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Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung
durch die Strafverfolgungsbehörden begründen kann. Die Arbeit wurde
bisher weder im Inland noch im Ausland in gleicher oder ähnlicher Form als
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Zusammenfassung

Deutsch

Die konzeptionelle Modellierung ist ein kritischer Schritt bei der Software-
Entwicklung. Ihr Zweck ist es, relevante Aspekte der Anwendungsdomäne
in einer Sprache zu beschreiben, die für alle am Projekt beteiligten Akteure
verständlich ist. Eine Möglichkeit, die konzeptuelle Modellierung zu imple-
mentieren, ist die faktenbasierte Modellierung, eine Methodik, die in der Lage
ist, die konzeptuellen Modellierungs Constraints darzustellen und dabei auch
die Semantik zu erfassen, um Zwischen- und Endergebnisse zu validieren.

Object-Role Modelling (ORM) ist eine faktenbasierte Sprache für die Model-
lierung und Abfrage von Informationen auf der konzeptionellen Ebene durch
eine grafische und textuelle Sprache zur Spezifizierung von Modellen, Abfra-
gen und Prozeduren, um die Zuordnung zu anderen Arten von Modellen wie
UML und ER durchzuführen.

Konzeptionelle Modelle allein sind nicht in der Lage, die Semantik der Mod-
elle zu überprüfen, und diese Einschränkung kann zu impliziten Konsequen-
zen führen, die vom Modellierer insbesondere in komplexen Diagrammen
unentdeckt bleiben können; dies kann auch zu verschiedenen Formen von
Inkonsistenzen oder Redundanzen im Diagramm selbst führen, die eine Ver-
schlechterung der Qualität des Designs und/oder erhöhte Entwicklungszeiten
und -kosten zur Folge haben. Dieses Problem führt zu der Notwendigkeit au-
tomatisierten Schließens, um die genannten Inkonsistenzen und Redundanzen
zu überprüfen.

Das automatisierte Schließen ist ein bekanntes Verfahren, das einen logischen
Prozess verwendet, bei dem eine Schlussfolgerung auf mehreren Prämissen
beruht, die im Allgemeinen als wahr angenommen werden. Unter logischem
Schließen verstehen wir die Ableitung von Fakten, die in unserem ORM-
Diagramm nicht explizit ausgedrückt sind.

Die Anwendung des automatisierten Schließens auf die konzeptuelle Mod-
ellierungsmethodik hat einige Vorteile, da sie den Modellierer während der
Modellierungsphase unterstützt, um Fehler zu vermeiden. Redundanzen oder
Inkonsistenzen des Diagramms, die Ableitung neuer Constraints, die Bestäti-
gung der Gültigkeit des Modells oder der Vorschlag einer Überarbeitung sind
weitere Vorteile.

Diese Schritte sind vor allem für Kontexte, in denen riesige konzeptuelle
Diagramme verwendet werden, in denen es sehr schwierig und zeitaufwändig
ist, die Semantik der Diagramme manuell zu überprüfen, zeitsparend.
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Die Hauptidee dieser Arbeit besteht darin, eine Methodik zur Anwendung des
automatisierten Schließens auf konzeptuelle Modelldiagramme zu entwickeln,
um die Semantik der Diagramme zu überprüfen, damit die Vorteile des
automatisierten Schließens genutzt werden können. In dieser Arbeit wird die
Methodik auf ORM angewandt, eine mächtige Sprache die eine Vielzahl von
Constraints bereitstellt.

Unter all diesen Constraints gibt es ORM-Ableitungsregeln, die in der Lage
sind, Wissen auszudrücken, das über die Standard-ORM-Fähigkeiten hin-
ausgeht, was zu einer weiteren Komplexität das Schließens führt, da sie der
ORM-Sprache Ausdruckskraft verleihen.

Diese Regeln ähneln in gewisser Weise den OCL-Constraints für UML oder
SQL-Triggers.

Ein weiterer Beitrag dieser Arbeit besteht in der Formalisierung der ORM-
Ableitungsregeln. Auf diese Weise wird es möglich sein, das automatisierte
Schließen auch auf die ORM-Diagramme auszudehnen, die mit ORM-
Ableitungsregeln ausgestattet sind.

Ein Beitrag mit einem eher praktischen Charakter wird durch die Implemen-
tierung eines Frameworks namens UModel gegeben, das das automatisierte
Schließen über konzeptuellen Diagrammen anwendet. Obwohl der Schwer-
punkt der Verwendung des Frameworks in dieser Arbeit auf ORM liegt,
wurde das Framework so konzipiert, dass es mit den gängigsten konzeptuellen
Modellierungssprachen wie UML und ER kompatibel ist.

ORM ist in einer offiziellen Microsoft Visual Studio-Erweiterung namens
NORMA implementiert, die es dem Benutzer ermöglicht, ORM-Diagramme
zu erstellen, zu modifizieren und zu exportieren, und die eine Vielzahl von
Funktionen bereitstellt, die dem Modellierer bei der Verwaltung seines ORM-
Diagramms helfen.

Obwohl NORMA ein leistungsstarkes Werkzeug ist, ist es nicht in der Lage,
die Konsistenz der Modelle zu überprüfen, und aus diesem Grund könnte die
Ausstattung mit Schlussfolgerungfunktionen ein Schritt nach vorn sein, um
die Qualität der ORM-Diagramme zu erhalten.

Ein weiterer Teil dieser Arbeit ist die Erweiterung der NORMA-Funktionalitäten
durch ein Plugin unter Verwendung des UModel-Frameworks, das automati-
sche Schließen über die in NORMA geladenen ORM-Diagramme aktiviert
und dann den Endbenutzern die Schlussfolgerungen anzeigt.

ORM wird auch in industriellen Unternehmen eingesetzt. Diese Unternehmen
verwenden normalerweise CASE-Tools, mit denen sie die konzeptuellen Dia-
gramme erstellen können. Diese Tools berücksichtigen nicht die Überprüfung
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der Semantik der konzeptuellen Diagramme, und eine weitere Herausforderung
besteht darin, das oben erwähnte automatisierte Schlussverfahren für eine
Zielsoftware zu verallgemeinern.

Aus diesem Grund wurde eine Fallstudie auf der Grundlage eines realen indus-
triellen Szenarios erstellt, um mögliche Vorteile, die sich aus der verwendeten
Methodik ergeben, konkret zu messen und zu beobachten.
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Abstract

English

Conceptual modelling is a critical step during software development. Its
purpose is to describe relevant aspects of the application domain in a language
that is understandable by all the stakeholders taking part to the project. A
way to implement conceptual modelling is by using fact-based modelling, a
methodology that is able to represent the conceptual modelling constraints
capturing also the semantics in order to validate intermediate and final results.

Object-Role Modelling (ORM) is a fact-based language for modelling and
querying information at the conceptual level by a graphical and textual
language for specifying models, queries and procedures to perform the mapping
to other kinds of models like UML and ER.

Conceptual models alone are not able to check the semantics of the models
and this limitation may lead to implicit consequences that can go undetected
by the modeller especially in complex diagrams; this may also lead to various
forms of inconsistencies or redundancies in the diagram itself that give rise to
the degradation of the quality of the design and/or increased development
times and costs. This issue leads to the need of automated reasoning to check
the mentioned inconsistencies and redundancies.

Automated reasoning is a well-known procedure that uses a logical process in
which a conclusion is based on multiple premises that are generally assumed
to be true. By reasoning we mean deriving facts that are not expressed in our
ORM diagram explicitly. Applying automated reasoning to the conceptual
modelling methodology has some benefits, since it supports the modeller
during the modelling phase in order to avoid mistakes, as redundancies or
inconsistencies of the diagram, deriving new constraints, confirm the validity
of the model or suggest revision. These steps are a time saver especially for
contexts where huge conceptual diagrams are used, where it is very difficult
and time consuming to manually check the semantics of the diagrams.

The main idea of this work is to develop a methodology to apply the automated
reasoning on conceptual modelling diagrams to check the semantics of the
diagrams, in order to take the benefits from the automated reasoning. In
this work the methodology is applied to ORM which is a powerful language
providing a rich set of constraints.

Among all the constraints there are ORM Derivation rules which are able to
express knowledge that is beyond the standard ORM capabilities, bringing
to a further complexity of the reasoning because they add expressiveness to
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the ORM language. Those rules are in a way similar to OCL constraints
for UML, or SQL triggers. Another contribution of this work is to formalise
ORM Derivation rules, in this way it will be possible to extend the automated
reasoning even on those ORM diagrams equipped with ORM Derivation
Rules.

A contribution with a more practical flavour is given by the implementation
of a framework named UModel which applies the automated reasoning over
conceptual diagrams. Although the usage of the framework in this work has
its focus on ORM, the framework has been designed to be compatible with
the most popular conceptual modelling languages such as UML and ER.

ORM is implemented in an official Microsoft Visual Studio extension named
NORMA, which allows the user to create, modify and export ORM diagrams
and which provides a rich set of functionalities to help the modeller to manage
its ORM diagram. Despite NORMA being a powerful tool, it is not able to
check the consistency of the models and for this reason equipping it with
reasoning capabilities could be a step forward in order to preserve the quality
of the ORM diagrams. A contribution of this work is the extension of NORMA
functionalities by a plugin, using the UModel framework, that activates the
automated reasoning over those ORM diagrams loaded into NORMA and
then showing the inferences to the final users.

ORM is also used in the industry world companies. Those organisation usually
use CASE tools that allow them to build the conceptual diagrams. These
tools does not take into account checking the semantics of the conceptual
diagrams and another challenge is to generalize the aforementioned automated
reasoning procedure for a target software. For this reason, a case study based
on real-world industrial scenario has been provided in order to concretely
measure and observe possible benefits coming from the used methodology.
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1
Introduction and Motivation

We briefly outline the scope and motivation of the thesis. This work is largely

concerned with the formal specification of fact-base modelling structures,

precisely the fact-based language ORM. For reasons such as correctness and

clarity, information systems are best specified first at the conceptual level.

For large database systems applications, conceptual modelling software have

generally become the most important target systems onto which conceptual

information structures are mapped. Designing correct conceptual and rela-

tional schemas for practical applications is a non-trivial task and the wrong

design could lead to bad consequences in the development life cycle. The

main goal of the thesis is to provide a concrete methodology in order to

improve the conceptual modelling by automated reasoning. In this way the

process of making design choices could help the modeller, and in general all

the stakeholders, to build a robust software infrastructure by taking under

control the semantics of the models.

The way a model is designed has a direct impact in the real world where

conceptual modelling tools are used to manage complex domains. These

tools also known as CASE tools (Computer-aided software engineering), are

powerful systems which accelerate the development of the software, providing

a set of powerful features to model a domain. They use conceptual modelling

languages which are closer to the way we abstract the world in our cognition,

making them ideal to model a domain. The limitation of the conceptual

modelling tools is that they lack semantics check capabilities. This limitation

could lead to software degradation and unexpected software behaviours,

especially for large-scale environment this could be a serious issue. The core

1
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idea of the present work is to provide a methodology that overcomes this

limitation, expanding the capabilities of the conceptual modelling software

such that they are not limited to check the syntax of the diagrams, but check

the semantics as well. In this way it could enhance the trust of the system or

suggest the revision, preventing serious issues during the next stages of the

software development.

The methodology to accomplish this goal is grounded on the formalisation of

ORM language that allows to activate reasoning procedures, carried out by

Description Logics reasoners. The reasoning procedures are able to perform

semantic checks over ORM diagrams, in this way it is possible to overcome

the aforementioned limitation.

The research follows two main tracks: the theoretical aspects related to

ORM and Derivation Rules formalisation; the implementation counterpart

concerning the creation of a set of tools in order to support the modeller.

Outlined are the main goals of the research:

� Goal 1: providing an encoding for ORM in OWL;

� Goal 2: providing a formalisation for ORM Derivation Rules, both

Subtype and FactType;

� Goal 3: implementation of a framework to enable automated reasoning

for conceptual modelling languages and conceptual modelling software

as well;

� Goal 4: application of the methodology in a real case scenario.

The fulfilment of the first goal is the prerequisite to achieve the other goals

since it constitutes the first step of the methodology.

The second goal is an extension of the first one. Although several papers

presented their own ORM formalisation, no one has taken into account

the formalization of ORM derivation rules so far. Derivation rules express

knowledge that is beyond normal ORM capabilities, but this feature leads

to an increase of expressiveness of the ORM diagrams. For this reason, the
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challenge is to identify a decidable fragment in order to extend the reasoning

even to those ORM diagrams equipped with those rules.

Reaching the third goal would give to the community a tool useful to expand

the features of a target application. The direct impact of this goal involves

various actors, such as the modellers, the database or software engineers. The

versatility of the software makes possible to enrich any conceptual modelling

software of reasoning capabilities, making the impact of the research in

particular relevant for the industry world.

A successful result in the last goal could demonstrate the efficiency of the

methodology applied to real cases.

1.1 Summary of major contributions

The major research contributions of this thesis are hereby summarized. The

whole work is a combination of theoretical aspects and their methodological

counterpart, so they are grouped as follows:

� Theoretical

– OWL encoding of the ORM language;

– formalisation of ORM Derivation Rules;

– detection of a decidable fragment for ORM and ORM Derivation

Rules.

� Methodological

– Building a framework embeddable into other systems;

– implementation of the theoretical points and integration into the

framework;

– executing the workflow on a real-case study for industry.

1.2 Structural overview

Following there is a structured overview of the thesis:
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1. This chapter is meant to introduce the scope of the thesis along its

motivation and summarizing the main contributions.

2. The second chapter presents a list of arguments that the reader should

be familiar with. Here it is explained the need of the conceptual mod-

elling in software development and the related fact-based methodology.

The ORM language is introduced. It is a dialect of the fact-based

methodology which is also the main focus of this thesis. ORM Deriva-

tion Rules are also introduced, which are one of the core components of

this thesis.

3. The third chapter presents the ORM formalisation used in this work.

ORM constructs and ORM Derivation Rules are mapped in first-order

logic.

4. The forth chapter shows some use cases where the automated reasoning

is applied to the ORM diagrams in order to show its benefits. In

this chapter are also provided some reasoning examples with ORM

Derivation Rules.

5. The fifth chapter defines a decidable fragment for ORM where the

language DLR� is used to encode the ORM constraints. This decidable

fragment is the one used in the scope of this thesis.

6. The six chapter present a discussion about the difference between

conceptual modelling in OWL and ORM.

7. The seventh chapter speaks about the UModel framework. It is an im-

plementation of the work presented so far. UModel is a framework that

comes with a design specifically built to ease the process of integrating

the automated reasoning in any conceptual modelling software.

8. The eighth chapter is about ORMIE, a plugin for NORMA used in a

real-case scenario by the European Space Agency. This tool integrates

the UModel framework to enable the automated reasoning over ORM

diagrams loaded inside NORMA. A benchmark is also provided.
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9. The ninth chapter is a collection of tools similar to ORMIE in order to

provide a comparison.





2
The ORM language

This chapter introduces some concepts that the reader should be familiar

with in order to read and understand the next chapters.

2.1 Conceptual modelling

Information modelling is about the representation of symbol structures that

model some aspects of the real world. In Computer Science such structures are

defined as databases or knowledge bases, that represent a part of information

in the real world that is modelled into a system. We shall refer to the part of

a real world being modelled by an information base as its universe of discourse

(UofD), also known as application domain. Databases and knowledge bases

are checked for consistency, and sometimes queried and updated through

special-purpose languages. As with all models, the advantage of information

models is that they abstract away irrelevant details, and allow more efficient

examination of both the current, as well as past and projected future states

of the UofD. An information model is represented by a specific language,

and this language influences the kinds of details that are considered. A

language provides the semantics for modelling an application, such as entity

and relationship, as well as means for organizing information. Conceptual

models are used in different areas, for example in Artificial intelligence, where

programs require the representation of the human knowledge in order to act

with intelligence. These programs may rely on conceptual models built up

using knowledge representation languages such as DLs. Conceptual languages

are also suitable for database design where the first step is crucial for the

7
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construction of a conceptual schema which determines the information needs

of the users, and that may be then converted to a physical implementation

schema. Chen’s Entity-Relationship model [43], and later semantic data

models [98] were the result of efforts in this direction. In software development,

the early acquisition stage it is a delicate step, which is seen to consist of a

requirements model that describes the relationship of the proposed system

and its environment, that is represented by a conceptual model. Moreover,

the object-oriented software community has also proposed viewing software

components (classes/objects) as models of real-world entities. This was evident

in the features of Simula, the first object-oriented programming language,

and became a cornerstone of most object-oriented techniques, including the

current leader, UML [27]. One interesting aspect of conceptual modelling

recurring in database development is the abstraction mechanism to support

large conceptual models by abstracting details initially, and then introducing

them in a step-wise way. Important abstractions are the capacity to think

of objects as wholes, not just a collection of their attributes/components

(aggregation); also abstracting the differences among individuals in order

to be classified (classification); and abstracting the hierarchy structure of

a set of conceptually related classes (generalization). The benefit of the

abstraction in conceptual modelling is that the information are structured

making the model easy to develop and maintain. A smart way to build

up a model is to encode it in Description Logics, a family of knowledge

representation languages widely used in artificial intelligence to describe and

reason about the relevant concepts of an application domain. In the context

of the conceptual modelling, it is possible to use DLs as a reasoning backend

to take advantage of DLs properties which reveal some formal properties that

may not have been recognized by the modeller. From the implementation

perspective then it comes OWL, the Web Ontology Language [136]. OWL is

based on Description Logics and may be coupled with a reasoner to perform

the automated reasoning over the conceptual model it is representing. Unlike

other languages coming from the Description Logics family, such as DLR�

[10], OWL has only binary predicates.
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2.2 The fact-based modelling methodology

Fact-based modelling (FMB) is the methodology we use in this work to

represent conceptual diagrams [76], [107]. FBM is used for modelling the

semantics of a specific domain of interest for the purpose of developing

information systems, rule systems or sharing information. The main purpose

of fact based modelling is to capture as much of the semantics as possible,

bridging the gap among stakeholders preferably using concrete illustrations

and to remain independent of the representation for a specific implementation.

Unlike Entity-Relationship (ER) modelling or object-oriented modelling, fact

based modelling treats all facts as relationships (unary, binary, ternary etc.).

How facts are grouped into structures (e.g. attribute-based entity types,

classes, relation schemes, XML schemas) is considered a software design

level, implementation issue that is irrelevant to the capturing of business

semantics. Avoiding attributes in the base model enhances semantic stability

and understandability. Fact based modelling facilitates natural verbalization

and thus enables productive communication with all stakeholders. Fact based

modelling provides the means to capture the knowledge of the domain experts

in terms of “what” (i.e. the user requirements). FBM is conceptual, hence

free of any software implementation bias.

FBM is based on logic and controlled natural language, whereby the resulting

fact based model (the conceptual data model) captures the semantics of the

domain of interest by means of fact types, together with the associated concept

definitions and the integrity and derivation rules applying to populations

(facts) associated with these fact types.

All facts, constraints and derivation rules are expressed in controlled natural

language sentences that are intelligible to users in the business domain being

modelled. In addition to textual verbalization of data models, FBM includes

graphical notations for depicting data models with a rich variety of constraints.

For example in Figure 2.1, we have a graphical representation of the following

fact types:

Monument is ancient
Monument is located in Country
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Figure 2.1: ORM example - Monument

along its instances:

Coliseum is ancient
Coliseum monument is located in Italy

Here “is ancient” denotes a unary predicate, and “is located in” a binary

predicate.

In Entity-Relationship (ER) and Unified Modelling Language (UML) ap-

proaches, the unary fact type would instead typically be modelled as the

attribute assignment Volcano.isActive = true. Besides facilitating more natu-

ral expression, and ease of population with multiple instances, the usage of

attributes in favour of relationships promotes semantic stability (e.g. there

is no need to remodel what has already been modelled if we later decide

to record facts about an attribute). Fact types of higher arity (ternaries,

quaternaries etc.) are also allowed. For flexibility, and to cater for foreign

languages, predicates may be represented in mixfix form, where the terms for

the objects being predicated over are inserted in relevant placeholder positions

to form the fact sentence. For example, the fact type “Person plays Sport for

Country” involves the ternary predicate reading “...plays...for...”.

The FBM approach originated in Europe in the 1970s, and has since evolved

into a family of closely related dialects including Object-Role Modelling

(ORM), Cognition enhanced Natural Language Information Analysis Method

(CogNIAM), Fully Communication oriented Information Modelling (FCO-IM)

and the Developing Ontology-Grounded Methods and Applications (DOGMA)
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method. In the following section we speak about ORM, which is the language

we use in this work. In the next section we present the history and the

foundations of the ORM language, plus some illustrative examples.

2.3 ORM

2.3.1 History

The history of ORM is grounded in 1973, when Falkenberg generalized work by

Abrial and Senko on binary relationships to n-ary relationships, and excluded

attributes at the conceptual level to avoid “fuzzy” distinctions and to simplify

schema evolution. Later, Falkenberg proposed the fundamental ORM frame-

work, which he called the “object-role model” [50]. This framework allowed

n-ary and nested relationships, but depicted roles with arrowed lines. Nijssen

adapted this framework by introducing a circle-box notation for objects and

roles, and adding a linguistic orientation and design procedure to provide a

modelling method called ENALIM (Evolving NAtural Language Information

Model). Nijssen’s team of researchers at Control Data in Belgium developed

the method further, including van Assche who classified object types into

lexical object types (LOTs) and non-lexical object types (NOLOTs). Today,

LOTs are commonly called “entity types” and NOLOTs are called “value

types”. Meersman added subtyping to the approach, and made major con-

tributions to the RIDL query language [111] with Falkenberg and Nijssen.

The method was renamed “aN Information Analysis Method” (NIAM). Later,

the acronym “NIAM” was given different expansions, and is now known as

“Natural language Information Analysis Method” [139], [138]. In the 1980s,

Nijssen and Falkenberg worked on the design procedure and moved to the

University of Queensland, where the method was further enhanced by Halpin,

who provided the first full formalization, including schema equivalence proofs,

and made several refinements and extensions. In 1989, Halpin and Nijssen

coauthored a book on the approach, followed a year later by Wintraecken’s

book [139]. Today several books, including major works by Halpin [79], and

Bakema [15] expound on the approach. Many researchers contributed to

the fact oriented approach over the years, and there is no space here to list
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them all. Today various versions exist, but all adhere to the fundamental

object-role framework. Habrias developed an object-oriented version called

MOON (Normalized Object-Oriented Method). The Predicator Set Model

(PSM), developed mainly by ter Hofstede et al. [89], includes complex object

constructors. De Troyer and Meersman developed a version with constructors

called Natural Object-Relationship Model (NORM). Halpin developed an

extended version simply called ORM, and with Bloesch and others developed

an associated query language called ConQuer [28]. Bakema et al. [15] recast

all entity types as nested relationships, to produce Fully Communication

Oriented NIAM, which they later modified to Fully Communication Ori-

ented Information modelling (FCO-IM). More recently, Meersman and others

adapted ORM for ontology modelling, using a framework called DOGMA.

Nijssen and others extended NIAM to a version called NIAM2007. Halpin

and others developed a second generation ORM (ORM 2), whose graphical

notation is used in this work [45,92].

The formalisation of ORM represents a further step to the usage of ORM both

in the logicians’ community and in the industry world. Formalising ORM

enables automated reasoning over ORM conceptual diagrams; in this way, it

is possible to detect relevant formal properties automatically, in order to check

the semantics of the ORM diagrams. In a real-world context, this could be

useful to support the modeller during the initial step of software development,

which is the design step. The ORM formalisation started with Terry Halpin’s

PhD Thesis [74]. In the context of design conceptual and relational schemas,

Halpin formalized the NIAM language that is the ancestor of ORM. In his

thesis there is the first attempt to formalize a modelling language in order to

perform reasoning tasks, so the main objective is to provide formal basis for

reasoning about conceptual schemas and for making decision choices. After

the spreading of ORM and its implementation in NORMA [44],[91], [125],

ORM became more popular so the logicians’ community took into account

the possibility to formalize this very expressive language.

In 2005, Terry Halpin releases a new version of ORM, namely ORM2 [75].

From now on we refer to ORM2 as ORM.
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In 2007, Jarrar formalizes ORM using DLRifd [102], an extension of De-

scription Logics introduced by Calvanese in [37]. The paper shows that a

formalisation in OWL SHOIN would be less efficient than DLRifd because

some ORM constraints cannot be translated (predicate uniqueness, external

uniqueness, set-comparison constraints between single roles and between not

contiguous roles, objectification n-ary relationships). Another formalisation

of ORM in DLRifd was done by Keet in [106]. During the same year also

Bach in [101] analysed the semantics of OWL-DL and ORM, explaining

how to represent OWL-DL constraints in ORM without losing semantics.

In [104] Jarrar mapped ORM into the DLRifd , which is one of the most

expressive description logics. Every ORM constraint is decidable, except

two rare cases. DLRifd was developed indeed to allow the majority of the

database primitives to be represented, including n-ary relations, identities,

and functional dependencies. However, the problem is that not all DLRifd ’s

constraints are implemented by current reasoning engines. In this paper the

mapping translates ORM into the SHOIN description logic, which is the

logic underpinning OWL (only version 1), the standard (W3C recommen-

dation) Ontology Web Language. DLRifd was developed as a compromise

between expressive power and decidability. This implies that the ORM map-

pings into SHOIN are easier to implement and exploit. SHOIN /OWL is

supported in almost all reasoning engines, and it is the most popular language

in ontology engineering. However, SHOIN/OWL does not support some

ORM constraints like n-ary relations and external uniqueness. The result of

the paper is the encoding of 22 mapping rules out of the 29 ORM constraints.

In 2009 OWL 2 was recommended by W3C Consortium as a standard of

ontology representation on the Web bringing some benefits: it is the recom-

mended ontology web language; it is used to publish and share ontologies on

the Web semantically; it is used to construct a structure to share information

standards for both human and machine consumption; automatic reasoning

can be done against ontologies represented in OWL 2 to check consistency

and coherency of these ontologies [136].

An ORM formalisation based on OWL2 is proposed by Franconi in [62], where

he introduces a new linear syntax and FOL semantics for a generalization of
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ORM2 [75], called ORM2plus, allowing the specification of join paths over an

arbitrary number of relations. The paper also identifies a core fragment of

ORM2, called ORM2zero, that can be translated in a sound and complete way

into the ExpTime-complete Description Logic ALCQI. In [57] a provably

correct encoding of a fragment of ORM2zero into a decidable fragment of

OWL2 is provided and it is discussed how to extend ORM2zero in a maximal

way by retaining at the same time the nice computational properties of

ORM2zero.

The most recent paper related to ORM formalisation is [10] where the language

DLR� is used to encode a decidable fragment of ORM. DLR� like DLRifd is

an extension of DLR, a description logic representing a natural generalization

of traditional description logics towards nary relations [16]. The feature of this

language is to represent n-ary relationships which are suitable for languages

like ORM. The backbone of this work is based on the decidable fragment

of DLR�, which is named DLR�. DLR� is provided with an encoding in

ALCQI and the languages are equisatisfiable. Since it is proved that this

fragment captures a significant fragment of ORM, it is used in this work to

encode some ORM constraints in order to perform a mapping into OWL and

take advantage of logical reasoning. Since OWL is essentially SROIQD the

encoding in ALCQI covers a fragment of OWL.

All the aforementioned formalisations do not include ORM Derivation Rules

as part of the formalisation. The present work aims to cover this part of the

ORM language in order to provide a full ORM formalisation.

Despite ORM Derivation Rules have not being formalised, some papers

explore them in a different context. For example, in [115] a classification of

the most popular rule types is presented, where the type of rules taken into

account are integrity rules, derivation rules, production rules, and reaction

rules. The work presents a general overview of these different types of rules,

including ORM derivation rules, but the handbook is not meant to provide a

formalisation for such rules, but only a general classification with the goal to

highlight their functionalities in the context of rule modelling.

In [46] an approach to navigate through an ORM model by roles is described,

namely role paths. A role path represents a traversal of related roles, starting
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with one or more roles connected to a root object type. Each subsequent role

in a path either is a role in the same fact type as the previous role, or involves

a join operation to a role with the same role player. That work introduces

the role paths as a foundation for both subtype and fact type derivation

rules. The metamodel described in the paper is currently implemented

as the basis for formal derivation rules in the NORMA tool. Users will

formulate derivation rules via high level graphical and textual views that

are automatically transformed into the low level role path structures. It is

important to state that role paths have been implemented by object-oriented

data structures in NORMA, so it is a pure object-model. In other words,

this is a way to traverse an ORM diagram that can be equipped with ORM

Derivation Rules as well, but it is not a formalisation as in classical logic with

a syntax, a semantics and a mapping.

Other papers take into account different kind of rules such as dynamic rules

[22], [23]. These dynamic rules specify an elementary transaction type by

indicating which kinds of objects or facts (being added, deleted or updated)

are involved. Dynamic rules may declare pre-conditions relevant to the

transaction, and a post-condition stating the properties of the new state, in a

way similar to SQL triggers.

The Section 2.3.3 introduces ORM Derivation Rules in order to give to the

reader the appropriate knowledge to understand the rest of the work.

2.3.2 ORM constraints

Object-Role modelling (ORM) is a fact-based language for modelling and

querying the information semantics of business domains in terms of the

underlying facts of interest, where all facts and rules may be verbalized in

language easy to understand for non-technical users. Since ORM is fact-

based, it differs from UML and ER [81] [83], treating all facts as relationships

of arbitrary arity (unary, binary, ternary etc.); for this feature ORM is

said to be attribute-free. Avoiding attributes in the base model enhances

semantic stability and natural verbalization, facilitating communication with

all stakeholder taking part to model their are working on.
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ORM includes graphical and textual languages for modelling and query-

ing information at the conceptual level, as well as procedures for designing

conceptual models, of transforming between different conceptual representa-

tions, forward engineering ORM schemas to implementation schemas (e.g.,

relational database schemas, object-oriented schemas, XML schemas, and

external schemas) and reverse engineering of implementation schemas to ORM

schemas.

In ORM all fact structures are expressed as relationships with a given arity

and are called fact types. These may be unary (e.g., Person smokes), binary

(e.g., Person is identified by a Document), ternary (e.g., Person plays Sport

for a Country), and so on. The natural verbalization makes easy to bridge

the gap among stakeholders since all facts and rules may be easily verbalized

in sentences understandable to the domain expert that often is not an IT

person. An advantage of the attribute-free feature is that no nulls occur in

populations of base fact types, which must be elementary or existential. The

consequence of this feature is that a attribute-free diagram usually consumes

more space, but this apparent disadvantage is easy to mitigate by the usage

of an ORM tool to automatically create attribute-based structures (e.g., ER,

UML class, or relational schemas) as views of an ORM schema.

Running example

Now, let us suppose we want to design in ORM a system managing the people

documents for a certain country. We build this ORM diagram step by step

introducing the ORM constraints along with the FORML (Formal ORM

Language), a controlled natural language that encodes each ORM constraint

in a language easy to understand for non-technical people. This language

is useful to express in natural language the semantics of ORM constraints

unambiguously. We also show the semantics in first-order logic. We start

stating that a person is identified by a document. In ORM, the following

statement is depicted as in Figure 2.2. The entity Person is represented by the

rounded rectangle where inside is specified the name of the entity, in this case

Person. This represents the instances belonging to the set of people in the

system. The same applies for the entity Document. The relation is depicted
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by the sequence of tiny rectangle boxes representing the ORM roles; in this

case we have two roles since the relation is binary. Each role is connected to

the entity involved into that relation.

Figure 2.2: ORM diagram example - STEP 1

In FORML we have:

Person with ID is an entity type.
Document is an entity type.
Person with ID has Document.

In FOL:

@x, y.haspx, yqÑPersonWithIDpxq ^ Documentpyq

The ORM entities (like Person with ID, Document, etc.) do not occur in

the formalisation since they are declared in the ORM signature (this will be

explained in Chapter 3).

We need to specify that, as it happens in the real world, a person is identified

by a document which uniquely identifies that person. This is represented in

Figure. 2.3 by a purple dash on a role stating that there are no duplicate

instances inside that role, this means that the cardinality is set to one, in a

way similar to SQL primary keys.

Figure 2.3: ORM diagram example - STEP 2

In FORML we have:

Each Person with ID has at most one Document.
For each Document, at most one Person with ID has that Document.



18 CHAPTER 2. THE ORM LANGUAGE

In FOL:

@x, y.haspx, yqÑD¤1z.haspx, zq
@x, y.haspx, yqÑD¤1z.haspz, yq

We now want to say that each person must be identified by a document. In

other words, we want to set the mandatory participation of person to the

relationship has. In Figure 2.4 this is depicted by the purple dot near a role.

Figure 2.4: ORM diagram example - STEP 3

In FORML:

Each Person with ID has exactly one Document.

In FOL:

@x.PersonWithIDpxqÑD�1y.haspx, yq

We can add more details to the diagram. For example, we may want to

make a distinction among the type of documents. In Figure 2.5 we introduce

two subset of the entity Document: Visa and IDCard. Conceptually, Visa

represents those documents belonging to the visitors of that country; instead,

IDCard is the document for the citizen of that country. Those subset are

depicted as entity types with an arrow pointing to the super type entity.

In FORML we have:

VISA is an entity type.
Each Visa is an instance of Document.
IDCard is an entity type.
Each IDCard is an instance of Document.
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Figure 2.5: ORM diagram example - STEP 4

In FOL:

@x.VisapxqÑDocumentpxq
@x.IDcardpxqÑDocumentpxq

In this configuration some instances inside Visa may also belong to IDCard.

We need to add a constraint stating that there are not instances in common

between these two entities. This is achieved by introducing the disjointness

constraint depicted by a circle with a cross which is connected to the entities

that are disjoint. We may want to specify that the whole set of documents is

covered by the visas and idcards. This is expressed by the purple dot added

inside the cross, as in Figure 2.6.

Figure 2.6: ORM diagram example - STEP 5

In FORML:

For each Document, exactly one of the following holds:
that Document is some Visa;
that Document is some IDCard.
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In FOL:

@x.VisapxqÑ IDCardpxq
@x.DocumentpxqÑVisapxq _ IDCardpxq

We now want to state that some people in the set of Person are visitors.

Moreover, the visitor owns a visa. Please note that we have named the new

entity SomeVisitor instead of Visitor, since it cannot capture exactly all the

visitor; this is related to the ORM Derivation Rules and it will explained in

2.3.3.

Figure 2.7: ORM diagram example - STEP 6

In FORML:

Each SomeVisitor is an instance of Person with ID.
SomeVisitor owns Visa.
Each SomeVisitor owns exactly one Visa.
For each Visa, at most one SomeVisitor owns that Visa.

In FOL:

@x, y.ownspx, yqÑ SomeVisitorpxq ^ Visapyq
@x.SomeVisitorpxqÑPersonWithIDpxq
@x.SomeVisitorpxqÑDy.ownspx, yq
@x, y.ownspx, yqÑD¤1z.ownspx, zq
@x, y.ownspx, yqÑD¤1z.ownspz, yq
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We want to state that all the pairs inside the relationship owns are also inside

the relationship has. We express this restriction introducing the ORM subset

constraint, depicted with a � inside a circle.

Finally, the complete ORM diagram is shown in Figure 2.8.

Figure 2.8: ORM diagram example - STEP 7

In FORML:

If some SomeVisitor owns some Visa
then some Person with ID that is that SomeVisitor
has some Document that is that Visa.

In FOL:

@x, y.ownspx, yqÑ haspx, yq

Another example

ORM has a rich set of constraints that allow the modeller to design very

expressive diagrams. An ORM schema for a book publishing domain is shown

in Figure 2.9. Each book is identified by an International Standard Book

Number (ISBN), each person is identified by a person number, each grade is

identified by a grade number in the range 1 through 5, each gender is identified

by a code (“M” for male and “F” for Female), and each year is identified by its

common era (CE) number. Published Book is a derived subtype determined by

the subtype definition shown at the bottom of the figure. Review Assignment
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Figure 2.9: ORM Example - Book publishing domain

objectifies the relationship Book is assigned for review by Person, and is

independent since an instance of it may exist without playing any other role

(one can known about a review assignment before knowing what grade will

result from that assignment). The internal uniqueness constraints (depicted

as bars) and mandatory role constraints (solid dots) verbalize as follows:

Each Book is translated from at most one Book; Each Book has exactly one

Book Title; Each Book was published in at most 1 Year; For each Published

Book and Year, that Published Book in that Year sold at most one NrCopies;

Each Published Book sold at most one total NrCopies; It is possible that

the same Book is authored by more than one Person and that more than

one Book is authored by the same Person; Each Book is authored by some

Person; It is possible that the same Book is assigned for review by more than

one Person and that more than one Book is assigned for review by the same

Person; Each Review Assignment resulted in at most one Grade; Each Person

has exactly one Person Name; Each Person has at most one Gender; Each

Person has at most one Person Title; Each Person Title is restricted to at

most one Gender. The external uniqueness constraint (circled bar) indicates

that the combination of BookTitle and Year applies to at most one Book.
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The acyclic ring constraint (circle with three dots and a bar) on the book

translation predicate indicates that no book can be a translation of itself

or any of its ancestor translation sources. The exclusion constraint (circled

cross) indicates that no book can be assigned for review by one of its authors.

The frequency constraint indicates that each book that is assigned for review

is assigned for review by at least two persons. The subset constraint (circled

subset symbol) means that if a person has a title that is restricted to some

gender, then the person must be of that gender. The first argument of this

subset constraint is a person/gender role pair projected from a join path that

performs a conceptual join on PersonTitle. The last two lines at the bottom

of the schema declare two derivation rules, one specified in attribute style

using role names and the other in relational style using predicate readings.

The list of all ORM constraints

As we have seen in the previous examples, ORM’s graphical language has

a rich notation that makes it easy to detect and express constraints. This

graphical notation has been defined in [79] and [73]. Figure 2.10 lists the main

graphical symbols of the ORM notation [90], numbered for easy reference.

An entity type (e.g., Person) is depicted as a named, soft rectangle (symbol

1), or alternatively an ellipse or hard rectangle. Value type (e.g., Person

Name) shapes have dashed lines (symbol 2). Each entity type has a reference

scheme, indicating how each instance may be mapped via predicates to a

combination of one or more values. Injective (1:1 into) reference schemes

mapping entities (e.g., countries) to single values (e.g., country codes) may be

abbreviated as in symbol 3 by displaying the reference mode in parentheses,

e.g., Country (.code). The reference mode indicates how values relate to

the entities. Values are constants with a known denotation, so require

no reference scheme. Relationships used for preferred reference are called

existential facts (e.g., there exists a country that has the country code “IT”).

The other relationships are elementary facts (e.g., The country with country

code “IT” has a population of 60.000.000). The exclamation mark in symbol

4 declares that an object type is independent (instances may exist without

participating in any elementary facts). Object types displayed in multiple
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Figure 2.10: List of ORM constraints

place are shadowed (symbol 5). A fact type results from applying a logical

predicate to a sequence of one or more object types. Each predicate comprises

a named sequence of one or more roles (parts played in the relationship).

A predicate is sentence with object holes, one for each role, with each role

depicted as a box and played by exactly one object type. Symbol 6 shows a

unary predicate (e.g., ... smokes), symbols 7 and 8 depict binary predicates

(e.g., ... loves ... ), and symbol 9 shows a ternary predicate. Predicates of

higher arity (number of roles) are allowed. Each predicate has at least one

predicate reading. ORM uses mixfix predicates, so objects may be placed at

any position in the predicate (e.g., the fact type Person introduced Person to

Person involves the predicate “... introduced ... to ... ”). Mixfix predicates

allow natural verbalization of nary relationships, as well as binary relationships

where the verb is not in the infix position (e.g., in Japanese, verbs come at

the end). By default, forward readings traverse the predicate from left to

right (if displayed horizontally) or top to bottom (if displayed vertically).
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Other reading directions may be indicated by an arrow-tip (symbol 8). For

binary predicates, forward and inverse readings may be separated by a slash

(symbol 7). Duplicate predicate shapes are shadowed (symbol 10). Roles may

be given role names, displayed in square brackets (symbol 11). An asterisk

indicates that the fact type is derived from one or more other fact types

(symbol 12). By default, the populations of derived fact types are not stored,

but are instead computed on demand. ORM also allows to declare that the

population of a derived fact type is stored, so that it is always immediately

available. If the fact type is derived and stored, a double asterisk is used

(symbol 13). Fact types that are semi-derived are marked “C” (symbol 14).

Internal uniqueness constraints, depicted as bars over one or more roles in a

predicate, declare that instances for that role (combination) in the fact type

population must be unique (e.g., symbols 15, 16). For example, a uniqueness

constraint on the first role of Person was born in Country verbalizes as: Each

person was born in at most one Country. If the constrained roles are not

contiguous, a dotted line separates the constrained roles (symbol 16). A

predicate may have many uniqueness constraints, at most one of which may

be declared preferred by a double-bar (symbol 17). An external uniqueness

constraint shown as a circled uniqueness bar (symbol 18) may be applied to

two or more roles from different predicates by connecting to them with dotted

lines. This indicates that instances of the role combination in the join of

those predicates are unique. For example, if a state is identified by combining

its state code and country, an external uniqueness constraint is added to the

roles played by State code and Country in: State has State code; State is in

Country. Preferred external uniqueness constraints are depicted by a circled

double-bar (symbol 19). To talk about a relationship, one may objectify it

(i.e., make an object out of it) so that it can play roles. Graphically, the

objectified predicate (a.k.a. nested predicate) is enclosed in a soft rectangle,

with its name in quotes (symbol 20). Roles are connected to their players

by a line segment (symbol 21). A mandatory role constraint declares that

every instance in the population of the role’s object type must play that

role. This is shown as a large dot placed at the object type end (symbol

22) or the role end (symbol 23). An inclusive-or (disjunctive mandatory)

constraint applied to two or more roles indicates that all instances of the
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object type population must play at least one of those roles. This is shown by

connecting the roles by dotted lines to a circled dot (symbol 24). To restrict

the population of an object type or role, the relevant values may be listed in

braces (symbol 25). An ordered range may be declared separating end values

by “.”. For continuous ranges, a square/round bracket indicates an end value

is included/excluded. For example, “(0.10)”denotes the positive real numbers

up to 10. These constraints are called value constraints. Symbols 26–28

denote set comparison constraints,which apply only between compatible role

sequences. A dotted arrow with a circled subset symbol depicts a subset

constraint, restricting the population of the first sequence to be a subset of

the second (symbol 26). A dotted line with a circled “=” symbol depicts an

equality constraint, indicating the populations must be equal (symbol 27).

A circled “X” (symbol 28) depicts an exclusion constraint, indicating the

populations are mutually exclusive. Exclusion and equality constraints may

be applied between two or more sequences. Combining an inclusive or and

exclusion constraint yields an exclusive-or constraint (symbol 29). A solid

arrow (symbol 30) from one object type to another indicates that the first is a

(proper) subtype of the other (e.g., Woman is a subtype of Person). Mandatory

(circled dot) and exclusion (circled “X”) constraints may be displayed between

subtypes, but are implied by other constraints if the subtypes have formal

definitions. Symbol 31 shows four kinds of frequency constraint. Applied to a

role sequence, these indicate that instances that play those roles must do so

exactly n times, at least n times, at most n times, or at least n and at most

m times. Symbol 32 shows four varieties of value-comparison constraint. The

arrow shows the direction in which to apply the circled operator between two

instances of the same type (e.g., For each Employee, hiredate ¡ birthdate).

Symbol 33 shows the main kinds of ring constraint that may apply to a pair of

compatible roles. Read left to right and top row first, these indicate that the

binary relation formed by the role population must respectively be irreflexive,

asymmetric, antisymmetric, reflexive, intransitive, acyclic, intransitive and

acyclic, or intransitive and asymmetric. The previous constraints are alethic

(necessary, so can’t be violated) and are colored violet. ORM 2 also supports

deontic rules (obligatory, but can be violated). These are colored blue, and

either add an “o” for obligatory, or soften lines to dashed lines. Displayed



2.3. ORM 27

here are the deontic symbols for uniqueness (symbol 34), mandatory (symbol

35), set-comparison (symbol 36), frequency (symbol 37) and ring (symbol 38)

constraints.

2.3.3 Derivation Rules

ORM Derivation Rules are special ORM construct that are able to express

knowledge that goes beyond standard ORM capabilities. In a way similar

to SQL triggers or OCL constraints, ORM Derivation Rules define which

instances may appear in the population of subtypes and fact types. We recall

that an instance of an ORM model maps each object-type and fact-type in

the model to a population, where the population of an object-type is a set

of objects (values or entities) and the population of a fact-type is a set of

tuples of objects. ORM Derivation Rules are used to derive new facts from

other facts. A fact that is not derived is an asserted fact (also known as a

primitive or base fact). The population of an asserted fact is made by asserted

instances; the population of a derived fact is made by derived instances.

In ORM, subtypes may be asserted, derived, or semiderived. A subtype is

asserted if and only if, for each state of the fact base, only asserted instances

may appear in its population. A subtype is derived if and only if, for each

state of the fact base, only derived instances may appear in its population.

A subtype is semiderived if and only if some of its instances may be simply

asserted and some other instances may be derived. Graphically, derived

subtypes are displayed with an asterisk “*” after their name, and semiderived

subtypes are displayed with a plus superscript “+” after their name.

Consider the ORM schema in Figure 2.11. Here the subtypes are simply

asserted, since there is no way to derive which persons are smokers and which

persons are males.

In contrast, the ORM schema in 2.12 includes smokes and gender fact types

that enable us to derive which persons are members of which subtypes. In

this case, we must declare the subtypes to be derived and provide appropriate

derivation rules for the subtype definitions. Otherwise, it would be possible to

have incorrect models. For example, we could declare an instance of Smoker
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Figure 2.11: ORM schema with asserted subtypes

Figure 2.12: ORM schema with asserted subtypes that should be derived

without having that person play the smokes role; or we could declare an

instance of MalePerson for a person with gender code “F”.

The ORM schema in Figure 2.12 marks the subtypes as derived, and expresses

their derivation rules in the syntax of FORML (Formal ORM Language), a

formal, textual language for ORM that is currently under development. Here

pseudo-reserved words are displayed in bold. Currently, NORMA does not

support the option of choosing “a” or “an” as an alternative reading for the

existential quantifier, which it always renders as “some”.

While one can declare that a subtype is derived simply by entering some text

in the DerivationNote property for the subtype in the ORM Model Browser,

derivation notes are treated by NORMA simply as informal comments, so no

Figure 2.13: ORM schema with derived subtypes and derivation rules



2.3. ORM 29

Figure 2.14: The derivation path for the Smoker subtype in Figure 2.13

code will be generated from them to enforce the derivation rules. Currently,

the only way to formally declare a derivation rule in NORMA is to specify a

derivation path for it in the ORM Model Browser.

A subtype’s derivation path is the path through the ORM schema, including

any operators and conditions that apply, that corresponds to the subtype

derivation rule. The path always starts at an object type, known as the root

object type for the path. For subtype derivation paths, the root object type

will always be a supertype of that subtype. With complex paths, you might

need to traverse through the same role more than once, in which case we need

to distinguish different occurrences of the same role. When this is not the

case, the term “role” is often used informally for “role occurrence”.

For the Smoker subtype in Figure 2.13, the derivation path is the path starting

at Person (the root object type for the path) and ending at the role in the

smokes predicate. You can visualize it as shown in Figure 2.14. More complex

subtype definitions may have derivation paths that look like a tree, with

multiple branches stemming from the root object type or from object type

occurrences later in the path.

We now extend the example in Figure. 2.8 by ORM Derivation Rule.

The conceptual diagram is not expressive enough to encode further informa-

tion, e.g., that all the visitors are exactly those who are identified by a visa or

to capture all the people that have no documents. Observe, that there is no

constraint stating that all Visa holders are visitors; for this reason we named

SomeVisitor the entity which is a subtype of Person with ID entity. How can

we capture in the schema exactly all the visitors? We need to use a derivation

rule stating the needed exact definition. We now add a new entity called

VisitorWithVisa as a subtype of PersonWithID with an attached derivation

rule as shown in Figure 2.15.
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Figure 2.15: ORM example with ORM Derivation Rule

As we have seen before for other ORM constraints, ORM Derivation Rules

can also be expressed in FORML:

*Each VisitorWithVisa is by definition some Person with ID
that has some Document that is some Visa.

In FOL:

@x.VisitorWithVisapxqØPersonWithIDpxq ^ Dy.haspx, yq ^ Visapyq

In this way all the instances inside VisitorWithVisa are constrained to posses

a Visa document.

2.4 NORMA

NORMA is implemented as a plug-in to Microsoft Visual Studio. Most of

NORMA is open-source, and a public domain version is freely downloadable

[110]. Fig. 2.16 summarizes the main components of the tool. Users may

declare ORM object types and fact types textually using the Fact Editor, or
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Figure 2.16: NORMA overview

drag new elements off the toolbox. New model components are added to the

conceptual model and displayed with graphical shapes on one or more ORM

diagrams. The Model Browser tool window also provides a hierarchical view

of all model components. Sample object and fact instances may be entered

in tabular format in the Sample Population Editor.

Currently, ORM constraints and ORM Derivation Rules must be entered

in the ORM diagrammer or the Properties Window. These constraints are

automatically verbalized in FORML (Formal ORM Language), a controlled

natural language that is understandable even by non-technical people. The

Model Browser is also able to handle derivation rules for both fact types and

subtypes with verbalisation. Using mappers, ORM schemas may be automat-

ically transformed into various implementation targets, including relational

database schemas for popular database management systems (SQL Server,

Oracle, DB2, MySQL, PostgreSQL), datalog, .NET languages (C#, VB,

etc.), and XML schemas. A Relational View extension displays the relational

schemas in diagram form. The semantics underlying relational columns can be

exposed by selecting them and automatically verbalizing the ORM fact types
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Figure 2.17: ORM diagram done with NORMA

from which they were generated. An import facility can import ORM models

created in some other ORM tools, and can reverse engineer relational schemas

in SQL Server into ORM schemas. Other components facilitate navigation

and abstraction. For example, multiple concurrent windows viewing the same

model allow shapes to be copied between diagrams, the ORM Diagram Spy

and hyperlinks in the Verbalization Browser allow rapid navigation through

a model, and the ORM Context Window

One of the most useful features in NORMA is the automated verbalization

[90], [108], [45]. Considering the ORM diagram in Figure 2.17, we have the

verbalised counterpart in Figure 2.18.

In the ORM diagram we have two binary fact types: Professor is member

of Committee and Professor chairs Committee. Entity types are shown as

named, soft rectangles with their reference mode in parenthesis. Logical

predicates are depicted as a named sequence of role boxes connected to the

object types whose instances play those roles. The bar over each predicate

depicts a spanning uniqueness constraint, indicating that the fact types are

m:n, and can be populated with sets of fact instances, but not bags. The

circled subsetsymbol connected by dashed lines to role pairs depicts a subset

constraint. When the constraint shape is selected, NORMA displays role

numbers to highlight the role sequence arguments to the constraint.
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Figure 2.18: ORM verbalisation

The verbalisation is displayed in the ORM Verbalization Browser, one of the

main NORMA components. Here each part of the ORM diagram is displayed

in a controlled natural language. This feature is useful to bridge the gap

between stakeholders working on the same project, especially those who are

not IT experts.

A feature of NORMA that is especially useful to modelers is its live error

checking capability. Modelers are notified immediately of errors that violate

a metarule that has been implemented in the underlying ORM metamodel.

Fig. 2.19 shows an example where the subset constraint is marked with red

fill because it is inconsistent with other constraints present. In this case, the

committee role of being chaired is declared to be mandatory (as shown by

the solid dot on the role connection), while the committee role of including a

member is declared to be optional. But the subset constraint implies that if

a committee has a chair then it must have that person as a member. So it is

impossible for the two fact types to be populated in this situation. NORMA

not only detects the error but suggests three possible ways to fix the problem.

As we can see in Figure 2.20, complex diagrams are usually managed in

NORMA by multiple pages. The user can browse and organize the diagram

by means of pages, that generally represent a precise sub-domain of the whole

universe of discourse.

The mapper component allows to represent the ORM diagram in different

ways, for example one useful function is to visualize and export the ORM

conceptual diagram into a database relational view as shown in Figure 2.21.
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Figure 2.19: ORM live error check
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Figure 2.20: NORMA pages
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Figure 2.21: NORMA relational view



3
ORM Foundations

Object-Role modelling (ORM) is a rigorous approach to modelling and query-

ing at the conceptual level the information semantics of arbitrary domains.

In this work is defined an abstract syntax for ORM conceptual models to-

gether with its formal semantics. An ORM conceptual model comprises an

ORM conceptual schema plus a population of (object and fact) instances. In

addition to type and constraint declarations, an ORM schema may include

derivation rules. The semantics of an ORM conceptual model is defined by

transforming the model to first-order logic axioms, whose models denote the

legal abstract information structures of the conceptual specification.

3.1 Formal syntax and semantics

The latest version of ORM (ORM 2) is thoroughly described in [79], and in

[77] and its companion [78] providing an up-to-date coverage of the latest

enhancements to ORM and its conceptual schema design procedure. This

document refers to the ORM 2 version of ORM.

In this section we define the normative syntax and the semantics of ORM

Conceptual Models. The work in this section does not define an interchange

format for ORM, but its ultimate goal is to provide a self-contained document

defining the non-ambiguous semantics of all the ORM basic constructs. The

syntax defines the ORM language, and it is given by specifying a signature

(the ORM Conceptual Model Signature), and then the set of well formed

formulae which can be built using the signature. An ORM Conceptual Model

37
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is any set of well-formed formulae from a given ORM signature, satisfying all

the constraints. An ORM Conceptual Model has an ”abstract” syntax since

it is in one-to-one correspondence with the concrete graphical syntax; this is

shown in the section 3.2.1 by a set of examples. The semantics is a standard

denotational semantics. The semantics of an ORM Conceptual Model is

given with a transformation of the ORM conceptual model to first-order logic

formulas: the finite first-order structures satisfying the obtained first-order

logical theory are in one-to-one correspondence with the legal populations

of the ORM conceptual model. After having introduced ORM Conceptual

Model Signatures and the corresponding First-Order Logic Signatures, we

describe the abstract syntax and semantics of ORM’s main conceptual model

constructs, namely declarations, constraints, and derivation rules.

3.1.1 Naming Conventions

An ORM conceptual model is formally composed, following precise syntactic

rules, by declarations and constraints, built from terms of different syntactic

categories (object type names, predicate names, role names, predicate role

names, data elements) taken from a signature. The ORM graphical notation

depicts a fact type as a left-to-right top-to-bottom ordered sequence of role

boxes, each of which is attached to exactly one object type shape. A fact type

is bijectively associated to a canonical predicate. Fact types (resp. object

types) appearing in the ORM graphical notation as distinct are associated

in the signature to distinct predicate names (resp. object type names).

A role is uniquely identified in ORM graphical notation by the fact type

in which it appears together with its relative position (left-to-right top-to-

bottom) within the fact type; each role is given in the signature the role name

obtained by concatenating the canonical predicate name it belongs to and the

relative position within it. In this document we assume that the signature

of an ORM conceptual model (e.g., the choice of the canonical predicate

associated to a fact type) has been specified without ambiguity, following

maybe linguistic conventions or other design methodologies. This document

does not focus on the pre-logical or linguistic means necessary in order to get

the formal signature. Predicate readings, as normally introduced in the ORM
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methodology, are used simply for readability and compactness of display on

the graphical notation of ORM schema diagrams, and are not necessarily

identifying, since distinct fact types may have the same predicate reading. On

the other hand, distinct predicate names in the signature identify necessarily

distinct fact types. Alternate predicate readings for the same fact type (e.g.,

useful to verbalise differently a predicate with different role orderings) are all

obviously denoting the same fact type, and therefore will be given the same

predicate name in the signature.

3.1.2 ORM Conceptual Model Signature

An ORM conceptual model signature is composed by the elements xT ,V ,P ,R,D, β,F , αy
denoting the following:

T a finite set of domain object type names

V a set V � T of domain value type names

P a finite set of predicate names

R a finite set of role names

D a finite set of domain values

β a function β :VÑ 2D, the domain value type extension

F a finite set of value function names

α a total function α :P Y FÑN� specifying the predicate or the function arity

Table 3.1: ORM Conceptual Model Signature

We adopt the following syntactic conventions in the ORM conceptual model:

� the letters h,i, j, k,l,m,n denote positive integer numbers;

� the letters p,q denote integer numbers;

� T denotes a domain object type name P T ;

� V denotes a domain value type name PV ;

� P denotes a predicate name PP ;

� r denotes a role name PR;
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� d denotes a domain value PD;

� f denotes a value function name PF ;

� P.i denotes the i-th role identifier of P, with 1¤ i¤αpPq

� ?v denotes a variable symbol within a derivation rule, with v P
STRINGS;

3.1.3 First-order logic signature

The First-Order Logic (FOL) signature of an ORM conceptual model reuses

the same symbols from T , V, P, D F of the ORM conceptual model signa-

ture, and it is composed by the elements xT ,V ,P ,L,D,G,Fy denoting the

following:

T a finite set of unary predicate symbols

V a set V �T of data values

P a finite set of predicate symbols, each PP P with arity αpPq

L a family of injective and well-founded objectification functions,

one for each P PP and with arity αpPq
D a finite set of constant symbols

G A family of domain value to data value injective functions γv for each v P V such

that for each d P βpVq and T P T , it holds that V(d) and @x.TpxqÑx� γvpdq

F A family of functions over data values, namely with domain and range

over the range of the function γ

Table 3.2: First-Order Conceptual Model Signature

We adopt the following syntactic conventions in the FOL formulas:

� the precedence of Boolean operators is: ^_Ñ;

� lp denotes a function PL associated to the predicate PPP and with

arity αpPq;

� γv denotes a function PG associated to the domain value type V.



3.1. FORMAL SYNTAX AND SEMANTICS 41

3.1.4 First-order logic ORM Conceptual Model

The following extensions to FOL are used the specify the semantics of ORM

Conceptual Models.

� The translation of derivation rules is given in first-order logic extended

with lambda expressions. In the specification as a first order logic for-

mula of the semantics of a derivation rule containing a PATH expression,

a PATH expression corresponds to an open first order formula with one

free variable. Such an open formula is built inductively from the parse

tree of the PATH expression using its grammar specification in a way

similar to Montague grammars. The composition among steps in the

induction makes use of lambda expressions and their application using

variable bindings and substitutions: if ϕ is a formula with a free variable

x, and t is a term, an application of the lambda calculus β-reduction

rule ppλx.ϕqptqqÑpϕrx{tsq replaces the occurrences of the bound variable

x within the body ϕ of the lambda expression with the term t.

� The translation of ring constraints is given in first-order logic extended

with the transitive closure operator * over binary predicates. First-

order logic extended with the transitive closure operator is strictly more

expressive than first-order logic. The transitive closure of a binary

predicate P can be expressed in first-order logic enriched with least

fixpoints as follows: @x
1
y
1
.P�x

1
y
1
Ø lfpQ,xypPxy_ pDz.Qxz^Pzyqqx

1
y
1
.

� The translation of identification constraints is given in first-order logic

extended with well-founded binary relations. A binary relation R is well-

founded, well-founded(R), if its interpretation contains no countable

infinite descending chains: that is, in the interpretation of R there is

no infinite sequence a0, a1, a2, . . . of non necessarily distinct elements

such that R anan�1 for every natural number n, i.e, there is no infinite

ascending chain.

� According to the definition above, objectification functions should be

well-founded. A function is well-founded if the binary relation F �
txx, yy | fpxq� yu is well founded.
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The First-Order Logic (FOL) Conceptual Model of an ORM conceptual

model is a FOL theory composed by the theory Φ obtained by applying the

transformations specified in the table below, with an additional closure theory

Θ. The closure theory Θ is needed in order to give the right semantics to the

identification and objectification constraints, and it includes:

� top-level disjointness axioms of the form @x.T1pxqÑ T2pxq for any
pair of object types such there is no object type T such that:

Φ |ù p@x.T1pxqÑTpxqq ^ p@x.T2pxqÑTpxqq;

� a well-foundedness axiom involving all the special binary predicate sym-

bols PID-si
j introduced by identification and objectification constraints

in the conceptual model:

well-foundedpPID-s1
1 Y � � � Y PID-si

m1
Y � � � Y PID-sk

1 Y � � � Y PID-sk
mk

q.

Table 3.3: ORM syntax and semantics

FactType(P (T1 . . . Tα(P))) P does not appear as an

AlternatePredicate

@x1 . . . xαpP q.P px1 . . . xαpP qqÑT1px1q ^ � � � ^ TαpP qpxαpP qq

AlternatePredicate(P, Pa (P.i1 . . . P.iα(P)
)) P�Pa

α(P) = α(Pa)

{i1. . . iα(P)}={1. . . α(P)}
(MACRO)Replace all occurrences of Pa.j in the ORM conceptual model with

P.ij , and then all occurrences of Pa with P

RoleNaming(P.i r)

(MACRO)Replace all occurrences of the role name r in the ORM conceptual

model with the role identifier P.i

Mandatory(T P1.i1 . . . Pm.im) for j�k and j,k¤m:

Pj�Pk

@x.T pxqÑDy1 . . . yαpP1q.
�
P1py1 . . . yαpP1qq ^ x� yi1

�

_ � � � _ Dy1 . . . yαpPmq.
�
Pmpy1 . . . yαpPmqq ^ x� yim

�

Unique(P.i1 . . . P.im) for j�k and j,k¤m:

ij�ik
(MACRO)

Frequency(P.i1 . . . P.im (1, 1))

Identification(T P.im+1 (P.i1 . . . P.im)) for j�k and j,k¤m+1:

ij�ik
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(MACRO)

Unique (P.im+1)

Mandatory (T(P.im+1))

Unique (P.i1. . . P.im)

and each of the binary predicates defined below is well-founded:

FactTypeRule(B1(P.im+1ãÑ(P.i1�?x))(?x))

. . .

FactTypeRule(Bm(P.im+1ãÑ(P.im�?x))(?x))

ExternalUnique(P.i1. . . P.im) for j�k and j,k¤m+1:

α(P)=2, Pj � Pk,

if ij=1 then lj=2 else

lj=1;

and P fresh predicate

name of arity m+1

(MACRO)

FactTypeRule(P(P1.i1ãÑ(P1.l1�?x)) . . . (Pm.imãÑ(Pm.lm�?x))(?x))

Unique(P.1. . . P.m)

ExternalIdentification(T (P1.i1 . . . Pm.im)) for j�k and j,k¤m+1:

α(Pj)=2, Pj � Pk,

if ij=1 then lj=2 else

lj=1;

and P fresh predicate

name of arity m+1

(MACRO)

FactTypeRule(P(P1.i1ãÑ(P1.l1�?x)). . . (Pm.imãÑ(Pm.lm�?x))(?x))

Unique(P.m+1)

Mandatory(T (P.m+1))

Unique(P.1. . . P.m)

and each of the binary predicates defined below is well-founded:

FactTypeRule(B1(P.m+1ãÑ(P.1�?x))(?x))

. . .

FactTypeRule(Bm(P.m+1ãÑ(P.m�?x))(?x))

Frequency(P.i1 . . . P.im F) for j�k and j,k¤m: ij
�ik.

p,q¥1

(1) F � (p..)

(2) F � (..q)

(3) F � (p..q)

(4) F � (p)

(1)@x1 . . . xαpPq.P px1 . . . xαpPqqÑD
¥py1 . . . yαpPq.P py1 . . . yαpPqq ^ xi1 � yi1 ^ � � � ^ xim � yim



44 CHAPTER 3. ORM FOUNDATIONS

(2)@x1 . . . xαpPq.P px1 . . . xαpPqqÑD
¤qy1 . . . yαpPq.P py1 . . . yαpPqq ^ xi1 � yi1 ^ � � � ^ xim � yim

(3)@x1 . . . xαpPq.P px1 . . . xαpPqqÑD
¥py1 . . . yαpPq.P py1 . . . yαpPqq ^ xi1 � yi1 ^ � � � ^ xim � yim

^@x1 . . . xαpPq.P px1 . . . xαpPqqÑD
¤qy1 . . . yαpPq.P py1 . . . yαpPqq ^ xi1 � yi1 ^ � � � ^ xim � yim

(4)@x1 . . . xαpPq.P px1 . . . xαpPqqÑD
�py1 . . . yαpPq.P py1 . . . yαpPqq ^ xi1 � yi1 ^ � � � ^ xim � yim

ExternalFrequency(P1.i1. . . Pm.im F) for j�k and j,k¤m:

α(Pj)=2, Pj�Pk, if

ij=1 then lj=2 else lj=1;

and P fresh predicate

name p,q¥ 1

(1) F � (p..)

(2) F � (..q)

(3) F � (p..q)

(4) F � (p)

(MACRO)

FactTypeRule(P(P1.i1ãÑ(P1.l1�?x)). . . (Pm.imãÑ(Pm.lm�?x))(?x))

Frequency(P.1. . . P.m F)

Subtype((T1 . . . Tm) T)

p@x.T1pxqÑT pxqq ^ � � � ^ p@x.TmpxqÑT pxqq

ExclusiveSubtypes((T1 . . . Tm) T)

p@x.T1pxqÑT pxq^ T2pxq^� � �^ Tmpxqq^� � � ^ p@x.Tm�1pxqÑT pxq ^  Tmpxqq^

p@x.TmpxqÑT pxqq

ExhaustiveSubtypes((T1 . . . Tm) T)

@x.T pxqÑT1pxq _ � � � _ Tmpxq

Subset((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk

@x1 . . . xαpP1q.P1px1 . . . xαpP1qqÑDy1 . . . yαpP2q.P2py1 . . . yαpP2qq^ xi1�yh1^� � �^xim�

yhm

Exclusive((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk

@x1 . . . xαpP1q.P1px1 . . . xαpP1qqÑ Dy1 . . . yαpP2q. P2py1 . . . yαpP2qq ^ xi1 � yh1 ^ � � � ^

xim � yhm

Equal((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk
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(MACRO)

Subset((P1.i1 P2.h1) . . . (P1.im P2.hm))

Subset((P2.h1 P1.i1) . . . (P2.hm P1.im))

Objectifies(T P)

@x1 . . . xn.P px1 . . . xnqØT pℓP px1 . . . xnqq

TypeCardinality(T (p,q)) p,q ¥ 0 and q possibly

8

Dp...qx. T pxq

RoleCardinality(P.i (p,q)) p,q ¥ 0 and q possibly

8

@x1 . . . xn. D
p...qy. P px1 . . . xnq ^ xi� y

ValuesOf(V (d1. . . dm))

@x.V pxqÑ px� d1q _ � � � _ px� dmq

ValuesOf(P.i (d1 . . . dm))

@x1 . . . xn.P px1 . . . xαpPqqÑ pxi� diq _ � � � _ pxi�dmq

º(P.i1P.i2) º P t ,¤,¡,¥,�,�u

@x1 . . . xαpPqy1 . . . yαpPq. P px1 . . . xαpPqq ^ P py1 . . . yαpPqqÑ γV1pxi1qº γV2pxi2q

RingConstraint(P.i P.j ) i � j and

Pb fresh predicate name

with α(Pb)=2

MACRO JointPath(Pb (P.i P.j))

Locally Reflexive

@x1x2. Pbpx1, x2qÑPbpx1, x1q

Purely Reflexive

@x1x2. Pbpx1, x2qÑx1�x2
Irreflexive

@x1x2. Pbpx, xq

Symmetric

@x1x2. Pbpx1, x2qÑPbpx2, x1q

Asymmetric

@x1x2. Pbpx1, x2qÑ Pbpx2, x1q

Antisymmetric

@x1x2. Pbpx1, x2q ^ x1�x2Ñ Pbpx2, x1q

Transitive

@x1x2y1y2. Pbpx1, x2q ^ Pbpy1, y2q ^ x2� y1ÑPbpx1, x2q

Intransitive

@x1x2y1y2. Pbpx1, x2q ^ Pbpy1, y2q ^ x2� y1Ñ Pbpx1, x2q

Strongly Intransitive

@x1x2y1y2. Pbpx1, x2q ^ P �b py1, y2q ^ x2� y1Ñ Pbpx1, x2q

Acyclic
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@x1x2. P
�
b px, xq

DERIVATION RULES

SubTypeRule(T PATH)

@x.TpxqØDvar1 . . . varm.PATH ÞÑx

var1. . . varm includes all the ?VAR variable symbols in PATHÞÑ

FactTypeRule(P PATH1. . .PATHα(P)
)

@x1 . . . xαpPq.Ppx1 . . . xαpPqqØDvar1 . . . varm.PATH ÞÑ1 x1 ^ � � � ^ PATH ÞÑαpPqxαpPq
var1. . . varm includes all the ?VAR variable symbols in PATHÞÑ

JoinPath(P (P1.i1 P1.j1) . . . (Pm.im Pm.jm)) α(P)=2 and for k¤m:

ik�jk
(MACRO)

FactTypeRule(PpP1.i1 ãÑpP1.j1 � pP2.i2 ãÑpP2.j2 � p. . . pPm.im ãÑpPm.jm�?xqqqqqq)

PATH: T |
Pu |
P.iãÑ[P.i1�PATH1]. . . [P.im� PATHm]|
PATH1^PATH2 |
PATH1_PATH2 |
PATH1zPATH2 |
{d1. . . dn} |
?VAR |
VºTERM |

TERM: d |
?VAR |
f(TERM1. . . TERMαF(f))

º
.
� ¤¡¥��

α(Pu)=1

for j�k and j,k¤m:

ij�ik

T ÞÑ λx.T(x)

Pu ÞÑ λx.Pu(x)

P.iãÑ[P.i1�PATH1]. . . [P.im�PATHm] ÞÑ λx.Dx1 . . . xαpP q.P(x1. . . xαP)^
PATHÞÑ1 xi1 ^ � � � ^ PATHÞÑmxim ^ x�xi

PATH1 ^ PATH2 ÞÑ λx.PATHÞÑ1 ^ PATHÞÑ2 x

PATH1 _ PATH2 ÞÑ λx.PATHÞÑ1 _ PATHÞÑ2 x

PATH1 z PATH2 ÞÑ λx.PATHÞÑ1 ^ PATH
ÞÑ
2 x

{d1. . . dn} ÞÑ λx.x=d1_ � � � _ x=dn

?VAR ÞÑ λx.x�?VAR
V º TERM ÞÑ λx.Vx^ γV pxqº γV pTERMãÑq

d ãÑ d

?VAR ãÑ ?VAR

f(TERM1. . . TERMαF(f)) ãÑ f(TERM1
ãÑ. . . TERMαF(f)

ãÑ)
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3.2 ORM syntax and semantics by examples

3.2.1 ORM constraints

We now present a structured overview for each ORM construct with some

graphical notation examples and the corresponding syntax and semantics.

Table 3.4: ORM constraints examples

Construct and Examples
Signature: Entity type name

Normative Abstract Syntax of Examples
Entity Type Name: Country

Construct and Examples
Signature: Value type name

Normative Abstract Syntax of Examples
Value Type name: CountryCode

Construct and Examples
Signature: Predicate name

Normative Abstract Syntax of Examples
Signature:
Unary predicate name: smokes
Binary predicate names: wasBornIn, ?speaks?veryWell,
reportsTo, employs Ternary predicate name: ?played?for?
Quaternary predicate name: ?in?on?ate?
Alternate predicate name: AlternatePredicate(reportsTo, manages (2 1))

Construct and Examples
Signature: Role name

Normative Abstract Syntax of Examples
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Signature:
Role identifier for the unary predicate smokes:
smokes.1
Role identifiers for the binary predicate employs:
employs.1, employs.2
Role names:
RoleNaming(smokes.1, smokes.isSmoker)
RoleNaming(employs.1, employs.employer)
RoleNaming(employs.2, employs.employee)

Construct and Examples
Unary Fact Type

Normative Abstract Syntax of Examples
FactType(smokes (Person))
Normative Semantics of Examples
@x.smokerpxqØPersonpxq

Construct and Examples
Binary Fact Type

Normative Abstract Syntax of Examples
FactType(wasBornIn (Person Country))
FactType(employs (Company Person))
FactType(made (Company Product))
FactType(drives (Person Car))
FactType(reportsTo (Person Person))
Normative Semantics of Examples
@x, y.wasBornInpx, yqÑPersonpxq ^ Countrypyq
@x, y.employspx, yqÑCompanypxq ^ Personpyq
@x, y.madepx, yqÑCompanypxq ^ Productpyq
@x, y.drivespx, yqÑPersonpxq ^ Carpyq
@x, y.reportsTopx, yqÑPersonpxq ^ Personpyq

Construct and Examples
Ternary Fact Type

Normative Abstract Syntax of Examples
FactType(?played?for? (Person Sport Country))
FactType(?introduced?to? (Person Person Person))
FactType(?ate?on? (Cat Food Date))
Normative Semantics of Examples
@x, y, z.?played?for?px, y, zqÑPersonpxq ^ Sportpyq ^ Countrypzq
@x, y, z.?introduced?to?px, y, zqÑPersonpxq ^ Personpyq ^ Personpzq
@x, y, z.?ate?on?px, y, zqÑCatpxq ^ Foodpyq ^Datepzq
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Construct and Examples
Quaternary Fact Type

Normative Abstract Syntax of Examples
FactType(?in?on?ate? (Person City Date Food))
Normative Semantics of Examples
@x, y, z, k.?in?on?ate?px, y, z, kqÑPersonpxq ^ Citypyq ^Datepzq ^ Foodpkq

Construct and Examples
Objectification

Normative Abstract Syntax of Examples
FactType(enrolledIn (Student Course))
Objectifies(Enrolment enrolledIn)
FactType(resultedIn (Enrolment Grade))
Normative Semantics of Examples
@x, y.enrolledInpx, yqÑ Studentpxq ^ Coursepyq
@x, y.enrolledInpx, yqØEnrollmentplenrolledInpx,yqq
@x, y.enrolledInpx, yqÑEnrollmentpxq ^Gradepyq

Construct and Examples
Uniqueness on Binary Fact Type

Normative Abstract Syntax of Examples
Unique(isOf.1)
Unique(wasBornIn.1)
Unique(speaks.1 speaks.2)
Unique(isPresidentOf.1)
Unique(isPresidentOf.2)
Normative Semantics of Examples
@x1, x2isOfpx1, x2qÑD�1y.isOfpx1yq
@x1, x2wasBornInpx1, x2qÑD�1y.wasBornInpx1yq
@x1, x2speakspx1, x2qÑ speakspx1, x2q
@x1, x2isPresidentOfpx1, x2qÑD�1y.isPresidentOfpx1yq
@x1, x2isPresidentOfpx1, x2qÑD�1y.isPresidentOfpyx2q

Construct and Examples
Uniqueness on Ternaries

Normative Abstract Syntax of Examples
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Unique(?got?in?.1 ?got?in?.3)
Unique(?got?in?.2 ?got?in?.3)
Unique(?played?for?.1 ?played?for?.2 ?played?for?.3)
Normative Semantics of Examples

@x1, x2, x3.?got?in?px1, x2, x3qÑD�1y.?got?in?px1,y,x3q

@x1, x2, x3.?got?in?px1, x2, x3qÑD�1y.?got?in?py,x2,x3q

@x1, x2, x3.?played?for?px1, x2, x3qÑD�1y.?played?for?px1,x2,x3q

Construct and Examples
Simple Mandatory Role

Normative Abstract Syntax of Examples
Mandatory(Person wasBornIn.1)
Normative Semantics of Examples
@x.PersonpxqÑDy.wasBornInpx, yq

Construct and Examples
Inclusive-or

Normative Abstract Syntax of Examples
Mandatory(Visitor hasPassport.1 hasDriverLicence.1)
Normative Semantics of Examples
@x.VisitorpxqÑ pDy.hasPassportpx, yqq _ pDy.hasDriverLicensepx, yqqq

Construct and Examples
Preferred internal Uniqueness

Normative Abstract Syntax of Examples
Identification(Country has.1 (has.2))
Normative Semantics of Examples
@x1, x2.haspx1, x2qÑD�1y.haspx1, yq
@x.CountrypxqÑDy.haspx, yq
@x1, x2.haspx1, x2qÑD�1y.haspy, x2q
well-founded(has)

Construct and Examples
External Uniqueness

Normative Abstract Syntax of Examples
ExternalIdentification(State (hasStateCode.2 isIn.2))
ExternalUnique(hasStateName.2 isIn.2)
Normative Semantics of Examples
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@x1, x2, x3.JoinPath1px1, x2, x3qØDy.hasStateCodepx3, x1q ^ isInpx3, x2q
@x1, x2, x3.JoinPath1px1, x2, x3qÑD�1y.JoinPath1px1, x2, yq
@x1, x2, x3.JoinPath1px1, x2, x3qÑD�1y1, y2.JoinPath1py1, y2, x3q
@xStatepxqÑDy1, y2K1py1, y2, xq
well-founded(hasStateCode Y isIn)
@x1, x2, x3.JoinPath2px1, x2, x3qØ hasStateNamepx3, x1q ^ isInpx3, x2q
@x1, x2, x3.JoinPath2px1, x2, x3qÑD�1y.JoinPath2px1, x2, yq

Construct and Examples
Object Type Value

Normative Abstract Syntax of Examples
ValuesOf(GenderCode (M F))
Normative Semantics of Examples
@x.GenderCodepxqÑx�M _ x�F

Construct and Examples
Role value

Normative Abstract Syntax of Examples
ValuesOf(has.2 (0 . . . 140))
Normative Semantics of Examples
@x1, x2.haspx1, x2qÑx2� 0_ � � � _ x2� 140

Construct and Examples
Subset

Normative Abstract Syntax of Examples
Subset((smokes.1 isCancerProne.1))
Subset((?for?obtained?.1 enrolledIn.1) (?for?obtained?.2 enrolledIn.2))
Normative Semantics of Examples
@x.smokespxqÑ isCancerPropxq
@x1, x2, x3.?for?obtained?px1, x2, x3qÑ enrolledInpx1, x2q

Construct and Examples
Join Subset

Normative Abstract Syntax of Examples
JoinPath(P (speaks.1 speaks.2) (isOftenUsedIn.1 isOftenUsedIn.2))
Subset((servesIn.1 P.1)(servesIn.2 P.2))
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Normative Semantics of Examples
@x1, x2.Ppx1, x2qØDy.speakspx1, yq ^ isOftenUsedInpy, x2q
@x, y.servesInpx, yqÑPpx, yq

Construct and Examples
Exclusion

Normative Abstract Syntax of Examples
Exclusive((isWidowed.1 isMarried.1))
Exclusive((reviewed.1 authored.1) (reviewed.2 authored.2))
Normative Semantics of Examples
@x.isWidowedpxqÑ isMarriedpxq
@x, y.reviewedpx, yqÑ authoredpx, yq

Construct and Examples
Equality

Normative Abstract Syntax of Examples
Equal((hasSystolic.1 hasDiasystolic.1))
Normative Semantics of Examples
@x, y.hasSystolicpx, yqÑDz.hasDiasystolicpx, zq^
@x, y.hasDiasystolicpx, yqÑDz.hasSystolicpx, zq

Construct and Examples
Subtyping

Normative Abstract Syntax of Examples
Subtype(Lecturer Employee)
Subtype(Employee Person)
Subtype(Student Person)
Subtype(StudentEmployee Student)
Subtype(StudentEmployee Employee)
Normative Semantics of Examples
@x.LecturerpxqÑEmployeepxq
@x.EmployeepxqÑPersonpxq
@x.StudentpxqÑPersonpxq
@x.StudentEmployeepxqÑ Studentpxq
@x.StudentEmployeepxqÑEmployeepxq

Construct and Examples
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Subtyping constraints

Normative Abstract Syntax of Examples
ExclusiveSubtypes((Dog Cat) Animal)
ExhaustiveSubtypes((Player Coach) TeamMember)
ExclusiveSubtypes((MalePerson FemalePerson) Person)
ExhaustiveSubtypes((MalePerson FemalePerson) Person)
Normative Semantics of Examples
p@x.DogpxqÑAnimalpxq ^  Catpxqq ^ p@x.CatpxqÑAnimalpxqq
p@x.PlayerpxqÑTeamMemberpxqq ^ p@CoachpxqÑTeamMemberpxqq ^ p@x.TeamMemberpxqÑCoachpxq _ Playerpxqq
p@x.MalePersonpxqÑPersonpxq ^  FemalePersonpxqq ^ p@x.FemalePersonpxqÑPersonpxqq
p@x.MalePersonpxqÑPersonpxqq ^ p@x.FemalePerson(x)ÑPersonpxqq ^ p@x.PersonpxqÑFemalePersonpxq _MalePersonpxqq

Construct and Examples
Internal Frequency

Normative Abstract Syntax of Examples
Frequency(isAMemberOf.2 (12))
Frequency(isOn.2 (4, 7))
Frequency(reviews.1 (..5))
Frequency(reviews.2 (2..))
Frequency(?in?hadStaffOf?in?.1
?in?hadStaffOf?in?.2 (2))
Normative Semantics of Examples
@x1, x2.isAMemberOfpx1, x2qÑD�12y.isAMemberOfpx1, yq
@x1, x2.isOnpx1, x2qÑD¥4,¤7y.isOnpx1, yq
@x1, x2.reviewspx1, x2qÑD¤5y.reviewspy, x2q
@x1, x2.reviewspx1, x2qÑD¥2y.reviewspx1, yq

Construct and Examples
External frequency

Normative Abstract Syntax of Examples
ExternalFrequency(isBy.2 isIn.2 (..2))
Normative Semantics of Examples
@x1, x2, x3.JoinPathpx1, x2, x3qØ isBypx3, x1q ^ isInpx3, x2qq
@x1, x2, x3.JoinPathpx1, x2, x3qÑD¤2y1, y2.JoinPathpy1, y2, x3q

Construct and Examples
Value-comparison
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Normative Abstract Syntax of Examples
¥(endedOn.2 startedOn.2)
Normative Semantics of Examples
@x1, x2, x3.JoinPathpx1, x2.x3qØ startedOnpx3, x1q ^ endedOnpx3, x2qq
@x1, x2, x3, y1, y2, y3.Ppx1, x2, x3q ^ Ppy1, y2, y3qØ γDatepx2q¥ γDatepy1q

Construct and Examples
Object Cardinality

Normative Abstract Syntax of Examples
TypeCardinality(President (0, 1))
Normative Semantics of Examples
D¤1x.Presidentpxq

Construct and Examples
Role Cardinality

Normative Abstract Syntax of Examples
RoleCardinality(isThePresidentOf (0, 1))
Normative Semantics of Examples
D¤1x.isThePresidentOfpxq

Construct and Examples
Ring Constraint

Normative Abstract Syntax of Examples
LocallyReflexive(P.1 P.2) (etc.)
Normative Semantics of Examples
@x1, x2.Ppx1, x2qÑPpx1, x1q

3.2.2 Derivation Rules

We now present the structure of ORM Derivation Rules by examples with

the graphical notation and the corresponding syntax and semantics.
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Table 3.5: ORM Derivation Rules examples

Normative Abstract Syntax of Examples
SubTypeRule(Smoker (Person ^ smokes))
Normative Abstract Semantics of Examples
@x.SmokerpxqØPersonpxq ^ smokespxq

Normative Abstract Syntax of Examples
SubTypeRule(Resident

(Person ^ (isAResidentCitizen ^
isAResidentAlien))

SubTypeRule(SelfTransporter
(Person ^

((drives.1 ãÑ [drives.2 � Car]) _
(rides.1 ãÑ [rides.2 � Motorcycle]))))

Normative Abstract Semantics of Examples
@x.ResidentpxqØ

Personpxq ^ pisAResidentCitizenpxq_
isAResidentAlienpxqq

@x.SelfTransporterpxqØ
pPersonpxq^
ppDy.drivespx, yq ^ Carpyqq_
pDy.ridespx, yq ^Motorcyclepyqqq

Normative Abstract Syntax of Examples
SubTypeRule(NonSmoker (Person z smokes))
SubTypeRule(NonDriver

(Person z (drives.1 ãÑ [drives.2 � Car]))
SubTypeRule(TeeTotaller

(Person z
(drinks.1 ãÑ [drinks.2 �

(Beverage ^ isAlcoholic)]))
Normative Abstract Semantics of Examples
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@x.NonSmokerpxqØPersonpxq ^  smokespxq
@x.NonDriverpxqØ

Personpxq ^  pDy.drivespx, yq ^ Carpyqq
@x.TeeTotallerpxqØ
pPersonpxq^
pDy.drinkspx, yq^
Beveragepyq ^ isAlcoholicpyqqq

Normative Abstract Syntax of Examples
FactTypeRule(isATypicalSportsPerson

(Person ^ ?played?for?.1 ãÑ
[?played?for?.2 � (Sport ^ isPopular)]
[?played?for?.3 � (Country ^ isLarge)]))

Normative Abstract Semantics of Examples
@x.isATypicalSportsPersonpxqØ
pPersonpxq^
Dy, z.?played?for?px, y, zq ^ Sportpyq ^ isPopularpyq^
Countrypzq ^ isLargepzqq

Normative Abstract Syntax of Examples
FactTypeRule(livesInCountry

(Person z livesInState.1 ãÑ
[livesInState.2 � (State ^ isIn.1 ãÑ

[isIn.2 � (Country ^ ?x)])])
(Country ^ ?x))

Normative Abstract Semantics of Examples
@x, y.livesInCountrypx, yqØ
pPersonpxq^
Dz.livesInStatepx, zq ^ Statepzq^
isInpz, yq ^ Countrypyqq

Normative Abstract Syntax of Examples
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FactTypeRule(canFullyCommunicateIn
(Person ^

(canSpeak.1 ãÑ[canSpeak.2 � (Language ^ ?x)]) ^
(canWrite.1 ãÑ[canwrite.2 � (Language ^ ?x)]))

(Language ^ ?x))

FactTypeRule(canCommunicateIn
(Person ^

(canSpeak.1 ãÑ[canSpeak.2 � (Language ^ ?x)]) _
(canWrite.1 ãÑ[canwrite.2 � (Language ^ ?x)]))

(Language ^ ?x))
Normative Abstract Semantics of Examples
@x, y.canFullyCommunicateInpx, yqØ
pPersonpxq^

canSpeakpx, yq^
canWritepx, yq^

Languagepyqq

@x, y.canCommunicateInpx, yqØ
pPersonpxq^
pcanSpeakpx, yq_
canWritepx, yqq^

Languagepyqq

Normative Abstract Syntax of Examples
FactTypeRule(soldIn

(CarModel ^ ?x)
(Region ^

(livesIn.2 ãÑ[livesIn.1 � Customer ^
(bought.1 ãÑ[bought.2 � Car ^

(isOf.1 ãÑ[isOf.2 � (CarModel ^?x)])])])))

FactTypeRule(?in?bought?
(Customer ^

(livesIn.1 ãÑ [livesIn.2 � (Region ^ ?x)]) ^
(bought.1 ãÑ [bought.2 � (Car ^

(isOf.1 ãÑ [isOf.2 � CarModel ^ ?y]))]))
(Region ^ ?x)
(CarModel ^ ?y))

Normative Abstract Semantics of Examples
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@x, y.soldInpx, yqØ
CarModelpxq^
Regionpyq^

Dz.livesInpz, yq ^ Customerpzq^
Dk.boughtpz, kq ^ Carpkq

isOfpk, xq

@x, y.?in?bought?px, y, zqØ
pCustomerpxq^
livesInpx, yq ^ Regionpyq^
Dk.boughtpx, kq ^ Carpkq^

isOfpk, zq ^ CarModelpzqq

3.2.3 Example with ORM Derivation Rules

We can now apply this formalisation to the example about documents from

the Section 2.3.2. For each ORM constraint we show the syntax and the

corresponding semantics in first-order logic.

FactType(has (PersonWithID Document))

@x, y.haspx, yqÑPersonWithIDpxq ^ Documentpyq
FactType(has (SomeVisitor Visa))

@x, y.ownspx, yqÑ SomeVisitorpxq ^ Visapyq
Subtype((SomeVisitor) PersonWithID)

@x.SomeVisitorpxqÑPersonWithIDpxq
Subtype((Visa IDcard) Document)

@x.VisapxqÑDocumentpxq
@x.IDcardpxqÑDocumentpxq
Mandatory(PersonWithID has.1)

@x.PersonWithIDpxqÑDy.haspx, yq
Mandatory(SomeVisitor owns.1)

@x.SomeVisitorpxqÑDy.ownspx, yq
Unique (has.1)

@x, y.haspx, yqÑD¤1z.haspx, zq
Unique (has.2)

@x, y.haspx, yqÑD¤1z.haspz, yq
Unique (owns.1)

@x, y.ownspx, yqÑD¤1z.ownspx, zq
Unique (owns.2)
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@x, y.ownspx, yqÑD¤1z.ownspz, yq
ExclusiveSubtypes ((Visa IDCard) Document)

@x.VisapxqÑ IDCardpxq
Exhaustive ((Visa IDCard) Document)

@x.DocumentpxqÑVisapxq _ IDCardpxq
Subset ((owns.1 has.1) (owns.2 has.2))

@x, y.ownspx, yqÑ haspx, yq

Additionally, the ORM diagram has been extended in Section 2.3.3 with a

Derivation Rule on the VisitorWithVisa entity:

SubtypeRule(VisitorWithVisa (PersonWithID ^
(has.1 ãÑ [has.2 � (Document ^ Visa)]))

@x.VisitorWithVisapxqØPersonWithIDpxq ^ Dy.haspx, yq ^ Visapyq





4
ORM Reasoning

The purpose of this chapter is to show the benefits coming from the application

of automated reasoning to ORM models. A set of examples are presented

for different scenarios where the modeller may design wrong models, or

the inferred knowledge coming from the application of the reasoning may

reveal unexpected software behaviours. In this way, the inferred knowledge

is helpful to the modeller in order to enhance the control over the ORM

models semantics. The first section is a set of examples where the reasoning

is applied to some ORM models; the second section extends the reasoning on

ORM diagrams equipped with ORM Derivation Rules.

4.1 Reasoning with ORM

We show the reasoning for the ORM conceptual diagram in Figure 4.1. As

we have seen in Section 2.3.2, this diagram represents a domain about people

and their documents. The conceptual diagram captures all the necessary

entities (Person with ID, Visitor, Document, etc.) together with their relation-

ships (owns, has) and additional constraints (such as cardinalities, subtyping,

uniqueness, etc.), thus providing a quite precise idea of the specific domain,

where each Person with ID has a document which can be either visa or id

card. A Person with ID can be a citizen or visitor.

What can be the outcome of the reasoning and why? The system could

automatically complete the diagram in the way depicted in Figure 4.2. The

uniqueness constraints are place on the fact type owns, since this fact type is

a subset relation of the fact type has. This means that all pairs inside owns
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Figure 4.1: Document example

Figure 4.2: Document example: uniqueness inferred

are also included inside has ; since all the pairs inside has have the uniqueness

keys and this is inherited by the fact type owns, it is necessarily true that

each SomeVisitor owns at most one Visa and for each Visa, at most one

SomeVisitor owns that Visa.

Now, let us suppose the modeller decides to state that each visa document is

also an IDCard, as in Figure 4.3. The Visa entity is inconsistent as shown in

Figure 4.4, i.e., does not have any instance, since the disjointness constraint

in the IsA link states that there is no element in common between Visa and

IDCard. The empty set denoted by the visa entity is the only set which

can be at the same time disjoint to and a subset of another set. Since the

Document entity is formed by the union of the Visa and IDCard, and the Visa
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Figure 4.3: Document example: IsA

Figure 4.4: Document example: inconsistencies

entity is inconsistent, the IDCard entity becomes equivalent to the Document

entity. Others inferences are triggered by the empty set. Since there is no

visa, there is no pair in the owns relationship as well (i.e., it is inconsistent):

the diagram states that any second argument of the owns relationship should

be of the visa type. The SomeVisitor entity is not inconsistent, since it may

be populated by people which do not necessarily own a visa at all (this is

possible, since there is no mandatory participation constraint).

Indeed, let us now add a cardinality constraint, stating that each SomeVisitor

must own a Visa document (i.e., a mandatory participation constraint by the

purple dot). The change results in the diagram of Figure 4.5. Now the system

deduces that the Somevisitor entity is inconsistent as well (see Figure 4.6).
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Figure 4.5: Document example: mandatory constraint

Figure 4.6: Document example: deductions with the mandatory constraint

Despite the tiny size of the ORM diagrams in these examples, some trivial

mistakes can trigger a chain of an unexpected behaviours that may degrade

the quality of the diagram. This may affect the quality of the software

or database which usually is obtained from the conceptual model. In the

real-world, huge diagrams are often used (as shown in the real-world scenario

presented in Chapter 7), so the benefits coming from the reasoning may be

crucial in scenarios where huge data are managed and multiple iterations are

performed.
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4.2 Reasoning with ORM Derivation Rules

In this section we analyse ORM Derivation Rules. They are special ORM

constraints able to express knowledge that is beyond standard ORM capabili-

ties, in a way similar to OCL constraints for UML or SQL triggers. ORM

Derivation Rules are expressed in the same controlled natural language as

standard ORM, namely FORML [90]. In this way it is very simple for non-IT

users to bridge the gap to the technical stakeholders working in the same

domain. In the ORM graphical notation, ORM Derivation Rules are depicted

by an asterisk (*) near the involved object types or fact types, plus a text

box where the sentence in controlled natural language is put in. There are

two main categories of rules: Subtype and Fact Types Derivation Rules.

Subtype Derivation Rules are placed on object types that are a specialisation

of another entity types (IsA relationship); Fact Type Derivation Rules define

fact types by means of better specified argument types. A derivation rule

is a collection of restrictions defined along one or more paths in the ORM

diagram, in order to precisely define the constraint for an object type or fact

type to be valid inside the domain.

The following examples are meant to show the usage of a reasoner engine

over those diagrams equipped with ORM Derivation Rules. In this way the

automated reasoning is also applied to the rules with the consequence of

providing additional inferences for the whole ORM diagram.

Each VisitorWithVisa is by definition some Person that has some Document
that is some Visa.

@x.VisitorWithVisapxqØPersonpxq ^ Dy.haspx, yq ^ Visapyq

The derivation rule defines exactly what a visitor with VISA is, by means of

an if-and-only-if statement.

Given the ORM conceptual schema with the derivation rule of Fig. 4.7, it

is obvious that the entity SomeVisitor should turn out to be a subtype

of VisitorWithVisa, as shown in green in Fig. 4.8. This inference can be

automatically computed by a logic prover using the semantic translation of
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Figure 4.7: Adding the entity type VisitorWithVisa.

the ORM conceptual schema. As a matter of fact, the tools implementing

an inference engine for ORM are all based on description logics provers (a

comparison of ORMiE with these tools is provided in Chapter 9), exploiting

Figure 4.8: Reasoning after adding the entity type VisitorWithVisa.
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Figure 4.9: Reasoning after adding the entity type VisitorWithoutIDCard.

the conversion of the first-order semantics to some computable fragment of

description logic.

Note that there is also an alternative way to express the same derivation rule,

since documents can be either VISAs or IDCards but not both. Indeed, if we

add the entity VisitorWithoutIDCard with the following derivation rule:

Each VisitorWithoutIDCard is by definition some Person that has some
Document where that Document is no IDCard.

@x.VisitorWithoutIDCardpxqØPersonpxq ^ Dy.haspx, yq ^  IDCardpyq,

it turns out that the new entity behaves exactly like the previous one, and

indeed it can be derived that they are equivalent (see the new inferred links

in green in Fig. 4.9).

Now, let’s suppose that all the people with an IDCard are citizens and

viceversa, and stateless people are exactly those without any document:

Each Citizen is by definition some Person that has some Document that
is
some IDCard.
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Each Stateless with ID is by definition some Person that
has no Document that is some IDCard
and has no Document that is some VISA.

@x.CitizenpxqØPersonpxq ^ Dy.haspx, yq ^ IDCardpyq

@x.StatelessWithIDpxqØPersonpxq^ Dy.phaspx, yq ^ IDCardpyqq^
 Dz.phaspx, zq ^ Visapzqq

Note the complete outcome of the reasoning process in green and red in Fig.

4.11 among others, valid inferences according to this formalisation of the

domain are that persons are partitioned between citizens and visitors with

VISA, and that there can’t be any stateless person. Indeed, stateless persons

are defined not to hold any VISA nor IDCard, but persons are required to

have exactly one document. The whole schema makes the StatelessWithId

entity inconsistent (in red). Clearly, if persons were not obliged to have

Figure 4.10: Reasoning after adding the entity types Citizen and Stateless-

WithID.
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exactly one document (i.e., via the mandatory participation constraint), the

reasoning process would not derive the inconsistency of the Stateless entity.

In order to clarify the distinction between the people who possess a document

and the others, in Figure 4.11 we rename the entity previously called Person

as Person with ID, and we introduce a more generic entity named Person. We

also introduce a new entity called Stateless associated to the same derivation

rule specified for StatelessWithID. The outcome of the reasoning depicted in

green tells us that the newly defined Stateless entity type, unlike the previous

one, is now consistent, and disjoint from Person with ID. The reason behind

this is the absence of the mandatory constraint on the entity Person, which

states that it is not mandatory for a person to have a document.

Figure 4.11: Fact type Derivation Rule reasoning.





5
Encoding ORM in DLR�

This chapter defines a decidable fragment for ORM in order to activate

reasoning algorithms on those ORM diagram expressed in a fragment named

ORM�. We start from the usage of DLR� which is a language from the

Description Logics family, suitable for representing conceptual modelling

languages such as UML, ER and ORM, since it supports n-ary relationships

and some relevant constructs that are easy to map in this language. A

decidable version of DLR� is DLR� which is used to capture the most

relevant ORM constraints and to define the ORM� decidable fragment.

5.1 The DLR� language

The content of this section is taken by the following publication [10], where

my contribution is related to the creation of an API system which includes an

implementation of the DLR� language and the encoding in ALCQI. This
API system is currently part of the conceptual modelling framework described

in Chapter 7 which provides an encoding for those ORM diagrams expressed

in the ORM� fragment. This work has also been integrated in the ORMiE

tool which is described in Chapter 8.

DLR� is an extension of the n-ary propositionally closed description logic

DLR to deal with attribute-labelled tuples (generalising the positional nota-

tion), projections of relations, and global and local objectification of relations,

able to express inclusion, functional, key, and external uniqueness dependen-

cies. The logic is equipped with both TBox and ABox axioms. We show how

71
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a simple syntactic restriction on the appearance of projections sharing com-

mon attributes in a DLR� knowledge base makes reasoning in the language

decidable with the same computational complexity as DLR. The obtained

DLR� n-ary description logic is able to encode more thoroughly conceptual

data models such as EER, UML, and ORM.

We introduce the description logic (DL) DLR� extending the n-ary DL DLR
[40], in order to capture database oriented constraints. While DLR is a

rather expressive logic, tailored for conceptual modelling and ontology design,

generalising many aspects of classical description logics and OWL, it lacks

a number of expressive means relevant for database applications that can

be added without increasing the complexity of reasoning—when used in a

carefully controlled way. The added expressivity is motivated by the increasing

use of description logics as an abstract conceptual layer (an ontology) over

relational databases. For example, the DLR family of description logics is

used to formalise and perform reasoning in the ORM conceptual modelling

language for database design (adopted by Microsoft in Visual Studio) [127].

We remind that a DLR knowledge base, as defined in [40], can express

axioms with (i) propositional combinations of concepts and (compatible) n-

ary relations – as opposed to just binary roles as in classical description logics

and OWL, (ii) concepts as unary projections of n-ary relations – generalising

the existential operator over binary roles in classical description logics and

OWL, and (iii) relations with a selected typed component.

As an example of DLR, in a knowledge base where Pilot and RacingCar

are concepts and DrivesCar, DrivesMotorbike, DrivesVehicle are binary

relations, the following statements:

Pilot� Dr1sσ2:RacingCarDrivesCar

DrivesCar\ DrivesMotorbike� DrivesVehicle

assert that a pilot drives a racing car and that driving a car or a motorbike

implies driving a vehicle.

The language we propose here, DLR�, extends DLR in the following ways.

� While DLR instances of n-ary relations are n-tuples of objects—whose

components are identified by their position in the tuple — instances of
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relations in DLR� are attribute-labelled tuples of objects, i.e., tuples

where each component is identified by an attribute and not by its

position in the tuple For example, the relation Employee may have the

signature:

Employeepfirstname, lastname, dept, deptAddrq,

and an instance of Employee could be the tuple:

xfirstname : John, lastname : Doe, dept : Purchase, deptAddr : Londony.

� Attributes can be renamed, for example to recover the positional at-

tributes:

firstname, lastname, dept, deptAddr Õ 1, 2, 3, 4.

� Relation projections allow the formation of new relations by projecting

a given relation on some of its attributes. For example, if Person is a

relation with signature Personpname, surnameq, it could be related to

Employee as follows::

πrfirstname, lastnamesEmployee� Person,

firstname, lastname Õ name, surname.

� The objectification of a relation (also known as reification) is a concept

whose instances are unique object identifiers of the tuples instantiat-

ing the relation. Those identifiers could be unique only within an

objectified relation (local objectification), or they could be uniquely

identifying tuples independently on the relation they are instance of

(global objectification). For example, the concept EmployeeC could be

the global objectification of the relation Employee, assuming that there

is a global 1-to-1 correspondence between pairs of values of the attributes

firstname, lastname and EmployeeC instances:

EmployeeC�
å
Drfirstname, lastnamesEmployee.

Consider the relations with the following signatures:

DrivesCarpname, surname, carq, OwnsCarpname, surname, carq,
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and assume that anybody driving a car also owns it: DrivesCar� OwnsCar.

The locally objectified events of driving and owning, defined as

CarDrivingEvent�
ä

DrivesCar, CarOwningEvent�
ä

OwnsCar,

do not imply that a car driving event by a person is the owning event by

the same person and the same car: CarDrivingEvent� CarOwningEvent.

Indeed, they are even disjoint: CarDrivingEvent[ CarOwningEvent�K.

It turns out that DLR� is an expressive description logic able to assert

relevant constraints typical of relational databases. In Section 5.1.3 we will

consider inclusion dependencies, functional and key dependencies, external

uniqueness and identification axioms. For example, DLR� can express the

fact that the attributes firstname, lastname play the role of a multi-attribute

key for the relation Employee:

πrfirstname, lastnamesEmployee� π¤1rfirstname, lastnamesEmployee,

and that the attribute deptAddr functionally depends on the attribute dept

within the relation Employee:

DrdeptsEmployee� D¤1rdepts pπrdept, deptAddrsEmployeeq .

While DLR� turns out to be undecidable, we show how a simple syntactic

condition on the appearance of projections sharing common attributes in a

knowledge base makes the language decidable. The result of this restriction

is a new language called DLR�. We prove that DLR�, while preserving most

of the DLR� expressivity, has a reasoning problem whose complexity does

not increase w.r.t. the computational complexity of the basic DLR language.

5.1.1 Syntax

We start by introducing the syntax of DLR�. A DLR� signature is a tuple

L�pC,R,O,U , τq where C, R, O and U are finite, mutually disjoint sets of

concept names, relation names, individual names, and attributes, respectively,

and τ is a relation signature function, associating a set of attributes to each

relation name τpRNq� tU1, . . . , Unu�U , with n¥ 2.
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C Ñ CN |  C | C1 [ C2 | D¥qrUisR |
Å

R |
Ä

RN

R Ñ RN | R1zR2 | R1 [R2 | R1 \R2 | σUi:CR

R Ñ π¤qrU1, . . . , UksR | π¥qrU1, . . . , UksR

φ Ñ C1�C2 | R1�R2 |CNpoq |RNpU1:o1, . . . , Un:onq | o1� o2 | o1� o2

ϑ Ñ U1ÕU2

Figure 5.1: The syntax of DLR�.

τpR1zR2q� τpR1q

τpR1 [R2q� τpR1q if τpR1q� τpR2q

τpR1 \R2q� τpR1q if τpR1q� τpR2q

τpσUi:CRq� τpRq if Ui P τpRq

τpπ¼qrU1, . . . , UksRq� tU1, . . . , Uku if tU1, . . . , Uku� τpRq

undefined otherwise

Figure 5.2: The signature of DLR� relations.

The syntax of concepts C, relations R, formulas φ, and attribute renaming

axioms ϑ is given in Figure 5.1, where CN P C, RN PR, U P U , o PO, q is

a positive integer and 2¤ k   aritypRq. The arity of a relation R is the

number of the attributes in its signature; i.e., aritypRq�| τpRq |, with the

relation signature function τ extended to complex relations as in Figure 5.2.

Note that it is possible that the same attribute appears in the signature of

different relations.

As mentioned in the introduction, the DLR� constructors added to DLR are

the local and global objectification (
Ä

RN and
Å

R, respectively); relation pro-

jections with the possibility to count the projected tuples (π¼qrU1, . . . , UksR),

and renaming axioms over attributes (U1ÕU2). Note that local objectifi-

cation (
Ä

R) can be applied to relation names, while global objectification

(
Å

RN) can be applied to arbitrary relation expressions. We use the standard

abbreviations:

K�C [ C, J� K, C1 \ C2� p C1 [ C2q, DrUisR�D¥1rUisR,

D¤qrUisR� pD¥q�1rUisRq, πrU1, . . . , UksR�π¥1rU1, . . . , UksR.
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A DLR� TBox T is a finite set of concept inclusion axioms of the form

C1�C2 and relation inclusion axioms of the form R1�R2. We use X1�X2

as a shortcut for the two axioms X1�X2 and X2�X1. A DLR� ABox A
is a finite set of concept instance axioms of the form CNpoq, relation instance

axioms of the form RNpU1:o1, . . . , Un:onq, and same/distinct individual axioms

of the form o1 � o2 and o1 � o2, with oi PO. Restricting ABox axioms to

concept and relation names only does not affect the expressivity of DLR� due

to the availability of unrestricted TBox axioms. A DLR� renaming schema

ℜ is a finite set of renaming axioms of the form U1ÕU2. We use the shortcut

U1 . . . UnÕU 1
1 . . . U

1
n to group many renaming axioms with the meaning that

UiÕU 1
i for all i� 1, . . . , n. A DLR� knowledge base (KB) KB� pT ,A,ℜq

is composed by a TBox T , an ABox A, and a renaming schema ℜ.

The renaming operator Õ is an equivalence relation over the attributes U ,
pÕ,Uq. The partitioning of U into equivalence classes induced by a renaming

schema is meant to represent the alternative ways to name attributes in the

knowledge base. A unique canonical representative for each equivalence class

is chosen to replace all the attributes in the class throughout the knowledge

base. From now on we assume that a knowledge base is consistently rewritten

by substituting each attribute with its canonical representative. After this

rewriting, the renaming schema does not play any role in the knowledge base.

We allow only arity-preserving renaming schemas, i.e., there is no equivalence

class containing two attributes from the same relation signature.

As shown in the introduction, the renaming schema is useful to reconcile the

named attribute perspective and the positional perspective on relations. It

is also important to enforce union compatibility among relations involved

in relation inclusion axioms, and among relations involved in [- and \-set
expressions. Two relations are union compatible (w.r.t. a renaming schema)

if they have the same signature (up to the attribute renaming induced by the

renaming schema). Indeed, as it will be clear from the semantics, a relation

inclusion axiom involving non union compatible relations would always be

false, and a [- and \-set expression involving non union compatible relations

would always be empty.
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p CqI �JIzCI

pC1 [ C2qI � CI
1 X CI

2

pD¥qrUisRqI � td P∆ | | tt PRI | trUis � du |¥ qu

p
Å

RqI � td P∆ | d� ıptq ^ t PRIu

p
Ä

RNqI � td P∆ | d� ℓRNptq ^ t PRNIu

pR1zR2qI �RI
1 zR

I
2

pR1 [R2qI �RI
1 XRI

2

pR1 \R2qI �RI
1 YRI

2

pσUi:CRq
I � tt PRI | trUis PCIu

pπ¼qrU1, . . . , UksRqI � txU1 : d1, . . . , Uk : dky PT∆ptU1, . . . , Ukuq |

1¤| tt PRI | trU1s � d1, . . . , trUks � dku |¼ qu

Figure 5.3: The semantics of DLR� expressions.

5.1.2 Semantics

The semantics of DLR� uses the notion of labelled tuples over a countable

potentially infinite domain ∆. Given a set of labels X �U , an X -labelled tuple

over ∆ (or tuple for short) is a total function t : X Ñ∆. For U PX , we write

trU s to refer to the domain element d P∆ labelled by U . Given d1, . . . , dn P∆,

the expression xU1 : d1, . . . , Un : dny stands for the tuple t defined on the set

of labels tU1, . . . , Unu such that trUis � di, for 1¤ i¤n. The projection of

the tuple t over the attributes U1, . . . , Uk is the function t restricted to be

undefined for the labels not in U1, . . . , Uk, and it is denoted by trU1, . . . , Uks.
The relation signature function τ is extended to labelled tuples to obtain

the set of labels on which a tuple is defined. T∆pX q denotes the set of all

X -labelled tuples over ∆, for X �U , and we overload this notation by denoting

with T∆pUq the set of all possible tuples with labels within the whole set of

attributes U .

A DLR� interpretation is a tuple I�p∆, �I , ıq consisting of a nonempty count-

able potentially infinite domain ∆ specific to I, an interpretation function �I ,
and an objectification function ı. The objectification function is an injective

function associating a unique domain element to each tuple, ı :T∆pUqÑ∆,
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called in the following tuple identifier. Note that, since the range of the

objectification function is ∆, tuple identifiers can, in turn, instantiate classes

or components of labelled tuples. The interpretation function �I assigns

a domain element to each individual, oI P∆, a set of domain elements to

each concept name, CNI �∆, and a set of τpRNq-labelled tuples over ∆ to

each relation name RN , RNI � T∆pτpRNqq. Also note that the semantics

does not enforce the unique name assumption (UNA) for the individuals

(requiring that aI � bI if a� b), but we can syntactically impose it using the

distinct individuals axioms in the ABox. The interpretation function �I is

unambiguously extended over concept and relation expressions as specified in

Figure 5.3.

As for the semantics of a DLR� KB, the interpretation I satisfies the concept

inclusion axiom C1�C2 if CI
1 �CI

2 , and the relation inclusion axiom R1�R2

if RI
1 �RI

2 . It satisfies the concept instance axiom CNpoq if oI PCNI, the

relation instance axiom RNpU1:o1, . . . , Un:onq if xU1 : o
I
1 , . . . , Un : o

I
ny PRN

I ,

the axiom o�xU1:o1, . . . , Un:ony if oI � ιpxU1:o
I
1 , . . . , Un:o

I
nyq, and the axioms

o1� o2 and o1� o2 if oI1 � oI2 , and oI1 � oI2 , respectively. I is a model of the

knowledge base pT ,Aq if it satisfies all the axioms in the TBox T and in the

ABox A.

In the following we provide an example of the expressivity of DLR�.

Example 5.1.1. Consider the relation namesR1, R2 with τpR1q�tW1,W2,W3,W4u,
τpR2q� tV1, V2, V3, V4, V5u, and a knowledge base with the renaming axiom

W1W2W3ÕV3V4V5 and a TBox Texa:

πrW1,W2sR1�π¤1rW1,W2sR1 (5.1)

πrV3, V4sR2�π¤1rV3, V4spπrV3, V4, V5sR2q (5.2)

πrW1,W2,W3sR1�πrV3, V4, V5sR2. (5.3)

The axiom equation (5.1) expresses that W1,W2 form a multi-attribute key

for R1; equation (5.2) introduces a functional dependency in the relation

R2 where the attribute V5 is functionally dependent from attributes V3, V4,

and equation (5.3) states an inclusion between two projections of the relation

names R1, R2 based on the renaming schema axiom.
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KB satisfiability refers to the problem of deciding the existence of a model of

a given knowledge base; concept satisfiability (resp. relation satisfiability) is

the problem of deciding whether there is a model of the knowledge base with

a non-empty interpretation of a given concept (resp. relation). A knowledge

base entails (or logically implies) an axiom if all models of the knowledge

base are also models of the axiom. All the decision problems in DLR� can

be all reduced to KB satisfiability, as stated in the following:

Lemma 1. In DLR�, concept and relation satisfiability and entailment are

reducible to KB satisfiability.

5.1.3 Expressiveness

DLR� is an expressive description logic able to assert relevant constraints in

the context of relational databases, such as inclusion dependencies (namely

inclusion axioms among arbitrary projections of relations), equijoins, func-

tional dependency axioms, key and foreign key axioms, external uniqueness

axioms, identification axioms, and path functional dependencies.

An equijoin among two relations with disjoint signatures is the set of all

combinations of tuples in the relations that are equal on their selected attribute

names. Let R1, R2 be relations with signatures τpR1q � tU,U1, . . . , Un1u
and τpR2q � tV, V1, . . . , Vn2u; their equijoin over U and V is the relation

R�R1 '
U�V

R2 with signature τpRq� τpR1q Y τpR2qztV u, which is expressed

by the DLR� axioms:

πrU,U1, . . . , Un1sR�σU :pDrU sR1[DrV sR2qR1

πrV, V1, . . . , Vn2sR�σV :pDrU sR1[DrV sR2qR2

UÕV .

A functional dependency axiom pR :U1 . . . UjÑUq (also called internal unique-

ness axiom [93]) states that the values of the attributes U1 . . . Uj uniquely

determine the value of the attribute U in the relation R. Formally, the inter-

pretation I satisfies this functional dependency axiom if, for all tuples s, tPRI ,

srU1s � trU1s, . . . , srUjs � trUjs imply srU s � trU s. Functional dependencies
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can be expressed in DLR�, assuming that tU1, . . . , Uj , Uu� τpRq, with the

axiom:

πrU1, . . . , UjsR�π¤1rU1, . . . , UjspπrU1, . . . , Uj , U sRq.

A special case of a functional dependency are key axioms pR :U1 . . . UjÑRq,
which state that the values of the key attributes U1 . . . Uj of a relation R

uniquely identify tuples in R. A key axiom can be expressed in DLR�,

assuming that tU1 . . . Uju� τpRq, with the axiom:

πrU1, . . . , UjsR� π¤1rU1, . . . , UjsR.

A foreign key is the obvious result of an inclusion dependency together with

a key constraint involving the foreign key attributes.

The external uniqueness axiom prU1sR1 Ó . . . Ó rUhsRhq states that the join

R of the relations R1, . . . , Rh via the attributes U1, . . . , Uh has the joined

attribute functionally dependent on all the others [93]. This can be expressed

in DLR� with the axioms:

R�R1 '
U1�U2

� � � '
Uh�1�Uh

Rh

R :U1
1 , . . . , U

1
n1
, . . . , Uh

1 , . . . , U
h
nh
ÑU1

where τpRiq� tU i, U i
1, . . . , U

i
ni
u, 1¤ i¤h, and R is a new relation name with

τpRq� tU1, U1
1 , . . . , U

1
n1
, . . . , Uh

1 , . . . , U
h
nh
u.

Identification axioms as defined in DLRifd [37] (an extension of DLR with

functional dependencies and identification axioms) are a variant of external

uniqueness axioms, constraining only the elements of a concept C; they can

be expressed in DLR� with the axiom:

rU1sσU1:CR1 Ó . . . Ó rUhsσUh:CRh.

Path functional dependencies—as defined in the description logics family

CFD [132]—can be expressed in DLR� as identification axioms involving

joined sequences of functional binary relations. DLR� also captures the tree-

based identification constraints (tid) introduced in [39] to express functional

dependencies in DL-LiteRDFS,tid.
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The DL DLRifd [37] extends DLR with functional dependencies and iden-

tification axioms, and is therefore included in DLR�. DLR� can express

complex inclusion and functional dependencies, for which it is well known

that reasoning is undecidable [42].

The rich set of constructors in DLR� allows us to extend the known mappings

in description logics of popular conceptual database models, and to provide the

foundations for their reasoning tasks. The EER mapping as introduced in [6]

can be extended to deal with multi-attribute keys (by using identification

axioms) and named roles in relations; the ORM mapping as introduced

in [62,127] can be extended to deal with arbitrary subset and exclusive relation

constructs (by using inclusions among global objectifications of projections of

relations), arbitrary internal and external uniqueness constraints, arbitrary

frequency constraints (by using projections), local objectification, named roles

in relations, and fact type readings (by using renaming axioms); the UML

mapping as introduced in [26] can be fixed to deal properly with association

classes (by using local objectification) and named roles in associations.

Aside from conceptual modelling, DLR� could be studied in relation to other

tasks relevant for database scenarios, such as query answering [40], constraint

checking with respect to a partially closed world (i.e., with DBoxes [118]),

inconsistent database repairing, etc. In this paper, we focus just on the basic

consistency and entailment reasoning tasks.

5.1.4 The DLR� decidable fragment

Since a DLR� knowledge base can express inclusions and functional depen-

dencies, the entailment problem is undecidable [42]. Thus, in this section

we present DLR�, a decidable syntactic fragment of DLR� limiting the

coexistence of relation projections in a knowledge base.

Given a DLR� knowledge base KB � pT ,A,ℜq, we define the projection

signature of KB as the set T containing the signatures τpRNq of all relations
RN PR, the singleton sets associated with each attribute name U PU , and
the relation signatures that appear explicitly in projection constructs in some

axiom from T , together with their implicit occurrences due to the renaming
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schema. Formally, T is the smallest set such that (i) τpRNqPT for all RN PR;

(ii) tUu PT for all U PU ; and (iii) tU1, . . . , Uku PT for all π¼qrV1, . . . , VksR
appearing as sub-formulas in T and Vi P rUisℜ for 1¤i¤k.

The projection signature graph of KB is the directed acyclic graph corre-

sponding to the Hasse diagram of T ordered by the proper subset relation

�, whose sinks are the attribute singletons tUu. We call this graph p�,T q.
Given a set of attributes τ �tU1, . . . , Uku�U , the projection signature graph

dominated by τ , denoted as Tτ , is the sub-graph of p�,T q with τ as root

and containing all the nodes reachable from τ . Given two sets of attributes

τ1, τ2�U , pathT pτ1, τ2q denotes the set of paths in p�,T q between τ1 and

τ2. Note that, pathT pτ1, τ2q�H both when a path does not exist and when

τ1� τ2. The notation childT pτ1, τ2q means that τ2 is a child (i.e., a direct

descendant) of τ1 in p�,T q. We now introduce DLR� as follows.

Definition 2. A DLR� knowledge base is a DLR� knowledge base that

satisfies the following syntactic conditions:

1. the projection signature graph p�,T q is a multitree: i.e., for every node

τ PT , the graph Tτ is a tree; and

2. for every projection construct π¼qrU1, . . . , UksR and every concept

expression of the form D¥qrU1sR appearing in T , if q ¡ 1 then the

length of the path pathT pτpRq, tU1, . . . , Ukuq is 1.

The first condition in DLR� restricts DLR� in the way that multiple projec-

tions of relations may appear in a knowledge base: intuitively, there cannot

be different projections sharing a common attribute. Moreover, observe that

in DLR� pathT is necessarily functional, due to the multitree restriction.

By relaxing the first condition the language becomes undecidable, as we

mentioned at the beginning of this Section. The second condition is also

necessary in our proof of decidability of DLR�; however, we do not know

whether this condition could be relaxed while preserving decidability.

Figure 5.4 shows that the projection signature graph of the knowledge base

from Example 5.1.1 is indeed a multitree. Note that in the figure we have

collapsed equivalent attributes in a unique equivalence class, according to the
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tW1,W2,W3,W4u tV1, V2, V3, V4, V5u

tW4u

#
W1,W2,W3

V3, V4, V5

+
tV1u tV2u

#
W1,W2

V3, V4

+ #
W3

V5

+

#
W1

V3

+ #
W2

V4

+

Figure 5.4: The projection signature graph of Example 5.1.1.

renaming schema. Furthermore, since all its projection constructs have q� 1,

this knowledge base belongs to DLR�.

DLR is included in DLR�, since the projection signature graph of any DLR
knowledge base is always a degenerate multitree with maximum depth equal

to 1. Not all the database constraints as introduced in Section 5.1.3 can be

directly expressed in DLR�. While functional dependency and key axioms

can be expressed directly in DLR�, equijoins, external uniqueness axioms,

and identification axioms introduce projections of a relation which share

common attributes, thus violating the multitree restriction. For example, the

axioms for capturing an equijoin between two relations, R1, R2 would generate

a projection signature graph with the signatures of R1, R2 as projections of

the signature of the join relation R sharing the attribute on which the join is

performed, thus violating condition 1.

However, in DLR� it is still possible to reason over both external uniqueness

and identification axioms by encoding them into a set of saturated ABoxes

(as originally proposed in [37]) and check whether there is a saturation that

satisfies the constraints. Therefore, we can conclude that DLRifd extended

with unary functional dependencies is included in DLR�, provided that
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projections of relations in the knowledge base form a multitree projection

signature graph. Since (unary) functional dependencies are expressed via the

inclusions of projections of relations, by constraining the projection signature

graph to be a multitree, the possibility to build combinations of functional

dependencies as the ones in [37] leading to undecidability is ruled out.

Note that the non-conflicting keys sufficient condition guaranteeing the de-

cidability of inclusion dependencies and keys of [109] is in conflict with our

more restrictive requirement: indeed [109] allow for overlapping projections,

but the considered datalog language is not comparable to DLR�. In gen-

eral, description logic based languages, such as DLR�, and datalog based

languages, such as the language proposed in [109], are incomparable in terms

of expressiveness, due to the inability of description logics to distinguish tree

and non-tree models in the TBox. Note that, unlike the typical restrictions

of datalog-like languages, there is no problem in stating arbitrary cyclic

dependencies in relation inclusion axioms involving projections on the left

and right hand sides.

Concerning the ability of DLR� to capture conceptual data models, only the

mapping of ORM schemas is affected by the DLR� restrictions: DLR� is

able to correctly express an ORM schema if the projections involved in the

schema satisfy the DLR� multitree restriction.

5.1.5 Mapping DLR� to ALCQI

This section shows that reasoning in DLR� is an ExpTime-complete problem.

The lower bound is clear by observing that ALC is a sublanguage of DLR�

[36]. More challenging is the upper bound obtained by providing a mapping

from DLR� knowledge bases to ALCQI knowledge bases. ALCQI is a

Description Logics which extends ALC with qualified number restrictions

D¥qR.C, and inverse roles R� (see [16] for more details).

We briefly recall the syntax of ALCQI as shown in Fig. 5.5:

where A stands for atomic concepts and R for atomic roles. We adapt

and extend the mapping presented for DLR in [40], with the modifications

proposed by [97] to deal with ABoxes without the unique name assumption.
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C Ñ K | A |  C | C1 [ C2 | C1 \ C2 | DR.C | @R.C |¤nR.C |¥nR.C

R Ñ P |P�

Figure 5.5: ALCQI syntax.

p Cq: �  C:

pC1 [ C2q: � C:1 [ C:2

pD¥qrUisRq: �

#
D¥q

�
pathT pτpRq, tUiuq:

��
.R:, if pathT pτpRq, tUiuq�H

K, otherwise

p
Å

Rq: � R:

p
Ä

RNq: � Al
RN

pR1zR2q: � R:1 [ R
:
2

pR1 [R2q: � R:1 [R:2

pR1 \R2q: �

#
R:1 \R:2, if τpR1q� τpR2q

K, otherwise

pσUi:CRq
: �

#
R: [ @pathT pτpRq, tUiuq:.C:, if pathT pτpRq, tUiuq�H

K, otherwise

pπ¼qrU1, . . . , UksRq: �

$''&
''%
D¥1,¼q

�
pathT pτpRq, tU1, . . . , Ukuq:

��
.R:,

if pathT pτpRq, tU1, . . . , Ukuq�H

K, otherwise

Figure 5.6: The mapping to ALCQI for concept and relation expressions.

We recall that the renaming schema ℜ does not play any role since we assumed

that a DLR� knowledge base is rewritten by choosing a single canonical

representative for each equivalence class of attributes induced by ℜ. Thus,
we consider DLR� knowledge bases as pairs of TBox and ABox axioms.

We first introduce a mapping function �: from DLR� concepts and relations

to ALCQI concepts. The function �: maps each concept name CN and

each relation name RN appearing in the DLR� KB to the ALCQI concept

names CN and ARN , respectively. The latter can be informally understood

as the “global” reification of RN . For each relation name RN , the ALCQI
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signature also includes a concept name Al
RN and a role name QRN to capture

local objectification. The mapping �: is extended to concept and relation

expressions as illustrated in Figure 5.6, where the notation D¥1,¼qR.C is a

shortcut for the conjunction DR.C [ D¼qR.C.

The mapping crucially uses the projection signature graph to map projections

and selections, by accessing paths in the projection signature graph p�,T q
associated to the DLR� KB. If there is a path pathT pτ, τ 1q� τ, τ1, . . . , τn, τ

1

from τ to τ 1 in T , then the ALCQI signature contains role names Qτ 1 , Qτi ,

for i� 1, . . . , n, and the following role chain expression is generated by the

mapping:

pathT pτ, τ
1q:�Qτ1 � . . . �Qτn �Qτ 1 ,

In particular, the mapping uses the following notation: the inverse role chain

pR1 � . . . �Rnq�, for Ri a role name, stands for the chain R�
n � . . . �R

�
1 , with

R�
i an inverse role, the expression D¼1R1 � . . . �Rn.C stands for the ALCQI

concept expression D¼1R1. . . . . D¼1Rn.C and @R1� . . .�Rn.C for the ALCQI
concept expression @R1. . . . . @Rn.C. Thus, since DLR� restricts to q�1 the

cardinalities on any path of length strictly greater than 1 (see condition 2 in

Def. 2), the above notation shows that we remain within the ALCQI syntax

when the mapping applies to cardinalities. If, e.g., we need to map the DLR�

cardinality constraint D¼qrUisR with q¡ 1, then, to stay within the ALCQI
syntax, Ui must not be mentioned in any other projection in such a way

that pathT pτpRq, tUiuq� 1. Finally, notice that the mapping introduces a

concept name Aτi
RN for each projected signature τi in the projection signature

graph dominated by τpRNq, i.e., τi PTτpRNq, informally to capture the global

reifications of the various projections of RN in the given KB. We also use the

shortcut ARN which stands for A
τpRNq
RN .

Intuitively, each node in the projection signature graph associated to a

DLR� KB denotes a relation projection and the mapping reifies each of

these projections. The target ALCQI signature resulting from mapping the

DLR� KB of Example 5.1.1 is partially presented in Fig. 5.7, together with

the projection signature graph (showed in Fig. 5.4). Each node of the graph

is labelled with the corresponding global reification concept (A
τj
Ri
), for each

Ri PR and each projected signature τj in the projection signature graph
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AR1 AR2

A
tW4u
R1

A
tW1,W2,W3u
R1

, A
tW1,W2,W3u
R2
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tV1u
R2

A
tV2u
R2

A
tW1,W2u
R1

, A
tW1,W2u
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A
tW3u
R1

, A
tW3u
R2

A
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, A
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R2
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3u QtW
1,
W2,
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QtV1u QtV2u

QtW1,W2u

Q
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3u

QtW
1
u

QtW2u

Figure 5.7: The ALCQI signature generated by Texa.

dominated by τpRiq, while the edges are labelled by the roles (Qτi) needed

for the reification.

To better clarify the need for the path function in the mapping, notice that

each DLR� relation is reified according to the decomposition dictated by the

projection signature graph it dominates. Thus, to access, e.g., an attribute

Uj of a DLR� relation Ri it is necessary to follow the path through the

projections that use the attribute. Such a path, from the node denoting the

whole signature of the relation, τpRiq, to the node denoting the attribute

Uj is returned by the pathT pτpRiq, Ujq function. For example, considering

the example in Fig. 5.7, to access the attribute W1 of the relation R2 in the

expression pσW1:CR2q, the mapping of the path pathT pτpR2q, tW1uq: is equal
to the role chain QtW1,W2,W3u�QtW1,W2u�QtW1u, so that pσW1:CR2q: � AR2

[
@QtW1,W2,W3u. @QtW1,W2u. @QtW1u.C. Similar considerations can be done when

mapping cardinalities over relation projections.

We now present in details the mapping of a DLR� KB into a KB in ALCQI.
Let KB�pT ,Aq be a DLR� KB with signature pC,R,O,U , τq. The mapping

γpKBq is assumed to be unsatisfiable (i.e., it contains the axiom J�K) if



88 CHAPTER 5. ENCODING ORM IN DLR�

the ABox contains a relation assertion RNptq with τpRNq � τptq, for some

relation RN PR and some tuple t. Otherwise, γpKBq� pγpT q, γpAqq defines
an ALCQI KB as follows:

γpT q� γdsj Y
¤

RNPR
γrelpRNq Y

¤
RNPR

γlobjpRNq Y

¤
C1�C2PKB

C:
1 �C:

2 Y
¤

R1�R2PKB
R:
1�R:

2

γdsj�
 
Aτi
RN1

� Aτj
RN2

|RN1, RN2 PRu
γrelpRNq�

¤
τiPTτpRNq

¤
childT pτi,τjq

 
Aτi
RN � DQτj .A

τj
RN , D¥2Qτj .J�K

(
γlobjpRNq� tARN � DQRN .Al

RN , D¥2QRN .J�K,
Al
RN � DQ

�
RN .ARN , D¥2Q�

RN .J�Ku.

Intuitively, γdsj ensures that relations with different signatures are disjoint,

thus, e.g., enforcing the union compatibility. The axioms in γrel introduce

classical reification axioms for each relation and its relevant projections. The

axioms in γlobj make sure that local objectifications are correctly captured

wrt the global ones since each role QRN defines a bijection.

To translate the ABox, we first map each individual o PO in the DLR�

ABox A to an ALCQI individual o. Each tuple in relation instance axioms

occurring in A is mapped via an injective function ξ to a distinct individual.

That is, ξ :TOpUqÑOALCQI , withOALCQI�OYOt being the set of individual

names in γpKBq, O XOt�H and

ξptq �

$&
%o PO, if t�xU :oy

o POt, otherwise.

Following [97], the mapping γpAq in Fig. 5.8 introduces a new concept name

Qo for each individual o PO and a new concept name Qt for each relation

instance t occurring in A, with each Qt restricted as follows:
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Qt�D¤1
�
pathT pτptq, tU1uq:

��
.

D
�
pathT pτptq, tU2uq:

�
.Qo2 [. . .[ D

�
pathT pτptq, tUnuq:

�
.Qon

Intuitively, equation (5.6) and equation (5.7) reify each relation instance axiom

occurring in A using the projection signature of the involved tuple itself. The

formulas equation (5.8)-equation (5.9) together with the axioms for concepts

Qt guarantee that there is exactly one ALCQI individual reifying a given

tuple in a relation instance axiom. Clearly, the size of γpKBq is polynomial

in the size of KB under the same coding of the numerical parameters.

We are now able to state our main technical result.

Theorem 3. A DLR� knowledge base KB is satisfiable iff the ALCQI
knowledge base γpKBq is satisfiable.

Proof (in [12, p. 13]).

As a direct consequence of this theorem and the fact that DLR is a sublan-

guage of DLR�, we obtain the following corollary.

Corollary 4. Reasoning in DLR� is ExpTime-complete.

γpAq�tCN :poq |CNpoq PAu Y (5.4)

to1� o2 | o1� o2 PAu Y to1� o2 | o1� o2 PAu Y (5.5)

tAτi
RNpξptrτisqq |RNptq PA and τi PTτpRNqu Y (5.6)

tQτj

�
ξptrτisq, ξptrτjsq

�
|RNptq PA, τi PTτpRNq and childT pτi, τjqu Y

(5.7)

tQopoq | o POu Y (5.8)

tQtpo1q | t�xU1:o1, . . . , Un:ony occurs in Au Y (5.9)

tQt� D¤1
�
pathT pτptq, tU1uq:

��
. (5.10)

D
�
pathT pτptq, tU2uq:

�
.Qo2 [. . .[ D

�
pathT pτptq, tUnuq:

�
.Qonu

(5.11)

Figure 5.8: The mapping γpAq
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5.2 ORM encoding in DLR�

In this section we provide the encoding of an ORM fragment called ORM�,

into DLR�, the decidable fragment of DLR�.

The mapping we present is based on the DLR� restriction involving the

concept of equivalence classes, as seen in Section 5.1.1. In an ORM diagram,

each role is renamed in order to obtain a unique canonical representative

for each equivalence class. So, in the ORM� fragment we consider only

those ORM diagrams where each attribute within the same relation signature

has a distinct equivalence class. This operation is done by a pre-processing

procedure that verifies if the ORM schema does not come with equivalence

classes containing attributes from the same relation signature. After this

procedure, the renaming schema does not play any role in the knowledge

base.

Thus, we only consider ORM schemas rewritable in a DLR� knowledge base

with a single canonical representative for each equivalence class of attributes;

if the pre-processing procedure fails because the constraint is violated, the

ORM schema will not be encoded in DLR�.

As a consequence of this restriction and from Definition 2, it follows that not

all ORM constraints can be expressed in DLR� since this language limits the

coexistence of relation projections in a DLR� knowledge base, in this way

the projections can not share common attributes. Thus, ORM constraints

with arbitrary join paths are excluded from the mapping because they lead

to the undecidability. For this reason, External Id, External Unique and

Identification are not expressible in DLR�. Other ORM constraints excluded

from the mapping are Type Cardinality, Role Cardinality, Values Of and Ring

because they are not known in DLR�.

Table 5.1: ORM� encoding in DLR�

FactType(P T1 . . . Tα(P))) P does not appear as an

AlternatePredicate

DLR� P� pσP.1:T1P q [ � � � [ pσP.αpP q:TαpP qPq
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Mandatory(T P1.i1 . . . Pm.im) for j�k and j,k¤m:

Pj�Pk

DLR� T� DrP1.i1sP1 \ � � � \ DrPm.imsPm

Frequency(P.i1 . . . P.im F) for j�k and j,k¤m: ij
�ik.

p,q¥1

(1) F � (p..)

(2) F � (..q)

(3) F � (p..q)

(4) F � (p) (q=p)

DLR� πrP.i1 . . .P.imsP �πp¥p,¤qqrP.i1 . . .P.imsP

Subtype((T1 . . . Tm) T)

DLR� T1�T, . . . ,Tm�T

ExclusiveSubtypes((T1 . . . Tm) T)

DLR� T1�T[ T2 [ � � � [  Tm, . . . ,Tm�1�T[ Tm,Tm�T

ExhaustiveSubtypes((T1 . . . Tm) T)

DLR� T�T1 \ � � � \ Tm

Subset((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk

DLR�

πrP1.i1 . . .P1.imsP1�πrP2.h1 . . .P2.hmsP2

with P1.i1 . . . P1.imÕP2.h1 . . . P2.hm if m   α(P1) and m   α(P2)

P1�πrP2.h1 . . .P2.hmsP2

with P1.i1 . . . P1.imÕP2.h1 . . . P2.hm if m � α(P1) and m   α(P2)

πrP1.i1 . . .P1.imsP1�P2

with P1.i1 . . . P1.imÕP2.h1 . . . P2.hm if m   α(P1) and m � α(P2)

P1�P2

with P1.i1 . . . P1.imÕP2.h1 . . . P2.hm if m � α(P1) and m � α(P2)
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Exclusive((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk

DLR�
Å

πrP1.i1 . . .P1.imsP1� 
Å

πrP2.h1 . . .P2.hmsP2

with P1.i1 . . . P1.imÕP2.h1 . . . P2.hm if m   α(P1) and m   α(P2)
Å

P1� 
Å

πrP2.h1 . . .P2.hmsP2

with P1.i1 . . . P1.imÕP2.h1 . . . P2.hm if m � α(P1) and m   α(P2)
Å

πrP1.i1 . . .P1.imsP1� 
Å

P2

with P1.i1 . . . P1.imÕP2.h1 . . . P2.hm if m   α(P1) and m � α(P2)
Å

P1� 
Å

P2

with P1.i1 . . . P1.imÕP2.h1 . . . P2.hm if m � α(P1) and m � α(P2)

Objectifies(T P)

DLR� T�
Å

P
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To prove the correctness of the ORM� mapping wrt FOL, we show the

equivalence between the ORM constraints expressed in FOL and the same

ORM constraints expressed in DLR�.

Lemma 5. DLR� constraints expressed in set semantics as in Figure 5.3

can also be expressed in FOL as shown in Figure 5.9.

Note that we translate only the constraints which are relevant for the encoding.

pCqf � λx.Cf pxq

p Cqf � λx. Cf pxq

pC1 [ C2qf � λx.Cf
1 pxq ^ Cf

2 pxq

pD¼qrUisRqf � λx.D¼qy.Rf pyq ^ yi�x

p
Ä

RNqf � λx.Dy.RN f pyq ^ lRNpyq�x

pσUi:CRq
f � λy.Rf pyq ^ Cf pyiq

pπ¼qrU1, . . . , UksRqf � λy1 . . . yk.D¼qz.Rf pzq ^ z1� y1 ^ � � � ^ zk� yk

Figure 5.9: The semantics of DLR� in FOL.

We define the mapping function f which translates DLR� concepts and

relations to first-order logic formulas extended with lambda expressions. The

function f maps each concept name C and each relation name R appearing

in the DLR� KB to FOL formulas. The translation is defined as the set

of DLR� inclusion axioms defined in Table 5.1, which are in the form of

R1�R2 for relations and in the form of C1�C2 for concepts. These axioms

are mapped in FOL as follows:

pC1�C2qf �@C
f
1 pxqÑCf

2 pxq (5.12)

pR1�R2qf �@y.R
f
1pyqÑRf

2pyq (5.13)

Figure 5.10: DLR� inclusion axioms in FOL

We now prove the equivalence between the ORM constructs expressed in

DLR� and the same constructs expressed in FOL that are part of the ORM�

fragment.
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Proof of lemma 5.

1. FactType P� pσP.1:T1
P q [ � � � [ pσP.αpP q:TαpP qPq

The left-hand side is trivial since it represents a predicate in FOL:

x.P pxq
The right-hand side is composed by a sequence of conjunctive DLR�

selections. Applying the reduction we obtain:

P pxq ^ T1px1q ^ � � � ^ P pxq ^ TαpP qpxαpP qq.
Applying 5.13 we obtain:

@x.P pxqÑP pxq ^ T1px1q ^ � � � ^ P pxq ^ TαpP qpxαpP qq.
We can remove P pxq from the right-hand side since it is redundant.

Using the extended notation, we finally obtain a FOL formula equivalent

to the one defined in Table 3.3 for the ORM Fact Type:

@x1 . . . xαpP q.P px1 . . . xαpP qqÑT1px1q ^ � � � ^ TαpP qpxαpP qq.

2. Mandatory T� DrP1.i1sP1 \ � � � \ DrPm.imsPm

The left-hand side is trivial since it represents a unary predicate in

FOL: T pxq. The right-hand side is composed by a sequence of DLR�

disjunctive concepts. Applying the reduction we obtain:

(DyP pyq ^ yi1 �xq _ � � � _ pDyP pyq ^ yim �xq.
Applying 5.12 we obtain:

@x.T pxqÑDyP1pyq ^ yi1 �x_ � � � _ DyPmpyq ^ yim �x.

Using the extended notation, we finally obtain a FOL formula equivalent

to the one defined in Table 3.3 for the ORM Mandatory constraint:

@x.T pxqÑDy1 . . . yαpP1q.
�
P1py1 . . . yαpP1qq ^ x� yi1

�
_ � � � _ Dy1 . . . yαpPmq.

�
Pmpy1 . . . yαpPmqq ^ x� yim

�
.

3. Frequency πrP.i1 . . .P.imsP � πp¥p,¤qqrP.i1 . . .P.imsP
Both sides use the DLR� projection over a set of attributes and the

right-hand side defines the cardinality. The corresponding lambda

expression of the left-hand side is:

λy1 . . . ym.Dz.Ppzq ^ z1� y1 ^ � � � ^ zk � ym.

The same applies for the hand-right side which only differs because the

cardinality:
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λy1 . . . ym.Dp¥p,¤qqz.Ppzq ^ z1� y1 ^ � � � ^ zk � ym.

Applying the reduction and 5.12 we obtain:

@x1 . . . xαpPq.P px1 . . . xαpPqqÑDp¥p,¤qqy1 . . . yαpPq.P py1 . . . yαpPqq^xi1�
yi1 ^ � � � ^ xim � yim
which is equivalent to the FOL formula defined for the ORM Frequency

constraint. Please note that the translation is the same for every

cardinality defined in Table 3.3 .

4. Subtype T1�T, . . . ,Tm�T

This is trivial since each ORM Object Type can be directly expressed

in a DLR� concept like T pxmq. Applying 5.12 we obtain the same

FOL formula for the ORM Subtype:

p@x.T1pxqÑT pxqq ^ � � � ^ p@x.TmpxqÑT pxqq

5. ExclusiveSubtypes

T1�T[ T2 [ � � � [  Tm, . . . ,Tm�1�T[ Tm,Tm�T

Similar to previous case.

6. ExhaustiveSubtypes T�T1 \ � � � \ Tm

Similar to previous case.

7. Subset πrP1.i1 . . .P1.imsP1� πrP2.h1 . . .P2.hmsP2

This constraint involves two predicates: P1 and P2. According to the

arity of these predicates there are 4 different combination as shown in

Table 5.1. We consider the following case: m = α(P1) and m   α(P2).

As we have seen before, the left-hand side is trivial: P1px1, . . . xαpP qq.
The right-hand side is a partition and in FOL the equivalent is:

Dy1 . . . yαpPq.P py1 . . . yαpPqq ^ xi1 � yi1 ^ � � � ^ xim � yim .

Finally we apply 5.13 along the previously defined renaming and we

obtain:

@x1 . . . xαpPq.P px1 . . . xαpPqqÑ Dy1 . . . yαpPq.P py1 . . . yαpPqq ^ xi1 � yi1 ^
� � � ^ xim � yim
which is equivalent to the FOL formula for the ORM Subset. The

translation is similar for the remaining 3 cases.
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8. Exclusive πrP1.i1 . . .P1.imsP1� 
Ä

πrP2.h1 . . .P2.hmsP2

This is similar to the previous case, the only difference is the negation

on the right-hand side of the axiom.

9. Objectifies T�
Ä

P

This is trivial since both sides are directly expressible in FOL. The

left-hand side is an object type and the right-hand side is objectified.

Applying 5.12 we obtain:

@x1 . . . xn.T pxqØ ℓP px1 . . . xnq�x

Given lemma 5.2, we can now prove the following theorem:

Theorem 6. Entailment in ORM� is decidable since any ORM conceptual

diagram expressed in the ORM� fragment can be encoded into a logically

equivalent DLR� TBox.

As a direct consequence of the theorem 6, we obtain the following corollary:

Corollary 7. Since DLR� has a direct encoding in ALCQI as shown in 5.6,

we conclude that exists a direct mapping from ORM� to ALCQI. Since

ALCQI can be expressed in OWL, it follows that it is also possible to express

ORM� into OWL.

We show the complexity of entailment in ORM�:

1. It is known from [36] that ALC is ExpTime-complete; ALC can be

expressed in ORM� (trivial adaptation of proof with EER in [7]); it

follows that ORM� is ExpTime-hard (lower bound).

2. It is known from corollary 4 that DLR� is ExpTime-complete; since

ORM� can be expressed in DLR� as in lemma 5.2, it follows that

ORM� is in ExpTime (upper bound).

From 1 and 2, ORM� is ExpTime-complete.

Corollary 8. Reasoning in ORM� is ExpTime-complete.
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These results have been used to build an implementation of ORM� and its

integration in a conceptual modelling framework, as described in Chapter 7.

In the last years, alternative proposals addressed the issue of encoding ORM

conceptual diagrams into Description Logics knowledge bases. These proposals

[18, 95, 101–103, 106] have already been discussed in detail in [60], where

it has been found that some of these proposals lack a complete formal

approach (as in [95, 103]) and some encodings are shown not to be correct

(as [102, 106]). These proposals have in common the usage of the DLRifd

language to encode the ORM diagrams. As we have seen in [10], DLR�

extends the n-ary description logics DLR and DLRifd without increasing the

computational complexity of the basic DLR language. Choosing DLR� to

encode ORM allows to perform reasoning on more expressive ORM diagrams

equipped with some constraints which are not expressible in DLRifd , for

example DLR� is able to express projections between relations. Moreover,

the proposal described in this work follows a completely formal approach

which is based on the ORM formalisation from Chapter 2, where the syntax

and the semantics of each ORM constraint has been unambiguously defined.

After defining the ORM foundations, a DL language (DLR�) has been

involved in the process to capture a relevant ORM fragment, namely ORM�.

Some proposals also come with a tool which implements the encoding, as

[95, 101, 102] for DogmaModeler [114] (which is compared to ORMiE in

Chapter 9). Other proposals [122, 124, 137] have also been discussed in

another work [55], where [122, 124] uses the numeric model instead of DL

languages, as in the aforementioned proposals. In particular, [55] encodes a

fragment of ORM using the PTIME Description Logic CFDI@�nc . Similar to

our proposal, the captured ORM fragment excludes covering and disjunctive

mandatory constraints; it includes limited cardinalities, subsumption and

disjointness between relationships and the definition of join paths; ORM

Derivation Rules are not taken into account. To the best of our knowledge,

the formalisation provided here is the only one including ORM Derivation

Rules.





6
Modelling with ORM versus OWL

6.1 Introduction

In this chapter we analyse the difference between conceptual modelling in

ORM and conceptual modelling directly in OWL.

The way we have tackled this issue so far in this document has been by consid-

ering OWL a sort of “assembler” into which encode ORM conceptual models.

Indeed, we have considered the main advantages of the OWL modelling

language, namely to have efficient implemented reasoners with universal APIs

for a decidable fragment of description logics. Since we found a polynomial

provably sound and complete encoding of arbitrary ORM conceptual models

(in the restricted decidable fragment of ORM) into OWL knowledge bases,

we could then reason correctly with ORM by exploiting the OWL reasoners

which are acting hidden in the background. We can of course also access

directly to the OWL knowledge base produced by the encoding of the ORM

model, and we could use it directly.

But now we want to analyse how these OWL knowledge bases are meaningful

taken autonomously, or, even better, whether people could build conceptual

models in OWL following the patterns suggested by the ORM conceptual

models.

Unluckily, the answer of this analysis is negative, namely it turns out that

conceptual modelling directly in OWL, when following typical ORM of fact-

based modelling principles, is unpractical and it would generate weird OWL

knowledge bases.
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This is mainly because OWL has a class-based flavour, as opposed to ORM

which has a fact-based flavour. We have argued elsewhere in this document

about the advantages of fact-based modelling. A class-based modelling is

mainly different because it considers classes (i.e., entity types) as first class

citizens, by focussing on many different aspects of their modelling (but

neglecting completely the aspect of defining a reference schema for them,

which is crucial for information systems design), while relations (i.e., fact

types) are second class citizens, for which only typing constraints and ring

constraints can be asserted - not to mention that OWL can only have binary

relations.

This difference is basically the same difference between ORM and UML class

diagrams. The absence of reference schemes makes these modelling language

“object-centred” languages, since at the instance level there will be plenty

of object identifiers as opposed to meaningful values identifying entities or

values of properties. Of course, UML modelling has been indeed conceived

as the conceptual modelling language for object oriented approaches (e.g.,

Java or C++), so we can not complain here about the qualities of these O-O

modelling languages. Still, it has been argued that a fact-based approach

could be also very appropriate for modelling O-O scenarios, but we do not

want to argue that here.

We can observe that the same observation can be made about other modelling

languages which have a rigorous semantics, such as Datalog, which also lack

the ability to express reference schemes, while, however, allowing for n-ary

relations.

Indeed, any logic-based conceptual modelling approach, while it can be related

with ORM, via some possibly sound or possibly complete encoding (i.e.,

mapping), can be considered a valid approach by its own range of applications.

What is important, is that for any of these alternative approaches, we can,

or better we should, find the appropriate invertible mappings between pairs

of them, so that we can easily move concepts and data across the various

frameworks.

In fact, we argue that, in the same way in the research presented in this

document we have found a (sound and complete) mapping from ORM to
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OWL, we should work in the future on finding mappings from OWL, or UML,

or Datalog, or ArchiMate, or some other relevant approach to conceptual

modelling. Those mappings most likely will be incomplete and will capture

only some (relevant) fragment of the languages, but the could be immensely

useful, in particular when the would map autonomous systems each one in

its own modelling language, so that it suffices to map the alphabets of the

different systems, but not the constraints; with this limitations, we believe

that most of those mappings could be soundly and completely done.

In the following section we show with an abstract simple example, how the

relation between ORM and OWL modelling develops for the basic constructs.

This will emphasise and explain the differences we have summarised above.

6.2 ORM vs OWL via an example

Let’s start with the simplest ORM construct, namely the fact type.

Note that, throughout our running example, we will not consider the reference

schemes, since they would be mapped as per their defining expansion, which,

as we know, is rather clumsy to have in the explicit form, since it looses its

original direct meaning:

In OWL we have no alternative than to have the reference scheme explicit,

with all the complications, as we will see, necessary to express the encoding

of the basic constructs involved in the explicit form.

Let’s start our example with a plain binary predicate R typed by the entity

types C1 and C2, which themselves have a reference scheme with the attribute

id:
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The basic fact type ORM construct is expressed in OWL as follows:

# FactType(C1-R-C2 (C1 C2))
SubClassOf(PRED-C1-R-C2-{1,2}

ObjectSomeValuesFrom(Q-{1} PRED-C1-R-C2-{1}))
SubClassOf(PRED-C1-R-C2-{1,2}

ObjectSomeValuesFrom(Q-{2} PRED-C1-R-C2-{2}))

SubClassOf(PRED-C1-R-C2-{1,2}
ObjectAllValuesFrom(Q-{1} TYPE-C1))

SubClassOf(PRED-C1-R-C2-{1,2}
ObjectAllValuesFrom(Q-{2} TYPE-C2))

with the proviso that the object properties, representing the two roles, are

functional:

FunctionalObjectProperty(Q-{1})
FunctionalObjectProperty(Q-{2})
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What does this really mean?

Since OWL is a class centred language, the fact type is expressed as the class

PRED-C1-R-C2-{1,2}; this class is related via the object properties Q-{1}
and Q-{2} to the classes representing the two roles PRED-C1-R-C2-{1} and

PRED-C1-R-C2-{2}: this defines the so-called reified version of the fact

type, namely the repreentation of the fact type in a class oriented language.

Moreover, the actual typing is express by the universal quantifications from

the fact type class to the two entity types C1 and C2 via the object properties

Q-{1} and Q-{2} respectively.

It is immediately clear that this encoding is not directly intuitive if one would

like to write it directly in OWL.

Let’s consider now the addition of three more basic constructs, such as

mandatory, uniqueness, and subtype:

This is expressed in OWL with the following additional axioms:

# Mandatory(C1 C1-R-C2.1)
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SubClassOf(TYPE-C1
ObjectSomeValuesFrom(ObjectInverseOf(Q-{1})

PRED-C1-R-C2-{1,2}))

# Unique(C1-R-C2.1)
SubClassOf(ObjectSomeValuesFrom(ObjectInverseOf(Q-{1})

PRED-C1-R-C2-{1,2})
ObjectExactCardinality(1 ObjectInverseOf(Q-{1})

PRED-C1-R-C2-{1,2}))

# Subtype(C3 C1)
SubClassOf(TYPE-C3 TYPE-C1)

While the subtype constraint OWL axiom is rather intuitive, the mandatory

and uniqueness constraints are not.

The OWL expression for the mandatory constraint states that each element

of C1 is in the projection over the first role of PRED-C1-R-C2-{1,2}, i.e.,
the class representation of the fact type.

The OWL expression for the uniqueness constraint is more subtle: it says

that the projection over the first role of PRED-C1-R-C2-{1,2}, i.e., the class
representation of the fact type., is among the elements that appear exactly

once in tht projection. This is the way we can express in OWL the absence

of duplicates.

Continuing with our example, let’s complete it with a predicate with arity

more than two, and with a subset constraint - elements which are quite

common in ORM conceptual models:
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Below you can find the additional axioms needed in the representation of the

above model in OWL. Let’s consider first the fact type declaration.

# FactType(C3-Ra-C2-Rb-C4 (C3 C2 C4))
FunctionalObjectProperty(Q-{1})
FunctionalObjectProperty(Q-{2})
FunctionalObjectProperty(Q-{3})

DisjointClasses(PRED-C1-R-C2-{1,2} PRED-C3-Ra-C2-Rb-C4-{1,2,3})

SubClassOf(PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectSomeValuesFrom(Q-{1} PRED-C3-Ra-C2-Rb-C4-{1}))

SubClassOf(PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectSomeValuesFrom(Q-{2} PRED-C3-Ra-C2-Rb-C4-{2}))

SubClassOf(PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectSomeValuesFrom(Q-{3} PRED-C3-Ra-C2-Rb-C4-{3}))
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SubClassOf(PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectAllValuesFrom(Q-{1}

ObjectAllValuesFrom(Q-{1,2}
TYPE-C3)))

SubClassOf(PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectAllValuesFrom(Q-{2}

ObjectAllValuesFrom(Q-{1,2}
TYPE-C2)))

SubClassOf(PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectAllValuesFrom(Q-{3} TYPE-C4))

SubClassOf(PRED-C3-Ra-C2-Rb-C4-{1,2,3}
ObjectSomeValuesFrom(Q-{1,2}

PRED-C3-Ra-C2-Rb-C4-{1,2}))

The OWL representation of the ternary fact type mirrors the way we repre-

sented the binary fact type, but with an additional element. Indeed, the last

axiom above serves the purpose of introducing the projection (as a class) over

the first two roles of the ternary fact type, via an additional funtional object

property Q-{1,2} connecting the reified fact type to its projection.

Let’s consider now the subset constraint:

# Subset((C3-Ra-C2-Rb-C4.1 C1-R-C2.1)(C3-Ra-C2-Rb-C4.2 C1-R-C2.2))
SubClassOf(ObjectSomeValuesFrom(ObjectInverseOf(Q-{1,2})

PRED-C3-Ra-C2-Rb-C4-{1,2})
PRED-C1-R-C2-{1,2})

It says that the projection (as a class) over the first two roles of the ternary

fact type is a subset of the class representing the binary relation R.

As we mentioned in the introduction, we can observe that:
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1. since there is no native reference scheme construct, this should be

expressed in OWL as a combination of a reified binary relation, a

mandatory constraint, and two uniqueness constraints;

2. all the fact types and their projections (in our example, unary and bi-

nary) are represented in OWL with classes, interconnected by functional

object properties.

We claim that this kind of modelling is counter-intuitive for a typical OWL

modeller, and definitely quite prone to errors.

To enforce our argument, we show below how the OWL knowledge base of our

example would be graphically depicted using the two most prominent graph-

ing tools for OWL: OWLGrEd (http://owlgred.lumii.lv) and VOWL

(http://vowl.visualdataweb.org). These graphs have lost completely

the intuitive meaning of the graphical form of ORM. x

http://owlgred.lumii.lv
http://vowl.visualdataweb.org
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7
UModel

In this chapter we present UModel [49], a framework to activate automated

reasoning over conceptual modelling languages.

In this work, UModel will be used to implement the ORM formalisation

presented previously. UModel is not limited to ORM because it has been

created to be a general purpose system designed to be used with any conceptual

language, after which it may be integrated into a conceptual modelling CASE

tool. The main idea behind this system is to provide a generalised solution

for the conceptual modelling community to deal with the problem of applying

reasoning to any CASE tool with any conceptual modelling language. We are

going to take a deep look at this framework, exploring each module in detail

providing a practical usage examples as well.

7.1 System description

The main goal of UModel is to enable automated reasoning on conceptual

diagrams which are used in CASE tools to model domains. CASE tools are

widely used to model software or databases since they are quite powerful

and rich of features, but they are not able to check the semantics over the

conceptual diagrams. UModel has been designed to be compatible with those

tools that adopt the conceptual modelling languages such as ORM, UML and

ER.

Enriching a CASE tool with reasoning capabilities gives the modeller more

control over the semantics of the diagram and an added value to the tool.
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Due to the fact that the modeller is a human being, he cannot automatically

control the semantics of the conceptual diagrams because the model size

may be unbearable and the task of checking the semantics will be repetitive

and time consuming. Managing this situation manually involves finding,

tracing and fixing errors, which it could be very difficult to accomplish and

time consuming. We must also consider that in the real world industry the

diagrams may be very large and different stakeholders take part in the same

project, so the need of the automated reasoning is essential in this context.

The absence of semantic checks on conceptual diagrams could lead to software

degradation and unexpected software behaviours. In order to overcome this

problem, it is highly recommended to equip a CASE tool with reasoning

capabilities.

It is also important to make a distinction between the final users and the

developers: the final users are in other words the modellers, the people who

use a conceptual modelling software to model a domain; the developers, on

the other hand, are the ones that use the API system provided by UModel to

integrate the system into the target CASE tool. It is also possible that these

two kind of users may be the same.

The benefits of using UModel are related to the inferred knowledge coming

from the automated reasoning; this may suggest revision or confirm the

consistency of the conceptual diagram. The automated reasoning can discover

inconsistencies, redundancies or any other formal properties that can be useful

to detect unexpected behaviours during the modelling step. Another benefit

of using automated reasoning is to prevent all the negative consequences

coming from bad modelling, which may require further iterations during the

development in order to rebuild the diagrams. Performing these iterations

may be time consuming.

At the moment the UModel system fully implements the ORM language and

a completed integration with the NORMA tool. The system is written in

Java and ported in .NET because the cross-platform feature of Java and the

popularity of .NET framework, so it works smoothly on any Java and C#

application. No other portings have been provided yet.
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7.1.1 Specs

UModel is written in Java. The language choice is motivated by the cross-

platform capability of Java and also because it is a popular language, thereby

easy to integrate into any system. To extend the range of compatibility, we

also built a version of UModel in C# to be used in .NET. The porting has

been made using the IKVM tool. The version of Java used is Java 8 and the

graphical interface is built using Java Swing components. As for the OWLAPI

the system uses the OWLAPI 4.1.4 and the reasoner is Fact++. After several

tests, this combination has been elected as the most compatible with the bast

performance. We also tried different reasoners, such as JFact, but they lacked

performance and had some unresolved bugs and limited reasoning capabilities.

Despite Fact++ is not in the same stack as Java language, since it is not

a Java library but native code written in C++ which needs to be properly

configured in the environment, it is selected as the best choice due to its

performance.

7.2 Workflow

The main idea behind this system is depicted in a workflow generally used to

apply automated reasoning over conceptual modelling languages, as described

in Figure 7.1.

Figure 7.1: The workflow main idea

First of all we recall the goal: performing the automated reasoning over a

conceptual diagram expressed in a conceptual modelling language, in order to

obtain relevant inferences coming from the reasoning procedure. The entry

point is always a conceptual diagram expressed in a conceptual modelling

language (e.g., UML, ER, ORM); then, we use a procedure to encode the

diagram expressed in that language, into a logical language. In this way, we
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can enable the automated reasoning procedure since we take advantage of

the logic language properties and reasoning algorithms; in the last step, the

inferences are shown as results of the automated reasoning procedure.

In this specific context, we decline this general approach to UModel using

ORM, as in Figure 7.2.

Figure 7.2: The workflow in UModel with the ORM language

This workflow slightly differs from the previous one because ORM is first

translated into DLR� language [10],[9],[8].

DLR� acts as a middleware language between the conceptual modelling

languages and its encoding in OWL. The reason behind this approach is that

the family DLR has been specifically designed for this class of modelling

languages and it can also deal with n-ary relationships that frequently occur

in conceptual diagrams.

An architectural benefit comes from this choice: the DLR� module encodes

any conceptual diagram into OWL independently, so that the core procedure

that encodes a conceptual language into OWL is always the same and com-

pletely transparent to the developer. In this way, the developer just needs to

create the conceptual diagram using the API provided, without caring about

any internal implementation.

7.3 Architecture and components

In this section we explain in detail each single component of the UModel

framework. Components are described following the execution order, starting

from the model definition until the last step showing the inferences. In order

to understand the framework design, UML class diagrams are used to show

the structure of the system components. In Figure 7.3 the architecture of the

system is summarized.
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Figure 7.3: UModel architecture

The whole process must be read as a precise sequence of steps. Briefly, the

starting point involves representing ORM constraints in Java data structures

to represent an ORM diagram. After this step, there is the DLR� encoding

which is the backbone of the next steps: the OWL generation and the

reasoning. After the reasoning is completed the inferences are encoded in

object-oriented data structures, this makes them easy and fast to query.
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Optionally, an interface is shown to graphically represent the outcome of the

reasoning.

7.3.1 Creation of the conceptual model

A conceptual model consists of a set of constraints. The main class representing

the model is named UModel and the main class for the constraints is called

UModelElement, as we can see in Figure 7.4. Both classes are abstract, this

means that they are made to be extended by classes with a specific language

implementation, like ORM. This architectural choice has been taken to make

UModel modular and extensible for any conceptual modelling language. Since

we are dealing with ORM, we want to create an ORM conceptual model by

means of ORM constraints, so we need to specify both classes as shown in

Figure 7.4.

Figure 7.4: The core components in UModel

The class UORMModel extends the class UModel; the class UORMConstraint

extends the UModelElement one. The UModelElement class is abstract since

it represents a generic ORM constraint. For this reason, each ORM constraint

extends the UModelElement class with its own structure.

UModel encodes the ORM signature as follows:
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Figure 7.5: The ORM constraints in UModel

1. ORMEntityType: a structure representing the ORM Object Type, it is

defined by the name of the entity type representing a specific domain;

2. ORMFactType: defines a relationships in ORM a relationship consisting

of a predicate name and an arity. A fact type is composed by a sequence

of roles.

3. ORMRole: the roles that are embedded in the ORMFactType data

structure. As with ORM, each role has an index which is the position

inside the predicate, and a name composed by the predicate followed

by the dot and the index.

And the ORM constraints:

1. Mandatory, specifically the simple Mandatory which is placed on an

ORM role of a predicate;

2. Uniqueness, specifically the simple Uniqueness which is placed on an

ORM role of a predicate;

3. Exclusion, the exclusion ORM constraint applicable to entity types and

fact types
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4. Subtype, for IsA relationships between entity types

5. Subset, for IsA relationships between fact types

6. Exhaustive, for the covering among entity types and fact types

7. Frequency, to set the cardinality

The reader should note that despite object types, fact type and roles belongs

conceptually to the ORM signature as we have seen in Chapter 2, in the

implementation context it is more suitable to derive them from the abstract

class UModelElement, since they will be added as part of the ORM model,

exactly as the other constraints.

In this step the developer builds the ORM model adding a set of constraints

using the API system shipped with UModel. A complete example is provided

in Section 7.3.6.

7.3.2 DLR� encoding

The purpose of this step is to encode ORM models in DLR�, in order to

perform the OWL mapping in the next step. The ORM fragment covered by

UModel is ORM� and as we have seen in Chapter 5 this fragment can be

expressed in DLR�. As shown in Figure 7.6, the translation is made into

two steps: from ORM to DLR� and from DLR� to OWL. In this section

we discuss the first step.

More generally, the role of the DLR� language in the UModel workflow is

acting like a “proxy” between any conceptual modelling language and OWL.

The benefit of this approach is avoiding further reimplementation of the

DLR� logic and algorithms over and over again for each language; moreover,

this procedure is transparent to the developer because it is automatically

executed by the system before starting the reasoner.

In order to understand how this procedure works, we have to recall Section

5.1.4, where a DLR� knowledge base is represented such as in the multitree

in Figure 7.7.
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Figure 7.6: DLR� as an intermediate language

In DLR� each node is composed by a sequence of attributes. In ORM a

node represents the sequence of roles belonging to a fact type. Nodes can

share some attributes (roles for ORM) when the renaming is applied (for

example, when an ORM subset constraints is involved in two fact types).

Leaf nodes (also called as “singleton”) encode a single attribute in the tree.

Intermediate nodes (also called as “partition”) are created when a projection

of a relationship is asserted in the knowledge base. In ORM this happens

when some constraints involve a subset of roles in a fact type (i.e., uniqueness

spanning over one or more roles).

If we consider the ORM diagram in Figure 7.8, the corresponding projection

signature graph is shown in Figure 7.9.

This small model has only two fact types: origin and morigin. In the model

there is a subset constraint stating that all the pairs inside morigin are also

included in origin. This means that these two fact types share the same roles.

Because the presence of this subset constraint, the DLR� renaming function

is activated collapsing the corresponding tree nodes of origin and morigin

into a single one.



118 CHAPTER 7. UMODEL

tW1,W2,W3,W4u tV1, V2, V3, V4, V5u

tW4u

#
W1,W2,W3

V3, V4, V5

+
tV1u tV2u

#
W1,W2

V3, V4

+ #
W3

V5

+

#
W1

V3

+ #
W2

V4

+

Figure 7.7: The projection signature graph of Example 5.1.1.

Figure 7.8: ORM schema to be encoded via API

The framework UModel implements the DLR� multitree with an hashmap

data structure:

� key: the sequence of roles in the node
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Aorigin.1,origin.2,morigin.1,morigin.2

Aorigin.1,morigin.1 Aorigin.2,morigin.2

Q1 Q2

Figure 7.9: The projection signature graph of Example 5.1.1.

� value: MultiTreeNode data structure containing information about that

node

Each entry encodes the node information as shown in Table 7.1.

Table 7.1: DLR� implemented as an HashMap

Entry
Key Value

Fact Type roles MultiTreeNode

The sequence of roles uniquely identifies a fact type, a partition of the

projection signature graph and a single role. Each sequence of roles uniquely

identifies an entry in the hashmap data structure.

The MultiTreeNode is a data structure containing information about the node:

protec ted MultiTreeNode ( BitSet b i t s e t , MultiTreeNodeType

type , S t r ing rn ) {
t h i s . b i t s e t = b i t s e t ;

t h i s . type = type ;

t h i s . rn = rn ;

}

1. BitSet - The BitSet native Java class is used to store the indexes of

roles to efficiently compare them performing bitwise operations among

multitree nodes. This is particularly useful when permutations are

needed to calculate the DLR� functions as dsj and rel. BitSet class is

also used to traverse a path between two nodes, as in the DLR� Path

function.
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2. MultiTreeNodeType is an ENUM type which assigns tags to the nodes.

This comes handy when we need to detect if a node is root, a partition

or a singleton.

pub l i c enum MultiTreeNodeType {
ROOT, PARTITION, SINGLETON

}

3. RN - This is the fact type name belonging to an entry.

Considering the example in Figure 7.8, the corresponding multitree is shown

in Table 7.2.

Table 7.2: Multitree entries for the ORM diagram 7.8

Entry Key Value

0 morigin.1 10 SINGLETON morigin

1 origin.1,origin.2 11 ROOT origin

2 morigin.2 01 SINGLETON morigin

3 origin.1 10 SINGLETON origin

4 morigin.1,morigin.2 11 ROOT morigin

5 origin.2 01 SINGLETON origin

Observing Table 7.2, we notice that in the knowledge base there are no

partition nodes because the maximum fact types arity in the model is two,

so splitting them means creating exactly two singleton nodes. The two root

nodes have the same bitset because of the renaming; the same applies for each

role. This situation is generated by the ORM subset constraint which states

that all the pairs in morigin are also in origin. Bitsets are set considering

the position of the indexes for each role. For example, morigin.1 has the

first bitset set and the second unset; the opposite is for morigin.2, where the

second bitset is set and the first one unset.

At the end of this step, UModel has encoded a data structure filled with all

the necessary information that will be used to perform the OWL encoding in

the next step.
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7.3.3 OWL generation

The purpose of this step is to encode the ORM model into OWL since we

already collected (in the previous step) the multitree data, producing an

OWL ontology to be used in the next step in order to perform the automated

reasoning.

In the previous step, we have encoded the ORM model into the fragment

ORM� which is expressed in DLR� as previously shown (Section 5.1).

Recalling the corollary 7 which states that an ORM model expressed in

ORM� can be encoded in ALCQI (and therefore in OWL), we now show in

Table 7.3 how the ORM constraints in ORM� are encoded in ALCQI. We

recall the usage of the : function (as in Figure 5.6) which maps each concept

name CN and each relation name RN appearing in the DLR� KB (since we

are using ORM�) to the ALCQI concept names and relation names. This

encoding is implemented in UModel using OWLAPI.

Table 7.3: ORM� constraints encoded in ALCQI

FactType(P T1 . . . Tα(P))) P does not appear as an

AlternatePredicate

OWL P:�P: [ @pathT pτpPq,P.1q
:.T:1 [ � � � [ P: [ @pathT pτpPq,P.αpPqq

:.T:αpPq

Subtype((T1 . . . Tm) T)

OWL T:1 � T�, . . . , T:m � T�

ExclusiveSubtypes((T1 . . . Tm) T)

OWL T:1 � T: [ T:2 [ � � � [  T:m , . . . , T:m�1 � T: [ T:m , . . . , T:m � T:

ExhaustiveSubtypes((T1 . . . Tm) T)

OWL T:�T:1 \ � � �\ T:m

Mandatory(T P1.i1 . . . Pm.im) for j�k and j,k¤m: Pj

�Pk

OWL T:� DppathT pτpP1q,P1.i1qq.
�P:1 \ � � � \ DppathT pτpPmq,Pm.imqq.

�P:m

Unique(P.i1 . . . P.im) for j�k and j,k¤m: ij
�ik

OWL DppathT pτpP q,P.i1 . . .P.imqq
�.P:� D�1ppathT pτpP q,P.i1 . . .P.imqq

�.P:
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Subset((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk

OWL

DppathT pτpP1q,P1.i1 . . .P1.imqqq
�.P:1� DppathT pτpP2q,P2.j1 . . .P2.jmqq

�.P:2

P:1� DppathT pτpP2q,P2.j1 . . .P2.jmqq
�.P:2

DppathT pτpP1q,P1.i1 . . .P1.imqq
�.P:1�P:2

P:1�P:2

Exclusive((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk

OWL

DppathT pτpP1q,P1.i1 . . .P1.imqqq
�.P:1� DppathT pτpP2q,P2.j1 . . .P2.jmqq

�.P:2

P:1� DppathT pτpP2q,P2.j1 . . .P2.jmqq
�.P:2

DppathT pτpP1q,P1.i1 . . .P1.imqq
�.P:1� P

:
2

P:1� P
:
2

Objectifies(T P)

OWL T:�P:

The encoding in ALCQI also includes a set of axioms related to the multitree

data structure. Moreover, other axioms have been added in the generated

ontology in order to improve the system performance and the readability of

the ontology from the user perspective. Below is provided a complete example

illustrating the structure of an OWL ontology generated from an ORM Model,

plus details about the aforementioned axioms.

An OWL ontology consists of a set of OWL declarations and axioms. We

are going to show step by step how the ontology is built using the running

example in Figure 7.8. Declarations are generated for each entity type and

fact type; additional declarations are also generated for multitree nodes and

edges.
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� Entity Type - (OWL Class)

� Fact Type - Root nodes in the multitree - (OWL Class)

� Possible Partition nodes in the multitree - (OWL Class)

� Role - Singleton nodes in the multitree - (OWL Class)

� Multitree edges - (OWL property)

The generated ontology is displayed in the OWL “Functional Syntax Document

Format” [116] with prefix “http://www.ormie.org/”.

In order to distinguish Entity Types from Fact Types, some tags are appended

to the prefix. In the example below we have the TYPE tag for the object

types Call, Cell and Phonepoint and the tag PRED for the fact types origin

and morigin. As for the multitree nodes, the tag PROJ indicates a node of

the multitree (the tag PROJ stands for “projections”, referring to the set of

attributes in the project signature graph) and Q is for the edges. Each OWL

class with the tag PROJ is based on the pre-computation of the multitree

performed in the previous step. Among the declared OWL classes there are

some with the tag UNIQ to optimize the reasoning calculations to detect

possible uniqueness constraints (this will be explained in the next section).

### ENTITY TYPES
Dec la ra t i on ( Class (<http ://www. ormie . org/#TYPE=Call>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#TYPE=Cel l >) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#TYPE=Phonepoint>) )
### FACT TYPES
Dec la ra t i on ( Class (<http ://www. ormie . org/#PRED=morigin ={1,2}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PRED=morigin={1}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PRED=morigin={2}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PRED=o r i g i n ={1,2}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PRED=o r i g i n ={1}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PRED=o r i g i n ={2}>) )
### UNIQUE NODES
Dec la ra t i on ( Class (<http ://www. ormie . org/#UNIQ=morigin={1}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#UNIQ=morigin={2}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#UNIQ=o r i g i n ={1}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#UNIQ=o r i g i n ={2}>) )
### MULTITREE TREE NODES
Dec la ra t i on ( Class (<http ://www. ormie . org/#PROJ=morigin ={1,2}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PROJ=morigin={1}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PROJ=morigin={2}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PROJ=o r i g i n ={1,2}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PROJ=o r i g i n ={1}>) )
Dec la ra t i on ( Class (<http ://www. ormie . org/#PROJ=o r i g i n ={2}>) )
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### MULTITREE EDGES (PROPERTIES)
Dec la ra t i on ( ObjectProperty(<http ://www. ormie . org/#Q={1}>) )
Dec la ra t i on ( ObjectProperty(<http ://www. ormie . org/#Q={2}>) )

ORM constraints are generated following the Table 7.3. The axioms related

to the example in Figure 7.8 are:

# FACTTYPE ORIGIN
SubClassOf(<http ://www. ormie . org/#PRED=o r i g i n ={1,2}> ObjectAllValuesFrom(<

http ://www. ormie . org/#Q={1}> <http ://www. ormie . org/#TYPE=Call>) )
SubClassOf(<http ://www. ormie . org/#PRED=o r i g i n ={1,2}> ObjectAllValuesFrom(<

http ://www. ormie . org/#Q={2}> <http ://www. ormie . org/#TYPE=Phonepoint>) )

# FACTTYPE MORIGIN
SubClassOf(<http ://www. ormie . org/#PRED=morigin={1,2}> ObjectAllValuesFrom(<

http ://www. ormie . org/#Q={1}> <http ://www. ormie . org/#TYPE=Call>) )
SubClassOf(<http ://www. ormie . org/#PRED=morigin={1,2}> ObjectAllValuesFrom(<

http ://www. ormie . org/#Q={2}> <http ://www. ormie . org/#TYPE=Cel l >) )

# MANDATORY
SubClassOf(<http ://www. ormie . org/#TYPE=Cel l> <http ://www. ormie . org/#PROJ=

morigin={2}>)

# ISA
SubClassOf(<http ://www. ormie . org/#TYPE=Phonepoint> <http ://www. ormie . org/#

TYPE=Cel l >)

# UNIQUENESS
SubClassOf(<http ://www. ormie . org/#PROJ=morigin={1}> <http ://www. ormie . org/#

UNIQ=morigin={1}>)
SubClassOf(<http ://www. ormie . org/#PROJ=o r i g i n ={1}> <http ://www. ormie . org/#

UNIQ=o r i g i n ={1}>)

# SUBSET
SubClassOf(<http ://www. ormie . org/#PRED=morigin={1,2}> <http ://www. ormie . org

/#PRED=o r i g i n ={1,2}>)

As stated before, additional axioms are needed to complete the ALCQI
encoding.

� DLR� functions: dsj, rel and obj

� DLR� multitree

� “dummy” nodes for query optimization

A DLR� ontology is also made by the axioms related to the functions dsj, rel

and obj as in the ALCQI mapping in Section 5.1.5. The dsj function ensures

that relations with different signatures are disjoint. The axioms generated

by rel introduce classical reification axioms for each relation and its relevant
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projections. The axioms in obj make sure that each local objectification

differs from the global one.

Since the considered example has a subset constraint stating that all the pairs

in morigin are also in origin, this implies that the two relationships are not

disjoint and in the multitree they share the same attributes. In this case,

there are no generated DSJ axioms but only REL ones.

# REL ORIGIN
SubClassOf(<http ://www. ormie . org/#PRED=o r i g i n ={1,2}> ObjectSomeValuesFrom(<

http ://www. ormie . org/#Q={1}> <http ://www. ormie . org/#PRED=o r i g i n ={1}>) )
SubClassOf(<http ://www. ormie . org/#PRED=o r i g i n ={1,2}> ObjectSomeValuesFrom(<

http ://www. ormie . org/#Q={2}> <http ://www. ormie . org/#PRED=o r i g i n ={2}>) )

# REL MORIGIN
SubClassOf(<http ://www. ormie . org/#PRED=morigin={1,2}> ObjectSomeValuesFrom(<

http ://www. ormie . org/#Q={1}> <http ://www. ormie . org/#PRED=morigin={1}>) )
SubClassOf(<http ://www. ormie . org/#PRED=morigin={1,2}> ObjectSomeValuesFrom(<

http ://www. ormie . org/#Q={2}> <http ://www. ormie . org/#PRED=morigin={2}>) )

In order to complete the DLR� encoding, the axioms related to the multitree

must be added to the ontology. Relying on the hashmap data structure used

before to encode the DLR� multitree, the Algorithm 1 shows the procedure

to encode a DLR� multitree into OWL.
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Algorithm 1 DLR� tree OWL mapping

pr i va t e void generateDLRTreeForOWL ()
{

// Var iab l e s d e c l a r a t i on
BitSet s i n g l e t o nB i t s e t ;
S t r ing rn ;
ArrayList<Str ing> l i s tO fRo l e s ;
BitSet p r ed i c a t eB i t s e t ;
ArrayList<BitSet> path ;
OWLClass pro j ;
OWLClassExpression expre s s i on ;
OWLClassExpression p r ed i ca t e ;

//Let ’ s i t e r a t e the mu l t i t r e e hashmap
I t e r a t o r<Entry<ArrayList<Str ing >, MultiTreeNode>> i t e r a t o r = d l r . getMult iTree ( ) .

entrySet ( ) . i t e r a t o r ( ) ;
whi le ( i t e r a t o r . hasNext ( ) )
{

Entry<ArrayList<Str ing >, MultiTreeNode> entry = i t e r a t o r . next ( ) ;
// the cur rent t r e e node i s a SINGLETON
i f ( ( entry . getValue ( ) . getType ( )==MultiTreeNodeType .SINGLETON) )
{

s i n g l e t o nB i t s e t = entry . getValue ( ) . g e tB i t s e t ( ) ;
rn = entry . getValue ( ) . getRn ( ) ;
l i s tO fRo l e s = factTypesMap . get ( rn ) . getRoles ( ) ;
p r e d i c a t eB i t s e t = d l r . getMult iTree ( ) . get ( l i s tO fRo l e s ) . g e tB i t s e t ( ) ;
path = d l r . path ( p r ed i c a t eB i t s e t , s i n g l e t o nB i t s e t ) ;

// Def in ing the r o l e data
St r ing key = entry . getKey ( ) . get (0 ) ;
S t r ing idRole = key . subs t r i ng ( key . l ength ( )=1) ;
p r ed i ca t e = fa c t o ry . getOWLClass ( ”PRED=” + rn + ”=” +(factTypesMap . get ( rn

) . g e tFu l lAr i ty ( ) ) , p r e f i x ) ;
exp r e s s i on = d l r . getOWLSomeValuesFromComposition ( path , pred icate , ”empty”

, 1) ;
p ro j = fa c t o ry . getOWLClass ( ”PROJ=” + rn + ”={” + ( idRole ) + ”}” , p r e f i x )

;
// wr i t i ng the axiom in the onto logy
manager . addAxiom( ontology , f a c t o ry . getOWLEquivalentClassesAxiom ( proj ,

exp r e s s i on ) ) ;
}

// the cur rent t r e e node i s a PARTITION
e l s e i f ( ( entry . getValue ( ) . getType ( )==MultiTreeNodeType .PARTITION) )
{

s i n g l e t o nB i t s e t = entry . getValue ( ) . g e tB i t s e t ( ) ;
rn = entry . getValue ( ) . getRn ( ) ;
l i s tO fRo l e s = factTypesMap . get ( rn ) . getRoles ( ) ;
p r e d i c a t eB i t s e t = d l r . getMult iTree ( ) . get ( l i s tO fRo l e s ) . g e tB i t s e t ( ) ;
path = d l r . path ( p r ed i c a t eB i t s e t , s i n g l e t o nB i t s e t ) ;
p r ed i ca t e = fa c t o ry . getOWLClass ( ”PRED=” + rn + ”=” +( s i n g l e t o nB i t s e t .

t oS t r i ng ( ) . r e p l a c eA l l ( ”\\ s+” , ”” ) ) , p r e f i x ) ;
exp r e s s i on = d l r . getOWLSomeValuesFromComposition ( path , pred icate , ”empty”

, 1) ;
p ro j = fa c t o ry . getOWLClass ( ”PROJ=” + rn + ”=” + ( s i n g l e t o nB i t s e t .

t oS t r i ng ( ) . r e p l a c eA l l ( ”\\ s+” , ”” ) ) , p r e f i x ) ;
// wr i t i ng the axiom in the onto logy
manager . addAxiom( ontology , f a c t o ry . getOWLEquivalentClassesAxiom ( proj ,

exp r e s s i on ) ) ;
}

// the cur rent t r e e node i s the ROOT
e l s e i f ( ( entry . getValue ( ) . getType ( )==MultiTreeNodeType .ROOT) ){

rn = entry . getValue ( ) . getRn ( ) ;
p r ed i ca t e = fa c t o ry . getOWLClass ( ”PRED=” + rn + ”=” +(factTypesMap . get ( rn

) . g e tFu l lAr i ty ( ) ) , p r e f i x ) ;
p ro j = fa c t o ry . getOWLClass ( ”PROJ=” + rn + ”=” + ( factTypesMap . get ( rn ) .

g e tFu l lAr i ty ( ) ) , p r e f i x ) ;
// wr i t i ng the axiom in the onto logy
manager . addAxiom( ontology , f a c t o ry . getOWLEquivalentClassesAxiom ( proj ,

p r ed i ca t e ) ) ;
}

}
}
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The algorithm iterates over each entry of the multitree data structure in order

to detect the node type (ROOT, PARTITION, SINGLETON). According to

this parameter an axiom is generated to represent that node into the ontology.

If the node is a partition or a singleton it involves an edge in the multitree, so

according to the DLR� mapping an OWL expression is created to compute

the path. The DLR� path function takes as input two sets of nodes and

returns the path between them. Speaking in OWL terms, this is represented

as a role chain composed by OWL properties where each property corresponds

to the edge in the multitree. In order to optimize the reasoner tasks, an

equivalence axiom is added to the ontology where the OWL class with the

PROJ tag representing the node is equivalent to the OWL class expression.

In this way the reasoner has to read only the class with the tag PROJ, instead

of recomputing from scratch the OWL class expression. The computational

cost of this operation is constant in time and done once during the ontology

generation.

The axioms generated by Algorithm 1 are:

# TREE ROOT NODE o r i g i n
Equ iva l entC la s s e s (<http ://www. ormie . org/#PRED=o r i g i n ={1,2}> <http ://www.

ormie . org/#PROJ=o r i g i n ={1,2}>)

# TREE ROOT NODE morigin
Equ iva l entC la s s e s (<http ://www. ormie . org/#PRED=morigin={1,2}> <http ://www.

ormie . org/#PROJ=morigin ={1,2}>)

# TREE SINGLETON NODE morigin . 1
Equ iva l entC la s s e s (<http ://www. ormie . org/#PROJ=morigin={1}>

ObjectSomeValuesFrom ( Object InverseOf(<http ://www. ormie . org/#Q={1}>) <
http ://www. ormie . org/#PRED=morigin ={1,2}>) )

# TREE SINGLETON NODE morigin . 2
Equ iva l entC la s s e s (<http ://www. ormie . org/#PROJ=morigin={2}>

ObjectSomeValuesFrom ( Object InverseOf(<http ://www. ormie . org/#Q={2}>) <
http ://www. ormie . org/#PRED=morigin ={1,2}>) )

# TREE SINGLETON NODE o r i g i n . 1
Equ iva l entC la s s e s (<http ://www. ormie . org/#PROJ=o r i g i n ={1}>

ObjectSomeValuesFrom ( Object InverseOf(<http ://www. ormie . org/#Q={1}>) <
http ://www. ormie . org/#PRED=o r i g i n ={1,2}>) )

# TREE SINGLETON NODE o r i g i n . 2
Equ iva l entC la s s e s (<http ://www. ormie . org/#PROJ=o r i g i n ={2}>

ObjectSomeValuesFrom ( Object InverseOf(<http ://www. ormie . org/#Q={2}>) <
http ://www. ormie . org/#PRED=o r i g i n ={1,2}>) )
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The last set of axioms have the purpose to optimize the queries when the

reasoner discovers possible inferred uniqueness constraints. In order to do

this, additional axioms are provided in the following form:

# DUMMY NODE UNIQUENESS
Equ iva l entC la s s e s (<http ://www. ormie . org/#UNIQ=o r i g i n ={1}>

ObjectExactCard ina l i ty (1 Object InverseOf(<http ://www. ormie . org/#Q={1}>)
<http ://www. ormie . org/#PRED=o r i g i n ={1,2}>) )

Equ iva l entC la s s e s (<http ://www. ormie . org/#UNIQ=o r i g i n ={2}>
ObjectExactCard ina l i ty (1 Object InverseOf(<http ://www. ormie . org/#Q={2}>)
<http ://www. ormie . org/#PRED=o r i g i n ={1,2}>) )

Equ iva l entC la s s e s (<http ://www. ormie . org/#UNIQ=morigin={1}>
ObjectExactCard ina l i ty (1 Object InverseOf(<http ://www. ormie . org/#Q={1}>)
<http ://www. ormie . org/#PRED=morigin ={1,2}>) )

Equ iva l entC la s s e s (<http ://www. ormie . org/#UNIQ=morigin={2}>
ObjectExactCard ina l i ty (1 Object InverseOf(<http ://www. ormie . org/#Q={2}>)
<http ://www. ormie . org/#PRED=morigin ={1,2}>) )

The number of these axioms is equivalent to the total number of roles in

the given ORM diagram. In this example we have 4 roles in total (origin.1,

origin.2, morigin.1, morigin.2). The left side of each axiom has a dummy

node marked as UNIQ, equivalent to the OWL class expression indicating

the cardinality of the uniqueness.

The purpose of adding these axioms is to avoid recomputing the path function

several times. Computing once the OWL class expression related to cardinality

and the already computed node in the multitree (the one marked with PROJ),

makes it easier for the reasoner to answer the query. When the time for

verification comes, if the query axiom is entailed or not, the system already

has the two OWL classes to test the axiom, instead of recalculating for each

of them the paths in the multitree. In the next Section we provide the OWL

mapping where we show this set of axioms.

This optimization is done in constant time during the ontology generation;

the query itself is executed a number of times equal to the number of roles in

the ORM diagram, so the query has a linear complexity.

7.3.4 Automated reasoning

After the ontology is generated, the reasoner performs a set of calculations

in order to detect possible inferences. The reasoner used by UModel is

FaCT++[47], made by the University of Manchester and published under



7.3. ARCHITECTURE AND COMPONENTS 129

LGPL. FaCT++ is written in C++ and it is a based tableaux reasoner for

OWL2-DL, quite popular for being highly optimised to compute ontologies in

the SROIQ fragment and integrated also in the OWLAPI. Considering that

the ontology is based on the DLR� mapping the expressivity of ontologies

generated by UModel will be in the ALCQI fragment.

Query formulation is slightly different from standard OWL ontologies where

each relationship is restricted by OWL to be binary; this restriction simplifies

the language, but it makes much more complicated to deal with n-ary rela-

tionships. Since the OWL encoding is based on DLR� and ORM diagrams

may deal with n-ary relationships as well, the ontology will be populated

by the reified concepts. DLR� mapping produces ontologies with several

axioms and classes generated by the multitree, the DLR� functions and

also the dummy classes and axioms mentioned previously; on one hand the

presence of these axioms is mandatory to maintain the consistency of the

whole ontology, on the other hand they may generate several inferences that

are not interesting for the final user because the focus is only the conceptual

modelling perspective. The nature of a DLR� ontology combined with the

need to apply the automated reasoning over conceptual diagrams leads to

the use of a set of procedures to filter only the inferences that are considered

relevant for the conceptual modelling user’s perspective.

We summarize the queries executed by the reasoner:

1. object type hierarchy

2. fact type hierarchy

3. unsat object types

4. unsat fact types

5. inferred IsA between object types

6. inferred IsA between fact types

7. disjointness among object types

8. disjointness among fact types
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9. equivalence among object types

10. equivalence among fact types

11. inferred mandatory

12. inferred uniqueness

In Table 7.4 we show the queries that UModel asks to the Fact++ reasoner.

Since we are using the DLR� encoding, we recall the usage of the : function
which maps each concept name CN and each relation name RN appearing in

the DLR� KB to the ALCQI concept names and relation names.

Table 7.4: UModel - Queries

Subtype((T1 . . . Tm) T)

KB
?

|ù (T:1 � T) . . . (T:m � T)

ExclusiveSubtypes((T1 . . . Tm) T)

KB
?

|ù T:i � T:j for 1¤i,j¤m: i�j

Mandatory(T P1.i1 . . . Pm.im) for j�k and j,k¤m: Pj

�Pk

KB
?

|ù T:�PROJ-Pj-ij

Unique(P.i1 . . . P.im) for j�k and j,k¤m: ij
�ik

KB
?

|ù PROJ-P-i�UNIQ-P-i

Subset((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk

KB
?

|ù PROJ-P1-tP.i1 . . .P.imu�PROJ-P2-tP.h1 . . .P.hmu

Exclusive((P1.i1 P2.h1) . . . (P1.im P2.hm)) P1�P2 and for j�k and

j,k¤m :

P1.ij � P1.ik and P2.hj
� P2.hk
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KB
?

|ù PROJ-P1-tP.i1 . . .P.imu� PROJ-P2-tP.h1 . . .P.hmu

The queries may involve the OWL classes with the PROJ prefix which are the

ones representing the multitree DLR� nodes. Some queries are simplified for

better performance: for example, the uniqueness constraint query is limited

to the single role and not for the spanning roles, in order to avoid all possible

permutations. The same applies to the mandatory constraint where only the

simple mandatory is considered (i.e., a single role). Calculating an inferred

exhaustive constraint means to check, for each single entity type in the

diagram, all possible subsets of entity types making the covering, resulting

in a huge amount of calculations significantly slowing down the reasoning

execution. For this reason, the reasoning procedure does not compute derived

exhaustive constraints.

OWLAPI comes with a native function to precompute the class hierarchy, but

this produces several unwanted OWL classes (from the final user perspective)

because of the multitree axioms and the set of additional axioms added

for performance reasons (e.g., the ones with the UNIQ tag). In any case,

multitree axioms are needed for the ontology and the automated reasoning,

but since they are not interesting for the final user they do not have to be

displayed in the output, although they take part to the ontology composition

and so the reasoning. The purpose of hierarchy is to reflect the conceptual

model hierarchy with possible inferred IsA or Subset ORM constraints. To

solve this problem, two temporary ontologies are built during the ontology

generation step. They are made by sets of IsA and Subset constraints given

in the input ORM model. In this way, the hierarchies for object types

and fact types are preserved and memorized in constant time. These two

hierarchies are distinct and they will be computed separately generating two

temporary ontologies that will share data with the current ontology that has

all the needed information to retrieve possible inferred constraints. With this

combination the position of each element in the tree is preserved and the

inferred elements in the hierarchy (e.g., an inferred IsA) are positioned in the

right place.
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The need of this technique is explained in Figure 7.10, where the ontology

corresponding to the ORM diagram in Figure 7.8 is visualized inside Protégé.

We know that Phonepoint is a subclass of Cell, but in the ontology we can

see that Cell is a subclass of PROJ-morigin2. This is correct from the pure

ontology perspective according to the ALCQI mapping, but this output is

not suitable for the conceptual modelling perspective and it may be confusing

for the final user. For this reason, while the ontology remains the same, we

encode the hierarchies in additional data structures that will be used later in

order to populate the graphical interface.

Figure 7.10: Ontology related to Figure 7.8 in Protégé
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The whole procedure is shown in Algorithm 2.

Algorithm 2 Hierarchy building for object types

pr i va t e void bui ldHierarchyForObjectTypes (OWLReasoner reasonerType , OWLClass c lazz , Set<
OWLClass> v i s i t e d , SortedNode node ) {

// A convenient way to t r av e r s e each node once
i f ( ! v i s i t e d . conta ins ( c l a z z ) ) {

v i s i t e d . add ( c l a z z ) ;

// Asserted ISA = Get the d i r e c t ch i l d r en o f the cur rent node
NodeSet<OWLClass> subClasses = reasonerType . getSubClasses ( c lazz , t rue ) ;
f o r (OWLClass ch i l d : subClasses . ge tF lat tened ( ) ) {

i f ( c h i l d . t oS t r ing ( ) . conta in s ( ”TYPE=” ) )
{

SortedNode currentChi ld = new SortedNode ( owlToString ( ch i l d . t oS t r ing
( ) ) ) ;

node . add ( currentChi ld ) ;
// Recurs ive procedure us ing the temporary onto logy
bui ldHierarchyForObjectTypes ( reasonerType , ch i ld , v i s i t e d ,

cur rentChi ld ) ;
}

}

// I n f e r r e d ISA
NodeSet<OWLClass> subClassesDer ived = reasoner . getSubClasses ( c lazz , t rue ) ;
f o r (OWLClass ch i l d : subClassesDer ived . getF lat tened ( ) ) {

i f ( c h i l d . t oS t r ing ( ) . conta in s ( ”TYPE=” ) && reasoner . i s S a t i s f i a b l e ( ch i l d ) )
{

//Test the ISA axiom to v e r i f y i f i t i s i n f e r r e d
OWLAxiom subAxiomTest = UORMModel . f a c t o ry . getOWLSubClassOfAxiom(

ch i ld , c l a z z ) ;
i f ( ! onto logy . containsAxiom ( subAxiomTest ) && subClassesDer ived .

conta insEnt i ty ( ch i l d ) && ! c l a z z . i sTopEntity ( ) )
{

SortedNode currentChi ld = new SortedNode ( owlToString ( ch i l d .
t oS t r i ng ( ) ) ) ;

node . add ( currentChi ld ) ;
}

}
}

}

//Compute Unsat
i f ( ! r ea soner . i s S a t i s f i a b l e ( c l a z z ) )
{

St r ing unsatName = owlToString ( c l a z z . t oS t r ing ( ) ) ;
udmodel . getUnsatNodes ( ) . add ( node ) ;

}

//Compute EQUIV = DISJ = MAND
e l s e
{

computeEquivForTypes ( c lazz , node ) ;
computeDisjointForTypes ( c lazz , node ) ;
computeMandatory ( c l a z z ) ;

}
}

This procedure builds the hierarchy recursively. Moreover, after all the de-

scendants of the current node (which is an OWL Class) have been computed,

a sequence of algorithms is performed to detect additional inferences (equiv-

alence, disjointness, etc.). This is a convenient way to take advantage of

this iteration in order to avoid re-scanning the whole OWL classes to find

the inferences. In this procedure are also involved the multitree nodes (the
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ones with the PROJ tag), according to the queries in Table 7.4. Thus, the

current node is checked for its satisfiability inside the ontology; if the class is

unsatisfiable there is no need to ask the reasoner additional queries over that

class. If is satisfiable, then from that class possible equivalences, disjointnesses

and mandatories are also calculated. Uniqueness is computed separately since

it needs to scan the ontology to find all the OWL class with the tag PROJ,

according to the related query in Table 7.4.

The reasoning procedure encodes the inferences in a set of data structure

that can be easily queried via API 7.3.6. The main class where all inferences

resides is UDerivedModel. ORM extends this class with its one Java class

named UORMDerivedModel. This class is composed of a set of other classes

where each one of them represent an inferred ORM constraint. Figure 7.11

shows the corresponding UML diagram:

Figure 7.11: Derivation data structure in UModel
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7.3.5 GUI

Once the inferences are collected in the aforementioned data structures, it

is optionally possible to display them in a graphical interface as shown in

Figure 7.12 and Figure 7.13.

Figure 7.12: In yellow are highlighting the tree paths containing the inferences

The GUI has been designed to be partitioned into two sides: the left side for

the object types information and the right side for the fact types. The top

horizontal panel contains the hierarchies for both object and fact types; the

bottom horizontal panel contains the relevant derivations. In the hierarchy,

the derivations are marked with green, or in red to indicate that an object type

or fact type is unsatisfiable. In order to ease the reading for large diagrams,

the tree paths containing the relevant inferences are highlighted in yellow. In

this way the user can quickly locate the relevant inferences expanding the

yellow nodes. This feature is particularly useful for large diagrams where the

user has to scroll down and perform numerous paths. In this way, we are

guiding the user directly to the relevant inferences without wasting time by

clicking every single node. When a node containing an inference is clicked

more information appear inside the bottom panel: the inferred constraints

are marked in green and the asserted ones in purple. The design choices made
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Figure 7.13: Expanding the tree paths to see the inferences

for the object type are the same for the fact types. The inconsistencies are

marked in red (e.g., Illegal); the ISA derived are marked in green with an

arrow in the icon (e.g., SomeVisitor).

The GUI is also equipped with a menu bar on the top side. The label named

Services gives access to a menu where it is possible to export the OWL to

a file or sync the OWL output with Protégé (this feature is quite useful for

ontology engineers and/or for any debug reason).

7.3.6 The API system

UModel has been designed to expose a set of API commands to create

conceptual diagrams and to manage them; in this way, the developer can

benefit from the API system to easily integrate UModel in any external

software, or to build on the fly some conceptual models and perform reasoning

operation over them. The API system consists of a set of Java objects that

must be called in a precise order, consequently the procedure is divided in 5

steps:
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1. Init model - Instantiating an empty model that could be one in ORM,

ER or UML one.

2. Create constraints - A conceptual diagram is made up of a set of

constraints, therefore each constraint in the diagram must be declared

in this step. Some constraints are dependent on others, for example the

IsA must have two existing Object Types.

3. Assert constraints in the model - In this step the constraints are asserted

into the model. Precisely, the Java objects representing the constraints

are aggregated into the main Java data structure representing the

diagram, namely UORMModel.

4. Call the reasoner - The reasoner now takes the created model as an

input in order to generate the inferences.

5. Read inferences - In the last step all the inferences are encoded in a

data structure ready to be queried by the user.

The first step is to encode the conceptual model. The following example aims

to represent via API the ORM conceptual diagram in Figure.7.14.

Figure 7.14: Visitor ORM diagram

We first need to create the structure for the model with the command:

UORMModel model = new UORMModel( ) ;

The UORMModel Java class is the master data structure to deal with ORM.

The variable model will be used to encode a set of ORM constraints.
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//Object Types
ORMEntityType s t a t e l e s s = new ORMEntityType( ” S t a t e l e s s ” ) ;
ORMEntityType person = new ORMEntityType( ”Person” ) ;
ORMEntityType document = new ORMEntityType( ”Document” ) ;
ORMEntityType someVis i tor = new ORMEntityType( ” SomeVisitor ” ) ;
ORMEntityType v i s a = new ORMEntityType( ”Visa ” ) ;
ORMEntityType idCard = new ORMEntityType( ”IDCard” ) ;
ORMEntityType v i s i t o r = new ORMEntityType( ” V i s i t o r ” ) ;
ORMEntityType c i t i z e n = new ORMEntityType( ” C i t i z en ” ) ;

//Fact types
ORMFactType i s I d e n t i f i e dBy = new ORMFactType( ” I s I d en t i f i e dBy1 ” , new ArrayList<

ORMEntityType>(Arrays . a sL i s t ( person , document ) ) ) ;
ORMFactType has = new ORMFactType( ”has” , new ArrayList<ORMEntityType>(Arrays . a sL i s t (

someVis itor , v i s a ) ) ) ;

ORMEntityType is the Java structure to create an object type taking as

input the name of the entity (e.g., Stateless, Person, etc.). ORMFactType

creates fact types taking as input the name of the predicate (e.g., is identified

by, has) and a list of ORMEntityType, as it is in the ORM syntax.

We can now define the ISA relationships between object types and fact types.

The SubtypeOf Java class encodes the ISA relationships between two object

type, where the first one is the subclass and the second one is the superclass.

The SubsetOf Java class works in the same way, with the difference being that

the arguments are collections of roles belonging to the fact types involved

in the subset constraint. The roles are obtained by calling the function

getRole(arity) on the previously defined ORMFactType class. In this example

we are interested in the full arity of both relationships, so we take into account

all the roles (the first and the second one for both fact types). The first role

has index set to zero.

//ISA
SubtypeOf somevSubPerson = new SubtypeOf ( someVis itor , person ) ;
SubtypeOf visaSubDoc = new SubtypeOf ( visa , document ) ;
SubtypeOf idcardSubDoc = new SubtypeOf ( idCard , document ) ;
SubtypeOf s ta t e l e s sSubPer son = new SubtypeOf ( s t a t e l e s s , person ) ;
SubtypeOf v i s i to rSubPerson = new SubtypeOf ( v i s i t o r , person ) ;
SubtypeOf c i t i zenSubPerson = new SubtypeOf ( c i t i z e n , person ) ;

// Subset
ArrayList<ORMRole> r o l e s 1 = new ArrayList<ORMRole>() ;
ArrayList<ORMRole> r o l e s 2 = new ArrayList<ORMRole>() ;
r o l e s 1 . add ( i s I d e n t i f i e dBy . getRole (0 ) ) ;
r o l e s 1 . add ( i s I d e n t i f i e dBy . getRole (1 ) ) ;
r o l e s 2 . add ( has . getRole (0 ) ) ;
r o l e s 2 . add ( has . getRole (1 ) ) ;
SubsetOf subset = new SubsetOf ( ro l e s2 , r o l e s 1 ) ;

In the model we also have the mandatory and uniqueness constraints. Since

they deal with roles, they follow the same logic as subset constraints.

//Uniqueness
ArrayList<ORMRole> l istORMRoleuniq1 = new ArrayList<ORMRole>() ;
listORMRoleuniq1 . add ( i s I d e n t i f i e dBy . getRole (0 ) ) ;
Unique u1 = new Unique ( listORMRoleuniq1 ) ;
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ArrayList<ORMRole> l istORMRoleuniq2 = new ArrayList<ORMRole>() ;
listORMRoleuniq2 . add ( i s I d e n t i f i e dBy . getRole (1 ) ) ;
Unique u2 = new Unique ( listORMRoleuniq2 ) ;

//Mandatory
ArrayList<ORMRole> listORMRoleMand = new ArrayList<ORMRole>() ;
listORMRoleMand . add ( i s I d e n t i f i e dBy . getRole (0 ) ) ;
Mandatory mand = new Mandatory ( person , listORMRoleMand ) ;

ArrayList<ORMRole> listORMRoleMand2 = new ArrayList<ORMRole>() ;
listORMRoleMand2 . add ( has . getRole (0 ) ) ;
Mandatory mand2 = new Mandatory ( someVis itor , listORMRoleMand2 ) ;

Finally, set operators to represent the disjointness and the covering.

// Exc lus ive s e t
ExclusiveTypes visaEXidcard = new ExclusiveTypes (new ArrayList<ORMEntityType>(Arrays .

a sL i s t ( v isa , idCard ) ) ) ;

//Covering
ExhaustiveTypes visaIdcardCOVDocument = new ExhaustiveTypes (new HashSet<ORMEntityType>(

Arrays . a sL i s t ( v isa , idCard ) ) , document ) ;

Since this ORM diagram is equipped with ORM Derivation Rules, we need

to add them in the ORM model. The Java data structures used to built the

ORM Derivation Rules are based on the syntax defined in [128].

//DERIVATION RULES
// V i s i t o r r u l e
SubtypeDerivationRule v i s i t o rRu l e = new SubtypeDerivationRule ( ) ;
v i s i t o rRu l e . addLeftSubc lass ( v i s i t o r ) ;
v i s i t o rRu l e . addRightSuperc lass ( person ) ;
DRJoin v i s i t o r j o i n = new DRJoin ( i s I d en t i f i e dBy , person , document ) ;
DRPath isIdenti f iedByDocument path = new DRPath( v i s i t o r j o i n , new DRPath( document ) ) ;
DRPath visa path = new DRPath( v i s a ) ;
isIdenti f iedByDocument path . setPath ( visa path ) ;
v i s i t o rRu l e . addRuleBody ( isIdenti f iedByDocument path ) ;

// C i t i z en ru l e
SubtypeDerivationRule c i t i z enRu l e = new SubtypeDerivationRule ( ) ;
c i t i z enRu l e . addLeftSubc lass ( c i t i z e n ) ;
c i t i z enRu l e . addRightSuperc lass ( person ) ;
DRJoin c i t i z e n j o i n = new DRJoin ( i s I d en t i f i e dBy , person , document ) ;
DRPath c i t i zen path = new DRPath( c i t i z en j o i n , new DRPath( idCard ) ) ;
c i t i z enRu l e . addRuleBody ( c i t i zen path ) ;

// S t a t e l e s s r u l e
SubtypeDerivationRule s t a t e l e s sRu l e = new SubtypeDerivationRule ( ) ;
ArrayList<DRPath> l i s tO fPath s = new ArrayList<DRPath>() ;
s t a t e l e s sRu l e . addLef tSubc lass ( s t a t e l e s s ) ;
s t a t e l e s sRu l e . addRightSuperc lass ( person ) ;
DRJoin s t a t e l e s s j o i n = new DRJoin ( i s I d en t i f i e dBy , person , document ) ;
DRPath state l e s s I s Ident i f i edByDocument path = new DRPath( s t a t e l e s s j o i n , new DRPath(

document ) ) ;
DRPath notIDCard path = new DRPath( Operator .NOT, new DRPath( idCard ) ) ;
DRPath notVisa path = new DRPath( Operator .NOT, new DRPath( v i s a ) ) ;
l i s tO fPath s . add ( notIDCard path ) ;
l i s tO fPath s . add ( notVisa path ) ;
s tate l e s s I s Ident i f i edByDocument path . setPath (new DRPath( Operator .AND, l i s tO fPaths ) ) ;
s t a t e l e s sRu l e . addRuleBody ( state l e s s I s Ident i f i edByDocument path ) ;

Three rules are defined: Visitor, Citizen and Stateless. Each rule reuses

the same variables defined in the code; additionally, it has dedicated data

structures the encode ORM Derivation Rules (SubtypeDerivationRule for

subtype rule and FactTypeDerivationRule for fact types). The recursive
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structure of the rule is represented by the DRPath class which is defined

recursive in the syntax. A rule consists of a left and the right-hand side plus

the body where a set of constraints are defined.

The next step is to assign each of this constraints to the model:
// Assert the c on s t r a i n t in to the model
model . t e l l ( idCard ) ;
model . t e l l ( document ) ;
model . t e l l ( v i s a ) ;
model . t e l l ( someVis i tor ) ;
model . t e l l ( person ) ;
model . t e l l ( s t a t e l e s s ) ;
model . t e l l ( v i s i t o r ) ;
model . t e l l ( c i t i z e n ) ;
model . t e l l ( somevSubPerson ) ;
model . t e l l ( visaSubDoc ) ;
model . t e l l ( idcardSubDoc ) ;
model . t e l l ( i s I d e n t i f i e dBy ) ;
model . t e l l ( has ) ;
model . t e l l ( visaEXidcard ) ;
model . t e l l ( visaIdcardCOVDocument ) ;
model . t e l l ( u1 ) ;
model . t e l l ( u2 ) ;
model . t e l l (mand) ;
model . t e l l (mand2) ;
model . t e l l ( subset ) ;
model . t e l l ( v i s i t o rRu l e ) ;
model . t e l l ( c i t i z enRu l e ) ;
model . t e l l ( s t a t e l e s sRu l e ) ;
model . t e l l ( s ta t e l e s sSubPer son ) ;
model . t e l l ( v i s i to rSubPer son ) ;
model . t e l l ( c i t i zenSubPerson ) ;

The tell function asserts the constraints defined in the argument. In this step,

the model is complete since it has all the constraints inside; this means we

can go on calling the reasoner to compute the inferences.
//CALL THE REASONER
UReasoner rea soner = new UReasoner (model ) ;
r ea soner . s t a r t ( ) ;

We have created an instance of the Java class, UReasoner, with the only

argument the model previously defined. The constructor of this class translates

the ORM model into OWL and runs a set of reasoning algorithms (that are

transparent to us, since we are playing the role of the developer). The reasoner

is executed when the function start is called.

Now we are interested in reading the result of the computation.
//GET INFERENCES
ORMDerivedModel udmodel = reasoner . get In fe r redMode l ( ) ;
udmodel . getUnsatObjectTypes ( ) ;
System . out . p r i n t l n ( udmodel . getUnsatObjectTypes ( ) . getEmptySet ( ) ) ;

The reasoner has a function named getInferredModel which return the Java

structure ORMDerivedModel, that is the one where all the inferences are

stored. For simplicity we have created a variable named udmodel to get the
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references to the inferences. Now we can access all the functions from the

object ORMDerivedModel, in order to retrieve the information we need. In

the example we are interested in the unsatisfiable object types.

Optionally, we can launch the GUI to visualize the relevant inferences. For

example, Figure 7.15 shows the GUI suggesting to expand the tree node

Person, because under this node some inferences have been computed. Figure

7.16 highlights the inferences under Person node and here we can find that

Stateless is marked in red because it is inconsistent.
//Optional ly , d i sp l ay the gui
GUI gui = new GUI( ) ;
GuiLauncher guiLauncher = new GuiLauncher ( ) ;
guiLauncher . launchGui ( gui , udmodel , ” S t a t e l e s s ” ) ;

and we obtain:

Figure 7.15: Highlighted in yellow the tree node containing the inferences

7.4 Future works

Further improvements and research tracks can be made in a future version of

the UModel framework development:

� Multithreading support - Although performances are considered good

in a real industrial-case scenario (see Chapter 7), a further improvement
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Figure 7.16: The inferences in the expanded node

consists in supporting the multithreading in the automated reasoning

procedures. At the current stage of development UModel performs

the reasoning tasks sequentially, so each time a query is sent to the

reasoner the system has to await the result. The benefit coming from

the multithreading may result in a dramatic increment of performance

because of a set of threads, where each one asks a query and all are

executed concurrently. In order to implement this feature, some parts

of the code must be carefully redesigned.

� Explanatory - Detecting formal properties may be useful during the

modelling step. For example, if the modeller reads an unexpected

inference, he should try to understand the reason behind that in order

to fix possible issues, but this could be a time consuming activity

especially for large diagrams. The adoption of an explanatory service

could significantly help the modeller to trace the selected inference, since

there is no indication about the tracking of that particular inference

in order to understand the source of possible issues. Equipping the

reasoner with an explanatory service may surely increase the control

over the diagrams and it can also speed up the procedure of fixing the

models in case of mistakes. An approach used to explain how inferences

have been obtain is the usage of axiom pinpointing [119]; this research
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track requires the integration of this technique inside the framework. An

alternative approach is to take advantage of OWLAPI, since it comes

with an integrated explanatory service, as in [129].

� UML and ER support - Another research track is to enable the auto-

mated reasoning for this UML and ER; this means to encode them into

DLR�.

� Further integrations in other CASE tools - UModel has been used in

the NORMA tool (see Chapter 7), but it can also be easily integrated

into any CASE tool.





8
ORMIE

In this chapter we integrate UModel into the CASE tool NORMA. NORMA

is a software for ORM conceptual modelling that can be easily extended by

plugins. For this reason, a plugin named ORMiE (ORM Inference Engine)

has been developed in order to extend NORMA. The purpose of ORMiE is

to enable the automated reasoning over those ORM diagrams loaded inside

NORMA and show the inferences to the user. In order to achieve this, the

UModel framework has been integrated into ORMiE [125], [56]. We recall

that NORMA is an extension of Microsoft Visual Studio, which is one of the

most popular IDE with many beneficial features. The purpose of NORMA

is to extend Microsoft Visual Studio, allowing the user to manage ORM

diagrams inside Visual Studio.

The chapter starts with the overview of the ORMIE tool, then we go in deeper

with a system description, focusing on the architecture in order to identify

the components and what roles they play in the infrastructure. We present

some user scenarios where ORMiE is used to perform reasoning over some

ORM models, after that we show the corresponding deductions in the ORMiE

interface. We also present additional ORMiE features.

8.1 Overview

ORMiE is a conceptual modelling tool specifically designed to perform auto-

mated reasoning over ORM diagrams. The purpose of ORMIE is to help the

modeller in checking the semantics of ORM conceptual diagrams, in order

to fully control the workflow of the modelling phase. ORMIE works with a

145
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background reasoner useful to verify the software specification, infer implicit

facts, devise stricter constraints, and manifest any inconsistency. Usually

ORM diagrams, especially the extended ones, must meet clear and measurable

quality criteria. Large numbers of conceptual diagrams have, however, usually

been developed in an ad hoc manner by domain experts, often with only a

limited understanding of the semantic level. The full control of the semantic

level, which usually is lacking in CASE tools, may result in a very critical

problem and serious consequences for the whole infrastructure based on that

software. The outcome is that a conceptual diagram could be of low quality

and not accurate in the description of the domain. Moreover, many errors can

occur where there is no control over the semantics, leading to a degradation

of the software and increasing the development costs. This problem becomes

even more acute as conceptual diagrams are maintained and extended over

time, often by multiple authors. To overcome these problems, tools are needed

that support the design and the development of the basic infrastructure for

building, merging, and maintaining conceptual diagrams. The leverage of

automated reasoning to support domain modelling is enabled by a precise

semantic definition of all the elements of ORM diagrams, and constraints

are internally translated into a logic formalism. In the context of ORM

diagram design, ORMiE is useful to support the modeller during the early

stages of the development in order to check the consistency of the diagram or,

inter-domain diagrams. Moreover, the usage of complex automated reasoning

tasks to deduce implied facts increases the chance to uncover some mistakes

during the software development that could be hidden to the final user control.

The reasoning applied to ORM involves and deduces even ORM constraints,

as opposed to mere subsumption (classification) and consistency, making it

more reliable for the modeller. Another key point is the reasoning which

covers the ORM Derivation Rules, special ORM constructs which are able

to express knowledge that is beyond standard ORM capabilities. ORMiE

supports the following: checking entity types and fact types consistency,

subsumption, cardinality, exclusion, mandatory and uniqueness constraints,

and in general discovering any implied but originally implicit ORM graphical

construct. Customarily, ontology design tools just provide a support limited

to class subsumption and consistency. ORMIE is also able to provide the
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OWL counterpart of the diagram for ontology design and an integration with

Protege.

8.2 System description

ORMIE is not intended to be a stand-alone software, but a way to integrate

the UModel framework inside the NORMA tool. Since NORMA is a modular

system, the user has the possibility to create plugins to extend the behaviour of

NORMA. ORMIE is a plugin for NORMA that embodies UModel framework

in order to activate automated reasoning over those ORM diagrams activated

inside the NORMA tool.

To better understand how those components works together, we can see

Figure 8.1.

The Visual Studio 2019 Community Edition is free of charge and can be

installed in any Microsoft OS. It’s enough for us to see Visual Studio as a rich

container of features that can be inherited by any extension, like NORMA.

NORMA indeed is an extension of Visual Studio which means it automatically

inherits all the nice features coming from Visual Studio and this is a great

advantage since it improves the quality and the reliability of the system.

NORMA is a software specifically designed to deal with ORM diagrams,

which means it is possible to create, modify, delete ORM diagrams and

benefits from many features that helps the modeller in managing any ORM

diagram.

Another interesting feature of NORMA is the modular system, since it is

possible to extend its functionalities by means of plugins. For this reason,

ORMiE exists to add reasoning capabilities to NORMA. The benefit of

enabling ORMiE in NORMA is the automated reasoning applied to any ORM

diagram.

In Figure 8.2 we can take a deep look into the inner structure of ORMIE and

observe the ORMIE components:

� code to integrate it inside NORMA infrastructure;
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Figure 8.1: NORMA and ORMIE as Microsoft Visual Studio components

� a parser to capture every constraints of the given ORM diagram;

each constraint is asserted into UModel;

� a module to call the reasoner from UModel;

� a module to call the ORMIE interface from UModel.

Essentially, ORMiE features a parser to detect the ORM constraints which

become the input of UModel framework which does the rest of the job

(reasoning and GUI generation).



8.3. EXAMPLE USER SCENARIO 149

Figure 8.2: ORMIE Architecture

8.3 Example User Scenario

In this section we show how ORMiE works on a basic scenario, emphasising

the added value of the main ORMiE functionalities. The inference engine

helps the modeller with validating the ORM diagrams. In fact, if the derived

constraints make little sense to the modeller, they may help in suggesting

changes, or they may show conceptual mistakes. The advantage of this

approach is that examples may be clear even to people who are not IT-experts

due to their graphical nature and to the fact that ORM diagrams are quite

intuitive. Complete reasoning over ORM diagrams supports the modeller in

creating and maintaining ORM diagrams. The following example shows the

kind of insights that a reasoning enabled system could provide during the

ORM diagram modelling phase.

We consider the diagram in Figure 8.3 without reasoning.

After enabling ORMiE, thus the reasoning, the outcome is depicted in Figure

8.4:
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Figure 8.3: Without reasoning

Figure 8.4: With reasoning

The results from the reasoning are displayed in the ORMiE graphical interface,

as in Figure 8.5 and 8.3. The structure of the ORMIE interface is composed

by three components: a top menu named Services; a centred block divided

into two parts where the left side deals with the hierarchy for object types and

the right one for the hierarchy of the Fact Types; the bottom block divided

again into two parts, the left side to show the deductions referring to the

Object Types and the right one for the deductions related to the Fact Types.
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Figure 8.5: Reasoning outcome

Figure 8.6: Reasoning outcome

The menu comes with different options where the user can export an ORM

diagram into OWL. It’s also possible to constantly sync the OWL counterpart

of the ORM diagram if requested, so every time the ORM diagram is edited,

a new OWL file is generated and overwrites the previous one. Moreover,
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ORMIE is also able to detect if Protégé is installed on the system, in this

case another feature comes to help the modeller that consists in opening the

generated OWL file inside Protégé tool. This feature could be useful for

ontology modelling or even for debug purposes (i.e., explanatory services in

Protégé may help to detect the reason of a specific inference). Please note

that the OWL output follows the mapping explained in Chapter 5, which

may be not easy to read for the final user.

Below the menu, we have the blocks embedding the hierarchies. Each hierarchy

(object types and fact types) is represented by a browsable tree structure,

where object types and fact types are organized in tree nodes according to

the hierarchy relationships; the nodes can be coloured in green or in red. If

the reasoner says that a node is inconsistent, then it is highlighted in red;

if the node representing an object type or fact type is involved in relevant

inferences, then it is highlighted green. In the Hierarchy Types, the Object

Types are represented by a box followed by the name of the object type;

the fact types are represented by a sequence of tiny boxes according to the

arity, plus the name of the fact type. The tool implements a methodology

for handling very large conceptual diagrams and provides the user to easily

find where the interesting inferences are, so the the interface has a design

feature that suggest in which part of the tree an inferred object type (or fact

type) is, by colouring all its ancestors in dark green and the inferred node in

light green. The user can also interact with the hierarchy panels by clicking

on a specific element, this is useful if the user may want to see its relevant

properties in the corresponding bottom panel.

The bottom panels are dedicated to show the relevant inferences either for

Object Types or Fact Types. For example, clicking on the Landline it says in

the Object Type Derivation panel that, Landline is equivalent to Phonepoint.

This is depicted as a yellow equivalence symbol in order to suggest the user

that this is a warning since Landline and Phonepoint share the same instances.

Therefore in a scenario where that diagram has a database counterpart, this

is not an optimal way of modelling. In this case the modeller understands

that, since Phonepoint is exactly the same as Landline, there is an error in

the ORM diagram and this automatically suggests revision. The bottom
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panels also shows the relevant and inferred exclusion constraints, mandatory

and uniqueness constraints as well.

The ORMIE gui is automatically handled by the bottom panel of NORMA

as in Figure 8.7.

Figure 8.7: ORMIE gui inside NORMA

8.3.1 ORM diagrams Integration and Views

As seen in Section 2.4 and in Figure 2.20, NORMA can display ORM diagrams

on different “pages”. ORMiE is able to work even with those diagrams having

multiple pages. This feature is useful to conceptually separate the sub-domains

of the whole domain represented by the ORM diagram, in a way similar to

ontology integration. A single page represents a subdomain and it is possible

that some pages share some ORM constraints. An example is shown in

Figures 8.8 and 8.9.

Page 1 depicts a situation where the main entity is Company. A company

employs the employees and contacts some contact person; a company is also

made of sectors. In this ORM diagram there is also a sub entity of Company,

named Italian Company which represents the set of italian companies. This

entity has a unary fact type placed on it, stating that an italian company

may be classified as an ISO company.
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Figure 8.8: Page 1

Figure 8.9: Page 2

Page 2 is dedicated to the subdomain of the italian companies, where these

are simply divided into Italian ISO Company and Italian Non ISO Company.

It is trivial to say that these two entities are disjoint and a simple disjoint

ORM constraint would be enough to represent the disjointness. But, the ISA

constraint is not enough to semantically capture all the italian ISO companies

and the italian non ISO companies. For this reason this ORM diagram is
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equipped with two derivation rules defining the constraints for both entities.

The outcome of the reasoning is depicted in Figure 8.10, where there is a

disjointness between the two entities.

Figure 8.10: Reasoning over two pages

In the Section 8.5 this feature plays an important role in order to organize

huge ORM diagrams.

8.4 Automated Reasoning

Although NORMA can be used as a powerful modelling tool, exploiting its

full capabilities requires the coupling of the system with a Description Logic

reasoner. Without ORMIE, NORMA would be unable to perform automated

reasoning over the ORM diagrams. As we noted, this includes checking

object types and fact types consistency, discovering implied constraints,

subsumptions, or cardinality constraints, and in general discovering any

implied but originally implicit class diagram graphical construct. Instead

of implementing its own dedicated reasoner, ORMiE uses Fact++ [47], a

powerful reasoner used also as a plugin for Protégé [129]. It does not need

any dependency installation because the UModel framework is embedded in
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the ORMIE plugin as a DLL file, since it was ported from Java to .NET;

since this DLL file is the UModel framework, it comes also with OWLAPI

as background engine to process the generated ontologies and Fact++ to

perform the reasoning tasks. The scalability of the system is the same as any

ALCQI [10] ontology processed by Fact++, moreover, some optimizations

are been made to increase performances and to quickly deal with big ORM

diagrams.

The so called verification process can be computationally expensive, so it is

activated only on user’s request. This process includes the following operations.

The ORM diagram is encoded into a Description Logics knowledge base and

shipped to the Fact++ reasoner. Each object type and fact type is checked

for satisfiability (i.e. non-emptiness). For each object type and fact type,

IsA and subset are determined. Uniqueness and mandatory constraints are

calculated as well. To perform these operations, the system formulates a

sequence of queries to be sent to the Fact++ reasoner. Accordingly to the

received answers which are encoded in Java data structures, ORMIE shows

inferred properties of the diagrams in the interface.

Due to performance optimizations the tool can manage diagrams with several

hundreds of object types and fact types. After the verification process,

the system provides the user with a visual account of the deductions by

highlighting the relevant inferences in the interface. All unsatisfiable object

types and fact types will appear in red, while the relevant deductions (the one

not redundant) are shown in green. The redundancies, like an equivalence

between two object types, are marked as yellow since they are considered as

warnings. The deduction appearing in the lower part of the interface can be

uniqueness, mandatory, equivalence and also disjointness constraints.

Although the deductions are displayed in the interface, it is up to the modeller

to decide whether they should be permanently added to the models or

discarded. The reason behind this behaviour is that the automated reasoning

process may detect unwanted deductions caused by a wrong modelling of the

domain. In this case the user should correct the project before any subsequent

editing. Another reason is that, in spite of the fact that only the non-trivial

deductions are presented, the user is satisfied by the fact that they are implicit
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without the need of having them explicitly asserted. The ORMIE reasoner

starts every time the interface is manually loaded, but also when the modeller

makes some changes to the diagram. Trivial changes like renaming an object

type do not trigger the reasoner. ORMIE is configured to ignore the situations

where it’s useless to recompute the deductions.

8.5 Evaluation of ORMIE in a real-world in-

dustrial scenario

This section presents results about ORMiE’s performance in a real-world

industrial scenario. ORMiE has been tested with ORM models provided by

the European Space Agency (ESA) in a context where an ESA team uses the

fact-based methodology with NORMA to model spacecraft related domains.

The ORM models used are involved in an ESA project named Intelligent

Reasoner for Fact Based Models whose goal is to extend NORMA capabilities

in checking the semantics of the ORM diagrams. In order to accomplish

this goal, NORMA has been equipped with ORMiE since the latter enriches

NORMA by automated reasoning. The purpose of this evaluation is to prove

the real efficiency of ORMIE and more in general of the entire methodology

in a real-world industrial scenario.

8.5.1 Overview of the ESA Project

Developing and operating space systems implies complex activities involving

many parties, distributed in location and time. This development requires

efficient and effective interoperability during the overall space system devel-

opment and operations lifecycle.

Interoperability is often described from a syntactic viewpoint, focusing on

data exchange formats. While syntactic interoperability is required, the

pre-requisite for any successful information exchange is to ensure that all

actors involved share a common understanding of the information that will

be exchanged. This aspect of interoperability is known as semantic interop-

erability. This is a mechanism whereby data can be reliably and effectively
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exchanged between all suppliers and customers involved, between all engi-

neering/quality/management disciplines involved, at all levels of the space

system decomposition, within and across all space system life cycle phases.

ESA considers offering a solution to semantic modelling and semantic inter-

operability capturing the semantics of a “universe of discourse” and a logic

based generic language to express that semantics.

Models can be visualized graphically using the ORM formal graphical language

but also verbalized using a controlled natural language that enables each

stakeholder to fully validate the semantics contained within the models.

In support of the development of information systems, the algorithms required

to automatically transform the conceptual models into logical and physical

models (relational, hierarchical, object oriented) to ease the development of

software. Such automation ensures the quality of the generated logical models

(e.g. fulfilling the standardized normal form rules of relational modelling).

Developing and operating large systems such as space systems implies con-

stant exchanges of information and knowledge, through multi-levels sets of

customer/supplier relationships. In such a global environment, interoperabil-

ity cannot just be limited to assessing how to exchange data contained within

data files, how to understand, to interpret an interface control document.

Semantics is expressed using conceptual modelling. Any partner involved,

independently of the customer or supplier role(s) played, has the full freedom

to define and to limit their universe of discourse to the responsibility they

play in the overall Space System. This implies the freedom, for any partner,

to define locally the information systems needed, as long as the overall Space

System needs are satisfied.

Semantic interoperability ensures that the information exchanged between all

partners satisfies the overall Space System needs. Illustrated by Figure 8.11,

the concepts of global model and local model are introduced:

� a global model is a conceptual data model whose purpose is to capture

and put in relations among the universes of discourse of partners involved,

i.e. producing the semantic links between the vocabulary used by each

community, deriving how the same semantics modelled by some partner
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in a given conceptual way maps the conceptual representation of the

others;

� a local model is a conceptual data model that represents the view (a

local view) that a given partner has of the global model, meaning the

subset of the global model of relevance to that partner.

Figure 8.11: Shared semantics between two local conceptual models

Applying semantic interoperability implies the need for a common generic

conceptual language used to express the semantics of the domain-specific

conceptual models and to map the conceptual definitions that carry the same

semantics. Each domain-specific model is expressed in a generic language

that is either conceptual, logical or physical. Transforming a conceptual

domain-specific model into a logical domain-specific model, translating a

logical domain-specific model into a physical model and reverse-engineering

physical or logical domain-specific models into conceptual domain-specific

models requires mapping the conceptual definitions of these generic languages

and identifying what semantics can be shared.
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Having the conceptual maps between the generic languages of interest enables

the capability to automate the transformation of the domain-specific schemas

expressed in a generic language into domain-specific schemas expressed into

another generic language. It is worthwhile to mention that the semantic

equivalence of the source schemas and the schemas resulting from the transfor-

mations is fully dependent of the semantic expressiveness of the used generic

languages. Formalising the generic languages’ conceptual mappings and the

domain-specific conceptual mappings provides the foundations for the success

of the “Semantic Interoperability” objective.

Semantic modelling large information systems such as a Spacecraft Refer-

ence Database used by industry to support the spacecraft development and

manage all monitoring and control definitions for testing the spacecraft and

its components and later operating the spacecraft in-flight, produces large

models.

Semantic interoperability implies integrating many (potentially very large)

semantic models and managing for each stakeholder the views (subsets of

the overall model) of interest. Ensuring the overall quality and integrity of

the each semantic model is challenging. Ensuring the overall quality and

integrity of the Space System Ontology (i.e. the result of integrating several

semantic models for ensuing the interoperability at semantic level) is a very

difficult task. The main objective of this activity is to assess the feasibility

of developing a “semantic reasoner”, to specify it and to prototype its key

feature that is the automatic verification of the quality of the semantic models

produced in NORMA. The NORMA software tool (in its professional version)

is currently operationally used by ESA to model at semantic level. The page

feature of NORMA is therefore essential in the development of large ORM

diagrams since each page represents a local model concurring to produce the

global model (i.e. the complete ORM diagram). For this reason the ORM

models that are going to be tested are all composed of a multitude of NORMA

pages.
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8.5.2 Requirements for Benchmarking ORMiE

To prove that ORMIE is useful in an industrial setting, it should check

the semantics in a reasonable amount of time. This task is particularly

challenging in the context where potentially large ORM diagrams are modelled,

such as in the European Space Agency environment. To properly evaluate

such performance one would need benchmarks tailored towards the usage

requirements proper for the ORMIE setting. Hence, there is a need for

benchmarks resembling a typical real-world industrial scenario, in terms of

the size of the ORM models, the complexity of the generated ontology, the

complexity of the mappings, and the complexity of the queries. The purpose

of this benchmark is to evaluate if ORMiE is a suitable candidate to be used

in a real-world industrial scenario, but before doing so we need to identify the

features of an industrial environment in order to properly design a benchmark

test.

We start by identifying the industrial settings features: as stated in the

previous section where the ESA context has been described, we notice that an

industrial setting is characterized by large data, in this case ORM models with

hundreds of ORM constraints. Moreover, since ESA models are composed by

many views where each stakeholder is taking part in the project, it necessarily

means that in the real-world an ORM model is developed by several iterations.

We define an iteration as a change applied to the model performed by a

stakeholder, like adding, removing, or editing one or more ORM constraints

in the diagram. This action puts the model in a new configuration requiring

a new reasoning computation.

We can summarize the real-world industrial features as follows:

� large data;

� many partners;

� several iterations.

Computing large data may be a time consuming task and if for each iteration

the reasoning is slow the entire workflow is significantly slowed down and the
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usage of ORMiE may even result in it being an obstacle to the development

of the system.

Considering these requirements, the suitable data to be used in the experiment

must reflect the features of a real-world scenario that are given by large ORM

diagrams used by multiple stakeholders.

A positive outcome of the benchmark would be computing the inferences in

a reasonable amount of time; otherwise, it could be a limitation since many

“try and catch” iterations are used to manage potentially large diagrams.

But, what is defined as a reasonable time in this context?

This question has two possible answers, according to the two ways ORMiE

may be activated. As we have seen in Section 8.4, ORMiE can be activated

manually or automatically. A manual activation runs ORMiE once when

the user decides; the automatic activation runs ORMiE every time the

model is changed. The first scenario is usually taken into account to check

the semantics of a finished model; the second scenario is used when more

iterations are needed, but the automatic activation can also be a default

choice to continuously run the reasoning every time the model changes. The

adoption of the second scenario must not constitute a huge loss of time (e.g.

waiting too much time every time the model changes could be frustrating for

the modeller), so a reasonable time for this should be a computation that

takes the least possible amount of time, best non perceivable by the modeller.

In other words, few milliseconds. Unlike this scenario, when ORMiE is called

manually there is an higher tolerance, so a reasonable computation time may

also be longer.

8.5.3 Experiment Design

For each ORM model we consider the following characteristics:

� Number of ORM constraints - An ORM model is composed by a set of

ORM constraints determining the size of the model.
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� Number of TBox axioms - Each ORM model has a corresponding

generated ontology that will be processed by the reasoner. The number

of TBox axioms indicates the size of the ontology.

� Overall execution time - Time elapsed from the start up of the system

to the inferences are ready. This metric is expressed in milliseconds

(ms).

� Memory - The memory consumption taken by the ORMiE process. This

metric is expressed in megabytes (MB).

Since the focus of the experiment is to measure the execution time in order

to evaluate if ORMiE is able to compute the ORM models in a reasonable

time, this metric needs more details. The overall execution time is obtained

by a sequence of actions performed by ORMiE, so detecting these steps in

the benchmark may help to better locate possible bottlenecks or having a

more accurate evaluation of the data.

1. Parser - Time spent parsing the ORM model. This task is the first one

to be executed.

2. Ontology generator - Time spent to generate an ontology from the given

ORM model.

3. Reasoner - Time spent by the reasoner processing and querying the

generated ontology. The reasoning is a set of operations handled by the

reasoner used in ORMiE (Fact++) to retrieve the inferences.

4. Gui - Time spent by the GUI loading the results. The step involving

the ORMiE graphical interface is related to the time that occurs to

collect and display all the information for the final user.

After taking into account these data, a set of 5 runs are performed for each

model in order to identify the average execution time and memory values.
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Data - ORM models

To have a better insight into the data, we describe each single ORM model

and its role in the test. The test has been performed using three ORM models

with different sizes:

1. PUS.orm - The largest file used in this ESA project. An ORM diagram

divided into 42 pages representing a space-craft information system.

This is considered a suitable candidate for the test since it is has a

large size and it is comprehensive of all ORM constraint, along with

subtype and fact type derivation rules. PUS digram is composed of

46 views. This means that different stakeholders are taking part to

the development of this ORM model by doing multiple iterations from

different sources: this features makes this model a suitable candidate

for a real-world industrial scenario.

2. PUS-lite.orm - As the name suggests, it is a lightweight version of

the previous one, approximately half-size and divided into 26 pages.

Although it is considered a large ORM model, its overall execution time

should be compared to the previous one in order to see if there are some

significant differences.

3. Visitor.orm - The running example in Figure 4.11 is the smallest in the

test with a size that is typically used to design small ORM diagrams that

fit into one page. Despite this not being suitable for testing a real-world

scenario, it takes part in the test because it may help to detect possible

differences in the overall execution time among the models.

The number of pages has no effect on the overall execution time since they are

virtual views. Technically speaking, the ORMiE parser sees the entire ORM

diagram as a whole without taking into account the views, so the system

generates a single ontology then passes it on the reasoner to be processed. The

number of pages is an additional information to provide an approximation

of the ORM model size. In Figure 8.12 is provided an example of reasoning

over the ORM diagram PUS-lite.orm:
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Figure 8.12: ORMiE reasoning with an ESA conceptual model

The ORM models are the initial input of the test. After the ORMiE parser

finishes his job, an ontology is generated to represent the parsed ORM

model. Generated ontologies must be considered since they serve as the input

for the reasoner. The generated ontology contains OWL axioms specifying

comprehensive information about the underlying classes in the ORM models;

in particular, the generated ontology presents rich hierarchies of classes,

axioms that infer new objects, disjointness and equivalence assertions. Since

the backbone of the ORM formalisation is entirely based on DLR�, then the

Description Logics used is ALCQI; this means that the generated ontology

is encoded in the OWL fragment named OWL2 DL. The generated ontology

coming from the ESA ORM model is suitable for benchmarking reasoning

tasks, given that it is a representative of the real-world ontology in terms of

number of classes and maximum depth of the class hierarchy (hence, it allows

for reasoning with respect to class hierarchies).

Hardware and software settings

The benchmark has been performed on a machine with the following specifi-

cations:
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� Operating System: Microsoft Windows 10 Professional

� Architecture: x64

� CPU: AMD Ryzen 2700X

– Number of cores: 8

– Number of CPU threads: 16

– Default clock frequency: 3.7Ghz

� System Memory

– Capacity: 32 GB

– Frequency: 2133 Mhz

As for the software specifications, we must consider ORMiE (this implies the

usage of UModel) and its environment (NORMA).

� Programming language: C#

� Framework: Microsoft .NET 4

� Core system: UModel (ported in C# by IKVM)

� Reasoner: Fact++ 1.6.4

� OWLAPI: version 4.1.4

8.5.4 Benchmark Results

The results are presented in Table 8.1. Marked in bold overall execution time

and the memory consumption.

The largest ORM model named PUS.orm is computed in an average time

of 371ms; a smaller version of the same model with less constraints, namely

PUS-lite.orm, has been executed in an average time of 279ms; finally, the

running example named Visitor has been computed in an average time of

17ms. At a first glance, the execution time for large ORM models is considered
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Table 8.1: Overall time (in milliseconds) - Memory (in megabytes)

Model # constr # axioms avg pars avg onto avg reas avg gui avg all mem

PUS 737 5143 3 169 196 3 371 182

PUS-lite 479 4098 2 151 124 2 279 158

Visitor 43 130 1 6 8 1 16 45

reasonable and also efficient. It is easy to observe that the parser runs in

very few milliseconds for every input. The reason behind this efficiency is

because the ORMiE parser just needs to read the ORM constraints because

the model has been already loaded inside NORMA. It is important to specify

that the parser lies on the same stack where ORMiE is executed, the .NET

framework.

The average execution time for the ORMiE graphical interface is efficient as

well because the inferences are already stored in memory.

The ontology generation execution time depends on the input size and it

grows linearly. Nothing surprising since ORMiE has to write the axioms in

the generated ontology each time an ORM constraint is encoded, plus all the

axioms related to the DLR� encoding.

The memory consumption grows linearly as well, since the generated ontology

and its results are stored in memory as well.

The reasoning execution time is quite efficient as well, but it seems to grow

depending on the input size. As it is known from Description Logics theory [36]

(Chapter 9), the size of an ontology is only loosely related to the complexity

of reasoning on it. For this reason, the reasoning section deserves further

insights in order to detect possible sources of complexity. The details about

the reasoning execution time are shown in Table 8.2:

We can observe that the computation of disjointnesses is one of the major

source of complexity. The reason behind this is the DLR� tree which is built

upon a set of disjointnesses, so the number of disjointess axioms depends on

the size of the tree. Recalling Section 5.1.5, the DLR� mapping function dsj

ensures that relations with different signatures are disjoint. In the worst case

all relationships have different signatures, this means that the complexity
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Table 8.2: Reasoning execution time details (in milliseconds)
P
U
S
.o
rm

Run/Task Hierarchy Unsat Equivalence Disjointness Mandatory Uniqueness

RUN 1 16 2 2 95 5 91

RUN 2 22 1 7 67 4 89

RUN 3 23 1 2 62 13 80

RUN 4 21 2 5 65 9 81

RUN 5 24 2 3 63 9 92

P
U
S
-l
it
e
.o
rm

RUN 1 15 1 1 44 1 54

RUN 2 18 1 1 41 4 64

RUN 3 19 1 2 53 0 53

RUN 4 15 1 5 45 3 56

RUN 5 14 1 0 48 3 57

V
is
it
o
r.
o
rm

RUN 1 2 0 0 2 0 4

RUN 2 1 0 0 0 0 2

RUN 3 1 0 0 2 0 3

RUN 4 1 0 0 3 0 8

RUN 5 3 0 0 0 0 4

grows at most linearly since the reasoner must compute all the disjointness

combinations. This implies that the size of the ontology does not necessarily

affect the computation time of disjointness, but the DLR� tree size does.

Computing uniqueness is also a source of complexity. As we have seen in

Section 7.4, the query for uniqueness compares every class marked as UNIQ

with all the classes marked as PROJ which belonging to the DLR� tree. The

number of comparisons depends on the number of nodes in the DLR� tree.

Similar to the disjointness case this function grows at most linearly in time.

8.5.5 Findings and Conclusions

Observing the data we can state that ORMiE is able to perform the automated

reasoning on real-world models in few hundreds milliseconds. This timing

can be considered enough reasonable.

Findings related to the benchmark:
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� The parser and the gui are very efficient since they read data that is already

loaded.

� The ontology generation time depends on the size of the ORM model,

precisely, on the number of ORM constraints and the number of TBox

axioms that need to be written in the generated ontology. So, the complexity

grows linearly. The biggest ontology has been generated in �150ms, still a

reasonable amount of time.

� ORM diagram size does not necessarily affect the reasoning execution time.

The reason behind this is the nature of the encoding in ALCQI. So the

scalability of the ORMIE automated reasoning is strictly related to the

scalability of the reasoning algorithms that process ontologies encoded

in the fragment ALCQI, so it is possible to conclude that even for huge

diagrams the system is efficient.

� The major source of complexity are disjointness and uniqueness because

they depend on the number of nodes in the DLR� tree, so the complexity

grows depending on the size of the DLR� tree, not necessarily the size

of ontology (e.g. best case a large ORM diagram made only by Entity

Types generates a large ontology with no tree nodes, so disjointnesses

and uniquenesses are not even computed). Despite their complexity, the

computation for real-world data can be still considered efficient since the

amount of time in an average case is under 100ms.

Additional observations:

� The NORMA pattern control (Section 2.4) forces the modeller to avoid

trivial bad-modelling patterns. If this function is disabled, or the bad

modelling involves an undetected pattern, the reasoning covers the job

detecting the related inferences. Where the NORMA pattern control relies

on mere syntax, the reasoner relies on the semantic ensuring further control

over the model.

� NORMA pattern control does not work on ORM Derivation Rules. Since

NORMA alone has no control over the semantics, the modeller cannot
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immediately see the consequence of defining a derivation rule in the ORM

diagram. A derivation rule can raise interesting inferences, or in the worst

case can raise inconsistencies; for this reason the adoption of the automated

reasoning adds more control over this task.

� The inferences are presented in a way to make them easy to spot in the

graphical interface. Since large diagrams have several object types and fact

types, the user has to scroll-down every object type and fact type resulting

in a time-consuming activity. The graphical interface has the feature to

highlight even those relevant inferences that are nested in the hierarchy, in

this way the modeller is able to quickly detect the wanted inference.

� The core engine of ORMiE is the UModel framework, so the further research

tracks and possible improvements discussed in Section 7.4 are inherited by

ORMiE.

In conclusion, ORMiE is able to handle real-world ORM diagrams in a

reasonable amount of time. We must also consider that ORMiE is not a

proof-of-concept tool, instead it is a ready-to-use software that is used by the

European Space Agency to support the conceptual modelling about the design

of spacecraft systems [4], [5]. Additional research directions are suggested by

the aforementioned points, like improving performance related optimizations

and implementing new functionalities like the explanatory service.



9
Related works

In this chapter we compare ORMiE against other conceptual modelling-related

tools. The comparison is based on some key features considered relevant for

a conceptual modelling application:

� Support for automated reasoning - it is the key feature discussed in this

work since it carries interesting benefits for the modelling workflow;

� Support for automated reasoning over rules, such as ORM Derivation

Rules for ORM and OCL for UML;

� Industry-ready environment - a feature that differentiates when to use

a software in an industrial environment, where multiple stakeholders

take part to the project through several iterations;

� Additional features for the workflow - like import/export of models in

different format, support for verbalization, etc.

We are going to point out the possible weaknesses, similarities and advantages

of each tool.

9.1 ICOM

ICOM is a conceptual modelling tool which allows the modeller to design

multiple extended ontologies [48] [54] [53] [52]. Each project can be organised

into several ontologies, with the possibility to include inter and intra ontology

constraints. The logical reasoning is taken out by Racer as a reasoning

171
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engine in order to verify the specification, infer implicit facts, devise stricter

constraints, and manifest any inconsistency [71], [70], [112]. The diagrams

are modelled with the DIG language, the Description Logics Interface [25].

The intention behind ICOM is to provide a simple conceptual modelling tool

that demonstrates the use of the novel and powerful knowledge representation

based technologies for database and ontology design.

Figure 9.1: ICOM

In Figure 9.1 we see how the ICOM gui looks like. There is a browser for

object navigation and the project panel where most of the model editing is

done, where each model in the project is displayed in a separate model panel.

The inferences are directly depicted in the project panel, as for the Role1

constraint in Figure 9.2 where the green arrow is shown.

ICOM is a proof-of-concept software which is not maintained any more. It

was written in standard Java 5 and distributed for Linux, Mac and Windows.
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Figure 9.2: ICOM

The system has the limitation to be standalone and it does not come with a

rich set of features like an environment as ORMiE.

Despite this, ICOM has some similarities with ORMiE like the usage of

the automated reasoning and the capability to work with inter and intra-

ontology constraints and diagrams. ORMiE and ICOM differ in displaying

the inferences: ORMiE shows the inferences inside an browsable panel; ICOM

shows the inferences directly into the diagram. This approach could be

efficient for small diagrams where the readability is reduced, but for large

diagrams a specific window may improve the user experience especially where

a search for a particular inference among several diagram elements is needed.
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9.2 DOGMA Modeler

DogmaModeler [114] is an ontology modelling tool based on ORM. The first

version of DogmaModeler was developed at the Vrije Universiteit Brussel

[101], [95].The goal of DogmaModeler is to enable non-IT experts to model

ontologies with little or no involvement of an ontology engineer. This is carried

out by the usage of ORM as a graphical notation, the ORM verbalization

feature that represents the ORM diagrams into pseudo natural language that

allows non-experts to check, validate, or build diagrams. Similar to ICOM,

DogmaModeler makes use of the automatic mapping of ORM diagrams into

the DIG description logic interface and reasoning using Racer.

Figure 9.3: Dogma Modeler

DogmaModeler relies on the formalisation that can be found in [102], where the

DLR description logic is used to encode ORM constraints in SHOIN OWL.

As stated in [106] and also in [61], this formalisation has some limitations and

formal inconsistencies. The provided encoding is sloppy with respect to the

underlying DL formalism: distinct extensions of the adopted logic (e.g. DLR
plus DLR-Lite) and distinct DL languages (e.g. DLR, plus DLR-Lite, plus
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SROIQ, plus role composition operator) are mixed together. No semantics

or complexity results are provided for these combinations.

DogmaModeler like ICOM has some software limitations: the software is

outdated and dismissed and the system is standalone, so it does not have

a rich set of features designed for industry standard workflow, as ORMiE.

DogmaModeler does not support the automated reasoning for ORM Derivation

Rules.

9.3 Protégé

Protégé [129] is a free, open source ontology editor and a knowledge manage-

ment system developed at Stanford University. Earlier versions of the tool

were developed in collaboration with the University of Manchester. Protégé

provides a graphic user interface to define ontologies. It also includes deductive

classifiers to validate the consistency of models and to infer new information

based on the analysis of an ontology. Protégé is written in Java and heavily

uses Swing to create the user interface. Protégé can claim to be utilized

by a large community and according to [63] it is “the leading ontological

engineering tool”. An important feature is the capability to easily extend the

system by the development of user plugins and a public repository where to

download them [120]. The backbone of Protégé is based on OWLAPI, a Java

interface and implementation for OWL. OWLAPI is focused towards OWL 2

which encompasses OWL-Lite, OWL-DL and OWL-Full [100].

The interface shown in Figure. 9.4 depicts a common scenario where Protégé

is used. Classes are organized by hierarchy and additional information are

displayed in the right part of the interface where ontology annotations and

class descriptions are also provided. In the bottom-left panel the object

properties are displayed. Protégé can be equipped with many reasoners

(like FaCT++, Pellet, Hermit, etc.) in order to perform the automated

reasoning over the ontology and highlight in yellow the inferences. The

provided inferences are the equivalences, disjointness and subsumption among

classes and object properties, plus the inconsistencies.
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Figure 9.4: Protégé

ORMiE and Protégé are two tools that serve different purposes: one hand we

have Protégé, it is designed to perform a set of operations on ontologies, like

viewing, editing, exporting and running reasoners; on the other hand we have

ORMiE which is specifically designed for ORM conceptual modelling. ORMiE

follows the fact-based approach implemented by the ORM language; Protégé

deals directly with OWL. As for the automated reasoning, we already know

from Chapter 7 that ORMiE uses the same reasoner available in Protégé to deal

with ALCQI ontologies, namely Fact++. Despite this, since ORMiE focuses

on the conceptual modelling the way of displaying the inferences is different:

in Protégé the way of showing the inferences is pretty straightforward, since

all the inferences are displayed in the interface according to the hierarchy

and the inferences from the ontology; here ORMiE differs since the hierarchy

strictly reflects the ORM diagram structure, ignoring all those axioms coming
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from the DLR� mapping that are not-relevant from the user perspective

(e.g., the one belonging to the multitree data structure). Moreover, in ORMiE

the inferences are depicted with the ORM graphical notation, for example if

a Uniqueness constraints is derived, an the uniqueness icon is displayed near

that constraint. Protégé instead simply highlights the inference. We have to

clarify that this is not a Protégé limitation, but an ORMiE feature needed in

order to deal with a context based on the conceptual modelling.

The Protégé hierarchy highlights (in yellow) a specific class only if it has

already been expanded in the hierarchy; the inefficiency of this approach is

not to allow the user to immediately see where the inferences are. ORMiE, on

the other hand, has a hierarchy system specifically designed to quickly suggest

the user where to look for relevant inferences, marking all the ancestors of a

specific node which has some inferences. This feature is particular useful for

big diagrams. Another difference in the automated reasoning is the support

for individuals: Protégé, unlike ORMiE, supports the assertion and the

reasoning over individuals. The reason behind this is that ORMiE relies only

on the conceptual level. An interesting feature of Protégé is the extensibility

by plugins, as ORMiE is for NORMA. This feature has lead the Protégé

community to expand its functionalities adding several plugins and different

reasoners as well.

9.4 Boston

Boston, published in 2015 by Viev Pty Ltd [135], is a tool for conceptual

modelling that implements the fact-based methodology through ORM. The

main Boston feature is the capability to convert ORM diagrams to Entity Re-

lationship Diagrams and Property Graph Schemas (PGS), since it is oriented

towards the modelling software for databases, supporting both relational and

graph models within the database. Boston allows the modellers to do their

conceptual modelling in ORM, and then transform models to the required

ER or PGS model.

Boston’s graphical interface is shown in Figure 9.5. The Boston user builds

ORM diagrams writing in the controlled natural language that in the case of



178 CHAPTER 9. RELATED WORKS

Figure 9.5: Boston

ORM is FORML [82], [94]; then, the ORM diagram is automatically generated

in the main panel. Boston focuses the user experience on the usage of FORML

language, rather then using the drag and drop feature like NORMA does.

Boston does not support any automated reasoning services so it is not able to

check the semantics of the diagrams. Moreover, Boston does not support the

creation and the editing of ORM Derivation Rules. We can say that Boston

is a good standalone tool limited to ORM modelling coming with a good set

of features, but it has no support for automated reasoning.

9.5 CASETalk

CASETalk [24] is a suite of products that work combined, supporting the

ability to model, store and administrate business knowledge and the corre-

sponding technological artifacts. The methodology used is the fact-based

modelling based on the method FCO-IM [19], a successor of the well known
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method NIAM [138]. CASETalk is a powerful framework oriented to manage

corporate fact-models and with its rich set of features is suitable for large

teams working on the same project.

Using CASETalk, the business analysts are able to create fact-based models

using natural language for the IT personnel that can view these conceptual

models. In this way, CASETalk aims to bridge the gap between these two

stakeholders taking part in the same project. Moreover, it is also possible to

store multiple model versions and manage access to them for multiple users,

run impact analysis and change reports. This means that the CASETalk is

also oriented towards large organisations. CASETalk comes with a rich set of

features, which includes exporting the fact-based models in UML and ER.

Figure 9.6: CASETalk

In Figure 9.6 is depicted a CASETalk scenario where a digram represents a

specific domain.

CASETalk, unlike other tools mentioned in this chapter, is “industry-ready”;

this means that it is already used in the industry so it is able to manage

real-world scenarios with potentially large diagrams. It is also able to handle

the definition of rules inside any diagrams, but it does not support automated

reasoning services.
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9.6 USE

We now compare ORMiE with a tool that does not make use of fact-based

modelling, but it applies automated reasoning to UML class diagrams involving

OCL constraints as well. In our context, OCL constraints can be seen as

the counterpart of ORM Derivation Rules. USE allows UML models with

OCL constraints to be validated against developer’s assumptions. It is

able to check the formal properties of a UML class diagram to control the

consistency of UML models aiming to support the developers in analysing

the model structure in order to suggest revision where something can harm

the development of the software (e.g., inconsistencies) [51], [32], [31], [33],

[34]. USE started as a dissertation project in 1998 [66] and its first version

was already available. Then, other USE versions were developed further by

diploma theses and other student projects. Nowadays, it is a robust tool used

to validate OCL queries.

Figure 9.7 shows the USE graphical interface. In the centre there is the Object

Diagram panel that shows objects with attribute values and its relationships.

On the right side of the Object Diagram we have the Class Invariant window.

This window shows the classes evaluation in the current system state. An

invariant can be evaluated to true, false, or can be not applicable (n/a). A

false invariant indicates an invalid system state which can be inspected by

double-clicking the invariant name and this opens the Evaluation browser.

The evaluation browser takes a detailed view on a chosen invariant in order

to display variable assignments. This allows the user to understand invariant

failure and to detect the violating parts of the object diagram. This feature

is in some way similar to the reasoning procedure used in ORMiE to check

if an object type or a fact type is consistent or not. USE represents an

efficient solution to validate those UML class diagrams equipped with OCL

constraints.
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Figure 9.7: USE

9.7 HOL-OCL

HOL-OCL [2] is an interactive theorem proving environment for the OCL

constraints that is integrated in a Model-driven Engineering (MDE) framework.

It is implemented as a shallow embedding of OCL into the Higher-order Logic

(HOL) instance of the interactive theorem prover Isabelle [133]. HOL-OCL

is developed by Achim D. Brucker and Burkhart Wolff. HOL-OCL allows

the user to reason over OCL specifications, refine OCL specifications, and

builds the basis for further tool support, e.g. for the automatic test-case

generation. HOL-OCL provides several derived proof calculi that allow for

formal derivations establishing the validity of UML/OCL formulae. These

formulae arise naturally when checking the consistency of class models, when
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formally refining abstract models to more concrete ones or when discharging

side-conditions from model-transformations [32], [31], [33], [34].

Figure 9.8: HOLOCL

As ORM Derivation Rules and ORMiE, HOL-OCL allows to reason over

UML class models annotated with OCL specifications, in this way HOL-

OCL extends the reasoning over those UML class diagrams equipped with

rules. HOL-OCL differs from ORMiE because it is oriented to be a proof-

environment system; on the other hand, ORMiE is a tool designed to visually

model potentially large diagrams living inside a complete environment like

Visual Studio.

9.8 Menthor

Menthor Editor [131] is an ontology-driven conceptual modelling platform

which incorporates the theories of the Unified Foundational Ontology (UFO)

[69]. Menthor is an implementation of the language OntoUML which is a

well founded language based on UFO. The goal of Menthor is to improve
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the design of domain ontologies, expressed in the language OntoUML, by

using the theories behind UFO in order to build, validate and implement

ontologies. Among its features, it also includes OntoUML syntax validation,

Alloy simulation, Anti-Pattern verification,[123] and MDA transformations

from OntoUML to OWL.

Figure 9.9: Menthor

In the context of the conceptual modelling Menthor has some similarities

with ORMiE, since it focuses on modelling a domain by UML. Moreover, it

supports alloy validation and so OCL constraints. Despite Menthor not being

provided with a reasoning engine, it validates the models based on the UFO

framework and the anti-pattern verification.

Menthor may be considered a good candidate to be equipped with the UModel

framework in order to activate the automated reasoning over UML diagrams.





10
Conclusions and Future Work

This work introduced a methodology to support conceptual modelling by

automated reasoning. The benefits coming from this methodology have

been presented in a real-world industrial scenario where the control over the

semantics of the conceptual diagrams has been improved, speeding up the

development of a system from the early stages of software life cycle preventing

software degradation. Checking the consistency of a conceptual diagram,

or detecting redundancies and errors, may save time during the modelling

step and next development steps as well. The conceptual modelling has been

carried out as an implementation of the fact-based methodology with the

language ORM, which in this work has been used to model the conceptual

diagrams. An ORM formalisation into a logical language has been provided,

alongside a formalisation concerning the ORM Derivation Rules constraints.

A decidable fragment named ORM� has been detected revealing that an

ORM diagram containing a subset of ORM constraints and ORM Derivation

Rules, can be processed by a reasoner to detect relevant inferences. ORM�

has been encoded in DLR�, a language from the Description Logics family

which is specifically designed to deal with n-ary relationships. Moreover, a

mapping into the OWL language has also been provided to make possible to

build an implementation of this theoretical work. In particular, this work has

been implemented in a framework called UModel that has been used in a real

case scenario to test its efficiency. This framework implements DLR� to be

used as a backbone language; in this way UModel is able to cover the ORM�

fragment enabling the automated reasoning over ORM diagrams. The main

idea behind this framework is to provide a general purpose methodology that

185
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is useful for any conceptual modelling language, with the consequences to

easily extend the approach to any CASE tool that makes use of conceptual

modelling languages such as ORM, UML and ER.

The thesis focuses in particular on the ORM Derivation Rules formalisation

which represents a novelty in the ORM formalisation. As consequence of this,

another contribution is the implementation of a solution that deals with these

constructs.

The future research may follow different tracks. The reasoning could be ex-

tended beyond the conceptual level supporting the population of a conceptual

diagram. At this stage ORMIE is able to present the inferences to the final

user. A research track that could improve this feature is to add explanatory

services in order to show why that inferences have been detected, to make

easier to understand possible mistakes by tracking back the inferences. In this

way the modeller’s control over the conceptual diagram is enhanced. A more

practical flavour has the research going in the direction of integrating other

conceptual modelling languages in UModel framework to enable automated

reasoning over other languages and systems, such as UML and ER.

This work has shown that the presented methodology can be used in a real-

world industrial scenario, usually characterized by several users working on

the same project with multiple iterations. In this context, the execution

time to perform the reasoning is a crucial point due to the expected several

iterations. The results have shown that the presented framework runs in a

quite reasonable time even for large inputs, suggesting that the system is

ready to be used in an industrial scenario.
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A
ORM Derivation Rules Taxonomy

This appendix shows a set of ORM diagrams involving ORM Derivation Rules.

The appendix is divided into two sections: the first one is about the Subtype

Derivation Rules and the second one about the Fact Type Derivation Rules.

A.1 Subtype Derivation Rules

Figure A.1: Simple Subtype Derivation Rule

Figure A.2: Value Equality
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Figure A.3: Other value comparison

Figure A.4: Multiple Inheritance

A.2 Fact type Derivation Rules
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Figure A.5: Negation

Figure A.6: Disjunction

Figure A.7: Semi Derived Rule
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Figure A.8: Linear Path

Figure A.9: Correlating Path Variables

Figure A.10: Recursive Rules
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Figure A.11: Simple Calculation

Figure A.12: Aggregate Functions

Figure A.13: Nested Calculation
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Figure A.14: N-ary Fact Types

Figure A.15: Objectification

Figure A.16: Cartesian Product
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Figure A.17: Multi Path

Figure A.18: Shared Path

Figure A.19: Semiderived Fact Type
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