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Background 

1 Background 

1.1 Estrogen signaling 

The steroid hormone estrogen is a key regulator of growth, differentiation, and the 

physiological functions of a wide range of target tissues1. Estrogen has a major role in the 

establishment and maintenance of reproductive function2. It plays also an important part 

for the skeleton, the cardiovascular system, nonreproductive centers of the brain3, and 

cholesterol mobilization4. The majority of malignant breast cancers show a dysregulation 

in estrogen-dependent pathways resulting in enhanced mitogenic activity2. Estrogen acts 

through two receptors: estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). 

Upon binding ligand, ER dimerizes and enters the nucleus where it interacts with a 

plethora of coregulators. ERα and ERβ are able to bind to the DNA through estrogen 

responsive elements (EREs) and can positively or negatively regulate gene transcription. 

ERα was also shown to activate transcription indirectly by binding to DNA binding 

proteins like stimulatory protein -1 (SP-1), c-fos, or c-jun5. Estrogen can act non-

genomically to induce various signaling pathways, such as the Mitogen-Activated Protein 

Kinase (MAPK) pathway or calcium regulation4,6. 

1.1.1 The Estrogen Receptors ERα and ERβ 

ERα and ERβ are members of the nuclear receptor family of ligand dependent 

transcription factors7. These receptors can bind to estrogen through their ligand binding 

domain (LBD) and regulate the expression of a large number of genes including 

signaling, cell cycle, and anti-apoptosis components7.  

Differential distribution of ERα and ERβ between tissues suggests that they have specific 

functions in specific tissues. A tissue-selective ratio of ERα/ERβ provides tissue-selective 

function8. Both receptors are usually expressed in the same tissue though ERα is the 

predominant subtype in breast and uterus, whereas ERβ is more highly expressed in the 

ovary and prostate9,10. 

1 
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ERα and ERβ display high sequence and structural similarities in their DNA-binding 

domain and moderate homology in their LBD (Figure 1).   

Hall JM, Molecular Interventions 5:343-357, (2005)  

Figure 1: Functional domains of the human estrogen receptors.  

ERα and ERβ share a highly conserved central DNA-binding domain and moderately 

conserved C-terminal ligand-binding domain. The ligand-dependent transcriptional 

activities of the ERs are mediated through a C-terminal activation function (AF-2). ERα 

contains a constitutive AF-1 in the N terminus; no apparent AF-1 domain is present in the 

human ERβ. Numbers in boxes indicate the number of residues in each protein region1. 

Due to their similarity, ERα and ERβ interact with similar DNA response elements and 

have similar binding affinities for estrogen9,11.  

ERs mainly exert their ligand-dependent transcriptional activity through a C-terminal 

activation function (AF-2) located in the LBD1. The main functional difference between 

the two receptors is determined by the difference in the AF-1 domain located in the N-

terminus4. This determines ligand- and tissue- specific responses to estrogen (E2) and 

selective estrogen receptor modulators (SERMs)4. Most of the time those two AFs act 

synergistically, but it has also been shown that they can function independent of each 

other depending on cell type and promoter context12. AF-1 can perform its transactivating 

function in the absence of ligand13. Additionally, AF-1 is a target of the MAP-kinase 

pathway, indicating the possibility for cross-talk between growth factor- and estrogen-

dependent pathways14.  

The LBD of ER and also other nuclear receptors (NRs) consist of 12 α-helices (H1-H12). 

In the presence of ligand the AF-2 pocket is formed by the folding of H12 against H3, 

H5/6, and H1115 (Figure 2). 
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Brzozowski AM, Nature. 1997 Oct 16;389(6652):753-8  

Figure 2: Structural basis for the mechanism of nuclear receptor agonist and antagonist 

action16. 

The structures shown here are of the LBD of the estrogen receptor complexed with either 

agonist (top) or antagonist (bottom). The ligands are depicted as space filling spheres. When 

an agonist is bound to a nuclear receptor, the H12 is positioned such that a coactivator 

protein can bind to the surface of the LBD. Shown here is just the NR box containing the 

LXXLL (L- leucin, X- any amino acid) motif of the coactivator. Antagonists occupy the same 

ligand binding cavity of the NR. However, antagonist ligands in addition have a sidechain 

extension which sterically displaces H12 to occupy roughly the same position in space as 

coactivators bind. Hence coactivator binding to the LBD is blocked16. 
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Different ER ligands show different binding affinities to ERα or ERβ17. The binding of a 

true antagonist to ER changes the geometry of α-helix H12 which prevents subsequent 

binding of coactivators4. SERMs are a group of compounds that have agonist and 

antagonist properties for ER transcriptional activity. These compounds induce 

conformational changes in the ER LBD18,19. These changes result in recruitment of a 

specific subset of coactivators in different tissues, which might explain antagonistic 

properties in the breast and agonistic properties in the bone18,19. Even though coactivators 

like steroid receptor coactivators (SRCs) exert their hormone-dependent transcriptional 

NR coactivation by interacting with the AF-2 located in the LBD of NRs, they also 

interact weakly with the AF-120,21.  

Both ERs can undergo posttranslational modifications (PTM). Phosphorylation by 

kinases like the MAPK and protein kinase A (PKA) were shown to enhance ER activity22. 

ER acetylation by histone acetyltransferases (HAT) can regulate ER transactivation and 

hormone sensitivity23, and ubiquitinated ER can be targeted for degradation by the 

proteasome regulating ER levels and bioavailability24, 25.  

1.1.1.1 Estrogen Receptor α and Estrogen Receptor β knock out mice models 

The development of ERα and ERβ knock-out (ko) mice generated new insights in 

understanding its biological role. Male and female ERα ko mice are infertile26, 27, proving 

ERα’s importance for reproduction. Female ERα ko mice also showed deficient 

mammary gland development26.   

Contrary to ERα ko mice, mice lacking ERβ are fertile even though female ko mice 

produce significant smaller litters than wildtype (WT) mice. Moreover, female ERβ ko 

mice showed less differentiated mammary glands, what suggests a role for ERβ in breast 

cancer28.  ERβ can act as a negative regulator for ERα when both receptors are expressed 

at the same time, mainly because it activates the same target genes but to a lesser extent29. 

Further, it shows inhibitory potential on the stimulation of cell proliferation by ERα30. 

Even though ERα is the predominant receptor in the uterus ERβ ko mice suggest that 

ERβ modulates ERα function in the uterus by conferring an antiproliferative function31,32. 

1.2 Estrogen Receptor - Coregulators 

The extent and direction of ER activity is not only influenced by ligand binding to ER, 

but also by recruiting specific coregulators33,34. Enhancing nuclear receptor-mediated 

transcription activity by coactivators or inhibition by corepressors is needed for a 

balanced control of ER target gene expression35. Coregulators execute their function by 

4 
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building high-molecular weight complexes consisting of multiple co-coregulatory 

proteins36. Coactivators are known to interact with ligand-bound NRs through their 

LXXLL motifs (L= leucine, X= any amino acid) and enhance the receptor target gene 

transcription, while corepressors bind to unliganded or ligand bound nuclear receptors 

and mediate transcriptional repression of target genes. The cellular levels of coregulators 

are determined by PTM36. They are targets for degradation by ubiquitin-dependent and -

independent mechanisms. Degradation can be inhibited by phosphorylation of certain 

sites resulting in higher cellular levels8. A substantial amount of work has been done 

characterizing the role of ERα-coactivator complexes in transcriptional activation of a 

large number of genes. However, less is known about the functions of ERα-corepressor 

complexes in transcriptional repression despite the fact that they play a key role in breast 

cancer prevention37. The most studied coregulators are the SRC family, nuclear receptor 

corepressor 1 (NCOR1) and the silencing mediator for retinoid and thyroid hormone 

receptor/ nuclear receptor corepressor 2 (SMRT/ NCOR2). These factors have been 

detected in various cell and tissue types. An insight into the role of these cofactors was 

achieved by generating specific ko mice and determining the resulting phenotype. 

1.2.1 Coactivators 

Coactivators bind with their LXXLL motif containing NR interaction domain to the 

hydrophobic groove on the surface of the NR LBD in the presence of agonist. 

Recruitment of coactivators to the ER-agonist complex leads to activated gene 

transcription by altering chromatin architecture, loosening the nucleosome structure, and 

activating RNA polymerase II1. Even though the LXXLL domain is highly conserved 

between different coactivators the amino acids surrounding this motif determine binding 

affinity as well as specificity to interact with NRs38, 39. Surrounding amino acids of 

identical LXXLL motifs can determine the recruitment of a different combination of 

coactivators and therefore result in different gene responses8. Differential recruitment of 

NR coactivators causes tissue specificity of SERMs resulting in either antagonisitic 

activity in the breast or agonistic activity in the uterus40. Activation of coactivators can 

occur by PTM such as phosphorylation or mono-ubiquitination41, 42. Within the active 

coregulator complex PTM by acetylation and methylation regulate protein-protein 

interaction and inactivation can occur by sumoylation and poly-ubiquitination8,42. 

1.2.1.1 The p160 Steroid Receptor Coactivator family  

The SRC family contains three homologous members (SRC-1, SRC-2, and SRC-3) that 

are known to enhance NR mediated transcription from target genes through their 
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Xu, J. et al. Mol Endocrinol 2003;17:1681-1692  

LBD16,43. SRCs are known to interact with several NRs as well as other transcription 

factors like activator protein-1 (AP-1)44, nuclear factor-κB (NFκB)45, and cAMP 

regulatory element-binding protein (CREB)46.  Binding of SRC to a transcription factor 

initiates recruitment of other chromatin modifiers such as the acetyltransferases CREB 

binding protein (CBP) and p300 and the methyltransferases coactivator-associated 

arginine methyltransferase 1 (CARM1) and protein arginine methyltransferase 1 

(PRMT1) and activate transcription of their target genes47,48. SRC family members 

contain multiple similar functional domains (Figure 3). 

 

Figure 3: Structural and Functional Domains of the SRC Family Members49. 

The similarity and identity of amino acid sequences for full-length human SRC proteins and 

their specific conserved regions are indicated above the bars. The letters within the bars 

indicate structural domains, and the lines under the bars indicate domains that interact with 

different factors or serve as transcriptional activation domains (AD) 1 and 2. PAS, 

Per/ARNT/Sim homologous domain; S/T, serine/threonine-rich regions; L, LXXLL -helix 

motifs50; Q, glutamine-rich regions; HAT, histone acetyltransferase domains identified in 

SRC-1 and SRC-351,52. 

Their N-terminal basic helix-loop-helix-Per/ARNT/Sim (bHLH-PAS) domain is the most 

conserved region among SRC family members53. The bHLH-PAS domain can serve as a 

DNA-binding or protein-protein interaction surface for various bHLH-PAS-containing 

factors54. They contain conserved LXXLL motifs to bind the NR LBD, which contains 

the AF-216,43. Two intrinsic transcriptional activation domains (AD1 and AD2) are 

located in the C-terminal receptor interaction domain of the SRC molecules55. The AD1 
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contains multiple LXXLL motifs that are responsible for interactions with the HAT CBP 

and p30055. The C-terminal domains of SRC-1 and SRC-3 possess weak HAT activities52. 

HATs allow chromatin remodeling at target promoters and facilitate transcriptional 

activity2,52. The AD2 can interact with protein arginine methyltransferases (PRMT), such 

as CARM1 and PRMT147,56. Based on protein structure, SRCs may mainly serve as 

adaptor proteins to recruit additional coactivators to the promoter57.   

SRCs are expressed at similar levels and exhibit similat binding affinities to ER, 

suggesting that specific regulation of coactivators in specific tissues is important for their 

function19. MAPK-mediated phosphorylation can activate SRC-1 and SRC-358,59 and 

SRC-2 is more active in the presence of the methyltransferase CARM147. 

Even though it was shown that SRC-1, SRC-2, and SRC-3 can partially compensate for 

one another60, they have different functions in different tissues49. Selective recruitment of 

SRCs by different NRs may determine the specific assembly of coactivator complexes to 

mediate specific transcription signals61. Variable tissue-specific expression patterns of 

SRC family members may also be responsible for their functional specificities49.  

1.2.1.1.1 Steroid Receptor coactivator 1 (SRC-1) 

SRC-1 [nuclear receptor coactivator 1 (NCOA1)] was first identified in vitro by its ability 

to interact with progesterone receptor (PR) and subsequently to enhance NR activity in a 

ligand-dependent manner62. The generation of the SRC-1 ko mouse63 provided insight 

into the role of SRC-1 in estrogen-dependent tissue. Mice lacking functional SRC-1 

protein exhibited normal growth, fertility, and normal female reproductive behaviors64 

but showed resistance to steroid hormones63. The estrogen-induced uterine growth and 

the estrogen- and progesterone-dependent uterine decidual response were decreased in 

ovariectomized female SRC-1 ko mice49. During development, the SRC-1 ko mice may 

adapt a genetic compensatory mechanism such as up-regulation of other coactivators for 

maintenance of fundamental biological functions. Indeed, the level of SRC-2 mRNA is 

slightly elevated in the brain of SRC-1 ko mice63, suggesting a mechanism of genetic 

compensation from other SRC family members during development. 

In vitro and in vivo data suggest a role for SRC-1 in breast cancer. SRC-1 interacts with 

ERα and ERβ. Mammary gland ductal side branching and alveolar formation was reduced 

in ovariectomized female SRC-1 ko mice treated with estrogen and progesterone49. 

Importantly, in human SRC-1 expression is positively correlated with HER2 status, 

resistance to tamoxifen treatment, and tumor recurrence65. SRC-1 is negatively associated 

with disease free survival and positively associated with breast tumor size66. Moreover, 
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immunostaining for SRC-1 revealed expression in the nuclei of breast tumor epithelial 

cells but not in normal breast tissue66. Collectively, the aforementioned data on SRC-1 

strongly supports its crucial role in breast cancer progression and endocrine treatment 

efficiency. 

The overexpression of the SRC-1 in osteoblastic cell lines resulted in preferential 

transcriptional enhancement by ERβ, whereas SRC-2 overexpression appeared to 

preferentially enhance ERα transactivation67. Differential recruitment and expression 

levels of SRC coactivators might explain the observed differences in ER activation67.   

SRC-1 male and female ko mice develop osteopenia with high bone turnover in the 

trabecular bone, but not in the cortical bone68.  The consequences of SRC-1 deficiency for 

estrogen action on bone in vivo were characterized69. Recognizing that SRC-1 ko mice 

have compensated estrogen resistance63, Moedder et al. not only characterized the skeletal 

phenotype under basal conditions but also after ovariectomy (ovx) and replacement with a 

dose of estrogen that was found to be the minimal physiological dose necessary to prevent 

bone loss in female69 but not in male mice70. Under basal conditions female SRC-1 ko 

mice exhibit normal skeletal phenotype and bone mineral densities (BMDs)69. However, 

by ovariectomizing the animals and using a dose of estrogen that was effective in 

preserving BMD in the WT mice, they were able to unequivocally demonstrate a 

profound defect in estrogen action on cancellous bone in the SRC-1 ko mice69. Moreover, 

this defect could be overcome by using a 4-fold higher dose of estrogen, consistent with 

skeletal estrogen resistance69. In contrast to this marked deficit in estrogen action in 

cancellous bone, the effects of estrogen on cortical bone in the SRC-1 ko mice were 

relatively well preserved69.  

1.2.1.1.2 Steroid Receptor coactivator 2 (SRC-2) 

SRC-2 ko mice exhibit nearly normal somatic growth49, but their fertility is significantly 

reduced in both male and female mice49. Male hypofertility is due to a decrease in sperm 

number, defective maturation of the spermatid acrosome, and age-dependent testicular 

degeneration49. The decreased female fertility is due to placental hypoplasia caused by the 

absence of maternal SRC-2 in decidual stromal cells that face the developing placenta71. 

This indicates that SRC-2 plays a critical role in reproductive behavior and functions. 

Further it was shown that SRC-2 plays an important role in lipid metabolism and energy 

balance72. In the white adipose tissue, SRC-2 serves as a coactivator for Peroxisome 

proliferator-activated receptor γ (PPARγ)72. 
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SRC-2 is expressed in many tissues including the mammary gland, but to date it has no 

relevant association to breast cancer49.  

1.2.1.1.3 Steroid Receptor coactivator 3 (SRC-3)  

The third member of the SRC family, SRC-3 is expressed in many tissues including the 

mammary gland. SRC-3 ko mice display growth retardation, reduced adult body size73,74, 

diminished female fertility, and a delay in mammary gland growth73. Estrogen levels are 

significantly lower in female SRC-3 ko which causes a delay in pubertal development73. 

Additionally, mammary gland alveolar development in response to a combined 

stimulation of estrogen and progesterone was significantly decreased in adult SRC-3 ko 

females, suggesting that SRC-3 is involved in hormone-dependent cell proliferation and 

glandular differentiation during breast alveolar development73.  

Implying its importance for breast cancer it is also called AIB1 (amplified in breast 

cancer). SRC-3 is overexpressed in 60% and amplified in up to 10% of breast tumors53 

and its overexpression correlates with ER positivity and tumor size75.  

Depletion of SRC-3 in MCF-7 breast cancer cells significantly reduces the estrogen-

mediated cell proliferation and inhibition of apoptosis49. Down-regulation of SRC-3 in 

MCF-7 cells also reduces estrogen-dependent colony formation in soft agar and tumor 

growth in nude mice76. Furthermore, mice that overexpress SRC-3 specifically in the 

mammary gland developed malignant mammary tumors77. In human breast tumors SRC-3 

protein expression is linked to high tumor grade78.  

1.2.2 The role of posttranslational modifications (PTMs) for SRCs 

PTM is the chemical modification of a protein after its translation. PTM of amino acids 

extends the range of functions of the target protein by attaching to it other biochemical 

functional groups such as phosphate (phosphorylation), acetyl (acetylation), methyl 

(methylation), ubiquitin (ubiquitination), or the small ubiquitin-related modifier (SUMO) 

called sumoylation.  

PTM of ER and cofactors were shown to be important for either enhancing or decreasing 

transcriptional coactivity or to regulate assembly or disassembly of ER- coregulator 

complexes1.   

1.2.2.1 Phosphorylation 

Phosphorylation of SRCs leads to conformational changes at distinct sites, precludes the 

formation of surface binding sites for other proteins79, and consequently may enhance or 
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inhibit their activity80. Phosphorylation sites identified in SRCs are targets of kinase-

mediated signaling pathways such as the MAPK pathway, the cAMP/PKA pathway, and 

the NF-κB pathway81.  

Major phosphorylation sites of SRC-1 are consensus sites for the serine/threonine-

proline-directed family of protein kinases58. Two identified phosphorylation sites 

contained a consensus sequence for the MAPK family58. Phosphorylation of those sites in 

vitro can affect SRC-1 activity58. In the absence of hormone phosphorylation of SRC-1 

by the cAMP/PKA pathway enhances the interaction of SRC-1 with CBP/p300 for 

optimal activation of ligand-dependent and ligand-independent transcription of PR58.  

One phosphorylation site has been identified in SRC-2, which potentiates SRC-2’s 

coactivity82. Epidermal growth factor (EGF)-induced MAPK pathway phosphorylation of 

this site enhances SRC-2 interaction with CBP/p30079. Phosphorylation of SRC-2 by the 

cAMP/PKA pathway causes down-regulation and degradation of SRC-283. 

There are six phosphorylation sites in SRC-3 which are all required for ER coactivation. 

Different combinations are required for the activation of NF-κB or for oncogenic 

transformation of mouse embryonic fibroblasts (MEFs)84. Phosphorylation of SRC-3 by 

MAPK activates SRC-3’s intrinsic acetyltransferase activity and enhances the recruitment 

of CBP/p30059. SRC-3 can be phosphorylated by the NF-κB pathway in an ER-

independent fashion resulting in increased NF-κB transactivation and immune- 

inflammatory responses85.      

1.2.2.2 Acetylation 

Acetylation of SRCs plays a role in the repression of coactivator signaling86.  Acetylation 

of SRC-3 leads to disassociation of coactivator- receptor complexes and subsequently 

compromised transcriptional activity81.  

1.2.2.3 Methylation 

Methylation of SRCs is involved in transcriptional repression87,88. All SRC family 

members are substrates for CARM- dependent methylation, but only SRC-3 has been 

extensively studied87,88. Methylation of SRC-3 can be induced by estrogen signaling and 

regulates the stability of SRC-3 by increasing its degradation87,88. 

1.2.2.4 Ubiquitination 

Ubiquitin is a highly-conserved regulatory protein that is ubiquitously expressed in 

eukaryotes. Ubiquitination refers to the PTM of a protein by the covalent attachment of 
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one or more ubiquitin monomers. Addition of a single ubiquitin is a reversible process 

that can be rapidly switched off by deubiquitylating enzymes and is a crucial regulator of 

the activity and transportation of cellular proteins89,90. Addition of a long polyubiquitin 

chain becomes irreversible and triggers degradation of proteins via the ubiquitin- 

proteasome pathway91.  SRCs are targets for ubiquitin-dependent degradation81. Mono- 

ubiquitination of SRC-3 can increase the proteins activity, whereas poly-ubiquitination 

catalyzes the proteins degradation42. The AD2 of SRCs may be accountable for 

ubiquitination- dependent processes since the AD2 of SRC-2 is essential for proteasome 

degradation92.   

1.2.2.5 Sumoylation 

All three SRC family members can be sumoylated81. SUMO proteins are a family of 

small proteins that are covalently bound to other proteins and subsequently modify their 

function in cells. Most SUMO-modified proteins contain the tetrapeptide consensus motif 

Ψ-K-x-D/E where Ψ is a hydrophobic residue, K is the lysine conjugated to SUMO, x is 

any amino acid (aa), D/E is an acidic residue. SUMO proteins are similar in structure to 

ubiquitin, and Sumoylation is directed by an enzymatic cascade analogous to that 

involved in ubiquitination. In contrast to ubiquitin, SUMO is not used to tag proteins for 

degradation. Sumoylation of SRC-1 or SRC-2 was shown to increase their coactivator 

potential by retaining the protein in the nucleus48,93. In contrast, sumoylation of SRC-3 

can decrease its transactivty94.  

1.3 Breast cancer 

Breast cancer is the most frequent cancer among women to date. Two thirds of breast 

cancer tumors are ERα positive95, suggesting that estrogen is a strong risk factor for the 

initiation and progression of breast cancer. Breast cancer occurs more frequently when 

ERα is over-expressed in adjacent normal epithelium96. ER status is a prognostic factor 

for breast cancer and a predictive factor for response to endocrine therapy97. ERα is an 

important clinical target for endocrine therapy and ER positive breast cancer prevention. 

Further, understanding of its mechanism of action can lead to improvements in drug 

development.  Although, ERα is the abundant form of ER expressed in breast tumors, 

ERβ was reported to be expressed in 30-70% of breast cancers65,98,99. The role for ERβ in 

carcinogenesis has yet to be determined; however the protein might have inhibitory 

effects on cellular proliferation100. Contrary to ERα, ERβ expression does not correlate 
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with tumor grade4. However, the ERα/ERβ ratio appears to be associated with tumor 

progression101.  

1.3.1 Breast cancer treatment 

Two thirds of all breast tumors are ER positive. Selective treatment of those cancers is 

possible by blocking estrogen stimulated growth.  

1.3.1.1 Antiestrogens 

Drugs exerting antiestrogen potential are divided into pure antiestrogen, which act as an 

ER antagonist in all tissues like ICI 182,780 (Faslodex). Faslodex completely inhibits the 

assembly of an active transcriptional complex at the ERE75.   

SERMs show tissue-selective antagonist-agonist properties102-104. SERMs currently 

approved for the treatment of breast cancer and osteoporosis are tamoxifen (Figure 4), 

raloxifene, and toremifene. Since its synthesis in 1975, tamoxifen, a partial/selective ERα 

antagonist, is the preferred standard treatment for ERα positive breast tumors.  

 

 

 

 

 

 

 

 

 

Figure 4: Structure of tamoxifen. 

Treatment with tamoxifen has been shown to improve disease-free and overall survival105 

and to induce remission in ER positive metastatic breast cancers106,107. Additionally, 

tamoxifen was shown to have a protective effect and decreasing the risk of developing 

ERα-positive breast cancer4. Tamoxifen shows agonistic properties in the bone and can 

therefore prevent postmenopausal bone loss, however, exerts its agonistic potential in the 

uterus resulting in an increased risk of endometrial cancer102-104. Notably, premenopausal 

women treated with tamoxifen do not develop higher risk for endometrial cancer or blood 

clots108. The second generation SERM raloxifene is approved for treatment and 
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prevention of osteoporosis109,110 and to reduce breast cancer incidence in high risk 

postmenopausal women111. Raloxifene shows the same potential in preventing and 

treating breast cancer as tamoxifen without increasing the risk of endometrial 

cancer109,110. Toremifene has shown the same agonistic potential in the uterus as 

tamoxifen and is only used in postmenopausal women with metastatic breast cancer4. 

Differential recruitment of coactivators and corepressors is a major factor in determining 

if SERMs act as an antagonist or agonist35. Genes that are activated by tamoxifen bound 

ERα are different than genes that are activated by estrogen bound ERα4. Tamoxifen-

bound ERs are recruited to different promoters what can again result in regulation of 

different genes40.    

1.3.1.2 Aromatase inhibitors (AI) 

AIs are a class of drugs used in the treatment of breast cancer and ovarian cancer in 

postmenopausal women that block the aromatase enzyme and therefore the biosynthesis 

of estrogen112 (Figure 5). 
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                Testosteron      Estradiol 

 

Figure 5: Aromatase converts testosterone to estradiol 

AIs can be divided into irreversible steroidal inhibitors such as exemestane which form a 

permanent bond with the aromatase enzyme complex and non-steroidal inhibitors 

(anastrozole, letrozole), which inhibit the enzyme by reversible competition113. In 

premenopausal women most of the estrogen is produced in the ovaries, while in 

postmenopausal women estrogen mostly is produced in the adrenal gland from the 

conversion of androgens114. Since most of the circulating estrogen is produced by the 

ovaries, not by conversion of androgens to estrogen, blocking the enzyme aromatase does 

not significantly decrease the production of estrogen. Therefore, AIs are generally not 

used to treat breast cancer in premenopausal women. When aromatase inhibitors are used 

in premenopausal women, the decrease in estrogen activates the hypothalamus and 

pituitary axis to increase gonadotropin secretion, which stimulates the ovary to increase 

androgen production. This counteracts the effect of the aromatase inhibitor114. As 

adjuvant treatment for postmenopausal women AIs show advantages over tamoxifen 

towards developing blood clots or endometrial cancer and improved efficacy115,116. 

However, Tamoxifen remains the preferred treatment for premenopausal women and 

ductal carcinoma in situ (DCIS)117.   

1.3.1.3 Coactivator binding inhibitors (CBI) 

CBIs are a new group of small molecules that inhibit the interaction of ER with 

coactivators like members of the SRC family directly118.  They are designed to bind to the 

hydrophobic groove of the ER-agonist complex and block interaction between ER and 

SRCs118. Due to the suggested direct block of the protein-protein interaction, resistance as 

observed with antiestrogens may not occur.  A structure-guided approach was taken to 
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identify cyclic systems that display three hydrophobic substituents and therefore mimic 

the three leucine residues in the LXXLL interaction motif between ER and 

coactivators118. This approach identified 2,4-diamino-6-alkyl pyrimidines  as the target 

structure119. In time-resolved fluorescence resonance energy transfer assays (FRET) and 

cell based assays of estrogen transcriptional activity CBIs can block ER activity and this 

effect can not be reversed with increasing amounts of estrogen118. The most potent 

compounds are selective for ERα over ERβ. While CBI’s still need to be approved and 

studied in clinical settings, they might provide an alternative approach to endocrine 

therapy and resulting resistance.   

1.3.2 Tamoxifen resistance 

Unfortunately, the majority of breast cancer patients treated with tamoxifen develops 

resistance within 5 years of treatment120,121. Tamoxifen can stimulate the growth of 

hormone-resistant breast cancer tumors122.  

Raloxifene appears to be an alternative to the widespread use of tamoxifen. In studies 

treatment of ER positive breast cancer with raloxifene for eight years was found to be 

effective in 65% of all breast cancer cases109. This suggests that some tumors may 

become raloxifene resistant109. Cross-resistance between tamoxifen and raloxifene has 

been reported123. Nevertheless, tamoxifen is the most prescribed endocrine therapeutic 

drug for pre-menopausal and post-menopausal women to date.  

Tamoxifen is a prodrug that mainly conducts its full antiestrogenic and antitumor activity 

by biotransformation to endoxifen124,125. The main enzyme that is involved in this 

biotransformation is cytochrom P 450 (CYP) 2D6126. Ten percent of the population 

carries CYP2D6 variations which can influence tamoxifen’s metabolism and result in 

decreased treatment efficacy127.  

Since most tamoxifen resistant tumors still express functional ERα, tamoxifen resistance 

is due to a mechanism other than loss of ERα128. Further, those tumors remain responsive 

to growth inhibition by pure antiestrogens like ICI 182780 and other hormonal 

therapies129. Tamoxifen resistance might be a result of switching the antagonist into an 

agonist130-132. The known intrinsic estrogenic activities of tamoxifen in bone or uterus can 

explain the acquired resistance in breast tumors133.   

Coactivators, like members of the SRC family, enhance the agonistic properties of 

tamoxifen in specific tissues20,40. This observation leads to the conclusion that tamoxifen 

resistance could result due to a change in coregulator levels. Protein expression analysis 
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of SRC-1 showed that initially estrogen treatment resulted in increasing levels of SRC-1 

whereas tamoxifen treatment caused a decrease as measured in 30% of primary breast 

cell cultures derived from patient tumors65. Expression of the co-activator SRC-1 is 

higher in uterine Ishikawa cells, where tamoxifen functions as an agonist, than in MCF-7 

breast cancer cells, where it functions as an antagonist40. Overexpression of SRC-1 in 

MCF-7 cells converted tamoxifen to an agonist, while decreasing SCR-1 expression in 

Ishikawa cells converted tamoxifen to an antagonist40. These findings suggested that 

tamoxifen resistance in breast tumors might be due to overexpression of SRC-1 and/or 

other co-activators, leading to the conversion of tamoxifen from an antagonist to an 

agonist.  

SRC-1 expression is associated with resistance to endocrine therapy in breast tumors66 

and with the growth factor receptor HER-266. Enhanced growth factor stimulation is 

known to determine the efficiency of breast cancer treatment with antiestrogens134,135. 

Intrinsic tamoxifen resistance is associated with HER-2, ER positivity, and PR negativity 

in tumors with increased SRC-3 levels136. This suggests that SRC coactivators, especially 

SRC-1 and SRC-3 may serve as predictive factors for tamoxifen response.  

1.4 Osteoporosis 

Osteoporotic bone loss is the result of high bone turnover in which bone resorption 

outpaces bone deposition137,138. Osteoporosis is one of the most common disorders in the 

elderly and it affects approximately 40% of postmenopausal women139. Multiple 

pathogenic mechanisms are the cause for progressive bone loss140. As a result the major 

complications of this disease are vertebral and hip fractures causing high rates in 

morbidity and mortality141. To identify individual fracture risk generally the BMD by 

dual-energy X-ray absorptiometry (DXA) is determined142. Low BMD is considered to be 

the strongest risk factor for fractures143.   

1.4.1 Bone structure 

The outer layer of bones is composed of cortical bone tissue and accounts for 80% of the 

total bone mass of an adult skeleton144. Trabecular bone (also called cancellous bone) 

displays the interior of bone which is composed of a network of rod- and plate-like 

elements that make the overall organ lighter and allowing room for blood vessels and 

marrow144. Trabecular bone accounts for the remaining 20% of total bone mass, but has 

nearly ten times the surface area of cortical bone144. There are three main types of cells 

constituting the bone. Osteoblasts are mononucleate bone-forming cells, which descend 
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from osteoprogenitor cells144. They are located on the surface of osteoid seams and make 

a protein mixture known as osteoid, which mineralizes to become bone144. Osteoid is 

primarily composed of Type I collagen144. Osteoblasts also manufacture hormones, such 

as prostaglandins, which act on the bone144. Osteoblasts produce matrix proteins and 

alkaline phosphatase, an enzyme that has a role in bone mineralization144. Osteocytes 

originate from osteoblasts and become surrounded by bone matrix which they themselves 

produce144. The spaces which they occupy are known as lacunae. Osteocyte’s functions 

include formation of bone, matrix maintenance, and calcium homeostasis144. 

Osteoclasts are the cells responsible for bone resorption. Osteoclasts are large, 

multinucleated cells, derived from hematopoietic stem cells in the bone marrow145. They 

are located on bone surfaces creating a shallow resorption pit known as a "Howship's 

lacuna"144. Because the osteoclasts are derived from a monocyte stem-cell lineage, they 

are equipped with phagocytic like mechanisms similar to circulating macrophages144. 

Osteoclasts migrate to discrete bone surfaces. Upon arrival, active enzymes, such as 

tartrate resistant acid phosphatase (TRAP), are secreted to digest the mineral substrate144.  

1.4.2 Bone remodeling 

Bone remodeling on the surface of trabecular bone is a process that involves the bone 

resorption by osteoclasts and a formation phase by osteoblasts (Figure 6)140. This process 

is similar to bone remodeling in the cortical bone.  
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Figure 6: Schematic presentation of bone remodeling140 

Hematopoietic precursor cells become activated osteoclasts by interacting with cells of 

osteoblastic lineage. The resulting activated osteoclasts initiate a limited bone resorption 

phase. During the following reversal phase the bone surface is covered by mononuclear cells, 

which then initiate the stimulation of osteoblasts to start bone formation140.  

1.4.3 Regulation of the bone remodeling process 

1.4.3.1 The role of estrogen and its receptors in bone 

Estrogen is a key hormone in bone remodeling in several species. The osteoprotective 

action of estrogen is demonstrable in rodents and is clinically important in humans, 

particularly in older women137,140,141,146. Postmenopausal women are at high risk for 

osteoporosis due to estrogen deficiency. Postmenopausal women develop a decrease in 

cortical as well as trabecular BMD147. Estrogen deficiency increases bone resorption 

rather than decreasing bone formation148,149. Demonstrating the ctritical role of estrogen 

in the pathogenesis of osteoporosis, estrogen treatment reduces bone loss in 

postmenopausal women150. Estrogen can directly act on osteoblasts and osteoclasts and 

alter either bone formation or bone resorption, by affecting cellular differentiation, 

proliferation, or regulating target gene expression139. Estrogen also induces apoptosis in 

osteoclasts151. 
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Osteoblasts, osteoclasts, and osteocytes express ERβ as well as ERα152. In the trabecular 

bone ERβ is more expressed than ERα153,154, whereas ERα is the predominant receptor in 

cortical bone152. Some studies suggest the two receptors exert the opposite effect on bone, 

whereas others suggest similar agonistic properties155,156, with ERα being the major 

mediator for bone remodeling157.  

The development of specific ER knockout mice has proven useful in understanding 

estrogen action in the skeleton. For a knockout of ERα in mice, exon 3 of ERα was 

deleted158, whereas the described ERβ and ERα/β ko mice still express a truncated form 

of ERβ159. Phenotypically female and male ERα ko mice show a decrease in cortical 

BMD, as well as decreased bone formation26. The deletion of the ERβ gene in female 

mice results in increased longitudinal bone growth and increased BMD156,160,161. These 

data suggest that ERβ may exert a negative effect on ERα-mediated bone growth in mice. 

In contrast to the described mouse models a natural mutation of ERα in human, which 

inactivates the receptor, results in continued longitudinal bone growth162. The double ko 

mouse for ERα and ERβ shows a decrease in cortical and cancellous bone suggesting the 

two receptors can substitute partially each others function159. Also these mice indicate 

that ERβ plays a role for bone maintenance distinct from ERα. The observed phenotype 

of both ERα/β mice mimics bone loss observed in postmenopausal women.  

Osteoclast specific ERα ko mice show clear trabecular bone loss and high bone turnover 

associated with increased osteoclast numbers in females but not in males163. There is no 

decrease in cortical BMD163 contrasting the ERα ko mouse phenotype26. These findings 

suggest that ERα is not only important in osteoclasts but also in osteoblasts in 

maintaining BMD, but the differences in phenotypes still need to be examined.  

1.4.3.2 Estrogen regulated genes in bone  

ERα and ERβ are both expressed in bone. The identification of regulated genes allows 

insight into the pathways and gene networks regulated by estrogen through these two 

ERs164. Estrogen regulates genes encoding cytokines, growth factors, and bone matrix 

proteins in trabecular bone of mice161. Genes encoding proteins associated with the 

regulation of the immune response such as members of the Natural Killer cell lectin-type 

receptors (NKG family) were upregulated by estrogen164. Another category of genes 

regulated by estrogen in bone were associated with regulation of cell motility and the 

cytoskeleton164. Most of the estrogen regulated genes involved in cytoskeleton regulation 

and motility, signal transduction, cytokine, and immune response and growth 

factors/hormones were commonly regulated through both receptors164. Important growth 
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factors and hormones regulated by estrogen through both receptors include several genes 

that can act in either an autocrine or paracrine manner to affect the bone-protective 

actions of estrogen165. These genes include the Wnt1 inducible signaling pathway -2 

(WISP-2), a connective tissue growth factor isolated from osteoblasts166, the bone 

morphogenetic protein 6 (BMP6), a potent osteogenic factor for the bone-protective 

actions of estrogens, and the parathyroid hormone-like hormone (PTHLH), a homolog of 

the parathyroid hormone (PTH), that acts as an anabolic agent in osteoporosis167. Several 

genes are regulated specifically by ERα or ERβ in the presence of estrogen164. 

Osteoclastogenesis inhibitory factor is specifically downregulated in the presence of ERα. 

Recent studies identified Fas Ligand (FasL) as an ERα regulated gene that is upregulated 

in response to estrogen to induce osteoclast apoptosis163,168. In contrast the TGF-β 

inducible early gene (TIEG) is upregulated in response to estrogen by recruiting ERβ169 

and has been associated with osteoblast differentiation170.    

1.4.3.2.1 Fas Ligand 

FasL is a type II transmembrane protein that belongs to the tumor necrosis factor (TNF) 

family. The binding of FasL with its receptor Fas Receptor (FasR) induces apoptosis. 

Estrogen upregulates the expression of the FasL gene and increases apoptosis in 

differentiated osteoclasts in WT female mice. This effect was undetectable in mice 

lacking osteoclastic ERα163. Estrogen as well as SERM induction of FasL and apoptosis 

requires ERα in cultured osteoclasts163. The osteoprotective actions of estrogen and 

SERMs are mediated in part through osteoclastic ERα in trabecular bone, and the life 

span of mature osteoclasts is regulated through the activation of FasL signaling. Cortical 

bone mass is increased in ovariectomized osteoclast specific ERα ko female mice during 

estrogen treatment, the antiresorptive estrogen action in cortical bone may be mediated by 

osteoblastic ERα. FasL induction by estrogen in osteoblasts may contribute to the 

osteoprotective estrogen action, and FasL gene induction by estrogen was in fact detected 

in primary cultured osteoblasts from female calvaria168. 
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Estrogen induces FasL in osteoblasts to subsequently induce apoptosis in osteoclasts in a 

paracrine manner (figure 7). 

 

Krum, S. A. et al. EMBO J 2008;27:535-545 

 

Figure 7: Estrogen upregulates FasL in osteoblasts to induce apoptosis in osteoclasts168. 

(1) E2 binds to ERα in the cytoplasm followed by nuclear localization of ERα 

(2) ERα binds to an enhancer element downstream of the FasL transcriptional start site 

(3) FasL transcription is induced 

(4) FasL binds to the FasR on the pre-osteoclast surface 

(5) Activation of FasR leads to cleavage of caspase 8 and subsequent apoptosis. 

 

Purified osteoblasts, the osteoblast derived cell line MC3T3, and stably overexpressing 

ERα osteosarcoma cell line U2OS mRNA levels of FasL are upregulated after treatment 

with estrogen168. Osteoclasts do not undergo estrogen induced apoptosis unless 

osteoblasts are added in a co-culture experiment and that ERα in osteoblasts is sufficient 

to induce osteoclast apoptosis. Additionally, SERMs such as tamoxifen and raloxifene are 

also able to induce FasL expression in osteoblasts and stimulate osteoclast apoptosis.  

Estrogen deficiency following menopause or ovariectomy leads to high bone turnover, 

particularly in the trabecular areas, as bone is rapidly lost through enhanced 

21 



Background  

                                                                      22                                          

resorption141,171. Thus, estrogen treatment leads to recovery from osteopenia by reducing 

resorption137,141, partly by the induction of osteoclast cell death. 

1.4.3.2.2 Transforming Growth Factor β inducible early gene- 1 (TIEG) 

TGF-β is an important autocrine and paracrine factor for bone formation and 

maintenance, which was originally cloned from human osteoblasts170. TIEG is a member 

of the Sp/Krueppel-like transcription factor family, which are involved in 

antiproliferative and apoptosis inducing functions similar to TGF-β172. TIEG is rapidly 

and transiently induced in osteoblasts within 60 minutes of TGF-β treatment173.  

TIEG ko mice show an osteopenic phenotype characterized by decreased bone content, 

density, and size in trabecular as well as cortical bone170. Bones of TIEG ko mice have a 

significant reduction in osteocytes, suggesting that defects in the osteoblast differentiation 

exist and may be responsible for the observed defects in bone morphology and 

strength170. An increase in the number of osteoblasts, without a subsequent increase in 

bone formation parameters174 suggests further that osteoblasts derived from TIEG ko 

mice are unable to fully differentiate and mineralize in culture174. TIEG deficient 

osteoblastic cell cultures show decreased expression of important osteoblast 

differentiation markers like alkaline phosphatase and osteocalcin174.  

Estrogen has been shown to induce TIEG-1 expression in human osteoblasts175. This 

estrogen induction is regulated by recruiting ERβ but not ERα to a regulatory region in 

intron 1 of TIEG169. The AF-1 of ERβ is responsible for recruiting SRC-1 to this 

regulatory region, which may be essential for TIEG induction by ERβ169.  

1.4.4 Treatment of osteoporosis 

Current treatment of osteoporosis is focused on reducing the risk of fractures by 

preventing bone loss141. The imbalance in bone turnover that is induced by estrogen 

deficiency in women can be ameliorated with bio-available estrogens including 

SERMs176. 

1.4.4.1 Hormone Replacement Therapy (HRT) 

HRT is used to supplement the body with either estrogen alone or estrogen and 

progesterone in combination during and after menopause. The initial study showed that 

estrogen is very effective in reducing bone loss as well as decreasing fracture risk also 

showed a significantly increased risk of breast cancer and cardiovascular disease177. HRT 

is also associated with a 30% increased risk of ovarian cancer178. Since risks exceed the 
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benefits of this therapy approach it is mainly abandoned as the primary therapy, but led to 

the common use of SERMs to treat osteoporosis.  

1.4.4.2 Selective Estrogen Receptor Modulators 

Raloxifene has been shown to decrease fracture risk without increasing the risk for breast 

cancer179. To compare the relative effects and safety of raloxifene and tamoxifen on the 

risk of developing invasive breast cancer and other disease outcomes, the National 

Surgical Adjuvant Breast and Bowel Project Study (NSABP) of Tamoxifen and 

Raloxifene was conducted (STAR trial)180. This prospective trial indicated no difference 

in osteoporotic fractures after treatment with either tamoxifen or raloxifene. However, 

raloxifene showed a reduced risk for developing endometrial cancer compared to 

tamoxifen.  It has been suggested that raloxifene has to be administered for at least 10 

years to maintain effective treatment of osteoporosis8.  

1.4.4.3 Bisphosphonates 

Bisphosphonates decrease bone loss and fracture risk179,181. Currently approved by the 

FDA and the Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM) are 

alendronate, risedronate, and ibandronate. They act by binding to the bone surface, are 

absorbed by osteoclasts and cause subsequently inactivation and apoptosis of these cells. 

Extended use of bisphosphonates is concerning, since they can cause decreased bone 

remodeling resulting in slowing down the process of repairing fractures and micro 

damages182.  

1.5 Single nucleotide polymorphisms (SNPs) 

With a number exceeding ten million183, SNPs are the most common genetic variations in 

the human genome184. SNPs are defined as substitutions of a single base pair with a minor 

allele frequency higher than 1% in a normal population185. At least 1 in 1000 basepairs 

displays this kind of genetic alteration186. One important aspect to be considered when 

performing functional in vitro and in vivo studies on SNPs is that SNPs located at nearby 

sites are not inherited randomly. They build haplotype blocks, as a set of SNPs that are 

statistically associated. It is thought that these associations, and the identification of a few 

alleles of a haplotype block, can unambiguously identify all other polymorphic sites in its 

region. Linkage disequilibrium analysis as a measurement for the non-random association 

of these alleles can be employed to infer the haplotypes184. 
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The majority of SNPs don’t contribute to a change in the amino acid sequence of a 

protein (synonymous SNPs), or occur in non-coding regions. However, in some SNPs 

(nonsynonymous SNPs) the nucleic acid change results in an altered amino acid. These 

genetic alterations are of interest as they may confer a predisposition to disease or may 

affect treatment efficacy. Studying these SNPs may lead to the development of more 

individualized treatment strategies. SNPs in various genes contribute to a change in risk, 

outcome, or treatment efficacy for several diseases. 

Two different approaches can be utilized to identify SNPs in genes that confer to risk for 

developing a disease or for differences in treatment efficacy.  

The candidate gene approach investigates SNPs in target genes implicated in the disease 

being studied. To study the impact of SNPs towards therapeutic response, candidate 

genes are selected based on signaling and metabolic pathways187. This approach can 

reduce the risk of false-positive findings that can occur in genome wide association 

studies (GWAS), but has the disadvantage of possibly excluding genes important for 

disease and treatment reponse187.   

GWAS as an examination of genetic variations across the whole genome identified SNPs 

in genes that are associated with disease and were not previously known to be target 

genes for those diseases187. These studies gave new insights into pathophysiology and 

pharmacology of the disease examined. Due to the completed HapMap project, easy 

accessible genomic databases, and the development of high-throughput automated 

genotyping, increasing numbers of GWAS linking SNPs to diseases are available. As 

mentioned above, a disadvantage of these studies is the possibility of a large number of 

false-positive associations. Further, since GWAS can be cost-intensive, functionally 

interesting SNPs or haplotype-tagging SNPs to represent a gene can be used for analysis 

more economically187.  

1.5.1 SNPs associated with cancer 

In cancer studies SNPs can influence either susceptibility or outcome. Several SNPs in 

target genes have been identified to confer to differences in risk or outcome for several 

types of cancers. 

Variants in the thiopurine S-methyltransferase (TPMT) can result in severe 

haematopoetic toxicity188. The protein encoded by TPMT catalyzes the S-methylation of 

thiopurines, which are used to treat haematopoietic malignacies and autoimmune 

disorders. Thiopurine drugs are activated to cytotoxic thioguanine nucleotides. 
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Biotransformation of the drug includes methylation by TPMT leading to inactivation of 

the drug. In the presence of a genetic variant in TPMT resulting in decreased activity, 

severe toxicity was observed. Children harboring genetic variants resulting in inactivation 

of TPMT are at greater risk for relapse in acute childhood leukemia (ACL). Types and 

frequencies of TPMT variations vary among ethnic groups189,190. Overall it was estimated 

that 71% of patients who showed intolerance to thiopurines were TPMT deficient191. 

Appropriate dose reduction for those patients resulted in similar toxicity and survival 

outcome192,193. Testing for TPMT is now used before the initiation of thiopurine 

therapy194.  

1.5.1.1 SNPs associated with breast cancer 

5-9% of all breast cancer cases are inherited195. Only 30% of those cases show mutations 

in Breast Cancer (BRCA) 1 and BRCA2, which are known to contribute to a high risk of 

developing breast cancer196. This suggests that additionally low penetrance variations, 

alone or in combination, in breast cancer susceptibility genes can account for a higher 

risk in developing breast cancer197. Those genes could be involved in DNA repair, steroid 

hormone metabolism and signaling, and carcinogen metabolism198.  

Associations with polymorphisms and various breast cancer phenotypes have been 

identified. Genetic variations in CYP1A1, CYP1B1, BRCA1, and protein 53 (p53) are 

associated with differences in breast cancer risk, ER and PR status, and lymph node 

status197. The identified variations were already reported earlier to be associated with 

breast cancer susceptibility199-204. SNPs in the EGFR kinase domain are able to increase 

receptor activity resulting in pharmacodynamic changes in response to the EGFR tyrosine 

kinase inhibitor gefitinib205.  

Recent GWAS identified genes resulting in increased risk for breast cancer206,207. Most 

highly associated SNPs with the disease are located in genes that were not initially 

expected to be related to breast cancer from the perspective of a candidate gene approach. 

The majority of disease-associated variations are located in introns making it more 

difficult to elucidate how those changes contribute to the disease. Both studies have 

identified the fibroblast growth factor receptor 2 (FGFR2) as risk factor for breast 

cancer206,207. In Europeans, the allele that predisposes individuals for breast cancer is 

inherited as a haplotype of eight SNPs located in intron 2 of FGFR2206,207. FGFR2 was 

previously shown to be important for mammary gland development208. Meyer et al.209 

described how two of those changes might increase the risk to develop breast cancer. The 

two variations they studied are able to alter the binding of two transcription factors 
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important for mammary gland-specific gene expression209. Resulting in an increase of 

FGFR2 expression, which was previously shown to be associated with ER-positive breast 

cancer210. 

1.5.1.1.1 SNPs in CYP2D6 

SNPs can predict severe adverse effects, therefore, confer to treatment efficacy, and 

indicate individuals which should not receive a certain drug. SNPs can also predict risk 

for developing certain diseases194.  

Prediction treatment efficacy studies have focused on variants in the CYP450 system.  

Specifically, SNPs in CYP2D6 can alter the activity of CYP2D6 and the 

pharmacokinetics of anticancer drugs211. CYP2D6 is the major enzyme which transforms 

tamoxifen into its more potent and abundant metabolite endoxifen (figure 8). SNPs in 

CYP2D6 can effect plasma concentration levels of tamoxifen metabolites and determine 

response and toxicity to the drug212. Endoxifen, like 4-hydroxytamoxifen, has 100-fold 

greater affinity for ER and a 30 to 100 fold greater suppression in estrogen-dependent cell 

proliferation213. Endoxifen shows a 10-fold higher abundance than 4-hydroxytamoxifen, 

supporting that endoxifen is even more important for the anticancer effect of 

tamoxifen212.  
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Figure 8: Selected transformation pathways of tamoxifen and the main CYP enzymes 

involved.  

The relative contribution of each pathway to the overall oxidation of tamoxifen is shown by 

the thickness of the arrow, and the principal P450 isoforms responsible are highlighted in 

larger fonts212. 

The genotype CYP2D6*4 is associated with poor tamoxifen metabolism212. Women 

treated for breast cancer with tamoxifen, which were homozygous for this genotype 

(CYP2D6 *4/*4) have decreased relapse free and disease-free survival if compared to 

heterozygous or wildtype (WT) for this allele212. This suggests that a decrease in 

CYP2D6 activity can increase the risk of tamoxifen treatment failure. To support the 

importance of sufficient metabolism of tamoxifen to endoxifen, women carrying two 

alleles of CYP2D6*4 did not experience hot flashes as side effects for tamoxifen therapy 

if compared to heterozygous or WT CYP2D6212.  
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1.5.1.1.2 SNPs in coregulators 

It is important to study SNPs in coregulators as very little is known about how they 

contribute to altered breast cancer, osteoporosis risk or estrogen-dependent treatment 

efficiency. Characterization of genetic variation in ER coregulators will lead to a better 

understanding of how the genetic background influences the development of breast 

cancer and osteoporosis and the efficiency of treatments.  

A recent case-control study by Burwinkel et al.214 focused on two SNPs in SRC-3 that 

were not linked to each other. They identified a significant breast cancer protective effect 

for a nonsynonymous SNP at amino acid position 586 that causes an amino acid change 

from glutamine to histidine. Glutamine586 is located 35 amino acids upstream of the first 

LXXLL motif that is needed to bind nuclear receptors and is hypothesized to alter the 

structure of SRC-3 thus decreasing its activity. Additionally, a synonymous SNP at amino 

acid position 960 was also shown to have a significant breast cancer protective effect due 

to the usage preference for one codon over another. Although, this study has described 

relevance of these SRC-3 SNPs to breast cancer, the functional consequences have not 

been examined.  

1.5.2 SNPs associated with osteoporosis 

Osteoporosis is a common disease that was shown to include a strong genetic component 

with 50-70% heritability as shown from family linkage studies215-217. Since osteoporosis 

is known to be a disease involving multiple pathogenic mechanisms, SNPs in target genes 

involving pharmacological and metabolical pathways are likely to exceed small but 

clinically important effects140,218. So far more than 30 candidate genes have been reported 

to potentially influence bone mass and fragility219,220.  

The human aromatase CYP19 catalyzes the conversion from testosterone to estradiol218 

and is therefore important for estrogen-mediated bone maintenance. Polymorphisms in 

CYP19 have been studied extensively. However, the results vary to associated changes 

with osteoporosis related markers218,221-223. The polymorphism has been associated with 

BMD and vertebral fracture risk218,221, modification of BMD response towards HRT218,222, 

and circulating levels of estrogen in postmenopausal women218,223. The differences in 

results might be explained with different ethnicity or age distribution within each studied 

population.  

In addition, a recent GWAS for heritable traits that contribute to fracture risk was 

conducted in the Framingham Heart Study (FHS)142 and identified one SNP in CYP19. 
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Several other SNPs in osteoporosis candidate genes like ERα, low density lipoprotein-

receptor-related protein 5 (LRP5), vitamin D receptor (VDR), collagen type 1 alpha 1 

(COL1A1), and methylentetrahydrofolate reductase (MTHFR) have been identified to be 

associated with osteoporosis142. Polymorphisms in those genes can still explain only a 

small percentage of the variation in BMD and fracture risk224-227 and the described 

associations need to be replicated in additional studies.  

Another recent GWAS for associations with BMD, osteoporosis, and osteoporotic 

fractures also identified a SNP in LRP5 to be associated with BMD and osteoporotic 

fractures228. Although the two different GWAS identified two different SNPs in LRP5, 

they are not considered to be in linkage disequilibrium with each other. This supports that 

the LRP5 locus might be an interesting region for influencing BMD and fracture risk. The 

other SNP identified by Richards et al.228 that showed genome-wide association with 

BMD was located near the osteoprotegerin (OPG) gene. A GWAS conducted in Icelandic 

subjects for association with BMD and fracture risk showed that SNPs in the genomic 

region of OPG, and ERα are most strongly associated with those phenotypes229.  

Altogether, genetic variations predicting for disease risk or drug response are intensively 

studied and very common, but only a few are incorporated into clinical practice to 

improve individual treatments so far. Reasons for that are that most associations cannot 

be sufficiently replicated in different studies due to sample size, ethnicity, age distribution 

or other confounding factors.    

Recent GWAS on associations with BMD and fracture risk indicate that there are several 

genomic loci such as ERα, LRP, and OPG where SNPs frequently occur and result 

usually in associations with bone related phenotypes, thus, identifying important genes 

for the pathology of osteoporosis. Those specific changes vary within different studies 

within those loci, making it necessary to conduct more studies to identify functional 

variants. This further supports the knowledge that most genetic variatons show low to 

medium penetrance and account only for a small part to explain interindividual 

differences in risk or drug response. Therefore, it is more likely that a list of genetic 

variations together exert the potential to identify the right drug and dose response for each 

patient.  

1.5.2.1 SNPs in ER  

Associations with hormone–dependent disease such as breast cancer and osteoporosis 

have beens found in studies on genetic variations in ER230-232.  The most studied SNPs in 

ERα associated with an osteoporosis phenotype are two intronic SNPs located in the ERα 
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promoter139. However, study results are inconsistent224,233,234. Other studies were able to 

identify associations of SNPs in ERα with BMD as well as fracture risk for women and 

men235,236. Several SNPs in ERβ have been associated with BMD and fracture risk, but 

differences in distribution among populations need to be considered to understand the 

functional significance of those variations230,237. 

Several SNPs in ERα have been suggested to be associated with breast cancer risk in 

different populations, but none of these could be confirmed238-241.  

An important field of study is how genetic variations in ER contribute to estrogen-

dependent treatment for diseases like breast cancer or osteoporosis. Women treated with 

tamoxifen for breast cancer carrying an intronic ERβ variant had increased BMD gain 

and less bone turnover if compared to WT242. Therefore, this polymorphism might be a 

predictive marker for the response to tamoxifen in bone242.   
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2 Hypothesis and Objectives 

Current treatment or prevention of hormone responsive breast cancer includes mainly 

SERMs like Tamoxifen or Raloxifene. Despite their antiestrogenic effect in breast they 

exert agonistic effects in other estrogen target tissues including bone. Raloxifene is 

approved for the treatment and prevention of osteoporosis. Estrogens and SERMs can 

inhibit bone loss in women due to decreased estrogen levels seen after menopause. 

Estrogen and SERMs primarily act by regulating gene transcription via estrogen receptors 

(ER). Further, ERα is regulated through its interaction with coactivators which can 

enhance its activity. Steroid Receptor Coactivator -1 (SRC-1) plays an important role in 

mediating the relative agonist/antagonist activities of the SERM tamoxifen, in the breast, 

endometrium and in the bone. Studies in mice lacking SRC-1 have revealed increased 

bone turnover and osteopenia, similar to the effects of estrogen deficiency. These changes 

are refractory to the administration of exogenous estrogen. Characterization of genetic 

variation in SRC-1 will lead to a better understanding of how the genetic background 

influences the development of breast cancer and osteoporosis and the efficiency of 

treatments. One nonsynonymous SNP exists in SRC-1 at amino acid position 1272 

resulting in an amino acid change from proline to serine (P1272S). An exchange of 

proline to serine can confer an essential change in SRC-1 protein function. Furthermore, 

this genetic alteration is located in the AD2 of SRC-1 that is known to play an important 

role in regulating transcriptional activity. 

Therefore, the underlying hypothesis is that SRC-1 P1272S alters ERα’s transcriptional 

activity in vitro and in vivo, and hence hormone response in breast cancer patients in 

estrogen sensitive tissues such as bone and breast.  
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The research objectives addressed the following tasks: 

1. To test alterations of SRC-1 P1272S coactivator activity compared to SRC-1 WT 

utilizing in vitro assays. 

2. To study associations of SRC-1 P1272S with clinical phenotypes.  

3. To test the role of SRC-1 and SRC-1 P1272S on bone maintenance using skeletal 

cell culture systems. 

4. To determine the mechanism by which SRC-1 P1272S’s coactivator activity is 

altered compared to SRC-1 WT. 
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3 Results 

3.1 Sequencing SRC-1 coding regions 

The completion of the International HapMap Project allows for identification of a 

continuously growing number of associations of genetic variations with common diseases 

and responses to drugs. SNPs in various genes have already been shown to contribute to a 

change in risk, outcome, or treatment efficiency for several diseases184,206,207.  

SRC-1 is an important NR coactivator with a pivotal role for the pathology of 

osteoporosis69,243 and breast cancer65,66. Prior to these studies nothing was known about 

how SNPs in SRC-1 contribute to altered outcome in those diseases or endocrine 

treatment efficiency. This indicated it is imperative to study genetic alterations in SRC-1.   

All validated SRC-1 coding region SNPs within the dbSNP database 

(http://www.ncbi.nlm.nih.gov/SNP/index.html) were extracted (Jay Wang M.D., Ryan 

Hartmaier at BCM, Houston, USA). Of all the variants identified, rs1804645 represented 

the only non-synonymous SNP. To confirm the finding published within the dbSNP 

database, to gain additional population-specific information on rs1804645, and to identify 

potentially novel SNPs in SRC-1 direct sequencing of all SRC-1 coding exons in 48 

Caucasian (CA) and 48 African-American (AA) apparently normal individuals (Coriell 

Institute, NJ) was carried out. From this effort a total of six variants were identified 

(Table 1). 

Five of the SNPs found in the Coriell sequencing were present in dbSNP, and one was 

novel. Of all the variants identified during sequencing, rs1804645 represented the only 

non-synonymous SNP. This SNP changes a proline to serine at amino acid position 1272 

in exon 18; it will be referred to as P1272S (Figure 9). 
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Amino Acid 
Position rs# Amino Acid Change Population Samples 

(indiv) MAF 

rs1804645 1272 P/S CEPH 92  

   AGI_ASP population 37 0.014 

      

   Coriell resequencing - AA 48 0.010 

   Coriell resequencing - CA 48 0.031 

rs11125763 1267 L/L AGI_ASP population 37 0.189 

   HapMap-CEU 59 0.110 

   HapMap-HCB 45 0.000 

   HapMap-JPT 45 0.011 

   HapMap-YRI 60 0.500 

      

   Coriell resequencing - AA 48 0.292 

   Coriell resequencing - CA 48 0.073 

rs13430401 1068 L/L HapMap-CEU 60 0.000 

   HapMap-HCB 45 0.000 

   HapMap-JPT 45 0.000 

   HapMap-YRI 60 0.000 

      

   Coriell resequencing - AA 48 0.031 

   Coriell resequencing - CA 48 0.000 

rs41281515 641 A/A No Frequency Data in dbSNP   

      

   Coriell resequencing - AA 47 0.000 

   Coriell resequencing - CA 48 0.010 

No rs# 177 L/L Not found in dbSNP   

      

   Coriell resequencing - AA 48 0.010 

   Coriell resequencing - CA 47 0.000 

rs11125744 154 T/T AFD_EUR_PANEL 24 0.104 

   AFD_AFR_PANEL 23 0.391 

   AFD_CHN_PANEL 24 0.000 

   AGI_ASP population 38 0.276 

   HapMap-CEU 60 0.100 

   HapMap-HCB 45 0.000 

   HapMap-JPT 44 0.012 

   HapMap-YRI 60 0.567 

      

   Coriell resequencing - AA 48 0.417 

      

   47 0.128 Coriell resequencing - CA 
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Table 1: SNPs in SRC-1 coding regions. 

SNPs were identified through dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/) and by full 

exon sequencing of Coriell samples. Our re-sequencing is listed as “Coriell re-sequencing” 

with AA representing African Americans and CA representing Caucasian Americans. 

(AGI_ASP population is a mixture of African American and Caucasian samples. CEPH, 

HapMap-CEU, and AFD_EUR_PANEL represent populations of European descent. 

HapMap-HCB and AFD_CHN_PANEL populations are of Chinese descent. HapMap-YRI 

and AFD_AFR_PANEL are populations of African descent. HapMap-JPT is a population of 

Japanese descent. MAF=minor allele frequency. 
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Figure 9: Schematic presentation of functional SRC-1 domains, and position of SNP P1272S.  

The non-synonymous SNP P1272S is located in the AD2 of SRC-1. bHLH-PAS= basic helix-

loop-helix-Per-Arnt-Sim domain, AD = activation domain, NR = nuclear receptor 

interaction domain, Q = Glutamine rich region, RD = repression domain. 
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3.2 SRC-1 P1272S shows decreased nuclear receptor co-

activation 

SRC-1 P1272S resides in the AD2 of SRC-1 (Figure 9), which is known to be critical for 

its coactivation function244.  

Using Polyphen (http://genetics.bwh.harvard.edu/pph/) in-situ analysis of this SNP 

predicted SRC-1 P1272S to be probably damaging (Jay Wang M.D., BCM, Houston, 

USA). Polyphen is a tool which predicts possible impact of an amino acid substitution on 

the structure and function of a human protein using physical and comparative 

considerations. Results range from benign to possibly damaging to probably damaging.   

For further in vitro studies an SRC-1 expression plasmid, containing the change P1272S, 

was constructed by site directed mutagenesis.  

3.2.1 SRC-1 P1272S decreases ERα coactivity 

It was first tested whether the SRC-1 P1272S variant demonstrated altered coactivation of 

ERα in different cell lines. Transient estrogen-responsive luciferase reporter assays were 

conducted in breast cancer cells (MCF-7, T47D), endometrial carcinoma cells (Ishikawa), 

cervical cancer cells (Hela), liver carcinoma cells (HepG2) and human embryonic kidney 

cells (HEK293). The ER-negative cell lines HepG2, Hela, HEK293 were additionally 

cotransfected with a pCDNA3.1-HA-ERα construct. Cell lines were selected due to their 

known ER-, SRC-1- expression level or high transfection efficiency.  

As shown in Figure 10 the transient transfection of SRC-1 WT resulted in an expected 

increase in ERα coactivation after estrogen treatment. Transfection of SRC-1 P1272S 

however showed a significant diminished coactivation of ERα in the presence of the 

variant in various cell lines compared to SRC-1 WT.  
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Figure 10: Estrogen receptor activity is partially attenuated in the presence of SRC-1P1272S. 

Cells were transiently transfected with 100ng ERE-TK-Luc reporter construct, and 

increasing amounts (100ng, 200ng, or 500ng) of expression constructs for pSG5-SRC-1 WT 

or pSG5-SRC-1 P1272S. The ER-negative cell lines HepG2, Hela, HEK293 were additionally 

cotransfected with 25ng of a pCDNA3.1-HA-ERα construct.  Cells were treated with vehicle 

or estradiol (10-8M) for 24h. Relative Luciferase Units were determined and normalized 

against total protein. The data is presented as fold over control, relative to untreated vehicle. 

The data shown are representative of at least 3 independent experiments for MCF7, T47D, 

Ishikawa, Hela, HepG2, and HEK293 cells respectively. Error bars represent standard 

deviation. p –value was calculated using two-way ANOVA test (*, p< 0.05). 
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3.2.2 SRC-1 P1272S decreases Progesterone Receptor coactivity 

Due to SRC-1’s capability to coactivate a broad range of NRs, experiments to investigate 

if the observed decrease in coactivity is confined to ERα were performed. To study the 

effect of SRC-1 on PR coactivation the uterine cell line Ishikawa was used, since PR and 

SRC-1 are highly expressed and colocalize in the uterus245. When SRC-1 WT and 

P1272S coactivation was studied using progesterone-responsive luciferase reporter assays 

in Ishikawa cells, similar results were obtained. In the presence of progesterone SRC-1 

WT induced PR activity. In the presence of SRC-1 P1272S progesterone dependent PR 

coactivation was diminished (Figure 11). These results suggest that the decreased 

coactivity in the presence of SRC-1 P1272S is not only decreasing ERα coactivity, but 

also reduces PR transcriptional activity. 
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Figure 11: Progesterone receptor activity is partially attenuated in the presence of SRC-1 

P1272S. 

Cells were transiently transfected with 100ng PRE-TATA-LUC reporter construct, and 

increasing amounts (100ng, 200ng, or 500ng) of expression constructs for pSG5-SRC-1 WT 

or pSG5-SRC-1 P1272S. Cells were treated with vehicle or progesterone (10-8M). Relative 

Luciferase Units were determined and normalized against total protein.  The data is 

presented as fold over control relative to untreated vehicle (shown is a representative result 

from 2 independent experiments). Error bars represent standard deviation. p –value was 

calculated using two-way ANOVA test (*, p< 0.05). 
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3.3 Genotyping for SRC-1 P1272S 

To determine whether these in vitro findings may play a role in breast cancer etiology and 

response to endocrine therapy, human cell lines and clinical samples were genotyped for 

SRC-1 P1272S. These studies were conducted within the COBRA network. 

3.3.1 Genotyping cell lines for SRC-1 P1272S 

In collaboration with the University of Michigan, 28 cancer cell lines, including 21 breast 

cancer cell lines were genotyped for SRC-1 P1272S. This would give insights whether 

SRC-1 P1272S could serve as a risk factor for developing estrogen-dependent breast 

cancer.  

SRC-1 P1272S did not occur in any of the screened breast cancer cell lines, suggesting 

that the SNP might exert a protective effect on developing hormone-dependent breast 

cancer. However, this conclusion is subject for reconsideration, since only cancer cell 

lines were genotyped. The comparison to normal cell lines remains elusive.   

Out of 28 cancer cell lines, only the colon cancer cell line Caco-2 was identified to be 

heterozygous for the SNP (Table 2).   
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C/CBreastBT-474

C/CBreastBT-549

C/TColonCaco-2
C/CBreastHBL-100

C/CLiverHep3B

C/CLiverHepG2

C/CBreastLCC-6

C/CColonLS-174T

C/CBreastLY2

C/CBreastMCF-7 p180

C/CBreastMCF-7 p22

C/CBreastMDA-MB-134

C/CBreastBT-20

C/CSkinA-431

SRC1 genotypeCell typeCell line
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C/CSkinMDA-MB-435

C/CBreastMDA-MB-453

C/CBreastMDA-MB-468

C/CBreastSKBR3

C/COvarySKOV-3

C/CBreastSUM 159

C/CBreastSUM 229

C/CBreastSUM 52 PE

C/CBreastT47D

C/CBreastZR-75-1

C/CBreastZR-75-30

C/CBreastZR-75-B

C/CBreastMDA-MB-361

SRC1 genotypeCell typeCell line

C/CBreastBT-474

C/CBreastBT-549

C/TColonCaco-2
C/CBreastHBL-100

C/CLiverHep3B

C/CLiverHepG2

C/CBreastLCC-6

C/CColonLS-174T

C/CBreastLY2

C/CBreastMCF-7 p180

C/CBreastMCF-7 p22

C/CBreastMDA-MB-134

C/CBreastBT-20

C/CSkinA-431

SRC1 genotypeCell typeCell line

C/CBreastMDA-MB-231

C/CSkinMDA-MB-435

C/CBreastMDA-MB-453

C/CBreastMDA-MB-468

C/CBreastSKBR3

C/COvarySKOV-3

C/CBreastSUM 159

C/CBreastSUM 229

C/CBreastSUM 52 PE

C/CBreastT47D

C/CBreastZR-75-1

C/CBreastZR-75-30

C/CBreastZR-75-B

C/CBreastMDA-MB-361

SRC1 genotypeCell typeCell line

Table 2: Genotpying cancer cell lines for SRC-1 P1272S. 

28 cancer cell lines were genotyped for SRC-1 P1272S. Cell lines, cell origin, and genotype of 

SRC-1 P1272S are given in the table. SRC-1 genotype is defined with C/C for SRC-1 WT 

and with C/T for SRC-1 P1272S (3814 C>T) (C- Cytosine; T- Thymine). 
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3.3.2 SRC-1 P1272S is not associated with breast cancer risk 

To further test if carrying SRC-1 P1272S results in a decreased risk of developing breast 

cancer, a case control study for association with breast cancer risk was performed in 

collaboration with the Deutschem Krebsforschungszentrum (DKFZ) in Heidelberg. For 

this study 1509 healthy controls and 1218 familial breast cancer patients, which were 

selected to be negative for BRCA1/2 mutations, were genotyped for SRC-1 P1272S. 

Among the controls, 1432 WT and 77 people were identified to be heterozygous for the 

SNP. Among the cases 1147 patients were WT, 69 heterozygous and 2 homozygous for 

SRC-1 P1272S. The variant did not show an association with breast cancer in this 

particular study (table 3). 
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 Genotype Cases Controls OR 95% CI P 

CC (%) 1147 (94.2) 1432 (94.9) 1   

CT (%) 69 (5.6) 77 (5.1) 1.11 0.80-1.56 >0.05 

TT (%) 2 (0.2) 0 (0.0) 6.24 0.29-130.14 >0.05 

 

SRC-1 P1272S 

(3814 C>T) 

[CT + TT] <-> [CC] 1.15 0.82-1.60 >0.05 

Table 3: Case-Control study for association with breast cancer risk. 

1218 familial breast cancer patients and 1509 healthy controls (negative for BRCA1/2 

mutations) were genotyped for SRC-1 P1272S. Genotype frequencies of SRC-1 P1272S, odd 

ratios (OR) with 95% confidence intervals (CI) and P-values are given in the table. 
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3.3.3 Loss of BMD in tamoxifen treated women with SRC-1 P1272S 

To determine whether the observed decreased coactivity in the presence of SRC-1 

P1272S plays a role in response to endocrine breast cancer therapy, we genotyped for the 

variant in the COBRA tamoxifen trial. This trial enrolled pre- and postmenopausal 

women between 18 and 60 years of age, who took the SERM Tamoxifen for breast cancer 

prevention or treatment. DNA was collected as part of a prospective clinical trial which 

was designed to associate genetic variants with well-curated phenotypic outcomes, 

including BMD, in response to Tamoxifen246 

(http://www.pharmgkb.org/contributors/pgrn/cobra_profile.jsp). This study was 

conducted within the COBRA network. 

For 204 women, data for hip and lumbar BMD, measured by DXA scanning before the 

start of Tamoxifen treatment, and 12 months later, were available. A subset of those 

women (n=93) had also received chemotherapy for their breast cancer treatment. 

Chemotherapy frequently induces early menopause in premenopausal women, and can 

cause an up to 14% lower BMD247. Therefore, patients who received additionally 

chemotherapy were excluded from the analysis. 

We asked the question whether women carrying the SRC-1 P1272S variant, and who 

received Tamoxifen, had lower BMD. Genotyping revealed that there were 4 

heterozygous SNP carriers among the 111 women included in the study. For 5 additional 

patients lumbar BMD measurements, but no hip BMD information were available (Hip 

BMD n=106; lumbar BMD n=111).  

There was no significant difference in baseline BMD between WT and P1272S carriers. 

A decrease of 0.6% for hip and of 1.3% for lumbar BMD was observed after 12 months 

tamoxifen treatment in women genotyped for SRC-1 WT. However, following 12 months 

of treatment with Tamoxifen, women carrying the SRC-1 P1272S allele showed a 

decrease in BMD compared to women carrying the WT allele (Figure 12). Hip BMD 

decreased by 4.3% for SNP carriers (n=4) versus 0.6% in the WT group (n=102), 

however due to the low frequency of the SNP this association did not reach statistical 

significance.   

Similar results were obtained for lumbar BMD, where the difference reached statistical 

significance; in SRC-1 P1272S carriers (n=4) lumbar BMD was decreased by 6.4%, 

compared to 1.3% decrease in women without the SNP (n=107) (p<0.05). This data 

suggests that women carrying SRC-1 P1272S might be at increased risk for bone mineral 

loss.  
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Results 

Our results further imply that carrying SRC-1 P1272S might reflect a loss of tamoxifen’s 

agonist activity on bone formation. 
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Figure 12: Decreased BMD in SRC-1 P1272S carriers receiving tamoxifen. 

Hip and lumbar BMD was measured by DXA at baseline and after 12 months of tamoxifen 

treatment. Data for hip and lumbar BMD was available for 106 and 111 patients, 

respectively. Patients carrying the SRC-1 P1272S allele showed a decrease in lumbar BMD 

(n=4) of 6.4% (p<0.05) and hip BMD (n=4) of 4.3% (p>0.05). Error bars represent SEM (*, 

p< 0.05). 
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3.4 SRC-1 is important for tamoxifen’s agonistic activity in vitro 

3.4.1 SRC-1 P1272S decreases tamoxifen agonistic activity in vitro 

Despite its antiestrogenic effect in the breast, tamoxifen acts as an agonist in organs like 

bone and liver. Our data revealed that women carrying SRC-1 P1272S show decreased 

BMD after 12 months of tamoxifen treatment (figure 12). This suggests that in the 

presence of the SNP the agonistic properties of tamoxifen in the bone are decreased.  

It was tested if SRC-1 P1272S decreases tamoxifen’s agonistic activity by using in vitro 

Luciferase reporter assays. For this experiment a human hepatocellular liver carcinoma 

cell line (HepG2) was used. ERE-luciferase reporter assays in HepG2 cells showed that 

transient transfection of SRC-1 WT resulted in an expected increase in ERα coactivation 

after tamoxifen treatment.  In the presence of the SNP tamoxifen’s agonistic activity is 

decreased if compared to SRC-1 WT (figure 13).  

These results suggest that the decrease in ERα coactivity caused by SRC-1 P1272S 

diminishes the ability of tamoxifen to act as an agonist in cell lines from certain tissues.   
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Figure 13: Tamoxifen’s agonist activity is lost in presence of SRC-1 P1272S. 

HepG2 cells were transiently transfected with 100ng ERE-Tk-LUC reporter construct, 25ng 

of a pCDNA3.1-HA-ERα construct, and increasing amounts of DNA for pSG5-SRC-1 WT or 

pSG5-SRC-1 P1272S expression constructs. Cells were treated with vehicle (ethanol), or 10-

6M tamoxifen. Relative Luciferase Units were determined and normalized against total 

protein. The data is presented as fold over control, relative to untreated vehicle (shown is a 

representative resulting from 2 independent experiments). Error bars represent standard 

deviation; p –value was calculated using a two-way ANOVA test (*, p< 0.05). 
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3.4.2 Estrogen fails to induce normal osteoclast apoptosis in skeletal cell cultures 

from SRC-1 knock-out mice rescued with SRC-1 P1272S 

The skeletal response to estrogen is impaired in female SRC-1 ko mice243. Estrogen 

induces apoptosis in osteoclasts151.   

Therefore, if the decreased ERα coactivation in the presence of SRC-1 P1272S influences 

the apoptotic response of osteoclasts to estrogen was tested.  

Bone marrow cells from SRC-1 ko mice were differentiated into a mixed skeletal cell 

culture containing mainly pre-osteoclasts, and mature osteoclasts. Bone marrow cells 

from SRC-1 ko mice were isolated from tibia and femur. The cells were differentiated in 

the presence of macrophage colony stimulating factor (M-CSF) and receptor activator for 

nuclear factor κ B ligand (RANKL) as previously described163,168. TRAP staining was 

used as a marker for osteoclastic activity and showed that approximately 30% of bone 

marrow cells were successfully differentiated into TRAP-positive preosteoclasts and 

osteoclasts (figure 14A). 

These cell cultures were transiently transfected with either WT SRC-1 or SRC-1 P1272S 

and treated with estrogen for 16 hours. Terminal deoxynucleotidyl transferase dUTP nick 

end labeling (TUNEL) assay was performed to detect apoptotic cells. 

As shown in figure 14B estrogen increased osteoclast apoptosis in the cells transfected 

with SRC-1 WT, as expected. However, this response was attenuated in the cultures 

transfected with SRC-1 P1272S as well as in untransfected cultures (figure 14B).  

These data strongly suggest that SRC-1 P1272S attenuates the response of these cells to 

estrogen, leading to a decrease in osteoclast apoptosis and subsequent increased bone 

turnover, and therefore could serve as a model for the decreased BMD observed in 

women who carry the SRC-1 P1272S SNP.  
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Figure 14: Estrogen fails to induce apoptosis in the presence of SRC-1 P1272S. 

A) TRAP staining for osteoclasts. 

B) Cells were transfected with 200ng pSG5 (control), pSG5- SRC-1 WT, or pSG5- SRC-1 

P1272S expression constructs and treated with either ethanol or estrogen (10-8M) for 16 

hours. Cells were then fixed and apoptosis was detected by determining the ratio of TUNEL-

positive cells and DAPI-counterstained cells. Error bars represent SEM. Student’s t-test was 

performed for pSG5- SRC-1 WT vehicle versus estradiol and pSG5- SRC-1 WT estradiol 

versus pSG5- SRC-1 P1272S estradiol (*, p<0.05). (Shown is a representative result from 2 

independent experiments). 

 

                                                                      51                                              



Results 

3.4.3 Fas Ligand  

Apoptosis of osteoclasts can be induced by a paracrine mechanism in which estrogen 

affects osteoclast survival through the upregulation of FasL in osteoblasts168. Krum et al. 

reported that estrogen induces FasL expression in osteoblastic cells (U2OS –Flag ERα) 

significantly within three hours168.   

The observed decreased apoptosis rate of osteoclasts in the presence of SRC-1 P1272S 

could be a result of decreased estrogen-induction of FasL compared to SRC-1 WT. 

Overexpression of SRC-1 WT would increase the induction of FasL after estrogen 

treatment and this response would be diminished in the presence of SRC-1 P1272S.  

U2OS-Flag ERα cells were transfected with either pSG5 or pSG5- SRC-1 WT and treated 

with estrogen for three hours. However, a consistent estrogen dependent FasL induction 

was not observed in the performed experiments. The majority of performed experiments 

(n=7) show that overexpression of SRC-1 WT does not significantly increase the 

estrogen-dependent induction of FasL (figure 15). 
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Figure 15: Estrogen treatment does not result in an increase in FasL expression. 

U2OS Flag-ERα cell were transfected with control vector or SRC-1 WT and treated with 

either vehicle or estrogen (10-8M) for three hours. Total RNA was harvested and subjected to 

qRT PCR using human FasL and β-Actin specific primers to determine FasL expression. 

Data is expressed as FasL mRNA abundance relative to β-Actin levels. The data is presented 

as fold over control. Error bars represent SEM. Student’s t-test was performed for vehicle 

versus estrogen in control and SRC-1 WT transfected cells, as well as for control estrogen 

versus SRC-1 WT estrogen. 
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3.4.4 SRC-1 induces TIEG in a hormone dependent manner 

Estrogen can directly regulate osteoblast proliferation and differentiation248. Estrogen 

stimulates the production of TGF-β by osteoblastic cells249. TGF-β slows the osteoclast 

activity and induces apoptosis of osteoclasts250.  

Overexpression of TIEG enhances TGF-β functions251. In osteoblasts TIEG is rapidly 

induced in response to estrogen by ERβ but not ERα169. Further, SRC-1 is essential for 

the estrogen induction of TIEG expression by ERβ169.  

That overexpression of SRC-1 WT can induce TIEG in reponse to estrogen in 

osteoblastic cell lines expressing ERβ needed to be confirmed. A pSG5- SRC-1 WT 

expression construct was transfected into U2OS-Flag ERβ cells and cells were treated 

with estrogen for one hour. As shown in figure 16 overexpression of SRC-1 resulted in a 

three-fold induction of TIEG mRNA after estrogen treatment compared to a control 

plasmid.  

Since tamoxifen shows estrogenic activity in bone, it needed to be elucidated if tamoxifen 

induces TIEG similarly to estrogen. U2OS Flag-ERβ cells were treated over a timecourse 

of four hours with either estrogen or tamoxifen. As previously described for estrogen169, 

our preliminary data shows that tamoxifen induces TIEG expression rapidly and 

transiently (figure 17).  
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Figure 16: SRC-1 can induce TIEG expression in response to estrogen. 

U2OS Flag-ERβ cells were transfected with pSG5 (control) or pSG5- SRC-1 WT and treated 

with either vehicle (ethanol) or estrogen (10-8M) for one hour. Total RNA was harvested and 

subjected to qRT PCR using human TIEG and β-Actin specific primers to determine TIEG 

expression. Data is expressed as TIEG mRNA abundance relative to β-Actin levels. The data 

is presented as fold over control. Error bars represent SEM. (Shown is a representative 

result from 3 independent experiments). Student’s t-test was performed for control estrogen 

versus SRC-1 WT estrogen and for SRC-WT vehicle versus SRC-1 WT estrogen (*, p<0.05). 
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Figure 17: Hormone treatment induces TIEG expression rapidly but transiently. 

U2OS Flag-ERβ cells were treated with either vehicle (ethanol), estrogen (10-8M), or 

tamoxifen (10-6M) over a time course of four hours. Total RNA was harvested and subjected 

to qRT PCR using human TIEG and β-Actin specific primers. Data is expressed as TIEG 

mRNA abundance relative to β-Actin levels. The data is presented as fold over vehicle (n=1).  
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3.4.4.1 TIEG expression is decreased in the presence of SRC-1 P1272S 

We wanted to test if SRC-1 P1272S changes the induction of TIEG compared to SRC-1 

WT. U2OS Flag ERβ cells were transfected with pSG5 (control), pSG5- SRC-1 WT, or 

pSG5- SRC-1 P1272S. Cells were treated with vehicle (ethanol), estrogen, or tamoxifen 

for three hours. Transfection of SRC-1 WT resulted in a significant increase of TIEG 

mRNA levels after estrogen as well as tamoxifen treatment. However, SRC-1 P1272S 

transfection failed to upregulate TIEG expression for each treatment group (figure 18A). 

These results need to be considered preliminary until completely established. 

To confirm that SRC-1 induces TIEG in response to hormone by ERβ but not ERα169, the 

TIEG mRNA expression in U2OS Flag ERα cells was also determined after transfecting 

as described a control plasmid, SRC-1 WT, or SRC-1 P1272S. Cells were treated with 

vehicle, estrogen, or tamoxifen for three hours. This preliminary experiment showed that 

there was no change in TIEG expression when all three transfected plasmids were 

compared (figure 18B). Further, overexpression of SRC-1 WT did not result in increased 

TIEG expression in response to hormone. This would support that the SRC-1 dependent 

induction of TIEG is ERβ specific169.    

These data show that SRC-1 is an important cofactor for ERβ in upregulating TIEG. This 

suggests that the decreased TIEG expression in the presence of the SRC-1 P1272S might 

result in decreased osteoblastic TGF-β production and subsequently in decreased 

osteoclast apoptosis (figure 14B) and needs to be further evaluated. 
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Figure 18: TIEG expression is ERβ-dependent decreased in the presence of SRC-1 P1272S.  

Cells were transfected with pSG5 (control), pSG5-SRC-1 WT, or pSG5-SRC-1 P1272S and 

treated with vehicle, estrogen (10-8M), or tamoxifen (10-6M) for three hours. Total RNA was 

harvested and subjected to qRT PCR using human TIEG and β-Actin specific primers. Data 

is expressed as TIEG mRNA abundance relative to β-Actin levels. Error bars represent 

SEM. The data is presented as fold over control relative to vehicle. 

 (A) U2OS Flag ERβ cells (n=3). Student’s t-test was performed for vehicle versus estrogen 

for pSG5, WT, and P1272S as well as vehicle versus tamoxifen for pSG5, WT, and P1272S 

(*, p< 0.05).  

(B) U2OS Flag ERα cells (n=1). Student’s t-test was performed as described for (A) with 

reaching no significance for all comparisons. 
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3.4.5 The role of SRC-1 on osteoblast proliferation and differentiation 

Due to the decrease of TIEG expression in the presence of the SRC-1 P1272S, we wanted 

to see if osteoblasts derived from SRC-1 ko mice also show a decrease in TIEG 

expression. This could demonstrate that SRC-1 is needed to activate TIEG in a hormone-

dependent manner and might subsequently explain the role of SRC-1 in maintaining 

BMD.   

Osteoblasts from SRC-1 WT, SRC-1 heterozygous (het) and SRC-1 ko mice were 

isolated from calvaria of five-day old mice. To release osteoblasts the calvaria were 

digested with collagenase P.  

SRC-1 mRNA expression was confirmed after genotyping. Osteoblasts from SRC-1 WT, 

SRC-1 het, and SRC-1 ko mice express ERα and ERβ (figureS1A and B).    

Cells were treated with vehicle (ethanol), estrogen, or tamoxifen for four hours. QRT-

PCR was performed for TIEG in SRC-1 WT, SRC-1 het, and SRC-1 ko derived 

osteoblasts. Estrogen as well as tamoxifen increased TIEG mRNA level in osteoblasts 

derived from SRC-1 WT mice more than two-fold. SRC-1 het osteoblasts showed an 

increase in TIEG levels but to a lesser extent compared to SRC-1 WT. Importantly, SRC-

1 ko osteoblasts did not show increased TIEG mRNA level in response to hormone 

(figure 19).   
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Figure 19: SRC-1 is needed for hormone dependent induction of TIEG. 

Total RNA was harvested and subjected to qRT PCR using mouse TIEG and β-Actin 

specific primers. Data is expressed as TIEG mRNA abundance relative to β-Actin levels. The 

data is presented as fold over vehicle (n=1). Error bars represent SEM. Student’s t-test was 

performed for vehicle versus estrogen for SRC-1 WT, SRC-1 het, and SRC-1 ko  as well as 

vehicle versus tamoxifen for SRC-1 WT, SRC-1 het, and SRC-1 ko (*, p< 0.05). 
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In addition to inducing osteoclast apoptosis TGF-β regulates cell proliferation and 

differentiation of osteoblasts252,253.   

Based on the observations that in the absence of SRC-1 TIEG expression levels are 

decreased, it was of interest to determine the role of SRC-1 in osteoblast proliferation and 

differentiation. 

To test if SRC-1 affects osteoblast proliferation a MTS (3-(4,5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay was performed. The 

MTS assay is a colorimetric method for measuring the activity of enzymes that reduce 

MTS + phenazine methosulfate (PMS) to formazan. The quantity of formazan product as 

measured by absorbance at 490nm is directly proportional to the number of living cells in 

culture. 

SRC-1 WT, SRC-1 het, and SRC-1 ko osteoblasts were treated with vehicle (ethanol), 

estrogen, or tamoxifen over a timecourse of 48 hours. Osteoblasts derived from SRC-1 ko 

mice show less cell proliferation for all treatment groups at all timepoints compared to 

osteoblasts derived from SRC-1 WT or SRC-1 het mice (figure 20). At 16 hours of 

hormone treatment estrogen as well as tamoxifen increased cell proliferation in SRC-1 

WT and SRC-1 het osteoblasts. Importantly, estrogen or tamoxifen were not able to 

induce cell proliferation of osteoblasts derived from SRC-1 ko mice at all timepoints 

(figure 20).  
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Figure 20: SRC-1 ko osteoblasts show diminished cell proliferation (n=1). 

Osteoblasts derived from SRC-1 WT (blue), SRC-1 het (red), or SRC-1 ko (black) were 

treated with vehicle (●), estrogen (■), or tamoxifen (▲). Absorption at 490nm was 

determined at at 4 hours, 16 hours, and 48 hours. 
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TIEG ko mice show decreased expression of osteoblast differentiation markers like 

alkaline phosphatase (ALP)174.  

To test if osteoblast differentiation is altered in the absence of SRC-1, qRT PCR for ALP 

was performed in the osteoblasts derived from SRC-1 WT, SRC-1 het, and SRC-1 ko 

mice. Osteoblasts were treated with vehicle, estrogen, or tamoxifen for four hours.  

Tamoxifen induced ALP significantly in osteoblasts derived from SRC-1 WT if 

compared to vehicle.  SRC-1 het and SRC-1 ko osteoblasts did not show a significant 

increase in ALP mRNA expression levels after tamoxifen treatment. Estrogen treatment 

at the same time showed a slight but not significant increase in ALP mRNA levels for 

SRC-1 WT osteoblasts that was not seen with SRC-1 het or ko osteoblasts (figure 21).  

Although further evaluation is necessary this suggests that SRC-1 might be needed to 

induce hormone-dependent ALP expression in osteoblasts and that SRC-1 may play an 

important role for osteoblast differentiation.  
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Figure 21: SRC-1 is needed for hormone dependent induction of Alkaline Phosphatase 

(ALP). 

Total RNA was harvested and subjected to qRT PCR using mouse ALP and β-Actin specific 

primers. Data is expressed as ALP mRNA abundance relative to β-Actin levels. The data is 

presented as fold over vehicle (n=1). Error bars represent SEM. Student’s t-test was 

performed in the estrogen group for SRC-1 WT versus SRC-1 het and SRC-1 ko as well as 

for tamoxifen SRC-1 WT versus SRC-1 het and ko; for SRC-1 WT vehicle versus estrogen 

and SRC-1 WT vehicle versus tamoxifen (*, p< 0.05).  
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3.5 SRC-1 P1272S leads to changes in phosphorylation sites that 

impact degradation 

3.5.1 SRC-1 P1272S protein degrades faster than SRC-1 WT 

The activity of SRC-1 is, at least in part, regulated via its degradation through the 

proteasome pathway254. It was therefore tested if SRC-1 P1272S resulted in altered 

degradation of the protein if compared to SRC-1 WT. To address protein degradation, 

experiments using cycloheximide as translational inhibitor as well as pulse chase 

experiments were performed.  

Cycloheximide inhibits protein biosynthesis by blocking translational elongation. It is 

generally used to study degradation and subsequently half-life of a protein as protein de 

novo synthesis is inhibited in the presence of cycloheximide.  

Hela cells were transiently transfected with flag-tagged constructs for either pSG5-SRC-1 

P1272S or pSG5-SRC-1 WT. Throughout the experiment cells were cultured in full 

serum medium, which contains estrogen at physiological levels. Knowing that the half-

life of the SRC family member SRC-3 is 2-3 hours42, the transfected cells were treated 

with cycloheximide over a time course of four hours. Transfected flag- tagged SRC-1 

protein was detected by western blot using an anti-flag-antibody. As shown in figure 22A 

SRC-1 P1272S degrades faster than SRC-1 WT. Quantification of the westernblot reveals 

that SRC-1 P1272S protein shows a shorter half-life compared to SRC-1 WT. 

To confirm differences in protein degradation between SRC-1 WT and SRC-1 P1272S, 

pulse chase experiments were performed. In this experiment cells are incubated with 

radiolabeled [35S] methionine for a short period (pulse labeling) to radiolabel newly 

synthesized SRC-1 protein. The pulse period is followed by a chase period in which cells 

are further incubated with excess amount of the unlabeled counterpart of the precursor 

used for labeling. After isolation from other cellular proteins by immunoprecipitation the 

radiolabeled SRC-1 is analyzed by electrophoresis and detected by autoradiography.  

Specifically, HEK293 cells were transfected with either pSG5-SRC-1 WT or pSG5-SRC-

1 P1272S and subsequently treated with [35S] methionine. Cells were chased in full serum 

medium over a time course of 16 hours. As shown in figure 22B SRC-1 P1272S degraded 

faster compared to SRC-1 WT, confirming results seen in cycloheximide experiments.       
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Figure 22: Differences in turnover rates between SRC-1 WT and SRC-1 P1272S.  

A) Half-life of Flag-SRC-1 P1272S compared to WT Flag-SRC-1 in the presence of 

cycloheximide. (The data shown is representative of at least 3 independent experiments.)  

B) Pulse-Chase of Flag-SRC-1 P1272S compared to Flag-SRC-1 WT after incubating with 

[35S] Methionine containing medium. (The data shown is representative of at least 3 

independent experiments.) 
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3.5.2 Protein steady state level and degradation in mRNA are not different 

between SRC-1 P1272S and SRC-1 WT 

The concentration of SRC-1 reflects the balance between its rate of synthesis and rate of 

degradation. For protein homeostasis the rate of protein synthesis may be adjusted to 

allow an adaptive change in the protein level. This might be detected by changes in 

steady state levels.  

To test changes in steady state protein levels, either flag-tagged pSG5-SRC-1 WT or flag-

tagged pSG5-SRC-1 P1272S was transfected into T47D, MCF-7, Ishikawa, or Hela cells 

and transfected SRC-1 levels were detected by immunoblotting for the flag-tag. SRC-1 

P1272S protein level from two independent experiments was quantified and graphed as 

fold change over SRC-1 WT level. All tested cell lines showed no significant difference 

in SRC-1 protein levels between WT and P1272S (figure 23).  

Due to the observed faster degradation in the presence of SRC-1 P1272S as a possible 

explanation for the described decrease in coactivity, SRC-1 P1272S protein levels were 

expected to be decreased compared to SRC-1 WT. Therefore, the result of no decrease in 

steady state levels with the SNP suggests that the protein synthesis of SRC-1 P1272S 

might be increased. However, this suggests that the ability of SRC-1 P1272S to reduce 

NR coactivation correlates with its degradation rate rather than its intracellular 

concentration. 

To further determine if mRNA levels of SRC-1 P1272S compared to SRC-1 WT 

influence the observed protein characteristics, the mRNA degradation of SRC-1 WT and 

SRC-1 P1272S were compared. HEK293 cells were transiently transfected with a flag- 

tagged SRC-1 WT or flag- tagged SRC-1 P1272S construct. Actinomycin D was applied 

to the cells to inhibit transcription. RNA was isolated over a time course of four hours 

and subjected to qRT PCR using Flag- SRC-1 specific primer to detect only transfected 

SRC-1. No significant difference in mRNA stability between SRC-1 P1272S and SRC-1 

WT could be detected (figure 24), suggesting that the differences in protein degradation 

between SRC-1 WT and SRC-1 P1272S might account for the differences in 

coactivation.  
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Figure 23: SRC-1 steady state level. 

Cells were transfected with 200ng of Flag-SRC-1 WT or Flag- SRC-1 P1272S. Protein was 

harvested and immunoblotted for SRC-1 using a Flag antibody. Protein expression was 

quantified. Quantitative expression of Flag-SRC-1 WT was set as one. Data is presented as 

fold change over Flag-SRC-1 WT. The data shown is representative of at least 3 independent 

experiments. Error bars represent standard deviation. Student’s t-test was performed for 

Flag- SRC-1 WT versus Flag- SRC-1 P1272S. 
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Figure 24: mRNA degradation of SRC-1 P1272S compared to SRC-1 WT. 

HEK293 cells were transfected with 200ng of Flag-SRC-1 WT or Flag- SRC-1 P1272S.  Total 

RNA was harvested at 0, 2, and 4 hours to monitor SRC-1 mRNA degradation. RNA was 

subjected to qRT PCR using SRC-1 primers specific to Flag-SRC-1 and β-Actin specific 

primers to determine its expression. Data is expressed as SRC-1 mRNA abundance relative 

to β-Actin levels. The data is presented as fold over 0 timepoint for either SRC-1 WT or 

SRC-1 P1272S. Error bars represent standard deviation. Student’s t-test was performed for 

Flag- SRC-1 WT versus Flag- SRC-1 P1272S. (The data shown is representative of 3 

independent experiments.) 
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3.5.3 Predicting phospho site changes in the presence of SRC-1 P1272S 

Post-translational modifications, particularly in the form of phosphorylation, are critical 

for the activity of members of the p160 family of coactivators. Specifically, 

phosphorylation is involved in protein turnover and cellular localization of p160 family 

members255. Although most of this work has been done on SRC-3, the high sequence 

homology and partial functional redundancy within this family suggest that similar 

mechanisms are in place for all the family members49. 

Since the decrease in coactivation in the presence of SRC-1 P1272S might be due to 

faster degradation of the protein, we wanted to test if SRC-1 P1272S introduces changes 

in potential phosphorylation sites of SRC-1 that could explain faster degradation. 

Furthermore, the amino acid change from a proline to a serine with SRC-1 P1272S 

suggests that an introduction of a potential phosphorylation site might cause changes in 

protein and NR coactivity characteristics.  

Using the program NetPhosK it was examined in silico if SRC-1 P1272S induced or 

destroyed any potential phosphorylation sites within SRC-1 (in collaboration with Ray-

Chang Wu Ph.D, BCM, Houston, USA). NetPhosK is a program that predicts kinase 

specific potential eukaryotic protein phosphoylation sites 

(http://www.cbs.dtu.dk/services/NetPhosK). Indeed, we found that a cdc2 

phosphorylation site is potentially created and a cdk5 phosphorylation site might be 

partially destroyed when SRC-1 P1272S is present (Table 3). Additionally, in silico 

analysis of the sequence suggests that the variant removes a potential Glycogen synthase 

kinase 3 (GSK3) target motif at amino acid 1275 (http://scansite.mit.edu/)256. 

Phosphorylation by GSK3 has been shown to be involved in modulating the activity and 

functional lifetime of another member of the SRC family, SRC-342.   
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Kinase Site Probability 

Site Kinase (WT) (P1272S) Difference 

T1271 cdk5 60% 23% -37% 

P1272 cdc2 0% 52% 52% 

 

Table 4: Prediction of altered kinase binding sites in the presence of SRC-1 P1272S.   

Scores represent predicted probability of a potential phosphorylation site for the specified 

kinase.  The difference in these probabilities represents the probability of an altered 

phosphorylation (in collaboration with Ray-Chang Wu Ph.D, BCM, Houston, USA). 
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3.5.4 SRC-1 alanine mutants for amino acid 1271, 1272, and 1275 show decreased 

ERα coactivity 

In the presence of SRC-1 P1272S a potential cdc2 phosphorylation site is created at aa 

position 1272. A potential cdk5 phosphorylation site at aa position 1271 is partially 

destroyed when SRC-1 P1272S is present.  

Additionally, the introduction of SRC-1 P1272S removes a potential GSK3 target motif. 

For GSK3 to phosphorylate a protein it requires a priming phosphorylation prior 

phosphorylation of an aa sequence of four aa C-terminal (+4) to the GSK3 target site 

(0)42. For SRC-1 S1275 is the potential consensus priming site, whereas T1271 is the 

potential target site that would be phosphorylated by GSK3. Both sides are predicted to 

be destroyed in the presence of SRC-1 P1272S. 

To test whether potential changes in phosphorylation at these three sites will alter the 

ability of SRC-1 to coactivate ER, alanine mutants for aa 1271, 1272, and 1275 were 

generated using site directed mutagenesis.  

To test whether the alanine mutants for those sites decrease ERα coactivity similarly to 

SRC-1 P1272S, transient estrogen-responsive luciferase reporter assays were conducted 

in Hela cells. Cells were transiently transfected with pSG5-SRC-1 WT, pSG5-SRC-1 

P1272S, pSG5-SRC-1 T1271A, pSG5-SRC-1 P1272A, or pSG5-SRC-1 S1275A. Cells 

were cotransfected with a pCDNA3.1- ERα construct and treated with estrogen for 24 

hours.    

As shown before (figure 10) the transient transfection of WT SRC-1 resulted in an 

increase in ERα coactivation. Transfection of P1272S showed a significant diminished 

coactivation of ERα in the presence of the variant if compared to SRC-1 WT. 

Transfection of the mutant SRC-1 T1271A, SRC-1 P1272A, or SRC-1 S1275A resulted 

in a significant decrease in coactivation compared to SRC-1 WT, which was similar to 

the lower coactivity observed with SRC-1 P1272S (figure 25).  
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Figure 25: SRC-1 alanine mutants show decreased ERα coactivity. 

Hela cells were transiently transfected with 100ng ERE-TK-Luc reporter constructs and 

200ng of expression constructs for pSG5-SRC-1 WT, pSG5-SRC-1 P1272S, pSG5-SRC-1 

T1271A, pSG5-SRC-1 P1272A, or pSG5-SRC-1 S1275A. Cells were cotransfected with 5ng 

of a pCDNA3.1-ERα expression construct. Cells were treated with vehicle (ethanol) or 

estradiol (10-8M) for 24h. Relative Luciferase Units were determined and normalized against 

total protein. The data is presented as fold over control, relative to untreated vehicle. The 

data shown are representative of at least 3 independent experiments for P1272S, T1271A, 

P1272A, and S1275A respectively. Error bars represent standard deviation. p –value was 

calculated using two-way ANOVA test (*, p< 0.05). 
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3.5.5 SRC-1 alanine mutants for 1271, 1272, 1275 degrade faster than SRC-1 WT 

As shown in figure 22 the decreased ERα coactivity in the presence of SRC-1 P1272S 

might be due in part to higher turn over rates and shorter half-life of the protein. Since the 

alanine mutants for aa 1271, 1272, and 1275 showed a similar decreased coactivation, we 

wanted to test how the mutants influence the half-life and turn over rates of the protein 

compared to SRC-1 WT and SRC-1 P1272S. 

Hela cells were transiently transfected with constructs for SRC-1 WT, SRC-1 P1272S, 

SRC-1 T1271A, SRC-1 P1272A, or SRC-1 S1275S. Transfected cells were treated with 

either vehicle or estrogen over a time course of eight hours. Cycloheximide was added at 

the same time as vehicle and estrogen. Transfected SRC-1 protein was detected in 

westernblots using a SRC-1-antibody. Westernblots and subsequent quantification shows 

that SRC-1 P1272S degrades faster than SRC-1 WT in the absence and in the presence of 

estrogen (figure 26).  

In the absence as well as in the presence of hormone all three alanine mutants degraded 

faster than SRC-1 WT (figure 26).  

Together with the observation that SRC-1 P1272S degrades faster than SRC-1 WT under 

both conditions these results suggest that changes in potential phosphorylation sites might 

account for the differences in protein and coactivity characteristics. How a specific 

change in one potential phosphorylation site or the combination of several changes 

contributes to the decrease in NR coactivity in the presence of SRC-1 P1272S needs to be 

further elucidated.   
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Figure 26: Degradation of SRC-1 alanine mutants. 

Hela cells were transiently transfected with 200ng of expression constructs for SRC-1 WT, 

SRC-1 SNP, SRC-1 T1271A, SRC-1 P1272A, or SRC-1 S1275A. Cells were cotransfected 

with 5ng of an ERα construct. Cells were pretreated with cycloheximide (20μg/ml) for 30 

min and subsequently treated with vehicle or estradiol (10nM) over the indicated time 

course. HEK293 protein lysate was used as positive control. A protein lysate obtained from 

untransfected Hela cells was used as a negative control. Protein was collected at indicated 

timepoints and immunoblotted for SRC-1 using a SRC-1 antibody. The graphic 

representation of the westernblotting results represents the intensity at the beginning of 

cycloheximide treatment (time 0) set as 1 for each treatment group (n=1).  
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4 Discussion 

In recent years it has become clear that genetic variation such as SNPs play a significant 

role in susceptibility to diseases or response to treatment. The completion of the 

International HapMap Project allows the identification of a continuously growing number 

of associations of genetic variations with common diseases and responses to drugs. SNPs 

in various genes have already been shown to contribute to a change in risk, outcome, or 

treatment efficiency for several diseases184,206,207.  

A functional SNP in exon 18 of SRC-1 was identified that occurs with a frequency 

between one and four percent in a normal population and is associated with a decrease in 

NR coactivity. This SNP is nonsynonymous and results in an amino acid change from 

proline to serine.  Even though SRC-1 has been studied extensively and been proven to be 

an important NR coactivator for the pathology of osteoporosis68,69,243 and breast 

cancer65,66, the effect on disease susceptibility and treatment response of this SNP has not 

yet been studied.    

SRC-1 P1272S is located in the AD2 of SRC-1, which contains an ERα binding motif 

and is known to be critical for its coactivator function244. In silico modeling studies 

predict that the P1272S substitution is probably damaging to the native structure of the 

protein (http://genetics.bwh.harvard.edu/pph/). In vitro studies of SRC-1 P1272S using 

ERE- luciferase assays expressing the variant resulted in a decrease in estrogen response 

when compared to WT. Furthermore, response to progesterone was attenuated in PRE-

luciferase assays. This suggests for SRC-1 P1272S to play a role in hormone driven 

diseases. Our studies were focused primarily on the effects of SRC-1 P1272S on ER 

coactivity.  

To test the role of SRC-1 P1272S for breast cancer susceptibility, human cancer cell lines 

and clinical samples for SRC-1 P1272S were genotyped.   

In the presence of SRC-1 P1272S estrogen-dependent ERα coactivation is diminished, 

suggesting that carrying the SNP might decrease the risk for developing hormone-

dependent breast cancer and could serve as a prognostic marker. Therefore, ER positive 

breast cancer cells would not be expected to carry SRC-1 P1272S. SRC-1 P1272S does 
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not occur in any of the screened breast cancer cell lines. Since only cancer cell lines were 

genotyped for SRC-1 P1272S, the hypothesis that the SNP might exert a protective effect 

on developing hormone-dependent breast cancer needs to be studied by comparing these 

results with genotyping for SRC-1 P1272S in normal cell lines.   

Out of 28 cancer cell lines, only the colon cancer cell line Caco-2 was identified to be 

heterozygous for the SNP. Reduced activity of PPARγ, which is coactivated by SRC-1 is 

associated with a higher risk of developing colon cancer257. How SRC-1 P1272S alters 

PPARγ coactivity was not tested but it is possible that in the presence of the SNP PPARγ 

activity is diminished. Thus, carrying SRC-1 P1272S might increase the risk for colon 

cancer. Since the other genotyped colon cancer cell line (LS-174T) did not show this 

variation in SRC-1, this hypothesis needs further evaluation. 

To further test if carrying SRC-1 P1272S results in a decreased risk for developing breast 

cancer, a case- control study for association with breast cancer risk was performed. SRC-

1 P1272S did not show an association with breast cancer risk in the studied population. 

SRC-1 P1272S occurs in a normal population with a frequency of only one to four 

percent. The low frequency of this SNP might explain why no association was detected.  

The SERM tamoxifen is a standard treatment for ERα positive breast tumors due to its 

antagonistic effect in the breast. SRC-1 protein was significantly associated with 

insensitivity to endocrine treatment66. SERMs have tissue-specific mixed 

agonist/antagonist activity, and SRC-1 overexpression can result in increased agonist, and 

decreased antagonist activity in certain tissues such as bone35 and breast40. Further, 

clinical studies to determine the effect of SRC-1 P1272S on breast cancer recurrence or 

survival in response to tamoxifen should be conducted.   

Osteoporosis is one of the major implications associated with estrogen deficiency in 

postmenopausal women. Considering the prolonged population lifetime, the number of 

women with osteoporosis will continue to increase, and it has been estimated that costs 

related to hip fracture will double during the next 25 years. Thus, there is a critical need 

for further genetic investigations to identify new possibilities for discovering risk factors 

and early prevention of this condition. Postmenopausal women can decrease their risk for 

developing osteoporosis by taking SERMs like tamoxifen258. There is evidence that SRC-

1 may play a role in the response to tamoxifen40. Deletion of SRC-1 in mice results in 

decreased hormone response in bones69,243.   

Breast cancer patients carrying SRC-1 P1272S had a significant decrease in bone mineral 

density after 12 months of tamoxifen treatment, presumably reflecting tamoxifens loss of 

                                                                      80                                          



Discussion 

agonist activity on bone formation. Subgroup analysis concentrated on BMD of combined 

pre- and postmenopausal women which were only treated with tamoxifen and received no 

additional chemotherapy. For women carrying SRC-1 WT tamoxifen treatment for 12 

months is expected to increase BMD in postmenopausal women, whereas premenopausal 

women show decreased BMD at the same time259. The distribution between pre- and post 

menopausal women was equal within groups for SRC-1 WT or SRC-1 P1272S. 

Considering our study population this may explain, the observed small decrease of BMD 

in women carrying SRC-1 WT. This indicates that the loss in BMD in premenopausal 

women is even stronger and postmenopausal women do not benefit from tamoxifen 

treatment if carrying SRC-1 P1272S in respect to BMD. In vitro it was shown that SRC-1 

P1272S decreases tamoxifen’s agonistic activity. Our data suggest that women harboring 

this variation in the SRC-1 locus may require close monitoring and early intervention 

with alternative bone-preserving agents. Final confirmation of the critical importance of 

this SNP is awaiting genotyping in additional cohorts, but the fact that similar findings 

were made in tissue culture, animal models, and clinical samples strongly argue for a 

critical role of SRC-1 P1272S in the response of skeletal cells to ligands.   

Estrogen can directly act on osteoclasts and alter bone resorption by inducing osteoclast 

apoptosis151. To examine the effect of a decrease in ER coactivation by SRC-1 P1272S on 

bone maintenance, first an apoptosis assay in skeletal cell cultures derived from SRC-1 

ko mice was performed. Cells containing pre-osteoclasts and mature osteoclasts were 

obtained by differentiating bone marrow cells with M-CSF and RANKL. Since estrogen 

strongly induces osteoclast apoptosis, it suggests that a major mechanism for bone 

maintenance in premenopausal women is the suppression of osteoclast numbers137. 

Estrogen failed to induce apoptosis in skeletal cell cultures in the presence of SRC-1 

P1272S, whereas SRC-1 WT seems to be necessary to induce apoptosis in the presence as 

well as in the absence of estrogen. Interestingly, osteopenia with high bone turnover is 

observed in SRC-1 ko mice, an effect that is similar to that seen in ovariectomized WT 

mice69,243. Exogenous estrogen is able to reverse the bone loss in ovariectomized WT 

mice, but not in ovariectomized SRC-1 ko mice, supporting the critical role of SRC-1 in 

estrogen-dependent bone maintenance69,243.  

To determine how a decrease in ER coactivity caused by SRC-1 P1272S leads to an 

increase in osteoclast apoptosis, that might explain the observed bone loss in vivo, the two 

target genes TIEG and FasL were studied, which were shown to be involved in estrogen 

dependent bone maintenance168,169.  
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Apoptosis of osteoclasts can be induced by a paracrine mechanism in which estrogen 

affects osteoclast survival through the upregulation of FasL in osteoblasts168. A consistent 

SRC-1 dependent estrogen-induction of FasL compared to control could not be observed. 

Therefore, the role of FasL regulation by SRC-1 and the decreased apopoptosis rate of 

osteoclasts with SRC-1 P1272S in the presence of estrogen need to be further elucidated. 

As reported previously169 SRC-1 is essential for estrogen induction of TIEG in ERβ 

containing osteoblast derived cells. This implies a specific role of SRC-1 on bone 

maintenance through regulation of TIEG. 

Overexpression of TIEG enhances TGF-β functions, which is an important factor for 

bone remodeling251. TGF-β produced by osteoblasts can stimulate osteoclast apoptosis. 

SRC-1 P1272S shows decreased TIEG expression compared to SRC-1 WT in the 

presence of estrogen as well as tamoxifen. Therefore, our observation of decreased 

osteoclast apoptosis in the presence of SRC-1 P1272S might be due to decreased TIEG 

expression and subsequently decreased TGF-β function.  

These results suggest that carrying the SRC-1 P1272S variant results in a decreased 

hormone response, decreased TIEG levels and potentially in decreased TGF-β signaling. 

This could lead to decreased osteoclast apoptosis and cause a decrease in BMD (figure 

14).  

Additionally, to TGF-β’s function of inducing osteoclast apoptosis it plays an essential 

role in osteoblast differentiation as well as development and remodeling of bone253,260. As 

demonstrated earlier SRC-1 WT increases TIEG levels in response to estrogen and 

tamoxifen. Osteoblasts derived from SRC-1 ko mice confirmed that SRC-1 is needed to 

induce TIEG in response to estrogen and tamoxifen.    

Therefore, the role of SRC-1 on osteoblast proliferation and differentiation was tested. To 

determine the effect of SRC-1 on osteoblast proliferation a MTS assay was performed. It 

revealed slower proliferation of osteoblasts derived from SRC-1 ko mice if compared to 

osteoblasts derived from SRC-1 WT or SRC-1 heterozygous littermates. Further, estrogen 

and tamoxifen did not increase proliferation rates in SRC-1 ko osteoblast in contrast to 

SRC-1 WT and SRC-1 het osteoblasts. This indicates that SRC-1 seems to play an 

important role in osteoblast proliferation. To test how SRC-1 affects osteoblast 

differentiation it was tested if lacking SRC-1 alters the expression of the important 

osteoblast differentiation marker ALP in osteoblasts derived from mice. This revealed 

that SRC-1 seems to be needed for hormone-dependent differentiation of osteoblasts 

characterized by induction of ALP. Interestingly, TIEG ko mice also show decreased 
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expression of ALP174. These results suggest that SRC-1 is needed for proper osteoblast 

proliferation and differentiation potentially through its effect on TIEG.  

The activity of SRC-1 is in part regulated via its degradation through the proteasome 

pathway254. It was shown that SRC-1 P1272S degrades faster than SRC-1 WT. Faster turn 

over rates of SRC-1 P1272S might suggest an increase in protein synthesis to maintain 

the protein level. Higher rates of protein synthesis were not detectable by increased 

mRNA levels or protein steady state levels. Therefore, the decrease in coactivation in the 

presence of SRC-1 P1272S might be due to faster degradation of the protein.  

The process of nuclear receptor-induced coactivator recruitment and initiation of 

transcription happens in a cyclic fashion. This cycling is also regulated by 

phosphorylation of SRCs58,261. Posttranslational modifications, particularly 

phosphorylation is critical for the activity of members of the p160 family of coactivators. 

Phosphorylation is involved in protein turnover and cellular localization of p160 family 

members42. Although most of this work has been done on SRC-3, the high sequence 

homology and partial functional redundancy within this family suggest that similar 

mechanisms are in place for SRC-149.  

If SRC-1 P1272S introduces changes in potential phosphorylation sites of SRC-1 that 

might explain the faster degradation was tested. The major phosphorylation sites 

identified in the AD2 of SRC-1 are threonine 1179 and serine 118558. Threonine 1179 

contains a perfect consensus sequence for the MAPK family extracellular signal regulated 

kinases (Erk-1 and Erk-2). Erk-2 phosphorylates threonine 1179 and serine 1185 in vitro, 

suggesting the importance of this pathway for SRC-1 regulation. No phosphorylation 

sites surrounding SRC-1 P1272S were identified what might be due to the high content of 

prolines in close proximity to amino acid 127258.  

In silico analysis revealed that in the presence of SRC-1 P1272S a potential cdc2 site is 

created at aa 1272. If introducing a potential phosphorylation site at aa 1272 causes 

decreased SRC-1 coactivity, it would be expected that mutating aa 1272 to alanine would 

result in increased activation, which would be comparable to SRC-1 WT activity. ERE-

Luciferase assays showed that transfecting P1272A mutant resulted in a decreased 

coactivity comparable to SRC-1 P1272S. Further, experiments to compare the 

degradation of P1272A with SRC-1 WT and SRC-1 P1272S showed that P1272A 

degrades faster than SRC-1 WT and comparable to SRC-1 P1272S in the absence and in 

the presence of estrogen.  
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Proline residues are widely recognized as p1aying a special role in the folding and 

unfolding transitions of globular protein molecules262. Breaking hydrogen bonds around 

proline plays a role in destabilizing alpha-helical conformations263. Proline blocks rapid 

folding 262 that might be necessary for proper function in a proline rich region such as the 

SRC-1 AD2. Introducing a change from a proline to a serine such as in SRC-1 P1272S 

could indicate a potential change in protein folding causing decreased activation by 

disrupting proper interaction with nuclear receptors or other proteins to activate 

transcription.  

Alanine mutants are used as a tool to determine the function of proline for protein 

folding264. SRC-1 P1272A provides a tool to test if changes in folding can account for the 

decreased coactivity and the faster protein degradation. The AD2 of SRC-1 including the 

SNP at aa 1272 is considered to be proline-rich and therefore exists in an unfolded state 

(personal communication with Ma Peng Ph.D, BCM, Houston, USA). Such native 

unfolded sequences achieve folded structures to carry out their functions265. Induced 

folding results in enhanced interactions of glucocorticoid receptor with coactivator 

proteins266. Since serine is an amino acid that can occur in an α-helix as secondary 

structure, a SNP that changes proline to serine might introduce significant changes in 

protein folding. This can result in enhancing its ability to interact with other proteins such 

as the methyltransferase CARM1. Interestingly, methylation of SRC-3 by CARM1 

correlates with decreased ERα-mediated transcription87 and promotes degradation of the 

protein88. How changes in protein folding caused by SRC-1 P1272S specifically account 

for decreased ERα coactivation, faster degradation, and interaction and subsequent 

methylation by CARM1 is subject to further investigation. 

In silico analysis also revealed that in the presence of SRC-1 P1272S a potential cdk5 site 

at aa 1271 is partially destroyed. Additional analysis of the sequence suggests that the 

variant removes a potential GSK3 target motif at aa 1275 (http://scansite.mit.edu/). 

Intriguingly, phosphorylation by GSK3 has been shown to be involved in modulating the 

activity and functional lifetime of SRC-342. For GSK3 to phosphorylate a protein it 

requires a priming phosphorylation of an amino acid four positions C-terminal (+4) to the 

GSK3 target site (0)42. For SRC-1 S1275 is a potential consensus GSK3 priming site, 

whereas T1271 is the potential target site that would be phosphorylated by GSK3. Both 

sites are potentially destroyed in the presence of SRC-1 P1272S.  

How changes in potential phosphorylation sites at aa 1271 and 1275 alter ERα coactivity 

using alanine mutants at these sites was tested. Transfection of the individual alanine 
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mutants resulted in a significant decreased ERα coactivity. Additionally, T1271A and 

S1275A degraded faster than SRC-1 WT mimicking turn-over characteristics of SRC-1 

P1272S. This suggests that losing a potential GSK3 priming site at aa 1275 and 

subsequently losing a potential GSK3 phosphorylation site at aa 1271 in the presence of 

SRC-1 P1272S could cause the observed decrease in coactivity and faster protein 

degradation. How differences in potential phosphorylation of SRC-1 by GSK3 in the 

presence of SRC-1 P1272S are causing changes in coactivator activity and degradation 

needs further evaluation. 

Furthermore, aa 1271 resembles a potential consensus phosphorylation site for MAPK 

(TPXXS). Phosphorylation by the MAPK pathway plays an important role in the 

phosphorylation of SRC-158. Mutation of MAPK target sites aa 1179 and aa S1185 to 

alanine resulted in up to a 50% decrease in coactivation during both ligand-independent 

activation and ligand-dependent activation58. This might suggest that losing the potential 

consensus phosphorylation site for MAPK in the presence of SRC-1 P1272S results in the 

observed decrease in ERα coactivation. How potential phosphorylation by MAPK alters 

coactivity and degradation of SRC-1 WT or SRC-1 P1272S needs to be elucidated.  

Importantly, decreasing SRC-1 expression in the uterine cell line Ishikawa converted 

tamoxifen to an antagonist40. At the same time, overexpression of SRC-1 in MCF-7 cells 

converted tamoxifen to an agonist40. Tamoxifen resistant tumors show that the drug 

acquires agonistic properties towards ERα267. Altered activity of coactivator proteins at 

the ER–ERE complex may be important in the alteration of the agonist/antagonist profile 

of SERMs in resistant tumors66. The specificity and activity of SRC-1 is thought to be 

regulated by intracellular signaling cascades, including phosphorylation via PKA58,267 or 

the MAPK pathway58.  

PKA mediates tamoxifen resistance by phosphorylating ERα, which causes 

conformational changes in ERα after binding tamoxifen and therefore switches tamoxifen 

from an antagonist to an agonist268. Specifically, PKA mediated phosphorylation alters 

the orientation between ERα and SRC-1 in tamoxifen-treated cells without changing the 

overall binding between ERα and SRC-1 leading to enhanced estrogen-dependent 

transcriptional activity in the presence of tamoxifen267.  

Growth factor induced MAPK activity cannot only phosphorylate ER but also its 

coactivator proteins SRC-1 and SRC-359. Significant correlations between coactivator 

proteins and resistance to endocrine treatment in patients who overexpress the tyrosine 

kinase receptor HER2 have been reported66. SRC-1 was associated with HER2 
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expression66 supporting previous molecular in vitro data linking SRC-1 and HER2 to 

human breast cancer269.  

Further, Osborne et al. found that tumours with high expression rates of both SRC-3 and 

HER2 have a poor response to tamoxifen136. In human breast cancer, HER2 is associated 

with disease progression and resistance to endocrine treatment. The overexpression of 

HER2 and SRC-335 or SRC-140 may significantly enhance the agonist activity of 

tamoxifen and, therefore, reduce the antitumor activity of tamoxifen in patients with 

breast cancer.  

Altogether, phosphorylation of ERα by PKA or phosphorylation of SRC-1 by MAPK 

might lead to activation of SRC-1 in the presence of tamoxifen and subsequently enhance 

the ability of SRC-1 to induce tamoxifen’s agonistic activity. These findings suggested 

that tamoxifen resistance in breast tumors could be due to the overexpression of SRC-1 

leading to conversion of tamoxifen from an antagonist to an agonist. Losing a MAPK 

phosphorylation site reduces SRC-1 activity58. Therefore, the prediction of losing a 

potential MAPK phosphorylation site in the presence of SRC-1 P1272S might result in 

the observed decrease of coactivator activity and subsequently could account for a 

decrease in risk for tamoxifen resistance. The effect of SRC-1 P1272S on tamoxifen 

resistance needs to be elucidated. Altogether, it could be shown that the identification of 

genetic variations such as SRC-1 P1272S has the potential to function as a marker for 

individual treatment responses and could be a key to personalized medicine. 
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5 Materials and Methods 

5.1 Materials 

Unless otherwise specified all primers used were obtained by Sigma-Genosys (Sigma-

Aldrich, St. Louis, MO).  

 Catalogue # Company 

PerkinElmer Life And 

Analytical Sciences, Inc., 

Waltham, MA 

[35S]- Methionine, 500µCi 

(18.5MBq) 
NEG009A500UC 

4-OH Tamoxifen H7904 Sigma-Aldrich, St. Louis, MO 

Actinomycin D A1410 Sigma-Aldrich, St. Louis, MO 

α-MEM 32561037 Invitrogen, Carlsbad, CA 

Anti-β-actin antibody A3853 Sigma-Aldrich, St. Louis, MO 

Anti-Flag antibody F1804 Sigma-Aldrich, St. Louis, MO 

Cell Signaling Technology, 

Inc., Danvers, MA 
Anti-SRC-1 (128E7) antibody 2191 

Thermo Scientific, Rockford, 

IL 
BCA protein assay 23221 

CellTiter 96® AQueous One 

Solution Cell Proliferation 

Assay 

G3580 
Promega Corporation, 

Madison, WI 

Charcoal treated fetal bovine 

serum (CSS) 
SH30068.03 

Thermo Scientific, Rockford, 

IL 

Collagenase P 11213857001 
Roche Applied Science, 

Indianapolis, IN 

                                                                      87                                              



Materials and Methods 

Cycloheximide C7698 Sigma-Aldrich, St. Louis, MO 

Dulbecco’s Modified Eagle 

Medium (DMEM) 
12430-104 Invitrogen, Carlsbad, CA 

DMEM without L-Methionine 

or L-Cysteine 
21013-024 Invitrogen, Carlsbad, CA 

DNeasy® Blood and Tissue 

Mini Kit 
69504 Qiagen, Valencia, CA 

Promega Corporation, 

Madison, WI 

Dual Luciferase reporter assay 

system 
E1910 

ECL mouse IgG HRP-linked 

AB 
NA931 Amersham, Piscataway, NJ 

ECL rabbit IgG HRP-linked 

AB 
NA934 Amersham, Piscataway, NJ 

Estradiol E8875 Sigma-Aldrich, St. Louis, MO 

Thermo Scientific, Rockford, 

IL 
Fetal Bovine Serum (FBS) SH30070.03 

Immun-Blot PVDF Membrane 162-0177 Biorad, Hercules, CA 

Improved Modified Eagle 

Medium (IMEM) 
A10488-01 Invitrogen, Carlsbad, CA 

Lipofectamine 2000 11668-019 Invitrogen, Carlsbad, CA 

M-CSF 416-ML-010 
R&D Systems, Inc., 

Minneapolis, MN 

Opti-MEM® 11058-021 Invitrogen, Carlsbad, CA 

PBS 10010023 Invitrogen, Carlsbad, CA 

Penicillin- Streptomycin – 

Glutamine 
10378-016 Invitrogen, Carlsbad, CA 

p- Formaldehyde F8775 Sigma-Aldrich, St. Louis, MO 

Progesterone P0130 Sigma-Aldrich, St. Louis, MO 
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Protein G Sepharose®4B 10-1241 Invitrogen, Carlsbad, CA 

QuickChange® Sitedirected 

Mutagenesis Kit 
200521 Stratagene, La Jolla, CA 

RANKL 315-11 Peprotech, Rocky Hill, NJ 

Sodiumdodecylsulfate L4390 Sigma-Aldrich, St. Louis, MO 

TRAP Staining Kit 387A Sigma-Aldrich, St. Louis, MO 

Trypsin 25200-056 Invitrogen, Carlsbad, CA 

TUNEL assays 

 

11684795910 

 

Roche Applied Science, 

Indianapolis, IN 

Tween20 BP337-500 
Fisher Scientific, Pittsburgh, 

PA 

VECTOR LABORATORIES, 

INC., Burlingame, CA 
VECTASHIELD® with DAPI H-1200 

 

5.2 Methods 

Cell culture. Unless otherwise specified cell lines were obtained by ATCC (American 

Type Culture Collection, Manassas, VA, USA). HEK293, MCF-7, Hela, Ishikawa, T47D, 

and HepG2 cells were maintained in DMEM (Invitrogen, Carlsbad, CA) culture media 

supplemented with 5% FBS (Thermo Scientific, Rockford, IL), and 1% Penicillin-

Streptomycin-Glutamine (Invitrogen, Carlsbad, CA). U2OS-Flag-ERα and U2OS-Flag-

ERβ cells were provided by Dr. D. Leitman (UCSF, San Francisco, CA) and cultured in 

IMEM (Invitrogen, Carlsbad, CA) culture media supplemented with 10% FBS (Thermo 

Scientific, Rockford, IL), and 1% Penicillin-Streptomycin-Glutamine. Prior to hormone 

treatment all cells were maintained in IMEM (Invitrogen, Carlsbad, CA) supplemented 

with 5% charcoal-dextran stripped serum (CSS) (Thermo Scientific, Rockford, IL), and 

1% Penicillin-Streptomycin-Glutamine (Invitrogen, Carlsbad, CA).Cells were incubated 

at 37°C and 5% CO2. 

SRC-1 sequencing. Target sequence obtained from NCBI consisting of all exons, 500bp 

of proximal promoter, and 25bp of flanking introns from SRC-1 was submitted for primer 

design and Sanger sequencing to Polymorphic DNA Technologies Inc. (Alameda, CA). 
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DNA from 96 samples (48 Caucasian American, 48 African American) obtained from the 

Coriell Institute (Camden, NJ, USA) (sample sets: HD100CAU and HD100AA) was 

sequenced in both directions and aligned to the NCBI reference sequence and previously 

reported SNPs in the dbSNP data base. These samples were collected and anonymized by 

the National Institute of General Medical Sciences. Visual inspection of chromatograms 

was conducted for heterozygous base calls. Alignment was performed by Jay Wang M.D. 

(BCM, Houston, USA) in collaboration with COBRA. 

Plasmids and mutagenesis. The pSG5 – SRC-1 WT expression plasmid was provided 

by Dr. C. Smith (Baylor College of Medicine, Houston, TX). The SRC-1 variants P1272S 

(Jay Wang M.D.,BCM, Houston, USA), T1271A, P1272A, and S1275A were generated 

by mutagenesis using the QuickChange® Site-directed Mutagenesis Kit (Stratagene, La 

Jolla, CA) following the manufacturer’s protocol. Primer sequences are listed in table 

5.The pcDNA3.1-HA-ERα construct was provided by Dr. A. Lee (BCM, Houston, USA). 

The pCR3.1-PR and the PRE-tata-LUC constructs were provided by Dr. N. Weigel 

(BCM, Houston, USA). 

 Forward primer sequence Reverse primer sequence 

5’-ttctcttctccagcaagcttc 

acctgcctccgggtatcag-3’ 

5’-gtgatacccggaggcaggtga 

agcttgctggagaagaaag-3’ 
P1272S 

5'-gagttctcttctccagcaagct 

ccacctgcctccgggtatcag-3' 

5’-ctgatacccggaggcaggtgga 

gcttgctggagaagagaactc-3’ 
T1271A 

5’-ttctcttctccagcaagctgc 

acctgcctccgggtatcag-3’ 

5’-ctgatacccggaggcaggtg 

cagcttgctggagaagagaa-3’ 
P1272A 

5'-gcaaactccacctgccgccgggt 5'-gccttcatgtctggtgactgata 
S1275A 

atcagtcaccagacatgaaggc-3' cccggcggcaggtggagtttgc-3' 

Table 5: Primer sequences for mutagenesis. 

Transient transfection. Transfection of plasmids was performed using Lipofectamine 

2000 reagent from Invitrogen (Carlsbad, CA) according to the manufacturer’s protocol.   

Luciferase reporter assay. Cells were plated in six-well plates at 1.5x105 cells per well 

in DMEM (Invitrogen, Carlsbad, CA) + 5% FBS (Thermo Scientific, Rockford, IL) 48 

                                                                      90                                          



Materials and Methods 

hours prior to transfection. The medium was changed to IMEM (Invitrogen, Carlsbad, 

CA) supplemented with 5% CSS (Thermo Scientific, Rockford, IL) 24h prior to 

transfection, and transfections were carried out using Lipofectamine 2000 (Invitrogen, 

Carlsbad, CA) in OPTIMEM (Invitrogen, Carlsbad, CA) following the manufacturer’s 

protocol. For treatment with estradiol (Sigma, St. Louis, MO) or tamoxifen (Sigma, St. 

Louis, MO) in the reporter assay, estradiol (10-8M) or tamoxifen (10-6M) was added to the 

cells 24 hours posttransfection and incubated for another 24 hours (37°C; 5% CO2). Cells 

were harvested and luciferase activity was determined and normalized against total 

protein.   

Human SRC-1 genotyping. For the genotyping studies, germline DNA was extracted 

from the leukocyte portion of whole blood using a DNeasy® Blood and Tissue Mini Kit 

(Qiagen, Valencia, CA). For genotyping cell lines genomic DNA was extracted using a 

DNeasy® Blood and Tissue Mini Kit (Qiagen, Valencia, CA). SRC-1 P1272S 

(rs1804645) variant alleles were genotyped with a Taqman Allelic Discrimination Assay 

(Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions. The 

digested polymerase chain reaction products were then analyzed with an Agilent 2100 

Bioanalyzer (Agilent Technologies, Rockville, MD). Genotyping was performed by 

COBRA. 

Study population.  

Case-control study for breast cancer risk in a German-Polish population.  

The cases were unrelated, female, BRCA1/2 mutation–negative individuals with breast 

cancer. Breast cancer cases were selected according to the criteria used for BRCA1 and 

BRCA2 mutation screening. Using these criteria, familial and early-onset cases were 

accumulated, which are more likely to be due to a genetic cause. The controls were 

chosen from the same geographic area and ethnic background as the breast cancer cases. 

The analysis was done using genomic DNA from 1218 breast cancer cases and 1509 

controls. The study was approved by the ethics committee of the University of Heidelberg 

(Heidelberg, Germany). The study was conducted by the laboratory of Dr. Barbara 

Burwinkel at the DKFZ, Heidelberg, Germany. 

COBRA tamoxifen response association study. 

The registry protocol was approved by the institutional review boards of all participating 

sites and registered on www.clinicaltrial.gov (NCT00228930). All patients provided 

informed written consent before entry. Eligible women were recruited into a prospective 
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cohort registry from three breast cancer clinics—the Lombardi Comprehensive Cancer 

Center at Georgetown University Medical Center (Washington, DC); the Breast 

Oncology Program at the University of Michigan Comprehensive Cancer Center (Ann 

Arbor, MI); and the Indiana University Cancer Center (Indianapolis, IN). Premenopausal 

and postmenopausal women (aged 18 years) at high risk for breast cancer, or with newly 

diagnosed breast cancer who were starting tamoxifen as standard adjuvant therapy were 

included in this registry. Patients were enrolled after they had completed all primary 

surgery, radiation, and adjuvant chemotherapy. Since chemotherapy was a strong 

confounding factor for BMD in this trial (Henry L. et al. unpublished data), the analysis 

was limited to patients treated exclusively with tamoxifen. Hip and lumbar BMD was 

measured by DXA scanning before the start of tamoxifen treatment (“baseline”) and after 

12 months of treatment (PS207714 and PS207749; www.pharmgkb.org). The study and 

analysis was conducted by COBRA. 

Statistical analysis.   

Case-control study for breast cancer risk in a german-polish population.  

Odds ratios (OR) and 95% confidence intervals (95% CI) were calculated for genotype 

frequencies between breast cancer cases and controls using logistic regression adjusting 

for country. Power calculations were determined using power and sample size calculator 

software PS version 2.1.31 (http://www.mc.vanderbilt.edu/prevmed/ps/). Calculations for 

Hardy-Weinberg equilibrium were carried out using the Hardy-Weinberg equilibrium 

tool offered by the Institute of Human Genetics, Technische Universität, Munich, 

Germany (http://ihg.gsf.de/cgibin/hw/hwal.pl). The statistical analysis was performed by 

Dr. Barbara Burwinkel’s group. 

COBRA tamoxifen response association study. 

Associations between SRC-1 genotypes P1272S and baseline lumbar and hip BMD were 

examined in each menopausal group. The comparisons were performed using linear 

regression within each menopausal status. Associations between SRC-1 genotypes and 

the percent changes in lumbar and hip BMD from baseline to month 12 were assessed by 

using a general linear model (GLM) and adjusted for center. GLM was performed using 

the SAS procedure (PROC GLM, SAS v9.1.3). For post-hoc comparisons, the adjusted 

means between all pairs of three genotypes were compared while controlling for overall 

alpha. For all analyses, a p-value of equal to or less than 0.05 was considered statistically 

significant. The statistical analysis was performed by Dr. Lang Li (Indiana University 

School of Medicine, Indiana, IN). 
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Isolating osteoclasts from SRC-1 ko mice. Bone marrow cells were isolated from femur 

and tibia of SRC-1 ko mice. Cells were plated in six-well tissue culture plates containing 

IMEM Invitrogen, Carlsbad, CA) with 10% FBS (Thermo Scientific, Rockford, IL) and 

10ng/ml M-CSF (R&D Systems, Minneapolis, MN). After incubation for 48h (37°C; 5% 

CO2), cells were cultured for 13 days in the presence of 10ng/ml M-CSF and 100ng/ml 

RANKL (Peprotech, Rocky Hill, NJ) to generate osteoclasts.  

Trap staining. To test for osteoclastic activity TRAP staining was performed according 

to the manufacturer’s protocol (Sigma-Aldrich, St. Louis, MO).   

TUNEL assays. The differentiated SRC-1 ko skeletal cell cultures were transfected with 

pSG5 (empty vector), pSG5-SRC-1 WT or pSG5-SRC-1 P1272S expression constructs 

and treated with estrogen (10-8M) for 16 hours. Cells were fixed with 4% 

paraformaldehyde and TUNEL assay (Roche Applied Science, Indianapolis, IN) was 

performed according to the manufacturer’s protocol. Apoptosis was detected by 

determining the ratio of TUNEL-positive cells and DAPI-counterstained cells via 

fluorescence microscopy. The experiment was performed in triplicates.  

Quantitative PCR analysis. Total RNA was isolated using the QIAShredder and Rneasy 

kit (Qiagen, Valencia, CA). The mRNA was reverse transcribed into cDNA by 

SuperScript III First-Strand Synthesis system for RT-PCR (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol.  

Primer sequences are listed in Table 6.  
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Primer 

(obtained 

from Sigma 

Genosys, St. 

Louis, MO) 

Forward primer sequence Reverse primer sequence 

Alkaline 

phosphatase 

(mouse) 

5’-aatgaggtcacatccatcctgc-3’ 5’-tagctgatatgcgatgtccttgc-3’ 

β-actin 

(human) 
5’-ccctggcacccagcac-3’ 5’-gccgatccacacggagtac-3’ 

β-actin 

(mouse) 
5’-tcgtgcgtgacatcaaagaga-3’ 5’-ccgctcgttgccaatagtg-3’ 

ERα (mouse) 5’-ctagcagatagggagctggttca-3’ 5’-ggagattcaagtccccaaagc-3’ 

ERβ (mouse) 5’-atgactatatctgtccagccacg-3’ 5’-ctcagagagttcagcagtagc-3’ 

FasL 

(human) 
5’-ggcccatttaacaggcaagtc-3’ 5’-ggccacccttcttatacttcac-3’ 

TIEG 

(human) 
5’-gccaaccatgctcaacttcg-3’ 5’-tgcagttttgttccaggaatacat-3’ 

TIEG 

(mouse) 
5’-gtctcagtgctcccgtctgt-3’ 5’-ccaccgcttcaaagtcactc-3’ 

SRC-1 

(human) 
5’-tgaaagtggaaaagaaagaacagatg-3’ 5’-gtcaagtcagctgtaaactggc-3’ 

SRC-1 

(mouse) 
5’-tatctctccagcccatggtgt-3’ 5’-caaagttcccttggttgttgc-3’ 

Table 6: Primer sequences for qRT-PCR. 

Isolation of osteoblasts.  

Calvaria were obtained from offspring of heterozygous matings 5 days after birth and 

washed three times in cold PBS (Invitrogen, Carlsbad, CA). Each calvaria was placed in a 

well of a six-well plate and incubated for 20 min in αMEM (Invitrogen, Carlsbad, CA) 

supplemented with 0.1 mg/ml collagenase P (Roche Applied Science, Indianapolis, IN) 
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and 0.04% trypsin (Invitrogen, Carlsbad, CA) at 37ºC and shaked every five minutes for 

20 seconds. The released cells were discarded. This step was repeated once and the 

calvaria were transferred to αMEM (Invitrogen, Carlsbad, CA) supplemented with 0.2 

mg/ml collagenase P (Roche Applied Science, Indianapolis, IN) and 0.04% trypsin 

(Invitrogen, Carlsbad, CA). Calvaria were dissected and digested for 1 h at 37ºC with 

shaking every five minutes. Digestion was stopped by the addition of αMEM (Invitrogen, 

Carlsbad, CA)/ 15% FBS (Thermo Scientific, Rockford, IL). The obtained osteoblasts 

from the second digest were allowed to attach to the cell culture dish for 48 h before 

plating (37°C; 5% CO2).  

Mouse SRC-1 genotyping. 

Offspring of heterozygous matings were genotyped by detection of the disrupted allele in 

genomic DNA prepared from tail biopsies by enzymatic digestion. Multiplex PCR 

analysis was performed with four primers (table 7). Cycling conditions were 94ºC for 3 

min; 94ºC for 1 min, 57ºC for 1 min, 72ºC for 1 min, 35 cycles; 72ºC for 5 min. The size 

of the WT PCR fragment was 309 bp and the SRC-1 deficient mouse band was 687 bp 

(figureS2). 

Primer (obtained 

from Sigma 

Genosys, St. Louis, 

MO) 

Primer sequence forward 

(provided by Dr. J. XU, 

BCM, Houston, TX) 

Primer sequence reverse 

(provided by Dr. J. XU, BCM, 

Houston, TX) 

SRC-1 WT 5’-caaccagcaaaggctgagtcca-3’ 5’-agtacctcctgaggggttagag-3’ 

SRC-1 ko 5’-tgccgacgcgctagacgatttc-3’ 5’-acacagcaaagaactggaggtg-3’ 

Table 7: Primer sequences for genotyping. 

MTS assay. 

Cells were plated in a 96-well plate and treated with estrogen (Sigma-Aldrich, St. Louis, 

MO) or tamoxifen (Sigma-Aldrich, St. Louis, MO) for the indicated timepoints. 20 µl 

CellTiter 96® Aqueous One Solution Reagent (Promega Corporation, Madison, WI) was 

added to 100 µl media in each well. The plate was incubated for 4 hours at 37ºC, and the 

results were obtained by determination of absorbance at 490 nm in a plate reader 

(BioRad, Philadelphia, PA). 
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Actinomycin D treatment. 

Cells were transfected as described above. Actinomycin D (Sigma-Aldrich, St. Louis, 

MO) (1μg/ ml) was added to each dish 24 h posttransfection. Cells were collected at the 

indicated timepoints. Total RNA was isolated and q-RT-PCR was performed with the 

appropriate primers as described above. 

Cycloheximide treatment. 

Cells were transfected as described above. Cycloheximide (Sigma-Aldrich, St. Louis, 

MO) (20µg/ml) was added to each dish 36 h posttransfection, and cells were harvested at 

indicated timepoints. Protein lysates were prepared and 100 µg of total protein per sample 

was analyzed by SDS-PAGE and Western blotting with the appropriate antibody. 

Westernblot. 

Hela cells were washed twice in PBS (Invitrogen, Carlsbad, CA), harvested, and lysed in 

5% sodium dodecyl sulfate (Sigma-Aldrich, St. Louis, MO) lysis buffer (100μl/well of a 

6-well plate). Extracts were then centrifuged for 5 minutes at 16000g, and the soluble 

extracts were retained. Samples were normalized for protein content. Cell lysates were 

separated by SDS-PAGE, transferred to nitrocellulose membrane (Biorad, Hercules, CA), 

and blocked for one hour in PBS (Invitrogen, Carlsbad, CA) containing 0.1% Tween 20 

(Fisher Scientific, Pittsburgh, PA) and 5% milk. The membrane was incubated with the 

appropriate primary antibody overnight at 4ºC, HRP-conjugated secondary antibody 

(Amersham, Piscataway, NJ) and analyzed by fluorography (Fluorchem®Q, Alpha 

Innotech, San Leandro, CA).  

Pulse chase. 

HEK293 cells were were transfected as described above. 24 hours after transfection cells 

were incubated in DMEM methionine-cysteine-free medium (Invitrogen, Carlsbad, CA) 

for 1 h and then replaced by medium containing 2mM 35S – methionine (PerkinElmer 

Life And Analytical Sciences, Inc., Waltham, MA) for 40 min. Cells were then washed 

twice in PBS (Invitrogen, Carlsbad, CA) and incubated with medium containing 2 mM 

cold methionine. Cells were harvested at the indicated times, and pSG5-flag-SRC-1 was 

immunoprecipitated from the cell lysates using an anti-flag antibody (Sigma-Aldrich, St. 

Louis, MO) overnight at 4ºC. Samples were then diluted to 500 μl with lysis buffer, and 

30 µl of protein G sepharose (Invitrogen, Carlsbad, CA) to capture the immunocomplex. 

Samples were incubated 45 min at 4 ˚C with mixing. Beads were washed three times with 
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lysis buffer, each time spinning 1 min at low speed in a microfuge. Beads were eluted by 

boiling with SDS sample buffer for 5 min. The immunoprecipates were seperated by 

SDS-PAGE and bands were quantitated at each time point using phosphor-imaging 

(Molecular Imager FX, Biorad, Philadelphia, PA).  
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Summary 

6 Summary 

In summary, characterization of genetic variations in ERα coregulators can lead to a 

better understanding of how a person’s individual genetic background influences the 

development of estrogen-dependent diseases and the efficiency of endocrine treatments. 

This may enable individual treatments for patients to improve future therapies and 

diagnostics.  

A functional nonsynonymous SNP in the nuclear receptor coactivator SRC-1 that results 

in an amino acid change from proline to serine (SRC-1 P1272S) was identified. This SNP 

displays decreased coactivation potential, resulting in decreased activity of the estrogen 

receptor. The mechanism includes increased protein turnover rate in the presence of the 

SNP. In vitro and in vivo data suggest an attenuated response to endogenous and 

exogenous hormones in bone in the presence of SRC-1 P1272S. Clinical results show that 

SRC-1 P1272S alters tamoxifen response in bone remodeling. Collectively, our data 

suggest that carrying this SRC-1 P1272S could result in increased bone loss. Screening 

for this SNP could potentially predict response of tamoxifen agonistic activity in bone. 

Presence of the SNP would suggest an individual need for additional bone protective 

measures. It was shown that identification of genetic variations such as SRC-1 P1272S 

can contribute to determine individual treatment responses and could be a key feature to 

personalized medicine in estrogen dependent diseases. 
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Appendix 

Figure S 1: SRC-1 osteoblasts express ERα and ERβ. 

(A) Total RNA was harvested and subjected to qRT PCR using mouse ERα and β-Actin 

specific primers to determine its expression. Data is expressed as ERα mRNA abundance 

relative to β-Actin levels. The data is presented as fold over SRC-1 WT relative to vehicle. 

 

(B) Total RNA was harvested and subjected to qRT PCR using mouse ERβ and β-Actin 

specific primers to determine its expression. Data is expressed as ERβ mRNA abundance 

relative to β-Actin levels. The data is presented as fold over SRC-1 WT relative to vehicle 
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Figure S 2: Mouse SRC-1 genotyping. 

Genomic DNA was prepared from tail biopsies. Multiplex PCR analysis for the disrupted 

SRC-1 allele was performed with four primers (table 6). The SRC-1 WT PCR fragment is 

309 bp and the SRC-1 ko band is 687 bp levels.  
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