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“The scientist finds his reward in what Henri Poincaré calls the joy of comprehension,

and is not in the possibilities of application to which any discovery of his may lead.”

Albert Einstein





Abstract

Each cell of an organism contains the same genomic DNA encoding the same information, but cells,

tissues, and organs differ in appearance, functions, and many other aspects. These differences are

promoted by a number of complex regulatory processes on the DNA and its transcribed RNA. Over

the last years, new high-throughput technologies and the development of new bioinformatics methods

for the prediction of short signal sequences have provided many new insights and hypotheses. Despite

the overwhelming scientific progress of the last years, many aspects of how the cellular machinery

recognizes and binds these short sequences with high accuracy are still not fully understood.

Improved computational methods often apply either a new model or a new learning principle

gaining a superior accuracy for a specific source of data. It is therefore hard to compare differ-

ent approaches on the same basis allowing to examine their strengths or weaknesses. In this work,

we present a formal framework for learning probabilistic models from the family of Markov random

fields that allows an interpolation between several established learning principles including genera-

tive, discriminative, hybrid, Bayesian, and non-Bayesian learning principles. This framework enables

comparisons of different models and different learning principles using the same a-priori knowledge.

We implement this framework as an open-source Java library that is easily extensible and that allows

modular combinations of different probabilistic models, a-priori knowledge, and learning principles for

building sophisticated classifiers. Applying these models and learning principles to the tasks of splice

site recognition, transcription start site recognition, database curation, and de-novo motif discovery,

we obtain competitive or superior performances compared to state-of-the-art approaches.
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Chapter 1

Introduction

In the bestseller “Megatrends 2000: Ten new directions for the 1990’s”, John Naisbitt and Pa-

tricia Aburdene predict that the next era will be the “Age of Biology.” Specifically, they

write “As we move through the next millennium, biotechnology will be as important as the com-

puter” [Naisbitt and Aburdene, 1990]. Today, almost 20 years later, we have to state that their

prediction has been correct. Biology has undergone a serious development as several new experimen-

tal techniques arose allowing to gain new insights in fields that seemed to be too far away even a few

years ago. This development already affects our daily life, and currently we do not see an end to this

development, which is absolutely in accordance with the thesis of made in “Age of Biology.”

Nowadays, biology utilizes concepts and techniques from many areas of science such as chemistry,

physics, mathematics, and informatics, to deepen our understanding of many fundamental biological

processes. These sciences contribute to the wide area of the life sciences including, besides pure bi-

ology, for instance biochemistry, biophysics, biomathematics, and bioinformatics. Each of these life

sciences contributes its individual strength to write this story of success and at the same time the

borders between individual sciences become blurred. Considering the role of bioinformatics, the clas-

sification of unlabeled data is one of the main challenges that can be tackled. Based on classification

the generation of hypotheses and experimental design belong to the field of bioinformatics as well.

Besides the classification of unlabeled data, bioinformatics assists with data storage [Roos, 2001,

Cochrane and Galperin, 2010], data visualization [Barrett et al., 2005, Shannon et al., 2003], and

comparison of different data sources [Altschul et al., 1990, Bennetzen and Ma, 2003, Yang, 2007].

Classification is required manifold and includes, for instance, the recognition of

patterns from image data [Carpenter et al., 2006, Peng, 2008], the prediction of pro-

tein and RNA structure [McGuffin et al., 2000, Hofacker, 2003], as well as gene predic-

tion [Bernal et al., 2007, Schweikert et al., 2009] and the inference of coexpression or tran-

scriptional regulatory networks [Stuart et al., 2003, Lee et al., 2002]. Focusing on DNA se-

quence analysis, classification is often connected to recognition of various binding sites (BSs)

of some biological process driving the activity of one or a few genes. The recog-

nition of DNA BSs includes, for instance, the recognition of transcription factor bind-

ing sites (TFBSs) [Bailey and Eklan, 1994, Pavesi et al., 2001, Kim et al., 2008], transcrip-

tion start sites (TSS) [Davuluri et al., 2001, Sonnenburg et al., 2006, Abeel et al., 2009],

translation initiation sites [Hatzigeorgiou, 2002, Saeys et al., 2007], donor and accep-

tor splice sites [Salzberg, 1997a, Yeo and Burge, 2004, Sonnenburg et al., 2007], alterna-

tive splice sites [Foissac and Schiex, 2005, Sinha et al., 2009], splicing enhancer and si-
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Chapter 1. Introduction

lencer [Fairbrother et al., 2002, Wang et al., 2004], nucleosome BSs [Segal et al., 2006,

Peckham et al., 2007, Field et al., 2008], insulator BSs [Kim et al., 2007], and micro-RNA

BSs [Krek et al., 2005, Sethupathy et al., 2006]. Since these BSs are conserved to a certain de-

gree, they are also used as building blocks for subsequent bioinformatics tasks, such as gene

finding [Fickett, 1996, Burge and Karlin, 1997, Schweikert et al., 2009] and the computation of

spliced alignments [Gelfand et al., 1996, Florea et al., 1998, De Bona et al., 2008].

DNA, which carries the genetic information of higher organisms, is composed of repeating units

called nucleotides. Each of these nucleotides comprises one of the four organic bases adenine, cytosine,

guanine, and thymine abbreviated as A,C,G, and T . The sequence of these bases along the sugar

phosphate backbone of the DNA encodes the genetic information. However, the DNA sequence in

higher organisms is very long, as for instance human DNA contains approximately 3.3 billion bases. In

addition, the double stranded DNA allows that BSs are located on either of the reverse complementary

strands. Hence, the recognition of few functional BSs is challenging. Here, we consider the recognition

of three different types of BSs, namely TFBSs, TSSs, and splice sites.

Transcription factors (TFs) are proteins which contain one or more DNA-binding domains, and

attach to specific patterns of DNA, so-called TFBSs. Binding of TFs to their specific TFBSs in the

promoter region of a gene can activate or repress the transcription of this gene, and therefore affects

all downstream processes. However, the ability to control the transcription of a target gene may

depend on the TFBS itself, its strand orientation, its position with respect to the TSS, and possibly

the presence, conservation, orientation, and distance to additional TFBSs. Hence, the recognition of

functional TFBSs is very difficult, and has not yet been solved satisfactorily.

While TFBSs regulate the transcription of genes, the TSS defines a specific site or region where

transcription is started and RNA is transcribed. The initiation of transcription is a complex process

that functions differently in prokaryotes and eukaryotes. In prokaryotes mainly two specific patterns

at positions -35 and -10 bp before the TSS are recognized by specific TFs denoted as σ-factors guiding

the RNA polymerase, whereas in eukaryotes the situation is less clear and several TFs seem to mediate

the binding of the RNA polymerase. After binding of the RNA polymerase, transcription is initiated

and RNA is transcribed from DNA template. Since the TSS defines the start of the RNA, it has a

decisive influence on the gene product.

Similarly, splicing has a decisive influence on the RNA and therefore on the translated amino acid

sequence. Pre-mRNA, which is transcribed from DNA, consists of two different types of segments,

called exons and introns. Introns are removed during splicing, while exons are retained in the mRNA.

In most cases, splicing is catalyzed by a complex of small nuclear ribonucleoproteins called the spliceo-

some. Splice sites are the borders between exons and introns in the pre-mRNA. The border between

an exon and an intron is denoted as donor or 5′ splice site, whereas the border between an intron and

an exon is denoted as acceptor or 3′ splice site.

Despite the common goal of recognizing BSs, the tools used for the specific tasks differ in various

aspects. However, many tools use probabilistic models to solve the problem at hand, since they often

allow a simple interpretation of the model parameters. In contrast non-probabilistic models, as for

6



Chapter 1. Introduction

instance support vector machines, which utilize discriminative learning, outperform probabilistic mod-

els in some applications [Sonnenburg et al., 2006, Sonnenburg et al., 2007] but are harder to interpret.

However, the performance of probabilistic models is determined by the model parameters. These pa-

rameters are estimated from training data using a predefined learning principle. Often the models

used are quite complex and relatively well adapted to the problem at hand, whereas the learning

principle is often chosen arbitrarily.

In most cases the learning principles employed belong to a class of generative learning principles.

Generative learning principles aim at representing the distribution of the training data in each of the

classes as accurately as possible. This may seem the only sensible way of estimating model parameters,

but other, so-called discriminative, learning principles that are more directly linked to the classification

task have been proposed. These learning principles aim at discriminating the training data well. In this

work, we present a hybrid learning principle in subsection Unified generative-discriminative learning

principle (page 13) that contains several well-known learning principles and allows to interpolate

between them. In addition, we present a prior in subsection Product-Dirichlet prior for Markov

random fields (page 35) that can be easily used for this learning principle and allows to incorporate

biological prior knowledge. Using this prior, we are able to compare generative and discriminative

learning principles more directly by using the same prior knowledge.

The work is structured as follows: First, we introduce some notations used in the following chap-

ters. Second, we present a classifier based on probabilistic models and some learning principles.

Subsequently, we present probabilistic models tailored for DNA sequence analysis in chapter Proba-

bilistic models for DNA sequences (page 20) and the corresponding priors in chapter Priors (page 34).

Following the theoretical part of this work, we provide some details about the implementation in

chapter Implementation (page 47). We implement the open-source Java library Jstacs including all

learning principles and models aside from infrastructure for classification problems, which allow to

use Jstacs easily for building tools for similar problems. In chapter Comparison of learning principles

(page 50), we prove the utility of the introduced concept using well known data.

Employing our methods, we demonstrate in four biological applications how probabilistic models

and different learning principles can be used to improve the solution of many important bioinformatics

problems. In the first case study, we investigate the recognition of donor splice sites for the model

organism Caenorhabditis elegans using a discriminative learning principle. Similarly in the second

case study, we investigate the recognition of human TSSs based on tags of cap-analysis of gene expres-

sion using a discriminative learning principle. In the third case study, we investigate the quality of

TFBS annotations in the database CoryneRegNet [Baumbach et al., 2009] using a generative learning

principle. Finally in the fourth case study, we investigate whether a discriminative learning principle

and a learnable position distribution for TFBSs might help to improve de-novo motif discovery.
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Chapter 2

Notation

In this chapter, we introduce the notation of this work. Although the learning principles and proba-

bilistic models presented in the following chapters also apply to other sequence data, we focus on DNA

sequences, which are composed of nucleotides abbreviated as A,C,G, and T . Hence, we define the

alphabet Σ := {A,C,G, T}. We denote a DNA sequence of sequence length L by x := (x1, x2, . . . , xL)

where x` ∈ Σ for ` ∈ [1, L], and we denote the subsequence from position `1 to position `2 of sequence

x by x`1...`2 := (x`1 , x`1+1, . . . , x`2). For convenience, we allow that `1 > `2 yielding an empty subse-

quence. We denote the reverse complement of x by xRC , which allows us to search for non-palindromic

patterns on both strands of DNA. Handling multiple sequences, we denote a data set of N independent

identical distributed (i.i.d.) sequences by D := (x1, x2, . . . , xN ).

Considering a specific classification task, each sequence x has a class label c ∈ C where C denotes

the set of all possible class labels, as for instance “BS” and “no BS.” In case of two possible class

labels, these are often denoted more generally as positive and negative or foreground and background.

We denote the class labels for data set D by C := (c1, c2, . . . , cN ) ∈ CN where cn denotes the class

label of sequence xn. For shortness of notation, we denote a labeled data set by (D, C). For counting

certain patterns, we use the Kronecker symbol denoted by δi,j which is equal to 1 if both indices are

equal and otherwise 0. Depending on the problem, i and j can be replaced by symbols, subsequences,

or class labels.

In chapter Probabilistic models for DNA sequences (page 20), we introduce probabilistic models,

which are used in the later chapters on biological data sets. Although the models are quite diverse,

we use a common notation for all models. For any model M, we denote the parameters of the model

by λ(M). Using these parameters, we denote the likelihood of the model M by PM
(
c, x λ(M)

)
. In

section Learning principles (page 10), we consider different ways of estimating the parameters λ(M).

Some of the learning principles presented in this section use prior knowledge aside from training data.

Typically, this prior knowledge is given as prior density on the parameters of the model. We denote the

prior on the parameters of modelM by QM
(
λ(M) α(M)

)
where α(M) denotes the hyper-parameters

controlling the characteristics of the prior. In chapter Priors (page 34), we consider priors for all

models of chapter Probabilistic models for DNA sequences (page 20) in more detail. For a compact

notation, we omit the subscriptM for parameters and hyper-parameters if their meaning is clear from

the context.
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Chapter 3

Classification

In this chapter, we present the theoretical framework for classifying sequences, which is of funda-

mental interest in many biological applications. Classifiers are used to decide whether a sequence

is, for instance, a splice site [Salzberg, 1997a, Yeo and Burge, 2004], a transcription factor binding

site [Ben-Gal et al., 2005], a nucleosome binding site [Segal et al., 2006] or not. More generally, clas-

sifiers are used to assign class labels to unlabeled sequences.

In this work, we consider classifiers based on probabilistic models with parameter vector λ,

which are described in more detail in the next chapter. Based on these models the decision crite-

rion [Hastie et al., 2009] of the classifier is defined as

ĉ := argmax
c∈C

P
(
c x, λ

)
= argmax

c∈C
P
(
c, x λ

)
= argmax

c∈C

[
P
(
c λ
)
· P
(
x c, λ

)]
, (3.1)

where P
(
c x, λ

)
is the conditional likelihood of class label c given sequence x and parameter vector λ,

P
(
c, x λ

)
is the likelihood of class label c and sequence x given parameter vector λ, P

(
c λ
)

is the

probability of class label c given parameter vector λ, and P
(
x c, λ

)
is the conditional probability of

sequence x given class label c and parameter vector λ. In the case of a binary classifier, i. e., C = {0, 1},
we denote the classes by foreground class and background class. For such a binary classifier, the decision

criterion can be reformulated in terms of likelihood ratio as

ĉ :=

0 , P (0,x|λ)
P (1,x|λ) ≥ 1

1 , otherwise
. (3.2a)

Decomposing the likelihood and substituting the ratio of probabilities P (1|λ)
P (0|λ) by a threshold T ∈ R+

0 ,

we obtain the simplified decision criterion based on the conditional probabilities of sequence x

ĉ :=

0 , P (x|0,λ)
P (x|1,λ) ≥ T

1 , otherwise
. (3.2b)

With this decision criterion at hand, there are two important questions:

1. How can we estimate the parameter vector of a classifier from training data?

2. How can we compare different classifiers regarding their performance?

We address both questions in the remainder of this chapter.

9



Chapter 3. Classification

In this work, we use a single parameter vector λ for classification. Complementary to this approach,

there are Bayesian methods that do not use a single parameter vector but rather a density of parameter

vectors [Geman and Geman, 1984, Casella and George, 1992, Liu, 2002]

3.1 Learning principles

In this section, we consider the first question ”How can we estimate the parameter vector of a classifier

from training data?” For this purpose, we present learning principles for the parameter vector of

classifiers for a data set D and the corresponding class labels C.

In the first subsection, we present six learning principles that are established in the machine-

learning community and which are nowadays also used in the field of bioinformatics. In the second

subsection, we propose a generalization of these six learning principles which allows to make a more

detailed comparison of different learning principles.

3.1.1 Established learning principles

Learning principles can be categorized by two criteria. On the one hand, they can be divided by

their objective into generative, discriminative, and hybrid learning principles. Generative learning

principles aim at an accurate representation of the distribution of the training data in each of the

classes, discriminative learning principles aim at an accurate classification of the training data into the

classes, whereas hybrid learning principles are interpolations between generative and discriminative

learning principles. On the other hand, learning principles can be divided by the utilization of prior

knowledge into Bayesian and non-Bayesian. We call learning principles Bayesian if they incorporate a

prior density Q
(
λ α

)
on the parameter vector λ, where α denotes a vector of hyper-parameters, while

we call learning principles non-Bayesian if they only use the data - without any prior - to estimate

the parameter vector. In Table 3.1, we show six established learning principles and the assignment to

the above mentioned criteria. These learning principles are described in more detail in the remainder

of this section.

Generative learning principles

The maximum likelihood (ML) principle is one of the first learning principles used in bioin-

formatics. Originally, it was proposed by R. A. Fisher at the beginning of the 20th cen-

tury [Fisher, 1922, Aldrich, 1997]. The ML principle aims at finding the parameter vector λ̂ML that

maximizes the likelihood of the labeled data set (C,D) given the parameter vector λ,

λ̂ML := argmax
λ

P
(
C,D λ

)
(3.3a)

= argmax
λ

[
N∑
n=1

logP
(
cn, xn λ

)]
. (3.3b)

10



Chapter 3. Classification

prior knowledge
non-Bayesian Bayesian

objective
generative ML MAP
hybrid GDT PGDT
discriminative MCL MSP

Table 3.1: Characterisation of learning principles. The table shows six established learning princi-
ples that can be distinguished by two criteria, namely the objective of the learning principle, which is
either generative, hybrid, or discriminative, and the usage of prior knowledge with the two possibilities
non-Bayesian and Bayesian. The four elementary learning principles are the generative, non-Bayesian
maximum likelihood (ML) principle, the generative, Bayesian maximum a posteriori (MAP) prin-
ciple, the discriminative, non-Bayesian maximum conditional likelihood (MCL) principle, and the
discriminative, Bayesian maximum supervised posterior (MSP) principle. The hybrid learning princi-
ples, which interpolate between generative and discriminative learning principles, are the non-Bayesian
generative-discriminative trade-off (GDT) principle and the penalized generative-discriminative trade-
off (PGDT) principle.

However, for many applications, the amount of sequence data available for the training is very limited.

For this reason, the ML principle often leads to suboptimal classification performance, e.g. due to zero-

occurrences of some nucleotides or oligonucleotides in the training data sets.

The maximum a posteriori (MAP) principle, which applies a prior Q
(
λ α

)
to the parameter

vector, establishes a theoretical foundation to alleviate this problem, and at the same time it allows

the inclusion of prior knowledge aside from the training data [Bishop, 2006]. The MAP principle aims

at finding the parameter vector λ̂MAP that maximizes the posterior density,

λ̂MAP := argmax
λ

P
(
λ C,D, α

)
(3.4a)

= argmax
λ

[
P
(
C,D λ

)
·Q
(
λ α

)]
(3.4b)

= argmax
λ

[[
N∑
n=1

logP
(
cn, xn λ

)]
+ logQ

(
λ α

)]
. (3.4c)

If for a given family of likelihood functions P
(
C,D λ

)
the posterior P

(
λ C,D, α

)
is in the same

family of distributions as the prior Q
(
λ α

)
, i. e., if

Q
(
λ α̃

)
= P

(
λ C,D, α

)
∝ P

(
C,D λ

)
·Q
(
λ α

)
, (3.5)

the prior is said to be conjugate to this class of likelihood functions, and the hyper-parameter vector α̃

incorporates both prior knowledge and training data. Conjugate priors often allow an interpretation

of the hyper-parameter vector as stemming from an a-priorily observed set of “pseudo-data.” In

addition, it allows finding the optimal parameter vector λ̂MAP analytically provided one can determine

the maximum of the prior analytically.

11
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Discriminative learning principles

Recently, discriminative learning principles instead of generative ones have been shown to be promising

in the field of bioinformatics [Yakhnenko et al., 2005, Culotta et al., 2005, Redhead and Bailey, 2007,

Grau et al., 2007, Keilwagen et al., 2007]. The discriminative analogue to the ML principle is the

maximum conditional likelihood (MCL) principle [Wettig et al., 2002, Grossman and Domingos, 2004,

Greiner et al., 2005, Pernkopf and Bilmes, 2005, Feelders and Ivanovs, 2006] that aims at finding the

parameter vector λ̂MCL that maximizes the conditional likelihood of the labels C given the data D

and the parameter vector λ,

λ̂MCL := argmax
λ

P
(
C D, λ

)
(3.6a)

= argmax
λ

[
N∑
n=1

logP
(
cn xn, λ

)]
. (3.6b)

The effects of limited data may be even more severe when using the MCL principle compared

to generative learning principles [Ng and Jordan, 2002]. To overcome this problem, the maximum

supervised posterior (MSP) principle [Grünwald et al., 2002, Cerquides and de Mántaras, 2005] has

been proposed as discriminative analogue to the MAP principle. In analogy to Equation (3.4b),

the MSP principle aims at finding the parameter vector λ̂MSP that maximizes the product of the

conditional likelihood and the prior density,

λ̂MSP := argmax
λ

[
P
(
C D, λ

)
·Q
(
λ α

)]
(3.7a)

= argmax
λ

[[
N∑
n=1

logP
(
cn xn, λ

)]
+ logQ

(
λ α

)]
. (3.7b)

Generative-discriminative trade-offs

During the last years, different hybrid learning principles have been proposed in the machine-learning

community [Bouchard and Triggs, 2004, Lasserre et al., 2006, Bouchard, 2007]. Hybrid learning prin-

ciples aim at combining the strengths of generative and discriminative learning principles. Here, we

follow the ideas of Bouchard and co-workers who propose an interpolation between the generative ML

principle and the discriminative MCL principle [Bouchard and Triggs, 2004] as well as the generative

MAP principle and the discriminative MSP principle [Bouchard, 2007].

The generative-discriminative trade-off (GDT) proposed in [Bouchard and Triggs, 2004] aims at

finding the parameter vector λ that maximizes the weighted product of conditional likelihood and

12
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likelihood, i. e.,

λ̂GDT := argmax
λ

[
P
(
C D, λ

)1−γ
· P
(
C,D λ

)γ]
(3.8a)

= argmax
λ

[
(1− γ)

[
N∑
n=1

logP
(
cn xn, λ

)]
+ γ

[
N∑
n=1

logP
(
cn, xn λ

)]]
, (3.8b)

for given weight γ ∈ [0, 1]. As special cases of the GDT principle, we obtain the ML principle for

γ = 1 and the MCL principle for γ = 0. By varying γ between 0 and 1, different beneficial trade-offs

can be obtained for classification

In close analogy to the MAP and the MSP principle, which are obtained by multiplying a prior to

the likelihood and conditional likelihood, respectively, the penalized generative-discriminative trade-

off (PGDT) principle aims at finding the parameter vector λ that maximizes the product of the

objective function of the GDT principle and the prior,

λ̂PGDT := argmax
λ

[
P
(
C D, λ

)1−γ
· P
(
C,D λ

)γ
·Q
(
λ α

)]
(3.9a)

= argmax
λ

[
(1− γ)

[
N∑
n=1

logP
(
cn xn, λ

)]
+ γ

[
N∑
n=1

logP
(
cn, xn λ

)]
+ logQ

(
λ α

)]
,

(3.9b)

for given weight γ ∈ [0, 1]. As special cases of the PGDT principle, we obtain the MAP principle for

γ = 1 and the MSP principle for γ = 0.

3.1.2 Unified generative-discriminative learning principle

Comparing Equations (3.3a), (3.4b), (3.6a), (3.7a), (3.8a), and (3.9a), we find that the following three

terms are sufficient for defining the established learning principles:

1. the conditional likelihood P
(
C D, λ

)
,

2. the likelihood P
(
C,D λ

)
, and

3. the prior Q
(
λ α

)
.

With the goal of unifying and generalizing the six learning principles presented, we propose a unified

generative-discriminative learning principle that aims at finding the parameter vector λ that maximizes

the weighted product of conditional likelihood, likelihood, and prior [Keilwagen et al., 2010c], i. e.,

λ̂ := argmax
λ

[
P
(
C D, λ

)β0

· P
(
C,D λ

)β1

·Q
(
λ α

)β2
]

(3.10a)

= argmax
λ

[
β0

[
N∑
n=1

logP
(
cn xn, λ

)]
+ β1

[
N∑
n=1

logP
(
cn, xn λ

)]
+ β2 logQ

(
λ α

)]
, (3.10b)

13
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Figure 3.1: Two-dimensional projection of the simplex spanned by the weights β of the unified
generative-discriminative learning principle and the established learning principles for the specific
weights encoded by colors. The points (0, 1), (0, 0.5), (1, 0), and (0.5, 0) refer to the ML, the MAP,
the MCL, and the MSP principle, respectively, while the lines β1 = 1− β0 and β1 = 0.5− β0 refer to
the GDT and the PGDT principle, respectively.

with the weighting factors β := (β0, β1, β2) , β0, β1, β2 ∈ [0, 1], and β0 + β1 + β2 = 1. The six

established learning principles can be obtained as special cases of Equation (3.10a) as follows

• the ML principle if β = (0, 1, 0),

• the MAP principle if β = (0, 0.5, 0.5),

• the MCL principle if β = (1, 0, 0),

• the MSP principle if β = (0.5, 0, 0.5),

• the GDT principle if β2 = 0, and

• the PGDT principle if β2 = 0.5.

Although, the simplex is embedded in three dimensions, we can visualize it in two dimensions

due to the constraint, β0 + β1 + β2 = 1, on the weights β, which simplifies further discussions. In

Figure 3.1, we show a projection of the simplex β onto the (β0, β1)-plane and its relation to the six

established learning principles.

In the rest of this subsection, we investigate the simplex β and its relation to other learning

principles. First, we consider the axes of the simplex β. We can write the learning principle that

14
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corresponds to the β0-axis (β0 > 0 and β1 = 0) using the constraint β0 = 1− β2 for this axis as

λ̂ = argmax
λ

[
P
(
C D, λ

)
·Q
(
λ α

) β2
β0

]
(3.11a)

= argmax
λ

[
P
(
C D, λ

)
·Q
(
λ α

) β2
1−β2

]
. (3.11b)

Similarly, we can write the learning principle corresponding to the β1-axis (with β0 = 0 and β1 > 0)

as

λ̂ = argmax
λ

[
P
(
C,D λ

)
·Q
(
λ α

) β2
β1

]
(3.11c)

= argmax
λ

[
P
(
C,D λ

)
·Q
(
λ α

) β2
1−β2

]
. (3.11d)

These equations state that each point on the abscissa (β0-axis) and on the ordinate (β1-axis) corre-

sponds to the MSP and the MAP principle, respectively, with a weighted prior.

If the prior fulfills the condition

Q
(
λ α

)ξ
∝ Q

(
λ ξα

)
(3.12)

for any ξ ∈ R+, each point (1−β2, 0) and (0, 1−β2) on the axes corresponds to either the MSP or the

MAP principle using the prior Q
(
λ β2

1−β2
α
)

, respectively. In chapter Priors (page 34), we consider

priors that fulfill the condition of Equation (3.12).

Second, we consider the lines β1 = ν − β0 with ν ∈ [0, 1]. As visualized in Figure 3.1, the unified

generative-discriminative learning principle results in the GDT and the PGDT principle for ν = 1 and

ν = 0.5, respectively. Using β2 ∈ (0, 1) and the condition of Equation (3.12) with ξ = β2

1−β2
, we find

that Equation (3.10a) can be written as

λ̂ = argmax
λ

[
P
(
C D, λ

) β0
1−β2 · P

(
C,D λ

) β1
1−β2 ·Q

(
λ α

) β2
1−β2

]
(3.13a)

= argmax
λ

[
P
(
C D, λ

) β0
1−β2 · P

(
C,D λ

) β1
1−β2 ·Q

(
λ β2

1−β2
· α
)]

. (3.13b)

The second equation is equivalent to Equation (3.9a), stating that, for each β2, each point on the line

β1 = (1−β2)−β0 corresponds to a specific instance of the PGDT principle with prior Q
(
λ β2

1−β2
· α
)

.

Using this result, the unified generative-discriminative learning principle allows an in-depth analysis

of the PGDT principle using different priors.

Finally, we consider a second interpretation of the unified generative-discriminative learning prin-

ciple. The last two terms of the Equation (3.10a) consisting of the weighted likelihood and the
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Figure 3.2: Illustration of the unified generative-discriminative learning principle. The figure shows
a projection of the simplex β onto the (β0, β1)-plane for a conjugate prior that satisfies the condition
of Equation (3.12). Each point on the abscissa (β0-axis) and ordinate (β1-axis) refers to the MSP

and the MAP principle, respectively, using the prior in a weighted version Q
(
λ β2

1−β2
α
)

. The simplex

colored in gray corresponds to the MSP principle using the weighted posterior Q
(
λ β1

β0
α̃
)

as prior for

the parameter vector λ.

weighted prior might be interpreted as a weighted posterior. Using the assumption of conjugacy

(Equation (3.5)), the condition of Equation (3.12), and β0, β1, β2 ∈ R+, we obtain

λ̂ = argmax
λ

P (C D, λ
)
·

[
P
(
C,D λ

)
·Q
(
λ α

) β2
β1

] β1
β0

 (3.14a)

(3.12)
= argmax

λ

[
P
(
C D, λ

)
·
[
P
(
C,D λ

)
·Q
(
λ β2

β1
α
)] β1

β0

]
(3.14b)

(3.5)
= argmax

λ

[
P
(
C D, λ

)
·Q
(
λ α̃

) β1
β0

]
(3.14c)

(3.12)
= argmax

λ

[
P
(
C D, λ

)
·Q
(
λ β1

β0
α̃
)]

(3.14d)

stating that each point on the simplex can be interpreted as MSP principle with an informative prior

Q
(
λ β1

β0
α̃
)

composed of the likelihood and the original prior. Interestingly, the interpretation of each

point of the simplex as instance of the MSP principle using the weighted posterior as prior remains

valid even for priors that do not fulfill these conditions. Figure 3.2 visualizes these results. In chapter

Comparison of learning principles (page 50), we will apply the different learning principles to biological

data.
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3.1.3 Optimization

After presenting the objective functions for different learning principles, we consider the task of de-

termining the optimal parameter vector from the objective functions.

Using the assumption of i.i.d. sequences in Equations (3.3b) and (3.4c), and the assumption of

independence between the parameters of the classes, the entire optimization task for the ML and the

MAP principle can be reformulated in terms of class-specific optimization tasks that allow to infer

the parameters of the foreground and the background class separately

logP
(
λ C,D, α

)
=

N∑
n=1

logP
(
cn λC

)
+
∑
c∈C

N∑
n=1

δc,cn · logP
(
xn cn, λc

)
, (3.15a)

logQ
(
λ α

)
= logQ

(
λC αC

)
+
∑
c∈C

logQ
(
λc αc

)
, (3.15b)

where λC and αC denote the parameter vector and hyper-parameter vector of the classes C, respectively.

In close analogy, λc and αc denote the parameter vector and hyper-parameter vector of class c. For

several simple models like Markov models, the generative learning principles amount to computing

smoothed relative frequencies of nucleotides and oligonucleotides [Staden, 1984, Stormo et al., 1982,

Zhang and Marr, 1993].

While the generative learning principles often lead to analytic solutions for simple models such

as Markov models, one must use numerical optimization procedures for the discriminative learning

principles and thus also for the unified generative-discriminative learning principle. If the conditional

likelihood, the likelihood, and the prior are log-convex functions, we can use any numerical algorithm

to determine the global optimal parameter λ̂. Different numerical methods including steepest descent,

conjugate gradient, quasi-Newton methods, and limited-memory quasi-Newton methods have been

evaluated in [Wallach, 2002].

In close analogy to [Bouchard and Triggs, 2004], we must choose β a-priorily for the unified

generative-discriminative learning principle, since β cannot be learned from the data directly via

numerical optimization and it is not obvious which values should be chosen. Hence, we compute the

results for a grid of given values, which allows to get an impression of the performance for the whole

simplex β.

3.2 Classification measures

For the comparison of classifiers, we need measures for evaluating their performance. During

the last decade, several measures have been proposed and used in different applications. While

[Baldi et al., 2000] give an excellent review about different classification measures, we concentrate

on an important subset of measures for binary classifiers only. Almost all of these measures can be

defined using a confusion matrix as shown in Table 3.2. The matrix contains the number of obser-

vations for each combination of predicted class and real class, defining the values true positives, false
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predicted class
positive negative

real class
positive TP ≡ true positives FN ≡ false negatives
negative FP ≡ false positives TN ≡ true negatives

Table 3.2: Confusion matrix for two classes.

negatives, false positives, and true negatives.

Based on such a confusion matrix, a number of measures has been defined:

• sensitivity: Sn = TP
TP+FN

• specificity: Sp = TN
TN+FP

• false positive rate: fpr = FP
TN+FP = 1− Sp

• positive predictive value: ppv = TP
TP+FP

For a comparison of classifiers, we have to compare the values of these measures. Often, it is not

obvious which classifier is best if the values of these measures are very different, as for instance, for

one classifier with a high Sn and a low Sp, and for another classifier with a low Sn and a high Sp.

For this reason, one evaluates the classifiers using some constraints on the threshold T , e.g., for each

classifier, we evaluate the Sn for a given Sp of 99.9% [Ben-Gal et al., 2005], the fpr for a given Sn of

95% [Castelo and Guigo, 2004], or the ppv for a given Sn of 95%. Nevertheless, comparing classifiers

based only on these scalar measures might be problematic since for different values of T the results

might differ.

Besides these scalar measures, two characteristic curves have been proposed for the evaluation of

classifiers by varying the threshold T : on the one hand, the receiver operating characteristic (ROC)

curve [Metz, 1978, Fawcett, 2004], which shows the Sn on the abscissa and the fpr on the ordinate, and

on the other hand, the precision recall (PR) curve [Raghavan et al., 1989, Davis and Goadrich, 2006],

which depicts the ppv on the abscissa and Sn on the ordinate. We obtain the curves by interpolating

between the points obtained from varying the threshold T (Equation (3.2b)). This interpolation

is done on the underlying confusion matrices for the points. While in case of the ROC curve, the

interpolation between two neighboring points is linear, the interpolation for the PR curve is often

non-linear [Davis and Goadrich, 2006].

The ROC curve has a long tradition in bioinformatics, whereas the PR curve becomes more and

more interesting for unbalanced classification problems, i. e., if sequences of one class occur much

more frequent than sequences of the other class [Sonnenburg et al., 2006, Sonnenburg et al., 2007,

Abeel et al., 2009]. The visual comparison of curves is not always manageable, for instance, it might

be challenging to compare a large number of classifiers. In this case, it is helpful to aggregate a curve

into single scalar measure by computing the area under the curve (auc). A perfect classifier has the

value 1 for both measures, auc-ROC as well as auc-PR. While it is often desired to have a scalar
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measure for an easy comparison, the auc might sometimes be misleading, since it integrates over the

complete curve using also parts of the curve that are not of high interest [Sonnenburg et al., 2006].

Due to the disadvantages of the different scalar measures, often a combination of measures is used

to evaluate the performance of classifiers depending on the problem at hand. For this reason, we will

use subsets of these measures in chapters Comparison of learning principles (page 50), Donor splice site

recognition in Caenorhabditis elegans (page 68), and Discriminative de-novo motif discovery utilizing

positional preference (page 92) in different practical applications for assessing the general quality of

the obtained classifiers.
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Probabilistic models for DNA

sequences

In this chapter, we introduce several probabilistic models for DNA sequences, which can be used in

classifiers and which will be applied in the chapters Comparison of learning principles (page 50), Donor

splice site recognition in Caenorhabditis elegans (page 68), Recognition of human transcription start

sites (page 72), Computational reassessment of transcription factor binding site annotations (page 82),

and Discriminative de-novo motif discovery utilizing positional preference (page 92). Probabilistic

models differ in the features they use to score a sequence. For each modelM, we provide the likelihood

PM
(
c, x λ

)
and a parameterization λ that can be used easily for any learning principle introduced in

section Learning principles (page 10) of the previous chapter. In chapter Priors (page 34), we provide

for each model the prior QM
(
λ α

)
, which allows to learn the model parameters in a Bayesian way

using MAP, MSP, or the unified generative-discriminative learning principle.

We distinguish two types of models that will be described in more detail later.

• Models that are capable of scoring sequences of arbitrary length such as homogeneous Markov

models. These models can be used for sequences that are no BS as for instance flanking sequences

of BS.

• Models that are capable of scoring only sequences of fixed length as for instance position weight

matrix models, weight array matrix models, and higher order inhomogeneous Markov models.

These models are used for BS data.

Additionally, we define models that are capable scoring the length of a sequence x instead of the

symbols of sequence. On the basis of these simple models, we can build more complex models, which

we describe in the section Composite models (page 30).

4.1 Models for sequences with arbitrary length

In this section, we briefly introduce models that are capable of scoring sequences of arbitrary length.

Specifically, we consider two families of models. First, we consider homogeneous Markov models,

which assume that each nucleotide is conditionally statistically independent of all other nucleotides

given a number of preceding nucleotides. Second, we consider cyclic Markov models, which assume
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that each nucleotide is conditionally statistically independent of all other nucleotides given a number

of preceding nucleotides and the period in the position of the nucleotides.

For both model families, the preceding nucleotides used to score the current nucleotide are denoted

as context and the length of the context is denoted as order h of the model. Furthermore, we use that

the likelihood can be written as

PM
(
c, x λ

)
= P

(
c λ
)
· PM

(
x c, λ

)
, (4.1)

and we specify each model by PM
(
x c, λ

)
.

4.1.1 Homogeneous Markov models

Homogeneous Markov models (hMMs) assume that each nucleotide is conditionally statistically inde-

pendent of all other nucleotides given a number of preceding nucleotides. For this reason, hMMs are

often used for non-coding sequences such as upstream or downstream sequences of genes, 3′ and 5′

untranslated regions, non-coding exons, and introns. In the rest of this work, we denote a hMM of

order h by hMM(h), which is defined by the conditional probability of sequence x given class label c

and the parameter vector λ

P hMM(h)
(
x c, λ

)
:=

L∏
`=1

P hMM(h)
(
x` xmax{1,`−h},...,`−1, c, λ

)
. (4.2)

Following [MacKay, 1998], we define each conditional distribution with context a ∈ Σk, k ∈ [0, h] and

b ∈ Σ using the parameter vector λc,a := (λc,a,A, λc,a,C , λc,a,G, λc,a,T )

P hMM(h)
(
b a, c, λ

)
:=

exp
(
λc,a,b

)∑
b̃∈Σ exp

(
λc,a,b̃

) . (4.3)

The parameter vector λ of the model consists of all parameters λc,a with a ∈ Σk and k ∈ [0, h].

4.1.2 Cyclic Markov models

In contrast to homogeneous Markov models, cyclic Markov models (cMMs) assume that each nu-

cleotide is conditionally statistically independent of all other nucleotides given a number of preceding

nucleotides and a period in the position of the nucleotides. We denote a cMM of order h and period p

by cMM(h, p). Often cMMs with period p = 3 are used for coding DNA sequences due to the genetic

code that uses tri-nucleotides, so-called codons.

As the frame of a sequence is often not known, the conditional probability of sequence x given
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class label c is defined as a weighted sum of all possible frames

P cMM(h,p)
(
x c, λ

)
:=

p∑
q=1

P cMM(h,p)
(
q c, λ

)
·
L∏
`=1

P cMM(h,p)
(
x` π(`, q), xmax{1,`−h},...,`−1, c, λ

)
,

(4.4)

where

π(`, q) := ((`+ q) mod p) + 1, (4.5)

denotes the current frame at position ` when starting in frame q and where P cMM(h,p)
(
q c, λ

)
denotes

the probability of starting in frame q. In close analogy to Equation (4.3), we define the conditional

probabilities as

P
(
q c, λ

)
:=

exp (λc,q)∑p
q̃=1 exp (λc,q̃)

(4.6a)

and

P
(
b q, a, c, λ

)
:=

exp
(
λc,q,a,b

)∑
b̃∈Σ exp

(
λc,q,a,b̃

) (4.6b)

with q ∈ [1, p], a ∈ Σk and k ∈ [0, h], and b ∈ Σ. The parameter vector λ of the model consists of

all parameters λc,m := (λc,1, . . . , λc,p), and λc,q,a := (λc,q,a,A, λc,q,a,C , λc,q,a,G, λc,q,a,T ) with q ∈ [1, p]

and a ∈ Σk with k ∈ [0, h].

4.2 Models for sequences with fixed length

In this section, we introduce models that are capable of scoring only sequences of a predefined fixed

length. All models that we introduce in the following are so-called graphical models.

Graphical models, which combine probability theory and graph theory, are statistical models where

random variables are represented by nodes of a graph and in which the dependency structure of the

joint probability distribution is represented by edges [Jordan, 2004]. The nodes in the graph represent

random variables X` having realizations denoted by x`. Edges between nodes represent potential

statistical dependencies between the corresponding random variables, while missing edges between

nodes represent conditional independences of the associated random variables.

Graphical models can be categorized into directed acyclic graphical models called Bayesian

networks and undirected graphical models called Markov random fields (MRFs) with a non-

empty intersection called moral Bayesian networks (mBNs) [Castelo, 2002]. Many models cur-

rently used in bioinformatics belong to the family of moral Bayesian networks such as the
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Figure 4.1: Relation of Bayesian networks and Markov random fields. The figure shows the families of
Bayesian Networks (BNs) and Markov random fields (MRFs) with the non-empty intersection of moral
Bayesian networks (mBNs). The intersection contains, for instance, position weight matrix (PWM)
models, weight array matrix (WAM) models, Bayesian trees (BTs), as well as inhomogeneous Markov
models (iMMs) and permuted Markov models (pMMs) of higher order.

position weight matrix (PWM) models [Stormo et al., 1982, Staden, 1984, Kel et al., 2003], the

weight array matrix (WAM) models [Zhang and Marr, 1993, Salzberg, 1997a, Segal et al., 2006], in-

homogeneous Markov models (iMMs) of higher order [Yakhnenko et al., 2005], permuted Markov

models [Zhao et al., 2005], Bayesian trees [Cai et al., 2000], and their variable order exten-

sions [Ben-Gal et al., 2005]. Nevertheless, some of the used models belong to the family of MRFs

but not to the family of moral Bayesian networks [Yeo and Burge, 2004]. Figure 4.1 visualizes this

situation.

For each model M in this section, we define its likelihood based on some non-negative scoring

function sM
(
c, x λ

)
. The likelihoods are then defined as

PM
(
c, x λ

)
:=

sM
(
c, x λ

)
ZM (λ)

(4.7)

and

PM
(
x c, λ

)
:=

ZMc (λ)

ZM (λ)
, (4.8)

with the partial class normalization constant

ZMc (λ) :=
∑
x

sM
(
c, x λ

)
, (4.9)
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where the sum runs over all possible sequences, and with the normalization constant

ZM (λ) :=
∑
c∈C

ZMc (λ) . (4.10)

Here, we use a global normalization of the score which has some desirable properties that we describe

later, whereas we use a local normalization of the score for models that are capable of handling

sequences of arbitrary length. For the latter models a global normalization is impossible since the

global normalization constant is infinite for an infinite space of sequences x. For simplicity of notation,

we use Σ = {1, . . . , |Σ|} and C = {1, . . . , |C|} in this section.

4.2.1 Moral Bayesian networks

For Bayesian networks, the underlying structure is a directed acyclic graph (DAG). In this case, the

edges are directed from the parent nodes to their children. We denote by Pa (`) the vector of parents

of node ` representing random variable X`, and we denote by pa (`, x) the realizations of the parents

Pa (`) in sequence x.

In this work, we consider models with a given graph structure τ , such that all parents of each

node are pre-determined, as for instance the PWM model in which each node has no parents, the

WAM model in which each node has only its preceding node as parent, and iMMs of order h in

which the parents of each node are the h preceding nodes. Inhomogeneous Markov models of order

0 (iMM(0)) or of order 1 (iMM(1)) are therefore a PWM model or an WAM model, respectively. To

simplify notation in the following derivations, we assume the same graph structure for the models of

all classes. The extension to models with different graph structures as well as to position-dependent

alphabets is straightforward.

A Bayesian network is called a moral Bayesian network iff its DAG is moral. A DAG is said

to be moral iff for each node ` each pair of its parents (ρ1, ρ2), ρ1 6= ρ2, is connected by an

edge [Castelo, 2002]. When considering the parents Pa (`) of a node ` in a moral Bayesian net-

work, we can order the nodes in Pa (`) uniquely according to the topological ordering within the set

Pa (`). We denote a moral Bayesian network with graph structure τ by mBN(τ).

With these prerequisites, the likelihood of a directed graphical model with the commonly used

parameters θ is defined by

P
mBN(τ)
θ

(
c, x θ

)
:= θc ·

L∏
`=1

θc,`,x`,pa(`,x), (4.11)

where θc denotes the probability of class c, and θc,`,x`,pa(`,x) denotes the probability of observing x`

at X` for class c given the observations pa (`, x) at the random variables represented by the nodes

Pa (`) [Heckerman et al., 1995]. The parameter vector θ consists of the subvectors θC and θc,`,a for

` ∈ [1, L] and a ∈ Σ|Pa(`)| where θC := (θ1, . . . , θ|C|) and θc,`,a := (θc,`,1,a, . . . , θc,`,|Σ|,a). The following

constraints together with the non-negativity of the θ-parameters ensure that described subvectors of
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θ remain on simplices,

∑
c∈C

θc = 1⇔ θ|C| = 1−
|C|−1∑
c=1

θc (4.12a)

∑
b∈Σ

θc,`,b,a = 1⇔ θc,`,|Σ|,a = 1−
|Σ|−1∑
b=1

θc,`,b,a. (4.12b)

It follows from these constraints that not all parameters of θ are free parameters: If the

values of θ1, θ2, . . . , θ|C|−1 are given, the value of θ|C| is determined, and if the values of

θc,`,1,a, θc,`,2,a, . . . , θc,`,|Σ|−1,a are given, the value of θc,`,|Σ|,a is determined.

While for generative learning principles the parameters can be determined analytically for many

statistical models including moral Bayesian networks, no analytical solution is known for most of the

popular models in case of the MCL or the MSP principle, and the unified generative-discriminative

learning principle. Hence, we must resort to numerical optimization techniques like conjugate gradients

or second-order methods [Wallach, 2002]. Unfortunately, the parameterization of directed graphical

models in terms of θ causes two problems in case of numerical optimization:

1. The limited domain, which is [0, 1] for probabilities, must be assured, for instance, by barrier

methods.

2. Neither the conditional likelihood P
mBN(τ)
θ

(
c x, θ

)
nor its logarithm are concave functions

of θ, so numerical optimization procedures may get trapped in local maxima or saddle

points [Wettig et al., 2002].

Hence, the likelihood of moral Bayesian networks is often defined in terms of alternative pa-

rameters λ, which are closely related to the natural parameters of MRFs [Berger et al., 1996,

Klein and Manning, 2003] and prevent from these problems. We define the scoring function as

s
mBN(τ)
λ

(
c, x λ

)
:= exp

(
λc +

L∑
`=1

λc,`,x`,pa(`,x)

)
, (4.13)

and we define the likelihood using Equation (4.7) as

P
mBN(τ)
λ

(
c, x λ

)
:=

exp
(
λc +

∑L
`=1 λc,`,x`,pa(`,x)

)
ZmBN(τ)(λ)

. (4.14)

Similar to the θ-parameters, we have one parameter λc ∈ R for each class c ∈ C, and one parameter

λc,`,b,a ∈ R for each class c and each symbol b at X` given the observation a at random variables

represented by the nodes Pa (`). However, in contrast to θ, these parameters cannot be interpreted

directly as probabilities.

As for the θ-parameters, not all parameters of λ are free. In case of λ-parameters, we may fix one

of the parameters in each subset, i. e., one of the λc and one of the λc,`,b,a for each c ∈ C, ` ∈ [1, L],
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and a ∈ Σ|Pa(`)| to a constant value without reducing the codomain of s
mBN(τ)
λ

(
c, x λ

)
, resulting in

the same number of free parameters for θ and λ. We choose to fix the last parameter in each subset

arbitrarily to 0, i. e.,

λ|C| = 0 and λc,`,|Σ|,a = 0. (4.15)

In order to show that the likelihoods in the Equations (4.11) and (4.14) are equivalent, we need a

bijective mapping from θ to λ. The mapping from θ to λ is defined by [Meila-Predoviciu, 1999]

λc = log

(
θc
θ|C|

)
(4.16a)

and

λc,`,b,a = log

(
θc,`,b,a
θc,`,|Σ|,a

)
. (4.16b)

However, the mapping t from λ to θ is non-trivial. We denote by θc := [t(λ)]c the component of t

defining θc, and we denote by θc,`,b,a := [t(λ)]c,`,b,a the component of t defining θc,`,b,a. We obtain t

by marginalization of Equation (4.14)

[t(λ)]c =
exp (λc)Z

mBN(τ)
c (λ)

ZmBN(τ)(λ)
=

exp (λc)Z
mBN(τ)
c (λ)∑

c̃∈C exp (λc̃)Z
mBN(τ)
c̃ (λ)

(4.17a)

and

[t(λ)]c,`,b,a =
exp

(
λc,`,b,a

)
Z

mBN(τ)
c,`,b,a (λ)∑

b̃∈Σ exp
(
λc,`,b̃,a

)
Z

mBN(τ)

c,`,b̃,a
(λ)

, (4.17b)

where Z
mBN(τ)
c (λ) and Z

mBN(τ)
c,`,b,a (λ) are two partial normalization constants defined as marginalization

of Equation (4.10). While the partial class normalization constant Z
mBN(τ)
c (λ) is defined in Equa-

tion (4.9), the partial node normalization constant Z
mBN(τ)
c,`,b,a (λ) of class c and node ` given the context

a has to be defined. These partial normalization constants are defined in close analogy to the partial

class normalization constant by summing over all possible realizations of the random variables in the

subgraph under node ` given the observation X` = b and given the observations Pa (`) = a. For

shortness of notation, we define the partial transformation constants recursively. If node ` of the DAG

τ of class c is a leaf, we define

Z
mBN(τ)
c,`,b,a (λ) := 1. (4.18a)

Otherwise, following directly from the definition of a moral graph, node ` is parent of at least one

other node k whose parents are ` and a subset of Pa (`). We denote this non-empty set of nodes by
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K. For each node k ∈ K the realization of its parent nodes can be obtained directly from b and a

following the definition of a moral Bayesian network. We define a specific selection function rk(b, a)

that returns the realizations of Pa (k) given b and a. The partial node normalization constant is then

defined by

Z
mBN(τ)
c,`,b,a (λ) :=

∑
k∈K

∑
d∈Σ

exp
(
λc,k,d,rk(b,a)

)
· ZmBN(τ)

c,k,d,rk(b,a)(λ). (4.18b)

4.2.2 Markov random fields

Markov random fields (MRFs) are undirected graphical models, i. e., the underlying structure is an

undirected graph. Again, edges between nodes model potential statistical dependencies between the

random variables represented by these nodes, while the absence of edges between nodes represents

conditional independences of the associated random variables given their neighboring nodes. The undi-

rected graph structure of an MRF is determined by indicator functions f := (f
1
, . . . , f |C|) where f

c
:=

(fc,1, . . . , f c,|f
c
|) denote the indicator functions of the class c. An indicator function fc,i(x) determines

whether the parameter λc,i is used for sequence x [Berger et al., 1996, Klein and Manning, 2003]. We

denote an MRF with indicator functions f by MRF(f). The likelihood of MRF(f) in terms of λ-

parameters is defined by

PMRF(f)
(
c, x λ

)
=

exp
(
λc +

∑|f
c
|

i=1 λc,i · fc,i(x)
)

ZMRF(f)(λ)
. (4.19)

For illustration purposes, we rewrite the likelihood of a mBN in analogy to the MRF likelihood.

Hence, we rewrite the likelihood of Equation (4.14) in terms of Kronecker symbols δ,

PmBN(τ)
(
c, x λ

)
=

exp
(
λc +

∑L
`=1

∑
b∈Σ

∑
a∈Σ|Pa(`)| λc,`,b,a · δx`,bδpa(`,x),a

)
ZmBN(τ)(λ)

. (4.20)

Renaming the parameters in terms of λc,i and defining the indicator functions fc,i as corresponding

Kronecker symbols, we obtain the likelihood in form of Equation (4.19).

Proofing that the chosen parameterization is reasonable, we present proofs that the likelihood

and the conditional likelihood of one labeled sequence are log-convex function. For the proof of the

log-convexity of the likelihood, we make use of

ZMRF(f)

(
1λ+ 2λ

2

)
≤

√√√√ 2∏
j=1

ZMRF(f)(jλ), (4.21)

which we obtain using the Cauchy-Schwarz inequality. We obtain the log-convexity of the likelihood

27



Chapter 4. Probabilistic models for DNA sequences

by showing the midpoint convexity of the logarithm of the likelihood using the vectors 1λ and 2λ,

logPMRF(f)
(
c, x

1λ+2λ
2

)
=

1

2

2∑
j=1

jλc +

|f
c
|∑

i=1

jλc,ifc,i(x)− logZMRF(f)

(
1λ+ 2λ

2

)
. (4.22a)

Using Equation (4.21), we obtain

≥ 1

2

2∑
j=1

jλc +

|f
c
|∑

i=1

jλc,ifc,i(x)− logZMRF(f)
(
jλ
) (4.22b)

≥ 1

2

2∑
j=1

logPMRF(f)
(
c, x jλ

)
. (4.22c)

Similarly, we present a proof for the log-convexity of the conditional likelihood.

logPMRF(f)
(
c x,

1λ+2λ
2

)
=

1

2

2∑
j=1

|f
c
|∑

i=1

jλc,ifc,i(x)− log
∑
c̃∈C

exp

1

2

2∑
j=1

jλc̃ +

|f
c̃
|∑

i=1

jλc̃,i · fc̃,i(x)


(4.23a)

Using the Cauchy-Schwarz inequality in close analogy to Equation (4.21), we obtain

≥ 1

2

2∑
j=1

|fc|∑
i=1

jλc,ifc,i(x)− log
∑
c̃∈C

exp

jλc̃ +

|f
c̃
|∑

i=1

jλc̃,i · fc̃,i(x)

 (4.23b)

≥ 1

2

2∑
j=1

logPMRF(f)
(
c x, jλ

)
(4.23c)

The log-convexity of the likelihood and conditional likelihood of an MRF allow to optimize the param-

eters using the ML or the MCL principle by any numerical optimization algorithm without getting

stuck in saddle points or local optima. In chapter Priors (page 34), we consider a convex prior for

MRFs allowing to state the same for the MAP and the MSP principle, as well as the generative-

discriminative learning principle.

4.3 Models for sequence length

In this section, we introduce models, which are capable of scoring the length of a sequence. That is,

instead of using the nucleotides of a sequence only the length of the sequence is used to determine

the likelihood. For this reason, we present the conditional probability PM
(
` c
)

for all models of

this section. Models that score the sequence length are often used to assess the distance between two

features of the DNA, as for instance a TFBS and the TSS, and are therefore part of many models
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defined in section Composite models (page 30).

The simplest model capable of scoring the sequence length is a uniform distribution for a

fixed interval [L0, L1] ⊂ N with ∆ := L1 − L0 + 1 > 0, which has been used in many de-

novo motif discovery tools [Lawrence and Reilly, 1990, Bailey and Eklan, 1994, Favorov et al., 2005,

Redhead and Bailey, 2007, Linhart et al., 2008]. This model is defined by the conditional probability

P uni
(
` c
)

:=
1

∆
, (4.24)

with ` ∈ [L0, L1] and has no free parameter. For this reason, we do not give a parameter prior for

this model in chapter Priors (page 34). Similarly, it is also possible to use any user-specified but fixed

model for the sequence length to include some prior knowledge [Thompson et al., 2003].

In contrast to this simple model, it is also possible to use models capable of learning the se-

quence length distribution from the data, as for instance, a Gaussian distribution [Ao et al., 2004,

Kim et al., 2008]. In the next subsection, we introduce a flexible model that includes the Gaussian

distribution as a special case.

4.3.1 Skew normal models

The Gaussian distribution is a continuous, symmetric distribution with two parameters, which are

related to the mean µ and the standard deviation σ of the distribution. In contrast, the skew nor-

mal distribution, which is an extension of the Gaussian distribution, allows to have an asymmetric

distribution [Azzalini, 1985]. The density of this continuous distribution is defined as

d
(
` µ, σ, γ

)
:=

1√
2π

exp

(
−0.5 ·

[
`− µ
σ

]2
)
· Φ
(
η · `− µ

σ

)
(4.25)

with the parameters µ, η ∈ R, σ ∈ R+, and where Φ denotes the cumulative distribution of the

standard Gaussian distribution. The parameters µ and σ are related to the mean and standard

deviation of the distribution, whereas η is related to the skewness of the distribution, but also affects

the mean and the standard deviation. For η = 0, we obtain the Gaussian distribution with mean µ

and standard deviation σ. For σ →∞, we obtain a uniform distribution.

Based on this density, we define a skew normal model as a discrete distribution over a fixed interval

[L0, L0 + ∆− 1] based on the scoring function

sskew
(
` λ
)

:= exp
(
−0.5 · g (`, λc,0, exp (−0.5λc,1))

2
)
· Φ (λc,2 · g (`, λc,0, exp (−0.5λc,1))) (4.26a)

with the auxiliary function

g (`, λc,0, σ̃) :=
`−

[
L0 + ∆ ·

[
0.01λc,0 +

exp(λc,0)
1+exp(λc,0)

]]
σ̃

, (4.26b)
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and the model parameters λ = (λc,0, λc,1, λc,2) ∈ R3, where λc,0 is related to µ, λc,1 is related to σ,

and λc,2 is related to η. The conditional probability P skew
(
` c
)

of the model is defined as

P skew
(
` c, λ

)
:=

sskew
(
` λ
)

Zskew
c (λ)

(4.27a)

with the normalization constant

Zskew
c (λ) :=

L1∑
l=L0

sskew
(
` λ
)
. (4.27b)

4.4 Composite models

In this section, we introduce composite models, which are based on the models of the previous sections.

Composite models can be used for a great variety of applications ranging from classification of DNA

sequences over database curation to de-novo motif discovery, which we discuss in the following chapters.

For each composite model, we present the conditional probability PM
(
x c, λ

)
and the parameters λ.

For shortness of notation, we omit class c in this section yielding the more compact form PM
(
x λ
)

.

The first three models that we introduce, namely mixture model, strand model, and extended

ZOOPS model, are quite similar in the way the parameters of the models are composed. For this

reason, we keep the specific subsections short.

4.4.1 Mixture models

Mixture models are composite models which assume that the data of one class is generated by a

number of processes instead of only one specific process. We denote a mixture model with component

models M by mix(M), which is defined by the conditional probability

Pmix(M)
(
x λ
)

:=

|M|∑
u=1

Pmix(M)
(
u λm

)
· PMu

(
x λ(Mu)

)
(4.28)

where the probability of process u denoted by Pmix(M)
(
u λm

)
is defined in close analogy to Equa-

tion (4.3) as

Pmix(M)
(
u λm

)
=

exp (λm,u)∑|M|
i=1 exp (λm,i)

(4.29)

and λ consists of the parameters of the component probabilities λm := (λm,1, λm,2, . . . , λm,|M|) and

the parameters of the component models λ(Mu) for u ∈ [1, |M|].
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4.4.2 DNA Strand models

Because TFs bind to double-stranded DNA, the strand annotation of non-palindromic BSs is important

for estimating the parameters of a model. In many cases, as for instance de-novo motif discovery, this

annotation is unknown and has to be learned from the data. For this reason, we define a strand model

based on any motif modelM with parameters λ(M), which scores BSs on both strands as a mixture of

two components. One component models the BS as located on the forward strand, whereas the other

component models the BS on the reverse complementary strand, yielding the conditional probability

P strand(M)
(
x λ
)

:= P strand(M)
(
u = 0 λm

)
· PM

(
x λ(M)

)
+ P strand(M)

(
u = 1 λm

)
· PM

(
xRC λ(M)

)
(4.30)

:=
exp (λm,0)∑1
i=0 exp (λm,i)

PM
(
x λ(M)

)
+

exp (λm,1)∑1
i=0 exp (λm,i)

PM
(
xRC λ(M)

)
, (4.31)

where P strand(M)
(
u = 0 λm

)
and P strand(M)

(
u = 1 λm

)
are the probabilities of finding the BS on

the forward or the reverse complementary strand, respectively. The model parameters λ are defined

as λ := (λm, λ
(M)) with λm := (λm,0, λm,1).

4.4.3 Extended ZOOPS models

For de-novo motif discovery, many models and algorithms have been implemented during the

last years. One widely used model is the zero or one occurrence per sequence (ZOOPS)

model [Bailey and Eklan, 1994, Ao et al., 2004, Redhead and Bailey, 2007, Kim et al., 2008], which

allows each sequence to contain at most one BS of one type of motif. Here, we extend the ZOOPS

model by allowing different types of motifs for the BSs. We call this model extended zero or one

occurrence per sequence (eZOOPS). The eZOOPS model is defined based on two hidden variables:

• The variable u1 handles the possibility that a sequence does not contain a BS. u1 = 0 denotes

the case that the sequence contains no BS, and u1 > 0 denotes the case that the sequence

contains exactly one BS of motif type u1. If the sequence contains one BS, it can be located at

any position.

• The variable u2 handles the start position of a BS in the sequence given that u1 > 0.

For shortness of notation, we define u := (u1, u2). Based on any vector of motif models M with

motif lengths w, any vector of start position distributions S, and any flanking sequence model F the

hidden values of u lead to the conditional probability

P eZOOPS(M,S,F)
(
x λ
)

:=
∑
u

P eZOOPS(M,S,F)
(
u λ
)
· P eZOOPS(M,S,F)

(
x u, λ

)
, (4.32)

where the sum runs over all possible values of u, and where λ := (λm, λ
(M), λ(S), λ(F)). Here, we

denote the vector of motif model parameters by λ(M), and we denote the vector of position distribution
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parameters by λ(S). The probability P eZOOPS(M,S,F)
(
u λ
)

is defined as

P eZOOPS(M,S,F)
(
u λ
)

:= P eZOOPS(M,S,F)
(
u1 λm

)
· P eZOOPS(M,S,F)

(
u2 u1, λ

(S)
)

(4.33a)

with

P eZOOPS(M,S,F)
(
u2 u1, λ

(S)
)

:=

1 , if u1 = 0

PSu1
(
u2 λ

(Su1 )
)

, otherwise
. (4.33b)

If the sequence x contains no BS, i. e., if u1 = 0, it is assumed that x is generated by F

P eZOOPS(M,S,F)
(
x u1 = 0, λ

)
:= PF

(
x λ(F)

)
. (4.34a)

If the sequence x contains a BS, i. e., if u1 > 0, then it is assumed that the nucleotides upstream and

downstream of the BS are generated by F , while the BS is generated by Mu1
. This yields

P eZOOPS(M,S,F)
(
x u1, u2, λ

)
:= PF

(
x1,...,u2−1 λ

(F)
)

· PMu1

(
xu2,...,u2+wu1−1 λ

(Mu1
)
)

· PF
(
xu2+wu1 ,...,L

λ(F)
)
. (4.34b)

If the BSs of motif u1 > 0 can be located on both strands of the DNA, we use a strand model as motif

model Mu1
. If we restrict the number of motifs to one, we obtain the traditional ZOOPS model.

4.4.4 Independent product models

Another way of using more than one model for the data of one class are independent product

models (IPMs). In contrast to mixture models, which assume that each sequence in the data is

generated exactly by one but not necessarily the same process, independent product models assume

that each sequence is generated from the same processes where each process independently generates

a subsequence. For a better understanding, we illustrate independent product models using a small

example. For a sequence of length 20, an independent product model can model the first 10 positions

using model M1 and the last 10 positions using model M2. Of course, other partitions using more

subsequences and different lengths are also possible.

An independent product model IPM(M, w, ζ) is defined by a vector of models M, a vector of

lengths w, and an assignment vector ζ. The assignment vector ζ allows to use a model for more than

one subsequence. Let

o(i) :=

i−1∑
j=1

wζj =

0 , if i = 1

o(i− 1) + wζi−1
, if i > 1

(4.35)
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be the offset for the ith subsequence, then we define the conditional probability as

P IPM(M,w,ζ)
(
x λ
)

=

|ζ|∏
i=1

PMζi

(
xo(i)+1,...,o(i)+wζi

λ(Mζi
)
)
, (4.36)

where λ := (λ(M1), . . . , λ(M|M|)). Independent product models are well-suited for modeling long

sequences, which are aligned to a specific signal as for instance long sequences of splice sites or

transcription start sites.
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Chapter 5

Priors

In this chapter, we provide for each model M presented in chapter Probabilistic models for DNA

sequences (page 20) a prior QM
(
λ α

)
that allows to learn the model parameters in a Bayesian way

using the MAP principle, the MSP principle, or the unified generative-discriminative learning principle

that have been presented in section Learning principles (page 10).

5.1 Dirichlet density

Equation (4.3) as well as the conditional probabilities of moral Bayesian networks are multinomial

distributions. For this reason, almost all models of the chapter Probabilistic models for DNA se-

quences (page 20), namely hMM(h), cMM(h, p), mBN(τ), mix(M), strand(M), eZOOPS(M,S,F),

and IPM(M, w, ζ), use multinomial distributions. For a multinomial distribution, the Dirichlet density

is a conjugate prior, which is defined by

Dirθ

(
θ α
)

:= Γ (α·)
∏
b∈Σ

θαb−1
b

Γ (αb)
, (5.1)

where α· :=
∑
b∈Σ αb, αb > 0 for b ∈ Σ, and Γ denotes the gamma function.

As mentioned in subsection Moral Bayesian networks (page 24), the θ-parameters have two main

disadvantages, namely the constraints on the parameters and the non-concavity of the conditional

likelihood or its logarithm [Wettig et al., 2002]. For this reason, alternative parameterizations have

been developed. In the next two subsections, we address two alternative parameterizations where we

denote the hyper-parameter of each parameter by α using the same indices as for the parameter, for

instance we denote the hyper-parameter for the parameter λb by αb.

5.1.1 Dirichlet prior using softmax basis

For avoiding the first disadvantage, namely the constraints on the parameters, one can use the pa-

rameterization presented in Equation (4.3). Based on this parametrization and the corresponding

transformation t from λ to θ, the Dirichlet density in Equation (5.1) is transformed into a Dirichlet

density using softmax basis [MacKay, 1998]. Both densities are connected by integration via substi-

tution,

Qλ

(
λ α

)
= Qθ

(
t(λ) α

)
·
∣∣det t′(λ)

∣∣, (5.2)
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where det (t′(λ)) denotes the Jacobian of transformation function t. Using Equation (5.2) and the

parameterization presented in Equation (4.3), the transformed Dirichlet density is obtained as

Dirλ

(
λ α

)
:=

Γ (α·)[∑
b̃∈Σ exp

(
λb̃
)]α· ∏

b∈Σ

exp (λbαb)

Γ (αb)
. (5.3)

Using this transformed density, a conjugate prior of a hMM(h) in class c is composed as product for

each multinomial distribution

QhMM(h)
(
λc αc

)
:=

h∏
k=0

∏
a∈Σk

Dirλ

(
λc,a αc,a

)
. (5.4)

Analogously, a prior for cMM(h, p) is

QcMM(h,p)
(
λc αc

)
:= Dirλ

(
λc,m αc,m

)
·
p∏
q=1

h∏
k=0

∏
a∈Σk

Dirλ

(
λc,q,a αc,q,a

)
. (5.5)

Furthermore, we use the prior of Equation (5.3), if the class probability is modeled separately, as

for instance in hMM(h), cMM(h, p), and composite models.

Revisiting the two main disadvantages of θ-parameters, we find that there are no constraints for

this parameterization allowing to use unconstrained optimization procedures. However, using the

same example as [Wettig et al., 2002], we can proof that for this parameterization and mBNs still

neither the conditional likelihood nor its logarithm are concave functions, and numerical optimization

procedures may get trapped in local maxima or saddle points.

5.1.2 Product-Dirichlet prior for Markov random fields

The product-Dirichlet prior for moral Bayesian networks has many desirable properties, namely pa-

rameter independence, parameter modularity, likelihood equivalence [Heckerman et al., 1995], and it

is intensively used for the MAP principle. Due to the lack of a suitable parameterization and the

corresponding transformed product-Dirichlet prior, the product-Dirichlet prior has not yet been used

for the MSP principle.

In comparative studies of different models or learning principles, many different priors

have been used in the past [Ng and Jordan, 2002, Pernkopf and Bilmes, 2005, Greiner et al., 2005,

Grau et al., 2007], and their choice seems arbitrary or motivated by technical aspects.

Product-Gaussian and product-Laplace priors are widely used for generatively trained

MRFs [Chen and Rosenfeld, 1999] and discriminatively trained MRFs [Klein and Manning, 2003,

Goodman, 2003]. For the generative MAP principle applied to Markov Models and Bayesian

networks, the most prevalent prior has been the product-Dirichlet prior [Heckerman et al., 1995],

whereas for the discriminative MSP either a product-Gaussian or product-Laplace prior has been em-

ployed [Grau et al., 2007]. In Table 5.1, we summarize the usage of different priors found in literature
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showing that there is no common prior that is used for the MAP and the MSP principle as well as for

mBNs and MRFs.

learning principles
MAP MSP

prior
product-Dirichlet mBN
product-Gaussian MRF mBN, MRF
product-Laplace MRF mBN, MRF

Table 5.1: Established priors for moral Bayesian networks and Markov random fields. While product-
Gaussian and product-Laplace prior are used for MRFs for the MAP and the MSP principle, for mBNs
these priors are only used for the MSP principle. The product-Dirichlet prior of mBNs, which has
many desirable properties, is only used for the MAP principle.

These different priors render any conclusions regarding the superiority of one model or learning

principle over the others questionable, because the differing influences of these priors are entirely

neglected. Hence, when comparing generatively and discriminatively trained Markov models, Bayesian

networks, and MRFs, in many occasions apples are compared to oranges by using different priors.

Motivated by this lack of consistency, we aim at establishing a common prior that can

be used for moral Bayesian networks as well as for MRFs [Keilwagen et al., 2010b] and that

can be used for all Bayesian learning principles presented in section Learning principles

(page 10) [Keilwagen et al., 2010c]. For deriving the desired prior, we start with moral Bayesian

networks using the conjugate product-Dirichlet prior, which we transform and finally generalize for

the usage as a prior for MRFs.

Priors for moral Bayesian networks

For the parameter training using the Bayesian learning principles, we need to specify a prior on the

parameters of the model. One conjugate prior for the likelihood of directed graphical models and their

specializations is the product-Dirichlet prior Q
mBN(τ)
θ (θ) [Heckerman et al., 1995]. This conjugate

prior uses the assumption of parameter independence and amounts to a product of independent

Dirichlet densities,

Q
mBN(τ)
θ

(
θ α
)

= Dirθ

(
θC αC

)
·
∏
c∈C

L∏
`=1

∏
a∈Σ|Pa(`)|

Dirθ

(
θc,`,a αc,`,a

)
. (5.6)

We use hyper-parameters α that satisfy the consistency condition [Buntine, 1991,

Heckerman et al., 1995], which imposes the following constraints on the hyper-parameters α.

Let αc,x be joint hyper-parameters with x ∈ ΣL and c ∈ C such that for all ` ∈ [1, L], for all b ∈ Σ,

and for all a ∈ Σ|Pa(`)|

αc :=
∑
x∈ΣL

αc,x (5.7a)
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and

αc,`,b,a :=
∑
x∈ΣL

αc,x · δx`,b · δpa(`,x),a . (5.7b)

These constraints ensure that the hyper-parameters α of the product-Dirichlet prior can be interpreted

as, possibly real-valued, counts stemming from a set of a-priorily observed pseudo-data. The size

of the set of pseudo-data is commonly referred to as equivalent sample size (ESS) [Buntine, 1991,

Heckerman et al., 1995], and we denote the ESS of class c by αc.

One of our goals is to derive that prior for λ, which is equivalent to the commonly-used product-

Dirichlet prior for θ in Equation (5.6) allowing a fair comparison of different Bayesian learning prin-

ciples for mBNs based on the same prior knowledge. To this end, we use Equation (5.2) and the

transformation t from λ to θ given in the Equations (4.17a) and (4.17b) to transform the product-

Dirichlet prior Q
mBN(τ)
θ

(
θ α
)

to the desired prior. The Jacobian of the transformation function t can

be derived by exploiting independences between parameters of the model. In the following, we show

the essential steps for the computation of the Jacobian.

The order of the parameters in the parameter vector has no influence on the absolute value of the

Jacobian, so we choose an ordering that simplifies further computation. That is, the first parameters

in the vector are the class parameters followed by the parameters of each class ordered according to

the topological ordering of the corresponding nodes. Using this ordering, the transformation from

λ to θ for a parameter at position k of the parameter vector depends almost only on parameters

at positions greater than k in the parameter vector (Equations (4.17a), (4.17b), (4.9), and (4.18b)).

For this reason, we obtain zero-valued entries for almost all entries of the Jacobian matrix below the

diagonal. The only non-zero entries below the diagonal are located in on-diagonal blocks. In the

following, we rearrange the Jacobian matrix and especially the on-diagonal blocks to obtain an upper

triangular matrix for which the determinant is simply the product of the diagonal elements. Here, we

consider the first on-diagonal block for the class parameters λ1, . . . , λ|C|−1 and the fixed parameter

λ|C|.

We consider the partial derivatives of |C| − 1 parameters that build the first on-diagonal block

B(λ) of the Jacobian matrix,

∂ [t(λ)]c
∂λj

=
exp (λc)Z

mBN(τ)
c (λ)

ZmBN(τ)(λ)2
·

ZmBN(τ)(λ)− exp (λc)Z
mBN(τ)
c (λ) , c = j

− exp (λj)Z
mBN(τ)
j (λ) , c 6= j

. (5.8)

We compute the Jacobian in two steps, which are performed on the complete Jacobian matrix. Since

the results for all elements in off-diagonal blocks do not influence the determinant, we omit these

elements here.
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First, we subtract the first row from all other rows, and we obtain

|detB(λ)| =
|C|−1∏
c=1

exp (λc)Z
mBN(τ)
c (λ)

ZmBN(τ)(λ)2

·

∣∣∣∣∣∣∣∣∣∣∣
det


ZmBN(τ)(λ)−exp(λ1)Z

mBN(τ)
1 (λ) − exp(λ2)Z

mBN(τ)
2 (λ) . . . − exp(λ|C|−1)ZmBN(τ)

|C|−1
(λ)

−ZmBN(τ)(λ) ZmBN(τ)(λ) . . . 0
...

...
. . .

...

−ZmBN(τ)(λ) 0 . . . ZmBN(τ)(λ)



∣∣∣∣∣∣∣∣∣∣∣
.

(5.9a)

Second, we add to the first column all the other columns. We obtain an upper triangular block with

exp
(
λ|C|
)
Z

mBN(τ)
|C| (λ) as first diagonal element and ZmBN(τ)(λ) for all |C| − 2 other diagonal elements

|detB(λ)| =
|C|−1∏
c=1

exp (λc)Z
mBN(τ)
c (λ)

ZmBN(τ)(λ)2

·

∣∣∣∣∣∣∣∣∣∣∣
det


exp(λ|C|)ZmBN(τ)

|C| (λ) − exp(λ2)Z
mBN(τ)
2 (λ) . . . − exp(λ|C|−1)ZmBN(τ)

|C|−1
(λ)

0 ZmBN(τ)(λ) . . . 0
...

...
. . .

...

0 0 . . . ZmBN(τ)(λ)



∣∣∣∣∣∣∣∣∣∣∣
. (5.9b)

The determinant can now be computed as the product of the diagonal elements, and we obtain

|detB(λ)| =
∏
c∈C

exp (λc)Z
mBN(τ)
c (λ)

ZmBN(τ)(λ)
. (5.9c)

Applying these steps to all other on-diagonal blocks Bc,`,a(λ), we obtain

|detBc,`,a(λ)| =
∏
b∈Σ

exp
(
λc,`,b,a

)
Z

mBN(τ)
c,`,b,a (λ)∑

b̃ exp
(
λc,`,b̃,a

)
Z

mBN(τ)

c,`,b̃,a
(λ)

. (5.10)

Using Equations (5.9c) and (5.10), the Jacobian is

|det t′(λ)| =
∏
c∈C

exp (λc)Z
mBN(τ)
c (λ)

ZmBN(τ)(λ)

L∏
`=1

∏
a∈Σ|Pa(`)|

∏
b∈Σ

exp
(
λc,`,b,a

)
Z

mBN(τ)
c,`,b,a (λ)∑

b̃ exp
(
λc,`,b̃,a

)
Z

mBN(τ)

c,`,b̃,a
(λ)

. (5.11)

Based on Equation (5.2) and (5.11), and the consistency condition, many normalization constants
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cancel, and we obtain a simplified expression of the transformed Dirichlet prior

Q
mBN(τ)
λ

(
λ α

)
∝ ZmBN(τ)(λ)−α. ·

∏
c∈C

exp (αcλc) ·
L∏
`=1

∏
a∈Σ|Pa(`)|

∏
b∈Σ

exp
(
αc,`,b,aλc,`,b,a

)
(5.12a)

= ZmBN(τ)(λ)−α. · exp

∑
c∈C

αcλc +

L∑
`=1

∑
b∈Σ

∑
a∈Σ|Pa(`)|

αc,`,b,aλc,`,b,a

 (5.12b)

with

α. =
∑
c∈C

αc . (5.13)

Since the commonly-used product-Dirichlet prior for θ defined in Equation (5.6) is conjugate to the

likelihood defined in Equation (4.11), the transformed prior of Equation (5.12b) is conjugate to the

likelihood defined in Equation (4.14). While in earlier comparisons of different learning principles

for the same mBN, different priors have been employed, we can now use the same prior defined

by Equation (5.12b) for the MAP and the MSP principle, as well as for the unified generative-

discriminative learning principle. Employing this prior, we can compare the performance of two

classifiers based on the same model but trained either by the MAP or the MSP principle using the

identical prior, avoiding the potential bias induced by differing priors.

Choice of hyper-parameters

In contrast to the comparison of the MAP and the MSP principle for the same model, the derived

prior can not be used for the unbiased comparison of different models without further premises, since

these models may differ in the structure or in the number of parameters. Building on the consistency

condition for the product-Dirichlet prior, we define specific joint hyper-parameters for the priors of

different models representing identical sets of pseudo-data. However, even if we use identical pseudo-

data as basis of these hyper-parameters, a comparison might be biased if these data contain information

that can not be exploited by all models. For example, dinucleotide dependencies can be captured by

a WAM model but not by a PWM model. In this case, the corresponding hyper-parameters bias the

results of all models that are able to use these information. In the remainder of this paragraph, we

show how to appropriately choose the hyper-parameters α for an unbiased comparison of different

models.

To this end, we choose hyper-parameters that represent the a-priori information that all possible

sequences x ∈ ΣL occur with equal probability in the set of pseudo-data [Buntine, 1991]. Despite

the general assumption of uniform pseudo-data, the equivalent sample size may differ between the

different classes c ∈ C, representing a-priori class-probabilities. Using the concept of joint hyper-

parameters introduced for the consistency condition earlier, this a-priori information implies that for

each class c the joint hyper-parameters αc,x are identical for each x. For this reason, we derive from
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Equation (5.7a)

αc,x =
αc
|Σ|L

,

which implies the following values of the hyper-parameters αc,`,b,a for the model parameters λc,`,b,a

αc,`,b,a =
αc

|Σ|1+|Pa(`)| ,

where |Pa (`) | is the number of parents Pa (`) of node `, c ∈ C, ` ∈ [1, L], b ∈ Σ, and a ∈ Σ|Pa(`)|.

As an example, assume that we decided for equivalent sample size αc = 32 for class c, and we want

to model the likelihood of that class either by a PWM model or by a WAM model. The PWM model

has parameters λ
(PWM)
c,`,b , ` ∈ [1, L], b ∈ Σ, whereas the WAM model has parameters λ

(WAM)
c,1,b , b ∈ Σ and

λ
(WAM)
c,`,b,a , ` ∈ [2, L], b, a ∈ Σ. In case of the DNA alphabet, the hyper-parameters for the PWM model

are then set to α
(PWM)
c,`,b = 8, whereas the hyper-parameters for the WAM model are set to α

(WAM)
c,1,b = 8

and α
(WAM)
c,`,b,a = 2. With this choice of hyper-parameters, both product-Dirichlet priors represent

the same amount of pseudo-data. The hyper-parameters α
(PWM)
c,`,b of the PWM model correspond

to pseudo-counts of mono-nucleotides b, whereas the hyper-parameters α
(WAM)
c,`,b,a of the WAM model

correspond to conditional pseudo-counts of nucleotides b observed at the current position ` given

nucleotide a observed at the previous position `− 1. Both represent the identical a-priori information

of uniform pseudo-data, since the value of α
(WAM)
c,`,b,a does not depend on a and all hyper-parameters

fulfill the consistency condition. This result does equally hold for all specializations of Markov random

fields considered in this work, and we choose the hyper-parameters accordingly throughout the case

studies.

Prior for Markov random fields

Often product-Gaussian or product-Laplace priors are used for MRF(f) and the Bayesian learning

principles, whereas the product-Dirichlet prior is often used for moral Bayesian networks and the

MAP principle. The prior of Equation (5.12b) allows an unbiased comparison of different learning

principles and different models from the family of moral Bayesian networks including PWM models,

WAM models, Markov models of higher order, or Bayesian trees. However, several important models

proposed for the recognition of short signal sequences do not belong to this family. Hence, we now

focus on generalizing this prior for the family of MRFs, which contains the family of moral Bayesian

networks as special case.

Using the conformity of the parameterization of Equation (4.14) and (4.19), we suggest a prior for

MRF(f) in analogy to Equation (5.12b),

QMRF(f)
(
λ α

)
∝ ZMRF(f)(λ)−α. · exp

∑
c∈C

αcλc +

|f
c
|∑

i=1

αc,iλc,i

 (5.14)
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that contains the transformed product-Dirichlet prior of Equation (5.12b) as special case if the MRF

of each class belongs to the family of moral Bayesian networks. We denote the prior of Equation (5.14)

by generalized transformed product-Dirichlet (GTPD) prior.

Comparison of different priors

We illustrate the GTPD prior for one and two free parameters and for different values of the hyper-

parameters αi in Figures 5.1(a) and 5.1(b). Figure 5.1(a) compares the GTPD prior to the Gaussian

prior and the Laplace prior for one free parameter λ1. For illustration purposes, we choose the hyper-

parameters of the Gaussian and Laplace prior such that their maxima are identical to that of the

GTPD prior. We find that the GTPD prior provides an interesting interpolation between a Gaussian

prior and a Laplace prior. In the vicinity of the maximum, the logarithm of the GTPD prior shows a

quadratic dependence on λ1, whereas it shows a linear dependence on λ1 in the far tails. That is, the

GTPD prior is similar to a Gaussian prior in the vicinity of the maximum and similar to a Laplace

prior in the far tails.

Figure 5.1(b) shows the GTPD prior for two free parameters λ1 and λ2. Interestingly, the GTPD

prior exhibits a mirror symmetry about the plane of λ1 = λ2 which can be explained by the choice of

equal hyper-parameters α1 = α2. In contrast to the product-Gaussian and the product-Laplace prior,

we do not find a radial symmetry for the GTPD that can be explained by the fixed parameter λ3 = 0.

Properties

After the visual inspection of the GTPD prior for one and two free parameters, we consider some

interesting properties of the prior. First, we consider whether the prior is conjugate to the likelihood

of MRFs by using the i.i.d. assumption,

PMRF(f)
(
C,D λ

)
·QMRF(f)

(
λ α

)
(5.15a)

∝

[ZMRF(f)(λ)
]−N

· exp

 N∑
n=1

λcn +

|f
cn
|∑

i=1

λcn,i · fcn,i(xn)


·

[ZMRF(f)(λ)
]−α.

· exp

∑
c∈C

αcλc +

|f
c
|∑

i=1

αc,iλc,i

 . (5.15b)

Rewriting the likelihood in terms of parameters instead of sequences, we obtain

=

[ZMRF(f)(λ)
]−N

· exp

∑
c∈C

Ncλcn +

|f
c
|∑

i=1

Nn,iλcn,i


·

[ZMRF(f)(λ)
]−α.

· exp

∑
c∈C

αcλc +

|f
c
|∑

i=1

αc,iλc,i

 (5.15c)
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(a) The GTPD prior (red line) for one free parameter λ1 and αi ∈ {0.2, 1, 5} on a logarithmic scale.
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(b) The GTPD prior for two free parameter λ1, λ2 and αi ∈ {0.2, 1, 5}.

Figure 5.1: Illustration of the GTPD prior for one and two free parameters and 3 different hyper-
parameter vectors. Figure a) shows a comparison for one free parameter λ1 using GTPD prior (red
line), Gaussian (black line), and Laplace prior (green line), and αi ∈ {0.2, 1, 5}, whereas figure b)
shows the GTPD prior for two free parameter λ1, λ2 and αi ∈ {0.2, 1, 5}.

with Nc :=
∑N
n=1 δcn,c and Nc,i :=

∑N
n=1 δcn,cfcn,i(xn). Since both terms are now structural identical,

we merge them, and we obtain

=
[
ZMRF(f)(λ)

]−α̃.
· exp

∑
c∈C

α̃cλc +

|f
c
|∑

i=1

α̃c,iλc,i

 (5.15d)

with α̃. := N + α., α̃c := Nc + αc, and α̃c,i := Nc,i + αc,i, which is proportional to

∝ QMRF(f)
(
λ α̃

)
. (5.15e)

42



Chapter 5. Priors

With this result at hand, we can state the following:

1. The GTPD prior is conjugate to the likelihood of MRFs.

2. While for moral Bayesian networks using θ and Q
mBN(τ)
θ

(
θ α
)

the optimal parameters for the

MAP principle with α. → 0 are not equal to the parameters obtained from the ML principle,

for λ and the GTPD prior this equality holds.

3. The likelihood equivalence for mBNs states “that data should not help to discrim-

inate network structures that represent the same assertions of conditional indepen-

dence” [Heckerman et al., 1995]. That is, each two mBNs with DAGs encoding the same con-

ditional independences return the same likelihood for ML parameters. Using parameters λ and

the GTPD prior with the consistency condition, i. e., the prior represents a pseudo-data set D1

with class labels C1, the MAP solution for a mBN and a data set D2 with class labels C2 is

equivalent to the ML solution for the combined data set and class labels. For this reason, the

likelihood equivalence holds for MAP parameters using λ and Q
mBN(τ)
λ

(
λ α

)
, which is again

not true for θ.

Second, the prior of Equation (5.14) obviously fulfills the condition of Equation (3.12) which

allows to interpret the unified generative-discriminative learning principle using this prior for MRFs

as illustrated in Figure 3.2. For the GTPD prior, we can interpret the condition of Equation (3.12)

as multiplication of the initially chosen ESS by a factor which results in a virtual ESS. This allows

to interpret the axes as MSP or MAP principle using different ESS but using the same ratio between

the hyper-parameters. In the interpretation of the complete simplex β, the hyper-parameters α̃ are

α̃c := Nc +
β2

β1
αc (5.16a)

and

α̃c,i := Nc,i +
β2

β1
αc,i. (5.16b)

Third, we show that the prior is a log-convex function by showing the midpoint convexity of

the logarithm of the prior using the vectors 1λ and 2λ and the proportionality constant B(α) of

Equation (5.14), which in case of a moral Bayesian network is a quotient of gamma functions,

logQMRF(f)

(
1λ+ 2λ

2

∣∣∣∣α̃) = logB(α)− α. logZMRF(f)

(
1λ+ 2λ

2

)
+

1

2

 2∑
j=1

∑
c∈C

αc
jλc +

|f
c
|∑

i=1

αc,i
jλc,i

 .

(5.17a)
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Using Equation (4.21), we obtain

≥ 1

2

 2∑
j=1

logB(α)− α. logZMRF(f)(jλ) +
∑
c∈C

αc
jλc +

|f
c
|∑

i=1

αc,i
jλc,i


(5.17b)

≥ 1

2

2∑
j=1

logQMRF(f)
(
jλ α̃

)
, (5.17c)

stating that the prior is a log-convex function. The log-convexity of the GTPD prior in combination

with the log-convexity of the likelihood and the conditional likelihood presented in the Equations (4.22)

and (4.23), respectively, allow to optimize the parameters of MRFs using the unified generative-

discriminative learning principle by any numerical optimization algorithm without getting stuck in

saddle points or local optima. Since the MAP and the MSP principle are special cases of the unified

generative-discriminative learning principle, the same holds true for these two learning principles.

Finally, the GTPD prior is equivalent to the conjugate prior of the exponential family

[Bishop, 2006] for the studied family of models.

5.2 Prior of skew normal models

As prior for the model parameters of the skew normal models, we choose a product of three independent

parts.

• For the first parameter λ0, which is related to the mean of the distribution, we choose a trans-

formed Gaussian distribution,

Qskew
0

(
λ0 α0

)
∝ exp

(
−0.5 · g (α0,0, λ0, α0,1)

2
)
·

[
0.01 +

exp (λ0)

[1 + exp (λ0)]
2

]
. (5.18a)

• For the second parameter λ1, which is related to the standard deviation of the distribution, we

choose a transformed Gamma distribution,

Qskew
1

(
λ1 α1

)
∝ exp (α1,0λ1 − α1,1 exp (α1)) . (5.18b)

• For the third parameter λ2, which is related to the skew of the distribution, we choose a Gaussian

distribution,

Qskew
2

(
λ2 α2

)
∝ exp

(
−0.5 ·

(
λ2 − α2,0

α2,1

)2
)

. (5.18c)
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The complete prior of the model composes as

Qskew
(
λ α

)
∝

2∏
i=0

Qskew
i

(
λi αi

)
, (5.19)

with α = (α0, α1, α2) and αi = (αi,0, αi,1)

5.3 Prior of composite models

For composite models, we use composite priors which consist of the prior of each component model

and the prior for the remaining parameters of the model. Since the proposed priors are very similar,

we keep this section short.

• For a mixture model mix(M), we compose the prior of a transformed Dirichlet prior (Equa-

tion (5.3)) for λm and the priors for the component models. The composed prior is

Qmix(M)
(
λ α

)
= Dirλ

(
λm αm

)
·
|M|∏
u=1

QMu

(
λ(Mu) α(Mu)

)
, (5.20)

where αm := (α(M1)
. , . . . , α(M|M|)

. ) and α consists of the hyper-parameters for the component

probabilities αm and the hyper-parameters of the component models α(Mu). We denote the ESS

of the mixture model by α. =
∑|M|
m=1 α

(Mm)
. .

• For a strand model strand(M), we compose the prior of a transformed Dirichlet prior (Equa-

tion (5.3)) for λm and the prior for the component model. The composed prior is

Qstrand(M)
(
λ α

)
= Dirλ

(
λm αm

)
·QM

(
λ(M) α(M)

)
, (5.21)

where α := (αm, α
(M)), αm := (αm,0, αm,1), and the ESS of the strand model α. = αm,0 +αm,1

has to be equal to the ESS of the component model α(M)
. .

• For an extended zero or one occurrence per sequence model eZOOPS(M,S,F), we compose the

prior of a transformed Dirichlet prior (Equation (5.3)) for λm and the priors for the component

models. The composed prior is

QeZOOPS(M,S,F)
(
λ α

)
= Dirλ

(
λm αm

)
·QF

(
λ(F) α(F)

)
·
|M|∏
u=1

QMu

(
λ(Mu) α(Mu)

)
QSu

(
λ(Su) α(Su)

)
, (5.22)

where α consists of the hyper-parameters for the component probabilities αm and the hyper-

parameters of the component models α(Mu), α(Su), and α(F).
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• For an independent product model IPM(M, w, ζ), we compose the prior of the priors for the

component models. The composed prior is

QIPM(M,w,ζ)
(
λ α

)
=

|M|∏
i=1

QMi

(
λ(Mi) α(Mi)

)
, (5.23)

where α consists of the hyper-parameters of the component models α(Mi).
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Chapter 6

Implementation

After considering learning principles, probabilistic models, and priors in the theoretical part of this

work, we now turn to the practical part of this work. We implement an open-source Java framework

called Jstacs that provides implementation for statistical analysis and classification of biological se-

quences. Jstacs is strictly object-oriented and structured in several packages. Furthermore, Jstacs

includes all implementations that are used for this work including for instance implementations for

data handling, classifiers, learning principles, and probabilistic models.

Jstacs comprises an efficient representation and convenient handling of sequence data, provides

ready-to-use implementations of many statistical models for sequence data, methods for evaluating the

performance measures described in section Classification measures (page 17), and includes possibilities

for saving and loading objects in XML-format. Jstacs is capable of handling a great variety of data

and is not only restricted to DNA sequences. Each sequence is represented by an instance of the

abstract class Sequence. Data sets are called Samples in Jstacs and consist of a number of Sequences.

Models can be combined to constitute classifiers, which can be trained and assessed using Jstacs. For

comparing different classifiers on test data sets or by hold-out experiments, Jstacs comes with a number

of performance measures, which can be selected by the user. Hence, Jstacs allows to solve complex

problems efficiently with only few lines of code. We provide some examples in the documentation

section of the Jstacs homepage www.jstacs.de. In addition, we present a simplified part of the Jstacs

class hierarchy in Figure 6.1 and a list of classes frequently used in this work in Table 6.1.

Jstacs provides two possibilities for implementing probabilistic models. On the one hand,

the interface Model and its abstract class AbstractModel, which implements Model providing the

implementation of several methods declared in Model, can be used for any probabilistic model

that should be trained only in a generative way. On the other hand, Jstacs provides the in-

terface NormalizableScoringFunction for any probabilistic model that might be learned using

the unified generative-discriminative learning principle. Similar to Model and AbstractModel,

AbstractNormalizableScoringFunction implements NormalizableScoringFunction and provides

the implementation of several methods declared in NormalizableScoringFunction.

In Jstacs, we distinguish these two possibilities of implementing probabilistic models, since

generative parameter learning often can be done analytically, while we have to use numerical

methods for discriminative and hybrid parameter learning. However, the interfaces Model and

NormalizableScoringFunction enable the user to implement any probabilistic models for both pos-

sibilities at once. In addition, the class NormalizableScoringFunctionModel allows to use each

NormalizableScoringFunction as a Model.
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interface

Model

implements

abstract class

AbstractModel

extends

class

Normalizable-

Scoring-

FunctionModel

interface

Normalizable-

Scoring-

Function

implements

abstract class
Abstract-

Normalizable-

Scoring-

Function

abstract class

Abstract-

Classifier

extends

class

GenDisMix-

Classifier

abstract class

LogPrior

extends

class

LogComposite-

Prior

abstract class

Differentiable-

Function

extends

abstract class
AbstractMulti-

Threaded-

Optimizable-

Function

extends

class

LogGenDisMix-

Function

Figure 6.1: Simplified part of the Jstacs class hierarchy. Interfaces are visualized by dark
gray, rounded rectangles, abstract classes by light gray rectangles, and classes by white rectan-
gles. Solid lines indicate the hierarchy of inheritance, i. e., which class implements which inter-
face or extends which abstract class. The dashed lines indicate that instances of these classes are
used by instances of other classes. For reason of clarity, we do not show any implementations of
AbstractNormalizableScoringFunction and refer to Table 6.1 in this case.

Here, we consider only the latter possibility of implementing probabilistic models using

NormalizableScoringFunction. In contrast to generative parameter learning, we have to specify

the complete classifier for learning the parameters using discriminative or hybrid learning principles.

In Jstacs, the class GenDisMixClassifier, which extends the abstract class AbstractClassifier, is

used to specify a classifier using the unified generative-discriminative learning principle for parameter

learning. Instantiating an object of this class, we have to specify a NormalizableScoringFunction

for each class, the prior that is an instance of the abstract class LogPrior, and the weights β for

the unified generative-discriminative learning principle besides several parameters for the numerical

optimization. The GTPD prior for MRFs is implemented by the class CompositeLogPrior, which

extends LogPrior.

A GenDisMixClassifier can be trained on some Samples using one of the train-methods

declared in AbstractClassifier. However, internally the GenDisMixClassifier creates an in-

stance of LogGenDisMixFunction, which is used in the numerical optimization accomplished

by the class Optimizer. LogGenDisMixFunction is an extension of the abstract class

AbstractMultiThreadedOptimizableFunction, which itself is an extension of the abstract class
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Description Jstacs class

DNA data set DNASample

classifier using the unified generative-discriminative GenDisMixClassifier

learning principle (Equation (3.10a))
homogeneous Markov model HMMScoringFunction

cyclic Markov model CMMScoringFunction

moral Bayesian network BayesianNetworkScoringFunction

Markov random field MRFScoringFunction

mixture model MixtureScoringFunction

VariableLengthMixtureScoringFunction

strand model StrandScoringFunction

eZOOPS model HiddenMotifsMixture

independent product model IndependentProductScoringFunction

Table 6.1: Main classes of Jstacs used in this work.

DifferentiableFunction. The abstract class DifferentiableFunction declares a method for eval-

uating the gradient of the function that is used during numerical optimization. The abstract class

AbstractMultiThreadedOptimizableFunction provides the possibility to evaluate a function and

its gradients using a user-specified number of threads using the i.i.d. assumption for the data. This

allows to exploit the compute power of modern multi-core computers.

Due to its strictly object-oriented design, which provides many interfaces and ab-

stract classes, Jstacs is readily extensible. For instance, implementing a new probabilis-

tic model by extending NormalizableScoringFunction enables us to use instances of this

class in combination with other existing models in more complex models, as for instance,

MixtureScoringFunction and IndependentProductScoringFunction as well as in classifiers,

as for instance, the GenDisMixClassifier. Similarly, implementing a new learning princi-

ple, enables us to use it on any NormalizableScoringFunction. In addition, the class

AbstractMultiThreadedOptimizableFunction enables to implement new learning principles in par-

allel with almost no implementation overhead.

Furthermore, Jstacs provides classes for using BioJava [Holland et al., 2008] as well as

R [R Development Core Team, 2009]. Jstacs is easy to use and is publicly available at the Js-

tacs homepage www.jstacs.de and at the machine-learning open source software (mloss) repository

www.mloss.org, and requires Java Runtime Environment (JRE)1 of at least version 5. A complete

API, several code examples, as well as a forum are also available at the Jstacs homepage.

1www.sun.com/java
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Chapter 7

Comparison of learning principles

In this chapter, we use the probabilistic models presented in chapter Probabilistic models for DNA

sequences (page 20) and the learning principles presented in section Learning principles (page 10)

with the priors presented in chapter Priors (page 34) using the Jstacs library. We investigate whether

the generative, discriminative, or hybrid learning principles are well suited for two important tasks of

DNA sequence analysis. On one hand, we consider the classification of TFBSs, and on the one hand,

we consider the classification of splices sites. As mentioned earlier, both tasks are very important for

our understanding of gene regulation and gene function.

This chapter is threepart. First, we compare two non-Bayesian learning principles, namely the

generative ML and the discriminative MCL principle, for the recognition of splice sites. Second, we

use a prior with specific hyper-parameters, and compare two Bayesian learning principles, the MAP

and the MSP principle, for splice sites as well as for TFBSs. Finally, we use the unified generative-

discriminative learning principle, which enables us to investigate different aspects of the learning

principles. Here, we focus on two aspects. On the one hand, we investigate whether the hybrid

learning principles might help to improve the performance of classifiers by estimating parameters that

might be better suited for classification. On the other hand, we investigate the MAP and the MSP

principle when varying the strength of the prior. This can be systematically achieved by comparing

two edges of the simplex spanned by the weights β of the unified generative-discriminative learning

principle (Equations (3.11b) and (3.11d), and Figure 3.2).

7.1 Comparison of the ML and the MCL principle

For the comparison of the ML and the MCL principle [Keilwagen et al., 2007], we choose the hu-

man splice site data sets that are already split into training and test data set [Yeo and Burge, 2004].

All donor splice sites in this data set contain a consensus GT, while all acceptor splice sites contain

a consensus AG. These canonical dinucleotides can be found in more than 98% of mammalian in-

trons [Burset et al., 2000], thus constituting the most important class of splice sites. After removing

the consensus dinucleotide for both kinds of splice sites, we obtain sequences of lengths 7 bp and 21

bp for donors and acceptors, respectively. In Table 7.1, we summarize the number of sequences for

the data sets [Yeo and Burge, 2004].

Based on the performance measures used in [Yeo and Burge, 2004], an MRF that captures all

pairwise dependencies between nucleotides that are at most 5 bp apart has been proposed for the

recognition of splice sites. Following [Yeo and Burge, 2004], we denote this MRF as MRF(me2x5).
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data set donor splice sites acceptor splice sites

train
real 8,415 8,465
decoy 179,438 180,957

test
real 4,208 4,233
decoy 89,717 90,494

Table 7.1: Size of splice site data sets of [Yeo and Burge, 2004]. Each entry shows the number of
sequences for the specific data set.

Based on the presented models in [Yeo and Burge, 2004], we compare iMMs of different order ranging

from order 0 to order 3 with MRF(me2x5) for the ML and the MCL principle. Based on the predefined

splits [Yeo and Burge, 2004], we train the classifiers on about two thirds of the data and evaluate the

performance of the classifiers on the remaining third of the data (Table 7.1). For the evaluation of

the classifiers, we choose the four performance measures fpr for a fixed Sn of 95%, the auc-ROC, the

ppv for a fixed Sn of 95%, and the auc-PR (section Classification measures (page 17)).

In Figure 7.1, we visualize the results obtained from ML trained and MCL trained classifiers.

First, we consider the results for donor splice sites in subfigures 7.1a-d. For generatively trained

classifiers visualized by black bars, we find that the results of an iMM(0) can be strongly improved by

an iMM(1) for all four performance measures, while the performance is comparable for generatively

trained classifiers based on iMM(1), iMM(2), and iMM(3). We obtain the best results for donor

splice sites and a generatively trained classifier based on an MRF(me2x5), which yields a fpr of 7.3%,

an auc-ROC of 0.979, a ppv of 38.0%, and an auc-PR of 0.676. Turning to discriminatively trained

classifiers visualized by gray bars, we find a similar behaviour. The classifier based on iMM(0) performs

worst, while the classifiers based on iMM(1), iMM(2), and iMM(3) perform comparable based on the

four performance measures. The best results are again obtained for a classifier based on MRF(me2x5),

which yields a fpr of 7.0%, an auc-ROC of 0.980, a ppv of 38.8%, and an auc-PR of 0.686.

Comparing generatively and discriminatively trained classifiers based on the same models, we

find that in all cases the discriminatively trained classifier outperforms its generative counterpart.

Consequently, we find as best classifier a discriminatively trained classifier based on MRF(me2x5).

Scrutinizing the results for classifiers based on iMM(1), iMM(2), iMM(3), and MRF(me2x5), we find

that choosing the discriminative MCL principle instead of the generative ML principle is of same

importance as choosing the best of these four models.

Second, we consider the results for acceptor splice sites in subfigures 7.1e-h. We find an increasing

performance for all four performance for the generatively trained classifiers based on iMM(0) to

iMM(2), while we find less good results for the generatively trained classifier based on iMM(3). This

decrease might be caused by overfitting, i. e., overadaption of the classifier to the training data.

Similar to donor splice sites, we find that the classifier based on MRF(me2x5) performs best among

the generatively trained classifiers yielding a fpr of 9.0%, an auc-ROC of 0.976, a ppv of 33.1%, and an

auc-PR of 0.651. Considering the discriminatively trained classifiers, we find a similar behaviour. For

iMMs with order 0 to 2 the performance is increasing, while it is decreasing for order 3. Considering
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Figure 7.1: Comparison of classification performance for donor and acceptor splice sites based on
the ML and the MCL principle. In each subfigure, we plot the performance measure on the ordinate
and the models on the abscissa. Black bars indicate the results of ML-trained classifiers, while red
bars indicate the performance of MCL-trained classifiers. In the subfigures a-d, we show the results
for donor splice sites, while we show the results for acceptor splice sites in subfigures e-h.

the classifier based on MRF(me2x5), we find that it performs slightly worse than the discriminatively

trained classifier based on iMM(2), which yields a fpr of 8.5%, an auc-ROC of 0.977, a ppv of 34.3%,

and an auc-PR of 0.676.

In close analogy to the comparison of discriminatively and generatively trained classifiers for donor

splice sites, we compare classifiers for acceptor splice sites based on the same models but trained either

generatively or discriminatively. We find that for all iMMs the performance of the discriminatively

trained classifier is better than for its generative counterpart. For the MRF(me2x5), we find that

the discriminatively trained classifier performs at least as good as the generatively trained classifier.

Hence, we find as best classifier a discriminatively trained classifier based on iMM(2). Scrutinizing

the results for iMM(1), iMM(2), and MRF(me2x5), we find that choosing the discriminative MCL

principle instead of generative ML principle is of same importance as choosing the best of these three

models.

Concluding, we find for splice site data that classifiers trained using the MCL principle out-

perform classifiers trained by the ML principle. This is in accordance with previous find-

ings [Ng and Jordan, 2002] that state that discriminatively trained classifiers have a smaller asymp-

totic error and therefore perform better than their generative counterparts if the training data set
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is large. For splice sites, typical data sets are large containing thousands of sequences (Table 7.1)

enabling to use the power of the MCL principle. In addition, we find that choosing an appropriate

learning principle often is similar important as choosing an appropriate model.

7.2 Comparison of the MAP and the MSP principle

After investigating the benefits of the ML and the MCL principle, we now investigate the Bayesian

learning principles MAP and MSP [Keilwagen et al., 2010b]. These two learning principles incorporate

prior knowledge on the parameters of the classifier by using some prior density. In this section, we

compare classifiers trained either using the generative MAP or the discriminative MSP principle

employing the same prior and the same hyper-parameters. In case study 1, we continue the case

study of the previous section investigating donor splice sites, while in case study 2, we consider the

recognition of TFBSs for different sizes of training data sets.

7.2.1 Case study 1: Mixture models for donor splice sites

In this case study, we compare classifiers based on different models from the family of MRFs trained

either by the MAP or by the MSP principle. For both learning principles, we need a prior on the

parameters of the models, which we choose to be the GTPD prior. To avoid any bias in the hyper-

parameters of the prior, we choose a prior that represents uniform pseudo-data with an ESS of 32 for

the foreground data set and an ESS of 96 for the background data set. We again choose the standard

data set compiled by Yeo & Burge [Yeo and Burge, 2004] but restrict ourselves to donor splice sites.

Following [Yeo and Burge, 2004] and the case study in the previous section, we choose the models

iMM(1) and MRF(me2x5). Based on these basic models, we also use two-component mixture models

of these models. On one hand, we use a mixture of two iMM(1) denoted as mix iMM(1), and on

the other hand, we use a mixture of two MRF(me2x5) denoted as mix MRF(me2x5). We compare

these four classifiers and both learning principles based on the same performance measures as in the

previous section.

We present the results of this comparison in Figure 7.2, which shows bar plots of each of the four

performance measures for each of the four classifiers and both learning principles. In close analogy

to Figure 7.1, we show the results for the generative MAP principle as black bars, while we show the

results for the discriminative MSP principle as gray bars.

Considering the results for the generative MAP principle, we find that the two classifiers based on

mixture models outperform the two corresponding classifiers based on single models with respect to

all four performance measures. We also find that the two classifiers based on MRFs and mix MRFs

yield a higher classification performance than the two corresponding classifiers based on iMM(1) and

mix iMM(1). The classifier based on a mix MRF(me2x5) yields the lowest fpr (7.1%), the highest

auc-ROC (0.9806), the highest ppv (38.5%), and the highest auc-PR (0.6830), stating that, among

the four models tested, it is the most appropriate model for classifying human donor splice sites and

decoy sites using the MAP principle.
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Figure 7.2: Comparison of classification performance for donor splice sites based on the MAP and
the MSP principle. In each subfigure, we plot the performance measure on the ordinate and the
models on the abscissa. Black bars indicate the results of MAP-trained classifiers, while red bars
indicate the results of MSP-trained classifiers.

In analogy to the generative MAP principle, we now consider the results for the discriminative

MSP principle visualized by gray bars in Figure 7.2. We find that the discriminatively trained classifier

based on mix iMM(1) outperforms the corresponding classifier based on a single iMM(1). In contrast

to this improvement of performance, we only find comparable results for the classifiers based on

mix MRF(me2x5) and on single MRF(me2x5). Interestingly, we find that a discriminatively trained

classifier based on mix iMM(1) performs best based on all performance measures. It yields an fpr of

7.0%, a ppv of 39.0%, a auc-ROC of 0.981, and the best auc-PR of 0.6876.

Comparing for each classifier the black and gray bar in Figure 7.2, we find that the four MSP-

trained classifiers outperform the corresponding MAP-trained classifiers. For instance, the iMM(1)

classifier yields an ppv of 37.8% for the MSP principle and only 35.7% for the MAP principle, and

the mix MRF(me2x5)) classifier yields a ppv of 39.0% for the MSP principle and only 38.5% for the

MAP principle. Interestingly, classifiers based on simple models (iMM(1) and mix iMM(1)) show

the greatest improvement when replacing the MAP principle by the MSP principle. This observation

is in accordance with previous findings that discriminative learning seems to be advantageous over

generative learning if the model assumptions are wrong [Greiner et al., 2005].

7.2.2 Case study 2: Influence of the size of the training data set

In case study 2, we illustrate a comparison of Markov models trained on different amounts of the

training data set using the GTPD prior. We choose the data set of [Wingender et al., 1996] containing

257 aligned BSs, each of length 16 bp, of the mammalian TF Sp1 as foreground data set and 267 second

exons of human genes with a total size of approximately 68 kb as background data set. We use a PWM

model as foreground model and an iMM(3) as background model. Results for all other combinations

of a Markov model of orders 0 or 1 as foreground model and Markov models of orders 0 to 3 as
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Figure 7.3: Comparison of classification performance for different sizes of the training data sets
using the MAP and the MSP principle. We compare the classification performance of classifiers
using the MAP principle (black line) and the MSP principle (red line) with the GTPD prior on
differently sized training data sets for BSs of the TF Sp1 using a 1,000-fold hold-out sampling. For
both classifiers, we use a PWM model in the foreground and an iMM(3) in the background. We
plot the four performance measures, false positive rate, sensitivity, positive predictive value, and area
under the PR curve (auc-PR) against the percentage of the preliminary training data set used to
estimate the parameters. Whiskers indicate two-fold standard error. We find, that the classification
performance increases with increasing size of the training data set. For the false positive rate this
corresponds to a decreasing curve. For all four measures and all sizes of the data set, we find that the
discriminatively trained Markov models yield a consistently higher classification performance than the
generatively trained Markov models.

background model are available in Additional File 2 of article [Keilwagen et al., 2010b].

We use a stratified hold-out sampling procedure for the comparison of the classification performance

of the resulting classifiers. Before the hold-out sampling, we chunk the background data set into non-

overlapping sequences of length of at most 100 bp to avoid artificial class ratios during the hold-out

sampling. In each iteration of the stratified hold-out sampling procedure, we randomly partition both

the foreground data set and the background data set into a preliminary training data set comprising

90% of the sequences and a test data set comprising the remaining 10% of the sequences. In order to

vary the size of the training data set, we use an additional sampling step, where we randomly draw a

given fraction of the preliminary training data sets ranging from 5% to 100% yielding the final training

data sets. We train all classifiers corresponding to different learning principles on the same subsets of

the preliminary training data sets, and we evaluate the resulting classifiers on the same sequences in

the test data sets.

We evaluate the classification performance on the test data sets using as performance measures

the fpr for a fixed Sn of 95%, the Sn for a fixed Sp of 99.9%, the ppv for a fixed Sn of 95%, and the

auc-PR. We repeat the stratified hold-out sampling procedure several times, and report the means

and standard errors of the four performance measures fpr, Sn, ppv, and auc-PR for each classifier as

the final result of the comparison.

We perform a 1, 000-fold stratified hold-out sampling with these models trained either by the MAP

principle or by the MSP principle using the same priors for both cases. We choose for both cases an
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ESS of 4 for the foreground model and an ESS of 1024 for the background model. We present the

results of this comparison in Figure 7.3, which shows the four performance measures fpr, Sn, ppv,

and auc-PR as functions of the relative size of the training data sets. The classification performance

increases rapidly with increasing size of the training data set and achieves its optimal value for the

largest training data sets. For the largest training data set, the discriminatively trained classifier yields

an fpr of 0.4%, an Sn of 76.6%, a ppv of 57.3%, and an auc-PR of 0.826, whereas the generatively

trained classifier yields only an fpr of 0.6%, an Sn of 70.5%, a ppv of 47.0%, and an auc-PR of 0.803.

Ng & Jordan compare the classification performance of a classifier based on PWMs trained by

either the MAP principle or the MCL principle on a number of data sets from the UCI machine-

learning repository [Ng and Jordan, 2002]. They find that for large data sets the discriminative MCL

principle has a lower asymptotic error, corresponding to a higher classification performance, but that

the generative MAP principle yields a higher classification performance for small data sets.

Based on the GTPD prior, it is now possible to compare the two Bayesian learning principles,

MAP and MSP, directly using exactly the same priors in both cases. Based on the chosen model

combination and prior, we find a superior classification performance of the discriminatively compared

to the generatively trained classifiers irrespective of the size of the training data set. This result gives

a first hint that it might be problematic to compare results obtained by the MAP and the MCL

principle, since the prior could possibly bias the results.

7.3 Applications of the unified generative-discriminative

learning principle

In the last two sections, we compare the performance of classifiers using two non-Bayesian learn-

ing principles and two Bayesian learning principles. These four learning principles are special cases

of the learning principle presented in subsection Unified generative-discriminative learning principle

(page 13). In this section, we consider the complete simplex β that includes the ML, the MCL, the

MAP, and the MSP principle, as well as the hybrid learning principles GDT and PGDT. In the

first case study, we use the unified generative-discriminative learning principle for the recognition of

TFBSs. In the second case study, we investigate the influence of the size of the training data set

and of the prior. Finally, we return to the first case study of the previous section using the unified

generative-discriminative learning principle for donor splice sites.

7.3.1 Case study 1: Transcription factor binding site recognition

In this case study, we investigate whether the unified generative-discriminative learning principle

might possibly allow an improvement of the recognition of TFBSs [Keilwagen et al., 2010c]. We

consider four data sets of vertebrate TFBSs of length L = 16 bp collected from the TRANSFAC

database [Wingender et al., 1996], namely AR/GR/PR, GATA, NF-κB, and Thyroid containing 104,

110, 72, and 127 BSs, respectively. For each of these foreground data sets, we use the same background
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data set as described in the previous case study.

With the goal of classifying, for each family of TFs separately, any 16-mer as a BS or as subsequence

of a second exon, we build a näıve Bayes classifier consisting of two PWM models using the GTPD

prior with an ESS of 4 and 1024 for the foreground and the background class, respectively. In analogy

to the previous case study, we perform a 1,000-fold stratified hold-out sampling with 90% of the data

for training and 10% of the data for assessing the same performance measures for the evaluation of

the unified generative-discriminative learning principle.

In Figure 7.4, we visualize the results for the four data sets and the four performance measures.

Initially, we restrict ourselves to the BSs of a family of TFs called AR/GR/PR and the Sn as perfor-

mance measure, which is depicted in the upper left panel, and later we also consider the other data

sets and performance measures.

Considering the ML principle located at (β0, β1) = (0, 1) and the MCL principle located at

(β0, β1) = (1, 0), we find a Sn of 54.7% and 55.2%, respectively. Interestingly, the MCL principle

achieves a higher Sn for a given Sp of 99.9% than the ML principle for this small data set. Using the

GTPD prior with hyper-parameters corresponding to uniform pseudo-data, the sensitivities can be

increased. Considering the MAP principle located at (β0, β1) = (0, 0.5) and the MSP principle located

at (β0, β1) = (0.5, 0), we obtain a Sn of 54.9% and 55.6%, respectively. This shows that the MSP

principle yields an increase of Sn of 0.7% compared to the MAP principle, consistent with the general

observation that discriminatively learned classifiers often outperform their generatively-learned coun-

terparts. This increase of Sn is achieved using the same prior and the same hyper-parameters for both

learning principles, but it is possible that the particular choice of the hyper-parameters may favour

one of the learning principles.

Following Equations (3.11b) and (3.11d), each point on the β0- and β1-axis corresponds to the

MSP and the MAP principle, respectively, with specific hyper-parameters α. The location on the axis

indicates the strength of the prior reflected by the virtual ESS. Next, we investigate for both learning

principles the influence of the strength of the prior on the sensitivity results using a with step width of

0.05 along the axes. For the MAP principle, the Sn ranges from 54.7% for β = (0, 0.05, 0.95) to 54.8%

for β = (0, 0.95, 0.05), achieving a maximum of 55.1% for β = (0, 0.1, 0.9). For the MSP principle,

the Sn ranges from the maximum value 56.7% for β = (0.05, 0, 0.95) to 55.3% for β = (0.95, 0, 0.05).

Comparing the maximum sensitivities for both learning principles and different virtual ESSs, we find

that the MSP principle with a maximum Sn of 56.7% clearly outperforms the MAP principle by 1.6%,

whereas the difference of sensitivities is only 0.7% for the original ESS.

Investigating this increase in the difference of sensitivities between the results for the MAP and

the MSP principle, we find that the Sn increases for decreasing β0 on the β0-axis, which corresponds

to the MSP principle with an increasing virtual ESS of the prior. In contrast to this observation, the

sensitivity for the MAP principle increases less strongly with an increasing virtual ESS. This finding

gives a first hint that a prior with a large ESS might be beneficial for the MSP principle, while we

cannot observe a similar effect for the MAP principle in this case.

Next, we consider the lines β1 = ν − β0 for ν ∈ [0, 1], which correspond to the hybrid learning
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Figure 7.4: Results of the 1,000-fold stratified hold-out sampling procedure for four data sets of
TFBSs and the unified generative-discriminative learning principle. Each column contains the sub-
figures for one data set corresponding to a family of TFs, and each row contains the subfigures for
a specific performance measure. In each subfigure, we plot the values of the specific performance
measure as a function of β. Yellow indicates the best results, red indicates the worst results, and the
gray contour lines in each subfigure indicate multiples of the standard error of the best result. We
find the best results in the interior of the simplex β in 13 out of 16 cases.
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AR/GR/PR GATA NF-κB Thyroid

Sn in %

ML 54.7 77.0 81.6 51.3
MCL 55.2 73.2 76.5 50.0

MAP 55.1 77.0 81.6 51.3
MSP 56.9 77.0 79.6 50.3

Unified 57.3 77.5 81.8 52.3

fpr in %

ML 2.14 0.401 0.485 1.63
MCL 2.01 0.384 0.437 1.63

MAP 1.61 0.309 0.285 1.28
MSP 1.57 0.260 0.243 1.16

Unified 1.55 0.255 0.242 1.16

ppv in %

ML 23.5 50.6 58.2 22.6
MCL 23.1 48.1 51.3 23.4

MAP 23.7 50.9 58.6 23.0
MSP 24.1 51.1 57.1 24.9

Unified 24.6 52.4 59.3 24.9

auc-PR

ML 0.554 0.709 0.746 0.520
MCL 0.554 0.680 0.713 0.520

MAP 0.555 0.711 0.747 0.520
MSP 0.567 0.727 0.756 0.528

Unified 0.571 0.727 0.762 0.532

Table 7.2: Summary of the results of Figure 7.4. For each of the four data sets and each of the
four performance measures, we present the results for the ML, the MCL, the MAP, the MSP, and
the unified generative-discriminative learning principle. For the MAP, the MSP, and the unified
generative-discriminative learning principle, we present the best results from each of the 16 simplices
(Figure 7.4). We find that the best results, displayed in bold face, are obtained by the unified
generative-discriminative learning principle. Results that are at least one standard error greater than
the corresponding results of the other learning principles are highlighted by gray cells.

principles GDT and PGDT for ν = 1 and ν = 0.5, respectively. For the GDT principle, the Sn

ranges from 54.7% for β = (0, 1, 0) to 55.2% for β = (1, 0, 0), reaching a maximum of 56.9% for

β = (0.55, 0.45, 0). For the PGDT principle, the Sn ranges from 54.9% for β = (0, 0.5, 0.5) to 55.6%

for β = (0.5, 0, 0.5), reaching a maximum of 57.1% for β = (0.3, 0.2, 0.5). For both learning principles,

we find that the Sn is initially increasing and finally decreasing. This observation indicates that neither

the MAP nor the MSP principle with a GTPD prior representing uniform pseudo-data is optimal for

estimating the parameter vector λ.

Next, we investigate the interior of the simplex. We vary both β0 and β1 along a grid with step-

width 0.05, and we find the highest Sn of 57.3% for β = (0.1, 0.1, 0.8). We find the region of highest

Sn clearly inside the simplex near the angle bisector. This region corresponds to the MSP principle

with an informative prior based on weighted likelihood and weighted original prior. Comparing the

highest Sn for the GDT, the PGDT, and the unified generative-discriminative learning principle, we

find that it increases from 56.9% over 57.1% to 57.3%, confirming that the prior can have a positive
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(b) Number of trained classifiers.

Figure 7.5: Computational costs for different learning principles. The figure shows the runtime in
minutes and the number of trained classifiers on a logarithmic scale plotted against groups of classifier
utilizing the same learning principles. The results for generative learning principles of the comparison
are obtained by numerical optimization in this case, but could be found analytically, in principle. We
find that the behaviour of both curves is qualitatively similar indicating that there is a strong relation
between the runtime and the number of trained classifiers.

influence on the performance.

Turning to the Sn of the other three TFs GATA, NF-κB, and Thyroid, we find qualitatively

similar results. The highest sensitivities are located inside the simplex, while the lowest sensitivities

are located on the axes. For BSs of the TF GATA, we obtain a Sn of 77.5% for β = (0.45, 0.25, 0.3);

for the BSs of the TF NF-κB, we obtain a Sn of 81.8% for β = (0.4, 0.55, 0.05); and for the BSs of

the TF Thyroid, we obtain 52.3% for β = (0.4, 0.55, 0.05). Similar to the data set of AR/GR/PR, we

find a small region with high Sn for the BSs of the TFs NF-κB and Thyroid, while we find a broad

region with high Sn for the BSs of the TF GATA.

We find that for all four data sets of TFBSs the unified generative-discriminative learning principle

yields the highest sensitivities. Regarding the β1-axis, which corresponds to the MAP principle using

the GTPD prior representing uniform pseudo-data with different ESSs, we find that increasing the

prior weight β2, which is equivalent to decreasing the generative weight β1, often reduces the Sn. We

obtain the lowest Sn for the MAP principle for the largest prior weights β2 in almost all cases. In

contrast to this observation, we find on the β0-axis, which corresponds to the MSP principle with the

GTPD prior representing uniform pseudo-data with different ESSs, that increasing the prior weight

β2 improves the Sn at least initially.

Interestingly, we obtain qualitatively similar results when using performance measures alternative

to Sn (Figure 7.4). These observations suggest that the same classifier trained either by generative

or by discriminative learning principles may prefer different ESSs despite of using hyper-parameters
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that correspond to uniform pseudo-data. Hence, the strength of the prior has a decisive influence on

comparisons of the results from generative and discriminative learning principles as well as the results

of the Bayesian hybrid learning principles as for instance PGDT. Most importantly, we find that the

unified generative-discriminative learning principle leads to an improvement for almost all of the used

data sets and performance measures. We summarize the results for the ML, the MCL, the MAP, the

MSP, and the unified generative-discriminative learning principle in Table 7.2.

Although the runtime depends on many factors, as for instance, the hardware, the implementation,

the models, the prior, and the data set, we consider the runtime for one step in the cross-validation

for the Thyroid data set to get an impression of the qualitative behaviour. In Figure 7.5, we plot the

runtime and the number of trained classifiers utilizing the same learning principles. For the ML and

the MCL principle, we need to train only one classifier, which takes approximately one minute. For

all classifiers corresponding to the β0- and β1-axis denoted by “all MSP” and “all MAP”, respectively,

we already need to train 19 classifiers, which takes between 5 and 20 minutes. Finally, we have to

train 230 classifiers for the group “all unified”, which takes approximately 5 hours. Summarizing these

numbers, we find the same qualitative behaviour for the runtime and the number of trained classifiers

indicating that the runtime is mainly caused by the number of classifier that is trained.

7.3.2 Case study 2: Influence of the size of the training data set and of

the prior

In a second study, we perform stratified hold-out sampling using the unified generative-discriminative

learning principle and the same models, prior, and hyper-parameters as in the second study of the

previous section. For computational reasons, we restrict the hold-out sampling to 100 iterations and

the fraction of the preliminary training data sets to 5%, 20%, and 100%. We present the results of

this comparison in Figure 7.6, which shows each of the four performance measures fpr, Sn, ppv, and

auc-PR in one row, each containing a plot for 5%, 20%, and 100% of the preliminary training data

sets. For numerical reasons, we do not compute the results for the ML and the MCL principle, i. e.,

the corners of the simplex, since some parameters tend to go to infinity if no prior is used. However,

when using a weak prior, which can be achieved by a small prior weight β2, we obtain similar results.

For fpr the results vary between 0.4% to 3.0% with a standard error ranging from 0.03% to 0.28%,

for Sn the results vary between 40.4% to 77.1% with a standard error ranging from 1.0% to 1.6%, for

ppv the results vary between 18.3% to 58.8% with a standard error ranging from 0.9% to 2.0%, and

for auc-PR the results vary between 0.539 to 0.837 with a standard error ranging from 0.007 to 0.014.

For all measures, we observe the worst results for the smallest fraction of the preliminary training

data and the best results for the complete preliminary training data set. For each measure, the best

value of a specific fraction of the preliminary training data set is about the lowest value of the next

bigger fraction of the preliminary training data set. Since the classification performance increases very

rapidly by increasing the size of the training data sets, we use independent scales for the plots in a

row. Next, we compare the results for each fraction of the preliminary training data set separately.
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Figure 7.6: Results for unified generative-discriminative learning principle for different sizes of the
training data sets. The plots are organized in a table where rows stand for performance measures and
columns stand for the used percentage of the preliminary training data sets.
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For the smallest fraction of the preliminary training data set, i. e., 5% which corresponds to only 12

sequences from the foreground class, we observe the best classification performance right of the lower

left corner, which corresponds to the MSP principle with a strong prior. For all four performance

measures, we observe the best results using weights of about β = (0.15, 0, 0.85) surrounded by a smooth

fade-out in all directions with a skew on the β0-axes. From this observation, we conclude that using

the MSP principle with strong prior, namely a GTPD prior with foreground ESS of approximately 23

and background ESS of approximately 5803, yields the best results. Additionally, we observe inferior

results for fpr, Sn, and auc-PR at the diagonal β1 = 1− β0, which corresponds to the GDT principle.

For a medium fraction of the preliminary training data set, i. e., 20% which corresponds to only

47 sequences from the foreground class, we observe the worst results above the lower left corner,

which corresponds to the MAP principle with a strong prior, and left of the right lower corner, which

corresponds to the MSP principle with a weak prior. Again, also the GDT principle provides inferior

results. The rest of the simplex shows a comparable performance with again good results for the MSP

principle with a strong prior.

For the complete preliminary training data set, we observe the worst results for very small or

very high discriminative weights β0, while for moderate values of β0, we observe the best result.

Interestingly, we find that the GDT principle performs well for this size of training data set. Concerning

the performance for small and medium fractions of the preliminary data set, we find that the GDT

principle is not the optimal choice as learning principle. One reason for this suboptimal performance

might be the accidental non-occurrence of some nucleotides or oligonucleotides at specific positions

due to the size of the training data set. The prior, which helps to handle this problem for the rest of

the simplex, is not used in the GDT principle.

Since the prior fulfills the condition of Equation (3.12), we can compare the results for the MAP

and the MSP principle using the GTPD prior representing uniform pseudo-data but different ESSs.

We compare the classification performance on the β0-axes and on the β1-axes, which we show in

Figure 7.7 as function of the prior weight β2 for a better comparability. The figure has the same

structure as Figure 7.6 showing the performance measures in rows and the fraction of the preliminary

training data sets in columns. As described earlier, the virtual ESS, which corresponds to a specific

prior weight β2, can be computed by multiplying the initially chosen ESS by β2

1−β2
. The prior weight

β2 ranges from 0.05 to 0.95 yielding a virtual ESSs ranging from 76 for the foreground class and 19456

for the background class to approximately 0.2 for the foreground class and approximately 54 for the

background class.

We find that the results of the MSP principle have the same qualitative behavior for all fractions of

the preliminary training data set, which is an initially, strongly increasing performance with increasing

prior weight β2 and finally a decreasing performance for the highest prior weights β2. For the complete

preliminary training data set, we find a saturation for moderate prior weights β2. In contrast to these

findings, we find that the results for the MAP principle have a different characteristics for 5%, 20%,

or 100% of the preliminary training data set. For 5% of the preliminary training data set, the MAP

principle results are mainly increasing with an increasing prior weight β2, while we find the opposite
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Figure 7.7: Comparison of the MAP and the MSP principle for different ESSs and different sizes of
the training data sets. In each panel, the black line shows the results for the MAP principle, whereas
the red line shows the results for the MSP principle.
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behavior, namely a decreasing performance for increasing prior weights β2, for 20% and 100%.

Using the complete preliminary training data set, we find that the MSP principle reaches the best

performance for all four performance measures. For the smallest fraction of the preliminary training

data set, we make a similar observation. Yet, it is not obvious from Figure 7.7 how the results of the

MAP principle behave if the prior weight β2 converges to 1, which corresponds to a further increase

of the ESS. We test whether a further increase might improve the results for the MAP principle and

might give even better results than for the MSP principle (data not shown). We find that a further

increase of the prior weight β2 slightly improves all measures but still remains worse than the results

of the MSP principle. For the medium fraction of the preliminary training data set, the behavior is

less clear. Still, we find the best results for Sn, ppv, and auc-PR for the MSP principle, but for fpr

both learning principles reach approximately the same values.

Figure 7.6 and 7.7 show that the performance is dramatically influenced by the choice of the hyper-

parameters. In the comparison of the MAP and the MSP principles with uniform pseudo-data, we find

that both learning principles prefer different prior-weights β2, which correspond to different ESSs. In

addition, we find different optimal ESSs for different sizes of data sets. While for the MSP principle

the optimal ESSs differ only marginally, we find large differences for the MAP principle. Nevertheless,

for this data set, the MSP principle gives the best performance for all sizes of the training data set. In

contrast to [Ng and Jordan, 2002], we find that even for small data sets the MSP principle performs

better than the MAP principle using the GTPD prior.

7.3.3 Case study 3: Donor splice site recognition

This case study is based on the first case study of the previous section, where we compare classifiers

for donor splice site prediction based on different models from the family of MRF trained either by the

MAP or by the MSP principle. Here, we use the unified generative-discriminative learning principle

that allows to interpolate between the MAP and the MSP principle. For reason of comparability, we

choose the same model combinations, the same prior and hyper-parameters, the same performance

measures, and the same data sets. The only difference between both case studies is the learning

principle employed to estimate the parameters of the classifier.

In Table 7.3, we show the results of these case studies in close analogy to Table 7.2. For numerical

reasons, we do not use the ML and MCL principle. For each learning principle and each model

combination, Table 7.3 contains best results with respect to the interpretation of the simplex of the

unified generative-discriminative learning principle illustrated in Figure 3.2. We find in all cases that

classifiers trained using the MSP principle outperform their corresponding counterparts trained using

the MAP principle. The best classifier based on the MAP and the MSP principle is the classifier using

for both classes a mixture of two MRF(me2x5). This classifier yields a fpr of 6.84%, an auc-ROC of

0.9810, a ppv of 39.5%, and an auc-PR of 0.687 for the MAP principle. These results can be improved

using the MSP principle obtaining a fpr of 6.76%, a auc-ROC of 0.9812, a ppv of 39.7%, and an

auc-PR of 0.690.

Comparing the results for the MAP and the MSP principle with those obtained for the MAP and
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iMM(1) mix iMM(1) MRF(me2x5) mix MRF(me2x5)

fpr in %
MAP 7.82 7.44 7.24 6.84
MSP 7.29 6.97 6.95 6.76

Unified 7.29 6.97 6.95 6.66

auc-ROC
MAP 0.9778 0.9792 0.9794 0.9810
MSP 0.9795 0.9809 0.9805 0.9812

Unified 0.9795 0.9809 0.9805 0.9814

ppv in %
MAP 36.3 37.4 38.1 39.5
MSP 37.9 39.0 39.1 39.7

Unified 37.9 39.0 39.1 40.1

auc-PR
MAP 0.669 0.671 0.678 0.687
MSP 0.679 0.688 0.688 0.690

Unified 0.679 0.688 0.688 0.692

Table 7.3: Results of the unified generative-discriminative learning principle for donor splice sites.
The table shows the four performance measures Sn, auc-ROC, ppv, and auc-PR for the four model
combinations, namely iMM(1), mix iMM(1), MRF(me2x5), and mix MRF(me2x5). For each learning
principle and each model combination, we show the best results with respect to the interpretation of
the simplex of the unified generative-discriminative learning principle (Figure 3.2). The best results
of all model combinations are display in bold face for each performance measure.

the MSP principle with fixed hyper-parameters illustrated in Figure 7.2, we find that varying the

strength of the prior, which corresponds to the ESS, has a positive influence on the performance. For

instance, the classifier based on the mixture of two MRF(me2x5) yields a ppv of 39.0% and 39.7%

using the MSP principle with fixed ESS and variable ESS, respectively.

Turning to the results of the unified generative-discriminative learning principle, we find that

for iMM(1), mix iMM(1), and MRF(me2x5) the results do not differ from those obtained for the

MSP principle. This indicates that the best results for the unified generative-discriminative learning

principle are located on the β0-axis. Using the likelihood even with small weight β1 does not seem

to be beneficial in this case. Interestingly, we find that the unified generative-discriminative learning

principle helps to improve the performance of the most complex model, i. e., the mix MRF(me2x5).

We obtain the best results for all performance measures using this learning principle. Specifically, we

obtain a fpr of 6.66%, a auc-ROC of 0.9814, a ppv of 40.1%, and a auc-PR of 0.692. We find that using

the unified generative-discriminative learning principle instead of the MSP principle yields a similar

improvement of the performance measures as using the MSP principle instead of the MAP principle.

7.4 Conclusions

In this chapter, we investigate the influence of the learning principle on the performance of the

classifier. We find that the learning principle has a decisive influence on the performance, and that

choosing the learning principle carefully is very important. Specifically, we find that choosing an

appropriate learning principle can be at least as important as choosing an appropriate model.
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Comparing discriminative and generative learning principles, we find that it is often beneficial to

use discriminative instead of generative learning principles. Specifically, we find for splice site data

with thousands of sequences that classifiers trained using discriminative learning principles outperform

classifiers trained using generative learning principles irrespective of comparing the MCL and the ML

principle, or the MSP and the MAP principle. In addition, we find that MSP can also improve the

performance of TFBS recognition. Varying the size of the training data set, we show that using the

GTPD prior for both learning principles, MSP and MAP, classifiers trained using the discriminative

learning principle can outperform their generative counterparts.

Turning to the unified generative-discriminative learning principle, we find that classifiers trained

using hybrid learning principles can outperform their purely generative or discriminative counterparts.

We find for four data sets of TFBSs and donor splice site data that classifiers trained using the unified

generative-discriminative learning principle with weights β, which correspond to the interior of the

simplex that is neither purely generative nor purely discriminative, yield the best results. Considering

two edges of the simplex, which correspond to purely generative and purely discriminative learning

principles, we find that influence of the prior differs for generative and discriminative learning principle.

Assessing different strengths of the prior, we still find that classifiers trained using discriminative

learning principles outperform their generative counterparts.

Nevertheless, generative learning principles still have advantages over discriminative learning prin-

ciples. First, generative learning principles often allow to infer the parameters of the model ana-

lytically, while for the discriminative counterpart, we have to use numerical optimization methods.

Hence, it is often faster to estimate the parameters of classifiers using generative learning principles

than estimating the parameters of classifiers using discriminative learning principles. Second, gener-

ative learning principles allow to estimate parameters if the class labels are unknown. In this case

using a mixture model leads to a so-called unsupervised learning, which infers the class labels from

the data.

However, we find that for labeled data discriminative learning principles often lead to better re-

sults than obtained by generative learning principles. Using hybrid learning principles, we can often

improve these results. We obtain this improvement by optimizing several classifiers with different

β which, in total, requires a much longer total runtime. In the following chapters, we use the pre-

sented probabilistic models and learning principles to solve concrete biological questions. In next

chapter, we aim at improving the classification of DNA sequences as donor splice sites of Caenorhab-

ditis elegans using probabilistic models, while we aim at improving the recognition of human TSSs

in the chapter Recognition of human transcription start sites (page 72). In chapter Computational

reassessment of transcription factor binding site annotations (page 82), we aim at identifying potential

annotation errors in gene-regulatory databases containing TFBS annotations utilizing a generatively

trained probabilistic model. Finally in chapter Discriminative de-novo motif discovery utilizing posi-

tional preference (page 92), we aim at finding de-novo motifs of TFBSs using a discriminative learning

principle.
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Chapter 8

Donor splice site recognition in

Caenorhabditis elegans

After successfully applying the unified generative-discriminative learning principle and the GTPD

prior to learning probabilistic models on benchmark data sets, we consider in this and in the fol-

lowing chapters more biologically relevant data sets. In this chapter, we investigate the recogni-

tion of donor splice sites of the model organism Caenorhabditis elegans, which has been investigated

in [Sonnenburg et al., 2007] using support vector machines. As mentioned earlier, splicing has a deci-

sive influence on the pre-mRNA and therefore on all downstream processes as for instance translation

of mRNA to the corresponding amino acid sequence. Hence, the recognition of splice sites is of great

importance for the assessment of coding DNA regions and thus for many biological applications. For

instance, tools for splice site recognition can be used in the computation of spliced alignments for

improving the mapping of protein sequences to the genome.

During the last years, a plethora of tools for splice site recognition has been developed. Many of

these tools score candidate splice sites using only the nucleotides in the proximity of the candidate

splice site [Zhang and Marr, 1993, Castelo and Guigo, 2004, Yeo and Burge, 2004, Zhao et al., 2005].

In this case, sequences have a length of about 10 bp. However, the recognition of splice sites can

be improved using longer sequences [Degroeve et al., 2005, Sonnenburg et al., 2007]. For this reason,

we investigate whether probabilistic models, which also model longer sequences, can be applied to

improve the recognition of splice sites using probabilistic models assessed in the previous chapter as

core components.

In the case studies performed in the previous chapter, we find that discriminatively trained mixtures

of iMM(1) perform very well for the main splice site. Based on this finding, we build an IPM with

four component models for the foreground class where each component model is a mixture. The first

component models the first 75 bp of the sequence. This part of the sequence corresponds to the

upstream region of the donor splice site and is at least partially an exon. Since exons can either

be coding or non-coding, we use a mixture of a cMM(3,2) and a hMM(3) for this component. The

second component models 11 bp of the sequence, which corresponds to the donor splice site. Based

on the case studies of the previous chapter, we use a mixture model of two iMM(1) for this part of the

sequence. The remaining sequence of 55 bp corresponds to the downstream region of the donor splice

site, which is at least partially an intron. We model this part by two components, one for the proximal

and one for the remaining downstream region. For both parts, we use a mixture of two hMM(3). In

68



Chapter 8. Donor splice site recognition in Caenorhabditis elegans

upstream

length: 75 bp

hMM(3)

cMM(2,3)

donor

length: 11 bp

iMM(1)

iMM(1)

prox. downstream

length: 35 bp

hMM(3)

hMM(3)

downstream

length: 20 bp

hMM(3)

hMM(3)

Figure 8.1: Foreground model for donor splice sites.

contrast to the first two components, we do not fix the length of the last two components a-priorily,

but learn it during training. In Figure 8.1, we show the IPM for a subsequence length of 35 and 20

bp for the last two components.

For this reason, we vary the length of the last two component models on a grid of 5 bp, i. e.,

we build ten IPMs where the last two components model subsequence of length 5 bp and 50 bp,

respectively, for the first IPM, and 50 bp and 5 bp, respectively, for the last IPM. For each IPM, we

use the same background model, which is a mixture of an cMM(2,3) and a hMM(3), and the same

prior for building a classifier. We use the same learning principle for all these classifiers, which is the

MSP principle. For a given training data set, we estimate the parameters of each IPM by starting a

numerical optimization procedure ten times from different randomly chosen initializations, and we use

the parameters from the run with the highest supervised posterior. We obtain ten trained IPMs that

we assess with an independent test data set. We select the IPM with the highest auc-PR as optimal

model.

Based on the partitioned data of [Sonnenburg et al., 2007] with about 65,000 real and about

2,845,000 decoy donor splice sites of length 141 bp, we perform a 5-fold cross-validation to com-

pute the mean classification performance and the standard error for each performance measure. In

each iteration of the cross-validation, we train the ten IPMs on three parts of the data, and we validate

the models on one part of the data. We pick the model with the highest auc-PR and train it on four

parts, namely the tree parts that have been used for training and the one part that has been used for

validation. We use a GTPD with foreground ESS of 32 and background ESS of 1280 (= 40 · 32) for

training, which reflects the approximate class ratio in the data. For testing the classification perfor-

mance, we use the five performance measures Sn, fpr, ppv, auc-ROC, and auc-PR for the remaining

part of the data that has not been used for training or validation before.

In Table 8.1, we present the results of the performance measures and their standard errors for the

validation and the test data sets. Comparing the results for the IPM on the validation and the test

data sets, we find similar results for both data sets. The results for the test data set are in certain

cases even better than those obtained for the validation data set indicating that the model is not

overfitted to the validation data set, and that increasing the training data set may further improve

the classification performance slightly.

Scrutinizing the optimal model of each iteration of the cross-validation, we find that the same IPM
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validation performance test performance
Sn in % 80.68± 2.4× 10−1 81.27± 2.1× 10−1

fpr in % 0.54± 1.1× 10−2 0.52± 1.1× 10−2

ppv in % 80.00± 4.1× 10−1 80.55± 3.6× 10−1

auc-ROC 0.9983± 7.4× 10−5 0.9983± 7.5× 10−5

auc-PR 0.9552± 5.2× 10−4 0.9563± 6.0× 10−4

Table 8.1: Classification performance for donor splice sites of Caenorhabditis elegans using a classifier
based on an IPM visualized in Figure 8.1.

is selected in each iteration of the cross-validation. In Figure 8.1, we show the selected IPM, in which

the last two components model subsequences of length 35 bp and 20 bp, respectively. This finding

indicates that there is a strong difference between the proximal 35 bp and the distal 20 bp in the

foreground sets compared to the background data sets, and that this difference is present in all parts

of the data sets.

Comparing the results of the five performance measures for the test data set with those presented

in the previous chapter, we find a significant improvement. This increase can be attributed to two

possible aspects. On the one hand, the number of sequences in the training data set is much higher

than in the studies of the previous chapter. On the other hand, the sequence length has increased

from 7 bp to 141 bp. In the previous case studies, we only model the main donor splice site, whereas

in the current case we also include the upstream and the downstream region of the donor splice site.

We investigate this difference, and we train a classifier on sequences truncated to the main donor

splice site of length 11 bp. This classifier, which we denote as truncated classifier, uses the same

background model as the classifier presented above, whereas it uses as foreground model only the

second component of the IPM, which models the main donor splice site. We train this classifier on

four parts of the data, and test its performance on the remaining fifth part. Using this classifier, we find

significantly less good results for all performance measures depicted in Table 8.2. The results of this

classifier are more comparable to the results presented in the previous chapter. This finding indicates

that the first, third, and forth component of the IPM contribute substantially to the performance of

the classifier, which emphasizes that modeling upstream and downstream regions of the splice sites is

reasonable.

Besides investigating the upstream and downstream components, we examine the influence of

adding hidden variables in the classifier. Each component of the IPM used as foreground model as

well as the background model utilizes a mixture model or an cyclic Markov models. These two types

of models utilize hidden variables that allow a higher flexibility of the model. Removing this flexibility,

we build an classifier that utilizes an IPM with four component models as foreground model and a

hMM(3) as background model. The IPM is composed of a hMM(3) for the initial 75 bp, a iMM(1)

for the main donor splice site, ahMM(3) for the proximal 35 bp downstream, and another hMM(3)

for the remaining 20 bp. Performing a 5-fold cross-validation with the given splits, we train this

classifier on four splits and assess its performance on the remaining split. We obtain an auc-ROC of

0.9979±6.5×10−5 and an auc-PR of 0.9435±4.6×10−4. Comparing the values for auc-PR, which is a
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auc-ROC auc-PR

optimal classifier 0.9983± 7.5× 10−5 0.9563± 6.0× 10−4

truncated classifier 0.9893± 2.1× 10−4 0.7475± 3.1× 10−3

linear classifier 0.9979± 6.5× 10−5 0.9435± 4.6× 10−4

SVM in [Sonnenburg et al., 2007] 0.9982± 1× 10−4 0.9534± 1.0× 10−3

Table 8.2: Comparison of area under the curve for donor splice sites of Caenorhabditis elegans. The
table shows the auc-ROC and auc-PR of four classifiers. The first classifier denoted by optimal classifier
is selected during the cross-validation, the second classifier denoted by truncated classifier only uses 11
bp close to the donor site, the third classifier denoted by linear classifier does not use hidden variables,
and the fourth classifier is the support vector machine presented in [Sonnenburg et al., 2007]. For this
support vector machine, we take the values for auc-ROC and auc-PR from [Sonnenburg et al., 2007].

good performance measure in the presence of skewed classes, we find that the optimal classifier yields

a value that is about 0.013 higher than the value for the linear classifier. This significant difference

indicates that utilizing hidden variables improves the performance of the classifier.

However, the features of linear classifiers like IPMs without hidden variables can be more eas-

ily transferred into the features of a support vector machine using, for instance, a spectrum ker-

nel [Leslie et al., 2002]. Interestingly, we find that for this data set the classifier based on the IPM

with hidden variables outperforms the support vector machine presented in [Sonnenburg et al., 2007],

which yields an auc-PR of 0.9534 ± 1.0 × 10−3 for the test data set as indicated in Table 8.2. This

indicates that an appropriate combination of probabilistic models, prior, and learning principle yields

results comparable to state-of-the-art classifiers based on support vector machines. Nevertheless,

utilizing hidden variables complicates the training of the classifier as the landscape of the objective

function becomes more and more bumpy, while we can always obtain global optimum for support vec-

tor machines due to convex optimization. However, one important advantage of probabilistic model

over support vector machines is that further hidden variables can be incorporated easily for including

further biological knowledge or hypotheses on demand.
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Following the prediction of donor splice sites in the previous chapter, we turn to the prediction of hu-

man transcription start sites in this chapter. Genes are the most important feature of genomic DNA,

since they encode proteins and RNAs that are responsible for the development and maintenance of

all organisms. The approximate location of genes can be obtained, for instance, by blasting expressed

sequence tags (ESTs) against the genome. However, blasting ESTs often does not elucidate the TSSs

of the genes, which is essential for subsequent promoter analysis including, for instance, the prediction

of TFBSs using databases with known binding motifs of TFs or de-novo motif discovery. Several

experimental techniques including rapid amplification of cDNA ends (RACE) [Frohman et al., 1988]

and cap-analysis of gene expression (CAGE) [Carninci et al., 2006] have been developed for determin-

ing TSSs of genes. Data coming from these methods show that in many cases genes have multiple

TSSs, which often cluster building so-called transcription start regions1. However, lowly expressed or

tissue-specific genes might be missed by these techniques. One feasible way for determining TSSs of

such genes is the computational prediction.

A large number of different tools for the recognition of TSSs has been proposed during the last

years. Recently, 17 state-of-the-art tools have been compared using the same test data and four differ-

ent evaluation protocols [Abeel et al., 2009] in the first large scale comparison of promoter prediction

programs (PPPs).

The remainder of this chapter is structured as followed: First, we discuss the established protocols

of [Abeel et al., 2009]. Second, we describe PACT, a probabilistic approach to CAGE tags, including

the training data and the parameter learning. Finally, we compare PACT with the four best performing

tools discussed in [Abeel et al., 2009].

9.1 Established protocols

These protocols can be categorized by two criteria. On one hand, the protocols differ by the way

predictions are declared to be correct, which is either based on the binned genome with a bin size

of 500 bp denoted as protocol 1 or based on distances with a maximal distance of 500 bp denoted

as protocol 2. On the other hand, the protocols differ by the data that are used for defining the

1For simplicity, we use TSS synonymous for transcription start site and transcription start regions.
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ground truth, which is either based on CAGE tags [Carninci et al., 2006] denoted as protocol A

or based on RefSeq genes downloaded from the UCSC table browser including 23, 799 unique gene

models [Kent et al., 2002], denoted as protocol B. Additionally, protocol B discards all intergenic

predictions from the evaluation to avoid doubtful false positives due to intergenic regions that are

related to unknown genes or other types of transcription [Bajic et al., 2004].

In detail, there are four protocols, namely, protocol

1A, which uses CAGE tags as ground truth and the binned genome with a bin size of 500 bp,

1B, which uses the gene set as ground truth and the binned genome with a bin size of 500 bp,

2A, which uses CAGE tags as ground truth and the distance to the closest real positive, and

2B, which uses the gene set as ground truth and the distance to the closest real positive.

For each protocol i ∈ {1A, 1B, 2A, 2B}, the auc-PR is measured and denoted by auc-PRi. For

comparing a scalar value in the end, the PPP score,

PPP :=
4∑

i∈{1A,1B,2A,2B}
1

auc-PRi

, (9.1)

which is the harmonic mean of the auc-PRs for all protocols, is used. The PPP score favours tools

with a stable performance over all protocols, since the harmonic mean reduces the effect of high

outliers, while at the same time increases the effect of low scores. For more details regarding all

tested tools, the protocols, and the PPP score, we refer the reader to [Abeel et al., 2009]. Based

on the PPP score, the tools ARTS [Sonnenburg et al., 2006], Eponine [Down and Hubbard, 2002],

ProSOM [Abeel et al., 2008b], and EP3 [Abeel et al., 2008a] have been reported as best performing

tools, where ARTS clearly outperforms all other tools.

However, the tested tools are trained on different training data sets, which at least partially overlap

with the test data. For instance, protocols B are based on TSSs of approximately 24, 000 RefSeq

genes [Abeel et al., 2009], but ARTS is trained on TSSs of approximately 8, 500 RefSeq genes, reaching

an auc-PR of 0.9991 for this training data set [Sonnenburg et al., 2006]. Similarly, the training data

sets of other tools overlap with the data used for assessing the performance in [Abeel et al., 2009].

Hence, the performance of some tools might be overestimated.

For further analysis, it has been proposed to do a chromosomewise cross-validation by the authors

of [Abeel et al., 2009]. Since genes and CAGE tags are not uniformly distributed over all chromosomes,

the class ratio between foreground and background class in the test data sets used in each step of the

cross-validation would strongly vary between 1 : 7, 414 and 1 : 221, 352. However, the class ratio in the

data sets has a decisive influence on the results of the auc-PR [Davis and Goadrich, 2006]. Computing

the mean auc-PR from these values during a chromosomewise cross-validation is therefore not optimal.

Hence, we propose to use a k-fold cross validation where each split provides approximately the same

class ratio.

73



Chapter 9. Recognition of human transcription start sites

Considering the proposed protocols, we find that these are based on the ideas

of [Sonnenburg et al., 2006, Abeel et al., 2008b] to allow a detailed comparison. However, the current

protocols might possibly lead to some problems that complicate an unbiased comparison of different

tools.

On one hand, the protocols are strictly separated by the underlying experimental data, but on

the other hand, we find that the TSSs proposed by these experiments partially overlap. For instance,

more than 50% of the TSSs proposed by CAGE are located inside of RefSeq genes 500 bp downstream

of the corresponding gene start. Hence, the labeling sequence of genes downstream of the gene start

as background class might not be optimal. For this reason, the results of protocols B might be too

pessimistic.

Conversely, looking at the RefSeq genes, we find that more than 25% of the gene starts have a

distance of more than 500 bp to the nearest TSS proposed by CAGE. Hence, labeling all nucleotides

that do not overlap with a TSS proposed by CAGE as background class might be problematic. For

this reason, the results of protocols A might be too pessimistic.

In addition, we find TSSs for both protocols that are not labeled as positive examples in the other

protocol. For this reason, it is impossible to reach an auc-PR of 1 for all four protocols at the same

time.

Furthermore, the bins in protocols 1 might obtain positive labels in a too conservative

way. Originally, it is proposed to add 20 bp upstream and downstream of the annotated gene

start [Sonnenburg et al., 2006] to enlarge the gene start, and subsequently to label the correspond-

ing bins. However, the current version of protocols A does not enlarge the experimental evidences.

Hence, a TSS can start or end in close proximity to the border of a bin leading to a false positive

prediction if the prediction is shifted by only few positions. Furthermore, the current implemen-

tation [Abeel et al., 2009] always labels only one bin as positive, even if the experimental evidence

overlaps with more than one bin.

Finally, protocols 2 depend on the resolution of the predictions, since they count the true posi-

tive for computing the precision as number of predictions that overlap with experimental evidence.

However, they do not take into account that several predictions can overlap with the same experi-

mental evidence. Conversely, they count false positives as number of predictions that do not overlap

with experimental evidence. Hence, it is hard to compare PPPs that predict at different resolutions.

For instance, PPPs that predict at a very high resolution, such as predictions with a resolution of

individual base pairs, could possibly suffer from this convention.

These difficulties show that it is hard to define protocols that allow a fair assessment of PPPs.

However, the proposed protocols are the first attempt to enable a large scale comparative study of

PPPs. For this reason, we use these protocols also here, which are implemented in the tool pppBench-

mark [Abeel et al., 2009], to allow a direct comparison with 17 state-of-the-art tools.
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Figure 9.1: Probabilistic models used in PACT. In Figure 9.1(a), we show the foreground model of
PACT that is an IPM with six component models. In Figure 9.1(b), we show the background model
of PACT that is also an IPM but utilizes three mixture models of homogeneous Markov models.

9.2 Approach

In the previous chapter, we find that modeling the upstream and the downstream region of donor splice

sites using an appropriate IPM yields a good classification performance. Typically, long sequences are

also used for the prediction of TSSs. With the goal of predicting TSSs accurately, we build a classifier

based on two IPMs for sequences of length 2000 bp, where the start of the TSS, if any, is located at

position 1001.

In Figure 9.1, we visualize the foreground and background model used for building the classifier.

As foreground model, we choose an IPM with six components. The first two components model

the sequence upstream of the TSS, the third component models the start of the TSS, and the last

three components model the sequence downstream of the TSS. For each of these components, we

use a hMM(3). For the background model, we also use an IPM but only with three components.

For modeling the sequence heterogeneity of the background class, we use mixture models for each

component of the IPM. Specifically, we choose a mixture of three hMM(1) for the first and the last

component, which model the upstream and the downstream sequence, respectively, and a mixture of

three hMM(3) for the second component, which models the start of the TSS.

For training and assessing the classifier, we download the human genome, version hg18, from

UCSC Genome Browser and the TSSs based on CAGE tags provided by [Carninci et al., 2006,

Abeel et al., 2009]. We split the genome in 3 parts, where each split has a class ratio of about

1:17,000 bp covered by TSSs versus all bp. In Table 9.1, we show some statistics of these splits
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Part Chromosome TSSs bp bp covered by TSSs Class ratio

0 1, 5, 10, 11, 13, 14, 20, 21 60,559 1.03× 109 35.5× 106 1:16,972
1 2, 3, 6, 9, 12, 15, 22 60,468 1.04× 109 35.5× 106 1:17,133
2 4, 7, 8, 16, 17, 18, 19, X, Y 59,386 1.02× 109 34.1× 106 1:17,118

Table 9.1: Statistics of splits for human CAGE data based on [Carninci et al., 2006].

indicating that the TSSs seem to be uniformly distributed over all three splits. Using these splits,

we extract foreground and background data sets with a class ratio of 1:25 and a sequence length of

2000 bp, where we align the start of a TSS at position 1001. Based on these data sets, we perform

a 3-fold cross-validation. For learning the parameters of the classifier, we use the MSP principle and

an ESS of 4 and 120 (= 4× 25) for foreground and background model, respectively. For each step in

the cross-validation, we estimate the parameters of the classifier by starting a numerical optimization

procedure ten times from different randomly chosen initializations, and choosing the parameters from

the run with the highest supervised posterior. Using the corresponding classifier, we subsequently

predict the probability of being a TSS for each nucleotide of the split that is not used during training.

We assess these predictions using pppBenchmark, version 1.3.

9.3 Results and conclusions

In Figure 9.2, we show the precision recall curves of PACT for each split of the cross-validation

in comparison with ARTS, Eponine, ProSOM, and EP3. In Table 9.2, we show the corresponding

auc-PRs and PPP scores form the cross-validation in comparison with the results of ARTS, Eponine,

ProSOM, and EP3.2

Considering individual protocols, we find that for protocol 1A the auc-PR of PACT varies between

0.217 and 0.237 with a mean of 0.224. Comparing these values with results of the other tools, we find

a slightly better performance than for ARTS (auc-PR = 0.191), Eponine (auc-PR = 0.164), ProSOM

(auc-PR = 0.182), and EP3 (auc-PR = 0.176). However, protocol 1A is based on CAGE tags that

have not been used by ARTS, Eponine, and ProSOM for training. On the other hand, we perform a

3-fold cross-validation for PACT to avoid an overestimation of the performance, which might be the

case for some of the other tools since training and test data sets are not strictly disjoint.

Turning to protocol 1B, we find for PACT an auc-PR that varies between 0.312 and 0.340 with a

mean of 0.321. In contrast to the results for protocol 1A, we find that ARTS performs slightly better

than PACT especially for low recall rates yielding an auc-PR of 0.367. However, the current imple-

mentation of pppBenchmark uses a fixed number of bins for the predicted probabilities to determine

the precision recall curves. This may possibly lead to artefacts in the curves if the probabilities are

not equally distributed between 0 and 1. Nevertheless, PACT performs second best yielding a higher

auc-PR than Eponine (auc-PR = 0.294), ProSOM (auc-PR = 0.247), and EP3 (auc-PR = 0.230).

2The results for ARTS, Eponine, ProSOM, and EP3 are slightly different from those reported in [Abeel et al., 2009]
due to the update from pppBenchmark 1.0 to pppBenchmark 1.3 (private communication with Thomas Abeel).
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Figure 9.2: Comparison of precision recall curves for promoter prediction programs and the four
protocols proposed in [Abeel et al., 2009]. The plot is organized as table, where the first row contains
the results for protocol 1 and the second row contains the results for protocol 2. Similarly, the
first column contains the results of protocol A, whereas the second column contains the results of
protocol B. Each panel shows the results of ARTS (red line), Eponine (green line), ProSOM (blue
line), EP3 (magenta line), and PACT (3 black lines). For PACT, we obtain 3 curves due to the 3-fold
cross-validation. For the auc-PR of all tools, we refer to Table 9.2.
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Tool
auc-PR for protocol

PPP score
1A 1B 2A 2B

ARTS 0.191 0.367 0.466 0.639 0.343
Eponine 0.164 0.294 0.410 0.573 0.292
ProSOM 0.182 0.247 0.416 0.507 0.287
EP3 0.176 0.230 0.424 0.507 0.279

PACT
0.219 0.312 0.692 0.692 0.375
0.217 0.340 0.680 0.721 0.384
0.237 0.312 0.695 0.694 0.388

(mean) PACT 0.224 0.321 0.689 0.702 0.383

Table 9.2: Performance of different promoter prediction programs. In the first four rows, we show
the results of the four best performing tools of [Abeel et al., 2009] sorted by their PPP score. In rows
five to seven, we show the results of PACT for each step of the cross-validation. In row eight, we show
the mean performance of PACT with respect to the 3-fold cross-validation.

Scrutinizing the difference of the results for protocol 1A and 1B, we find that ARTS performs

slightly better for protocol 1B that is based on RefSeq genes, while PACT performs slightly better

for protocol 1A that is based on CAGE tags. This finding could possibly be explained by the data

sets used for the training of these tools. ARTS is trained on TSSs of approximately 8, 500 RefSeq

genes [Sonnenburg et al., 2006], while we train PACT using CAGE data. Hence, both tools perform

best on test data that are similar to the data used for training.

Considering the results for protocol 2A, we find that PACT clearly outperforms all other tools.

PACT yields an auc-PRs between 0.680 and 0.695 with a mean of 0.689, whereas ARTS yields an

auc-PR of 0.466, Eponine yields an auc-PR of 0.410, ProSOM yields an auc-PR of 0.416, and EP3

yields an auc-PR of 0.424. Similar to protocol 1A, protocol 2A is based on CAGE tags, which might

be beneficial for PACT that is trained on data sets based on CAGE tags.

Finally, considering protocol 2B, we find that the auc-PR varies between 0.692 and 0.721 with a

mean of 0.702. Comparing these results with the results of the other tools, we find that ARTS yields

a comparable auc-PR of 0.639, while PACT clearly outperforms Eponine with an auc-PR of 0.573,

ProSOM with an auc-PR of 0.507, and EP3 with an auc-PR of 0.507.

Considering the overall performance of PACT, we find that in three out of four protocols PACT

yields comparable results to those of ARTS, Eponine, EP3, and ProSOM, which perform best

in [Abeel et al., 2009]. These three protocols include both protocol that are bin-based, protocol 1A

and 1B, and both protocols that are based on RefSeq genes, protocol 1B and 2B. For the remaining

protocol 2A, which is based on CAGE tags, we find a significant better performance of PACT com-

pared to the performances of ARTS, Eponine, EP3, and ProSOM. However, we note that PACT is

trained on data sets based CAGE tags. Hence, the training data as well as PACT might be in better

accordance with protocol 2A than the other tools.

Considering the PPP scores for PACT, we find that the values vary between 0.375 and 0.388 with

a mean of 0.383. Comparing these values with the values obtained for the other tools, we find that
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(a) Precision recall curves.
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1 0.692 0.722
2 0.680 0.712
3 0.695 0.731

mean 0.689 0.722
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Figure 9.3: Results of PACT based on precision recall curves and auc-PRs for protocol 2A and 2A′.
Figure 9.3(a) visualizes the results for protocol 2A (black lines) and the results of protocol 2A′ (red
lines). We obtain three curves for both protocols due to the 3-fold cross-validation. Figure 9.3(b)
show the auc-PRs and the mean auc-PRs for the curves visualized in Figure 9.3(a).

PACT performs slightly better than ARTS (PPP score of 0.343), Eponine (PPP = 0.292), ProSOM

(PPP = 0.287), and EP3 (PPP = 0.279). However, these results are not directly comparable due to

different training data sets and possibly due to different resolutions for the predictions. Yet, these

results show that PACT yields comparable results to state-of-the-art PPPs.

Investigating the difference between ARTS, which performed best in [Abeel et al., 2009], and

PACT, we find that the performance of ARTS is evaluated using predictions for non-overlapping

bins of size 50 bp (private communication with Sören Sonnenburg), while PACT used predictions to

single base pairs. To allow a more direct comparison to ARTS, we compute for each bin of size 50

bp the probability of containing a TSS as maximum of the probabilities of each nucleotide in this

bin of being a TSS. Using these prediction, we again evaluate PACT, and we find that the results

for protocols 1. However, for protocols 2 we find a decisive influence of the resolution of the predic-

tions. For protocol 2A, we obtain a mean auc-PR of 0.528 compared to 0.689 for base pair resolution,

and for protocol 2B, we obtain a mean auc-PR of 0.611 compared to 0.702 for base pair resolution.

Interestingly, both performances decrease when decreasing the resolution of the predictions.

Considering the PPP score, we find a mean of 0.360 compared to 0.383 for base pair resolution.

Comparing these values to the value obtained for ARTS, we find that PACT still performs slightly

better. However, comparing the auc-PRs for individual protocols, we now find that ARTS performs

slightly better for protocols based on RefSeq genes, while PACT performs slightly better for protocols

based on CAGE data. This finding is in accordance with the training data used for the tools. Ad-

ditionally, it indicates that the performance of ARTS might possibly improve when using predictions

with base pair resolution. Possibly, other tools evaluated in [Abeel et al., 2009] might also improve
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when changing their resolution for the prediction. Hence, we recommend trying to use the same

prediction resolution for all PPPs in future comparisons.

Investigating the protocols proposed in [Abeel et al., 2009], we find that either CAGE data or

RefSeq genes are used in one protocol. As mentioned earlier, the data coming from these experiments

only overlaps partially. Hence, some predictions are labeled as true positives in one protocol and as

false positives in the other protocol. Aiming at solving this contradiction, we propose a modification

of protocol 2A, which we denote by 2A′. This protocol is also based on distance as protocol 2A, but

in contrast to protocol 2A it used CAGE tags and RefSeq genes as ground truth.

In Figure 9.3, we show the results of this protocol in comparison with the results obtained from

protocol 2A. We obtain a mean auc-PR of 0.722 for this protocol compared to a mean auc-PR of

0.689 for protocol 2A. This finding indicates that it might be beneficial to use experimental data

from different sources to define the ground truth for an evaluation protocol. Following this proposal,

it might also be beneficial to use data that are based on different sources of experiments for training

the PPPs.

9.4 Conclusions

The annotation of TSSs is of fundamental importance for many areas of life science, as for instance,

promoter analyses and subsequent prediction of TFBSs. Based on new experimental techniques as for

instance CAGE, many previously unknown TSSs could be identified. However, TSSs of tissue-specific

or lowly expressed genes and RNAs might be missed by experimental techniques, and one way out is

the computational prediction of their TSSs.

During the last years a wealth of PPPs has been developed. However, it is hard to compare the

performance of these tools. Often the tools are trained on different training data sets, and their

performance is assessed using different evaluation strategies and different test data sets. Recently, the

first large scale comparative study has been published that defines four evaluation strategies called

protocols and compares 17 state-of-the-art PPPs on the human genome.

We present PACT, a probabilistic approach to CAGE tags, which is a discriminatively trained

classifier based on two IPMs, and compare it to ARTS, Eponine, EP3, and ProSOM the four best

performing tools of a recent study. Using a 3-fold cross-validation, we find that PACT performs well

based on all four protocols. For three protocols, we find that PACT performs comparable to the four

best tools of [Abeel et al., 2009] including ARTS, Eponine, EP3, and ProSOM. For protocol 2A, which

is distance-based and uses CAGE tags to define the TSSs, PACT clearly outperforms ARTS, Eponine,

EP3, and ProSOM. However, since PACT is trained using data from CAGE experiments that are not

used by ARTS, Eponine, and ProSOM, this is not surprising. Interestingly, in [Abeel et al., 2009] it

has been pointed out that protocol 2A is preferable as it is the combination the more biologically

inspired protocol A and the more accurate protocol 2.

We also find that there are several shortcomings of the currently used protocols as they might be too

conservative when defining TSSs. Additionally, the performance of some tools might be overestimated
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due to an overlap of the training and test data sets. Furthermore, the PPPs are not directly comparable

due to differences in the training data and possibly in the evaluation based on the resolution of their

predictions. For this reason, this study as well as the study performed in [Abeel et al., 2009] only give

a rough overview.

For an unbiased comparison of different PPPs one should unify the experimental evidence from

different sources, should refine the evaluation protocols, and should perform a cross-validation for all

PPPs of this study. However, such a comparison can only be made in a joint project of the developer

of PPPs to avoid any biases, since handling the individual PPPs is a challenging task.
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Chapter 10

Computational reassessment of

transcription factor binding site

annotations

After investigating splice sites and TSSs in the last chapters, we now turn to the regulation of

gene expression, which involves a complex system of interacting components in all living organ-

isms [Babu and Teichmann, 2003] and which is of fundamental interest, for instance, for cell main-

tenance and development. This complex process is controlled by many influential components such

as the binding of proteins to DNA, the binding of miRNAs to mRNA, RNA editing, splicing of pre-

mRNA, mRNA degradation, or post-translational modification. One of the fundamental regulatory

steps is the binding of TFs to the promoters of their target genes [Pabo and Sauer, 1992]. These TFs

influence the initiation of transcription as their binding to the target promoter can induce (activator)

or inhibit (repressor) the transcription, and, hence, affect many subsequent regulatory processes. The

general ability to control a target gene may depend on the BS itself, its strand orientation, and its

position with respect to the TSS. If other BSs are present, the ability of a TF to bind the DNA may

additionally depend on strand orientations and positions of these BSs.

One important prerequisite for research on gene regulation is the reliable annota-

tion of BSs. The approximate regions on the double-stranded DNA sequence bound

by TFs can be determined by wet-lab experiments such as electrophoretic mobility

shift assays (EMSA) [Hellman and Fried, 2007], DNAse footprinting [Galas and Schmitz, 1978],

enzyme-linked immunosorbent assay (ELISA) [Benotmane et al., 1997, Mönke et al., 2004], ChIP-

chip [Sun et al., 2003, Wu et al., 2006], ChIP-seq [Johnson et al., 2007], or mutations of the puta-

tive BS and subsequent expression studies. Because TFs bind to double-stranded DNA, the strand

annotations of non-palindromic BSs in the databases are either missing or added based on man-

ual inspection or predictions from bioinformatics tools such as MEME [Bailey and Eklan, 1994],

Gibbs Sampler [Lawrence et al., 1993, Thompson et al., 2003], Improbizer [Ao et al., 2004], SeSiM-

CMC [Favorov et al., 2005], or A-GLAM [Kim et al., 2008].

After wet-lab identification, data about transcriptional gene-regulatory interactions includ-

ing the annotated BSs are published in the scientific literature. Subsequently, these data

are extracted by curation teams and manually entered into databases on transcriptional gene

regulation such as CoryneRegNet [Baumbach et al., 2009], PRODORIC [Münch et al., 2003], or
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RegulonDB [Gama-Castro et al., 2008] for prokaryotes, and AGRIS [Palaniswamy et al., 2006],

AthaMap [Bülow et al., 2009], CTCFBSDB [Bao et al., 2008], JASPAR [Bryne et al., 2008], ORe-

gAnno [Montgomery et al., 2006], SCPD [Zhu and Zhang, 1999], TRANSFAC [Matys et al., 2006],

TRED [Jiang et al., 2007], or TRRD [Kolchanov et al., 2002] for eukaryotes. Three typical problems

may occur during the process of transferring these data.

1. Erroneously annotated BS: This error may occur in the original study or during the transfer

process from the scientific literature to the databases. A sequence is declared to contain a BS

although, in reality, it does not.

2. Shift of the BS: The BS may be erroneously shifted by one or a few base pairs. This typically

happens during the transfer process from the scientific literature to the databases.

3. Missing or wrong strand orientation of the BS: The strand orientation of a BS is often not or

incorrectly annotated. For example, all BS orientations are arbitrarily declared to be in 5′ → 3′

direction relative to the target gene in CoryneRegNet and in RegulonDB [Baumbach et al., 2009,

Gama-Castro et al., 2008].

These problems can strongly affect any of the subsequent analysis steps such as the inference of

sequence motifs from “experimentally verified” data, the calculation of p-values for the occurrence of

BSs, the detection of putative BSs in genome-wide scans and their experimental validation, or the

reconstruction of transcriptional gene-regulatory networks.

In this chapter, which is based on the article [Keilwagen et al., 2009], we introduce MotifAdjuster,

a software tool for detecting potential BS annotation errors and for proposing possible corrections.

Existing bioinformatics tools [Bailey and Eklan, 1994, Lawrence et al., 1993, Thompson et al., 2003,

Ao et al., 2004, Favorov et al., 2005, Kim et al., 2008] are not optimized for this task, because they do

not allow shifting the BS using a nonuniform distribution and considering both strands with unequal

weights. In contrast, MotifAdjuster allows the user to incorporate prior knowledge about 1) the

probability of erroneously annotated BSs, 2) the distribution of possible shifts, and 3) the strand

preference.

One widely-used model for the representation of BSs is the PWM model [Kel et al., 2003,

Bailey and Eklan, 1994, Tompa et al., 2005, Lawrence et al., 1993, Thompson et al., 2003,

Ao et al., 2004, Favorov et al., 2005, Kim et al., 2008], and many software tools for genome-

wide scans of sequence motifs are based on PWM models [Münch et al., 2005, Kel et al., 2003].

MotifAdjuster is based on a ZOOPS model using a PWM model on both strands for the motif

sequences and a homogeneous Markov model of order 0 for the flanking sequences similar to MEME,

Gibbs Sampler, Improbizer, SeSiMCMC, or A-GLAM. For a given set of BSs, MotifAdjuster tests

whether each sequence contains a BS, and it refines the annotations of position and strand for each

BS, if necessary, by maximizing the posterior of the mixture model.

To test the efficacy of MotifAdjuster, we apply it to seven data sets from CoryneRegNet, and we

record for each of them the set of potential annotation errors. For one example, the nitrate regulator
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NarL, we compare the proposed adjustments to the original literature, to a manual strand reannotation

of the BS strands, and to an independent and hand-curated reannotation provided by PRODORIC.

Finally, we test if the PWM estimated from the adjusted NarL BSs can help to detect unknown BSs in

those promoter regions that are known to be bound by NarL, but for which no BS could be predicted

in the past.

10.1 Approach

For the detection of sequences erroneously annotated as containing BSs, with shifted BSs, or with

missing or wrong strand annotations, we use the annotated BSs enlarged by 5 bp upstream and

downstream. Using these sequences, we learn the parameters of a special ZOOPS model composed

of a strand model of a PWM model as motif model, a skew normal model for the start position of

the BSs, and homogeneous Markov model of order 0 for the flanking sequence with the MAP learning

principle. For shortness of notation, we use subscript ZOOPS and PWM in this chapter.

We expect there are some sequences annotated to contain a BS despite they do not contain a BS

in reality, but we believe that the fraction of such incorrectly annotated sequences is small. Hence,

we choose PZOOPS
(
u1 = 0 λ(ZOOPS)

)
= 0.2 for the studies presented here, i. e., we assume that only

20% of the sequences annotated to contain a BS do not contain a BS in reality. We further expect

that the annotated position of the BS might be shifted accidentally by a few base pairs, so we choose

maximal shift to be 5 (i. e. ∆ = 10) and a skew normal model with fixed parameters λ(skew) = (0, 0, 0)

which encodes a discrete normal distribution with mean 5 and standard deviation 1. This choice

results in a conditional probability of approximately 40% that the BS is not shifted, of approximately

25% that it is shifted 1 bp, and of approximately 5% that it is shifted by more than 1 bp upstream

or downstream of the annotated start position, respectively, given that a BS is present in sequence x.

We denote the ESS of the ZOOPS model chosen prior to inspecting any database by ε, and we

set the ESS of the PWM model to PZOOPS
(
u1 = 1 λ(ZOOPS)

m

)
· ε, the positive hyper-parameters of

the strand parameters to αstrand
m,0 = αstrand

m,1 = PZOOPS
(
u1 = 1 λ(ZOOPS)

m

)
· ε2 , and the ESS of the

homogeneous Markov model of order 0 to
[
L− PZOOPS

(
u1 = 1 λ(ZOOPS)

m

)
· w
]
· ε.

For the reannotation of BSs presented in this section, we choose an ESS of ε = 5, yielding an

ESS of 4 for the PWM model, αstrand
0 = αstrand

1 = 2, and an ESS of 57 for the homogeneous Markov

model of order 0. This choice yields αPWM
`,b = 1 for every b ∈ Σ and every ` ∈ [1, w], stating that the

chosen prior of the PWM model can be understood as a special case of the BDeu prior [Buntine, 1994,

Heckerman et al., 1995], which in turn is a special case of the BD prior [Cooper and Herskovits, 1992].

Using this parameters and hyper-parameters, we learn the remaining parameters of the ZOOPS

model by a numerical algorithm. We stop the algorithm if the logarithmic increase of the posterior

between two subsequent iterations becomes smaller than 10−6, restart the algorithm 10 times with

randomly-chosen initial values, and choose the parameters of that start with the highest posterior,

similar to [Lawrence and Reilly, 1990, Bailey and Eklan, 1994].

If we restrict the positional distribution of the ZOOPS model to be a uniform distribution over
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all possible start positions, if we set P strand
(
u = 1 λ(strand)

m

)
= 0.5, and if we restrict the back-

ground model to be strand symmetric, then we obtain the probabilistic model which is the basis of

[Lawrence and Reilly, 1990, Bailey and Eklan, 1994]. The flexibility allowed by MotifAdjuster is im-

portant for its practical applicability. Typically for the task of BS reannotation, the user has prior

knowledge about the expected motif occurrence and the shift distribution, but no or only limited prior

knowledge about the distribution of the BS strand orientation. Hence, we allow the user to specify

the probability that a sequence contains a BS PZOOPS
(
u1 = 1 λ(ZOOPS)

m

)
, a non-uniform positional

distribution to incorporate the prior knowledge of the shift distribution, and we estimate the prob-

ability that the BS is located on the forward strand P strand
(
u = 0 λ(strand)

m

)
from the data. This

setting allows MotifAdjuster to work, without additional intervention, also in the two extreme cases

that the BSs lie predominantly either on the forward or on the reverse complementary strand.

Due to the object oriented implementation of MotifAdjuster, similar ZOOPS models can

be implemented easily, for instance, by using other background and motif models such as

Markov models of higher order [Zhang and Marr, 1993, Salzberg, 1997b, Thijs et al., 2001], per-

muted Markov models [Ellrott et al., 2002, Zhao et al., 2005], Bayesian networks [Barash et al., 2003,

Castelo and Guigo, 2004], or their extensions to variable order [Rissanen, 1983, Ron et al., 1996,

Boutilier et al., 1996, Bühlmann, 1997, Ben-Gal et al., 2005].

10.2 Results and Discussion

In this subsection we present the results of MotifAdjuster applied to seven data sets of Escherichia

coli, the validation of MotifAdjuster results for NarL BSs, and the prediction of a novel NarL BS.

10.2.1 Results for seven data sets of Escherichia coli

For testing the efficacy of MotifAdjuster and improving the annotation of BSs of Escherichia coli,

we extract all data sets with at least 30 BSs of length of at most 25 bp from the bacterial gene-

regulatory reference database CoryneRegNet 4.0. The choice of at least 30 BSs of length of at most

25 bp is arbitrary, but motivated by the intention that the results of the following study should not

be influenced by TFs with an insufficient number of BSs or by TFs with an atypical BS length. Seven

data sets of BSs corresponding to the TFs CpxR, Crp, Fis, Fnr, Fur, Lrp, and NarL satisfy these

requirements, and we apply MotifAdjuster to each of these seven data sets. We summarize the results

obtained by MotifAdjuster in Table 10.1.

We find that all of the data sets are considered questionable by MotifAdjuster and, more surpris-

ingly, that 34.5% of the 536 BS annotations are proposed for removal or shifts. The percentage of

questionably annotated BSs ranges from 9.3% for Fnr to 95.7% for Fur. MotifAdjuster proposes to

remove 51 of the 536 BSs and to shift 134 of the remaining 485 BSs by at least one bp indicating that,

in these seven data sets, erroneous shifts of the annotated BSs are the most frequent annotation error.

In particular, the percentage of proposed deletions ranges from 2.2% (1 out of 46) for Fur to 27.3% (9
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ID name #BSs BS length #Removed BSs #Shifted BSs Percentage

b3357 crp 218 22 20 31 23.4%
b1221 narL 74 7 2 11 17.6%
b3261 fis 68 21 13 17 44.1%
b1334 fnr 54 14 2 3 9.3%
b0683 fur 46 15 1 43 95.7%
b0889 lrp 43 12 4 23 62.8%
b3912 cpxR 33 15 9 6 45.5%

Total 536 51 134 34.5%

Table 10.1: Summary of the results of the application of MotifAdjuster to all data sets of CoryneReg-
Net 4.0 from Escherichia coli with at least 30 BSs and of at most 25 bp length. Columns 1 and 2
show the gene ID and gene name of the TF, columns 3 and 4 show the number of BSs stored in the
database and their lengths, columns 5 and 6 show the number of BSs proposed to be removed and
to be shifted, and column 7 shows the percentage of BSs to be removed or shifted. Interestingly,
the percentage of proposed adjustments varies strongly from TF to TF ranging from 9.3% for Fnr to
95.7% for Fur. In summary, we find in the complete data set of 536 BSs that 51 BSs are proposed to
be removed and 134 BSs are proposed to be shifted, resulting in 34.5% of the data set being proposed
for adjustments.

out of 33) for CpxR, while the percentage of proposed shifts ranges from 5.6% (3 out of 54) for Fnr to

93.5% (43 out of 46) for Fur. In more detail, we observe a broad range of shift lengths ranging from

one shift 4 bp upstream to two shifts 4 bp downstream with a sharp peak about 0.

For each of the seven TFs, we analyze if the adjustments proposed by MotifAdjuster result in an im-

proved motif of the BSs (Figure 10.1). We compute the sequence logos [Schneider and Stephens, 1990,

Crooks et al., 2004] of the original BSs obtained from CoryneRegNet and those of the BSs proposed

by MotifAdjuster, which we call original sequence logos and adjusted sequence logos, respectively.

Comparing these sequence logos, we find that the adjusted sequence logos show a higher conservation

than the original sequence logos in all seven cases. We also compare the sequence logos to consen-

sus sequences obtained from the literature [De Wulf et al., 2002, Körner et al., 2003, Pan et al., 1996,

Baichoo and Helmann, 2002, Cui et al., 1995, Maris et al., 2005], and we find that the adjusted se-

quence logos are more similar to the consensus sequences than the original sequence logos. In addition,

we find for the TFs CpxR, Fur, and NarL that the adjusted sequence logos allow to recognize clear

motifs that could not be recognized in the original sequence logos obtained from CoryneRegNet.

We investigate if there is any systematic dependence of the observed rate of proposed adjustments

on the number of BSs, the BS length, and the GC-content of the BSs. We find no obvious dependence

of the error rate on the number of BSs and on the BS length. Comparing the GC-content of the BSs,

we find that the GC-content of the BSs of all but one TF ranges from 30% to 40%. However, the

GC-content of the Fur BSs is only 20%. This low GC-content might be the reason for the unexpectedly

high percentage of shifts in this data set, since it is more likely to accidentally shift a BS in a sequence

composed of a virtually binary alphabet.
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Figure 10.1: Comparison of BS conservation showing the original sequence logos, the consen-
sus sequences for the TFs obtained from the literature [De Wulf et al., 2002, Körner et al., 2003,
Pan et al., 1996, Baichoo and Helmann, 2002, Cui et al., 1995, Maris et al., 2005], and the adjusted
sequence logos for the data sets of the TFs CpxR, Crp, Fis, Fnr, Fur, Lrp, and NarL. We find in all
seven cases that 1) the adjusted sequence logos show a higher conservation than the original sequence
logos, 2) the adjusted sequence logos are more similar to the consensus sequences than the original
sequence logos, and 3) clear motifs can be recognized in the adjusted sequence logos of the TFs CpxR,
Fur, and NarL that could not be recognized in the original sequence logos.

10.2.2 Validation of MotifAdjuster results for NarL

To evaluate the previous results, we choose NarL as example and examine the proposed reannotations

of MotifAdjuster for this case. The nitrate regulator NarL of Escherichia coli is one of the key factors

controlling the upregulation of the nitrate respiratory pathway and the downregulation of other res-

piratory chains. In the absence of oxygen, the energetically most efficient anaerobic respiratory chain

uses nitrate and nitrite as electron acceptors [Unden and Bongaerts, 1997]. Detection and adaption

to extracellular nitrate levels are accomplished by complex interactions of a double two-component

regulatory system, which consists of the homologous sensory proteins NarQ and NarX, and the homol-

ogous TFs NarL and NarP. Depending on the BS arrangement and localization relative to the TSS,

NarL and NarP act as activators or repressors, thereby enabling a flexible control of the expression of

nearly 100 genes.

CoryneRegNet stores 74 NarL BSs each of length 7 bp (Table 10.1). Out of these 74 BSs, only

36 are considered as accurate by MotifAdjuster, whereas 38 are considered to be questionable. In 25

cases, MotifAdjuster proposes to switch the strand orientation of the BS, in 5 cases it proposes to
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No strand switch Strand switch

No position shift 36 25
Position shift 5 6

removed 2

Table 10.2: Application of MotifAdjuster to the set of 74 NarL BSs results in adjustments suggested
for 38 of these BSs. Two BSs are proposed to be removed from the data set. Out of the remaining
36 BSs, 25 BSs are labeled with a wrong strand annotation but a correct position, and five BSs
are proposed to have a correct strand annotation but a wrong position. For six BSs both strand
annotation and position are proposed to be wrong.

shift the location of the BS, and for 6 BSs it proposes both a switch of strand orientation and a shift

of position. In addition, two BSs are proposed for removal. We present a summary of these results in

Table 10.2, and we summarize in Table 10.3 those 13 BSs of the regulator NarL where MotifAdjuster

proposes to shift the location of the BS or to remove it from the databases.

To evaluate the accuracy of MotifAdjuster, we check the original litera-

ture [Kaiser and Sawers, 1995, Li et al., 1994, Darwin et al., 1997, Golby et al., 1998,

Darwin et al., 1996] for each of the 13 questionable BS candidates. Comparing both, we find

that in all cases but one (BS of gene b1224 ) the proposed annotation agrees with those in the

literature. That is, in 12 of 13 cases signaled by MotifAdjuster as being questionable, the detected

error was indeed caused by an inaccurate transfer from the original literature into the gene regulatory

databases RegulonDB and CoryneRegNet. Out of those 12 questionable BSs, 10 BSs are correctly

proposed to be shifted, and two are correctly proposed to be removed.

Turning to the BS of the gene b1224, we find it is published as given in the

databases [Li et al., 1994], in contrast to the proposal of MotifAdjuster. However,

[Darwin et al., 1996] report that a mutation of this BS has little or no effect on the expression

of b1224. Hence, the proposal could possibly be correct, and the BS could be shifted or even be

deleted.

In addition, MotifAdjuster checks the strand annotation of BSs and proposes strand switches if

needed. In order to validate these annotations, we cannot use the annotations from RegulonDB and

CoryneRegNet, since these databases contain all BSs in 5′ → 3′ direction relative to the target gene.

Hence, we consult annotation experts at the Center for Biotechnology in Bielefeld to reannotate the

strand orientation of the BSs manually, and we compare the results with those of MotifAdjuster.

Interestingly, we find that the strand orientations proposed by MotifAdjuster are in perfect (100%)

agreement with the manually-curated strand orientations. As an independent test of the efficacy

of MotifAdjuster for NarL BSs, we use the manually annotated BSs provided by the PRODORIC

database [Münch, 2009]. Remarkably, we find also in this case that the results of MotifAdjuster

perfectly agree with the annotations.

Another hint that the proposed adjustments of MotifAdjuster could be reasonable is based on the

observation that NarL and NarP homodimers bind to a 7-2-7’ BS arrangement [Maris et al., 2005],

an inverted repeat structure consisting of a BS on the forward strand, a 2 bp spacer, and a BS on the
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ID name BS Lit. Occ. Shift Strand Adj. BS

b0904 focA AATAAAT [Kaiser and Sawers, 1995] 1 +1 reverse TATTTAT
b0904 focA ATAATGC [Kaiser and Sawers, 1995] 1 +1 forward TAATGCT
b0904 focA ATATCAA [Kaiser and Sawers, 1995] 1 +1 forward TATCAAT
b0904 focA CAACTCA [Kaiser and Sawers, 1995] 1 +1 forward AACTCAT
b0904 focA CATTAAT [Kaiser and Sawers, 1995] 1 +1 reverse TATTAAT
b0904 focA GATCGAT [Kaiser and Sawers, 1995] 1 +1 reverse TATCGAT
b0904 focA GTAATTA [Kaiser and Sawers, 1995] 1 +1 forward TAATTAT
b0904 focA TATCGGT [Kaiser and Sawers, 1995] 1 +1 reverse TACCGAT
b0904 focA TTACTCC [Kaiser and Sawers, 1995] 1 +1 forward TACTCCG
b1223 narK CACTGTA [Li et al., 1994] 0 – – –
b1224 narG TAGGAAT [Li et al., 1994] 1 +1 reverse AATTCCT
b4070 nrfA TGTGGTT [Darwin et al., 1997] 1 +1 reverse TAACCAC
b4123 dcuB ATGTTAT [Golby et al., 1998] 0 – – –

Table 10.3: Annotated NarL BSs where MotifAdjuster proposes either to shift the BS or to re-
move it from the data set. Columns 1-3 contain gene ID, gene name, and the BS (as stored in the
database). Column 4 indicates the original literature related to this BS. The following three columns
(5-7) comprise the three possible adjustments suggested by MotifAdjuster, removal, shift, and strand
orientation (relative to the target gene). In column 5, a value of 0 indicates that the BS is proposed
for removal, and in column 6, a positive (negative) value denotes a shift of the BS to the right (left).
Finally, column 8 provides the adjusted BS. Interestingly, we find that the two BSs that are proposed
to be removed are not mentioned in the original literature and in 10 out of the 11 cases the shifted BS
is consistent to the BS published in the original literature. In addition, MotifAdjuster also proposes
to switch the BS strand in six of the 11 cases.

reverse complementary strand. NarP exclusively binds as homodimer to this 7-2-7’ structure. While

NarL monomers can also bind to a variety of other heptamer arrangements, NarL dimerization at

7-2-7’ BSs allows for high-affinity DNA-binding. Instances of this 7-2-7’ structure have been reported

for four genes, fdnG, napF, nirB, and nrfA [Darwin et al., 1997, Maris et al., 2005]. In contrast to this

observation, all BSs in CoryneRegNet as well as RegulonDB are annotated to be on the forward strand,

including the second half of the inverted repeat. When applied to these four genes, MotifAdjuster

proposes all heptamers of the second half of the 7-2-7’ structure to be switched to the reverse strand,

in agreement with [Darwin et al., 1997, Maris et al., 2005]. In addition, MotifAdjuster proposes six

additional BSs with a 7-2-7’ BS arrangement, located in the upstream regions of the genes adhE,

aspA, dcuS, frdA, hcp, and norV.

10.2.3 Prediction of a novel NarL binding site

After investigating to which degree MotifAdjuster is capable of finding errors in existing gene-

regulatory databases, it is interesting to test if MotifAdjuster could be helpful for finding novel

BSs. The flexibility of BS arrangements and the low motif conservation complicate the com-

putational and manual prediction of NarL BSs by curation teams. This results in several

cases where promoter regions are experimentally verified to be bound by NarL, but where
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. (a) New NarL BS in torC promoter

     −220      −210      −200      −190    
       |         |         |         |     
5'−GTAACGGAAACGGTATACCCCTCCTGAGTGAAGTAGG−3'
3'−CATTGCCTTTGCCATATGGGGAGGACTCACTTCATCC−5'

. (b) Histogram of all NarL BS positions relative to the start codon
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Figure 10.2: The NarL BS TACCCT is located on the forward strand with respect to the target operon
torCAD starting at position −209 bp (red color). All positions are relative to the first nucleotide of the
start codon of torC. Figure 10.2(a) shows the fragment of the upstream region of the torCAD operon
containing the NarL BS predicted by the PWM model trained on the adjusted data set. Figure 10.2(b)
shows the histogram of all positions of NarL BSs in the database. The red line indicates the position
of the predicted BS.

no NarL BS could be detected[Overton et al., 2006, Constantinidou et al., 2006]. Examples of

such genes are caiF [Eichler et al., 1996], torC [Iuchi and Lin, 1987], nikA [Rowe et al., 2005],

ubiC [Kwon et al., 2005], and fdhF [Wang and Gunsalus, 2003]. We extract the upstream regions

of these genes, where an upstream sequence is defined by CoryneRegNet as the sequence between

positions −560 bp and +20 bp relative to the first position of the annotated start codon of the first

gene of the target operon. In addition, we extract those upstream regions of Escherichia coli that

belong to operons not annotated as being regulated by NarL (background data set).

We investigate if we can now detect NarL BSs based on the adjusted data set that could not

be detected based on the original data set from CoryneRegNet. For that purpose, we estimate the

parameters of the PWM model on the adjusted data set as proposed by MotifAdjuster and the

parameters of the homogeneous Markov model on the background data set. From the adjusted PWM,

we build a strand model with the same probability for each strand. For the classification of an unknown

heptamer x, we build a simple log-likelihood ratio r(x) with these parameters. For an upstream region,

we compute rmax defined as the highest log-likelihood ratio of any heptamer x in this upstream region.

We compute the p-value of a potential BS x with value r(x) as fraction of the background sequences

whose rmax-values exceed r(x).
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Using this classifier, a significant NarL BS can now be detected in the upstream region of torC.

Figure 10.2a shows the double-stranded DNA fragment with the predicted BS (TACCCCT) located

on the forward strand starting at −209 bp relative to the start codon, and at −181 bp relative

to the annotated TSS [Méjean et al., 1994]. The distance of the predicted BS to the start codon

agrees with the distance distribution of previously known NarL BS (Figure 10.2b), providing another

additional evidence for the proposed BS. This finding closes the gap between sequence analysis and

gene expression studies, as the torCAD operon consists of three genes which are essential for the

Trimethylamine N-oxide (TMAO) respiratory pathway [Méjean et al., 1994]. TMAO is present as

an osmoprotector in tissues of invertebrates and can be used as respiratory electron acceptor by

Escherichia coli. Transcriptional regulation of this operon by NarL binding to the proposed BS would

explain nitrate-dependent repression of TMAO-terminal reductase (TorA) activity under anaerobic

conditions [Iuchi and Lin, 1987], thereby linking TMAO and nitrate respiration.

10.3 Conclusions

Gene-regulatory databases, such as AGRIS, AthaMap, CoryneRegNet, CTCFBSDB, JASPAR, ORe-

gAnno, PRODORIC, RegulonDB, SCPD, TRANSFAC, TRED, or TRRD store valuable information

about gene-regulatory networks including TFs and their BSs. These BSs are usually manually ex-

tracted from the original literature and subsequently stored in databases. The whole pipeline of

wet-lab BS identification and annotation, publication, and manual transfer from the scientific lit-

erature to data repositories is not just time-consuming but also error-prone, leading to many false

annotations currently present in databases.

MotifAdjuster is a software that supports the (re-)annotation process of BSs in silico. It can be

applied as quality assurance tool for monitoring putative errors in existing BS repositories and for

assisting with a manual strand annotation. In contrast to existing de-novo motif discovery algorithms,

MotifAdjuster allows the user to specify the probability of finding a BS in a sequence and to specify

a non-uniform shift distribution.

We apply MotifAdjuster to seven data sets of BSs for the TFs CpxR, Crp, Fis, Fnr, Fur, Lrp, and

NarL with a total of 536 BSs, and we find 51 BSs proposed for removal and 134 BSs proposed for shifts.

In total, this results in 34.5% of the BSs being proposed for adjustments. We choose NarL as example

to examine the proposed reannotations of MotifAdjuster. Checking the original literature for each

of the 13 cases shows that the proposed deletions and shifts of MotifAdjuster are in agreement with

the published data. Comparing the strand annotation of MotifAdjuster with independent information

indicates that the proposals of MotifAdjuster are in accordance with human expertise. Furthermore,

MotifAdjuster enables the detection of a novel BS responsible for the regulation of the torCAD operon,

finally augmenting experimental evidence of its NarL regulation.

We make MotifAdjuster available for the scientific community as part of the open-source Java

library Jstacs [Keilwagen et al., 2008], which allows an easy application, automation, and extension

at http://www.jstacs.de/index.php/MotifAdjuster.
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Chapter 11

Discriminative de-novo motif

discovery utilizing positional

preference

In the previous chapter, we investigate the quality of TFBS annotation, which is based on the pipeline

of wet-lab experiments, scientific publications, and subsequent manual transfer into transcriptional

gene-regulatory databases by curation teams. However, the basis of such databases are combinations

of different wet-lab experiments that are used to obtain target regions of TFs. The regions identified

by these experimental methods are large and not limited to the TFBSs solely, so one challenge in com-

putational biology is the identification of TFBSs in these regions. Typically, de-novo motif discovery

tools, which take a set of target regions with unknown binding motif and unknown BSs as input, are

used for predicting putative binding motifs and the corresponding putative TFBSs simultaneously.

A wealth of de-novo motif discovery tools has been developed over the last decades including, for

example, Gibbs Sampler [Lawrence et al., 1993, Thompson et al., 2003, Thompson et al., 2007],

MEME [Bailey and Eklan, 1994], Weeder [Pavesi et al., 2001], Improbizer [Ao et al., 2004],

DME [Smith et al., 2005], DEME [Redhead and Bailey, 2007], or A-GLAM [Kim et al., 2008].

These tools differ by the learning principle employed to infer the model parameters and by their

capability of learning the position distribution of the BSs from the data.

Many de-novo motif discovery tools including Gibbs Sampler [Lawrence et al., 1993,

Thompson et al., 2003, Thompson et al., 2007], MEME [Bailey and Eklan, 1994],

Weeder [Pavesi et al., 2001],Improbizer [Ao et al., 2004], and A-GLAM [Kim et al., 2008] use

generative learning principles for discovering statistically over-represented motifs from a target data

set. However, the discovered motifs often turn out to be over-represented also in the rest of the

genome, making the predictions not specific for the target data set under investigation. In order to

overcome this limitation, de-novo motif discovery tools using discriminative learning principles such

as DME [Smith et al., 2005] and DEME [Redhead and Bailey, 2007] have been developed during the

last years. These tools utilize an additional control data set expected to contain no or only few BSs

of the motif of interest for discovering differentially abundant motifs.

Many de-novo motif discovery tools including Gibbs Sampler [Lawrence et al., 1993,

Thompson et al., 2003, Thompson et al., 2007], MEME [Bailey and Eklan, 1994],

Weeder [Pavesi et al., 2001], DME [Smith et al., 2005] and DEME [Redhead and Bailey, 2007]
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position distribution
fixed learned from data

learning
principle

generative
Gibbs Sampler Improbizer

MEME A-GLAM
Weeder

discriminative
DME

DEME

Table 11.1: Characterization of de-novo motif discovery tools. Rows indicate the learning princi-
ple, and columns indicate if the position distribution can be learned from the data. Weeder uses a
consensus-based representation of the motif, while the other tools use probabilistic models. Inter-
estingly, none of the tools is capable of searching for differentially abundant BSs and learning the
positional distribution simultaneously.

use a fixed position distribution, chosen to be a uniform distribution in most cases. Motivated

by the observation that TFBSs often occur clustered, i. e., not uniformly distributed along the

promoters [Hughes et al., 2000, Thompson et al., 2003, Wray et al., 2003], tools such as Impro-

bizer [Ao et al., 2004] and A-GLAM [Kim et al., 2008] have been developed that are capable of

learning the positional distribution from the data.

In Table 11.1, we categorize the above-mentioned tools according to their capability of (i) find-

ing differentially abundant motifs and (ii) learning the position distribution from the data. None

of these tools works perfectly [Tompa et al., 2005, Sandve et al., 2007], but typically de-novo motif

discovery tools utilizing a discriminative learning principle outperform those utilizing a generative

learning principle [Elemento et al., 2007], and de-novo motif discovery tools capable of learning the

positional preference of TFBSs typically outperform those with a fixed distribution [Kim et al., 2008].

Interestingly, no algorithm has been developed that combines both features. This chapter is based

on [Keilwagen et al., 2010a] where we introduce Dispom, a discriminative de-novo position distribu-

tion motif discovery tool that is capable of modeling the positional preference of TFBSs.

Similar to other discriminative tools such as DEME or DME, Dispom utilizes a control data set as-

sumed to contain no or few BSs of interest in addition to the target data set. And similar to Improbizer

and A-GLAM, Dispom learns the distribution of binding positions from the data simultaneously with

the parameters of the motif model. In addition, Dispom uses a heuristic during parameter learning for

adapting the length of the binding motif, which is often unknown in advance, and for compensating

phase shifts [Lawrence et al., 1993], which frequently occur in many de-novo motif discovery tools.

The remainder of this chapter is structured as follows. In the next section, we describe Dispom

and the data used in the subsequent case studies. In section Results and Discussion, we compare the

performance of Dispom to that of seven commonly used de-novo motif discovery tools based on 18

benchmark data sets investigating whether these tools are capable of finding motifs with and without

positional preference. Subsequently, we test whether Dispom is capable of finding two motif types

simultaneously. Finally, we apply Dispom to a data set of promoters of auxin-responsive genes in a cell

suspension culture of Arabidopsis thaliana. We compare the motif found by Dispom with the canonical
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auxin-responsive element and test how specific these motifs are at predicting auxin-responsive genes

for an independent data set.

11.1 Approach

In this section, we briefly describe Dispom including the probabilistic model, the parameter learning

principle, and a heuristic for avoiding an often occurring problem called phase shifts and for the

inference of the motif length. Subsequently, we explain how we compare the performance of de-novo

motif discovery tools, and we describe the data sets used in the case studies.

Dispom

Dispom is based on the extended zero or one occurrence per sequence model, which we describe in

subsection Extended ZOOPS models (page 31). This model includes two hidden variables u1 and u2

that encode the motif type located in the sequence and the stat position of the BS, respectively. Given

that there is a BS of motif type u1 > 0 at position u2 in sequence x, this yields the probability

P eZOOPS(M,S,F)
(
x, u1, u2 λ

)
:= P eZOOPS(M,S,F)

(
u1 λ

)
· PSu1

(
u2 λ

(Su1 )
)
· PF

(
x1,...,u2−1 λ

(F)
)

· PMu1

(
xu2,...,u2+wu1−1 λ

(Mu1
)
)
· PF

(
xu2+wu1 ,...,L

λ(F)
)

(11.1)

where F denotes the model for the flanking sequence, Mu1
denotes the model for the motif u1, and

Su1
denotes the model for the start position of motif u1.

Similar to other tools, Dispom uses a PWM for each motif model M for both DNA strands and

a homogeneous Markov model of order 0 as flanking sequence model F . In contrast to other tools,

Dispom utilizes a mixture of a skew normal and a uniform distribution as position model S. The

choice is motivated by the observation that a Gaussian distribution decays quite rapidly, and, hence,

BSs further apart from the mean of the Gaussian are often overlooked. Similarly, the choice of the

skew normal instead of a Gaussian distribution is inspired by the expectation that if the mean of the

Gaussian is close to the TSS there might be a skew of the distribution. Further details about the

model can be found in subsection Extended ZOOPS models (page 31).

For predicting BSs of motif u1 > 0 in a sequence x, we compute the probability given in Equa-

tion 11.1 for each possible position u2 of x. We also compute these probabilities for each possible

position in each sequence of the control data set yielding a background distribution of probabili-

ties. We define the p-value of position u2 being erroneously predicted as a BS as the fraction of

the probabilities that exceed the probability at position u2 according to the background distribu-

tion. We finally define a threshold ψ on the p-values, and predict all positions u2 of a sequence with

pP
(
x, u1, u2 λ

)
< ψ as starting positions of a BS.

The goal of de-novo motif discovery is to infer proper parameters of the motif model from a set
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of target regions and, in case of discriminative approach, an additional set of control regions. While

tools like MEME and Improbizer use the generative MAP principle for learning the parameters based

on a target data set, DME, DEME, and Dispom use a discriminative learning principle. Specifically,

Dispom uses the MSP principle described in section Learning principles (page 10) where we use the

eZOOPS model for the foreground class, and we follow the proposal of [Redhead and Bailey, 2007]

and use a homogeneous Markov model of order 0 for the background class.

When learning the parameters using a Bayesian learning principle as for MAP or MSP, we need

a prior density for the parameters. In the cases studies on the benchmark data sets as well as for

the auxin data set, we use the prior density described in chapter Priors (page 34) with the hyper-

parameters listed below. These hyper-parameters are chosen according to a uniform pseudo-data

sets.

• The parameters of each PWM model obtain the same hyper-parameters, αPWMu

`,b = 1 for ` ∈
[1, wu] and b ∈ Σ.

• We expect that the BSs of each motif are located on both strands with equal probability,

αMu

b = 2 for b ∈ {0, 1}.

• We expect that the are some sequences that do not contain any BS, α0 = 1, which corresponds

to an expectation of 20% and 11% of sequences that do not contain a BS when searching for

one or two motifs, respectively.

• We expect that that position distribution of each motif is dominated by the uniform distribution,

αSu0 = 3 and αSu1 = 1.

• For the skew normal component of each position distribution, we expect that it does not deviate

much from a uniform distribution expressed by the following parameters.

– The mean is located about 250 bp with an standard deviation of 500 bp, α
Su,1
0,0 = 250 and

α
Su,1
0,1 = 500.

– The standard deviation is about 150, α
Su,1
1,0 = 0.5 and α

Su,1
1,1 = 0.5 · 1502.

– The skew parameter is about 0 with a standard deviation of 1, α
Su,1
2,0 = 0 and α

Su,1
2,1 = 1.

• Finally, we expect that the parameters of the flanking model do not deviate very much from a

uniform distribution. Based on the ESS of the eZOOPS model, this yields the hyper-parameter

αFb = L · α0+
∑
u α

(PWMu)
·

4 −
∑
u

∑wu
`=1 α

(PWMu)
`,b for b ∈ Σ. For an ESS of the eZOOPS model of

5 and 9 for one and two motif types, respectively, obtain a value of 610 and a value of 1095 for

an initial motif length of wu = 15.

We obtain estimates of the parameters of Dispom by numerical maximization [Wallach, 2004] of

Equation (3.7a). Since the eZOOPS model implements a non-convex supervised posterior it may get

trapped in local optima or saddle points. One prominent type of local optima are so-called phase shifts

where the BSs are only covered by a part of the motif model. Besides starting Dispom multiple times,
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we implement a heuristic that helps reducing this problem and at the same time allows to adjust the

motif length. We describe this heuristic in the next subsection.

Phase shift and adjustment of motif length

Similar to other models, the eZOOPS model is prone to phase shifts. We address the problem by

allowing the motif model to be shifted, shrunken, or expanded using a heuristic step. We ensure

that these heuristic steps do not lead to cycles by keeping a history of performed steps. After each

numerical maximization of the parameters, Dispom performs a number of steps to decides whether a

heuristic step should be performed or not.

First, we compute the number of foreground sequences B predicted to contain at least one BS.

Second, we test each shift s of the motif of at most half of the motif length by shifting the motif model,

optimizing the parameters with 10 steps of numerical optimization, and computing the number of

foreground sequences Bs predicted to contain at least one BS. Finally, we compare the B and Bs, and

determine for both shift directions the number of insignificant positions by finding the shift s with

maximal Bs ≥ 0.8 · B. From these insignificant positions, the heuristic proposes a promising shift or

length modification of the motif model described in the following.

The promising modifications are determined by the following rules: Let n` be the number of

insignificant positions on the left side of the motif, and let nr be the number of insignificant positions

on the right side of the motif. If we find no insignificant position on either side of the motif, i. e.,

n` = nr = 0, we expand the motif to the initial length by appending additional positions to the right

side, or if this configuration is already stored in the history, to the left side of the motif. If the initial

length is already reached or even exceeded, we expand the motif by one position on both sides, if

allowed by the history. Otherwise, i. e., n` > 0 or nr > 0, we first try to shift the motif, such that the

larger number of insignificant positions is shifted out of the model, i. e., if n` > nr, we shift the model

by n` positions to the right, and vice versa. If the shift operation did not succeed, we shrink the motif

by removing n` positions from the left side and nr positions from the right side of the motif. We

restrict the minimal length of the motif model to 1 to prevent the complete elimination of the motif.

Positions that are added to the motif model are initialized with a uniform distribution of nucleotides

before we start the numerical optimization. The cycle of heuristic steps and consequent optimization

is stopped if none of the promising modifications is still allowed by the history. Figure 11.1 shows the

complete flow diagram of Dispom as well as a detailed workflow for the heuristic described above.

It is clear that Dispom can get trapped in local optima or saddle points despite of these heuristic

steps. Hence, we start Dispom including the heuristic steps 50 times, and choose that parameter set

λ with the highest supervised posterior for the subsequent prediction of BSs.

Due to these repeated starts of the numerical optimization, the runtime of Dispom is considerable.

However, the runtime of a single optimization run highly depends on number and length of the input

sequences. Besides this technical limitation, there are also some biological limitations of Dispom.

For instance, Dispom shares the limitation of several other tools, as for instance MEME, Weeder,

Improbizer, DME, and DEME, to model at most one BS per sequences, since it uses the eZOOPS

96



Chapter 11. Discriminative de-novo motif discovery utilizing positional preference

(a) Flow diagram for Dispom.

start initialize optimize heuristic

success stop
end

(b) Flow diagram for the heuristic used in Dispom.
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Figure 11.1: Flow diagram for Dispom. Figure a) shows the flow diagram for Dispom, whereas
Figure b) shows the flow diagram of the heuristic that is used to shift, shrink, or expand the motif.

model. In addition, Dispom does only work on sequences of identical length due to the position

distribution of the BSs that is learned from the data.

Comparison of de-novo motif discovery tools

Prediction performance of different de-novo motif discovery tools is usually compared using the nu-

cleotide recall (nRs) and the nucleotide precision (nP), which are also referred to as nucleotide sensi-

tivity and nucleotide positive predictive value, respectively [Tompa et al., 2005]. Let the true positives

TP be the number of positions correctly predicted to be covered by BSs according to the annotation,

let M be the number of positions covered by BSs, and let M̄ be the number of positions predicted to

be covered by BSs. Then, nR is defined as the fraction of correctly predicted nucleotides out of all

nucleotides of all annotated BSs, nR := TP/M , and nP is defined as the fraction of correctly predicted

nucleotides out of all nucleotides of all predicted BSs, nP := TP/M̄ .

nR and nP depend on parameters of the tools, such as the threshold ψ. For this reason, the values

of nP and nR may be very different, and it is hard to compare the performance of different tools using
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only a single pair of nR and nP. Typically, some tools have high values of nR and low values of nP,

while other tools have low values of nR and high values of nP, complicating a one-to-one comparison of

their accuracy. Hence, we vary the threshold ψ, which is connected to the number of predictions, and

obtain a series of pairs of nR and nP for each tool. Plotting these values of nP against nR yields the

nucleotide precision recall (nPR) curve, which is a natural generalization of the PR curve presented

in section Classification measures (page 17). For this reason, the nPR curve is more suitable for

assessing imbalanced data sets than extension of commonly used ROC curve [Raghavan et al., 1989,

Davis and Goadrich, 2006, Sonnenburg et al., 2006, Sonnenburg et al., 2007]. Since most of the tools

compared to Dispom have fixed internal thresholds, we can only obtain partial curves for these tools,

which still provide more information than single pairs of nP and nR values.

Data sets

First, we describe 18 benchmark data sets with known positions of the BSs of one motif used for

comparing the prediction performance of the tools listed in Table 11.1 and Dispom. Second, we

describe three benchmark data sets with known positions of the BSs of two motif used for testing

the eZOOPS with two motif types. Finally, we describe two data sets of auxin-responsive genes of

Arabidopsis thaliana [Paponov et al., 2008] used for applying Dispom to a real-life problem where the

true BSs are unknown.

Benchmark data sets with known positions of the binding sites of one motif

Several benchmark tests have been used for comparing different de-novo motif discovery tools over the

last years. These comparisons are based on annotated BSs [Tompa et al., 2005, Kim et al., 2008] or

on binding motifs [Linhart et al., 2008]. For an in-depth comparison of the performance of different

de-novo motif discovery tools, a comparison based on BSs is more informative than a comparison

based on binding motifs, since comparing binding motifs does not address the prediction accuracy

of individual BSs. In [Tompa et al., 2005, Kim et al., 2008] small data sets with long sequences and

annotated BSs have been used.

To assess the significance of predictions depending on the amount of data, we estimate the proba-

bility to find at least one common subsequence with at most one mismatch in N random sequences.

We download Arabidopsis promoter regions from TAIR [Swarbreck et al., 2008] and extract the up-

stream 2000 bp for each promoter following [Kim et al., 2008]. For varying N , we randomly sample N

promoter sequences and determine the length of the longest common subsequence of the N sequences

with at most one mismatch. In Figure 11.2, we show the result of repeating this procedure 1000 times

where we plot the length of the longest subsequence against the p-value. For N equal to 5, 10, and

100, and a subsequence length of up to 10, 9, and 8 bp, respectively, we find a p-value of 1.1 Using less

conservative approaches as for instance the ZOOPS model, we are not restricted to one mismatch per

BS, and we do not require that each sequence contains a BS, making the problem even worse. Hence,

1We perform the same simulation for human promoters obtaining similar results.
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Figure 11.2: P -value distribution for the length of common subsequences in promoter regions of
Arabidopsis thaliana. Illustration of the p-value distribution for the length of common subsequences
in promoter regions of Arabidopsis thaliana for N equals 5, 10, and 100 sequences, respectively, and
one allowed mismatch.

finding binding motifs of length 9 bp in data sets with few long sequences is usually insignificant, and

we recommend to use benchmark data sets with more or shorter sequences.

Hence, we use the seven largest data sets of known TFBSs from the JASPAR

database [Bryne et al., 2008]. These data sets cover TFs of mammals (three data sets: MA0048,

MA0052, MA0077), plants (three data sets: MA0001, MA0005, MA0054), and insects (one data set:

MA00115). Second, we download the promoters of the corresponding organisms for each of these

seven data sets. In case of data set MA0054 from Petunia x hybrida, we use promoters of Arabidopsis

thaliana, since promoters for Petunia x hybrida are not available. For each promoter data set, we

extract the upstream 500 bp. Third, we create two data sets for each data set of TFBSs and the cor-

responding promoters by randomly choosing a subset of promoters and subsequently implanting BSs

randomly either from a uniform or a Gaussian distribution. For each Gaussian distribution, we draw

the mean and the standard deviation uniformly from the intervals [20, 480] and [20, 80], respectively.

Each data set created consists of 70% of promoters with one BS on either the forward or the reverse

complementary strand and of 30% of promoters with no implanted BS. Finally, for each of these data

sets we draw another data set with the same number of promoters not containing any implanted BS,

which is used as control data set for discriminative de-novo motif discovery tools.

For testing the discriminative power of the eight de-novo motif discovery tools, we build four

additional pairs of data sets. We implant a decoy BS of the data set MA0052 in each sequence in

the target and control data sets. Additionally, we implant BSs of the data set MA0048 only into

the target data set according to the above procedure. We obtain four pairs of data sets by drawing

the positions of the real and the decoy BSs within the promoter either from a uniform or a Gaussian

distribution as described above resulting in 18 pairs of data sets in total.

Among these 18 pairs of data sets, we denote the nine data sets with BSs implanted by Gaussian

distributions as Gaussian data sets, and we denote the remaining nine data sets as uniform data sets.
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For the assessment of the nPR curves, we use the implanted BS positions except border positions with

an information content of less than 0.25 bit in the sequence logo of the true motif.

Benchmark data sets with known positions of the binding sites of two motifs

For testing whether the eZOOPS model is capable of learning more than one motif type, we build three

benchmark data sets. We choose the BSs of MA0048 and MA0052 from homo sapiens which we have

downloaded from JASPAR database. Similar to the procedure described above, we randomly choose

150 promoters and implant the BSs of both types on both strands where each sequence contains at

most one BS. We obtain three data sets containing the BSs of MA0048 and MA0052. In the first data

set, we implant the BSs of both types using two Gaussian distributions, and similar in the second

data set, we implant the BS of both types using a uniform distribution. In addition, we implant the

BSs of MA0048 and MA0052 using a uniform and Gaussian distribution, respectively. We use these

three data sets as target data sets for Dispom, and we generate a control data set that contains 150

promoters without any implanted BS.

Data sets of auxin-responsive promoters

We use expression data of Arabidopsis thaliana from a cell suspension culture, because it is ideal

for studying transcriptional responses to different stimuli due to its uniformity and homogeneity.

The plant hormone auxin plays a critical role in virtually all aspects of plant growth and develop-

ment specifically regulating the transcription of many genes [Teale et al., 2006]. Direct target genes

of auxin response are known to be regulated quickly, so we select genes with a two-fold increase

in gene expression after a short exposure time of 15, 30, or 60 minutes in the cell suspension cul-

ture [Paponov et al., 2008]. As an independent set of genes, we select genes up-regulated in seedlings

within the same time interval of 60 minutes after treatment [Paponov et al., 2008]. We use the cell

suspension data set containing 48 promoters as target data set, and we randomly select 1,000 pro-

moters from the set of all remaining genes on the Affymetrix ATH1 microarray chip as control data

set. For testing Dispom, we use the promoters of the seedling data set and of all remaining genes not

used during training yielding 113 promoters and 21012 promoters, respectively. For all data sets, we

use the promoter region from -500 bp to -1 bp.

11.2 Results and Discussion

In this section, we first compare the performance of the seven de-novo discovery tools A-GLAM,

DEME, DME, Gibbs Sampler, Improbizer, MEME, and Weeder with that of Dispom based on 18

benchmark data sets containing experimentally verified BSs of one motif. Second, we test whether

Dispom is able to find two different motifs simultaneous in specific benchmark data sets. Finally, we

apply Dispom to a situation where neither the true BSs nor their motifs are known. Specifically, we

apply Dispom to promoters of genes up-regulated by auxin in a cell suspension culture of Arabidopsis
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thaliana, we compare the motif found by Dispom with the canonical auxin-responsive element, and

we investigate if the motif is also differentially abundant in the seedling data set compared to all

remaining promoters.

11.2.1 Comparison of Dispom with existing tools

For testing the efficacy of Dispom, we compare it with commonly used available methods on the

same data sets. First, we consider three different aspects of de-novo motif discovery for all tools. We

consider the capability of de-novo motif discovery tools of

1. finding the correct BSs with unknown motif length,

2. recovering a non-uniform position distribution of the BSs in the data sets, and

3. finding differentially abundant motifs in the presence of non-specific but over-represented motifs.

For each of these issues, we consider only one specific example, and we refer to Additional File 2-5

of article [Keilwagen et al., 2010a] for the remaining results. Finally, we provide a comparison of the

different de-novo motif discovery tools applied to each benchmark data set.

Unknown motif length

First, we consider the aspect of finding the correct motif if the motif length is unknown. In many

cases, when de-novo motif discovery tools are used, the user only has a rough idea of the motif length.

Hence, the user must test all potential motif lengths and decide which result is of interest, or the tool

allows to infer the motif length on its own.

Here, we study the results for different de-novo motif discovery tools for the target data set

containing BSs of MA0054 with a Gaussian distribution. In the first experiment, we start all tools

with the correct motif length. In the second experiment, we start all tools with an initial length of 15

bp, and allow to adjust the motif length if supported by the tool. In Figure 11.3, we show the results

for both cases.

For known correct motif length, we find that DEME, DME, MEME, and Dispom find the implanted

motif to a certain degree, showing that these four tools are capable of finding the implanted BSs.

Among these four tools, Dispom performs best, and DEME, DME, and MEME perform comparably

well. However, in case of unknown motif length, we find that DEME, DME, and MEME are not

capable of finding the correct motif. While DEME and DME are not capable of adjusting the motif

length, MEME allows searching the motif for a range of possible motif lengths. Nevertheless, all three

tools fail to find the motif if the correct motif length is not provided.

In contrast to these findings, Weeder and Dispom are capable of finding the correct motif. In-

terestingly, Weeder is capable of finding the motif to a certain degree, although it is not capable of

finding the motif for the known motif length. Scrutinizing the motif found by Weeder, we find that it

is shorter than the true motif (Additional File 5 of article [Keilwagen et al., 2010a]). In contrast, we
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Figure 11.3: Comparison of nucleotide precision recall curves of different de-novo motif discovery
tools for known and unknown motif length. Figure a) shows the nucleotide precision recall curves for
the de-novo motif discovery tools provided with the correct motif length, and Figure b) shows the
nucleotide precision recall curves for the de-novo motif discovery tools when the correct motif length
is not provided but must be learned by the tools. For reasons of visual clarity, we do not plot the
partial nucleotide precision recall curves of those tools with nR and nP below 0.1 for all available
thresholds. These curves would be located in the lower left corner of both subfigures.

find that the performance of Dispom is very similar to the case of known motif length indicating that

Dispom is capable of finding the correct motif including the motif length.

Based on these case studies, we can state that knowing the correct motif length improves de-novo

motif discovery. However, in many real-life applications, the correct motif length is unknown, and

many de-novo motif discovery tools suffer in this situation. Dispom with its heuristic for shrinking and

expanding the motif is capable of learning the correct motif length from the data, and so, outperforms

other de-novo motif discovery tools.

Non-uniform position distribution

Second, we consider the aspect of recovering a non-uniform position distribution of the BSs in the data

set. In many cases, BSs are not uniformly distributed over the entire promoter but rather concentrated

with a TF-specific position distribution. To simulate these findings, we use the data sets for MA0015

for which we compare the results of the Gaussian data set to those obtained for the uniform data

set. Since both data sets consist of exactly the same BSs and the same promoters, and only differ

in the position distribution used to implant the BSs, we are able to measure the effect of modeling a

non-uniform position distribution. Figure 11.4 a) and b) show the nucleotide precision recall curves

for both position distributions used for implanting the BSs.

For a uniform position distribution we observe that A-GLAM, Improbizer, Weeder, and Dispom

find the correct motif. Turning to the case of a Gaussian position distribution, we observe that A-

GLAM, Improbizer, and Dispom are able to utilize the positional preference of BSs to substantially
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Figure 11.4: Comparison of nucleotide precision recall curves of different de-novo motif discovery
tools for uniform and Gaussian position distribution. Figure a) shows the nucleotide precision recall
curves for the de-novo motif discovery tools on the data set with uniformly placed MA0015 BSs, and
Figure b) shows the nucleotide precision recall curves for the de-novo motif discovery tools on the data
set with Gaussian distributed MA0015 BSs. Figure c) shows for both data sets the real distributions as
histograms of start positions of the implanted BSs and the position distributions learned by Dispom.
For reasons of visual clarity, we do not plot results located in the lower left corners of subfigures a)
and b) (Figure 11.3).

improve their performance. In contrast to these findings, the performance of Weeder does not improve,

because it does not model positional dependencies.

We analyze the performance improvements by comparing the distribution used for implanting the

BSs with the distribution learned by Dispom. In Figure 11.4c), we show for both cases – the uniform

and the Gaussian position distribution – a histogram for the start positions of the implanted BSs and

the distribution learned by Dispom. We find that both distributions are in agreement in both cases,

indicating that Dispom is capable of learning the position distribution from the data.

Based on these case studies, we can state that recovering the position distribution of the BSs from

the data helps in de-novo motif discovery and the subsequent prediction of BSs. Since Dispom is able

to learn peaked as well as uniform position distributions from the data, it can be used for in a wide

range of applications.
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Figure 11.5: Comparison of nucleotide precision recall curves of different de-novo motif discovery
tools for a data set with and without decoy motif. Figure a) shows the nucleotide precision recall
curves for the de-novo motif discovery tools on the data set without implanted decoy motif, and Figure
b) shows the nucleotide precision recall curves for the de-novo motif discovery tools on the data set
with implanted decoy motif MA0052. For both subfigures, we do not plot results located in the left
lower corner for reasons of clarity (Figure 11.3).

Differentially abundant vs. over-represented motifs

Third, we consider the aspect of distinguishing between over-represented and differentially abundant

motifs in the data set. Typically, promoters contain BSs of many different TFs. When applying

de-novo motif discovery tools to such sequences, not all of these motifs are equally relevant. For

instance, when comparing promoters of differentially and non-differentially expressed genes for a

specific condition, we are typically interested in those motifs that differentially abundant in these sets

of promoters and not in those motifs that are common to the promoters of both types of genes. Hence,

it is beneficial for a de-novo motif discovery tool to distinguish between over-represented and relevant

motifs.

Here, we consider the target data set containing BSs of MA0048 with a Gaussian distribution. We

compare the results for a data set with a uniformly implanted decoy motif (MA0052) to the same

data set without implanted decoy motif. In Figure 11.5, we show the comparison of the nucleotide

precision recall curves for known motif length. In case of no decoy motif, we observe that A-GLAM,

DEME, DME, Improbizer, MEME, Weeder, and Dispom are capable of finding the correct motif. In

a comparison, Dispom performs best, A-GLAM, DEME, DME, and Dispom perform best, Improbizer

and MEME perform second best, and Weeder performs third best of these tools.

Considering the data set containing a decoy motif, we observe that A-GLAM, Improbizer, MEME,

and Weeder, which are not designed for finding motifs that are differentially abundant in two data

sets, are not capable of finding the correct motif. Characteristically, Improbizer, MEME, and Weeder

find the unspecific decoy motif (Additional File 4 of article [Keilwagen et al., 2010a]). In contrast,
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DEME, DME, and Dispom, which are specially designed for finding differentially abundant BSs, are

capable of finding the correct motif.

Based on these case studies, we can state that discriminative de-novo motif discovery tools are

capable of distinguishing between over-represented and differentially abundant motifs. This property

is useful if we like to find motifs that help to discriminate between two data sets. The discriminative

de-novo motif discovery tools DEME, DME, and Dispom are capable of finding the correct motif

irrespective of the absence or presence of a decoy motif. Hence, they perform very similar in both

cases.

Comprehensive comparison

After investigating three aspects of de-novo motif discovery in detail, we now compare all eight tools

based on several data sets. To summarize this comparison, we show the nucleotide precision achieved

for a nucleotide recall of 10%, 30%, 50%, 70%, and 90%. Based on the partial nucleotide precision

recall curves for some tools, we may obtain missing values for some nucleotide recalls of some tools

and some data sets. In Figure 11.6, we consider the Gaussian data sets and unknown motif length.

Complete and partial nucleotide precision recall curves as well as summaries similar to Figure 11.6

can be found in the Additional File 2-5 of article [Keilwagen et al., 2010a].

For an initial assessment, we first determine for each tool the number of data sets where not

exclusively missing values are observed. We find that DME and Gibbs Sampler are unsuccessful in all

data sets, while MEME is successful in two data sets, A-GLAM, DEME, and Improbizer in four data

sets, Weeder in six data sets, and Dispom in all nine data sets. This initial assessment might be unfair

for some tools, since it does not take into account the achieved values of the nucleotide precision.

For example, A-GLAM and Improbizer often achieve very high nucleotide precisions, which is not

considered in the initial assessment. Hence, we perform a second assessment in which we require a

minimum nucleotide precision of 75%. We find that DEME, DME, Gibbs Sampler, and Weeder are

unsuccessful in all data sets, while MEME is successful in one data set, Improbizer in two data sets,

A-GLAM in three data sets, and Dispom in all nine data sets.

Considering the plant data sets, MA0001, MA0005, and MA0054, we find that most of the tools fail

to find the correct motif, while Dispom finds the motif in all three cases. Considering the results for the

other data sets and for known motif length (Additional File 2-5 of article [Keilwagen et al., 2010a]),

we find similar results for unknown motif length on the uniform data sets and slightly better results

for known motif length on both data sets. This indicates that the knowledge of the motif length has a

decisive influence on the performance of many of the studied de-novo motif discovery tools. Especially

DME, which performs poor in this case study (Figure 11.6), improves if the correct motif length is

provided (Additional File 4 of article [Keilwagen et al., 2010a]). Interestingly, Dispom is capable of

adapting the motif length from the data, and so it outperforms the other tools.

Dispom utilizes the discriminative MSP principle for learning its parameters. This learning

principle is linked to the classification of promoter sequence as belonging to the target or the

control data set. Nevertheless, Dispom is capable of finding the motif of interest. Recently,
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Figure 11.6: Overview of de-novo motif discovery results for Gaussian data sets and unknown motif
length. Each column shows the results of one data set, and each row shows the results of one de-
novo motif discovery tool. Each subfigure shows five bars that visualize the nucleotide precision for a
nucleotide recall of 10%, 30%, 50%, 70%, and 90%, respectively, from left to right. Additionally, each
subfigure contains gray horizontal lines for the nucleotide precision of 25%, 50%, and 75%.
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KIRMES [Schultheiss et al., 2009] has been proposed, which also aims at an accurate classification of

the data sets but is based on a support vector machine, which makes the interpretation of the found mo-

tifs a little bit harder. Furthermore, KIRMES utilizes besides a set of promising k-mers also the results

of de-novo motif discovery tools or known motifs from databases like TRANSFAC [Matys et al., 2006]

or JASPAR [Bryne et al., 2008]. Hence, it is hard to assign KIRMES to exactly one of the following

categories: de-novo motif discovery tools, prediction tools like MATCH [Kel et al., 2003], and ensem-

ble methods like MotifVoter [Wijaya et al., 2008] that integrates the output of different de-novo motif

discovery tools to obtain a better prediction. However, Dispom with its good performance can be

integrated in KIRMES or other ensemble methods for improving their predictions.

11.2.2 Finding two motifs simultaneously

Next, we test whether Dispom is capable of finding two different motifs in a data set simultaneously.

For this reason, we use each of the three benchmark data sets containing BSs of MA0048 and MA0052

as target data set and a set of randomly chosen promoters without any implanted BSs as control data

set. We start Dispom with the same options as before except the number of motifs, which we increase

to two. Specifically, we allow Dispom to learn the length of the motif from that data similar to an

application on experimental data. In Figure 11.7, we illustrate the results of Dispom for the three

target data sets using the same control data set.

We find for all three cases that Dispom is capable of finding both motifs including their position

distributions. Comparing the sequence logos obtained for a p-value of 1.0×10−4, we find that Dispom

is capable of finding the correct motif in three out of six cases, and that Dispom finds the core motif in

the remaining three cases. Regarding the motif length, we find that Dispom learns the correct motif

length. For the three cases where Dispom only finds the core motif the motif has the correct length but

is shifted by one position. Comparing the position distribution learned by Dispom with the histogram

of the real start positions, we find that Dispom is capable of learning the position distribution with

high accuracy. Hence, when combining both – the motif and the position distribution – we find an

area under the nucleotide precision recall curve of more than 0.85 in case of finding the motif, and an

area under the nucleotide precision recall curve of more than 0.60 in case of finding the core motif.

These results show that Dispom is capable of learning two motifs simultaneously if each sequence

contains at most one BS indicating that the extended zero or one occurrence per sequence model is a

beneficial extension of the traditional ZOOPS model. However, the extended zero or one occurrence

per sequence model does not model multiple BSs of one or multiple types of motifs in one sequence.

Yet, it allows to address an interesting subclass of biological problems.

11.2.3 Applying Dispom to promoters of auxin-responsive genes

In the last but one subsection, we compared the performance of Dispom and seven commonly used tools

based on 18 data sets, suggesting that Dispom might be useful for finding differentially abundant BSs

and their positional preference. In this subsection, we apply Dispom to promoters of auxin-responsive
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Figure 11.7: Comparison of the performance of Dispom for two motifs and for uniform and Gaussian
position distribution. The first row show the sequence logos of the two motifs, MA0048 and MA0052,
implanted into the data set. Row two to four show the results for the three target data sets, where
row two is based on the target data set using two Gaussian distributions, row three is based on the
target data set using a uniform and a Gaussian distribution, and row four is based on the target data
set using the uniform distribution in both cases. For these three rows, the first column contains the
nucleotide precision recall curves, where the black and the red line show the curves for motif MA0048
and MA0052, respectively. The second and the third column show the sequence logo found by Dispom
and the position distribution of the BS. Similar to Figure 11.3, 11.4, and 11.5, the histogram show
the distribution of the real start positions and the line visualizes the distribution learned by Dispom.
The green circles in the nucleotide precision recall curve indicate a p-value of 1.0× 10−4 that is used
to generate the sequence logos depicted in column two and three.
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Figure 11.8: Auxin-dependent motif and position distribution found by Dispom. Figure a) shows
the sequence logo obtained from the predictions of Dispom and the corresponding consensus sequence,
where S stands for C or G, and B stands for C, G, or T. Figure b) shows a histogram of the predicted
start positions and the position distribution learned by Dispom (red line).

genes with the goal of finding putative TFBSs.

Auxin-responsive genes are regulated by a set of TFs commonly called auxin-responsive factors

(ARF), which bind to auxin-responsive elements (AuxREs) that occur in the promoters of those genes.

The canonical AuxRE TGTCTC has been identified as a sequence specifically bound by ARF1 using

gel mobility shift assays [Ulmasov et al., 1997]. However, the ARF multi-gene family consists of 23

members [Guilfoyle and Hagen, 2007], suggesting that AuxREs might differ for different members of

ARFs. Indeed, subsequent analyses of 10 members of the ARF family indicate that only the first four

nucleotides TGTC are essential for ARF-binding [Ulmasov et al., 1999]. However, these 10 members do

not cover all aspects of transcriptional gene regulation by auxin, so the AuxRE is still under discussion.

Analyses of genome-wide expression data are based on the assumption that co-expressed genes

are regulated by the same TFs, and so contain the same TFBSs in their promoters. We use ex-

pression data sets for searching for a refined AuxRE. We apply Dispom to a set of promoters

of genes up-regulated by the plant hormone auxin in Arabidopsis thaliana grown in a cell sus-

pension culture [Paponov et al., 2008]. Figure 11.8 visualizes the results of Dispom as a sequence

logo [Schneider and Stephens, 1990] and the positional preference corresponding to this motif. We

find a motif of length 8 bp predominately positioned in the 250-bp region upstream of the TSS. The

core motif can be described as TGTSTSBC and can be interpreted as an elongated and modified version

of the canonical AuxRE TGTCTC.

The presence of the canonical AuxRE TGTCTC in the promoters of a gene is often used as an indicator

that this gene is auxin-responsive. For avoiding parameter over-fitting, we use an independent test

data sets for evaluating the discriminative power of the found consensus sequences. We use the seedling

data set described in the section Methods as target test data set, and we use the promoters of all

remaining genes that are spotted on the chip as control test data set.

We analyze the discriminative power of the defined consensus sequences for the region [-500,-1].
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[-500,-1] [-250,-1]

TGTCTC 1.5× 10−2 1.0× 10−3

TGTSTSBC 2.0× 10−4 3.5× 10−6

Table 11.2: Rows indicate motif descriptions, while columns indicate the promoter region used
for searching the BSs. Each cell contains the p-value obtained from Fisher’s exact test using the
confusion matrix for the consensus and promoter region specified by row and column, respectively, on
the seedling data set and all remaining genes.

For the canonical AuxRE TGTCTC, we find that 36 out of 113 promoters in the target test set (32%)

contain this motif, whereas only 4741 out of 21012 promoters in the control test set (23%) contain

this motif. This increase of enrichment from 23% to 32% is statistically significant, yielding a p-value

of 1.5× 10−2 by Fisher’s exact test, stating that the canonical TGTCTC motif is significantly enriched

in the cell suspension data set compared to the randomly chosen promoters in the control data set.

Interestingly, the restriction to the first four nucleotides TGTC, considered by some authors to be an

improvement over the canonical ARF motif [Ulmasov et al., 1999], decreases rather than increases the

specificity (Additional File 6 of article [Keilwagen et al., 2010a]). However, when using the extended

motif TGTSTSBC, we find that 26 out of 113 promoters in the target test set (23%) contain this motif,

whereas only 2305 out of 21012 promoters in the control test set (11%) contain this motif. The

difference of these percentages is statistically significant, yielding a p-value of 2.0× 10−4. Comparing

both p-values, we find a more than 70-fold decrease of the p-value when replacing the canonical ARF

motif TGTCTC by the extended motif TGTSTSBC, stating that the extended motif found by Dispom is

significantly more auxin specific than the canonical ARF motif.

Using the positional preference identified by Dispom, we repeat the analysis of the promot-

ers for the interval from −250 to −1 bp with respect to the TSS (Additional File 6 of arti-

cle [Keilwagen et al., 2010a]). For the canonical AuxRE TGTCTC, we find that 26 out of 113 promoters

in the target test set (23%) contain this motif, whereas only 2564 out of 21012 promoters in the

control test set (12%) contain it, yielding a p-value of 1.0 × 10−3. Comparing this p-value with the

p-value obtained for the region [−500,−1], we find a more than 10-fold decrease, indicating that the

positional preference found by Dispom is of high relevance alone. Considering the motif TGTSTSBC,

we find that 21 out of 113 promoters in the target test set (19%) contain this motif, whereas only

1252 out of 21012 promoters in the control test set (6%) contain it, leading to a p-value of 3.5× 10−6.

Comparing this p-value with the p-value obtained for the region [−500,−1], we find the same motif is

approximately 60-fold more auxin specific in the region [−250,−1]. We find that combining the refined

motif TGTSTSBC and the refined upstream region [−250,−1] yields the lowest p-value of 3.5 × 10−6,

which is more than 4,000-fold lower than the p-value obtained for the traditional combination of the

canonical AuxRE TGTCTC in the 500-bp upstream region. This observation illustrates the power of

combining a discriminative motif finding approach with the approach of simultaneously learning the

positional distribution from the data.

In Table 11.2, we summarize these p-values for the canonical AuxRE motif and the TGTSTSBC
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motif for the 500-bp upstream regions and the 250-bp upstream regions. Interestingly, restricting the

promoter region to −250 to −1 decreases the p-value strongly, so the capability of Dispom of learning

the positional distribution turns out to be essential for finding an auxin-dependent motif.

11.3 Conclusions

Gene regulation and specifically the binding of TFs to their BSs is of fundamental interest in many

areas of genome biology. A combination of experimental and computational methods are typically

used for finding putative TFBSs. For computational approaches, two fundamental improvements have

been proposed in the last years. On the one hand searching for differentially abundant motifs, and on

the other hand learning a position distribution have been shown to be promising in several experiments

separately. However, up to now there is no tool combining both improvements.

We present Dispom a new computational tool for the de-novo motif discovery that combines the

capability of searching for differentially abundant BSs with the capability of learning the BSs. Dispom

includes a heuristic for finding motifs of unknown length. We compare the performance of Dispom

with seven commonly used de-novo motif discovery tools based on 18 data sets, and we find that

Dispom outperforms these tools. Especially in cases where the correct motif length is not provided,

the predictions of Dispom are substantially more accurate than those of traditional de-novo discovery

tools indicating that the combination of discriminative learning, inferring a position distribution from

the data, and utilizing a heuristic for finding the motif length is beneficial for de-novo motif discovery.

In addition, we test whether Dispom is capable of finding two motifs simultaneously, and we find

that Dispom still is able to discover the motifs with high accuracy. This indicates that the extension

of the ZOOPS model to at most one BS of more than one motif type is feasible allowing to concern a

wider range of biological problems than the traditional ZOOPS model.

Finally, we use Dispom on a set of auxin-responsive genes where the true motif is unknown. We

find the motif TGTSTSBC, which can be interpreted as the elongated AuxRE, predominantly located in

the promoter region of −250 to −1. Both the elongated motif as well as the refined promoter region

lead to a more than 4,000-fold improvement of the significance of predicting of auxin-responsive genes

on genome scale in an independent test data set. Interestingly, the refined promoter region seems to

be of high importance for the prediction.

These findings suggest that Dispom might be beneficial for finding differentially abundant BSs

and their positional distribution based on high-throughput data. Hence, we make Dispom available

for the scientific community as part of the open-source Java library Jstacs [Keilwagen et al., 2008] at

http://www.jstacs.de/index.php/Dispom.
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Chapter 12

Conclusions and Outlook

New experimental techniques including several high-throughput methods have heralded the “Age of

Biology.” In this age, bioinformatic analyses of experimental data have become indispensable in many

areas of life science. Specifically, the analysis of genetic information, which is encoded in the DNA,

is often of fundamental interest, since it supports or confutes different hypotheses and assists in the

experimental design.

During the last years several computational methods have been proposed for analyzing experimen-

tal data, and it has often been pointed out that discriminative approaches, as for instance support

vector machines, outperform probabilistic models in many cases. However, the performance of prob-

abilistic models is highly dependent on the model parameters that are obtained from training data

using a specific learning principle. For historical reasons, generative learning principles that aim at an

accurate representation of the data in each class are widely used in bioinformatics. In contrast to these

generative learning principles, discriminative learning principles that aim at an accurate classification

of the data with respect to the class labels have been proposed in the machine-learning community

in the last decade. In addition, hybrid learning principles have been demonstrated to benefit from

the advantages of generative and discriminative learning principles. Besides the characterization of

learning principles with respect to their objective, learning principles can be characterized by the uti-

lization of a-priori knowledge, which often influences learning parameters positively. Bayesian learning

principles utilize a-priori knowledge aside from training data to infer the model parameters, whereas

non-Bayesian learning principles solely use training data. However, several different learning principles

and models have been proposed independently, and there is no common basis that allows to examine

their strengths or weaknesses.

In this work, we propose a unified generative-discriminative learning principle that incorporates

six established learning principles including generative, discriminative, and hybrid, as well as Bayesian

and non-Bayesian learning principles as special cases. In addition, we propose a generalization of the

product-Dirichlet prior that can be used for the broad family of Markov random fields allowing to

include biological a-priori knowledge more easily. This prior can be used for each of the presented

learning principles and provides a common base for their unbiased comparison. We implement these

theoretical findings in the open-source Java library Jstacs, which allows a modular combination of

different models and learning principles.

Applying both – the proposed learning principle and the proposed prior – together using Jstacs,

we show for several data sets that the performance of probabilistic models can be improved. We

also find that the choice of an appropriate learning principle is often as important as the choice

112



Chapter 12. Conclusions and Outlook

of an appropriate model. However, due to the discriminative part of the learning principle, it is

computational demanding to determine the optimal weights β for the unified generative-discriminative

learning principle. Hence, if we are only interested in classifying sequences, we can confirm the general

observation that discriminative learning principles often outperform their generative counterparts.

For the recognition of donor splice sites and of TSSs, we find that the presented tools – using

discriminatively trained probabilistic models – perform as good as, or even better than, several state-

of-the-art approaches. In both applications, we find that modeling the upstream and the downstream

region helps to improve the performance, when using discriminative learning principle. Analyzing

TFBS annotations in the gene-regulatory database CoryneRegNet, we find that a simple probabilistic

model can help to detect errors that occur during the transfer from the scientific literature into this

database. Scrutinizing the predictions, we find that they are in accordance with the scientific literature.

Turning to the prediction of putative TFBSs from target promoters, we find that the combination

of discriminative learning and learning a position distribution for the start position of the putative

TFBSs improves the performance of de-novo motif discovery tools. Applying the corresponding tool to

auxin-responsive genes, we find a putative auxin responsive element that is three orders of magnitude

more specific than the traditional auxin responsive element on independent test data.

These biological applications show that the presented framework allows to design tools that are

competitive with state-of-the-art approaches. The developed tools are modular combinations of dif-

ferent models and learning principles implemented in Jstacs allowing to exploit the computing power

of modern multi-core computers. These applications indicate that Jstacs is useful for assessing the

benefits of different models or learning principles, and at the same time allows to build sophisticated

tools for specific biological applications. For this reason, Jstacs can serve as a common basis for inte-

grating and investigating further biologically relevant features as for instance incorporating phylogeny

or handling continuous data.
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