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Abstract

Neue Möglichkeiten die magnetische Kopplung in nanometergrossen Oberflächenstrukturen
zu untersuchen und zu beeinflussen werden vorgeschlagen und diskutiert.

Anhand der Ergebnisse der Numerischen Simulationen mit der Korringa-Kohn-Rostoker
Greensche Funktion Methode [eine Umsetzung der Dichtefunktionaltheorie in der Lokale-
Spin-Dichte-Näherung (LSDA)] wird gezeigt, dass man die magnetischen Eigenschaften der
Nanostrukturen durch die Anpassung der Systemgeometrie beeinflussen kann. Die Spin-
Kopplung einzelner Atome zu, in der Oberfläche versenkten, magnetischen Monolagen wird
untersucht und dessen starke Abhängigkeit von der Tiefe der Versenkung bewiesen. Zusätzlich
wird gezeigt, dass sich durch bewusste Manipulierung dieser Kopplung die magnetische
Wechselwirkung zwischen einzelnen Atomen an der Oberfläche kontrollieren lässt. Eine
weitere Möglichkeit der Kontrolle über diese Wechselwirkung, durch Verbinden der einzel-
nen magnetischen Atome mit paramagnetischen Atomketten, wird angesprochen.

Der Einfluss des Quantenconfinements der Oberblächenzustände auf die Austauschwech-
selwirkung zwischen einzelnen Atomen wird an dem Beispiel eines selbst assemblierten Sys-
tems [hexagonalen Inseln auf der Kupfer Oberfläche] dargestellt. Es wird gezeigt, dass
durch eine Anpassung der Inselgrösse die Kopplung magnetischer Atome darauf verstärkt,
unterdrükt oder umgekehrt werden kann.

Die Untersuchung des Einflusses der interatomaren Austauschwechselwirkung auf die
Lokalisierung der Oberflächenzustände ergibt eindeutig, dass die Breite und die energetische
Lage der Lokalisierung als ein Indikator der Spin-Kopplung einzelner Atome dienen kann.

Zum Abschluss wird gezeigt, dass sowohl die magnetischen Eigenschaften von den, in die
Oberflächen untergetauchten, Nanostrukturen als auch dessen Kopplung zueinander durch
die Untersuchung der Polarisierung von Oberflächenelektronnen ermittelt werden können.

Abstract in English

Novel possibilities are presented for probing and tailoring magnetic interactions between
single adatoms and nanoscale units at metallic surfaces.

Studies, carried out by means of the Korringa-Kohn-Rostoker Green’s function method
implementation of the density functional theory, give conclusive proofs that it is possible
to tune magnetic properties of sub-nanometer structures by adjusting the geometry of the
system. The magnetic coupling of a single adatom coupled to a buried magnetic Co layer
is shown to attain additional stabilization in either a ferromagnetic or an antiferromagnetic
configuration depending on the monolayer’s burying depth. It is found that a buried Co layer
also has a profound effect on the interatomic exchange interaction between two magnetic
impurities on the surface. It is also demonstrated that the exchange interaction between
magnetic adatoms at a surface can be additionally manipulated by introducing artificial
nonmagnetic Cu chains to link them.

The influence of quantum confinement of surface electrons on the exchange interaction
between single adatoms is discussed on the example of a self-assembling system: hexagonal
nanoscale paramagnetic islands on a Cu surface. It is demonstrated that it is possible to
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enhance, reduce or even reverse the exchange coupling at various adatom-adatom separations
by deliberate choice of the island’s size.

The effect of the exchange interaction on the spin-dependent localization of the surface
state is studied by means of ab initio calculation. Spin-polarized bound states arising at pairs
of magnetic adatoms are shown to be strongly dependent (in terms of both the position and
the shape of the bound state peak) on the spin coupling in the system. The possibility is
discussed to use the spin splitting of the bound state peak as a novel tool for probing the
exchange coupling in the system.

Finally, it is shown that it is not only possible to resolve magnetic properties of small
clusters buried beneath a metallic surface, but it is also quite feasible to determine the
coupling of buried structures to each other by studying the polarization of electrons in
vacuum space above the system.



Contents

Introduction 1

1 Experimental state of the field 5
1.1 Possibilities to control the exchange interaction . . . . . . . . . . . . . . . . 5

1.1.1 Surface states as a tool for surface engineering . . . . . . . . . . . . . 6
1.1.2 Surface states in quantum corrals . . . . . . . . . . . . . . . . . . . . 6

1.2 Basics of the STM theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Existing ways to probe the exchange interaction . . . . . . . . . . . . . . . . 12

1.3.1 Probing exchange interaction in linear atomic chains . . . . . . . . . 12
1.3.2 Kondo effect as a spin coupling probe . . . . . . . . . . . . . . . . . . 15
1.3.3 Direct exchange probing by single atom magnetization curves . . . . 17

1.4 Theoretical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 Basic ideas from the theory of chemisorption . . . . . . . . . . . . . . . . . . 22
1.6 Indirect interaction of adatoms: the near zone . . . . . . . . . . . . . . . . . 25
1.7 Indirect interaction of adatoms: the asymptotic zone . . . . . . . . . . . . . 26

1.7.1 Flat Fermi surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.7.2 Flat sections of the Fermi surface . . . . . . . . . . . . . . . . . . . . 27
1.7.3 Open sections of the Fermi surface . . . . . . . . . . . . . . . . . . . 27
1.7.4 Spherical Fermi surface . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7.5 The role of surface states . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.8 Direct interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.9 Introducing the magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.9.1 Direct interaction of magnetic impurities . . . . . . . . . . . . . . . . 29
1.9.2 Indirect interaction of magnetic impurities . . . . . . . . . . . . . . . 32

Main aims of the study 33

2 Theoretical method 37
2.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Hohenberg - Kohn theorems . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.2 Kohn-Sham (KS) equations . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.3 The local density approximation . . . . . . . . . . . . . . . . . . . . . 39

2.2 Green’s function method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2.1 Green’s functions: definition and basic properties . . . . . . . . . . . 40
2.2.2 The Dyson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2.3 The Lloyd formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.2.4 Lippmann-Schwinger equation . . . . . . . . . . . . . . . . . . . . . . 43
2.2.5 Single- and multiple-site T-operator . . . . . . . . . . . . . . . . . . . 43

v



vi CONTENTS

2.2.6 Structural Green’s function . . . . . . . . . . . . . . . . . . . . . . . 44
2.2.7 Fundamental KKR equation . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.8 Spherical representation of the scattering problem . . . . . . . . . . . 46
2.2.9 Multiple scattering: bulk crystal . . . . . . . . . . . . . . . . . . . . . 48
2.2.10 Surfaces and layered systems . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.11 Screened KKR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.2.12 Impurities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Force theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4 KKR GF Calculations: workflow and examples . . . . . . . . . . . . . . . . . 54

2.4.1 Bulk of an fcc copper crystal . . . . . . . . . . . . . . . . . . . . . . . 54
2.4.2 Cu(111) surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.3 A single Co adatom on a Cu(111) surface . . . . . . . . . . . . . . . . 58

3 Tailoring the exchange interaction 61
3.1 Coupling of single atomic units to a monolayer across a paramagnetic spacer 61
3.2 Coupling adjustment by linking with nonmagnetic chains . . . . . . . . . . . 64
3.3 Confinement on islands as a tool for magnetic coupling control . . . . . . . . 66

4 Probing the exchange interaction 75

5 Magnetism of buried nanostructures 83
5.1 Probing the electronic and magnetic properties of buried nanostructures . . . 83

5.1.1 Probing magnetic subsurface impurities with the local density of states
at the surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Checking the coupling of buried nanostructures . . . . . . . . . . . . . . . . 93
5.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

References 97
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Introduction

It has now been long understood that the ”quantum leap” from microelectronics to quantum
computing will not be as easy, as the scientific prophets of the middle of the twentieth century
have foreboded. Driven to the sub-nanometer limit, the science has faced the fact that
predicting the behavior of nano-scale (purely quantum) systems is profoundly unthinkable
without the deepest understanding of all their tiniest properties. Half a century of intensive
research has brought solid state science a considerable knowledge harvest, yet there still
remain areas which are, to a large extent, insufficiently explored.

This work is dedicated to providing a theoretical coverage for such an unexplored ”bare
patch” in the fertile field of magnetism and interactions of single sub-nanoscale entities on
metallic surfaces, a field which is rather promising for the advancement in the ultimate di-
rection of quantum engineering. The most suitable and experimentally justified basis for
nano-magnetism studies is a surface of a crystal. We will try to tackle different aspects of
nanostructure magnetism in a system, which is simple enough to allow subsequent gener-
alization of results and at the same time versatile enough to include various fundamental
effects: magnetic adatoms and small clusters adsorbed at and below metallic surfaces. The
two main things that are necessary to allow to utilize the magnetism of surface structures
are the ability to probe the magnetic interaction between single magnetic units and the
ability to deliberately adjust this interaction. In the present thesis we particularly focus on
the possibility to tailor and probe the exchange interaction of 3d adatoms and clusters at a
(111) surface of copper.

To familiarize the reader with the state of the field we will present, in the beginning
of the first chapter, the highlights and milestones of the experimental efforts done over the
years by the surface science community. We will discuss existing possibilities to manipulate
the magnetism of atomic-scale nanostructures and will outline the few feasible approaches
to probing of exchange interaction between single atomic units.

One should also not forget that the theoretical foundations for the description of the
magnetism and interaction of single atoms (impurities) have been laid more than 60 years
ago. In the second part of the first chapter we will shortly discuss the theoretical basics of
Anderson and Friedel theories as well as modern advancements in the description of impurity
interaction at surfaces. Having a sound theoretical foundation is essential for justification
and assessment of the results of the calculation done in the framework of the present thesis.

Details of the calculation technique involved are presented in Chapter 2. The chapter
starts with an introduction to the basics of the density functional theory where the substi-
tution of a many-particle quantum problem by an equivalent single-particle one is briefly
discussed. The main part of the chapter is devoted to a thorough, yet focused, description
of the Korringa-Kohn-Rostoker’s Green’s function method, which is the main tool, used in
the present study. Several essential theorems are introduced. The chapter is concluded by a
sample of a calculational workflow, exemplified by a calculation of electronic and magnetic
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properties of a single Co adatom adsorbed on a Cu(111) surface.
In Chapter 3 we discuss several novel possibilities to control the exchange interaction

in sub-nanoscale structures. We give conclusive proofs that it is possible to tune magnetic
properties of sub-nanometer structures by adjusting the geometry of the system. The mag-
netic coupling of a single adatom to a buried magnetic Co layer is shown to attain additional
stabilization in either a ferromagnetic or an antiferromagnetic configuration depending on
the monolayer’s burying depth. It is found that a buried Co layer also has a profound effect
on the interatomic exchange interaction between two magnetic impurities on the surface.
Additionally it is demonstrated that the exchange interaction between magnetic adatoms on
a surface can be manipulated by introducing artificial nonmagnetic chains to link them.

The influence of quantum confinement of surface electrons on the exchange interaction
between single adatoms is discussed in the final part of Chapter 3 on the example of a
self-assembling system: hexagonal nanoscale paramagnetic islands on a Cu surface. It is
demonstrated that it is possible to enhance, reduce or even reverse the exchange coupling at
various adatom-adatom separations by deliberate choice of the island’s size.

Chapter 4 is aimed at convincing the reader that the exchange interaction has a profound
influence on the spin-dependent localization of the surface state. Spin-polarized bound states
arising at pairs of magnetic adatoms are shown to be strongly dependent (in terms of both
the position and the shape of the bound state peak) on the spin coupling in the system. The
possibility is discussed to use the spin splitting of the bound state peak as a novel tool for
probing the exchange coupling in the system.

Finally, in Chapter 5, it is shown that it is not only possible to resolve magnetic properties
of small clusters buried beneath a metallic surface, but it is also quite feasible to determine
the coupling of buried structures to each other by studying the polarization of electrons in
vacuum space above the system.

The thesis is then underlined by a short summary and a conclusion.



Chapter 1

Magnetic interaction at the
atomic-scale: experimental state of
the field and theoretical basics

The foundations of spin engineering were laid by P. Grünberg and A. Fert [1, 2] with the
discovery of the giant magnetoresistance (GMR) effect. Of course, they did neither discover
the spin nor any new ground-braking properties of it, but they have clearly shown the world
that it is possible to employ the microscopic magnetic properties of matter in our everyday
engineering tasks. Since that discovery, the direction of many new solid state studies has
been predefined by the challenges in the field of spintronics [3]. One of the main challenges
is the need to gain meticulous control of the magnetism of single atomic-scale units. Such
control is, however, unthinkable without a deeper understanding of the manner in which
these units interact with each other. This understanding can, in turn, only be obtained if
we develop an adequate set of tools to probe and manipulate this interaction. In the present
chapter we will try to outline the already existing possibilities to achieve that.

1.1 Possibilities to control the exchange interaction

Above the nanoscale, the possibility to couple single spin has been extensively studied in
various, lithographically fabricated, quantum dots [4, 5]. At the atomic length scale single
spins can be coupled directly in metal-atom clusters [6, 7] and chains [8]. Yet such techniques
largely lack the flexibility and versatility.

Quite recently it has been shown that it is possible to directly affect single spins on the
surface by means of a scanning tunneling microscope (STM) tip (Fig. 1.1) [9]. The exchange
coupling between single 3d magnetic adatoms (Cr, Mn, Fe, and Co) adsorbed on a Cu(001)
surface and a Cr STM tip has been shown to be controllable by the variation of the tip-
substrate distance [9]. The sign of the exchange energy was found to be determined by the
competition of the direct and the indirect interactions between the tip and the adatom [9].
This exchange control method has, however, the disadvantage that such a vacuum tunneling
junction requires a complex apparatus of an STM to be created. In Section 3.1 we will
show that coupling of single spins to extended structures (like an STM tip or a magnetic
layer) can be much more effective through a paramagnetic spacer, similar to the case of the
famous interlayer exchange coupling (IEC) [1, 10, 11, 12]. Such coupling might allow one to
conveniently stabilize or tailor single spins or spin groups at the surface.

5



6 Chapter 1. Experimental state of the field

Figure 1.1: The spin orientation of single 3d magnetic adatoms adsorbed on a Cu(001)
surface can be controlled by an STM with a magnetic (Cr) tip by varying the tip-substrate
distance [9].

1.1.1 Surface states as a tool for surface engineering

Another tool for surface studies and engineering, which can be used to control the exchange
coupling of single atoms at surfaces and which has few rivals in elegance, versatility and
efficiency, are the surface state electrons. Surface state is a two-dimensional confinement of
electrons between the vacuum barrier and the inverted band-gap of the bulk which exists
at some surfaces of some noble metals (see Subsection 1.7.5 for details). The scattering
of surface state electrons at point defects [13, 14], single adsorbates [15, 16] and extended
structures [17, 18, 19, 20] leads, due to high correlation and the intrinsic two-dimensionality
of the surface state, to the formation of interference patterns which manifest themselves as
standing waves in the local density of electronic states (LDOS). These standing waves can
be detected by various surface sensitive techniques such as the scanning tunneling (STM)
microscopy (see the next section for details). Standing LDOS waves can induce palpable
changes in adsorption and activation energies of surface impurities and are the cause of an
indirect long-range interaction (LRI) between them as is discussed in detail in Section 1.7.5
and in [21, 22, 23, 24, 25, 26, 27, 28].

1.1.2 Surface states in quantum corrals

At some point in the history of the surface science development it was realized that by
deliberate arrangement of atomic scatterers [29, 30] one can confine surface state electrons
to close geometries thus precisely tailoring their interference.

In 1994 Heller et al. [29] presented a combined theoretical and experimental description
of the surface-state confinement to a quantum stadium built of 76 Fe atoms on a Cu(111)
surface [29]. Heller and coworkers used a simple theoretical model, an advanced version of a
particle-in-a-box model, to describe the confinement of electrons theoretically. Experimental
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Figure 1.2: LDOS near EF for a 76 atom ”stadium” of dimensions 141×285
◦
A: experiment

(a), bias voltage 0.01 V, and theory (b). The LDOS near the center of Fe adatoms is not
accounted for in the theory and appears black. Figure from [29].

and theoretical local density of states (LDOS) at the Fermi level in this corral are presented
in Fig. 1.2.

A decade later Manoharan and coworkers demonstrated that quantum corrals could be
exploited to project electronic structure of adatom onto remote location [30]. They assembled
an elliptical Co corral on Cu(111) (Fig. 1.3a,b) surface and placed into one focus of the ellipse
a magnetic Co atom (Fig. 1.3c). It is a matter of simplest geometry that circular a wave
emitted from one focus of an ellipse is focused in the other one. What was surprising
was that the surface state electrons of Cu(111) confined to elliptical quantum corral obey
the same rules [30]. Manohoran and coworkers could observe the electronic structure of
a Co adatom being coherently refocused onto the empty focus spot [30]. A distinctive
spectroscopic feature, known as many-particle Kondo resonance, was used to probe this
effect [31, 32]. The Kondo resonance, a signature of magnetic moment coupled to the sea of
conduction electrons, was found in an empty focus (see Fig. 1.3d). This finding was patented
as a method for information transfer and replication between spatially distinct points via
the engineering of quantum states [US Patent 6441358].

Experiments of Manoharan et al. [30] on quantum mirages in quantum corrals inspired
a number of theoretical works. Ab initio calculations performed by means of the KKR
method for the elliptical corrals used by Manoharan and coworkers in their experiments
unambiguously demonstrated that the spin polarization of the surface-state electrons caused
by magnetic adatoms can be projected to a remote location and can be strongly enhanced
in corrals, compared to an open surface (Fig. 1.3) [33].

Adjustable geometries of quantum corrals open up wide range of possibilities, such as
the ability to affect the motion of single atoms [34, 35] or the ability to engineer electronic
states [36, 37]. But one possibility will be of particular interest to us - the possibility to
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Figure 1.3: (a) Topographs of an elliptical corral with eccentricity e = 1/2 (the larger axis

a = 71.3
◦
A) employing Co atoms to corral two-dimensional electrons on Cu(111). (b)

Associated spectroscopy maps. (c) Topographs showing the corral with a Co atom at the
left focus and (d) associated spectroscopy maps showing the Kondo effect projected to the

empty right focus [30], resulting in a Co atom mirage. Image dimensions are 150× 150
◦
A.

[30]
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Figure 1.4: The LDOS at the Fermi energy on the Co adatom and the Co atoms of the
corral walls are shown. The spin polarization of surface-state electrons inside the Co corral
is presented in color: ∆N↓ and ∆N↑ are determined by the difference between LDOS near
the Fermi energy (+10 meV) of the Co corral with the Co adatom, the empty Co corral, and
the single Co adatom on the open Cu(111). The mirage in the empty focus is marked by
the red arrow. The geometrical parameters of the corral are the same as in the experimental

setup of Ref. [30], i.e., ellipse semiaxis a = 71.3
◦
A and eccentricity e = 0.5. The present

figure is taken from [33]
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Figure 1.5: (a) The principle of STM. A tunneling voltage is applied between the sam-
ple and a scanning probe. The tunneling current is registered. (b) Tip-sample geometry
approximation of Tersoff and Hamann [48, 49].

tailor the interatomic exchange interaction between magnetic adatoms at large separations
by adjusting the corral geometry has been proven by Niebergall et al. [34]. A wide application
of this possibility is hindered, to some extent, by the tremendous effort needed to construct
such complex nanostructures in an atom-by-atom fashion. In Section 3.3 of the present
thesis we demonstrate that one can utilize the same effect of quantum confinement in self-
assembling structures to gain the same amount of control over the coupling between single
atomic spins.

Even having found an ultimate way of deliberately tailoring the magnetic interaction
between single atomic units, we will still not be able to make any fundamental progress
without having an adequate technique for probing the interaction we have just tailored.

Spin interactions in surface systems have typically been probed using ensemble-averaging
techniques, such as susceptibility measurements [38, 39], electron paramagnetic resonance
[40] or inelastic neutron scattering [41]. All of them being fundamentally non-local (on the
nanoscale) techniques, even achieving a truly atomic resolution in studying nanostructures at
surfaces has for a long time been a dream of solid-state physics scientists. This dream came
true with the invention of the scanning tunneling microscopy (STM) technique by Binnig
and Rohrer [42, 43]. The technique utilized the extreme distance dependence of the electron
tunneling to probe geometric properties of surface structures with atomic resolution [44]. The
combination of the intrinsic locality of the technique with electron tunneling spectroscopy
methods has led to the appearance of the scanning tunneling spectroscopy (STS) - a powerful
method for studying the electronic structure of the surface resolved at the nanoscale. Soon
after the original discoveries it was realized that by using magnetic probe tips one could also
access the information about the spin character of the electronic states of the system - the,
so called, spin-polarized STM and STS techniques [45, 46, 47].

1.2 Basics of the STM theory

The key value, measured in STM and STS, is the tunneling current or, alternatively, the
conductance between the sample nanostructure and the tip of the probe (Fig. 1.5a). The
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link between this value and the actual electronic properties of the sample (particularly its
electronic states) has been made by Tersoff and Hamann [48, 49]. The Tersoff-Hamann model
is a specialization of the perturbative treatment of planar tunneling, introduced originally
by Bardeen [50]. The tunneling current has been derived by Bardeen in the formalism of the
first-order time-dependent perturbation theory:

I =
2πe

~
∑
µ,ν

{f(Eµ)[1− f(Eν + eUT )]− f(Eν + eUT )[1− f(Eµ)]} · |Mµν |2 δ(Eν − Eµ),

(1.2.1)
where UT is the applied bias voltage, f(E) is the Fermi function, Mµν is the element of
the tunneling matrix between the unperturbed electronic states Ψµ of the tip and Ψν of
the surface. Eµ(ν) are the energies of corresponding states in absence of the tunneling. The
elastic tunneling and the corresponding energy conservation are described by the δ function.
In a more general representation the matrix element Mµν in Bardeen’s formalism is given by

Mµν = − ~2

2m

∫∫
dS
(
Ψ∗

µ∇Ψν −Ψ∗
ν∇Ψµ

)
, (1.2.2)

where the integral has to be evaluated over any surface lying entirely within the vacuum
barrier separating the two electrodes. The quality being integrated can be viewed as a
density of the current jµν . So the main problem of solving (1.2.2) is finding adequate explicit
representations for the tip and the surface wave functions. Tersoff and Hamann [48, 49]
proposed a simple approximation of a spherically symmetric tip (Fig. 1.5). A corresponding
wave function for the evaluation of the matrix element can be written for a tip with a
curvature radius R as an s-type wave function with en effective decay length κ:

Ψµ =
1

R
e−κR. (1.2.3)

Furthermore, Tersoff and Hamann have assumed the limit of low temperatures and small
bias voltages to get rid of Fermi distributions in (1.2.1) and rewrite the tunneling current as
follows:

IT =
2πe

~
UT

∑
µ,ν

|Mµν |2 δ(Eµ − EF )δ(Eν − EF ). (1.2.4)

Then, within the s-wave tip approximation (1.2.3), the tunneling current can be further
rewritten as:

IT ∝ UT nt(EF ) e
2κR

∑
ν

|Ψν(r0)|2 δ(Eν − EF ), (1.2.5)

where nt(EF ) is the density of states at the Fermi level and r0 is the center of curvature of
the tip. If we look at the last two terms of (1.2.5):

ns(EF , r0) =
∑
ν

|Ψν(r0)|2 δ(Eν − EF ), (1.2.6)

we can identify them as the local density (LDOS) of sample states evaluated at the position of
the tip. Thus it can be concluded that the tunneling current in a STM is roughly proportional
to the LDOS of the sample, which allows one, among other things, to compare experimental
results with those, obtained in theoretical calculations.
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If either the tip of the sample (or both) are made of a magnetic material, the tunneling
current acquires an additional spin dependence. In the limit of the vanishing bias voltage it
can be shown [51, 52] that the tunneling current can be expressed as:

IT (r0, U, θ) = I0(r0, UT ) + Isp(r0, UT , θ) =

=
4π3C2~3e
κ2m2

[
ntñs(r0, UT ) +mtm̃s(r0, UT )

]
,

(1.2.7)

where nt is the non-spin-polarized LDOS of the tip, ñs is the energy-integrated LDOS of the
sample, and mt and m̃s are the corresponding magnetization vectors of the spin-polarized
LDOS:

m̃s(r0, UT ) =

eUT∫
ms(r0, E)dE (1.2.8)

where
ms =

∑
µ

δ(Eµ − E) ΨS
µ

†
(r0)σΨ

S
µ(r0). (1.2.9)

ΨS
µ is the spinor of the wave function

ΨS
µ =

(
ΨS

µ↑
ΨS

µ↓

)
(1.2.10)

and σ is the Pauli’s spin matrix. It is important to note that the spin-polarized part of the
current is being scaled with the projection of m̃s onto mt [52]. Experimentally, this tech-
nique was implemented for the first time by Wiesendanger et al. [45]. Later, an alternative
mode of SP-STM operation, aiming at a separation of electronic and magnetic structure
information, was introduced by Wulfhekel and Kirschner [53]. SP-STM technique, providing
an unprecedented insight into both magnetic and non-magnetic atomic-scale properties of
surfaces alike, has long since become one of the main techniques for surface studies and the
possibility of a direct link to theoretical results has provided an invaluable support for many
theoretical studies, including the present one.

1.3 Existing ways to probe the exchange interaction

Having such an extraordinary tool as the STM, even with a truly atomic resolution, does
not, unfortunately, provide us with a recipe of accessing the information about the cou-
pling between single atomic spins. And until recently, such direct measurement of the mag-
netic interaction has been, indeed, impossible. First steps in this field have been made by
Hirjibehedin and co-workers as they managed to experimentally probe the spin exchange
interaction in linear manganese chains through spin-flip experiments [54].

1.3.1 Probing exchange interaction in linear atomic chains

Hirjibehedin and coworkers [54] used a scanning tunneling microscope to probe the inter-
actions between spins in individual atomic-scale magnetic structures. They have combined
the imaging and manipulation [55] capabilities of the STM with its ability to measure spin
excitation spectra at the atomic scale [56]. They used an STM to build magnetic chains up
to 10 Mn atoms long on a thin insulating copper nitride (CuN) island (Fig. 1.6A) and probed
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Figure 1.6: Mn chains on CuN. (A) STM constant-current topograph (10 mV, 1 nA) of a
CuN island on Cu(100). Topograph is high-pass (curvature) filtered to enhance contrast,
with lattice positions of Cu (red dots) and N (blue dots) atoms overlaid. CuN islands appear
as 0.14 nm depressions for |V | < 0.1 V. (B) STM images of the building of a chain of Mn
atoms, lengths 2 to 9, on CuN (10 mV, 0.1 nA). Individual atoms in the chain cannot be
resolved. Artifacts seen to the upper left of all structures are characteristic of the atomic
arrangement of the tip used for manipulation. (C) Perspective rendering of a chain of 10
Mn atoms. (D) Schematic of the antiferromagnetic coupling of three atomic spins described
by the Heisenberg model in Eq. (1.3.1). Figure taken from [54].



14 Chapter 1. Experimental state of the field

Figure 1.7: Conductance spectra of Mn chains on CuN. Spectra were taken with the tip
positioned above the center of chains of Mn atoms of lengths 1 to 10 at T = 0.6 K and
B = 0 T. Spectra were acquired at a nominal junction impedance of 20 MΩ (20 mV, 1 nA)
and were not sensitive to junction impedance. Successive spectra are vertically offset by
one unit for clarity. Odd spectra are in red and even spectra are in black to emphasize the
parity dependence. Blue arrows indicate the lowest energy spin-changing excitation obtained
from the Heisenberg model described in Eq. (1.3.1) with J = 6.2 meV and SA = 5

2
. For

comparison, green arrows indicate the same excitation with SA = 2 (lower voltage) and
SA = 3 (higher voltage) on the trimer and pentamer; the same excitation with SA = 2 and
SA = 3 is not distinguishable from SA = 5

2
on the dimer, tetramer, and hexamer chains.

From [54].

their collective spin excitations with inelastic electron tunneling spectroscopy (IETS). The
insulating properties of a single atomic layer of CuN were needed to screen atomic spins
from the Cu(100) surface [54].

The resulting dI/dV spectra, taken above the middles of Mn chains of 1 to 10 atoms at
B = 0 (Fig. 1.7) displayed a striking dependence on the parity of the chain. At voltages
below 1 mV, the spectra of odd-length chains, including the single Mn atom, exhibited a
narrow dip in conductance that was centered at 0 V. This feature was absent in all even-
length chains. At larger energies, both odd and even chains, with the exception of single Mn
atoms, showed large steps in conductance at voltages that were symmetric with respect to
zero [54].

Hirjibehedin and colleagues [54] have used IETS notions to interpret the steps in the
dI/dV spectra of the chains. When a system with a mode at energy E is placed within
a tunnel junction, electrons can excite this mode during the tunneling process only if the
magnitude of the bias voltage V exceeds E/e (where −e is the charge on the electron). This
additional tunneling channel generally results in steps in conductance at V = ±E/e [54].
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The absence of the spin-flip excitation on the even-length chains of an antiferromagnetic
(AF) order (as is Mn) is consistent with the fact the an antiferromagnetic even-length chain
has a ground-state spin of S = 0. The odd-length chains, on the contrary have a net spin of
S = 1 in the ground state and thus exhibit low energy spin-flip excitations [54].

For the even-length chains in Fig. 1.7 the lowest energy conductance steps were inter-
preted as excitations that change the total spin of the chain [54]: a spin-changing transitions
from the ground state (with S = 0 and m = 0) to an excited state (with S = 1 and
m = −1, 0, 1 (degenerate at B = 0)).

The analytical interpretation of spectroscopic results was done by using the Heisenberg
model for an open chain of N coupled spins in its simplest form. It included only identical
nearest neighbor exchange interactions of strength J between the spins (Fig. 1.6D). All sites
were assumed to have the same spin SA. The Hamiltonian had the form of [54]:

HN = J

N−1∑
i=1

Si · Si+1, (1.3.1)

where Si is the spin operator for the i-th site along the chain. The eigenvalue of S2
i was thus

SA(SA + 1) for every i.
For a dimer, the ground state of the AF (J > 0) Heisenberg chain is a singlet (S = 0)

and the first excited state is a triplet (S = 1) with energy separation J [54]. This result
is independent of the spin SA of the constituent atoms. The energy spacing between the
ground state and the first excited state provides a direct measure of the coupling strength
J [54]. For the dimer shown in Fig. 1.7, the determined coupling was J = 6.2 meV.

In contrast to the dimer, the ground state of the Heisenberg AF trimer has total spin
S = SA. Generally, the first excited state has total spin SA − 1 and is higher in energy
by SA · J [54]. Figure 1.7 shows the energy of the first excited state for the trimer for a
few possible values of SA, where the value of J used was that determined from the dimer.
The conductance step at ∼ 16 mV, which can be now assigned to the lowest spin-changing
transition, is best matched with the result for SA = 5

2
.

From the excitation spectra of the dimer and trimer, Hirjibehedin and coworkers [54]
determine both free parameters J and SA of the Heisenberg Hamiltonian in Eq. (1.3.1).
Using these two values, they then calculate the excitation spectra for chains up to N = 6.
For odd-length chains, they find that the ground and first excited states have total spin 5

2

and 3
2
, respectively. In contrast, even-length chains have ground and first excited state spins

of 0 and 1, respectively. This result is consistent with the observed parity dependence of the
spin-flip feature and with the triplet splitting of the spin-changing excitation of even-length
chains. The fact that the calculated energy of the first excited state, as shown in Fig. 1.7
is in very good agreement with the observed spectral features proves once again that the
described procedure allows one to deduce the nearest neighbor exchange coupling parameters
from the IETS spectra.

1.3.2 Kondo effect as a spin coupling probe

Another method, based on the analysis of the Kondo resonance, was proposed by Chen et al. for
Cobalt dimers on a Au(111) surface [57] and successfully extended and improved by Wahl
et al. for Co on Cu(111) [58].

The Kondo effect is a collective electronic resonance which originates from the screening
of the spin of a magnetic impurity by the surrounding conduction band electrons [59]. It
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Figure 1.8: Kondo resonance of cobalt dimers on Cu(100) measured by STS at 6 K. As a
consistency check, spectra taken on both ends of the dimers are shown (green and black dots)
to be equivalent. (a) Model, topography, and spectra for (from top to bottom) a compact

dimer (2.56
◦
A), a dimer at 5.12, at 5.72, at 7.24, at 7.68, at 8.10

◦
A, and for a single

adatom at infinite distance ( > 20
◦
A) are depicted. The spectra are shown together with

fits by a Fano function (red solid line), for the dimer at 5.12
◦
A also a simulated curve with

J = 15 meV and Γ = 1.2T 0
K is plotted (blue solid line). (b) The width of the resonance as a

function of distance, and (c) KKR calculations for the exchange interaction between cobalt
adatoms on Cu(100) [63]. The three distinct regimes discussed in the text are shaded in
different grays. Figure from [58].

is characterized by a strong peak in the impurity’s density of states near the Fermi level.
Kondo effect has been observed for various surface systems: single magnetic adatoms [31, 32],
artificial nanostructures [30], and for molecules [60]. In STS spectra, it shows up as a feature
which can be described by a Fano line shape [61].

From a fit, the peak width Γ is obtained which is the characteristic energy scale (the
Kondo temperature TK) of the impurity system [58]. For the Kondo scenario of a single
magnetic impurity on a nonmagnetic metal surface a quantitative description has been pro-
posed [62]. The proximity of a second impurity might change the picture drastically.

Chen and coworkers [57] were the first to notice that the exchange coupling in magnetic
dimers has a notable influence on the Kondo screening of the system. They did, however, only
observe the disappearance of the Kondo resonance in nearest neighbor dimers on Au(111)
and did not give any recipe for extracting the amplitude of the magnetic interaction between
single impurities.

In their paper [58], Wahl and coworkers demonstrate that it is possible to determine
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the magnetic interaction between single magnetic atoms adsorbed on a noble metal surface
by measuring the modified Kondo spectrum. They measure the evolution of the Kondo
line shape obtained by STS upon varying the interatomic distance between Co adatoms in
dimers on a Cu(100) single crystal surface. The panels in Fig. 1.8a show different cobalt
dimer configurations prepared in the experiment [58] with interatomic distances between

the neighboring cobalt atoms ranging from 2.56 to 8.1
◦
A together with the corresponding

STS spectra. For the compact dimer the interaction between the spins is much stronger
than the coupling to the substrate and the Kondo effect (at 6 K) is suppressed [58]. For
the next-nearest neighbor distance, however, a resonance is found at the Fermi energy. The
resonance is considerably broader than that of a single cobalt adatom. By fitting the STS
signal with a single Fano line shape, Wahl et al. state that the energy width of the feature
would correspond to a Kondo temperature TK = 181± 13 K [58]. For distances of 5.72 and

7.24
◦
A, the Kondo resonance has already recovered almost the same width and line shape as

that of a single cobalt adatom. For even larger distances, the same width as on an adatom
is restored. The widths of the resonances are summarized in Fig. 1.8b [58].

The authors interpreted their data theoretically as a realization of a two-impurity Kondo
problem [64]. Depending on the relative strength of the exchange interaction compared
to the single-impurity Kondo temperature T 0

K , the dimers enter different regimes. For a
strong ferromagnetic exchange interaction |J | ≫ T 0

K (marked as regime I in Fig. 1.8c) a
correlated state with a new Kondo temperature T dimer

K ≈ (T 0
K)

2/|J | will occur [64]. This
new Kondo scale is much lower than the temperature of the experiment and can therefore not
be detected in direct measurements [58]. For intermediate exchange interaction J (regime
II in Fig. 1.8c), the single-impurity Kondo resonance is recovered. Finally, for a sufficiently
strong antiferromagnetic exchange interaction J > J∗ ∼ 2T 0

K (marked as regime III in
Fig. 1.8c) between neighboring magnetic atoms, the Kondo resonance is split and a singlet
state is formed between the impurities [64]. This singlet state is characterized in the impurity
density of states by peaks located at energies ±J/2 [65, 66, 58].

Using the slave boson mean field theory approach from Ref. [66] Wahl and coworkers
approximate the split Fano curve in the resulting density of states by the following formula:

ρ(ϵ) ∝ a1f

(
ϵ+ J/2

Γ
, q

)
+ a2f

(
ϵ− J/2

Γ
, q

)
, (1.3.2)

where f(x, q) = (x+q)2

x2+1
and a1 ∼ a2. This equation describes two Fano resonances at ±J/2

with the same width Γ which is of the same order as the single-impurity one [58]. The
resonances are resolved in the tunneling spectrum as only one broadened feature as observed
in the experiment due to the width of the resonances, which is of the same order as the
splitting.

Thus, the authors show that the width of the resonance is a direct measure for the mag-
netic interaction between the adatoms [58]. The exchange interaction values obtained by
fitting the spectra in Fig. 1.8a with function (1.3.2) have been corroborated by Korringa-
Kohn-Rostoker Green’s function calculations. KKR calculated values for the exchange in-
teraction between cobalt adatoms on Cu(100) are shown in Fig. 1.8c [63, 58].

1.3.3 Direct exchange probing by single atom magnetization curves

And quite recently a state of the art experiment by Meier et al. allowed to directly map
the exchange coupling of single adatoms with the atoms’ magnetic response to an external
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Figure 1.9: Overview of the sample of individual Co adatoms on the Pt(111) surface (blue)
and Co ML stripes (red and yellow) attached to the step edges (STM topograph colorized
with the simultaneously recorded spin-polarized dI/dV map measured with an STM tip
magnetized antiparallel to the surface normal). An external magnetic field B can be applied
perpendicular to the magnetization of adatoms MA, ML stripes MML or the tip MT . The
ML appears red when MML is parallel to MT and yellow when MML is antiparallel to
MT . (Tunneling parameters are as follows: I = 0.8 nA, V = 0.3 V, modulation voltage
Vmod = 20 mV, T = 0.3 K). From [67].

magnetic field (magnetization curves) [67].
In their experiment, Meier and coworkers study the magnetization of single Co adatoms

deposited at about 25 K on the bare stepped Pt(111) and their interaction with stripes of
one atomic layer Co grown at room temperature at the step edges (Fig. 1.9) [67].

Using the SP-STM technique they record spin-polarized differential conductance spectra
above single Co adatoms and present them decomposed as [67]

dI/dV ∝ (dI/dV )0 + (dI/dV )SP (MT ·MA), (1.3.3)

where the first term represents the bias-voltage-dependent spin-averaged part of the dI/dV
and the second term introduces the spin-resolved differential conductance. dI/dV (aver-
aged over a time window) as a function of an external magnetic field, B, is thus directly
proportional to the time-averaged magnetization

⟨
MA

⟩
in the out-of-plane direction [67].

Considering that the magnetization of the tip stays constant (confirmed experimentally
[67]) the authors then apply an external magnetic field and, varying its strength, obtain
the dependence of the dI/dV signal on B. Such a dependence is presented in Fig. 1.10 for
two different temperatures of the system. The authors then extract the value of the atom’s
magnetic moment by fitting the curves by using the magnetic energy function [68, 67]

E(θ, B) = −m(B −BT ) cos θ −K(cos θ)2,
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Figure 1.10: Magnetization curves from the same adatom taken at different temperatures as
indicated (dots). The solid lines are fits to the data (see text). The insets show the resulting
histograms of the fitted magnetic moments (in µB) for the same 11 adatoms at T = 4.2 K
(black) and at 0.3 K (red) (top histogram) and for 38 hcp (orange) and 46 fcc (blue) adatoms
at 0.3 K (bottom histogram, fcc bars stacked on hcp). Tunneling parameters are as follows:
I = 0.8 nA, V = 0.3 V, Vmod = 20 mV. From [67].

where θ is the angle between the magnetic moment and B. The authors vary the magnetic
moment m, the saturation magnetizationMsat, the tip stray field BT and use the anisotropy
value K as given in [68].

Similar magnetization curves as in Fig. 1.10 have been recorded by using several tips for
about 80 different adatoms showing qualitatively the same paramagnetic shape. The insets
contain the histograms of the fitted m. The increased variance at T = 0.3 K can, according
to Meier et al. [67], only be accounted for if one considers the atoms to be interacting with
the rest of the system. Moreover, the only interaction, which could account for such a large
dispersion of m was the substrate mediated long range interaction between the adatoms
and the magnetic stripes. The assumption was corroborated by the fact that the magnetic
behavior of atoms was strikingly different in the vicinity of the stripes [67].

Focusing on adatoms close to the ascending edge of the stripe, the authors [67] measure
the magnetization curve of a particular ML stripe and of an adatom with a distance of
d ≈ 1.5 nm (Fig. 1.11). They describe the behavior of the system as follows [67]. The ML
shows a regular square-like hysteresis corresponding to ferromagnetic behavior [67]. In the
down sweep (blue curve), its magnetization switches from up (high signal) to down (low
signal) at B = −0.5 T, and in the up sweep (red curve) it switches from down to up at
+0.5 T. The adatom close to a stripe behaves completely different than the distant ones
(which showed paramagnetic behavior). In the down sweep, its magnetization switches from
up to down already at large positive B = +0.7 T (see arrow). It then switches back to up
simultaneously with the reversal of the stripe at −0.5 T. Only at −0.7 T is the adatom’s
magnetization again forced into the down state (see arrow). The same behavior is observed
for the up sweep but now with the stripe magnetization pointing downward and the adatom
magnetization pointing upward at zero field. The adatom feels an anti-ferromagnetic (AF)
coupling to the stripe, which is broken by an exchange bias of Bex = ±0.7 T corresponding
to an interaction energy of J = −m · Bex ≈ −150 µeV (m = 3.7 µB). The magnetization
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Figure 1.11: Magnetic exchange between adatoms and ML stripe. (A to C) Magnetization
curves measured on the ML (straight lines) and on the three adatoms (dots) A, B, and C
visible in the inset topograph of (D). The blue color indicates the down sweep from B = +1 T
to−1 T (and red, the up sweep from−1 T to +1 T) (dI/dV signal on ML inverted for clarity).
The vertical arrows indicate the exchange bias field, Bex, which is converted into the exchange
energy (using m = 3.7µB) for the corresponding magenta points in the plot (D). (Tunneling
parameters are as follows: I = 0.8 nA, V = 0.3 V, Vmod = 20 mV, T = 0.3 K.) (D) Dots
show measured exchange energy as a function of distance from the stripe as indicated by the
arrow in the inset. The red, blue, and green lines are fits to 1D, 2D, and 3D range functions
for indirect exchange. Horizontal error bars are due to the roughness of the Co-ML-stripe
edge, whereas the vertical ones are due to the uncertainty in Bex. [67]
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curve of a more distant adatom shows a ferromagnetic (FM) coupling (Fig. 1.11B); that is,
the adatom magnetization is forced parallel to the stripe at zero field (J > 0). An even
more distant adatom (Fig. 1.11C) again is antiferromagnetically coupled but with a lower
Bex smaller than the stripe coercivity (see arrows) [67].

The interaction energies J(d) determined by the authors from similar magnetization
curves of many adatoms are plotted in Fig. 1.11D [67]. A damped oscillatory behavior, which
is reminiscent of Ruderman-Kittel-Kasuya-Yosida (RKKY)-like exchange (see Section. 1.4
for detail), is observed [67]. Authors attempt to test whether an RKKY description is
appropriate by fitting the data points using range functions J(d) = J0 · cos(2kFd)/(2kFd)n
with different assumed dimensionalities n (Fig. 1.11D) [67]. A good agreement is found for
n = 1 and a wavelength of λF = 2π/kF ≈ 3 nm [67].

It is interesting to note that due to mixed dimensionality of the system a fitting with
non-integer n might yield a still better agreement. Still the authors have managed to unam-
biguously show that it is possible to deduce the strength of the exchange coupling of single
adatoms from their magnetization curves, a technique which is bound to produce a sharp
resonance among the general physics community.

In Chapter 4 we propose an alternative method, which might allow one to probe the
exchange coupling in dimers on noble metal surfaces supporting the existence of a surface
state.

However, before proceeding to theoretical or experimental investigation of a system or an
effect, one has to make sure that one builds on a steady theoretical fundament. To provide
such a fundament for the understanding of the results of this thesis we would like to make a
detour into basics of the interaction of impurities. In the next section we will briefly discuss
the basics of the chemisorption theory of Anderson, the direct and the indirect interaction
of impurities. We will further expand the description onto the general magnetic case and
shortly mention the role of special electronic systems (like the surface state) in the interaction
mediation.

1.4 Theoretical basics of the interaction of impurities

When foreign nanostructures are introduced into a metallic host the electronic properties
of both the host and the impurities are changed. To a large extent the interaction between
single impurity atoms (units) is to be held responsible for those changes. If the impurities
are situated on (or buried in) a metallic surface the acuteness of the effects can be increased
by orders of magnitude. From the physical point of view a surface is a system with reduced
dimensionality and thus the interaction is realized simultaneously through both the vacuum
and the metallic solid and for this reason it differs significantly from both the interaction
between free nanostructures and the interaction between impurities in the bulk of the crystal.
Affected by the interaction are the structure of the host, its stability, the vibrational spectra
of the adsorbates, migration of particles along the surface. Besides, such characteristics of
the surface, as its work function or catalytic activity etc. can be profoundly affected.

Let us agree from the start to classify different types of interaction according to the nature
of the virtual quasiparticles that mediate them. Thus the interaction owing to the direct
exchange of electrons between adatoms would be called a direct one while the interaction
owing to the exchange of electrons through the conduction band would be considered to
be indirect. However, this classification of the mechanisms is applicable only as long as we
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consider the substrate to be a system consisting of non-interacting quasiparticles.
Such interaction mechanisms have been extensively studied in the past. A start was laid

by Ruderman and Kittel [69], who considered the interaction of single impurities in solids
and were the first to describe the ”indirect impurity coupling” mediated by the conduc-
tion electrons of a metal. The energy of such a coupling depends on the distance between
impurities according to the law [69]

E(R)∼R−3 · cos(2kFR), (1.4.1)

where R is the separation of impurities and kF is the Fermi wave vector of host electrons
in the corresponding direction. This interaction was shown to play an extremely important
role. The long-range oscillating character of it was attributable to the sharp cutoff of the
distribution function of conduction electrons in the metal at the Fermi energy, so that the
interference of electron waves with the Fermi momentum k = kF scattered by the impurities
leads to the well-known Friedel oscillations of the electron density [70, 71, 72]. As the
interaction is mediated by electrons with the energy ϵ = ϵF the character of the interaction
should obviously depend strongly on the form of the Fermi surface (FS) of the metal. Indeed
it can be shown (see, e.g. [73]) that if the FS contains cylindrical sections, then in the
direction perpendicular to the axis of the cylinder

E(R)∼R−2 · sin(2kFR), (1.4.2)

and if the FS contains flat sections then in the direction perpendicular to them [74]

E(R)∼R−1 · cos(2kFR). (1.4.3)

Similar Friedel oscillations also exist in the interaction between atoms adsorbed on the
surface of a metal, and for a number of reasons they are stronger in that case. The oscillatory
character of the interaction of adatoms was first noted by Grimley [75, 76, 77]. Lau and Kohn
[22] as well as Gabovich and Pashitskii [78, 79] noted particularly that for the interaction at
the surface to have a long-range character it is sufficient (according to (1.4.2) and (1.4.3)) that
the FS of the substrate contains cylindrical or flat sections perpendicular to the surface. In
general it can be said that if the interaction is attributable to the exchange of quasiparticles
of the metallic substrate, then it will always have a Friedel oscillating component whose
amplitude decreases as some power of R as R → ∞, and the exponent is determined solely
by the electronic structure of the substrate.

1.5 Basic ideas from the theory of chemisorption

To understand the particularities of the electronic structure of the adatom-substrate system
we will borrow the basic notions of the theory of Newns-Anderson model of chemisorption
[28, 27, 80, 81]. We will not elaborate on minor details (as a more detailed discussion can be
found elsewhere, e.g. [28, 27]) but rather concentrate on main statements and conclusions.
As the basis for the theory serves the Gurney’s [82] proposition that when an atom is
chemisorbed on a surface an electronic level is formed. It occurs due to the shift of free-
adatom electronic levels in the near-surface-field of the metal. If a level happens to occupy
the same energy window as the conduction band of the metal, electrons can tunnel from
the conduction band into that level of the adatom and vice versa, as a result of which the
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discrete electronic level is transformed into a virtual level with a finite half-width δ. This
process might be described theoretically by the Hamiltonian

H = HA +HS +Hmix. (1.5.1)

To study such a Hamiltonian it is convenient to proceed in a step by step perturbative
manner and employ the technique of advanced Green’s functions. Then the Hamiltonian
term for a single atomic orbital |A⟩ in the second quantization notation would look like
HA = ϵAc

∗
AcA and the Green’s function of the free atom is GA(ϵ) = (ϵ− ϵA − i0)−1.

The Hamiltonian HS in (1.5.1) we can assume to be one of a semi-infinite crystal. When
describing both the bulk and the surface impurities it is convenient to resort to the use of
a point basis {|i⟩}, where |i⟩ is a wavefunction localized at the surface of a substrate atom
residing at Rj. In this basis the Green’s function of the substrate is given by the expression

GS (Ri −Rj, ϵ) =
⟨
i
∣∣(ϵ−HS − i0)−1

∣∣j⟩ . (1.5.2)

The form of the GS for special cases of the FS shape will be discussed in detail in section
1.7. It can be shown [28, 27] that at separations R exceeding the lattice constant of the
substrate a0 the Green’s function can be expanded using the plane wave formalism as

GS (R, ϵ) ≈ R−νgν(ϵ) exp (−ik(ϵ)R) , (1.5.3)

where k(ϵ) is the wavevector (k(ϵ)||R) of a host electron with energy ϵ , ν is a nonnegative
integer determined by the structure of the FS of the substrate and gν(E) is a smooth function
of energy.

The operator Hmix is introduced to account for the coupling of the adatom to the sub-
strate. In the simplest case, when the adatom is bound to a single surface atom |i⟩, the
corresponding Hamiltonian term would be given by an expression

Hmix = V c∗Aci + h.c., (1.5.4)

where V = ⟨A|H|i⟩ is the overlap integral of the wave functions. To account for the coupling
to multiple atoms of the substrate a simple procedure can be used which is reduced to a
renormalization of parameters ϵA and V [28, 27, 83, 84].

The perturbative approach to obtaining the total Green’s function G̃ = (ϵ − H − i0)−1

of the system, from an non-interacting Green’s function G, can be easily realized by means
of the Dyson’s equation (for more details see 2.2.2 or, e.g., [85, 86, 87]):

G̃ = G+GHmixG̃. (1.5.5)

The advantage of this approach is that different terms in the operator Hmix can be taken
into account systematically. The equation (1.5.5) is a matrix equation, which in the case of
a single adsorbate operates with 2×2 matrices (of the {|A⟩ , |i⟩} basis). Knowing the matrix
representation of G and considering that ⟨A|G|i⟩ = 0, the Green’s function GA for a single
atomic level can be obtained from (1.5.5):

G̃A (ϵ) =
⟨
A
∣∣∣G̃ (ϵ)

∣∣∣A⟩ =
(
ϵ− ϵA − V 2Gs (0, ϵ)

)−1
. (1.5.6)

Thus the shift of the electronic level of the adatom accompanying chemisorption equals
Λ ≡ Λ(ϵA) = Re V 2GS (0, ϵA) and its half-width equals ∆ ≡ ∆(ϵA) = Im V 2GS (0, ϵA). In
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real systems both the shift and the half-width of the level usually are of the order of 1eV
[83].

The density of electronic states of the system is affected by the impurity ρ(ϵ) = π−1ImG̃(ϵ)
which allows neighboring impurities to ”sense” each other, resulting in what is called an in-
direct interaction between adatoms. It was first reported by Koutecky [21]. Let us consider
two impurities adsorbed on sites |i⟩ and |j⟩ separated by a distance R = |Ri|. The dimen-
sionality of the Dyson’s equation (1.5.5) is then increased to 2× 2 (of the {|A⟩ , |B⟩ , |i⟩ , |j⟩}
basis) remaining however easily solvable [88].

The interaction energy of the adatoms can is defined as

Eint(R) = ⟨H(R)⟩ − ⟨H(∞)⟩ . (1.5.7)

Details of the representation of Eint(R) in terms of the Green’s function G̃ are thoroughly
discussion in numerous publications (see, e.g. [89, 90, 28, 27] and the references therein).
Here, we shall therefore immediately turn to the expression for the indirect-interaction en-
ergy, obtained in the framework of the temperature Green’s function formalism [85, 91]:

Eind(R) = − 2
π

+∞∫
−∞

dϵ fF (ϵ) Im ln
(
1− V 4 G̃2

A(ϵ) G
2
S(R, ϵ)

)
,

fF (ϵ) = {exp [(ϵ− ϵF ) / (kBT )] + 1}−1 .

(1.5.8)

The factor of two here accounts for the summation over the electron spins. In the R →
∞ limit it can be assumed that V 2G̃AGS ≪ 1, which allows the expression (1.5.8) to be
simplified:

Eind(R) = −2V 4

π
Im

+∞∫
−∞

dϵ fF (ϵ) G̃
2
A(ϵ) G

2
S(R, ϵ). (1.5.9)

Using the expression (1.5.3) for the Green’s function of the substrate and integrating (1.5.9)
by parts we obtain in the limit of R → ∞ [28, 27]

Eind(R) = − 2V 4

πR2ν+1
Re

+∞∫
−∞

dϵ f ′
F (ϵ)

ϵα(ϵ)

k(ϵ)
G̃2

A(ϵ) g
2
ν(ϵ) exp(−2ik(ϵ)R), (1.5.10)

where α−1(ϵ) = (2ϵ/k(ϵ)) · dk(ϵ)/dϵ. We can further utilize the fact that the localized
nature of f ′

F (ϵ) cuts out, upon integration, a narrow region of width kBT around the Fermi
energy. Then, using the expansion k(ϵ) = kF [1 + (ϵ− ϵF ) / (2ϵFαF )], where αF = α(ϵ),
and removing the smoothly varying functions from the integrand we obtain the following
expression for the indirect interaction energy: [28, 27]

Eind(R) ≈
2V 4

πR2ν+1

ϵF αF

kF
f

(
R

RT

)
Re
[
G̃2

A(ϵF ) g
2
ν(ϵF ) exp (−i2kFR)

]
, (1.5.11)

where
f(x) =

x

sh x
, RT = k−1

F

αF ϵF
π kB T

. (1.5.12)

It is rather natural that at non-zero temperatures the interactions in the system should decay
exponentially with distance in the far zone (R ≫ RT ):

Eind(R) ∼ R−2ν cos (2kFR + φ) exp

(
− R

RT

)
(1.5.13)
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The quantity RT ∼ a0 (ϵF / kBT ) at room temperatures and a typical values of EF ≈ 5eV
is of the order of hundreds of lattice constants, and thus, at intermediate distances, we can
safely neglect the temperature dependence of Eind(R) in our further calculations. There are,
however, other factors that affect the RT . In real crystals is the mean free path of conduction
electrons, which is strongly dependant on their scattering by impurities, phonons, etc.

Since at large distances the interaction is mediated by host electrons with energies close
to the Fermi energy ϵF the period of the oscillations of Eind(R) and the rate of its amplitude’s
decay are determined solely by the structure of the FS of the substrate along the given vector.
Indeed, from (1.5.11) at T = 0 we obtain f(R/RT ) = 1 and

Eind(R) ∼ R−(2ν+1) cos (2kFR + φ) . (1.5.14)

The range of the indirect interaction is longest in the cases of flat (ν = 0) and cylindrical
(ν = 1/2) Fermi surfaces, when the interaction is transferred by large groups of electrons.
First, however, we shall study the behavior of Eind(R) in the near zone.

1.6 Indirect interaction of adatoms: the near zone

While at large distances R ≫ RA (where RA is a spatial constant discussed in more detail
later) the interaction is transferred mainly by electrons with energies ϵ = ϵF , in the near zone
R ≪ RA all electrons in the conduction band of the substrate participate in the interaction;
in the process different parts of the FS make different contributions to the interaction energy.

Numerical calculations have shown that the near zone (R ≪ RA) is large compared with
a0. For example, in the case of adsorption of hydrogen atoms on the surface of aluminum,

in the frame of the ”gellium” model, RA ≈ 5
◦
A [92], while for adsorption on the (100) face

of a simple cubic lattice RA equals several lattice constants [93]. The qualitative behavior of
the indirect interaction in the near zone can be considered with the help of the expressions
(1.5.3) and (1.5.9). Switching to integration over the k space, substituting dϵ = 2ϵ(k)α(k)

k
dk,

and α(k) = k
2ϵ(k)

· dϵ(k)
dk

, and removing the smoothly varying function from the integral, we

obtain the following expression for the interaction energy: [28, 27]

Eind(R) ≈
2V 4

πR2ν

2ϵFαF

kF
Im

g2ν(ϵF ) exp(−i2kFR)
kF∫
dkG̃2

A (ϵ(k)) exp [−i2(k − kF )R]

 .

(1.6.1)
Regarding the variable k as complex and selecting the lower half-plane for the contour
integration [28, 27], using the expression (1.5.6) for G̃A(ϵ) and the expansion

ϵ(k) ≈ ϵF
[
1 + (k − kF )αF (2kF )

−1
]

(1.6.2)

we obtain

Eind(R) ≈ − 2V 4

πR2ν

16kFR

ϵFαF

Re
{
g2ν(ϵF )

[
exp(−SR) Ei(SR)− (SR)−1

]
exp (−i2kFR)

}
.

(1.6.3)
where Ei is the integral exponential function,

S = i
4kF
αF

(ϵ̃A − ϵF + i∆F ) ϵ
−1
F ,

ϵ̃A = ϵA + Λ(ϵF ), ∆F = ∆(ϵF ).

(1.6.4)
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In the far zone R ≫ RA the asymptotic expression (1.5.14) derives from (1.6.3), and in the
near zone R ≪ RA one obtains approximately [28, 27]

Eind(R) ≈ − 8V 4

πR2ν
Im
[
G̃A(ϵF )g

2
ν(ϵF ) exp (−i2kFR)

]
. (1.6.5)

We note that in the near zone the period of the oscillations is also determined by the Fermi
wave vector kF and does not depend on the parameters of the adatom. [94] The size of the
near zone is determined by the parameters of the adatom [28, 27]:

RA =
∣∣S−1

∣∣ = (4kF )
−1 αF ϵF

[
(ϵ̃A − ϵF )

2 +∆2
F

]−1/2
. (1.6.6)

For parameters that are typical for chemisorption systems |ϵ̃A − ϵF | ≈ ∆F ≈ 0.5 eV, ϵF ≈
5 eV, kF ≈ a−1

0 we obtain RA ≈ 2a0, which agrees with the numerical results presented above
[92]. If, however, the adatom strongly perturbs the electronic spectrum of the substrate, i.e.,
if the adatom has a narrow virtual level near the Fermi level (|ϵA − ϵF | . ∆ ≪ ϵF ), then
the near zone is significantly larger (R ≫ a0). We emphasize that in this case the amplitude
of the indirect interaction is also large [95, 83, 27] and it decays as a function of R in the
near zone more slowly than in the far zone [94, 96]. Prior to the appearance of modern
calculational facilities and the development of new effective computational techniques, it has
been an extremely tough task to calculate the energy Eind in the near zone accurately, since
in this case, the electronic structure of the substrate must be taken into account exactly.
Calculations performed in a number of papers (see, e.g., Refs. 2, 14, 24, 28, 31, and 34 of [83])
can be regarded as the proof of this statement. Modern numerical methods (like the density
functional theory, described in more details in Section 2.1) allow for precise calculations of
extremely complex systems which can impossibly be treated purely theoretically. However,
simplified models can give us a surprisingly good insight into the general behavior trends of
many systems.

1.7 Indirect interaction of adatoms: the asymptotic

zone

Since the behavior of the indirect-interaction energy in the far zone R ≫ RA is completely
determined by the shape of the FS of the substrate the study of the asymptotic behavior
of the function Eind(R) reduces to calculating the Green’s function Gs(R, ϵ). For this it is
convenient to employ the strong-coupling approximation, which enables modeling substrates
with different electronic structure [94]. Further we will discuss several simple cases which
are of interest for the systems discussed in the present thesis.

1.7.1 Flat FS

The simplest model of a metal with a flat FS is a one-dimensional linear chain of atoms with
the dispersion law for electrons ϵ(k) = ϵc − 2γ cos(a0k), where γ is the overlap integral of
the orbitals of neighboring atoms, ϵc is the center of the conduction band of width W , and
γ = W/4. For convenience we will set, by choosing the system of units, ϵc to be 0, γ = 1/2
and a0 = 1. Then the Green’s function of the substrate in the ”point” basis (R = ma0)
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equals [83, 27]

GS(m, ϵ) = (2π)−1

+π∫
−π

dk exp(imk) (ϵ− ϵ(k)− i0)−1

= i(−i)m(1− ϵ2)−1/2
[
ϵ+ i(1− ϵ2)1/2

]|m|

=
i

sinx0
exp(−i |m| x0),

(1.7.1)

where cos x0 = −ϵ, 0≤x0≤π [83, 27]. Thus for the interaction of adatoms along closely
packed chains of atoms of the substrate (i.e., perpendicularly to the flat sections of the FS)
Eind(R) ∼ R−1 (ν = 0). The situation described corresponds, for example, to the interaction
of adatoms adsorbed on a (112) face of a metal and aligned along the [111] direction.

1.7.2 Flat sections of the FS

It is, of course, clear that the case of a flat section in a FS of a real element is a rather exotic
one. However, a Fermi surface of a metal can have flattened sections, or, to be precise,
sections, having large curvature radii. At distances shorter than a certain characteristic
length R∗, such patches produce the character of interaction innate to a flat Fermi surface
[83, 27]. It can be shown [83, 27] that the asymptotic formula Eind(R) ∼ R−2 is true only
at large distances R ≫ R∗ = mv(ϵF ) · a0. In the near zone (R ≪ R∗) the preasymptotic
formula Eind(R) ∼ R−1 holds. The parameter R∗, separating the far and the near zones, is
proportional to the radius of curvature of the Fermi surface in the selected direction [83, 27].

1.7.3 Open sections of the FS

In some metals, e.g. in fcc stacked crystals like Cu, the almost spherical FS intersects
the Brillouin zone boundary, thus leaving open sections. Then in the direction of these
sections the interaction can be described by the Green’s functions GR(R) ∼ exp(−αR). So
the interaction in these directions is not directly supported by host electrons and decays
exponentially [83, 27].

1.7.4 Spherical FS

If the Fermi surface does not display any peculiarities, such as a flattened patch or an open
section, the indirect interaction at the surface decays as Eind(R) ∼ R−5. This behavior,
thoroughly discussed, f.e., by Einstein [88] for a simple cubic lattice, significantly differs from
case of the interaction in the bulk, which shows cubic decay rate. This can be explained by
a much smother behavior of the density of electronic states at the surface as compared to
the bulk [83, 27].

1.7.5 The role of surface states

Some surfaces of close packed crystals support the existence of electronic surface states (SS).
In the one-band model, if the perturbation U of the 3D periodic crystal by the surface is
taken into account, an additional electronic state arises in the inverted band gap - the Tamm
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surface state [97]. In a two-band model of a crystal such states arise in the direct gap owing
to the mixing of the bands caused by the finiteness of the crystal - Shockley surface state
[98]. The fact that such states can also be a carrier for the interatomic interaction was first
considered in 1978 by Lau and Kohn [22]. With increasing success of surface probe tech-
niques, such as the STM this topic was reopened both by theoreticians and experimentalists
[23, 99]. Hyldgaard and Persson [100], proceeding in a way similar to that, outlined in the
present introduction (see also [83, 27]), have examined the indirect interaction mediated by
a Shockley surface-state band between adsorbates on the (111) face of noble metal surfaces
in the presence of bulk electrons. They stressed the importance of the screening by the fi-
nite density of the surrounding conduction-band bulk electrons. They succeeded to obtain a
simple non-perturbative description of the adsorbate-induced scattering within the surface-
state band. They also managed to provide an analytical estimate of the interaction in the
asymptotic case of large R ≫ R∗ [100]:

Eind(R) ≈ −ϵF
(
2 sin(δF )

π

)2
sin(2kFR + 2δF )

(kFR)2
. (1.7.2)

The character of the interaction is determined by experimentally accessible parameters: the
Fermi-level phase shift, δF , which manifests itself in the reference shift of the adsorbate-
induced standing-wave LDOS patterns (observed in STM images, e.g. [23]), the Fermi
energy ϵF of the Shockley surface state band, and the associated k∥ Fermi wave vector kF .
This description has proved to be extremely viable and has been corroborated by numerous
theoretical and experimental studies [101, 102, 23].

It is, indeed, hard to underestimate the potential scope of possibilities that the sur-
face state mediated interaction presents for nanoscience and nanotechnology. It has already
allowed for the discovery of such interesting phenomena as, f.e., the existence of adatom
superlatices [103] or the self-assembly of low-dimensional nanostructures [104]. The interac-
tion of single impurities with extended surface structures (steps, stripes, corrals), mediated
by surface state electrons, has been shown to have a profound effect on the adsorption
properties and the diffusion of single adatoms at the surface [35, 105]. The existence of
surface-electrons-stabilized surface lattices has also presented the scientists with an interest-
ing model system for investigating the 2D melting of solids, which was shown to exhibit a
peculiar transition from solid to liquid avoiding the intermediate (so called hexatic) phase
[106].

1.8 Direct interaction

Last, but not least, let us shed a few words on the direct interaction of adsorbates. When
two adatoms (A and B) lie close enough to one another on a substrate for their orbitals ΨA

and ΨB to overlap, the direct mechanism of interaction comes into play. It is fundamentally
identical to the interaction leading to the formation of a chemical bond in molecules. In
quantum mechanical view of the interaction an overlap between the impurities’ orbitals
results in the creation of two common orbitals: a bonding Ψ+ = ΨA+ΨB and an antibonding
Ψ− = ΨA−ΨB ones (see Fig. 1.12a). The gain in energy due to the interaction is proportional
to the overlap integral I(R) = ⟨ΨA|H|ΨB⟩ and can be attributed to the fact that in the
lowest energy state only the energetically favorable orbital Ψ+ is filled with electrons (see
the sketch in Fig. 1.12b). The direct interaction leads to attraction of impurities which falls
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Figure 1.12: a) A schematic representation of the two electronic orbitals formed as a result
of the s-shells interaction. b) A sketch of the electronic structure modification due to the
direct interaction of impurities.

of exponentially with the interatomic separation R following the behavior of the overlap
integral: E(R) ∼ I(R) ∼ exp(−αR), where α is of the order of the adatoms’ outer shell
extents [83, 27]. Thus it is obvious that the direct interaction is fundamentally short-ranged
and does not affect the processes in the bulk or at the surface for low impurity densities or
large interatomic separations.

Other mechanisms of interaction of adatoms (elastic, van-der-Waals [88]) lead to energies
that, as a rule, are more than an order of magnitude lower than those discussed above. This
means that they can only be significant if the coupling of the impurity to the surrounding
host is extremely weak (the so-called physically adsorption regime) [83, 27, 88].

1.9 Introducing the magnetism

As the present work is mostly focused on magnetic aspects of the surface and subsurface
impurity interaction, it is essential at this point to introduce magnetism into the above
presented general framework.

1.9.1 Direct interaction of magnetic impurities

For the direct interaction of impurities it can be relatively easily done as a straightforward
extension of Section 1.8 and was indeed done so for the first time by Alexander and Anderson
[107]. But instead of replicating their rigorous mathematical derivation we will just briefly
summarize the facts complemented by some elementary arguments for the derivation of the
Green’s function and the corresponding density of states for a ferro- and an antiferromag-
netic alignment of impurity magnetic moments (see also the work by Oswald et al. [108]).
To simplify the derivation we will, without strongly limiting the generality of the results
obtained, consider the impurity charges q1 and q2 to be equal to the charge of a single
non-interacting impurity q. The only parameters left flexible to the effect of the interaction
are the magnetic moments of both impurities (m1 and m2). This assumption simplifies the
self-consistent determination of the moments and the calculation of the interaction energies
without changing the results significantly.

In the Anderson model for a single magnetic impurity [81] the impurity level E0 (more
specifically, such a level can be considered to be a virtual bound state, as originally stated
by Anderson [81]), becomes spin split due to the exchange interaction: E = E0 ± 1

2
I · m,
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Figure 1.13: Schematic representation of the LDOS for two configurations of a pair of mag-
netic impurities: (a) ferromagnetic and (b) antiferromagnetic. Dashed curves represent the
LDOS of single (non-interacting) impurities in the host. Solid curves represent the LDOS of
the pair. The figure has been adopted from [108].
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where I is the exchange integral and the signs + and − correspond to the spin states σ = −1
(minority) and σ = +1 (majority) respectively. In the Anderson model, the embedding of
the impurity into a host leads to an energy shift E0 → E ′

0 and to a broadening of the level
to a half-width of Γ = 2∆ = 2π ⟨V 2

ih⟩n(ϵ) [81, 108], which depends on the impurity-host
matrix element for the level in question Vih and its density of states amplitude. The lifetime
of such a state is then, obviously, decreased to ~/Γ. The resulting densities of states can
then be represented by two Lorentzians with corresponding half-widths (dashed blue curves
in Fig. 1.13(a and b)). In most cases, the energy dependence of E ′

0 and Γ can be safely
neglected.

In the Alexander-Anderson model two impurities on neighboring sites interact directly
by an overlap matrix element V12 = V . The impurity moments m1 and m2 are parallel in the
ferromagnetic configuration (m1 = m2 = m) and antiparallel in the antiferromagnetic one
(m1 = −m2 = m). The essential point is that due to the interaction V the impurity states
with the same spin directions σ hybridize, so that the new eigenfunctions are determined by
the equations [108] (

E0 − 1
2
σIm1 − E

)
cσ1 + V cσ2 = 0

V cσ1 +
(
E0 − 1

2
σIm2 − E

)
cσ2 = 0.

(1.9.1)

For the ferromagnetic case this results in the formation of bonding and antibonding states
for each spin direction with a splitting of 2V :

E± = E0 − 1
2
σIm± V,

cσ1 (±) = ±cσ2 (±) = 1/
√
2.

(1.9.2)

For the antiferromagnetic pair the local moment is reversed on site 2. Consequently the
state E0 − 1

2
σIm1 at site 1 hybridizes with the state E0 +

1
2
σIm2 at site 2. As a result one

obtains the same energy levels for both spin directions, but with strongly differing weights
[108]:

E± = E0 ±W |cσ1 (±)|2 = 1
2
(1± ση) =

∣∣c−σ
2 (±)

∣∣2
W =

[
(1
2
Im)2 + V 2

]1/2 ≈ Im

2
+
V 2

Im
η =

Im

2W
≈ 1− 2V 2

(Im)2
.

(1.9.3)

The embedding of the pair into the host leads again to a change E0 → E ′
0 and a lifetime

~/Γ. By taking this into account the Green’s function for the ferromagnetic pair can be
expressed as [108]:

Gσ
1 (ϵ) = Gσ

2 (ϵ) =
1

2

(
1

ϵ− E ′
0 +

1
2
σIm− V + iΓ

+
1

ϵ− E ′
0 +

1
2
σIm+ V + iΓ

)
, (1.9.4)

and for the antiferromagnetic case it would look like

Gσ
1 (ϵ) = G−σ

2 (ϵ) =
1

2

(
1− ση

ϵ− E ′
0 −W + iΓ

+
1 + ση

ϵ− E ′
0 +W + iΓ

)
. (1.9.5)

The corresponding densities of states, given by the imaginary part of the Green’s function,
are sketched schematically by solid lines in Fig. 1.13(a and b). For the ferromagnetic case



32 Chapter 1. Experimental state of the field

one sees the bonding-antibonding splitting of the single-impurity peaks. In the antiferromag-
netic case the single-impurity peaks repel each other and are slightly reduced in intensity.
Additional satellite peaks with rather small weights (∼ 2(V/Im)2) appear in the spectra.
These are due to tunneled-through electrons from the neighboring sites. These additional
peaks have a tendency to reduce the local moment. Thus, due to the self-consistent renor-
malization of the local moment, the effective exchange splitting is reduced so that the peaks
are backshifted and appear at the same positions as for the isolated impurities [81, 108].

Although at nearest neighbor separations the direct interaction is the most important
one, the interaction of the two impurities through the host should not be left completely
unmentioned. In more detail the indirect interaction will be discussed in the next section,
here we only note that the hopping of electrons from impurity 1 into the host and from there
to impurity 2 leads to an indirect interaction which is described by an energy-dependent
matrix element λ12(E) superimposed on and competing with the constant direct matrix
element V = V12 in equations (1.9.4) and (1.9.5) [81].

If we start increasing the separation between the impurities, the relative weight of this
RKKY-like interaction will constantly grow.

1.9.2 Indirect interaction of magnetic impurities

It is now taken as a self-evident fact that the indirect interaction of two magnetic impurities
in a paramagnetic host carries a close resemblance to the Ruderman-Kittel-Kasuya-Yosida
(RKKY) [109, 69, 110] interaction. It has a spatially oscillating character and can be de-
scribed in scattering theory terms as an interaction maintained by conduction electrons scat-
tering between two impurity potentials. The propagation of these electrons can be viewed
as the propagation of plain waves. Historically, however, [107] it has been derived from a
Friedel-Anderson model of localized moments [111, 112], with the use of a Green function
formalism and treating the s− d exchange interactions in a Hartree-Fock approximation.

In its general RKKY form for the exchange interaction energy looks like [113]

Eexc,12 ∝ −J12 ŝ1 · ŝ2, (1.9.6)

where ŝ1,2 describes a unit vector pointing in the direction of the magnetic moment on one
of the impurity sites and J12 is an effective exchange parameter. In its original formulation
for magnetic impurities in a metallic-like host the exchange interaction can be implicitly
formulated as [113]:

Eexc,12 ∝
ŝ1 · ŝ2
R 4

12

[2kFR12 cos(2kFR12)− sin(2kFR12)] , (1.9.7)

where R12 is the vector connecting the two sites and kF is the Fermi wave vector of the host.
Since its emergence, the formalism has been thoroughly refined and complemented to account
for various effects, introduced by host system peculiarities or its relativistic properties. For
example, Levi and coworkers [114, 115] have introduced an additional Dzyaloshinsky-Moriya
(DM) type [116, 117, 118] term

EDM ∝ R12 · (ŝ1 × ŝ2). (1.9.8)

to the initial representation of the RKKY interaction to account for the anisotropy field of a
spin glass. To derive the term they have considered intermediate spin-orbit scattering by non-
magnetic impurities and host atoms (an effective three-site interaction) [113]. Further on,



1.9 Introducing the magnetism 33

Staunton and coworkers [113] have derived a direct relativistic generalization of the RKKY
interaction by considering magnetic anisotropic two-site case. They treated spin polarization
and spin-orbit coupling non-perturbatively and on an equal footing, concluding generally,
that, apart from being a function of an isotropic spin-spin term ŝl · ŝ2 (see Eq. (1.9.7)), it
is also a polynomial function of a Dzyaloshinsky-Moriya term R12 · (ŝ1 × ŝ2) squared and a
pseudo-dipolar term (R12 · ŝ1)(R12 · ŝ2) [113].

In the framework of the present research we will not venture into the range of relativistic
effects and anomalous behaviors of the exchange interaction, but will rather endeavor to
present a thorough study of various fundamental effects that can be encountered if one
deals with single atomic-sized magnetic impurities in a metallic host. In such a case, we
can consider a direct extensions of the ideas contained in sections. 1.6 and 1.7 onto the
case of magnetic impurities. As has been shown in the above mentioned sections (see, e.g.,
Section 1.5), the indirect interaction in the nonmagnetic case can be represented, in the
matrix element V σ

i notation, as

ENM
ind ∼ Im

∫
dϵ fF (ϵ)Tr

{
(V +

1 V
−
1 )G12(V

+
2 V

−
2 )G21

}
. (1.9.9)

If we now consider that the exchange parameter J12 can be represented it terms of the same
parameters as

J12 ∼ Im

∫
dϵ fF (ϵ)Tr

{
(V −

1 V
−
1 )G12(V

−
2 V

−
2 )G21

}
, (1.9.10)

it becomes clear that the general trends for the Eind behavior established in sections 1.6 and
1.7 can be safely transferred onto the indirect magnetic interaction of single impurities. We
thus can summarize that we have obtained the same dependencies for the indirect exchange
interaction of magnetic impurities as were presented at the beginning of the chapter. The
exchange interaction in a 3-dimensional (3D) system follows the law [113]

Eexc(R)∼R−3 · cos(2kFR), (1.9.11)

where R = R12 is the separation of the two impurities. In the 2D case the interaction can
be presented as [113]

Eexc(R)∼R−2 · sin(2kFR), (1.9.12)

and in the 1D case (e.g. if the FS contains flat sections) [113]

Eexc(R)∼R−1 · cos(2kFR). (1.9.13)

Such simple approximation often provide an accurate description of the realistic physical
picture. As an example, the famous phenomenon of the interlayer exchange coupling can
be considered [119, 120, 121, 122, 123, 12, 11]. The long history of this phenomenon’s
investigation has shown that by refining the theoretical model one can achieve a striking
agreement with the experimental observations. Yet it is a very taxing task, as, even for
a simple metallic system, a general case analytical derivation of J12 might prove to be a
nigh on impossible procedure. That is why we employ the general theoretical estimations
for identifying potentially interesting systems and as a reference point for further ab initio
calculations.





Main aims of the study

Although the amassed experimental expertise and simple theoretical models provided in the
introductory chapters give one a good estimate of a possible behavior of a nanoscale system,
they are usually too crude to provide an accurate description of finer effects and are thus
often useless in studying new effects and testing new theories. In the present study we
rely on an ab initio KKR Green’s function method to investigate magnetic properties of
subnanoscale units at surfaces to clarify and generalize the following points:

• Coupling of single magnetic adatoms to a buried magnetic monolayer: single spin
manipulation.

• Effect of a buried magnetic monolayer on the interatomic exchange coupling in surface
addimers.

• Tailoring the exchange interaction of single adatoms by linking them with paramagnetic
chains.

• Utilizing the quantum confinement of surface state electrons on self-assembled struc-
tures to tune the exchange coupling of single magnetic adatoms adsorbed on top of
them.

• Surface state localization at magnetic addimers as a probe for the interatomic exchange
interaction.

• Possibility to study the magnetism of buried structures by analyzing the polarization
of surface electrons.

• Possibility to determine the coupling of buried structures to each other.
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Chapter 2

Theoretical approach used in the
study

The most general approach possible for the description of the electronic properties of a solid
consisting of N electrons and M nuclei is the solution of a 3(N +M)-dimensional Srödinger
equation for the many-body wave-function ψ (r1, r2, . . . , rN ,R1,R2, . . . ,RM) where rn and
Rm are the coordinates of single electrons and nuclei respectively [124, 125]. Even assum-
ing the adiabatic Born and Oppenheimer approximation we are left with a 3N -dimensional
Schrödinger equation which is quite impossible to tackle with modern (or ever conceiv-
able) theoretical or calculational methods. In the present chapter the Kohn-Sham density
functional theory (DFT), allowing for an effective calculational treatment of such many-
electron problems, is discussed and the Korringa-Kohn-Rostoker (KKR) Green’s function
(GF) method is introduced which can be utilized to obtain a solution of the resulting single-
particle Kohn-Sham problem.

2.1 Density functional theory

The Hohenberg-Kohn density functional theory (being an exactification of both the Thomas-
Fermi and the Hartree theories) was developed by Kohn and Hohenberg around 1964 [126].
It recasts the problem of the solution of a many-electron Schrödinger equation in terms of
the electronic density distribution n(r) and a universal functional of the density Exc [n(r)].
Thus is becomes possible to replace the necessarily approximate solution of a many-body
Schrödinger equation by a problem of finding adequate approximations to the exchange
functional and then solving a single-particle electronic equation.

2.1.1 Hohenberg - Kohn theorems

The base for the theoretical justification of the DFT are two theorems proving the possibility
of an above-mentioned treatment of a many-body system [125, 127, 128, 129]. If we consider
a system of N interacting electrons in a non-degenerate ground state ψ represented by an
external potential υ(r), then the theorem states that [126]

Theorem 1 (Also called the original Lemma) The ground state external potential υ(r), and
hence the total energy, is uniquely determined by the electron density n(r) (to within an
additive constant).
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Though the original formulation contains the limitation of the non-degeneracy of the ground
state and was conceived for non-relativistic potentials and spin-less particles, it has been
long since purged of its restriction and considerably generalized.

Theorem 2 (Also called the Variational Theorem) There exists a functional F [n′(r)] defined
for all non-degenerate ground state densities n′(r) such that, for a given υ(r), the quantity

Eυ(r) [n
′(r)] =

∫
υ(r)n′(r) dr+ F [n′(r)] (2.1.1)

has its unique minimum for the correct ground-state density, n′(r) = n(r), associated with
υ(r) [126].

The functional F [n′(r)] can be represented as

F [n′(r)] ≡
(
ψn′(r), (TS + U)ψn′(r)

)
, (2.1.2)

where ψn′(r) is the ground state associated with n′(r), and TS and U are the kinetic energy
and the Coulomb repulsion operators. In terms of the ground state density this functional
can be expressed as

F [n(r)] ≡TS[n(r)] +
1

2

∫∫
n(r)n(r′)

|r− r′|
drdr′ + Exc [n(r)] (2.1.3)

It can be noted that if the last term Exc [n(r)] in equation (2.1.1) is neglected equations (2.1.1)
and (2.1.3) turn into the set of Hartree equations. Hence, all the explicit many-body effect
beyond the Hartree mean field approximation are encapsulated in the exchange correlation
functional Exc [n]. Thus it can be said that the ground state energies and corresponding
densities can be obtained by minimizing (2.1.1) with respect to n [r].

2.1.2 Kohn-Sham (KS) equations

For an efficient minimization of the energy functional (2.1.1) it is convenient to reformulate
the Hohenberg Kohn variational principle in form of exact single particle self consistent
equations, similar to the Hartree ones. It has been done by Kohn and Sham [130] within
an assumption that the total number of electrons N is fixed (i.e.

∫
n(r)dr = N). This

constraint was introduced by the Lagrange multiplier, µ, chosen so that

δ

δn(r)
[E [n(r)]− µN ] = 0, (2.1.4)

which yields the Euler-Lagrange equation

δE [n(r)]

δn(r)
= µ, (2.1.5)

which can be rewritten, considering (2.1.1) and (2.1.3), as

δTs [n(r)]

δn(r)
+ υeff (r) = µ, (2.1.6)
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where υeff (r) is an effective single-particle potential:

υeff (r) = υ(r) +

∫
n(r′)

|r− r′|
dr′ + υxc(r), (2.1.7)

accounting for the many body effects by the functional derivative

υxc [r] =
δExc [n(r)]

δn(r)
. (2.1.8)

Now, if one considers a system of non-interacting electrons moving in an external potential
υxc [r], as defined in (2.1.8), one could easily find the ground state energy and density by
solving a one-electron Schrödinger-like equation, which carries the name of Konh and Sham:{

− ~2

2m
+ υ(r) +

∫
n(r′)

|r− r′|
dr′ + υxc(r)

}
ψk(r) = ϵkψk(r), (2.1.9)

where the density is defined by the wave function ψk(r) as

n(r) =
N∑
k=1

|ψk(r)|2 . (2.1.10)

It must be noted here that single particle wave function ψk(r) alone only describe abstract
quasiparticles without an actual physical meaning, so only a self consistent solution of (2.1.9)
and (2.1.10) would yield a description of a real physical system, which is described by the
overall electronic density n(r).

2.1.3 The local density approximation

As it has been mentioned before, one of the major challenges in the DFT is finding adequate
approximations to the exchange correlation functional. And formal DFT might have not
evolved in what it is now, had there not been a simple and practical approximation for Exc,
the local density approximation (LDA), which has yielded surprisingly accurate results for
a wide range of systems:

ELDA
xc [n(r)] ≡

∫
n(r)ϵxc (n(r)) dr, (2.1.11)

where ϵxc(n) is a very accurately known exchange correlation energy per particle of a uniform
electron gas of density n. The exchange correlation potential can thus be expressed as:

υxc [r] =
δ

δn(r)
[ϵxc(n)n(r)] . (2.1.12)

Thus the problem of the exchange correlation in an inhomogeneous system is replaced by
calculating the ϵxc(n) for a homogeneous electron gas [127, 128, 125, 129]. Though quite
accurate for many different systems, the LDA is assumed to be at its best for systems with
a slowly varying electron density.
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2.2 Green’s function method

Having established a general procedure of solving, in a rather simple manner, many-body
quantum problems DFT itself does not give an answer as to how one could obtain the actual
numerical solution of the resulting Kohn-Sham equation (2.1.9) for an arbitrary system. Hav-
ing selected an appropriate exchange correlation functional, encapsulating all the necessary
many-body effects, one has to obtain self consistent wave functions of the system.

The most straightforward way to do this is to try to expand them in a certain basis set
ϕbasis
i and solve the resulting secular equation to obtain the expansion coefficients. Several

effective methods have been devised utilizing this approach mainly differing in the expansion
set of choice. They include the linear combination of atomic orbitals (LCAO), pseudopo-
tential technique, the (linear) augmented plane wave method ((L)APW) and several others
[124, 125].

A different, more subtle, approach does not deal with effective quasi-particle wave func-
tions, but rather exploits the properties of the Green’s function of a Kohn-Sham Hamiltonian
to obtain the electronic density of the system. This technique has been devised by Korringa
[131] and adapted by Kohn and Rostoker [132] thus acquiring the name of Korringa-Kohn-
Rostoker (KKR) Green’s function method. It allows one to describe electronic properties of
large complex systems bulk, interface or localized structure character.

In present section some basic notions of the KKR Green’s function method are presented
describing the interrelation of the Green’s function with the system’s electronic properties,
followed by a discussion of a possibility to express the Green’s function of a complex system in
terms of perturbation theory. Further on some elements of the multiple scattering theory are
introduced. Concluding the section the general workflow of the KKR method is presented.

2.2.1 Green’s functions: definition and basic properties

The resolvent of a Hermitian operator (in our case the Kohn-Sham Hamiltonian) is defined
as follows

Ĝ(z) =
(
zÎ − Ĥ

)−1

, z = ϵ+ iδ , Ĝ(z∗) = Ĝ(z)†, (2.2.1)

where Î is the unity operator. Any representation of such a resolvent is called a Green’s
function. For our purposes the configuration space representation is the most logical choice:⟨

r
∣∣∣Ĝ(z)∣∣∣r′⟩ = G(r, r′; z). (2.2.2)

Assuming that the side limits of Ĝ(z) are defined by

lim
|δ|→0

Ĝ(z) =

{
Ĝ+(ϵ), if δ > 0

Ĝ−(ϵ), if δ < 0
, (2.2.3)

Ĝ+(ϵ) = Ĝ−(ϵ)†, (2.2.4)

we come to the following property of Ĝ(z):

ImĜ+(ϵ) =
1

2i

(
Ĝ+(ϵ)− Ĝ−(ϵ)

)
, (2.2.5)
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or, by making use of the properties of the Dirac delta functions,

ImTrĜ±(ϵ) = ∓
∑
k

δ (ϵ− ϵk) , (2.2.6)

n(ϵ) = ∓ 1

π
ImTrĜ±(ϵ), (2.2.7)

where Tr is the trace of an operator and n(ϵ) is the density of states of the Kohn-Sham
Hamiltonian with a discrete eigenvalue spectrum {ϵk}. Let us agree, for the sake of con-
venience and without limiting the generality, to use only the Ĝ+ side limit of the Green’s
function in future mathematical layouts. As can be seen, the generalization to the case of
Ĝ± can be easily achieved by correct choice of the signs.

In space-resolved energy representation, for Ĝ+ (an outgoing wave at r) the same depen-
dence can be represented as

n(r, ϵ) = − 1

π
ImG(r, r, ϵ), (2.2.8)

which leads us either to the expression for the spectral density of states:

n(ϵ) = − 1

π
Im

∫
G(r, r, ϵ) d3r, (2.2.9)

or, by integration of the Green’s function over the energy up to the Fermi level ϵF , to the
expression for the corresponding charge density:

ρ(r) = − 1

π
Im

ϵF∫
−∞

G(r, r, ϵ) dϵ. (2.2.10)

Thus, if we find a way to compute the Green’s function, we would get access to all relevant
physical properties of the system.

2.2.2 The Dyson equation

Dealing with realistic solid state systems it is often convenient [87] to resort to perturbative
approaches. Thus it might be useful to represent the Hamiltonian Ĥ of our system as a sum
of unperturbed term Ĥ0 and a (Hermitian) perturbation V̂ :

Ĥ = Ĥ0 + V̂. (2.2.11)

This is a convenient way to describe, for instance, the scattering of electrons on a single
perturbing potential in an otherwise ideal system as the corresponding resolvents Ĝ0(z) and
Ĝ(z) can be coupled in terms of the Dyson equation,

Ĝ(z) = Ĝ0(z) + Ĝ(z) V̂ Ĝ0(z)

= Ĝ0(z) + Ĝ0(z)V̂ Ĝ(z), (2.2.12)

which can be expanded iteratively into a Born series:

Ĝ(z) = Ĝ0(z) + Ĝ0(z)V̂Ĝ0(z) + Ĝ0(z)V̂Ĝ0(z)V̂Ĝ0(z) + . . .

= Ĝ0(z) + Ĝ0(z)
[
V̂ + V̂Ĝ0(z)V̂ + V̂Ĝ0(z)V̂Ĝ0(z)V̂ + . . .

]
Ĝ0(z). (2.2.13)
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The term in square brackets is usually called the T-operator

T̂ = V̂ + V̂Ĝ0(z)V̂ + V̂Ĝ0(z)V̂Ĝ0(z)V̂ + . . . (2.2.14)

Thus the Dyson equation can be reformulated as follows:

Ĝ(z) = Ĝ0(z) + Ĝ0(z)T̂ Ĝ0(z) (2.2.15)

2.2.3 The Lloyd formula

If we reformulate (2.2.7), substituting (2.2.15) into it, we obtain

n(ϵ) = − 1

π
ImTr

(
Ĝ+
0 (ϵ) + Ĝ+

0 (ϵ)T̂ +(ϵ)Ĝ+
0 (ϵ)

)
= n0(ϵ) + δn(ϵ), (2.2.16)

where

n0(ϵ) = − 1

π
ImTr

(
Ĝ+
0 (ϵ)

)
, (2.2.17)

δn(ϵ) = − 1

π
ImTr

(
Ĝ+
0 (ϵ)T̂ +(ϵ)Ĝ+

0 (ϵ)
)

= − 1

π
ImTr

(
Ĝ+
0 (ϵ)

2T̂ +(ϵ)
)
, (2.2.18)

and, making use of the identity

dĜ(z)
dz

= −Ĝ(z)2, (2.2.19)

δn(ϵ) =
1

π
ImTr

(
dĜ+

0 (ϵ)

dϵ
T̂ +(ϵ)

)
. (2.2.20)

Based on the definition of T̂ one further can derive that

dT̂ (z)

dz
= T̂ (z)

dĜ0(z)

dz
T̂ (z), (2.2.21)

and therefore

T̂ (z)−1dT̂ (z)

dz
=

dĜ0(z)

dz
T̂ (z), (2.2.22)

which can be substituted into (2.2.20) to yield

δn(ϵ) = − 1

π
ImTr

(
T̂ +(ϵ)

dT̂ +(ϵ)

dϵ

)
=

= − d

dϵ

(
1

π
ImTr ln T̂ +(ϵ)

)
. (2.2.23)

The integrated DOS can then be directly expressed as

N(ϵ) = N0(ϵ) + δN(ϵ), (2.2.24)
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where

N0(ϵ) =

ϵ∫
−∞

n0(ϵ
′) dϵ′ (2.2.25)

and

δN(ϵ) =
1

π
ImTr ln T̂ +(ϵ) (2.2.26)

The above expression is usually referred to as the Lloyd formula [129, 133, 134, 135].

2.2.4 Lippmann-Schwinger equation

Before we proceed to the description of the electron scattering by various perturbing po-
tentials we have to address the problem of obtaining the wave functions for the new state
of the perturbed system. Suppose the generalized wave functions of unperturbed Ĥ0 and
perturbed Ĥ = Ĥ0 + V̂ systems are φi(ϵ) and ψi(ϵ), respectively. Then(

ϵÎ − Ĥ0

)
φi(ϵ) = 0(

ϵÎ − Ĥ0

)
ψi(ϵ) = V̂ψi , (2.2.27)

which leads, under an Ansatz that ψi(ϵ) = φi(ϵ) + δψi(ϵ), to(
ϵÎ − Ĥ0 − V̂

)
δψi = V̂φi. (2.2.28)

Applying to ϵÎ − Ĥ the definition of the Green’s function (2.2.1):

ψi(ϵ) = φi(ϵ) + Ĝ(ϵ)V̂φi(ϵ), (2.2.29)

or in terms of the T-operator (2.2.14):

ψi(ϵ) = φi(ϵ) + Ĝ0(ϵ)T̂ φi(ϵ). (2.2.30)

Considering the side limits of the Ĝ and the T̂ operators it must be noted that two different
solutions ψ±

i (ϵ) exist. Either of the latter equation (2.2.29), (2.2.30) is called the Lippmann-
Schwinger equation [129, 133, 134, 135], which relates the generalized wave functions of the
perturbed system to those of the unperturbed one.

2.2.5 Single- and multiple-site T-operator

If our system has a single perturbing potential V̂i. Then the corresponding T-operator is
called a single-site T-operator and is usually denoted by t̂i(z) or just t̂i:

t̂i = V̂i + V̂iĜ0t̂i =
(
Î − V̂iĜ0

)−1

V̂i (2.2.31)

In a more general case of a system with an ensemble of of N scatterers we can operate

with an effective single particle potential V (r) =
⟨
r
∣∣∣V̂∣∣∣r⟩ which can be represented as a sum

of individual (effective) potentials

V (r) =
N∑
i=1

Vi(r) (2.2.32)
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defined in corresponding spatial domains DVi
disjoint in R3:

DVi
∩DVj

= δijDVi

Vi(r) = 0 , r ̸∈ DVi

The T-operator for a system with such a potential can be expressed in terms of single-site
T-operators ti for individual potentials Vi, as

T̂ms =
∑
i

ti+

+
∑
i,j

ti (1− δij) tj +

+
∑
i,j,k

ti (1− δij) tj (1− δjk) tk + (2.2.33)

+
∑
i,j,k,l

ti (1− δij) tj (1− δjk) tj (1− δkl) tl +

+ . . . .

The first term of the sum series accounts for all the single scattering processes in the system,
the second one - for the double scattering, the third - for the triple and so on. Consequently,
the Green’s function of the system and thus its electronic properties are determined by the
multiplicity of all possible scattering sequences.

2.2.6 Structural Green’s function

A different way of summating over multiple scatterers is in terms of the so-called scattering
path operators (SPO):

τ̂ ij = t̂i δij+

+ t̂i (1− δij) t̂j+

+
∑
m

t̂i (1− δim) t̂m (1− δmj) t̂j+ (2.2.34)

+
∑
m,n

t̂i (1− δim) t̂m (1− δmn) t̂n (1− δnj) t̂j+

+ . . . .

The multiple-site T-operator can then be expressed as

T̂ms =
∑
i,j

τ̂ ij , (2.2.35)

Then the multiple scattering equation for Ĝ can be written as

Ĝ = Ĝ0 +
∑
i,j

Ĝ0 τ̂
ij Ĝ0 . (2.2.36)
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This brings us to the following Dyson equation

τ̂ ij = t̂i δij +
∑
m

ti Ĝ0(1− δim) τ̂mj

= t̂i δij +
∑
m

τ̂ im Ĝ0(1− δmj) t̂j,
(2.2.37)

which can be reformulated in terms of the so-called structural resolvent or structural Green’s
function Ĝij:

Ĝij = Ĝ0(1− δij) +
∑
n,m

Ĝ0(1− δim)τ̂
mnĜ0(1− δnj), (2.2.38)

as
τ̂ ij = t̂i δij + t̂i Ĝij t̂j. (2.2.39)

Combining equations (2.2.36) and (2.2.39) we can now represent the Green’s function of a
system with multiple perturbing potentials as

Ĝ = Ĝiδij +
∑
i,j

Ĝ0 t̂i Ĝij t̂j Ĝ0, (2.2.40)

where Ĝi are the resolvents of single-site scattering problems for respective domains DVi
.

The use name ”structural” becomes clear if we look at the structure of relation (2.2.40).
In such a representation the single-site Green’s functions of single domains are separated
and independent of their geometrical arrangement, which is accounted for by the structural
Green’s function Ĝij [129, 133, 134, 135].

2.2.7 Fundamental KKR equation

For purposes of numerical calculations it is most convenient to reformulate (2.2.37) and
(2.2.38) in terms of supermatrices. For the following set of supermatrices [129, 134, 136]:

Ĝ =
{
Ĝij
}
,

t̂ =
{
t̂iδij

}
,

Ĝ0 =
{
Ĝ0 (1− δij)

}
,

τ̂ =
{
τ̂ ij
}
,

(2.2.41)

equations (2.2.37) and (2.2.38) can be rewritten as

τ̂ =
(
t̂
−1 − Ĝ0

)−1

, (2.2.42)

Ĝ = Ĝ0

(
Î− t̂ Ĝ0

)
. (2.2.43)

Due to their cornerstone value for the calculational procedure equations (2.2.42) and (2.2.43)
are often called fundamental equations of the multiple scattering theory. The electronic
eigenvalue spectrum of the problem is then completely defined by the singularities of the
Green’s function of the perturbed system:

det
[
t̂
−1 − Ĝ0

]
= 0 (2.2.44)
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2.2.8 Spherical representation of the scattering problem

Let us now proceed towards the description of realistic systems. Crystalline solids can be
very well characterized as an arrangement of atom-centered perturbing potentials

Veff (r) =
∑
n

Vn(R
n + r′) , (2.2.45)

where Rn are the coordinates of the n-th atom. Let us consider the perturbation of a free
space (or an environment with a constant potential) with a single spherical atomic potential
Vs. For the reference free-electron system the Hamiltonian contains only the kinetic energy
term and the eigenfunctions of the system are plain waves. The corresponding Green’s
function has the form: [137, 138]

g (r, r′, ϵ) = − 1

4π

eik|r−r′|

|r− r′|
, (2.2.46)

where k =
√
ϵ. In regard of the fact that we are dealing with a central potential, it is much

more convenient to work in angular-momentum representation. The Green’s function can
then be rewritten as:

g (r, r′, ϵ) =
∑
L

YL(r)gl (r, r
′; ϵ)YL(r

′) (2.2.47)

gl (r, r
′; ϵ) = −i

√
ϵjl
(√

ϵr<
)
hl
(√

ϵr>
)

(2.2.48)

where L ≡ (l,m) is the combined index, YL = Ylm are the real spherical harmonics, jl, nl

and hl = jl + inl are spherical Bessel, Neumann and Hankel functions respectively and

r< ≡ min {r, r′} , r> ≡ max {x, x′} .

Let us assume that the scattering potential spherically symmetric and of a finite range
RS [129, 133, 134, 135]:

Vs(r) =

{
V (r), r 6 RS

0 , r > RS

(2.2.49)

Then the radial wavefunctions Rl(r; ϵ) satisfy the solution of the Radial Schrödinger equation[
−1

r

∂2

∂r2
r +

l(l + 1)

r2
+ Vs(r)− ϵ

]
Rl(r; ϵ) = 0. (2.2.50)

The asymptotic form for Rl(r; ϵ) at r → ∞ is

Rl(r; ϵ) →
Al√
ϵr

sin

(√
ϵr − lπ

2
+ δl(ϵ)

)
, (2.2.51)

where Al is a constant and δl(ϵ) is the phase shift of the solution with respect to the wave-
function for a vanishing potential.

For r > RS, where Vs(r) = 0, the general solution of the radial equation is a superposition
of two linearly independent radial solutions:

Rl(r; ϵ) = Bljl
(√

ϵr
)
+ Clnl

(√
ϵr
)
, (2.2.52)
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where Bl and Cl are constants. Using the asymptotic form of Bessel functions we obtain
from (2.2.51), (2.2.52) and the Lippmann-Schwinger equation the following representation
for Rl(r; ϵ): [139]

Rl(r; ϵ) = jl
(√

ϵr
)
− i

√
ϵ tl(ϵ)hl

(√
ϵr
)
, r > RS (2.2.53)

where tl is the matrix element representation of the t-operator: [139]

tl(ϵ) =

RS∫
0

jl
(√

ϵr′
)
Vs(r

′)Rl(r
′; ϵ)r′2dr′, (2.2.54)

or related to the phase shift δl:

tl(ϵ) = − 1√
ϵ
sin δl(ϵ)e

iδl(ϵ) (2.2.55)

This solution is of a regular character, i.e. converging at r → 0. The irregular solution, i.e.
diverging at r → 0 will have the form [139]

Hl(r; ϵ) = hl
(√

ϵr
)
, r > RS (2.2.56)

The incoming and scattered waves can now be expanded into Bessel functions and spherical
harmonics as:

ψinc
k (r) =

∑
L

a0kLjl(
√
ϵr)YL(r), r > RS (2.2.57)

ψsc
k (r) =

∑
L

asckLjl(
√
ϵr)YL(r), r > RS (2.2.58)

Inside the sphere, where the potential is non-vanishing, we have

ψk(r) =
∑
L

akLRL(r, ϵ)YL(r), r < RS. (2.2.59)

With the boundary condition for RL(r, ϵ) given at r = RS by the continuity of the wave
function, we obtain

asckL = −i
√
ϵ tl(ϵ) a

0
kL. (2.2.60)

Finally, the Green’s function for the scattering problem of a single central potential, can
also be written as a product of two linearly independent solutions Rl(r; ϵ) and Hl(r; ϵ) of the
radial equation [139, 129, 133, 134, 135, 136]:

Gs (r, r
′; ϵ) = −i

√
ϵ
∑
L

Rl(r<; ϵ)Hl(r>; ϵ)YL(r)YL(r
′)

=
∑
L

Gl(r, r
′, ϵ)YL(r)YL(r

′).
(2.2.61)

The regular and irregular solutions must satisfy the Wronski relation:

[Hl(r; ϵ), Rl(r; ϵ)] =
1

r2
√
ϵ

(2.2.62)

In practice, equation (2.2.50) is usually integrated numerically from r = 0 to r = RS to
obtain Rl and the requirement of the continuity of the logarithmic derivative of the solution
yields the t-matrix elements. Analogously, the integration from r = RS inwards gives one
the diverging radial wave function Hl given the boundary condition (2.2.56) at r = RS.
[139, 134, 135]



48 Chapter 2. Theoretical method

Figure 2.1: A crystal reference and a cell-centered coordinate systems.

2.2.9 Multiple scattering: bulk crystal

As already mentioned, bulk solids can be very well described by an effective potential com-
prised of an arrangement of identical single-atom potentials. Let us divide the volume of
the solid into disjoint space domains, as defined in (2.2.32), so that each domain contains
one charge-neutral atom. For example, such division might be achieved by a Wigner-Seitz
(WS) construction. Then each WS cell might be associated with an atomic potential defined
within its boundaries. A system might be further simplified if we assume that each poten-
tial is non-vanishing only in a sphere of radius RS centered at the atom. There are several
approaches to selecting the radius of the sphere. The simplest approximation is to assume
atomic spheres to have the same radii RASA. This approach is called the atomic spheres
approximation (ASA).

Here we will adopt a slightly more general approach, named the muffin-tin (MT) ap-
proximation. It is assumed that the scattering potential is spherically symmetric around
each scattering center (atomic site) within a sphere of radius RMT and constant otherwise
(without limiting the generality, the interstitial potential can be taken to be zero for conve-
nience) [see (2.2.49)]. The spheres are constructed to touch each other but are assumed to
be non-overlapping.

We will further use the approximation of an ideal crystal, which means that for any
lattice vector Ri the following relation for the effective potential applies:

Veff (r+Ri) = Veff (r). (2.2.63)

For further calculational convenience let us assume the cell-centered coordinate system
(Fig. 2.1):

r̂ → Rn + r

r̂′ → Rn′
+ r′

|r|, |r′| 6, RMT .

(2.2.64)

The Green’s function is defined by the following Kohn-Sham equation[
−∇2 + Vn(r)− ϵ

]
G(r+Rn, r′ +Rn′

; ϵ) = −δnn′δ(r− r′). (2.2.65)

For n ̸= n′ the Green’s function satisfies the homogeneous Schrödinger equation and can
be expanded in its independent regular solutions Rn

L(r; ϵ) and Rn′
L (r; ϵ). In the muffin-tin

approximation they can easily be expressed as the solutions of Eq. (2.2.50) Rn
L(r; ϵ) =

Rn
l (r; ϵ)YL(r). For n = n′ we have a Green’s function for a central potential problem as
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shown in Eq. (2.2.61) in addition with a boundary condition of back-scattering by all the
other potentials in the crystal. Thus the total solution can be expressed as a sum of a general
solution of a homogeneous equation (2.2.65) and a special solution of its inhomogeneous
version. In the mixed site-angular-momentum representation it would look like:

G(r+Rn, r′ +Rn′
; ϵ) = − i

√
ϵ
∑
L

Rn
L(r<; ϵ)H

n
L(r>; ϵ)δnn′ +

+
∑
LL′

Rn
L(r; ϵ)G

nn′

LL′(ϵ)Rn′

l′ (r; ϵ),
(2.2.66)

where Hn
L(r; ϵ) = Hn

l (r; ϵ)YL(r) it the irregular solution of the radial Schródinger equation at
the atomic cell n. The coefficients Gnn′

LL′ are usually called the structural Green’s functions.
To obtain them we have to turn once again to the Dyson equation, taking free space as the
unperturbed system:

G(r+Rn, r′ +Rn′
; ϵ) = g(r+Rn, r′ +Rn′

; ϵ) +

+
∑
n′′

∫
g(r+Rn, r′′ +Rn′′

; ϵ)Vn′′G(r′′ +Rn′′
, r′ +Rn′

; ϵ)dr .
(2.2.67)

after substituting (2.2.66) into (2.2.67), expanding the free-space Green’s function and some
mathematical manipulations [140, 139, 134], we obtain the algebraic Dyson equation deter-
mining the structural Green’s functions:

Gnn′

LL′(ϵ) = gnn
′

LL′(ϵ) +
∑
n′′,L′′

gnn
′′

LL′′(ϵ)tn
′′

l′′ (ϵ)g
n′′n′

L′′L′(ϵ) (2.2.68)

in which the t-matrix replaces the normally appearing in a Dyson equation potential.
In practice it is convenient to utilize the translational invariance on an ideal crystal lattice

and calculate the structural Green’s functions in the k-space. The transition can be made
by the following Fourier transformation:

GLL′(k; ϵ) =
∑
n′

Gnn′

LL′(ϵ)e−ik·(Rn−Rn′
). (2.2.69)

The algebraic Dyson equation (2.2.68) then takes the form:

GLL′(k; ϵ) = gLL′(k; ϵ) +
∑
L′′

gLL′′(k; ϵ)tl′′(k; ϵ)gL′′L′(k; ϵ), (2.2.70)

where the t-matrix also loses its n-dependence due to the translational invariance. In real
calculations the structural Green’s functions are considered as matrices in (L,L′) space and
solved by matrix inversion. The number of considered l-s is usually limited by a cutoff
l = lmax for which the t-matrix becomes negligibly small. For calculation of transitional-
metal systems lmax = 3 or 4 is usually sufficient. After the inverse Fourier transform the
structural coefficients Gnn′

LL′(ϵ) in the KKR matrix notation take the shape:

Gnn′

LL′(ϵ) =
1

VBZ

∫
BZ

e−ik·(Rn−Rn′
)
[(
1− ĝ(k; ϵ) t̂(ϵ)

)−1
ĝ(k; ϵ)

]
LL′

d3k , (2.2.71)

where the integration is carried out over the Brillouin zone volume VBZ . The local values at
site n, like the charge density or the local density of states, can be obtained from a single
term for n = n′: Gnn

LL′ .
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Figure 2.2: Coordinate notations for the description of the Green’s function of layered sys-
tems.

2.2.10 Surfaces and layered systems

The above presented approach can be easily extended to treat layered or semi-infinite systems
[140, 139, 134]. The main difference is that along one direction the translational invariance
is broken leaving only a two-dimensional periodicity, parallel to a surface or an interface.
The Fourier transformations are now held within a two-dimensional surface Brillouin zone
(SBZ), and the integration is carried out over all k∥ wave vectors in the SBZ [140, 139, 134]:

Gnµ,n′µ′

LL′ (ϵ) =
1

ASBZ

∫
SBZ

eik∥·(Rn−Rn′
) eik∥·(χµ−χµ′ )

×
[(

1− Ĝ
r
(k∥; ϵ)∆t̂(ϵ)

)−1

Ĝ
r
(k∥; ϵ)

]µµ′

LL′
d2k∥ ,

(2.2.72)

where Rn are the in-plane cite vectors in the two-dimensional lattice and χµ point to atomic
coordinates in different layers (see Fig. 2.2). ASBZ is the area of the surface Brillouin zone.

For surface calculations ideal crystal is considered to be perturbed by vacuum. The
structure of the lattice remains unchanged, just the corresponding potentials are replaced by
vacuum ones (empty spheres). To obtain realistic surface properties one can either choose to
perturb an infinite crystal by a slab of a finite size, or to terminate the crystal completely and
apply half-infinite boundary condition. In the first approach it is usually sufficient to take
into account twice 3 or 4 vacuum layers to obtain realistic density of states at the surface.
Such fast decay of the electronic properties’ coherence also allows one to considerably cut
the calculational effort by applying the so-called screening procedure.

2.2.11 Screened KKR

Screened of tight-binding KKR formalism allows one to calculate large systems as it assures
that the computational effort for matrix inversion, while solving the algebraic Dyson equa-
tion, ideally grows linearly O(N) with the size of the system (number of inequivalent atoms
N in the unit-cell). In conventional KKR approach the same results can be obtained only
with an effort of O(N3) [140, 139, 134].

Such computational profit is made possible by an optimal choice of a new reference
system, which assures that the Green’s function falls of exponentially with increasing distance
from the scattering center. This leads to an effective decoupling of distant atomic sites, which
gave the transformation its screening name. The occasional name ”tight-binding KKR”
originates from the resemblance to the tight-binding approach in treating atomic orbitals.
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Previously we have always chosen as a reference for the Dyson equation the free space. It
can, however, be shown [140, 139] that a choice of a different reference system for the same
”real” lattice structure leads to the same form of the Dyson equation with a difference of
t-matrices between the real and reference systems (tnLL′(ϵ)− tr,nLL′(ϵ)) taking the place of the
tnLL′(ϵ) in equation (2.2.68):

Ĝ(ϵ) = Ĝ
r
(ϵ) + Ĝ

r
(ϵ)∆t̂(ϵ)Ĝ(ϵ) , (2.2.73)

where ∆t̂(ϵ) = t̂(ϵ)− t̂
r
(ϵ).

The main problem of the free space as a reference system is that it brings with it addi-
tional singularities, corresponding to free-electron eigenstates in the interstitial potential-free
regions. Thus, our task is to devise a reference system with no eigenstates in the energy
range of free electrons. A choice of such a system as a reference would secure the exponential
decay of the Green’s function [141, 142].

In principle, any potential without eigenstates in the energy range of free electrons can
be a candidate for the new reference system, but the simplest choice, probably, is an infinite
periodic arrangement of finite-height repulsive potentials V R

n constant within the muffin-tin
spheres of radius Rn

MT around each scattering center Rn:

V R
s (r) =

{
VC , r 6 Rn

MT

0 , otherwise
, (2.2.74)

where VC is a constant, usually chosen to be a few Rydberg. It has been predicted and
computationally proved that for such a potential the eigenstate spectrum starts above an
energy of Ebot which is slightly bellow the barrier height VC . For example, for a barrier of
1 Ry and 2 Ry the eigenstates spectrum bottom lie at 0.7 and 1.35 Ry respectively [141, 142].

The above described procedure can be effectively applied to great number of various
systems. SKKR has proved to work with insulators, semiconductors and ,in particular, with
metals.

2.2.12 Impurities

The domain of KKR’s effectiveness does not end with layered systems and interfaces. It
can equally well be applied to single impurities in the bulk and at surfaces. Such structures
essentially break the translational symmetry and thus have to be treated within the real-
space representation of the KKR formalism. For instance, the structural Green’s function of
an ideal surface can be cast into the real space representation and then used as a reference
for the calculation of a surface-impurity problem. A corresponding algebraic Dyson equation
would then look like:

Ĝ
nn′

LL′(ϵ) = Ĝ
0,nn′

LL′ (ϵ) +
∑
n′′,L′′

Ĝ
0,nn′′

LL′′ (ϵ) ∆tn
′′

l′′ (ϵ) Ĝ
n′′n′

L′′L′(ϵ) , (2.2.75)

where Ĝ
nn′

LL′(ϵ) and Ĝ
0,nn′

LL′ (ϵ) are the energy-dependent structural Green’s functions for the
surface-impurity problem and for a clean surface correspondingly, and t-matrix ∆tnl (ϵ) ac-
counts for the difference in the scattering properties of site n induced by the presence of an
impurity potential.
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For the first time self-consistent calculations of single Ni, Zn, Ga and Ge impurities in
Cu crystal were performed in 1979 by Zeller and Dederichs [143]. In a year, realistic self-
consistent electronic structures of 3d magnetic impurities embedded into bulk Cu and Ag
were presented [144]. Obtained results were in a qualitative agreement with the Anderson
model, but it was emphasized that modifications of the impurities’ electronic structures
due to host band structure were important. Local magnetic moments were in a reasonable
agreement with available experimental data. Further improvements of the method made
possible calculations of the exchange interaction of magnetic dimers in nonmagnetic hosts
like Cu or Ag [108].

Development of the KKR for layered systems open up a possibility to study clusters
on surfaces. Calculations performed for 4d transition-metal clusters on Ag(001) substrate,
contrary to nonmagnetic bulks of the species investigated, revealed strong tendency to mag-
netism [145, 146]. Exact magnetic moments of 4d nanostructures were found to depend
strongly on geometries of clusters. Later on similar calculations were conducted for 3d, 4d
and 5d transition metals on Pd(001) and Pt(001) substrates [147].

2.3 Force theorem

Despite the fact that the ever increasing processing power of modern computers allowed to
facilitate the calculation of large atomic systems, some computational aspects still remain
a problem. For example the digital precision used in calculations has remained largely
unchanged in the last several decades. This means that even having the power to perform
fully self-consistent calculations we may lose some physical effects to computational precision
errors. As an example, the calculation of the indirect interaction between single impurities
in a metallic or semiconductor host or on a surface can be given. The total energy of a host
system with two interacting impurities E1+2 can be expressed as

E1+2 = Ehost + E1 + E2 + Eint , (2.3.1)

where Ehost is the energy of a clean host (surface or bulk), E1 and E2 are the total energies of
the two adsorbates and Eint encapsulates the interaction energy between the two impurities.
Thus the interaction energy alone can be expressed as

Eint = E1+2 − Ehost − E1 − E2 . (2.3.2)

If total energies derived from the KKR method are used in this formula, then the resulting
accuracy of interaction energy calculations for metallic systems usually falls below 10−2 −
10−3 eV which effectively leaves the indirect interaction energy of two impurities beyond the
calculational precision.

To circumvent this problem the so-called force theorem can be applied. It says that the
total energy difference can also be calculated (within the mistake margin of the second order
of magnitude) from the single-particle energies alone, which yields a precision of several
orders of magnitude higher that in the total energy approach [108]

The arguments are based on a frozen potential approximation which was initially proposed
in a different context by Pettifor (1977), Varma and Pettifor (1979) and others (Methfessel
and Kübler (1982), Skiver (1982)).

We can express the total energy of the system as the sum of two contributions: the single
particle term Esp and the double counting contribution Edc

Etot = Esp + Edc , (2.3.3)
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where (for a general case of a magnetic impurity)

Esp =

ϵF∫
−∞

dϵ(ϵ− ϵF )(n
+(ϵ) + n−(ϵ)) (2.3.4)

Edc = −
∫

dr
(
n+(r)V +

eff (r) + n−(r)V −
eff (r)

)
+W

{
n+(r), n−(r)

}
. (2.3.5)

Here W represents the sum of the Coulomb and the exchange correlation energies, V ±
eff (r)

are the perturbing potentials from which the spin densities n±(r) and densities of states
n±(ϵ) are derived. Due to the extremal properties, the E {n+, n−} error contribution is of
the second order [108].

Another useful extremal property is that of the double counting energy Edc. For fixed
perturbing potentials the double counting energy Edc {n+, n−} is insensitive to variations in
n±(r) [108]. In the first order it can be written

δEdc

∣∣
V ±
eff

=

∫
dr

[(
δW

δn+(r)
− V +

eff (r)

)
δn+(r) +

(
δW

δn−(r)
− V −

eff (r)

)
δn−(r)

]
. (2.3.6)

Since the exact solution requires V ±
eff = δWδn±(r), the error in equation (2.3.6) is indeed

of the second order. Therefor the double counting contribution can be calculated from
approximate spin densities ñ±(r).

We can take advantage of the above mentioned extremal properties and choose V ±
eff (r)

and ñ±(r) in the following way. We set the potential to be a superposition of the clean host
potential V 0

eff and the additional impurity terms ∆V 1
eff and ∆V 2

eff :

Veff = V 0
eff +∆V 1

eff +∆V 2
eff , (2.3.7)

which is a first order approximation for weakly interacting impurity potentials. Furthermore
we can assume that ∆V 1,2

eff is strongly localized at impurity sites (although this might not
necessarily be the case).

For the spin densities ñ±(r) it is convenient, as well as reasonable, to assume that their
sum, the total charge density ñ = ñ++ñ−, is the same for both spin configurations. Since the
charge density depends only quadratically on the magnetization and since we assume both
impurities to have the same absolute magnetic moments (for both configurations), this again
is an adequate first-order estimate. This approximation allows one to avoid the necessity
to deal with inequivalent Coulomb integrals of the double counting energies as they are
(in this approximation) identical and cancel each other out when the magnetic interaction
is evaluated. The remaining, genuinely magnetic, part Em

dc of the double counting energy
depends at least quadratically on the magnetization. In the local density approximation it
can be written in the form [108]:

Em
dc =

∫
dr
(
f2(n(r))m

2(r) + f4(n(r))m
4(r) + ...

)
. (2.3.8)

Since the magnetization is well localized, in most cases one obtains important contribu-
tions only from the two impurity cells. Our ab initio calculations along with numerous other
publications (see, e.g., [148]), show that in transitional metal hosts, for instance Cu or Ag,
the moment on a neighboring sites is less than 1% of the local impurity moment, so that the
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contributions from all neighboring sites are about 10−3 times smaller than the contributions
to (2.3.8) from the impurity site [108]. If, moreover, one replaces the magnetization on each
site by the magnetization mo(r) innate to a single impurity, one would also see that the
magnetic part Em

dc of the double counting energy is the same for each configuration. Linear
terms proportional to ∆m = m − m0 do not occur due to the extremal property of Em

dc

(equation (2.3.6)) [108].

Thus one can conclude that in the first order the magnetic interaction energy is given
by the difference of the single-particle energies for both configurations, provided a frozen
single impurity potential is chosen. The approximation is the better for a weaker interaction
and becomes exact asymptotically. It is, however, important to understand that this proof
applies only to the difference in interaction energy between the two configurations, but not
to the interaction energies themselves [108].

2.4 KKR GF Calculations: workflow and examples

To present the actual calculational workflow and illustrate the application of the KKR
Green’s function method to the calculation of electronic properties of surface structures
we present in this section an example calculation for a simple system: a single Co adatom
on a Cu(111) surface.

2.4.1 Bulk of an fcc copper crystal

Our KKR calculations start with an infinite Cu fcc crystal, which can be easily obtained as a
3D periodic perturbation of a free space or vacuum1. To match experimental conditions we

use the experimental lattice constant of 3.615
◦
A. In the iterative procedure (see Fig. 2.3a)

the Dyson equation (2.2.12) is solved for a set of k-points covering the irreducible part of
3D Brillouin Zone (BZ). To obtain such a set, various strategies can be followed. In our
calculations we use one of the most widely used: the Monkhorst-Pack method [150], which
allows one to generate a sets of special points in the Brillouin zone which provides an efficient
means of integrating periodic functions of the wave vector. To achieve reasonable precision
in transitional metal calculations about 103 − 106 k-points in the irreducible part of 3D BZ
are needed. Upon solving the Dyson equation one obtains the Green’s function of our initial
system, perturbed by a lattice of atomic potentials, from which energy and momentum space
resolved electronic densities can be extracted. The ground state electronic density can be
obtained in a self-consistent cycle, when the resulting electronic density is used as an input
for the next solution run of the Dyson equation. If densities calculated at several consequent
steps of the self-consistent cycle are the same within a predefined errorbar (see Fig. 2.3a),
one can assume to have obtained a good estimation of the ground state electronic density.
The example of the calculated total density of states of a Cu bulk is presented in Fig. 2.3b.
It is in ample agreement with the densities calculated by other methods (see, f.e. Fig. 2.3c
where the calculated LDOS from [149] is presented). The Fermi level is defined in a usual
way, by counting the valence electron states up to the chemical potential in the unit cell.



2.4 KKR GF Calculations: workflow and examples 55

a b

с

Initial Density Guess

(free space, vacuum,

ideal crystal, 

unperturbed surface)

Dyson Equation

Lippman-Schwinger

Equation

Perturbed density

No

Yes

Density

GF

Density
Converged

?

Final Density/GF

-6 -4 -2 0 2

L
D

O
S

 (
s
ta

te
s
/e

V
)

E-Ef (eV)

Total
s
p
d
f

-6 -4 -2 0 2
0.0

0.5

1.0

2.0

1.5

2.5

3.0

0.0

0.5

1.0

2.0

1.5

2.5

3.0

L
D

O
S

 (
s
ta

te
s
/e

V
)

E-Ef (eV)

Total

Figure 2.3: (a) Recurrent algorithm for finding the ground state density and Green’s function
in the KKR GF approach. (b) Total local density of states of a copper bulk (thick solid red
line) and its decomposition into spherical harmonics: s (thin short-dashes red), p (dash-
dotted green), d (lond-dashed dark-blue) and f (dotted cyan). (c) Cu LDOS from [149] for
comparison.
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Figure 2.4: (a) Surface represented as a 2D perturbation of the bulk crystal. (b) Impurity
is treated as a perturbation of a clean surface. For that the Green’s function if Fourier
transformed from the momentum space into the configuration space representation.

Figure 2.5: Spectral density map (right panel) of the electrons in the first vacuum layer (some

2
◦
A above the surface). The red curve represents a parabolic fit of the surface state band.

The left panel represents the k-integrated local density of states, which shows a characteristic
onset in the region of the surface state band bottom. The dashed line in the left panel marks
the energy at which the surface state electron density is compared for different surface layers
in Fig. 2.6.
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Table 2.1: Surface state band parameters obtained in our calculations and in ARPES ex-
periments by Reinert et al. [152]. To obtain the parameters the band is fitted to a parabolic
model E(k∥) = E0 + ~2 · k2∥/2m∗, where E0 is the band bottom position below the Fermi
level, m∗ is the effective mass of a surface state electron and k∥ is the in-plane wave vector.

E0 (meV) m∗/me kF (
◦
A

−1

)

KKR 551 0.380 0.231
ARPES 435 0.412 0.215

2.4.2 Cu(111) surface

To obtain a surface we follow the recipe given in Subsection 2.2.10. We perturb the ideal
crystal in 2D with a slab of vacuum. Figure 2.4a gives a rough sketch of the resulting geome-
try. We use at least 6 layers of vacuum to efficiently decouple the two resulting semi-infinite
crystals. To guarantee that the electronic properties of the surface are accurately repro-
duced and the charge redistribution is properly taken into account we allow at least 4 metal
layers at each interface to relax electronically (or, in some cases, also geometrically). Bulk
electronic states are introduced in the system as boundary conditions through the scattering
matrix ∆t̂(ϵ) obtained in the bulk calculations. In accordance with Subsection 2.2.10 we
are now formulating our Green’s function in the in-plane momentum space. The Green’s
function Ĝ

r
(k∥; ϵ) now depends on the in-plane momentum k∥ and energy ϵ, which makes is

extremely easy for us to obtain the space and energy resolved density of states by just taking
the Green function’s imaginary part −1/π ImĜ

r
(k∥; ϵ). This quantity is usually called the

spectral density. It gives one insight into the band structure of the studied system. For
instance, the spectral density in the vacuum space above the surface surface would yields
valuable information about the nature of surface electrons. A cut of the such a spectral

density, calculates some 2
◦
A above the copper-vacuum interface, along the K−Γ−K line of

the 2D BZ in the energy range of [−2.0 eV; 2.0 eV] is presented in Fig. 2.5. One can clearly
observe a single dispersive band centered at the Γ-point. This band is a typical signature
of a surface state (see Subsection 1.7.5). The nearly parabolic dispersion (the red line in
Fig. 2.5 represents a parabolic fit of the band) is a consequence of the quasi-free nature of
the electronic localization in the surface plane. Surface state parameters extracted from the
fit are presented in Table. 2.1 along with typical values obtained in angle resolved photoe-
mission spectroscopy (ARPES) experiments [151, 152]. It might be noticed that at larger
k-values the actual dispersion curve actually deviates from the ideal parabolic behavior. As
was shown in [151] it can be fully attributed to the fact that the surface potential is not flat
for the surface state electrons, but represents a periodic lattice of palpable perturbations,
which cause a gap to appear at the edges of the BZ. The fact that KKR yields a very accu-
rate description of the surface electron behavior, will be extremely important in Section 3.3
for the evaluation of the surface-state mediated RKKY-like magnetic interaction of single
adatoms on nanoscopic islands.

The surface state electrons are bound to the surface, i.e. their density decays exponen-
tially both into the vacuum and into the crystal. To be sure that KKR is equally precise in
the description of this behavior we present the spectral density of electrons at the Γ-point at

1The Green’s function of a free space can be formulated analytically.
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Figure 2.6: The spectral density of electrons at the Γ-point at the surface state band bottom
energy (marked by a dashed line in the left panel of Fig. 2.5) for different layers of the
Cu(111) surface. The figure has been adopted from [135].

the surface state band bottom energy (marked by a dashed line in the left panel of Fig. 2.5)
for different layers of our surface in Fig. 2.6. The presented spectral density is obviously
maximal at the interface and rapidly decays into the vacuum as well as into the surface.
This gives us additional confidence in the capability of the KKR GF method to describe
surface-state-related phenomena.

2.4.3 A single Co adatom on a Cu(111) surface

To calculate an arbitrary nanostructure on a surface in the framework of KKR one has to
consider that the Dyson equation cannot be formulated for such a structure in the momentum
space notation because of the symmetry break induced by the new geometry of the system.
It is thus necessary for further calculations to Fourier-transform the Green’s function of a
clean surface into the configuration-space notation. Contrary to the momentum space, the
complexity of a real-space formulated Green’s function grows with increasing perturbation
volume of the system. Consequently, it is paramount to limit the considered system to a
necessary minimum. On a metallic surface the potential of an impurity is strongly screened
by the conduction electrons of the host. For KKR this means that the perturbation of the
potential is felt at the impurity site and in several empty sites around it. In fact, for most
systems, including just the nearest neighbor sites (atomic spheres or Wigner-Seitz cells) is
sufficient to produce an accurate result. An example of perturbation geometry, used to
calculate a single adatom on a Cu(111) surface, is shown in Fig. 2.7.

After completing the self-consistent calculation cycle (Fig. 2.3) one obtains a configuration-
space-formulated Green’s function of the system from which then various system’s observ-
ables can be extracted. Here we present the local density of states at and above the adatom
as an example. Figure 2.8a shows the LDOS at a single Co adatom adsorbed on a Cu(111)
surface: majority (red, top panel) and minority (blue, bottom panel). One can nicely see the
characteristic splitting between of the majority and minority electronic levels. The resulting
magnetic moment (1.86 µb) is in a good agreement with experimental values and other DFT
calculation-methods. The LDOS in vacuum above the Co adatom is presented in Fig. 2.8b:
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Figure 2.7: Side (left) and top (tight) view of the sample geometry used to calculate a single
adatom on a Cu(111) surface. Brown (gray) spheres are the Cu atoms, blue-gray (dark-gray)
sphere denotes the impurity and the semitransparent ones denote the vacuum sites. For the
actual calculation only solid- or dashed-line-outlined spheres are taken into consideration.

Figure 2.8: (a) LDOS at a single Co adatom adsorbed on a Cu(111) surface: majority
(red, top panel) and minority (blue, bottom panel). (b) LDOS in vacuum above a single Co
adatom adsorbed on a Cu(111) surface: majority (red, top panel) and minority (blue, bottom
panel). Darker shaded areas present the LDOS of a surface state at a clean Cu(111) surface.
Results of similar calculation with a higher energy resolution can be found in Chapter 4.
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majority (red, top panel) and minority (blue, bottom panel). To relate the picture to a clean
Cu(111) surface, the LDOS of a clean surface is presented as darker shaded areas. In detail,
various features of the presented local densities of states will be discussed in Chapters 3
and 4.

Summarizing the chapter, we can conclude that Korringa-Kohn-Rostoker Green’s func-
tion method is a powerful and efficient tool for describing the electronic and magnetic prop-
erties of bulk and surface based metallic systems. It allows for a rapid step-by-step calcu-
lation starting from bulk crystals and advancing over interface configurations to bulk- or
surface-based impurities. Obtained system parameters are in good agreement with other
DFT calculations and experimental values.



Chapter 3

Tailoring the exchange interaction

Despite the tremendous progress in both fundamental and applied surface sciences in the last
few decades, the scope of techniques, allowing a precise control over the magnetism of single
adatoms is still more than limited (see Sec. 1.1). A considerable part of the present work
was dedicated to finding new methods to manipulate the magnetism of single atomic-scale
nanostructures adsorbed on metallic surfaces. In this chapter we will discuss several such
possibilities.

The technological breakthrough that brought about gigabyte magnetic memory devices
was enabled by the discovery of the GMR effect by P. Grünberg and A. Fert [1, 2]. Their fun-
damental success had triggered a number of consequent studies. Theoretical investigations
have revealed that GMR has a common source with another interesting effect, the effect of
an oscillatory interlayer exchange coupling (IEC) [1, 10, 11, 12]. Both of them originate in
the spin-selective scattering of conductance electrons at magnetic layers. If two magnetic
layers are separated with a non-magnetic metallic spacer, the conduction electrons scattered
at each magnetic layer are forced to interfere and form standing waves inside the spacer.
Since the scattering of minority and majority electrons at magnetic layers is different, the
distributions of electronic densities in systems with parallel and antiparallel alignments of
the spins should also be different. As a result, the system’s ground state energy and spin
configuration strongly vary with the thickness of the spacer, resulting in the oscillations of
the interlayer exchange coupling [11, 12].

3.1 Coupling of single atomic units to a monolayer

across a paramagnetic spacer

In fact, this reasoning is not restricted to the case of monolayers but can be applied to any
kind of magnetic impurities coupled via conductance electrons. Affecting the interference
of conduction electrons scattered at each impurity, e.g. by introducing structural changes
in the metallic host, one can tune the exchange interaction, similarly to the IEC. Nowa-
days modern experimental techniques such as the scanning tunneling microscopy (STM)
make it possible to build in an atom-by-atom fashion complex surface nanostructures with
predefined positions of magnetic impurities [153, 154]. In this section we present a novel
approach to controlling single spins in nanostructures adsorbed on metallic surfaces. We
demonstrate that exchange coupling of adatoms and addimers to a magnetic layer across a
nonmagnetic spacer displays an oscillatory behavior. This allows one, by deliberate choice

61
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Figure 3.1: (a) The setup for calculations: an adatom coupled to a Co layer through a
nonmagnetic Cu spacer of a varying thickness. Exchange coupling energies of a Co (b) and
Cr (c) adatoms versus spacer thickness. First several points of the curves were scaled down
for clarity. The scaling factors are given next to respective data points. The insets in each
graph show the respective curves on a smaller scale at larger spacer thicknesses.

of the spacer’s thickness, to control the magnetic configuration and exchange interaction of
single magnetic adatoms, driving them into either a ferro- or an antiferromagnetic behavior
or even suppressing their magnetic properties.

To study the interplay between the exchange interaction and the system’s geometry we
choose a Cu(111) surface as a base for our calculations. Without limiting the generality we
consider, as the first and simplest model system, single magnetic 3d adatoms (Co and Cr)
placed on top of a Cu spacers of various thicknesses covering a single Co monolayer (ML)
(Fig. 3.1a). Our choice of geometry and atomic species is governed by the fact that thin Co
films are known to have out-of-plain magnetization as an inherent property [155]. This fact
provides for an increased surface symmetry for the orientation of adatom and addimer spins.
The Co layer thickness of 1 monolayer (ML) was chosen as a marginal case and also should
not affect the generality of results and conclusions.

The dependence of the exchange interaction energy of an adatom on the thickness of the
spacer is shown in Fig. 3.1b for Co and Fig. 3.1c for Cr. The presence of oscillations in the
exchange coupling energies, similar to those observed for the interlayer exchange coupling
[156, 11], can be attributed to the effect of quantum confinement in the overlayer. The
presence of the vacuum barrier on one side of the overlayer and the magnetic layer on the
other causes the electrons to become effectively confined between them [121]. Moreover, due
to the ferromagnetic nature of the Co monolayer, the confinement of majority and minority
electrons will be different, causing the formation of spin-polarized interference patterns.
The magnetic properties of adatoms adsorbed on an overlayer are inevitably affected by the
changes in the conduction electron densities.
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Figure 3.2: . System under consideration: Cr adatoms coupled to a Co monolayer across a

Cu spacer of a varying thickness (a). Exchange coupling of a Cr adatoms at 7.66
◦
A separation

aligned along the [101] direction of a Cu(111) surface versus spacer thickness (b). Due to the
energetic non-degeneracy of ↑↑ and ↓↓ configurations the exchange energies were calculated
as follows Eexc = min(E↑↑, E↓↓)− E↑↓. The gray dashed line gives the level of the exchange
coupling strength between Cr atoms on a clean Cu(111) surface. First two points of the
curve were scaled down for clarity. The scaling factors are given next to respective data
points.

The coupling energies presented in Fig. 3.1(b and c) suggest that by coupling the spins of
adatoms to that of a monolayer one gets a reliable means of stabilizing single atomic spins on
the surface in either a ferro- or an antiferromagnetic configuration. The switching between
configurations can be done by adjusting the thickness of the overlayer.

Let us now move forward, to the second example of spin-dependent scattering affecting
the exchange interaction in the system. Up to now we have only considered single adatoms
on the surface. If we now add a second adatom to the system, thus creating a dimer
(Fig. 3.2a), we will find that the orientation of each of the atomic spins is determined by the
competition between two exchange couplings: a coupling to the magnetic monolayer and the
interatomic coupling in the dimer. Consequently, precise control over the thickness of the
spacer provides us with an additional degree of freedom in adjusting the exchange interaction
between single adatoms at any separation. At smaller spacer thicknesses where the coupling
of a single adatom to the monolayer prevails the monolayer acts as a stabilizing element,
rigidly fixing the dimer in either a ↑↑ or a ↓↓ configuration. At larger spacer thicknesses,
when the interatomic exchange energy becomes comparable to that of the coupling to the
monolayer, the system’s spins become most susceptible to manipulations by changing the
spacer thickness and interatomic separation. As an example the exchange interaction energy

of a Cr-Cr dimer at 7.66
◦
A separation is shown in Fig. 3.2b as a function of the spacer

thickness. It is clear that by adjusting the number of monolayers in the spacer one can tune
the dimer to have an exchange coupling ranging from a strong ferromagnetic (at 1-4 ML) to
an antiferromagnetic one (5, 7 ML) 1.

We can thus conclude that the exchange coupling of an adatom to a monolayer across a
paramagnetic spacer oscillates with the thickness of the latter. This provides reliable means
for stabilizing the spin of the adatom in either a ferromagnetic or an antiferromagnetic con-

1At larger spacer thicknesses it converges to the value of a clean surface.
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Figure 3.3: . (a) The exchange interaction between two single Cr atoms on a Cu(111) surface
(dotted blue line, open circle) and the exchange interaction between those atoms linked with
a nonmagnetic Cu chain (solid black line, open triangles). (b) The same dependencies for
a Co pair. The exchange energy is calculated via the following formula Eexc = E↑↑ − E↑↓.
First several points of the curves were rescaled for clarity. The scaling factors are given next
to respective data points.

figuration with respect to the magnetic moment of the monolayer. The competition between
interatomic and atom-layer couplings in a dimer allows one, by adjusting the overlayer thick-
ness and the interatomic separation, to tailor the exchange coupling between single magnetic
impurities on a surface.

It must be noted here that a different manifestation of the same physical phenomenon
has been described by Uchihashi et al. [157]. In low-temperature scanning tunneling spec-
troscopy Uchihashi and coworkers have observed that the Kondo temperature TK of Co
atoms adsorbed on Cu/Co/Cu(100) multilayers varies between 60 and 134 K as the Cu film
thickness decreases from 20 to 5 atomic layers. The observed change of TK was attributed
to a variation of the density of states at the Fermi level EF induced by quantum well states
confined to the Cu film [157].

3.2 Coupling adjustment by linking with nonmagnetic

chains

In the present section we would like to demonstrate that the quantum interference of electrons
in quasi-one-dimensional engineered nanostructures, such as the linear atomic chains on a
surface [153, 154], can be used to the same end as the quantum confinement in an overlayer.

To demonstrate how artificial nonmagnetic nanostructures introduced in between a pair
of magnetic impurities on a Cu(111) surface affect the spin alignment within the dimer we
choose, as a model system for our studies, close-packed Cu chains linking a pair of magnetic
impurities, following the work of Lagoute et al. [154], who studied close-packed Co-Cu chains
of various length and composition, assembled from single Co and Cu atoms on Cu(111) by
atom manipulation in a low-temperature scanning tunneling microscope. In our calculations,
the total chain length is varying from 2 to 15 atoms. Calculations for a pair of single adatoms
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were performed for the same positions of magnetic impurities as were used in the case of
chains.

Exchange interactions between two single Cr adatoms and in Cr pairs linked with Cu
chains are plotted in Fig. 3.3a with the dotted blue line and the solid black line respectively.
Nearest neighbor Cr dimer exhibits strong antiferromagnetic coupling. The exchange inter-

action of a Cr pair at a 5.11
◦
A separation reverses its sign to ferromagnetic, but its magnitude

is strongly reduced because a direct overlap of wave functions of Cr adatoms is not possi-
ble. At further separations the exchange interaction oscillating decays to zero. The decay
rate at large separations is determined by the two dimensional free-electron-like electron gas
stemming from the surface state arising in the projected bulk band gap of Cu(111). It was
demonstrated that the exchange interaction in such kind of systems oscillates at large dis-
tances with a period determined by the surface state momentum at the Fermi energy [158].
Amplitude of these oscillations decays proportional to r−2, where r is the adatom-adatom
separation.

Let us trace now the effect of a Cu chain. The only Cu atom inserted in between Cr

dimer at 5.11
◦
A separation slightly reduces the exchange interaction in comparison to the

reference case of single Cr adatoms. But longer mixed chains exhibit drastic differences
from the reference case. For instance, two Cu atoms linking the Cr pair reverse the sign of
the exchange interaction and strongly enhance its magnitude to 9 meV. The system with
three Cu atoms in the chain has the antiferromagnetic exchange interaction equal to 5 meV
which is about 10 times larger than the magnitude of ferromagnetic exchange interaction of
the reference system. Further elongation of the chain length results in rapid decay of the
exchange interaction.

Profound effect of short chains on the exchange interaction and its decay in long ones
can be explained by competition of two factors. On the one hand, the density of conduction
electrons at Cu atoms is much higher than that of the surface state, so interference effects
are expected to be more pronounced and therefore exchange energies can reasonably be
higher. On the other hand, each Cu atom scatters conduction electrons into the substrate,
so interference patterns should rapidly decay with the increase of the Cu chain length.

Figure 3.3b shows the effect of a Cu chain on the exchange interaction between Co
adatoms. A close packed Co dimer on Cu(111) exhibits a strong ferromagnetic coupling
with a strength of 0.4 eV. It is evident that short Cu chains significantly affect the exchange
interaction as it has just been demonstrated for the case of Cr magnetic impurities. A single

Cu atom inserted between Co atoms in a dimer at 5.11
◦
A separation changes the sign of

the exchange interaction and enhances its magnitude. Two Cu atoms permit one to get an
antiferromagnetically coupled Co pair. Further increase of the chain length reverses the sign
of the exchange interaction back to ferromagnetic. Magnitude of the exchange interaction
in presence of a linking chain is of the order higher than that for the reference case. Similar
to the case of Cr impurities, magnitude of the exchange interaction between Co coupled
through the Cu chain rapidly decay in large chains.

Yet another way to tailor the exchange interaction is to use mixed pairs of magnetic
impurities. In Fig. 3.4 we present our results for Cr-Co pairs. Co and Cr in a close packed
dimer are coupled antiferromagnetically with an energy of 78 meV. This energy is almost
one order of magnitude lower than that for a homonuclear Cr dimer. Non-linked Co and

Cr adatoms at 5.11
◦
A are coupled ferromagnetically with an energy of 5.5 meV. At larger

distances their exchange interaction is negligibly small. Short Cu chains inserted between Co
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Figure 3.4: . The exchange interaction between Co and Cr adatoms on a Cu(111) surface
(dotted blue line, open circle) and the exchange interaction between those atoms linked with
nonmagnetic Cu chains (solid black line, open triangles). First several points of the curve
were scaled down for clarity. The scaling factors are given next to respective data points.

and Cr significantly enhance the magnitude of the exchange interaction. A single Cu atom
placed between Co and Cr reduces the antiferromagnetic exchange interaction to 30 meV. It
is important to note that the same structures with pure Co and Cr dimers exhibit exchange
interactions of the same order but of the opposite sign. The next points of the graph also
demonstrate significant differences from cases of homogeneous magnetic pairs. Magnetic
impurities of different species thus provide a wide range of possibilities for tailoring the
exchange interaction.

To summarize the idea: a modification of the system’s magnetic properties can be
achieved by introducing nonmagnetic atomic chains in between the adsorbed adatoms. This
changes the propagation medium for the conduction electrons that mediate the exchange
coupling in the system. Atomic chains can enhance the exchange interaction between mag-
netic impurities, can change the sign of the exchange interaction or quench in completely.

3.3 Confinement on islands as a tool for magnetic cou-

pling control

In the present section we discuss the possibility to utilize the quantum confinement of surface
state electrons on regular self-assembling structures to tailor the exchange interaction of
single adatoms adsorbed on top of them. The main motivation for this particular study was
the fact that the effect of the surface state electrons confinement on the exchange interaction
of single adatoms (proven to exist in artificially constructed structures [159, 34]) is hard to
exploit in surface engineering, due to the cumbersome procedure involved in constructing
such structures (like quantum corrals) in an atom-by-atom way.

Fortunately, there exist natural or self-assembling structures which can also be utilized
for surface electrons confinement. For instance, it is well known that at certain conditions
an epitaxial growth of Ag on Ag(111) [160] and Cu on Cu(111) [161] results in the formation
of hexagonal islands and vacancy craters.
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Figure 3.5: Upper row: topographic image of an approximately hexagonal Ag island on
Ag(111) (area ∼ 94 nm2), and a series of dI/dV maps recorded at various bias voltages (at
T = 50 K). Lower: geometry of a hexagonal box confining a two-dimensional electron gas,
and the resulting local density of states. The figure is taken from [162].

A quantitative study of the quantum confinement of surface electrons on nanoscale Ag
islands on Ag(111) has been carried out by means of scanning tunneling microscopy and
spectroscopy (STM/STS) by Li et al. [162, 163]. Such close-packed islands grown on an
Ag(111) surface are very stable structures, so standing electron waves can be observed over
a wide range of voltages. Differential conductance maps taken above individual islands
exhibit strongly voltage-dependent features. Figure 3.5 shows a typical series of differential
conductance maps acquired above an island at different bias voltages [162, 163]. Standing
wave patterns appear at energies higher than −65 meV (the Ag(111) surface state band
bottom energy). Li et al. [162, 163] have identified the standing waves as originating from
surface state electrons, confined by the rapidly rising potential at the edges of the island.
Simulated LDOS of a 2D electron gas confined to a hexagonal potential well, calculated by
the authors [162, 163] for comparison, are demonstrated in the lower row of Fig. 3.5.

These studies have confirmed that the confinement can be observed at all island sizes
down to the smallest ones. It has also been proposed [162, 163] that an analogous effect
should exist on Cu(111) and Au(111). True enough the confinement in hexagonal craters
(vacancy islands) has been recently observed in an STM experiment on Cu(111) [164, 166]
(see Fig. 3.6) and the spin-dependent quantum confinement has been extensively studied on
Co/Cu(111) nanoislands [159, 165]. Figure 3.7(a and b) shows dI/dV maps taken by Pietzsch
et al. [165] on Co/Cu(111) islands at bias voltages allowing to observe the standing wave
patterns on both the Cu substrate and on the Co islands. Theoretical calculation results for
a similar system by Niebergall et al. are shown in Fig. 3.8. Observed patterns present a
vivid example of the efficiency of spin-dependent quantum confinement.

As a matter of fact, it was the existence of those fascinating systems that has motivated
our study of the interaction of single atoms on hexagonal islands, described in details in the
present section.

As a model system for our studies we have chosen pairs of Co atoms adsorbed on top
of hexagonal Cu islands of various sizes residing on a Cu(111) surface (Fig. 3.9). The
choice was governed mainly by the fact that such a system is relatively easy to produce
experimentally (as discussed in the introductory chapter) yet represents a good model for
a system of magnetic adatoms adsorbed on (111) surfaces of noble metals, which increases
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Figure 3.6: STS images of dI/dV at the indicated gap voltage at 1 nA (left column) and the
calculated LDOS at various energies of the 7 nm vacancy island. The solid hexagon marks
the vacancy island rim. The right column shows horizontal line scans along the center of the
vacancy island, as indicated by the green line for different energies. Solid line: calculation
(center column), symbols: experimental data (left column). Figure from [164].

Figure 3.7: Co islands on a Cu(111) surface. dI/dV maps at sample bias voltages as indicated
in the figure, showing standing wave patterns on both Cu substrate and Co islands. Arrows
indicate islands being magnetized parallel (↑↑) or antiparallel (↓↓) to the tip magnetization.
The figure is taken from [165].
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Figure 3.8: The spin polarization of surface-state electrons on triangular Co islands on
Cu(111); calculations are performed for E = 0.5 eV above the Fermi level. Adopted from
[159].

Figure 3.9: System setup used in our calculations to demonstrate the possibility of tailoring
the exchange coupling between single adatoms adsorbed on islands by adjusting the island’s
size. The separation of adatoms remains constant.

Figure 3.10: LDOS distribution on islands with R=20 (a), 36 (b) and 52
◦
A (c).
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the generality of attained conclusions. To study the influence of the islands size on the
electron confinement and the exchange coupling of adsorbed Co atoms we have selected

hexagonal islands with circumscribed circle radii of 20
◦
A, 36

◦
A and 52

◦
A (side lengths of 8,

14 and 20 atoms respectively). To investigate the quantum confinement induced by islands

we calculated the LDOS in vacuum some 2
◦
A above clean Cu islands. To produce LDOS

maps the integrated density of electronic states at the Fermi energy in each atomic sphere of
the first vacuum layer above the island has been calculated. For a clearer picture the values
have then been interpolated to produce the η = η(x, y) (where x and y are the in-plane
coordinates and η is the local density of states) contour map shown in Fig. 3.10(a, b and

c) for 20
◦
A, 36

◦
A and 52

◦
A islands respectively. The confining factor for the electrons in

case of an island is the vacuum barrier existing at it’s boundaries. Thus the confinement
region inherits the shape of the island’s boundary and an electron confined in it behaves like
a particle in a hexagonal box which clarifies the LDOS distributions shown in Fig. 3.10(a-c)
[162, 163]. Those distributions closely resemble the first three eigenmodes of a particle with

a wavelength of about 30
◦
A which corresponds to the Fermi wavelength of Cu surface state

electrons. The first and the third distributions display a density maximum in the center of

the hexagon with an additional maximum at the boundary on the 52
◦
A island. The second

mode has its high density region in the form of a ring with a diameter of about 30−35
◦
A and

depletion zones both at the center and at the boundaries. The confinement causes the 20
◦
A

island to acquire the highest (among the three) absolute local density of electronic states at

the center, while the LDOS map of the 52
◦
A island displays, as can be expected, the most

profound hexagonal features. The obtained distributions are very similar to those observed
in hexagonal vacancy holes on Cu(111) [164] (Fig. 3.6) which have been comprehensively
analyzed in Ref. [166].

Considering that surface electrons act as mediators of the indirect exchange interaction it

is most likely that a change of the LDOS up to 30% (0.5 st/eV in the center of the 20
◦
A island

versus 0.35 st/eV on the 35
◦
A one) will lead to a significant modulation of the exchange

coupling of magnetic atoms adsorbed on top. However, it should be noted here that besides
the intrinsic electron density redistribution the coupling constant is effectively determined
by the phase relation of surface state electrons scattered at both impurities which is in turn
profoundly affected by the introduction of reflective vacuum barriers at the boundary of
the island. By changing the island’s size we alter both the intrinsic density of surface state
electrons and the scattering geometry. However, although the results of ab initio calculations
incorporate both effects, it is virtually impossible to separate those two contributions.

To study the cumulative impact of the quantum confinement of surface electrons on the
exchange interaction of magnetic atoms adsorbed on top of an island we have calculated
the exchange coupling energies between single Co atoms residing on hexagonal Cu islands
of the three above-mentioned sizes. In regard of the fact that the placement of two adatoms
on a nanometer-scale island allows for a vast amount of variants let us consider first one of
the most logical choices, namely the case when one of the adatoms is placed in the center
of the island and the other occupies one of the remaining adsorption sites. The resulting
exchange energy landscape Eexc(x, y) = Eexc(x1 = 0, y1 = 0, x2 = x, y2 = y) (where (x1, y1)

and (x2, y2) are the in-plane coordinates of the first and the second Co adatoms) for the 20
◦
A

island is given in Fig. 3.11. It must be noted that the coordinate zero does not precisely
coincide with the geometrical center of the island but rather with an adsorption site closest
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Figure 3.11: A map of the exchange interaction energy of two Co adatoms adsorbed on a

hexagonal Cu island of 20
◦
A in radius, given that one of the adatoms is residing in the

island’s center.

Figure 3.12: A scheme of principal arrangements of Co adatoms on an island chosen for
investigation: (a) ”horizontal” (H), (b) ”horizontal symmetric” (Hs), (c) ”vertical” (V) and
(d) ”vertical symmetric” (Vs).
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Figure 3.13: (a) Exchange coupling energies of two Co adatoms aligned according to config-

uration ”H” (see Fig. 3.12) at separations of 7.6
◦
A (black squares), 10.2

◦
A (red/dark-grey

circles), 12.8
◦
A (blue/grey triangles pointing up) and 17.9

◦
A (green/light-grey triangles point-

ing down) as a function of the island’s size Risland. (b) Exchange coupling energies of two

Co adatoms aligned according to configuration ”Hs” (see Fig. 3.12) at separations of 7.6
◦
A

(black squares), 12.8
◦
A (red circles/dark-grey), 17.9

◦
A (blue/grey triangles pointing up),

28.2
◦
A (green/light-grey triangles pointing down) and 38.2

◦
A (cyan/light-grey diamonds)

as a function of the island’s size. In both cases corresponding exchange energy values on a
clean surface are given as a last point of each curve (denoted on the horizontal axis as ∞).
Connecting lines are only there to guide the eye.

to it which is situated some 1.5
◦
A away. It can be seen that starting from intermediate

separations of ∼8
◦
A the map exhibits two principal directions that differ significantly: along

the [101] and the [121] vectors of the surface. Those directions are dictated by the six-fold
symmetry of the islands. Most intermediate directions reveal an exchange behavior closely
resembling that along one of the principal directions. Relying on this fact we have chosen to
limit our investigations to four main arrangements aligned along those two main direction.
For each direction the two adatoms were either aligned symmetrically with respect to the
center of the hexagon or one of them was placed at the center and the other at various
separations along the respective direction. A sketch of all four configurations is given in
Fig. 3.12. For ease of notation let us designate those configurations as ”horizontal” (H),
”horizontal symmetric” (Hs), ”vertical” (V) and ”vertical symmetric” (Vs) (Fig. 3.12(a,b,c
and d respectively)).

Let us now take a closer look at how the quantum confinement on islands influences the
exchange interaction. Fig. 3.13a shows the exchange energies of two Co adatoms adsorbed
in an ”H” (see Fig. 3.12) configuration at various separations as a function of the island’s
size Risland. For comparison exchange energies of the same adatoms at the same separation
on a clean Cu(111) surface are given as the last point of each curve marked on the Risland
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Figure 3.14: (a) Exchange coupling energies of two Co adatoms aligned according to con-

figuration ”V” (see Fig. 3.12) at separations of 4.4
◦
A (black squares), 8.9

◦
A (red/dark-grey

circles) and 13.3
◦
A (blue/grey triangles pointing up) as a function of the island’s size Risland.

(b) Exchange coupling energies of two Co adatoms aligned according to configuration ”Vs”

(see Fig. 3.12) at separations of 4.4
◦
A (black squares), 8.9

◦
A (red/dark-grey circles), 13.3

◦
A

(blue/grey triangles pointing up) and 28.2
◦
A (green/light-grey triangles pointing down) as

a function of the island’s size. In both cases corresponding exchange energy values on a
clean surface are given as a last point of each curve (denoted on the horizontal axis as ∞).
Connecting lines are meant as a guidance for the eye only.

axis by ∞. The figure indicates that at smaller separations of 7.6
◦
A (black squares) the

exchange energy is gradually reduced (increasing the ferromagnetic (FM) coupling) with
increasing island’s size in the range of 20− 25% of the clean surface value. At intermediate

separations of 10.2
◦
A and 12.8

◦
A (red circles and blue triangles pointing up respectively) the

dependence becomes irregular in its behavior allowing either for a switching (at 10.2
◦
A) or

for a 20% increase (at 12.8
◦
A) of the exchange coupling between the adsorbates. At larger

separations of 17.9
◦
A (green triangles pointing down) the quantum confinement allows one

to increase the FM coupling energy to up to twice its value on a clean surface. Similar
exchange dependencies for the ”Hs” configuration are presented in Fig. 3.13b. Here as well,

at small and intermediate separations of 7.6
◦
A (black squares) 12.8

◦
A (red circles) and 17.9

◦
A

(blue triangles pointing up) the exchange energy is reduced by the confinement decreasing
the coupling. But an even more significant effect can be observed at large separations of

28.2
◦
A and 38.4

◦
A (green triangles pointing down and cyan diamonds respectively). At a

clean surface the exchange coupling at such separations is negligibly small. The quantum
confinement on an island, however, allows one through reflection and focusing of scattered
electrons by the island’s boundaries to restore the coupling to values reaching up to over
100 µeV .
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To generalize the picture even further let us take a look at both the ”V” and ”Vs” con-
figurations. The exchange coupling dependencies for those configurations are presented in
Fig. 3.14(a and b respectively). Though different values of interatomic separations superim-
posed by the fcc lattice do not allow us to make a one to one comparison with ”H” and ”Hs”
cases the dependencies show a rather similar behavior and tendencies. Once again at small
separation a deliberate choice of the island size can allow us to either reduce or increase the
interatomic coupling between the adsorbates. At intermediate separations we yet again have
the possibility to switch the exchange coupling by adjusting the island size. And at larger

separations of about 30
◦
A the initially small coupling at a clean surface can be restored to

palpable values.
We can thus conclude that the quantum confinement of surface electrons to nanoislands is

a suitable tool for tailoring the exchange interaction of magnetic adsorbates. In some systems
(for instance Cu/Cu(111) or Ag/Ag(111)) such islands can be relatively easily obtained by
epitaxial growth and their size distribution can be controlled by growth conditions. The
dependence of the surface electron density distribution and the phase relations of scattered
electrons on the island’s size make the latter a convenient adjustment parameter. Besides
the island size, the alignment of magnetic adsorbates with respect to the island has a notable
effect on the interatomic exchange interaction and thus can be varied to achieve a desired
effect. This fact might make the quantum confinement on islands a good candidate for future
spintronics applications.

Concluding the chapter we would like to once again, daring to repeat ourselves, underline
the fact that quantum confinement of electrons at surfaces can prove to be an extremely pow-
erful tool for tailoring the magnetic interaction between various surface-based structures.



Chapter 4

Probing the exchange interaction

Despite the considerable experimental power of the magnetic interaction probing techniques
presented in Chapter 1, the well of techniques for probing the interatomic exchange coupling
is far from being drained. In the present chapter we tackle the problem from the new point
of view. We analyze the effect of the exchange interaction on the spin-dependent localization
of the surface state.

It is well known that (111) surfaces of some noble metals produce an electronic surface
state, which in its properties resemble a free 2-dimensional electron gas (2DEG). The origin
of the surface state is the trapping of electrons between the vacuum barrier and the band
gap of the metal bulk.

An impurity immersed in such a 2DEG presents an additional potential for the surface
state electrons. The theorem of Simon [168] predicts that a Hamiltonian within an arbitrary
asymptotically attractive 2D potential has a single bound state. It has been shown [169, 167,
170] that the localization of a 2D Shockley surface state on an impurity potential manifests
itself as a split-off bound state just below the surface state band bottom. dI/dV spectra
measured by Limot and coworkers above Ag(111) and Cu(111) surfaces and above single Co
atoms adsorbed on those surfaces are presented in Fig. 4.1 (a,c) and (b,d) correspondingly.
The localization seen in the lower panels just below the surface state band bottom (shown in
upper panels) was ascribed by the authors [167] to the Simon localization mechanism [168].
Similar states have been predicted to exist at nonmagnetic Cu chains [171].

To trace the effect of the exchange interaction on the bound state, we consider single Co
adatoms and atomic pairs at different separations adsorbed on a Cu(111) surface. A clean
Cu(111) surface has an intrinsic surface state of Shokley type. It manifests itself as an onset
in the density of states at about −0.5 eV (below the Fermi energy). The density of states
in vacuum above a clean Cu(111) surface is plotted in Fig. 4.2c as a gray curve with a filled
area below. If we now adsorb a single Co adatom on the surface, the surface state becomes
localized by the attractive potential of the impurity. The result of the LDOS calculation
above a single Co adatom is presented in Fig. 4.2c for majority (red solid) and minority
(blue dashed) electrons. The localization of the surface state has led to the formation of
a narrow peak in both spin-up and spin-down channels at about −0.57 eV, which is just
below the surface state band bottom. Due to different scattering properties of the magnetic
adatom for the spin-up and spin-down surface electrons, the bound state acquires a certain
spin polarization. The position, the shape and the spin splitting of the bound state peak
are in good agreement with the results obtained experimentally and theoretically by other
groups [169, 167, 172, 173]. To be consequent, let us note that the majority peaks around
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Figure 4.1: dI/dV spectrum over (a) the center of a 20× 20 nm2 defect- and impurity-free
area of Ag(111) and (b) the center of a Ag and of a Co atom on Ag(111) (feedback loop
opened at 200 MΩ; spectra are shifted vertically for clarity). Light-colored solid lines: fits
described in [167]. (c and d) similar graphics for the Cu(111) surface with Cu an Co adatoms
adsorbed on top (feedback loop opened at 100 MΩ). Figures taken from [167].

Figure 4.2: The geometry considered in calculations: an adatom (a) and a dimer (b) of Co
adsorbed on a Cu(111) surface. The majority (red solid) and minority (blue dashed) LDOS
above a single Co adatom (c). The gray filled curve represents a surface state of a clean
Cu(111) surface.

Figure 4.3: The majority (red solid) and minority (blue dashed) LDOS at a single Co adatom.
The peaks in both spin channels are mainly of a d character.
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Figure 4.4: The majority (red solid) and minority (blue dashed) LDOS above the middle of

a compact Co dimer (d = 2.55
◦
A), aligned along the [101] direction of a Cu(111) surface, in

a ferromagnetic (a) and an antiferromagnetic (b) configurations. The gray curve shows the
surface state above a clean Cu(111) surface. It has been scaled by a factor of 2 for clarity.

Figure 4.5: The majority (red solid) and minority (blue dashed) LDOS at one of the atoms

in a compact Co dimer (d = 2.55
◦
A), aligned along the [101] direction of a Cu(111) surface,

in a ferromagnetic (a) and an antiferromagnetic (b) configurations. The peaks in the LDOS
are mainly of the d character.

−1.5 eV can be ascribed to the hybridization of the surface electrons with the d orbitals of
the Co adatom (the LDOS at the adatom is shown in Fig. 4.3).

If another Co atom is introduced to the vicinity of the first one, the manner in which each
of the adatoms interacts with the surrounding electrons becomes affected by the interatomic
interaction. In this article we discuss only the magnetic exchange interaction between the
adatoms, as it is the magnetic coupling that is of the greatest interests for potential spin-

tronics applications. At small interatomic separations (< 3
◦
A) the main source of exchange

interaction between adatoms is the direct overlap of atomic orbitals. At larger distances the
magnetic interaction is mainly mediated by conduction electrons of the substrate (RKKY
mechanism). It was shown [158] that the RKKY nature of the interaction causes the ex-
change coupling to oscillate with a wavelength determined by the copper surface state Fermi
wave vector and decay quadratically with the distance. The fact that the system is reason-
ably simple to produce and control experimentally and assumes a wide range of exchange
coupling strength values, makes such a system an ideal testing ground for both theoretical
and experimental exchange interaction probing methods.

First of all, let us consider two Co atoms adsorbed on fcc hollow sites along the [101]
direction of a Cu(111) surface, forming a compact dimer. The LDOS above the middle of
the dimer is shown in Fig. 4.4 for a (a) ferromagnetic (FM) and an (b) antiferromagnetic
(AFM) alignment of spins. The energetically stable configuration is the FM one. The total
energy calculations yield an exchange coupling energy of −432 meV. Let us analyze the
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origin of various peaks in the LDOS. If we consider the LDOS at one of the atoms of the
dimer (Fig. 4.5) in FM (a) and AFM (b) configurations. It immediately becomes evident
that majority peaks around −1.5 eV and minority peaks around the surface state band
bottom (−0.5 eV) in the FM case are of atomic origin, i.e. arise from the hybridization of
s surface electrons with majority and minority d states of Co respectively. The remaining
peaks (around −1.1 eV for minority and −0.8 eV for majority electrons) stem from the
formation of the bound state. If we consider the position of the bound state peaks it can
be seen that the potential of the FM dimer has caused the bound state to acquire a larger
splitting than in the case of a single adatom and become broadened. At the same time the
LDOS for an AFM configuration displays no spin-splitting at all.

This phenomenon can be easily understood if we consider the system in the framework
of a two-state spin model. According to this model, one should expect that the interatomic
interaction will cause localized electronic states to become split into a bonding-antibonding
doublet in both the spin-up and the spin-down channels. However, the intrinsic width of the
bound state peak does not allow us to resolve the split resonances and thus we only observe
a broadening of the localization peak. Moreover, the spin degeneracy in the AFM case is
also a logical consequence of the theory. A similar idea and explanation were proposed for
impurities on metal surfaces [174] and in semiconductors [175] and have been experimentally
proven to be quite feasible [176].

Another way to understand the results of the calculations is to consider the dimer as a
single scattering entity with a net spin being the sum of individual atom’s spins. Then the
AFM dimer can be regarded as a nonmagnetic scattering entity which immediately explains
the spin-degeneracy of the bound state. It also explains the increased spin-splitting of the
bound state arising at a FM dimer as compared to a bound state above a single adatom, as
the net spin moment of the dimer is about twice the moment of a single magnetic impurity.
Another thing that has to be mentioned in the context of a compact magnetic dimer is that
the coupling in this case is governed by the direct overlap of the atomic wave functions; and
thus our reasoning might be slightly impaired by the fact that some magnetic dimers are
known to have a non-collinear ground state [177, 178], in which case the two-state model for
atomic spins is no more applicable. However this does not hold for larger separations and
therefore does not affect the reasoning in general.

Let us now trace the changes in the surface state localization as we gradually increase
the distance between the Co adatoms. For each of the interatomic separations ranging from

2.55 to 15.33
◦
A we determined the systems ground state and the corresponding exchange

coupling energy (left panel of Fig. 4.6). Then we calculated the LDOS above a point midway
between the adatoms (right panel of Fig. 4.6) for the system in its ground state. As was
already mentioned, the ground state for a compact dimer is a FM one. At the second nearest
neighbor separation the Co pair in the ground state displays an AFM alignment of spins.
The corresponding LDOS shows, as expected, no spin splitting. The width of the bound

state peak is decreased and its maximum is shifted to higher energies. At 7.66
◦
A separation

(3rd nearest neighbors) the spin-polarization of the ground state LDOS is recovered and
the corresponding spin coupling is a FM one. Both peaks are positioned at higher (with
respect to the second nearest neighbor) energies. By further increasing the separation we
acquire a sequence of LDOS-es and exchange coupling energies. As in the first three cases,
it can be clearly seen that for all configurations with an AFM ground state the bound state
is spin-degenerate, while for FM configurations it displays a splitting that decreases with
increasing atom-atom separation. Thus the spin-splitting of the bound state can serve as an
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Figure 4.6: The majority (red solid) and minority (blue dashed) LDOS above the middle
of Co dimers at different separations (right panel) and the corresponding configurations,
interatomic separations and exchange coupling energies (left panel). LDOS have been scaled
for clarity. The scaling factors are given near each curve.
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Figure 4.7: The position of the bound state of Co dimers as a function of the interatomic
separation for antiferromagnetic (dashed line, squares) and ferromagnetic (spin-up – solid red
curve, triangles pointing up, spin-down – solid blue, triangles pointing down) configurations
(a). The amount of spin-splitting of the bound state above a ferromagnetically coupled
dimer (solid curve, squares) and a dimer in the ground state (GS) configuration (dashed,
circles) versus the interatomic distance (b)

indicator of the exchange coupling sign, being zero for antiferromagnetic alignment of spins
and non-zero for the ferromagnetic one.

To get a grasp on the quantitative dependence of the bound state peak position on the
exchange coupling strength, we present the bound state energies in Fig. 4.7a as a function
of the distance between Co adatoms. The black dashed curve shows the position of the
bound state for AFM aligned dimers. With increasing interaction at smaller separations the
peak gets shifted to lower energies. In the case of a ferromagnetic configuration, the spin-up
bound state (solid red curve, triangles pointing up) displays a similar behavior. However, the
spin-down bound state (solid blue, triangles pointing down) occupies a lower energy at all
interatomic distances. Moreover, the amount of splitting also increases with the interaction
strength. The values of the splitting for the ferromagnetic configuration are given in Fig. 4.7b
by a solid curve and square markers. The dashed curve represents the spin-splitting in
the ground state configuration. The shift of the bound state peak position (with respect
to the position of the bound state above a single adatom) shows a monotonous decrease
with increasing interatomic separation. This is valid for both FM and AFM configurations.
However, in absence of a reference point the position of the localization peak alone cannot
be regarded as a reliable measure of the exchange coupling. The spin-splitting of the bound
states provides a more reliable source of information. One could expect that the splitting
amount would decay with interatomic distance, following a power-law, as is usual for values
describing conduction-electrons mediated processes; however, the investigated distances are
not large enough and the amount of splitting is too small to make any conclusive statement.
Still, it is clear that both the position of the bound state and the amount of its splitting
provide a valuable source of information about the magnetic exchange interaction between
single adatoms on a surface.

The application of this approach is by no means restricted to particular adatom species.
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Figure 4.8: The majority (red solid) and minority (blue dashed) LDOS above the middle of

compact Fe (a,b) and Mn (c,d) dimers (d = 2.55
◦
A), aligned along the [101] direction of a

Cu(111) surface, in a ferromagnetic (a,c) and an antiferromagnetic (b,d) configurations.

Our calculations show that the bound state peak demonstrates the same behavior for most of
3d adatoms. For example, LDOS above the middle of compact Fe and Mn dimers is shown
in Fig. 4.8. We also assume that this approach can be generally applied to any surface
possessing a surface state and any kind of magnetic dimers.

Another aspect worth mentioning is the stability of the approach with respect to the
location of the point of measurements/calculation, as this might be relevant for its experi-
mental application. The deviation from the axes of symmetry of the dimer causes the LDOS
of an AFM configuration to start loosing the spin-degeneracy. However, due the s character
of the localized electrons the susceptibility of the LDOS to the symmetry breaking is only
moderate in the AFM case and hardly noticeable in the FM case. Therefore, at small and
intermediate separations, which are the relevant ones for technological applications, the pro-
posed approach should be stable against small variations of the point of measurement and
thus retain its validity.

In conclusion of the chapter, we have shown that the localization of the surface state is
strongly affected by the interaction of atomic spins and can possibly be utilized to determine
the exchange coupling between single impurities adsorbed on metallic surfaces. The presence
(or absence) of a spin-splitting of the bound state indicates a ferromagnetic (respectively
antiferromagnetic) alignment of spins in the system. Moreover, the amount of splitting can
be regarded as an indicator of the exchange coupling’s strength.

This approach may provide suitable means of exchange coupling probing at small and
intermediate separations for future spintronics applications.





Chapter 5

Magnetism of buried nanostructures

This chapter is a logical extension of the previous one to a new and profoundly interesting
class of objects: single atoms and small clusters buried beneath a metallic surface. First of
all we face the question whether it is at all possible to sense the magnetism of single buried
structures on the nanoscale with modern local probe techniques. Having positively answered
this question we proceed to probing the exchange coupling between single buried structures
and show that the coupling of buried structures can be deduced from the spin polarization
of surface electrons above the structure’s burying site.

5.1 Probing the electronic and magnetic properties of

buried nanostructures

The advances of the last three decades in the field of local probe methods, such as the
scanning tunneling (STM) or atomic force (AFM) [179, 43] microscopies, made it possible
to address structural, electronic and magnetic properties of surface structures which have
been previously inaccessible. Yet, despite the aptitude of experimental techniques, some of
the surface systems remain largely unexplored. Most of the recent attention of the STM and
AFM communities has been directed toward nanostructures adsorbed on top of metallic,
oxidic or semiconductor surfaces. However, the prospect of using subsurface (embedded)
nanostructures as the base for hypothetical future applications (such as the almost proverbial
spintronics devices) might be even more promising (see, e.g. [180]). So it is obvious that
learning to probe and tailor buried magnetic structures might be a challenge well worth
taking.

The question, whether nanostructures buried several monolayers deep inside a surface
can be investigated at an atomic scale with a local probe technique has been raised several
times in the past two decades. The first definitive positive answer was given theoretically by
Crampin [181]; and experimentally by Heinze et al. [182] for Ir impurities in metallic surfaces
and by van der Wielen et al. [183] for Si dopants in semiconductor alloys. The latter relied on
the presence of the Friedel oscillations induced by impurities at the surface. The former used
a more local mapping of the surface combined with an extensive theoretical (first-principles
calculations) support. Following those ”proof of principle” experiments several studies have
been undertaken to further explore the possibility both experimentally and theoretically
[14, 184, 185, 186] and their findings have been extensively utilized in a subsequent series
of studies aimed at the determination of electronic structure and position of subsurface
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Figure 5.1: (A) The sketch of the studied system - a hexagonal Co cluster of 7 atoms (H7)
buried in a Cu(111) surface. (B) Majority (light-red filled area) and minority (light-blue
filled area) LDOS in of the central atom of the cluster embedded in Cu bulk. Majority
(red solid curve) and minority (blue solid curve) LDOS of the central atom of the cluster
embedded into the topmost layer of a Cu(111) surface.

impurities [187, 188] and at studying buried interfaces and lattices [189].
However, at least one aspect remained largely unexplored, namely the possibility to

address the magnetism of surface-embedded nanostructures. Yet precisely this aspect might
be of essence for possible future applications. This realization might have been the motivation
to reopen the subject of buried nanostructures in the magnetic perspective. So, for example,
Weismann et al. [190], in their study of the possibility to probe the topography of the
host Fermi-surface utilizing magnetic subsurface point defects (Co atoms), propose, in a
manner of speculation that buried magnetic impurities can be put to work as ”nano-sonars”
for probing geometric and electronic properties of buried interfaces. They indicate that
an extended ferromagnetic nanostructure can play the role of a ”spin filter” which splits
non-spin-polarized current. Besides they suggest that subsurface defects might be used for
direction-specific control over interatomic interactions at the surface (see Fig. 4 (A, B and
C) of [190]). In their experimental endeavors they utilize the basic ideas which have already
been rather extensively discussed in recent years by Avotina et al. for both para- [187, 191]
and ferromagnetic [192] point defects buried in a metallic host. Quite recently the same
group (Avotina et al. ) has published a comprehensive experiment-oriented theoretical study,
addressing the influence of a single magnetic defect or cluster in a nonmagnetic host (metal
surface) on the properties of the spin and charge currents in the proximity of a ferromagnetic
STM tip [193].

5.1.1 Probing magnetic subsurface impurities with the local den-
sity of states at the surface

Here we would like to specifically concentrate on the topic of probing the buried structure’s
magnetism. Let us first say a few words about the calculational setup which was used
to study buried magnetic structures. For calculational studies the choice of a good model
system is essential. A prototypical system for studying magnetism at metallic surfaces is
Co/Cu(111). It follows most general trends for this class of systems and is very suitable for
DFT calculations, as it is known to yield a good agreement with experiments at a relatively
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Figure 5.2: Majority (red triangles up) and minority (blue triangles down) LDOS at −0.5
(A) and −1.3 (B) eV in vacuum above the embedding site of an H7 Co cluster versus the
burying depth. The LDOS of a host surface has been subtracted from all the curves for
clarity.

low computational cost. As for the shape of the nanostructure, the simplest choice would be
a cluster consisting of atoms arranged in a regular manner (e.g. a hexagon) all residing in
the same layer beneath surface (a flat hexagonal cluster). Such systems can be reproduced
experimentally using the self-assembly (or the buffer layer assisted growth) in conjunction
with a capping layer deposition. The feasibility of such a technique has been shown, e.g., by
Torija et al. [194]. A sketch of the system is presented in Fig. 5.1A. The electronic structure
of such a cluster would remain largely unchanged if it is submerged into the surface. A
comparison of the local density of states (LDOS) of the central atom of a hexagonal Co
cluster, consisting of 7 atoms (H7), is presented in Fig. 5.1B. The LDOS of a cluster residing
in the topmost layer of the surface (a red solid curve for majority LDOS (top panel) and
a blue solid curve for minority LDOS (bottom panel)) differs from the LDOS of a cluster
embedded in the bulk (filled curves) only through a slight change of peak positions and peak
intensity distributions, sharing most of the other main features. Several most prominent
peaks can be pointed out: at −1.45, −0.44, 0.0 eV for minority and −1.6, −1.2 eV for
majority electrons.

In a real experiment, however, the electronic structure of a buried impurity is not a
directly accessible value. What modern local probe techniques can access is the LDOS at
the surface. Thus it is essential to understand how a buried nanostructure can affect the
electron density at the surface above its burying site. Fig. 5.2 shows the evolution of the
LDOS at two selected energies ((A) −1.3 eV and (B) −0.5 eV, each corresponding to a region
containing a prominent peak in either the majority or the minority LDOS of the cluster) as
the nanostructure is submerged ever deeper into surface. The investigated burying depths

range between 1 (surface layer) and 8 monolayers (ML) which corresponds to about 2−17
◦
A.

The majority LDOS is plotted in red triangles, pointing up, and the minority LDOS - in
blue triangles, pointing down. For convenience, the LDOS value of a clean Cu(111) surface
at corresponding energies has been subtracted from the curves, so that the presented values
would reflect the partial influence of the submerged impurity on the electronic density at
the surface. The most remarkable feature is that both the majority and the minority LDOS
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display an oscillatory behavior. Such behavior is nowadays clearly understood and can be
ascribed, similar to [187], to the quantum interference of the s-like states in the paramagnetic
spacer between the nanostructure and the vacuum barrier at the surface. The boundary
conditions, determining the density of states at the surface, thus depend on the scattering
properties of the nanostructure, the vacuum potential, the k-vector of the energy state in
question and, of course, on the spacer thickness or the burying depth. Thus any change in
the burying depth of the nanostructure would be immediately reflected in the LDOS at the
surface, which immediately suggests it as a tool for probing the structure’s vertical position.

Furthermore, such oscillatory behavior is not energy-bound to the two selected values
presented here. Fig. 5.3 clearly illustrates this point, showing the energy-resolved dependence
of the LDOS above the center of the cluster on its burying depth. Pronounce oscillatory
behavior can be registered throughout all the energy spectrum in both the spin-up (A) and
spin-down (B) channels. It is also evident that the LDOS at the surface mimics that of
the central atom of the buried cluster (Fig. 5.1B) thus confirming the fact that the spin
polarized electronic structure of a buried impurity can be probed by local probe techniques
at the surface.

Considering now that the scattering properties of a magnetic nanostructure are spin-
dependent it is not hard to justify the differences between spin-up and spin-down LDOS
at the surface. This effectively means a presence of a net polarization of surface electrons
throughout the LDOS spectrum. As an example Fig. 5.3C displays the spin polarization at
the surface P (E, d) as a function of energy and burying depth:

P (E, d) =
nup(E, d)− ndn(E, d)

nup(E, d) + ndn(E, d)
,

where nup,dn(E, d) is the burying depth and energy resolved density of states for majority
and minority electrons at the surface. Clearly the oscillations of the LDOS with increasing
burying depth cause the polarization to oscillate accordingly. Both large positive and large
negative values of the polarization, ranging between +35 and −50 %, can be observed. This

oscillations can be traced up to the burying depths of at least 8 ML (∼17
◦
A). Similar effects

can be observed already for a single buried atom. The corresponding spin resolved LDOS
above the burying site and the polarization of surface electrons are presented (similarly
to Fig. 5.3) in Fig. 5.4A-C, correspondingly. One can observe the same burying-depth-
dependent oscillatory features in both, the LDOS and the polarization, yet their amplitude
is considerably less that in the case of a 7-atomic cluster for obvious reasons. Thus it is clear
that the polarization along with the LDOS is a very sensitive tool for studying embedded
magnetic nanostructures.

However, there are several major questions that still require to be answered. One of
them is the question of geometry dependence. How would the polarization at the surface
change if we alter the geometry of the cluster, for example by increasing its size. As the
simplest comparison one can take clusters of two different sizes (a 7-atomic (H7) and a 19-
atomic (H19) hexagonal ones). The polarization above buried H7 (black rectangles) and
H19 (red circles) clusters as a function of burying depth at two chosen energies mentioned
above (−0.5 eV (A) and −1.3 eV (B), marked with dashed lines in Fig. 5.3) is presented in
Fig. 5.5. As an asymptotic case another nanostructure is taken for comparison, namely a
whole Co monolayer (ML) embedded into the surface at the same depths as the clusters. The
polarization above the monolayer is given in the figure by blue triangles. One might notice
that the depths can be logically divided into two regions. When the distance to the surface is
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Figure 5.3: Energy resolved majority (A) and minority (B) LDOS (color-coded) in vacuum
above the embedding site of an H7 Co cluster versus the burying depth. The LDOS of a host
surface has been subtracted for clarity. (C) Polarization (color-coded) P = P (E, d) above
a buried hexagonal 7-atomic Co cluster as a function of electron energy and burying depth.
The P (E) distributions have been calculated for integer layer numbers and then interpolated
for clarity. The dashed vertical lines mark the energies chosen for comparison in Fig. 5.2.
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Figure 5.4: Energy resolved majority (A) and minority (B) LDOS (color-coded) in vacuum
above the embedding site of a single Co adatom versus the burying depth. The LDOS of
a host surface has been subtracted for clarity. (C) Polarization (color-coded) P = P (E, d)
above a single buried Co adatom as a function of electron energy and burying depth. The
P (E) distributions have been calculated for integer layer numbers and then interpolated for
clarity.
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Figure 5.5: Comparison of the polarization at the surface above buried 7-atomic (H7,black
squares), 19-atomic (H19, red circles) clusters and a buried monolayer (ML, blue triangles
pointing up) at −0.5 eV (A) and −1.3 eV (B). The lines are meant solely as a guide for the
eye. From

larger than the lateral extents of both clusters, the corresponding polarization curves display
a very similar behavior. For shallow-buried clusters, when the size of the structure comes into
play, the behavior of the curves begins to differ considerably. Another asymptotic feature,
that can be noticed, is the striking qualitative similarity between the H19 and ML curves

in the depth range of 6 − 7
◦
A. It means that at shallow burying depths the H19 cluster

influences the surface polarization above its burying site in a way very similar to that of
a complete monolayer. This might be of use when contemplating possible experimental or
technological applications, as it marks the lateral extents for a single magnetic unit which
would provide us with an imitation of a monolayer. Magnetic monolayers (or, to be precise,
stacks of them) are currently the basis for many magnetic devices relying on giant and
tunneling magnetoresistance and similar techniques.

One more issue that is bound to arise in an experimentalist’s mind, is the question of
the stability of the cluster’s magnetic orientation. It is well known (see f.e. [195]) that
small metallic clusters at surfaces often exhibit superparamagnetic properties which would
render observations discussed above virtually impossible. However, as remarked in , the
fact that at large burying depths the role of the cluster’s size ceases to play a major role,
could make it possible, by increasing the size of the clusters, to achieve sufficient values of
magnetic anisotropy to sustain a constant direction of the magnetic moment at reasonable
experimental environmental conditions. Alternatively a small magnetic field might serve as
a stabilizing factor. It would, however, also interfere with the intrinsic magnetic interactions
in the system.

Although by looking at a single point above a buried magnetic nanostructure one can
already obtain some information about the structure’s burying depth and shed some light
onto its electronic and magnetic properties, it is obvious that a space-resolved scan of the
polarization distribution in vacuum above the surface would give one a much deeper insight.
An example of such polarization scans calculated at −0.5 eV in vacuum above an H7 cluster
buried in monolayers 1 to 4 (A to D respectively) beneath the surface are presented as
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Figure 5.6: Polarization maps above a hexagonal 7-atomic cluster of Co residing under a

Cu(111) surface at burying depths of 2.1 (A), 4.2 (B), 6.3 (C) and 8.4 (D)
◦
A.

Figure 5.7: Polarization maps above a single Co adatom residing under a Cu(111) surface

at burying depths of 2.1 (A), 4.2 (B), 6.3 (C) and 8.4 (D)
◦
A.

a function of surface in-plane coordinates in Fig. 5.6. A buried cluster leaves a unique
polarization imprint in the LDOS, and hence the polarization, in the vacuum space above
its burying site for each burying depth. A critical look at the figure immediately reveals
a 3-fold rotational symmetry in the polarization maps, the origin of which, however, is
easily understood if one considers the intrinsic geometry of a (111) surface. Looking at the
polarization distributions one once again detects the characteristic details of the electronic
interference, namely the radial oscillations of the polarization. Their origin is also quite
easily understood: the phase relation of the incoming and scattered electronic waves change,
in accordance with simple geometric laws, causing the resulting periodic variations in the
polarization of surface electrons. Note also that with increasing burying depth the radial
period of the oscillations decreases which also complies with simple notions of geometric
optics. The phase of the oscillations is determined by the electronic properties of impurity
and host materials as well as by the burying depth of the impurity. Consequently, the phase
and the period of in-plane radial oscillations of the polarization can provide us with important
information about the position and the burying depth of an embedded nanostructure with
known electronic properties.

Similar distributions for a simpler system, a single Co adatom buried in monolayers 1 to
4 (A to D respectively) beneath the Cu(111) surface are presented in Fig. 5.7. The same
trends as exist in Fig. 5.6 are also clearly traceable here.

Of course, should this topic would motivate a further experimental study, the theoretical
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Figure 5.8: A sketch of possible sources of the surface LDOS perturbation. A Cu(111)
surface with an embedded Co impurity. Concentric rings depict the preferable directions of
electron propagations. The curve above the surface presents an abstract sketch of a LDOS
distribution along a single direction of the surface. Region (I) is the area just above the
impurity, where the LDOS is influenced by the quasi spherical electron waves emitted from
the burying site. Region (II) marks the area where the quasi plane waves emitted from
the impurity’s burying site in the directions determined by the regions of strongly reduced
Fermi-surface-curvature reach the surface. Region (III) is a generalization of the areas, where
the Friedel oscillations in the Cu(111) surface state density caused by the presence of the
buried impurity exceed in amplitude all the other contributions.



92 Chapter 5. Magnetism of buried nanostructures

investigation can be extended to include the calculation of experimental geometries and the
results should be formulated (for easier comparison) in terms of spin-resolved differential
conductance (based, f.e., on the Tersoff-Hamman model [49]).

For completeness sake, it must also be noted here that for a possible comparison with an
experiment care should be taken to select a suitable energy window, as the LDOS pertur-
bation at the surface is very much energy dependent. To clarify the point, let us consider
possible ways in which a buried impurity might influence the LDOS, and hence the polariza-
tion, of the surface. In the first approximation three different radial regions (with respect to
the projection of the burying site onto the surface) might be defined (Fig. 5.8). The first one
(I) is located just above the impurity, where the LDOS is influenced by the quasi spherical
electron waves emitted from the burying site. These are the bulk electrons scattered by the
impurity orbitals in the direction vicinal to the [111] vector. The changes in the LDOS at
the surface are completely determined by the Green’s function of the system [190]

∆LDOS(x,E) = − 1

π
Im

∫∫
G(x, xi, E)t(xi, xj, E)G(xj, x, E)dxidxj,

where xi, xj are arbitrary coordinates within the system and t is the t-matrix of the impu-
rity. Thus in region (I) one might expect the perturbative contribution from the quasi free
electrons propagating in and around (in the reciprocal sense) the bulk band gap. The radial
decay of the Green’s function with distance then might be expected to be of an exponen-
tial character (see Subsection 1.7.3 for details). Such perturbation would be thus decaying
extremely fast with increasing burying depth. According to considerations presented in Sec-
tion 1.4 and Ref. [190] the decay of the electronic waves propagating along a certain direction
would be inversely proportional to the Gaussian curvature of the corresponding patch of the
isoenergy surface (for energy ε). For the patches of the isoenergy surface with a highly
reduced curvature, this perturbations would propagate virtually without decay and can be
sensed even at large distances from the impurity. They are, thus, expected to strongly per-
turb the LDOS at the surface at corresponding energies [190]. The region of the surface
where such quasi plane wave perturbations intersect with the surface plane are marked as
(II) in Fig. 5.8. Region (III) is a generalization of those areas, where the Friedel oscillations
in the Cu(111) surface state density caused by the presence of the buried impurity (see, f.e.
[183, 181, 186]) exceed in amplitude all the other contributions. Such oscillations are also
expected to carry a spin-polarized character for magnetic subsurface impurities. Though
the three regions might be theoretically distinct, it is virtually impossible to clearly separate
them in a real experiment or calculation: at shallow burying depths regions I and II will
overlap creating a complex perturbation distribution (or polarization distribution) similar
to Fig. 5.6 and 5.7. At greater burying depths region I would be nigh impossible to detect
due to the exponential decay of the corresponding Green’s function, and the Friedel oscil-
lations will provide a smooth background for region II, as the Fermi wave length of surface
state electrons is much larger than that of their bulk counterparts. To detect the long-range
Friedel oscillations one will have to map the surface with an STM on a much larger scale.

We thus believe that magnetic properties of nanostructures buried beneath a metallic
surface can be deduced from the spin-resolved local density of states above the surface.
Acquiring in-plane polarization maps in vacuum above the surface can allow one to simulta-
neously detect electronic, magnetic and even geometric properties of subsurface structures.
The possibility of deducing the geometric structure of a subsurface impurity is however still
in need of further investigation, e.g. by fitting the polarization distribution maps at the
surface with a simple multiple scattering model.
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5.2 Checking the coupling of buried nanostructures

An important step towards real applications of subsurface impurities is gaining the under-
standing of the nature of their interaction. To make this step one obviously needs a way
to effectively probe the interaction between single buried nanostructures. Let us consider

a pair of H7 clusters of Co buried at the same monolayer 6.3
◦
A deep beneath a Cu(111)

surface with a center-center separations of 20
◦
A. The strong ferromagnetic nature of Co

would definitely align all the spins inside each of the Co clusters parallel to each other. So
it is the relative alignment of the two clusters’ spins which is a priori unknown and depends
on many factors, such as the islands’ relative position and the host material of the surface.
However, if one were to probe the polarization distribution on the surface above the two
clusters one might obtain a picture similar to that presented in Fig. 5.9(FM and AFM) for
the case of parallel (FM) and antiparallel (AFM) orientation of clusters’ magnetic moments

respectively. Figures presented, cover a separation range of 7 − 20
◦
A. For all separations,

the system with a FM alignment of moments produces a symmetric polarization map which
is a superposition of two similar distributions set off from each other by a distance equal to
the cluster separation d. The AFM system, on the contrary, would produce a map which is
perfectly antisymmetrical with respect to the symmetry plane (101) separating the buried
structures. Such a behavior can easily be understood if one considers that in a system with
AFM orientation of moments the electrons scattered at majority states of one cluster will
interfere with electrons scattered at minority states of the other, thus creating an antisym-
metrical LDOS distribution at the surface. So we arrive at the conclusion that the symmetry
of the polarization map can be regarded as a signature of the relative moment orientation of
buried clusters. Moreover, it can be noted that the antisymmetrical polarization distribution
implies the absence of polarization along the symmetry plane (or above the symmetry center
of the map marked by crosses in Fig. 5.9) which might be regarded as an additional and
even simpler criterion of the clusters’ moments alignment .

5.3 Outlook

We have thus achieved what we set out to achieve: we have shown that the coupling of buried
nanostructures to each other can be deduced from the symmetry of the polarization map.
Such measurements can be carried out by means of a conventional spin-polarized STM. It is
also important to note that even if the resolution of a modern STM should prove insufficient
for high resolution polarization mapping, one might still study the magnetization of the
surface utilizing the notions from Section 3.1.



94 Chapter 5. Magnetism of buried nanostructures

Figure 5.9: Polarization above a pair of H7 clusters of Co buried in the same layer 6.3
◦
A deep

beneath a Cu(111) surface with a center-center separations ranging between 7.7 and 20.5
◦
A

and either a parallel (FM) or antiparallel (AFM) alignment of clusters’ magnetic moments.
Red and blue circles denote the burying sites of Co atoms with spin pointing up and down
respectively. All the maps are plotted for the electrons at E = −0.5 eV.



Conclusions

To outline once again the presented results we might conclude that our ab initio calculations,
carried out with the Korringa-Kohn-Rostoker Green’s function method, give us confidence
that it is possible to tune and probe magnetic interaction in sub-nanoscale structures at
metallic surfaces.

Coupling single magnetic structures or structure ensembles at the surface to buried mag-
netic layers one obtains (by deliberately changing the layer’s burying depth) unique control
over the coupling of the surface structures to the monolayer and to each other. Using this
technique, the spins of single atoms can be stabilized in either a ferro- or antiferromagnetic
configuration with respect to the magnetic moment of the monolayer and the coupling of
such atoms under each other can be switched. It is also possible to additionally manipulate
the exchange interaction between magnetic adatoms at a surface by introducing artificial
nonmagnetic chains to link them.

The influence of quantum confinement of surface electrons on the exchange interaction
between single adatoms has been shown to enable exchange interaction tuning in pairs of
adatoms adsorbed on hexagonal nanoscale paramagnetic islands: a system easily obtained
by self-assembly at surfaces of some of the transitional metals. It was demonstrated that it is
possible to enhance, reduce or even reverse the exchange coupling at various adatom-adatom
separations by deliberate choice of the island’s size.

The dependence of width and energetic position of spin-polarized bound states arising
at pairs of magnetic adatoms on the spin coupling in the system has been discussed. The
possibility to use the spin splitting of the bound state peak as a tool for probing the exchange
coupling in the system was pointed out.

Finally, we have shown that it is possible to resolve magnetic properties of small clusters
buried beneath a metallic surface by studying the polarization of electrons in vacuum space
above the system. Moreover, the same technique could allow one to determine the coupling
of buried structures to each other.
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[10] J. Barnaś and Y. Bruynseraede. Correlation between quantum-size effects in the giant
magnetoresistance and interlayer coupling in magnetic multilayers. Phys. Rev. B, 53,
R2956 (1996).

[11] P. Bruno and C. Chappert. Oscillatory coupling between ferromagnetic layers separated
by a nonmagnetic metal spacer. Phys. Rev. Lett., 67, 1602 (1991).

97



98 BIBLIOGRAPHY

[12] P. Bruno and C. Chappert. Ruderman-Kittel theory of oscillatory interlayer exchange
coupling. Phys. Rev. B, 46, 261 (1992).

[13] H. A. Mizes and J. S. Foster. Long-Range Electronic Perturbations Caused by Defects
Using Scanning Tunneling Microscopy. Science, 244, 559 (1989).

[14] M. Schmid, W. Hebenstreit, P. Varga and S. Crampin. Quantum Wells and Electron
Interference Phenomena in Al due to Subsurface Noble Gas Bubbles. Phys. Rev. Lett.,
76, 2298 (1996).

[15] H. Brune, J. Wintterlin, G. Ertl and R. J. Behm. Direct Imaging of Adsorption Sites
and Local Electronic-Bond Effects on a Metal-Surface - C/AL(111). Europhys. Lett.,
13, 123 (1990).

[16] M. F. Crommie, C. P. Lutz and D. M. Eigler. Confinement of Electrons to Quantum
Corrals on a Metal Surface. Science, 262, 218 (1993).

[17] L. C. Davis, M. P. Everson, R. C. Jaklevic andW. D. Shen. Theory of The Local Density
of Surface-States on a Metal - Comparison With Scanning Tunneling Spectroscopy of
a Au(111) Surface. Phys. Rev. B, 43, 3821 (1991).

[18] M. F. Crommie, C. P. Lutz and D. M. Eigler. Imaging Standing Waves in a 2-
Dimensional Electron-Gas. Nature, 363, 524 (1993).

[19] Y. Hasegawa and P. Avouris. Direct observation of standing wave formation at surface
steps using scanning tunneling spectroscopy. Phys. Rev. Lett., 71, 1071 (1993).

[20] L. Petersen, P. Laitenberger, E. Laegsgaard and F. Besenbacher. Screening waves from
steps and defects on Cu(111) and Au(111) imaged with STM: Contribution from bulk
electrons. Phys. Rev. B, 58, 7361 (1998).

[21] J. Koutecky. A Contribution to the Molecular-Orbital Theory of Chemisorption. Trans-
actions of the Faraday Society, 54, 1038 (1958).

[22] K. H. Lau and W. Kohn. Indirect long-range oscillatory interaction between adsorbed
atoms. Surf. Sci., 75, 69 (1978).

[23] J. Repp, F. Moresco, G. Meyer, K.-H. Rieder, P. Hyldgaard and M. Persson. Substrate
Mediated Long-Range Oscillatory Interaction between Adatoms: Cu /Cu(111). Phys.
Rev. Lett., 85, 2981 (2000).

[24] N. Knorr, H. Brune, M. Epple, A. Hirstein, M. A. Schneider and K. Kern. Long-range
adsorbate interactions mediated by a two-dimensional electron gas. Phys. Rev. B, 65,
115420 (2002).

[25] L. Bürgi, N. Knorr, H. Brune, M. A. Schneider and K. Kern. Two-dimensional electron
gas at noble-metal surfaces. Appl. Phys. A: Mater. Sci. Process., 75, 141 (2002).

[26] V. S. Stepanyuk, A. N. Baranov, D. V. Tsivlin, W. Hergert, P. Bruno, N. Knorr, M. A.
Schneider and K. Kern. Quantum interference and long-range adsorbate-adsorbate
interactions. Phys. Rev. B, 68, 5 (2003).



BIBLIOGRAPHY 99

[27] O. Braun and V. Medvedev. Interaction between particles adsorbed on metal surfaces.
Uspekhi Fiz. Nauk, 157, 631 (1989).

[28] O. M. Braun and V. K. Medvedev. Interaction between particles adsorbed on metal
surfaces. Sov. Phys. Usp., 32, 328 (1989).

[29] E. J. Heller, M. F. Crommie, C. P. Lutz and D. M. Eigler. Scattering and absorption
of surface electron waves in quantum corrals. Nature, 369, 464 (1994).

[30] H. C. Manoharan, C. P. Lutz and D. M. Eigler. Quantum mirages formed by coherent
projection of electronic structure. Nature, 403, 512 (2000).

[31] J. Li, W.-D. Schneider, R. Berndt and B. Delley. Kondo Scattering Observed at a
Single Magnetic Impurity. Phys. Rev. Lett., 80, 2893 (1998).

[32] V. Madhavan, W. Chen, T. Jamneala, M. Crommie and N. Wingreen. Tunneling into
a single magnetic atom: Spectroscopic evidence of the Kondo resonance. Science, 280,
567 (1998).

[33] V. S. Stepanyuk, L. Niebergall, W. Hergert and P. Bruno. Ab initio Study of Mirages
and Magnetic Interactions in Quantum Corrals. Phys. Rev. Lett., 94, 187201 (2005).

[34] V. S. Stepanyuk, N. N. Negulyaev, L. Niebergall and P. Bruno. Effect of quantum
confinement of surface electrons on adatom-adatom interactions. New J. Phys., 9, 15
(2007).

[35] N. N. Negulyaev, V. S. Stepanyuk, L. Niebergall, P. Bruno, W. Hergert, J. Repp, K.-
H. Rieder and G. Meyer. Direct Evidence for the Effect of Quantum Confinement of
Surface-State Electrons on Atomic Diffusion. Phys. Rev. Lett., 101, 226601 (2008).

[36] A. A. Correa, F. A. Reboredo and C. A. Balseiro. Quantum corral wave-function
engineering. Phys. Rev. B, 71, 035418 (2005).
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Results presented here have been in part published in the following articles:
Teile der vorliegenden Arbeit wurden an folgenden Stellen veröffentlicht:
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