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Abstract 
Infectious diseases are a leading cause of death worldwide. Concerning bacterial 

infections, antibiotics are essential therapeutic tools. However, the rapid development 

of bacterial resistance often reduces the clinical efficacy of established antibiotics. 

Moreover, the number of newly developed antibiotics is declining, for the last two 

decades. Linezolid (LZD) is a relatively new antibiotic (since 2001 in Germany, 

Zyvoxid®, Pharmacia/Pfizer) approved for the treatment of gram-positive infections, 

e.g. infections of Staphylococcus aureus (S. aureus). However, previous 

investigations indicated that standard dosing of LZD, i.e. 600 mg twice daily (BID), 

might be insufficient for critically ill patients suffering from severe infections of S. 

aureus. This thesis aimed to develop a rational hypothesis for an optimised dosing 

regimen of LZD for this special patient population. The antibacterial activity of LZD 

against S. aureus was characterised via a pharmacodynamic (PD) in vitro model 

approach determining the minimum inhibitory concentration (MIC = 2 - 4 mg/L) and 

time-kill curves under various constant LZD exposures (static model) and in vivo-like 

LZD exposures changing over time (dynamic model). LZD was quantitatively 

determined via a validated high performance liquid chromatography (HPLC) assay. 

As descriptive PD measure, the relative bacterial reduction (RBR) was introduced as 

the net estimate of the antibacterial effect. Furthermore, the observed RBR of S. 

aureus under various LZD exposures was successfully analysed via pharmaco-

kinetic/pharmacodynamic (PK/PD) modelling in Excel, using a modified indirect link 

model approach. Subsequently, the developed in vitro PK/PD model was 

mathematically combined with a previously developed in vivo (population) PK model 

of LZD, to investigate and evaluate the potential efficacy of twelve hypothetical 

dosing regimens for LZD versus (vs.) its standard dosing regimen, via deterministic 

and stochastic in silico simulations in Excel, imitating 14 days of LZD therapy. The 

results from both simulation approaches proposed that 600 mg LZD administered 

three times a day (TID) might be more efficient than its standard dosing regimen (i.e. 

600 mg BID), for critically ill patients suffering from severe infections of S. aureus 

with MIC = 4 mg/L. In conclusion, to verify the clinical benefit, the developed 

(hypothetical) dosing recommendation for LZD should be investigated in vivo, i.e. in a 

prospective clinical trial with critically ill, septic patients showing a positive blood 

culture for S. aureus. Nonetheless, if using LZD as 600 mg TID in humans, the 

tolerability should be monitored very carefully. 
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Zusammenfassung 
Infektionskrankheiten zählen weltweit zu den häufigsten Todesursachen. Zur Behandlung 

bakterieller Infektionen sind Antibiotika essenzielle Therapeutika. Durch die rasante 

Resistenzentwicklung von Bakterien verlieren jedoch viele etablierte Antibiotika zunehmend 

an klinischer Wirksamkeit. Darüber hinaus hat die Anzahl der neu entwickelten Antibiotika in 

den letzten 20 Jahren kontinuierlich abgenommen. Linezolid (LZD) ist ein relativ neues 

Antibiotikum (seit 2001 in Deutschland, Zyvoxid®, Pharmacia/Pfizer), das zur Behandlung 

von Infektionen mit gram-positiven Bakterien, z.B. mit Staphylokokkus aureus (S. aureus), 

zugelassen ist. Vereinzelte vorherige Untersuchungen ergaben Hinweise, dass die 

Standarddosierung von LZD, d.h. 600 mg zweimal täglich (BID), bei kritisch kranken 

Patienten mit schwerer S. aureus-Infektion nur bedingt wirksam ist. Ziel dieser Doktorarbeit 

war die Entwicklung einer rationalen Hypothese zur optimierten Dosierung von LZD bei 

dieser schwer kranken Patientenpopulation. Die antibakterielle Aktivität von LZD gegen S. 

aureus wurde mit Hilfe eines pharmakodynamischen (PD) In-vitro-Modellansatzes 

charakterisiert. Hierbei wurden die minimale Hemmkonzentration (MIC = 2 – 4 mg/L) und die 

bakterielle Absterbekinetik unter verschiedenen konstanten LZD-Expositionen (statisches In-

vitro-Modell) sowie sich zeitlich verändernden, d.h. in-vivo-ähnlichen LZD-Expositionen 

(dynamisches In-vitro-Modell), bestimmt. LZD wurde mittels eines validierten Hochdruck-

flüssigkeitschromatographie-(HPLC)-Verfahrens quantitativ bestimmt. Als deskriptive PD-

Messgröße zur Abschätzung des antibakteriellen Nettoeffektes wurde die relative bakterielle 

Reduktion (RBR) eingeführt. In einer weiterführenden Analyse wurde die beobachtete RBR 

von S. aureus unter verschiedenen LZD-Expositionen mittels pharmakokinetischer/ 

pharmakodynamischer (PK/PD) Modellierung in Excel erfolgreich mathematisch 

beschrieben. Hierbei wurde ein modifizierter Indirect-Link-Modellansatz angewandt. 

Anschließend wurde das mathematisch entwickelte In-vitro-PK/PD-Modell mit einem zuvor 

entwickelten In-vivo-(Populations-)PK-Modell kombiniert, um mit Hilfe von deterministischen 

und stochastischen In-silico-Simulationen in Excel die potenzielle Wirksamkeit von zwölf 

hypothetischen Dosierungsschemata für LZD zu untersuchen und im Vergleich zur 

Standarddosierung zu bewerten. Dabei wurden jeweils 14 Tage LZD-Therapie simuliert. Die 

Ergebnisse beider Simulationsansätze unterstützen die Hypothese, dass bei kritisch kranken 

Patienten, die an einer schweren S. aureus-Infektion (mit MIC = 4 mg/L) leiden, eine dreimal 

tägliche (TID) Gabe von 600 mg LZD effektiver sein könnte als die Standarddosierung (d.h. 

600 mg BID). Um die aufgestellte Hypothese zu überprüfen, müsste die entwickelte 

Dosierungsempfehlung in-vivo, d.h. im Rahmen einer prospektiven klinischen Studie mit 

solch schwer kranken Patienten, getestet werden. Hierbei müsste jedoch unbedingt 

sichergestellt werden, dass die Verträglichkeit der neuen, d.h. höheren Dosierung von LZD 

sehr genau überwacht wird. 
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1 Introduction 

1.1 Infectious diseases 

Currently, infectious and parasitic diseases are the second leading cause of death 

worldwide, after cardiovascular diseases and before cancer. Moreover, in low-income 

countries lower respiratory infections are even the most common cause of death [2]. 

High-income regions, such as Germany and the United States of America (USA), 

particularly suffer from nosocomial infections which frequently lead to death, e.g. due 

to the development of septicaemia (sepsis, see  1.1.3) [3-7]. 

1.1.1 Nosocomial infections 

Nosocomial infections are infectious diseases acquired in hospitals, secondary to the 

patient's original condition [8]. Patients with a weak immune system, e.g. elderly 

patients, easily get infected by pathogens transferred via the medical staff [9, 10]. 

Furthermore, bacteria like Staphylococcus aureus (S. aureus) frequently develop 

resistance towards several antibiotics, e.g. multi-resistant S. aureus (MRSA, see 

 1.1.2), resulting from the frequent use of antibiotics in hospitals [11, 12]. Due to multi-

resistant pathogens, antibiotic therapy of bacterial nosocomial infections often fails [8, 

12-14].  

In Germany, the annual (2006) number of nosocomial infections is estimated as 

400,000 to 600,000 with a respective mortality of 10,000 to 15,000 patients, i.e. up to 

41 deaths per day [15]. Moreover, it has been shown that especially patients from 

intensive care units (ICUs) have a high risk of acquiring nosocomial infections. The 

EPIC study (1995) with over 10,000 patients from 1,417 ICUs of 17 countries in West 

Europe, revealed that 21% of all investigated ICU-patients suffered from ICU-

acquired infections, where sepsis (see  1.1.3) was one of the four most frequent types 

of ICU-infections reported. Here, one third of the most frequently reported pathogens 

was S. aureus, with 60% MRSA proportion [16]. These data reveal that nosocomial 

infections, especially ICU-acquired infections with S. aureus, are a global major 

concern in public health.  

1.1.2 Staphylococcus aureus 

S. aureus is one of the leading pathogens causing serious infections in hospitals and 

in the community, worldwide [12, 17, 18]. However, despite its pathogenicity S. 



1 Introduction  2 

 

aureus is also carried innocuously by approximately 30% of the population, usually 

on the moist skin in the nose, axillae and perineum [10]. It survives well on drier skin 

and inanimate surfaces facilitating cross-colonisation and thus infection [19].  

A major problem of infections with S. aureus is the rapid development of resistance 

towards antibiotics [20], e.g. benzylpenicillin due to inactivating enzymes 

(penicillinase) [21]. In 1942, penicillin was introduced for the therapy of S. aureus 

infections. In 1945, the discoverer of penicillin, A. Fleming, first warned of the 

potential importance of the development of bacterial resistance. In 1946, already 

14% of all S. aureus infections were resistant to penicillin (Fig. 1). This trend did not 

stop until the 1980s where penicillin-resistant strains of S. aureus had attained 

fractions greater than 80% both in hospitals and in the community [11, 19].  
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Fig. 1 The accumulation of penicillin-resistant Staphylococcus aureus in hospitals and the 
community over time, modified from [11, 19]. 

 

Furthermore, S. aureus rapidly developed resistance towards penicillinase-stable 

penicillins (e.g. methicillin) and many other antibiotics, termed as methicillin- or often 

multi-resistant S. aureus (MRSA) [10, 19]. In US ICUs, the proportion of MRSA 
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increased from 36% in 1992 to 64% in 2003. Currently, more patients die from MRSA 

infections in US hospitals than from HIV/AIDS and tuberculosis combined [22, 23].  

In German hospitals, the MRSA proportion increased from 23% in 2004 to 28% in 

2007 [24, 25]. Thus, regional differences exist [10]. However, the World Health 

Organization (WHO) warned that due to the increased global mobility of people, 

originally regional pathogens by now can easily spread all over the world [11]. Hence, 

an MRSA epidemic may easily lead over to a pandemic [26]. 

1.1.3 Sepsis 

The term sepsis refers to a severe inflammatory state resulting from systemic 

(bacterial) infections, with three stages of severity. These are sepsis, severe sepsis 

and septic shock. Sepsis is a systemic infection accomplished by a reaction called 

systemic inflammatory response syndrome (SIRS) which represents an acute 

inflammatory reaction with systemic manifestations caused by numerous 

endogenous mediators of inflammation which are released into the bloodstream. A 

severe sepsis is present, if SIRS is combined with signs of (multi-)organ failure, and 

septic shock means severe sepsis with (multi-)organ failure and hypotension that is 

poorly responsive to initial fluid resuscitation [27]. 

Blood cultures from patients with suspected diagnosis of sepsis contained 55% gram-

positive bacteria and 44% gram-negative bacteria. The frequency of pathogens is 

dependent on the respective patient population, e.g. for nosocomial sepsis the gram-

positive bacterium S. aureus is a leading pathogen [6, 10, 19, 28]. 

In the USA, sepsis is a leading cause of death, with about 210,000 deaths annually 

(2002), and mortalities of 15% (sepsis), 20% (severe sepsis) and 45% (septic shock) 

[4]. The overall mortality in patients with this illness is estimated as approximately 

40% [27] to 60% [28], and consistently high since many decades. Moreover, in the 

USA the incidence of sepsis has been increased fivefold, in the last 20 years [29]. 

In Germany, sepsis occurred in 79,000 patients and severe sepsis or septic shock in 

75,000 patients (2002). Moreover, sepsis is estimated as the third leading cause of 

death in Germany, almost equal to death from acute myocardial infarction. This 

illness is responsible for approximately 60,000 deaths annually. Thus, about 162 

patients die from sepsis every day, in this region [3, 30]. On average, patients 

suffering from sepsis have to stay about 16 days in the ICU and about 32 days in 
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hospital [29]. The direct costs for the treatment of severe sepsis are estimated as 

approximately 1.77 billion euros, i.e. about 30% of the budget in ICUs is used to treat 

severe sepsis [30].  

1.1.4 Therapy of sepsis 

Considering the unchanged high mortality from all stages of sepsis, any adjunctive 

therapy that led to improved outcomes for these critically ill patients is in high medical 

need. Thus, septic patients necessarily receive poly-medication, i.e. often several 

antibiotics, hydrocortisone, norepinephrine, acetaminophen, insulin, recombinant 

activated protein C and many other drugs against the bacterial infection and the 

severe symptoms e.g. fever, tachycardia and hypotension [4, 27, 30, 31]. 

Concerning the causal therapy of sepsis, clinicians advise that the early use of an 

‘appropriate’ antibiotic therapy can reduce mortality from sepsis [4]. Poor outcomes 

often follow failure to institute early ‘aggressive’ antibiotic therapy, i.e. within 6 h of 

suspected diagnosis of sepsis. Once severe lactic acidosis with decompensated 

metabolic acidosis becomes established, especially in conjunction with multi-organ 

failure, septic shock is likely to be irreversible and fatal [27]. However, even if the 

antibiotic therapy is started early, the appearance of bacterial resistance towards the 

chosen antibiotic(s) can reduce clinical efficacy [18]. Thus, parallel to antibiotic 

therapy individual susceptibility testing of blood cultures is essential for a successful 

therapy of sepsis [4]. 

1.2 Antibiotic therapy 

Antibiotics target structures that are ‘specific’ to bacteria, e.g. cell wall formation, 

intermediary metabolism, membrane functions, gene replication, transcription, and 

various steps involved in protein synthesis. Bacteria develop resistance to antibiotics 

through spontaneous mutation and through the transfer of genes between strains 

and species of bacteria [11]. All known resistance mechanisms against antibiotics are 

based on one of three ‘simple’ strategies. These are inactivation of the antibiotic, 

prevention of the antibiotic from reaching its target, and the alteration of the target, 

rendering it insensitive to the antibiotic. A combination of these various resistance 

strategies can often be encountered within a single bacterial species [32].  
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1.2.1 Need for new antibiotics 

The selection and spread of bacterial resistance have been facilitated by either over-

prescribing or inappropriate dosing regimens of antibiotics [11, 24, 33-36]. Thus, due 

to the development of bacterial resistance, originally highly potent antibiotics may 

loose their clinical efficacy [37, 38]. The remaining therapeutic options for highly 

resistant pathogens are sometimes so extremely limited that clinicians are forced to 

use older, previously discarded drugs, e.g. colin, that are associated with significant 

toxicity and for which there is a lack of robust data to guide the selection of an 

‘appropriate’ dosing regimen and duration of therapy [17]. Hence, novel therapeutic 

strategies with new antibiotics are needed, that are clinically efficient against multi-

resistant pathogens [11]. However, a decreasing trend is found for the pipeline of 

novel therapeutics against multi-resistant bacteria (Fig. 2). Whereas 16 antibacterial 

agents have been approved in the USA in-between 1983 and 1987, the respective 

amount was reduced to only 5 in-between 2003 and 2007 [13]. 

 

0

2

4

6

8

10

12

14

16

1983 - 1987 1988 - 1992 1993 - 1997 1998 - 2002 2003 - 2007

Time period

N
um

be
r o

f n
ew

 a
nt

ib
io

tic
s_

 

 

Fig. 2 Number of new antibiotics approved in the United States of America, per 5-year 
period, data from [13, 17]. 
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Hence, the Infectious Disease Society of America (IDSA) proposed legislative and 

other federal actions to this emerging public health problem in its July 2004 report 

“Bad Bugs, No Drugs” [18]. Nevertheless, as shown by a recent IDSA report, the 

need of new antibiotics against problematic pathogens is still present [17]. 

1.2.2 Rational use of established antibiotics 

Considering the currently ‘lean’ pipeline of novel therapeutics against multi-resistant 

bacteria, alternative strategies must be applied. Therefore, the rational use of 

established antibiotics that are available for therapy, is a fundamental task aiming to 

maintain or even to optimise their clinical efficacy [34]. Different strategies for a 

rational use of established antibiotics have been suggested, as described in the 

following. 

1.2.2.1 Antibiotic ‘cycling’ and ‘mixing’ 

Antibiotic ’cycling’, in which two or more antibiotic classes are used alternately, was 

considered to be a leading candidate in the search for treatment strategies that can 

slow the evolution and spread of bacterial resistance towards antibiotics [39]. 

However, there is little substantive evidence about the clinical success of antibiotic 

‘cycling’. Bergstrom et al. predicted, via an ecological theory, that antibiotic ‘cycling’ is 

unlikely to be effective and may even hinder resistance control [40]. These theoretical 

results correspond with the limited success reported from clinical trial using antibiotic 

‘cycling’ [41]. 

As alternative antibiotic-use strategy, antibiotic ’mixing’ was suggested, in which each 

treated patient receives one of several drug classes used simultaneously in the 

hospital [38, 42]. The theoretical analysis from Bergstrom et al. revealed that the 

heterogeneous antibiotic use via antibiotic ‘mixing’ reduces the spread of resistance 

[40]. Nevertheless, in clinical practice, the overall success of antibiotic ‘mixing’ might 

be limited due to the currently limited choice of therapeutic alternatives. 

1.2.2.2 Rational dosing of antibiotics 

‘Appropriate’ dosing of antibiotics can help preventing or at least reducing the 

development of bacterial resistance. Complex interactions between an administered 

antibiotic, the infected patient, and the pathogenic bacteria, essentially determine the 

success of an antibiotic therapy. In clinical praxis, the complexity of these interactions 
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is usually reflected by a high variability in the dose-response relation (Fig. 3), which 

may result in both therapeutic failure and emergence of resistant bacterial strains. 

Therefore, to minimise the dose-response variability for antibiotics, rational dosing 

regimens must be applied [33-35].  
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Fig. 3 Dose-response relation of a hypothetical antibiotic, showing high variability of the data 
from virtual individual patients (red data points), and the averaged (black) curve. 

 

As an example, for aminoglycosides like gentamicin, the overall clinical success has 

been increased via optimising its dosing regimen after its approval. The results from 

a meta-analysis, comparing multiple daily vs. extended-interval dosing, revealed that 

for many indications, once daily dosing of the common daily dose of aminoglycosides 

is an attractive alternative to conventional multiple daily dosing [43]. Accordingly, the 

guidelines for dosing of aminoglycosides have been adjusted [14, 28]. This example 

illustrates that dosing regimen optimisation for established antibiotics can help 

increasing the overall clinical success of antibiotic therapy. 
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1.2.3 ‘Appropriate’ dosing of antibiotics for septic patients 

The population of patients suffering from sepsis show several differences in (patho-) 

physiology towards patients with other diseases and healthy people, respectively. 

Due to the appearance of SIRS, severe changes in systemic and organ blood flow, 

enzyme activity and interstitial fluid can be assumed [27]. These changes are 

essentially determining the drug disposition in the patient [35], i.e. drug distribution in 

the body fluids and drug elimination [44], of an therapeutically administered antibiotic 

[45].  

Moreover, due to the necessary poly-medication for septic patients (see  1.1.4), 

several drug-drug interactions can occur in the patient, e.g. inhibition or induction of 

drug metabolism or competing bindings to plasma proteins. As a result, the drug 

disposition of an administered antibiotic can be significantly affected by the co-

medication, depending on the respective drugs [45, 46]. Hence, the complex and 

severe course of disease for septic patients and the respectively administered co-

medication reveal potential individual differences, causing variability in drug 

disposition, which is meaningful for the clinical success of the causal antibiotic 

therapy of sepsis. Despite using the same dosing regimen of an antibiotic for each 

critically ill patient, the interindividual variability (IIV) can cause differences in the 

antibiotic concentration-time course in plasma which may result in different clinical 

outcomes [35, 45, 47, 48]. Because, too low antibiotic concentrations in the patient’s 

body fluids facilitate bacterial growth, and thus increase morbidity [49], whereas too 

high, i.e. toxic antibiotic concentrations cause serious adverse effects which might 

force the clinician to stop or change the antibiotic therapy [34].  

This consideration reveals that the dosing regimen of (some) antibiotics, 

administered to critically ill patients suffering from sepsis, might need to be adjusted, 

i.e. patient-individualised or more general population-optimised, in order to provide 

maximal clinical success for the therapy of this severe illness [35]. 

1.3 A rational way of finding an ‘appropriate’ dosing regimen 

For rational dosing of antibiotics, the key characteristics of the drug, the pathogenic 

bacteria and the infected patient have to be taken into account. Thus, the dosing 

regimen of an antibiotic should be designed with reference to the interactions 

between the administered drug and the infected patient, i.e. the pharmacokinetics 
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(PK), and the interactions between the drug and the pathogenic bacteria, i.e. the 

pharmacodynamics (PD) [33-35]. Due to the complexity of these interactions both 

areas often have been investigated separately. However, in a subsequent step these 

results can be combined in an integrated pharmacokinetic/pharmacodynamic 

(PK/PD) analysis [50]. 

1.3.1 Pharmacokinetic/pharmacodynamic analysis 

PK is the quantitative study of the time course of drug invasion into the body, e.g. 

absorption from the intestine, distribution, and elimination, i.e. metabolism and 

excretion. Drug distribution and elimination are frequently summarised as drug 

disposition. As a main outcome, PK studies firstly measure the concentration-time 

course of an administered drug, sampled in body fluid(s), e.g. in plasma. Afterwards, 

PK analysis is used to describe the single processes, e.g. drug distribution and 

elimination, essentially determining the drug concentration-time course [44]. 

PD is the quantitative study of the drug action(s) as biochemical (primary) effect(s), 

e.g. the inhibition of an enzyme, the respectively resulting drug effect(s) as a 

(secondary) change in physiological function(s), which may determine the therapeutic 

response, i.e. the clinical efficacy, e.g. a decreased mortality [47]. In the more recent 

literature, drug action(s) and drug effect(s) are summarised as biomarkers: “a 

characteristic that is objectively measured and evaluated as an indicator of normal 

biological processes, pathogenic processes or pharmacologic responses to a 

therapeutic intervention” [51]. Furthermore, biomarkers that are predictive for the 

clinical efficacy (or more general clinical outcome) are termed surrogate markers or 

surrogate endpoints [51-54]. Using surrogate endpoints in early studies can 

sometimes make further studies with clinical endpoint unnecessary [55]. 

Pharmacometrics is the science of developing and applying mathematic and 

statistical methods to characterise, understand, and predict the PK and PD behaviour 

of the considered drug [54]. Moreover, combined PK/PD analysis is used to interpret 

and extrapolate the temporal relation between (simultaneously) sampled drug 

concentrations and biomarker(s) magnitudes/concentrations. Hence, PK/PD analysis 

provides an understanding of the dosing-exposure-effect-efficacy relation (Fig. 4), 

which can be used to predict, i.e. to estimate, the most rational dosing regimen of the 

considered drug, e.g. for an individual patient or a (special) subgroup of patients [1, 

47, 50, 54, 56, 57]. 
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1.4 Linezolid 

Linezolid (LZD) is the first (2000 in USA and 2001 in Germany, Zyvoxid®, 

Pharmacia/Pfizer) member of oxazolidinones, approved for the treatment of severe 

skin and soft skin infections, nosocomial and community-acquired pneumonia caused 

by gram-positive bacteria, e.g. enterococci and S. aureus including MRSA. Its 

standard dosing regimen is 600 mg twice daily (BID) administered intravenously (i.v.) 

or orally (p.o.) for 10 to 14 days. 

1.4.1 Physico-chemical properties 

The chemical name is (S)-N-[[3-[3-Fluoro-4-(4-morpholinyl)phenyl]-2-oxo-5-oxazol-

idinyl]-methyl]-acetamide (Fig. 5), with a molecular weight of 337.35 Da. LZD is a 

white to off-white, crystalline powder that changes its crystal form at 155 °C and 

melts at 170 °C. The logarithm of the n-octanol-water partition coefficient 

(log PC = 0.55) reveals an amphiphilic character [58]. The aqueous solubility of LZD 

at room temperature is ≈ 2.9 - 3.2 mg/mL in water, in which the compound dissolves 

relatively slowly [59]. For pH = 5 – 9, the solubility is independent of pH, and 

increases for pH < 3. LZD is a weak base (pKa = 1.8). Therefore, the compound is 

expected to be unionised in the physiological pH range (i.e. pH ≈ 7.35 – 7.45) [58].  

 

 

 

 

 

Fig. 5 Chemical structure of linezolid, brand name: Zyvoxid®, chemical name: (S)-N-[[3-[3-
Fluoro-4-(4-morpholinyl)phenyl]-2-oxo-5-oxazolidinyl]-methyl]-acetamide. 

 

1.4.2 Pharmacokinetic properties 

1.4.2.1 Absorption and distribution 

After oral administration, LZD is rapidly absorbed with a bioavailability of almost 

100%, which is not significantly affected by food [60]. However, the rate of LZD 

absorption is decreased by food intake [61].  
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The binding of LZD to plasma proteins is approximately 31%, which is independent 

from the respective LZD concentration [62]. The volume of distribution at steady state 

condition is approximately 40 to 50 L, comparable to the average total body water 

(i.e. ≈ 42 L for a 70 kg person [52]). As shown in a recent microdialysis study, LZD 

penetrates rapidly into the interstitial space fluid of subcutaneous adipose and 

skeletal muscle tissue in healthy volunteers [63]. For critically ill, septic patients, LZD 

showed on average good distribution into tissue fluids, but with high IIV. In addition, 

these patients showed a 37% higher volume of distribution (≈ 63 L) at steady state, 

compared to healthy volunteers (≈ 46 L) [64]. 

1.4.2.2 Elimination 

For patients with normal renal function, 30% of LZD appears unchanged in the urine, 

whereas no unchanged LZD appears in feaces. LZD is primarily metabolised by 

oxidation at the morpholine ring to form two known inactive carboxylic acid 

metabolites [62]. The elimination half-life of LZD is averaged as 5 – 7 h [60], and the 

total clearance in healthy volunteers is about 8 L/h [63]. However, critically ill patients 

suffering from severe sepsis showed an 88% higher clearance (≈ 15 L/h), compared 

to healthy volunteers [65]. Furthermore, a population PK analysis revealed nonlinear 

PK for LZD, i.e. the clearance was inhibited over time to 76% of its original value, 

dependent on the LZD concentration in an empirical inhibition compartment [66]. 

LZD is not a substrate, inhibitor or inducer of any known isoform of cytochrome P450 

[58, 62]. In vitro studies with human liver microsomes showed that LZD oxidation is 

partially dependent upon microsomal proteins and nicotinamide adenine dinucleotide 

phosphate [67].  

1.4.3 Pharmacodynamic properties 

1.4.3.1 Mechanism of action and bacterial resistance 

The antibacterial activity of oxazolidinones was originally discovered by DuPont 

Pharmaceuticals in the late 1980s. However, the first molecules of this group were 

unsuitable for pharmaceutical development [68]. LZD acts through the inhibition of 

the initiation complex of bacterial protein synthesis [69]. The domain V of the 23S 

ribosomal ribonucleic acid (rRNA), i.e. a component of the ribosomal peptidyl 

transferase centre, was suggested as the main ribosomal binding site [70, 71]. 
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Relevant pathogen bacteria provide several copies of the 23S rRNA in the bacterial 

genome, e.g. enterococci and S. aureus possess four to five and five to six copies, 

respectively [58, 72-74].  

For the development of bacterial resistance towards LZD, mutations in several copies 

must be present to obtain a significant proportion of ‘resistant’ ribosomes [32, 70, 71, 

73-76]. Moreover, the spontaneous in vitro mutation frequency of relevant pathogens 

is low, e.g. < 8·10-11 for S. aureus [77]. Due to the ‘multiple target strategy’ and the 

low rate of in vitro mutation of relevant pathogens, bacterial resistance towards LZD 

is extremely difficult to select in vitro. As a result, no resistance towards LZD was 

found in the many in vitro surveys performed before licensing [58].  

Despite the difficulty of in vitro selection of resistant bacterial strains, 15 cases of 

emergent resistance in enterococci were encountered in phase III clinical trial before 

licensing [58]. Moreover, several subsequent cases of resistance in enterococci have 

been reported from different regions of the world [76, 78-82]. As demonstrated in an 

animal model with enterococci infected mice, the probability of bacterial resistance 

towards LZD in vivo increases with duration of LZD exposure [74].  

The first case of an clinically isolated S. aureus strain (MRSA) with resistance 

towards LZD has been obtained 2001 in the USA from a dialysis patient who had 

received LZD for four weeks [83]. In Germany, the first case of clinically isolated S. 

aureus strains with resistance towards LZD was reported in 2004, and few 

subsequent cases were announced [10, 84]. 

Gram-negative bacteria, e.g. Escherichia coli (E. coli), show an inherent resistance 

toward LZD, due to multi-drug resistant efflux pumps, type AcrAB pump [85], 

preventing the intracellular accumulation of LZD [86]. A variety of non-antibiotic 

molecules have been shown to be active as efflux pump inhibitors. These inhibitors 

might potentially serve as an ‘adjuvant’ to extend the antibacterial activity of LZD 

towards gram-negative bacteria like E. coli. However, most investigated inhibitors are 

not useful for therapy due to their toxicity or poor biological stability [87]. 

1.4.3.2 Antibacterial activity and susceptibility breakpoints 

The antibacterial activity of LZD against staphylococci and enterococci is 

bacteriostatic with some persistent antibiotic effects [88]. The European Committee 

on Antimicrobial Susceptibility Testing (EUCAST) determined minimum inhibitory 
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concentration (MIC) breakpoints for the p.o. and i.v. use of LZD 600 mg BID, based 

on its PK and PD properties. The non-species-related breakpoints for sensitive and 

resistant strains were MIC < 2 mg/L and > 4 mg/L, respectively. For staphylococci 

and enterococci, the averaged susceptible breakpoint was given as MIC < 4 mg/L 

[89]. 

1.4.3.3 Clinical efficacy 

LZD demonstrated good clinical efficacy in a compassionate use programme with 

patients suffering from gram-positive bacterial infections, without an apparent 

alternative therapeutic option [58, 62]. However, a recent (2008) retrospective sub-

analysis using clinical data of a compassionate use trial, found relevant differences in 

the clinical success rate at the end of LZD therapy (600 mg BID) and the respective 

time to bacterial eradication (TBE), between MRSA strains with MIC < 2 mg/L and 

MIC = 4 mg/L. The clinical success rates were 92% (MIC < 2 mg/L) vs. 79% 

(MIC = 4 mg/L), and the median (with interquartile range) TBEs were 4 (3 to 25) days 

for MIC < 2 mg/L vs. 22.5 (6 to > 56) days for MIC = 4 mg/L. Thus, diminished clinical 

efficacy can be expected for the standard dosing regimen of LZD in case of 

‘susceptible’ isolates of S. aureus with MIC = 4 mg/L [90]. 

1.4.3.4 Tolerability 

Clinical trials have shown that the standard dosing regimen of LZD (600 mg BID) is 

generally well tolerated. In adults, the most frequent adverse drug effects were 

diarrhoea, headache, nausea and vomiting, which were mild to moderate in intensity. 

However, long-term administration of LZD, i.e. > two weeks, increased the probability 

of serious adverse drug effect, e.g. thrombocytopenia [60, 62, 91]. It has been shown 

that LZD may inhibit the mitochondrial protein synthesis in human cells, which is 

linked to the clinical adverse events of LZD [92]. 

Moreover, LZD is a weak, reversible monoamine oxidase inhibitor [58], i.e. patients 

should avoid food containing high concentrations of tyramine, and patients taking 

adrenergic or serotonergic agents should be advised caution [91]. 
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1.5 Objectives 

In clinical practice, LZD has often been used as a reserve antibiotic for gram-positive 

bacterial infections, which is utilised when standard antibiotic therapies have failed to 

be effective, due to the development of bacterial resistance [62, 93-95]. Guidelines 

for antibiotic therapy explicitly recommend the use of LZD for (nosocomial) infections 

caused by multi-resistant gram-positive bacteria like MRSA [14, 28, 96, 97]. Hence, 

in order to successfully treat such problematic bacterial infections, it is especially 

important that LZD will be used with the most ‘appropriate’ dosing regimen. 

This thesis aimed to develop a rational hypothesis for an optimised dosing regimen of 

LZD for critically ill patients suffering from severe infections of S. aureus susceptible 

to LZD, based on PK/PD analysis. This overall objective was pursued via the 

following steps: 

• Bioanalysis: Validation and use of an high performance liquid chromatography 

(HPLC) assay for the quantitative determination of LZD in broth. 

• Microbiology: Establishment and use of a static and dynamic PD in vitro model to 

characterise the antibacterial activity of LZD towards a penicillin-resistant strain of 

S. aureus under various LZD exposure profiles. 

• Pharmacokinetic/pharmacodynamic modelling: Development of a mathematic 

PK/PD model for LZD that describes its antibacterial activity against the 

investigated strain of S. aureus.  

• In silico simulation and analysis: Use of the developed PK/PD model via 

deterministic and stochastic in silico simulations to investigate and evaluate the 

potential efficacy of twelve different hypothetical dosing regimens for LZD vs. its 

standard dosing regimen. 

This work is partially based on methods and results previously developed at the Dept. 

of Clinical Pharmacy [66, 98]. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Chemicals, reagents and drugs 

Acetonitrile, Rotisolv®  
HPLC gradient grade 

Carl Roth GmbH, Karlsruhe, Germany 

Disodium hydrogen phosphate  Merck KGaA, Darmstadt, Germany 
Linezolid, purity 100% Pharmacia/Pfizer, Kalamazoo/New York, 

USA 
Methanol, Rotisolv®  

HPLC gradient grade 
Carl Roth GmbH, Karlsruhe, Germany 

Milli-Q water, purified by Milli-Q™ Plus 
water purification system 

See  2.1.2 

Mueller-Hinton broth Oxoid GmbH, Wesel, Germany 
Peptone, from meat, peptic Merck KGaA, Darmstadt, Germany 
Phosphate-buffered saline with peptone  See  2.4.5.1 
Potassium dihydrogen phosphate  Merck KGaA, Darmstadt, Germany 
Sodium chloride Merck KGaA, Darmstadt, Germany 

2.1.2 Other materials and experimental equipment 

Bunsen burner, Labogaz® 206 Camping Gaz GmbH, Hungen-Inheiden, 
Germany 

Cannulae, Sterikan, Gr. 1, 0.90 × 40 mm B. Braun, Melsungen, Germany 
Canted neck culture flasks with vented 

caps, 70 mL 
Nunc, Roskilde, Denmark 

Casein-peptone soya-meal-peptone agar 
with 5% sheep blood 

Oxoid GmbH, Wesel, Germany 

Centrifuge tubes with flat caps, 15 mL 
and 50 mL 

Corning, New York, USA 

Centrifuge, 5417 R Eppendorf, Hamburg, Germany 
Culture tubes, DURAN®, with 

Kapsenberg caps, 20 mL 
Schott AG, Mainz, Germany 

Deep-freezer, type 6483, T = -70 °C Gesellschaft fuer Labortechnik mbH, 
Burgwedel, Germany 

Digital analytical balance R180 D-*D1 Sartorius AG, Goettingen, Germany 
Disposable plastic pipettes, 10 mL х 0.1 Nunc, Roskilde, Denmark 
Drigalski-spreaders, glass Carl Roth GmbH, Karlsruhe, Germany 
Drill bit, Craftomat HSS, 1 mm Bahag AG, Mannheim, Germany 
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Electric screw driver, Trovex® Tras 48 Abraham Diederichs OHG, Wuppertal, 
Germany 

Freezer, No-frost-system, T = -26 °C Liebherr, Lienz, Germany 
HPLC system See  2.3.1.1 
Incubation hood, Certomat® HK B. Braun, Melsungen, Germany 
Incubator Heraeus, Hanau/Frankfurt, Germany 
Latex slide agglutination test,  

Staphytect Plus 
Oxoid GmbH, Wesel, Germany 

Membrane filter units, Minisart®,  
pore Ø = 0.2 µm 

Sartorius AG, Goettingen, Germany 

Membrane filters, pore Ø = 0.2 µm Sartorius AG, Goettingen, Germany 
Micro tubes with screw caps, 2 mL Sarstedt, Nuernbrecht, Germany 
Mili-Q™ Plus water purification system Milipore, Bedford, USA 
Mueller-Hinton blood agar with 5% sheep 

blood 
Oxoid GmbH, Wesel, Germany 

Multipette® with 2.5 mL and 5 mL tips Eppendorf, Hamburg, Germany 
Orbital benchtop shaker, Certomat® M B. Braun, Melsungen, Germany 
Pasteur-pipettes, glass Carl Roth GmbH, Karlsruhe, Germany 
Pipette controller, accu-jet® Brand GmbH, Wertheim, Germany 
Pipette tips Eppendorf, Hamburg, Germany 
Plastic tubes with push caps, 4 mL Sarstedt, Nuernbrecht, Germany 
Safe lock vials, 0.5 mL and 1.5 mL Eppendorf, Hamburg, Germany 
Seed Vac® Plus SC110A Savant, Farmingdale, USA 
Semi-automatic colony counter Schuett, Goettingen, Germany 
Staphylococcus aureus, ATCC 29213 American Type Culture Collection  
Syringes, Injekt 2 mL Luer B. Braun, Melsungen, Germany 
Turbidity meter, DensiCheck bioMérieux, Nuertingen, Germany 
Ultrasonic bath, Sonorex RK100 H Bendelin electronic, Berlin, Germany 
Vacuum filtration device, 1 L Sartorius AG, Goettingen, Germany 
Pipettes, Reference®, 0.5-1000 µL Eppendorf, Hamburg, Germany 
Vibrofix® VF1 Electronic IKA Jahnke & Kunkel, Staufen, Germany 

2.1.3 Scientific software 

Excel, version 2003 Microsoft Corporation, Bellevue/  
Washington, USA 

SPSS, version 15 SPSS Inc., Chicago/Illinois, USA 
KromaSystem® 2000, version 1.83 Kontron Biotech, Neufahrn, Germany 
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2.2 Fundamental mathematic methods 

Several mathematic methods were utilised as scientific tool for the description, 

evaluation and interpretation of the experimental data. The fundamental mathematic 

methods used are mentioned in the respective sections and explained in the 

Appendix (see  7.3). 

2.3 Bioanalysis - quantification of linezolid in broth 

The quantification of LZD in Mueller-Hinton broth (MHB) samples, obtained from the 

PD in vitro models (see  2.4), was performed by high performance liquid chromato-

graphy (HPLC) with UV detection. The utilised HPLC assay was validated before its 

application, as described below (see  2.3.2). 

2.3.1 High performance liquid chromatography  

HPLC is a column chromatography technique, frequently used to identify and quantify 

drugs in biological matrices. The utilised HPLC system contained of a stationary 

phase (column) with chromatographic packing material (reversed phase C-18), a 

pump which transports the liquid mobile phase, containing 80/20 (V/V) Milli-Q water 

(H2O)/acetonitrile (ACN), at an isocratic flow rate of 1 mL/min through the system, 

and an UV detector that quantifies the absorption at 251 nm, over time. The detected 

peaks for LZD in the chromatograms were digitally integrated to calculate the 

respective peak areas. The chromatographical separation process, and thus the 

retention time (tR) of LZD was determined by the physical interactions between the 

drug and the chosen mobile and stationary phase, respectively [99]. 

2.3.1.1 Experimental equipment 

All HPLC experiments were performed with the same software controlled HPLC 

system containing the following components: 

pump: HPLC pump 420 and 422 
(Kontron Biotech, Neufahrn, Germany) 

autosampler: HPLC autosampler SA 360 
(Kontron Biotech, Neufahrn, Germany) 

column: Sphere-Image 80-5 ODS2, RP-18, 5 µm, 
125 x 4 mm with pre-column 
(Knauer, Berlin, Germany) 
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UV detector: HPLC detector 430 
(Kontron Biotech, Neufahrn, Germany) 

control unit: HPLC mulitport 
(Kontron Biotech, Neufahrn, Germany) 

control and integration software: KromaSystem® 2000  
(see  2.1.3) 

2.3.1.2 Sample preparation 

The sample preparation for LZD in MHB was based on a method for LZD plasma 

samples, previously developed at the Dept. of Clinical Pharmacy [98]: 200 µL ACN 

were added to 50 µL of each MHB sample and mixed. After 10 min of resting at room 

temperature, the mixtures were centrifuged at 10,000 · g for 5 min and subsequently, 

200 µL of the supernatants were evaporated at medium heat (45 °C) to dryness via 

Speed Vac®, within 1 h. Finally, the dried sample preparations were redissolved in 

50 µL 80/20 (V/V) H2O/ACN, mixed and placed in the rack of the autosampler. For 

each sample, a volume of 20 µL was injected into the HPLC system, using a 20 µL 

sample loop. 

2.3.2 Method validation 

The HPLC method (based on [98]) was validated for the matrix MHB, according to 

the Food and Drug Administration (FDA) guideline for bioanalytical method validation 

[100]. For the pre-study validation process, linearity between the intended lower and 

upper limit of quantification, stability, (in-)accuracy, (im-)precision, and analytical 

recovery of LZD in MHB were determined. 

2.3.2.1 Stock solutions 

Two aqueous LZD stock solutions were prepared, one for testing the linearity and 

preparing the calibration curve (see  2.3.2.4), and another one for the quality control 

samples for the determination of (in-)accuracy and (im-)precision (see  2.3.2.5), and 

samples for stability testing (see  2.3.2.3) and the determination of the analytical 

recovery (see  2.3.2.6). Each solution contained a nominal LZD concentration of 

(CLZD) ≈ 1 mg/mL, considering the known aqueous solubility of LZD (see  1.4.1). 
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2.3.2.2 Linearity and limits of quantification 

Based on the aqueous LZD stock solution (see  2.3.2.1), six spiked MHB samples 

were freshly prepared with nominal CLZD = 0.2, 0.5, 1.0, 5.0, 20.0 and 30.0 µg/mL. 

The linearity of these six dilutions was explored in triplicates, via an unweighted linear 

regression (see  7.3.4.4) and the coefficient of determination r2 (see  7.3.3.2) using 

Excel. Based on previous work [98], the intended lower and upper limit of 

quantification (LLOQ, ULOQ) were chosen as 0.2 µg/mL and 30.0 µg/mL. 

2.3.2.3 Stability 

The stability of stored aqueous LZD stock and working solutions and prepared LZD 

samples in the HPLC autosampler had already been determined at the Dept. of 

Clinical Pharmacy, using the same sample preparation method and the very same 

HPLC equipment [98].  

For the freeze and thaw (FT) stability and short-term temperature (STT) stability of 

LZD in MHB, quadruplicates of the intended LLOQ (0.2 µg/mL) and ULOQ 

(30.0 µg/mL) were explored and compared with freshly prepared samples. The FT 

stability investigation was performed with three FT cycles at the intended sample 

storage temperature of -26 °C for 24 h per cycle. In-between the three freezing 

periods, the stability samples were completely thawed unassisted at room 

temperature (24 °C) and subsequently refrozen. For the STT stability test, the 

samples were thawed at room temperature, kept at this temperature for 4 and 24 h, 

respectively, and subsequently analysed together with freshly prepared samples.  

Additionally, the long-term (LT) stability of LZD in MHB was investigated, using 

triplicates of LZD spiked MHB samples with nominal CLZD = 0.5, 10.0 and 

25.0 µg/mL. The samples were stored at -26 °C and analysed afterwards together 

with the very last sample set at the end of the HPLC project. All stock and working 

solutions were stored at -70 °C. 

2.3.2.4 Calibration curve 

For each HPLC run, a six point calibration curve was utilized with nominal CLZD = 0.2, 

0.5, 1.0, 5.0, 20.0 and 30.0 µg/mL including the LLOQ and ULOQ. Due to the 

heteroscedasticity of the data, a weighted linear regression (see  7.3.4.4) was used 

via Excel. The weighting factor was set to 1/ (CLZD)2, i.e. one divided by the squared 
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respective nominal LZD concentration. The linearity of the weighted regression line 

was monitored by the weighted correlation coefficient r (see  7.3.3.1 and  4.1.3) [101].  

2.3.2.5 (In-)Accuracy and (im-)precision 

For the within- and between-day (in-)accuracy and (im-)precision, quintuplicates of 

four separately prepared LZD quality control (QC) samples, i.e. LZD spiked MHB 

samples, with nominal CLZD = 0.2, 0.5, 10.0 and 25.0 µg/mL including the LLOQ, 

were analysed on three different days. The relative error (RE) and the coefficient of 

variation (CV) served as statistical measures of inaccuracy and imprecision, 

respectively (see  7.3.1.2). A one-way ANOVA (see  7.3.2.2.1) was performed for the 

between day comparison. Furthermore, for the in-study validation process the 

inaccuracy and imprecision were monitored for all HPLC runs by means of three 

duplicates of separately prepared QC samples with nominal CLZD = 0.5, 10.0 and 

25.0 µg/mL. 

2.3.2.6 Recovery 

The analytical recovery of LZD in MHB was calculated by the comparison of peak 

areas between quintuplicates of LZD spiked MHB samples at three different 

concentrations (nominal CLZD = 0.5, 10.0 and 25.0 µg/mL) and quintuplicates of three 

diluted aqueous LZD solutions at the same nominal concentrations.  

2.4 Microbiology - in vitro pharmacodynamics of linezolid 

A PD in vitro approach was utilised to characterise the antibacterial activity of LZD 

towards a penicillin-resistant strain of S. aureus. The antibacterial activity was 

investigated in dependency of time (t) and the respective LZD exposure, via a static 

and a dynamic in vitro model (see  2.4.3 and  2.4.4). The bacterial growth/survival was 

quantified on agar as colony forming units (cfu). The static model was used to 

determine the bacterial growth and death under constant LZD exposures, whereas 

the dynamic model was chosen to investigate in vivo-like, i.e. changing LZD 

exposures. 

2.4.1 Bacterial stock suspension 

The utilised strain of S. aureus (ATCC 29213) was obtained by the Institute of 

Microbiology und Hygiene, Charité Campus Benjamin Franklin in Berlin, Germany.  
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A pure culture of S. aureus was plated on casein-peptone soya-meal-peptone agar 

with 5% sheep blood and incubated at 36 °C for 24 h. Thereafter, single colonies 

were selected from the agar plate and suspended in 3.0 mL of 0.45% saline (m/m). 

The turbidity of the bacterial stock suspension was adjusted to a McFarland index 

of ≈ 0.50 to produce a bacterial concentration of about 1·108 cfu/mL [102]. 

2.4.2 Preliminary investigations 

Prior to the main experiments, several preliminary experiments were performed to 

qualify the chosen settings of the in vitro system. The most important preliminary 

experiments are described below or briefly mentioned in the respective sections (see 

 2.4.4.3 and  2.4.5.1.1). 

2.4.2.1 In vitro stability of linezolid  

The stability of LZD in the (static) in vitro system, i.e. in MHB at 36 °C, was 

investigated with and without bacteria over 48 h. Three previously inoculated culture 

flasks (with bacteria, see  2.4.3.1) and three non-inoculated culture flasks (without 

bacteria) were incubated continuously shaking with 62 min-1 at 36 °C for 2 h. A 

1 mg/mL LZD stock solution was prepared with Milli-Q water and diluted with MHB in 

two working solutions. Subsequently, 1 mL of the respective working solution was 

added in triplicates to the pre-incubated culture flasks to obtain nominal 

CLZD = 0.5 µg/mL and 10.0 µg/mL, respectively. LZD samples (1 mL) were taken at 

t = 0, 3, 6, 12, 24 and 48 h post LZD administration, from each cell culture flask. 

Afterwards, the samples were centrifuged (610 · g for 10 min) to remove the bacteria. 

The supernatant fluids (800 µL) were immediately frozen at -26 °C and subsequently 

analysed by HPLC. For data analysis, the relative stability was calculated by the 

percentaged ratio of the respective LZD concentration measured at t = 0, 3, 6, 12, 24 

and 48 h, and the LZD concentrations measured at t = 0 h. 

2.4.2.2 Bacterial survival in different diluents 

The survival of S. aureus was studied (without LZD) in the utilised dilution medium 

phosphate-buffered saline with peptone (PBSP, see  2.4.5.1), and for comparison in 

unbuffered 0.85% saline (m/m), during 48 h. The prepared bacterial stock suspension 

(see  2.4.1) was diluted with both diluents in two bacterial working suspensions 

containing ≈ 1·104 cfu/mL and 1·105 cfu/mL, respectively. Immediately after the 
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dilution process and every 10 min up to 1 h, bacterial samples of 50 µL or 100 µL 

were taken and plated in quadruplicates on Mueller-Hinton blood agar (MHBA) 

plates. Inoculated agar plates were incubated at 36 °C for 24 h. Afterwards, the 

colony forming units were counted (see  2.4.5.2) to calculate the respective bacterial 

concentrations. For statistical inference, a one-way ANOVA (see  7.3.2.2.1) was 

performed, using the respective log-transformed bacterial concentrations.  

2.4.2.3 Bacterial loss during centrifugation 

The potential bacterial loss during the centrifugation step of the bacterial sample 

preparation (see  2.4.5.1.2), was quantitatively investigated. The prepared bacterial 

stock suspension (see  2.4.1) was diluted with PBSP (see  2.4.5.1) via serially decimal 

dilution in four bacterial working suspensions containing ≈ 1·105 - 1·102 cfu/mL. 

Bacterial samples (10 – 100 µL) were taken in two steps. The first set was directly 

plated in quintuplicates on MHBA plates. The second set of bacterial samples were 

prepared via the centrifugation method (see  2.4.5.1.2) and subsequently plated in 

quintuplicates on MHBA plates. All inoculated MHBA plates were incubated at 36 °C 

for 24 h. Thereafter, the colony forming units were counted (see  2.4.5.2), the 

respective bacterial concentrations were calculated, and a one-way ANOVA (see 

 7.3.2.2.1) was performed for statistical inference, using the respective log-

transformed data.  

2.4.3 Static in vitro model 

Bacteria were exposed to seven different constant LZD concentrations for 24 h. In 

addition, a growth control (GC) without antibiotic was simultaneously applied as 

positive control for bacterial growth in the static in vitro model. The bacterial survival 

was quantified by monitoring the respective bacterial concentrations N(C,t) for a 

given drug concentration C at time t, measured in colony forming units per millilitre 

(cfu/mL). These experiments were repeated three times on different days. The 

working principle is illustrated in Fig. 6. 

2.4.3.1 Bacterial inoculum 

The bacterial stock suspension was 60-fold diluted with PBSP (see  2.4.5.1). 

Subsequently, eight 70 mL canted neck cell culture flasks with vented caps were 

filled with 17 mL of MHB and 2 mL of the diluted bacteria suspension, for 
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simultaneously obtaining an initial inoculum of ≈ 1.7·105 cfu/mL in each culture flask. 

The inoculated culture flasks were immediately incubated continuously shaking with 

62 min-1 at 36 °C for 2 h to induce bacterial growth up to ≈ 1·106 cfu/mL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Schematic work flow of the static in vitro model with MHBA = Mueller-Hinton blood 
agar, for a detailed description of the methods used see text.  

 

2.4.3.2 Linezolid exposure 

A stock solution containing 1 mg/mL LZD was prepared with Milli-Q water and diluted 

with MHB in seven working solutions of different LZD concentrations. Afterwards, 

1 mL of the respective working solution was added to the pre-incubated culture flasks 

to obtain final nominal concentrations of CLZD = 0.5, 1.0, 2.0, 4.0, 8.0, 16.0 and 

32.0 µg/mL. In addition, one culture flask served as GC, i.e. 1 mL MHB was added 

instead of LZD working solution. All LZD exposed culture flasks, including the GC, 

were immediately re-incubated continuously shaking at 36 °C for 24 h.  
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2.4.3.2.1 Minimum inhibitory concentration 

The minimum inhibitory concentration (MIC) conventionally refers to the lowest 

antibiotic concentration that inhibits visible growth of bacteria that have been grown 

in broth in the presence of antibiotics at 36 °C for 18 - 24 h, using an inoculum of 

≈ 105 - 106 cfu/mL [103]. Thus, each LZD exposed culture flask was visually 

observed at t = 18 and 24 h to determine the MIC of LZD for the utilised strain of S. 

aureus.  

2.4.3.3 Linezolid sampling 

Two LZD samples (1 mL each) were taken from each cell culture flask. One was 

taken directly after the addition of LZD to the system. The other was taken at the end 

of the experiment. To remove the bacteria, samples were centrifuged (610 · g for 

10 min) and the respective supernatant fluid (800 µL) was immediately frozen at  

-24 °C. Afterwards, all LZD samples were analysed by HPLC and the respective LZD 

concentrations were calculated. 

2.4.3.4 Bacterial sampling 

Bacterial samples of 10 µL, 50 µL or respectively 100 µL were taken simultaneously 

from all eight culture flasks of one experiment at t = 0, 1, 2, 4, 6, 8, 10, 12, 16, 20 and 

24 h of constant LZD exposure. The samples were immediately prepared (see 

 2.4.5.1), plated on MHBA plates and incubated at 36 °C for 24 h. Subsequently, 

visual colony counting was performed (see  2.4.5.2). 

2.4.4 Dynamic in vitro model 

Bacteria were exposed to LZD concentrations changing over time. The respective 

antibiotic exposure was chosen to simulate unbound LZD concentration-time profiles, 

similar to those observed in humans after intravenous (i.v.) administrations of LZD 

[64]. In total, four different LZD concentration-time profiles were investigated, three 

for single dose i.v. bolus injections and one for i.v. bolus injection plus continuous 

infusion (Fig. 7, Tab. 1). For the three simulated i.v. bolus injections, the initial LZD 

concentrations (C0) were chosen as 5.0, 10.0 and 15.0 µg/mL. For the continuous i.v. 

infusion with initial i.v. bolus injection, the respective LZD exposure was chosen as 

C0 = 17.0 µg/mL, which was kept constant as steady state drug concentration (Css) 

for the simulated duration of infusion (Ti) of 6 h (see  4.2.2.3). 
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Fig. 7 Theoretical linezolid (LZD) concentration-time profiles simulated in the dynamic in vitro 
model, imitating three intravenous (i.v.) bolus injections with initial LZD concentrations (C0)  
of 5.0, 10.0 and 15.0 µg/mL, respectively (red lines), and an i.v. bolus injection with 
C0 = 17.0 µg/mL plus continuous infusion over 6 h (blue line).  

 

Tab. 1 Pharmacokinetic parameters with nominal values for the in vitro simulated linezolid 
(LZD) concentration-time profiles, with C0 = initial LZD concentration at t = 0 h, t1/2 = half-life, 
Ti = duration of infusion, and Css = LZD concentration at steady state.  

Pharmacokinetic parameters  In vitro simulated  
route of drug administration C0 [µg/mL] t1/2 [h] Ti [h] 

i.v. bolus injection 5.0 4 - 

i.v. bolus injection 10.0 4 - 

i.v. bolus injection 15.0 4 - 

i.v. bolus injection with  
continuous infusion 

17.0  
(= Css) 

4 6 

 

The simulation of drug elimination was performed by a stepwise substitution method 

(see  2.4.4.2.1) [104], for a period of 12 h post LZD administration. For each 

experiment, two LZD concentration-time profiles were simultaneously investigated. 

Additionally, a GC without antibiotic was applied as positive control for bacterial 
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growth in the dynamic in vitro model. These experiments were repeated four times on 

different days. 

2.4.4.1 Bacterial inoculum 

For each experiment, three inoculated cell culture flasks were prepared as previously 

described for the static in vitro model (see  2.4.3.1).  

2.4.4.2 Linezolid exposure 

A LZD stock solution containing 1 mg/mL was prepared with Milli-Q water and diluted 

with MHB in two working solutions of different LZD concentrations. Afterwards, 1 mL 

of the respective working solution was added to the pre-incubated culture flasks to 

obtain a final volume of 20 mL with nominal concentrations of CLZD = 10.0 and 

15.0 µg/mL or 5.0 and 17.0 µg/mL, respectively. For each experiment, the third 

culture flask served as GC, i.e. 1 mL MHB was added instead of LZD working 

solution. The two LZD exposed culture flasks and the GC were immediately re-

incubated continuously shaking at 36 °C for 12 h. 

2.4.4.2.1 Stepwise substitution method 

For the three imitated i.v. bolus injections, the initial LZD concentrations in the culture 

flasks were diluted in a stepwise manner by fresh, antibiotic-free broth to mimic 

exponentially descending LZD concentration-time profiles, according to the PK 

characteristics of LZD (see  2.4.4.2.2). In contrast, for imitating the continuous i.v. 

infusion with initial i.v. bolus injection, LZD dilution started with a delay at t = 6 h, to 

maintain the initial LZD concentration as steady state concentration for the first six 

hours.  

During the respective elimination phase, MHB containing LZD in the in vitro system 

was withdrawn through a cannula and a membrane filter unit via a 2 mL syringe and 

subsequently replaced by the same volume of fresh, LZD-free MHB pre-warmed at 

36 °C (Fig. 8). The membrane filter (pore Ø = 0.2 µm) allowed the passage of LZD, 

but was impermeable for bacteria to prevent bacterial loss during the stepwise 

dilution of LZD. The functional efficiency of the filter unit was assured via the bobble-

point-test method, at the end of each experiment [105]. In-between the dilution steps, 

the respective LZD concentrations remained constant (Fig. 7). The substitution 

process was applied to the LZD exposed culture flasks and the culture flask 
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containing the GC. Before and after each dilution step, all cell culture flasks were 

incubated continuously shaking with 62 min-1 at 36 °C. The Substitution process was 

executed every 20 min up to 12 h, and the replaced volume was chosen as 1.1 mL 

according to the following PK characteristics of LZD.  

 

 

 

 

 

 

 

 

 

 

Fig. 8 A set of three dynamic in vitro models, containing a 70 mL canted neck cell culture 
flask filled with 20 mL broth containing a defined bacterial inoculum, a cannula firmly inserted 
in the flask wall, a membrane filter unit, and a 2 mL syringe; respectively. For a more detailed 
description see text.  

 

2.4.4.2.2 Pharmacokinetic characteristics of linezolid 

The PK of LZD was described in a simplified manner by a one compartment model 

(Fig. 9) [44], with an intended half-life (t1/2) of ln(2)/ke ≈ 4 h [63-65], where ke refers to 

the first-order elimination rate constant. In the dynamic in vitro model, the simulated 

t1/2 was influenced by the total volume (V) of broth in the in vitro model, the 

substituted volume (Vsub) and the time interval between the single dilution steps ∆tdil. 

For practical reasons, V and ∆tdil were chosen as 20 mL and 20 min, respectively. 

The resulting Vsub was calculated as 1.1 mL via eq. M1 [106]. The derivation of 

eq. M1 can be found in the Appendix (see  7.4.1). 
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Fig. 9 Schematic depiction of the pharmacokinetic one compartment (CMT) model imitating 
the pharmacokinetics of linezolid (LZD) in the dynamic in vitro model, with Cp = LZD 
concentration in the central CMT and ke = first-order elimination rate constant.  

 

2.4.4.3 Linezolid sampling 

LZD samples (1.1 mL) were obtained from the volume of broth that was periodically 

removed by the substitution process. Bacteria-free samples were taken at t = 20, 40 

and 80 min and from t = 2 h every hour up to t = 12 h, and directly frozen at -26 °C. 

Afterwards, all LZD samples were analysed by HPLC and the respective LZD 

concentrations were calculated. 

Prior to the main experiments using the dynamic in vitro model, a preliminary 

investigation without bacteria was performed, imitating i.v. bolus injections with 

nominal C0 = 5.0, 10.0 and 15.0 µg/mL. The aim of this investigation was to 

determine, if the LZD samples taken through the membrane filter unit were biased 

compared to LZD samples taken directly through the flask neck. For practical 

reasons, direct LZD sampling through the flask neck was not accomplishable in the 

main experiments with bacteria. Thus, it was necessary to assure the ‘quality’ of LZD 

samples taken through the membrane filter unit. 

2.4.4.4 Bacterial sampling 

Bacterial samples of 10 µL or respectively 50 µL were taken simultaneously from all 

culture flasks at t = 0, 40 and 80 min and 2, 3, 4, 6, 8, 10 and 12 h after the initial 

LZD administration.  

2.4.5 Bacterial sample preparation and viable cell counts 

Bacterial samples were immediately prepared (see  2.4.5.1) and plated on MHBA 

plates. Inoculated agar plates were incubated at 36 °C for 24 h, and subsequently 

viable cell counts (see  2.4.5.2) were determined on each plate. 
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2.4.5.1 Bacterial sample dilution and purification 

Bacterial sample preparation was performed via a serial dilution or centrifugation 

method (see  2.4.3, Fig. 6 middle part) to assure appropriate dilution of bacteria for 

visual colony counting on agar (see  2.4.5.2) and bacterial sample purification to avoid 

the antibiotic carry-over effect, i.e. artefacts due to growth-inhibiting amounts of LZD 

on the agar plates, causing bias. For both methods, PBSP (composition see  7.1, Tab. 

13) served as dilution medium [107].  

2.4.5.1.1 Dilution method 

Bacterial samples were diluted two to three times via serially decimal dilution with 

PBSP in 20 mL culture tubes. Afterwards, 100 µL of each dilution was plated in 

duplicates on MHBA plates and subsequently incubated at 36 °C for 24 h. The 

respective final extent of dilution was empirically found in preliminary investigations 

and varied between ≈ 5·10-4 and 1·10-7.  

2.4.5.1.2 Centrifugation method 

Centrifugation was utilised for the purification of samples with low bacterial 

concentrations (< 2·104 cfu/mL), where serial dilution was not accomplishable. In this 

process, 100 µL or respectively 50 µL of the bacterial sample was added to 1.5 mL 

safe-lock tubes filled with 1400 µL or respectively 1450 µL PBSP, and centrifuged 

(610 · g for 10 min). Subsequently, 1300 µL of the supernatant was removed and 

discarded. Three cycles of centrifugation were performed with a total LZD dilution 

factor of ≈ 1·10-3. Thereafter, 50 µL and 100 µL or respectively 200 µL of the 

remaining residue were plated on MHBA plates and incubated at 36 °C for 24 h.  

2.4.5.2 Viable cell counts 

Viable cell counts were determined via visual colony counting on MHBA plates by 

means of a semi-automatic colony counter using plates with 10 to 1,000 colonies. 

Thus, the LLOQ of viable cell counting was given as 1·102 cfu/mL. Based on the 

measured colony counts the respective bacterial concentrations were calculated. 

To detect bacterial contaminants, colonies with atypical morphology, e.g. those 

exhibiting different size or colour, were subjected to the latex slide agglutination test 

(Staphytect Plus). This test identifies S. aureus by the detection of the clumping 
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factor, protein A and certain polysaccharides [108]. If the test was negative, these 

colonies were plated on agar and incubated at 36 °C for another 24 h. Subcultures 

were again visually examined and investigated via the agglutination test. 

2.4.6 Descriptive data analysis 

For the measured bacterial concentrations from the static and dynamic in vitro model 

respectively, geometric means and CI95% were numerically estimated by means of 

bootstrapping (see  2.4.6.1), as measure of central tendency and its precision. The 

calculated statistical summary parameters were plotted against time, and 

bacteriostatic and bactericidal concentrations were identified (see  2.4.6.1.2). 

Furthermore, the net estimate of the antibacterial effect was defined and calculated 

(see  2.4.6.2). 

2.4.6.1 In silico resampling (Bootstrapping) 

Bootstrapping (BS) is a numeric technique widely-used to obtain estimates of 

summary statistics. This technique is based on iterative random sampling from the 

original data set (resampling) with replacement, via digital computing power (in silico) 

[109-111]. For the present work, BS was performed with Excel using standard 

spreadsheet functions:   

The two sample sets obtained from the static and dynamic in vitro model, were 

classified in eleven partial sample sets for each investigated (initial) LZD 

concentration, according to the respective sampling time points (tx). Each partial 

sample set containing 12 - 16 data points (n), which originated from 3 – 4 

experiments each with 4 colony counts, was digitally defined as “sample-set-tx” (SStx) 

with tx = 0, 1, 2, 4, 6, 8, 10, 12, 16, 20 and 24 h for the static in vitro model and 

respectively tx = 0, 20, 40, 80 min, 2, 3, 4, 6, 8, 10 and 12 h for the dynamic in vitro 

model. Subsequently, (re-)samples (exact n) were randomly drawn with replacement 

from the respective SStx to produce resampled data sets [110]. The random 

resampling process was performed by the spreadsheet function: 

= INDEX(SStx, ROWS(SStx)*RAND()+1, COLUMNS(SStx)*Rand()+1)  [112].  

The sub function RAND() refers to a pseudo-random number generator (see  7.3.6.3) 

that produces random numbers between 0 and 1 [113-115]. For each resampled data 

set, the geometric mean was calculated. The resampling process was automatically 

repeated one thousand times (B = 1,000) per SStx by means of the data table 



2 Materials and Methods  32 

 

function [116], to generate an empirical distribution of geometric means for each SStx 

[109]. From these distributions, the median, 2.5% and 97.5% percentiles were 

calculated as numeric estimations of the geometric mean of the population and the 

respective 95% confidence interval (CI95%, see  7.3.2.1.1) for each SStx [110].  

2.4.6.1.1 Time-kill curves 

The bootstrap estimates (geometric mean and CI95%) of the bacterial concentrations 

were used to provide conventional time-kill curves, i.e. bacterial concentration-time 

courses [33], for all investigated constant LZD concentrations, LZD concentration-

time courses, and the respective GCs. 

2.4.6.1.2 Bacteriostatic and bactericidal activities 

In addition, for the static in vitro model the bactericidal and bacteriostatic activities 

were calculated as the difference between the log-transformed bacterial concen-

tration at t = 0 h and t = 24 h of constant LZD exposure, defined as reduction of 

bacteria of > 3 log units or < 3 log units, respectively [103]. 

2.4.6.2 Relative bacterial reduction 

For the net estimate of the antibacterial effect of LZD, the relative bacterial reduction 

(RBR) was calculated as ‘baseline-normalised’ drug effect [117]. The RBR was 

defined as the percentaged ratio of the difference between the measured drug effect 

DE(C,t) and the observed baseline effect BE(t) [118, 119], to the respective absolute 

value of BE(t), i.e. |BE(t)| (eq. M2). For a certain antibiotic concentration (C), DE(C,t) 

was set equal to the negative decadic logarithm of the respective concentration of 

viable bacteria N(C,t) at time point t, i.e. DE(C,t) = -log(N(C,t)). BE(t) was set equal to 

the negative decadic logarithm of the concentration of viable bacteria of the GC at t, 

i.e. BE(t) = -log(N(C=0,t)) [120]. 
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If e.g. for a given antibiotic concentration at a given exposure time, the  

bacterial concentrations were measured as N(C,t) = 1·102 cfu/mL and N(C=0,t) = 

1·1010 cfu/mL, respectively, the RBR will be calculated as 80%. RBE = 100%, as 
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extreme example, implies total bacterial eradication. Thus, the RBR quantifies the net 

antibacterial effect in a descriptive percentage measure with reference towards the 

situation without antibiotic exposure. 

2.4.6.3 Pharmacokinetic/pharmacodynamic parameters 

2.4.6.3.1 Pharmacokinetic parameters 

For the LZD concentration-time profiles investigated in the dynamic in vitro model, a 

noncompartmental analysis (NCA) was performed via Excel. Here, the maximal 

observed LZD concentration (Cmax) and the area und the LZD concentration-time 

curve (AUCt) were used as NCA parameters. The integral parameter was calculated 

for the time interval t = 0 - 12h, i.e. AUC12h, via the linear trapezoidal rule [44].  

2.4.6.3.2 Pharmacodynamic parameter and outcome 

The MIC (see  2.4.3.2.1) of LZD against S. aureus, measured at 24 h in the static in 

vitro model, served as PD parameter for the calculation of the PK/PD indices (see 

 2.4.6.3.3). However, as main in vitro PD outcome the area under the effect-time 

curve (AUCE(t)), a cumulative measure of the overall drug effect [57], was applied for 

the RBR-time courses obtained from the dynamic in vitro model. The PD outcome 

was calculated for the time interval t = 0 - 12h, i.e. AUCE(12h), via the linear 

trapezoidal rule in Excel [44]. 

2.4.6.3.3 Pharmacokinetic/pharmacodynamic indices 

For descriptive PK/PD analysis, the relation of PK and PD of LZD was determined by 

calculating the following PK/PD indices [121, 122]:  

• Cmax/MIC 

• AUC12h/MIC  

• tC>MIC 

The first two PK/PD indices refer to the NCA (PK) and PD parameters. The latter 

PK/PD index (tC>MIC) refers to the time with the LZD concentration > MIC, measured 

in % of the investigated time interval of 12 h. The calculated PK/PD indices were 

analysed together with the in vitro PD outcome AUCE(12h), via correlation analysis 

(see  7.3.3) in Excel. 
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2.5 Pharmacokinetic/pharmacodynamic modelling 

PK/PD modelling investigates the drug effect as function of drug concentration and 

time, e.g. via curve fitting. Curve fitting implies the use of (nonlinear) regression 

analysis to find an appropriate mathematic function (and a parameter value set) 

which best fits the data points of the experimentally obtained data set and possibly 

other constraints (see  7.3.4.5). In this thesis, PK/PD modelling was applied via curve 

fitting in Excel (see  2.5.1.5).  

2.5.1 Modelling objective and strategy 

PK/PD modelling was utilised to characterise the RBR (see  2.4.6.2) of S. aureus, for 

various LZD exposure profiles measured in the static and dynamic PD in vitro model, 

over time. Afterwards, the developed PK/PD model was aimed to be used for 

predicting future scenarios that were not experimentally investigated, via in silico 

simulation (see  2.6). To accomplish these aims, the following modelling strategy was 

used, containing five main steps: 

• Defining data sets for model development (see  2.5.1.1) 

• Model selection (see  2.5.1.2) and development (see  2.5.1.3) 

• Finding initial estimates and constraints (see  2.5.1.4) 

• Curve fitting (see  2.5.1.5) 

• Model comparison (see  2.5.1.6) 

2.5.1.1 Defining data sets for model development 

During the model development, the developed PK/PD models were first fitted to the 

RBR data set obtained from the static in vitro model (data set I, with n = 88). 

Subsequently, the best model was selected (see  2.5.1.6) and fitted to the data set 

containing both the RBR of LZD from the static and dynamic in vitro model (data set 

I+II, with n = 128). Hence, data set II, obtained from the dynamic in vitro model, was 

not used separately for PK/PD modelling. 

2.5.1.2 Model selection 

For the basic characterisation of the structural relation between the antibacterial 

effect in vitro, i.e. the RBR, and the LZD exposure, the ‘sigmoidal’ Emax model was 



2 Materials and Methods  35 

 

chosen (eq. M3). This (structural) model describes the (equilibrium) relationship 

between the measured drug concentration C and the drug effect E(C) [1, 47, 50, 57, 

119]. 

HH
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Here, the respective drug concentration-effect curve is simply determined by the 

three model parameters Emax, EC50 and H. Emax is a descriptive measure of the 

maximal effect, whereas EC50 implies the drug concentration producing 50% of Emax. 

If two drugs are compared, Emax and EC50 are denominated as their intrinsic efficacy 

and potency, respectively.  

The steepness of the drug concentration-effect curve is determined by the Hill 

coefficient H. Thus, the ‘shape’ of the drug concentration-effect curve is importantly 

affected by this parameter (Fig. 10). As an example, for H < 1 hyperbolic curves and 

for H > 1 sigmoidal curves are found. When H = 1, a 16-fold change in drug 

concentration is required to step from E(C) = 20% to 80% of Emax. In contrast, for 

H = 2 only a fourfold change is needed, and for H > 5 even a small change in drug 

concentration may produce almost the maximal effect from no detectable effect [47].  
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Fig. 10 Theoretical drug concentration-(C)-effect (E) curves of the ‘sigmoidal’ Emax model with 
Emax = 100%, EC50 = 1.0 µg/mL and H = 0.1, 0.5, 1.0, 2.0 and 5.0, the black dashed lines 
refer to E(C) = 20% and 80% of Emax, respectively.  
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2.5.1.3 Model development 

During the modelling process, the ‘sigmoidal’ Emax model was adapted to different 

nested models to account for the observed time dependency of the RBR for LZD. 

Two models are called ‘nested’ if one of these models is the simpler case of the other 

[117]. Additionally, during the model development process the concentration term in 

the ‘sigmoidal’ Emax model was replaced by linear ordinary differential equations 

(ODEs) which were algebraically solved via Laplace transform (see  7.3.5.1). 

Subsequently, the derived PK/PD models were compared to choose the best model 

as final model (see  2.5.1.6). 

2.5.1.4 Initial estimates and constraints 

For curve fitting via Solver (see  2.5.1.5), initial estimates (see  7.3.4.5.1) were needed 

for each parameter. The initial values of the parameters Emax, EC50 and H were 

graphically estimated from the plotted RBR data set. These parameters obtained 

narrow lower and upper limits as rational constraints (see  7.3.4.5.1). For further 

parameters which were additionally implemented in the PK/PD model during the 

model development, various initial estimates were used to avoid local minima in the 

objective function (OBJ, see  7.3.4.5). For these model parameters, the lower and 

upper limits were set at one tenth and the tenfold of the chosen initial estimates, 

respectively. Moreover, it was aimed that the chosen parameter constraints did not 

decisively influence the calculated CI95% (see  2.5.1.5.2). Furthermore, model 

parameters which were exactly or good known from prior knowledge, e.g. ke from the 

experimental settings (see  2.4.4.2.2), were fixed as constants. 

2.5.1.5 Curve fitting 

Curve fitting was performed via Excel’s Solver function. Solver is an Excel add-in that 

serves as numeric general-purpose optimisation tool, developed by Frontline systems 

(http://www.solver.com). Solver can iteratively vary one or more freely definable 

changing cells to make a selected target cell have a certain value or a minimum or 

maximum value, accounting for previously defined constraints. Thus, Solver uses 

iterative numeric methods for optimising nonlinear problems, e.g. nonlinear 

regression analysis (see  7.3.4.5), as utilised for curve fitting here. All PK/PD model 

parameters were defined as changing cells and the target cell served as OBJ. 
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2.5.1.5.1 Solver settings 

Solver offers different options to adapt the iterative approximation process to the 

current problem to be solved. For example, two different optimisation algorithms are 

selectable: the Newton’s method and the Generalized Reduced Gradient (GRG2) 

algorithm (see  7.3.4.5.1). For the present work, the following options were changed 

compared to the default setting (listed in  7.5.1): 

• Search = conjugate gradient method (GRG2 algorithm) 

• Estimates = quadratic method 

• Scaling = automatic scaling 

These settings were selected based on recommendations from the literature: The 

GRG2 algorithm requires less computer memory compared to the default (Newton) 

method. The quadratic method is recommended for highly nonlinear problems as 

investigated here. The use of automatic scaling has been mentioned to be beneficial 

if there is a huge difference in magnitude between the model parameters. For the 

developed PK/PD model, such differences were present [114, 115, 123, 124]. The 

selected solver options were previously tested for sufficiency via an evaluation data 

set taken from D. Bourne’s textbook [125]. Moreover, three different Solver reports 

were used during the model development process [115]:  

• The Answer report, which contains initial and final values of the adjusted 

parameters and the OBJ as well as the defined constraints and which of these 

restrictions were actually binding.  

• The nonlinear Sensitivity report, which tells how much the value of the OBJ would 

change, if the value of a parameter was increased by one, or the respective right-

hand side value of the constraints (i.e. the upper limit) was increased by one. 

• The Limits report, which describes how the value of the OBJ changes as each 

parameter is maximised and minimised to its limits, while all other values are kept 

constant and while still satisfying the problem’s constraints.  

2.5.1.5.2 Confidence intervals  

As measure of precision of the parameter estimates, the respective CI95% were 

numerically calculated by means of BS using the 2.5% and 97.5% percentiles from 

one thousand fitted resamples (B = 1,000). BS was performed via Excel’s 
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spreadsheet functions, similarly as previously described (see  2.4.6.1). Each 

resampled data set was automatically fitted by the Solver function, via macros written 

in Visual Basic for Applications (VBA). The utilised VBA script can be found in the 

Appendix (see  7.5.1).  

2.5.1.5.3 Correlation matrix 

The correlation matrix was applied using the correlation coefficient r (see  7.3.3.1), 

calculated via Excel’s spreadsheet function to determine the parameter relations to 

avoid over-parameterisation. If two parameters showed r-values > 0.9 or < -0.9, the 

relation was specified as high correlation, i.e. the respective data set did not define 

the model unambiguously [117]. In this case, the respective model was judged as 

over-parameterised, and thus the model was rejected or simplified, respectively. 

2.5.1.5.4 Objective function 

For modelling data set I (see  2.5.1.1), the OBJ was obtained from the sum of squared 

residuals (SSR, see  7.3.4.2) multiplied by the scaling factor Kscale = 1011, according to 

the recommendations of Frontline Systems [114]. In contrast, for modelling the 

combined data set (I+II) a ‘weighting’ scheme was utilised for the OBJ (eq. M4). 
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Here, the OBJ was calculated as the sum of the products of the SSR and the 

respective number of data points (n1 = 88, n2 = 40) for the two data sets (d = 2), 

multiplied by the chosen scaling factor (Kscale). Thus, the OBJ was ‘weighted’ by n in 

order to ‘stress’ the larger (partial) data set.  

2.5.1.6 Model comparison 

To compare and evaluate the developed key PK/PD models, graphical and 

parametric methods were applied. Both statistical criteria had to be satisfied for 

model selection. Furthermore, the CI95% of the estimated parameter values were 

inspected as model selection criterion, i.e. if the CI95% included zero or values 

> 100% of the estimated parameter value, the respective model was rejected or 

modified, respectively. 
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2.5.1.6.1 Goodness of fit plots 

Graphical analysis was utilised to assess the goodness of fit (GOF) for the respective 

model. The following GOF plots were investigated: 

• Predicted RBR vs. observed RBR plot 

• Residuals vs. observed RBR plot 

• Residuals vs. predicted RBR plot 

• Residuals vs. LZD concentration plot 

• Residuals vs. time plot 

Residuals were defined as observed value minus the respective predicted value. 

Data spreading more randomly and uniformly narrow around the line of identity (for 

predicted vs. observed) or around zero (for residual plots) were judged as superior 

[125].  

2.5.1.6.2 Akaike’s Information Criterion 

The Akaike’s Information Criterion (AIC) is a parametric method for comparing nested 

or non-nested models, based on a combination of the maximum likelihood theory, the 

information theory and the concept of the entropy of information [126]. The goodness 

of fit of any mathematic model to a data set can be summarised by the AIC. For 

nonlinear regression analysis using the SSR as OBJ (see  7.3.4.5), the AIC is 

calculated by eq. M5. 
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In this equation, n is the number of data points and K is the number of model 

parameters fit by the regression analysis plus one (because the SSR is also an 

estimated parameter). For comparing models, simply the respective AIC values have 

to be compared. The model with the lowest AIC value is the most likely one. Thus, it 

is not the absolute size of the AIC values of the models of interest that is important 

for model comparison, but the differences between the AIC values. The AIC is known 

to be very useful in selecting the best model in a set of models. However, if all 

models considered are insufficient, the AIC will still select one of these as the ‘best’ 

model, which might be poor in an absolute sense. Thus, the most effort has to be 



2 Materials and Methods  40 

 

made in finding reasonable models to be compared, as accomplished for the current 

problem. 

2.5.1.6.3 ‘Corrected’ Akaike’s Information Criterion 

Another potential limitation of the AIC is that it may perform poorly if there are too 

many parameters in relation to the size of the sample set. For this reason, Sugiura 

derived a second-order variant of the AIC, containing a small-sample bias 

adjustment, that he called c-AIC (here AICC, eq. M6) [127]. 
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If the sample size n is large, the second (correction) term will be very small and the 

correction is negligible. In contrast, for smaller n, e.g. with n/K < 40, the correction 

term will matter and will be relevant for model comparison. However, the AICC can 

only be calculated if the difference n – K is > 2, with K including the SSR. Thus, 

unless n is large with respect to the number of estimated parameters, the use of AICC 

is recommended [117, 128], as applied for this work. For example, the ratio n/K was 

22 using the ‘sigmoidal Emax model (with K = 4, see  2.5.1.2) for modelling data set I 

(n = 88, see  2.5.1.1). 

2.5.1.6.4 Akaike’s weights 

As mentioned before, for comparing models of a set derived from the same data set, 

the model with the lower AICC value is the model more likely (to be ‘correct’). 

Unfortunately, this rule does not tell how much more likely. To better interpret the 

AICC values, the probability of choosing the ‘best’ model can be estimated by 

calculating the Akaike’s weights (wi) via eq. M7 [128], 
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where ∆AICC is the respective difference between the AICC value of the considered 

model and the lowest observed AICC value of all considered models, and RM is the 

total amount of models of the model set. Here, a given wi is considered as the weight 

of evidence in favour of model i being the actual ‘best’ model, assuming that one of 

the considered models must be the ‘best’ of that set of models. Hence, given that 
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there are only RM models and one of them must be the ‘best’ in this set, it is 

convenient to normalise the relative likelihoods to sum to one. Thus, the relative 

probability (Pi) of model i being the ‘best’ model can be calculated via eq. M8 [117],  
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as applied for model comparison in this thesis. The respective probalistic ‘superiority’ 

of the ‘best’ model can then be calculated as 1 – Pi. 

2.6 In silico simulation and analysis 

2.6.1 Objective 

The developed in vitro PK/PD model for LZD was combined with an in vivo 

population PK model of LZD, previously developed at the Dept. of Clinical Pharmacy 

[66], for investigating in silico various hypothetical dosing regimens for LZD, via 

deterministic and stochastic simulations (see  7.3.6) using Excel. The investigated 

dosing regimes were evaluated concerning their potential as optimised dosing 

regimen of LZD for critically ill patients suffering from severe infections of S. aureus 

susceptible to LZD. 

2.6.2 Population pharmacokinetic model for linezolid 

Population PK is the study of PK in the population of interest. Instead of modelling 

the data from each individual separately, the data from all individuals are modelled 

simultaneously. To account for the different levels of variability (e.g. between-

subjects and within-subjects) nonlinear mixed effects models are used [129, 130]. 

At the Dept. of Clinical Pharmacy, a population PK model for unbound LZD 

concentration-time courses in plasma was developed, referring to clinical data from 

10 healthy volunteers and 24 critically ill, septic patients [66]. These individuals 

received 600 mg LZD administered BID as tablet or as i.v. short-term (30 min) 

infusion, respectively. For the purpose of the present in silico simulation, the 

mentioned population PK model was combined with the developed PK/PD model, to 

account for interindividual (PK) variability (IIV). The considered population PK model 

(Fig. 11) was adapted to the conditions of the current simulation study, for i.v. 

administration. 
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Fig. 11 Schematic depiction of the utilised (population) pharmacokinetic model for the 
unbound LZD concentration-time course in plasma after intravenous (i.v.) infusion, containing 
two (central and peripheral) compartments (CMTs) and a hypothetical inhibition CMT [66], 
parameters are described in the text. 

 

The nonlinear PK model for LZD contained a central (including plasma) and 

peripheral compartment (CMT), where X2 and X3 are the respective amounts of LZD 

in these CMTs with V2 and V3 as volumes of distribution, k0 and Ti refer to the rate 

and duration of infusion, respectively, and Q represents the intercompartmental 

clearance. The parameter CL refers to the linear clearance from the central CMT, 

which was partially inhibited over time by multiplying with the inhibition function:  

  INH(X4) = RCLF + (1 - RCLF) · [1 - (X4(t)/(IC50 + X4(t)))], 

where RCLF represents the remaining, i.e. non-inhibitable clearance fraction, X4(t) is 

the amount of LZD in a hypothetical inhibition CMT at time point t, kii and kio are the 

rate constants into and from the inhibition CMT, respectively, and IC50 refers to the 

LZD concentration in the inhibition CMT that produces 50% of maximum clearance 

inhibition. The respective parameter values are shown in Tab. 2.  

The following (nonlinear) system of coupled ODEs was derived from the (population) 

PK model to describe the change in drug amount per time for each CMT: 

 dX2(t)/dt = k0 + (Q/V3) · X3(t) – (Q/V2) · X2(t) – (CL·INH/ V2)·X2(t) 

 dX3(t)/dt = (Q/V2) · X2(t) - (Q/V3) · X3(t)  

 dX4(t)/dt = kio · [(X2(t)/V2) - X4(t)] 
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Tab. 2 Parameter (K) values of the utilised population pharmacokinetic model describing 
unbound linezolid concentrations in plasma after intravenous infusion [66], with 
θK = population estimate, IIV = interindividual variability, ωK

2 = variance, and CV = coefficient 
of variation. 

Model parameter (K) Population estimate (θK) IIV (ωK
2; CV, %) 

CL [L/h] 11.1 41.7 

V2 [L] 20.0 40.1 

V3 [L] 28.9 34.8 

Q [L/h] 75.0 - 

RCLF 0.764 - 

IC50 [µg/mL] 0.1 - 

kio [h-1] 0.0019 - 

 

In case of the stochastic in silico simulation (see  2.6.3), IIV was applied for the 

parameters CL, V2 and V3, using an exponential variability model [129]:  

  PKi = θK · eηKi,  

where PKi denotes the individual value of the considered parameter K for the 

individual i, θK is the population estimate of a considered parameter K, and ηKi is the 

difference between the natural logarithm of PKi and θK, which is symmetrically 

distributed with mean zero and variance ωK
2. 

2.6.3 Simulation methodologies and study designs 

Twelve hypothetical dosing regimens for LZD and its standard dosing regimen (Tab. 

3) were investigated by means of deterministic and stochastic in silico simulations 

(see  7.3.6) [131]. Here, the above mentioned in vivo (population) PK model and the 

developed in vitro PK/PD model were combined as in vivo/in vitro PK/PD model for 

LZD, without (via deterministic simulation) and with (via stochastic simulation) taking 

into account the PK IIV of the patient population. Both types of in silico simulation 

were applied in Excel via VBA macros. An exemplarily VBA script for the stochastic 

simulation can be found in the Appendix (see  7.5.2).  

For each investigated dosing regimen (Tab. 3), a treatment with LZD of 14 days was 

simulated. The nonlinear system of coupled ODEs from the population PK model was 

numerically solved by means of the fourth-order Runge-Kutta (RK4) method (see 
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 7.3.5.3) [114, 115], using a step size of dt = 1 min. Multiple dosing was implemented 

by using the principle of superposition [44, 132, 133].  

 

Tab. 3 Twelve hypothetical intravenous dosing regimens and the standard dosing regimen 
(italics, bold type) for LZD, utilised for the in silico simulations, with Ti = duration of infusion 
and k0 = infusion rate.  

Daily dose  
[mg/day] 

Dosing interval 
[h] 

Ti  
[h] 

k0  
[mg/h] 

Dosing regimen 
 

600 24 0.5 1200 1 × 600 mg 

1200 24 1 1200 1 × 1200 mg 

1200 12 0.5 1200 2 × 600 mg 
1200 8 0.333 1200 3 × 400 mg 

1200 6 0.25 1200 4 × 300 mg 

1800 24 1.5 1200 1 × 1800 mg 

1800 12 0.75 1200 2 × 900 mg 

1800 8 0.5 1200 3 × 600 mg 

1800 6 0.375 1200 4 × 450 mg 

2400 24 2 1200 1 × 2400 mg 

2400 12 1 1200 2 × 1200 mg 

2400 8 0.667 1200 3 × 800 mg 

2400 6 0.5 1200 4 × 600 mg 

 

The main outcome for all PK/PD simulations was the integral parameter AUCE(t) (see 

 2.4.6.3.2), as the area under the simulated drug effect-time course with the drug 

effect (E) equal to the RBR (see  2.4.6.2), obtained for t = 14 days, i.e. AUCE(14 days). 

This integral parameter was calculated via the linear trapezoidal rule (eq. M9) [44], 

with nt equals the number of trapezoids into which the effect-time curve was divided, 

using a time interval of ∆t = 1 min.  

tEEdtEAUC
nt

nt

t

t

nti

i

ii
tE Δ⋅

+
≈⋅= ∫ ∑

−=

=

+

0

1

0

1

2
)(
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The stochastic simulation was performed via the Monte Carlo method (MCM, 

 7.3.6.3), further called Monte Carlo simulation (MCS), imitating one thousand 

(N = 1,000) virtual ‘in silico patients’ for each investigated dosing regimen (Tab. 3). 

To account for PK IIV on CL, V2 and V3, the respective normally distributed 

probability density function of ηK was implemented via the spreadsheet function: 
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  = NORMINV(RAND(), 0, ωK), 

where the sub function RAND() refers to a pseudo-random number generator (see 

 7.3.6.3), and ωK is the standard deviation of ηK [113-115]. The randomly drawn 

values of these three parameters were monitored (i.e. saved) for each ‘in silico 

patient’. The respectively measured parameter distributions were used to 

subsequently compare the ‘conditions’ of the different simulated dosing regimens, via 

the Kruskal-Wallis test (see  7.3.2.2.2). Additionally, to avoid unintentional artefact 

during the MCS a numeric indicator was used for monitoring LZD concentrations 

below zero.  

The distributions of measured AUCE(14 days) values, for the investigated dosing 

regimens of LZD, were analysed via the effect size (see  3.4.2) [134]. 
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3 Results 

3.1 Bioanalysis – quantification of linezolid in broth 

3.1.1 Method validation 

The bioanalytical method validation of the HPLC assay for quantifying LZD in MHB 

was successfully completed. The retention time (tR) of LZD was determined as 

tR = 4.4 min (Fig. 12), a high degree of analytical linearity (r2 = 0.9996) was found for 

the interval between the LLOQ and ULOQ (Fig. 13), and the average analytical 

recovery was determined as 96.6% with low variability (CV = 6.2%). 

 

  

Fig. 12 Chromatogram of a prepared Mueller-Hinton broth sample of a higher linezolid (LZD) 
concentration (screenshot from KromaSystem® 2000), where the LZD peak is marked in 
pink. 

 

The results from the stability investigations for LZD were summarised by the mean 

and the respective standard deviation (SD) (Tab. 4). For the FT and STT stability 

tests, the average stability for LZD was 99.1% - 106.5% for the LLOQ and 93.4% -

102.8% for the ULOQ, with an acceptable amount of variation (SD < 9.5%). The LT 

stability samples were investigated after a storage time of ≈ 3.5 yr at -26 °C. This 

investigation showed an average stability of 93.1% - 102.5% for the concentration 

interval between the LLOQ and ULOQ, with a low amount of variation (SD < 3.9%). 
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Fig. 13 Test for linearity between the peak area of the chromatograms and the respective 
linezolid concentration, showing the linear regression model using the median ± range of 
three aliquots, with R2 = coefficient of determination.  

 

Tab. 4 Summary statistics of stability tests for linezolid (LZD), with CLZD = LZD concentration, 
FT = freeze and thaw, STT = short-term temperature, LT = long term, LLOQ and 
ULOQ = lower and upper limit of quantification, n = number of aliquots, and SD = standard 
deviation.  

CLZD  
nominal 
[µg/mL] 

FT stability 
for 3 cycles, % 

(n = 4) 

STT stability 
for 4 h, % 

(n = 4) 

STT stability 
for 24 h, % 

(n = 4) 

LT stability 
for ≈ 3.5 yr 

(n = 3) 

 mean ± SD mean ± SD mean ± SD mean ± SD 

0.2 (= LLOQ) 99.1 ± 2.6 106.5 ± 9.5 102.8 ± 0.7 - 

0.5 - - - 93.1 ± 1.4 

10.0 - - - 100.4 ± 3.9 

25.0 - - - 102.5 ± 0.9 

30 (= ULOQ) 93.4 ± 1.1 102.8 ± 3.6 101.9 ± 3.8 - 

 

The results for the determination of inaccuracy and imprecision were summarised by 

the RE and CV, respectively (Tab. 5). The within-day and between-day imprecision 

showed a similar range of 2.4% - 4.7% and 3.0% - 5.3%, respectively. The 

inaccuracy ranged between +2.3% - +7.0% (within-day) and -1.2% - +3.1% 
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(between-day). The one-way ANOVA (α = 0.05, n = 3 × 5) for the between-day 

comparison provided p-values > 0.05 for all investigated LZD concentrations. Thus, 

no statistically significant differences were found during the pre-study validation.  

Moreover, the quality control approach, monitoring the concentration interval between 

the LLOQ and ULOQ, revealed the in-study inaccuracy with RE = -9.8% - +10.2% 

and the in-study imprecision with CV = 0.1% - 9.6%. The respective weighted 

calibration curves provided weighted r-values > 0.998. Overall, the investigated pre- 

and in-study parameters were in accordance with the demands of the FDA guideline 

for bioanalytical method validation [100].  

 

Tab. 5 Summary statistics for inaccuracy and imprecision investigations for linezolid (LZD), 
with CLZD = LZD concentration, LLOQ = lower limit of quantification, n = number of aliquots, 
RE = relative error, CV = coefficient of variation, and ANOVA = analysis of variance.  

Inaccuracy 
and  

imprecision: 

CLZD 
nominal 
[µg/mL] 

Measure of  
imprecision: 

CV, % 

Measure of  
inaccuracy: 

RE, % 

ANOVA 
 
 

0.2 (= LLOQ) 3.03 +2.30 - 

0.5 4.74 +0.64 - 

10.0 3.48 +3.89 - 
within-day 

(n = 5) 

25.0 2.35 +6.96 - 

0.2 (= LLOQ) 5.30 -1.20 p = 0.05 

0.5 3.80 +0.03 p = 0.39 

10.0 3.00 +3.07 p = 0.28 
between-day 

(n = 3 × 5) 

25.0 5.30 +3.10 p = 0.13 

 

3.1.2 Measurement of linezolid samples 

The LZD samples from the static and dynamic in vitro model were successfully 

analysed by the validated HPLC assay. LZD samples with concentrations > ULOQ 

(≈ 4%) were diluted 1+1 with H2O during sample preparation, according to the 

preparation method for LZD plasma samples, developed at the Dept. of Clinical 

Pharmacy [98]. 
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3.1.2.1 Linezolid samples from the static in vitro model 

3.1.2.1.1 Preliminary stability investigation 

The results from the preliminary stability investigation of LZD inside the static in vitro 

system were summarised by the medians and ranges of the calculated relative 

stability (see  7.2, Fig. 28). For both investigated LZD concentrations (nominal 

CLZD = 0.5 µg/mL and 10.0 µg/mL) the relative stability was determined as 92.5% -

110.2% (with bacteria) and 86.4% - 106.2% (without bacteria), over 48 h. Thus, LZD 

was considered as stable in the utilised in vitro system. 

3.1.2.1.2 Main experiments 

For the main experiments with the static in vitro model, mean LZD concentrations of 

all three experiments were calculated (Tab. 6). The measured LZD concentrations 

differed only slightly from the respective nominal LZD concentrations (RE = +2.3% -

+6.7%) and showed only a low amount of variability (CV = 0.04% - 4.2%). Within the 

same in vitro experiment, the LZD concentrations measured at t = 0 h and 24 h 

showed relative differences of -9.7% - +10.2% (median = -0.5%) referring to the 

respective LZD concentration at t = 0 h. Hence, the constant LZD exposure in the 

static in vitro model was considered as reproducible.  

 

Tab. 6 Measured linezolid (LZD) concentrations from the static in vitro model, with 
CLZD = LZD concentration, n = number of aliquots, CV = coefficient of variation, and 
RE = relative error.  

CLZD measured (n = 3)  CLZD nominal  
[µg/mL] mean [µg/mL] CV, % RE, % 

0.5 0.5 4.23 4.44 

1.0 1.0 3.34 2.29 

2.0 2.1 3.16 4.05 

4.0 4.2 1.66 3.96 

8.0 8.5 0.04 6.10 

16.0 17.1 0.44 6.74 

32.0 33.3 2.40 4.01 
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3.1.2.2 Linezolid samples from the dynamic in vitro model 

3.1.2.2.1 Preliminary investigation 

The preliminary investigation using the dynamic in vitro model (without bacteria) 

showed that LZD samples taken through the membrane filter unit were biased 

compared to samples taken directly through the flask neck. The LZD concentrations 

of the ‘filter’ samples were always lower compared to samples taken directly, for all 

three investigated concentration-time courses. In contrast, the directly taken samples 

provided optimal exponentially decreasing LZD concentration-time courses (see  7.2, 

Fig. 29). Thus, it was necessary to calculate an empirical correction factor/function 

(Fcorr) for the ‘filter’ samples of the main experiments. The observed differences 

between the respective LZD concentration-time profiles of the two sample types 

seemed to be proportional to the parameter C0, i.e. the initial LZD concentration at 

t = 0 h. Hence, the measured differences were normalised by C0, i.e. divided by the 

respective C0 value [117]. Subsequently, a mathematic correction was applied for the 

normalised differences. Here, the first three data points (i.e. at t = 0, 0.67 and 1.33 h) 

were corrected by individual factors of Fcorr = 0.889, 0.301 and 0.131, respectively, 

whereas for the rest of the data points (i.e. for t = 2 - 12 h) a time-dependent mono-

exponential correction function was used:  

  Fcorr(t) = 0.301 · e-0.131 1/h · t, 

which was fitted via Excel’s log-linear regression tool. The curve fitting for the 

normalised differences provided r2 = 0.889 and a symmetrically distributed goodness 

of fit plot (see  7.2, Fig. 30). 

3.1.2.2.2 Main experiments 

The analysed LZD samples from the main experiments, using the dynamic in vitro 

model, were summarised by the respective median LZD concentrations which were 

corrected by Fcorr and Fcorr(t) (Fig. 14). Thereafter, the PK parameters C0 and t1/2 were 

calculated from the corrected LZD concentration-time courses (Tab. 7), and 

compared with the expected values (see  2.4.4, Tab. 1). The curve fitting was applied 

via Excel’s log-linear regression tool. Here, the calculated parameter values of C0 

showed only little deviations from the expected values of C0 = 5.0, 10.0, 15.0 and 

17.0 µg/mL (RE = -4.6% - +2.1%). In contrast, the values for the parameter t1/2 
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showed relative large deviation (RE = +26.3 - +37.9%) from the expected values of 

t1/2 = 4 h. 
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Fig. 14 Corrected linezolid (LZD) concentration-time courses obtained from the main 
experiments using the dynamic in vitro model, imitating three intravenous (i.v.) bolus 
injections (green, blue and red data points) and an i.v. bolus injection plus 6 h continuous 
infusion (purple data points, with a dashed black line during steady state), using log-linear 
regression (black solid lines), showing the respective regression model equations with 
y = LZD concentration, x = time, and R2 = coefficient of determination. 

 

Tab. 7 Calculated pharmacokinetic parameters for the in vitro simulated linezolid (LZD) 
concentration-time profiles, with C0 = initial LZD concentration at t = 0 h, t1/2 = half-life, 
Ti = duration of infusion and CSS = LZD steady state concentration.  

Pharmacokinetic parameters In vitro simulated  
route of drug administration C0 [µg/mL] t1/2 [h] Ti [h] 

i.v. bolus injection 4.8 5.4 - 

i.v. bolus injection 9.5 5.5 - 

i.v. bolus injection 14.3 5.5 - 

i.v. bolus injection with  
continuous infusion 

17.3 
(= CSS) 5.1 6.0 
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3.2 Microbiology - in vitro pharmacodynamics of linezolid 

3.2.1 Preliminary investigations 

The results for the stability of LZD within the static in vitro model are presented in the 

HPLC measurement section (see  3.1.2.1.1). The bacterial survival of S. aureus in the 

two investigated diluents PBSP and 0.85% saline is summarised in Fig. 31 (see  7.2). 

The percentaged bacterial survival rates (median with range) in PBSP were 

calculated as 100.1% (99.3% – 101.3%) after 30 min and 101.1% (100.6% - 101.6%) 

after 1 h, with 100% at t = 0 h. For comparison, the maximum required duration for 

bacterial sample preparation during the main experiment was < 45 min. Hence, the 

S. aureus strain used here was stable in the utilised dilution fluid. In contrast, the 

survival rates in 0.85% saline were decreased to 99.3% (98.1% - 101.2%) after 

30 min and 97.5% (96.2% - 100.1%) after 1 h, with 100% at t = 0 h. Moreover, when 

using only saline as diluent, the colonies on agar were often unsymmetrically 

distributed, causing difficulties in visual colony counting. For comparing the bacterial 

survival of S. aureus in the two investigated diluents, the one-way ANOVA (α = 0.05, 

n = 2 х 55) provided a p-value = 1.921·10-8, i.e. < 0.05. Thus, the observed difference 

between the two diluents was statistically significant. 

In addition, the potential bacterial loss during sample preparation via the 

centrifugation method was investigated in comparison to direct plating. Here, a slight 

trend was graphically detected (see  7.2, Fig. 32). For low bacterial concentrations 

(≈ 1·102 cfu/mL = LLOQ), the centrifugation method obtained slightly higher, i.e. 

‘better’ results, whereas this method provided slightly underdetermined results for 

high bacterial concentrations (≈ 1·105 cfu/mL). Hence, in the main experiments the 

centrifugation method was only utilised for bacterial samples with 1·102 -

2·104 cfu/mL. Moreover, the average ratio of the geometric means of the bacterial 

concentrations, for both methods, was calculated as 1.0, i.e. on average both 

methods showed equal results. Furthermore, the one-way ANOVA (α = 0.05) using 

the log-transformed bacterial concentrations (n = 19 vs. 20), provided a p-

value = 0.513, i.e. > 0.05. Thus, no statistically significant difference was found 

between these two methods. Overall, the results from these preliminary 

investigations confirmed the methodology used in this in vitro study. 
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3.2.2 Static in vitro model – descriptive data analysis 

3.2.2.1 Minimum inhibitory concentration and time-kill curves 

The MIC of LZD at 18 h and 24 h was determined as 2 mg/L and 4 mg/L, respec-

tively, in all experiments.  

The time-kill curves (Fig. 15) revealed that CLZD > 17.1 µg/mL were bactericidal, 

CLZD = 4.2 - 8.5 µg/mL were bacteriostatic and at CLZD < 2.1 µg/mL bacterial growth 

was observed. Moreover, different phases were found: Initially, the GC showed 

exponential growth (log phase) up to 4 - 6 h and subsequently changed into the 

stationary phase. For CLZD > 4.2 µg/mL, a lag phase of ≈ 1 h followed by a killing 

phase up to 4 - 6 h, were observed. At the end of the killing phase, bacteria changed 

into a persisting phase with very little or no killing and without significant (re-)growth. 

In contrast, at CLZD < 2.1 µg/mL, no relevant killing (phase) was found. Nevertheless, 

these LZD concentrations significantly reduced the exponential bacterial growth 

(prolongated log phase) compared to the GC. 
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Fig. 15 Time-kill curves for the static in vitro model: In vitro survival and growth of S. aureus 
(ATCC 29213) for 7 different constant linezolid concentrations (C) and growth control, data 
points of the interpolated curves represent the geometric means of the bacterial 
concentrations (N(C,t)), and the error bars refer to the corresponding CI95%. 
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3.2.2.2 Relative bacterial reduction 

To investigate the net antibacterial effect of LZD, the RBR for S. aureus was 

calculated and plotted against the LZD concentration and LZD exposure time:  

The LZD concentration-effect relationship was illustrated for ten different time points 

(Fig. 16 a). These curves showed a hysteresis loop [48, 135, 136], indicating a 

distinctive increase of the effect over time, particularly for CLZD > 4.2 µg/mL. Here, the 

time-dependent increase of the effect predominantly occurred during the first 6 h of 

LZD exposure. Moreover, these curves revealed that CLZD ≈ 17 µg/mL was sufficient 

to provide almost the maximum effect. There was no relevant increase of the effect at 

higher LZD concentrations. Nevertheless, the maximum RBR of 78% was found for 

CLZD = 33.3 µg/mL at 24 h.  

Furthermore, the steepness of the LZD concentration-effect curves was continuously 

increasing over time (see also  3.3.4). Up to 6 h, hyperbolic curves were observed, 

whereas sigmoidal curves with increasing steepness were noticed for t > 8 h. As a 

result of the increasing steepness, the effect of CLZD < 2.1 µg/mL was at first 

increasing within the first 4 - 6 h, but subsequently decreasing. In addition, for t > 6 h 

an intersection of the interpolated concentration-effect curves was found at 

CLZD = 3.5 µg/mL and RBR = 44%, i.e. about the half of the maximum observed effect 

(Fig. 16 b). This intersection indicated the lowest LZD concentration that provided no 

decrease of the effect up to 24 h, i.e. it maintained the antibacterial effect that has 

been reached within the first 6 h.  

Moreover, for investigating the effect-time relationship, the RBR was plotted against 

the exposure time of LZD, for the seven investigated LZD concentrations (Fig. 17). 

Here, slightly sigmoidal effect-time courses were observed for CLZD > 4.2 µg/mL, 

reaching the plateau at ≈ 6 h. In contrast, for LZD concentrations of < 2.1 µg/mL the 

effect-time courses showed an initial increase in the effect with a maximum at 4 - 6 h, 

but decreased thereafter. However, a LZD concentration of 2.1 µg/mL provided a 

plateau-like phase between 6 h and 12 h, before the effect finally decreased. Thus, 

for all investigated LZD concentrations, a ‘temporal dissociation’ of 4 - 6 h was found 

between the drug administration and reaching the maximum or plateau phase of the 

effect, respectively. 
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Fig. 16 Relative bacterial reduction (RBR) of S. aureus (ATCC 29213) vs. linezolid (LZD) 
concentration for different LZD exposure times (t): (a) for all investigated LZD concentrations 
and (b) a cut-out of lower LZD concentrations: the arrow and the black dashed lines indicate 
the intersection mentioned in the text.  

b 

a 



3 Results  56 

 

0

5

10

15

20

25

30

35

0 6 12 18 24

Time [h]

Li
ne

zo
lid

 c
on

ce
nt

ra
tio

n 
[µ

g/
m

L]

0

10

20

30

40

50

60

70

80

90

100

R
el

at
iv

e 
ba

ct
er

ia
l r

ed
uc

tio
n 

(R
B

R
), 

%

C= 33.3 µg/mL

C= 17.1 µg/mL

C= 8.5 µg/mL

C= 4.2 µg/mL

C= 2.1 µg/mL

C= 1.0 µg/mL

C= 0.5 µg/mL

 

Fig. 17 Relative bacterial reduction (RBR) of S. aureus (ATCC 29213) vs. linezolid (LZD) 
exposure time for seven different LZD concentrations (C), additionally showing the measured 
LZD concentrations (dashed lines in the respective same colour as the RBR-time course).  

 

3.2.2.3 Phenotypic variants of Staphylococcus aureus  

During the ‘static’ in vitro experiments, varying colony morphologies were observed 

on MHBA plates. At CLZD < 4.2 µg/mL, colonies showing beta-haemolysis, i.e. a zone 

of clearing in the blood agar in the area surrounding a colony [20], and similar size as 

the GC were found, for all investigated time points. However, at CLZD > 8.5 µg/mL, 

colony size and appearance of beta-haemolysis changed over time: At the beginning, 

the colony size and the haemolysis zone were equal to the GC. However, within the 

killing phase, three different colony morphotypes with and without haemolysis zones 

were observed: normally growing, smaller and tiny colonies (Fig. 18). During the 

following persisting phase, predominately small and tiny colonies with reduced or 

without haemolysis zones and low pigmentation were found. The amount of the tiny 

colonies slightly increased, if the incubation time was extended to 48 h. Most of the 

small and tiny colony variants provided a negative latex slide agglutination test. 

However, when these colonies were subcultured on agar at 36 °C for another 24 h 

they exhibited normal colony morphology, haemolysis and a positive agglutination 

test. 
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Fig. 18 Three different colony morphotypes of S. aureus (ATCC 29213) observed at linezolid 
concentrations > 8.5 µg/mL during the killing phase. Bacteria were grown on Mueller-Hinton 
blood agar at 36 °C for 24 h: normal colony (—>), smaller colony (–  –>), and tiny colony with 
low pigmentation (·····>).  

 

3.2.3 Dynamic in vitro model – descriptive data analysis 

3.2.3.1 Time-kill curves 

The time-kill curves (Fig. 19) revealed the antibacterial activity of the four investigated 

LZD concentration-time profiles, against S. aureus: For all LZD exposure profiles, a 

lag phase of ≈ 1 h followed by a killing phase up to 4 - 6 h were observed. In case of 

C0 = 4.8 µg/mL, the bacterial killing was below one log unit, whereas the other 

profiles with C0 > 9.5 µg/mL provided bacterial killing of > 2 - < 3 log units. However, 

none of the investigated LZD profiles provided a reduction of > 3 log units. During the 

killing phase, the slope of the respective time-kill curves was increasing with 

increasing values of C0. Thus, a LZD concentration-dependency of bacterial killing 

was found here.  

At the end of the killing phase, a persisting phase followed with no further killing and 

no or only limited (re-)growth. Considering the three LZD profiles imitating i.v. bolus 

injections, the tendency for (re-)growth was also dependent on the respective value 
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of C0: For C0 = 14.3 µg/mL no evidence for (re-)growth was found, whereas 

C0 = 9.5 µg/mL showed a certain tendency for (re-)growth at t = 8 - 12 h. In case of 

C0 = 4.8 µg/mL, the bacterial concentration measured a t = 12 h was approximately 

equal to the inoculum. However, for both latter mentioned LZD profiles, the increase 

in bacterial concentration was below one log unit. 
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i.v. bolus injection plus 6 h continuous
infusion with C0= Css= 17.3 µg/mL

 

Fig. 19 Time-kill curves for the dynamic in vitro model: In vitro survival and growth of S. 
aureus (ATCC 29213) for four different linezolid (LZD) concentration-time profiles and growth 
control, showing the geometric means of the bacterial concentrations (N(C,t)), error bars 
referring to the corresponding CI95%, with C0 = initial LZD concentration and Css = steady 
state LZD concentration.  

 

In contrast, the LZD exposure profile imitating an i.v. bolus injection plus 6 h 

continuous infusion with C0 = Css = 17.3 µg/mL, showed an unexpected ‘high’ 

tendency for (re-)growth. Despite its high antibacterial activity during the killing 

phase, the measured bacterial concentration at t = 12 h was the same as found for 

the LZD exposure profile with C0 = 9.5 µg/mL. In case of C0 = Css = 17.3 µg/mL,  

(re-)growth started at t = 6 - 8 h, i.e. directly after starting the stepwise dilution of 

medium. However, the observed increase in bacterial concentration was also below 

one log unit. Overall, the four investigated LZD concentration-time profiles achieved 

bacteriostatic activity concerning the investigated 12 h interval.  
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For comparing the growth conditions, i.e. the bacterial growth without LZD exposure, 

in the static and dynamic in vitro model, the bacterial concentrations N(C=0,t) of the 

respective GCs were directly compared for seven different time points (see  7.2, Fig. 

33). At t = 0 and t = 8 - 12 h the respective CI95% crosses the line of identity. Thus, for 

these time points no difference was found between the two in vitro models. However, 

for the time interval t = 2 - 6 h, i.e. during the log phase, little deviations were found. 

Here, the bacterial concentrations from the dynamic in vitro model were slightly 

lower. Nevertheless, the one way ANOVA (α = 0.05), using the log-transformed 

average bacterial concentrations (n = 2 х 7), provided a p-value = 0.867, i.e. > 0.05. 

Thus, the graphically observed difference was not statistically significant. 

3.2.3.2 Relative bacterial reduction 

To determine the net antibacterial effect of the four investigated LZD concentration-

time profiles, the RBR for S. aureus was calculated and plotted vs. LZD exposure 

time (Fig. 20). Here, slightly sigmoidal shaped effect-time courses were observed, 

reaching the plateau at ≈ 6 h.  

Considering the three LZD profiles imitating i.v. bolus injections (Fig. 20 a), the 

plateau phase was stable in case of C0 = 14.3 µg/mL, whereas for C0 < 9.5 µg/mL 

the effect slightly decreased between t = 8 - 12 h. After 12 h, the respectively 

performed RBR was 64.4% for C0 = 14.3 µg/mL, 56.3% in case of C0 = 9.5 µg/mL 

and 40.4% for C0 = 4.8 µg/mL. Thus, the latter mentioned profile provided a final 

effect < 50%. Furthermore, when comparing the observed effect-time courses with 

the respective LZD exposure-time profiles (dashed curves in Fig. 20 a), 

‘countermoving’ profiles were observed, i.e. while the LZD concentration was 

decreasing, the respective effect was increasing. Thus, in contrast to the results from 

the static in vitro model (see  3.2.2.2, Fig. 17), the ‘dissociation’ between the time 

courses of the measured LZD concentration and the respectively observed effect, 

was found throughout the total investigated time period of 12 h. 

In case of the LZD exposure profile imitating an i.v. bolus injection plus continuous 

infusion with C0 = Css = 17.3 µg/mL (Fig. 20 b), a by trend ‘instable’ plateau phase 

was found, due to the previously mentioned unexpected tendency for (re-)growth 

(see  3.2.3.1). After 12 h, the observed RBR was 56.2%, similar as for the i.v. bolus 

injection with C0 = 9.5 µg/mL. 
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Fig. 20 Relative bacterial reduction (RBR) of S. aureus (ATCC 29213) vs. linezolid (LZD) 
exposure time for (a) the three imitated intravenous (i.v.) bolus injections, and (b) the i.v. 
bolus injection plus 6 h continuous infusion, additionally showing the measured LZD 
concentration-time profiles (dashed curves in the respective same colour as the RBR-time 
course), with C0 = initial LZD concentration and Css = steady state LZD concentration.  

 

a 

b 
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In addition, the RBR from all four ‘dynamic’ LZD exposure profiles were plotted vs. 

the respective LZD concentrations in Fig. 21. In this plot, each curve represents the 

LZD concentration-effect relationship at different time points. These curves showed a 

hysteresis loop, similar as observed from the static in vitro model (see  3.2.2.2), 

revealing a distinctive increase of the effect over time. This time-dependent increase 

of the effect predominantly occurred during the first 6 h of LZD exposure.  

Moreover, for t = 10 - 12 h the terminal part of the LZD concentration-effect curves 

crossed the curves from the two previous time points (t = 6 – 8 h). These overlaps 

were caused by the (two terminal) data points from the LZD exposure profile imitating 

an i.v. bolus injection plus continuous infusion with C0 = Css = 17.3 µg/mL, which 

showed an unexpected tendency for (re-)growth (see  3.2.3.1). 
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Fig. 21 Relative bacterial reduction (RBR) of S. aureus (ATCC 29213) vs. linezolid (LZD) 
concentration for different LZD exposure times (t), obtained from the dynamic in vitro model. 

 

3.2.3.3 Pharmacokinetic/pharmacodynamic parameters 

As in vitro PD outcome, the area under the respective RBR effect-time curve after 

12 h (AUCE(12h)) was calculated and presented (Tab. 8) together with the three PK/PD 

indices, i.e. Cmax/MIC, AUC12h/MIC and tC>MIC.  
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Tab. 8 Descriptive pharmacokinetic/pharmacodynamic (PK/PD) analysis for the four 
investigated linezolid (LZD) concentration-time profiles, with C0 = initial LZD concentration at 
t = 0 h, CSS = LZD steady state concentration, Cmax = maximal LZD concentration, MIC = 
minimum inhibitory concentration (at 24 h), AUC12h = area under the LZD concentration-time 
curve after 12 h, tC>MIC = time with the LZD concentration > MIC, and the in vitro 
pharmacodynamic (PD) outcome AUCE(12h) = area under the effect-time curve after 12 h.  

 

Considering the results from the three i.v. bolus injections, the correlation analysis 

showed a high degree of (log-linear) correlation between AUCE(12h) and log(Cmax/MIC) 

(r2 = 0.9755), log(AUC12h/MIC) (r2 = 0.9764), and log(tC>MIC) (r2 = 0.9989), respect-

tively (see  7.2, Fig. 34). Moreover, the respectively administered LZD dose (D) 

showed a perfect (linear) correlation with the AUC12h (r2 = 1.000), as expected for a 

linear one CMT model [132]. 

When including the i.v. bolus injection plus continuous infusion, the log- 

linear correlation analysis provided r2 = 0.8941 for Cmax/MIC, r2 = 0.7061 for 

AUC12h/MIC, and r2 = 0.9742 in case of tC>MIC (see   7.2, Fig. 35). Thus, overall the 

PK/PD index tC>MIC showed the highest degree of linear correlation with the in vitro 

PD outcome AUCE(12h). Furthermore, the respective correlation between D and the 

AUC12h was also very high with r2 = 0.9963, as expected. 

3.2.3.4 Phenotypic variants of Staphylococcus aureus  

During the ‘dynamic’ in vitro experiments also different colony morphotypes of S. 

aureus were observed on MHBA plates. Regarding the three imitated i.v. bolus 

injections, for C0 = 4.8 µg/mL, colonies showing beta-haemolysis and similar size as 

the GC were found. However, for C0 > 9.5 µg/mL, colony size and appearance of 

PK/PD indices In vitro PD outcome In vitro simulated  
route of drug 

administration Cmax/MIC 
[-] 

AUC12h/MIC 
[h] 

tC>MIC  
% 

AUCE(12h) 
[% · h] 

i.v. bolus injection 
(C0 = 4.8 µg/mL) 1.2 7.4 12.0 417.8 

i.v. bolus injection 
(C0 = 9.5 µg/mL) 2.4 14.8 57.7 559.5 

i.v. bolus injection 
(C0 = 14.3 µg/mL) 3.6 22.2 84.5 601.3 

i.v. bolus injection with  
6 h continuous infusion 
(C0 = Css = 17.3 µg/mL) 

4.3 43.6 100 584.0 
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beta-haemolysis changed over time: During the lag phase, the colony size and the 

haemolysis zone were equal to the GC. However, at t = 2 – 3 h, a mixture of different 

colony morphotypes with and without haemolysis zones occurred, similar as 

previously mentioned for the static in vitro model (see  3.2.2.3). Thereafter, the 

fraction of small and tiny colonies was dominant, up to 12 h. 

In case of the LZD exposure profile imitating an i.v. bolus injection plus continuous 

infusion with C0 = Css = 17.3 µg/mL, also a mixture of these three colony 

morphotypes occurred at t = 2 – 3 h. However, here the fraction of small and tiny 

colonies was increasing up to t = 6 h, and subsequently disappeared completely. 

Thus, between t = 8 – 12 h, only normally growing colonies were observed. 

3.3 Pharmacokinetic/pharmacodynamic modelling 

Based on the ‘sigmoidal’ Emax model (see  2.5.1.2) as structural model, a final PK/PD 

model (see  3.3.4) was successfully developed to mathematically characterise the net 

antibacterial effect of LZD, i.e. the RBR (see  2.4.6.2) of S. aureus investigated under 

various LZD exposure profiles in the static and dynamic PD in vitro model.  

3.3.1 Model development for data set I 

3.3.1.1 ‘Sigmoidal’ Emax model 

Firstly, the parameters of the structural model were fitted to data set I containing only 

the data obtained from the static in vitro model, with C = Cp referring the constant 

LZD concentration in MHB, i.e. in the central CMT. For this direct link model 

approach [50], the measured LZD concentration in the central CMT was directly 

linked to the LZD concentration at the ‘effect site’, assuming that the equilibrium 

between both concentrations was rapidly achieved. 

The structural model enabled to approximately describe the LZD concentration-effect 

relation observed at t = 6 – 24 h. However, due to the lack of the inclusion of ‘time’ in 

this model, the observed time dependency of the effect at t = 0 – 6 h, i.e. the 

hysteresis loop in the LZD concentration-effect course (see  3.2.2.2, Fig. 16) and the 

‘temporal dissociation’ between the time course of LZD concentration and its effect 

(see  3.2.2.2, Fig. 17), was unconsidered with this first model approach.  
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3.3.1.2 Modified ‘sigmoidal’ Emax model 

The next step was the implementation of a mathematic term that incorporates ‘time’ 

(t) in the structural model, leading to time-varying PD model parameters. This was 

accomplished via multiplication of each PD model parameter by the empirical first-

order ‘time delay’ term: (1 - e-α · t) [104, 137-141], where α refers to a first-order rate 

constant that determined the magnitude of ‘time delay’ of the respective PD model 

parameter. Thus, during the model development, each PD model parameter of the 

structural model, i.e. Emax, EC50 and H, was adapted by an individual ‘time delay’ term 

with α = ae, be and ze, respectively (eq. R1 and R1a-c).  

( ) ( ) ( )

( ) ( ) ( )tH
p

tH

tH
p

CtEC

CtE
tE

+

⋅
=

50

max  eq. R1 

( ) ( )taeeEtE ⋅−−⋅= 1maxmax  eq. R1a 

( ) ( )tbeeECtEC ⋅−−⋅= 15050  eq. R1b 

( ) ( )tzeeHtH ⋅−−⋅= 1   eq. R1c 

Due to the implementation of the three ‘time delay’ terms, the value of AICC was 2.5-

fold reduced in comparison to the structural model (see  3.3.3). Using Akaike’s 

weights for directly comparing the newly developed model with the structural model, 

the probalistic ‘superiority’ of being the relative ‘best’ model was calculated as  

1 – Pi = 100% in favour of the modified ‘sigmoidal’ Emax model. Thus, the 

incorporated ‘time delay’ on the intrinsic activity (Emax), potency (EC50) and steepness 

(H) of the effect-time course successfully improved the goodness of fit concerning 

data set I. 

3.3.2 Model development for data set I+II 

3.3.2.1 Modified ‘sigmoidal’ Emax model 

Fitting the modified ‘sigmoidal’ Emax model to data set I+II containing both the data 

obtained from the static and dynamic in vitro model, provided insufficient results 

concerning the three investigated i.v. bolus injections in terms of underestimation of 

the effect for t = 8 – 12 h. Here, asymmetrically and widely distributed residual plots 

with residuals up to 22% were found. The inappropriate prediction of the drug effect 

(i.e. the RBR) can be explained when inspecting Fig. 20 a (see  3.2.3.2): 
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Comparing the experimentally measured LZD exposure-time profiles imitating i.v. 

bolus injections with the respectively observed effect-time courses, highly 

‘countermoving’ profiles were observed, i.e. while the LZD concentration was 

decreasing, the respective effect was increasing. This observation caused problems 

in fitting the PD parameters of the modified ‘sigmoidal’ Emax model to data set I+II. 

Hence, further modifications were needed for finding a mathematic model that 

appropriately fits to the combined data set.  

3.3.2.2 Indirect link model 

To account for the mentioned ‘countermoving’ profiles of the LZD concentration-time 

courses and the respective effect-time courses, the developed modified ‘sigmoidal’ 

Emax model was extended by using an indirect link model approach. Here, a 

hypothetical effect compartment (Fig. 22) was implemented as indirect link between 

the measured LZD exposure profiles and the respectively observed effect described 

by the modified ‘sigmoidal’ Emax model. 

 

 

 

 

 

Fig. 22 Schematic depiction of the developed pharmacokinetic/pharmacodynamic model 
containing a hypothetical effect compartment (CMT) as indirect link between the 
pharmacokinetic model and the pharmacodynamic model (i.e. the modified ‘sigmoidal’ Emax 
model), parameters are described in the text.  

 

The hypothetical effect CMT was linked to the PK model (see  2.4.4.2, Fig. 9) which 

described the LZD exposure profiles investigated in the static and dynamic in vitro 

model. The implementation of the effect CMT did not affect the mass balance of the 

respective PK model, and only described the assumed LZD concentration-time 

course at the ‘effect site’ [47, 56]. The ‘hypothetical’ drug transfer into the effect CMT 

was assumed to follow a first-order process, described by the rate constant kie. 

However, as the transferred mass into the effect CMT was negligible compared to the 

PK model, the magnitude of kie was also negligible. Hence, the equilibration process 

Central
CMT
(Cp)

Effect
CMT
(Ce)

keo

kie Drug 
Effect (E)

Mod. sig. 
Emax model

ke

Drug
input

Central
CMT
(Cp)

Effect
CMT
(Ce)

keo

kie Drug 
Effect (E)

Mod. sig. 
Emax model

ke

Drug
input



3 Results  66 

 

between the central CMT and the effect CMT was determined only by the first-order 

rate constant keo that described the ‘hypothetical’ drug transfer (i.e. elimination) out of 

the effect CMT. The latter transfer process was not directed into the central CMT, 

and thus did not influence the LZD concentration in the central CMT (Cp). The LZD 

concentration in the effect CMT (Ce) was determined by the initial LZD concentration 

(C0) or the LZD concentration at steady state (Css), respectively, and the rate 

constants ke and keo describing the drug elimination from the central CMT and the 

effect CMT, respectively [1, 50]. 

3.3.2.2.1 Drug concentration at the ‘effect site’ 

For data set I obtained from the static in vitro model with Cp = C0 = constant and thus 

ke = 0, the respectively assumed LZD concentration at the ‘effect site’ was calculated 

via eq. R2. 

( ) ( )tk
e

eoeCtC ⋅−−⋅= 10   eq. R2 

Here, the parameter keo was related to the equilibrium time (teq,) which described the 

time interval until Ce(t) approximately reached (97% of) C0 (eq. R2a) [47]. 

( )
eo

eq k
t 25 ln

⋅≈    eq. R2a 

In case of the three i.v. bolus injections imitated in the dynamic in vitro model, Ce(t) 

was calculated via eq. R3 [1, 50, 57]. 

( ) ( ) ( )tktk

eeo

eo
e

eoe ee
kk

kCtC ⋅−⋅− −⋅
−
⋅

= 0  eq. R3 

Here, the parameters ke and keo determined the time point te,max when the maximum 

of Ce(t) was reached (eq. R3a) [47, 57]. 

( )eeo

e

eo

e kk
k
k

t
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
ln

max,   eq. R3a 

Concerning the i.v. bolus injection plus continuous infusion (with C0 = Css) imitated in 

the dynamic in vitro model, eq. R4 and R4a were applied to calculate Ce(t) and te,max. 

( ) ( ) ( ) ( ) ( )[ ]tktk
eo

tkTk
e

tkTk
eo

eeo

SS
e

eoeeoieoeie eekeekeek
kk

CtC ⋅−⋅−⋅−⋅⋅−⋅ −⋅+⋅−⋅−⋅−⋅⋅
−

= 11  eq. R4 
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Eq. R2 – 4a were derived via Laplace transform (see  7.3.5.1) and the GPF theorem 

(see  7.3.5.2), which can be found in the Appendix (see  7.4). 

3.3.2.2.2 Drug effect 

The observed drug effect E(t) was described by the modified ‘sigmoidal’ Emax model 

using Ce(t), i.e. the assumed LZD concentration at the ‘effect site’, as independent 

variable (eq. R5) instead of the (measured) LZD concentration in the central CMT. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )tH
e

tH

tH
e

tCtEC
tCtEtE

+
⋅

=
50

max  eq. R5 

The sub functions Emax(t), EC50(t) and H(t) are described by eq. R1a-c (see  3.3.1.2). 

3.3.3 Model comparison 

For comparing the three (developed) nested models, i.e. the (structural) ‘sigmoidal’ 

Emax model (see  3.3.1.1), the modified ‘sigmoidal’ Emax model (see  3.3.1.2) and the 

indirect link model (see  3.3.2.2), utilised for modelling data set I, the respective AICC 

values were calculated (see  7.1, Tab. 14). Here, the indict link model provided the 

lowest AICC value, and thus this model represented the ‘best’ model investigated for 

data set I.  

Furthermore, Akaike’s weights were applied for estimating the probability (Pi) of being 

the ‘best’ model (see  7.1, Tab. 14). The respective probalistic ‘superiority’ (1 – Pi) of 

the ‘best’ model, i.e. concerning the indirect link model, was calculated as 100% 

(compared to the structural model) and 97.1% (compared to the modified ‘sigmoidal’ 

Emax model), respectively. Hence, the likelihood of being the ‘best’ model investigated 

for data set I was > 97.1% in favour of the indirect link model. 

For modelling data set I+II, the AICC values for the three investigated nested model 

approaches are presented in Tab. 15 (see  7.1). Here, the indirect link model also 

showed the lowest AICC value and thus represents the ‘best’ model investigated for 

data set I+II. Using Akaike’s weights provided a probalistic ‘superiority’ for the indirect 

link model of 100%, compared to both the structural model and the modified 
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‘sigmoidal’ Emax model. Thus, overall the indirect link model was selected as final 

PK/PD model. 

3.3.4 Final model 

3.3.4.1 Estimated parameter values 

For both data sets, the estimated parameter values of the final PK/PD model, i.e. the 

indirect link model (see  3.3.2.2), are presented in Tab. 9. The calculated CI95% 

revealed that the parameter estimates of Emax, H, ae and ze did not differ concerning 

modelling data set I and data set I+II. However, the parameter estimates of EC50, be 

and keo showed significant differences between the modelling of the two data sets.  

 

Tab. 9 Estimated parameter values of the final pharmacokinetic/pharmacodynamic model, 
showing the estimated values and the respective 95% confidence intervals (CI95%) for 
modelling data set I and data set I+II, CI95% that are not overlapping are signed (*), model 
parameters are described in  3.3.2.2.  

For data set I (n= 88) For data set I+II (n= 128) 

Model parameter Estimate CI95% Estimate CI95% 

Emax, % 74.389 71.738 – 77.526 73.586 69.453 – 79.158 

EC50 [µg/mL] 3.084 2.750 – 3.417* 5.994 5.069 – 6.963* 

H [-] 1.888 1.630 – 2.147 1.975 1.484 – 2.223 

keo [h-1] 0.387 0.362 – 0.621* 0.113 0.094 – 0.168* 

ae [h-1] 0.448 0.424 – 0.504 0.430 0.411 – 0.502 

be [h-1] 0.118 0.117 – 0.187* 0.026 0.024 – 0.039* 

ze [h-1] 0.136 0.110 – 0.161 0.131 0.110 – 0.193 

 

As data set I+II contained all experimental data, these parameter values were used 

for the in silico simulation (see  3.4). Here, the estimated value for Emax was below 

100%, as expected for a predominantly bacteriostatic acting antibiotic (see  4.2.2.3). 

For EC50, the estimated value was 1.5 - 3-fold higher as the MIC24h and MIC18h, 

respectively (see  3.2.2.1). In case of the ‘steepness’ parameter H, the estimated 

value was approximately equal to 2, resulting from the sigmoidal shaped LZD 

concentration-effect curves for t > 8 h observed in the static in vitro model (see 

 3.2.2.2, Fig. 16). The estimated values for the three first-order rate constants ae, be 

and ze clearly showed different magnitudes, with ae > ze > be. The resulting time 
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courses of the three sub functions Emax(t), EC50(t) and H(t) are presented in Fig. 36 

(see  7.2). All three curves showed a hyperbolic shape, as expected from the 

underlying mathematic equations (see  3.3.2.2.2), reaching their plateau values (i.e. 

Emax, EC50 and H, see Tab. 9) after about 8.1 h, 5.6 days, and 26.5 h for Emax(t), 

EC50(t) and H(t), respectively.  

The estimated value for the parameter keo was of similar magnitude as the value of 

ze. As seen from the correlation matrix (see  7.1, Tab. 16) for modelling the combined 

data set (I+II), these two parameters showed the ‘highest’ correlation with r = 0.725. 

Overall, the correlation matrix provided r-values ranging from -0.663 to 0.725, which 

revealed that there were no highly correlated relations between the parameters of the 

final PK/PD model. Hence, the combined data set (I+II) defined the final PK/PD 

model unambiguously, i.e. this model was not over-parameterised [117]. 

3.3.4.2 Drug concentration-time courses at the ‘effect site’ 

The model-predicted LZD concentration-time courses at the ‘effect site’ (Ce(t)) are 

shown in Fig. 23 together with the respective LZD concentration-time profiles 

measured in the central CMT (Cp(t)). For the constant LZD exposure profiles 

investigated in the static in vitro model (Fig. 23 a), the time courses of Ce(t) (see 

 3.3.2.2.1, eq. R2) were hyperbolically increasing, drawing near the respective 

constant LZD concentration in the central CMT with Cp(t) = C0. The equilibrium time 

teq, where Ce(teq) ≈ Cp(teq), was calculated as ≈ 30 h, and was irrespective of the 

magnitude of C0 (see  3.3.2.2.1, eq. R2a). 

In case of the three imitated i.v. bolus injection profiles with C0 = 4.8, 9.5 

and 14.3 µg/mL (Fig. 23 b), Cp(t) and Ce(t) showed ‘countermoving’ profiles 

during the first eight hours. The respective maximum of Ce(t) (Ce,max) was reached at 

te,max = 8.3 h, with Ce(te,max) = Cp(te,max) = 1.7, 3.3 and 5.0 µg/mL, respectively. As 

expected from eq. R3a (see  3.3.2.2.1), the value of te,max was independent of C0, i.e. 

the respective initial LZD concentration in the central CMT. After reaching Ce,max, the 

LZD concentration-time courses in both CMTs were decreasing. 

For the i.v. bolus injection plus 6 h continuous infusion with C0 = Css = 17.3 µg/mL 

(Fig. 23 b), the time course of Ce(t) was firstly increasing, whereas Cp(t) kept constant 

for the first six hours. At t = te,max = 9.9 h, the time course of Ce(t) reached Ce,max, with 

Ce(te,max) = Cp(te,max) = 10.2 µg/mL, and subsequently started to decrease. Thus, 
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Ce,max occurred about two hours later compared to the three single dose i.v. bolus 

injections, but in case of the continuous infusion Ce,max was about 2 - 6-fold higher. 
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Fig. 23 Linezolid (LZD) concentration-time courses Cp(t) (measured) in the central 
compartment (CMT, dashed lines/curves) and (simulated) LZD concentration-time courses in 
the effect CMT (Ce(t), solid curves in the respective same colour) of the final 
pharmacokinetic/pharmacodynamic model, for data set I+II obtained from (a) the static and 
(b) dynamic in vitro model. 

b 

a 
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3.3.4.3 Drug effect-time courses 

The model-predicted effect-time courses are presented in Fig. 24 together with the 

experimentally obtained data points from both in vitro model approaches.  

In case of the data from the static in vitro model (Fig. 24 a), the effect of all 

investigated LZD concentrations was individually predicted by the (final) indirect link 

model, for the total time interval of 24 h. Overall, the observed effect-time courses 

resulting from the constant LZD exposure profiles, were well described by the final 

PK/PD model. 

For the data obtained from the dynamic in vitro model (Fig. 24 b), the effect of the 

four imitated i.v. LZD administrations was also individually predicted, for the 

investigated time interval of 12 h. The effect-time courses from the in vivo-like LZD 

exposure profiles were well predicted by the final PK/PD model, however, the model-

predicted effect-time courses partly differed from the experimental data, as described 

in the following section. 

3.3.4.4 Goodness of fit plots 

The GOF for the final model was graphically evaluated. Plotting the model-predicted 

RBR vs. the observed RBR from the combined data set (I+II), provided data points 

distributed close-by the line of identity (see  7.2, Fig. 37), with a high magnitude of 

linear correlation (r2 = 0.9787), as desired for mathematic modelling (see  2.5.1.6.1).  

Furthermore, the residuals plotted vs. the observed and predicted RBR (see  7.2, Fig. 

38 a and b), and vs. the LZD exposure time and the measured LZD concentration 

(see  7.2, Fig. 38 c and d), were randomly distributed around zero, as desired (see 

 2.5.1.6.1), with a partial exception: Two residual plots (Fig. 38 b and c) showed a 

slight U-pattern [125], resulting from a tendency of underestimation at t = 0 h and 4 h, 

combined with a slight overestimation from t = 40 min to 3 h (Fig. 24). Overall, the 

residuals ranged from -12.9% to +9.2% and the 5% and 95% percentiles were 

calculated as -6.9% and +4.7%, respectively. Thus, the majority of residuals showed 

magnitudes below ±7%. In total, the mathematic modelling of the combined data set 

(I+II) was judged as successful in case of the (final) the indirect link model. 
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Fig. 24 Relative bacterial reduction (RBR) of S. aureus (ATCC 29213) vs. linezolid (LZD) 
exposure time for different LZD exposure profiles, showing the observed data (points) 
obtained from (a) the static and (b) dynamic in vitro model, and the respective (final) 
pharmacokinetic/pharmacodynamic model-predicted data (curves), with C = constant LZD 
concentration, C0 = initial LZD concentration and CSS = steady state LZD concentration. 
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3.4 In silico simulation and analysis  

The developed final in vitro PK/PD model (see  3.3.4) for LZD was successfully 

combined with the previously developed (see  2.6.2) in vivo (population) PK model of 

LZD (Fig. 25). The combined (in vivo/in vitro) PK/PD model allowed the in silico 

investigation of thirteen dosing regimens for LZD, including twelve hypothetical 

dosing regimens and the standard dosing regimen of LZD (see  2.6.3, Tab. 3), via 

deterministic and stochastic simulations. Here, the effect CMT of the in vitro PK/PD 

model was mathematically linked to the central CMT of the in vivo PK model [50], via 

an ordinary differential equation (ODE) shown in eq. R6 [47, 56], 

( ) ( ) ( )( )tCtCk
dt

tdC
epeo

e −⋅=  eq. R6 

where Ce(t) and Cp(t) refer to the LZD concentration in the effect CMT (i.e. at the 

‘effect site’) and in the central CMT (i.e. in plasma), respectively, and keo is the 

elimination rate constant from the effect CMT. The mathematic derivation of eq. R6 

can be found in the Appendix (see  7.4.8).  

For the current in silico simulations, the ODE of eq. R6 was numerically solved as 

coupled system of ODEs including the ODEs of the PK model (see  2.6.2), by means 

of the fourth-order Runge-Kutta (RK4) method (see  7.3.5.3) [114, 115], using a step 

size of dt = 1 min.  

 

 

 

 

 

 

 

 

 

Fig. 25 Schematic depiction of the pharmacokinetic/pharmacodynamic model utilised for the 
in silico simulation, parameters are described in the text. 
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3.4.1 Deterministic simulation 

For the deterministic in silico simulation, treatments with LZD of 14 days were 

successfully simulated using twelve hypothetical dosing regimens and the standard 

dosing regimen of LZD (see  2.6.3, Tab. 3), without taking into account the PK IIV of 

the patient population. Instead, the population estimates (θK) of the PK parameters 

were utilised (see  2.6.2, Tab. 2). The simulated (unbound) LZD concentration-time 

courses in plasma and at the ‘effect site’, and the resulting effect-time courses are 

presented (see  7.2) together for the respective daily LZD dose of 600 mg/day (Fig. 

39), 1200 mg/day (Fig. 40), 1800 mg/day (Fig. 41) and 2400 mg/day (Fig. 42). The 

respective values of the maximal LZD concentration in plasma (Cp ss,max) and at the 

‘effect site’ (Ce ss,max) at (PK) steady state, the maximal observed effect (Epeak), the 

fluctuation of the effect at (PD) steady state expressed as the maximal (Ess,max) and 

minimal (Ess,min) effects, and the area under the effect-time course after 14 days of 

LZD therapy (AUCE(14 days)), are summarised in Tab. 10.  

 

Tab. 10 Results of the deterministic in silico simulation investigating twelve hypothetical 
dosing regimens and the standard dosing regimen (italics, bold type) for linezolid (LZD), 
showing the respective values of the maximal LZD concentration in plasma (Cp ss,max) and at 
the ‘effect site’ (Ce ss,max) at pharmacokinetic steady state, the maximal observed effect 
(Epeak), the maximal (Ess,max) and minimal (Ess,min) effects at pharmacodynamic steady state, 
and the area under the effect-time course after 14 days of LZD therapy (AUCE(14 days)).  

Daily dose  
[mg/day] 

Dosing  
regimen 

Cp ss,max 
[µg/mL] 

Ce ss,max
[µg/mL]

Epeak 
% 

Ess,max
% 

Ess,min
% 

AUCE(14 days) 
[% · h] 

600 1 × 600 mg 16.7 4.0 55.3 25.0 4.4 6024 

1200 1 × 1200 mg 27.2 8.3 64.5 49.1 13.6 12622 

1200 2 × 600 mg 18.3 6.7 59.8 41.2 29.7 13330 
1200 3 × 400 mg 15.0 6.1 57.0 37.5 33.0 12940 

1200 4 × 300 mg 14.0 6.3 57.2 39.3 36.7 13683 

1800 1 × 1800 mg 36.5 12.7 68.1 60.2 24.5 16694 

1800 2 × 900 mg 24.4 9.9 66.4 54.3 44.4 17631 

1800 3 × 600 mg 20.6 9.4 64.9 52.9 48.4 17766 

1800 4 × 450 mg 18.4 9.2 64.0 52.0 49.8 17650 

2400 1 × 2400 mg 45.1 16.7 70.0 65.3 35.2 19137 

2400 2 × 1200 mg 30.0 13.0 69.1 61.0 53.8 20012 

2400 3 × 800 mg 25.0 12.0 68.0 59.5 56.7 19924 

2400 4 × 600 mg 23.1 12.3 67.9 59.9 58.8 20153 
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The ratio of the observed maximal LZD concentrations in plasma and at the ‘effect 

site’ were found as Cp ss,max/Ce ss,max ≈ 2 – 4 (Tab. 10). The respective LZD concen-

tration-time courses reached the (PK) steady state within the first two days (see  7.2, 

Fig. 39 a - Fig. 42 a). Within this time interval, the maximal observed effects 

occurred, ranging from Epeak = 55.3% for 600 mg once daily (QD) to Epeak = 70.0% for 

2400 mg QD (see  7.2, Fig. 39 b - Fig. 42 b). After reaching the maximum, the effect-

time courses slightly decreased, and at t ≈ 5 - 6 days they reached their (PD) steady 

state. The time to reach the (PD) steady state was determined by the small value of 

the PD parameter be, i.e. ≈ 5·(ln(2)/be) = 5.6 days, and thus by the time course of 

EC50(t) (see  3.3.4.1). Hence, for all investigated dosing regimens, the steady state of 

the effect-time course occurred about 3 – 4 days delayed compared to the respective 

LZD concentration-time course.  

The magnitude of fluctuation of the effect-time courses during the (PD) steady state 

was dependent on the administered faction of the daily LZD dose. Here, the effect 

range interval (ERIss = Ess,max - Ess,min) during (PD) steady state showed values of 

ERIss = 20.6% – 35.7% for QD dosing regimens, ERIss = 7.2% – 11.5% for twice daily 

(BID) dosing regimens, ERIss = 2.8% – 4.5% for three times a day (TID) dosing 

regimens, and ERIss = 1.1% – 2.6% in case of four times a day (QID) dosing 

regimens. Hence, for TID and QID dosing regimens the fluctuation at (PD) steady 

state was below 5%. 

For the main outcome AUCE(14 days), i.e. the measure of ‘response’, a (sigmoidal) 

relation was observed towards the administered daily dose (DD) of LZD (Fig. 26). 

The observed dose-‘response’ relation was analysed via curve fitting in Excel, based 

on the ‘sigmoidal’ Emax model (see  2.5.1.2, eq. M3), with DD and AUCE(14 days) as 

independent and dependent variable, respectively, and three model parameters 

describing the maximal ‘response’ (AUCE,max = 24746 %·h), the DD producing 50% of 

the maximal ‘response’ (DD50 =1120 mg/day) and the steepness (HDD = 1.824) of the 

dose-‘response’ curve (eq. R7). 

DDDD

DD

HH

H
E

daysE DDDD
DDAUC

DDAUC
+
⋅

=
50

14
max,

)( )(   eq. R7 

The model-predicted AUCE(14 days) plotted vs. the observed AUCE(14 days), provided 

data points distributed close-by the line of identity (see  7.2, Fig. 43), with a high 
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magnitude of linear correlation (r2 = 0.9900), as desired for mathematic modelling 

(see  2.5.1.6.1).  

The dose-‘response’ relation in Fig. 26 revealed that 600 mg/day showed about  

25% of the maximal ‘response’, and 1200 mg/day (standard daily dose of LZD) was 

approximately equal to the estimated value of DD50, i.e. this dose produced (only) 

about 50% of the maximal ‘response’. Hence, the standard daily dose of LZD 

seemed to be improvable. Increasing the standard daily dose of LZD by 1/2 (i.e. 

1800 mg/day) provided a 20% increase in the ‘response’, whereas doubling the 

standard daily dose of LZD (i.e. 2400 mg/day) only showed a 30% increase in 

‘response’. Thus, the (highly) linear relation between the administered daily dose of 

LZD and the respectively observed value of AUCE(14 days), was limited up to 

1800 mg/day (with r2 = 0.9569). 
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Fig. 26 Dose-‘response’ relation for the deterministic in silico simulation, showing the 
observed area under the effect-time course after 14 days of linezolid therapy (AUCE(14 days), 
red data points) for different daily doses of linezolid, and the model-predicted dose-
‘response’ curve (black solid line). 

 

 



3 Results  77 

 

3.4.2 Stochastic simulation (Monte Carlo simulation) 

For the MCS, in total 13,000 virtual ‘in silico patients’, i.e. 1,000 for each dosing 

regimen (see  2.6.3, Tab. 3), were successfully investigated taking into account the 

interindividual variability (IIV) in the PK parameters of the patient population (see 

 2.6.2, Tab. 2). Each ‘in silico patient’ represented an individual of a virtual population 

receiving a treatment with LZD for 14 days.  

The respective distribution of individual PK parameter values of CL, V2 and V3 were 

monitored and are presented as box-and-whisker plots (box plots) in Fig. 44 (see 

 7.2), showing the respective interquartile range (IQR) as box containing the median 

as bisecting line, and the 5% and 95% percentiles as whiskers (see  7.3.1). Here,  

all distributions looked ‘skewed’ towards higher values, as expected for the  

utilised exponential variability model. The median values of the three PK  

parameters were very similar to the respective value of θK, i.e. the population 

estimate (see  2.6.2, Tab. 2), with RE = -2.0% - +4.2% for CL, RE = -2.5% - +2.1% for 

V2, and RE = -1.6% - +1.9% for V3. Moreover, the thirteen distributions per PK 

parameter looked very similarly, as desired for MCS. The Kruskal-Wallis test with 

n = 13 × 1,000 provided p-values > 0.05, i.e. p = 0.076, 0.898 and 0.573 for CL, V2 

and V3, respectively. Thus, concerning the simulated PK IIV no statistically significant 

differences were found between the different dosing regimens. Furthermore, the 

utilised numeric indicator, for monitoring LZD concentrations below zero, did not find 

any artefact.  

The distributions of measured values of AUCE(14 days), for all thirteen investigated 

dosing regimens of LZD, are presented as box plots in Fig. 27. Comparing the 

median values of these AUCE(14 days) distributions with the respective results from the 

deterministic simulation (see  3.4.1, Tab. 10) using the population estimates, the 

deviations were small (RE = -2.3 - +1.7%). Thus, the chosen magnitude of virtual ‘in 

silico patients’, i.e. N = 1,000 per dosing regimen, was judged as sufficiently 

representative to imitate the desired patient population.  

For the respective same daily dose (Fig. 27, boxes in the respective same colour), 

comparable distributions of AUCE(14 days) values were observed. However, for 1200 –

2400 mg/day the QD dosing regimes provided distributions with slightly lower IQRs 

and medians. In contrast, for BID, TID and QID dosing regimens of the respective 

same daily dose of LZD, very similar distributions were found. 
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When comparing the shape of the box plots of different daily doses of LZD (see  7.2, 

Fig. 45, and Fig. 27, boxes in the respective same colour), differences between the 

distributions were found. Whereas the box plots for 1200 mg/day were very 

symmetrically distributed, the plots of the other daily LZD doses looked ‘skewed’ 

towards higher values (for 600 mg/day) or lower values (for > 1800 mg/day). 

Moreover, the median values of AUCE(14 days) distributions showed a similar 

(sigmoidal) relation towards the administered daily dose of LZD (see  7.2, Fig. 45), as 

found for the deterministic simulation (see  3.4.1, Fig. 26). However, the individually 

observed AUCE(14 days) values from the MCS were widely scattered around the model-

predicted dose-‘response’ curve for the deterministic in silico simulation (see  7.2, Fig. 

46). Thus, the simulated IIV in PK caused high IIV in the observed dose-‘response’ 

relation of the virtual patient population. 
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Fig. 27 Box-and-whisker plots for the Monte Carlo simulation, showing the respectively 
observed area under the effect-time course after 14 days of linezolid therapy (AUCE(14 days)) of 
one thousand virtual ‘in silico patients’ for each simulated dosing regimen, the colours 
represent the different daily doses, the box refers to the 25% and 75% percentiles, the 
bisecting line of the box is equal to the median, and the whiskers represent the 5% and 95% 
percentiles. 
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For quantifying the difference between the distributions of AUCE(14 days) values 

resulting from different daily doses of LZD, the effect size (ES) was utilised. In case 

of normally distributed data, the ES of two means is generally measured in standard 

deviation (SD) units, where ES > 0.8 SD units is defined as large effect [134, 142]. 

For practical reasons (see  4.4.2), the ES of two medians was used instead (eq. R8), 

medianIQR
medianmedianES 21 −=  eq. R8 

where median1 and median2 refer to the respective median values of AUCE(14 days) of 

two daily LZD doses to be compared. The parameter IQRmedian is the overall median 

of the interquartile ranges from all investigated dosing regimens, which is equal to the 

‘average box size’, i.e. the ES was expressed in ‘box units’. As one ‘box unit’ 

generally represents 50% of the underlying population, ES > 0.6 ‘box units’ was 

judged as relevant difference, which is analogously equal to ES > 0.8 SD units (see 

 4.4.2).  

Comparing the daily LZD dose of 1200 mg/day vs. 1800 mg/day and 2400 mg/day, 

the ESs were calculated as 0.877 and 1.314 ‘box units’, respectively. In contrast, for 

comparing 1800 mg/day vs. 2400 mg/day, the ES was only 0.437 ‘box units’. Hence, 

1800 mg/day and 2400 mg/day showed relevant difference compared towards 

1200 mg/day. However, the difference between 1800 mg/day and 2400 mg/day was 

below the relevant threshold.  
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4 Discussion 
In this section, the results of the current thesis are discussed and compared with 

results from the literature. Moreover, for appropriate interpretation the limitations of 

the utilised in vitro and in silico methodologies are described. 

4.1 Bioanalysis – quantification of linezolid in broth 

For the quantitative determination of LZD in MHB samples, a validated HPLC assay 

was successfully developed. An important requirement for this assay was a relative 

small sample volume, because of the limited volume of broth inside the in vitro 

models and the loss of sample volume during sample preparation. An additional 

requirement was LLOQ < 0.5 µg/mL LZD to accurately determine at least three LZD 

concentrations of the geometric dilution series below the MIC (= 4 mg/L), i.e. nominal 

CLZD = 2.0, 1.0 and 0.5 µg/mL. Both requirements were successfully realised in the 

validated HPLC assay with a sample volume of 50 µL and the LLOQ = 0.2 µg/mL.  

4.1.1 Comparison with the HPLC assay for plasma samples 

The validated HPLC assay for LZD samples in MHB was based on an HPLC assay 

for LZD samples in human plasma, previously developed at the Dept. of Clinical 

Pharmacy [98, 143]. Comparing the validation parameters of these two assays 

provided comparable results concerning the magnitude of linearity (r2), LLOQ, FT 

stability, STT stability, LT stability, and within- and between-day inaccuracy and 

imprecision, respectively (Tab. 11). Certain differences (MHB - plasma) were found 

for the retention time of LZD (∆ = -0.6 min), the analytical recovery (∆ = -12.3%), and 

the respectively utilised ULOQ with 30.0 µg/mL (in MHB) vs. 20.0 µg/mL (in plasma). 

The difference in retention time might be caused by differently composed mobile 

phases, i.e. H2O/ACN 80/20 (V/V) for MHB samples vs. sodium acetate buffer/ACN 

80/20 (V/V) for plasma samples, e.g. due to the higher ionic strength of buffer. 

Concerning the analytical recovery, the value reported for plasma samples was quite 

high (≈ 109%). In contrast, Adembri et al. reported a value of only 92% recovery for 

LZD in plasma [144]. Assuming that reasonable values should not exceed the 100% 

threshold, the value found here for MHB samples (≈ 97%) appears logical and 

reveals complete recovery of LZD from MHB samples. Moreover, Gunderson et al. 

and Cha et al. reported the analytical recovery of LZD as 95% for plasma and MHB 

samples [145, 146]. In addition, both groups used calibration curves with LZD 
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concentrations ranging from 0.5 – 30.0 µg/mL, i.e. they reported the same ULOQ as 

found for this work. 

 

Tab. 11 Comparison of validation parameters of the HPLC assays for linezolid in Mueller-
Hinton broth and human plasma (data from Buerger et al. [98, 143]), with LLOQ and 
ULOQ = lower and upper limit of quantification, r2 = coefficient of determination, 
CV = coefficient of variation, FT = freeze and thaw, STT = short-term temperature, and 
LT = long term. 

 HPLC assay for linezolid 

Validation parameter in Mueller-Hinton broth in human plasma 

Retention time [min] 4.4 5.0 

LLOQ – ULOQ [µg/mL] 0.2 - 30.0 0.2 - 20.0 

Linearity, r2 0.9996 0.9980 

Analytical recovery, % 96.6 (CV = 6.2%) 108.9 (CV = 3.2%) 

FT stability, % 96.3 101.3 

STT stability (4 h), % 104.7 100.8 

STT stability (24 h), % 102.4 95.4 

LT stability, % 98.7 (for 3.5 yr) 105.0 (for 1.17 yr) 

Within-day inaccuracy, % +2.3 - +7.0 -0.3 - +2.6 

Within-day imprecision, % 2.4 - 4.7 2.1 - 4.9 

Between-day inaccuracy, % -1.2 - +3.1 -2.7 - +3.4 

Between-day imprecision, % 3.0 - 5.3 4.3 - 6.1 

 

4.1.2 Comparison with another HPLC assay for Mueller-Hinton broth samples 

A French group developed an HPLC assay for LZD in MHB samples using on-line 

extraction and very similar settings as used for the present work, e.g. sample volume 

and mobile phase [147]. This online extraction method was developed for directly 

analysing samples obtained from an automated PD in vitro model, using a 15 min run 

time. This assay was limited to LZD concentrations of 0.4 - 20.0 µg/mL, and for low 

concentrations the analytical recovery was only 88% and the within- and between-

day inaccuracy were higher with values of about 10% and 12%, respectively. Thus, 

using online extraction might be practical for direct application in combination with an 

automated PD in vitro model, but at the expense of accuracy. Furthermore, at first 

glance on-line extraction seems to be time saving, however a 15 min run time per 

sample means only four samples per hour, i.e. 96 samples will take 24 h. In contrast, 
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the HPLC method presented in this work allowed using a 5 min run time per sample. 

Analysing 96 samples, inclusive three to four hours of total sample preparation time, 

took maximal 12 h, i.e. only the half duration compared to the online extraction assay. 

Hence, the ‘manual’ HPLC assay turns out to be the faster and more accurate 

method.  

4.1.3 Accordance with the guideline 

The validation parameters of the present HPLC assay were in accordance with the 

demands of the FDA guideline for bioanalytical method validation [100]. However, 

one methodical aspect has to be discussed: The utilised six point calibration curve for 

LZD was analysed via weighted linear regression which is generally accepted by the 

guideline. Nevertheless, the FDA advises to justify the selection of weighting, as 

done in the following.  

The weighted linear regression was applied for the calibration curve of LZD, due to 

the identified heteroscedasticity of the data (see  3.1.1, Fig. 13) as frequently met for 

analytical data. Heteroscedasticity means that larger deviations are found at larger 

concentrations of the analyte. A larger deviation tends to influence the (unweighted) 

regression line more than smaller deviations associated with smaller concentrations 

of the analyte. As a result, the accuracy of the lower end of the calibration curve is 

reduced which might reduce the overall performance of the analytical assay. Using 

an appropriate weighting scheme is a rational approach to counteract hetero-

scedastic data, as explained in the Appendix (see  7.3.4.3). Generally, the inverse of 

the respective variance of a data point from the calibration curve refers to the most 

appropriate weighting factor. However, in laboratory routine the calculation of the 

variance from each point of the calibration curve is impractical, taking into account 

the fact that it requires several measurements for the same calibration point and the 

necessity that a fresh calibration curve should be used for each HPLC run. The 

weighting factor 1/x2 is a practical, frequently used and mathematic most appropriate 

approximation of the inverse of variance [101]. Hence, the weighting factor 1/ (CLZD)2, 

i.e. one divided by the squared nominal LZD concentration, was applied in this work 

to improve the accuracy of the calibration curve for lower LZD concentrations. 
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4.1.4 Future practice 

A potential limitation of presented HPLC method is the missing data about the 

specificity for LZD in presence of other drugs, e.g. other antibiotics. For its wide 

application, e.g. to LZD samples from in vitro models containing several antibiotics, 

the specificity for LZD should be determined in presence of the respective other 

drugs, before application of the HPLC assay. As shown by Buerger et al. and Ba et 

al., using the same or very similar mobile phase and column, ampicillin/sulbactam, 

cefotiam, flucloxacillin and many other drugs did not interfere with the LZD peak in 

the HPLC chromatogram [98, 147]. For the current work, no other drugs were 

present. Thus, the specificity for LZD was considered as less importance for this 

work. 

4.2 Microbiology - in vitro pharmacodynamics of linezolid 

The present in vitro study comprehensively characterised the antibacterial in vitro 

activity of LZD against a penicillin-resistant S. aureus strain (ATCC 29213), via MIC 

and time-kill (curve) studies performed in a static and dynamic PD in vitro model. 

4.2.1 Minimum inhibitory concentration 

In humans, interactions between the antibiotic and the pathogenic bacteria are 

difficult to access. In vitro studies represent a reasonable surrogate [148]. The most 

commonly used procedure is the determination of the MIC [149], which refers to the 

lowest (constant) antibiotic concentration that inhibits visible growth of bacteria for 

18 – 24 h (see  2.4.3.2.1) [103, 150].  

In the present in vitro study, the MIC of LZD determined at 18 h and 24 h provided 

different values of 2 mg/L and 4 mg/L, respectively. The observed MIC range was 

comparable with MIC values previously reported for the same ATCC strain of S. 

aureus (Tab. 12). Overall, the MIC values obtained here and reported in the literature 

showed a relative wide range, e.g. 0.25 – 4 mg/L in the recent PEG resistance study. 

The lack of precision of the conventional MIC might be caused by the variety of 

different experimental techniques, e.g. micro- and macro-dilution or Epsilon-test (E-

test, AB Biodisk, Solna, Sweden), and variable incubation times, inocula and growth 

media [103, 150, 151]. The low precision of the MIC should be considered when 

interpreting MIC data in clinical and laboratory practice. 
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Tab. 12 Minimum inhibitory concentration (MIC) of linezolid for Staphylococcus aureus 
(ATCC 29213) obtained from the literature, showing the MIC range and the respective 90% 
percentile (MIC90%), with n = number of data points. 

MIC range [mg/L] MIC90% [mg/L] Year / Reference 

- 4 1996 / Zurenko et al. [77] 

- 4 1996 / Brickner et al. [152] 

- 2 1998 / Wise et al. [153] 

- 2 2005 / Jacqueline et al. [154] 

0.25 – 4 (for n = 123) 4 2007 / PEG [25] 

 

As mentioned in the introduction section (see  1.4.3.2), for European microbiology 

laboratories the EUCAST defines MIC breakpoints that intend to predict the clinical 

outcome of antibiotic therapy in terms of ‘susceptible’ or ‘resistant’ towards the 

considered antibiotic [155]. These breakpoints are based on both clinical 

observations and theoretical target attainment rates of calculated PK/PD indices 

including the MIC as the only PD parameter [121, 122]. The application of MIC-

breakpoints in clinical and laboratory routine is surely very practical. However, the 

apparent simplicity of the MIC concept has led to a frequent misconception that the 

MIC represents an effect/no effect-threshold [104, 149, 156]. In reality, bacterial 

growth and death under antibiotic exposure is very complex and depends on many 

factors, e.g. exposure time, that are not adequately considered by the concept of 

MIC.  

As shown in the present time-kill (curve) study for LZD, drug concentrations below 

the MIC90% (= 4 mg/L) provided antibacterial effects of remarkable magnitude, e.g. for 

2.1 µg/mL up to ≈ 50% of the observed maximal effect within the first 6 h (see 

 3.2.2.2, Fig. 17). This kind of additional information should be considered when using 

PK/PD approaches for predicting clinical outcome of antibiotic therapy and 

particularly for evaluating dosing regimens of antibiotics.  

Taking into account the mentioned lack of precision for the MIC determination and 

the inadequate implementation of ‘time’ in the conventional concept of MIC, the MIC 

is a very limited indicator for antibacterial activity [149]. As a result, an antibiotic 

therapy that is only or mainly guided by a MIC-based PK/PD approach might lead to 

suboptimal clinical outcome. Considering the scientific work for the evaluation of 

antibiotic therapy in the 30 years, the MIC-based approaches were most frequently 
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utilised [34, 149]. With respect, this might be an important reason why optimal dosing 

regimens for antibiotics are still not well defined even though some antibiotics have 

been available for clinical use for about 60 years, as stated by the European 

Medicines Agency (EMEA) [157]. Nonetheless, for comparing the current in vitro 

results with the literature, MIC-based PK/PD indices were calculated and discussed 

in section  4.2.2.4.5. 

4.2.2 Time-kill (curve) studies 

In time-kill (curve) studies, the bacterial growth and death under antibiotic exposure is 

monitored over time. These studies allow investigating constant (via static models) or 

changing (via dynamic models) antibiotic exposures to bacteria, and thus reveal a 

deeper insight in the interactions between the antibiotic and the bacterial strain under 

study, in comparison to the MIC. However, despite its potential superiority the time-

kill curve approach has not (yet) complemented or replaced the MIC-based PK/PD 

approaches. A reason for this might be the higher experimental effort, the lack of 

standardised experimental conditions/procedures or the often very complex data 

analysis, such as PK/PD modelling that generally requires specific, more sophisti-

cated mathematic expertise and software [149].  

The present work intended to provide reasonable support for the implementation of 

the time-kill curve approach at ordinary microbiology laboratories. Hence, the utilised 

materials and methods, e.g. economic in vitro models and descriptive data analysis 

via Excel, were consciously chosen for reasons of feasibility in laboratory praxis, and 

qualified via several preliminary investigations.  

4.2.2.1 Descriptive statistics for time-kill curves 

Frequently, time-kill curves are summaries by the arithmetic means and error bars 

referring to the respective standard deviations. However, bacterial growth, as an 

observation on multiplying processes, is considered to be log-normally distributed 

[158]. Thus, as recommended by Olsen [159], in the present work the geometric 

mean and the respective CI95% were applied via BS. The BS method, first introduced 

from Efron [160], is generally known as a reasonable numeric approach to estimate 

the location parameter of the population and its CI95% as measure of precision [109, 

161]. For reasons of practical feasibility, BS was implemented in Excel using only 

standard spreadsheet functions, as described in detail in section  2.4.6.1.  
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4.2.2.2 Relative bacterial reduction 

Additional to the graphical ‘standard’ time-kill curve analysis, the RBR was introduced 

as rational approach that gives the net estimate for the antibacterial effect (see 

 2.4.6.2). The fundamental idea of combining the killing curve with the simultaneously 

measured growth curve in a time-dependent function, originated from an integral 

approach introduced by Frisov et al. in 1990 [120]. However, the dimension of this 

function, which refers to both bacterial growing and killing, was unsuitable for 

interpretation. Thus, the combined growth/kill function was additionally normalised by 

the growth curve to receive a descriptive percentaged measure which is more 

suitable for interpretation of time-kill studies. 

4.2.2.3 Constant linezolid exposure 

The performed time-kill studies with constant LZD exposures revealed a 

predominantly bacteriostatic activity of LZD against S. aureus. This result 

corresponds with previously published time-kill studies [153, 162-165]. Furthermore, 

it was found that a LZD concentration of ≈ 17 µg/mL is sufficient to approximately 

reach the maximal effect within the first 6 h of LZD exposure (see  3.2.2.2, Fig. 16 a 

and Fig. 17). Higher LZD concentrations did not relevantly increase the effect. In 

contrast, LZD concentrations of > 3.5 µg/mL were necessary to prevent bacterial  

(re-)growth. Thus, a LZD concentration of 3.5 µg/mL might be the ‘exact’ value of the 

MIC (see  4.2.1).  

Based on the descriptive results from the static in vitro model, a 6 h continuous i.v. 

infusion plus initial i.v. bolus injection with immediate (unbound) steady state LZD 

concentration of Css ≈ 17 µg/mL in plasma, was investigated in the dynamic in vitro 

model (see  4.2.2.4). 

4.2.2.3.1 Bacterial persistence  

The presented time-kill curves identified a persisting phase, beginning after about 

6 h, where the prior bacterial killing seemed to stop (see  3.2.2.1, Fig. 15). Even a 

LZD concentration > 30 µg/mL was not sufficient to eradicate S. aureus. The 

persistence of S. aureus under high LZD exposure indicated the development of 

phenotypic tolerance, i.e. the ability of bacteria to evade bacteria killing by antibiotics 

at the price of non-proliferation [166, 167]. As reported by Keren et al., phenotypic 

tolerance of bacteria against antibiotics is generally ignored by the concept of MIC 
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and often neglected in time-kill studies. However, it is known that persisting bacteria 

cells (‘persisters’) can substantially reduce the success of antibiotic therapy [168]. 

Furthermore, it has been hypothesised from an in silico simulation that bacterial 

tolerance can increase the incidence of (inherited) bacterial resistance against 

antibiotics [169].  

To the author’s knowledge, the development of phenotypic tolerance of S. aureus 

against LZD has hardly been explored, yet. Krut et al. reported that LZD can induce a 

state of intracellular persistence of viable S. aureus, investigated in infected murine 

cell lines. They concluded that the clinical use of LZD (and several other 

bacteriostatic antibiotics) may create a niche of invasive intracellular S. aureus, which 

may play an important role for persistence and recurrence of infection. Instead of 

using LZD, they recommended the use of bactericidal acting rifampicin for the 

treatment of invasive S. aureus infections [170]. 

A further indication for the development of ‘persisters’ under LZD exposure were the 

phenotypic changes of S. aureus observed under high LZD exposures (i.e. 

CLZD > 8.5 µg/mL). Here, the colony sizes and beta-haemolysis differed from growth 

control (see  3.2.2.3, Fig. 18). These differences were reversible when these colonies 

were subcultured. It has been previously reported that S. aureus can develop a 

particular phenotype called small colony variants (SCV). They represent a slowly 

growing subpopulation with atypical colony morphology and biochemical 

characteristics such as nonpigmentation and nonhaemolytic on blood agar. SCV may 

not become visible before 48 h of incubation and may reach only 1/10 of the size of a 

regular S. aureus colony [171]. The tiny colonies observed under high LZD 

exposures very much resembled the SCV phenotype.  

SCV of S. aureus are considered of being of high clinical importance. They have 

been associated with persistent and relapsing bacterial infections. SCV have been 

shown to be more ‘resistant’ to many antibiotics than the parental phenotype [172]. 

Proctor et al. called this ‘novel’ type of antibiotic resistance as phenotypic resistance 

[173]. Defects in the respiratory chain regulation might cause the expression of the 

SCV phenotype [174]. It has been presumed that regulatory proteins are involved in 

the development of SCV [175]. Hence, antibiotics that interfere with the protein 

biosynthesis, such as LZD, might preferentially induce the SCV phenotype. As an 

example, gentamicin induced a rapid phenotypic switch from the parental to the SCV 
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phenotype rapidly reverting to the parental phenotype, if bacteria were exposed to 

antibiotic-free medium [176]. Rapid phenotypic switching might explain the different 

S. aureus phenotypes found in the present study. It may also explain the observed 

phenotypic tolerance towards LZD exposure mentioned above in this subsection. 

To the author’s knowledge, LZD induced phenotypic switching to staphylococcal SCV 

has not been described, yet. As recommended by Levin et al. and Lewis [166, 169], 

future PD in vitro studies should focus on the molecular basis of the development and 

origin of phenotypic tolerance/resistance against antibiotics in more detail to success-

fully develop an ‘anti-persister’ therapy. 

4.2.2.4 Linezolid exposure changing over time 

Growth and killing of S. aureus were successfully investigated under various LZD 

exposure profiles (see  3.2.3.2, Fig. 20) similar to those observed in critically ill, septic 

patients after i.v. administration of 600 mg LZD (standard dose) [64], using a dynamic 

PD in vitro model. The PK characteristics of LZD were simplified imitated by a one 

compartment model, for a period of 12 h according to the dosing interval of the 

standard dosing regimen for LZD. Three different i.v. bolus injection profiles with 

C0 ≈ 5, 10 and 15 µg/mL were investigated referring to the unbound maximal concen-

trations observed in plasma (≈ 10 - 15 µg/mL) and in the interstitial (tissue) fluid (≈ 5 -

8 µg/mL), respectively, for critically ill, septic patients. The in vivo observed short 

resorption phase of the tissue profile, that took until about 1 h after end of infusion 

[64], was not considered by this in vitro approach. Nonetheless, the mono-

exponentially declining phase of the LZD concentration-time course was very similar 

to the in vivo profiles in plasma and interstitial fluid [64].  

Additionally, based on the descriptive results from the static in vitro model (see 

 4.2.2.3), a 6 h continuous i.v. infusion plus initial i.v. bolus injection with immediate 

(unbound) steady state LZD concentration of Css ≈ 17 µg/mL in plasma, was imitated 

in vitro. Due to the currently limited information about LZD exposure in human tissue 

fluid, the respective LZD concentration-time course in the interstitial fluid could not be 

investigated in this in vitro study. 

4.2.2.4.1 Imitating the pharmacokinetics of linezolid in vitro 

The calculated LZD concentration-time profiles and PK parameters (see  3.1.2.2.2, 

Fig. 14 and Tab. 7) were comparable to the intended theoretical PK profiles and 
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parameters (see  2.4.4, Fig. 7 and Tab. 1), respectively. However, LZD samples taken 

through the filter unit were biased, and thus have been mathematically corrected 

based on data with direct sampling obtained from preliminary investigations. A 

reasonable explanation for the biased ‘filter’ sampling is the dead volume inside the 

utilised cannula and filter unit. In a similar way, the dead volume caused the slightly 

prolongated half-life, i.e. t1/2 ≈ 5.5 h instead of t1/2 = 4 h. The intended half-life value of 

4 h was chosen to imitate the ‘worst case scenario’ for critically ill patients suffering 

from sepsis. Nevertheless, the measured in vitro half-life of LZD was approximately 

equal to the average in vivo half-life observed in septic patients (i.e. t1/2 ≈ 5.1 h) after 

single dose administration [64].  

Future investigations with the utilised dynamic in vitro model should account for the 

respective dead volume of the cannula and filter unit (here ≈ 0.3 mL), e.g. by means 

of carefully mixing via additional cycles of withdrawing and adding of the same 

volume of medium. However, it might be more practical to validate the respective in 

vitro PK profile via preliminary investigations as done for this work, and thus omitting 

LZD sampling for the main experiments. The present results indicate that this is 

possible for LZD. 

4.2.2.4.2 Constant versus changing linezolid exposure 

The performed time-kill studies with changing LZD exposures generally provided 

similar observations as found for the investigations with constant LZD exposures (see 

 4.2.2.3), e.g. a time-limited killing phase followed by a persisting phase (see  3.2.3.1, 

Fig. 19). Moreover, the appearance of the SCV phenotype under high LZD 

exposures (here C0 > 9.5 µg/mL) was confirmed. However, in case of the imitated 6 h 

continuous infusion the SCV phenotype suddenly disappeared completely after 

starting the stepwise dilution of medium, and subsequently an unexpected tendency 

for (re-)growth was found. Based on the previous discussion on the SCV phenotype 

(see  4.2.2.3.1) it is reasonable that the added fresh broth has reactivated ‘persisters’ 

of S. aureus and thus induced the observed (re-)growth. However, this unexpected 

tendency of (re-)growth affected only 2 – 3 of all data points (i.e. ≈ 2%) and the 

deviations were of small magnitude (i.e. < one log unit).  

For future investigations using the dynamic in vitro model, the substitution of broth 

should be performed continuously throughout the experiment. In case of initially 

imitating a constant steady state drug concentration, this can be accomplished by 
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continuously adding fresh broth containing the respective same (steady state) drug 

concentration as inside the in vitro system. 

4.2.2.4.3 Plasma versus tissue exposure of linezolid for standard dosing 

Comparing the investigated in vitro LZD exposure profiles imitating in vivo LZD 

exposure profiles in plasma and in the interstitial (tissue) fluid for standard dosing, 

relevant differences were found concerning the antibacterial activity: The two in vitro 

LZD profiles (with C0 ≈ 10 and 15 µg/mL) referring to the in vivo plasma profile, 

provided bacterial reduction of 1 – 2 log units after 12 h. In contrast, the in vitro LZD 

exposure profile (with C0 ≈ 5 µg/mL) referring to the in vivo tissue profile, just 

maintained the bacterial inoculum, and thus performed merely bacteriostatic against 

S. aureus. Hence, the present in vitro findings seem to indicate that the concen-

tration-time profile in tissue of septic patients receiving the standard dosing of LZD, 

might be limited to a ‘purely’ bacteriostatic activity. However, the in vivo observed 

tissue profile was more complex, i.e. with resorption phase [64], than the in vitro 

imitated LZD profile. Moreover, the direct transfer of these in vitro results to the in 

vivo situation of the patient is difficult, because bacterial growth and killing might be 

different in the patient’s tissue, and possible accumulation of LZD in tissue after 

multiple (standard) dosing might lead to increased LZD exposure in tissue fluid. 

Furthermore, the present in vitro approach did not account for effects of the immune 

system. Nevertheless, as stated in many PK/PD articles [104, 106, 177], the in vitro 

studied situation maybe of predictable value for immunocompromised patients who 

most frequently suffer from severe nosocomial gram-positive infections [5, 12].  

To the author’s knowledge, no comparable investigations have been published 

concerning the antibacterial activity of LZD concentration-time profiles similar to 

those observed in tissue of critically ill, septic patients. The antibacterial activity of the 

plasma concentration-time course for standard dosing of LZD, has been previously 

investigated using different strains of S. aureus. However, many of these in vitro 

approaches contained a confounder due to the lack of filter system, for preventing 

bacterial loss during antibiotic dilution, without using a mathematic correction [178, 

179]. Thus, the respective results of these in vitro studies were relevantly biased in 

terms of overestimating the antibacterial activity of LZD. Nevertheless, Wang et al. 

used a reasonable in vitro approach with an appropriate filter system, for 

investigating the plasma PK profile of LZD (600 mg BID) against several clinical 
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isolates of S. aureus over 24 h [180]. They reported bacterial killing of ≈ 1.5 log units 

for S. aureus strains with MIC < 4 mg/L after 12 h, which is comparable to the 

findings of the present work. Moreover, in case of S. aureus strains with 

MIC = 4 mg/L the reported bacterial killing was little compared to the inoculum. Thus, 

they concluded that the standard dosing of LZD would not result in significant 

reduction of bacterial burdens when up against S. aureus strains with MIC = 4 mg/L 

[180]. 

4.2.2.4.4 Standard dosing versus continuous infusion of linezolid 

Comparing different dosing regimens in vitro may allow the relative extrapolation to in 

vivo situation, as recommended by de la Pena et al. [106]. Regarding the present in 

vitro results from imitating the plasma LZD concentration-time profile for the 

continuous i.v. infusion plus initial i.v. bolus injection as loading dose, no relevant 

increase in bacterial killing was found in comparison to the LZD exposure profile in 

plasma for standard dosing. The modest benefit of a LZD loading dose agrees with 

the results of a previous in silico simulation from Zack et al. investigating clinical 

isolates of MRSA with MIC = 2 – 4 mg/L under in vivo-like LZD exposures [181]. 

The bacterial reduction in tissue might be more efficient for the investigated 

continuous infusion of LZD. However, the resulting LZD concentration-time course in 

tissue could not be investigated in this in vitro study, for reasons mentioned before 

(see  4.2.2.4). Furthermore, the question remains, if the huge LZD exposure 

associated with the in vitro imitated continuous i.v. infusion with (unbound) steady 

state LZD concentration of ≈ 17 µg/mL, would be tolerated by a patient. 

Adembri et al. investigated 16 septic patients receiving LZD either as i.v. standard 

dosing (600 mg BID, i.e. 1200 mg/day) or as continuous infusion with an initial 

300 mg i.v. loading dose plus continuous infusion of 900 mg/day, i.e. totally also 

1200 mg/day [144, 182]. The continuous infusion provided unbound steady-state 

concentrations of ≈ 6 µg/mL, whereas the standard dosing regimen showed unbound 

peak and trough concentrations of about 12 µg/mL and 1.5 µg/mL, respectively, at 

steady state. No significant differences concerning the therapeutic success were 

found between these groups, probably because of the small number of patients. 

They reported that no specific adverse effects were found associated with the route 

of administration. One case of severe thrombocytopenia associated with leukopenia 

occurred in a patient of the continuous infusion group after 12 days of treatment. 
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However, platelets and white blood cells returned to normal value after LZD 

suspension upon resolution of sepsis [144]. 

4.2.2.4.5 Pharmacokinetic/pharmacodynamic indices 

Descriptive PK/PD analysis of the current in vitro results revealed an increasing log-

linear correlation between the bacterial reduction and the three PK/PD indices, in the 

order AUC12h/MIC, Cmax/MIC and tC>MIC, respectively. Recent in vitro investigations for 

S. aureus under in vivo-like LZD exposures reported a high (sigmoidal) relation 

between bacterial reduction and AUC24h/MIC [180, 183]. A previous in vivo 

investigation from Andes et al. with S. aureus infected mice reported a similar extent 

of (nonlinear) correlation between bacterial reduction and AUC24h/MIC (r2 = 0.75) and 

tC>MIC (r2 = 0.74), respectively, whereas the in vivo correlation for Cmax/MIC was little 

less (r2 = 0.65) [184]. The latter case might be due to the in vivo determination of 

Cmax which often lacks precision [113], and thus results in lower correlation. 

Rayner et al. performed a retrospective, non-blinded analysis from 288 seriously ill 

patients suffering from gram-positive infections [185], and found a good correlation 

between clinical efficiency and both AUC24h/MIC and tC>MIC. Moreover, clinical 

efficacy was reported as maximal, if AUC24h/MIC > 100 h or tC>MIC > 85% based on 

the total (unbound + bound) LZD concentration-time course at steady state. In a 

previous study at the Dept. of Clinical Pharmacy it was reported that healthy 

volunteers receiving standard dosing of LZD showed average AUC24h/MIC values of 

123 h and 61 h assuming MIC = 2 mg/L and 4 mg/L, respectively [63]. Adembri et al. 

reported that septic patients receiving standard dosing of LZD showed an average 

AUC24h/MIC values of 92 h and 47 h assuming MIC = 2 mg/L and 4 mg/L, respec-

tively [144].  

When comparing these clinically obtained values of AUC24h/MIC with the breakpoint 

suggested from Rayner et al. [185], diminished clinical efficacy may be expected 

using standard dosing of LZD against infections of S. aureus isolates showing 

MIC = 4 mg/L. As discussed in the previous subsection (see  4.2.1), MIC-based 

PK/PD approaches may lack of precision, and thus these results should be 

considered with caution when interpreting and predicting the clinical situation of 

patients. Nevertheless, Moise et al. substantiated the suspicion of suboptimal 

standard dosing of LZD, by showing that infections of S. aureus isolates with 
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MIC = 4 mg/L were associated with reduced clinical success rates and significant 

longer times to bacterial eradication, compared to isolates with MIC < 4 mg/L [90]. 

4.3 Pharmacokinetic/pharmacodynamic modelling 

The developed mathematic PK/PD model successfully characterised the RBR of S. 

aureus for various in vitro investigated LZD exposure profiles, and thus provided the 

basis for predicting future LZD exposure profiles that were not experimentally 

investigated, as discussed in the section  4.4.  

Curve fitting was applied via the Solver function in Excel, using an OBJ that was 

adjusted to the current problem. The utilised scaling factor of the OBJ was chosen to 

avoid premature abortion of the iteration process, referring to the recommendations 

of Frontline Systems [114]. The ‘weighting’ scheme of the OBJ was implemented for 

considering the differences between the two combined data sets. The data set 

obtained from the static in vitro model contained more LZD exposure profiles (7 vs. 4) 

which were observed over a longer period of time (24 h vs. 12 h), compared to the 

data set obtained from the dynamic in vitro model. Thus, for simultaneously modelling 

the combined data set, the number of data points (n = 88 vs. 40) served as 

‘weighting’ factor for the OBJ, in order to ‘stress’ the more detailed (i.e. larger) data 

set.  

Excel’s Answer report was helpful in determining which of the defined constraints 

(see  2.5.1.4) limited the minimisation of the OBJ. Furthermore, for each model 

parameter the CI95% has been estimated via BS, a reasonable numeric approach to 

estimate the CI95% [109, 161], using a logic combination of standard spreadsheet 

functions and a simple VBA sub procedure (see  7.5.1). In addition, the applied 

correlation matrix revealed helpful information for avoiding over-parameterisation 

[117].  

Overall, curve fitting via the Solver function in Excel was applicable for the current 

PK/PD data (run time ≈ 18 min, with Aspire 5110 from Acer), and allowed the use of 

several customised methods and functions. However, in case of very large data sets 

using Solver might take a long time for PK/PD modelling to estimate appropriate 

model parameter values with CI95%. Thus, future investigations should compare 

Solver to specialised PK/PD software programs, e.g. in terms of run time and 

parameter estimates. 



4 Discussion  94 

 

4.3.1 Model development 

The basic relation between LZD exposure and the RBR was described by the 

‘sigmoidal’ Emax model as structural model. This model was chosen due to its 

clearness and wide applicability. The mathematic equation was first noted by 

Archibald V. Hill studying the association between haemoglobin and oxygen [186]. 

Today, this model is widely used for various PD aspects, in particular to describe the 

equilibrium relationship between the measured drug concentration and the drug 

effect. Originally, the parameter value of the Hill coefficient (H) was related to the 

mechanism of action. However, more often this model is considered as an ‘empirical’ 

model, without any specific relation to the underlying mechanisms [1, 47, 50, 57, 

119], as utilised here. 

During model development, the chosen structural model was empirically modified to 

account for the initially observed time-dependency of the RBR. Thus, the intrinsic 

activity (Emax), potency (EC50) and steepness (H) of the effect-time course were 

adjusted via a simple ‘time-delay’ term, frequently used in PK/PD modelling of time-

kill curves [104, 137-141].  

Moreover, a hypothetical effect CMT was implemented, referring to the assumed LZD 

concentration-time course at the ‘effect site’, i.e. inside the bacterial cell. The 

assumption of an indirect link between the extracellular LZD concentration measured 

in broth and the LZD concentration inside the bacterial cell, agreed with previous 

finding from Barcia-Macay et al. investigating the intracellular activity of LZD in 

macrophages [187]. They found only modest intracellular accumulation of LZD. Thus, 

it might be assumed that the accumulation inside bacterial cells is also less than the 

extracellular LZD concentration. 

4.3.2 Final model 

For the indirect link model, the probalistic ‘superiority’ was estimated as 100%, 

compared to both the structural model and the modified ‘sigmoidal’ Emax model. 

Hence, the indirect link model was selected as final PK/PD model. Moreover, the final 

PK/PD model successfully described the RBR of S. aureus for various in vitro LZD 

exposure profiles. However, the observed slight U–pattern of two residual plots 

revealed a little trend of underestimation at t = 0 h and 4 h, combined with a slight 

overestimation in-between (see  7.2, Fig. 38 b and c): At t = 0 h the predicted RBR 
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was always zero, whereas the observed RBR partly showed values > 0% due to 

differences between the bacterial inocula. From t = 40 min to 3 h, the predicted 

effect-time courses for the ‘dynamic’ LZD exposures were slightly overestimated, 

whereas at t = 4 h the predicted effect-time courses for the constant LZD exposures 

demonstrated little underestimation for most LZD concentrations. Nevertheless, these 

deviations were of acceptable magnitudes (i.e. < 9.2%) and were limited to the first 

4 h. Furthermore, the residual-time plot (see   7.2, Fig. 38 c) showed two single data 

points between t = 10 h and 12 h, that were moderately overestimated. These two 

data points were related to the LZD exposure profile imitating a continuous infusion, 

which showed an unexpected tendency for (re-)growth (see  3.2.3.2) that might be 

caused by the unintentional reactivation of ‘persisters’ (see  4.2.2.4.2). Thus, these 

two data points were accepted as ‘outliers’, but were not removed from the data set. 

Overall, the calculated 5% and 95% percentiles revealed that the majority of 

residuals showed magnitudes below ±7%, which was judged as successful for 

mathematic modelling. 

The estimated (final) model parameter values showed reasonable magnitudes with 

close CI95%. As expected from the predominantly observed bacteriostatic activity of 

LZD (see  4.2.2.3), the estimated value of Emax (≈ 74%) was below 100%, indicating 

that total bacterial eradication was not achieved. In addition, the time course of 

EC50(t) (see  7.2, Fig. 36) reached the observed MIC range (= 2 – 4 mg/L, see  4.2.1) 

between t ≈ 16 h and ≈ 42 h. Thus, the estimated values of the two main PD 

parameters for the intrinsic activity (Emax) and potency (EC50) of LZD were 

comparable with the results from the descriptive data analysis and previous in vitro 

studies. 

4.3.3 Future model development 

A potential limitation of the final PK/PD model might be its predominately empirical 

character. Some previously introduced mathematic models for describing bacterial 

growth and killing under antibiotic exposure, utilised a mechanism-based approach 

with the assumption of a persisting or resistant subpopulation [169, 188, 189]. The 

assumption of a persisting subpopulation would be surely reasonable for S. aureus 

under LZD exposure, as shown from the present time-kill studies where ‘persisters’ 

were identified (see  4.2.2.3.1). However, the two-subpopulation model approach was 

not selected for the present work, because ‘persisters’ could not reliably be quantified 
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due to their phenotypic instability during the sample purification process. Using a 

mechanistic subpopulation model to describing the measured total amount of 

bacteria from both subpopulations, is possible, but may cause serious bias when 

using the model for extrapolation via in silico simulation, as applied for this work. 

Future time-kill studies should try to quantify ‘persisters’ to reliably apply mechanism-

based model approaches.  

4.4 In silico simulation and analysis 

Thirteen dosing regimens, including twelve hypothetical dosing regimens and the 

standard dosing regimen of LZD (see  2.6.3, Tab. 3), have been successfully 

investigated in silico via deterministic and stochastic simulations, imitating LZD 

treatment for 14 days. The in silico simulations were accomplished by mathematically 

combining the developed in vitro PK/PD model for LZD with the previously developed 

in vivo (population) PK model of LZD (see  3.4, Fig. 25). Here, the effect CMT was 

linked to the central CMT as the LZD concentration-time course in this CMT referred 

to (unbound) LZD concentrations measured in plasma. In contrast, the concentration-

time course in the peripheral CMT was only modelled as auxiliary construction, and 

thus was purely hypothetical. As mentioned by Derendorf et al., if additional 

information about the drug concentration-time course in tissue fluid is available, the 

link to the peripheral CMT might be also reasonable [50]. However, due to the 

currently limited information about LZD exposure in human tissue fluid, this data was 

not implemented in the utilised (population) PK model of LZD [66]. Future in silico 

simulations should additionally investigate the effect of the (unbound) LZD 

concentration-time course in tissue fluid of critically ill, septic patients, based on an 

extended (population) PK model. 

4.4.1 Deterministic simulation 

The deterministic in silico simulation revealed detailed information about the 

fluctuation of the average (unbound) LZD concentration-time courses in plasma and 

at the assumed ‘effect site’, and the resulting effect-time courses (see  7.2, Fig. 39 -

 Fig. 42). Regarding the latter, it took about five to six days until the PD steady state 

was reached, whereas the LZD concentration-time course in plasma and at the 

‘effect site’ reached (PK) steady state already after two days. The time to reach the 

PD steady state was determined by the hyperbolic time course of EC50(t) (see  7.2, 
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Fig. 36), which took about 5.6 days until the plateau was reached. Thus, time-

dependent PD processes affected the effect-time course at PK steady state. As a 

result, the initially increasing effect subsequently decreased to different extent, 

depending on the ‘administered’ daily dose of LZD: Lower doses, e.g. 600 mg/day, 

provided a relevant decrease of the maximal observed effect, whereas very high 

doses, e.g. 2400 mg/day, showed only a little decrease of the effect before reaching 

PD steady state. Despite different time scales, this observation agrees with the 

results from the (static) in vitro time-kill studies where for low LZD exposures 

(< 3.5 µg/mL) the antibacterial effect initially increased, but subsequently decreased 

due to bacterial (re-)growth (see  3.2.2.2, Fig. 16 b and Fig. 17). 

For a ‘typical patient’ (i.e. without IIV), the different ‘administered’ fractions of the 

daily LZD dose revealed relevant differences in the resulting LZD exposure profiles: 

As shown in Tab. 10 (see  3.4.1), QD dosing using 1200 – 2400 mg/day resulted  

in quite high maximal (unbound) LZD concentration at (PK) steady state (i.e.  

Cp ss,max ≈ 27 - 45 µg/mL), which might lead to relevant acute toxicity as adverse drug 

effect. Thus, QD dosing of LZD might be inappropriate for therapy. In case of BID, 

TID and QID dosing regimens, the observed fluctuations of the LZD concentration-

time courses were less pronounced compared to QD dosing using the respectively 

same daily dose of LZD. Moreover, TID and QID dosing regimens provided minimal 

fluctuation of the effect-time course at (PD) steady state (with ERIss < 5%), which 

might be beneficial for an effective antibiotic therapy.  

Furthermore, the relation between the ‘administered’ daily dose of LZD and 

the observed ‘response’ (measured as AUCE(14 days)) revealed that for doses 

< 1800 mg/day an almost linear relation can be assumed. In contrast, for 

2400 mg/day a reduced increase in the ‘response’ was observed. Thus, 1800 mg/day 

might be optimal for just obtaining maximal efficacy. Overall, the results from the 

deterministic in silico simulation indicated that 1800 mg/day administered as 600 mg 

TID represents a highly rational dosing regimen of LZD for critically ill patients 

suffering from infections of S. aureus with MIC = 4 mg/L, as further discussed in the 

next section. 

4.4.2 Stochastic simulation 

13,000 virtual ‘in silico patients’ were successfully simulated and analysed in Excel, 

taking into account the IIV of the patient population. Each dosing regimen was 
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investigated using a population of 1,000 ‘in silico patients’. In comparison, previous 

stochastic in silico simulations in Excel analysed 10,000 individuals per question 

[113, 190]. However, for the current PK/PD problem only 1,000 individuals were 

simulated, due to the complexity of the underlying mathematic models and the 

resulting calculation time. The stochastic simulation of 1,000 ‘in silico patients’ took 

about 4 – 12 h (with Aspire 5110 from Acer), depending on the respective dosing 

regimen. Thus, simulating 10,000 individuals per dosing regimen in Excel was im-

practical. However, descriptive (RE < ± 4.2%) and inferential (p > 0.076) statistics of 

the monitored PK parameter (CL, V2 and V3) distributions, provided evidence that 

1,000 individuals were sufficient to reproducibly describe the patient population. 

Distributions of individual AUCE(14 days) values were graphically analysed via box plots, 

a frequently utilised technique for the visual comparison of the medians and the 5%, 

25%, 75% and 95% percentiles [134, 191]. A further benefit of the box plots tech-

nique is that it can be used for not normally distributed continuous data, as present 

here: Regarding the box plots for AUCE(14 days) (see  3.4.2, Fig. 27 and  7.2, Fig. 45) 

differently shaped distributions were observed. For the lowest dose of LZD, i.e. 

600 mg/day, the distribution was skewed towards higher values of AUCE(14 days), due 

to its location relative near to zero and the underlying exponential variability model. In 

contrast, 1200 mg/day provided distributions of AUCE(14 days) that looked sym-

metrically. For higher doses, e.g. 1800 – 2400 mg/day, the respective distributions 

were (partially) skewed towards lower values of AUCE(14 days), resulting from the 

model parameter value for the maximal effect (Emax) that served as ‘threshold’ for the 

effect. Thus, the shape of the AUCE(14 days) box plots for > 1800 mg/day were 

(partially) affected by the value of Emax. The highly skewed distribution for dosing 

regimens with 2400 mg/day revealed that this high dose of LZD often reached the 

maximal effect. However, on the other hand adverse drug effects might also occur 

more frequently when using this high amount of LZD. Hence, using 2400 mg/day LZD 

might be intolerable for therapy. 

For quantifying the differences between the distributions of AUCE(14 days) resulting 

from different daily doses of LZD, the methodology of ES was applied due to the 

following consideration: Evaluating differences between measured data sets via 

inferential statistics often do not provide enough information whether the observed 

difference is of practical relevance. In contrast, calculating the ES is known to be 

helpful for estimating whether the found difference matters or not. Moreover, unlike 
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statistical tests of significance, ES measures are less affected by sample size [192]. 

The measure of ES expresses score differences in units of variability, e.g. SD. One 

frequently used measure of ES is cohen’s d, referring to the differences of two means 

which is normalised by the pooled SD. For normal distributions with equal variability, 

Cohen provided conventional definitions of ES which have been found great practical 

acceptance [192], e.g. ES > 0.8 SD refers to a large effect which indicates a non-

overlap of > 47.4% in the two considered distributions [142].  

For the present work, ES was calculated using analogues parameters from the box 

plot statistics, i.e. using the median and IQR instead of mean and SD, as the data 

was not exactly normally distributed. Due to the modification of (cohen’s d) ES, the 

ES breakpoint for practical relevance (i.e. ES > 0.8 SD) has been adjusted, too: 

Assuming a Gaussian distribution with large sample size (n = 1,000), the mean can 

be set equal to the sample median. Furthermore, the IQR can be expressed as 

x · SD, where x refers to a dimensionless constant that can be numerically estimated 

as x ≈ 1.35. As a result, the analogous ES breakpoint for practical relevance was 

calculated as > 0.6 IQR. However, it should be recognised that the calculated ES 

breakpoint is still based on a Gaussian distribution which did not exactly fit to the 

present data. Nevertheless, it was assumed that the (two-sided) IQR is less affected 

from non-normality, compared to the (one-sided) SD. 

The calculated ES revealed that 1800 mg/day might be the optimal daily dose of 

LZD, which is in accordance with the results from the deterministic in silico 

simulation, i.e. 1800 mg/day administered as 600 mg TID. This hypothesis agrees 

with the conclusion of a clinical investigation from Buerger et al. with critically ill, 

septic patients [64]. They recommended using 600 mg TID to avoid sub-inhibitory 

LZD concentrations in the infected tissue interstitium, and thus to circumvent 

therapeutic failure and the development of bacterial resistance. Furthermore, the 

same dosing recommendation was developed by Zack et al., based on a PK/PD in 

silico simulation of LZD against MRSA [181]. They concluded that if tolerable, 600 mg 

TID may offer a substantial benefit over 600 mg BID for the treatment of MRSA 

infections with MIC = 4 mg/L.  

4.4.3 Potential limitations and future investigations 

The current PK/PD in silico approach determined the potential antibacterial effect of 

LZD, whereas the occurrence of adverse drug effects was not considered. However, 
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it should be recognised that the use of an increased daily dose, as discussed here, 

might lead to so far unknown adverse drug effects in the patient. Thus, if using LZD 

as 600 mg TID, the tolerability has to be monitored carefully. On the other hand, 

known severe adverse effects of LZD, e.g. thrombocytopenia, were predominately 

associated with long-term use of LZD for > two weeks [60, 62, 91]. Hence, the use of 

LZD administered as 600 mg TID might allow shortening the duration of therapy, 

which might help to avoid the occurrence of severe changes in the haemogram. 

However, to the author’s best knowledge, the tolerability of 1800 mg/day LZD, 

administered as 600 mg TID, has not yet been investigated in human.  

Another potential limitation of the performed simulations is the extrapolation of 

observed (in vivo) PK and (in vitro) PD characteristics of LZD, up to 14 days. The 

underlying experimental PK and PD data were limited to four days and one day, 

respectively. In addition, whereas the (population) PK model can surely be used for 

predicting in vivo scenarios, the developed PK/PD model might be limited to the in 

vitro situation. However, as discussed before (see  4.2.2.4.3) the in vitro PD of LZD 

maybe of predictable value for immunocompromised patients who most frequently 

suffer from severe nosocomial gram-positive infections [5, 12]. Furthermore, the 

implemented PD data were related to the antibacterial activity against S. aureus, one 

of the most frequently reported pathogens for nosocomial infections (see  1.1.1). 

However, other gram-positive bacteria, e.g. enterococci, might show a different 

behaviour under LZD exposure. Thus, further investigations should include PD data 

that cover 48 h of LZD exposure against different types of bacteria.  

Overall, the present PK/PD in silico approach revealed detailed information about the 

complex interactions between the critically ill, septic patient population, LZD and S. 

aureus. As stated by the EMEA, theoretical PK/PD approaches, as utilised here, 

cannot replace clinical trials of efficacy and tolerability, but rather complement them 

to more quickly develop better dosing recommendations [157]. As reported from 

Bonate, PK/PD modelling and in silico simulation might help saving about 10% of 

costs in clinical drug development, via explorative ‘virtual’ (clinical) trials on a 

computer [131]. In this context, the hypothetical dosing recommendation of the 

present work might provide a rational basis for conducting a prospective clinical trial 

with critically ill patients using 600 mg LZD administered TID, to compare the clinical 

efficacy and tolerability towards its standard dosing regimen. 
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5 Conclusion and perspectives 
This thesis aimed to develop a rational hypothesis for an optimised dosing regimen of 

LZD for critically ill patients suffering from severe infections of S. aureus, based on 

PK/PD modelling, in silico simulation and analysis. 

Firstly, an HPLC assay for the quantitative determination of LZD in MHB was 

developed and successfully validated according to the FDA guideline. Pre- and in-

study validation parameters revealed high linearity, analytical recovery, accuracy and 

precision. Thus, the HPLC assay allowed the reliable and accurate determination of 

LZD samples obtained from the PD in vitro models. However, before its application 

for LZD samples which additionally contain other antibiotics, the specificity for LZD 

should be determined. Overall, the validated HPLC method established the basis for 

investigating various LZD concentration-time profiles in vitro. 

Secondly, an economic PD in vitro approach was established to characterise the 

antibacterial activity of LZD towards a penicillin-resistant strain of S. aureus under 

various constant (via static model) and in vivo-like (via dynamic model) LZD 

exposures. In the static in vitro model, the MIC and time-kill curves were successfully 

determined. The MIC (= 2 - 4 mg/L) provided a relative imprecise estimation of the 

bacteriostatic acting LZD concentration. In contrast, the time-kill curve approach 

allowed characterising the antibacterial activity of LZD in dependency of time and 

LZD concentration: > 3.5 µg/mL prevented bacterial (re-)growth for 24 h, and 

≈ 17 µg/mL were sufficient to approximately reach the maximal effect after 6 h. 

Nevertheless, bacterial eradication of S. aureus was not achieved due to the 

occurrence of bacterial persistence. In the persisting phase, the SCV phenotype was 

identified indicating the development of phenotypic tolerance/resistance towards 

LZD. Further in vitro investigations should quantify phenotypic switching of S. aureus 

under antibiotic exposure, in order to develop an ‘anti-persister’ therapy.  

Moreover, imitating in vivo-like LZD exposure in tissue fluid of septic patients 

receiving standard dosing of LZD, revealed a merely bacteriostatic activity against S. 

aureus. Further in vitro experiments should imitate multiple (standard) dosing of LZD, 

to capture the influence of LZD accumulation in tissue fluid. The explorative in vitro 

investigation of a 6 h continuous i.v. infusion with initial i.v. bolus injection as loading 

dose provided no relevant benefit compared to the standard dosing of LZD.  
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Thirdly, the descriptive PK/PD analysis identified the highest correlation between the 

antibacterial effect and the ‘time above the MIC’ (tC>MIC). However, as the MIC 

generally lacks precision, such MIC-based PK/PD approach should be interpreted 

with caution when evaluating dosing regimens of antibiotics. Thus, as an alternative 

PD measure, the RBR, which quantifies bacterial killing in relation to bacterial growth 

without antibiotic, was introduced as the net estimate of the antibacterial effect. The 

RBR of S. aureus under various LZD exposures was successfully analysed via 

PK/PD modelling with Excel using an indirect link model approach. Based on a 

modified ‘sigmoidal’ Emax model, a hypothetical effect CMT was implemented in the 

PK model, referring to the assumed LZD concentration-time course at the ‘effect site’, 

i.e. inside the bacterial cell. The existence of the kinetic effect CMT is in accordance 

with previous findings, indicating differences between intra- and extracellular LZD 

concentrations. Nevertheless, the developed PK/PD model is mainly empirical, and 

thus does not specifically reflect the underlying physiologic mechanisms of bacterial 

growth and killing. Further PK/PD modelling approaches might try to account for 

physiologic mechanisms, e.g. the occurrence of SCV. 

In a subsequent step, the developed in vitro PK/PD model was combined with a 

previously developed in vivo (population) PK model of LZD, to investigate and 

evaluate the potential efficacy of twelve hypothetical dosing regimens for LZD vs. its 

standard dosing regimen. Here, deterministic (without IIV) and stochastic (with IIV) in 

silico simulations were successfully performed in Excel, imitating 14 days of LZD 

therapy. The results from both simulation approaches proposed that 600 mg LZD 

administered TID might be more efficient than standard dosing (i.e. 600 mg BID), for 

critically ill, septic patients suffering from severe infections of S. aureus barely 

susceptible to LZD, i.e. MIC = 4 mg/L. These results are supported by previous 

studies from the literature. 

In a further step, the developed (hypothetical) dosing recommendation for LZD 

should be prospectively investigated in vivo, e.g. in a clinical trial with critically ill, 

septic patients suffering from S. aureus with MIC = 4 mg/L. However, if using LZD as 

600 mg TID in humans, the tolerability should be monitored carefully. 
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7 Appendix 

7.1 Tables 

 

Tab. 13 Composition of phosphate-buffered saline with peptone (PBSP) that served as 
diluent of bacterial suspensions [107]. 

Ingredients Amount (mass or volume) 

Sodium chloride (NaCl) 8.5 g 

Potassium dihydrogen phosphate (KH2PO4) 0.3 g 

Disodium hydrogen phosphate (Na2HPO4) 0.6 g 

Peptone from meat, peptic 1.0 g 

Distilled water (pH = 7.0) 1.0 L 

 

 

Tab. 14 Parametric model comparison of the three nested models for pharmacokinetic/ 
pharmacodynamic modelling of data set I (with n = 88), showing the respective amount of 
model parameters (K - 1), the AICC values, the probabilities (Pi) of being the relative ‘best’ 
model and the respective probalistic ‘superiority’ (1 – Pi) in favour of the model with the 
lowest AICC value (*).  

Pharmacokinetic/ 
pharmacodynamic models K – 1 Data set AICC Pi, % 1 – Pi, % 

‘Sigmoidal’ Emax model 3 I 500.578 0.0 100.0 

Modified ‘sigmoidal’ Emax model 6 I 205.649 2.9 97.1 

Indirect link model 7 I 198.598* 50.0 50.0 

 

 

Tab. 15 Parametric model comparison of the three nested models for pharmacokinetic/ 
pharmacodynamic modelling of data set I+II (with n = 128), showing the respective amount of 
model parameters (K - 1), the AICC values, the probabilities (Pi) of being the relative ‘best’ 
model and the respective probalistic ‘superiority’ (1 – Pi) in favour of the model with the 
lowest AICC value (*).  

Pharmacokinetic/ 
pharmacodynamic models 

Data 
set K – 1 AICC Pi, % 1 – Pi, % 

‘Sigmoidal’ Emax model I+II 3 880.057 0.0 100.0 

Modified ‘sigmoidal’ Emax model I+II 6 444.950 0.0 100.0 

Indirect link model I+II 7 351.739* 50.0 50.0 
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Tab. 16 Correlation matrix for the final pharmacokinetic/pharmacodynamic model, showing 
the calculated correlation coefficients (r) for modelling the combined data set (I+II), the model 
parameters are described in  3.3.2.2. 

Model parameter Emax, % EC50 [µg/mL] H [-] keo [h-1] ae [h-1] be [h-1] ze [h-1] 

Emax, % 1.000 - - - - - - 

EC50 [µg/mL] -0.153 1.000 - - - - - 

H [-] -0.663 0.339 1.000 - - - - 

keo [h-1] -0.136 -0.035 -0.164 1.000 - - - 

ae [h-1] -0.217 -0.032 0.057 -0.476 1.000 - - 

be [h-1] 0.504 -0.663 -0.646 0.436 -0.187 1.000 - 

ze [h-1] 0.222 -0.195 -0.576 0.725 -0.538 0.617 1.000 
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7.2 Figures 
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Fig. 28 In vitro stability investigation of linezolid (LZD) inside the static in vitro model, using 
nominal LZD concentrations of CLZD = 0.5 µg/mL (red data points) and 10.0 µg/mL (blue data 
points) in Mueller-Hinton broth at 36 °C with (a) and without (b) bacteria, showing the relative 
stability as medians and ranges of three aliquots vs. time; dashed line: 100% relative 
stability; dotted lines: 90% and 110% relative stability, respectively.  

b 

a 
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Fig. 29 Linezolid (LZD) concentration-time courses obtained from the preliminary 
investigations using the dynamic in vitro model, for samples taken directly through the flask 
neck (red data points) and the respective samples taken through the membrane filter unit 
(blue data points), using log-linear regression (black solid lines) for the latter type of samples, 
showing the respective model equations with y = LZD concentration, x = time, and 
R2 = coefficient of determination.  

 

0

0.1

0.2

0.3

0.4

0.5

0.0 0.1 0.2 0.3 0.4 0.5

Predicted normalised difference 

M
ea

su
re

d 
no

rm
al

is
ed

 d
iff

er
en

ce

 

Fig. 30 Goodness of fit plot of the correction factors/function for linezolid concentrations 
obtained from preliminary investigations using the dynamic in vitro model (without bacteria): 
measured vs. predicted normalised differences, showing symmetrically distributed data 
points around the line of identity (black solid line).  
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Fig. 31 Semi-logarithmic bacterial concentration-N(t)-time courses for investigating the 
bacterial survival of S. aureus (ATCC 29213) in 0.85% saline (blue data points) and in 
phosphate buffered saline with peptone (red data points), showing the medians with 5% and 
95% percentiles as error bars calculated from eight aliquots; the dashed line refers to the 
median initial bacterial concentration at t = 0 min.  
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Fig. 32 Bacterial concentrations (N(t)) of S. aureus (ATCC 29213) using direct plating vs. the 
centrifugation method (red data points), with the line of identity (black solid line). 
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Fig. 33 Comparison of bacterial growth of S. aureus (ATCC 29213) in the static and dynamic 
in vitro model, showing the respective geometric means of the bacterial concentrations 
measured without linezolid exposure (N(C=0, t)) at different time points (coloured data 
points), error bars referring to the corresponding confidence intervals (CI95%), and the line of 
identity (black solid line). 
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Fig. 34 Correlation analysis for data obtained from the three imitated i.v. bolus injections of 
linezolid (LZD), showing the in vitro pharmacodynamic outcome, AUCE(12h) = area under the 
effect-time curve after 12 h, vs. the three pharmacokinetic/pharmacodynamic indices: (a) 
Cmax/MIC, (b) AUC12h/MIC and (c) tC>MIC, and vs. (d) the administered dose (D), with 
Cmax = maximal LZD concentration, MIC = minimum inhibitory concentration (at 24 h), 
AUC12h = area under the LZD concentration-time curve after 12 h, tC>MIC = time with the LZD 
concentration > MIC, and R2 = coefficient of determination. 
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Fig. 35 Correlation analysis for data obtained from all four imitated i.v. linezolid (LZD) 
exposure profiles, showing the in vitro pharmacodynamic outcome, AUCE(12h) = area under 
the effect-time curve after 12 h, vs. the three pharmacokinetic/pharmacodynamic indices (a) 
Cmax/MIC, (b) AUC12h/MIC and (c) tC>MIC, and vs. (d) the administered dose (D), with 
Cmax = maximal LZD concentration, MIC = minimum inhibitory concentration (at 24 h), 
AUC12h = area under the LZD concentration-time curve after 12 h, tC>MIC = time with the LZD 
concentration > MIC, and R2 = coefficient of determination.  
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Fig. 36 Time courses of the three sub functions Emax(t) (blue curve), EC50(t) (red curve) and 
H(t) (green curve) of the final pharmacokinetic/pharmacodynamic model (see  3.3.4), using 
the model parameter estimates from modelling the combined data set (I+II). 
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Fig. 37 Goodness of fit plot for the final pharmacokinetic/pharmacodynamic model (see 
 3.3.4): Relative bacterial reduction (RBR) predicted vs. RBR observed in the static and 
dynamic in vitro model, additionally showing the line of identity (black solid line). 
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Fig. 38 Goodness of fit plots for the final pharmacokinetic/pharmacodynamic model (see 
 3.3.4): Residuals (= RBR observed – RBR predicted) vs. (a) the relative bacterial reduction 
(RBR) observed in the static and dynamic in vitro model, vs. (b) the RBR predicted by the 
final model, vs. (c) the linezolid (LZD) exposure time, and vs. (d) the LZD concentration 
investigated in the static and dynamic in vitro model, additionally showing the respective 5% 
and 95% percentiles (dashed lines).  
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Fig. 39 Deterministic in silico simulation for linezolid (LZD) imitating the dosing regimen of 
600 mg once daily, showing (a) the LZD concentration-time courses in plasma (red curve) 
and at the ‘effect site’ (blue curve), and (b) the respective effect-time course (green curve). 
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Fig. 40 Deterministic in silico simulation for 1200 mg/day linezolid (LZD), imitating dosing 
regimens of (I) 1200 mg once daily, (II) 600 mg twice daily, (III) 400 mg three times a day, 
and (IV) 300 mg four times a day, showing (a) the LZD concentration-time courses in plasma 
(red curves) and at the ‘effect site’ (blue curves), and (b) the respective effect-time course 
(green curves). 
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Fig. 41 Deterministic in silico simulation for 1800 mg/day linezolid (LZD), imitating dosing 
regimens of (I) 1800 mg once daily, (II) 900 mg twice daily, (III) 600 mg three times a day, 
and (IV) 450 mg four times a day, showing (a) the LZD concentration-time courses in plasma 
(red curves) and at the ‘effect site’ (blue curves), and (b) the respective effect-time course 
(green curves). 
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Fig. 42 Deterministic in silico simulation for 2400 mg/day linezolid (LZD), imitating dosing 
regimens of (I) 2400 mg once daily, (II) 1200 mg twice daily, (III) 800 mg three times a day, 
and (IV) 600 mg four times a day, showing (a) the LZD concentration-time courses in plasma 
(red curves) and at the ‘effect site’ (blue curves), and (b) the respective effect-time course 
(green curves). 
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Fig. 43 Goodness of fit plot for modelling the dose-‘response’ relation of the deterministic in 
silico simulation, showing the model-predicted area under the effect-time course after 14 
days of linezolid therapy (AUCE(14 days)) vs. the observed AUCE(14 days), additionally showing the 
line of identity (black solid line).  
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Fig. 44 Box-and-whisker plots of the Monte Carlo simulation, showing the pharmacokinetic 
parameters clearance (CL, yellow boxes) and volume of distribution in the central (V2, red 
boxes) and peripheral (V3, blue boxes) compartments of one thousand virtual ‘in silico 
patients’, for each simulated dosing regimen, the respective box refers to the 25% and 75% 
percentiles, the bisecting line of the box is equal to the median, and the whiskers represent 
the 5% and 95% percentiles.  
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Fig. 45 Box-and-whisker plots for the Monte Carlo simulation, showing the observed area 
under the effect-time course after 14 days of linezolid therapy (AUCE(14 days)) of thirteen 
thousand virtual ‘in silico patients’ with four different daily doses of linezolid, the box refers to 
the 25% and 75% percentiles, the bisecting line of the box is equal to the median, and the 
whiskers represent the 5% and 95% percentiles. 
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Fig. 46 Dose-‘response’ relation for the Monte Carlo simulation, showing the observed values 
for the area under the effect-time course after 14 days of linezolid therapy (AUCE(14 days), pink 
data points) of thirteen thousand virtual ‘in silico patients’ with four different daily doses of 
linezolid, and the model-predicted dose-‘response’ curve for the deterministic in silico 
simulation (black solid line, see  3.4.1). 
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7.3 Fundamental mathematic methods 

The fundamental mathematic methods utilised in this thesis are mentioned in the 

respective sections and explained in the following text. 

7.3.1 Descriptive statistics 

For descriptive statistics of the experimental data, different statistical measures of 

central tendency, variability, precision and accuracy were calculated, according to the 

attributes of the respective data variable [193]. The descriptive data analyses were 

performed via Excel.  

7.3.1.1 Measures of central tendency 

• Arithmetic average (or mean): Sum of the observations divided by the number of 

observations [194], which describes a normally distributed population [195]. 

• Geometric mean: The nth root of the product of n observations, meaningful as 

measurement of population growth [194]. 

• Median: Value which divides the data ranked in order in half, a half being less and 

a half being greater than the median [194]. The median is unaffected by outliers 

and useful when continuous data are not normally distributed [196]. 

7.3.1.2 Measures of variability, precision and accuracy 

• Range (R): Difference between the smallest and the largest value in the data set 

[194]. 

• Quantiles (or percentiles, %): The nth quantile denotes a value below which n 

percent of the data, ranked in order, are found [194]. 

• Interquartile range (IQR): Interval between the 25th and 75th quantiles, a measure 

of variability directly related to the median [196]. 

• Standard deviation (SD): Estimate of the degree of scatter of individual sample 

data points about the sample mean [196], for a normally distributed population 

[195]. 

• Coefficient of variation (CV), %: Percentaged ratio of the SD to the mean [194]. 
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• Relative error (RE), %: Percentaged ratio of the difference between the estimated 

value and the nominal value, to the nominal value [113]. 

7.3.2 Inferential statistics 

Inferential statistics imply the use of statistical methods to make inferences 

concerning certain unknown aspects of a population. Two main aspects of inferential 

statistics are estimation and hypothesis testing which are both briefly explained in the 

following text. 

7.3.2.1 Estimation 

Statistical parameters derived from samples, so called point estimates, are often 

utilised to estimate the true population parameters. These estimates are more or less 

acceptable surrogates for the unknown true values. Thus, it is useful to calculate an 

interval that is apt to contain the true parameter value, to clearly evaluate the quality 

of these estimates. These intervals are known as confidence intervals [194, 196]: 

7.3.2.1.1 Confidence interval 

The confidence interval (CI) of an estimated statistical parameter, e.g. the mean of a 

sample set, is equal to the range of values likely to be representative of the 

respective true population parameter. The degree of confidence can be arbitrarily 

chosen, but most frequently expressed as the 95% CI (CI95%) [196]. In this thesis, the 

CI95% was numerically estimated via bootstrapping (see  2.4.6.1 and  2.5.1.5.2). 

7.3.2.2 Hypothesis testing 

Statistical hypothesis testing contains methods of making statistical decisions (test of 

significance) using experimental data, to choose between the alternatives to accept 

or reject the previously made hypothesis, which is generally useful to minimise 

certain risks. The selection of an appropriate test of significance is dependent on the 

type of data to be analysed [193], and the number of groups to be compared. 

Parametric tests of statistical significance are based on statistical parameters, e.g. 

mean or SD, and thus appropriately used for most (normally distributed) continuous 

variables [195]. For continuous data that are not normally distributed, nonparametric 

tests should be preferred [197]. For hypothesis testing of the experimental data, the 

following two tests of significance were used. 
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7.3.2.2.1 Analysis of variance 

The analysis of variance (ANOVA) is a parametric test of significance, assuming 

normality of the population from which the samples were drawn, homogeneity of the 

variances of the population and independence of the data points within the sample 

group. ANOVA is an accepted method of comparing two or more groups from one 

experiment, whereas the α-level, i.e. the probability of making a type one error [198], 

is held constant at the preset level [195]. In the present work (see  3.1.1,  3.2.1 and 

 3.2.3.1), the one-way ANOVA was performed via Excel with α = 0.05 [115]. In case of 

log-normally distributed data, the respective log-transformed data set was used. 

7.3.2.2.2 Kruskal-Wallis test 

The Kruskal-Wallis one-way analysis of variance by ranks (Kruskal-Wallis test) is the 

nonparametric analogue of a one-way ANOVA [197, 199]. It is an extension of the 

rank sum test, that can be used when two or more groups are compared, by testing 

the equality of population medians among the groups [194]. The Kruskal-Wallis test 

was performed (see  3.4.2) via SPSS with α = 0.05, in case of not normally or 

respectively unknown distributed data [200]. 

7.3.3 Correlation analysis 

Correlation is an exploratory technique used to examine whether the values of two 

variables are significantly related, e.g. for linear correlation, to examine whether the 

values of both variables change in a consistent way. However, there is no 

expectation that the value of one variable can be predicted from the other, or that 

there is any causal relation between them. Furthermore, the correlation will be the 

same, if the two variables become interchanged [117, 199]. For the present work, the 

following measurements of correlation were applied via Excel [114]. 

7.3.3.1 Pearson correlation coefficient  

The Pearson correlation coefficient (r) is used to quantify the strength of a linear 

relation between two continuous variables that are normally distributed. In case of 

unequal variances, an appropriate weighting scheme (see  7.3.4.3) can be 

implemented [101]. The value r can be of any value from -1 to +1, whereas the two 

extreme cases mean perfect (negative / positive) linear correlation, and a value of 
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zero shows the lack of a linear correlation between the two investigated variables 

[199, 201].  

7.3.3.2 Coefficient of determination 

The coefficient of determination (r2) is defined as the squared Pearson correlation 

coefficient, and implies the fraction of variation that is shared by both variables [117].  

7.3.4 Regression analysis 

Regression analysis describes the functional relationship between two or more 

variables by fitting a mathematic model to the experimental data. In contrast to 

correlation analysis, an underlying relation is assumed, i.e. the variables cannot be 

interchanged. Thus, the value from one variable can be predicted by the other 

variable(s) [199]. Generally, two types of regression analysis exist, these are linear 

and nonlinear regression (see  7.3.4.4 and  7.3.4.5), which were both applied in the 

present work (see  2.3.2.4,  2.5,  3.1.2.2 and  3.4.1). 

7.3.4.1 Models, variables, parameters and constants  

The regression model is a mathematic equation that defines the outcome variable y 

(dependent variable) as a function of one or more other (independent) variable(s) x 

and one or more model parameter(s). Thus, y depends on the value of x, but not vice 

versa. The model parameters define the properties of the regression model. Beside 

parameters and variables, regression models often include one or more constants. At 

the beginning of the regression analysis, the values of the included constants are 

preset, whereas the values of the respective model parameters are unknown. The 

aim of the regression analysis is to find the best-fit values of the parameters that 

allow to describe the total experimental data and to predict y from x [125]. Regression 

analysis most commonly estimates the best-fit values of model parameters by using 

the least squares (LS) method, as utilised for the present work (see  2.5.1.5). 

7.3.4.2 Least squares method 

The LS method, first described by Carl F. Gauß, is a maximum likelihood estimation 

technique which assumes that y is normally distributed and x is error-free. Given this 

specific assumption, the LS method helps to decide which values of model parameter 

are the most likely ones to perform the best-fit to the experimental data. The LS 
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method calculates the sum of the squares of the vertical distances (sum of squared 

residuals, SSR) between the measured data points (yobserved, with amount n) and the 

regression line or curve (ypredicted), respectively (eq. A1).  

2

1
)( ,, ipredicted

ni

i
iobserved yySSR ∑

=

=

−=   eq. A1 

The functional aim of the LS method is to minimise the SSR to obtain parameter 

values with the highest probability, i.e. the best-fit values [117]. 

7.3.4.3 Weighted least squares method 

Regression analysis using the SSR is based on the assumption that the dependent 

variable y follows a Gaussian distribution (normally distributed) containing a 

homoscedastic error, i.e. the standard deviation is assumed to be the same for all 

measured data points. However, for real data this is often not true, i.e. data with a so 

called heteroscedastic error are present. In this case, the standard LS method may 

lead to biased regression curves and parameter values, respectively. Additional 

flexibility can be added to the regression analysis by means of weighting. The 

weighted SSR (WSS) is calculated (eq. A2) by multiplying each squared residual by a 

weighting factor (Wi) [101, 117, 125, 202]. 

iipredicted

ni

i
iobserved WyyWSS ⋅−= ∑

=

=

2

1

)( ,,   eq. A2 

7.3.4.4 Simple linear regression 

Simple linear regression describes the functional relationship between y and x as 

‘straight line’ with y = mS·x + b as regression model. The regression model contains 

only the two parameters mS and b as slope and intercept, respectively. Here, an 

algebraic tool can be used to exactly calculate the best-fit values of the two 

parameters directly from the original data set [199]. For the current work (see  3.1.1), 

linear regression was applied via Excel [203]. In case of data containing a 

heteroscedastic error, linear regression was applied with an appropriate weighting 

scheme (see  2.3.2.4), according to Almeida et al. [101]. 
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7.3.4.5 Nonlinear regression 

Nonlinear regression is more complex than simple linear regression. As there is no 

algebraic tool available, best-fit values of the respective parameters cannot be 

calculated directly by the observed values of y and x. Instead, nonlinear regression 

uses numeric iteration for the parameter adjustment, which is frequently called 

mathematic modelling. The objective of the modelling process is to adjust the model 

parameters to obtain the ‘optimal’ fit (estimated best-fit) to the experimental data.  

7.3.4.5.1 Numeric iteration approach 

The iterative approximation approach of mathematic modelling first needs an initial 

estimate for each model parameter and possibly lower and upper limits as rational 

constraints. The ‘roughly’ estimated initial values can be obtained from graphical or 

other tools. Subsequently, the values of ypredicted are obtained from the regression 

model for each xobserved, and the respective SSR (or WSS) is calculated. Then, the 

parameter values will be iteratively adjusted to minimise the SSR (or WSS) in order 

to fit the regression curve to the observed data points [117].  

The process of iterative parameter adjustment for minimising the SSR (or WSS) can 

be very complex, and thus is generally performed via automated optimisation 

algorithms, as utilised in this thesis (see  2.5.1.5). These algorithms are numeric tools 

for optimising, i.e. minimising or maximising, a selected objective function (OBJ) of a 

mathematic ‘problem’. The calculated value of the OBJ is dependent on the current 

parameter values which have to be adjusted for solving the considered mathematic 

‘problem’. The numerically found extremum (minimum or maximum value of the OBJ) 

can either be global, i.e. truly the highest or lowest function value, or just local, i.e. 

the highest or lowest value in a finite neighbourhood and not on the boundary of that 

neighbourhood. However, finding the global extremum is the ultimate aim of this 

approach. As there is no perfect optimisation algorithm available, different algorithms 

can be combined [204]. For nonlinear regression, generally the SSR (or WSS) serves 

as OBJ, which is supposed to be minimised by the chosen algorithm. In the present 

work, the Generalized Reduced Gradient (GRG2) algorithm has been used in Excel 

to minimise the OBJ (see  2.5.1.5). The GRG2 algorithm was developed by Leon 

Lasdon (University of Texas), and Allan Waren (Cleveland State University) [205]. 
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7.3.5 Solving ordinary differential equations 

A differential equation is a mathematic equation for an unknown function f(x) of one 

or several variables that relates the values of the function itself and of its derivatives 

of various orders. Differential equations play an important role in pharmacometrics, 

e.g. for PK/PD modelling [1], which have to be integrated (‘solved’) for their practical 

application. An ordinary differential equation (ODE) is a differential equation in which 

the unknown function f(x) is a function of a single independent variable (x), e.g. the 

first-order ODE df(x)/dx. The order of an ODE is the order of the highest derivatives 

of the dependent variable appearing in the equation. For this thesis, only first-order 

ODEs were solved (see  2.6.2 and  3.4). 

7.3.5.1 Laplace transform 

ODEs are frequently rate of change equations, df(t)/dt with time (t) as independent 

variable, that describe one or more zero- or first-order process(es). These equations 

are called linear ODEs. For solving such linear equations, i.e. finding f(t), a 

conventional algebraic technique called Laplace transform can be easily applied, as 

done in the present work (see  3.3.2.2.1 and  7.4).  

Basically, Laplace transform replaces the time domain t of the considered time-

dependent function f(t) by the complex domain of the Laplace operator s, written as 

f . The means by which df(t)/dt is transformed into f  is given by the Laplace integral 

L(df(t)/dt) calculated from time zero to time infinity (eq. A3) [44, 206, 207], 

( ) ( )0
0

ffsdt
dt

tdfe
dt

tdfL ts −⋅=⋅⎟
⎠
⎞

⎜
⎝
⎛⋅=⎟

⎠
⎞

⎜
⎝
⎛

∫
∞

⋅− )()(   eq. A3 

where f(0) refers to the initial conditions, i.e. the value of f(t) at t = 0. 

7.3.5.2 General partial fraction theorem 

The inverse of the Laplace transform can be obtained via the use of the general 

partial fraction (GPF) theorem. Here, the Laplace transform is transposed in the form 

of the quotient of two polynomials P(s)/Q(s), where the denominator has a higher 

degree and contains the factor s-λi, which is not repeated. λi’s are the roots of the 

denominator, with amount M. The inverse Laplace transform L-1 can be calculated via 

eq. A4, 
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where Qi(λi) is the value of the denominator when λi is substituted for all s terms 

except for the originally containing λi, this term being omitted. The P(λi) term is 

obtained by substitution of the appropriate root for every value of s [44, 208]. For the 

present work, the GPF theorem was utilised for solving Laplace transforms (see  7.4). 

7.3.5.3 Fourth-order Runge-Kutta method 

For more complex (e.g. nonlinear) ODEs, these equations are often elementary not 

solvable or too complex to be solved. Then numeric integration approaches are 

needed to provide the ‘best’ estimation for the exact solution. The fourth-order 

Runge-Kutta (RK4) method is an iterative approach to numerically solve ODEs with a 

known initial value, developed by Carl D. T. Runge and Martin W. Kutta [207]. This 

method is based on the idea of the polygonal curve of the Euler’s method with 

improved accuracy, as described in the following. 

For a considered first-order ODE y’ = f(x; y) with a given initial value problem 

y(x0) = y0, first the tangent slope mT = (y-y0)/(x-x0) is calculated for the interval 

x0 < x < x1 = x0 + hSS, where hSS is the step size which essentially determines the 

accuracy of method. Subsequently, the solution for the considered interval is 

estimated by the straight line function y = y0 + hSS·mT. 

In contrast to the Euler’s method, the tangent slope is calculated as ‘averaged’ slope 

(mav) based on four single slopes (mT1-4) obtained from the boundaries and  

the centre (i.e. at hSS/2) of the considered interval hSS, using different ‘weights’: 

mav = 1/6·(mT1 + 2·mT2 + 2·mT3 + mT4). Thus, the RK4 method uses the following 

calculation rule with k1-4 = hSS·mT1-4 as auxiliary quantities [207]: 

y(xn+1) ≈ yn+1 = yn +1/6·(k1 + 2·k2 + 2·k3 + k4) 

k1 = hSS·f(xn; yn) 

k2 = hSS·f(xn + hSS/2; yn + k1/2) 

k3 = hSS·f(xn + hSS/2; yn+ k2/2) 

k4 = hSS·f(xn + hSS; yn+ k3) 
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The RK4 method was applied for the in silico simulation (see  3.4) to solve the 

(nonlinear) system of coupled ODEs of the utilised (population) PK model for LZD 

(see  2.6.2) together with the developed final in vitro PK/PD model (see  3.4). 

7.3.6 Simulation technique 

7.3.6.1 Systems, models and simulations 

A simulation represents certain key characteristics of a selected (physical or abstract) 

system that is extremely expensive or rare, laborious or resource-intensive to 

investigate, or not even available in reality, and is based on (e.g. mathematic) 

models. Mathematic models are classified in many ways, e.g. in deterministic and 

stochastic models. If a simulation model does not contain any probabilistic (i.e. 

random) components, it is called deterministic, whereas in a stochastic model at least 

one variable is random [131], e.g. clearance or volume of distribution as utilised in the 

present work (see  2.6.3). 

Simulation enables the experimenter to replicate an ‘experiment’ as many times as 

needed, e.g. using different conditions, with minimal additional effort. If the 

relationships that compose the underlying model are ‘simple’ enough, it may be 

possible to use mathematic methods to obtain exact information on questions of 

interest, i.e. an analytical solution is available. However, most ‘real world’ systems 

are too complex to allow realistic models to be evaluated analytically. Thus, these 

problems must be studied numerically via in silico simulation to estimate the desired 

true characteristics of the model [209, 210]. 

7.3.6.2 In silico simulation 

In silico simulation is a numeric technique for performing ‘experiments’ on a 

computer. It involves certain types of mathematic and logical models that describe 

the behaviour of a considered (economic, engineering or biological) system, to solve 

a specific ‘problem’. In more detail, in silico simulation is a technique of performing 

sampling experiments on the model of the considered system. The system is a set of 

related elements that contains the ‘problem’ to be solved. The simulation model is a 

representation and abstraction of the respective system that can have input and 

output variables and several parameters. For instance, stochastic simulations sample 

input variables from particular distributions and involve the use of randomness via the 
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Monte Carlo method (MCM), frequently called Monte Carlo simulation (MCS) [131, 

210].  

7.3.6.3 Monte Carlo method and simulation 

The MCM was introduced by Nicholas C. Metropolis and Stanislaw M. Ulam during 

World War II for a ‘realistic’ solution of a model, using randomness [211], suggested 

by the gambling casinos at the city of Monte Carlo in Monaco. This method can be 

used not only for the solution of stochastic ‘problems’, but also for solving 

deterministic ‘problems’. Using the MCM can be time-consuming and provides ‘only’ 

statistical estimates rather than exact results, but for many ‘problems’ it may be the 

only available way to obtain an answer [114, 210]. 

MCS is a very powerful tool to explore and conduct complex systems where 

experimental data is limited, e.g. simulating ‘real life’ scenarios. This frequently used 

simulation technique is based on repeated random sampling of (a) ‘hypothetical’ 

population(s), in order to simulate thousand(s) of different ‘hypothetical’ cases for the 

investigated system [113, 190, 209-212]. Randomness is generated on a computer 

by a pseudo-random number generator. Thus, the generated numbers were not truly 

random. However, in terms of the simulation issue randomness is sufficient, if the 

generated numbers are uniformly distributed, statistically independent and 

reproducible [210].  

For the present thesis, MCS was applied via Excel for testing various hypothetical 

dosing regimens for LZD (see  2.6.3). The pseudo-random number generator in Excel 

(version 2003) is based on the Wichmann-Hill algorithm [213, 214], that has been 

tested for sufficiency [114, 209, 215].  
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7.4 Mathematic deviations 

7.4.1 Derivation of Equation M1 

The initial drug concentration (C0) in the dynamic PD in vitro model can be expressed 

as 

V
DC =0 ,    eq. A5 

where V is the volume of broth and D is the initial amount of drug. After performing 

the first dilution step at time point t1 = ∆tdil, the drug concentration C(t1) can be 

calculated as 

( ) dile tkeCtC Δ⋅−⋅= 01 ,  eq. A6 

where ke refers to the simulated elimination rate constant. Alternatively, C(t1) can also 

be expressed as 

( ) ( )
V
d

V
D

V
dDtC Δ

−=
Δ−

=1 , eq. A6a 

where ∆d is the amount of drug withdrawn. Thus, eq. A6 and A6a can be set equal: 

V
d

V
DeC dile tk Δ
−=⋅ Δ⋅−

0 .  eq. A6b 

The substitution of C0 in eq. A6b by eq. A5 results in  

V
d

V
De

V
D

dile tk Δ
−=⋅ Δ⋅− .  eq. A6c 

Transposing eq. A6c reveals 

( ) deD dile tk Δ=−⋅ Δ⋅−1 .  eq. A6d 

D can be expressed by eq. A5 as D = C0 · V, and analogously ∆d can be calculated 

as ∆d = C0 · Vsub, where Vsub is the substituted volume of broth. Replacing D and ∆d 

in eq. A6d by the expressions C0 · V and C0 · Vsub, respectively, results in 

( )dile tk
sub eVV Δ⋅−−⋅= 1 .  eq. A6e 

Moreover, ke can be expressed as ke = ln(2)/ t1/2 [44], where t1/2 refers to the half-life, 

in eq. A6e resulting in eq. M1 (see  2.4.4.2.2). 
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7.4.2 Derivation of Equation R2 

 

 

 

 

 

Fig. 47 Schematic depiction of the effect compartment (CMT) model, considering constant 
drug concentrations in the central CMT. 

 

The drug concentration in the central CMT (referring to plasma, Fig. 47) is given by 

Cp = Xc/Vc, where Xc refers to the amount of drug in the central CMT and Vc is the 

volume of distribution of the considered CMT. Due to the lack of drug elimination from 

the central CMT, Cp is assumed to be constant and thus equals to the initial drug 

concentration C0, which is defined as 

cV
DC =0 ,     eq. A7 

where D is the administered dose. In contrast, the drug concentration in the effect 

CMT (Ce(t)) is a function of time (t) that is calculated as  

( ) ( )
e

e
e V

tXtC = .    eq. A8 

Here, the function Xe(t) describes the amount of drug in the effect CMT at time point 

t, and Ve is the volume of distribution of the effect CMT. The change of Xe(t) over time 

(dXe(t)/dt) can be derived from Fig. 47 as 

( ) )(tXkDk
dt

tdX
eeoie

e ⋅−⋅= , eq. A9 

where kie and keo are the first-order rate constants for the drug transfer into and from 

the effect CMT, respectively. At time point t = 0, Xe(t) is zero, and thus using Laplace 

transform (see  7.3.5.1) on eq. A9 and transposing result in 

( )eo

ie
e kss

DkX
+⋅
⋅

= ,  eq. A9a 
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with s equals the Laplace operator. The inverse of the Laplace transform is obtained 

via the use of the GPF theorem (see  7.3.5.2), and subsequent transposing reveals 

( ) ( )tk

eo

ie
e

eoe
k

DktX ⋅−−⋅
⋅

= 1 . eq. A9b 

Combining eq. A8 and A9b gives  

( ) ( )tk

eeo

ie
e

eoe
Vk
DktC ⋅−−⋅
⋅
⋅

= 1 . eq. A9c 

At steady state, the products Ve · keo and kie · Vc are equal [57], and thus Ve can be 

calculated as 

c
eo

ie
e V

k
kV ⋅= .   eq. A10 

Combining eq. A9c with A10 and subsequently inserting eq. A7, finally result in eq. 

R2 (see  3.3.2.2.1). 

7.4.3 Derivation of Equation R2a 

Firstly, the half-life of the drug in the effect CMT (te1/2) can be calculated based on 

eq. R2 (see  3.3.2.2.1), for Ce(te1/2) = ½ · C0, as 

( )
eo

e k
t 2

2
1

ln
= .   eq. A11 

Moreover, the independent variable t in eq. R2 can be expressed as a certain fraction 

Fx of te1/2. Hence, using t = Fx · te1/2 = Fx (ln(2)/keo) results in 

( ) ( )2

0

1 ln⋅−−= xFe e
C

tC .  eq. A12 

The equilibrium time (teq) determines how long it takes until the time course of Ce(t) 

reaches Cp(t), i.e. in the present case C0. For numerically estimating teq, different 

values for Fx can be used in eq. A12, as done in Tab. 17, to find the value of Fx that 

leads to Ce(t)/C0 ≈ 1. For Fx = 5, i.e. at t = 5 · te1/2, the equilibrium of Ce(t) is almost 

reached. Thus, for teq ≈ 5 · te1/2, inserting eq. A11 reveals eq. R2a (see  3.3.2.2.1). 
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Tab. 17 Results from eq. A12 using different values for the fraction Fx of te1/2. 

Fx e-Fx · ln(2) 1 - e-Fx · ln(2) Ce(t)/C0, % 

1 1/2 0.500 50.0 

2 1/4 0.750 75.0 

3 1/8 0.875 87.5 

4 1/16 0.938 93.8 

5 1/32 0.969 96.9 

6 1/64 0.984 98.4 

7 1/128 0.992 99.2 

 

7.4.4 Derivation of Equation R3 

 

 

 

 

 

Fig. 48 Schematic depiction of the effect compartment (CMT) model, considering an 
intravenous bolus injection with first-order drug elimination from the central CMT. 

 

The change of drug amount in the central CMT over time (dXc(t)/dt) can be derived 

from Fig. 48 as 

( ) ( ) )(tXkk
dt

tdX
ciee

c ⋅+−= . eq. A13 

Here, ke refers to the first-order elimination rate constant from the central CMT, and 

kie and keo are the first-order rate constants for the drug transfer into and from the 

effect CMT. At time point t = 0, Xc(t) is equal to the administered dose D. Thus, using 

Laplace transform (see  7.3.5.1) on eq. A13 and transposing result in 

( )iee
c kks

DX
++

= .  eq. A13a 

The change of drug amount in the effect CMT over time (dXe(t)/dt) can also be 

derived from Fig. 48 as 
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( ) ( ) )(tXktXk
dt

tdX
eeocie

e ⋅−⋅= , eq. A14 

At t = 0, the function Xe(t) is zero. Using Laplace transform on eq. A14, subsequently 

inserting eq. A13a, and transposing result in 

( ) ( )eoiee

ie
e kskks

DkX
+⋅++

⋅
= . eq. A14a 

Assuming kie <<< ke [57], eq. A14a can be simplified to 

( ) ( )eoe

ie
e ksks

DkX
+⋅+

⋅
= . eq. A14b 

The inverse of the Laplace transform is obtained by using the GPF theorem (see 

 7.3.5.2) and transposing as 

( ) ( ) ( )tktk

eeo

ie
e

eoe ee
kk
DktX ⋅−⋅− −⋅
−
⋅

= . eq. A14c 

Combining eq. A8 with A14c and subsequently inserting eq. A10 and A7, reveal eq. 

R3 (see  3.3.2.2.1). 

7.4.5 Derivation of Equation R3a 

At the maximum of Ce(t), the first derivative of eq. R3 is equal zero: 

( )
( ) ( )

max,max,max, eeeeo tk

eeo

eeotk

eeo

eoee e
kk

kkCe
kk

kC
dt
tdC ⋅−⋅− ⋅

−
⋅⋅

−⋅
−
⋅

== 0
2

00 , eq. A15 

and subsequently transposing of eq. A15 reveals eq. R3a (see  3.3.2.2.1). 

7.4.6 Derivation of Equation R4 

The change of drug amount in the central CMT over time (dXc(t)/dt) can be derived 

from Fig. 49 as 

( ) ( ) )(tXkkk
dt

tdX
ciee

c ⋅+−= 0 , eq. A16 

where k0 refers to the zero-order infusion rate constant, ke is to the first-order 

elimination rate constant from the central CMT, and kie and keo are the first-order rate 

constants for the drug transfer into and from the effect CMT. To account for a defined 

duration of infusion Ti, the Laplace transform (see  7.3.5.1) of eq. A16 can be 
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accomplished via the use of general input and disposition functions [44]: For a zero-

order absorption, the input function is in(s) = k0 · (1 – e-Ti·s)/s, whereas for a first-order 

elimination the respective disposition function is d(s) = (s + ke + kie)-1. Assuming 

kie <<< ke [57], the disposition function can be simplified to d(s) = (s + ke)-1. The 

product a(s) = in(s) · d(s) yields the Laplace transform for eq. A16 as 

( )
( )e

sT

c kss
ekX

i

+⋅
−⋅

=
⋅−10 .  eq. A16a 

 

 

 

 

 

 

Fig. 49 Schematic depiction of the effect compartment (CMT) model, considering an 
intravenous bolus injection plus continuous infusion with first-order drug elimination from the 
central CMT. 

 

The change of drug amount in the effect CMT over time (dXe(t)/dt), is again given by 

eq. A14. At t = 0, the function Xe(t) is zero. Using Laplace transform on Eq. A14, 

subsequently inserting eq. 16a, and transposing result in 

( )
( ) ( )eoe

sT
ie

e kskss
ekkX

i

+⋅+⋅
−⋅⋅

=
⋅−10 . eq. A17 

The inverse of the Laplace transform is obtained by using the GPF theorem (see 

 7.3.5.2) and transposing as 

( ) ( ) ( ) ( )[ ]tkTk
e

tkTk
eo

eeoeoe

ie
e

eoieoeie eekeek
kkkk

kktX ⋅−⋅⋅−⋅ ⋅−⋅−⋅−⋅⋅
−⋅⋅

⋅
= 110 . eq. A17a 

Combining eq. A8 with A17a and subsequently inserting eq. A10, reveal the function 

for Ce(t) as 

( ) ( ) ( ) ( )[ ]tkTk
e

tkTk
eo

eeoce
e

eoieoeie eekeek
kkVk

ktC ⋅−⋅⋅−⋅ ⋅−⋅−⋅−⋅⋅
−⋅⋅

= 110  [57]. eq. A17b 
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For t = ∞, the drug concentration in the central CMT at steady state (Css) can be 

calculated as Css = k0/(Vc · ke) [44]. Thus, eq. A17b can also be written as 

( ) ( ) ( ) ( )[ ]tkTk
e

tkTk
eo

eeo

ss
e

eoieoeie eekeek
kk

CtC ⋅−⋅⋅−⋅ ⋅−⋅−⋅−⋅⋅
−

= 11  eq. A17c 

For immediately reaching Css, a loading dose (DL) with DL = k0/ke [44] can be given 

simultaneously as i.v. bolus injection, at t = 0. The respective function for Ce(t) can be 

derived via the principle of superposition [44, 132, 133]: The sum of eq. R3 and 

A17c, with C0 = Css, i.e. using 

ce
SS

c

L

Vk
kC

V
DC

⋅
=== 0

0 , eq. A18 

reveals eq. R4 (see  3.3.2.2.1). 

7.4.7 Derivation of Equation R4a 

At the maximum of Ce(t), the first derivative of eq. R4 is equal zero, and subsequently 

transposing reveals eq. R4a (see  3.3.2.2.1). 

7.4.8 Derivation of Equation R6 

The change of drug amount in the effect CMT over time (dXe(t)/dt) can be derived 

from Fig. 50 as 

( ) ( ) )(tXktXk
dt

tdX
eeoie

e ⋅−⋅= 2 , eq. A19 

where kie and keo are the first-order rate constants for the drug transfer into and from 

the effect CMT, and X2(t) refers to the drug amount in the central CMT. The drug 

concentration in the central CMT, i.e. in plasma, (Cp(t)) is calculated as  

( ) ( )
2

2

V
tXtCp = ,   eq. A20 

whereas the drug concentration in the effect CMT (Ce(t)) is calculated as  

( ) ( )
e

e
e V

tXtC = ,    eq. A21 

where V2 and Ve refer to the volume of distribution of the central CMT and the effect 

CMT, respectively. Thus, multiplying eq. A19 on both sides with 1/Ve results in 
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( ) ( ) )(tCk
V

tXk
dt

tdC
eeo

e
ie

e ⋅−⋅= 2 . eq. A22 

 

 

 

 

 

 

 

 

 

Fig. 50 Schematic depiction of the pharmacokinetic/pharmacodynamic model utilised for the 
in silico simulation, parameters are explained in the text. 

 

At steady state, the products Ve · keo and kie · V2 are equal [57], and thus kie can be 

calculated as 

eo
e

ie k
V
Vk ⋅=

2

.   eq. A23 

Combining eq. A22 with A23 and subsequently inserting eq. A20, reveal eq. R6 (see 

 3.4). 
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7.5 VBA scripts 

The original VBA scripts for the PK/PD modelling and stochastic in silico simulation 

part of this thesis are printed blow. Explaining comments are highlighted in red. 

However, these two scripts are related to customised Excel spreadsheets, and thus 

will not run alone. Due to re-formatting in Word, the VBA code might also not work 

when copying directly in Excel’s VBA editor. Moreover, the notation in the original 

VBA scripts partially differs from the previous notation of this work, as follows: 

• A2-4 = X2-4 

• TI = Ti 

• R0 = k0 

• KIC = kio 

• a_ = ae 

• b_ = be 

• z_ = ze 

• n_ = H 

7.5.1 Pharmacokinetic/pharmacodynamic modelling 

Sub Solver_BS() 
 
'Solver with automated BS for estimating the CI95% of each model 
'parameter: 
 
Answer = MsgBox("Bootstrapping for Solver function", vbYesNo) 
If Answer <> vbYes Then Exit Sub 
Num = InputBox("Please enter the number of bootstraps you want to 
perform") 
 
'For-next-loop: 
For N = 1 To Num 
 
'To automatically create a new bootstrap in the spreadsheet: 
Calculate 
 
'For controlling Solver via VBA: 
 
'Reset SolverOptions: 
SolverReset 
 
'default settings: 
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'SolverOptions 
'SolverOptions MaxTime:=100, Iterations:=100, _ 
'Precision:=0.000001, 'AssumeLinear:=False, _ 
'StepThru:=False, Estimates:=1, Derivatives:=1, _ 
'SearchOption:=1, Scaling:=False, Convergence:=0.0001, _ 
'AssumeNonNeg:=False 
 
'Utilised settings: 
 
SolverOptions MaxTime:=100, Iterations:=100, Precision:=0.000001, 
AssumeLinear:=False, _ 
StepThru:=False, Estimates:=2, Derivatives:=1, SearchOption:=2, 
Scaling:=True, Convergence:=0.0001, _ 
AssumeNonNeg:=False 
 
'Instruction to minimise the chosen OBJ by adjusting the defined 
'parameters: 
SolverOK setCell:="$L$13", maxMinVal:=2, ValueOf:="0", _ 
byChange:="$D$11:$J$11" 
 
'Chosen constraints for model parameters: 
'[SolverAdd: relation 1 for <=(max)and 3 for >=(min)] 
 
'For parameter Emax: 
SolverAdd cellRef:=Range("D11"), relation:=3, 
formulaText:=Range("D12") 
SolverAdd cellRef:=Range("D11"), relation:=1, 
formulaText:=Range("D13") 
'For parameter EC50: 
SolverAdd cellRef:=Range("E11"), relation:=3, 
formulaText:=Range("E12") 
SolverAdd cellRef:=Range("E11"), relation:=1, 
formulaText:=Range("E13") 
For parameter n_: 
SolverAdd cellRef:=Range("F11"), relation:=3, 
formulaText:=Range("F12") 
SolverAdd cellRef:=Range("F11"), relation:=1, 
formulaText:=Range("F13") 
'For parameter keo: 
SolverAdd cellRef:=Range("G11"), relation:=3, 
formulaText:=Range("G12") 
SolverAdd cellRef:=Range("G11"), relation:=1, 
formulaText:=Range("G13") 
'For parameter a_: 
SolverAdd cellRef:=Range("H11"), relation:=3, 
formulaText:=Range("H12") 
SolverAdd cellRef:=Range("H11"), relation:=1, 
formulaText:=Range("H13") 
'For parameter b_: 
SolverAdd cellRef:=Range("I11"), relation:=3, 
formulaText:=Range("I12") 
SolverAdd cellRef:=Range("I11"), relation:=1, 
formulaText:=Range("I13") 
'For parameter z_: 
SolverAdd cellRef:=Range("J11"), relation:=3, 
formulaText:=Range("J12") 
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SolverAdd cellRef:=Range("J11"), relation:=1, 
formulaText:=Range("J13") 
 
'Starts solving the problem directly (without dialog window): 
SolverSolve UserFinish:=True 
 
'(Re-)writes the currently found solution in the spreadsheet: 
SolverFinish KeepFinal:=1 
 
'Copies the new solution and pastes the respective values to another 
'place in the spreadsheet where it cannot be overwritten: 
 
Range("D11:O11").Select 
Selection.Copy 
ActiveCell(N, 16).Select 
Selection.PasteSpecial _ 
Paste:=xlValues, Operation:=xlNone, SkipBlanks:=False, 
Transpose:=False 
Application.CutCopyMode = False 
 
Next N 
 
End Sub 
 
Sub CopySummary() 
 
'For automatically saving the summary parameters of the solution in 
'the run summary spreadsheet: 
 
Answer = MsgBox("You want to copy the parameter summary to worksheet 
parameter?", vbYesNo) 
If Answer <> vbYes Then Exit Sub 
Range("R1:AL9").Select 
Selection.Copy 
Sheets("run summary 3").Select 
Range("A1").Select 
Selection.PasteSpecial _ 
Paste:=xlValues, Operation:=xlNone, SkipBlanks:=False, 
Transpose:=False 
Application.CutCopyMode = False 
End Sub 
 
Sub ResetInitials() 
'For resetting the previously defined initial values: 
Answer = MsgBox("You want to reset initials?", vbYesNo) 
If Answer <> vbYes Then Exit Sub 
Sheets("Solver data").Select 
Range("D8:J8").Select 
Selection.Copy 
Sheets("Solver data").Select 
Range("D11").Select 
Selection.PasteSpecial _ 
Paste:=xlValues, Operation:=xlNone, SkipBlanks:=False, 
Transpose:=False 
Application.CutCopyMode = False 
End Sub 
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7.5.2 Stochastic in silico simulation  

Function dA2dt(A2_x, A3_x, A4_x, RX, Q, V2, V3, Cl, INH) 
'Drug amount in the central CMT, i.v. infusion: 
dA2dt = RX - ((Q / V2) * A2_x) + ((Q / V3) * A3_x) - (((Cl * INH) / 
V2) * A2_x) 
End Function 
 
Function dA3dt(A2_x, A3_x, A4_x, Q, V2, V3) 
'Drug amount in the peripheral CMT, i.v. infusion: 
dA3dt = ((Q / V2) * A2_x) - ((Q / V3) * A3_x) 
End Function 
 
Function dA4dt(A2_x, A3_x, A4_x, KIC, V2) 
'Drug amount in the inhibition CMT, i.v. infusion: 
dA4dt = KIC * ((A2_x / V2) - A4_x) 
End Function 
 
Function INH_(RCLF, A4, IC50) 
'Inhibition factor on clearance: 
INH_ = RCLF + (1 - RCLF) * (1 - (A4 / (IC50 + A4))) 
End Function 
 
Function dCedt(A2_x, A3_x, A4_x, Ce_x, keo, V2) 
'Drug concentration in the effect CMT: 
dCedt = keo * ((A2_x / V2) - Ce_x) 
End Function 
 
Sub PopPK_Sim_LZD_MD() 
 
'Defined data types to save calculation time and avoid rounding 
'errors: 
Dim t_PMs, t, t_s, t0, dt, t_(1 To 56), n, n0, Ntotal, Numpoints, 
NumPoints_1, y, w, l, p, J, I, CpIND, tau As Long 
 
Dim A2, A3, A4, A2_(1 To 56), A3_(1 To 56), A4_(1 To 56), Cp, Cl, 
V2, Q, V3, KIC, IC50, INH_, R0, RX, R(1 To 56), TI, Ce, _ 
Ce_(1 To 56), keo,_ 
E, E_1, E_2, Emax, Emax_t, Emax_t_2, EC50, EC50_t, EC50_t_2, _ 
n_, n_t, n_t_2, a_, b_, z_, _ 
kA2_1_x, kA3_1_x, kA4_1_x, kCe_1_x, _ 
kA2_2_x, kA3_2_x, kA4_2_x, kCe_2_x, _ 
kA2_3_x, kA3_3_x, kA4_3_x, kCe_3_x, _ 
kA2_4_x, kA3_4_x, kA4_4_x, kCe_4_x, AUCE As Single 
 
'Writes column names in the spreadsheet: 
Range("A4").Value = "J" 
Range("A4").Offset(0, 1).Value = "n" 
Range("A4").Offset(0, 2).Value = "AUCE" 
Range("A4").Offset(0, 3).Value = "CL" 
Range("A4").Offset(0, 4).Value = "V2" 
Range("A4").Offset(0, 5).Value = "V3" 
Range("A4").Offset(0, 6).Value = "CpIND" 
 
'For-next-loop - In-silico patients: 
NumPoints_1 = 1000 
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For J = 1 To NumPoints_1 
 
'To automatically create new individual values for the parameters 
'CL, V2 and V3 in the spreadsheet: 
 
Calculate 
 
'Parameter values: 
 
'(Population) PK parameters, i.e. individual PK parameter values 
'calculated in the spreadsheet via an exponential variability model: 
 
Cl = Worksheets("Sim data").Range("K5").Value 'variability 
V2 = Worksheets("Sim data").Range("K6").Value 'variability 
V3 = Worksheets("Sim data").Range("K7").Value 'variability 
 
'fixed parameter values (population estimates): 
 
Q = 75# / 3600 '[L/s] 
KIC = 0.0019 / 3600 '[1/s] 
IC50 = 0.1 '[mg/L] 
RCLF = 0.764 
n0 = 1 
 
'(Standard) Dosing regimen: 
 
R0 = 1200# / 3600 '[mg/s] 
TI = 0.5 * 3600 '[s] 
tau = 12# * 3600 'Dosing interval [s] 
 
'PD parameters: 
 
keo = 0.113 / 3600 '[1/s] 
Emax = 73.586 ',% 
EC50 = 5.994 '[µg/mL] 
n_ = 1.975 
a_ = 0.430 / 3600 '[1/s] 
b_ = 0.026 / 3600 '[1/s] 
z_ = 0.131 / 3600 '[1/s] 
 
'Time parameters: 
 
t0 = 0 '[s, h] 
dt = 60 '[s]= 0.0167 '[h] 
 
'Number of iterations (shown for the standard dosing regimen): 
 
Ntotal = 28 
Numpoints = Ntotal * (tau / dt) + 1 
 
'Initial values: 
 
n = n0 
t_s = t0 
t = t0 
t_h_ = t0 
t_PMs = t0 
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RX = R0 
 
'Nested Loop – Reset values: 
 
For l = 1 To Ntotal 
R(l) = R0 
A2_(l) = 0 '[mg] 
A3_(l) = 0 '[mg] 
A4_(l) = 0 '[mg] 
Next l 
 
E = 0 ',% 
AUCE = 0 ‘[%*h] 
E_1 = 0 ',% 
E_2 = 0 ',% 
CpIND = 0 'Artefact indicator 
 
'Nested Loop 1 – Time: 
 
For I = 1 To Numpoints 
A2 = 0 '[mg] 
A3 = 0 '[mg] 
A4 = 0 '[mg] 
Ce = 0 '[µg/mL] 
 
'Nested Loop 1a – Sums-up drug amounts from all doses (principle of 
'superposition): 
 
For p = 1 To Ntotal 
A2 = A2 + A2_(p) 
A3 = A3 + A3_(p) 
A4 = A4 + A4_(p) 
Ce = Ce + Ce_(p) 
Next p 
 
'Drug concentrations in the central and peripheral CMTs: 
 
Cp = A2 / V2 
 
'Artefact indicator: 
 
If Cp < 0 Then CpIND = 1 
C_3 = A3 / V3 
 
'PK/PD model: 
 
Emax_t = Emax * (1 - Exp(-a_ * t)) 
EC50_t = EC50 * (1 - Exp(-b_ * t)) 
n_t = n_ * (1 - Exp(-z_ * t)) 
E = (Emax_t * (Ce ^ n_t)) / ((EC50_t ^ n_t) + (Ce ^ n_t)) 
E_1 = E 
 
'Area under the effect-time course: 
 
AUCE = AUCE + (((E_1 + E_2) / 2) * (dt / 3600)) 
 
'Simulation time: 
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t_s = t_s + dt 
t = t_s 
 
'Pace maker time: 
 
t_PMs = t_PMs + dt 
If t_PMs >= tau Then 
t_PMs = 0 
n = n + 1 
End If 
 
'Nested loop 2 – Dose: 
 
For y = 1 To Ntotal 
t_(y) = t - ((y - 1) * tau) 
If (y - 1) * tau >= t Then t_(y) = 0 
 
A2_x = A2_(y) 
A3_x = A3_(y) 
A4_x = A4_(y) 
RX = R(y) 
R(y) = R0 
Ce_x = Ce_(y) 
 
If t_(y) > TI Then R(y) = 0 
 
'RK4 method for solving the system of coupled ODEs of the 
'(population) PK/PD model: 
 
kA2_1_x = dt * dA2dt(A2_x, A3_x, A4_x, RX, Q, V2, V3, Cl, INH_(RCLF, 
A4, IC50)) 
kA3_1_x = dt * dA3dt(A2_x, A3_x, A4_x, Q, V2, V3) 
kA4_1_x = dt * dA4dt(A2_x, A3_x, A4_x, KIC, V2) 
kCe_1_x = dt * dCedt(A2_x, A3_x, A4_x, Ce_x, keo, V2) 
 
kA2_2_x = dt * dA2dt(A2_x + kA2_1_x / 2#, A3_x + kA3_1_x / 2#, A4_x 
+ kA4_1_x / 2#, RX, Q, V2, V3, Cl, INH_(RCLF, A4, IC50)) 
kA3_2_x = dt * dA3dt(A2_x + kA2_1_x / 2#, A3_x + kA3_1_x / 2#, A4_x 
+ kA4_1_x / 2#, Q, V2, V3) 
kA4_2_x = dt * dA4dt(A2_x + kA2_1_x / 2#, A3_x + kA3_1_x / 2#, A4_x 
+ kA4_1_x / 2#, KIC, V2) 
kCe_2_x = dt * dCedt(A2_x + kA2_1_x / 2#, A3_x + kA3_1_x / 2#, A4_x 
+ kA4_1_x / 2#, Ce_x + kCe_1_x / 2#, keo, V2) 
 
kA2_3_x = dt * dA2dt(A2_x + kA2_2_x / 2#, A3_x + kA3_2_x / 2#, A4_x 
+ kA4_2_x / 2#, RX, Q, V2, V3, Cl, INH_(RCLF, A4, IC50)) 
kA3_3_x = dt * dA3dt(A2_x + kA2_2_x / 2#, A3_x + kA3_2_x / 2#, A4_x 
+ kA4_2_x / 2#, Q, V2, V3) 
kA4_3_x = dt * dA4dt(A2_x + kA2_2_x / 2#, A3_x + kA3_2_x / 2#, A4_x 
+ kA4_2_x / 2#, KIC, V2) 
kCe_3_x = dt * dCedt(A2_x + kA2_2_x / 2#, A3_x + kA3_2_x / 2#, A4_x 
+ kA4_2_x / 2#, Ce_x + kCe_2_x / 2#, keo, V2) 
 
kA2_4_x = dt * dA2dt(A2_x + kA2_3_x, A3_x + kA3_3_x, A4_x + kA4_3_x, 
RX, Q, V2, V3, Cl, INH_(RCLF, A4, IC50)) 
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kA3_4_x = dt * dA3dt(A2_x + kA2_3_x, A3_x + kA3_3_x, A4_x + kA4_3_x, 
Q, V2, V3) 
kA4_4_x = dt * dA4dt(A2_x + kA2_3_x, A3_x + kA3_3_x, A4_x + kA4_3_x, 
KIC, V2) 
kCe_4_x = dt * dCedt(A2_x + kA2_3_x, A3_x + kA3_3_x, A4_x + kA4_3_x, 
Ce_x + kCe_3_x, keo, V2) 
 
A2_(y) = A2_x + (kA2_1_x + 2 * (kA2_2_x + kA2_3_x) + kA2_4_x) / 6 
A3_(y) = A3_x + (kA3_1_x + 2 * (kA3_2_x + kA3_3_x) + kA3_4_x) / 6 
A4_(y) = A4_x + (kA4_1_x + 2 * (kA4_2_x + kA4_3_x) + kA4_4_x) / 6 
Ce_(y) = Ce_x + (kCe_1_x + 2 * (kCe_2_x + kCe_3_x) + kCe_4_x) / 6 
 
If (y - 1) * tau >= t Then 
A2_(y) = 0 '[mg] 
A3_(y) = 0 '[mg] 
A4_(y) = 0 '[mg] 
Ce_(y) = 0 '[µg/mL] 
End If 
 
Next y 
 
Emax_t_2 = Emax * (1 - Exp(-a_ * (t - dt))) 
EC50_t_2 = EC50 * (1 - Exp(-b_ * (t - dt))) 
n_t_2 = n_ * (1 - Exp(-z_ * (t - dt))) 
E_2 = (Emax_t_2 * (Ce ^ n_t_2)) / ((EC50_t_2 ^ n_t_2) + (Ce ^ 
n_t_2)) 
 
Next I 
 
'Records selected parameter values in the spreadsheet: 
 
Range("A4").Offset(J, 0).Value = J 
Range("A4").Offset(J, 1).Value = n 
Range("A4").Offset(J, 2).Value = AUCE 
Range("A4").Offset(J, 3).Value = Cl 
Range("A4").Offset(J, 4).Value = V2 
Range("A4").Offset(J, 5).Value = V3 
Range("A4").Offset(J, 6).Value = CpIND 
 
'Nested Loop 2a – Reset 
 
For w = 1 To Ntotal 
A2_(w) = 0 '[mg] 
A3_(w) = 0 '[mg] 
A4_(w) = 0 '[mg] 
Ce_(w) = 0 '[µg/mL]     
Next w 
 
Next J 
 
End Sub 
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