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Zusammenfassung

Deutsch

Die konzeptionelle Modellierung ist ein kritischer Schritt bei der Software-
Entwicklung. Thr Zweck ist es, relevante Aspekte der Anwendungsdoméane
in einer Sprache zu beschreiben, die fiir alle am Projekt beteiligten Akteure
verstandlich ist. Eine Moglichkeit, die konzeptuelle Modellierung zu imple-
mentieren, ist die faktenbasierte Modellierung, eine Methodik, die in der Lage
ist, die konzeptuellen Modellierungs Constraints darzustellen und dabei auch
die Semantik zu erfassen, um Zwischen- und Endergebnisse zu validieren.

Object-Role Modelling (ORM) ist eine faktenbasierte Sprache fiir die Model-
lierung und Abfrage von Informationen auf der konzeptionellen Ebene durch
eine grafische und textuelle Sprache zur Spezifizierung von Modellen, Abfra-

gen und Prozeduren, um die Zuordnung zu anderen Arten von Modellen wie
UML und ER durchzufiihren.

Konzeptionelle Modelle allein sind nicht in der Lage, die Semantik der Mod-
elle zu tiberpriifen, und diese Einschrankung kann zu impliziten Konsequen-
zen fithren, die vom Modellierer insbesondere in komplexen Diagrammen
unentdeckt bleiben konnen; dies kann auch zu verschiedenen Formen von
Inkonsistenzen oder Redundanzen im Diagramm selbst fithren, die eine Ver-
schlechterung der Qualitédt des Designs und/oder erhéhte Entwicklungszeiten
und -kosten zur Folge haben. Dieses Problem fiihrt zu der Notwendigkeit au-
tomatisierten Schlieflens, um die genannten Inkonsistenzen und Redundanzen
zu iberpriifen.

Das automatisierte Schlieffen ist ein bekanntes Verfahren, das einen logischen
Prozess verwendet, bei dem eine Schlussfolgerung auf mehreren Pramissen
beruht, die im Allgemeinen als wahr angenommen werden. Unter logischem
Schlielen verstehen wir die Ableitung von Fakten, die in unserem ORM-
Diagramm nicht explizit ausgedriickt sind.

Die Anwendung des automatisierten Schlielens auf die konzeptuelle Mod-
ellierungsmethodik hat einige Vorteile, da sie den Modellierer wahrend der
Modellierungsphase unterstiitzt, um Fehler zu vermeiden. Redundanzen oder
Inkonsistenzen des Diagramms, die Ableitung neuer Constraints, die Bestati-
gung der Giiltigkeit des Modells oder der Vorschlag einer Uberarbeitung sind
weitere Vorteile.

Diese Schritte sind vor allem fiir Kontexte, in denen riesige konzeptuelle
Diagramme verwendet werden, in denen es sehr schwierig und zeitaufwandig
ist, die Semantik der Diagramme manuell zu iiberpriifen, zeitsparend.
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Die Hauptidee dieser Arbeit besteht darin, eine Methodik zur Anwendung des
automatisierten Schlieffens auf konzeptuelle Modelldiagramme zu entwickeln,
um die Semantik der Diagramme zu uberpriifen, damit die Vorteile des
automatisierten Schlieens genutzt werden konnen. In dieser Arbeit wird die
Methodik auf ORM angewandt, eine machtige Sprache die eine Vielzahl von
Constraints bereitstellt.

Unter all diesen Constraints gibt es ORM-Ableitungsregeln, die in der Lage
sind, Wissen auszudriicken, das iiber die Standard-ORM-Fahigkeiten hin-
ausgeht, was zu einer weiteren Komplexitit das Schlieflens fiihrt, da sie der
ORM-Sprache Ausdruckskraft verleihen.

Diese Regeln ahneln in gewisser Weise den OCL-Constraints fiir UML oder
SQL-Triggers.

Ein weiterer Beitrag dieser Arbeit besteht in der Formalisierung der ORM-
Ableitungsregeln. Auf diese Weise wird es moglich sein, das automatisierte
Schliefen auch auf die ORM-Diagramme auszudehnen, die mit ORM-
Ableitungsregeln ausgestattet sind.

Ein Beitrag mit einem eher praktischen Charakter wird durch die Implemen-
tierung eines Frameworks namens UModel gegeben, das das automatisierte
Schlieflen iiber konzeptuellen Diagrammen anwendet. Obwohl der Schwer-
punkt der Verwendung des Frameworks in dieser Arbeit auf ORM liegt,
wurde das Framework so konzipiert, dass es mit den gangigsten konzeptuellen
Modellierungssprachen wie UML und ER kompatibel ist.

ORM ist in einer offiziellen Microsoft Visual Studio-Erweiterung namens
NORMA implementiert, die es dem Benutzer ermdoglicht, ORM-Diagramme
zu erstellen, zu modifizieren und zu exportieren, und die eine Vielzahl von
Funktionen bereitstellt, die dem Modellierer bei der Verwaltung seines ORM-
Diagramms helfen.

Obwohl NORMA ein leistungsstarkes Werkzeug ist, ist es nicht in der Lage,
die Konsistenz der Modelle zu tiberpriifen, und aus diesem Grund konnte die
Ausstattung mit Schlussfolgerungfunktionen ein Schritt nach vorn sein, um
die Qualitat der ORM-Diagramme zu erhalten.

Ein weiterer Teil dieser Arbeit ist die Erweiterung der NORMA-Funktionalitaten
durch ein Plugin unter Verwendung des UModel-Frameworks, das automati-
sche Schlielen iiber die in NORMA geladenen ORM-Diagramme aktiviert
und dann den Endbenutzern die Schlussfolgerungen anzeigt.

ORM wird auch in industriellen Unternehmen eingesetzt. Diese Unternehmen
verwenden normalerweise CASE-Tools, mit denen sie die konzeptuellen Dia-
gramme erstellen konnen. Diese Tools berticksichtigen nicht die Uberpriifung
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der Semantik der konzeptuellen Diagramme, und eine weitere Herausforderung
besteht darin, das oben erwahnte automatisierte Schlussverfahren fiir eine
Zielsoftware zu verallgemeinern.

Aus diesem Grund wurde eine Fallstudie auf der Grundlage eines realen indus-
triellen Szenarios erstellt, um mogliche Vorteile, die sich aus der verwendeten
Methodik ergeben, konkret zu messen und zu beobachten.
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Abstract

English

Conceptual modelling is a critical step during software development. Its
purpose is to describe relevant aspects of the application domain in a language
that is understandable by all the stakeholders taking part to the project. A
way to implement conceptual modelling is by using fact-based modelling, a
methodology that is able to represent the conceptual modelling constraints
capturing also the semantics in order to validate intermediate and final results.

Object-Role Modelling (ORM) is a fact-based language for modelling and
querying information at the conceptual level by a graphical and textual

language for specifying models, queries and procedures to perform the mapping
to other kinds of models like UML and ER.

Conceptual models alone are not able to check the semantics of the models
and this limitation may lead to implicit consequences that can go undetected
by the modeller especially in complex diagrams; this may also lead to various
forms of inconsistencies or redundancies in the diagram itself that give rise to
the degradation of the quality of the design and/or increased development
times and costs. This issue leads to the need of automated reasoning to check
the mentioned inconsistencies and redundancies.

Automated reasoning is a well-known procedure that uses a logical process in
which a conclusion is based on multiple premises that are generally assumed
to be true. By reasoning we mean deriving facts that are not expressed in our
ORM diagram explicitly. Applying automated reasoning to the conceptual
modelling methodology has some benefits, since it supports the modeller
during the modelling phase in order to avoid mistakes, as redundancies or
inconsistencies of the diagram, deriving new constraints, confirm the validity
of the model or suggest revision. These steps are a time saver especially for
contexts where huge conceptual diagrams are used, where it is very difficult
and time consuming to manually check the semantics of the diagrams.

The main idea of this work is to develop a methodology to apply the automated
reasoning on conceptual modelling diagrams to check the semantics of the
diagrams, in order to take the benefits from the automated reasoning. In
this work the methodology is applied to ORM which is a powerful language
providing a rich set of constraints.

Among all the constraints there are ORM Derivation rules which are able to
express knowledge that is beyond the standard ORM capabilities, bringing
to a further complexity of the reasoning because they add expressiveness to



the ORM language. Those rules are in a way similar to OCL constraints
for UML, or SQL triggers. Another contribution of this work is to formalise
ORM Derivation rules, in this way it will be possible to extend the automated
reasoning even on those ORM diagrams equipped with ORM Derivation
Rules.

A contribution with a more practical flavour is given by the implementation
of a framework named UModel which applies the automated reasoning over
conceptual diagrams. Although the usage of the framework in this work has
its focus on ORM, the framework has been designed to be compatible with
the most popular conceptual modelling languages such as UML and ER.

ORM is implemented in an official Microsoft Visual Studio extension named
NORMA, which allows the user to create, modify and export ORM diagrams
and which provides a rich set of functionalities to help the modeller to manage
its ORM diagram. Despite NORMA being a powerful tool, it is not able to
check the consistency of the models and for this reason equipping it with
reasoning capabilities could be a step forward in order to preserve the quality
of the ORM diagrams. A contribution of this work is the extension of NORMA
functionalities by a plugin, using the UModel framework, that activates the
automated reasoning over those ORM diagrams loaded into NORMA and
then showing the inferences to the final users.

ORM is also used in the industry world companies. Those organisation usually
use CASE tools that allow them to build the conceptual diagrams. These
tools does not take into account checking the semantics of the conceptual
diagrams and another challenge is to generalize the aforementioned automated
reasoning procedure for a target software. For this reason, a case study based
on real-world industrial scenario has been provided in order to concretely
measure and observe possible benefits coming from the used methodology.
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Introduction and Motivation

We briefly outline the scope and motivation of the thesis. This work is largely
concerned with the formal specification of fact-base modelling structures,
precisely the fact-based language ORM. For reasons such as correctness and
clarity, information systems are best specified first at the conceptual level.
For large database systems applications, conceptual modelling software have
generally become the most important target systems onto which conceptual
information structures are mapped. Designing correct conceptual and rela-
tional schemas for practical applications is a non-trivial task and the wrong
design could lead to bad consequences in the development life cycle. The
main goal of the thesis is to provide a concrete methodology in order to
improve the conceptual modelling by automated reasoning. In this way the
process of making design choices could help the modeller, and in general all
the stakeholders, to build a robust software infrastructure by taking under

control the semantics of the models.

The way a model is designed has a direct impact in the real world where
conceptual modelling tools are used to manage complex domains. These
tools also known as CASE tools (Computer-aided software engineering), are
powerful systems which accelerate the development of the software, providing
a set of powerful features to model a domain. They use conceptual modelling
languages which are closer to the way we abstract the world in our cognition,
making them ideal to model a domain. The limitation of the conceptual
modelling tools is that they lack semantics check capabilities. This limitation
could lead to software degradation and unexpected software behaviours,

especially for large-scale environment this could be a serious issue. The core
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idea of the present work is to provide a methodology that overcomes this
limitation, expanding the capabilities of the conceptual modelling software
such that they are not limited to check the syntax of the diagrams, but check
the semantics as well. In this way it could enhance the trust of the system or
suggest the revision, preventing serious issues during the next stages of the
software development.

The methodology to accomplish this goal is grounded on the formalisation of
ORM language that allows to activate reasoning procedures, carried out by
Description Logics reasoners. The reasoning procedures are able to perform
semantic checks over ORM diagrams, in this way it is possible to overcome

the aforementioned limitation.

The research follows two main tracks: the theoretical aspects related to
ORM and Derivation Rules formalisation; the implementation counterpart

concerning the creation of a set of tools in order to support the modeller.

Outlined are the main goals of the research:

e Goal 1: providing an encoding for ORM in OWL;

e Goal 2: providing a formalisation for ORM Derivation Rules, both
Subtype and FactType;

e Goal 3: implementation of a framework to enable automated reasoning
for conceptual modelling languages and conceptual modelling software

as well;

e Goal 4: application of the methodology in a real case scenario.

The fulfilment of the first goal is the prerequisite to achieve the other goals
since it constitutes the first step of the methodology.

The second goal is an extension of the first one. Although several papers
presented their own ORM formalisation, no one has taken into account
the formalization of ORM derivation rules so far. Derivation rules express
knowledge that is beyond normal ORM capabilities, but this feature leads
to an increase of expressiveness of the ORM diagrams. For this reason, the
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challenge is to identify a decidable fragment in order to extend the reasoning

even to those ORM diagrams equipped with those rules.

Reaching the third goal would give to the community a tool useful to expand
the features of a target application. The direct impact of this goal involves
various actors, such as the modellers, the database or software engineers. The
versatility of the software makes possible to enrich any conceptual modelling
software of reasoning capabilities, making the impact of the research in

particular relevant for the industry world.

A successful result in the last goal could demonstrate the efficiency of the

methodology applied to real cases.

1.1 Summary of major contributions

The major research contributions of this thesis are hereby summarized. The
whole work is a combination of theoretical aspects and their methodological

counterpart, so they are grouped as follows:

e Theoretical

— OWL encoding of the ORM language;
— formalisation of ORM Derivation Rules;
— detection of a decidable fragment for ORM and ORM Derivation
Rules.
e Methodological

— Building a framework embeddable into other systems;

— implementation of the theoretical points and integration into the

framework;

— executing the workflow on a real-case study for industry.

1.2 Structural overview

Following there is a structured overview of the thesis:
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. This chapter is meant to introduce the scope of the thesis along its

motivation and summarizing the main contributions.

. The second chapter presents a list of arguments that the reader should
be familiar with. Here it is explained the need of the conceptual mod-
elling in software development and the related fact-based methodology.
The ORM language is introduced. It is a dialect of the fact-based
methodology which is also the main focus of this thesis. ORM Deriva-
tion Rules are also introduced, which are one of the core components of
this thesis.

. The third chapter presents the ORM formalisation used in this work.
ORM constructs and ORM Derivation Rules are mapped in first-order

logic.

. The forth chapter shows some use cases where the automated reasoning
is applied to the ORM diagrams in order to show its benefits. In
this chapter are also provided some reasoning examples with ORM

Derivation Rules.

. The fifth chapter defines a decidable fragment for ORM where the
language DLRY is used to encode the ORM constraints. This decidable

fragment is the one used in the scope of this thesis.

. The six chapter present a discussion about the difference between
conceptual modelling in OWL and ORM.

. The seventh chapter speaks about the UModel framework. It is an im-
plementation of the work presented so far. UModel is a framework that
comes with a design specifically built to ease the process of integrating

the automated reasoning in any conceptual modelling software.

. The eighth chapter is about ORMIE, a plugin for NORMA used in a
real-case scenario by the European Space Agency. This tool integrates
the UModel framework to enable the automated reasoning over ORM
diagrams loaded inside NORMA. A benchmark is also provided.
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9. The ninth chapter is a collection of tools similar to ORMIE in order to

provide a comparison.






The ORM language

This chapter introduces some concepts that the reader should be familiar

with in order to read and understand the next chapters.

2.1 Conceptual modelling

Information modelling is about the representation of symbol structures that
model some aspects of the real world. In Computer Science such structures are
defined as databases or knowledge bases, that represent a part of information
in the real world that is modelled into a system. We shall refer to the part of
a real world being modelled by an information base as its universe of discourse
(UofD), also known as application domain. Databases and knowledge bases
are checked for consistency, and sometimes queried and updated through
special-purpose languages. As with all models, the advantage of information
models is that they abstract away irrelevant details, and allow more efficient
examination of both the current, as well as past and projected future states
of the UofD. An information model is represented by a specific language,
and this language influences the kinds of details that are considered. A
language provides the semantics for modelling an application, such as entity
and relationship, as well as means for organizing information. Conceptual
models are used in different areas, for example in Artificial intelligence, where
programs require the representation of the human knowledge in order to act
with intelligence. These programs may rely on conceptual models built up
using knowledge representation languages such as DLs. Conceptual languages
are also suitable for database design where the first step is crucial for the

7
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construction of a conceptual schema which determines the information needs
of the users, and that may be then converted to a physical implementation
schema. Chen’s Entity-Relationship model [43], and later semantic data
models [98] were the result of efforts in this direction. In software development,
the early acquisition stage it is a delicate step, which is seen to consist of a
requirements model that describes the relationship of the proposed system
and its environment, that is represented by a conceptual model. Moreover,
the object-oriented software community has also proposed viewing software
components (classes/objects) as models of real-world entities. This was evident
in the features of Simula, the first object-oriented programming language,
and became a cornerstone of most object-oriented techniques, including the
current leader, UML [27]. One interesting aspect of conceptual modelling
recurring in database development is the abstraction mechanism to support
large conceptual models by abstracting details initially, and then introducing
them in a step-wise way. Important abstractions are the capacity to think
of objects as wholes, not just a collection of their attributes/components
(aggregation); also abstracting the differences among individuals in order
to be classified (classification); and abstracting the hierarchy structure of
a set of conceptually related classes (generalization). The benefit of the
abstraction in conceptual modelling is that the information are structured
making the model easy to develop and maintain. A smart way to build
up a model is to encode it in Description Logics, a family of knowledge
representation languages widely used in artificial intelligence to describe and
reason about the relevant concepts of an application domain. In the context
of the conceptual modelling, it is possible to use DLs as a reasoning backend
to take advantage of DLs properties which reveal some formal properties that
may not have been recognized by the modeller. From the implementation
perspective then it comes OWL, the Web Ontology Language [136]. OWL is
based on Description Logics and may be coupled with a reasoner to perform
the automated reasoning over the conceptual model it is representing. Unlike
other languages coming from the Description Logics family, such as DLR™
[10], OWL has only binary predicates.
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2.2 The fact-based modelling methodology

Fact-based modelling (FMB) is the methodology we use in this work to
represent conceptual diagrams [76], [107]. FBM is used for modelling the
semantics of a specific domain of interest for the purpose of developing
information systems, rule systems or sharing information. The main purpose
of fact based modelling is to capture as much of the semantics as possible,
bridging the gap among stakeholders preferably using concrete illustrations
and to remain independent of the representation for a specific implementation.
Unlike Entity-Relationship (ER) modelling or object-oriented modelling, fact
based modelling treats all facts as relationships (unary, binary, ternary etc.).
How facts are grouped into structures (e.g. attribute-based entity types,
classes, relation schemes, XML schemas) is considered a software design
level, implementation issue that is irrelevant to the capturing of business
semantics. Avoiding attributes in the base model enhances semantic stability
and understandability. Fact based modelling facilitates natural verbalization
and thus enables productive communication with all stakeholders. Fact based
modelling provides the means to capture the knowledge of the domain experts
in terms of “what” (i.e. the user requirements). FBM is conceptual, hence

free of any software implementation bias.

FBM is based on logic and controlled natural language, whereby the resulting
fact based model (the conceptual data model) captures the semantics of the
domain of interest by means of fact types, together with the associated concept
definitions and the integrity and derivation rules applying to populations

(facts) associated with these fact types.

All facts, constraints and derivation rules are expressed in controlled natural
language sentences that are intelligible to users in the business domain being
modelled. In addition to textual verbalization of data models, FBM includes
graphical notations for depicting data models with a rich variety of constraints.
For example in Figure 2.1, we have a graphical representation of the following

fact types:

Monument is ancient
Monument is located in Country
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Monument Country
(.code) (.code)

is ancient is located

@58 ORMModell

ORM Sample Population Editor -1 x
) Monument{code) O Countrylcode)
1 () Coliseum O haly
20 @

ORM Sample Population Editer | ORM Reading Editor ORM Verbalization Browser

Figure 2.1: ORM example - Monument

along its instances:

Coliseum is ancient
Coliseum monument is located in Italy

Here “is ancient” denotes a unary predicate, and “is located in” a binary

predicate.

In Entity-Relationship (ER) and Unified Modelling Language (UML) ap-
proaches, the unary fact type would instead typically be modelled as the
attribute assignment Volcano.isActive = true. Besides facilitating more natu-
ral expression, and ease of population with multiple instances, the usage of
attributes in favour of relationships promotes semantic stability (e.g. there
is no need to remodel what has already been modelled if we later decide
to record facts about an attribute). Fact types of higher arity (ternaries,
quaternaries etc.) are also allowed. For flexibility, and to cater for foreign
languages, predicates may be represented in mixfix form, where the terms for
the objects being predicated over are inserted in relevant placeholder positions
to form the fact sentence. For example, the fact type “Person plays Sport for

Country” involves the ternary predicate reading “...plays...for...”.

The FBM approach originated in Europe in the 1970s, and has since evolved
into a family of closely related dialects including Object-Role Modelling
(ORM), Cognition enhanced Natural Language Information Analysis Method
(CogNIAM), Fully Communication oriented Information Modelling (FCO-IM)
and the Developing Ontology-Grounded Methods and Applications (DOGMA)



2.3. ORM 11

method. In the following section we speak about ORM, which is the language
we use in this work. In the next section we present the history and the

foundations of the ORM language, plus some illustrative examples.

2.3 ORM

2.3.1 History

The history of ORM is grounded in 1973, when Falkenberg generalized work by
Abrial and Senko on binary relationships to n-ary relationships, and excluded
attributes at the conceptual level to avoid “fuzzy” distinctions and to simplify
schema evolution. Later, Falkenberg proposed the fundamental ORM frame-
work, which he called the “object-role model” [50]. This framework allowed
n-ary and nested relationships, but depicted roles with arrowed lines. Nijssen
adapted this framework by introducing a circle-box notation for objects and
roles, and adding a linguistic orientation and design procedure to provide a
modelling method called ENALIM (Evolving NAtural Language Information
Model). Nijssen’s team of researchers at Control Data in Belgium developed
the method further, including van Assche who classified object types into
lexical object types (LOTs) and non-lexical object types (NOLOTSs). Today,
LOTs are commonly called “entity types” and NOLOTSs are called “value
types”. Meersman added subtyping to the approach, and made major con-
tributions to the RIDL query language [111] with Falkenberg and Nijssen.
The method was renamed “aN Information Analysis Method” (NIAM). Later,
the acronym “NIAM” was given different expansions, and is now known as
“Natural language Information Analysis Method” [139], [138]. In the 1980s,
Nijssen and Falkenberg worked on the design procedure and moved to the
University of Queensland, where the method was further enhanced by Halpin,
who provided the first full formalization, including schema equivalence proofs,
and made several refinements and extensions. In 1989, Halpin and Nijssen
coauthored a book on the approach, followed a year later by Wintraecken’s
book [139]. Today several books, including major works by Halpin [79], and
Bakema [15] expound on the approach. Many researchers contributed to

the fact oriented approach over the years, and there is no space here to list
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them all. Today various versions exist, but all adhere to the fundamental
object-role framework. Habrias developed an object-oriented version called
MOON (Normalized Object-Oriented Method). The Predicator Set Model
(PSM), developed mainly by ter Hofstede et al. [89], includes complex object
constructors. De Troyer and Meersman developed a version with constructors
called Natural Object-Relationship Model (NORM). Halpin developed an
extended version simply called ORM, and with Bloesch and others developed
an associated query language called ConQuer [28]. Bakema et al. [15] recast
all entity types as nested relationships, to produce Fully Communication
Oriented NIAM, which they later modified to Fully Communication Ori-
ented Information modelling (FCO-IM). More recently, Meersman and others
adapted ORM for ontology modelling, using a framework called DOGMA.
Nijssen and others extended NIAM to a version called NIAM2007. Halpin
and others developed a second generation ORM (ORM 2), whose graphical
notation is used in this work [45,92].

The formalisation of ORM represents a further step to the usage of ORM both
in the logicians’ community and in the industry world. Formalising ORM
enables automated reasoning over ORM conceptual diagrams; in this way, it
is possible to detect relevant formal properties automatically, in order to check
the semantics of the ORM diagrams. In a real-world context, this could be
useful to support the modeller during the initial step of software development,
which is the design step. The ORM formalisation started with Terry Halpin’s
PhD Thesis [74]. In the context of design conceptual and relational schemas,
Halpin formalized the NIAM language that is the ancestor of ORM. In his
thesis there is the first attempt to formalize a modelling language in order to
perform reasoning tasks, so the main objective is to provide formal basis for
reasoning about conceptual schemas and for making decision choices. After
the spreading of ORM and its implementation in NORMA [44],[91], [125],
ORM became more popular so the logicians’ community took into account

the possibility to formalize this very expressive language.

In 2005, Terry Halpin releases a new version of ORM, namely ORM2 [75].
From now on we refer to ORM2 as ORM.
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In 2007, Jarrar formalizes ORM using DLR 5y [102], an extension of De-
scription Logics introduced by Calvanese in [37]. The paper shows that a
formalisation in OWL SHOZN would be less efficient than DLR ;77 because
some ORM constraints cannot be translated (predicate uniqueness, external
uniqueness, set-comparison constraints between single roles and between not
contiguous roles, objectification n-ary relationships). Another formalisation
of ORM in DLR ¢z was done by Keet in [106]. During the same year also
Bach in [101] analysed the semantics of OWL-DL and ORM, explaining
how to represent OWL-DL constraints in ORM without losing semantics.
In [104] Jarrar mapped ORM into the DLR;fg, which is one of the most
expressive description logics. Every ORM constraint is decidable, except
two rare cases. DLR ;s was developed indeed to allow the majority of the
database primitives to be represented, including n-ary relations, identities,
and functional dependencies. However, the problem is that not all DLRz4’s
constraints are implemented by current reasoning engines. In this paper the
mapping translates ORM into the SHOZN description logic, which is the
logic underpinning OWL (only version 1), the standard (W3C recommen-
dation) Ontology Web Language. DLRfq was developed as a compromise
between expressive power and decidability. This implies that the ORM map-
pings into SHOZN are easier to implement and exploit. SHOZN /OWL is
supported in almost all reasoning engines, and it is the most popular language
in ontology engineering. However, SHOZN /OWL does not support some
ORM constraints like n-ary relations and external uniqueness. The result of

the paper is the encoding of 22 mapping rules out of the 29 ORM constraints.
In 2009 OWL 2 was recommended by W3C Consortium as a standard of

ontology representation on the Web bringing some benefits: it is the recom-
mended ontology web language; it is used to publish and share ontologies on
the Web semantically; it is used to construct a structure to share information
standards for both human and machine consumption; automatic reasoning
can be done against ontologies represented in OWL 2 to check consistency

and coherency of these ontologies [136].

An ORM formalisation based on OWL?2 is proposed by Franconi in [62], where
he introduces a new linear syntax and FOL semantics for a generalization of
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ORM2 [75], called ORM2plus, allowing the specification of join paths over an
arbitrary number of relations. The paper also identifies a core fragment of
ORM2, called ORM2zero, that can be translated in a sound and complete way
into the ExpTime-complete Description Logic ALCQZ. In [57] a provably
correct encoding of a fragment of ORM2zero into a decidable fragment of
OWL2 is provided and it is discussed how to extend ORM2zero in a maximal
way by retaining at the same time the nice computational properties of
ORM2zero.

The most recent paper related to ORM formalisation is [10] where the language
DLR™ is used to encode a decidable fragment of ORM. DLR™Y like DLRfq s
an extension of DLR, a description logic representing a natural generalization
of traditional description logics towards nary relations [16]. The feature of this
language is to represent n-ary relationships which are suitable for languages
like ORM. The backbone of this work is based on the decidable fragment
of DLR™, which is named DLRE. DLRT is provided with an encoding in
ALCQT and the languages are equisatisfiable. Since it is proved that this
fragment captures a significant fragment of ORM, it is used in this work to
encode some ORM constraints in order to perform a mapping into OWL and
take advantage of logical reasoning. Since OWL is essentially SROZQD the
encoding in ALCQT covers a fragment of OWL.

All the aforementioned formalisations do not include ORM Derivation Rules
as part of the formalisation. The present work aims to cover this part of the
ORM language in order to provide a full ORM formalisation.

Despite ORM Derivation Rules have not being formalised, some papers
explore them in a different context. For example, in [115] a classification of
the most popular rule types is presented, where the type of rules taken into
account are integrity rules, derivation rules, production rules, and reaction
rules. The work presents a general overview of these different types of rules,
including ORM derivation rules, but the handbook is not meant to provide a
formalisation for such rules, but only a general classification with the goal to

highlight their functionalities in the context of rule modelling.

In [46] an approach to navigate through an ORM model by roles is described,
namely role paths. A role path represents a traversal of related roles, starting
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with one or more roles connected to a root object type. Each subsequent role
in a path either is a role in the same fact type as the previous role, or involves
a join operation to a role with the same role player. That work introduces
the role paths as a foundation for both subtype and fact type derivation
rules. The metamodel described in the paper is currently implemented
as the basis for formal derivation rules in the NORMA tool. Users will
formulate derivation rules via high level graphical and textual views that
are automatically transformed into the low level role path structures. It is
important to state that role paths have been implemented by object-oriented
data structures in NORMA, so it is a pure object-model. In other words,
this is a way to traverse an ORM diagram that can be equipped with ORM
Derivation Rules as well, but it is not a formalisation as in classical logic with

a syntax, a semantics and a mapping.

Other papers take into account different kind of rules such as dynamic rules
[22], [23]. These dynamic rules specify an elementary transaction type by
indicating which kinds of objects or facts (being added, deleted or updated)
are involved. Dynamic rules may declare pre-conditions relevant to the
transaction, and a post-condition stating the properties of the new state, in a

way similar to SQL triggers.

The Section 2.3.3 introduces ORM Derivation Rules in order to give to the
reader the appropriate knowledge to understand the rest of the work.

2.3.2 ORM constraints

Object-Role modelling (ORM) is a fact-based language for modelling and
querying the information semantics of business domains in terms of the
underlying facts of interest, where all facts and rules may be verbalized in
language easy to understand for non-technical users. Since ORM is fact-
based, it differs from UML and ER [81] [83], treating all facts as relationships
of arbitrary arity (unary, binary, ternary etc.); for this feature ORM is
said to be attribute-free. Avoiding attributes in the base model enhances
semantic stability and natural verbalization, facilitating communication with

all stakeholder taking part to model their are working on.
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ORM includes graphical and textual languages for modelling and query-
ing information at the conceptual level, as well as procedures for designing
conceptual models, of transforming between different conceptual representa-
tions, forward engineering ORM schemas to implementation schemas (e.g.,
relational database schemas, object-oriented schemas, XML schemas, and
external schemas) and reverse engineering of implementation schemas to ORM

schemas.

In ORM all fact structures are expressed as relationships with a given arity
and are called fact types. These may be unary (e.g., Person smokes), binary
(e.g., Person is identified by a Document), ternary (e.g., Person plays Sport
for a Country), and so on. The natural verbalization makes easy to bridge
the gap among stakeholders since all facts and rules may be easily verbalized
in sentences understandable to the domain expert that often is not an I'T
person. An advantage of the attribute-free feature is that no nulls occur in
populations of base fact types, which must be elementary or existential. The
consequence of this feature is that a attribute-free diagram usually consumes
more space, but this apparent disadvantage is easy to mitigate by the usage
of an ORM tool to automatically create attribute-based structures (e.g., ER,

UML class, or relational schemas) as views of an ORM schema.

Running example

Now, let us suppose we want to design in ORM a system managing the people
documents for a certain country. We build this ORM diagram step by step
introducing the ORM constraints along with the FORML (Formal ORM
Language), a controlled natural language that encodes each ORM constraint
in a language easy to understand for non-technical people. This language
is useful to express in natural language the semantics of ORM constraints
unambiguously. We also show the semantics in first-order logic. We start
stating that a person is identified by a document. In ORM, the following
statement is depicted as in Figure 2.2. The entity Person is represented by the
rounded rectangle where inside is specified the name of the entity, in this case
Person. This represents the instances belonging to the set of people in the

system. The same applies for the entity Document. The relation is depicted
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by the sequence of tiny rectangle boxes representing the ORM roles; in this
case we have two roles since the relation is binary. Each role is connected to

the entity involved into that relation.

has
Person with ID Document
(.Id) :D i (.code) I

Figure 2.2: ORM diagram example - STEP 1

In FORML we have:

Person with ID is an entity type.
Document is an entity type.
Person with ID has Document.

In FOL:

Va,y.has(z,y) — Person WithID(z) A Document(y)

The ORM entities (like Person with ID, Document, etc.) do not occur in
the formalisation since they are declared in the ORM signature (this will be

explained in Chapter 3).

We need to specify that, as it happens in the real world, a person is identified
by a document which uniquely identifies that person. This is represented in
Figure. 2.3 by a purple dash on a role stating that there are no duplicate
instances inside that role, this means that the cardinality is set to one, in a

way similar to SQL primary keys.
has
Person with ID — { Document I
(.1d) :D (.code)

Figure 2.3: ORM diagram example - STEP 2

In FORML we have:

Each Person with ID has at most one Document.
For each Document, at most one Person with ID has that Document.
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In FOL:

VY, y.has(x,y) — IS 2. has(x, 2)
Y, y.has(x,y) — IS 2. has(z, y)

We now want to say that each person must be identified by a document. In
other words, we want to set the mandatory participation of person to the
relationship has. In Figure 2.4 this is depicted by the purple dot near a role.

has
l Person with ID I ED__ i Document I
(.Id) (.code)

Figure 2.4: ORM diagram example - STEP 3

In FORML:
Each Person with ID has exactly one Document.
In FOL:

V. Person WithID(x) — 3=1y.has(z, )

We can add more details to the diagram. For example, we may want to
make a distinction among the type of documents. In Figure 2.5 we introduce
two subset of the entity Document: Visa and IDCard. Conceptually, Visa
represents those documents belonging to the visitors of that country; instead,
IDCard is the document for the citizen of that country. Those subset are

depicted as entity types with an arrow pointing to the super type entity.
In FORML we have:

VISA is an entity type.

Each Visa is an instance of Document.
IDCard is an entity type.

Each IDCard is an instance of Document.



2.3. ORM 19

has

Person with ID —
(.1d) ¢ 11

Document
(.code)

IDCard

Figure 2.5: ORM diagram example - STEP 4
In FOL:

V. Visa(x) — Document(x)
Va.IDcard(x) — Document(x)

In this configuration some instances inside Visa may also belong to IDCard.
We need to add a constraint stating that there are not instances in common
between these two entities. This is achieved by introducing the disjointness
constraint depicted by a circle with a cross which is connected to the entities
that are disjoint. We may want to specify that the whole set of documents is
covered by the visas and idcards. This is expressed by the purple dot added
inside the cross, as in Figure 2.6.

has

Person with ID —
(.1d) ¢ 11

Document
(.code)

Figure 2.6: ORM diagram example - STEP 5

In FORML:

For each Document, exactly one of the following holds:
that Document is some Visa;
that Document is some IDCard.
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In FOL:

V. Visa(x) — —IDCard(x)
Va.Document(x) — Visa(x) v IDCard(x)

We now want to state that some people in the set of Person are visitors.
Moreover, the visitor owns a visa. Please note that we have named the new
entity SomeVisitor instead of Visitor, since it cannot capture exactly all the
visitor; this is related to the ORM Derivation Rules and it will explained in
2.3.3.

Document
(.code)

Person with ID
(.Id) 4 11

i

SomeVisitor

owns

Figure 2.7: ORM diagram example - STEP 6

In FORML:

Each SomeVisitor is an instance of Person with ID.
SomeVisitor owns Visa.

Each SomeVisitor owns exactly one Visa.

For each Visa, at most one SomeVisitor owns that Visa.

In FOL:

Va,y.owns(z,y) — Some Visitor(xz) A Visa(y)
Va.SomeVisitor(x) — Person WithID(x)
Va.SomeVisitor(z) — Jy.owns(zx, y)

Y, y.owns(x,y) — IStz owns(z, 2)

Va, y.owns(z,y) — ISt z.owns(z, y)
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We want to state that all the pairs inside the relationship owns are also inside
the relationship has. We express this restriction introducing the ORM subset

constraint, depicted with a € inside a circle.

Finally, the complete ORM diagram is shown in Figure 2.8.

Person with ID
(.Id)

Document
(.code)

ot

SomeVisitor

IDCard

Figure 2.8: ORM diagram example - STEP 7

owns

In FORML:

If some SomeVisitor owns some Visa
then some Person with ID that is that SomeVisitor
has some Document that is that Visa.

In FOL:

Yz, y.owns(z,y) — has(x,y)

Another example

ORM has a rich set of constraints that allow the modeller to design very
expressive diagrams. An ORM schema for a book publishing domain is shown
in Figure 2.9. Each book is identified by an International Standard Book
Number (ISBN), each person is identified by a person number, each grade is
identified by a grade number in the range 1 through 5, each gender is identified
by a code (“M” for male and “F” for Female), and each year is identified by its
common era (CE) number. Published Book is a derived subtype determined by
the subtype definition shown at the bottom of the figure. Review Assignment
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has/is of ;

i Person name |
A\ ,’

Is translated from

Book title

¥
i
[
[
'
A

Is assigned for review by
“Review assignment !”

i NrCopies _ T ]
Memmmmeemeaas * 4sold total-* Is a best seller*
[Total copies sold]

* Each published book is a book that was published in some year.
* For each published book, total copies sold = sum (copies sold in year)
* Published book is a best seller iff published book sold total Nrcopies > = 10000.

Figure 2.9: ORM Example - Book publishing domain

objectifies the relationship Book is assigned for review by Person, and is
independent since an instance of it may exist without playing any other role
(one can known about a review assignment before knowing what grade will
result from that assignment). The internal uniqueness constraints (depicted
as bars) and mandatory role constraints (solid dots) verbalize as follows:
Each Book is translated from at most one Book; Each Book has exactly one
Book Title; Each Book was published in at most 1 Year; For each Published
Book and Year, that Published Book in that Year sold at most one NrCopies;
Each Published Book sold at most one total NrCopies; It is possible that
the same Book is authored by more than one Person and that more than
one Book is authored by the same Person; Each Book is authored by some
Person; It is possible that the same Book is assigned for review by more than
one Person and that more than one Book is assigned for review by the same
Person; Each Review Assignment resulted in at most one Grade; Each Person
has exactly one Person Name; Each Person has at most one Gender; Each
Person has at most one Person Title; Each Person Title is restricted to at
most one Gender. The external uniqueness constraint (circled bar) indicates
that the combination of BookTitle and Year applies to at most one Book.
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The acyclic ring constraint (circle with three dots and a bar) on the book
translation predicate indicates that no book can be a translation of itself
or any of its ancestor translation sources. The exclusion constraint (circled
cross) indicates that no book can be assigned for review by one of its authors.
The frequency constraint indicates that each book that is assigned for review
is assigned for review by at least two persons. The subset constraint (circled
subset symbol) means that if a person has a title that is restricted to some
gender, then the person must be of that gender. The first argument of this
subset constraint is a person/gender role pair projected from a join path that
performs a conceptual join on PersonTitle. The last two lines at the bottom
of the schema declare two derivation rules, one specified in attribute style
using role names and the other in relational style using predicate readings.

The list of all ORM constraints

As we have seen in the previous examples, ORM’s graphical language has
a rich notation that makes it easy to detect and express constraints. This
graphical notation has been defined in [79] and [73]. Figure 2.10 lists the main
graphical symbols of the ORM notation [90], numbered for easy reference.

An entity type (e.g., Person) is depicted as a named, soft rectangle (symbol
1), or alternatively an ellipse or hard rectangle. Value type (e.g., Person
Name) shapes have dashed lines (symbol 2). Each entity type has a reference
scheme, indicating how each instance may be mapped via predicates to a
combination of one or more values. Injective (1:1 into) reference schemes
mapping entities (e.g., countries) to single values (e.g., country codes) may be
abbreviated as in symbol 3 by displaying the reference mode in parentheses,
e.g., Country (.code). The reference mode indicates how values relate to
the entities. Values are constants with a known denotation, so require
no reference scheme. Relationships used for preferred reference are called
existential facts (e.g., there exists a country that has the country code “I'T”).
The other relationships are elementary facts (e.g., The country with country
code “IT” has a population of 60.000.000). The exclamation mark in symbol
4 declares that an object type is independent (instances may exist without

participating in any elementary facts). Object types displayed in multiple
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Figure 2.10: List of ORM constraints

place are shadowed (symbol 5). A fact type results from applying a logical
predicate to a sequence of one or more object types. Each predicate comprises
a named sequence of one or more roles (parts played in the relationship).
A predicate is sentence with object holes, one for each role, with each role
depicted as a box and played by exactly one object type. Symbol 6 shows a
unary predicate (e.g., ... smokes), symbols 7 and 8 depict binary predicates
(e.g., ... loves ... ), and symbol 9 shows a ternary predicate. Predicates of
higher arity (number of roles) are allowed. Each predicate has at least one
predicate reading. ORM uses mixfix predicates, so objects may be placed at
any position in the predicate (e.g., the fact type Person introduced Person to

[13

Person involves the predicate “... introduced ... to ... 7). Mixfix predicates
allow natural verbalization of nary relationships, as well as binary relationships
where the verb is not in the infix position (e.g., in Japanese, verbs come at
the end). By default, forward readings traverse the predicate from left to

right (if displayed horizontally) or top to bottom (if displayed vertically).
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Other reading directions may be indicated by an arrow-tip (symbol 8). For
binary predicates, forward and inverse readings may be separated by a slash
(symbol 7). Duplicate predicate shapes are shadowed (symbol 10). Roles may
be given role names, displayed in square brackets (symbol 11). An asterisk
indicates that the fact type is derived from one or more other fact types
(symbol 12). By default, the populations of derived fact types are not stored,
but are instead computed on demand. ORM also allows to declare that the
population of a derived fact type is stored, so that it is always immediately
available. If the fact type is derived and stored, a double asterisk is used
(symbol 13). Fact types that are semi-derived are marked “C” (symbol 14).
Internal uniqueness constraints, depicted as bars over one or more roles in a
predicate, declare that instances for that role (combination) in the fact type
population must be unique (e.g., symbols 15, 16). For example, a uniqueness
constraint on the first role of Person was born in Country verbalizes as: Each
person was born in at most one Country. If the constrained roles are not
contiguous, a dotted line separates the constrained roles (symbol 16). A
predicate may have many uniqueness constraints, at most one of which may
be declared preferred by a double-bar (symbol 17). An external uniqueness
constraint shown as a circled uniqueness bar (symbol 18) may be applied to
two or more roles from different predicates by connecting to them with dotted
lines. This indicates that instances of the role combination in the join of
those predicates are unique. For example, if a state is identified by combining
its state code and country, an external uniqueness constraint is added to the
roles played by State code and Country in: State has State code; State is in
Country. Preferred external uniqueness constraints are depicted by a circled
double-bar (symbol 19). To talk about a relationship, one may objectify it
(i.e., make an object out of it) so that it can play roles. Graphically, the
objectified predicate (a.k.a. nested predicate) is enclosed in a soft rectangle,
with its name in quotes (symbol 20). Roles are connected to their players
by a line segment (symbol 21). A mandatory role constraint declares that
every instance in the population of the role’s object type must play that
role. This is shown as a large dot placed at the object type end (symbol
22) or the role end (symbol 23). An inclusive-or (disjunctive mandatory)

constraint applied to two or more roles indicates that all instances of the
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object type population must play at least one of those roles. This is shown by
connecting the roles by dotted lines to a circled dot (symbol 24). To restrict
the population of an object type or role, the relevant values may be listed in
braces (symbol 25). An ordered range may be declared separating end values
by “.”. For continuous ranges, a square/round bracket indicates an end value
is included/excluded. For example, “(0.10)”denotes the positive real numbers
up to 10. These constraints are called value constraints. Symbols 26-28
denote set comparison constraints,which apply only between compatible role
sequences. A dotted arrow with a circled subset symbol depicts a subset
constraint, restricting the population of the first sequence to be a subset of
the second (symbol 26). A dotted line with a circled “=" symbol depicts an
equality constraint, indicating the populations must be equal (symbol 27).
A circled “X” (symbol 28) depicts an exclusion constraint, indicating the
populations are mutually exclusive. Exclusion and equality constraints may
be applied between two or more sequences. Combining an inclusive or and
exclusion constraint yields an exclusive-or constraint (symbol 29). A solid
arrow (symbol 30) from one object type to another indicates that the first is a
(proper) subtype of the other (e.g., Woman is a subtype of Person). Mandatory
(circled dot) and exclusion (circled “X”) constraints may be displayed between
subtypes, but are implied by other constraints if the subtypes have formal
definitions. Symbol 31 shows four kinds of frequency constraint. Applied to a
role sequence, these indicate that instances that play those roles must do so
exactly n times, at least n times, at most n times, or at least n and at most
m times. Symbol 32 shows four varieties of value-comparison constraint. The
arrow shows the direction in which to apply the circled operator between two
instances of the same type (e.g., For each Employee, hiredate > birthdate).
Symbol 33 shows the main kinds of ring constraint that may apply to a pair of
compatible roles. Read left to right and top row first, these indicate that the
binary relation formed by the role population must respectively be irreflexive,
asymmetric, antisymmetric, reflexive, intransitive, acyclic, intransitive and
acyclic, or intransitive and asymmetric. The previous constraints are alethic
(necessary, so can’t be violated) and are colored violet. ORM 2 also supports
deontic rules (obligatory, but can be violated). These are colored blue, and

either add an “o” for obligatory, or soften lines to dashed lines. Displayed



2.3. ORM 27

here are the deontic symbols for uniqueness (symbol 34), mandatory (symbol
35), set-comparison (symbol 36), frequency (symbol 37) and ring (symbol 38)

constraints.

2.3.3 Derivation Rules

ORM Derivation Rules are special ORM construct that are able to express
knowledge that goes beyond standard ORM capabilities. In a way similar
to SQL triggers or OCL constraints, ORM Derivation Rules define which
instances may appear in the population of subtypes and fact types. We recall
that an instance of an ORM model maps each object-type and fact-type in
the model to a population, where the population of an object-type is a set
of objects (values or entities) and the population of a fact-type is a set of
tuples of objects. ORM Derivation Rules are used to derive new facts from
other facts. A fact that is not derived is an asserted fact (also known as a
primitive or base fact). The population of an asserted fact is made by asserted

instances; the population of a derived fact is made by derived instances.

In ORM, subtypes may be asserted, derived, or semiderived. A subtype is
asserted if and only if, for each state of the fact base, only asserted instances
may appear in its population. A subtype is derived if and only if, for each
state of the fact base, only derived instances may appear in its population.
A subtype is semiderived if and only if some of its instances may be simply
asserted and some other instances may be derived. Graphically, derived

ko

subtypes are displayed with an asterisk after their name, and semiderived

subtypes are displayed with a plus superscript “+” after their name.

Consider the ORM schema in Figure 2.11. Here the subtypes are simply
asserted, since there is no way to derive which persons are smokers and which

persons are males.

In contrast, the ORM schema in 2.12 includes smokes and gender fact types
that enable us to derive which persons are members of which subtypes. In
this case, we must declare the subtypes to be derived and provide appropriate
derivation rules for the subtype definitions. Otherwise, it would be possible to

have incorrect models. For example, we could declare an instance of Smoker
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Person
(.Nr)
[Smoker] [MaIePerson ]

Figure 2.11: ORM schema with asserted subtypes

Person Gender
(.Nr) (.Code) | {™M','F}
[Smokerj [ MalePerson J

Figure 2.12: ORM schema with asserted subtypes that should be derived

smokes

without having that person play the smokes role; or we could declare an
instance of MalePerson for a person with gender code “F”.

The ORM schema in Figure 2.12 marks the subtypes as derived, and expresses
their derivation rules in the syntax of FORML (Formal ORM Language), a
formal, textual language for ORM that is currently under development. Here
pseudo-reserved words are displayed in bold. Currently, NORMA does not
support the option of choosing “a” or “an” as an alternative reading for the

existential quantifier, which it always renders as “some”.

While one can declare that a subtype is derived simply by entering some text
in the DerivationNote property for the subtype in the ORM Model Browser,
derivation notes are treated by NORMA simply as informal comments, so no

Gender

.Cod ‘M, F
smokes (-.Code) { !

* Each Smoker is defined as a Person who smokes.
[Smoker ¥ J [ MalePerson *J * Each MalePerson is defined as a Person who has Gender ‘M’.

Figure 2.13: ORM schema with derived subtypes and derivation rules
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Person

[ |
smokes

Figure 2.14: The derivation path for the Smoker subtype in Figure 2.13

code will be generated from them to enforce the derivation rules. Currently,
the only way to formally declare a derivation rule in NORMA is to specify a
derivation path for it in the ORM Model Browser.

A subtype’s derivation path is the path through the ORM schema, including
any operators and conditions that apply, that corresponds to the subtype
derivation rule. The path always starts at an object type, known as the root
object type for the path. For subtype derivation paths, the root object type
will always be a supertype of that subtype. With complex paths, you might
need to traverse through the same role more than once, in which case we need
to distinguish different occurrences of the same role. When this is not the

case, the term “role” is often used informally for “role occurrence”.

For the Smoker subtype in Figure 2.13, the derivation path is the path starting
at Person (the root object type for the path) and ending at the role in the
smokes predicate. You can visualize it as shown in Figure 2.14. More complex
subtype definitions may have derivation paths that look like a tree, with
multiple branches stemming from the root object type or from object type

occurrences later in the path.
We now extend the example in Figure. 2.8 by ORM Derivation Rule.

The conceptual diagram is not expressive enough to encode further informa-
tion, e.g., that all the visitors are exactly those who are identified by a visa or
to capture all the people that have no documents. Observe, that there is no
constraint stating that all Visa holders are visitors; for this reason we named
SomeVisitor the entity which is a subtype of Person with ID entity. How can
we capture in the schema exactly all the visitors? We need to use a derivation
rule stating the needed exact definition. We now add a new entity called
VisitorWithVisa as a subtype of PersonWithID with an attached derivation

rule as shown in Figure 2.15.
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has
Person with ID Document
(.code)

IDCard

SomeVisitor

VisitorWithVisa *

Each VisitorWithisa is by definition
some Person with ID
that has some Document that is some Visa.

Figure 2.15: ORM example with ORM Derivation Rule

As we have seen before for other ORM constraints, ORM Derivation Rules

can also be expressed in FORML:

*Each VisitorWithVisa is by definition some Person with ID
that has some Document that is some Visa.

In FOL:

V. VisitorWithVisa(x) <> PersonWithID(x) A Jy.has(x,y) A Visa(y)

In this way all the instances inside VisitorWithVisa are constrained to posses

a Visa document.

2.4 NORMA

NORMA is implemented as a plug-in to Microsoft Visual Studio. Most of
NORMA is open-source, and a public domain version is freely downloadable
[110]. Fig. 2.16 summarizes the main components of the tool. Users may
declare ORM object types and fact types textually using the Fact Editor, or
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Model Browser

/ = SQL
LI
ORM Diagrammer K—) [mmmmeon
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\ Properties Window

Sample Population Editor !
p p — etc. |

Mappers

Conceptual '-_- ___________ '
Model I '

]
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=

Verbalizer K
JL ﬂ Relational View
r““““““";
Report Writer Importer (,':! SQL Server, etc. E

Figure 2.16: NORMA overview

drag new elements off the toolbox. New model components are added to the
conceptual model and displayed with graphical shapes on one or more ORM
diagrams. The Model Browser tool window also provides a hierarchical view
of all model components. Sample object and fact instances may be entered

in tabular format in the Sample Population Editor.

Currently, ORM constraints and ORM Derivation Rules must be entered
in the ORM diagrammer or the Properties Window. These constraints are
automatically verbalized in FORML (Formal ORM Language), a controlled
natural language that is understandable even by non-technical people. The
Model Browser is also able to handle derivation rules for both fact types and
subtypes with verbalisation. Using mappers, ORM schemas may be automat-
ically transformed into various implementation targets, including relational
database schemas for popular database management systems (SQL Server,
Oracle, DB2, MySQL, PostgreSQL), datalog, .NET languages (C#, VB,
etc.), and XML schemas. A Relational View extension displays the relational
schemas in diagram form. The semantics underlying relational columns can be

exposed by selecting them and automatically verbalizing the ORM fact types
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is member of

Committee
(.name)

(.name)

Professor ]

chairs

Figure 2.17: ORM diagram done with NORMA

from which they were generated. An import facility can import ORM models
created in some other ORM tools, and can reverse engineer relational schemas
in SQL Server into ORM schemas. Other components facilitate navigation
and abstraction. For example, multiple concurrent windows viewing the same
model allow shapes to be copied between diagrams, the ORM Diagram Spy
and hyperlinks in the Verbalization Browser allow rapid navigation through
a model, and the ORM Context Window

One of the most useful features in NORMA is the automated verbalization
[90], [108], [45]. Considering the ORM diagram in Figure 2.17, we have the

verbalised counterpart in Figure 2.18.

In the ORM diagram we have two binary fact types: Professor is member
of Committee and Professor chairs Committee. Entity types are shown as
named, soft rectangles with their reference mode in parenthesis. Logical
predicates are depicted as a named sequence of role boxes connected to the
object types whose instances play those roles. The bar over each predicate
depicts a spanning uniqueness constraint, indicating that the fact types are
m:n, and can be populated with sets of fact instances, but not bags. The
circled subsetsymbol connected by dashed lines to role pairs depicts a subset
constraint. When the constraint shape is selected, NORMA displays role
numbers to highlight the role sequence arguments to the constraint.
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ORM Verbalization Browser > 1 X

Professor is member of Comnmittee.
= It is possible that some Professor is member of more than one Committes
and that for some Committee, more than one Professor is member of that Committee.
In each population of Professor is member of Committee, each Professor, Committee combination occurs at
most once.
This association with Professor, Committee provides the preferred identification scheme for
ProfessorlsMemberOfCommittee.
Professor chairs Cormmittee.
For each Committes, at most one Professor chairs that Committee.
It is possible that some Professor chairs more than one Committee.
If some Professor chairs some Committee then that Professor is member of that Cormmittee.

Figure 2.18: ORM verbalisation

The verbalisation is displayed in the ORM Verbalization Browser, one of the
main NORMA components. Here each part of the ORM diagram is displayed
in a controlled natural language. This feature is useful to bridge the gap
between stakeholders working on the same project, especially those who are

not IT experts.

A feature of NORMA that is especially useful to modelers is its live error
checking capability. Modelers are notified immediately of errors that violate
a metarule that has been implemented in the underlying ORM metamodel.
Fig. 2.19 shows an example where the subset constraint is marked with red
fill because it is inconsistent with other constraints present. In this case, the
committee role of being chaired is declared to be mandatory (as shown by
the solid dot on the role connection), while the committee role of including a
member is declared to be optional. But the subset constraint implies that if
a committee has a chair then it must have that person as a member. So it is
impossible for the two fact types to be populated in this situation. NORMA

not only detects the error but suggests three possible ways to fix the problem.

As we can see in Figure 2.20, complex diagrams are usually managed in
NORMA by multiple pages. The user can browse and organize the diagram
by means of pages, that generally represent a precise sub-domain of the whole

universe of discourse.

The mapper component allows to represent the ORM diagram in different
ways, for example one useful function is to visualize and export the ORM

conceptual diagram into a database relational view as shown in Figure 2.21.



34

CHAPTER 2. THE ORM LANGUAGE

Professororm & X -

4

is member of

Professor
(.name)

Committee
(.name)

EEE ORMModell

ORM Verbalization Browser -

= 1

Professar chairs Committee.
For each Committee, exactly one Professor chairs that Committee.
Model Error: Subset constraint 'SubsetConstraintl' and mandatory constraint 'SimpleMandatoryConstraints' in model
'ORMModell’ are not wel-modeled. Sugaested ways to fix: (1) Delete the mandatory constraint. (2) Add another
mandatory constraint on the superset role. (3) Delete the subset constraint.
It is possible that some Professor chairs more than one Committee.

Figure 2.19: ORM live error check
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Figure 2.20: NORMA pages
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ORM Foundations

Object-Role modelling (ORM) is a rigorous approach to modelling and query-
ing at the conceptual level the information semantics of arbitrary domains.
In this work is defined an abstract syntax for ORM conceptual models to-
gether with its formal semantics. An ORM conceptual model comprises an
ORM conceptual schema plus a population of (object and fact) instances. In
addition to type and constraint declarations, an ORM schema may include
derivation rules. The semantics of an ORM conceptual model is defined by
transforming the model to first-order logic axioms, whose models denote the

legal abstract information structures of the conceptual specification.

3.1 Formal syntax and semantics

The latest version of ORM (ORM 2) is thoroughly described in [79], and in
[77] and its companion [78] providing an up-to-date coverage of the latest
enhancements to ORM and its conceptual schema design procedure. This
document refers to the ORM 2 version of ORM.

In this section we define the normative syntax and the semantics of ORM
Conceptual Models. The work in this section does not define an interchange
format for ORM, but its ultimate goal is to provide a self-contained document
defining the non-ambiguous semantics of all the ORM basic constructs. The
syntax defines the ORM language, and it is given by specifying a signature
(the ORM Conceptual Model Signature), and then the set of well formed
formulae which can be built using the signature. An ORM Conceptual Model

37
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is any set of well-formed formulae from a given ORM signature, satisfying all
the constraints. An ORM Conceptual Model has an "abstract” syntax since
it is in one-to-one correspondence with the concrete graphical syntax; this is
shown in the section 3.2.1 by a set of examples. The semantics is a standard
denotational semantics. The semantics of an ORM Conceptual Model is
given with a transformation of the ORM conceptual model to first-order logic
formulas: the finite first-order structures satisfying the obtained first-order
logical theory are in one-to-one correspondence with the legal populations
of the ORM conceptual model. After having introduced ORM Conceptual
Model Signatures and the corresponding First-Order Logic Signatures, we
describe the abstract syntax and semantics of ORM’s main conceptual model

constructs, namely declarations, constraints, and derivation rules.

3.1.1 Naming Conventions

An ORM conceptual model is formally composed, following precise syntactic
rules, by declarations and constraints, built from terms of different syntactic
categories (object type names, predicate names, role names, predicate role
names, data elements) taken from a signature. The ORM graphical notation
depicts a fact type as a left-to-right top-to-bottom ordered sequence of role
boxes, each of which is attached to exactly one object type shape. A fact type
is bijectively associated to a canonical predicate. Fact types (resp. object
types) appearing in the ORM graphical notation as distinct are associated
in the signature to distinct predicate names (resp. object type names).
A role is uniquely identified in ORM graphical notation by the fact type
in which it appears together with its relative position (left-to-right top-to-
bottom) within the fact type; each role is given in the signature the role name
obtained by concatenating the canonical predicate name it belongs to and the
relative position within it. In this document we assume that the signature
of an ORM conceptual model (e.g., the choice of the canonical predicate
associated to a fact type) has been specified without ambiguity, following
maybe linguistic conventions or other design methodologies. This document
does not focus on the pre-logical or linguistic means necessary in order to get
the formal signature. Predicate readings, as normally introduced in the ORM
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methodology, are used simply for readability and compactness of display on
the graphical notation of ORM schema diagrams, and are not necessarily
identifying, since distinct fact types may have the same predicate reading. On
the other hand, distinct predicate names in the signature identify necessarily
distinct fact types. Alternate predicate readings for the same fact type (e.g.,
useful to verbalise differently a predicate with different role orderings) are all
obviously denoting the same fact type, and therefore will be given the same

predicate name in the signature.

3.1.2 ORM Conceptual Model Signature

An ORM conceptual model signature is composed by the elements (T, V, P, R, D, 5, F, )
denoting the following:

a finite set of domain object type names
aset V € T of domain value type names

a finite set of predicate names

a finite set of role names

a finite set of domain values

a function §:V — 2P, the domain value type extension

a finite set of value function names
a total function a: P U F — N* specifying the predicate or the function arity

NI AI <

Table 3.1: ORM Conceptual Model Signature

We adopt the following syntactic conventions in the ORM conceptual model:

e the letters h,i, 5, k,[,m,n denote positive integer numbers;

the letters p,q denote integer numbers;

T denotes a domain object type name € T;

V denotes a domain value type name € V;

P denotes a predicate name € P;

r denotes a role name € R;
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d denotes a domain value € D;

f denotes a value function name € F;

P.i denotes the i-th role identifier of P, with 1 <i < «a(P)

7v denotes a variable symbol within a derivation rule, with v €

STRINGS;

3.1.3 First-order logic signature

The First-Order Logic (FOL) signature of an ORM conceptual model reuses
the same symbols from 7T, V, P, D F of the ORM conceptual model signa-
ture, and it is composed by the elements (T, V, P, L, D, G, F) denoting the

following;:

a finite set of unary predicate symbols

a set YV 7 of data values

a finite set of predicate symbols, each Pe P with arity a/(P)

a family of injective and well-founded objectification functions,
one for each P €P and with arity a(P)

a finite set of constant symbols

QI B 9

A family of domain value to data value injective functions =, for each v € V such
that for each d € (V) and T € T, it holds that V(d) and Yx.T(z) — x # ~,(d)

A family of functions over data values, namely with domain and range
over the range of the function ~

N

Table 3.2: First-Order Conceptual Model Signature
We adopt the following syntactic conventions in the FOL formulas:

e the precedence of Boolean operators is:— A v —;

e [, denotes a function € £ associated to the predicate Pe P and with
arity a(P);

e 7, denotes a function € G associated to the domain value type V.
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3.1.4 First-order logic ORM Conceptual Model

The following extensions to FOL are used the specify the semantics of ORM
Conceptual Models.

e The translation of derivation rules is given in first-order logic extended
with lambda expressions. In the specification as a first order logic for-
mula of the semantics of a derivation rule containing a PATH expression,
a PATH expression corresponds to an open first order formula with one
free variable. Such an open formula is built inductively from the parse
tree of the PATH expression using its grammar specification in a way
similar to Montague grammars. The composition among steps in the
induction makes use of lambda expressions and their application using
variable bindings and substitutions: if ¢ is a formula with a free variable
x, and t is a term, an application of the lambda calculus g-reduction
rule ((A7.9)(t)) — (¢[z4) replaces the occurrences of the bound variable
x within the body ¢ of the lambda expression with the term t.

e The translation of ring constraints is given in first-order logic extended
with the transitive closure operator * over binary predicates. First-
order logic extended with the transitive closure operator is strictly more
expressive than first-order logic. The transitive closure of a binary
predicate P can be expressed in first-order logic enriched with least

fixpoints as follows: Va'y .P*z'y < Ufpg . (Pry v (32.Q72 A Pzy))zy .

e The translation of identification constraints is given in first-order logic
extended with well-founded binary relations. A binary relation R is well-
founded, well-founded(R), if its interpretation contains no countable
infinite descending chains: that is, in the interpretation of R there is
no infinite sequence ag, a, as, ... of non necessarily distinct elements
such that R anan+1 for every natural number n, i.e, there is no infinite

ascending chain.

e According to the definition above, objectification functions should be
well-founded. A function is well-founded if the binary relation F =
{{x,y)| f(x) =y} is well founded.
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The First-Order Logic (FOL) Conceptual Model of an ORM conceptual
model is a FOL theory composed by the theory ® obtained by applying the
transformations specified in the table below, with an additional closure theory
©. The closure theory O is needed in order to give the right semantics to the

identification and objectification constraints, and it includes:

e top-level disjointness axioms of the form Vz.T;(x) — —=Ta(z) for any
pair of object types such there is no object type T such that:
¢ = (V. Ti(x) - T(x)) A (Va.To(z) - T(2));

e a well-foundedness axiom involving all the special binary predicate sym-
bols P]I.D “t introduced by identification and objectification constraints
in the conceptual model:
well-founded(P1P=1 U - G PPt oo G PIDTSR oo PID-sk),

Table 3.3: ORM syntax and semantics

FactType(P (T1 ... Typ))) P does not appear as an
AlternatePredicate
V... xa(p).P(xl cee Ia(p)) —>T1(LU1) VANRIMERVAN Ta(P)(JIa(P))
AlternatePredicate(P, Py (P.j, ... P ;) P#P,
A(P) = a(Py)

{il. . .ia(p)}:{l. .. OC(P)}
(MACRO)Replace all occurrences of P,.j in the ORM conceptual model with
P, and then all occurrences of P, with P

RoleNaming(P.i r)
(MACRO)Replace all occurrences of the role name r in the ORM conceptual
model with the role identifier P.i

Mandatory (T Py ... Py.in) for j#k and j,k<m:
Pj;ﬁPk

Vo T(x) = 3y1 - Ya(py)- (P1 (Y1 Yop)) AT = yil)

Ve VA Yae) (P Yap,) AT =Yi)

Unique(P.ij ... P.iy) for j#k and j,k<m:
ij;éik

(MACRO)

Frequency(P.i; ... Piy (1, 1))

Identification(T P.iy4+1 (Piy ... Piy)) for j#k and jk<m+1:

ij;éik
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(MACRO)

Unique (P.ip+1)

Mandatory (T(P.im+1))

Unique (P.j...Piy)

and each of the binary predicates defined below is well-founded:
FactTypeRule(B (P.ip41—(P.i1 X 7x))(7x))

FactTypeRule(Bpy (P.imy1(Pip x 7x))(7x))

ExternalUnique(P.;...Piy) for j#k and j,k<m+1:
a(P)=2, P;j # Py,
if ij7=1 then 1;=2 else
=1,
and P fresh predicate
name of arity m+1
(MACRO)
FactTypeRule(P(P;.i;—=(P1.11x7x)) ... (Pm.im = (Pm.1m x 7x))(?x))
Unique(P.1...P.m)

Externalldentification(T (P1.i; ...Puy.im)) for j#k and jk<m+1:
a(Pj)=2, P; # P,
if ij=1 then 1;=2 else
ljzl;
and P fresh predicate
name of arity m+1

(MACRO)

FactTypeRule(P(P1.i;—=(P1.11 x7x)). .. (Pm.im—(Pm-lm x 7x))(?x))

Unique(P.m+1)

Mandatory (T (P.m+1))

Unique(P.1...P.m)

and each of the binary predicates defined below is well-founded:

FactTypeRule(B; (P.m+1—(P.1x7x))(7x))

FactTypeRule(By, (P.m+1—(P.mx7x))(7x))

Frequency(P.i; ... P.iy F) for j#k and jk<m: ij
#ik.
p,q=1
(1) E = (p.)
2)E=(.q)
(3) E = (p..q)
(4) E = (p)
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(2)Vx1 . xo(p) P21 Zaep)) = 351 Ya(p) P(W1 - Ya(p) A Tiy =Yy Ao A Tiyy = Vi,
(Va1 ... 2qp)-P(1. . Top) = I7PY1 - Yo ) P(Y1 - - Ya(P) A Tiy =Yiy A0 A Tiyy =Yy,
AVZ1 . 2op) P(o1 o Zo(p) = 351 Yo(p) P(YL - Ya(p)) A Tiy =Yi A0 A Tiy =Yy,

DV ... 2o(p) - P21 Ta(p) 2 37PY1 - Ya(p)-PY1 - Yo(P) A it =Yir A0 A Ty =Yy

ExternalFrequency (P;.ij...Ppy.in F) for j#k and jk<m:
O((Pj):2, Pj#Pk, if
ij=1 then 1;=2 else 1;=1;
and P fresh predicate
name p,q= 1

(1) E = (p..)
(2) E=(.q)
(3) E = (p..q)
(4) F = (p)

(MACRO)
FactTypeRule(P(P;.ij—=(P1.11 x7x)). .. (Pm.im—=(Pm-lm x 7x))(?x))
Frequency(P.1...P.m F)

Subtype((T; ... Ty) T)
(Ve Ty(x) > T(x)) A A (Ve Tp(z) > T(x))

ExclusiveSubtypes((T; ... Ty) T)
(VeTi(z)>T(z)A—-To(z) A A=Tp(z)) Ao A (Yo D1 (x) > T(x) A =T () A
(Vx. T (z) > T(x))

ExhaustiveSubtypes((T; ... Ty,) T)

Ve.T(x) > Ti(x) v - v Tp(x)

Subset((P;.iy Po.hy) ... (P1.iy Pa.hy)) P1#Py and for j#k and
j.k<m :
Pl.ij # Pq.iy and Pg.hj
# Po.hy

V... xa(pl).Pl(xl cee a:a(pl))—ilyl . .ya(pQ).Pg(yl . .ya(pQ))/\ Tijy =Yhy N N4, =

Yhom

Exclusive((P1.i; Po.hy) ... (P1.iym Po.hy)) P1#Py and for j#k and
j.k<m :
Pl.ij # P1.ix and Pg.hj
# Po.hy

Yoy . Top)-PrTL - Topy) = YL Ya(po) T P21 Ya(p) A Tiy = Yhy A A

Ty = Yy

Equal((P1.11 Pz.hl) ce (Pl.im Pghm)) P1#P2 and for j#k and
j.k<m :
Pl.ij #* P1.ik and Pg.hj
# Po.hy
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(MACRO)
Subset((Pl.il Pg.hl) PN (Pl.im Pghm))
Subset((Pg.hl Pl.il) c (Pg.hm Pl.im))

Objectifies(T P)
Vay...xn.Plxy...xp) T (Up(x1...20))

TypeCardinality (T (p,q)) p,q = 0 and q possibly
o0

Pz, T(x)

RoleCardinality (P.i (p,q)) p,q = 0 and q possibly
o0

Vay ...z P9y P(xy...xp) AT =Y

ValuesOf(V (d;...dm))
VeV(z) > (z=dy) v - v (x=dp)

ValuesOf(P.i (d; ...dn))
Voy...xn P(ar... 20p) = (@i=di) v -+ v (25 =dp)

<(P.iy P.iy) Se{<, <>, 2, #,=}
V1. Ta(P) Y1 - - Ya(p) P21 Za(p) A Plys- - Yarp) = (@) S 1 (245)
RingConstraint(P.i P.j ) i#jand

Py, fresh predicate name
with a(Py,)=2
MACRO JointPath(Py, (P.i P.j))

Locally Reflexive
Va129. Py(21, 22) = Py(w1,71)

Purely Reflexive
Vai1zo. Py(x1,x9) > 21 = 9

Irreflexive
Vzixe. = Py(z, x)

Symmetric
VSEL’EQ. Pb(l‘l, 1’2) — Pb(l‘Q, l‘l)

Asymmetric
lel‘z. Pb(l'l, .7}2) —> —'Pb({L‘Q, LL‘1)

Antisymmetric
Vxla;g. Pb(a:l, mg) A X1 F# Tg—> —'Pb(xg, xl)

Transitive
Va120y1Y2. Py(21, 22) A Py(y1,92) A 22 =y1 — Py(x1, 22)

Intransitive
Vzizoy1y2. Po(x1, 22) A Py(y1,y2) A 2 =y1 — —Py(x1,22)

Strongly Intransitive
Vryizayiye. Py(w1, w2) A B (y1,y2) A 22 =41 = = Pp(x1, 22)

Acyclic
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Vaixo. =P (x, x)

DERIVATION RULES

SubTypeRule(T PATH)
V. T(z) < Jvary ... vary, PATH  z
vari...vary includes all the 7VAR variable symbols in PATH™

FactTypeRule(P PATH;... PATHa(P>)
Yoy ... 2qp)-P(21. .. To(p)) <> Fvar ... var, PATHT 21 A -0 A PATH:(P)ZL'Q(F)
varj...vary includes all the 7VAR variable symbols in PATH™

JoinPath(P (P;.i; P1.j1) ... (Pmdim Pm.jm)) a(P)=2 and for k<m:
I #Jk
(MACRO)
FactTypeRule(P(P1.i1 < (P1.j; X (Pa.i2 = (Pa.jy X (oo (Pt = (Pm-jm X 72)))))))
PATH: T | SE<>2#=
Py | a(Py)=1
P.i—[P.iy xPATH,]. .. [P.iy, x PATH,,]| for j#k and jk<m:
PATH; APATH, | 1l
PATH, vPATH, |
PATH;\PATH, |
{di...dn} |
7VAR |
VSTERM |
TERM: d |
7VAR |

f(TERMj. .. TERMyps))

T — M.T(x)
P, — JAz.P,(x)
Pi—[P.i; xPATH,]... [Pin,xPATH,] — Az3dzi... 2.0 P(x1... Xop)A
PATH z;, A -+« APATH "z; Az=2x;
PATH; A~ PATH, — JAz.PATH]” A PATH, z
PATH, v PATH, — Az.PATH] v PATHx
PATH, \ PATH, — Az.PATH A —PATH;z
{dy...dp} — Azaz=div---v x=d,
VAR +— JAz.x=7VAR
VS TERM — Az.Vzaqy(z) Sy (TERM™)
d — d
VAR — 7?VAR
f(TERM;... TERMp(r) = £(TERM;~... TERMp( ™)
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3.2 ORM syntax and semantics by examples

3.2.1 ORM constraints

We now present a structured overview for each ORM construct with some

graphical notation examples and the corresponding syntax and semantics.

Table 3.4: ORM constraints examples

Construct and Examples
Signature: Entity type name

Normative Abstract Syntax of Examples
Entity Type Name: Country

Construct and Examples
Signature: Value type name

Normative Abstract Syntax of Examples
Value Type name: CountryCode

Construct and Examples
Signature: Predicate name

_  ——| - —
smokes wasbornin . speaks ... very well
C1T 11 I —— |
... played ... for ... ..in..on..ate..
reports to / manages <« employs
Normative Abstract Syntax of Examples
Signature:

Unary predicate name: smokes

Binary predicate names: wasBornln, ?speaks?veryWell,

reportsTo, employs Ternary predicate name: ?played?for?

Quaternary predicate name: 7in?on?ate?

Alternate predicate name: AlternatePredicate(reportsTo, manages (2 1))

Construct and Examples
Signature: Role name
[isSmoker]

(-

smokes
[employee]
< employs

[employer]
Normative Abstract Syntax of Examples
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Signature:

Role identifier for the unary predicate smokes:
smokes.1

Role identifiers for the binary predicate employs:
employs.1, employs.2

Role names:

RoleNaming(smokes.1, smokes.isSmoker)
RoleNaming(employs.1, employs.employer)
RoleNaming(employs.2, employs.employee)

Construct and Examples
Unary Fact Type

[isSmoker]

Person [ ]
smokes

Normative Abstract Syntax of Examples
FactType(smokes (Person))

Normative Semantics of Examples
Ya.smoker(z) «> Person(x)

Construct and Examples
Binary Fact Type

=
was born in
[employee
Company
<« employs

[employer] I made
I
C1T 1

reports to / manages

Normative Abstract Syntax of Examples
FactType(wasBornIn (Person Country))
FactType(employs (Company Person))
FactType(made (Company Product))
FactType(drives (Person Car))
FactType(reportsTo (Person Person))
Normative Semantics of Examples
Vz,y.wasBornln(z, y) — Person(z) A Country(y)
Vz,y.employs(z, y) — Company(z) A Person(y)
Yz, y.made(z,y) —» Company(z) A Product(y)
Vz,y.drives(z, y) — Person(z) A Car(y)

Vz, y.reportsTo(z, y) — Person(z) A Person(y)

Person

Construct and Examples
Ternary Fact Type

(=)
[player]
e L 1M bl

.. played ... for ... introduced ... to ...

(=)
S L (o)
< .. ate..on ...

[Cat] ate [Food] on [Date]
Normative Abstract Syntax of Examples
FactType(?played?for? (Person Sport Country))
FactType(?introduced?to? (Person Person Person))
FactType(?ate?on? (Cat Food Date))

Normative Semantics of Examples

Ya,y, z.7played?for?(z, y, z) — Person{z) A Sport(y) A Country(z)

Vz,y, z.7introduced?to?(z, y, z) — Person(z) A Person(y) A Person(z)

Va,y, z.7ate?on?(z, y, z) — Cat(x) A Food(y) A Date(z)
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Construct and Examples
Quaternary Fact Type

Person
..in..on. ate...

Normative Abstract Syntax of Examples

FactType(?in?on?ate? (Person City Date Food))

Normative Semantics of Examples

Vz,y, 2z, k.?in?on?ate?(z, y, z, k) — Person(z) A City(y) A Date(z) A Food(k)

Construct and Examples
Objectification

“Enrolment !"

Student

13
resulted in
Normative Abstract Syntax of Examples
FactType(enrolledIn (Student Course))
Objectifies(Enrolment enrolledIn)
FactType(resultedIn (Enrolment Grade))
Normative Semantics of Examples
Vz,y.enrolledIn(z, y) — Student(z) A Course(y)
vz, y.enrolledIn(z, y) <> Enrollment(lcpnroliedrn (z,y))
Vz, y.enrolledIn(z, y) — Enrollment(x) A Grade(y)

Construct and Examples
Uniqueness on Binary Fact Type

Gender C T 1 Person T 1] Country
<iso was born in

Language [T 1 Person Country

<« speaks is president of
Normative Abstract Syntax of Examples
Unique(isOf.1)

Unique(wasBornIn.1)

Unique(speaks.1 speaks.2)

Unique(isPresidentOf.1)

Unique(isPresidentOf.2)

Normative Semantics of Examples

Va1, 22isOf(x1, 22) — 3= 1y.isOf(21 )

Va1, zowasBornIn(x1, x2) — 3= 1y.wasBornIn(z1y)

V1, xospeaks(z1, x2) — speaks(z1, z2)

Va1, xoisPresidentOf(z1, x2) — 3= y.isPresidentOf(x1 y)
V1, z2isPresidentOf(z1, z2) — 3=1y.isPresidentOf(yz2)

Construct and Examples
Uniqueness on Ternaries

Competition

Person

... played ... for ...

Normative Abstract Syntax of Examples
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Unique(?got?in?.1 ?got?in?.3)

Unique(?got?in?.2 ?got?in?.3)

Unique(?played?for?.1 ?played?for?.2 ?played?for?.3)
Normative Semantics of Examples

V1,2, x3.72g0t?in? (21, 2, x3) — 3= 1¥-780t7in?(21,y,23)

V1, z2, x3.7g0t?in? (21, &2, x3) — I=1v-7got?in?(y,22,23)
Vz1,x2,x3.7played?for?(z1, x2, x3) — 3=1y.7played?for?(z1,22,23)

Construct and Examples
Simple Mandatory Role

Person 1 ] Country
was born in

Person b [ | Country
was born in

Normative Abstract Syntax of Examples
Mandatory(Person wasBornIn.1)

Normative Semantics of Examples
Ya.Person(x) — Jy.wasBornln(z, y)

Construct and Examples
Inclusive-or

has

Normative Abstract Syntax of Examples

Mandatory(Visitor hasPassport.1 hasDriverLicence.1)

Normative Semantics of Examples

Vz.Visitor(z) — (Jy.hasPassport(z, y)) v (Jy.hasDriverLicense(z, y)))

has

Passport

DriverLicence

Construct and Examples

Preferred internal Uniqueness

Normative Abstract Syntax of Examples
Identification(Country has.1 (has.2))
Normative Semantics of Examples

Va1, z2.has(x1,z2) —>3=1y.has(x1,y)
Vz.Country(z) — Jy.has(z, y)

Va1, z2.has(z1, 22) — 3= Ly has(y, x2)
well-founded (has)

Construct and Examples
External Uniqueness

Country
(.code)

Normative Abstract Syntax of Examples
Externalldentification(State (hasStateCode.2 isIn.2))
ExternalUnique(hasStateName.2 isIn.2)

Normative Semantics of Examples
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V1, x2,x3.JoinPathl(z1, z2, z3) «> Jy.hasStateCode(zsz, z1) A isIn(zs, z2)
V1,22, r3.JoinPathl(z1, 2, x3) — 3=1y.JoinPathl(z1, x2,y)
Vz1,z2,x3.JoinPathl(z1, 2, x3) — I=1y1, y2.JoinPathl(y1, y2, x3)
VzState(z) — Jy1, y2K1(y1,y2, =)

well-founded (hasStateCode U isIn)

V1, x2,x3.JoinPath2(z1, z2, v3) <> hasStateName(z3, 1) A isIn(zs, z2)
V1,2, r3.JoinPath2(x1, 2, x3) — 3=1y.JoinPath2(z1, 2, y)

Construct and Examples
Object Type Value

Gender | = Rating

(.code) |{M'F} () [{1,2,3,4,5,6,7}

Rating Grade Age | © T
oot mi_”f?ff'fe_’_"fj

.7y Ay (0.} {1}

PassScore PositiveScore NegativeTemperature
(%) %) (°C:)

{50..100} {(0..100} {-273.15..0)}

Extreme’ / {a..7,
oy (-100.-20, | ) )
a0.106) {53 o)

Normative Abstract Syntax of Examples
ValuesOf(GenderCode (M F))

Normative Semantics of Examples
Vz.GenderCode(z) >z =M vz =F

Construct and Examples

Role value
o has
erson — Age | g
(name) [———— () ©3
{0..140}

Normative Abstract Syntax of Examples
ValuesOf(has.2 (0 ... 140))

Normative Semantics of Examples

V1, x2.has(z1,z2) > x2=0v -+ v 2 =140

Construct and Examples
Subset

is cancer prone
L]

enrolled in

smokes
... for ... obtained ...

Normative Abstract Syntax of Examples

Subset((smokes.1 isCancerProne.1))

Subset((?for?obtained?.1 enrolledIn.1) (?for?obtained?.2 enrolledIn.2))
Normative Semantics of Examples

Va.smokes(x) — isCancerPro(z)

V1, z2,x3.7for?obtained?(z1, x2, z3) — enrolledIn(z1, x2)

Construct and Examples
Join Subset
is ofti used in

speaks
I -
Advisor Country
(.nr) (.code)
serves in

L[]
Normative Abstract Syntax of Examples
JoinPath(P (speaks.1 speaks.2) (isOftenUsedIn.1 isOftenUsedIn.2))
Subset((servesIn.1 P.1)(servesIn.2 P.2))

Language
(.name)
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Normative Semantics of Examples
Vzi1,x2.P(x1,x2) <> Jy.speaks(z1,y) A isOftenUsedIn(y, z2)
Yz, y.servesIn(z, y) — P(z,y)

Construct and Examples
Exclusion
authored

[ T 1
o] & o)
[ T 1

reviewed

Normative Abstract Syntax of Examples
Exclusive((isWidowed.1 isMarried.1))
Exclusive((reviewed.1 authored.1) (reviewed.2 authored.2))
Normative Semantics of Examples

Va.isWidowed{z) — —isMarried(z)

Vz,y.reviewed(z, y) — —authored(z, y)

is married

is widowed

Construct and Examples
Equality
has systolic-

BloodPressure

haaiasystolic-
Normative Abstract Syntax of Examples
Equal((hasSystolic.1 hasDiasystolic.1))
Normative Semantics of Examples
Va, y.hasSystolic(z, y) — 3z.hasDiasystolic(z, z) A
Vz, y.hasDiasystolic(z, y) — 3z.hasSystolic(z, z)

Construct and Examples

Subtyping
Person
(.nr)

Student Employee
(.nr)

A

Lecturer

Normative Abstract Syntax of Examples
Subtype(Lecturer Employee)
Subtype(Employee Person)
Subtype(Student Person)
Subtype(StudentEmployee Student)
Subtype(StudentEmployee Employee)
Normative Semantics of Examples
Ya.Lecturer(z) — Employee(z)
Vz.Employee(z) — Person(z)
Va.Student(x) — Person(x)
Vz.StudentEmployee(x) — Student(z)
Vz.StudentEmployee(z) — Employee(z)

(.nr)

Student
Employee

Construct and Examples
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Subtyping constraints

Female

Normative Abstract Syntax of Examples

ExclusiveSubtypes((Dog Cat) Animal)

ExhaustiveSubtypes((Player Coach) TeamMember)

ExclusiveSubtypes((MalePerson FemalePerson) Person)

ExhaustiveSubtypes((MalePerson FemalePerson) Person)

Normative Semantics of Examples

(Vz.Dog(z) — Animal(z) A —Cat(z)) A (Vz.Cat(x) — Animal(z))

(Vz.Player(z) — TeamMember(x)) A (VCoach(z) — TeamMember(z)) A (Vz.TeamMember(z) — Coach(z) v Player(z))
(Vz.MalePerson(x) — Person(z) A —=FemalePerson(z)) A (Vz.FemalePerson(xz) — Person(z))

(Vz.MalePerson(z) — Person(z)) A (Va.FemalePerson(x) — Person(z)) A (Vz.Person(z) — FemalePerson{z) v MalePerson(z))

Construct and Examples

Internal Frequency
12

Person |—{ T} is on / includes,
is a member of w

Department

~..in ... had staff of ... in ...
Normative Abstract Syntax of Examples

Frequency(isAMemberOf.2 (12))
Frequency(isOn.2 (4, 7))
Frequency(reviews.1 (..5))
Frequency(reviews.2 (2..))
Frequency(?in?hadStaffOf?in?.1
?in?hadStaffOf?in?.2 (2))

Normative Semantics of Examples

Va1, z2.isAMemberOf(x1, x2) — 3=12y.isAMemberOf(z1, y)
Va1, z2.180n(x1, z2) — 3>4’<7y.isOn(x1 Y)
Va1, zo.reviews(z1, x2) — IS0y .reviews(y, x2)
Va1, zo.reviews(zi, x2) — E|22y.revievvs(:(;17 y)

Construct and Examples
External frequency

is by

Student

Enrollment

Normative Abstract Syntax of Examples
ExternalFrequency(isBy.2 isIn.2 (..2))

Normative Semantics of Examples

V1,22, x3.JoinPath(z1, z2, x3) © isBy(z3, z1) A isIn(zs, z2))
V1,2, r3.JoinPath(xy, x2, z3) — 3<2y1, ya.JoinPath(yy, y2, x3)

Course

isin

Construct and Examples
Value-comparison
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A A A started on

@ eq. T [startdate]
en [enddate]
Normative Abstract Syntax of Examples
2(endedOn.2 startedOn.2)
Normative Semantics of Examples

Va1, z2,x3.JoinPath(z1, x2.23) <> startedOn(z3, z1) A endedOn(x3, z2))
Va1, x2,23,Y1, Y2, y3.-P(21, T2, 23) A P(y1,92,¥3) © YDate(®2) Z YDate(y1)

-»

Construct and Examples
Object Cardinality

#<1 #{0, 5..15}
( President) [UN,SecurityCounciIMemberJ

Normative Abstract Syntax of Examples
TypeCardinality (President (0, 1))
Normative Semantics of Examples
3<1y.President(z)

Construct and Examples
Role Cardinality

is the president
=
#<1

Normative Abstract Syntax of Examples
RoleCardinality (isThePresidentOf (0, 1))
Normative Semantics of Examples
3S1z.isThePresidentOf(z)

Construct and Examples
Ring Constraint

O Irreflexive ) Reflexive (locally)

o O Asymmetric > Symmetric
Q Antisymmetric

Intransitive A Transitive

Strongly Intransitive

Acyclic

Asymmetric + Intransitive

Acyclic + Intransitive

Acyclic + Strongly Intransitive

QPO OO F P

Symmetric + Irreflexive

etc.
Normative Abstract Syntax of Examples

LocallyReflexive(P.1 P.2) (etc.)
Normative Semantics of Examples
Va1, z2.P(z1,z2) > P(z1,21)

3.2.2 Derivation Rules

We now present the structure of ORM Derivation Rules by examples with

the graphical notation and the corresponding syntax and semantics.
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Table 3.5: ORM Derivation Rules examples

smokes

* Each Smoker is a Person who smokes.
Normative Abstract Syntax of Examples
SubTypeRule(Smoker (Person A smokes))
Normative Abstract Semantics of Examples
Vz.Smoker(z) <> Person(x) A smokes(x)

is a resident ditizen [

is a resident alien ("3

)
¥ —— [ Motorcyde

is a non-resident [} (VIN)
D —

* Each Resident is a Person who is a resident citizen
or is a resident alien.

* Each SelfTransporter is a Person who drives a Car
or rides a Motorcyde.

Normative Abstract Syntax of Examples
SubTypeRule(Resident
(Person A (isAResidentCitizen A
isAResidentAlien))

SubTypeRule(SelfTransporter

(Person A

((drives.1 = [drives.2 x Car]) v
(rides.1 <> [rides.2 x Motorcycle]))))

Normative Abstract Semantics of Examples
Vz.Resident(z) <>

Person(z) A (isAResidentCitizen(z) v

isAResidentAlien(z))

Vz.SelfTransporter(z) <>
(Person(x) A
((Jy.drives(z,y) A Car(y))v
(Jy.rides(z, y) A Motorcycle(y)))

is alcoholic
O

* Each NonSmoker is a Person where it is not true that that Person smokes.
* Each NonDriver is a Person who drives no Car.
* Each Teetotaller is a Person who drinks no Beverage that is alcoholic.

Normative Abstract Syntax of Examples
SubTypeRule(NonSmoker (Person \ smokes))
SubTypeRule(NonDriver

(Person \ (drives.1 < [drives.2 x Car]))
SubTypeRule(TeeTotaller

(Person \

(drinks.1 < [drinks.2 x
(Beverage A isAlcoholic)]))

Normative Abstract Semantics of Examples
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Vz.NonSmoker(x) < Person(z) A —smokes(z)

Ya.NonDriver(z) <>
Person(z) A —=(Jy.drives(z,y) A Car(y))
Vz.TeeTotaller(z) <
(Person(z) A
(Jy.drinks(z, y) A
Beverage(y) A isAlcoholic(y)))

is a typical sportsperson * ooy ) s large
try
= { (.Coce) [T

* Person is a typical sportsperson iff
that Person played a Sport that is popular for a Country that is large.

Normative Abstract Syntax of Examples
FactTypeRule(isATypicalSportsPerson
(Person A ?played?for?.1 <«

[?played?for?.2 x (Sport A isPopular)]
[?played?for?.3 x (Country A isLarge)]))
Normative Abstract Semantics of Examples

Vz.isATypicalSportsPerson(z) &

(Person(z) A
Jy, z.7played?for?(z, y, z) A Sport(y) A isPopular(y) A

Country(z) A isLarge(z))

* Person lives in Country iff
that Person lives in a State that is in that Country.

Normative Abstract Syntax of Examples

FactTypeRule(livesInCountry
(Person \ livesInState.1 <
[livesInState.2 x (State A isIn.1 —
lisin.2 x (Country A ?x)])])

(Country A 7x))
Normative Abstract Semantics of Examples

Vz, y.livesInCountry(z, y) <

(Person(x) A
Jz.livesInState(x, z) A State(z) A

isIn(z,y) A Country(y))

can fully communicate in *

T ]
A
Person can speak Language
(.Nr) =T (.Name)
LT ]

can communicate in *

* Person can fully communicate in Language iff
that Person can speak that Language
and can write in that Language.

* Person can communicate in Language iff
that Person can speak that Language
or can write in that Language.

Normative Abstract Syntax of Examples



3.2. ORM SYNTAX AND SEMANTICS BY EXAMPLES

57

FactTypeRule(canFullyCommunicateln

(Person A
(canSpeak.1 <>[canSpeak.2 x (Language A 7x)]) A

(canWrite.1 <>[canwrite.2 x (Language A 7x)]))

(Language A 7x))

FactTypeRule(canCommunicateln

(Person A
(canSpeak.1 <>[canSpeak.2 x (Language A ?x)]) v

(canWrite.1 <> [canwrite.2 x (Language A 7x)]))
(Language A 7x))
Normative Abstract Semantics of Examples
Vz,y.canFullyCommunicateIn(z, y) <>
(Person(x) A
canSpeak(z, y) A
canWrite(z, y) A
Language(y))

Vz,y.canCommunicateln(z, y) <>
(Person(z) A
(canSpeak(z,y) v
canWrite(z, y)) A
Language(y))

Customer
(:Nr)

* CarModel sold in Region iff
some Customer lives in that Region
and bought a Car that is of that CarModel.

* Customer in Region bought CarModel iff

that Customer lives in that Region
and bought a Car that is of that CarModel.

Normative Abstract Syntax of Examples

FactTypeRule(soldIn
(CarModel A 7x)

(Region A
(livesIn.2 <>[livesIn.1 x Customer A

(bought.1 —>[bought.2 x Car A
(isOf.1 —>[isOf.2 x (CarModel A7?x)])])])))

FactTypeRule(?in?bought?

(Customer A
(livesIn.1 < [livesIn.2 x (Region A ?x)]) A
(bought.1 < [bought.2 x (Car A

(isOf.1 — [isOf.2 x CarModel A ?7y]))]))

(Region A 7x)
(CarModel A ?y))
Normative Abstract Semantics of Examples
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Vz,y.soldIn(z,y) «

CarModel(z) A

Region(y) A

Jz.livesIn(z,y) A Customer(z)A
Jk.bought(z, k) A Car(k)
isOf(k, =)

Vz,y.?in?bought?(z, y, z) <

(Customer(z) A

livesIn(z,y) A Region(y) A

Jk.bought(z, k) A Car(k) A
isOf(k, z) A CarModel(z))

3.2.3 Example with ORM Derivation Rules

We can now apply this formalisation to the example about documents from
the Section 2.3.2. For each ORM constraint we show the syntax and the

corresponding semantics in first-order logic.

FactType(has (PersonWithID Document))
Va,y.has(z,y) — Person WithID(x) A Document(y)
FactType(has (SomeVisitor Visa))
Va,y.owns(z,y) — Some Visitor(x) A Visa(y)
Subtype((SomeVisitor) PersonWithID)
Va.SomeVisitor(x) — Person WithID(x)
Subtype((Visa IDcard) Document)

Vz. Visa(x) — Document(x)

Va.IDcard(x) — Document(x)
Mandatory(PersonWithID has.1)
Va.Person WithID(z) — Jy.has(z, y)
Mandatory(SomeVisitor owns.1)
Va.SomeVisitor(x) — Jy.owns(z, y)

Unique (has.1)

Y, y.has(x,y) — IS 2. has(x, 2)

Unique (has.2)

Y, y.has(x,y) — IS 2.has(z, y)

Unique (owns.1)

Y, y.owns(z,y) — IStz owns(z, 2)

Unique (owns.2)
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Y, y.ouns(z,y) — IS z.owns(z, y)
ExclusiveSubtypes ((Visa IDCard) Document)
Va. Visa(x) — —1DCard(z)

Exhaustive ((Visa IDCard) Document)
Vz.Document(x) — Visa(x) v IDCard(x)

Subset ((owns.1 has.1) (owns.2 has.2))
Va,y.owns(z,y) — has(z,y)

Additionally, the ORM diagram has been extended in Section 2.3.3 with a
Derivation Rule on the VisitorWithVisa entity:

SubtypeRule(VisitorWithVisa (PersonWithID A
(has.1 — [has.2 x (Document A Visa)]))
Va. VisitorWithVisa(x) <> Person WithID(x) A Fy.has(x,y) A Visa(y)






ORM Reasoning

The purpose of this chapter is to show the benefits coming from the application
of automated reasoning to ORM models. A set of examples are presented
for different scenarios where the modeller may design wrong models, or
the inferred knowledge coming from the application of the reasoning may
reveal unexpected software behaviours. In this way, the inferred knowledge
is helpful to the modeller in order to enhance the control over the ORM
models semantics. The first section is a set of examples where the reasoning
is applied to some ORM models; the second section extends the reasoning on
ORM diagrams equipped with ORM Derivation Rules.

4.1 Reasoning with ORM

We show the reasoning for the ORM conceptual diagram in Figure 4.1. As
we have seen in Section 2.3.2, this diagram represents a domain about people
and their documents. The conceptual diagram captures all the necessary
entities (Person with ID, Visitor, Document, etc.) together with their relation-
ships (owns, has) and additional constraints (such as cardinalities, subtyping,
uniqueness, etc.), thus providing a quite precise idea of the specific domain,
where each Person with ID has a document which can be either visa or id

card. A Person with ID can be a citizen or visitor.

What can be the outcome of the reasoning and why? The system could
automatically complete the diagram in the way depicted in Figure 4.2. The
uniqueness constraints are place on the fact type owns, since this fact type is

a subset relation of the fact type has. This means that all pairs inside owns
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Person with ID —
[ P
{1

Document
(.code)

A

{SomeVisitor )

Document
(.code)

Person with ID e
[ P
_[_

{Some\_lisitor}

IDCard

Figure 4.2: Document example: uniqueness inferred

are also included inside has; since all the pairs inside has have the uniqueness
keys and this is inherited by the fact type owns, it is necessarily true that
each SomeVisitor owns at most one Visa and for each Visa, at most one

SomeVisitor owns that Visa.

Now, let us suppose the modeller decides to state that each visa document is
also an IDCard, as in Figure 4.3. The Visa entity is inconsistent as shown in
Figure 4.4, i.e., does not have any instance, since the disjointness constraint
in the IsA link states that there is no element in common between Visa and
IDCard. The empty set denoted by the visa entity is the only set which
can be at the same time disjoint to and a subset of another set. Since the
Document entity is formed by the union of the Visa and IDCard, and the Visa
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has

Document
(.code)

(.1d)

A

[Person with ID

( SomeVisitor

Document
(.code)

Person with ID —
(.Id)
1

( SomeVisitor

IDCard

owns

Figure 4.4: Document example: inconsistencies

entity is inconsistent, the IDCard entity becomes equivalent to the Document
entity. Others inferences are triggered by the empty set. Since there is no
visa, there is no pair in the owns relationship as well (i.e., it is inconsistent):
the diagram states that any second argument of the owns relationship should
be of the visa type. The SomeVisitor entity is not inconsistent, since it may
be populated by people which do not necessarily own a visa at all (this is

possible, since there is no mandatory participation constraint).

Indeed, let us now add a cardinality constraint, stating that each SomeVisitor
must own a Visa document (i.e., a mandatory participation constraint by the
purple dot). The change results in the diagram of Figure 4.5. Now the system

deduces that the Somevisitor entity is inconsistent as well (see Figure 4.6).
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has

Document
(.code)

Person with ID
(.Id)

A

{ SomeVisitor

Figure 4.5: Document example: mandatory constraint

has

Person with ID —
(.Id)
1
1

Document
(.code)

owns

Figure 4.6: Document example: deductions with the mandatory constraint

Despite the tiny size of the ORM diagrams in these examples, some trivial
mistakes can trigger a chain of an unexpected behaviours that may degrade
the quality of the diagram. This may affect the quality of the software
or database which usually is obtained from the conceptual model. In the
real-world, huge diagrams are often used (as shown in the real-world scenario
presented in Chapter 7), so the benefits coming from the reasoning may be
crucial in scenarios where huge data are managed and multiple iterations are

performed.
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4.2 Reasoning with ORM Derivation Rules

In this section we analyse ORM Derivation Rules. They are special ORM
constraints able to express knowledge that is beyond standard ORM capabili-
ties, in a way similar to OCL constraints for UML or SQL triggers. ORM
Derivation Rules are expressed in the same controlled natural language as
standard ORM, namely FORML [90]. In this way it is very simple for non-IT
users to bridge the gap to the technical stakeholders working in the same
domain. In the ORM graphical notation, ORM Derivation Rules are depicted
by an asterisk (*) near the involved object types or fact types, plus a text
box where the sentence in controlled natural language is put in. There are
two main categories of rules: Subtype and Fact Types Derivation Rules.
Subtype Derivation Rules are placed on object types that are a specialisation
of another entity types (IsA relationship); Fact Type Derivation Rules define
fact types by means of better specified argument types. A derivation rule
is a collection of restrictions defined along one or more paths in the ORM
diagram, in order to precisely define the constraint for an object type or fact

type to be valid inside the domain.

The following examples are meant to show the usage of a reasoner engine
over those diagrams equipped with ORM Derivation Rules. In this way the
automated reasoning is also applied to the rules with the consequence of

providing additional inferences for the whole ORM diagram.

Each VisitorWithVisa is by definition some Person that has some Document
that is some Visa.

V. Visitor With Visa(z) <> Person(x) A Jy.has(z,y) A Visa(y)

The derivation rule defines exactly what a visitor with VISA is, by means of

an if-and-only-if statement.

Given the ORM conceptual schema with the derivation rule of Fig. 4.7, it
is obvious that the entity SomeVisitor should turn out to be a subtype
of VisitorWithVisa, as shown in green in Fig. 4.8. This inference can be

automatically computed by a logic prover using the semantic translation of
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has
Person with ID Document
(.code)

IDCard

SomeVisitor
VisitorWithVisa *

Each VisitorWithisa is by definition
some Person with ID
that has some Document that is some Visa.

Figure 4.7: Adding the entity type Visitor WithVisa.

the ORM conceptual schema. As a matter of fact, the tools implementing
an inference engine for ORM are all based on description logics provers (a

comparison of ORMiE with these tools is provided in Chapter 9), exploiting

Document
(.code)

Person with ID

IDCard

SomeVisitor

VisitorWithVisa *

Each VisitorWithisa is by definition
some Person with ID
that has some Document that is some Visa.

Figure 4.8: Reasoning after adding the entity type Visitor WithVisa.
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Document
(.code)

has
Person with ID q}
1
1
@
I
]
]

IDCard

VisitorwithoutiDCard * |~ === {=)- = = ===

Each VisitorWithoutIDCardis by definition

some Person with ID Each VisitorWithVisa is by definition

that has some Document some Person with ID

where that Document is no IDCard. that has some Document that is some Visa.

Figure 4.9: Reasoning after adding the entity type Visitor WithoutIDCard.

the conversion of the first-order semantics to some computable fragment of

description logic.

Note that there is also an alternative way to express the same derivation rule,
since documents can be either VISAs or IDCards but not both. Indeed, if we
add the entity Visitor WithoutIDCard with the following derivation rule:

Each VisitorWithoutIDCard is by definition some Person that has some
Document where that Document is no IDCard.

V. Visitor WithoutID Card(x) <> Person(x) A Jy.has(z,y) A —IDCard(y),

it turns out that the new entity behaves exactly like the previous one, and
indeed it can be derived that they are equivalent (see the new inferred links

in green in Fig. 4.9).
Now, let’s suppose that all the people with an IDCard are citizens and

viceversa, and stateless people are exactly those without any document:

Each Citizen is by definition some Person that has some Document that
is
some IDCard.
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Each Stateless with ID is by definition some Person that
has no Document that is some IDCard
and has no Document that is some VISA.

V. Citizen(x) <> Person(x) A Jy.has(z,y) A IDCard(y)

V. Stateless WithID(x) < Person(x) A—3y.(has(z,y) A IDCard(y)) A
—3z.(has(z, z) A Visa(z))

Note the complete outcome of the reasoning process in green and red in Fig.
4.11 among others, valid inferences according to this formalisation of the
domain are that persons are partitioned between citizens and visitors with
VISA, and that there can’t be any stateless person. Indeed, stateless persons
are defined not to hold any VISA nor IDCard, but persons are required to
have exactly one document. The whole schema makes the Stateless Withld

entity inconsistent (in red). Clearly, if persons were not obliged to have

Each StatelessWithID is by definition
some Person with ID

that has some Document

where that Document is no IDCard
and that Document is no Visa.

has

Document
(.code)

StatelessWithID * Person with ID
< © o9

‘\I h“"""a - @

]

Citizen * @ < ®'\ —

__-® = Visa IDCard

Each Citizen is by definition
some Person with ID
that has some Document that is some IDCard.

______ Visitor
VisitorWithoutincard * |~ - -~ _@_ ..... Visitorwithvisa *
Each VisitorWithoutIDCardis by definition :
some Person with 1D Each VisitorWithVisa is by definition
that has some Document some Person with ID
where that Document is no IDCard. that has some Document that is some Visa.

Figure 4.10: Reasoning after adding the entity types Citizen and Stateless-
WithID.



4.2. REASONING WITH ORM DERIVATION RULES 69

exactly one document (i.e., via the mandatory participation constraint), the
reasoning process would not derive the inconsistency of the Stateless entity.

In order to clarify the distinction between the people who possess a document
and the others, in Figure 4.11 we rename the entity previously called Person
as Person with ID, and we introduce a more generic entity named Person. We
also introduce a new entity called Stateless associated to the same derivation
rule specified for StatelessWithID. The outcome of the reasoning depicted in
green tells us that the newly defined Stateless entity type, unlike the previous
one, is now consistent, and disjoint from Person with ID. The reason behind
this is the absence of the mandatory constraint on the entity Person, which

states that it is not mandatory for a person to have a document.

Each Stateless is by definition

some Person that posses some Document
where that Document is no IDCard

and that Document is no Visa, posses

Person

Stateless *
, (.Id)

Each StatelessWithID is by definition \
some Person with 1D @
that has some Document

where that Document is no IDCard
and that Document is no Visa.

Document

StatelessWithID * Person with ID
(.code)

.
- - e
~——

!
1 s
L/ T® .
c't' * ¢ ~. —
fizen ®~ -p-® ™3 Visa IDCard
- — owns
Each Citizen is by definition
some Person with ID SomeVisitor
that has some Document that is some IDCard.
______ Visitor
VisitorWithouttocard * |~ == - {()- - - -~ - VisitorWithVisa *
Each VisitorwithoutIDCardis by definition
some Person with ID Each VisitorWithVisa is by definition
that has some Document some Person with ID
where that Document is no IDCard, that has some Document that is some Visa.

Figure 4.11: Fact type Derivation Rule reasoning.






Encoding ORM in DLRE

This chapter defines a decidable fragment for ORM in order to activate
reasoning algorithms on those ORM diagram expressed in a fragment named
ORM=E. We start from the usage of DLR™ which is a language from the
Description Logics family, suitable for representing conceptual modelling
languages such as UML, ER and ORM, since it supports n-ary relationships
and some relevant constructs that are easy to map in this language. A
decidable version of DLRY' is DLR*E which is used to capture the most
relevant ORM constraints and to define the ORM= decidable fragment.

5.1 The DLR" language

The content of this section is taken by the following publication [10], where
my contribution is related to the creation of an API system which includes an
implementation of the DLRT language and the encoding in ALCQZ. This
API system is currently part of the conceptual modelling framework described
in Chapter 7 which provides an encoding for those ORM diagrams expressed
in the ORMZ fragment. This work has also been integrated in the ORMIE
tool which is described in Chapter 8.

DLR™T is an extension of the n-ary propositionally closed description logic
DLR to deal with attribute-labelled tuples (generalising the positional nota-
tion), projections of relations, and global and local objectification of relations,
able to express inclusion, functional, key, and external uniqueness dependen-
cies. The logic is equipped with both TBox and ABox axioms. We show how

71
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a simple syntactic restriction on the appearance of projections sharing com-
mon attributes in a DLRT knowledge base makes reasoning in the language
decidable with the same computational complexity as DLR. The obtained
DLR* n-ary description logic is able to encode more thoroughly conceptual
data models such as EER, UML, and ORM.

We introduce the description logic (DL) DLR™ extending the n-ary DL DLR
[40], in order to capture database oriented constraints. While DLR is a
rather expressive logic, tailored for conceptual modelling and ontology design,
generalising many aspects of classical description logics and OWL, it lacks
a number of expressive means relevant for database applications that can
be added without increasing the complexity of reasoning—when used in a
carefully controlled way. The added expressivity is motivated by the increasing
use of description logics as an abstract conceptual layer (an ontology) over
relational databases. For example, the DLR family of description logics is
used to formalise and perform reasoning in the ORM conceptual modelling

language for database design (adopted by Microsoft in Visual Studio) [127].
We remind that a DLR knowledge base, as defined in [40], can express

axioms with (i) propositional combinations of concepts and (compatible) n-
ary relations — as opposed to just binary roles as in classical description logics
and OWL, (ii) concepts as unary projections of n-ary relations — generalising
the existential operator over binary roles in classical description logics and
OWL, and (iii) relations with a selected typed component.

As an example of DLR, in a knowledge base where Pilot and RacingCar
are concepts and DrivesCar, DrivesMotorbike, DrivesVehicle are binary

relations, the following statements:
Pilot = J[1]02:RacingcarDrivesCar
DrivesCar LI DrivesMotorbike = DrivesVehicle

assert that a pilot drives a racing car and that driving a car or a motorbike

implies driving a vehicle.

The language we propose here, DLR™, extends DLR in the following ways.

e While DLR instances of n-ary relations are n-tuples of objects—whose

components are identified by their position in the tuple — instances of
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relations in DLR™ are attribute-labelled tuples of objects, i.e., tuples
where each component is identified by an attribute and not by its
position in the tuple For example, the relation Employee may have the

signature:
Employee(firstname, lastname, dept,deptAddr),
and an instance of Employee could be the tuple:

(firstname: John, lastname : Doe, dept : Purchase, deptAddr : London).

e Attributes can be renamed, for example to recover the positional at-

tributes:

firstname, lastname, dept,deptAddr 2 1,2,3,4.

e Relation projections allow the formation of new relations by projecting
a given relation on some of its attributes. For example, if Person is a
relation with signature Person(name, surname), it could be related to

Employee as follows::

m[firstname, lastname|Employee = Person,

firstname, lastname 2 name, surname.

e The objectification of a relation (also known as reification) is a concept
whose instances are unique object identifiers of the tuples instantiat-
ing the relation. Those identifiers could be unique only within an
objectified relation (local objectification), or they could be uniquely
identifying tuples independently on the relation they are instance of
(global objectification). For example, the concept EmployeeC could be
the global objectification of the relation Employee, assuming that there
is a global 1-to-1 correspondence between pairs of values of the attributes

firstname, lastname and EmployeeC instances:

EmployeeC = (0) J[firstname, lastname|Employee.

Consider the relations with the following signatures:

DrivesCar(name, surname, car), OwnsCar(name,surname, car),
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and assume that anybody driving a car also owns it: DrivesCar = OwnsCar.

The locally objectified events of driving and owning, defined as
CarDrivingEvent = @ DrivesCar, Car(OwningEvent= @ OwnsCar,

do not imply that a car driving event by a person is the owning event by
the same person and the same car: CarDrivingEvent &t CarOwningEvent.

Indeed, they are even disjoint: CarDrivingEvent m CarOwningEvent E 1.

It turns out that DLR™ is an expressive description logic able to assert
relevant constraints typical of relational databases. In Section 5.1.3 we will
consider inclusion dependencies, functional and key dependencies, external
uniqueness and identification axioms. For example, DLR™ can express the
fact that the attributes firstname, lastname play the role of a multi-attribute

key for the relation Employee:
m[firstname, lastname|Employee = 7! [firstname, lastname|Employee,

and that the attribute deptAddr functionally depends on the attribute dept

within the relation Employee:

[dept|Employee = 35! [dept] (7[dept, deptAddr|Employee) .

While DLR™ turns out to be undecidable, we show how a simple syntactic
condition on the appearance of projections sharing common attributes in a
knowledge base makes the language decidable. The result of this restriction
is a new language called DLRE We prove that DﬁRi, while preserving most
of the DLR™ expressivity, has a reasoning problem whose complexity does
not increase w.r.t. the computational complexity of the basic DLR language.

5.1.1 Syntax

We start by introducing the syntax of DLRT. A DLRY signature is a tuple
L=(C,R,0,U,7) where C, R, O and U are finite, mutually disjoint sets of
concept names, relation names, individual names, and attributes, respectively,
and 7 is a relation signature function, associating a set of attributes to each
relation name 7(RN) ={Uy,..., Uy} SU, with n>2.
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ON | ~C | GGy | (VIR | @R | O RN

RN | R\Rs | Rir Ry| Ryu Ry| ov.oR

T<UUs, ... UJR| 72U, . .., UJR

Ci1ECs | RiE Ry |CN(0)| RN(Uy:o1,...,Upn:0,) |01 =09 |01 # 09

6 I Q
bl

U2U,
Figure 5.1: The syntax of DLR™.
T(Ri\Rg) = (1)
T(R1 Il RQ) = T(Rl) if T(Rl) = T(RQ)

T(Rl LI RQ) = T(Rl) if T(Rl) = T(RQ)
T(ov,.cR)= T(R) if UjeT(R)
(739U, ..., U|R) = {Uy,...,.Us} if{Uy,..., U} c7(R)
undefined otherwise

Figure 5.2: The signature of DLRY relations.

The syntax of concepts C| relations R, formulas ¢, and attribute renaming
axioms ¢ is given in Figure 5.1, where CNeC, RNeR, UelU, o€ O, q is
a positive integer and 2 <k < ARITY(R). The arity of a relation R is the
number of the attributes in its signature; i.e., ARITY(R) =|7(R) |, with the
relation signature function 7 extended to complex relations as in Figure 5.2.
Note that it is possible that the same attribute appears in the signature of
different relations.

As mentioned in the introduction, the DLR™ constructors added to DLR are
the local and global objectification ((-) RN and (o) R, respectively); relation pro-
jections with the possibility to count the projected tuples (ﬂ'éq[Ul, ..., Uk]R),
and renaming axioms over attributes (U; 2 Usz). Note that local objectifi-
cation ((+) R) can be applied to relation names, while global objectification
((® RN) can be applied to arbitrary relation expressions. We use the standard
abbreviations:

L=Crn—C, T==1, CiuCy=—(=C1n—Cy), 3IU;|R=FU:R,
ISV R =—3F T UIR), «[Uh,... U R=7>"[U1, ..., Uk]R.
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A DLRY TBox T is a finite set of concept inclusion axioms of the form
C1 = C9 and relation inclusion axioms of the form R1 = Ry. We use X1 = Xy
as a shortcut for the two axioms X7 = Xy and Xo = X1. A DLRY ABoz A
is a finite set of concept instance axioms of the form CN (o), relation instance
axioms of the form RN (Uyo1, ..., Uyoy), and same/distinct individual axioms
of the form o1 = 0y and 07 # 02, with 0; € O. Restricting ABox axioms to
concept and relation names only does not affect the expressivity of DLR™ due
to the availability of unrestricted TBox axioms. A DLR™ renaming schema
R is a finite set of renaming axioms of the form U; 2 Us. We use the shortcut
Up...U,2Uj...U) to group many renaming axioms with the meaning that
Ui2Ul foralli=1,...,n. A DLR" knowledge base (KB) KB = (T, A,R)
is composed by a TBox 7, an ABox A, and a renaming schema R.

The renaming operator & is an equivalence relation over the attributes U,
(2,U). The partitioning of U into equivalence classes induced by a renaming
schema is meant to represent the alternative ways to name attributes in the
knowledge base. A unique canonical representative for each equivalence class
is chosen to replace all the attributes in the class throughout the knowledge
base. From now on we assume that a knowledge base is consistently rewritten
by substituting each attribute with its canonical representative. After this
rewriting, the renaming schema does not play any role in the knowledge base.
We allow only arity-preserving renaming schemas, i.e., there is no equivalence

class containing two attributes from the same relation signature.

As shown in the introduction, the renaming schema is useful to reconcile the
named attribute perspective and the positional perspective on relations. It
is also important to enforce union compatibility among relations involved
in relation inclusion axioms, and among relations involved in M- and wLi-set
expressions. Two relations are union compatible (w.r.t. a renaming schema)
if they have the same signature (up to the attribute renaming induced by the
renaming schema). Indeed, as it will be clear from the semantics, a relation
inclusion axiom involving non union compatible relations would always be
false, and a r- and w-set expression involving non union compatible relations

would always be empty.
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(=C)*
( |_|CZZ
(379U, R)*
(ORI ={deA|d=1(t) nte RT}

¥ =THC*
)
)
)
(ORN)I={deA|d=/{gy(t) A te RNT}
)
)
)
)
)

CtncC?
{d€A| | {te R |t[U)] =d} |= ¢}

(R{\R2)T = RI\RZ
(R, m Ry)* = RT n R
(R, U Ry = RY U R
(ov.cR)" = {te R* [t[U;] € C*}
(739U, ..., U)R)F = {{Uy:dy, ..., Up:dpye Ta({Us, ..., Us}) |

1<|{te RT|t[U\] =dy, ..., t{Ux] = di.} |§q}

Figure 5.3: The semantics of DLR™ expressions.

5.1.2 Semantics

The semantics of DLR™ uses the notion of labelled tuples over a countable
potentially infinite domain A. Given a set of labels X €U, an X -labelled tuple
over A (or tuple for short) is a total function t: X - A. For Ue X, we write
t{U] to refer to the domain element d€ A labelled by U. Given dy, ..., d, €A,
the expression (U : dy, ..., Uy dy) stands for the tuple ¢ defined on the set
of labels {Uy, ..., Uy} such that t[U;] =d;, for 1 <i<n. The projection of
the tuple ¢ over the attributes Uy, ..., U} is the function t restricted to be
undefined for the labels not in Uy, ..., Uy, and it is denoted by t|Uy, ..., Ug].
The relation signature function 7 is extended to labelled tuples to obtain
the set of labels on which a tuple is defined. Ta(X) denotes the set of all
X-labelled tuples over A, for X €U, and we overload this notation by denoting
with Ta(U) the set of all possible tuples with labels within the whole set of
attributes U.

A DLRY interpretation is a tuple Z=(A, -, 1) consisting of a nonempty count-
able potentially infinite domain A specific to Z, an interpretation function -I,
and an objectification function 1. The objectification function is an injective
function associating a unique domain element to each tuple, ©: Tao(U) — A,
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called in the following tuple identifier. Note that, since the range of the
objectification function is A, tuple identifiers can, in turn, instantiate classes

or components of labelled tuples. The interpretation function -Z

assigns
a domain element to each individual, of € A, a set of domain elements to
each concept name, CNZ € A, and a set of 7(RN)-labelled tuples over A to
each relation name RN, RNZ € TA(7(RN)). Also note that the semantics
does not enforce the unique name assumption (UNA) for the individuals
(requiring that a” # b” if a #b), but we can syntactically impose it using the
distinct individuals axioms in the ABox. The interpretation function - is
unambiguously extended over concept and relation expressions as specified in

Figure 5.3.

As for the semantics of a DLR' KB, the interpretation Z satisfies the concept
inclusion axiom € =Cy if CZ < CZ, and the relation inclusion axiom Rj = Ry
if RT < RL. Tt satisfies the concept instance axiom CN (o) if of € CNZ, the
relation instance axiom RN (Uj:o1,...,Uy:0p) if (Uy: of, ... Uy: ofye RNT,
the axiom o =(Uy:01, ..., Up:0n)y if of =1((Uy:0F,. .., Up:oL)), and the axioms
01 =09 and 01 # 09 if 0% = 0%, and 0{ # 0%, respectively. Z is a model of the
knowledge base (7;.A) if it satisfies all the axioms in the TBox 7 and in the
ABox A.

In the following we provide an example of the expressivity of DLR™.
Example 5.1.1. Consider the relation names Ry, Ry with 7(Ry)={W7, Wa, W3, Wy},

T(R2) = {V1, Va, V3, V4, V5}, and a knowledge base with the renaming axiom
WiWoWs 2 V3V Vs and a TBox Texa:

7[W1, Wa] Ry E7T$1[W1,W2]R1 (5.1)
w[Va, Vil Ro © < [V3, Vi) (w[V3, Vi, V5] Ro) (5.2)
W[Wl,WQ,Wg]Rl EW[Vg,‘Q,%]RQ. (5.3)

The axiom equation (5.1) expresses that Wi, Wy form a multi-attribute key
for Ry; equation (5.2) introduces a functional dependency in the relation
Ry where the attribute V5 is functionally dependent from attributes V3, Vy,
and equation (5.3) states an inclusion between two projections of the relation
names Rp, R2 based on the renaming schema axiom. O
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KB satisfiability refers to the problem of deciding the existence of a model of
a given knowledge base; concept satisfiability (resp. relation satisfiability) is
the problem of deciding whether there is a model of the knowledge base with
a non-empty interpretation of a given concept (resp. relation). A knowledge
base entails (or logically implies) an axiom if all models of the knowledge
base are also models of the axiom. All the decision problems in DLR™ can

be all reduced to KB satisfiability, as stated in the following:

Lemma 1. In DLR™, concept and relation satisfiability and entailment are
reducible to KB satisfiability.

5.1.3 Expressiveness

DLR™ is an expressive description logic able to assert relevant constraints in
the context of relational databases, such as inclusion dependencies (namely
inclusion axioms among arbitrary projections of relations), equijoins, func-
tional dependency axioms, key and foreign key axioms, external uniqueness

axioms, identification axioms, and path functional dependencies.

An equijoin among two relations with disjoint signatures is the set of all
combinations of tuples in the relations that are equal on their selected attribute
names. Let Rj, Ry be relations with signatures 7(Ry) = {U,Uy,...,Up,}
and 7(R2) ={V,V1,...,V,,}; their equijoin over U and V is the relation
R= R1U1><1VR2 with signature 7(R) =7(R;) u 7(R2)\{V'}, which is expressed

by the DLR™ axioms:

m[U, Ur, ..., Un JR=0y.a[u)Rim3[v]R:) I
[V, Vi, Vi JR=0v.au)romavirs) 12
uvzv.

A functional dependency axiom (R:U; ...U;—U) (also called internal unique-
ness axiom [93]) states that the values of the attributes Uy ... U; uniquely
determine the value of the attribute U in the relation R. Formally, the inter-
pretation 7 satisfies this functional dependency axiom if, for all tuples s, te RT,
s[Ui] =t[U1], ..., s[U;] =t[U;] imply s[U]=¢t[U]. Functional dependencies
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can be expressed in DLR™, assuming that {Uy,...,U;,U} S 7(R), with the

axiom:
W[Ul,...,Uj]Rgﬂgl[Ul, .. .,Uj](W[Ul,...,U]‘,U]R).

A special case of a functional dependency are key axioms (R:U;...U; = R),
which state that the values of the key attributes Uy ...U; of a relation R
uniquely identify tuples in R. A key axiom can be expressed in DLR™,
assuming that {Uy...U;} < 7(R), with the axiom:

w[lh,...,U;]RE 7S, ..., Uj]R.

A foreign key is the obvious result of an inclusion dependency together with

a key constraint involving the foreign key attributes.

The esternal uniqueness axiom ([U']Ry | ... | [U"]Ry,) states that the join
R of the relations Ry, ..., R, via the attributes U', ..., U" has the joined
attribute functionally dependent on all the others [93]. This can be expressed
in DLR™T with the axioms:

R=R; X .- X Ry,
Ul=U2 Uh-1=yh
R:UL,... .U U U S U
where 7(R;) ={U",U},..., Ul },1<i<h, and R is a new relation name with
T(R)={ULUL,....,U} ... .UM ... .U}

Identification axioms as defined in DLR gy [37] (an extension of DLR with
functional dependencies and identification axioms) are a variant of external
uniqueness axioms, constraining only the elements of a concept C'; they can

be expressed in DLRT with the axiom:

[UYop,.cR1 ... | [UMoy,.cRp.

Path functional dependencies—as defined in the description logics family
CFD [132]—can be expressed in DLR™ as identification axioms involving
joined sequences of functional binary relations. DLR™ also captures the tree-
based identification constraints (tid) introduced in [39] to express functional
dependencies in DL-Litegprg, tiq-
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The DL DLR g4 [37] extends DLR with functional dependencies and iden-
tification axioms, and is therefore included in DLRY DLR™ can express
complex inclusion and functional dependencies, for which it is well known

that reasoning is undecidable [42].

The rich set of constructors in DLR™ allows us to extend the known mappings
in description logics of popular conceptual database models, and to provide the
foundations for their reasoning tasks. The EER mapping as introduced in [6]
can be extended to deal with multi-attribute keys (by using identification
axioms) and named roles in relations; the ORM mapping as introduced
in [62,127] can be extended to deal with arbitrary subset and exclusive relation
constructs (by using inclusions among global objectifications of projections of
relations), arbitrary internal and external uniqueness constraints, arbitrary
frequency constraints (by using projections), local objectification, named roles
in relations, and fact type readings (by using renaming axioms); the UML
mapping as introduced in [26] can be fixed to deal properly with association

classes (by using local objectification) and named roles in associations.

Aside from conceptual modelling, DLR™ could be studied in relation to other
tasks relevant for database scenarios, such as query answering [40], constraint
checking with respect to a partially closed world (i.e., with DBoxes [118]),
inconsistent database repairing, etc. In this paper, we focus just on the basic

consistency and entailment reasoning tasks.

5.1.4 The DLR™ decidable fragment

Since a DLR™ knowledge base can express inclusions and functional depen-
dencies, the entailment problem is undecidable [42]. Thus, in this section
we present DLRYE a decidable syntactic fragment of DLR™T limiting the

coexistence of relation projections in a knowledge base.

Given a DLRT knowledge base KB = (T, A, R), we define the projection
signature of KB as the set 7 containing the signatures 7(RN) of all relations
RN € R, the singleton sets associated with each attribute name U e, and
the relation signatures that appear explicitly in projection constructs in some

axiom from 7T, together with their implicit occurrences due to the renaming
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schema. Formally, .7 is the smallest set such that (i) 7(RN)e .7 for all RNeR;
(i) {U}e T for all Uel; and (iii) {Uy,...,Uste T for all 754[V1,... . V;]R
appearing as sub-formulas in 7 and V€ [U;]p for 1<i<k.

The projection signature graph of KB is the directed acyclic graph corre-
sponding to the Hasse diagram of .7 ordered by the proper subset relation
>, whose sinks are the attribute singletons {U}. We call this graph (o, 7).
Given a set of attributes 7={Uj, ..., U} SU, the projection signature graph
dominated by T, denoted as 7, is the sub-graph of (2,.7) with 7 as root
and containing all the nodes reachable from 7. Given two sets of attributes
T1, T2 €U, PATH 7 (71, 72) denotes the set of paths in (5,.7) between 71 and
72. Note that, PATH 7 (71, 72) = & both when a path does not exist and when
71 € 72. The notation CHILD (71, 72) means that 79 is a child (i.e., a direct
descendant) of 71 in (2,.7). We now introduce DLRT as follows.

Definition 2. A DLRE knowledge base is a DLRT knowledge base that

satisfies the following syntactic conditions:

1. the projection signature graph (o, .7) is a multitree: i.e., for every node
7€ ., the graph 7, is a tree; and

2. for every projection construct qu[Ul, ..., Ug]R and every concept
expression of the form 3%9[U;]R appearing in T, if ¢ > 1 then the
length of the path PATH #(7(R),{U1,...,Ug}) is 1.

The first condition in DLRT restricts DLR™T in the way that multiple projec-
tions of relations may appear in a knowledge base: intuitively, there cannot
be different projections sharing a common attribute. Moreover, observe that
in DLRE PATH 7 is necessarily functional, due to the multitree restriction.
By relaxing the first condition the language becomes undecidable, as we
mentioned at the beginning of this Section. The second condition is also
necessary in our proof of decidability of DLR*; however, we do not know

whether this condition could be relaxed while preserving decidability.

Figure 5.4 shows that the projection signature graph of the knowledge base
from Example 5.1.1 is indeed a multitree. Note that in the figure we have

collapsed equivalent attributes in a unique equivalence class, according to the
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Figure 5.4: The projection signature graph of Example 5.1.1.

renaming schema. Furthermore, since all its projection constructs have ¢ =1,
this knowledge base belongs to DLRE.

DLR is included in DLRE, since the projection signature graph of any DLR
knowledge base is always a degenerate multitree with maximum depth equal
to 1. Not all the database constraints as introduced in Section 5.1.3 can be
directly expressed in DLR*. While functional dependency and key axioms
can be expressed directly in DLR*, equijoins, external uniqueness axioms,
and identification axioms introduce projections of a relation which share
common attributes, thus violating the multitree restriction. For example, the
axioms for capturing an equijoin between two relations, R, Re would generate
a projection signature graph with the signatures of R;, Rs as projections of
the signature of the join relation R sharing the attribute on which the join is

performed, thus violating condition 1.

However, in DLRZE it is still possible to reason over both external uniqueness
and identification axioms by encoding them into a set of saturated ABoxes
(as originally proposed in [37]) and check whether there is a saturation that
satisfies the constraints. Therefore, we can conclude that DLR;fy extended

with unary functional dependencies is included in DLRE provided that
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projections of relations in the knowledge base form a multitree projection
signature graph. Since (unary) functional dependencies are expressed via the
inclusions of projections of relations, by constraining the projection signature
graph to be a multitree, the possibility to build combinations of functional

dependencies as the ones in [37] leading to undecidability is ruled out.

Note that the non-conflicting keys sufficient condition guaranteeing the de-
cidability of inclusion dependencies and keys of [109] is in conflict with our
more restrictive requirement: indeed [109] allow for overlapping projections,
but the considered datalog language is not comparable to DLRY. In gen-
eral, description logic based languages, such as DLR™T, and datalog based
languages, such as the language proposed in [109], are incomparable in terms
of expressiveness, due to the inability of description logics to distinguish tree
and non-tree models in the TBox. Note that, unlike the typical restrictions
of datalog-like languages, there is no problem in stating arbitrary cyclic
dependencies in relation inclusion axioms involving projections on the left

and right hand sides.

Concerning the ability of DLR* to capture conceptual data models, only the
mapping of ORM schemas is affected by the DLRT restrictions: DLRE is
able to correctly express an ORM schema if the projections involved in the
schema satisfy the DLRE multitree restriction.

5.1.5 Mapping DLRT to ALCOT

This section shows that reasoning in DLRY is an ExPTIME-complete problem.
The lower bound is clear by observing that ALC is a sublanguage of DLR*
[36]. More challenging is the upper bound obtained by providing a mapping
from DLRE knowledge bases to ALCOT knowledge bases. ALCQT is a
Description Logics which extends ALC with qualified number restrictions

324R. C, and inverse roles R~ (see [16] for more details).
We briefly recall the syntax of ALCQZ as shown in Fig. 5.5:

where A stands for atomic concepts and R for atomic roles. We adapt
and extend the mapping presented for DLR in [40], with the modifications
proposed by [97] to deal with ABoxes without the unique name assumption.
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C > L|A|-C|CinCy| CiuCy |IR.C |VR.C |<nR.C |>nR.C
R—>P|P_

Figure 5.5: ALCQZ syntax.
(o)t =~

CrmCy)t =cimc]
IR = { 34 (paTH (1(R), {U)T) . RY, if PATH (T(R), {U}}) # &

1, otherwise
(OR)' =R
(OERN)" = ARy
(R\Ry)" = R} m—R}
RinRy)" = Rl R}
1 2
(Ry v Ryl = { Rl UR), if 7(Ry) =7(Ry)

1, otherwise
(opcR)T = { R A VPATH (T(R), {U}). C1, if PATHZ(7(R), {U;}) # &
1, otherwise
=159 (PATHy(T(R), {U,..., Uk})T)_ .R',
(n=4[Uy, ..., U]R)" = if PATH (7(R), {Uy, ..., Up}) # &
L otherwise

Figure 5.6: The mapping to ALCQT for concept and relation expressions.

We recall that the renaming schema R does not play any role since we assumed
that a DLRT knowledge base is rewritten by choosing a single canonical
representative for each equivalence class of attributes induced by . Thus,

we consider DLR* knowledge bases as pairs of TBox and ABox axioms.

We first introduce a mapping function - from DLR*E concepts and relations
to ALCQT concepts. The function -T maps each concept name CN and
each relation name RN appearing in the DLRE KB to the ALCQT concept
names CNN and Apgy, respectively. The latter can be informally understood
as the “global” reification of RN. For each relation name RN, the ALCQT
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signature also includes a concept name AIHV and a role name QQgy to capture
local objectification. The mapping - is extended to concept and relation
expressions as illustrated in Figure 5.6, where the notation 3*39R.C is a
shortcut for the conjunction 3R.C n35IR. C.

The mapping crucially uses the projection signature graph to map projections
and selections, by accessing paths in the projection signature graph (o, 7)
associated to the DLR* KB. If there is a path PATH 7 (7,7/) =7, 71, ..., Tn, T’
from 7 to 7/ in .7, then the ALCQZ signature contains role names Q./, Qr,,

for i=1,...,n, and the following role chain expression is generated by the
mapping:

PATH (1, 7)1 =Qr, 0... 0 Qr, 0 Qy,

In particular, the mapping uses the following notation: the inverse role chain
(Rio...0oRy)”, for R; arole name, stands for the chain R, o...o R, with
R; an inverse role, the expression EI§1R1 o...0Ry,.C stands for the ALCQT
concept expression 351 Ry. . . .. Héan. C and VRio...oR,.C for the ALCOT
concept expression VRj..... VR,.C. Thus, since DLR¥ restricts to ¢=1 the
cardinalities on any path of length strictly greater than 1 (see condition 2 in
Def. 2), the above notation shows that we remain within the ALCQZ syntax
when the mapping applies to cardinalities. If, e.g., we need to map the DLRE
cardinality constraint 359[U;] R with ¢ > 1, then, to stay within the ALCQT
syntax, U; must not be mentioned in any other projection in such a way
that PATH#(7(R),{U;}) = 1. Finally, notice that the mapping introduces a
concept name A}, for each projected signature 7; in the projection signature
graph dominated by 7(RN), i.e., 7; € Zr(RN), informally to capture the global
reifications of the various projections of RN in the given KB. We also use the

shortcut Apy which stands for A;SVRN).

Intuitively, each node in the projection signature graph associated to a
DLRE KB denotes a relation projection and the mapping reifies each of
these projections. The target ALC QT signature resulting from mapping the
DLR* KB of Example 5.1.1 is partially presented in Fig. 5.7, together with
the projection signature graph (showed in Fig. 5.4). Each node of the graph
is labelled with the corresponding global reification concept (Agi), for each

R; e R and each projected signature 7; in the projection signature graph
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Figure 5.7: The ALCQZ signature generated by Teya.

dominated by 7(R;), while the edges are labelled by the roles (Q,) needed
for the reification.

To better clarify the need for the path function in the mapping, notice that
each DLRF relation is reified according to the decomposition dictated by the
projection signature graph it dominates. Thus, to access, e.g., an attribute
Uj of a DLRE relation R; it is necessary to follow the path through the
projections that use the attribute. Such a path, from the node denoting the
whole signature of the relation, 7(R;), to the node denoting the attribute
U; is returned by the PATH 7 (7(R;), U;) function. For example, considering
the example in Fig. 5.7, to access the attribute W of the relation Rs in the
expression (oyy,.c Rz2), the mapping of the path PATH 7 (7(Rs), {W1})T is equal
to the role chain Qg w, wy) © Qqw, wuy © Qg y, S0 that (ow,.cRa)T = Ap, ™
VQw, we, Wi} V@, Wy Y,y - C. Similar considerations can be done when

mapping cardinalities over relation projections.

We now present in details the mapping of a DLR* KB into a KB in ALCOT.
Let KB=(T,A) be a DLR* KB with signature (C,R,0,U,T). The mapping
~v(KB) is assumed to be unsatisfiable (i.e., it contains the axiom T & 1) if
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the ABox contains a relation assertion RN (t) with 7(RN) # 7(t), for some
relation RN € R and some tuple ¢t. Otherwise, v(KB) = (y(T),v(A)) defines
an ALCQT KB as follows:

V(T):fydsj N U VTeZ(R]V) v U ’Vlobj(R]V) Y

RNeR RNeR
|J c¢jeci o |J RIcEH]
C1EC2ekB Ri=R.eKB

Ydsj = {AgNl = _'147]%\]2 | RN1, RN2 € R}
(BN = | | {Afw23Qr. ARy, 2Q,,.TE L}

Tiez—(RN) CHILDg(Ti7Tj)
Mot (BN) = {Ary E3QRN- ARy, 3°Qpry. TE L,
Ay EIQay- Ary, 372Qpy- TE L}

Intuitively, 44 ensures that relations with different signatures are disjoint,
thus, e.g., enforcing the union compatibility. The axioms in 7, introduce
classical reification axioms for each relation and its relevant projections. The
axioms in 7,5 make sure that local objectifications are correctly captured

wrt the global ones since each role () gy defines a bijection.

To translate the ABox, we first map each individual o€ @ in the DLR*
ABox A to an ALCQT individual o. Each tuple in relation instance axioms
occurring in A is mapped via an injective function £ to a distinct individual.
That is, £:To(U)— O arcor, with O 42007 =0uUO! being the set of individual
names in y(KB), O n O' = & and

(1) = 0€Q, ift=(U:0)

0e 0!, otherwise.

Following [97], the mapping v(A) in Fig. 5.8 introduces a new concept name
Q, for each individual o€ O and a new concept name (); for each relation
instance ¢ occurring in A, with each Q) restricted as follows:
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Q: E35(parH g (7(t), {U1})T) ™.
A(parn 7 (7(8), {U21)1)-Qo, 1. .1 A(path 7 (7(1), {Un})T)-Qo,

Intuitively, equation (5.6) and equation (5.7) reify each relation instance axiom
occurring in A using the projection signature of the involved tuple itself. The
formulas equation (5.8)-equation (5.9) together with the axioms for concepts
Q¢ guarantee that there is exactly one ALCQZ individual reifying a given
tuple in a relation instance axiom. Clearly, the size of v(KB) is polynomial
in the size of KB under the same coding of the numerical parameters.

We are now able to state our main technical result.

Theorem 3. A DLRE knowledge base KB is satisfiable iff the ALCOT
knowledge base ~(KB) is satisfiable.

Proof (in [12, p. 13]).

As a direct consequence of this theorem and the fact that DLR is a sublan-
guage of DLRZE, we obtain the following corollary.

Corollary 4. Reasoning in DLR* is EXPTIME-complete.

v(A) ={CNT(0) | CN(0) e A} U (5.4)
{o1# 09|01 #03e€A} U {01 =02]01 =006 A} U (5.5)
{ALy(&(t[:])) | RN (t) e A and 7€ Trpny} U (5.6)
{Q-, (f( [m:]), &t ])) | RN (t) e A, 7, € T (rvy and CHILDq(TZ,T])<}5L;)
{Qo(0)[0€ O} UL (5.8)
{Q:(01) |t ={Us:04,...,Upy:0,) occurs in A} U (5.9)
{Q, =35 (PATH (7(1), {U1}) )_. (5.10)
A(pariy (7(t), {U})).Qo, .. .1 A(PATHZ (7(2), {Un})T). Q0. } -

Figure 5.8: The mapping ~(.A)
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5.2 ORM encoding in DLR*

In this section we provide the encoding of an ORM fragment called ORM,
into DLRE, the decidable fragment of DLRY.

The mapping we present is based on the DLR™ restriction involving the
concept of equivalence classes, as seen in Section 5.1.1. In an ORM diagram,
each role is renamed in order to obtain a unique canonical representative
for each equivalence class. So, in the ORMT fragment we consider only
those ORM diagrams where each attribute within the same relation signature
has a distinct equivalence class. This operation is done by a pre-processing
procedure that verifies if the ORM schema does not come with equivalence
classes containing attributes from the same relation signature. After this
procedure, the renaming schema does not play any role in the knowledge
base.

Thus, we only consider ORM schemas rewritable in a DLR* knowledge base
with a single canonical representative for each equivalence class of attributes;

if the pre-processing procedure fails because the constraint is violated, the
ORM schema will not be encoded in DLR™E.

As a consequence of this restriction and from Definition 2, it follows that not
all ORM constraints can be expressed in DLR¥ since this language limits the
coexistence of relation projections in a DLR* knowledge base, in this way
the projections can not share common attributes. Thus, ORM constraints
with arbitrary join paths are excluded from the mapping because they lead
to the undecidability. For this reason, External Id, External Unique and
Identification are not expressible in DLRE. Other ORM constraints excluded
from the mapping are Type Cardinality, Role Cardinality, Values Of and Ring
because they are not known in DLRE.

Table 5.1: ORM™ encoding in DLR*

FactType(P Ty ... Typ))) P does not appear as an
AlternatePredicate

DLR* Pc(op,1,P)ri---m( P)

OP.op)Tap)
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Mandatory(T Py.i; ...Pp.im) for j#k and jk<m:
Pj;éPk
DLR* TEI[Prir]Pru-+ u3[Prin] P
Frequency(P.i; ... P.iy F) for j#k and jk<m: ij
;ﬁik.
p,q=1
(D E=(p.)
(2) F =(.q)
3) E = (p-q)
(4) E = (p) (a=p)
DLRE  x[P., ... P, |PcaCGP<O[P, ...P.; |P
Subtype((T; ... Ty) T)
DLR* T,cT,...,T,=T
ExclusiveSubtypes((T; ... Ty) T)
DLRT TycTrm—Term---mm—=Th, ... , Tpp1 ST =T, T =T
ExhaustiveSubtypes((T; ... Ty,) T)
DLRT TeTiu---uTy,
Subset((P.iy Pa.hy) ... (P1.dm Pa.hy)) P1#Py and for j#k and
j.k<m :
Pl.ij # P1.ix and Pg.hj
# Po.hy

DLR*

[Priy - Pro, |PrET[Paupy - .. Poup,, | P2

with Py.iy ... Prip 2 Py.hy ... Py.hy,  ifm < o(Pq) and m < o(P3)
PiCx[Pany ... Pop, P

with Py.iy ... Prip 2 Py.hy ... Py.hy,  if m = o(Pq) and m < o(P3)
7[Pri, ... Pri ]P1C Py

with Py.iy ... Pripm 2 Py.hy ... Po.hy,  if m < o(Pq) and m = o(P3)
Pic Py

with Py.iy ... Prin @ Py.hy ... Py.hy,  if m = a(P1) and m = o(P2)
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EXCluSiVG((Pl.il P2.h1) . (Pl.im Pth)) Pl;ﬁPQ and fOl“j?fk and
j.k<m :
Pl.ij #* Pl.ik and Pg.hj
# Pa.hy

DLR*

©n[P1y .- Pri, |PAIE—©@n[P2py ... Pap, | P2

with Py.iy ... Py, 2 Pa.hy ... Pohy,  if m < a(Pq) and m < o(Ps2)
©Pic—~©@mn[Papy - Pon, | P2

with P.iy ... Py, 2 Pa.hy ... Pohy,  if m = a(Pq) and m < o(P32)
@n[Pri; ... Pri JPLE =@ Py

with Py.iy ... Py 2 Pa.hy ... Paohy,  if m < a(Py) and m = a(P3)
©Pi=—(©) Py

with Pl.il NN Pllm (__)Pg.hl . o Pg.hm ifm = O((Pl) and m = O((PQ)

Objectifies(T P)
DLR* T=Q@QP
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To prove the correctness of the ORM* mapping wrt FOL, we show the
equivalence between the ORM constraints expressed in FOL and the same
ORM constraints expressed in DLRE.

Lemma 5. DLR™ constraints expressed in set semantics as in Figure 5.3
can also be expressed in FOL as shown in Figure 5.9.

Note that we translate only the constraints which are relevant for the encoding.

Figure 5.9: The semantics of DLR™ in FOL.

We define the mapping function / which translates DLRE concepts and
relations to first-order logic formulas extended with lambda expressions. The
function / maps each concept name C and each relation name R appearing
in the DLR*T KB to FOL formulas. The translation is defined as the set
of DLRE inclusion axioms defined in Table 5.1, which are in the form of
R1 = Rs for relations and in the form of C; E (s for concepts. These axioms

are mapped in FOL as follows:

(CLECy) =V (2) - C (x) (5.12)
(R E Ro)! =V¥7.R{(7) > RS (Y) (5.13)

Figure 5.10: DLR™ inclusion axioms in FOL
We now prove the equivalence between the ORM constructs expressed in

DLRY and the same constructs expressed in FOL that are part of the ORMT
fragment.
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Proof of lemma 5.

1. FactType PE (op,.1,P) - 1 (0P, p)Tupm P)
The left-hand side is trivial since it represents a predicate in FOL:
7.P(7)
The right-hand side is composed by a sequence of conjunctive DLR™
selections. Applying the reduction we obtain:
P(f) A Tl(xl) A A P(T) A Ta(P)(aja(P))'
Applying 5.13 we obtain:
VEP(E) —>P(f) A Tl(azl) Acee A P(f) A Ta(P)(xa(P))-
We can remove P(T) from the right-hand side since it is redundant.
Using the extended notation, we finally obtain a FOL formula equivalent

to the one defined in Table 3.3 for the ORM Fact Type:
Vxl .. .xa(p).P(xl .. .xa(P)) —>T1(331) VANMIRIRVAN Ta(P)(xa(P)).

2. Mandatory T=3[P;.i1]P1 u -+ 1 3 Pipm] P
The left-hand side is trivial since it represents a unary predicate in
FOL: T(z). The right-hand side is composed by a sequence of DLR™
disjunctive concepts. Applying the reduction we obtain:
FP@) Ay =) v - v GIPE) Ay, = ).
Applying 5.12 we obtain:
VoI (x) > IgP1(Yy) Ay, =2 v -+ v FTGPL([T) A yi,, = .
Using the extended notation, we finally obtain a FOL formula equivalent
to the one defined in Table 3.3 for the ORM Mandatory constraint:
Vo.T(z) = 3y1 - Ya(p))- (Pi(yi .. Ya(P)) AT = Vi)
VeV Yoy (Pl Vo) AT = Vi)

3. Frequency «[P.;, ... P.; |[Pcx®r<O[pP, ... P, |P
Both sides use the DLR™ projection over a set of attributes and the
right-hand side defines the cardinality. The corresponding lambda
expression of the left-hand side is:
A1 Y JZPE) A zi=y1 A A 2 =Y.
The same applies for the hand-right side which only differs because the
cardinality:
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Ayt .. .ym.fl(zp’g‘Z)Z.P(Z) AZI=YL A A Zk=Ym.

Applying the reduction and 5.12 we obtain:

Vxl .. .l‘a(p).P(l‘l .. .a:a(p)) _,3(2p,$q)y1 .. ~ya(P)-P(y1 .. ~ya(P)) NT4q =
Yii A ATy =i

which is equivalent to the FOL formula defined for the ORM Frequency
constraint. Please note that the translation is the same for every
cardinality defined in Table 3.3 .

4. Subtype T =T, ... |T,ET
This is trivial since each ORM Object Type can be directly expressed
in a DLRT concept like T(zy,). Applying 5.12 we obtain the same
FOL formula for the ORM Subtype:
(Ve Ti(x) > T(x)) A -+ A (V. Tp(x) > T(x))

5. ExclusiveSubtypes
TheTrn-Torm---mn=Ty, ..., Tpp1=2Trn-T,T,ET

Similar to previous case.

6. ExhaustiveSubtypes TCT; u--- 1T,

Similar to previous case.

7. Subset 7T[P1.Z'1 . Pl.z'm]Pl = 7T[P2.h1 o P2.hm]P2
This constraint involves two predicates: P; and P,. According to the
arity of these predicates there are 4 different combination as shown in
Table 5.1. We consider the following case: m = a(P1) and m < o(P2).
As we have seen before, the left-hand side is trivial: Pi(z1,...2qp))-
The right-hand side is a partition and in FOL the equivalent is:
1 Ya(p) LWL - Ya(P) A Tis =Yiy A v A Tiyy =Y,
Finally we apply 5.13 along the previously defined renaming and we
obtain:
Voy ... xqp)- P11 2op) = 1 Yap) PW1 - Ya(p) A Tiy =Yiy A
AN TG, = Yy,
which is equivalent to the FOL formula for the ORM Subset. The

translation is similar for the remaining 3 cases.
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8. Exclusive 7T[P1.i1 RN Pl-im]Pl C — @W[Pg.hl ... Pg.hm]PQ
This is similar to the previous case, the only difference is the negation
on the right-hand side of the axiom.

9. Objectifies T= () P
This is trivial since both sides are directly expressible in FOL. The
left-hand side is an object type and the right-hand side is objectified.
Applying 5.12 we obtain:
Vorp...opT(x) o lp (... 2p) =2

Given lemma 5.2, we can now prove the following theorem:

Theorem 6. Entailment in ORM? is decidable since any ORM conceptual
diagram expressed in the ORM?* fragment can be encoded into a logically
equivalent DLRE TBox.

As a direct consequence of the theorem 6, we obtain the following corollary:

Corollary 7. Since DLR™ has a direct encoding in ALCQT as shown in 5.6,
we conclude that exists a direct mapping from ORME to ALCOT. Since
ALCQT can be expressed in OWL, it follows that it is also possible to express
ORM? into OWL.

We show the complexity of entailment in ORM*:

1. It is known from [36] that ALC is EXPTIME-complete; ALC can be
expressed in ORM7 (trivial adaptation of proof with EER in [7]); it
follows that ORM™ is ExpT1ME-hard (lower bound).

2. It is known from corollary 4 that DLRY is ExPTIME-complete; since
ORM™ can be expressed in DLRY as in lemma 5.2, it follows that
ORM?Z is in EXPTIME (upper bound).

From 1 and 2, ORMT is EXPTIME-complete.

Corollary 8. Reasoning in ORM?* is EXpTIME-complete.
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These results have been used to build an implementation of ORMT and its

integration in a conceptual modelling framework, as described in Chapter 7.

In the last years, alternative proposals addressed the issue of encoding ORM
conceptual diagrams into Description Logics knowledge bases. These proposals
[18,95,101-103, 106] have already been discussed in detail in [60], where
it has been found that some of these proposals lack a complete formal
approach (as in [95,103]) and some encodings are shown not to be correct
(as [102,106]). These proposals have in common the usage of the DLR 4
language to encode the ORM diagrams. As we have seen in [10], DLR*®
extends the n-ary description logics DLR and DLR ¢y without increasing the
computational complexity of the basic DLR language. Choosing DLRE to
encode ORM allows to perform reasoning on more expressive ORM diagrams
equipped with some constraints which are not expressible in DLR sy, for
example DLRE is able to express projections between relations. Moreover,
the proposal described in this work follows a completely formal approach
which is based on the ORM formalisation from Chapter 2, where the syntax
and the semantics of each ORM constraint has been unambiguously defined.
After defining the ORM foundations, a DL language (DLRT) has been
involved in the process to capture a relevant ORM fragment, namely ORME.
Some proposals also come with a tool which implements the encoding, as
95,101, 102] for DogmaModeler [114] (which is compared to ORMiE in
Chapter 9). Other proposals [122, 124, 137] have also been discussed in
another work [55], where [122,124] uses the numeric model instead of DL
languages, as in the aforementioned proposals. In particular, [55] encodes a
fragment of ORM using the PTIME Description Logic C}"DIXC_. Similar to
our proposal, the captured ORM fragment excludes covering and disjunctive
mandatory constraints; it includes limited cardinalities, subsumption and
disjointness between relationships and the definition of join paths; ORM
Derivation Rules are not taken into account. To the best of our knowledge,
the formalisation provided here is the only one including ORM Derivation

Rules.






Modelling with ORM versus OWL

6.1 Introduction

In this chapter we analyse the difference between conceptual modelling in
ORM and conceptual modelling directly in OWL.

The way we have tackled this issue so far in this document has been by consid-
ering OWL a sort of “assembler” into which encode ORM conceptual models.
Indeed, we have considered the main advantages of the OWL modelling
language, namely to have efficient implemented reasoners with universal APIs
for a decidable fragment of description logics. Since we found a polynomial
provably sound and complete encoding of arbitrary ORM conceptual models
(in the restricted decidable fragment of ORM) into OWL knowledge bases,
we could then reason correctly with ORM by exploiting the OWL reasoners
which are acting hidden in the background. We can of course also access
directly to the OWL knowledge base produced by the encoding of the ORM

model, and we could use it directly.

But now we want to analyse how these OWL knowledge bases are meaningful
taken autonomously, or, even better, whether people could build conceptual
models in OWL following the patterns suggested by the ORM conceptual

models.

Unluckily, the answer of this analysis is negative, namely it turns out that
conceptual modelling directly in OWL, when following typical ORM of fact-
based modelling principles, is unpractical and it would generate weird OWL

knowledge bases.
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This is mainly because OWL has a class-based flavour, as opposed to ORM
which has a fact-based flavour. We have argued elsewhere in this document
about the advantages of fact-based modelling. A class-based modelling is
mainly different because it considers classes (i.e., entity types) as first class
citizens, by focussing on many different aspects of their modelling (but
neglecting completely the aspect of defining a reference schema for them,
which is crucial for information systems design), while relations (i.e., fact
types) are second class citizens, for which only typing constraints and ring
constraints can be asserted - not to mention that OWL can only have binary

relations.

This difference is basically the same difference between ORM and UML class
diagrams. The absence of reference schemes makes these modelling language
“object-centred” languages, since at the instance level there will be plenty
of object identifiers as opposed to meaningful values identifying entities or
values of properties. Of course, UML modelling has been indeed conceived
as the conceptual modelling language for object oriented approaches (e.g.,
Java or C++), so we can not complain here about the qualities of these O-O
modelling languages. Still, it has been argued that a fact-based approach
could be also very appropriate for modelling O-O scenarios, but we do not
want to argue that here.

We can observe that the same observation can be made about other modelling
languages which have a rigorous semantics, such as Datalog, which also lack
the ability to express reference schemes, while, however, allowing for n-ary

relations.

Indeed, any logic-based conceptual modelling approach, while it can be related
with ORM, via some possibly sound or possibly complete encoding (i.e.,
mapping), can be considered a valid approach by its own range of applications.
What is important, is that for any of these alternative approaches, we can,
or better we should, find the appropriate invertible mappings between pairs
of them, so that we can easily move concepts and data across the various

frameworks.

In fact, we argue that, in the same way in the research presented in this
document we have found a (sound and complete) mapping from ORM to
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OWL, we should work in the future on finding mappings from OWL, or UML,
or Datalog, or ArchiMate, or some other relevant approach to conceptual
modelling. Those mappings most likely will be incomplete and will capture
only some (relevant) fragment of the languages, but the could be immensely
useful, in particular when the would map autonomous systems each one in
its own modelling language, so that it suffices to map the alphabets of the
different systems, but not the constraints; with this limitations, we believe

that most of those mappings could be soundly and completely done.

In the following section we show with an abstract simple example, how the
relation between ORM and OWL modelling develops for the basic constructs.
This will emphasise and explain the differences we have summarised above.

6.2 ORM vs OWL via an example

Let’s start with the simplest ORM construct, namely the fact type.

Note that, throughout our running example, we will not consider the reference
schemes, since they would be mapped as per their defining expansion, which,
as we know, is rather clumsy to have in the explicit form, since it looses its

Person
(.surname)
P o o N
N ——————— L4

has / refers to

original direct meaning;:

In OWL we have no alternative than to have the reference scheme explicit,
with all the complications, as we will see, necessary to express the encoding

of the basic constructs involved in the explicit form.

Let’s start our example with a plain binary predicate R typed by the entity
types C1 and C2, which themselves have a reference scheme with the attribute
id:
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File Edit View Project Debug Test Analyze Tools Extensions Window Help  Search (Ctrl+Q) Pd Signin 2, -

O Brome|9-0 - > Attach... ¥ | 57 | @& |22 Live Share &

[l »
=*ORM+OWL-test ORM Model Browser [ISIMIEHY=GIN N CEN R I

A

The basic fact type ORM construct is expressed in OWL as follows:

# FactType(C1-R-C2 (C1 C2))
SubClassOf (PRED-C1-R-C2-{1,2}

ObjectSomeValuesFrom(Q-{1} PRED-C1-R-C2-{1}))
SubClass0f (PRED-C1-R-C2-{1,2}

ObjectSomeValuesFrom(Q-{2} PRED-C1-R-C2-{2}))

SubClass0f (PRED-C1-R-C2-{1,2}
ObjectAllValuesFrom(Q-{1} TYPE-C1))

SubClass0f (PRED-C1-R-C2-{1,2}
ObjectAllValuesFrom(Q-{2} TYPE-C2))

with the proviso that the object properties, representing the two roles, are
functional:

FunctionalObjectProperty(Q-{1})
FunctionalObjectProperty(Q-{2})
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What does this really mean?

Since OWL is a class centred language, the fact type is expressed as the class
PRED-C1-R-C2-{1,2}; this class is related via the object properties Q-{1}
and Q-{2} to the classes representing the two roles PRED-C1-R-C2-{1} and
PRED-C1-R-C2-{2}: this defines the so-called reified version of the fact
type, namely the repreentation of the fact type in a class oriented language.
Moreover, the actual typing is express by the universal quantifications from
the fact type class to the two entity types C1 and C2 via the object properties
Q-{1} and Q-{2} respectively.

It is immediately clear that this encoding is not directly intuitive if one would
like to write it directly in OWL.

Let’s consider now the addition of three more basic constructs, such as

mandatory, uniqueness, and subtype:

File Edit View Project Debug Test Analyze Tools Extensions Window Help  Search (Ctrl+Q) P Signin R,

PO~ BroWN 90 > Attach.. v | 51 | @ o |8 Live Share &

ORM+OWL-testorm”™ & X

~ N1 Diagrams
4 Object Types
ct

4 Fact Types

| E0 CiHasCild
4 o ciRC2
4 Roles

et

Qec2

4 Internal Constraints

™ InternalUniquenessConstraints
@ SimpleMandatoryConstraints
[ 0 C2HasC2ld

(c2)

< >

[+~ ORM +OWL-test LIV BRI Solution Explorer Team Explorer

A

This is expressed in OWL with the following additional axioms:

# Mandatory(Cl1 C1-R-C2.1)
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SubClass0f (TYPE-C1
ObjectSomeValuesFrom(0ObjectInverseOf (Q-{1})
PRED-C1-R-C2-{1,2}))

# Unique(C1-R-C2.1)
SubClassO0f (ObjectSomeValuesFrom(ObjectInverse0f (Q-{1})
PRED-C1-R-C2-{1,2})
ObjectExactCardinality (1 ObjectInverseOf (Q-{1})
PRED-C1-R-C2-{1,2}))

# Subtype(C3 C1)
SubClass0f (TYPE-C3 TYPE-C1)

While the subtype constraint OWL axiom is rather intuitive, the mandatory

and uniqueness constraints are not.

The OWL expression for the mandatory constraint states that each element
of C1 is in the projection over the first role of PRED-C1-R-C2-{1,2}, i.e.,

the class representation of the fact type.

The OWL expression for the uniqueness constraint is more subtle: it says
that the projection over the first role of PRED-C1-R-C2-{1,2}, i.e., the class
representation of the fact type., is among the elements that appear exactly
once in tht projection. This is the way we can express in OWL the absence

of duplicates.

Continuing with our example, let’s complete it with a predicate with arity
more than two, and with a subset constraint - elements which are quite

common in ORM conceptual models:
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Below you can find the additional axioms needed in the representation of the

above model in OWL. Let’s consider first the fact type declaration.

# FactType(C3-Ra-C2-Rb-C4 (C3 C2 C4))
FunctionalObjectProperty(Q-{1})
FunctionalObjectProperty(Q-{2})
FunctionalObjectProperty(Q-{3})

DisjointClasses (PRED-C1-R-C2-{1,2} PRED-C3-Ra-C2-Rb-C4-{1,2,3})

SubClass0f (PRED-C3-Ra-C2-Rb-C4-{1,2,3%}

ObjectSomeValuesFrom(Q-{1} PRED-C3-Ra-C2-Rb-C4-{1}))

SubClass0f (PRED-C3-Ra-C2-Rb-C4-{1,2,3}

ObjectSomeValuesFrom(Q-{2} PRED-C3-Ra-C2-Rb-C4-{2}))

SubClass0f (PRED-C3-Ra-C2-Rb-C4-{1,2,3}

ObjectSomeValuesFrom(Q-{3} PRED-C3-Ra-C2-Rb-C4-{3}))
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SubClass0f (PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectAllValuesFrom(Q-{1}
ObjectAllValuesFrom(Q-{1,2}
TYPE-C3)))

SubClass0f (PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectAllValuesFrom(Q-{2}
ObjectAllValuesFrom(Q-{1,2}
TYPE-C2)))

SubClass0f (PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectAllValuesFrom(Q-{3} TYPE-C4))

SubClass0f (PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectSomeValuesFrom(Q-{1,2}
PRED-C3-Ra-C2-Rb-C4-{1,2}))

The OWL representation of the ternary fact type mirrors the way we repre-
sented the binary fact type, but with an additional element. Indeed, the last
axiom above serves the purpose of introducing the projection (as a class) over
the first two roles of the ternary fact type, via an additional funtional object

property Q-{1,2} connecting the reified fact type to its projection.

Let’s consider now the subset constraint:

# Subset ((C3-Ra-C2-Rb-C4.1 C1-R-C2.1) (C3-Ra-C2-Rb-C4.2 C1-R-C2.2))
SubClassO0f (ObjectSomeValuesFrom(0ObjectInverseOf (Q-{1,2})
PRED-C3-Ra-C2-Rb-C4-{1,2})
PRED-C1-R-C2-{1,2})

It says that the projection (as a class) over the first two roles of the ternary

fact type is a subset of the class representing the binary relation R.

As we mentioned in the introduction, we can observe that:
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1. since there is no native reference scheme construct, this should be
expressed in OWL as a combination of a reified binary relation, a

mandatory constraint, and two uniqueness constraints;

2. all the fact types and their projections (in our example, unary and bi-
nary) are represented in OWL with classes, interconnected by functional

object properties.

We claim that this kind of modelling is counter-intuitive for a typical OWL

modeller, and definitely quite prone to errors.

To enforce our argument, we show below how the OWL knowledge base of our
example would be graphically depicted using the two most prominent graph-
ing tools for OWL: OWLGrEd (http://owlgred.lumii.lv) and VOWL
(http://vowl.visualdataweb.org). These graphs have lost completely
the intuitive meaning of the graphical form of ORM. x
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UModel

In this chapter we present UModel [49], a framework to activate automated

reasoning over conceptual modelling languages.

In this work, UModel will be used to implement the ORM formalisation
presented previously. UModel is not limited to ORM because it has been
created to be a general purpose system designed to be used with any conceptual
language, after which it may be integrated into a conceptual modelling CASE
tool. The main idea behind this system is to provide a generalised solution
for the conceptual modelling community to deal with the problem of applying
reasoning to any CASE tool with any conceptual modelling language. We are
going to take a deep look at this framework, exploring each module in detail

providing a practical usage examples as well.

7.1 System description

The main goal of UModel is to enable automated reasoning on conceptual
diagrams which are used in CASE tools to model domains. CASE tools are
widely used to model software or databases since they are quite powerful
and rich of features, but they are not able to check the semantics over the
conceptual diagrams. UModel has been designed to be compatible with those
tools that adopt the conceptual modelling languages such as ORM, UML and
ER.

Enriching a CASE tool with reasoning capabilities gives the modeller more

control over the semantics of the diagram and an added value to the tool.
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Due to the fact that the modeller is a human being, he cannot automatically
control the semantics of the conceptual diagrams because the model size
may be unbearable and the task of checking the semantics will be repetitive
and time consuming. Managing this situation manually involves finding,
tracing and fixing errors, which it could be very difficult to accomplish and
time consuming. We must also consider that in the real world industry the
diagrams may be very large and different stakeholders take part in the same
project, so the need of the automated reasoning is essential in this context.
The absence of semantic checks on conceptual diagrams could lead to software
degradation and unexpected software behaviours. In order to overcome this
problem, it is highly recommended to equip a CASE tool with reasoning

capabilities.

It is also important to make a distinction between the final users and the
developers: the final users are in other words the modellers, the people who
use a conceptual modelling software to model a domain; the developers, on
the other hand, are the ones that use the API system provided by UModel to
integrate the system into the target CASE tool. It is also possible that these

two kind of users may be the same.

The benefits of using UModel are related to the inferred knowledge coming
from the automated reasoning; this may suggest revision or confirm the
consistency of the conceptual diagram. The automated reasoning can discover
inconsistencies, redundancies or any other formal properties that can be useful
to detect unexpected behaviours during the modelling step. Another benefit
of using automated reasoning is to prevent all the negative consequences
coming from bad modelling, which may require further iterations during the
development in order to rebuild the diagrams. Performing these iterations

may be time consuming.

At the moment the UModel system fully implements the ORM language and
a completed integration with the NORMA tool. The system is written in
Java and ported in .NET because the cross-platform feature of Java and the
popularity of .NET framework, so it works smoothly on any Java and C#

application. No other portings have been provided yet.
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7.1.1 Specs

UModel is written in Java. The language choice is motivated by the cross-
platform capability of Java and also because it is a popular language, thereby
easy to integrate into any system. To extend the range of compatibility, we
also built a version of UModel in C# to be used in .NET. The porting has
been made using the IKVM tool. The version of Java used is Java 8 and the
graphical interface is built using Java Swing components. As for the OWLAPI
the system uses the OWLAPI 4.1.4 and the reasoner is Fact++. After several
tests, this combination has been elected as the most compatible with the bast
performance. We also tried different reasoners, such as JFact, but they lacked
performance and had some unresolved bugs and limited reasoning capabilities.
Despite Fact+-+ is not in the same stack as Java language, since it is not
a Java library but native code written in C++ which needs to be properly
configured in the environment, it is selected as the best choice due to its

performance.

7.2 Workflow

The main idea behind this system is depicted in a workflow generally used to
apply automated reasoning over conceptual modelling languages, as described

in Figure 7.1.

__.tuncep_tual‘.,_l " Logic
| Modelling | > e »Inferences

“Language /

Figure 7.1: The workflow main idea

First of all we recall the goal: performing the automated reasoning over a
conceptual diagram expressed in a conceptual modelling language, in order to
obtain relevant inferences coming from the reasoning procedure. The entry
point is always a conceptual diagram expressed in a conceptual modelling
language (e.g., UML, ER, ORM); then, we use a procedure to encode the

diagram expressed in that language, into a logical language. In this way, we
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can enable the automated reasoning procedure since we take advantage of
the logic language properties and reasoning algorithms; in the last step, the

inferences are shown as results of the automated reasoning procedure.

In this specific context, we decline this general approach to UModel using
ORM, as in Figure 7.2.

/ \ encoding encoding PN reasoning
[ ORM ——— DLR » OwWL ———— »Inferences

Figure 7.2: The workflow in UModel with the ORM language

This workflow slightly differs from the previous one because ORM is first
translated into DLR* language [10],[9],[8].

DLRE acts as a middleware language between the conceptual modelling
languages and its encoding in OWL. The reason behind this approach is that
the family DLR has been specifically designed for this class of modelling
languages and it can also deal with n-ary relationships that frequently occur

in conceptual diagrams.

An architectural benefit comes from this choice: the DLRE module encodes
any conceptual diagram into OWL independently, so that the core procedure
that encodes a conceptual language into OWL is always the same and com-
pletely transparent to the developer. In this way, the developer just needs to
create the conceptual diagram using the API provided, without caring about

any internal implementation.

7.3 Architecture and components

In this section we explain in detail each single component of the UModel
framework. Components are described following the execution order, starting
from the model definition until the last step showing the inferences. In order
to understand the framework design, UML class diagrams are used to show
the structure of the system components. In Figure 7.3 the architecture of the

system is summarized.
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Figure 7.3: UModel architecture

The whole process must be read as a precise sequence of steps. Briefly, the

starting point involves representing ORM constraints in Java data structures
to represent an ORM diagram. After this step, there is the DLR* encoding
which is the backbone of the next steps: the OWL generation and the

reasoning. After the reasoning is completed the inferences are encoded in

object-oriented data structures, this makes them easy and fast to query.
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Optionally, an interface is shown to graphically represent the outcome of the

reasoning.

7.3.1 Creation of the conceptual model

A conceptual model consists of a set of constraints. The main class representing
the model is named UModel and the main class for the constraints is called
UModelElement, as we can see in Figure 7.4. Both classes are abstract, this
means that they are made to be extended by classes with a specific language
implementation, like ORM. This architectural choice has been taken to make
UModel modular and extensible for any conceptual modelling language. Since
we are dealing with ORM, we want to create an ORM conceptual model by

means of ORM constraints, so we need to specify both classes as shown in
Figure 7.4.

UModelElement <> UModet
Extends Exiends
UORMConstraint <>  UORMModel

Figure 7.4: The core components in UModel

The class UORMModel extends the class UModel; the class UORMConstraint
extends the UModelElement one. The UModelElement class is abstract since
it represents a generic ORM constraint. For this reason, each ORM constraint

extends the UModelElement class with its own structure.

UModel encodes the ORM signature as follows:
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Object Type Fact Type Mandatory Freguency Uniqueness
Exiends Extends Extends Extends Extends

UORMConstraint

BN

Extends Extends Extends Extends Extends
Subset ExclusiveSet ExclusiveTypes Exhausfive Equal

Figure 7.5: The ORM constraints in UModel

1. ORMEntityType: a structure representing the ORM Object Type, it is
defined by the name of the entity type representing a specific domain;

2. ORMFactType: defines a relationships in ORM a relationship consisting
of a predicate name and an arity. A fact type is composed by a sequence

of roles.

3. ORMRole: the roles that are embedded in the ORMFactType data
structure. As with ORM, each role has an index which is the position
inside the predicate, and a name composed by the predicate followed
by the dot and the index.

And the ORM constraints:

1. Mandatory, specifically the simple Mandatory which is placed on an
ORM role of a predicate;

2. Uniqueness, specifically the simple Uniqueness which is placed on an
ORM role of a predicate;

3. Exclusion, the exclusion ORM constraint applicable to entity types and
fact types
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4. Subtype, for IsA relationships between entity types
5. Subset, for IsA relationships between fact types
6. Exhaustive, for the covering among entity types and fact types

7. Frequency, to set the cardinality

The reader should note that despite object types, fact type and roles belongs
conceptually to the ORM signature as we have seen in Chapter 2, in the
implementation context it is more suitable to derive them from the abstract
class UModelElement, since they will be added as part of the ORM model,

exactly as the other constraints.

In this step the developer builds the ORM model adding a set of constraints
using the API system shipped with UModel. A complete example is provided
in Section 7.3.6.

7.3.2 DLR?T encoding

The purpose of this step is to encode ORM models in DLRE, in order to
perform the OWL mapping in the next step. The ORM fragment covered by
UModel is ORM™ and as we have seen in Chapter 5 this fragment can be
expressed in DLRE. As shown in Figure 7.6, the translation is made into
two steps: from ORM to DLR* and from DLRE to OWL. In this section
we discuss the first step.

More generally, the role of the DLRT language in the UModel workflow is

acting like a “proxy” between any conceptual modelling language and OWL.

The benefit of this approach is avoiding further reimplementation of the
DLRE logic and algorithms over and over again for each language; moreover,
this procedure is transparent to the developer because it is automatically

executed by the system before starting the reasoner.

In order to understand how this procedure works, we have to recall Section
5.1.4, where a DLRE knowledge base is represented such as in the multitree
in Figure 7.7.
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UML -—} OWL

Figure 7.6: DLRY as an intermediate language

In DLRY each node is composed by a sequence of attributes. In ORM a
node represents the sequence of roles belonging to a fact type. Nodes can
share some attributes (roles for ORM) when the renaming is applied (for
example, when an ORM subset constraints is involved in two fact types).
Leaf nodes (also called as “singleton”) encode a single attribute in the tree.
Intermediate nodes (also called as “partition”) are created when a projection
of a relationship is asserted in the knowledge base. In ORM this happens
when some constraints involve a subset of roles in a fact type (i.e., uniqueness

spanning over one or more roles).

If we consider the ORM diagram in Figure 7.8, the corresponding projection
signature graph is shown in Figure 7.9.

This small model has only two fact types: origin and morigin. In the model
there is a subset constraint stating that all the pairs inside morigin are also
included in origin. This means that these two fact types share the same roles.
Because the presence of this subset constraint, the DLR™T renaming function
is activated collapsing the corresponding tree nodes of origin and morigin

into a single one.
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Figure 7.7: The projection signature graph of Example 5.1.1.

Phonepoint

merigin

Figure 7.8: ORM schema to be encoded via API

The framework UModel implements the DLRE multitree with an hashmap

data structure:

e key: the sequence of roles in the node
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Aorigin. 1,origin.2,morigin.1,morigin.2

o] T

AOTigin.l,morigin.l Aorigin.2,morigin.2

Figure 7.9: The projection signature graph of Example 5.1.1.

e value: MultiTreeNode data structure containing information about that

node

Each entry encodes the node information as shown in Table 7.1.

Table 7.1: DLR™T implemented as an HashMap

Key Value

Entry
Fact Type roles | MultiTreeNode

The sequence of roles uniquely identifies a fact type, a partition of the
projection signature graph and a single role. Each sequence of roles uniquely

identifies an entry in the hashmap data structure.

The MultiTreeNode is a data structure containing information about the node:

protected MultiTreeNode (BitSet bitset , MultiTreeNodeType
type, String rn) {

this.bitset = bitset;

this.type = type;

this.rn = rn;

}

1. BitSet - The BitSet native Java class is used to store the indexes of
roles to efficiently compare them performing bitwise operations among
multitree nodes. This is particularly useful when permutations are
needed to calculate the DLRT functions as dsj and rel. BitSet class is
also used to traverse a path between two nodes, as in the DLRE Path

function.
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2. MultiTreeNodeType is an ENUM type which assigns tags to the nodes.
This comes handy when we need to detect if a node is root, a partition

or a singleton.

public enum MultiTreeNodeType {
ROOT, PARTITION, SINGLETON

}

3. RN - This is the fact type name belonging to an entry.

Considering the example in Figure 7.8, the corresponding multitree is shown
in Table 7.2.

Table 7.2: Multitree entries for the ORM diagram 7.8

Entry Key Value
0 morigin.1 10 | SINGLETON | morigin
1 origin.1,origin.2 11 | ROOT | origin
2 morigin.2 01 | SINGLETON | morigin
3 origin.1 10 | SINGLETON | origin
4 morigin.1,morigin.2 11 | ROOT | morigin
) origin.2 01 | SINGLETON | origin

Observing Table 7.2, we notice that in the knowledge base there are no
partition nodes because the maximum fact types arity in the model is two,
so splitting them means creating exactly two singleton nodes. The two root
nodes have the same bitset because of the renaming; the same applies for each
role. This situation is generated by the ORM subset constraint which states
that all the pairs in morigin are also in origin. Bitsets are set considering
the position of the indexes for each role. For example, morigin.1 has the
first bitset set and the second unset; the opposite is for morigin.2, where the

second bitset is set and the first one unset.

At the end of this step, UModel has encoded a data structure filled with all
the necessary information that will be used to perform the OWL encoding in
the next step.
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7.3.3 OWL generation

The purpose of this step is to encode the ORM model into OWL since we
already collected (in the previous step) the multitree data, producing an
OWL ontology to be used in the next step in order to perform the automated

reasoning.

In the previous step, we have encoded the ORM model into the fragment
ORME which is expressed in DLRY as previously shown (Section 5.1).
Recalling the corollary 7 which states that an ORM model expressed in
ORMT can be encoded in ALCQT (and therefore in OWL), we now show in
Table 7.3 how the ORM constraints in ORMT are encoded in ALCQZ. We
recall the usage of the { function (as in Figure 5.6) which maps each concept
name CN and each relation name RN appearing in the DLRE KB (since we
are using ORM?) to the ALCQT concept names and relation names. This
encoding is implemented in UModel using OWLAPI.

Table 7.3: ORM™T constraints encoded in ALCOT

FactType(P T1 ... Typ))) P does not appear as an
AlternatePredicate

OWL PTE P 1 Veat 7 (7(P), P.)!.T] - n PT et (7(P), Py T )

Subtype((T; ...Ty) T)

OWL T{ = Tf, ... , T}, & Tt

ExclusiveSubtypes((T; ...Ty) T)

OWLT =Tt m=T)rm---mn=Th ,...., T, _, =Tt =T ,..., Th = T}

ExhaustiveSubtypes((T; ... Ty) T)

owL TieT{u...uT,

Mandatory (T P1.; ... Pu.ip) for j#k and jk<m: P;j
#Py

OWL Tf = 3(paTH, (7(P1), P1.iy)). Pl L -+ L 3(PATH 7 (7(Pp), P iy ).~ P,

Unique(P.ij ... P.iy) for j#k and jk<m: i;
Hip

OWL 3(paTH 7(7(P),P.i; ... Pip)) .PT 3= (paTH 7 (7(P), Py ... Pip,)) . PT
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Subset((Pl.il Pg.hl) PN (Pllm Pth)) Pl;ﬁPQ and fOl“j?fk and
j.k<m :
Pl.ij * Pl.ik and Pg.hj
# Py.hy,

OWL

H(PATHy(T(Pl),Pl.il ce Pllm)))_le- - H(PATHQ(T(PQ), Pg.jl . PQJm))_P;
Pl c3(PaTH S (7(P2), Pojy . .. Poljy)) Pl
3(pATHZ (7(P1),P1.iy ... P1iy,)) " PP

picPp]

Exclusive((P1.i; Po.hy) ... (P1.,, Pa.hy)) P1#Py and for j#k and
j.k<m :
Pl.ij # P1.i; and Pg.hj
# Po.hy,

OWL

I(PATH 7 (T(Py),P1.dy ... Pl.im)))—.PI E —3(PATH 7 (T(P), P2.j; - .. Pg.jm))_.Pg
Pl = —3(paTH 7 (7(P2), Pojy - .. Pa.j,,)) Pl

3(PATHZ (7(P1), P1.iy ... P1iy)) . Pl = —P]

plc-P}

Objectifies(T P)
OWL T =Ppf

The encoding in ALCQZ also includes a set of axioms related to the multitree
data structure. Moreover, other axioms have been added in the generated
ontology in order to improve the system performance and the readability of
the ontology from the user perspective. Below is provided a complete example
illustrating the structure of an OWL ontology generated from an ORM Model,

plus details about the aforementioned axioms.

An OWL ontology consists of a set of OWL declarations and axioms. We
are going to show step by step how the ontology is built using the running
example in Figure 7.8. Declarations are generated for each entity type and
fact type; additional declarations are also generated for multitree nodes and
edges.
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e Entity Type - (OWL Class)

Fact Type - Root nodes in the multitree - (OWL Class)

Possible Partition nodes in the multitree - (OWL Class)

Role - Singleton nodes in the multitree - (OWL Class)

Multitree edges - (OWL property)

The generated ontology is displayed in the OWL “Functional Syntax Document
Format” [116] with prefix “http://www.ormie.org/”.

In order to distinguish Entity Types from Fact Types, some tags are appended
to the prefix. In the example below we have the TYPE tag for the object
types Call, Cell and Phonepoint and the tag PRED for the fact types origin
and morigin. As for the multitree nodes, the tag PROJ indicates a node of
the multitree (the tag PROJ stands for “projections”, referring to the set of
attributes in the project signature graph) and Q is for the edges. Each OWL
class with the tag PROJ is based on the pre-computation of the multitree
performed in the previous step. Among the declared OWL classes there are
some with the tag UNIQ to optimize the reasoning calculations to detect

possible uniqueness constraints (this will be explained in the next section).

44 ENTITY TYPES

Declaration (Class(<http://www.ormie. org/#TYPE-Call >))
Declaration (Class(<http://www.ormie.org/#TYPE-Cell >))
Declaration (Class(<http://www. ormie. org/#TYPE-Phonepoint >))
4+ FACT TYPES
Declaration (Class
Declaration (Class
Declaration (Class
Declaration ( Class
Declaration (Class
Declaration ( Class
444 UNIQUE NODES
Declaration (Class(<http://www.ormie . org/#UNIQ-morigin —{1}>))
Declaration (Class(<http://www. ormie. org/#UNIQ-morigin —{2}>))
Declaration (Class(<http://www.ormie. org/#UNIQ-origin —{1}>))
Declaration ( Class(<http://www. ormie. org/#UNIQ-origin —{2}>))
44+ MULTITREE TREE NODES

Declaration ( Class(<http://www. ormie. org/#PROJ-morigin —{1,2}>))
Declaration (Class(<http://www.ormie. org/#PROJF morigin —{1}>))
Declaration (Class(<http://www.ormie. org/#PROJ morigin —{2}>))
Declaration ( Class(<http://www.ormie. org/#PROJ-origin —{1,2}>))
Declaration ( Class(<http://www.ormie.org/#PROJorigin —{1}>))
Declaration (Class(<http://www.ormie. org/#PROJ-origin —{2}>))

<http://www.ormie. org/#PRED-morigin —{1,2}>))
<http://www.ormie.org/#PRED-morigin —{1}>))
<http://www.ormie. org/#PRED-morigin —{2}>))
<http://www.ormie.org/#PRED-origin —{1,2}>))
<http://www.ormie.org/#PRED-origin —{1}>))
<http://www.ormie.org/#PRED-origin —{2}>))

NN N S S~
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#4# MULTITREE EDGES (PROPERTIES)
Declaration (ObjectProperty(<http://www.ormie.org/#Q—-{1}>))
Declaration (ObjectProperty(<http://www.ormie.org/#Q—{2}>))

ORM constraints are generated following the Table 7.3. The axioms related
to the example in Figure 7.8 are:

# FACTTYPE ORIGIN

SubClassOf(<http://www. ormie.org/#PRED-origin —{1,2}> ObjectAllValuesFrom(<
http://www.ormie.org/#Q-{1}> <http://www.ormie.org/#TYPE-Call >))

SubClassOf(<http://www.ormie. org/#PRED-origin —{1,2}> ObjectAllValuesFrom (<
http://www.ormie.org/#Q—{2}> <http://www.ormie. org/#TYPE-Phonepoint>))

# FACTTYPE MORIGIN

SubClassOf(<http://www. ormie. org/#PRED-morigin —{1,2}> ObjectAllValuesFrom (<
http://www.ormie.org/#Q-{1}> <http://www.ormie.org/#TYPE-Call >))

SubClassOf(<http://www.ormie . org/#PRED-morigin —{1,2}> ObjectAllValuesFrom (<
http://www.ormie. org/#Q-{2}> <http://www.ormie.org/#ITYPE-Cell >))

# MANDATORY
SubClassOf(<http://www. ormie . org/#TYPE-Cell> <http://www. ormie. org/#PROJ-
morigin —{2}>)

# ISA
SubClassOf(<http://www.ormie.org/#TYPE-Phonepoint> <http://www.ormie.org/#
TYPE Cell >)

# UNIQUENESS

SubClassOf(<http://www.ormie.org/#PROJ morigin—{1}> <http://www.ormie.org/#
UNIQ-morigin —{1}>)

SubClassOf(<http://www. ormie.org/#PROJ-origin —{1}> <http://www.ormie.org/#
UNIQ-origin —{1}>)

# SUBSET
SubClassOf(<http://www. ormie. org/#PRED-morigin —{1,2}> <http://www.ormie. org
/#PRED-origin —{1,2}>)

As stated before, additional axioms are needed to complete the ALCOT

encoding.

o DLR* functions: dsj, rel and obj
e DLRT multitree

e “dummy” nodes for query optimization

A DLRT ontology is also made by the axioms related to the functions dsj, rel
and obj as in the ALCQZ mapping in Section 5.1.5. The dsj function ensures
that relations with different signatures are disjoint. The axioms generated

by rel introduce classical reification axioms for each relation and its relevant
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projections. The axioms in 0bj make sure that each local objectification
differs from the global one.

Since the considered example has a subset constraint stating that all the pairs
in morigin are also in origin, this implies that the two relationships are not
disjoint and in the multitree they share the same attributes. In this case,

there are no generated DSJ axioms but only REL ones.

# REL ORIGIN

SubClassOf(<http://www.ormie.org/#PRED-origin —{1,2}> ObjectSomeValuesFrom(<
http://www.ormie.org/#Q—{1}> <http://www.ormie.org/#PRED-origin —{1}>))

SubClassOf(<http://www. ormie.org/#PRED-origin —{1,2}> ObjectSomeValuesFrom(<
http://www.ormie.org/#Q—{2}> <http://www.ormie.org/#PRED-origin —{2}>))

# REL MORIGIN

SubClassOf(<http://www.ormie.org/#PRED-morigin —{1,2}> ObjectSomeValuesFrom(<
http://www.ormie.org/#Q—{1}> <http://www.ormie.org/#PRED-morigin —{1}>))

SubClassOf(<http://www.ormie.org/#PRED-morigin —{1,2}> ObjectSomeValuesFrom(<
http://www.ormie.org/#Q-{2}> <http://www.ormie.org/#PRED-morigin —{2}>))

In order to complete the DLR*® encoding, the axioms related to the multitree
must be added to the ontology. Relying on the hashmap data structure used
before to encode the DLR* multitree, the Algorithm 1 shows the procedure
to encode a DLRT multitree into OWL.
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Algorithm 1 DLR* tree OWL mapping

private

{

void generateDLRTreeForOWL ()

BitSet singletonBitset;
String rnj;

ArrayList<String> listOfRoles;
BitSet predicateBitset;
ArrayList<BitSet> path;
OWLClass proj;
OWLClassExpression expression;
OWLClassExpression predicate;

Iterator <Entry<ArrayList<String >, MultiTreeNode>> iterator = dlr.getMultiTree ().

entrySet () .iterator ();
while (iterator . hasNext () )

{

Entry<ArrayList<String >, MultiTreeNode> entry = iterator.next();
if( (entry.getValue().getType()==MultiTreeNodeType .SINGLETON) )

singletonBitset = entry.getValue().getBitset ();

rn = entry.getValue().getRn();

list OfRoles = factTypesMap.get(rn).getRoles ();

predicateBitset = dlr.getMultiTree().get(listOfRoles).getBitset ()
path = dlr.path(predicateBitset , singletonBitset);

String key = entry.getKey().get(0);
String idRole = key.substring (key.length ()—1);

5

predicate = factory.getOWLClass(”PRED—" 4+ rn + 7"—" 4(factTypesMap.get(rn
).getFullArity ()), prefix);

expression = dlr.getOWLSomeValuesFromComposition(path, predicate ,”empty”
» 1)

proj = factory.getOWLClass("PROJ-" + rn + "—{” + (idRole) + 7}”, prefix)

5

manager .addAxiom (ontology , factory.getOWLEquivalentClassesAxiom (proj,

expression));

}
else if( (entry.getValue().getType()==MultiTreeNodeType.PARTITION) )
{
singletonBitset = entry.getValue().getBitset ();
rn = entry.getValue().getRn();
list OfRoles = factTypesMap.get(rn).getRoles () ;
predicateBitset = dlr.getMultiTree().get(listOfRoles).getBitset ();
path = dlr.path(predicateBitset , singletonBitset);
predicate = factory.getOWLClass("PRED-" + rn + ”"—” +(singletonBitset.
toString ().replaceAll(”\\s+”7,77)), prefix);
expression = dlr.getOWLSomeValuesFromComposition(path, predicate ,”empty”
, 1)
proj = factory.getOWLClass(”’PROJ-" + rn + "—” 4+ (singletonBitset.
toString () .replaceAll ("\\s+",7")), prefix);
manager . addAxiom (ontology , factory.getOWLEquivalentClassesAxiom (proj,
expression));
}
else if ((entry.getValue().getType()==MultiTreeNodeType .ROOT)){
rn = entry.getValue().getRn();
predicate = factory.getOWLClass(”"PRED-" + rn + ”"—” +(factTypesMap.get(rn
).getFullArity ()), prefix);
proj = factory.getOWLClass("PROJ-" + rn + ”"—" + (factTypesMap.get(rn).
getFullArity ()), prefix);
manager .addAxiom (ontology , factory.getOWLEquivalentClassesAxiom (proj ,
predicate));
¥
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The algorithm iterates over each entry of the multitree data structure in order
to detect the node type (ROOT, PARTITION, SINGLETON). According to
this parameter an axiom is generated to represent that node into the ontology.
If the node is a partition or a singleton it involves an edge in the multitree, so
according to the DLR* mapping an OWL expression is created to compute
the path. The DLRE path function takes as input two sets of nodes and
returns the path between them. Speaking in OWL terms, this is represented
as a role chain composed by OWL properties where each property corresponds
to the edge in the multitree. In order to optimize the reasoner tasks, an
equivalence axiom is added to the ontology where the OWL class with the
PROJ tag representing the node is equivalent to the OWL class expression.
In this way the reasoner has to read only the class with the tag PROJ, instead
of recomputing from scratch the OWL class expression. The computational
cost of this operation is constant in time and done once during the ontology

generation.

The axioms generated by Algorithm 1 are:

# TREE ROOT NODE origin
EquivalentClasses(<http://www.ormie.org/#PRED-origin —{1,2}> <http://www.
ormie. org/#PROJ-origin —{1,2}>)

# TREE ROOT NODE morigin
EquivalentClasses(<http://www. ormie. org/#PRED-morigin —{1,2}> <http://www.
ormie. org/#PROJmorigin —{1,2}>)

# TREE SINGLETON NODE morigin.1

EquivalentClasses(<http://www.ormie. org/#PROJmorigin —{1}>
ObjectSomeValuesFrom (ObjectInverseOf(<http://www.ormie.org/#Q—{1}>) <
http://www.ormie. org/#PRED-morigin —{1,2}>))

# TREE SINGLETON NODE morigin .2

EquivalentClasses(<http://www.ormie. org/#PROJmorigin —{2}>
ObjectSomeValuesFrom (ObjectInverseOf(<http://www.ormie.org/#Q—{2}>) <
http://www.ormie. org/#PRED-morigin —{1,2}>))

# TREE SINGLETON NODE origin .1

EquivalentClasses(<http://www.ormie. org/#PROJ-origin —{1}>
ObjectSomeValuesFrom (ObjectInverseOf(<http://www.ormie.org/#Q—{1}>) <
http://www.ormie.org/#PRED-origin —{1,2}>))

# TREE SINGLETON NODE origin .2

EquivalentClasses(<http://www.ormie.org/#PROJ-origin —{2}>
ObjectSomeValuesFrom (ObjectInverseOf(<http://www.ormie.org/#Q—{2}>) <
http://www.ormie.org/#PRED-origin —{1,2}>))
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The last set of axioms have the purpose to optimize the queries when the
reasoner discovers possible inferred uniqueness constraints. In order to do

this, additional axioms are provided in the following form:

# DUMMY NODE UNIQUENESS
EquivalentClasses(<http://www.ormie.org/#UNIQ-origin —{1}>
ObjectExactCardinality (1 ObjectInverseOf(<http://www.ormie.org/#Q—{1}>)
<http://www.ormie.org/#PRED-origin —{1,2}>))
EquivalentClasses(<http://www.ormie.org/#UNIQ-origin —{2}>
ObjectExactCardinality (1 ObjectInverseOf(<http://www.ormie.org/#Q—{2}>)
<http://www.ormie.org/#PRED-origin —{1,2}>))
EquivalentClasses(<http://www.ormie. org/#UNIQ-morigin —{1}>
ObjectExactCardinality (1 ObjectInverseOf(<http://www.ormie.org/#Q—{1}>)
<http://www.ormie.org/# PRED-morigin —{1,2}>))
EquivalentClasses(<http://www.ormie.org/#UNIQ-morigin —{2}>
ObjectExactCardinality (1 ObjectInverseOf(<http://www.ormie.org/#Q—{2}>)
<http://www.ormie.org/#PRED-morigin —{1,2}>))

The number of these axioms is equivalent to the total number of roles in
the given ORM diagram. In this example we have 4 roles in total (origin.1,
origin.2, morigin.1, morigin.2). The left side of each axiom has a dummy
node marked as UNIQ, equivalent to the OWL class expression indicating

the cardinality of the uniqueness.

The purpose of adding these axioms is to avoid recomputing the path function
several times. Computing once the OWL class expression related to cardinality
and the already computed node in the multitree (the one marked with PROJ),
makes it easier for the reasoner to answer the query. When the time for
verification comes, if the query axiom is entailed or not, the system already
has the two OWL classes to test the axiom, instead of recalculating for each
of them the paths in the multitree. In the next Section we provide the OWL

mapping where we show this set of axioms.

This optimization is done in constant time during the ontology generation;
the query itself is executed a number of times equal to the number of roles in

the ORM diagram, so the query has a linear complexity.

7.3.4 Automated reasoning

After the ontology is generated, the reasoner performs a set of calculations
in order to detect possible inferences. The reasoner used by UModel is
FaCT++[47], made by the University of Manchester and published under
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LGPL. FaCT++ is written in C++ and it is a based tableaux reasoner for
OWL2-DL, quite popular for being highly optimised to compute ontologies in
the SROZQ fragment and integrated also in the OWLAPI. Considering that
the ontology is based on the DLRE mapping the expressivity of ontologies
generated by UModel will be in the ALCQT fragment.

Query formulation is slightly different from standard OWL ontologies where
each relationship is restricted by OWL to be binary; this restriction simplifies
the language, but it makes much more complicated to deal with n-ary rela-
tionships. Since the OWL encoding is based on DLR* and ORM diagrams
may deal with n-ary relationships as well, the ontology will be populated
by the reified concepts. DLR* mapping produces ontologies with several
axioms and classes generated by the multitree, the DLR* functions and
also the dummy classes and axioms mentioned previously; on one hand the
presence of these axioms is mandatory to maintain the consistency of the
whole ontology, on the other hand they may generate several inferences that
are not interesting for the final user because the focus is only the conceptual
modelling perspective. The nature of a DLRE ontology combined with the
need to apply the automated reasoning over conceptual diagrams leads to
the use of a set of procedures to filter only the inferences that are considered

relevant for the conceptual modelling user’s perspective.

We summarize the queries executed by the reasoner:

1. object type hierarchy

2. fact type hierarchy

3. unsat object types

4. unsat fact types

5. inferred IsA between object types
6. inferred IsA between fact types
7. disjointness among object types

8. disjointness among fact types
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9. equivalence among object types
10. equivalence among fact types
11. inferred mandatory

12. inferred uniqueness

In Table 7.4 we show the queries that UModel asks to the Fact++ reasoner.

Since we are using the DLR* encoding, we recall the usage of the 1 function

which maps each concept name CN and each relation name RN appearing in
the DLRE KB to the ALC Q7T concept names and relation names.

Table 7.4: UModel - Queries

Subtype((T; ...Ty) T)

KB);(TI;T)... (T}, = T)

ExclusiveSubtypes((T; ...Ty) T)

?
KB | T/ c - T

for 1<i,j<m: i#]j

Mandatory(T Py.i; ... Pp.im)

?
KB = T' = PROJ-P;-i;

for j#k and jk<m: P;
#Py

Unique(P.ij ... Pipy)

?
KB E PROJ-P-i = UNIQ-P-i

for j#k and jk<m: i;
#ig

Subset((Pl.il Pg.hl) e (Pl.im Pghm))

?
KB | PROJ-P1-{P.i; ...Pi,} = PROJ-Py-{P.h

...Ph,}

P1#P5 and for j#k and
j.k<m :
Pl.ij # P1.i; and Pg.hj
#* Pghk

EXC]USiVG((Pl.il Pg.hl) ce (Pllm Pghm))

P1#P2 and for j#k and
j.k<m :
Pl.ij #* Pl.ik and PQ.hj
# Py.hy
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?
KB £ PROJ-P-{P.i; ...P.i,,} © =PROJ-Po-{P.h; ... P.h,,}

The queries may involve the OWL classes with the PROJ prefix which are the
ones representing the multitree DLRE nodes. Some queries are simplified for
better performance: for example, the uniqueness constraint query is limited
to the single role and not for the spanning roles, in order to avoid all possible
permutations. The same applies to the mandatory constraint where only the
simple mandatory is considered (i.e., a single role). Calculating an inferred
exhaustive constraint means to check, for each single entity type in the
diagram, all possible subsets of entity types making the covering, resulting
in a huge amount of calculations significantly slowing down the reasoning
execution. For this reason, the reasoning procedure does not compute derived

exhaustive constraints.

OWLAPI comes with a native function to precompute the class hierarchy, but
this produces several unwanted OWL classes (from the final user perspective)
because of the multitree axioms and the set of additional axioms added
for performance reasons (e.g., the ones with the UNIQ tag). In any case,
multitree axioms are needed for the ontology and the automated reasoning,
but since they are not interesting for the final user they do not have to be
displayed in the output, although they take part to the ontology composition
and so the reasoning. The purpose of hierarchy is to reflect the conceptual
model hierarchy with possible inferred IsA or Subset ORM constraints. To
solve this problem, two temporary ontologies are built during the ontology
generation step. They are made by sets of IsA and Subset constraints given
in the input ORM model. In this way, the hierarchies for object types
and fact types are preserved and memorized in constant time. These two
hierarchies are distinct and they will be computed separately generating two
temporary ontologies that will share data with the current ontology that has
all the needed information to retrieve possible inferred constraints. With this
combination the position of each element in the tree is preserved and the
inferred elements in the hierarchy (e.g., an inferred IsA) are positioned in the
right place.
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The need of this technique is explained in Figure 7.10, where the ontology
corresponding to the ORM diagram in Figure 7.8 is visualized inside Protégé.
We know that Phonepoint is a subclass of Cell, but in the ontology we can
see that Cell is a subclass of PROJ-morigin2. This is correct from the pure
ontology perspective according to the ALC QT mapping, but this output is
not suitable for the conceptual modelling perspective and it may be confusing
for the final user. For this reason, while the ontology remains the same, we
encode the hierarchies in additional data structures that will be used later in

order to populate the graphical interface.

Class hierarchy: 'PROJ-Morigin-{2}' 2] (00 = =] [x]
%S = Asserted
v 0 owlThing

- @ 'PRED-Morigin-{1}
- @ 'PRED-Morigin-{2}
p-- & "PRED-Origin-{1,2}'
- "PRED-Origin-{1¥
- @ 'PRED-Origin-{2}
- & "PROJ-Morigin-{1,2}'
- & "PROJ-Morigin-{1}'
Mal_d PRO. Morigin-{2)'
¥ TYPE-Cell

- TYPE-Phonepoint
- & "PROJ-Origin-{1,2}'
- & "PROJ-Origin-{1}'
- €1 "PROJ-Origin-{2}'
- & "UNIQ-Morigin-{1}'
- & "UNIQ-Morigin-{2}'
-5 "UNIQ-Origin-{1}'
- & "UNIQ-Origin-{2}'
- TYPE-Call

Figure 7.10: Ontology related to Figure 7.8 in Protégé
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The whole procedure is shown in Algorithm 2.

Algorithm 2 Hierarchy building for object types

private void buildHierarchyForObjectTypes(OWLReasoner reasonerType, OWLClass clazz , Set<
OWLClass> visited , SortedNode node) {

if (!visited.contains(clazz)) {
visited .add(clazz);

NodeSet<OWLClass> subClasses = reasonerType.getSubClasses(clazz , true);
for (OWLClass child : subClasses.getFlattened ()) {
if (child.toString ().contains ("TYPE-"))

SortedNode currentChild = new SortedNode(owlToString (child.toString

0));
node.add (currentChild) ;

buildHierarchyForObjectTypes (reasonerType, child, visited,
currentChild);

NodeSet<OWLClass> subClassesDerived = reasoner.getSubClasses(clazz , true);
for (OWLClass child : subClassesDerived.getFlattened ()) {
if(child.toString ().contains ("TYPE-") && reasoner.isSatisfiable (child) )

{
OWLAxiom subAxiomTest = UORMModel. factory .getOWLSubClassOfAxiom (
child , clazz);
if (!ontology .containsAxiom (subAxiomTest) && subClassesDerived .
containsEntity (child) && !clazz.isTopEntity())
{
SortedNode currentChild = new SortedNode(owlToString (child .
toString ()));
node.add (currentChild);
}
}
}
}
if (!reasoner.isSatisfiable (clazz))
{
String unsatName = owlToString(clazz.toString());
udmodel. getUnsatNodes () .add (node) ;
}
else
{
computeEquivForTypes(clazz , node);
computeDisjointForTypes(clazz , node);
computeMandatory (clazz);
}

This procedure builds the hierarchy recursively. Moreover, after all the de-
scendants of the current node (which is an OWL Class) have been computed,
a sequence of algorithms is performed to detect additional inferences (equiv-
alence, disjointness, etc.). This is a convenient way to take advantage of
this iteration in order to avoid re-scanning the whole OWL classes to find

the inferences. In this procedure are also involved the multitree nodes (the
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ones with the PROJ tag), according to the queries in Table 7.4. Thus, the
current node is checked for its satisfiability inside the ontology; if the class is
unsatisfiable there is no need to ask the reasoner additional queries over that
class. If is satisfiable, then from that class possible equivalences, disjointnesses
and mandatories are also calculated. Uniqueness is computed separately since
it needs to scan the ontology to find all the OWL class with the tag PROJ,
according to the related query in Table 7.4.

The reasoning procedure encodes the inferences in a set of data structure
that can be easily queried via API 7.3.6. The main class where all inferences
resides is UDerivedModel. ORM extends this class with its one Java class
named UORMDerivedModel. This class is composed of a set of other classes
where each one of them represent an inferred ORM constraint. Figure 7.11

shows the corresponding UML diagram:

UDerivedModel
Extends

Disjoint Disjoint Equivalent Equivalent
Object Types Fact Types Object Types Fact Types

e A

_OUDRM DerivedMode <>—
' ™y
Unsat Object Types Unsat Fact Types Derived Mandatory Derived Unigueness

Figure 7.11: Derivation data structure in UModel
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7.3.5 GUI

Once the inferences are collected in the aforementioned data structures, it
is optionally possible to display them in a graphical interface as shown in
Figure 7.12 and Figure 7.13.

& Nlegal - m] X
Services

Object Types Fact Types
() owl: Thing = owl:-Thing

& (O Document o m IsldentifiedBy1-{1.2}
o0 Person

Derived Constraints for Object Types Derived Constraints for Fact Types

Figure 7.12: In yellow are highlighting the tree paths containing the inferences

The GUI has been designed to be partitioned into two sides: the left side for
the object types information and the right side for the fact types. The top
horizontal panel contains the hierarchies for both object and fact types; the
bottom horizontal panel contains the relevant derivations. In the hierarchy,
the derivations are marked with green, or in red to indicate that an object type
or fact type is unsatisfiable. In order to ease the reading for large diagrams,
the tree paths containing the relevant inferences are highlighted in yellow. In
this way the user can quickly locate the relevant inferences expanding the
yellow nodes. This feature is particularly useful for large diagrams where the
user has to scroll down and perform numerous paths. In this way, we are
guiding the user directly to the relevant inferences without wasting time by
clicking every single node. When a node containing an inference is clicked
more information appear inside the bottom panel: the inferred constraints

are marked in green and the asserted ones in purple. The design choices made
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S llegal — 0 ®
Services

Object Types Fact Types
() owl Thing = owl-Thing
# (J Document ¢ o IsldentifiedBy1-{1.2}
D visa o IsldentifiedBy2-{1,2}
D IDcard
¢ O Person
# llegal
¢ O visitor
® somevisitor
O citizen
) SomeVisitor

Derived Constraints for Object Types Derived Constraints for Fact Types
@ citizen — IsidentifiedBy2-{1}
— IsldentifiedBy2-{2}

Figure 7.13: Expanding the tree paths to see the inferences

for the object type are the same for the fact types. The inconsistencies are
marked in red (e.g., Illegal); the ISA derived are marked in green with an
arrow in the icon (e.g., SomeVisitor).

The GUI is also equipped with a menu bar on the top side. The label named
Services gives access to a menu where it is possible to export the OWL to
a file or sync the OWL output with Protégé (this feature is quite useful for

ontology engineers and/or for any debug reason).

7.3.6 The API system

UModel has been designed to expose a set of API commands to create
conceptual diagrams and to manage them; in this way, the developer can
benefit from the API system to easily integrate UModel in any external
software, or to build on the fly some conceptual models and perform reasoning
operation over them. The API system consists of a set of Java objects that
must be called in a precise order, consequently the procedure is divided in 5

steps:
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1. Init model - Instantiating an empty model that could be one in ORM,
ER or UML one.

2. Create constraints - A conceptual diagram is made up of a set of
constraints, therefore each constraint in the diagram must be declared
in this step. Some constraints are dependent on others, for example the

IsA must have two existing Object Types.

3. Assert constraints in the model - In this step the constraints are asserted
into the model. Precisely, the Java objects representing the constraints

are aggregated into the main Java data structure representing the

diagram, namely UORMModel.

4. Call the reasoner - The reasoner now takes the created model as an

input in order to generate the inferences.

5. Read inferences - In the last step all the inferences are encoded in a

data structure ready to be queried by the user.

The first step is to encode the conceptual model. The following example aims

to represent via API the ORM conceptual diagram in Figure.7.14.

Stateless *

Each Stateless is by definition some Person
that is identified by some Document

where that Document is no IDCard

and that Document is no Visa. /

[ Visitor * ] [Snme\fisitor]

Each Citizen is by definition some Person Each Visitor is by definition some Person

Document

that is identified by some Document that is identified by some Document
that is some IDCard. that is some Visa,

Figure 7.14: Visitor ORM diagram

We first need to create the structure for the model with the command:

HUORMModel model = new UORMModel() ;

The UORMModel Java class is the master data structure to deal with ORM.
The variable model will be used to encode a set of ORM constraints.
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ORMEntityType stateless = new ORMEntityType(” Stateless”);
ORMEntityType person = new ORMEntityType(” Person”);
ORMEntityType document = new ORMEntityType(” Document”) ;
ORMEntityType someVisitor = new ORMEntityType(” SomeVisitor”);
ORMEntityType visa = new ORMEntityType(” Visa”);

ORMEntityType idCard = new ORMEntityType(”IDCard”) ;
ORMEntityType visitor new ORMEntityType(” Visitor”)
ORMEntityType citizen new ORMEntityType(” Citizen”) ;

ORMFactType isldentifiedBy = new ORMFactType(” IsldentifiedBy1”, new ArrayList<
ORMEntityType>(Arrays . asList (person ,document)));
ORMFactType has = new ORMFactType(” has”, new ArrayList<<ORMEntityType>(Arrays.asList (

someVisitor , visa)));

ORMEntityType is the Java structure to create an object type taking as
input the name of the entity (e.g., Stateless, Person, etc.). ORMFactType
creates fact types taking as input the name of the predicate (e.g., is identified
by, has) and a list of ORMEntityType, as it is in the ORM syntax.

We can now define the ISA relationships between object types and fact types.
The SubtypeOf Java class encodes the ISA relationships between two object
type, where the first one is the subclass and the second one is the superclass.
The SubsetOf Java class works in the same way, with the difference being that
the arguments are collections of roles belonging to the fact types involved
in the subset constraint. The roles are obtained by calling the function
getRole(arity) on the previously defined ORMFactType class. In this example
we are interested in the full arity of both relationships, so we take into account
all the roles (the first and the second one for both fact types). The first role
has index set to zero.

SubtypeOf somevSubPerson = new SubtypeOf(someVisitor, person);
SubtypeOf visaSubDoc = new SubtypeOf(visa, document);

SubtypeOf idcardSubDoc = new SubtypeOf(idCard, document);
SubtypeOf statelessSubPerson = new SubtypeOf(stateless , person);
SubtypeOf visitorSubPerson = new SubtypeOf(visitor , person);
SubtypeOf citizenSubPerson = new SubtypeOf(citizen , person);
ArrayList <ORMRole> rolesl = new ArrayList<ORMRole>();

ArrayList <ORMRole> roles2 = new ArrayList<ORMRole>();

rolesl.add(isIdentifiedBy .getRole (0));
rolesl.add(isIdentifiedBy .getRole(1));

roles2 .add(has.getRole (0));
roles2.add(has.getRole(1));

SubsetOf subset = new SubsetOf(roles2, rolesl);

In the model we also have the mandatory and uniqueness constraints. Since
they deal with roles, they follow the same logic as subset constraints.

ArrayList <ORMRole> listORMRoleuniql = new ArrayList <ORMRole>();
listORMRoleuniql .add(isIdentifiedBy .getRole (0));
Unique ul = new Unique (listORMRoleuniql);
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ArrayList <ORMRole> listORMRoleuniq2 = new ArrayList <ORMRole>();
listORMRoleuniq2.add(isIdentifiedBy .getRole(1));
Unique u2 = new Unique (listORMRoleuniq2) ;

ArrayList <ORMRole> listORMRoleMand = new ArrayList<ORMRole>();
listORMRoleMand .add (isIdentifiedBy .getRole (0));
Mandatory mand = new Mandatory (person, listORMRoleMand) ;

ArrayList <ORMRole> listORMRoleMand2 = new ArrayList<ORMRole> () ;
listORMRoleMand2.add (has. getRole (0));
Mandatory mand2 = new Mandatory(someVisitor, listORMRoleMand2) ;

Finally, set operators to represent the disjointness and the covering.

ExclusiveTypes visaEXidcard = new ExclusiveTypes(new ArrayList<ORMEntityType>(Arrays.
asList (visa , idCard)));

ExhaustiveTypes visaldcardCOVDocument = new ExhaustiveTypes(new HashSet<ORMEntityType>(
Arrays.asList (visa, idCard)), document);

Since this ORM diagram is equipped with ORM Derivation Rules, we need
to add them in the ORM model. The Java data structures used to built the
ORM Derivation Rules are based on the syntax defined in [128].

SubtypeDerivationRule visitorRule = new SubtypeDerivationRule () ;
visitorRule.addLeftSubclass (visitor);

visitorRule.addRightSuperclass(person);

DRJoin visitor_join = new DRJoin(isIdentifiedBy , person, document);

DRPath isIdentifiedByDocument_path = new DRPath(visitor_join , new DRPath(document));
DRPath visa_path = new DRPath(visa);

isIldentifiedByDocument_path.setPath(visa_path);

visitorRule .addRuleBody (isldentifiedByDocument_path);

SubtypeDerivationRule citizenRule = new SubtypeDerivationRule () ;
citizenRule.addLeftSubclass (citizen);
citizenRule.addRightSuperclass (person);

DRJoin citizen_join = new DRJoin(isldentifiedBy , person, document);
DRPath citizen_path = new DRPath(citizen_join , new DRPath(idCard));
citizenRule .addRuleBody (citizen__path);

SubtypeDerivationRule statelessRule = new SubtypeDerivationRule () ;
ArrayList <DRPath> listOfPaths = new ArrayList<DRPath>();
statelessRule.addLeftSubclass(stateless);
statelessRule.addRightSuperclass (person);

DRJoin stateless_join = new DRJoin(isldentifiedBy , person, document);

DRPath statelessIslIdentifiedByDocument_path = new DRPath(stateless_join , new DRPath(
document) ) ;

DRPath notIDCard_path = new DRPath(Operator .NOT, new DRPath(idCard));

DRPath notVisa_path = new DRPath(Operator .NOT, new DRPath(visa));

listOfPaths .add (notIDCard_path) ;

listOfPaths .add(notVisa_path);

statelessIsIdentifiedByDocument_path.setPath(new DRPath(Operator .AND, listOfPaths));
statelessRule .addRuleBody (statelessIsIdentifiedByDocument_path);

Three rules are defined: Visitor, Citizen and Stateless. Each rule reuses
the same variables defined in the code; additionally, it has dedicated data
structures the encode ORM Derivation Rules (SubtypeDerivationRule for
subtype rule and FactTypeDerivationRule for fact types). The recursive
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structure of the rule is represented by the DRPath class which is defined
recursive in the syntax. A rule consists of a left and the right-hand side plus

the body where a set of constraints are defined.

The next step is to assign each of this constraints to the model:

model. tell (idCard) ;

model. tell (document) ;
model. tell (visa);

model. tell (someVisitor);
model. tell (person);

model. tell (stateless);
model. tell (visitor);

model. tell (citizen);

model. tell (somevSubPerson) ;
model. tell (visaSubDoc) ;
model. tell (idcardSubDoc) ;
model. tell (isIdentifiedBy);
model. tell (has);

model. tell (visaEXidcard) ;
model. tell (visaldcardCOVDocument) ;

model. tell (ul);

model. tell (u2);

model. tell (mand) ;

model. tell (mand2) ;

model. tell (subset);

model. tell (visitorRule);

model. tell (citizenRule);

model. tell (statelessRule);
model. tell (statelessSubPerson);
model. tell (visitorSubPerson) ;

model. tell (citizenSubPerson) ;

The tell function asserts the constraints defined in the argument. In this step,
the model is complete since it has all the constraints inside; this means we

can go on calling the reasoner to compute the inferences.

UReasoner reasoner = new UReasoner(model);
reasoner.start () ;

We have created an instance of the Java class, UReasoner, with the only
argument the model previously defined. The constructor of this class translates
the ORM model into OWL and runs a set of reasoning algorithms (that are
transparent to us, since we are playing the role of the developer). The reasoner
is executed when the function start is called.

Now we are interested in reading the result of the computation.

ORMDerivedModel udmodel = reasoner.getInferredModel () ;
udmodel. getUnsatObjectTypes () ;
System.out. println (udmodel. getUnsatObjectTypes () .getEmptySet());

The reasoner has a function named getInferredModel which return the Java
structure ORMDerivedModel, that is the one where all the inferences are

stored. For simplicity we have created a variable named udmodel to get the
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references to the inferences. Now we can access all the functions from the
object ORMDerivedModel, in order to retrieve the information we need. In

the example we are interested in the unsatisfiable object types.

Optionally, we can launch the GUI to visualize the relevant inferences. For
example, Figure 7.15 shows the GUI suggesting to expand the tree node
Person, because under this node some inferences have been computed. Figure
7.16 highlights the inferences under Person node and here we can find that

Stateless is marked in red because it is inconsistent.

GUI gui = new GUI();
GuiLauncher guiLauncher = new GuiLauncher () ;
guiLauncher.launchGui(gui, udmodel, " Stateless”);

and we obtain:

JE Visitor - [m] x

Object Types
(L) owl: Thing = owl:Thing
+(J Document o PersonlsldentifiedByDocument-{1,2}
=) Person

serived Constraints for Object Types Derived Constraints for Fact Types

Figure 7.15: Highlighted in yellow the tree node containing the inferences

7.4 Future works

Further improvements and research tracks can be made in a future version of

the UModel framework development:

e Multithreading support - Although performances are considered good

in a real industrial-case scenario (see Chapter 7), a further improvement
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(L) owl: Thing

ervices

= owl: Thihg

¢ (J Document ¢ m PersonlsldentifiedByDocument-{1,2}
O visa m SomeVisitorHasVisa-{1,2}
OIbCard

¢ (J Person

# Stateless
+ (O Vvisitor
@ SomevVisitor
O citizen
O SomeVisitor

Derived Constraints for Object Types Derived Constraints for Fact Types

Figure 7.16: The inferences in the expanded node

consists in supporting the multithreading in the automated reasoning
procedures. At the current stage of development UModel performs
the reasoning tasks sequentially, so each time a query is sent to the
reasoner the system has to await the result. The benefit coming from
the multithreading may result in a dramatic increment of performance
because of a set of threads, where each one asks a query and all are
executed concurrently. In order to implement this feature, some parts

of the code must be carefully redesigned.

Explanatory - Detecting formal properties may be useful during the
modelling step. For example, if the modeller reads an unexpected
inference, he should try to understand the reason behind that in order
to fix possible issues, but this could be a time consuming activity
especially for large diagrams. The adoption of an explanatory service
could significantly help the modeller to trace the selected inference, since
there is no indication about the tracking of that particular inference
in order to understand the source of possible issues. Equipping the
reasoner with an explanatory service may surely increase the control
over the diagrams and it can also speed up the procedure of fixing the
models in case of mistakes. An approach used to explain how inferences

have been obtain is the usage of axiom pinpointing [119]; this research
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track requires the integration of this technique inside the framework. An
alternative approach is to take advantage of OWLAPI, since it comes

with an integrated explanatory service, as in [129)].

e UML and ER support - Another research track is to enable the auto-
mated reasoning for this UML and ER; this means to encode them into
DLRE.

e Further integrations in other CASE tools - UModel has been used in
the NORMA tool (see Chapter 7), but it can also be easily integrated
into any CASE tool.






ORMIE

In this chapter we integrate UModel into the CASE tool NORMA. NORMA
is a software for ORM conceptual modelling that can be easily extended by
plugins. For this reason, a plugin named ORMIE (ORM Inference Engine)
has been developed in order to extend NORMA. The purpose of ORMiE is
to enable the automated reasoning over those ORM diagrams loaded inside
NORMA and show the inferences to the user. In order to achieve this, the
UModel framework has been integrated into ORMIE [125], [56]. We recall
that NORMA is an extension of Microsoft Visual Studio, which is one of the
most popular IDE with many beneficial features. The purpose of NORMA
is to extend Microsoft Visual Studio, allowing the user to manage ORM

diagrams inside Visual Studio.

The chapter starts with the overview of the ORMIE tool, then we go in deeper
with a system description, focusing on the architecture in order to identify
the components and what roles they play in the infrastructure. We present
some user scenarios where ORMiE is used to perform reasoning over some
ORM models, after that we show the corresponding deductions in the ORMiE
interface. We also present additional ORMIE features.

8.1 Overview

ORMIE is a conceptual modelling tool specifically designed to perform auto-
mated reasoning over ORM diagrams. The purpose of ORMIE is to help the
modeller in checking the semantics of ORM conceptual diagrams, in order
to fully control the workflow of the modelling phase. ORMIE works with a

145
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background reasoner useful to verify the software specification, infer implicit
facts, devise stricter constraints, and manifest any inconsistency. Usually
ORM diagrams, especially the extended ones, must meet clear and measurable
quality criteria. Large numbers of conceptual diagrams have, however, usually
been developed in an ad hoc manner by domain experts, often with only a
limited understanding of the semantic level. The full control of the semantic
level, which usually is lacking in CASE tools, may result in a very critical
problem and serious consequences for the whole infrastructure based on that
software. The outcome is that a conceptual diagram could be of low quality
and not accurate in the description of the domain. Moreover, many errors can
occur where there is no control over the semantics, leading to a degradation
of the software and increasing the development costs. This problem becomes
even more acute as conceptual diagrams are maintained and extended over
time, often by multiple authors. To overcome these problems, tools are needed
that support the design and the development of the basic infrastructure for
building, merging, and maintaining conceptual diagrams. The leverage of
automated reasoning to support domain modelling is enabled by a precise
semantic definition of all the elements of ORM diagrams, and constraints
are internally translated into a logic formalism. In the context of ORM
diagram design, ORMIiE is useful to support the modeller during the early
stages of the development in order to check the consistency of the diagram or,
inter-domain diagrams. Moreover, the usage of complex automated reasoning
tasks to deduce implied facts increases the chance to uncover some mistakes
during the software development that could be hidden to the final user control.
The reasoning applied to ORM involves and deduces even ORM constraints,
as opposed to mere subsumption (classification) and consistency, making it
more reliable for the modeller. Another key point is the reasoning which
covers the ORM Derivation Rules, special ORM constructs which are able
to express knowledge that is beyond standard ORM capabilities. ORMiE
supports the following: checking entity types and fact types consistency,
subsumption, cardinality, exclusion, mandatory and uniqueness constraints,
and in general discovering any implied but originally implicit ORM graphical
construct. Customarily, ontology design tools just provide a support limited

to class subsumption and consistency. ORMIE is also able to provide the



8.2. SYSTEM DESCRIPTION 147

OWL counterpart of the diagram for ontology design and an integration with

Protege.

8.2 System description

ORMIE is not intended to be a stand-alone software, but a way to integrate
the UModel framework inside the NORMA tool. Since NORMA is a modular
system, the user has the possibility to create plugins to extend the behaviour of
NORMA. ORMIE is a plugin for NORMA that embodies UModel framework
in order to activate automated reasoning over those ORM diagrams activated
inside the NORMA tool.

To better understand how those components works together, we can see

Figure 8.1.
The Visual Studio 2019 Community Edition is free of charge and can be

installed in any Microsoft OS. It’s enough for us to see Visual Studio as a rich

container of features that can be inherited by any extension, like NORMA.

NORMA indeed is an extension of Visual Studio which means it automatically
inherits all the nice features coming from Visual Studio and this is a great
advantage since it improves the quality and the reliability of the system.
NORMA is a software specifically designed to deal with ORM diagrams,
which means it is possible to create, modify, delete ORM diagrams and
benefits from many features that helps the modeller in managing any ORM
diagram.

Another interesting feature of NORMA is the modular system, since it is
possible to extend its functionalities by means of plugins. For this reason,
ORMIE exists to add reasoning capabilities to NORMA. The benefit of
enabling ORMiE in NORMA is the automated reasoning applied to any ORM
diagram.

In Figure 8.2 we can take a deep look into the inner structure of ORMIE and

observe the ORMIE components:

e code to integrate it inside NORMA infrastructure;
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Figure 8.1: NORMA and ORMIE as Microsoft Visual Studio components

e a parser to capture every constraints of the given ORM diagram;

each constraint is asserted into UModel;

e a module to call the reasoner from UModel;

e a module to call the ORMIE interface from UModel.

Essentially, ORMIE features a parser to detect the ORM constraints which
become the input of UModel framework which does the rest of the job

(reasoning and GUI generation).
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Figure 8.2: ORMIE Architecture
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8.3 Example User Scenario

In this section we show how ORMiE works on a basic scenario, emphasising
the added value of the main ORMiE functionalities. The inference engine
helps the modeller with validating the ORM diagrams. In fact, if the derived
constraints make little sense to the modeller, they may help in suggesting
changes, or they may show conceptual mistakes. The advantage of this
approach is that examples may be clear even to people who are not I'T-experts
due to their graphical nature and to the fact that ORM diagrams are quite
intuitive. Complete reasoning over ORM diagrams supports the modeller in
creating and maintaining ORM diagrams. The following example shows the
kind of insights that a reasoning enabled system could provide during the

ORM diagram modelling phase.
We consider the diagram in Figure 8.3 without reasoning.

After enabling ORMIE, thus the reasoning, the outcome is depicted in Figure
8.4:



150 CHAPTER 8. ORMIE

destination

origin

MobileCall

morigin

Figure 8.3: Without reasoning
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Figure 8.4: With reasoning

The results from the reasoning are displayed in the ORMiE graphical interface,
as in Figure 8.5 and 8.3. The structure of the ORMIE interface is composed
by three components: a top menu named Services; a centred block divided
into two parts where the left side deals with the hierarchy for object types and
the right one for the hierarchy of the Fact Types; the bottom block divided
again into two parts, the left side to show the deductions referring to the
Object Types and the right one for the deductions related to the Fact Types.
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JE ORMModell - m] ®

Services Q °

Fact Types

() owl: Thing - o = owl: Thing
~call m CallDestinationPhonePoint-{1,2}
= = PhonePoint = m CallOriginPhonePoint-{1,2}

Figure 8.5: Reasoning outcome
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Figure 8.6: Reasoning outcome

The menu comes with different options where the user can export an ORM
diagram into OWL. It’s also possible to constantly sync the OWL counterpart
of the ORM diagram if requested, so every time the ORM diagram is edited,
a new OWL file is generated and overwrites the previous one. Moreover,
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ORMIE is also able to detect if Protégé is installed on the system, in this
case another feature comes to help the modeller that consists in opening the
generated OWL file inside Protégé tool. This feature could be useful for
ontology modelling or even for debug purposes (i.e., explanatory services in
Protégé may help to detect the reason of a specific inference). Please note
that the OWL output follows the mapping explained in Chapter 5, which

may be not easy to read for the final user.

Below the menu, we have the blocks embedding the hierarchies. Each hierarchy
(object types and fact types) is represented by a browsable tree structure,
where object types and fact types are organized in tree nodes according to
the hierarchy relationships; the nodes can be coloured in green or in red. If
the reasoner says that a node is inconsistent, then it is highlighted in red;
if the node representing an object type or fact type is involved in relevant
inferences, then it is highlighted green. In the Hierarchy Types, the Object
Types are represented by a box followed by the name of the object type;
the fact types are represented by a sequence of tiny boxes according to the
arity, plus the name of the fact type. The tool implements a methodology
for handling very large conceptual diagrams and provides the user to easily
find where the interesting inferences are, so the the interface has a design
feature that suggest in which part of the tree an inferred object type (or fact
type) is, by colouring all its ancestors in dark green and the inferred node in
light green. The user can also interact with the hierarchy panels by clicking
on a specific element, this is useful if the user may want to see its relevant

properties in the corresponding bottom panel.

The bottom panels are dedicated to show the relevant inferences either for
Object Types or Fact Types. For example, clicking on the Landline it says in
the Object Type Derivation panel that, Landline is equivalent to Phonepoint.
This is depicted as a yellow equivalence symbol in order to suggest the user
that this is a warning since Landline and Phonepoint share the same instances.
Therefore in a scenario where that diagram has a database counterpart, this
is not an optimal way of modelling. In this case the modeller understands
that, since Phonepoint is exactly the same as Landline, there is an error in

the ORM diagram and this automatically suggests revision. The bottom
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panels also shows the relevant and inferred exclusion constraints, mandatory

and uniqueness constraints as well.

The ORMIE gui is automatically handled by the bottom panel of NORMA

as in Figure 8.7.

FOO0O®OROD

Figure 8.7: ORMIE gui inside NORMA

8.3.1 ORM diagrams Integration and Views

As seen in Section 2.4 and in Figure 2.20, NORMA can display ORM diagrams
on different “pages”. ORMiE is able to work even with those diagrams having
multiple pages. This feature is useful to conceptually separate the sub-domains
of the whole domain represented by the ORM diagram, in a way similar to
ontology integration. A single page represents a subdomain and it is possible
that some pages share some ORM constraints. An example is shown in
Figures 8.8 and 8.9.

Page 1 depicts a situation where the main entity is Company. A company
employs the employees and contacts some contact person; a company is also
made of sectors. In this ORM diagram there is also a sub entity of Company,
named Italian Company which represents the set of italian companies. This
entity has a unary fact type placed on it, stating that an italian company

may be classified as an ISO company.
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Figure 8.9: Page 2

Page 2 is dedicated to the subdomain of the italian companies, where these
are simply divided into Italian ISO Company and Italian Non ISO Company.
It is trivial to say that these two entities are disjoint and a simple disjoint
ORM constraint would be enough to represent the disjointness. But, the ISA
constraint is not enough to semantically capture all the italian ISO companies
and the italian non ISO companies. For this reason this ORM diagram is
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equipped with two derivation rules defining the constraints for both entities.
The outcome of the reasoning is depicted in Figure 8.10, where there is a
disjointness between the two entities.

JE Company - [m] X
Services Q

(] owl: Thing = owl: Thing
¢ (J Company m CormpanyContactsContactPerson-{1,2}
¢ (J Italian Comparny m CompanyEmploysEmployves-{1,2}
[ ltalian MNon IS0 Company S talianCormpanyls| S0-{1}
O Italian IS0 Company m SectorHasCompany-{1,2}
o J Employee
(0 Sectar

Derived Constraints for Object Types Derived Constraints for Fact Types
& Italian 130 Comparry

Figure 8.10: Reasoning over two pages

In the Section 8.5 this feature plays an important role in order to organize
huge ORM diagrams.

8.4 Automated Reasoning

Although NORMA can be used as a powerful modelling tool, exploiting its
full capabilities requires the coupling of the system with a Description Logic
reasoner. Without ORMIE, NORMA would be unable to perform automated
reasoning over the ORM diagrams. As we noted, this includes checking
object types and fact types consistency, discovering implied constraints,
subsumptions, or cardinality constraints, and in general discovering any
implied but originally implicit class diagram graphical construct. Instead
of implementing its own dedicated reasoner, ORMIE uses Fact++ [47], a
powerful reasoner used also as a plugin for Protégé [129]. It does not need
any dependency installation because the UModel framework is embedded in
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the ORMIE plugin as a DLL file, since it was ported from Java to .NET;
since this DLL file is the UModel framework, it comes also with OWLAPI
as background engine to process the generated ontologies and Fact++ to
perform the reasoning tasks. The scalability of the system is the same as any
ALCQOT [10] ontology processed by Fact++, moreover, some optimizations
are been made to increase performances and to quickly deal with big ORM

diagrams.

The so called verification process can be computationally expensive, so it is
activated only on user’s request. This process includes the following operations.
The ORM diagram is encoded into a Description Logics knowledge base and
shipped to the Fact4++ reasoner. Each object type and fact type is checked
for satisfiability (i.e. non-emptiness). For each object type and fact type,
IsA and subset are determined. Uniqueness and mandatory constraints are
calculated as well. To perform these operations, the system formulates a
sequence of queries to be sent to the Fact++ reasoner. Accordingly to the
received answers which are encoded in Java data structures, ORMIE shows

inferred properties of the diagrams in the interface.

Due to performance optimizations the tool can manage diagrams with several
hundreds of object types and fact types. After the verification process,
the system provides the user with a visual account of the deductions by
highlighting the relevant inferences in the interface. All unsatisfiable object
types and fact types will appear in red, while the relevant deductions (the one
not redundant) are shown in green. The redundancies, like an equivalence
between two object types, are marked as yellow since they are considered as
warnings. The deduction appearing in the lower part of the interface can be

uniqueness, mandatory, equivalence and also disjointness constraints.

Although the deductions are displayed in the interface, it is up to the modeller
to decide whether they should be permanently added to the models or
discarded. The reason behind this behaviour is that the automated reasoning
process may detect unwanted deductions caused by a wrong modelling of the
domain. In this case the user should correct the project before any subsequent
editing. Another reason is that, in spite of the fact that only the non-trivial

deductions are presented, the user is satisfied by the fact that they are implicit
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without the need of having them explicitly asserted. The ORMIE reasoner
starts every time the interface is manually loaded, but also when the modeller
makes some changes to the diagram. Trivial changes like renaming an object
type do not trigger the reasoner. ORMIE is configured to ignore the situations

where it’s useless to recompute the deductions.

8.5 Evaluation of ORMIE in a real-world in-
dustrial scenario

This section presents results about ORMiE’s performance in a real-world
industrial scenario. ORMIE has been tested with ORM models provided by
the European Space Agency (ESA) in a context where an ESA team uses the
fact-based methodology with NORMA to model spacecraft related domains.
The ORM models used are involved in an ESA project named Intelligent
Reasoner for Fact Based Models whose goal is to extend NORMA capabilities
in checking the semantics of the ORM diagrams. In order to accomplish
this goal, NORMA has been equipped with ORMiE since the latter enriches
NORMA by automated reasoning. The purpose of this evaluation is to prove
the real efficiency of ORMIE and more in general of the entire methodology

in a real-world industrial scenario.

8.5.1 Overview of the ESA Project

Developing and operating space systems implies complex activities involving
many parties, distributed in location and time. This development requires
efficient and effective interoperability during the overall space system devel-

opment and operations lifecycle.

Interoperability is often described from a syntactic viewpoint, focusing on
data exchange formats. While syntactic interoperability is required, the
pre-requisite for any successful information exchange is to ensure that all
actors involved share a common understanding of the information that will
be exchanged. This aspect of interoperability is known as semantic interop-

erability. This is a mechanism whereby data can be reliably and effectively
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exchanged between all suppliers and customers involved, between all engi-
neering/quality /management disciplines involved, at all levels of the space

system decomposition, within and across all space system life cycle phases.

ESA considers offering a solution to semantic modelling and semantic inter-
operability capturing the semantics of a “universe of discourse” and a logic

based generic language to express that semantics.

Models can be visualized graphically using the ORM formal graphical language
but also verbalized using a controlled natural language that enables each

stakeholder to fully validate the semantics contained within the models.

In support of the development of information systems, the algorithms required
to automatically transform the conceptual models into logical and physical
models (relational, hierarchical, object oriented) to ease the development of
software. Such automation ensures the quality of the generated logical models

(e.g. fulfilling the standardized normal form rules of relational modelling).

Developing and operating large systems such as space systems implies con-
stant exchanges of information and knowledge, through multi-levels sets of
customer /supplier relationships. In such a global environment, interoperabil-
ity cannot just be limited to assessing how to exchange data contained within
data files, how to understand, to interpret an interface control document.
Semantics is expressed using conceptual modelling. Any partner involved,
independently of the customer or supplier role(s) played, has the full freedom
to define and to limit their universe of discourse to the responsibility they
play in the overall Space System. This implies the freedom, for any partner,
to define locally the information systems needed, as long as the overall Space

System needs are satisfied.

Semantic interoperability ensures that the information exchanged between all
partners satisfies the overall Space System needs. Illustrated by Figure 8.11,

the concepts of global model and local model are introduced:

e a global model is a conceptual data model whose purpose is to capture
and put in relations among the universes of discourse of partners involved,
i.e. producing the semantic links between the vocabulary used by each

community, deriving how the same semantics modelled by some partner
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in a given conceptual way maps the conceptual representation of the
others;

e a local model is a conceptual data model that represents the view (a
local view) that a given partner has of the global model, meaning the
subset of the global model of relevance to that partner.

global model

local
B

shared
semantics

Figure 8.11: Shared semantics between two local conceptual models

Applying semantic interoperability implies the need for a common generic
conceptual language used to express the semantics of the domain-specific
conceptual models and to map the conceptual definitions that carry the same
semantics. Each domain-specific model is expressed in a generic language
that is either conceptual, logical or physical. Transforming a conceptual
domain-specific model into a logical domain-specific model, translating a
logical domain-specific model into a physical model and reverse-engineering
physical or logical domain-specific models into conceptual domain-specific
models requires mapping the conceptual definitions of these generic languages
and identifying what semantics can be shared.
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Having the conceptual maps between the generic languages of interest enables
the capability to automate the transformation of the domain-specific schemas
expressed in a generic language into domain-specific schemas expressed into
another generic language. It is worthwhile to mention that the semantic
equivalence of the source schemas and the schemas resulting from the transfor-
mations is fully dependent of the semantic expressiveness of the used generic
languages. Formalising the generic languages’ conceptual mappings and the
domain-specific conceptual mappings provides the foundations for the success

of the “Semantic Interoperability” objective.

Semantic modelling large information systems such as a Spacecraft Refer-
ence Database used by industry to support the spacecraft development and
manage all monitoring and control definitions for testing the spacecraft and
its components and later operating the spacecraft in-flight, produces large

models.

Semantic interoperability implies integrating many (potentially very large)
semantic models and managing for each stakeholder the views (subsets of
the overall model) of interest. Ensuring the overall quality and integrity of
the each semantic model is challenging. Ensuring the overall quality and
integrity of the Space System Ontology (i.e. the result of integrating several
semantic models for ensuing the interoperability at semantic level) is a very
difficult task. The main objective of this activity is to assess the feasibility
of developing a “semantic reasoner”, to specify it and to prototype its key
feature that is the automatic verification of the quality of the semantic models
produced in NORMA. The NORMA software tool (in its professional version)
is currently operationally used by ESA to model at semantic level. The page
feature of NORMA is therefore essential in the development of large ORM
diagrams since each page represents a local model concurring to produce the
global model (i.e. the complete ORM diagram). For this reason the ORM
models that are going to be tested are all composed of a multitude of NORMA

pages.
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8.5.2 Requirements for Benchmarking ORMIiE

To prove that ORMIE is useful in an industrial setting, it should check
the semantics in a reasonable amount of time. This task is particularly
challenging in the context where potentially large ORM diagrams are modelled,
such as in the European Space Agency environment. To properly evaluate
such performance one would need benchmarks tailored towards the usage
requirements proper for the ORMIE setting. Hence, there is a need for
benchmarks resembling a typical real-world industrial scenario, in terms of
the size of the ORM models, the complexity of the generated ontology, the
complexity of the mappings, and the complexity of the queries. The purpose
of this benchmark is to evaluate if ORMIE is a suitable candidate to be used
in a real-world industrial scenario, but before doing so we need to identify the
features of an industrial environment in order to properly design a benchmark
test.

We start by identifying the industrial settings features: as stated in the
previous section where the ESA context has been described, we notice that an
industrial setting is characterized by large data, in this case ORM models with
hundreds of ORM constraints. Moreover, since ESA models are composed by
many views where each stakeholder is taking part in the project, it necessarily
means that in the real-world an ORM model is developed by several iterations.
We define an iteration as a change applied to the model performed by a
stakeholder, like adding, removing, or editing one or more ORM constraints
in the diagram. This action puts the model in a new configuration requiring

a new reasoning computation.

We can summarize the real-world industrial features as follows:

e large data;
e many partners;

e several iterations.

Computing large data may be a time consuming task and if for each iteration
the reasoning is slow the entire workflow is significantly slowed down and the
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usage of ORMIE may even result in it being an obstacle to the development
of the system.

Considering these requirements, the suitable data to be used in the experiment
must reflect the features of a real-world scenario that are given by large ORM

diagrams used by multiple stakeholders.

A positive outcome of the benchmark would be computing the inferences in
a reasonable amount of time; otherwise, it could be a limitation since many

“try and catch” iterations are used to manage potentially large diagrams.
But, what is defined as a reasonable time in this context?

This question has two possible answers, according to the two ways ORMiE
may be activated. As we have seen in Section 8.4, ORMiE can be activated
manually or automatically. A manual activation runs ORMiIE once when
the user decides; the automatic activation runs ORMiE every time the
model is changed. The first scenario is usually taken into account to check
the semantics of a finished model; the second scenario is used when more
iterations are needed, but the automatic activation can also be a default
choice to continuously run the reasoning every time the model changes. The
adoption of the second scenario must not constitute a huge loss of time (e.g.
waiting too much time every time the model changes could be frustrating for
the modeller), so a reasonable time for this should be a computation that
takes the least possible amount of time, best non perceivable by the modeller.
In other words, few milliseconds. Unlike this scenario, when ORMiE is called
manually there is an higher tolerance, so a reasonable computation time may
also be longer.

8.5.3 Experiment Design

For each ORM model we consider the following characteristics:

e Number of ORM constraints - An ORM model is composed by a set of

ORM constraints determining the size of the model.
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e Number of TBox axioms - Each ORM model has a corresponding
generated ontology that will be processed by the reasoner. The number

of TBox axioms indicates the size of the ontology.

e Overall execution time - Time elapsed from the start up of the system
to the inferences are ready. This metric is expressed in milliseconds

(ms).

e Memory - The memory consumption taken by the ORMiE process. This

metric is expressed in megabytes (MB).

Since the focus of the experiment is to measure the execution time in order
to evaluate if ORMIE is able to compute the ORM models in a reasonable
time, this metric needs more details. The overall execution time is obtained
by a sequence of actions performed by ORMiE, so detecting these steps in
the benchmark may help to better locate possible bottlenecks or having a

more accurate evaluation of the data.

1. Parser - Time spent parsing the ORM model. This task is the first one

to be executed.

2. Ontology generator - Time spent to generate an ontology from the given
ORM model.

3. Reasoner - Time spent by the reasoner processing and querying the
generated ontology. The reasoning is a set of operations handled by the

reasoner used in ORMIE (Fact++) to retrieve the inferences.

4. Gui - Time spent by the GUI loading the results. The step involving
the ORMIE graphical interface is related to the time that occurs to

collect and display all the information for the final user.

After taking into account these data, a set of 5 runs are performed for each

model in order to identify the average execution time and memory values.
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Data - ORM models

To have a better insight into the data, we describe each single ORM model
and its role in the test. The test has been performed using three ORM models
with different sizes:

1. PUS.orm - The largest file used in this ESA project. An ORM diagram
divided into 42 pages representing a space-craft information system.
This is considered a suitable candidate for the test since it is has a
large size and it is comprehensive of all ORM constraint, along with
subtype and fact type derivation rules. PUS digram is composed of
46 views. This means that different stakeholders are taking part to
the development of this ORM model by doing multiple iterations from
different sources: this features makes this model a suitable candidate

for a real-world industrial scenario.

2. PUS-lite.orm - As the name suggests, it is a lightweight version of
the previous one, approximately half-size and divided into 26 pages.
Although it is considered a large ORM model, its overall execution time
should be compared to the previous one in order to see if there are some

significant differences.

3. Visitor.orm - The running example in Figure 4.11 is the smallest in the
test with a size that is typically used to design small ORM diagrams that
fit into one page. Despite this not being suitable for testing a real-world
scenario, it takes part in the test because it may help to detect possible

differences in the overall execution time among the models.

The number of pages has no effect on the overall execution time since they are
virtual views. Technically speaking, the ORMiE parser sees the entire ORM
diagram as a whole without taking into account the views, so the system
generates a single ontology then passes it on the reasoner to be processed. The
number of pages is an additional information to provide an approximation
of the ORM model size. In Figure 8.12 is provided an example of reasoning
over the ORM diagram PUS-lite.orm:
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Figure 8.12: ORMiIE reasoning with an ESA conceptual model

The ORM models are the initial input of the test. After the ORMiE parser
finishes his job, an ontology is generated to represent the parsed ORM
model. Generated ontologies must be considered since they serve as the input
for the reasoner. The generated ontology contains OWL axioms specifying
comprehensive information about the underlying classes in the ORM models;
in particular, the generated ontology presents rich hierarchies of classes,
axioms that infer new objects, disjointness and equivalence assertions. Since
the backbone of the ORM formalisation is entirely based on DLRZE, then the
Description Logics used is ALCQZ; this means that the generated ontology
is encoded in the OWL fragment named OWL2 DL. The generated ontology
coming from the ESA ORM model is suitable for benchmarking reasoning
tasks, given that it is a representative of the real-world ontology in terms of
number of classes and maximum depth of the class hierarchy (hence, it allows

for reasoning with respect to class hierarchies).

Hardware and software settings

The benchmark has been performed on a machine with the following specifi-

cations:
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Operating System: Microsoft Windows 10 Professional

Architecture: x64

CPU: AMD Ryzen 2700X

— Number of cores: 8

— Number of CPU threads: 16
— Default clock frequency: 3.7Ghz

System Memory
— Capacity: 32 GB

— Frequency: 2133 Mhz

As for the software specifications, we must consider ORMiE (this implies the
usage of UModel) and its environment (NORMA).

e Programming language: C#

Framework: Microsoft .NET 4

Core system: UModel (ported in C# by IKVM)

Reasoner: Fact++ 1.6.4

OWLAPI: version 4.1.4

8.5.4 Benchmark Results

The results are presented in Table 8.1. Marked in bold overall execution time

and the memory consumption.

The largest ORM model named PUS.orm is computed in an average time
of 371ms; a smaller version of the same model with less constraints, namely
PUS-lite.orm, has been executed in an average time of 279ms; finally, the
running example named Visitor has been computed in an average time of

17ms. At a first glance, the execution time for large ORM models is considered
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Table 8.1: Overall time (in milliseconds) - Memory (in megabytes)

Model # constr | # axioms | avg_pars | avg onto | avg reas | avg gui | avg all | mem
PUS 737 5143 3 169 196 3 371 182
PUS-lite 479 4098 2 151 124 2 279 158
Visitor 43 130 1 6 8 1 16 45

reasonable and also efficient. It is easy to observe that the parser runs in
very few milliseconds for every input. The reason behind this efficiency is
because the ORMIE parser just needs to read the ORM constraints because
the model has been already loaded inside NORMA. It is important to specify
that the parser lies on the same stack where ORMIE is executed, the .NET

framework.

The average execution time for the ORMiE graphical interface is efficient as

well because the inferences are already stored in memory.

The ontology generation execution time depends on the input size and it
grows linearly. Nothing surprising since ORMiE has to write the axioms in
the generated ontology each time an ORM constraint is encoded, plus all the
axioms related to the DLR* encoding.

The memory consumption grows linearly as well, since the generated ontology

and its results are stored in memory as well.

The reasoning execution time is quite efficient as well, but it seems to grow
depending on the input size. As it is known from Description Logics theory [36]
(Chapter 9), the size of an ontology is only loosely related to the complexity
of reasoning on it. For this reason, the reasoning section deserves further
insights in order to detect possible sources of complexity. The details about

the reasoning execution time are shown in Table 8.2:

We can observe that the computation of disjointnesses is one of the major
source of complexity. The reason behind this is the DLRE tree which is built
upon a set of disjointnesses, so the number of disjointess axioms depends on
the size of the tree. Recalling Section 5.1.5, the DLR* mapping function dsj
ensures that relations with different signatures are disjoint. In the worst case

all relationships have different signatures, this means that the complexity
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Table 8.2: Reasoning execution time details (in milliseconds)

Run/Task | Hierarchy | Unsat | Equivalence | Disjointness | Mandatory | Uniqueness
. RUN 1 16 2 2 95 5 91
5| RUN 2 22 1 7 67 4 89
L RUN 3 23 1 2 62 13 80
* T RUN 4 21 2 5 65 9 81
RUN 5 24 2 3 63 9 92
= | RUN 1 15 1 1 44 1 54
3| RUN 2 18 1 1 41 4 64
ﬁ RUN 3 19 1 2 53 0 53
g' RUN 4 15 1 5 45 3 56
& RUN 5 14 1 0 48 3 57
RUN 1 2 0 0 2 0 4
§ RUN 2 1 0 0 0 0 2
j§ RUN 3 1 0 0 2 0 3
g RUN 4 1 0 0 3 0 8
RUN 5 3 0 0 0 0 4

grows at most linearly since the reasoner must compute all the disjointness
combinations. This implies that the size of the ontology does not necessarily

affect the computation time of disjointness, but the DLRY tree size does.

Computing uniqueness is also a source of complexity. As we have seen in
Section 7.4, the query for uniqueness compares every class marked as UNIQ
with all the classes marked as PROJ which belonging to the DLRE tree. The
number of comparisons depends on the number of nodes in the DLRE tree.

Similar to the disjointness case this function grows at most linearly in time.

8.5.5 Findings and Conclusions

Observing the data we can state that ORMIE is able to perform the automated
reasoning on real-world models in few hundreds milliseconds. This timing

can be considered enough reasonable.

Findings related to the benchmark:
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e The parser and the gui are very efficient since they read data that is already
loaded.

e The ontology generation time depends on the size of the ORM model,
precisely, on the number of ORM constraints and the number of TBox
axioms that need to be written in the generated ontology. So, the complexity
grows linearly. The biggest ontology has been generated in ~150ms, still a

reasonable amount of time.

e ORM diagram size does not necessarily affect the reasoning execution time.
The reason behind this is the nature of the encoding in ALCQZ. So the
scalability of the ORMIE automated reasoning is strictly related to the
scalability of the reasoning algorithms that process ontologies encoded
in the fragment ALCQZ, so it is possible to conclude that even for huge

diagrams the system is efficient.

e The major source of complexity are disjointness and uniqueness because
they depend on the number of nodes in the DLRE tree, so the complexity
grows depending on the size of the DLRE tree, not necessarily the size
of ontology (e.g. best case a large ORM diagram made only by Entity
Types generates a large ontology with no tree nodes, so disjointnesses
and uniquenesses are not even computed). Despite their complexity, the
computation for real-world data can be still considered efficient since the

amount of time in an average case is under 100ms.

Additional observations:

e The NORMA pattern control (Section 2.4) forces the modeller to avoid
trivial bad-modelling patterns. If this function is disabled, or the bad
modelling involves an undetected pattern, the reasoning covers the job
detecting the related inferences. Where the NORMA pattern control relies
on mere syntax, the reasoner relies on the semantic ensuring further control

over the model.

e NORMA pattern control does not work on ORM Derivation Rules. Since
NORMA alone has no control over the semantics, the modeller cannot
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immediately see the consequence of defining a derivation rule in the ORM
diagram. A derivation rule can raise interesting inferences, or in the worst
case can raise inconsistencies; for this reason the adoption of the automated

reasoning adds more control over this task.

e The inferences are presented in a way to make them easy to spot in the
graphical interface. Since large diagrams have several object types and fact
types, the user has to scroll-down every object type and fact type resulting
in a time-consuming activity. The graphical interface has the feature to
highlight even those relevant inferences that are nested in the hierarchy, in

this way the modeller is able to quickly detect the wanted inference.

e The core engine of ORMiE is the UModel framework, so the further research
tracks and possible improvements discussed in Section 7.4 are inherited by
ORMiE.

In conclusion, ORMIE is able to handle real-world ORM diagrams in a
reasonable amount of time. We must also consider that ORMiE is not a
proof-of-concept tool, instead it is a ready-to-use software that is used by the
European Space Agency to support the conceptual modelling about the design
of spacecraft systems [4], [5]. Additional research directions are suggested by
the aforementioned points, like improving performance related optimizations

and implementing new functionalities like the explanatory service.



Related works

In this chapter we compare ORMIE against other conceptual modelling-related
tools. The comparison is based on some key features considered relevant for
a conceptual modelling application:

e Support for automated reasoning - it is the key feature discussed in this

work since it carries interesting benefits for the modelling workflow;

e Support for automated reasoning over rules, such as ORM Derivation
Rules for ORM and OCL for UML;

e Industry-ready environment - a feature that differentiates when to use
a software in an industrial environment, where multiple stakeholders

take part to the project through several iterations;

e Additional features for the workflow - like import/export of models in

different format, support for verbalization, etc.

We are going to point out the possible weaknesses, similarities and advantages

of each tool.

9.1 ICOM

ICOM is a conceptual modelling tool which allows the modeller to design
multiple extended ontologies [48] [54] [53] [52]. Each project can be organised
into several ontologies, with the possibility to include inter and intra ontology
constraints. The logical reasoning is taken out by Racer as a reasoning

171
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engine in order to verify the specification, infer implicit facts, devise stricter
constraints, and manifest any inconsistency [71], [70], [112]. The diagrams
are modelled with the DIG language, the Description Logics Interface [25].
The intention behind ICOM is to provide a simple conceptual modelling tool
that demonstrates the use of the novel and powerful knowledge representation
based technologies for database and ontology design.
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Figure 9.1: ICOM

In Figure 9.1 we see how the ICOM gui looks like. There is a browser for
object navigation and the project panel where most of the model editing is

done, where each model in the project is displayed in a separate model panel.

The inferences are directly depicted in the project panel, as for the Rolel

constraint in Figure 9.2 where the green arrow is shown.

ICOM is a proof-of-concept software which is not maintained any more. It

was written in standard Java 5 and distributed for Linux, Mac and Windows.
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Figure 9.2: ICOM

The system has the limitation to be standalone and it does not come with a
rich set of features like an environment as ORMiE.

Despite this, [COM has some similarities with ORMiE like the usage of
the automated reasoning and the capability to work with inter and intra-
ontology constraints and diagrams. ORMiIE and ICOM differ in displaying
the inferences: ORMIE shows the inferences inside an browsable panel; ICOM
shows the inferences directly into the diagram. This approach could be
efficient for small diagrams where the readability is reduced, but for large
diagrams a specific window may improve the user experience especially where

a search for a particular inference among several diagram elements is needed.
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9.2 DOGMA Modeler

DogmaModeler [114] is an ontology modelling tool based on ORM. The first
version of DogmaModeler was developed at the Vrije Universiteit Brussel
[101], [95]. The goal of DogmaModeler is to enable non-IT experts to model
ontologies with little or no involvement of an ontology engineer. This is carried
out by the usage of ORM as a graphical notation, the ORM verbalization
feature that represents the ORM diagrams into pseudo natural language that
allows non-experts to check, validate, or build diagrams. Similar to ICOM,
DogmaModeler makes use of the automatic mapping of ORM diagrams into
the DIG description logic interface and reasoning using Racer.
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Figure 9.3: Dogma Modeler

DogmaModeler relies on the formalisation that can be found in [102], where the
DLR description logic is used to encode ORM constraints in SHOZN OWL.
As stated in [106] and also in [61], this formalisation has some limitations and
formal inconsistencies. The provided encoding is sloppy with respect to the
underlying DL formalism: distinct extensions of the adopted logic (e.g. DLR
plus DLR-Lite) and distinct DL languages (e.g. DLR, plus DLR-Lite, plus
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SROZQ, plus role composition operator) are mixed together. No semantics
or complexity results are provided for these combinations.

DogmaModeler like ICOM has some software limitations: the software is
outdated and dismissed and the system is standalone, so it does not have
a rich set of features designed for industry standard workflow, as ORMiE.
DogmaModeler does not support the automated reasoning for ORM Derivation

Rules.

9.3 Protégé

Protégé [129] is a free, open source ontology editor and a knowledge manage-
ment system developed at Stanford University. Earlier versions of the tool
were developed in collaboration with the University of Manchester. Protégé
provides a graphic user interface to define ontologies. It also includes deductive
classifiers to validate the consistency of models and to infer new information
based on the analysis of an ontology. Protégé is written in Java and heavily
uses Swing to create the user interface. Protégé can claim to be utilized
by a large community and according to [63] it is “the leading ontological
engineering tool”. An important feature is the capability to easily extend the
system by the development of user plugins and a public repository where to
download them [120]. The backbone of Protégé is based on OWLAPI, a Java,
interface and implementation for OWL. OWLAPI is focused towards OWL 2
which encompasses OWL-Lite, OWL-DL and OWL-Full [100].

The interface shown in Figure. 9.4 depicts a common scenario where Protégé
is used. Classes are organized by hierarchy and additional information are
displayed in the right part of the interface where ontology annotations and
class descriptions are also provided. In the bottom-left panel the object
properties are displayed. Protégé can be equipped with many reasoners
(like FaCT++, Pellet, Hermit, etc.) in order to perform the automated
reasoning over the ontology and highlight in yellow the inferences. The
provided inferences are the equivalences, disjointness and subsumption among
classes and object properties, plus the inconsistencies.
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Figure 9.4: Protégé

ORMIE and Protégé are two tools that serve different purposes: one hand we
have Protégé, it is designed to perform a set of operations on ontologies, like
viewing, editing, exporting and running reasoners; on the other hand we have
ORMIE which is specifically designed for ORM conceptual modelling. ORMiE
follows the fact-based approach implemented by the ORM language; Protégé
deals directly with OWL. As for the automated reasoning, we already know
from Chapter 7 that ORMiE uses the same reasoner available in Protégé to deal
with ALC QT ontologies, namely Fact++. Despite this, since ORMIE focuses
on the conceptual modelling the way of displaying the inferences is different:
in Protégé the way of showing the inferences is pretty straightforward, since
all the inferences are displayed in the interface according to the hierarchy
and the inferences from the ontology; here ORMIE differs since the hierarchy

strictly reflects the ORM diagram structure, ignoring all those axioms coming
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from the DLR* mapping that are not-relevant from the user perspective
(e.g., the one belonging to the multitree data structure). Moreover, in ORMiE
the inferences are depicted with the ORM graphical notation, for example if
a Uniqueness constraints is derived, an the uniqueness icon is displayed near
that constraint. Protégé instead simply highlights the inference. We have to
clarify that this is not a Protégé limitation, but an ORMiE feature needed in

order to deal with a context based on the conceptual modelling.

The Protégé hierarchy highlights (in yellow) a specific class only if it has
already been expanded in the hierarchy; the inefficiency of this approach is
not to allow the user to immediately see where the inferences are. ORMiE, on
the other hand, has a hierarchy system specifically designed to quickly suggest
the user where to look for relevant inferences, marking all the ancestors of a
specific node which has some inferences. This feature is particular useful for
big diagrams. Another difference in the automated reasoning is the support
for individuals: Protégé, unlike ORMiE, supports the assertion and the
reasoning over individuals. The reason behind this is that ORMiE relies only
on the conceptual level. An interesting feature of Protégé is the extensibility
by plugins, as ORMIE is for NORMA. This feature has lead the Protégé
community to expand its functionalities adding several plugins and different

reasoners as well.

9.4 Boston

Boston, published in 2015 by Viev Pty Ltd [135], is a tool for conceptual
modelling that implements the fact-based methodology through ORM. The
main Boston feature is the capability to convert ORM diagrams to Entity Re-
lationship Diagrams and Property Graph Schemas (PGS), since it is oriented
towards the modelling software for databases, supporting both relational and
graph models within the database. Boston allows the modellers to do their

conceptual modelling in ORM, and then transform models to the required
ER or PGS model.

Boston’s graphical interface is shown in Figure 9.5. The Boston user builds
ORM diagrams writing in the controlled natural language that in the case of
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Figure 9.5: Boston

ORM is FORML [82], [94]; then, the ORM diagram is automatically generated
in the main panel. Boston focuses the user experience on the usage of FORML
language, rather then using the drag and drop feature like NORMA does.

Boston does not support any automated reasoning services so it is not able to
check the semantics of the diagrams. Moreover, Boston does not support the
creation and the editing of ORM Derivation Rules. We can say that Boston
is a good standalone tool limited to ORM modelling coming with a good set

of features, but it has no support for automated reasoning.

9.5 CASETalk

CASETalk [24] is a suite of products that work combined, supporting the
ability to model, store and administrate business knowledge and the corre-
sponding technological artifacts. The methodology used is the fact-based
modelling based on the method FCO-IM [19], a successor of the well known
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method NIAM [138]. CASETalk is a powerful framework oriented to manage
corporate fact-models and with its rich set of features is suitable for large

teams working on the same project.

Using CASETalk, the business analysts are able to create fact-based models
using natural language for the I'T personnel that can view these conceptual
models. In this way, CASETalk aims to bridge the gap between these two
stakeholders taking part in the same project. Moreover, it is also possible to
store multiple model versions and manage access to them for multiple users,
run impact analysis and change reports. This means that the CASETalk is
also oriented towards large organisations. CASETalk comes with a rich set of
features, which includes exporting the fact-based models in UML and ER.
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Figure 9.6: CASETalk

In Figure 9.6 is depicted a CASETalk scenario where a digram represents a

specific domain.

CASETalk, unlike other tools mentioned in this chapter, is “industry-ready”;
this means that it is already used in the industry so it is able to manage
real-world scenarios with potentially large diagrams. It is also able to handle
the definition of rules inside any diagrams, but it does not support automated

reasoning services.
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9.6 USE

We now compare ORMiE with a tool that does not make use of fact-based
modelling, but it applies automated reasoning to UML class diagrams involving
OCL constraints as well. In our context, OCL constraints can be seen as
the counterpart of ORM Derivation Rules. USE allows UML models with
OCL constraints to be validated against developer’s assumptions. It is
able to check the formal properties of a UML class diagram to control the
consistency of UML models aiming to support the developers in analysing
the model structure in order to suggest revision where something can harm
the development of the software (e.g., inconsistencies) [51], [32], [31], [33],
[34]. USE started as a dissertation project in 1998 [66] and its first version
was already available. Then, other USE versions were developed further by
diploma theses and other student projects. Nowadays, it is a robust tool used

to validate OCL queries.
Figure 9.7 shows the USE graphical interface. In the centre there is the Object

Diagram panel that shows objects with attribute values and its relationships.
On the right side of the Object Diagram we have the Class Invariant window.
This window shows the classes evaluation in the current system state. An
invariant can be evaluated to true, false, or can be not applicable (n/a). A
false invariant indicates an invalid system state which can be inspected by
double-clicking the invariant name and this opens the Evaluation browser.
The evaluation browser takes a detailed view on a chosen invariant in order
to display variable assignments. This allows the user to understand invariant
failure and to detect the violating parts of the object diagram. This feature
is in some way similar to the reasoning procedure used in ORMiE to check
if an object type or a fact type is consistent or not. USE represents an
efficient solution to validate those UML class diagrams equipped with OCL

constraints.
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Figure 9.7: USE

9.7 HOL-OCL

HOL-OCL [2] is an interactive theorem proving environment for the OCL
constraints that is integrated in a Model-driven Engineering (MDE) framework.
It is implemented as a shallow embedding of OCL into the Higher-order Logic
(HOL) instance of the interactive theorem prover Isabelle [133]. HOL-OCL
is developed by Achim D. Brucker and Burkhart Wolff. HOL-OCL allows
the user to reason over OCL specifications, refine OCL specifications, and
builds the basis for further tool support, e.g. for the automatic test-case
generation. HOL-OCL provides several derived proof calculi that allow for
formal derivations establishing the validity of UML/OCL formulae. These

formulae arise naturally when checking the consistency of class models, when
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formally refining abstract models to more concrete ones or when discharging

side-conditions from model-transformations [32], [31], [33], [34].
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Figure 9.8: HOLOCL

As ORM Derivation Rules and ORMiIE, HOL-OCL allows to reason over
UML class models annotated with OCL specifications, in this way HOL-
OCL extends the reasoning over those UML class diagrams equipped with
rules. HOL-OCL differs from ORMiE because it is oriented to be a proof-
environment system; on the other hand, ORMIE is a tool designed to visually
model potentially large diagrams living inside a complete environment like
Visual Studio.

9.8 Menthor

Menthor Editor [131] is an ontology-driven conceptual modelling platform
which incorporates the theories of the Unified Foundational Ontology (UFO)
[69]. Menthor is an implementation of the language OntoUML which is a
well founded language based on UFO. The goal of Menthor is to improve
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the design of domain ontologies, expressed in the language OntoUML, by
using the theories behind UFO in order to build, validate and implement
ontologies. Among its features, it also includes OntoUML syntax validation,
Alloy simulation, Anti-Pattern verification,[123] and MDA transformations
from OntoUML to OWL.
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Figure 9.9: Menthor

In the context of the conceptual modelling Menthor has some similarities
with ORMiE;, since it focuses on modelling a domain by UML. Moreover, it
supports alloy validation and so OCL constraints. Despite Menthor not being
provided with a reasoning engine, it validates the models based on the UFO

framework and the anti-pattern verification.

Menthor may be considered a good candidate to be equipped with the UModel
framework in order to activate the automated reasoning over UML diagrams.






Conclusions and Future Work

This work introduced a methodology to support conceptual modelling by
automated reasoning. The benefits coming from this methodology have
been presented in a real-world industrial scenario where the control over the
semantics of the conceptual diagrams has been improved, speeding up the
development of a system from the early stages of software life cycle preventing
software degradation. Checking the consistency of a conceptual diagram,
or detecting redundancies and errors, may save time during the modelling
step and next development steps as well. The conceptual modelling has been
carried out as an implementation of the fact-based methodology with the
language ORM, which in this work has been used to model the conceptual
diagrams. An ORM formalisation into a logical language has been provided,
alongside a formalisation concerning the ORM Derivation Rules constraints.
A decidable fragment named ORM7T has been detected revealing that an
ORM diagram containing a subset of ORM constraints and ORM Derivation
Rules, can be processed by a reasoner to detect relevant inferences. ORM*
has been encoded in DLRE, a language from the Description Logics family
which is specifically designed to deal with n-ary relationships. Moreover, a
mapping into the OWL language has also been provided to make possible to
build an implementation of this theoretical work. In particular, this work has
been implemented in a framework called UModel that has been used in a real
case scenario to test its efficiency. This framework implements DLRT to be
used as a backbone language; in this way UModel is able to cover the ORME
fragment enabling the automated reasoning over ORM diagrams. The main

idea behind this framework is to provide a general purpose methodology that
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is useful for any conceptual modelling language, with the consequences to
easily extend the approach to any CASE tool that makes use of conceptual
modelling languages such as ORM, UML and ER.

The thesis focuses in particular on the ORM Derivation Rules formalisation
which represents a novelty in the ORM formalisation. As consequence of this,
another contribution is the implementation of a solution that deals with these

constructs.

The future research may follow different tracks. The reasoning could be ex-
tended beyond the conceptual level supporting the population of a conceptual
diagram. At this stage ORMIE is able to present the inferences to the final
user. A research track that could improve this feature is to add explanatory
services in order to show why that inferences have been detected, to make
easier to understand possible mistakes by tracking back the inferences. In this
way the modeller’s control over the conceptual diagram is enhanced. A more
practical flavour has the research going in the direction of integrating other
conceptual modelling languages in UModel framework to enable automated

reasoning over other languages and systems, such as UML and ER.

This work has shown that the presented methodology can be used in a real-
world industrial scenario, usually characterized by several users working on
the same project with multiple iterations. In this context, the execution
time to perform the reasoning is a crucial point due to the expected several
iterations. The results have shown that the presented framework runs in a
quite reasonable time even for large inputs, suggesting that the system is

ready to be used in an industrial scenario.
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ORM Derivation Rules Taxonomy

This appendix shows a set of ORM diagrams involving ORM Derivation Rules.
The appendix is divided into two sections: the first one is about the Subtype
Derivation Rules and the second one about the Fact Type Derivation Rules.

A.1 Subtype Derivation Rules

1
PersonName 1
W I

*Each Smokeris some Personwho smokes.

MalePerson *

[*EachMalePerson is a Person who has Gender'M')

Figure A.2: Value Equality
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BankBalance
(usD:)

[Teenager = ] [ OverdrawnPerson * ]

*Each Teenageris a Person who hasAge in13 .19 y.

*Each OverdrawnPerson isa Personwho has BankBalance < 0USD.

Figure A.3: Other value comparison

smokes has

*Each Smokeris a Person who smokes.
*Each MalePerson is a Person who has Gender'M'.
*Each MaleSmokeris a Personwhois a Smokerand a MalePerson.

MaleSmoker *

Figure A.4: Multiple Inheritance

A.2 Fact type Derivation Rules
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4has drives

smokes

is alcoholic

[NonSrnoker i ] ( NonDriver * ][TeeTotaIIer * )

*Each NonSmokeris a Personwho does not smoke.
*Each MonDriveris a Person who drives no Car.
*Each TeeTotalleris a Person who drinks no Beverage thatis alcoholic.

Figure A.5: Negation

is a resident citizen | |

Motorcycle

is a non-resident
(VIN)

( Resident * ][ SelfTransporter * ]

*Each Resident is some Person
who is a resident citizen
or is a resident alien.

*Each SelfTransporter is some Person
who drives some Car
or rides some Motorcycle.

Figure A.6: Disjunction

is a parent of

* Each derived Grandparent is a Person
who is a parent of a Person who is a parent of a Person.

Grandparent *

Figure A.7: Semi Derived Rule
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lives in

*Person livesin Country it and only if
that Person lives in some State that isin that Country.

Figure A.8: Linear Path

can fully communicate in *

canspeak
Person Language
(.Nr) (.Name)
can write in

*Person can fully communicate in Language if and only if
that Person can speakthatLanguage
and canwrite inthat Language.

cancommunicatein® | *Person can communicate in Language if and only if
thatPerson can speakthatLanguage
or can write in that Language.

Figure A.9: Correlating Path Variables

is a parent of

*Personl is an ancestorof Person2 if and only if
that Personiis a parent of that Person2
oris a parent of some Person3 whois an ancestor of that Person2.

is an ancestor of **

Figure A.10: Recursive Rules
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4has is on has total- *

UnitPrice
(AUD:)

Lineltem

* Foreach Lineltem,
subtotal = quantity * unitPrice.

pmmmm———
! Quantity
et et e !

ahas has subtotal- * *For each Invoice,

[subtatal] total = sum(subtotalof lineltem).

Figure A.11: Simple Calculation

has total- *

has total- * I on

[total]

o

I Quantity
%, I

* Foreach Invoice,
total = sum(lineItern.( guantity * unitPrice)).

* Faoreach Ttem,
totalSalesRevenue = sum(lineIterm.(quantity * unitPrice)).

Figure A.12: Aggregate Functions

——————

UnitPrice
(AUD:)

* For each Invoice,
total = sum(lineltem.(quantity * unitPrice)).

* For each Item,
totalSalesRevenue = sum(lineltem.(quantity * unitPrice)).

Figure A.13: Nested Calculation
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is popular
Sport
(.Name)

... played ... for __.

is large

is a typical sportsperson *

*Personis a typical sportsperson if and only if
that Person played some Sportfor some Country thatis large
and that Sport is popular.

Figure A.14: N-ary Fact Types

resulted in

made [ is by

e i o
N Enrolment !

Student
(.Nr)

*Student for Course got Rating if and anly if
some Enrolmentis by that Student

for ogot ¥ and is in that Course

and resulted inthat Rating.

Figure A.15: Objectification

*Personl may pairwith Person 2 if and only if
may pairwith * that Personl is of some Genderl

and that Person2is of some Gender2
where Genderl <= Gender2.

Figure A.16: Cartesian Product
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has e
- ] ; \
! FamilyName ‘:
e
(.Nr) e )
EmployeeName }
has ¥  ‘eccmmmeeeeoo- /

* For each Employee:
employeeName = preferredGivenName + ' ' + familyName if Employee has a preferredGivenName;
employeeName = familyName if Employee has no preferredGivenName.

Figure A.17: Multi Path

*CarModel soldin Regionif and only if
some Customerlivesin that Region

: and bought some Carthat is of that CarModel.
«sold in *

lives in
*Custormerin Region bought CarMaodel if and only if
that Customer lives in that Region

and bought some Car that is of that CarModel.

Figure A.18: Shared Path

lives in

+ Person lives in Country if and only if
that Person lives in some State thatis in that Country.

Figure A.19: Semiderived Fact Type
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