ≥ k · 2r·n

where n is the number of transition rules, k is the number of protocols that should be checked,

and r < 1 is the average reduction rate (of scenarios in the current case study). If this rule-

of-thumb also occurs, while evaluating large scenarios based on real source code, could not be

evaluated within this work, because of the effort caused short-termed at the industrial partners.

Only long term case studies can evaluate it sufficiently. Therefore, we consider in the next

section a generic model checking case study.

6.3 Verifying Combined Abstractions

Because of the lack of benchmarks, we check our idea against a set of randomly generated

Process Algebra Nets representing Combined Abstractions. This increases the likelihood of

applicability in real systems. These examples were preselected so they do not contain trivial

counterexamples3. We implement the model checkers for the reachability of PA-processesMPA

and a second one for the reachability of Process Algebra NetsMPAN suggested in Section 5.4.3.

The aim is to show, what improvement is gained while using the a posteriori approach for model

checking.

3Elimination rules containg the initial process on the left-hand side are excluded.

149

6. Implemented Framework and Case Study

number of transition rules per component 5000 7500 10000

average number of sequential interactions 609 914 1213

average number of fork transition rules 602 899 1211

average number of synchronization rules 628 922 1232

counterexample generated in < 1 min 49.0 % 50.0 % 51.4 %

counterexample generated in 1− 30 min 46.9 % 45.0 % 25.7 %

timeout (> 30 min) 4.1 % 5.0 % 22.9 %

no PA-processes counterexamples 14.3 % 7.5 % 8.6 %

Table 6.1.: Results of model checking.

6.3.1 The Experimental Setting

We use a standard PC with an AMD Athlon64 X2 4200+ and 2 GB RAM. The machine runs on

Ubuntu Linux 8.04. We chose this system because it represents a performance which seems to

be comparable to lower end workstations used by software developers in an industrial context.

The algorithmsMPA andMPAN are implemented in Prolog using the SWI-Prolog framework

[Wie03] in version 5.6.47. Although SWI-Prolog allows a multithreaded implementation, we

implement a single threaded algorithm.

We create Process Algebra Nets with a much higher percentage of sequential, fork, synchro-

nization and elimination rules than in an industrial case study. The models with 5000 rules have

e. g., an average number of 609 sequential interactions and 602 fork rules (interpretable as start

of a thread or asynchronous procedure call). This seems to be a high number and should ensure

the expressiveness of the generic examples (cf. sections 6.2.1, 6.2.2, 6.2.3 and 6.2.4).

6.3.2 The Results

In Table 6.1 we show a classification of the verified models. It can be seen that a big share

of models could be verified in less than a minute. This class contains many models, where

counterexamples are computed byMPA, which use no replaced synchronization rules. Hence,

the counterexamples generated from ΠPA need not to be checked usingMPAN. Moreover, we

can see that there is still a non-negligible number of models where MPA could not generate

counterexamples, which eliminates theMPAN-step.

For comparison we model check the generated models with two different justifications:

1. onlyMPAN, identifying the rate of timeouts without improvement

2. MPA +MPAN, identifying the rate of timeouts including the reduction of the input model

Process Algebra Net models which are not solvable byMPA+MPAN in the fixed maximal run

time of 30 minutes, are not solvable within the time limitation while using onlyMPAN either. In

Table 6.2 we show the improvement of the verification time. A comparison is difficult, because

many Process Algebra Nets models cannot be solved byMPAN within 30 minutes.

150

6.4. Discussion

number of transition rules per component 5000 7500 10000

timeouts usingMPAN 4.1 % 32.5 % 47.5 %

timeouts usingMPA +MPAN 4.1 % 5.0 % 22.9 %

Table 6.2.: Timeouts while usingMPAN in comparison toMPA +MPAN.

So, as we see in the results the suggested improvement leads to a much better run time because

of the reduction of the input model. The longest counterexample, we calculate in our generic

models, contains 48 interactions until the protocol violation appears. We assume that such a

long counterexample will happen only very rarely while verifying a real program. The reason is

that the developer has had to define a very complex protocol for his component or the error has

to be caused by a component arranged in a very high layer of the implemented architecture.

6.3.3 Summary

In this section the a posteri approach for model checking is applied on a generic case study.

This is done to show the impact on this results while model checking Combined Abstractions

with a large number of transition rules. Unfortunately, at this point in time no industrial case

study is available containing as much sequential, fork and join transition rules (cf. Section 6.2)

as needed to see an influence of the improvements presented in Section 5.4.3. This is a flaw of

this case study. Nevertheless, the case study shows that the suggested improvements lead to a

better model checking time in many cases.

6.4 Discussion

During the implementation of the architecture an important topic was to consider the practical

applicability. For this reason we decided to respect several issues which we think are important

for the usage in an industrial context.

• We obey the role and the knowledge of a component designer (top-level view of the ar-

chitecture). To our experience a person performing this role has a top-level view of the

architecture, only. Thus, it might be hard for him to decide, how the concrete imple-

mentation has to look like. Moreover, we think that the implementation details should

be left to the component developers, because they might have more pieces of informa-

tion about the technical and functional requirements than a high-level analyst. For this

reason we implement a frontend allowing a comfortable and summarized view on the

components and their abstract behavior (control flow only). The implementation details

are left to the component developers, because they might have more pieces of informa-

tion about the technical and functional requirements. Nevertheless, more concrete in-

formation can be represented within the frontend as we allow to extend the values of

the operations getComponentImplementationInformation, getNodeInfo,

getActionInfo, and getProtocolInfo.

151

6. Implemented Framework and Case Study

• We support the component developer with our approach. In general, this role has low

knowledge about behavior of complete application. In Service-oriented Architectures he

should not have any information about the application context, the goal is here to establish

a “market of components”. A component has to be deployable in any context. Therefore,

a component should provide a defined behavior. Using protocols this goal gets closer,

because a formal definition of the usage is established. Moreover, the component devel-

oper has not to check and ensure every state of his component (which is expensive). Like

by “design by contract” if the caller does not ensure the precondition (the protocol) the

callee has not to provide any functionality. Thus, the developer is unburdened from many

tasks. Furthermore, we use the knowledge of the component developer. As he knows the

restrictions of “his” component at the best, he can define an adequate protocol. The imple-

mented framework allows to file a component protocol at the component (getProtocol

provides a local component’s protocol).

• Third parties will not publish the component source code. Therefore, we define a repre-

sentation of the behavior of a single component. Moreover, we provide a mechanism to

generate the component abstraction locally and use it globally. For this purpose abstrac-

tion Web Services are implemented.

• In industrial environments one important requirement of a verification process is to work

efficiently. On one hand this means, that the approach has an acceptable runtime, on the

other hand an acceptable error ratio is needed. We have tackled these problems within

this work with several developments. Furthermore, we have checked our developments

in an industrial case study. However, the exclusion of counterexamples using the a priori

approach (cf. Section 5.4.2) was not considered in a case study. Another important issue

is the effort needed to get the process started. Again, the distinction between behavior

and constraint is useful, as no specification has to be defined by a human, if the usage

of a component is unproblematic. We assume, that a component protocol will be defined

for the key components, which reduces the effort for the user in comparison with other

approaches (cf. Chapter 2). The case study shows that even representations with many

interactions are model checkable.

• Component abstraction and protocol can be published with the component interface de-

scription or service level agreement (SLA). This enables the integration of our approach

into currently existing component systems or Service-oriented Architectures. The inte-

gration was shown as proof of concept while defining accordant Web Services in our case

study.

• The infrastructure is oriented on the requirements of an industrial environment. The Web

Services providing the functionality for computing component abstractions are separated

and can be deployed distributively. This also takes the separated development in modern

companies into account. The different development locations can be conflated under the

roof of a WSO implementation.

152

6.4. Discussion

In the case studies we have considered several programming languages and applications. We

can see, that we have considered a comprehensive case study based on real programs. Neverthe-

less, there is the lack that it is no Service-oriented Architecture or a Component-based Archi-

tecture but an object-oriented architecture (exception the smallest case study in Section 6.2.4).

However, we assume, that the results can be generalized, because it is a common consideration

that classes are often smaller parts of aggregation than components.

As shown, optimizations lead to an applicable model checking time. Hence, our approach can

be established in even a real software environment and is not only usable in academic milieus.

Moreover, we have recognized an educational effect at the developers defining protocols. As

they have to think about the real behavior of the source code they think strongly about different

execution sequences and possible errors. We assume that this can be lead back to simplicity

of the constraints and their possible graphical representation, which are bound strongly at the

interface of the components (in contrast to e. g., boolean formula). Thereby, the defined coun-

terexamples format is very helpful as the user gets a specific hint, where a problem is suspected

by the model checker.

We suppose that the integration of our model checking process into the development process,

will lead to an improvement of the software quality. However, it seems to be difficult to quantify

the influence on the software quality. Only a long-term case study could do this.

Nevertheless, we conclude from our observation that an integration of model checking tech-

niques into the development process is possible.

153

6. Implemented Framework and Case Study

154

7 Method for Using Protocol Conformance Checking in
Iterative Component System Integration

In the previous chapters, we have presented and evaluated the main contribution of our work.

It describes a new verification process for the verification of applications. In this scenario the

abstractions of all needed components have to be accessible. The problem of this approach is

the requirement that all components have to be implemented1. Thus, an error will be found

at the end of the development process. This is no problem if we consider components which

already exist (e. g., often the case in Service-oriented Architectures). In this chapter, we extend

our verification approach, so it is possible to apply it on more scopes of applicability.

We consider the situations where components are implemented currently and composed to

larger bricks. The complete application does not exist during this iterative development. We

will support this approach by extending our verification approach for working with applications,

which are implemented (or accessible) partly only. A statement is computed, which of the

protocols of the aggregated component are always fulfilled. Moreover, it states what interaction

sequences have to be excluded in the ongoing development, so that no protocol violation can

occur. This approach was published in [BZ09e].

7.1 Motivation

In an industrial environment components are often developed concurrently by independent de-

velopers and bounded loosely. Attaching the verification at the end of the composition process

might result in higher development costs, because problems are discovered late.

Often components are composed to larger parts, ensuring intended functionality, used in the

further development, or sold for reuse as a part of unknown future applications. Thus, there is a

big interest in components which can be composed to reliable systems.

From our point of view, providing (only) a verification process, that ensures the defined con-

straints, is not enough. This will ensure the properties of the application. However, using this

verification process the problems are discovered later, which might cause higher costs for adap-

tions. Moreover, this approach is not suitable for verifying e. g., B2B scenarios or Service-

oriented Architectures, where a complete application does not always exist or the components

are bound dynamically.

Thus, the verification should be integrated into the development and composition process. In

this section, we will show, how the available pieces of information about the behavior and the

constraints of components can be used to support the development/composition of them. This

will lead to a permanent verifiability of the current development state without having the full

application implemented.

We allow to partly compose components and verify the created new aggregated component

(also known as composite component). The verification of this aggregated component is also

1It is also possible to define the behavior by hand or generate it from another description language.

155

7. Method for Using Protocol Conformance Checking in Iterative Component System

Integration

possible if no implementation of the required interfaces is available. For this purpose we gen-

erate verification drivers and verification dummies which are similar to the test driver and test

dummy during test driven software validation. In contrast to tests, we consider every possible

state of the software and we can prove the absence of the considered kind of errors (i. e., pro-

tocol violations). The verification results in indications what implementations might hurt the

defined component protocols or that the component is reliable. This will lead to a bigger chance

of discovering problems in an earlier phase, which will reduce the investments for changing the

implementations or requirements and allow to apply the verification to more scopes of applica-

tion.

In Example 7.1 a component-based software with three components is shown. Corresponding,

in Example 7.2 on page 158 we see the abstraction ΠS of the system S composed by the

abstractions of the components C1, C2 and C3. The implemented components, their interfaces

and protocols are shown in Example 3.2 on page 31. In this section the composition is made

explicitly. It is possible using the composition operator ⊕, which resolves the required and

matching provided interfaces of the integrated components. The result is the representation of

an aggregated component.

Definition 7.1 (Composition operator ⊕)

The result of the composition operator⊕ is defined by the Stripped Process Rewrite System Π =
Π1⊕Π2, where Π = (Q,Σ,→, R,P,M), Π1 = (Q1,Σ1,→1, R1,P1,M1), Π2 = (Q2,Σ2,→2

, R2,P2,M2) with Q = (Q1 ∪Q2) \ {qx : qx ∈ P2}, Σ = Σ1 ∪ Σ2,→= (→1 ∪ →2) \ {p x→
p′⊗p′′ : p x→ qx⊗p′′ ∈→1,M(qx) = p′,⊗ ∈ {., ||}}, R = (R1 \ {rx : px ∈ P2}) ∪ R2,

P = P1 ∪ (P2 \ {qx : qx /∈ R1}), M = M1 ∪ (M2 \ {M(x) 7→ p : x ∈ qx /∈ R1}.
It is possible to bind the required to the own provided interfaces: Π = ΠC1⊕ΠC1 .

7.2 Iterative Verification

During the development process several scenarios exist concerning which components are al-

ready developed. The other components may not be available or in a state that cannot be used

for verification. Figure 7.1 on page 159 shows the architecture of some typically aggregated

components CA. We assume that there is only one internal component C that provides the

provided interfaces of the aggregated component CA. We distinguish the following scenarios:

a) CA has provided interfaces, but has no required interfaces (Figure 7.1a on page 159).

b) CA has provided interfaces, required interfaces exist which are still unbounded, callbacks

are not allowed (Figure 7.1b).

c) CA has provided interfaces, required interfaces exist which are still unbounded, and arbi-

trary callbacks (including callbacks) are allowed (Figure 7.1c).

Scenarios a) and b) are important for the hierarchical composition of components. However, a

component-based software is not always built up hierarchically. It is also possible that the com-

156

7.2. Iterative Verification

Example 7.1: Application assembled from three component (this is a sub-scenario of the com-
ponent-based software in Example 3.2 on page 31).

interface Istart

begin
sync main(int i)

end

interface I1
begin

sync a(int i)
end

interface I2
begin

sync b(int k)
sync d()

end

interface I3
begin

sync e(int i)
sync f()

end

(a) Interfaces of components.

component C2
implements Istart,I2
int n = 0
begin

sync b(int k)
n = (n+ 1)%2
n = 1

n
call a(k)

sync d()
n = 1

n−1

sync main(int i)
if i > 0 then

call a(i)

end

I1

I2

component C1
implements I1
begin

sync a(int i)
if i > 0 then

call e(i)
call f()

end

I1 I3

component C3
implements I3
begin

sync e(int i)
call b(i− 1)

sync f()
call d()

end

I3

I2

(b) Components and implementations.

PC2 = (bdd∗)∗ PC1 = a∗ PC3 = ef(ef)∗

(c) Component protocols (as regular expressions).

157

7. Method for Using Protocol Conformance Checking in Iterative Component System

Integration

Example 7.2: Abstractions of the components in Example 7.1 on page 157 (we abbreviated the
required interfaces and provided interfaces, e. g., qe instead of qI3,e).

QC1 ={p10, p11, p12},
ΣC1 ={e, f},

→C1={p10
λ→ ε, p10

e→ qe.p11, p11
f→ qf .p12, p12

λ→ ε},
RC1 ={qe, qf},
PC1 ={qa},
MC1 ={qa 7→ p10}

(a) Abstraction ΠC1 = (QC1,ΣC1,→C1, RC1,PC1,MC1) of component C1.

QC2 ={p0, p1, p2, p3, p4},
ΣC2 ={a},

→C2={p0
a→ qa.p1, p1

λ→ ε, p2
λ→ ε, p3

a→ qa.p4, p4
λ→ ε},

RC2 ={qa},
PC2 ={qb, qd},
MC2 ={qb 7→ p3, qd 7→ p2}

(b) Abstraction ΠC2 = (QC2,ΣC2,→C2, RC2,PC2,MC2) of component C2.

QC3 ={p20, p21, p22, p23},
ΣC3 ={b, d},

→C3={p20
b→ qb.p21, p21

λ→ ε, p22
d→ qd.p23, p23

λ→ ε},
RC3 ={qb, qd},
PC3 ={qe, qf},
MC3 ={qe 7→ p20, qf 7→ p22}

(c) Abstraction ΠC3 = (QC3,ΣC3,→C3, RC3,PC3,MC3) of component C3.

ponents are composed in a flat manner, as it is often done in Service-oriented Architectures. This

means that every component may have required and provided interfaces. In this case protocol

violations can be caused by (recursive) callbacks, too. These kinds of protocol violations are not

easy to discover (above all by humans) and a local protocol check is insufficient [ZS06]. Thus

scenario c) matters especially if callbacks can happen.

In Figure 7.1d a more complicated example is shown. This scenario is also captured here.

I. e., except the fact that the provided interface of an aggregated component is provided by a

single internal component, there are no further restrictions on the captured architecture.

The example demonstrates that not every component required for composition is already im-

plemented. For verification purpose, we need to know restrictions on the use of the aggregated

component in a component-based software. We call these restrictions context. They play a

similar role as the test driver and the test dummy for local tests.

158

7.2. Iterative Verification

C1

C2
C2

C3

C2

C3

C2

C3verification
driver

verification
driver

verification
dummy

C4C2

C3

C2

C3

C2

C3

verification
driver

verification
dummy

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

C2

C3

C2

C3

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

(com
plete) verification context

(com
plete) verification context

(com
plete) verification context

(a)

C1

C2
C2

C3

C2

C3

C2

C3verification
driver

verification
driver

verification
dummy

C4C2

C3

C2

C3

C2

C3

verification
driver

verification
dummy

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

C2

C3

C2

C3

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

(com
plete) verification context

(com
plete) verification context

(com
plete) verification context

(b)

C1

C2
C2

C3

C2

C3

C2

C3verification
driver

verification
driver

verification
dummy

C4C2

C3

C2

C3

C2

C3

verification
driver

verification
dummy

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

C2

C3

C2

C3

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

(com
plete) verification context

(com
plete) verification context

(com
plete) verification context

(c)

C1

C2
C2

C3

C2

C3

C2

C3verification
driver

verification
driver

verification
dummy

C4C2

C3

C2

C3

C2

C3

verification
driver

verification
dummy

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

C2

C3

C2

C3

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

(com
plete) verification context

(com
plete) verification context

(com
plete) verification context

(d)

Figure 7.1.: Possible scenarios during development.

As we can see in Figure 7.1a (component C1) there may be components without required

interfaces. We call these components base components (cf. Definition 3.6). Usually bottom-up

constructions of component-based software systems start with base components.

We assume that the integrated components Ci (i ∈ N) are composed to a new component,

which we call aggregated component CA. The goal is to compose components Ci to a larger

component CA, which can be handled easier. Thus, required and provided interfaces of the

components Ci are bounded closely. The aggregated component can also have provided and

required interfaces.

Definition 7.2 (Architecture of the aggregated component)

Here, an aggregated component CA consists of at least two components, where the provided

interfaces of components are bounded to the required interfaces of other components (cf. Fig-

ure 7.1). We restrict the model here with the assumption, that only the provided interfaces of

exactly one component C are unbound and thus used as provided interfaces of the aggregated

component CA. Hence, the protocol of CA is equal to the protocol PA of C.

Definition 7.3 (Top component)

A top component C is contained in an aggregated component CA, where the set of provided

interfaces of CA is equal to the set of provided interfaces of C. Thus, C implements the well

known design pattern “facade” [GHJV95].

A context represents every possible implementation of a component which can be bounded to

interfaces of an aggregated component CA.

Definition 7.4 (Context)

We distinguish three kinds of contexts:

• A verification driverCΩ
A ofCA has no provided interfaces, but for every provided interface

qi of the aggregated component CA exists a matching required interface qi in CΩ
A .

159

7. Method for Using Protocol Conformance Checking in Iterative Component System

Integration

• A verification dummy C

Ω

A of CA has no required interfaces, but for every required inter-

face qi of the aggregated component CA a matching provided interface qi in CΩ
A exists.

This context accepts all calls of the aggregated component CA to its required interfaces.

• A (complete) verification context C	A of CA has the same required interfaces qi as the

verification driver CΩ
A and the same provided interfaces qi as the verification dummy C

Ω

A .

Figure 7.1 shows all different kinds of contexts.

An aggregated component CA may have provided interfaces but no required interfaces, cf.

Figure 7.1a. In this case the protocols of all components of the aggregated component should

be obeyed if it has been proven that the aggregated component is reliable and CA is bounded to

other components.

Informally, to ensure that no protocol is violated, we create a context CΩ
A of the aggregated

componentCA called verification driver (Section 7.5.1). It initiates all possible and legal calls to

CA. The model checker calculates the statement if the componentCA is ready for the integration

with other components (Section 7.4).

For the same reasons, we define the verification dummy C

Ω

A . It has at its provided interfaces

the required interfaces RCA of CA, and each initial state of a call x is terminated immediately

(because no callbacks are initiated).

If no callbacks are allowed, it is sufficient to have a verification driver as well as a verification

dummy. However, if callbacks are present, a (direct or indirect) call to a required interface of the

aggregated component CA may initiate a call to a provided interface of CA. Thus, a (complete)

verification context C	A (Section 7.5.2) is required, cf. Figure 7.1c and 7.1d.

The contexts are used as a substitute for the unknown components. Hence, the model checking

approach described in Chapter 5 can be applied.

7.3 Verification Process for Iterative Development

As shown in Chapter 5 we need the abstractions of every single component which is needed for

the application. Only these abstractions will ensure that the behavior of the defined component

protocols are obeyed. If the behavior of a component is not present, it is currently not possible

to decide whether the protocol of the considered component is obeyed.

The new verification process is shown in Figure 7.2. We divide the verification into two parts.

The first considers (hierarchical) programs without callbacks, while the second considers also

callbacks. The users are enabled to consider only the problems, they are interested in. Moreover,

we assume that this will improve the model checking speed [Prä09], as the system abstraction

contains less rules than in a non-iterative model checking approach.

160

7.4. Evaluating the Result of the Model Checker

verification
driver

verification
dummy

single
component
abstractions

create single
abstraction

(SPRS)

single
component

implementation

create
system

abstraction

combine
abstraction

and protocol

system
abstraction

single
component

protocol

Combined
Abstraction

model
checking

counter-
examples

derive

derive

(a) Discovering protocol violations (not caused by callbacks)

(full)
verification

context

single
component
abstractions

create single
abstraction

(SPRS)

single
component

implementation

create
system

abstraction

combine
abstraction

and protocol

system
abstraction

single
component

protocol

Combined
Abstraction

model
checking

counter-
examples

derive
derive

(b) Discovering even protocol violations caused by (recursive) callbacks

Figure 7.2.: Verification processes for iterative development.

7.4 Evaluating the Result of the Model Checker

From the model checker we will get the result if a component using the provided interfaces of C

and obeying the protocolPA can trigger errors (i. e., protocol violations) in the other components

Ci of the aggregated component. If a model checking results in a counterexample, we can

describe directly, in which constellation the counterexample appears. I. e., how the protocol Pi
is violated.

If a counterexample violating protocol Pi was found (which is no false negative), then we can

react with the following options:

1. It can be checked locally, whether the considered component protocol Pi should be weak-

ened. This is only possible if no fault in the program will result by this adaption.

2. The other components Cj (where i 6= j) participating at the counterexample in order to

decide whether an adaption of their source code should be recommended.

3. The error can be consciously neglected while assuming that such an error will not occur

in a real implementation, where Ci is using the provided interfaces of CA.

The first and second option will result in a situation where no protocol violation can appear,

if any user of the aggregated component CA obeys the protocol PA. The advantage of this

extension is that unviolated protocols Pj of CA need to be considered (again), because all calls

to the component C are guarded by the protocol PA. In Theorem 7.1 we will prove that this is

sufficient for avoiding protocol violations of internal components.

As described, this is only possible if no counterexample is constructed (or the first or second

option is implemented). In the third case all protocols Pi of the components Ci, which are

violated while using the verification context, have to be considered.

The abstraction of the aggregated component can now be reused in the further development

or composition process.

161

7. Method for Using Protocol Conformance Checking in Iterative Component System

Integration

Remark
Summarized, it is possible that a component protocol PA can provable never be violated with

respect to the current composition step. In this case PA can be removed from the current sce-

nario. Moreover, all transition rules of the form t1
a→ t2 can be translated into t1

λ→ t2, where

a ∈ ΣPi . This enables more static reductions of the number of transition rules, resulting in a

faster model checking (cf. Chapter 6).

We formalize and prove these assumptions and the verification process in the following sec-

tions.

7.5 Verification Contexts (No Callbacks Allowed)

We use the component term to describe the behavior of a context. If the context is (really) imple-

mented as component C, we would generate a new abstraction ΠC to use this in our verification

process (cf. Chapter 5). Thus, C is translated to a Stripped Process Rewrite System ΠC . To

represent the behavior of a context C ′ we also use a Stripped Process Rewrite System ΠC′ . For

technical reasons (which become clear later) we assume that each call to CA has at least one

terminating computation (this only excludes the possibility that a call never terminates).

7.5.1 Components with no Unbounded Required Interfaces

In this section we consider the scenario a) (cf. Section 7.2) of Figure 7.1a (considering base

components).

The verification driver CΩ
A of a component CA has no provided interfaces. The set of the

required interfaces is equal to the set of provided interfaces of the component CA (cf. Definition

7.4).

Definition 7.5 (Verification driver CΩ
A)

A verification driver forCA is a Stripped Process Rewrite SystemCΩ
A=̂(QCΩ

A
,ΣCΩ

A
,→CΩ

A
, RCΩ

A
,

PCΩ
A
,MCΩ

A
), where:

QCΩ
A

={pvi : vi ∈ QPA},

ΣCΩ
A

=ΣPA ,

RCΩ
A

={qi : qi ∈ PCA},

PCΩ
A

={},

MCΩ
A

={},

→CΩ
A

={pvi
x→ qx⊗pvj : vi

x→ vj ∈→PA ∧pqx ∈ QΠCA ∧ qx ∈ PΠCA}
∪{pvk

λ→ ε : pvk ∈ FPA},

with ⊗ =

. if x is implemented by CA as synchronous interface,

|| if x is implemented by CA as asynchronous interface.

162

7.5. Verification Contexts (No Callbacks Allowed)

Example 7.3: Construction of the verification driver.

PC3 = ({v1, v2, v3}, {e, f}, {v1
e→ v2, v2

f→ v3, v3
λ→ v3}, v0, {v3})

(a) Given protocol PC3

ΠΩ
C3 = ({pv1 , pv2 , pv3}, {e, f}, {pv1

e→ qe.pv2 , pv2
f→ qf .pv3 , pv3

λ→ pv1 , pv3
λ→ ε},

{qe, qf}, {}, {})
(b) Generated CΩ

A of component C3

By this definition, for each transition rule (vi
x→ vj) ∈→PA of the protocol PA of the aggre-

gated component CA a new transition rule pvi
x→ qx⊗pvj of CΩ

A is created. An example for this

construction is shown in Example 7.3.

Lemma 7.1
Let be ΠA

S = ϕPA(ΠS), where ΠS = CΩ
A⊕ΠCA . Then L(ΠA

S) = L(PA), where PA is the

protocol of CA.

Proof (Sketch)

By the architectural assumption in this section, CA cannot (neither directly nor indirectly) call to

its provided interfaces, because CA has no required interfaces. Thus, for any provided interface

qx ∈ PCA of CA, it holds pqx
λ⇒ΠAS

ε where pqx is the initial state of interface x (otherwise a

call to x would be always non-terminating). We prove now the following claim by induction

sufficient for L(ΠA
S) = L(PA):

For each w ∈ Σ∗PA it holds v0
w⇒PA vk iff pv0

w⇒ΠAS
pvk .

if: We only consider the case where the interface is implemented synchronously. The asyn-

chronous case can be proven analogously.

case w = λ: Then v0
λ⇒PA v1 and pv0

λ⇒ pv1 proves the claim.

case w = w′a for a w′ ∈ Σ∗PA , a ∈ ΣPA : Then v0
w′⇒PA vk−1

a⇒PA vk. Thus, vk−1
a→ vk ∈→PA

and therefore pvk−1
a⇒PA qa.pvk ∈→CΩ

A
(by Definition 7.5).

Thus, we have pvk−1
a⇒ΠAS

pqa .pvk
λ⇒ΠAS

ε.pk (by the above observation)

= pk (since ε is the identify of .)

Now we show that a derivation in ΠCi
S =̂ϕPCi (ΠS Im) (where ΠS Im=̂ΠCIm⊕ΠCA) corresponds

to a derivation of CΩ
A⊕ΠCA . In particular, our goal is to show that L(ϕCi(ΠCIm⊕ΠCA)) ⊆

L(ϕCi(CΩ
A⊕ΠCA)) for all internal componentsCi ofCA, if the protocol ofCA has been checked.

Such a result implies that replacing CΩ
A by CIm does not lead to new protocol violations except

possibly forCA. In order to show a correspondence between derivation ΠS Im and ΠA
S , we need a

correspondence between process-algebraic expressions t ∈ PEX(QΠAS
) and t′ ∈ PEX(QΠAS

).

163

7. Method for Using Protocol Conformance Checking in Iterative Component System

Integration

Note, thatQCA ⊆ QΠS Im∩QΠAS
because these states stem from ΠCA . The main idea for defining

the correspondence basically requires that sequences initiated by ΠCIm are sequences initiated

by ΠCΩ
A

. Intuitively, a t corresponds to t′ iff forgetting the states not in QCA leads to the same

process-algebraic expression, and the same sequence of interactions to CA can be initiated from

t and t′.

Lemma 7.2
If L(ϕPA(ΠS Im)) ⊆ L(PA), and there is aw ∈ Σ∗CA and t ∈ PEX(QΠS Im) such that I w⇒ΠΠS Im

t, then there is a t′ ∈ PEX(QΠAS
) with t corresponds to t′ and pv0

w⇒ t′.

Proof (Sketch)

We use induction to prove the claim. If a word w with |w| = 1 is created, a transition rule in

CIm has to be used which has the form p1
x→ pqx⊗p2, x ∈ L(PA), ⊗ ∈ {., ||}. Because CIm

obeys the protocol PA, there exists a transition rule pv0
x→ pqx⊗pv1 in ΠA

S (more precise in CΩ
A).

Thus, the term t′ is constructed using this rule. t corresponds to t′.

Assuming that the claim is true for words of length n. A word w′ = w · a with |w′| = n+ 1
can only be constructed using a rule δ=̂p3

a→ pqa⊗p4 in CIm. A similar rule δ′ has to be part

of CΩ
A , such that the same word w · a can be constructed. While constructing w in CIm a term

t has to be computed, encoding a situation where δ is applicable. Because t′ encodes the same

situation, t corresponds to t′.

Corollary 7.1
L(ϕCA(ΠS Im)) ⊆ L(ΠA

S).

Hence, a verification driver CΩ
A can generate all sequences that are permitted by the protocol

PA of CA.

Now, it is possible to model check the scenario a) described in Section 7.2.

We generate a system abstraction ΠS while unifying the behavior of the aggregated compo-

nent CA and the verification dummy C

Ω

A as described in Chapter 5 (an example is shown in

Example 7.3b). The resulting ΠS is used to generate a Combined Abstraction for each protocol

Pi of each component Ci, where Ci is included in the aggregated component CA.

Now, we have to prove that no protocol violation is missed, while considering the verification

driver CΩ
A .

Theorem 7.1
If L(ϕPCi (Π

A
S)) ⊆ L(PCi) for each protocol PCi of a component Ci in CA (i. e., we have

protocol conformance proven using the verification driver), and L(ϕPA(ΠS Im)) ⊆ L(PA) (i. e.,

the component CIm uses CA according to the protocol PA) then for each component Ci of CA,

it holds L(ϕPCi (ΠS Im)) ⊆ L(PCi) (i. e., the protocol is satisfied if CIm is used instead of the

verification driver CΩ
A).

Remark
It is clear that if L(Π1) ⊆ L(Π2), then L(ϕCi(Π1)) ⊆ L(ϕCi(Π2)).

164

7.5. Verification Contexts (No Callbacks Allowed)

Example 7.4: Verification context, we use C2 and C3 (and PC2) from Example 3.2 on page 31
and 7.2 on page 158.

C1

C2
C2

C3

C2

C3

C2

C3verification
driver

verification
driver

verification
dummy

C4C2

C3

C2

C3

C2

C3

verification
driver

verification
dummy

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

C2

C3

C2

C3

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

(com
plete) verification context

(com
plete) verification context

(com
plete) verification context

(a) Overview

verification driver CΩ
A

pv1
e→ qe.pv2 ,

pv2
f→ qf .pv3 ,

pv3
λ→ ε,

pv3
λ→ pv1

verification dummy C

Ω

A

pva
λ→ ε

(b) Verification contexts

ΠS=̂CΩ
A⊕ΠC3⊕ΠC2⊕C

Ω

A , where

→ΠS= {pv1
e→ p20.pv2 , pv2

f→ qf .pv3 ,
pv3

λ→ ε, pv3
λ→ pv1 ,

p20
b→ qb.p21, p21

λ→ ε,
p22

d→ qd.p23, p23
λ→ ε,

p0
a→ qa.p1, p1

λ→ ε,
p2

λ→ ε, p3
a→ qa.p4,

p4
λ→ ε, pva

λ→ ε } and

MΠS = {qe 7→ p20, qf 7→ p22,
qb 7→ p3, qd 7→ p2, qa 7→ pva}
(c) Transition rules of ΠS

Proof (Theorem 7.1)

L(ϕPCi (ΠS Im)) ⊆ L(ϕPCi (Π
A
S)) by Corollary 7.1 and the remark on page 164

⊆ L(PA) by assumptions of Theorem 7.1

Hence, all possible protocol violations by any implementation (without callbacks) can be

found.

7.5.2 Components with Unbounded Provided and Unbounded Required Inter-
faces

In this section we consider the scenario b) (cf. Section 7.2) of Figure 7.1b on page 159 (allow-

ing no callbacks).

For model checking a complete Process Rewrite System is needed. Thus, a verification driver

CΩ
A and the abstraction of the aggregated component ΠCA are not sufficient, because there are

still unbounded required interfaces of CA. We therefore add a Stripped Process Rewrite System

C

Ω

A , called verification dummy. It is bounded to the required interfaces of C

Ω

A .

The verification dummy C

Ω

A has to accept all calls from the aggregated component CA to

its unbounded required interfaces qi ∈ RCA , but imitates no callbacks to a qj ∈ PCA . Thus,

C

Ω

A imitates all possible base components, which could be used to complete the application

integrating CA. Here we define the verification dummy formally as Stripped Process Rewrite

System ΠC

Ω

A
.

165

7. Method for Using Protocol Conformance Checking in Iterative Component System

Integration

Definition 7.6 (Verification dummy C

Ω

A)

A verification dummy is a Stripped Process Rewrite System ΠC

Ω

A
=̂(QC Ω

A
,ΣC

Ω

A
,→C

Ω

A
, RC

Ω

A
,

PC Ω

A
,MC

Ω

A
), where:

QC

Ω

A
={pqi : qi ∈ PCA},

ΣC

Ω

A
={},

→C

Ω

A
={pqi

λ→ ε : qi ∈ PC Ω

A
},

RC

Ω

A
={},

PC Ω

A
={qi : qi ∈ RCA},

MC

Ω

A
={qi 7→ pqi : qi ∈ RCA}.

Thus, the verification dummyC

Ω

A ofCA can be bounded atCA and capture all behavior which

is possible by a component C2 implementing the context. Hence, CΩ
A⊕CA⊕C

Ω

A is a Process

Rewrite System.

Theorem 7.2
An implementation CIm of the verification dummy C

Ω

A cannot initiate a protocol violation.

Proof (Theorem 7.2)

Callbacks are forbidden. Thus, no call to an interface of CIm can result in a call to CA. No

protocol violation can appear.

Corollary 7.2
Let be ΠS Im=̂C1⊕ΠCA⊕C2, whereC1 is an implementation ofCΩ

A andC2 is an implementation

of C

Ω

A . Violations of PCi of Ci can only be initiated by C1 (captured by Theorem 7.1).

An example is shown in Example 7.4. As we can see no protocol violation happens while

verifying the protocols PC2, because all computable interaction sequences w are contained in

L(PC2).

7.6 Verification Context (Allowing Callbacks)

For humans it is usually difficult to discover protocol violations if callbacks are present, in par-

ticular if these are recursive. Thus, it is an important task to find or exclude protocol violations

in this case. For this reason we generate a general context, which contains all possible callbacks,

too. As before we use a Stripped Process Rewrite System ΠC	
A

representation to describe the

behavior of the verification context.

Definition 7.7 (Verification context ΠC	
A

)

A verification context is a Stripped Process Rewrite System ΠC	
A

=̂(QC	
A
,ΣC	

A
,→C	

A
, RC	

A
,PC	

A
,

166

7.6. Verification Context (Allowing Callbacks)

Example 7.5: ΠS=̂C	A⊕ΠC2⊕ΠC3⊕C	A (cf. Example 7.2 on page 158) with callbacks.

C1

C2
C2

C3

C2

C3

C2

C3verification
driver

verification
driver

verification
dummy

C4C2

C3

C2

C3

C2

C3

verification
driver

verification
dummy

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

C2

C3

C2

C3

r
a

q
a

r
d

q
b

r
d

q
d

r
e

q
e

r
f

q
f

(com
plete) verification context

(com
plete) verification context

(com
plete) verification context

(a) Overview

→ of CΩ
A

pv1
e→ qe.pv2 ,

pv2
f→ qf .pv3 ,

pv3
λ→ ε,

pv3
λ→ pv1

→	 (callbacks)
pva

λ→ pv1

pva
λ→ pv2

pva
λ→ pv3

→ of C

Ω

A

pva
λ→ ε

(b)→ of C	
A

p0
a⇒ pva

.p1
λ⇒ pv1 .p1

e⇒ p20.pv2 .p1
b⇒ p3.p21.pv2 .p1

a⇒ pva
.p4.p21.pv2 .p1

λ⇒ pv1 .p4.p21.pv2 .p1
e⇒ p20.pv2 .p4.p21.pv2 .p1

b⇒ p3.p21.pv2 .p4.p21.pv2 .p1
a⇒ pva .p4.p21.pv2 .p4.p21.pv2 .p1
λ⇒ p4.p21.pv2 .p4.p21.pv2 .p1
λ⇒ p21.pv2 .p4.p21.pv2 .p1

λ⇒ pv2 .p4.p21.pv2 .p1
f⇒ p22.pv3 .p4.p21.pv2 .p1
d⇒ p2.p23.pv3 .p4.p21.pv2 .p1
λ⇒ p23.pv3 .p4.p21.pv2 .p1

λ⇒ pv3 .p4.p21.pv2 .p1
λ⇒ p4.p21.pv2 .p1

λ⇒ p21.pv2 .p1
λ⇒ pv2 .p1

f⇒ p22.pv3 .p1
d⇒ p2.pv3 .p1

λ⇒ pv3 .p1
λ⇒ p1

λ⇒ ε

(c) Computed counterexample

MC	
A

), where

QC	
A

= QCΩ
A
∪QC Ω

A
,

ΣC	
A

= ΣCΩ
A
∪ ΣC

Ω

A
= ΣCΩ

A
,

→C	
A

= →CΩ
A
∪ →C

Ω

A
∪→	,

RC	
A

= RCΩ
A
∪RC Ω

A
= RCΩ

A
,

PC	
A

= PCΩ
A
∪ PC Ω

A
= PC Ω

A
,

MC	
A

= MCΩ
A
∪MC

Ω

A
= MC

Ω

A

To capture the semantics of callbacks we introduce the special set of transition rules→	 =
{pqi

λ→ pvi : pqi ∈ QC Ω

A
∧ pvi ∈ QCΩ

A
} (callback rules). The transition rules→C	

A
allow all

possible interactions with CA. Using rules from →CΩ
A

, it is possible to generate any possible

interaction a ∈ PA to a provided interface qi ∈ PCA of ΠCA (cf. Section 7.5.1). Using rules

from →C

Ω

A
any external interaction of CA is captured (cf. Section 7.5.2). I. e., all interactions

with the context are captured.

The semantics of callbacks are that any call to a required interface qi ∈ RCA of CA can result

in a sequence of calls to any provided interface qj ∈ PCA of CA. To represent this behavior

we generate the transition rules →	. Informally this ensures that after each call to a required

interface qi (mapped by MCΩ
A

to pqi) any of the provided interfaces qx ∈ PCΩ
A

of CA can be

called, too, using pvi
x→ qx⊗pk (contained in→CΩ

A
).

An example is shown in Example 7.5. There, a protocol violation is initiated if a call to a

could result in some way to a call of b of component C2. This counterexample (Example 7.5c)

precisely describes the problem observed in Example 7.1 on page 157 . Thus, the problem

discussed in the motivation will be discovered before component C1 has been developed, which

is a great benefit and good support for the developers.

167

7. Method for Using Protocol Conformance Checking in Iterative Component System

Integration

The verification context captures the behavior of every possible implementation.

Theorem 7.3
Let CIm be an implementation of the verification context C	A of the aggregated component CA
and PA the protocol of CA. We consider ΠS Im=̂ ΠCIm⊕ΠCA⊕ΠCIm and ΠCIm

S = ϕCIm(ΠS Im)
(thus it contains only actions of CIm). If L(ΠCIm

S) ⊆ L(PA) and there is no protocol violation

in CA (i. e., L(Πi
S Im) ⊆ L(PCi)) for each internal component Ci of CA, then for each internal

component Ci of CA, there is no protocol violation if CA is replaced by CIm (i. e., L(ΠCIm
S) ⊆

L(PCi)).

Remark
If no callback exists within the implementation CIm of the verification context C	A we can derive

from Theorem 7.1 that all protocol violations are already described with the transition rules of

CΩ
A .

In order to prove Theorem 7.3 the following lemma is required.

Lemma 7.3
Let be Πi

S Im=̂ϕCi(Π
CIm
S) and ΠCi

S =̂ϕCi(ΠS), where ΠCIm
S =̂ΠCIm⊕ΠCA⊕ΠCIm and ΠS=̂ΠC	

A
⊕

ΠCA⊕ΠC	
A

. If pqx
w⇒ΠiS Im

tE then pqx
w⇒ΠCiS

tE , where w ∈ Σ∗PCi , tE ∈ PEX(QΠCiS
), qx ∈

PCA and a component Ci is considered which is not the top component.2

Proof (Lemma 7.3)

Induction over the length n of the sequence of interactions w.

n = 1: If pqx
w⇒ΠCIm

S

tE , with w = a ∈ Σ∗PCi then a transition rule p1
a→ p2⊗p3 has to be

used. This rule is part of CA, thus w can be generated in ΠCi
S , too.

n = 2: If pqx
a⇒ΠCIm

S

t
b⇒ΠCIm

S

tE , with a, b ∈ ΣPCi . It can be refined to pqx
a⇒ΠCIm

S

t
λ⇒ΠCIm

S

t′
b⇒ΠCIm

S

tE . A transition rule p1
a→ p2⊗p3 and a transition rule p4

b→ p5⊗′p6 have to be used

to generate the counterexample, both rules are contained in→CA , thus they are also available in

ΠS (⊗,⊗′ ∈ {., ||}). t λ⇒ t′ can be computed within ΠCIm
S only in three cases:

• To compute t λ⇒ t′ only rules of→CA are applied. Thus, the derivation is also computable

in ΠS (especially t = t′).

• To compute t λ⇒ t′ rules of the verification context C	A are used, but no callbacks. By the

remark on page 164 the derivation is also computable in ΠS .

• To compute t λ⇒ t′ a callback can be used. Thus, the derivation can be refined to t λ⇒
tqj

λ⇒ tqk
λ⇒ t′, where tqj , tqk ∈ PEX(QΠCIm

S

) and in tqj a transition rule is applicable to

a required interface qj of CA and tqk a transition rule is applicable to a provided interface

qk of CA. Because of the rule pqj
λ→ pqk ∈→C	

A
this derivation is also possible in ΠS .

n = m: The lemma is valid for any interaction sequence: pqx
w⇒ΠCIm

S

t.

2By assumption the formula tE
w′
⇒ ε is valid, where w ∈ ΣCi .

168

7.6. Verification Context (Allowing Callbacks)

n = m+ 1: If pqx
w⇒ΠCIm

S

t
a⇒ΠCIm

S

ε, then a rule p1
a→ p2⊗p3 has to be applied. This rule is

part of→CA , hence this derivation is also computable in ΠCi
S , because the first part is covered

by the induction hypothesis.

Corollary 7.3
L(ϕCA(ΠS Im)) ⊆ L(ΠA

S)

Proof (Theorem 7.3)

Analogous to Theorem 7.1.

Summary

In this section we have shown, how to support the development process of reliable components

and applications, respectively. We use component protocols as constraints for the usage of com-

ponents and define a formal approach based on model checking. This allows system architects or

component developers to check the implementations, even if the components are implemented

in different programming languages. They can check whether the implementation of every pos-

sible application matches the constraints of the protocols of the components that are aggregated.

In contrast to testing procedures we can prove absence of errors, because we find every possible

error. This is an important new option.

Moreover, the development might speed up, because if the user of a component has to interact

conformably with the protocol, the developer of this component does not have to implement

checks and catch for all errors which can be triggered from any unexpected interaction.

The approach allows to check the protocols of components aggregated to a larger component.

This common step during the development is now suitably supported by our verification process.

Thus, a permanent verification of each composition or development step is possible. The result

is a reliable aggregated component that can be composed easier. As a side effect the costs of the

verification can be reduced, because component protocols need not to be checked again, if they

are integrated into an aggregated component.

Moreover, the constructed counterexamples of an aggregated component can be used to eval-

uate the design of the application in an early phase as well as they can point the developers of

the currently unfinished components to possible implementation errors. Both will lead to a more

predictable implementation of the application, where errors could be discovered earlier.

We combined here the assumption about the application software design with a verification

approach. Hence, our verification approach can be applied to consider B2B-scenarios, client

server and tier architectures, Service-oriented Architectures and many more.

169

7. Method for Using Protocol Conformance Checking in Iterative Component System

Integration

7.7 Discussion

The traditional verification approach considers given applications, which have to be (almost)

implemented completely.

In this chapter we have shown, how our approach can be extended to become applicable for

iterative component development or composition, respectively. We have shown that a verifica-

tion in an early development step is possible. These topics have a big importance in an industrial

context, because they can delay the time to market and raise the development costs. As we know

from several considerations [Boe81, Bal96] eliminating an error caused in an early development

step is very expensive. Moreover, iterative development is a common approach for industrial

software development.

Summarized, our approach can provide pieces of information about the current state of the

architecture and the compositionality of the currently existing components. Furthermore, we can

point to possible problems which might appear while developing a currently missing component.

And last but not least, the model checking problem can be simplified, if component protocols

can be omitted.

170

8 Conclusions and Future Work

In this work we consider the verification of component composition, which is one of the most

important issues of component-based software engineering [PTDL07]. Currently, component

composition is based on functional properties of the components (signature-based). The users

of our approach can define an easy understandable constraint, all clients of a component have to

obey. For the definition of a component protocol neither mathematical background nor imple-

mentation details are needed. The goal is to ensure statically that a component-based software

works in the defined manner.

The main contribution of our work is, that we define the verification of component behav-

ior based on a representation, which is capable to represent unbounded recursion (like push-

down automata) and unbounded parallelism (like Petri nets). These Process Rewrite Systems

enable to discover problems triggered by recursive callbacks and asynchronous behavior, too.

Even synchronization through external interactions (e. g., used in BPEL) can be represented.

We translate source code into abstractions automatically using standard compiler techniques.

Thus, the correct behavior of the real implementation (source code) of an application can be

proved at compile time or deploy time. Although we break up the blackbox principle a little bit,

while publishing the abstract behavior of components, we are obeying the principles of com-

ponent-based software and Service-oriented Architectures. Accordingly the scientific questions

from Section 1.2 can be answered positively.

An important property of our approach is that we distinguish between the component contract

and the component behavior. This is a distinguishing feature to many other approaches. Our

approach can be interpreted as another option for design by contract. We define an automatic

method (Figure 8.1). It captures the process from the abstraction of a single component to the

computation of the protocol violations (counterexamples), which is capable to deal with Process

Rewrite Systems.

1. The source code of each component is translated into an abstract representation (capable to

represent unbounded parallelism and unbounded recursion). This component abstraction

represents the relevant behavior. Hence, a component abstraction imitates the component

behavior. The encoded business secrets are kept safe. The source code is not needed any

more.

2. In the second phase the components are composed like the real application. We also re-

spect the possible dynamic binding of components.

3. To verify the behavior of the application, the abstraction has to be evaluated. We have de-

fined a new representation, named Combined Abstraction. It encodes the model checking

problem, while considering a single protocol and the complete application behavior.

4. The model checking of the Combined Abstraction is based on the model checking of Pro-

cess Rewrite Systems. We compute counterexamples for each protocol violation. They

describe precisely which execution trace (program points) leads to an error.

5. The constructed and comprehensive counterexamples can be evaluted easily by a human.

171

8. Conclusions and Future Work

autom
atic

process
Generate

component
abstractions

Compute
application
abstraction

Compute
Combined
Abstraction

Perform
model

checking

Summarize
counter-
examples

user

Counterexamples
identifying

execution paths

Component-
based software
with protocols

input

output

compose

evaluate

Figure 8.1.: Overview: Verification process.

8.1 Component Properties

Our approach is capable to deal with the properties of components (corresponding to Section

1.3), component systems and Service-oriented Architectures:

• The used formal representation of the component behavior (Process Rewrite Systems)

is capable to deal with many programming and interaction paradigms. It is possible to

represent unbounded recursion and unbounded parallelism. Thus, synchronous and asyn-

chronous interactions as well as synchronization by interaction can be captured.

• Our approach is independent from the (imperative or object-oriented) programming lan-

guage a component is implemented with. The platforms and the location on which a com-

ponent is deployed have no influence. Moreover, we can deal with different component

systems.

• Dealing with the context-insensitive development of components is the main task of our

verification process. Moreover, our approach is capable to deal with components bind-

ing other components dynamically depending on the environment (component repository)

which is common in Service-oriented Architectures.

172

8.2. Comparison with other Approaches

• Because errors can be triggered by the complete behavior of a component-based soft-

ware we always consider the abstraction of the complete application to decide, whether

a component protocol is obeyed in any case. The protocol is defined by using provided

interfaces only, thus a component developer needs no global view on the Component-

based Architecture or Service-oriented Architecture. Hence, we overcome the problems

of peer to peer verification.

• Although our approach considers the complete behavior of the component-based software,

it is focused on a single component. A component developer has only to deal with “his”

component, its protocol and protocol violations.

• Our approach can deal with stateful and stateless components. Since earlier results [ZS06]

are applicable, it is possible to deal with references, too.

• Our approach keeps the implemented business secrets safe. Only the control flow is con-

sidered and the component abstraction is generated locally. The blackbox semantics are

obeyed.

Our approach is capable to deal with software created while assembling components provided

through component systems or Service-oriented Architectures. Under the premise of using a

compatible execution model (cactus stack), it is possible to verify if a component is used in the

expected way by the complete implemented component-based software.

8.2 Comparison with other Approaches

Our approach is different from other works in several properties. The main distinction is the

more powerful behavior representation. The formal model used for representing the abstracted

component behavior is the corner stone of the properties following. The used Process Rewrite

Systems allow the presentation of unbounded recursion and unbounded parallelism (properties I,

II in Table 8.1). Therefore, it is possible to represent synchronous and asynchronous interactions

as well as synchronization by interaction and recursive callbacks (III, IV). This was not possible

while using any other known approach.

The reason, for many improvements, is the separation of constraint and behavior of compo-

nents (V). This idea is borrowed by the work of Zimmermann and Schaarschmidt [ZS06]. Our

work can be viewed as ancestor of their approach (approach number 9 in Table 8.1).

The abstractions we consider here are based on the source code (VI) and the verification

takes into account the complete application behavior (VII). This is also not common sense, but

we consider these properties as very important. Otherwise the actual component behavior can

differ from the (human-defined) specification or an error can be missed. Both might be bad for

model checking approaches, therefore other approaches have to reduce the scopes of applicabi-

lity stronger than we did. Moreover, it is possible to consider only a couple of components and

verify their interactions (VIII). However, during this possible iterative component integration we

warn for errors, that might appear, while adding the “missing” parts. From property V and VI

173

8. Conclusions and Future Work

approach is using I.
ca

pt
ur

e r
ec

ur
siv

e b
eh

av
io

r

II.
ca

pt
ur

e p
ar

al
le

l b
eh

av
io

r

III
. c

ap
tu

re
sy

nc
hr

on
ou

s c
al

ls

IV
. c

ap
tu

re
as

yn
ch

ro
no

us
ca

lls

V
. c

on
tra

ct
an

d
be

ha
vi

or
se

pa
ra

te
d

V
I.

us
e s

ou
rc

e c
od

e a
s b

eh
av

io
r

V
II.

ve
rif

y
co

m
pl

et
e s

ys
te

m
be

ha
vi

or

V
III

. v
er

ify
pe

er
to

pe
er

be
ha

vi
or

IX
. u

se
pr

ov
id

ed
in

te
rfa

ce
, o

nl
y

X
. c

on
sid

er
su

bs
tit

ut
ab

ili
ty

X
I.

al
lo

w
no

n-
de

te
rm

in
ism

us

X
II.

m
or

e p
ow

er
fu

l c
on

str
ai

nt
s

1. finite state machines
[YS94, YS97]

/ N Y N N N N Y N Y N N

2. CSP−
[AG97]

Y O N O Y N N Y N N Y Y

3. counter automata
[Reu02b, Reu02a]

O N / / Y N N Y N Y Y Y

4. FSM+

[PV02]
/ Y O Y N O N Y N Y Y Y

5. workflow nets
[VdAvHvdT02]

N Y O Y N N Y N N Y Y Y

6. DFSM
[SKPR04]

/ Y Y N N N / Y N Y O Y

7. non-regular protocols
[Sud05]

/ N N Y N N N Y N Y N Y

8. STS +

[PNPR05b]
/ N Y Y N O N Y N N / Y

9. context free grammars
[ZS03, ZS06]

Y N Y N Y Y Y N Y N Y N

10. eLTS
[AAA05, AAA06, AAA07]

/ N Y Y N N N Y N / Y Y

11. PRS
(this work) Y Y Y Y Y Y Y Y Y O Y N

The sign “Y” is used if the approaches fulfill the property. If not, “N” is used. If the property is only
fulfilled partly, “O” is used. Some attributes have no meaning for the considered approach, in this case
“/” is used.

Table 8.1.: Comparison with related work (extended version of Table 2.1 on page 19).

follows the advantage that not for every component a protocol has to be defined (by a human)

like in the other works. This reduces the effort for the application of our approach.

Process Rewrite Systems provide another important advantage: As this model unifies Petri nets

and push-down automata it is possible to take advantage of model checking approaches devel-

oped for subclasses of Process Rewrite Systems. E. g., if a component-based software makes

no use of a parallel behavior (or if it is removable), we can take advantage of the well known

push-down automaton techniques and logics.

We assume that it is easier for the component developer to define a protocol based on the

provided interfaces only (IX). Thus, he has not to predefine or redefine the component behavior

174

8.3. Implementation and Practical Applicability

as it is done in the approach using “behavioral protocols”. Anyway, these approaches have the

advantages that substitutability can be considered in an easier and more concrete way (X). In this

work substitutability of components can only be considered under the question if a component

can be used within an existing component-based software replacing another component. Other

works have a more powerful definition, where it can be decided locally if a substitute has the

same behavior as a preexisting component.

Our approach is capable to deal with non-deterministic constraints and behavior (XI). Thus

we have not to deal with state-space explosion while transforming them into a deterministic one,

which might obfuscating the model checking. However, it is not possible to define component

protocols which are more powerful than finite state machines (XII). Hence, the formulation for

some components is not possible (e. g., of a stack implementation).

In this work we have presented a unique approach. It eliminates several lacks of other ap-

proaches. Many decisions are taken into account the planned use in an industrial context.

8.3 Implementation and Practical Applicability

The approach developed in this work was implemented in a component-based software. The

architecture of the framework was defined under the aim to keep the implementation extendable

and the components exchangeable. Moreover, we have taken the requirements of our industrial

partners into account.

In detail the functionality was divided into the following scopes:

• generators for abstractions of source code of components,

• optimizations of component abstractions and system abstractions as well as operations

like the computation of Combined Abstractions,

• user interfaces, user tracking and evalutions considering the counterexample evaluations,

• model checking of Process Algebra Nets.

For each of these areas exist at least one implementation.

The framework was applied and evaluated in a (industrial) case study. The results show that

our approach is applicable on problems of practical relevance in respect to the formulation of

problems as well as an adequate solution.

8.4 Future Work

In this section, we will describe what further (scientific) questions our approach created, where

potential for extensions is available and what other applications could be possible.

The approach we have presented in this work is capable to deal with many other scopes of

applicability. Considering workflows is a valuable task. Nowadays workflows – also known

175

8. Conclusions and Future Work

as business process models (BPM) – are often used in a preparation step to specify new appli-

cations for Service-oriented Architectures. Using the pieces of information defined already in

these models allow a check whether the workflow can be implemented using the pre-existing

components. In [BZ09b] we have already defined an extension of our approach leading to the

answer of this question. It allows the consideration of each BPM which can be translated into

Petri nets. Therefore, it is applicable to the extensively used business process modeling notation

(BPMN [BPM]) and event-driven process chains (EPC [Kel92]). Another extension is the con-

sideration of Service-oriented Architectures where the available components are not known at

deployment time, e. g., if the component repositories are chosen dynamically. To verify applica-

tions, that are assembled in this dynamic way, we have defined an extension of the component

model and a new verification process in [BZ09c].

Other scopes of applicability can be derived from the protocols existing after applying our

approach. Test techniques have the problem of state space explosion while considering data

values. As the component protocol reduces the interaction sequences the state space could be

reduced. In the same context component protocols could be validated using test or model check-

ing techniques. This will lead to more reliable components, as our approach requires a compo-

nent working in the defined way. However, we leave it to the component developer to actually

check if the component behaves as expected. An extension and simplification of our verification

process could be the generation of component protocols based on the actual implementation.

For this purpose the evaluation and model checking techniques (e. g., [CGP99]) can be used to

discover unsafe situations within a component, which should be forbidden by the protocol.

An interesting adaption of our approach might be the consideration of adapted Process Rewrite

Systems (e. g., [prs04]). This might enable the consideration of further problems, because more

model checking problems are applicable.

As mentioned before (see Chapter 2) other approaches lack at the correspondence between

source code and component specification (behavioral protocol). Nevertheless, the tool support

in this research is better (e. g., [BHP06]). We are sure that both approaches can be combined.

The idea is to separate the behavioral protocol in a provided and required protocol using the

function ϕ we have defined. Using the process shown in Chapter 7 it should be possible to

derive the verification context from the behavioral protocol.

Interesting seems to be the consideration of legacy components. The integration of such

components is a common task. Therefore, an approach for handling these components should

be developed.

Other approaches consider performance predication [BGMO06], component substitutability

[SCCS05, PV02] and deadlock freeness [IT03, AINT07, GS03a], too. We assume that the source

code abstraction contained in our approach can be extended to allow statements about the per-

formance of components. Component exchangeability will need a significant extension of our

approach. While applying or adapting the Liskov substitution principle [LW93, LW94, LW01]

(exchangeability) for component representations using Process Rewrite Systems, the languages

defined over the required interface usage have to be considered. To our knowledge no work ex-

176

8.4. Future Work

ists considering these languages. In contrast statements about deadlocks are already considered

in [May98]. Although the expressiveness of other works (e. g., Petri nets [CX97]) cannot be

reached, several problems might be solvable. Thereafter, it could be possible to evaluate if a

component-based software can ever reach a state where no termination is possible. Developing

just criteria for these problems is interesting, too.

The abstractions should be considered in respect to the question, whether an abstraction could

be inaccurate (because the execution model is not matching fully). By considering data val-

ues, more accurate abstractions seem to be possible, while computing component abstractions.

Considering general Process Rewrite Systems might be helpful (cf. [Esp02]).

Moreover, the abstractions should be considered with the aim of reducing the number of tran-

sition rules. Early prototypes of further optimizations show that it is possible to reduce the model

checking problem dramatically (sometimes only the actual counterexample is still contained in

the optimized Combined Abstraction). Hence, it seems to be interesting to consider optimiza-

tions in more detail (other work show that this is useful on source code level, too [DR07]), to

reduce the model checking effort.

In general the model checking Process Rewrite Systems was not considered sufficiently in

current research. There seems to be much potential for optimizations and improvements. Adapt-

ing existing model checking optimizations [Ric09, Ric08] might be possible and suitable. We

assume that on-the-fly model checking (where the Combined Abstraction is computed lazily dur-

ing the traversing) and multi-threaded algorithms have a great potential to improve the model

checking performance (especially while considering PA-processes).

Besides the academic questions, the practical application should not be lost out of sight. The

approach is capable to be integrated into integrated development environments (IDE) and com-

ponent models. The integration into well established industrial middleware (like IBM Web-

Sphere Message Broker® [ibm05]) or service level agreements (SLA) should lead to faster

implementations and more reliability because of the provability of the protocols. Moreover,

this would lead to larger case studies, a wider use and more research. The influence on soft-

ware quality of the non-functional requirements (encoded in the component protocols) should

be evaluated in industrial case studies leading to an even better understanding of the needs in

industrial contexts, e. g., to our experience leads the preoccupation with component protocols by

developers to an educational effect of the actual behavior of their implementations.

177

8. Conclusions and Future Work

178

Index of Definitions

Aggregated component, 37

Architecture of the aggregated component,

159

Asynchronous interactions, 39

Base component, 33

Blackbox component, 30

Cactus stack, 39

Callbacks, 39

Combined Abstraction, 102

Component, 29

Component abstaction, 62

Component protocol, 53

Component-based software, 37

Composition, 34

Composition operator ⊕, 156

Context, 159

Counterexample, 58

Derivation relation of PRS, 46

Empty process, 46

Execution trace, 38

Extended counterexample, 128

False negatives, 50

False negatives of an abstraction, 62

False positives, 50

Finite state machine (FSM), 40

Initial component, 33

Interface, 29

Interleaving semantics, 38

Inverted finite state machine, 42

Language accepted by an abstraction, 64

Model checking, 49

No relevant action, 63

Normalform of PRS, 49

Observable behavior of a component-based

software or aggregated component,

38

Observable component behavior, 38

Parallel behavior, 38

Petri nets, 43

Process Rewrite Systems (PRS), 46

Process-algebraic expressions (PEX), 46

Protocol, 54

Protocol conformance, 56

of a component-based software, 58

Push-down automata (with one state), 42

Reachability, 50

Regular expression, 42

Regular language, 42

Sequential behavior, 38

Signature, 29

Stripped PAN, 84

Stripped PRS (SPRS), 77

Synchronous interactions, 39

System abstraction, 62

as Process Rewrite System ΠS , 89

Top component, 159

Unbounded interfaces, 37

Unresolvable transition rules, 108

Use of a component C in S: ΠS,C , 56

Use of a component C in S in a Process

Rewrite System ΠS , 64

Verification context ΠC	
A

, 166

Verification driver CΩ
A , 162

Verification dummy C

Ω

A , 166

179

INDEX OF DEFINITIONS

180

Bibliography

[AAA05] P. Andre, G. Ardourel, and C. Attiogbe. Behavioural Verification of Service

Composition. Engineering Service Compositions (WESC’05), pages 77–84,

2005.

[AAA06] C. Attiogbe, P. Andre, and G. Ardourel. Checking component composability.

Lecture Notes in Computer Science, 4089:18, 2006.

[AAA07] P. Andre, G. Ardourel, and C. Attiogbe. Defining Component Protocols with

Service Composition: Illustration with the Kmelia Model. In Software Compo-

sition: 6th International Symposium, SC 2007, Braga, Portugal, March 24-25,

2007, Revised Selected Papers. Springer, 2007.

[AAH98] Nabil R. Adam, Vijayalakshmi Atluri, and Wei-Kuang Huang. Modeling and

analysis of workflows using petri nets. Journal of Intelligent Information Sys-

tems, 10(2):131–158, 1998.

[Aal00] Wil M. P. van der Aalst. Workflow verification: Finding control-flow errors

using petri-net-based techniques. In Business Process Management, Mod-

els, Techniques, and Empirical Studies, pages 161–183, London, UK, 2000.

Springer-Verlag.

[ABB97] J.M. Autebert, J. Berstel, and L. Boasson. Context-free languages and push-

down automata. Handbook of Formal Languages. Word, Language, Grammar,

1:111–174, 1997.

[ABD+04] Alain Abran, Pierre Bourque, Robert Dupuis, James W. Moore, and Leonard L.

Tripp. Guide to the Software Engineering Body of Knowledge - SWEBOK.

IEEE Press, Piscataway, NJ, USA, 2004 version edition, 2004.

[Ada06] J. Adamek. Addressing unbounded parallelism in verification of software com-

ponents. In Software Engineering, Artificial Intelligence, Networking, and Par-

allel/Distributed Computing, 2006. SNPD 2006. Seventh ACIS International

Conference on, pages 49–56, 2006.

[AG97] R. Allen and D. Garlan. A formal basis for architectural connection. ACM

Transactions on Software Engineering and Methodology (TOSEM), 6(3):213–

249, 1997.

[AINT07] Marco Autili, Paola Inverardi, Alfredo Navarra, and Massimo Tivoli. Synthe-

sis: A tool for automatically assembling correct and distributed component-

based systems. In ICSE ’07: Proceedings of the 29th international conference

on Software Engineering, pages 784–787, Washington, DC, USA, 2007. IEEE

Computer Society.

181

Bibliography

[All09] OSGi Alliance. OSGi Service Platform, Core Specification, Release 4, Version

4.2. IOS Press, Inc., September 2009.

[AU72] Alfred V. Aho and Jeffrey D. Ullman. The theory of parsing, translation, and

compiling. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1972.

[Bal96] Helmut Balzert. Lehrbuch der Software-Technik: Software-Entwicklung.

Lehrbücher der Informatik. Spektrum Akademischer Verlag, Heidelberg, 1996.

[BBC05] Andrea Bracciali, Antonio Brogi, and Carlos Canal. A formal approach to

component adaptation. J. Syst. Softw., 74(1):45–54, 2005.

[BCS03] E. Bruneton, T. Coupaye, and J. Stefani. The fractal component model. Tech-

nical report, ObjectWeb Consortium, 2003. Specification V2.

[BdVG09] Paul Biggar, Edsko de Vries, and David Gregg. A practical solution for script-

ing language compilers. In SAC ’09: Proceedings of the 2009 ACM symposium

on Applied Computing, pages 1916–1923, New York, NY, USA, 2009. ACM.

[Bei95] B. Beizer. Black-box testing: techniques for functional testing of software and

systems. John Wiley & Sons, Inc. New York, NY, USA, 1995.

[BGMO06] Steffen Becker, Lars Grunske, Raffaela Mir, and Sven Overhage. Performance

prediction of component-based systems: A survey from an engineering per-

spective. In Architecting Systems with Trustworthy Components, volume 3938

of Lecture Notes in Computer Science, pages 169–192. Springer, 2006.

[BH96] Ahmed Bouajjani and Peter Habermehl. Constrained properties, semilinear

systems, and Petri nets. In CONCUR ’96: Proc. of the 7th Int. Conf. on Con-

currency Theory, pages 481–497, London, UK, 1996. Springer.

[BHJ09] Sebastian S. Bauer, Rolf Hennicker, and Stephan Janisch. Behaviour proto-

cols for interacting stateful components with ports. In Proccedings of Interna-

tional Workshop on Formal Aspects of Component Software (FACS’09). Cen-

trum Wiskunde & Informatica, Amsterdam, November 2009.

[BHP06] Tomas Bures, Petr Hnetynka, and Frantisek Plasil. Sofa 2.0: Balancing ad-

vanced features in a hierarchical component model. In SERA ’06: Proceed-

ings of the Fourth International Conference on Software Engineering Research,

Management and Applications, pages 40–48, Washington, DC, USA, 2006.

IEEE Computer Society.

[BHPV00] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder–a second gen-

eration of a Java model-checker. In Proceedings of the Workshop on Advances

in Verification, 2000.

182

Bibliography

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating

sequential processes. J. ACM, 31(3):560–599, 1984.

[BL74] W.S. Brainerd and L.H. Landweber. Theory of computation. John Wiley &

Sons, Inc. New York, NY, USA, 1974.

[BMH06] Bill Burke and Richard Monson-Haefel. Enterprise JavaBeans 3.0 (5th Edi-

tion). O’Reilly Media, Inc., May 2006.

[BN07] C.M. Bishop and N.M. Nasrabadi. Pattern Recognition and Machine Learning.

Journal of Electronic Imaging, 16(4):9901, 2007.

[Boe81] B.W. Boehm. Software engineering economics. Prentice-Hall, 1981.

[BPE03] Organization for the Advancement of Structured Information Standards (OA-

SIS). Web Services Business Process Execution Language for Web Sevices,

Version 1.1, May 2003.

[BPE07] Organization for the Advancement of Structured Information Standards (OA-

SIS). Web Services Business Process Execution Language, Version 2.0, OASIS

standard edition, April 2007.

[BPM] BPMI.org. Business Process Modeling Notation (BPMN) Version 1.0.

[BR04] S. Becker and R.H. Reussner. The impact of software component adaptors on

quality of service properties. Issues on Coordination and Adaptation Tech-

niques, page 25, 2004.

[BRV04] B. Berthomieu, P.O. Ribet, and F. Vernadat. The tool TINA-construction of

abstract state spaces for Petri nets and time Petri nets. International Journal of

Production Research, 42(14):2741–2756, 2004.

[BS57] Friedrich Ludwig Bauer and Klaus Samelson. Auslegeschrift DE1094019. Ver-

fahren zur automatischen Verarbeitung von kodierten Daten und Rechenmas-

chine zur Ausübung des Verfahrens. (Anmeldetag: 30. März 1957. Bekannt-

machung der Anmeldung und Ausgabe der Auslegeschrift: 1. Dezember 1960.

Erteilt 12. August 1971. DE-PS 1094019.), 1957.

[BS03] E. Börger and Robert F. Stark. Abstract State Machines: A Method for High-

Level System Design and Analysis. Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2003.

[BW96] B. Beizer and J. Wiley. Black box testing: Techniques for functional testing of

software and systems. IEEE Software, 13(5), 1996.

[BZ08a] Andreas Both and Wolf Zimmermann. Automatic protocol conformance

checking of recursive and parallel BPEL systems. IEEE Sixth European Con-

ference on Web Services (ECOWS ’08), 0:81–91, 2008.

183

Bibliography

[BZ08b] Andreas Both and Wolf Zimmermann. Automatic protocol conformance

checking of recursive and parallel component-based systems. In Michel R. V.

Chaudron, Clemens A. Szyperski, and Ralf Reussner, editors, Component-

Based Software Engineering, 11th International Symposium (CBSE 2008), vol-

ume 5282 of Lecture Notes in Computer Science, pages 163–179. Springer,

October 2008.

[BZ08c] Andreas Both and Wolf Zimmermann. Automatic protocol conformance

checking of recursive and parallel component-based systems. Technical Report

2008/01, University Halle-Wittenberg, Institute of Computer Science, June

2008.

[BZ09a] Andreas Both and Wolf Zimmermann. Model checking of component protocol

conformance – optimizations by reducing false negatives. In Proccedings of

International Workshop on Formal Aspects of Component Software (FACS’09).

Centrum Wiskunde & Informatica, Amsterdam, November 2009.

[BZ09b] Andreas Both and Wolf Zimmermann. On more predictable implementations

of reliable workflows in service-oriented architectures. IEEE Seventh European

Conference on Web Services (ECOWS ’09), November 2009.

[BZ09c] Andreas Both and Wolf Zimmermann. Sicherstellung der Funktion-

alität in Komponentensystemen und Service-orientierten Architekturen. In

Erik Maehle Stefan Fischer and Rüdiger Reischuk, editors, GI Jahrestagung,

volume 154 of Lecture Notes in Informatics, pages 425;3336–3349. GI, 2009.

(in German).

[BZ09d] Andreas Both and Wolf Zimmermann. A step towards a more practical protocol

conformance checking algorithm. In 35th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA 2009), pages 458–465. IEEE

Computer Society, August 2009.

[BZ09e] Andreas Both and Wolf Zimmermann. Supporting the development process of

reliable software during the composition process using interaction protocols.

Technical Report 2009/4, University Halle-Wittenberg, Institute of Computer

Science, September 2009.

[CCK+06] Sagar Chaki, Edmund M. Clarke, Nicholas Kidd, Thomas W. Reps, and Tayssir

Touili. Verifying concurrent message-passing c programs with recursive calls.

In Holger Hermanns and Jens Palsberg, editors, TACAS, volume 3920 of Lec-

ture Notes in Computer Science, pages 334–349. Springer, 2006.

[CGJ+03] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement for symbolic model checking. Journal of the ACM

(JACM), 50(5):794, 2003.

184

Bibliography

[CGP99] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT, 1999.

[Cho56] N. Chomsky. Three models for the description of language. Information The-

ory, IRE Transactions on, 2(3):113–124, 1956.

[Cho57] N. Chomsky. Syntactic structure. The Hague: Mouton, 1957.

[CMS02] M. Calder, S. Maharaj, and C. Shankland. A Modal Logic for Full LOTOS

based on Symbolic Transition Systems. Computer Journal, 45(1):55–61, 2002.

[COR01] CORBA/IIOP Specification. Technical report, Object Management Group, Inc,

2001. Revision 2.4.2, OMG 01-02-01.

[CX97] F. Chu and X.L. Xie. Deadlock analysis of Petri nets using siphons and

mathematical programming. IEEE Transactions on Robotics and Automation,

13(6):793–804, 1997.

[DDH72] O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, editors. Structured program-

ming. Academic Press Ltd., London, UK, 1972.

[DDO08] Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and anal-

ysis of business process models in bpmn. Inf. Softw. Technol., 50(12):1281–

1294, 2008.

[DGV99] M. Daniele, F. Giunchiglia, and M.Y. Vardi. Improved automata generation for

linear temporal logic. Computer Aided Verification, 1999.

[Dij69] Edsger W. Dijkstra. Structured programming. circulated privately, August

1969.

[Dij70] Edsger W. Dijkstra. Structured programming. In Software Engineering Tech-

niques. NATO Science Committee, August 1970.

[DOT] .NET Framework. http://msdn.microsoft.com/netframework/.

[DR95] V. Diekert and G. Rozenberg. The book of traces. World Scientific Pub Co Inc,

1995.

[DR07] W. Zimmermann D. Richter. Slicing zur Modellreduktion von symbolischen

Kellersystemen. Proc. of the 24. Workshop of GI-section ’Programmier-

sprachen und Rechenkonzepte’, University Kiel, 2007.

[dVG07] Edsko de Vries and John Gilbert. Design and implementation of a PHP com-

piler front-end. Technical report, Department of Computer Science, School of

Computer Science and Statistics, Trinity College Dublin, Ireland, 2007.

[E. 00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith. Counterexample-guided ab-

straction refinement, pages 154–169. Number 1855 in Lecture Notes in Com-

puter Science. Springer-Verlag, 2000.

185

Bibliography

[Edw01] Stephen H. Edwards. A framework for practical, automated black-box testing

of component-based software. Software Testing, Verification and Reliability,

11:97 – 111, 2001.

[Erl05] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and De-

sign. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[ES90] M.A. Ellis and B. Stroustrup. The annotated C++ reference manual. Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA, 1990.

[Esp02] J. Esparza. Grammars as processes. Lecture Notes In Computer Science, pages

277–297, 2002.

[FB09] Rene Franke and Andreas Both. Tool demo: Component-based infrastruc-

ture for protocol conformance checking of component-based software. In-

ternational Workshop on Formal Aspects of Component Software (FACS’09),

Eindhoven, The Netherlands, November 2009.

[FFB+09] Rene Franke, Francesco Freder, Christian Blaar, Patrick Hiesinger, Monique

Argus, Martin Hörig, Johannes Jahn, and Andre Zepezauer. P2 – Erstellen

einer Grafische Benutzeroberfläche für Protokolldefinition und Auswertung.

student project work, 2009. Institute of Computer Science, University of Halle,

Germany, supervisor: Andreas Both.

[FLNT98] J. Freudig, W. Löwe, R. Neumann, and M. Trapp. Subtyping of context-free

classes. In Proc. 3rd White Object Oriented Nights, 1998.

[Fou09a] Python Software Foundation. Python compiler package, October 2009.

http://docs.python.org/library/compiler.html.

[Fou09b] Python Software Foundation. Python v2.6.4 documentation, October 2009.

http://docs.python.org/library/compiler.html.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-

Wesley Professional, November 2002.

[Fri99] Nat Friedman. The bonobo component and document model. In ALS’99: Pro-

ceedings of the 3rd annual conference on Atlanta Linux Showcase, pages 40–

40, Berkeley, CA, USA, 1999. USENIX Association.

[GH88] D.E. Goldberg and J.H. Holland. Genetic algorithms and machine learning.

Machine Learning, 3(2):95–99, 1988.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements

of Reusable Software Components. Addison-Wesley, 1995.

186

Bibliography

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic

verification of linear temporal logic. In Proceedings of the Fifteenth IFIP WG6.

1 International Symposium on Protocol Specification, Testing and Verification

XV, page 18. Chapman & Hall, Ltd., 1995.

[Gri93] M.L. Griss. Software reuse: from library to factory. IBM Systems Journal,

32(4):548–566, 1993.

[Gro09] The PHP Group. PHP Manual, November 2009.

[GS03a] G. Gossler and J. Sifakis. Component-Based Construction of Deadlock-Free

Systems. In FST TCS 2003: foundations of software technology and theoretical

computer science: 23rd conference, Mumbai, India, December 15-17, 2003:

proceedings, page 420. Springer-Verlag New York Inc, 2003.

[GS03b] Jack Greenfield and Keith Short. Software factories: assembling applications

with patterns, models, frameworks and tools. In OOPSLA ’03: Companion

of the 18th annual ACM SIGPLAN conference on Object-oriented program-

ming, systems, languages, and applications, pages 16–27, New York, NY,

USA, 2003. ACM.

[Han07] Steve Hanov. websequencediagrams, 2007. http://www.

websequencediagrams.com/ (last visited: 2009-10-31).

[HC01] George T. Heineman and William T. Councill, editors. Component-based soft-

ware engineering: putting the pieces together. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 2001.

[HD68] E. A. Hauck and B. A. Dent. Burroughs’ b6500/b7500 stack mechanism. In

AFIPS ’68 (Spring): Proceedings of the April 30–May 2, 1968, spring joint

computer conference, pages 245–251, New York, NY, USA, 1968. ACM.

[Hel10] Hannes Hellmig. Abstraktion von BPEL-Prozessen für Protokollprüfungen (in

progress). Master’s thesis, Institute of Computer Science, University of Halle,

Germany, 2010. In German, supervisor: Andreas Both.

[HMM86] R. Harper, D. MacQueen, and R. Milner. Standard ML. Laboratory for Foun-

dations of Computer Science, Department of Computer Science, University of

Edinburgh, 1986.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,

21(8):666–677, 1978.

[Hoa04] C. A. R. Hoare. Communicating Sequential Processes. electronic edition,

2004.

187

http://www.websequencediagrams.com/
http://www.websequencediagrams.com/

Bibliography

[Hol91] Gerard J. Holzmann. Design and validation of computer protocols. Prentice-

Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[HP00] Klaus Havelund and Thomas Pressburger. Model Checking JAVA Programs

using JAVA PathFinder. STTT, 2(4):366–381, 2000.

[HSS05] Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming BPEL to

Petri Nets. In Wil M. P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera,

editors, Proc. of the Third Int. Conf. on Business Process Management (BPM

2005), volume 3649 of Lecture Notes in Computer Science, pages 220–235,

Nancy, France, September 2005. Springer.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

[ibm05] Websphere message broker basics. IBM Corp., Riverton, NJ, USA, 2005.

[IL01] A. Ingolfsdottir and H. Lin. A Symbolic Approach to Value-passing Processes,

chapter Handbook of Process Algebra, 2001.

[IT03] Paola Inverardi and Massimo Tivoli. Deadlock-free software architectures for

com/dcom applications. J. Syst. Softw., 65(3):173–183, 2003.

[JB09] Cyril Jaquier and Arturo Busleiman. Fail2ban, November 2009.

http://www.fail2ban.org/.

[JC00] John Daniels John Cheesman. UML Components - A Simple Process for Spec-

ifying Component-based Software. Addison-Wesley Longman, Amsterdam,

2000. ISBN-10: 0201708515 ISBN-13: 978-0201708516.

[Jen91] Kurt Jensen. Coloured Petri Nets: a high level language for system design

and analysis. In APN 90: Proceedings on Advances in Petri nets 1990, pages

342–416, New York, NY, USA, 1991. Springer-Verlag New York, Inc.

[JHA+99] S.P. Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton, J. Fasel,

K. Hammond, R. Hinze, P. Hudak, et al. Haskell 98. Language and Libraries,

The Revised Report, 1999.

[JJ01] C. John and D. John. UML components: a simple process for specifying

component-based software. Addison-Wesley, Boston, 2001.

[Jon03] S.P. Jones. Haskell 98 language and libraries: the revised report. Cambridge

University Press, 2003.

[Jos08] Nicolai Josuttis. Der Business-Case von SOA: Ein Erfahrungsbericht. OBJEK-

Tspektrum, 01(01), 1 2008.

188

Bibliography

[KDE] KDE.org. KParts – component framework for the KDE desktop environment.

[Kel92] A.-W. Scheer G. Keller. Semantische Prozemodellierung auf der Grundlage

Ereignisgesteuerter Prozeketten. Technical Report 89, Veröffentlichungen des

Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saar-

land, Saarbrücken, Germany, 1992.

[KMMP93] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm for full

prepositional temporal logic. In Computer aided verification: 5th international

conference, CAV’93, Elounda, Greece, June 28-July 1, 1993: proceedings, vol-

ume 10, page 97. Springer, 1993.

[KMZB02] Lars M. Kristensen, Brice Mitchell, Lin Zhang, and Jonathan Billington. Mod-

elling and initial analysis of operational planning processes using coloured

petri nets. In CRPIT ’02: Proceedings of the conference on Application and

theory of petri nets, pages 105–114, Darlinghurst, Australia, Australia, 2002.

Australian Computer Society, Inc.

[Kra08] Johannes E. Krause. Erstellen von Abstraktionen für Python- und C/C++-

Programme. student project work, April 2008. Institute of Computer Science,

University of Halle, Germany, In German, supervisor: Andreas Both.

[Kra09] Johannes E. Krause. Implementierung einer gemeinsamen Zwischenschicht für

C/C++/Python zum Zwecke gemeinsamer Programmanalysen. Master’s thesis,

Institute of Computer Science, University of Halle, Germany, March 2009. In

German, supervisor: Andreas Both.

[KT04] Moez Krichen and Stavros Tripakis. Black-box conformance testing for real-

time systems. In Susanne Graf and Laurent Mounier, editors, SPIN, volume

2989 of Lecture Notes in Computer Science, pages 109–126. Springer, 2004.

[LL02] J. Lee and L. F. Lai. A high-level petri nets-based approach to verifying task

structures. IEEE Trans. on Knowl. and Data Eng., 14(2):316–335, 2002.

[Loh08] N. Lohmann. A feature-complete Petri net semantics for WS-BPEL 2.0. Lec-

ture Notes in Computer Science, 4937:77–91, 2008.

[LP85] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent pro-

grams satisfy their linear specification. In POPL ’85: Proceedings of the 12th

ACM SIGACT-SIGPLAN symposium on Principles of programming languages,

pages 97–107, New York, NY, USA, 1985. ACM.

[LTKR07] Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas Reps. Interprocedural

analysis of concurrent programs under a context bound. Technical Report 1598,

Computer Sciences Department, University of Wisconsin, 2007.

189

Bibliography

[LTKR08] Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas Reps. Interprocedural

analysis of concurrent programs under a context bound. In C.R. Ramakrish-

nan and Jakob Rehof, editors, Tools and Algorithms for the Construction and

Analysis of Systems, volume 4963 of Lecture Notes in Computer Science, pages

282–298. Springer, 2008.

[LW93] Barbara Liskov and Jeannette M. Wing. Family values: A behavioral notion

of subtyping. Technical report, Carnegie Mellon University, Pittsburgh, PA,

USA, 1993.

[LW94] B.H. Liskov and J.M. Wing. A behavioral notion of subtyping. ACM transac-

tions on programming languages and systems, 16(6):1811–1841, 1994.

[LW01] B.H. Liskov and J.M. Wing. Behavioural subtyping using invariants and con-

straints. In Formal methods for distributed processing, page 280. Cambridge

University Press, 2001.

[LW07] Kung-Kiu Lau and Zheng Wang. Software component models. IEEE Transac-

tions on Software Engineering, 33(10):709–724, 2007.

[Mal95] Y. Malaiya. Antirandom testing: Getting the most out of black-box testing.

pages 86–95, October 1995.

[May81] Ernst W. Mayr. An algorithm for the general petri net reachability problem. In

STOC ’81: Proceedings of the thirteenth annual ACM symposium on Theory

of computing, pages 238–246, New York, NY, USA, 1981. ACM.

[May97] Richard Mayr. Combining Petri nets and PA-processes. In TACS’97: Proc. of

the Third Int. Symposium on Theoretical Aspects of Computer Software, pages

547–561, London, UK, 1997. Springer.

[May98] Richard Mayr. Decidability and complexity of model checking problems for

infinite-state systems. PhD thesis, Technical University of Munich, 1998.

[May00] Richard Mayr. Process rewrite systems. Information and Computation, 156(1-

2):264–286, 2000.

[May01] Richard Mayr. Decidability of model checking with the temporal logic EF.

Theoretical Computer Science, 256(1-2):31–62, 2001.

[MBTS04] G.J. Myers, T. Badgett, T.M. Thomas, and C. Sandler. The art of software

testing. Wiley, second edition, 2004.

[Mee01] Michael Meeks. Bonobo and free software gnome components. Component-

based software engineering: putting the pieces together, pages 607–619, 2001.

190

Bibliography

[Mey88] Bertrand Meyer. Object-Oriented Software Construction, 1st editon. Prentice-

Hall, 1988.

[Mey92a] B. Meyer. Eiffel: the language. Prentice-Hall Object-Oriented Series, page

594, 1992.

[Mey92b] Bertrand Meyer. Applying ”design by contract”. Computer, 25(10):40–51,

1992.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture

Notes in Computer Science. Springer, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil92] D. Miller. The pi-calculus as a theory in linear logic: Preliminary results.

In Extensions of logic programming: third international workshop, ELP’92,

Bologna, Italy, February 26-28, 1992: proceedings, page 242. Springer, 1992.

[MK99] Jeff Magee and Jeff Kramer. Concurrency: state models & Java programs.

John Wiley & Sons, Inc., New York, NY, USA, 1999.

[MLM+06] C.M. MacKenzie, K. Laskey, F. McCabe, P.F. Brown, and R. Metz. Reference

model for service oriented architecture 1.0. OASIS Standard, 12, 2006.

[MT00] L.I. Millett and T. Teitelbaum. Issues in slicing PROMELA and its applications

to model checking, protocol understanding, and simulation. International Jour-

nal on Software Tools for Technology Transfer (STTT), 2(4):343–349, 2000.

[MTMH97] R. Milner, M. Tofte, D. Macqueen, and R. Harper. The definition of standard

ML: revised. The MIT Press, 1997.

[Mye79] Glenford J. Myers. The art of software testing. John Wiley & Sons, Inc. New

York, NY, USA, 1979.

[Nie93] O. Nierstrasz. Regular types for active objects. In OOPSALA ‘93, volume

28:10 of ACM SIGPLAN Notices, 1993.

[Nie95] Oscar Nierstrasz. Regular types for active objects. In Oscar Nierstrasz and

Dennis Tsichritzis, editors, Object-Oriented Software Composition, pages 99–

121. Prentice-Hall, 1995.

[NM95] O. Nierstrasz and T.D. Meijler. Requirements for a composition language.

Lecture Notes in Computer Science, pages 147–147, 1995.

[NR69] P. Naur and B. Randell. The 1968/69 NATO Software Engineering Reports.

NATO, 1969.

191

Bibliography

[NTD+95] O. Nierstrasz, D. Tsichritzis, L. Dami, D. Konstantas, and X. Pintado. Object-

oriented software composition. Prentice Hall, 1995.

[Pet73] C.A. Petri. Concepts of net theory. In Proceedings of MFCS, volume 73, pages

137–146, 1973.

[Pet77] James L. Peterson. Petri Nets. ACM Comput. Surv., 9(3):223–252, 1977.

[PJHA+99] S. Peyton Jones, J. Hughes, L. Augustsson, D. Barton, B. Boutel, W. Burton,

J. Fasel, K. Hammond, R. Hinze, P. Hudak, et al. Report on the programming

language Haskell 98, a non-strict, purely functional language, 1999.

[PNPR05a] S. Pavel, J. Noye, P. Poizat, and J.C. Royer. A Java Implementation of a Com-

ponent Model with Explicit Symbolic Protocols. In Software composition: 4th

international workshop, SC 2005, Edinburgh, UK, April 9, 2005: revised se-

lected papers, page 115. Springer Verlag, 2005.

[PNPR05b] S. Pavel, J. Noye, P. Poizat, and J.C. Royer. A Java implementation of a com-

ponent model with explicit symbolic protocols. Lecture Notes in Computer

Science, 3628:115–124, 2005.

[PP09] Tomáš Poch and František Plášil. Extracting behavior specification of compo-

nents in legacy applications. In CBSE ’09: Proceedings of the 12th Interna-

tional Symposium on Component-Based Software Engineering, pages 87–103,

Berlin, Heidelberg, 2009. Springer-Verlag.

[Prä09] Stephan Prätsch. Implementierung eines Modellprfungsalgorithmus für

Prozess-Algebra-Netze. Master’s thesis, Institute of Computer Science, Uni-

versity of Halle, Germany, September 2009. In German, supervisor: Andreas

Both.

[prs04] Extended process rewrite systems: Expressiveness and reachability. Springer-

Verlag New York Inc, 2004.

[PST07] Gaël Patin, Mihaela Sighireanu, and Tayssir Touili. Spade: Verification of

multithreaded dynamic and recursive programs. In Werner Damm and Holger

Hermanns, editors, CAV, volume 4590 of Lecture Notes in Computer Science,

pages 254–257. Springer, 2007.

[PTDL07] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Ley-

mann. Service-oriented computing: State of the art and research challenges.

Computer, Innovative Technology for Computer Professionals, 40(11):38–45,

November 2007.

[Pun99] F. Puntigam. Non-regular Process Types. In Proceedings of the 5th In-

ternational Euro-Par Conference on Parallel Processing, pages 1334–1343.

Springer-Verlag London, UK, 1999.

192

Bibliography

[PV02] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software

components. IEEE Transactions on Software Engineering, 28(11):1056–1076,

2002.

[Pyt09] List of python software, November 2009. http://en.wikipedia.org/

wiki/List_of_Python_software.

[QR05] Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent

software. In Nicolas Halbwachs and Lenore D. Zuck, editors, TACAS, volume

3440 of Lecture Notes in Computer Science, pages 93–107. Springer, 2005.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 1993.

[Rei85] W. Reisig. Petri nets: an introduction. Springer-Verlag New York, Inc. New

York, NY, USA, 1985.

[Reu02a] Ralf H. Reussner. Counter-constrained finite state machines: Modelling com-

ponent protocols with rescource dependencies. Technical Report 6, Fakultät für

Informatik, Institut fr Algorithmen und Kognitive Systeme (IAKS), Universität

Karlsruhe, 2002.

[Reu02b] Ralf H. Reussner. Counter-constraint finite state machines: A new model

for resource-bounded component protocols. In Bill Grosky, Frantisek Plasil,

and Ales Krenek, editors, Proc. of the 29th Annual Conf. in Current Trends in

Theory and Practice of Informatics (SOFSEM 2002), Milovy, Czech Republic,

volume 2540 of Lecture Notes in Computer Science, pages 20–40. Springer-

Verlag, Berlin, Germany, November 2002.

[Ric08] Dirk Richter. Modellreduktionstechniken für symbolische Kellersysteme.

Proc. of the 25. Workshop ’Programmiersprachen und Rechenkonzepte’, Uni-

versity Kiel, 2008.

[Ric09] Dirk Richter. Rekursionspräzise Intervallanalysen. Im Rahmen des 15. Kol-

loquium Programmiersprachen und Grundlagen der Programmierung (KPS),

2009.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Lan-

guage Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[Rud10] Andreas Rudolf. Erzeugen von Process Rewrite Systems - Abstraktionen aus

PHP-Code (in progress). Master’s thesis, Institute of Computer Science, Uni-

versity of Halle, Germany, 2010. In German, supervisor: Andreas Both.

[SCCS05] Natasha Sharygina, Sagar Chaki, Edmund M. Clarke, and Nishant Sinha. Dy-

namic component substitutability analysis. In John Fitzgerald, Ian J. Hayes,

193

http://en.wikipedia.org/wiki/List_of_Python_software
http://en.wikipedia.org/wiki/List_of_Python_software

Bibliography

and Andrzej Tarlecki, editors, FM, volume 3582 of Lecture Notes in Computer

Science, pages 512–528. Springer, 2005.

[Sch63] M. P. Schutzenberger. On Context-Free Languages and Push-Down Automata.

Information and control, 6:246–264, 1963.

[Sch96] Roy W. Schulte. ”Service Oriented” Architectures, Part 2. Research Note

SPA-401-069, the Gartner Group, April 1996.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Soft-

ware - Beyond Object-Oriented Programming. Addison-Wesley Longman,

Amsterdam, 2nd ed. (15. November 2002) edition, 2002.

[SK00] Patrick J. Schroeder and Bogdan Korel. Black-box test reduction using input-

output analysis. In ISSTA ’00: Proceedings of the 2000 ACM SIGSOFT in-

ternational symposium on Software testing and analysis, pages 173–177, New

York, NY, USA, 2000. ACM.

[SKPR04] Heinz W. Schmidt, Bernd J. Krämer, Iman Poernomo, and Ralf Reussner. Pre-

dictable component architectures using dependent finite state machines. In

Proc. of the NATO Workshop Radical Innovations of Software and Systems En-

gineering in the Future, volume 2941 of Lecture Notes in Computer Science,

pages 310–324. Springer, 2004.

[SN96] Roy W. Schulte and Yefim V. Natis. ”Service Oriented” Architectures, Part 1.

Research Note SPA-401-068, the Gartner Group, April 1996.

[Sud05] M. Sudholt. A model of components with non-regular protocols. Lecture Notes

in Computer Science, 3628:99–113, 2005.

[Szy97] Clemens Szyperski. Component Software: Beyond Object-Oriented Program-

ming. Addison-Wesley Professional, December 1997.

[TMP08] Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-bounded

analysis of concurrent queue systems. In C.R. Ramakrishnan and Jakob Rehof,

editors, Tools and Algorithms for the Construction and Analysis of Systems,

volume 4963 of Lecture Notes in Computer Science, pages 299–314. Springer,

2008.

[Ull98] J.D. Ullman. Elements of ML programming (ML97 ed.). Prentice-Hall, Inc.

Upper Saddle River, NJ, USA, 1998.

[Val92] Antti Valmari. A stubborn attack on state explosion. Form. Methods Syst. Des.,

1(4):297–322, 1992.

[VBvdA01] H. M. W. Verbeek, T. Basten, and W. M . P. van der Aalst. Diagnosing workflow

processes using woflan. The Computer Journal, 44, 2001.

194

Bibliography

[vdA97] Wil M. P. van der Aalst. Verification of workflow nets. Lecture Notes in Com-

puter Science, 1248:407–426, 1997.

[vdA98] Wil M. P. van der Aalst. The application of petri nets to workflow management.

The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[VdAvHvdT02] W. M. P. Van der Aalst, K. M. van Hee, and R. A. van der Toorn. Component-

based software architectures: a framework based on inheritance of behavior.

Science of Computer Programming, 42(2-3):129–172, 2002.

[Ver01] R. Veryard. Component-based business: plug and play. Springer Verlag, 2001.

[VvdA05] H. M. W. Verbeek and W. M. P. van der Aalst. Analyzing BPEL processes using

Petri nets. In D. Marinescu, editor, 2nd Int. Workshop on Applications of Petri

Nets to Coordination, Workflow and Business Process Management (PNCWB

2005), pages 59–78. Florida International University, Miami, Florida, 2005.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information

and Computation, 115(1):1–37, 1994.

[Web07a] Web Services Description Working Group. SOAP Version 1.2 Part 1: Messag-

ing Framework (Second Edition). Technical report, World Wide Web Consor-

tium (W3C), April 2007.

[Web07b] Web Services Description Working Group. Web Services Description Lan-

guage (WSDL) Version 2.0 Part 1: Core Language. Technical report, World

Wide Web Consortium (W3C), June 2007.

[Whi00] J. A. Whittaker. What is software testing? And why is it so hard? IEEE

software, 17(1):70–79, 2000.

[Wie03] Jan Wielemaker. An overview of the SWI-Prolog programming environment.

In Fred Mesnard and Alexander Serebenik, editors, Proceedings of the 13th In-

ternational Workshop on Logic Programming Environments, pages 1–16, Hev-

erlee, Belgium, december 2003. Katholieke Universiteit Leuven. CW 371.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about infinite

computation paths. In SFCS ’83: Proceedings of the 24th Annual Symposium

on Foundations of Computer Science, pages 185–194, Washington, DC, USA,

1983. IEEE Computer Society.

[YG] K. Yorav and O. Grumberg. Static analysis for state-space reductions pre-

serving temporal logics. volume 25, pages 67–96. Formal Methods in System

Design.

195

Bibliography

[YS94] Daniel M. Yellin and Robert E. Strom. Interfaces, protocols, and the semi-

automatic construction of software adaptors. SIGPLAN Not., 29(10):176–190,

1994.

[YS97] Daniel M. Yellin and Robert E. Strom. Protocol specifications and component

adaptors. ACM Trans. Program. Lang. Syst., 19(2):292–333, 1997.

[ZS03] W. Zimmermann and M. Schaarschmidt. Model checking of client-component

conformance. In 2nd Nordic Conf. on Web-Services, number 008 in Mathemat-

ical Modelling in Physics, Engineering and Cognitive Sciences, pages 63–74,

2003.

[ZS06] Wolf Zimmermann and Michael Schaarschmidt. Automatic checking of com-

ponent protocols in component-based systems. In Welf Löwe and Mario

Südholt, editors, Software Composition, volume 4089 of Lecture Notes in Com-

puter Science, pages 1–17. Springer, 2006.

[ZW97] Amy Moormann Zaremski and Jeannette M. Wing. Specification matching

of software components. ACM Transactions on Software Engineering and

Methodology, 6(4):333–369, 1997.

196

A Appendix

A.1 Notations Used in this Thesis

Notation Description

Ci a component named Ci

Π abstract behavior

ΠCi abstract behavior of the component Ci

PCi protocol of a component Ci
(represented as finite state machine or regular expression)

ΠS system abstraction of a complete component-based software

ΠS,C system abstraction, considering only the interactions of a component C

ΠC
S Combined Abstraction considering the calls to the component C

PEX(Q) set of process-algebraic expressions

s, t process-algebraic terms, s, t ∈ PEX(Q)

v states of an (inverted) protocol, v ∈ PA

a, b, λ interactions in the considered system, a, b ∈ Σ

λ empty sequence of interactions

w, x, y, λ sequences of interactions, w, x, y ∈ Σ∗

p, ε atomic processes, p ∈ Q, empty process, ε ∈ Q

Table A.1.: Overview of notations.

A.2 Syntax of Used Programming Language

The syntax of the example language allow procedures only. Therefore, result parameters are

possible using the keyword “out”. All other parameters are value parameters. To simplify the

notation of source code, we allow also natural language within the source code. We demand that

one statement per line is written.

197

A. Appendix

Prog ::= Interface∗ Component∗

Interface ::= “interface” name “begin” Signature∗ “end”
Signature ::= mod type name “(” types “)”

types ::= ListOf type
Component ::= “component” name “implements” Interfaces

Interfaces ::= Init “begin” Procedure∗ “end”
Init ::= type identifier “=” value

Procedure ::= “proc” name “(” ParameterDefs “)” “begin” Block “end”
ParameterDefs ::= ListOf (inout type name)

Parameter ::= ListOf (type name)
Block ::= Statement∗

Statement ::= “if” Expr “then” Block
Statement ::= “if” Expr “then” Block “else” Block
Statement ::= “call” name “(” Parameters “)”
Statement ::= “while” Expr “do” Block
Statement ::= Expr
Statement ::= name “=” Expr

Expr ::= identifier
Expr ::= Expr op identifier
Expr ::= “not” identifier
name ::= identifier
type ::= identifier
mod ::= “sync”
mod ::= “async”

inout ::= “out”
inout ::= ε

op ::= “&&”
op ::= “‖‖”
op ::= “+”
op ::= “−”
op ::= “∗”
op ::= “/”
op ::= “==”
op ::= “<”
op ::= “>”

The semantics of our programming language is defined as usual:

keyword semantics

“sync” The marked interaction is performed synchronously.
“async” The marked interaction is performed asynchronously.
“out” The value of the marked parameter is set within the procedure.
“call” This keyword labels a call to a procedure explicitly.
“begin” Labels the beginning of a scope.
“end” Labels the end of a scope.
“+” Arithmetic addiction.
“&&” Logical and.
“not” Logical negation.

198

A.3. More Figures, Tables and Listings

A.3 More Figures, Tables and Listings

Example A.1: Service for registration and confirmation of service items based on time and ma-
terial. The example is discussed intensely in [BZ09b].

finite state mashine

regular expression
b (e b)* c d

b c d

e

protocol of W1b: register adducted
service items

c: approve of registered
service items

d: confirm registered
service items

e: reject of registered
service items

Service W1:
registration and
confirmation of
service items
based on time
and material

Figure A.1.: A Saguaro cactus (Carnegiea gigantea), wikimedia.org.

199

A. Appendix

abbr. PRS classification description

FS (1, 1)-PRS Finite-State Systems (finite state machines)

BPA (1, S)-PRS Basic Parallel Algebra, push-down automata with one state

BPP (1, P)-PRS Basic Parallel Processes

PA (1, G)-PRS PA-Processes

PDA (S, S)-PRS push-down automata

PN (P, P)-PRS Petri nets

PRS (G,G)-PRS (general) Process Rewrite Systems

Table A.2.: Meaning of the acronyms of the PRS-hierarchy.

����� LINEAR�TIME LOGICS �

BPA (1,S)

Pushdown (S,S)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Finite-State Systems (1,1)

Petri Nets (P,P)
Processes

PA (1,G)

LTL,
linear-time mu-calc.

Figure ����� Limits of the decidability of linear�time logics�

Figure A.2.: Limits of the decidability of linear-time logics (taken from [May98, May01]).

200

A.3. More Figures, Tables and Listings����� BRANCHING�TIME LOGICS �
�

BPA (1,S)

PA (1,G)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Pushdown (S,S)

Finite-State Systems (1,1)

Petri Nets (P,P)
Processes

EF

EG, UB, CTL,
modal mu-calc.

Figure ����� Limits of the decidability of branching�time logics�

Figure A.3.: Limits of the decidability of branching-time logics (taken from [May98, May01]).

����� BRANCHING�TIME LOGICS ��	

Reachability general
xed state

�nite�state systems � P � P

BPA � P � P

pushdown processes � P � P

BPP NP�complete � NP

PA NP�complete � NP

PAD NP�complete � NP

Petri nets
decidable�
EXPSPACE �hard

decidable�
EXPSPACE �hard

PAN
decidable�
EXPSPACE �hard

decidable�
EXPSPACE �hard

PRS
decidable�
EXPSPACE �hard

decidable�
EXPSPACE �hard

BPA (1,S)

PA (1,G)

PAD (S,G) PAN (P,G)

BPP (1,P)

PRS (G,G)

Finite-State Systems (1,1)

Petri Nets (P,P)Pushdown (S,S)
Processes

NP-complete

polynomial

decidable,
EXPSPACE-hard

Figure ����� The complexity of reachability�

Figure A.4.: The complexity of reachability of Process Rewrite Systems (taken from [May98]).

201

A. Appendix

� �
1 #!/bin/python

2

3 import time

4 from threading import Thread

5

6 class testit(Thread):

7 def i n i t (self , name):

8 Thread. i n i t (self)

9 self.name = name

10

11 def run(self):

12 print self.name+" starts."

13 time.sleep (5);

14 print self.name+" finishs."

15

16 def startThread ():

17 current = testit("t1")

18 current.start()

19 return current

20

21

22 def main():

23 mythread = startThread ();

24 print "main is waiting."

25 mythread.join()

26 print "main has finished."

27

28

29 main()� �
Example A.3: Program returning thread identifier as return value.

Example A.2: A more specific protocol of component C2 of Example 4.3 on page 59.

PC2=̂(((reset+ set+)∗|set∗) calc+)∗
(a) Protocol PC2 of component C2 as regular expression.

v0 v1 v2 v3reset set calc

set
calc

reset

setreset set calc

(b) Protocol of component PC2 in a graphical representation.

202

Listing A.1: WSDL Definition of WSA and WSO
1 <?xml version="1.0" encoding="UTF−8"?>
2 <definitions name="WSO"
3 targetNamespace="http:// localhost:80/WSO.wsdl"
4 xmlns:tns="http: // localhost:80/WSO.wsdl"
5 xmlns:SOAP−ENV="http:// schemas.xmlsoap.org/soap/envelope/"
6 xmlns:SOAP−ENC="http:// schemas.xmlsoap.org/soap/encoding/"
7 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema−instance"
8 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"
9 xmlns:WS−A="http:// tempuri.org/WS−O.xsd"

10 xmlns:SOAP="http:// schemas.xmlsoap.org/wsdl/soap/"
11 xmlns:MIME="http:// schemas.xmlsoap.org/wsdl/mime/"
12 xmlns:DIME="http:// schemas.xmlsoap.org/ws /2002/04/ dime/wsdl/"
13 xmlns:WSDL="http:// schemas.xmlsoap.org/wsdl/"
14 xmlns="http: // schemas.xmlsoap.org/wsdl/">
15
16 <types>
17
18 <schema targetNamespace="http:// tempuri.org/WS−A.xsd"
19 xmlns:SOAP−ENV="http:// schemas.xmlsoap.org/soap/envelope/"
20 xmlns:SOAP−ENC="http:// schemas.xmlsoap.org/soap/encoding/"
21 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema−instance"
22 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"
23 xmlns:WS−A="http:// tempuri.org/WS−A.xsd"
24 xmlns="http: //www.w3.org /2001/ XMLSchema"
25 elementFormDefault="unqualified"
26 attributeFormDefault="unqualified">
27 <import namespace="http:// schemas.xmlsoap.org/soap/encoding/"/>
28 <simpleType name="Operation">
29 <restriction base="xsd:string">
30 <enumeration value="no−op"/><!−− enum const = 0 −−>
31 <enumeration value="sequ−op"/><!−− enum const = 1 −−>
32 <enumeration value="sync−op"/><!−− enum const = 2 −−>
33 <enumeration value="fork−op"/><!−− enum const = 3 −−>
34 <enumeration value="eps−op"/><!−− enum const = 4 −−>
35 </restriction>
36 </simpleType>
37 <simpleType name="TransitionTyp">
38 <restriction base="xsd:string">
39 <enumeration value="no−typ"/><!−− enum const = 0 −−>
40 <enumeration value="active"/><!−− enum const = 1 −−>
41 <enumeration value="inactive"/><!−− enum const = 2 −−>
42 <enumeration value="lambda"/><!−− enum const = 3 −−>
43 </restriction>
44 </simpleType>
45 <complexType name="IntVector">
46 <sequence>
47 <element name="item" type="xsd:int" minOccurs="0" maxOccurs="

unbounded"/>
48 </sequence>

49 </complexType>
50 <complexType name="NodeId">
51 <sequence>
52 <element name="componentId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
53 <element name="componentNodeId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
54 <element name="pre" type="xsd:int" minOccurs="1" maxOccurs="1

"/>
55 <element name="post" type="xsd:int" minOccurs="1" maxOccurs="

1"/>
56 </sequence>
57 </complexType>
58 <complexType name="ArrayOfNodeIds">
59 <sequence>
60 <element name="nodeIds" type="WS−A:NodeId" minOccurs="0"

maxOccurs="unbounded"/>
61 </sequence>
62 </complexType>
63 <complexType name="NodeInfo">
64 <sequence>
65 <element name="nodeId" type="WS−A:NodeId" minOccurs="1"

maxOccurs="1"/>
66 <element name="name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
67 <element name="fileName" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
68 <element name="lineInCode" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
69 <element name="posInLine" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
70 </sequence>
71 </complexType>
72 <complexType name="ActionId">
73 <sequence>
74 <element name="actionId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
75 </sequence>
76 </complexType>
77 <complexType name="ArrayOfActionIds">
78 <sequence>
79 <element name="ActionIds" type="WS−A:ActionId" minOccurs="0"

maxOccurs="unbounded"/>
80 </sequence>
81 </complexType>
82 <complexType name="ActionInfo">
83 <sequence>
84 <element name="actionId" type="WS−A:ActionId" minOccurs="1"

maxOccurs="1"/>
85 <element name="action" type="xsd:string" minOccurs="1"

maxOccurs="1"/>

86 </sequence>
87 </complexType>
88 <complexType name="ProtocolId">
89 <sequence>
90 <element name="protocolId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
91 </sequence>
92 </complexType>
93 <complexType name="ComponentId">
94 <sequence>
95 <element name="componentId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
96 </sequence>
97 </complexType>
98 <complexType name="AbstractionTransition">
99 <sequence>

100 <element name="op1" type="WS−A:NodeId" minOccurs="1"
maxOccurs="1"/>

101 <element name="op2" type="WS−A:NodeId" minOccurs="1"
maxOccurs="1"/>

102 <element name="op3" type="WS−A:NodeId" minOccurs="1"
maxOccurs="1"/>

103 <element name="operation" type="WS−A:Operation" minOccurs="1"
maxOccurs="1"/>

104 <element name="typ" type="WS−A:TransitionTyp" minOccurs="1"
maxOccurs="1"/>

105 <element name="action" type="WS−A:ActionId" minOccurs="1"
maxOccurs="1"/>

106 </sequence>
107 </complexType>
108 <complexType name="AbstractionAutomaton">
109 <sequence>
110 <element name="compId" type="WS−A:ComponentId" minOccurs="1"

maxOccurs="1"/>
111 <element name="startId" type="WS−A:NodeId" minOccurs="1"

maxOccurs="1"/>
112 <element name="Transitions" type="WS−A:AbstractionTransition"

minOccurs="0" maxOccurs="unbounded"/>
113 </sequence>
114 </complexType>
115 <complexType name="Component">
116 <sequence>
117 <element name="compId" type="WS−A:ComponentId" minOccurs="1"

maxOccurs="1"/>
118 <element name="protocolId" type="WS−A:ProtocolId" minOccurs="

1" maxOccurs="1"/>
119 <element name="name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
120 </sequence>
121 </complexType>
122 <complexType name="ComponentResponse">

123 <sequence>
124 <element name="compId" type="WS−A:ComponentId" minOccurs="1"

maxOccurs="1"/>
125 <element name="protocolId" type="WS−A:ProtocolId" minOccurs="

1" maxOccurs="1"/>
126 <element name="name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
127 <element name="rev" type="xsd:string" minOccurs="1" maxOccurs

="1"/>
128 <element name="more" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
129 </sequence>
130 </complexType>
131 <!−− operation request element −−>
132 <element name="getAbstraction">
133 <complexType>
134 <sequence>
135 <element name="IdOfComponent" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
136 <element name="Analyses" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
137 </sequence>
138 </complexType>
139 </element>
140 <!−− operation response element −−>
141 <element name="AbstractionAutomatonResponse">
142 <complexType>
143 <sequence>
144 <element name="compId" type="WS−A:ComponentId" minOccurs="1"

maxOccurs="1"/>
145 <element name="startId" type="WS−A:NodeId" minOccurs="1"

maxOccurs="1"/>
146 <element name="Transitions" type="WS−A:AbstractionTransition"

minOccurs="0" maxOccurs="unbounded"/>
147 </sequence>
148 </complexType>
149 </element>
150 <!−− operation request element −−>
151 <element name="getAbstractions">
152 <complexType>
153 <sequence>
154 <element name="IdsOfComponents" type="WS−A:IntVector"

minOccurs="1" maxOccurs="1"/>
155 <element name="Analyses" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
156 </sequence>
157 </complexType>
158 </element>
159 <!−− operation response element −−>
160 <element name="ArrayOfAbstractions">
161 <complexType>

162 <sequence>
163 <element name="AbsArray" type="WS−A:AbstractionAutomaton"

minOccurs="0" maxOccurs="unbounded"/>
164 </sequence>
165 </complexType>
166 </element>
167 <!−− operation request element −−>
168 <element name="getActionInfo">
169 <complexType>
170 <sequence>
171 <element name="ActionIds" type="WS−A:ArrayOfActionIds"

minOccurs="1" maxOccurs="1"/>
172 </sequence>
173 </complexType>
174 </element>
175 <!−− operation response element −−>
176 <element name="ArrayOfActionInfos">
177 <complexType>
178 <sequence>
179 <element name="Infos" type="WS−A:ActionInfo" minOccurs="0"

maxOccurs="unbounded"/>
180 </sequence>
181 </complexType>
182 </element>
183 <!−− operation request element −−>
184 <element name="getCombinedAbstraction">
185 <complexType>
186 <sequence>
187 <element name="CompSystem" type="WS−A:IntVector" minOccurs="1

" maxOccurs="1"/>
188 <element name="Analyses" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
189 <element name="IdOfComponentsProtocol" type="xsd:int"

minOccurs="1" maxOccurs="1"/>
190 </sequence>
191 </complexType>
192 </element>
193 <!−− operation request element −−>
194 <element name="getCombinedAbstractionWithProtocol">
195 <complexType>
196 <sequence>
197 <element name="CompSystem" type="WS−A:IntVector" minOccurs="1

" maxOccurs="1"/>
198 <element name="Analyses" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
199 <element name="protocol" type="WS−A:AbstractionAutomaton"

minOccurs="1" maxOccurs="1"/>
200 </sequence>
201 </complexType>
202 </element>
203 <!−− operation request element −−>

204 <element name="getComponentImplementationInformation">
205 <complexType>
206 <sequence>
207 <element name="IdOfComponent" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
208 </sequence>
209 </complexType>
210 </element>
211 <!−− operation response element −−>
212 <element name="ComponentInfo">
213 <complexType>
214 <sequence>
215 <element name="compId" type="WS−A:ComponentId" minOccurs="1"

maxOccurs="1"/>
216 <element name="name" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
217 <element name="information" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
218 <element name="parentComponentId" type="xsd:int" minOccurs="1

" maxOccurs="1"/>
219 <element name="childrenComponentIds" type="WS−A:IntVector"

minOccurs="1" maxOccurs="1"/>
220 </sequence>
221 </complexType>
222 </element>
223 <!−− operation request element −−>
224 <element name="getListOfComponents">
225 <complexType>
226 <sequence>
227 </sequence>
228 </complexType>
229 </element>
230 <!−− operation response element −−>
231 <element name="ArrayOfComponents">
232 <complexType>
233 <sequence>
234 <element name="Components" type="WS−A:ComponentResponse"

minOccurs="0" maxOccurs="unbounded"/>
235 </sequence>
236 </complexType>
237 </element>
238 <!−− operation request element −−>
239 <element name="getNodeInfo">
240 <complexType>
241 <sequence>
242 <element name="NodeIds" type="WS−A:ArrayOfNodeIds" minOccurs=

"1" maxOccurs="1"/>
243 </sequence>
244 </complexType>
245 </element>
246 <!−− operation response element −−>

247 <element name="ArrayOfNodeInfos">
248 <complexType>
249 <sequence>
250 <element name="Infos" type="WS−A:NodeInfo" minOccurs="0"

maxOccurs="unbounded"/>
251 </sequence>
252 </complexType>
253 </element>
254 <!−− operation request element −−>
255 <element name="getProtocol">
256 <complexType>
257 <sequence>
258 <element name="IdOfProtocol" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
259 </sequence>
260 </complexType>
261 </element>
262 <!−− operation request element −−>
263 <element name="getProtocolInfo">
264 <complexType>
265 <sequence>
266 <element name="IdOfProtocol" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
267 </sequence>
268 </complexType>
269 </element>
270 <!−− operation response element −−>
271 <element name="ProtocolInfo">
272 <complexType>
273 <sequence>
274 <element name="protocolId" type="WS−A:ProtocolId" minOccurs="

1" maxOccurs="1"/>
275 <element name="regex" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
276 <element name="location" type="WS−A:ComponentId" minOccurs="1

" maxOccurs="1"/>
277 </sequence>
278 </complexType>
279 </element>
280 </schema>
281
282 </types>
283
284 <message name="getAbstraction">
285 <part name="parameters" element="WS−A:getAbstraction"/>
286 </message>
287
288 <message name="AbstractionAutomatonResponse">
289 <part name="parameters" element="WS−

A:AbstractionAutomatonResponse"/>
290 </message>

291
292 <message name="getAbstractions">
293 <part name="parameters" element="WS−A:getAbstractions"/>
294 </message>
295
296 <message name="ArrayOfAbstractions">
297 <part name="parameters" element="WS−A:ArrayOfAbstractions"/>
298 </message>
299
300 <message name="getActionInfo">
301 <part name="parameters" element="WS−A:getActionInfo"/>
302 </message>
303
304 <message name="ArrayOfActionInfos">
305 <part name="parameters" element="WS−A:ArrayOfActionInfos"/>
306 </message>
307
308 <message name="getCombinedAbstraction">
309 <part name="parameters" element="WS−A:getCombinedAbstraction"/>
310 </message>
311
312 <message name="getCombinedAbstractionWithProtocol">
313 <part name="parameters" element="WS−

A:getCombinedAbstractionWithProtocol"/>
314 </message>
315
316 <message name="getComponentImplementationInformation">
317 <part name="parameters" element="WS−

A:getComponentImplementationInformation"/>
318 </message>
319
320 <message name="ComponentInfo">
321 <part name="parameters" element="WS−A:ComponentInfo"/>
322 </message>
323
324 <message name="getListOfComponents">
325 <part name="parameters" element="WS−A:getListOfComponents"/>
326 </message>
327
328 <message name="ArrayOfComponents">
329 <part name="parameters" element="WS−A:ArrayOfComponents"/>
330 </message>
331
332 <message name="getNodeInfo">
333 <part name="parameters" element="WS−A:getNodeInfo"/>
334 </message>
335
336 <message name="ArrayOfNodeInfos">
337 <part name="parameters" element="WS−A:ArrayOfNodeInfos"/>
338 </message>
339

340 <message name="getProtocol">
341 <part name="parameters" element="WS−A:getProtocol"/>
342 </message>
343
344 <message name="getProtocolInfo">
345 <part name="parameters" element="WS−A:getProtocolInfo"/>
346 </message>
347
348 <message name="ProtocolInfo">
349 <part name="parameters" element="WS−A:ProtocolInfo"/>
350 </message>
351
352 <portType name="WSAPortType">
353 <operation name="getAbstraction">
354 <documentation>Liefert eine Abstraktion von einer Komponente</

documentation>
355 <input message="tns:getAbstraction"/>
356 <output message="tns:AbstractionAutomatonResponse"/>
357 </operation>
358 <operation name="getAbstractions">
359 <documentation>Liefert aufgeloeste Abstraktionen der

uebergebenen Komponenten</documentation>
360 <input message="tns:getAbstractions"/>
361 <output message="tns:ArrayOfAbstractions"/>
362 </operation>
363 <operation name="getActionInfo">
364 <documentation>loest Action−Ids auf</documentation>
365 <input message="tns:getActionInfo"/>
366 <output message="tns:ArrayOfActionInfos"/>
367 </operation>
368 <operation name="getCombinedAbstraction">
369 <documentation>Liefert Combined Abstraction eines Systems von

Komponenten in Bezug auf eine spezifiziertes Protokoll</
documentation>

370 <input message="tns:getCombinedAbstraction"/>
371 <output message="tns:AbstractionAutomatonResponse"/>
372 </operation>
373 <operation name="getCombinedAbstractionWithProtocol">
374 <documentation>Service definition of function

WS A getCombinedAbstractionWithProtocol</documentation>
375 <input message="tns:getCombinedAbstractionWithProtocol"/>
376 <output message="tns:AbstractionAutomatonResponse"/>
377 </operation>
378 <operation name="getComponentImplementationInformation">
379 <documentation>Liefert Informationen ueber eine Komponente , z. B

. welche Programmiersprache verwendet wurde , welche
Interfaces diese Komponente besitzt , ... (dynamisch) </
documentation>

380 <input message="tns:getComponentImplementationInformation"/>
381 <output message="tns:ComponentInfo"/>
382 </operation>

383 <operation name="getListOfComponents">
384 <documentation>Service definition of function

WS A getListOfComponents</documentation>
385 <input message="tns:getListOfComponents"/>
386 <output message="tns:ArrayOfComponents"/>
387 </operation>
388 <operation name="getNodeInfo">
389 <documentation>loest Node−Ids auf</documentation>
390 <input message="tns:getNodeInfo"/>
391 <output message="tns:ArrayOfNodeInfos"/>
392 </operation>
393 <operation name="getProtocol">
394 <documentation>Service definition of function WS A getProtocol<

/documentation>
395 <input message="tns:getProtocol"/>
396 <output message="tns:AbstractionAutomatonResponse"/>
397 </operation>
398 <operation name="getProtocolInfo">
399 <documentation>loest Node−Ids auf</documentation>
400 <input message="tns:getProtocolInfo"/>
401 <output message="tns:ProtocolInfo"/>
402 </operation>
403 </portType>
404
405 <binding name="WSO" type="tns:WSOPortType">
406 <SOAP:binding style="document" transport="http:// schemas.xmlsoap.

org/soap/http"/>
407 <operation name="getAbstraction">
408 <SOAP:operation soapAction=""/>
409 <input>
410 <SOAP:body parts="parameters" use="literal"/>
411 </input>
412 <output>
413 <SOAP:body parts="parameters" use="literal"/>
414 </output>
415 </operation>
416 <operation name="getAbstractions">
417 <SOAP:operation soapAction=""/>
418 <input>
419 <SOAP:body parts="parameters" use="literal"/>
420 </input>
421 <output>
422 <SOAP:body parts="parameters" use="literal"/>
423 </output>
424 </operation>
425 <operation name="getActionInfo">
426 <SOAP:operation soapAction=""/>
427 <input>
428 <SOAP:body parts="parameters" use="literal"/>
429 </input>
430 <output>

431 <SOAP:body parts="parameters" use="literal"/>
432 </output>
433 </operation>
434 <operation name="getCombinedAbstraction">
435 <SOAP:operation soapAction=""/>
436 <input>
437 <SOAP:body parts="parameters" use="literal"/>
438 </input>
439 <output>
440 <SOAP:body parts="parameters" use="literal"/>
441 </output>
442 </operation>
443 <operation name="getCombinedAbstractionWithProtocol">
444 <SOAP:operation soapAction=""/>
445 <input>
446 <SOAP:body parts="parameters" use="literal"/>
447 </input>
448 <output>
449 <SOAP:body parts="parameters" use="literal"/>
450 </output>
451 </operation>
452 <operation name="getComponentImplementationInformation">
453 <SOAP:operation soapAction=""/>
454 <input>
455 <SOAP:body parts="parameters" use="literal"/>
456 </input>
457 <output>
458 <SOAP:body parts="parameters" use="literal"/>
459 </output>
460 </operation>
461 <operation name="getListOfComponents">
462 <SOAP:operation soapAction=""/>
463 <input>
464 <SOAP:body parts="parameters" use="literal"/>
465 </input>
466 <output>
467 <SOAP:body parts="parameters" use="literal"/>
468 </output>
469 </operation>
470 <operation name="getNodeInfo">
471 <SOAP:operation soapAction=""/>
472 <input>
473 <SOAP:body parts="parameters" use="literal"/>
474 </input>
475 <output>
476 <SOAP:body parts="parameters" use="literal"/>
477 </output>
478 </operation>
479 <operation name="getProtocol">
480 <SOAP:operation soapAction=""/>
481 <input>

482 <SOAP:body parts="parameters" use="literal"/>
483 </input>
484 <output>
485 <SOAP:body parts="parameters" use="literal"/>
486 </output>
487 </operation>
488 <operation name="getProtocolInfo">
489 <SOAP:operation soapAction=""/>
490 <input>
491 <SOAP:body parts="parameters" use="literal"/>
492 </input>
493 <output>
494 <SOAP:body parts="parameters" use="literal"/>
495 </output>
496 </operation>
497 </binding>
498
499 <service name="WSO">
500 <documentation>WSA and WSO service definition</documentation>
501 <port name="WSO" binding="tns:WSO">
502 <SOAP:address location="http: //127.0.0.1 :8080/wso"/>
503 </port>
504 </service>
505
506 </definitions>

Listing A.2: WSDL Definition of WSB
1 <?xml version="1.0" encoding="UTF−8"?>
2 <definitions name="WSB"
3 targetNamespace="http:// localhost:80/WSB.wsdl"
4 xmlns:tns="http: // localhost:80/WSB.wsdl"
5 xmlns:SOAP−ENV="http:// schemas.xmlsoap.org/soap/envelope/"
6 xmlns:SOAP−ENC="http:// schemas.xmlsoap.org/soap/encoding/"
7 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema−instance"
8 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"
9 xmlns:WS−B="http:// tempuri.org/WS−B.xsd"

10 xmlns:SOAP="http:// schemas.xmlsoap.org/wsdl/soap/"
11 xmlns:MIME="http:// schemas.xmlsoap.org/wsdl/mime/"
12 xmlns:DIME="http:// schemas.xmlsoap.org/ws /2002/04/ dime/wsdl/"
13 xmlns:WSDL="http:// schemas.xmlsoap.org/wsdl/"
14 xmlns="http: // schemas.xmlsoap.org/wsdl/">
15
16 <types>
17
18 <schema targetNamespace="http:// tempuri.org/WS−B.xsd"
19 xmlns:SOAP−ENV="http:// schemas.xmlsoap.org/soap/envelope/"
20 xmlns:SOAP−ENC="http:// schemas.xmlsoap.org/soap/encoding/"
21 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema−instance"
22 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"
23 xmlns:WS−B="http:// tempuri.org/WS−B.xsd"

24 xmlns="http: //www.w3.org /2001/ XMLSchema"
25 elementFormDefault="unqualified"
26 attributeFormDefault="unqualified">
27 <import namespace="http:// schemas.xmlsoap.org/soap/encoding/"/>
28 <simpleType name="Operation">
29 <restriction base="xsd:string">
30 <enumeration value="no−op"/><!−− enum const = 0 −−>
31 <enumeration value="sequ−op"/><!−− enum const = 1 −−>
32 <enumeration value="sync−op"/><!−− enum const = 2 −−>
33 <enumeration value="fork−op"/><!−− enum const = 3 −−>
34 <enumeration value="eps−op"/><!−− enum const = 4 −−>
35 </restriction>
36 </simpleType>
37 <simpleType name="TransitionTyp">
38 <restriction base="xsd:string">
39 <enumeration value="no−typ"/><!−− enum const = 0 −−>
40 <enumeration value="active"/><!−− enum const = 1 −−>
41 <enumeration value="inactive"/><!−− enum const = 2 −−>
42 <enumeration value="lambda"/><!−− enum const = 3 −−>
43 </restriction>
44 </simpleType>
45 <simpleType name="Status">
46 <restriction base="xsd:string">
47 <enumeration value="not−found"/><!−− enum const = 0 −−>
48 <enumeration value="queued"/><!−− enum const = 1 −−>
49 <enumeration value="working"/><!−− enum const = 2 −−>
50 <enumeration value="finished"/><!−− enum const = 3 −−>
51 <enumeration value="canceled"/><!−− enum const = 4 −−>
52 <enumeration value="error"/><!−− enum const = 5 −−>
53 </restriction>
54 </simpleType>
55 <complexType name="IntVector">
56 <sequence>
57 <element name="item" type="xsd:int" minOccurs="0" maxOccurs="

unbounded"/>
58 </sequence>
59 </complexType>
60 <complexType name="NodeId">
61 <sequence>
62 <element name="componentId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
63 <element name="componentNodeId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
64 <element name="pre" type="xsd:int" minOccurs="1" maxOccurs="1

"/>
65 <element name="post" type="xsd:int" minOccurs="1" maxOccurs="

1"/>
66 </sequence>
67 </complexType>
68 <complexType name="ActionId">
69 <sequence>

70 <element name="actionId" type="xsd:int" minOccurs="1"
maxOccurs="1"/>

71 </sequence>
72 </complexType>
73 <complexType name="ProtocolId">
74 <sequence>
75 <element name="protocolId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
76 </sequence>
77 </complexType>
78 <complexType name="ComponentId">
79 <sequence>
80 <element name="componentId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
81 </sequence>
82 </complexType>
83 <complexType name="AbstractionTransition">
84 <sequence>
85 <element name="op1" type="WS−B:NodeId" minOccurs="1"

maxOccurs="1"/>
86 <element name="op2" type="WS−B:NodeId" minOccurs="1"

maxOccurs="1"/>
87 <element name="op3" type="WS−B:NodeId" minOccurs="1"

maxOccurs="1"/>
88 <element name="operation" type="WS−B:Operation" minOccurs="1"

maxOccurs="1"/>
89 <element name="typ" type="WS−B:TransitionTyp" minOccurs="1"

maxOccurs="1"/>
90 <element name="action" type="WS−B:ActionId" minOccurs="1"

maxOccurs="1"/>
91 </sequence>
92 </complexType>
93 <complexType name="AbstractionAutomaton">
94 <sequence>
95 <element name="compId" type="WS−B:ComponentId" minOccurs="1"

maxOccurs="1"/>
96 <element name="startId" type="WS−B:NodeId" minOccurs="1"

maxOccurs="1"/>
97 <element name="Transitions" type="WS−B:AbstractionTransition"

minOccurs="0" maxOccurs="unbounded"/>
98 </sequence>
99 </complexType>

100 <complexType name="HtAcces">
101 <sequence>
102 <element name="usr" type="xsd:string" minOccurs="1" maxOccurs

="1"/>
103 <element name="pw" type="xsd:string" minOccurs="1" maxOccurs=

"1"/>
104 </sequence>
105 </complexType>
106 <!−− operation request element −−>

107 <element name="cancelTask">
108 <complexType>
109 <sequence>
110 <element name="IdOfTask" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
111 </sequence>
112 </complexType>
113 </element>
114 <!−− operation response element −−>
115 <element name="cancelTaskResponse">
116 <complexType>
117 <sequence>
118 <element name="status" type="xsd:int" minOccurs="1" maxOccurs

="1"/>
119 </sequence>
120 </complexType>
121 </element>
122 <!−− operation request element −−>
123 <element name="startSearch">
124 <complexType>
125 <sequence>
126 <element name="IdsOfComponents" type="WS−B:IntVector"

minOccurs="1" maxOccurs="1"/>
127 <element name="Analyses" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
128 <element name="IdOfProtocol" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
129 <element name="HtAccess" type="WS−B:HtAcces" minOccurs="1"

maxOccurs="1"/>
130 <element name="IdOfURLs" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
131 </sequence>
132 </complexType>
133 </element>
134 <!−− operation response element −−>
135 <element name="startSearchResponse">
136 <complexType>
137 <sequence>
138 <element name="IdOfTask" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
139 </sequence>
140 </complexType>
141 </element>
142 <!−− operation request element −−>
143 <element name="getStatus">
144 <complexType>
145 <sequence>
146 <element name="IdOfTask" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
147 </sequence>
148 </complexType>

149 </element>
150 <!−− operation response element −−>
151 <element name="getStatusResponse">
152 <complexType>
153 <sequence>
154 <element name="Status" type="WS−B:Status" minOccurs="1"

maxOccurs="1"/>
155 </sequence>
156 </complexType>
157 </element>
158 <!−− operation request element −−>
159 <element name="startSearchAbs">
160 <complexType>
161 <sequence>
162 <element name="CombAbs" type="WS−B:AbstractionAutomaton"

minOccurs="1" maxOccurs="1"/>
163 <element name="Protocol" type="WS−B:AbstractionAutomaton"

minOccurs="1" maxOccurs="1"/>
164 <element name="HtAccess" type="WS−B:HtAcces" minOccurs="1"

maxOccurs="1"/>
165 <element name="IdOfURLs" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
166 </sequence>
167 </complexType>
168 </element>
169 <!−− operation response element −−>
170 <element name="startSearchAbsResponse">
171 <complexType>
172 <sequence>
173 <element name="IdOfTask" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
174 </sequence>
175 </complexType>
176 </element>
177 <!−− operation request element −−>
178 <element name="registerURL">
179 <complexType>
180 <sequence>
181 <element name="URLA" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
182 <element name="URLC" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
183 </sequence>
184 </complexType>
185 </element>
186 <!−− operation response element −−>
187 <element name="registerURLResponse">
188 <complexType>
189 <sequence>
190 <element name="IdOfURLs" type="xsd:int" minOccurs="1"

maxOccurs="1"/>

191 </sequence>
192 </complexType>
193 </element>
194 </schema>
195
196 </types>
197
198 <message name="cancelTaskRequest">
199 <part name="parameters" element="WS−B:cancelTask"/>
200 </message>
201
202 <message name="cancelTaskResponse">
203 <part name="parameters" element="WS−B:cancelTaskResponse"/>
204 </message>
205
206 <message name="startSearchRequest">
207 <part name="parameters" element="WS−B:startSearch"/>
208 </message>
209
210 <message name="startSearchResponse">
211 <part name="parameters" element="WS−B:startSearchResponse"/>
212 </message>
213
214 <message name="getStatusRequest">
215 <part name="parameters" element="WS−B:getStatus"/>
216 </message>
217
218 <message name="getStatusResponse">
219 <part name="parameters" element="WS−B:getStatusResponse"/>
220 </message>
221
222 <message name="startSearchAbsRequest">
223 <part name="parameters" element="WS−B:startSearchAbs"/>
224 </message>
225
226 <message name="startSearchAbsResponse">
227 <part name="parameters" element="WS−B:startSearchAbsResponse"/>
228 </message>
229
230 <message name="registerURLRequest">
231 <part name="parameters" element="WS−B:registerURL"/>
232 </message>
233
234 <message name="registerURLResponse">
235 <part name="parameters" element="WS−B:registerURLResponse"/>
236 </message>
237
238 <portType name="WSBPortType">
239 <operation name="cancelTask">
240 <documentation>Service definition of function WS B cancelTask</

documentation>

241 <input message="tns:cancelTaskRequest"/>
242 <output message="tns:cancelTaskResponse"/>
243 </operation>
244 <operation name="startSearch">
245 <documentation>erhaelt Ids eines Komponentensystems und eines

Protokolls: Die Komponenten sollen gegen das Protokoll
geprueft werden.</documentation>

246 <input message="tns:startSearchRequest"/>
247 <output message="tns:startSearchResponse"/>
248 </operation>
249 <operation name="getStatus">
250 <documentation>Service definition of function WS B getStatus</

documentation>
251 <input message="tns:getStatusRequest"/>
252 <output message="tns:getStatusResponse"/>
253 </operation>
254 <operation name="startSearchAbs">
255 <documentation>erhaelt eine CombinedAbstraction und ein

Protokoll , gegen das die Abstraktion geprueft werden soll</
documentation>

256 <input message="tns:startSearchAbsRequest"/>
257 <output message="tns:startSearchAbsResponse"/>
258 </operation>
259 <operation name="registerURL">
260 <documentation>Service definition of function WS B registerURL<

/documentation>
261 <input message="tns:registerURLRequest"/>
262 <output message="tns:registerURLResponse"/>
263 </operation>
264 </portType>
265
266 <binding name="WSB" type="tns:WSBPortType">
267 <SOAP:binding style="document" transport="http:// schemas.xmlsoap.

org/soap/http"/>
268 <operation name="cancelTask">
269 <SOAP:operation soapAction=""/>
270 <input>
271 <SOAP:body parts="parameters" use="literal"/>
272 </input>
273 <output>
274 <SOAP:body parts="parameters" use="literal"/>
275 </output>
276 </operation>
277 <operation name="startSearch">
278 <SOAP:operation soapAction=""/>
279 <input>
280 <SOAP:body parts="parameters" use="literal"/>
281 </input>
282 <output>
283 <SOAP:body parts="parameters" use="literal"/>
284 </output>

285 </operation>
286 <operation name="getStatus">
287 <SOAP:operation soapAction=""/>
288 <input>
289 <SOAP:body parts="parameters" use="literal"/>
290 </input>
291 <output>
292 <SOAP:body parts="parameters" use="literal"/>
293 </output>
294 </operation>
295 <operation name="startSearchAbs">
296 <SOAP:operation soapAction=""/>
297 <input>
298 <SOAP:body parts="parameters" use="literal"/>
299 </input>
300 <output>
301 <SOAP:body parts="parameters" use="literal"/>
302 </output>
303 </operation>
304 <operation name="registerURL">
305 <SOAP:operation soapAction=""/>
306 <input>
307 <SOAP:body parts="parameters" use="literal"/>
308 </input>
309 <output>
310 <SOAP:body parts="parameters" use="literal"/>
311 </output>
312 </operation>
313 </binding>
314
315 <service name="WSB">
316 <documentation>gSOAP 2.7.10 generated service definition</

documentation>
317 <port name="WSB" binding="tns:WSB">
318 <SOAP:address location="http:// localhost:80"/>
319 </port>
320 </service>
321
322 </definitions>

Listing A.3: WSDL Definition of WSC
1 <?xml version="1.0" encoding="UTF−8"?>
2 <definitions name="WSC"
3 targetNamespace="http:// localhost:80/WSC.wsdl"
4 xmlns:tns="http: // localhost:80/WSC.wsdl"
5 xmlns:SOAP−ENV="http:// schemas.xmlsoap.org/soap/envelope/"
6 xmlns:SOAP−ENC="http:// schemas.xmlsoap.org/soap/encoding/"
7 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema−instance"
8 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"
9 xmlns:WS−C="http:// tempuri.org/WS−C.xsd"

10 xmlns:SOAP="http:// schemas.xmlsoap.org/wsdl/soap/"
11 xmlns:MIME="http:// schemas.xmlsoap.org/wsdl/mime/"
12 xmlns:DIME="http:// schemas.xmlsoap.org/ws /2002/04/ dime/wsdl/"
13 xmlns:WSDL="http:// schemas.xmlsoap.org/wsdl/"
14 xmlns="http: // schemas.xmlsoap.org/wsdl/">
15
16 <types>
17
18 <schema targetNamespace="http:// tempuri.org/WS−C.xsd"
19 xmlns:SOAP−ENV="http:// schemas.xmlsoap.org/soap/envelope/"
20 xmlns:SOAP−ENC="http:// schemas.xmlsoap.org/soap/encoding/"
21 xmlns:xsi="http: //www.w3.org /2001/ XMLSchema−instance"
22 xmlns:xsd="http: //www.w3.org /2001/ XMLSchema"
23 xmlns:WS−C="http:// tempuri.org/WS−C.xsd"
24 xmlns="http: //www.w3.org /2001/ XMLSchema"
25 elementFormDefault="unqualified"
26 attributeFormDefault="unqualified">
27 <import namespace="http:// schemas.xmlsoap.org/soap/encoding/"/>
28 <simpleType name="Operation">
29 <restriction base="xsd:string">
30 <enumeration value="no−op"/><!−− enum const = 0 −−>
31 <enumeration value="sequ−op"/><!−− enum const = 1 −−>
32 <enumeration value="sync−op"/><!−− enum const = 2 −−>
33 <enumeration value="fork−op"/><!−− enum const = 3 −−>
34 <enumeration value="eps−op"/><!−− enum const = 4 −−>
35 </restriction>
36 </simpleType>
37 <simpleType name="TransitionTyp">
38 <restriction base="xsd:string">
39 <enumeration value="no−typ"/><!−− enum const = 0 −−>
40 <enumeration value="active"/><!−− enum const = 1 −−>
41 <enumeration value="inactive"/><!−− enum const = 2 −−>
42 <enumeration value="lambda"/><!−− enum const = 3 −−>
43 </restriction>
44 </simpleType>
45 <complexType name="HtAcces">
46 <sequence>
47 <element name="usr" type="xsd:string" minOccurs="1" maxOccurs

="1"/>
48 <element name="pw" type="xsd:string" minOccurs="1" maxOccurs=

"1"/>
49 </sequence>
50 </complexType>
51 <complexType name="NodeId">
52 <sequence>
53 <element name="componentId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
54 <element name="componentNodeId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
55 <element name="pre" type="xsd:int" minOccurs="1" maxOccurs="1

"/>

56 <element name="post" type="xsd:int" minOccurs="1" maxOccurs="
1"/>

57 </sequence>
58 </complexType>
59 <complexType name="ActionId">
60 <sequence>
61 <element name="actionId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
62 </sequence>
63 </complexType>
64 <complexType name="ComponentId">
65 <sequence>
66 <element name="componentId" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
67 </sequence>
68 </complexType>
69 <complexType name="AbstractionTransition">
70 <sequence>
71 <element name="op1" type="WS−C:NodeId" minOccurs="1"

maxOccurs="1"/>
72 <element name="op2" type="WS−C:NodeId" minOccurs="1"

maxOccurs="1"/>
73 <element name="op3" type="WS−C:NodeId" minOccurs="1"

maxOccurs="1"/>
74 <element name="operation" type="WS−C:Operation" minOccurs="1"

maxOccurs="1"/>
75 <element name="typ" type="WS−C:TransitionTyp" minOccurs="1"

maxOccurs="1"/>
76 <element name="action" type="WS−C:ActionId" minOccurs="1"

maxOccurs="1"/>
77 </sequence>
78 </complexType>
79 <complexType name="AbstractionAutomaton">
80 <sequence>
81 <element name="compId" type="WS−C:ComponentId" minOccurs="1"

maxOccurs="1"/>
82 <element name="startId" type="WS−C:NodeId" minOccurs="1"

maxOccurs="1"/>
83 <element name="Transitions" type="WS−C:AbstractionTransition"

minOccurs="0" maxOccurs="unbounded"/>
84 </sequence>
85 </complexType>
86 <!−− operation request element −−>
87 <element name="appendCounterExample">
88 <complexType>
89 <sequence>
90 <element name="IdOfTask" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
91 <element name="Abstraction" type="WS−C:AbstractionAutomaton"

minOccurs="1" maxOccurs="1"/>
92 <element name="CounterExample" type="xsd:string" minOccurs="1

" maxOccurs="1"/>
93 </sequence>
94 </complexType>
95 </element>
96 <!−− operation response element −−>
97 <element name="appendCounterExampleResponse">
98 <complexType>
99 <sequence>

100 <element name="status" type="xsd:int" minOccurs="1" maxOccurs
="1"/>

101 </sequence>
102 </complexType>
103 </element>
104 <!−− operation request element −−>
105 <element name="calculationFinished">
106 <complexType>
107 <sequence>
108 <element name="IdOfTask" type="xsd:int" minOccurs="1"

maxOccurs="1"/>
109 </sequence>
110 </complexType>
111 </element>
112 <!−− operation response element −−>
113 <element name="calculationFinishedResponse">
114 <complexType>
115 <sequence>
116 <element name="status" type="xsd:int" minOccurs="1" maxOccurs

="1"/>
117 </sequence>
118 </complexType>
119 </element>
120 <!−− operation request element −−>
121 <element name="startGuiLike">
122 <complexType>
123 <sequence>
124 <element name="HtAccess" type="WS−C:HtAcces" minOccurs="1"

maxOccurs="1"/>
125 </sequence>
126 </complexType>
127 </element>
128 </schema>
129
130 </types>
131
132 <message name="appendCounterExampleRequest">
133 <part name="parameters" element="WS−C:appendCounterExample"/>
134 </message>
135
136 <message name="appendCounterExampleResponse">
137 <part name="parameters" element="WS−

C:appendCounterExampleResponse"/>

138 </message>
139
140 <message name="calculationFinishedRequest">
141 <part name="parameters" element="WS−C:calculationFinished"/>
142 </message>
143
144 <message name="calculationFinishedResponse">
145 <part name="parameters" element="WS−C:calculationFinishedResponse

"/>
146 </message>
147
148 <message name="startGuiLike">
149 <part name="parameters" element="WS−C:startGuiLike"/>
150 </message>
151
152 <portType name="WSCPortType">
153 <operation name="appendCounterExample">
154 <documentation>ein Gegenbeispiel zu einer spezifischen

Berechnung wird uebergeben (async)</documentation>
155 <input message="tns:appendCounterExampleRequest"/>
156 <output message="tns:appendCounterExampleResponse"/>
157 </operation>
158 <operation name="calculationFinished">
159 <documentation>Markiert das Ende einer spezifischen Berechnung</

documentation>
160 <input message="tns:calculationFinishedRequest"/>
161 <output message="tns:calculationFinishedResponse"/>
162 </operation>
163 <operation name="startGuiLike">
164 <documentation>Es soll ein Ansprechen des WS C simuliert werden ,

als sei es die Projektgruppe</documentation>
165 <input message="tns:startGuiLike"/>
166 </operation>
167 </portType>
168
169 <binding name="WSC" type="tns:WSCPortType">
170 <SOAP:binding style="document" transport="http:// schemas.xmlsoap.

org/soap/http"/>
171 <operation name="appendCounterExample">
172 <SOAP:operation soapAction=""/>
173 <input>
174 <SOAP:body parts="parameters" use="literal"/>
175 </input>
176 <output>
177 <SOAP:body parts="parameters" use="literal"/>
178 </output>
179 </operation>
180 <operation name="calculationFinished">
181 <SOAP:operation soapAction=""/>
182 <input>
183 <SOAP:body parts="parameters" use="literal"/>
184 </input>
185 <output>
186 <SOAP:body parts="parameters" use="literal"/>
187 </output>
188 </operation>
189 <operation name="startGuiLike">
190 <SOAP:operation soapAction=""/>
191 <input>
192 <SOAP:body parts="parameters" use="literal"/>
193 </input>
194 </operation>
195 </binding>
196
197 <service name="WSC">
198 <documentation>gSOAP 2.7.10 generated service definition</

documentation>
199 <port name="WSC" binding="tns:WSC">
200 <SOAP:address location="http:// localhost:80"/>
201 </port>
202 </service>
203
204 </definitions>

A.4. Extended Consideration of Combined Abstraction

A.4 Extended Consideration of Combined Abstraction

Theorem (Correctness of construction of the Combined Abstraction ΠC
S)

The construction of a Combined Abstraction ΠC
S results in a representation, so that L(PA)∩L(ΠS,C) ⊆

L(ΠC
S).

Proof
Let be given the system abstraction ΠS,C = (QΠS,C

,ΣΠS,C
, IΠS,C

,→ ΠS,C
, FΠS,C

) and the inverted
protocol PC = (QPC

,ΣPC
, IPC

,→ PC
, FPC

).

We perform an induction over the length n of the counterexample w. It is assumed that IPA

w⇒PA
f

is constructed using the transition rules of ΠS,C , where f ∈ FPA
, while IΠS,C

w⇒ΠS,C
ε is constructed

using the transition rules of the system abstraction ΠS,C . Thus, it should be valid: w ∈ L(ΠC
S). Without

loss of generality, we assume that precisely one counterexample w is contained in the system abstraction
ΠS,C .

Induction over the length n.

|w| = 1: There has to exist a transition rule IPA

a→ f , where f ∈ FPA
and w = a describing the

forbidden interaction sequence. We have to consider the different types of transition rules (Section 3.28).

We assume here, that in the derivation step, where the relevant action rule is performed, just one
q ∈ QCS exists. A discussion of the generalization follows after this step. We consider in distinguished
cases which kind of transition rule is used in the system abstraction ΠS,C to construct the counterexample.

chain rule: In the system abstraction ΠS,C has to exist a transition rule p a→ p′ ∈ →ΠS,C
.

Thus, the transition rule (I, p, f) a→ (f, p, f) ∈ →ΠC
S

is constructed using the
rules R1

C . If I a⇒ΠS,C
ε is constructable, then a derivation IΠS,C

⇒ΠS,C
ε and

the corresponding λ-rules have to exist. Hence, the following derivation exists
in the Combined Abstraction ΠC

S :

(IPA
, IΠS,C

, f) λ⇒ΠC
S

A

(IPA
, p, f) a⇒ΠC

S

B

(f, p′, f) λ⇒ΠC
S

C

(f, ε, f) λ⇒ΠC
S

D

ε

For performing A transition rules ofRλC ,RλSeq,RλFork andRλSync are used.
The protocol states are leaved unaffected. Thus, the needed transition rules
are constructed while considering all transition rules used in the derivation
IΠS,C

λ⇒ p. B is performed while using the constructed transition rule as de-
scribed above. Following the same arguments as for A the transition rules for
the derivation C are constructed, while considering p λ⇒ΠS,C

ε. While using
a transition rule of Rε the derivation D is performed. Hence, if w ∈ L(PC)
and w ∈ L(ΠS,C) while using a chain rule in ΠS,C , then w ∈ L(ΠC

S).

elimination rule: Let p a→ΠS,C
ε be given. This case is analogous to the previous case, while the

step C is not needed and a transition rule ofRε is used in step B .

215

A. Appendix

sequential rule: Let p
a→ΠS,C

p′.p′′ be given. Thus, the transition rules
(IPA

, p, f) a→ΠC
S

(f, p′, x).(x, p′′, f) are constructed, where x ∈ {IPA
, f}

(the only two states of the protocol in this case). Hence, a the following
derivation exists in the Combined Abstraction ΠC

S :

(IPA
, IΠS,C

, f) λ⇒ΠC
S

A

(IPA
, p, f) a⇒ΠC

S

B

(f, p′, f).(f, p′′, f)

λ⇒ΠC
S

C

(f, ε, f).(f, p′′, f) λ⇒ΠC
S

D

ε.(f, p′′, f) λ⇒ΠC
S

E

(f, ε, f) λ⇒ΠC
S

F

ε

The transition rule used for B is constructed as described above. Consid-
ering ΠS,C it has to exist a derivation p′ λ⇒ΠS,C

ε and p′′ λ⇒ΠS,C
ε. Thus, a

construction of transition rule in ΠC
S is possible while using RλC and RλElem.

They allow the derivations C and E . D and F are possible while using
a transition rule ofRε.

fork rule: Let p
a→ΠS,C

p′||p′′ be given. Thus, the transition rule
(IPA

, p, f) a→ΠC
S

(f, p′, f)||(f, p′′, f) is constructed. The derivation of
ΠC
S is analogous to the step discussed previously.

synchronization
rule:

Let p||p′ a→ΠS,C
p′′ be given. Thus, the transition rule

(IPA
, p, f)||(IPA

, p′, f) a→ΠC
S

(f, p′′, f) is constructed. Again, as no

other action rule is performed in ΠS,C , (f, p′′, f) λ⇒
C

S ε is possible. Therefore,
the following derivation is possible:

(IPA
, IΠS,C

, f) λ⇒ΠC
S

(IPA
, p, f)||(IPA

, p′, f)

a⇒ΠC
S

(f, p′′, f) λ⇒ΠC
S

(f, ε, f) λ⇒ΠC
S
ε

Thus, it is possible to construct the counterexample w using the permitted transition rules of a Pro-
cess Algebra Nets ΠC

S . However, the terms (process-algebraic expressions) in the considered derivation
steps of ΠC

S might contain more process constants q ∈ QΠC
S

. Nevertheless, the same constructions are
possible, while demanding that the considered process constants used in the steps above are contained in
the corresponding terms. For example, the derivation used while considering the chain rules (first case,
above) looks like the following in the general form:

(IPA
, IΠS,C

, f) λ⇒ΠC
S

A

t
a⇒ΠC

S

B

t′
λ⇒ΠC

S

C

ε (GeneralCase)

where t, t′, t′′ ∈ PEX(QΠC
S

) as well as t contains (IPA
, p, f), t′ contains (f, p′, f) that has replaced

(IPA
, p, f), and t′′ contains (f, ε, f) that has replaced (IPA

, p, f). We abstain from noting this general-
ized form to avoid confusion here and in the following cases of the proof.

Moreover, it has to be claimed, that all other process constants (v̄, p̄, ¯̄v) ∈ QΠC
S

of t, t′ and t′′ do

not perform action rules, while being translated to ε: (v̄, p̄, ¯̄v) λ⇒ ε. This claim has to be considered.
It is clear: If t contains just the term (IPA

, p, f).t̂, then the proof of [HU79] on the intersection of a

regular language with a CFG can be used (cf. Section 3.2.3). If t has the form wlog ((IPA
, p, f).t̂)||ˆ̂t,

where t̂, ˆ̂t ∈ PEX(QΠC
S

), then t̂ and ˆ̂t have to be translatable into ε without performing action rules.

216

A.5. Used Tools

Only λ-rules are allowed. As known, the term (p.t̄)||¯̄t ∈ PEX(QΠS,C
) is translatable into ε, where

t̄, ¯̄t ∈ QΠS,C
, so that it is valid that (p.t̄)||¯̄t a⇒PA

ε. Thus, for each (v̄, p̄, ¯̄v), that is contained in t̄ or ¯̄t,
it is possible to translate it into ε (if v̄ = ¯̄v) or to (v̄, ε, ¯̄v) (if v̄ 6= ¯̄v). The latter case need a transition
rule ofR0, as they are the only one changing the (first) protocol state in the triple, without performing an
action rule. Because a transition rule v̄ a→ ¯̄v exist if a counterexample is constructed performing action
a, the required transition rule (v̄, ε, ¯̄v) λ→ΠC

S
(¯̄v, ε, ¯̄v) is constructable. This step is called protocol-state-

synchronization. Thereafter, the following derivation is possible: (v̄, ε, ¯̄v) λ⇒ΠC
S
ε (using a transition rule

of R0 in addition). Thus, every counterexample w described by PA and ΠS,C can be found using the
constructed transition rules of ΠC

S if w = 1.

|w| = n+ 1: We will prove the statement containing n+ 1 interactions.

(IPA
, IΠS,C

, f) w
′

⇒ΠC
S

G

t
a⇒ΠC

S

H

t′
λ⇒ΠC

S

I

ε

where |w′| = n and a ∈ ΣΠC
S

.
By induction hypothesis is clear that G can be performed. This step results in t ∈ PEX(QΠC

S
), wlog

we request that the protocol states are synchronized (in case of parallel behavior while using transition
rules of R0 to perform protocol-state-synchronizations). Thereafter, the step H show the same seman-
tics as B at GeneralCase. The same is valid for I and C .

A.5 Used Tools

We use the following tools for the generation of the graphics:

• websequencediagrams by Steve Hanov [Han07]

• Openoffice Draw

• LATEX and several packages

The used icons are part of the packages:

• “Crystal Project Icons” by Everaldo Coelho, http://www.everaldo.com

• “Oxygen for KDE3” by “The Oxygen Team”

217

http://www.everaldo.com

A. Appendix

218

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides Statt, dass ich diese Arbeit selbständig und ohne fremde Hilfe

verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den

benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht

habe.

Um einen Doktorgrad habe ich mich bisher nicht beworben.

Andreas Both

Halle (Saale), den 27. November 2009

Lebenslauf

Persönliche Daten

Name: Andreas Both

E-Mail-Adresse: andreas.both@informatik.uni-halle.de

Geburtsdatum und -ort: 29.06.1979 in Halle (Saale), Deutschland

Familienstand: verheirat, ein Kind

Hochschulausbildung

seit März 2005 Mitarbeiter am Lehrstuhl für “Softwaretechnik und Pro-

grammiersprachen” des Instituts für Informatik an der

Martin-Luther-Universität Halle-Wittenberg (Prof. Dr.

Wolf Zimmermann)

1999 – 2005 Studium im Fach Informatik an der Martin-Luther-

Universität Halle-Wittenberg

Abschluss als Diplominformatiker (Dipl.-Inform.) mit

der Vertiefungsrichtung “Softwaretechnik und Program-

miersprachen” (Wahlpflichtfach Designinformatik),

Gesamtnote: Sehr gut

Grundwehrdienst

1998 – 1999 Grundwehrdienst im 3. Panzerartilleriebataillion 55,

Homberg (Efze)

Schulausbildung

1992 – 1998 Trotha-Gymnasium “Hanns Eisler” in Halle (Saale),

Abschluss: Abitur

1986 – 1992 Christian-Wolff-Gymnasium in Halle (Saale)

	List of Figures
	List of Examples
	List of Tables
	Introduction
	Basic Problem
	Scientific Problem
	Properties of Components
	Test vs. Verification
	Verification of Component-based Software
	Representations of Component Behavior
	Sequential vs. Parallel Behavior
	Specification vs. Source Code Behavior

	Problem Definition
	Approach to a Solution
	Correct Composition of Components
	Representing the Behavior of Components
	Ensuring that the Behavior of the Components matches the Specification
	Developed Verification Process

	Structure of this Work

	Related Work
	Classification of Approaches
	Detailed Discussion of Approaches
	Behavior Representations
	Constraints and Composability
	Model Checking

	Conclusions

	Foundations
	Components and Component Systems
	Components
	Component Systems and Composition
	Classification of Component Behavior
	Cactus Stack

	Formal Descriptions of Behaviors
	Traditional Representations
	Process Rewrite Systems (PRS)
	Hierarchy of Formal Representations
	Model Checking

	Summary

	Protocol Conformance and Abstractions
	Component Protocols (short: Protocol)
	Protocol Conformance
	Abstractions of Source Code
	Use Process Rewrite Systems as Behavioral Representation
	PA-processes and Process Algebra Nets
	Example Language
	Capturing Behavior with Process Rewrite Systems

	Summary

	Verification Process
	Step 1: Creating Single Component Abstractions
	General Approach
	Creating Stripped Process Algebra Nets from a Single BPEL Process
	Introduction of the Web Services Business Process Execution Language
	Example
	Generating Abstractions of BPEL Web Services

	Implemented Translations to Process Rewrite Systems
	Creating Stripped Process Algebra Nets from a Single Python Component
	Creating Stripped Process Algebra Nets from a Single BPEL Webservices
	Creating Stripped Process Algebra Nets From a Single PHP Component

	Summary

	Step 2: Creating System Abstractions
	Process
	Restrictions
	Optimizations
	Contracting -rules

	Summary

	Step 3: Creating Combined Abstractions
	Process
	Discussion of the Model Checking Problem
	Construction of the Combined Abstraction

	Optimizations of the Combined Abstractions
	Optimizations during Creation
	Remove Unresolvable Transition Rules

	Summary

	Step 4: Performing Protocol Conformance Checking
	False Negatives
	Reducing the Number of False Negatives
	Basic Idea
	The Round-Robin Reachability Algorithm
	Summary

	Improving Runtime of Model Checking Using PRS Properties
	Construction of PA
	Discovering Spurious Counterexamples

	Summary

	Step 5: Evaluating Counterexamples
	Extending the Counterexamples
	Evaluating Extended Counterexamples
	Summary

	Implemented Framework and Case Study
	Implemented Framework
	Abstractions (short: WSA)
	Translation of Python Statements into PRS Transition Rules
	Translation of PHP Statements into PRS Transition Rules
	Translation of BPEL Activities into PRS Transition Rules
	Representation of PRS Transition Rules
	Summary

	PRS Operations (short: WSO)
	Model Checker (short: WSB)
	User Interfaces (short: WSC+P2)
	Summary

	Considered Case Studies
	OR Soft Workbench
	EMenue.net
	Fail2Ban
	BPEL workflows
	Summary

	Verifying Combined Abstractions
	The Experimental Setting
	The Results
	Summary

	Discussion

	Method for Using Protocol Conformance Checking in Iterative Component System Integration
	Motivation
	Iterative Verification
	Verification Process for Iterative Development
	Evaluating the Result of the Model Checker
	Verification Contexts (No Callbacks Allowed)
	Components with no Unbounded Required Interfaces
	Components with Unbounded Provided and Unbounded Required Interfaces

	Verification Context (Allowing Callbacks)
	Discussion

	Conclusions and Future Work
	Component Properties
	Comparison with other Approaches
	Implementation and Practical Applicability
	Future Work

	Index of Definitions
	Bibliography
	Appendix
	Notations Used in this Thesis
	Syntax of Used Programming Language
	More Figures, Tables and Listings
	Extended Consideration of Combined Abstraction
	Used Tools

