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Preface

In the daily language use the term complex system is often considered to be synonymous to the
term complicated system. However, in nonlinear dynamics both attributes of a system are well
distinguished. While we might not be able to completely understand both types of systems and
their dynamics in general, a complicated system can be fully characterized by knowing its micro-
scopic components. The interactions and dynamics of these components can be well described by
a set of possibly difficult and complicatedly coupled equations. Although understanding a compli-
cated system might require great effort, it is in principle possible since complicated systems are
deterministic by definition. If we understand the microscopic components and their interaction
we are able to predict the outcome. Complicated systems are further characterized by a limited
number of degrees of freedom and a limited number of components. These numbers, however,
might be very large depending on the system. Technical systems are at a macroscopic level by
definition deterministic. For example, while we might not know why our car does not start in the
morning there are trained mechanics who will likely identify the faulting components. Another
important property of a complicated system is that it can be subdivided into subsystems which
interact with other subsystems via a limited (or just a few) control chains. Thus, the dynamics
of the whole system can be researched by studying its sub-systems. Its future state can be fully
predicted when knowing all components, interactions, and hence the whole dynamics.

In contrast a complex system is non-deterministic and stochastic. In general we do not possess
models to describe each component. Indeed, we do not even know the correct number of interact-
ing components which is in general infinite resulting in an infinite number of degrees of freedom.
A complex system cannot be subdivided into subsystems without affecting its behaviour due to
an infinite number of nonlinear control loops and an in general chaotically interwoven interrela-
tion structure between the microscopic components. When a complex system is subdivided the
dynamics of the subsystems changes in an unpredictable fashion compared with the whole system.
Hence, the typical approach to study the dynamics of an unknown system, i. e., the attempt to
identify and isolate the essential components responsible for its dynamics, is not at all applicable
to a complex system. For instance compare the above example of the car with the human brain.
When our brain is not performing as desired we cannot consult a mechanic who isolates faulty
components in order to replace them with spare parts.

However, complex systems can be investigated by studying emergent properties that are char-
acteristic of the ’many-particle’ system, i. e., the system of many different complex interacting
components. For the brain this means that although an assessment of all single neurons and
their firing scheme is impossible we can study their mean-field. From the dynamics of the group,
in particular from its changes upon stimulation, we can obtain (at least) some average informa-
tion about underlying mechanisms that generate observed properties. In brain research prominent
mean-field properties are brain waves which can be non-invasively recorded from different locations
at the skull. Despite a complete understanding of all mechanisms in such system is impossible by
definition, researching its unknown dynamics appeals to scientists.

Among the most prominent examples for natural complex systems are the climate system and the
weather system in geophysics, the release of hormones or gene expression in biology, electrons in
solids in solid state physics, stock exchange in financing, social networks, life in ant colonies, or
the ecosystem. In physiology the cardiorespiratory complex system and the complex brain system,
which are additionally linked with each other via the autonomous nervous system, are of special
interest. In my thesis I will focus on both systems and study their characteristics.

In spite of their non-deterministic and stochastic behaviour, natural complex systems often exhibit
oscillations on a wide range of frequencies which emerge from their many linearly and nonlinearly
interacting sub-components. Due to these complex interactions they are in addition characterized
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by nonstationarities and fluctuations. The coupled components possess regulation loops and con-
trol chains that operate on a variety of frequencies. Moreover, scaling laws which are a special type
of order in fluctuations are observed in many complex systems and were exploited to characterize
the dynamics of the system.

Therefore, fluctuations and oscillations as well as the linear and nonlinear interactions can be
studied by time series analysis. The ultimate goal of time series analysis is to obtain mathematical
models that describe the mean-field properties, i. e., the typical dynamics of the system.

In a simple additive model an observable (time series) measured from a complex system can be
interpreted as an additive superposition of fluctuations and oscillations (mean-field properties),
and a component describing the dynamics of the underlying process (the actual signal component).

Hence, a time series analysis should aim at a separate characterization of fluctuations, oscillations,
and the interrelation between signals obtained from different observables of the complex system
(e. g., from different spacial locations or from different complex ’sub-systems’ such as respiration
and heartbeat). My thesis will be divided into three main parts each dealing exclusively with one
of the characteristics.

Firstly I will explore fluctuations in Chapt. 3 and study characteristic time scales. In general,
fluctuation analysis tries to attenuate the systematic dynamics of the system, i.e., to remove trends
and oscillatory components. It aims at studying the signal’s ’background’ noise. Such stochastic
noise is generally not purely ’random’ but often exhibits a correlated structure. For instance long-
term correlation which can be imagined by larger values in a signal being more likely followed
by larger values and smaller values being more likely followed by smaller values. Two prominent
examples are temperature records or human heartbeat during rapid-eye-movement (REM) sleep.
In the first case one finds that warm days are rather followed by warm days and cold days are
rather followed by cold days. In the second example long-term persistence means that short beat-
to-beat intervals more likely follow short beat-to-beat intervals and long intervals rather succeed
long intervals.

In contrast, fluctuations are disturbing an exploration of oscillatory components which provide
information about characteristic frequencies and delay times in the system. This yields the com-
pletely opposite aim of removing fluctuations from the recording by simultaneously enhancing the
effects of oscillations. Hence, this topic to which Chapt. 4 is devoted is strongly related to noise
reduction. Moreover, the framework introduced in Chapt. 4 allows for studying interrelations of
oscillatory components from different signals which might or might not be originated from the
same source. In this context the question of quantifying time delays between oscillatory compo-
nents found in different signals can also be addressed. I will exploit quasi-oscillatory components
to quantify total mortality risk in post-infarction patients.

The third topic presented in Chapt. 5 deals with mutual interactions between systems components,
and which are sometimes acting in synchrony. The most prominent example in human physiology
is the cardio-respiratory coupling which everybody can easily experience by controlled breathing.
When we breath slowly as in a meditative state our heart rate decreases (beat-to-beat intervals
increase) compared to an approaching tachycardia (accelerated heart) when we hyperventilate.
Synchronization effects might be situated somewhere in between. While oscillatory components
are mandatory to define properties such as instantaneous phases, amplitudes, and frequencies
synchronization effects are much more robust and noise is far less disturbing, and moreover, even
capable to induce synchronization when a common noise effects (forces) different oscillators and
thus introducing a coupling.

The thesis is organized as follows: First I establish proper quantities and the notation of time series
that will be employed throughout the document in Chapt. 1. Chapter 2 is exclusively dedicated to
human physiology to provide a basic overview of the signals and the regulatory mechanisms that I
study. In particular heartbeat and brain wave recordings will be explained. Most of my studies are
based on polysomnographic (sleep) recordings. I will throughout all chapters distinguish between
different sleep stages and for that reason I give a short introduction to the phenomenon sleep and
discuss how sleep is scored. If the reader is not interested in this phenomenological part of my
thesis she/he might skip Chapt. 2.
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The main part of this thesis begins in Chapt. 3 were I focus on fluctuations in heartbeat and respi-
ration during sleep and develop methods to conveniently study and generate multifractal data of
(almost) arbitrary multifractality strength and tuned correlations. I further explore how reliable
results obtained from a multifractal analysis are and which type of data yields spurious multifrac-
tality. Readers whose research interest include fluctuation are especially pointed to Appendix E.1
and E.2 were I discuss an analysis method that provides the same detrending capabilities as the
standard method but requires less computational power.
Chapter 4 is devoted to studying quasioscillations in noisy nonstationary data. I will review the
phase-rectified signal averaging method that is capable of studying oscillations in such data and
employ it to investigate for the first time oscillations across sleep stages in a large database com-
prising both healthy and diseased subjects. In the second part I will generalize the methodology
of PRSA to study the interrelation between two or more signals.
In Chapter 5 I will concentrate on mutual synchronization between signals and suggest an auto-
mated method to inspect phase synchrograms which until now are mostly studied by eye. The
automated synchrogram algorithm will be applied to study aging effects on phase synchronization
across all sleep stages. The last part of Chapt. 5 describes a new method to study modulations
between amplitudes and frequencies of signals. This method will be illustrated for brain wave
recordings.
Note that I cannot provide details for every subject and patient in the framework of this thesis
since combining all databases I present here yields multivariate datasets of more than 2000
individuals. However, I did not blindly apply methods to the data from these databases but
indeed visually inspected results from each subject and for each signal separately.

Halle/Saale, January 17th 2010
Aicko Yves Schumann



1. Basic Concepts of Time Series and
Stochastic Modeling

Before I address in detail questions concerning fluctuations and oscillations in physiological data
and discuss the mutual coupling between multivariate recordings basic concepts of time series
analysis and required terminology will be introduced in the following. Among others, this chapter
discusses the concepts of stationarity, dependence, and classical approaches to study oscillations by
means of the Fourier power spectrum and the wavelet power spectrum, as well as tools to investigate
interrelations between different signals such as the cross-correlation function or cross-coherence
function.

1.1. Terminology

Random Variables and Stochastic Processes
For a probability space (Ω,Σ, P ) and a measurable space (Ω′,Σ′) a (general) random variable X
can be defined as a ([ΣΣ′]-measurable) mapping X : Ω → Ω′ where the sample space Ω contains
all elementary events (outcomes of X), the σ-algebra Σ over Ω is a collection of all events (not
necessarily elementary events itself but a collection of sets containing elementary events), and P
is a probability measure (P : Σ → [0, 1]). Analogously, Σ′ is the σ-algebra over Ω′

As an example consider the experiment of throwing a die twice. The sample space Ω then contains
36 elementary events, Ω = {(1, 1), (1, 2), . . . , (6, 6)} and the corresponding σ-algebra Σ is the power
set1 of Ω, Σ = P(Ω), e. g., containing the event A = “both throws show an odd number” =
{(1, 1), (1, 3), . . . , (5, 5)} (A ∈ Σ is only one element of many more). Assuming a ’fair’ die the
probability measure is defined by P (ω) = 1/36 where ω ∈ Ω is an elementary event; the full P (Σ)
is obtained by combining probabilities of corresponding elementary events, e. g., P (A) = P (ω1 =
(1, 1)) + P (ω2 = (1, 3)) + . . . . After having defined the probability space (Ω,Σ = P(Ω), P (Σ)),
consider the random variable X which describes the “sum of pips”, i. e., the mapping from ω ∈ Ω
to the (measurable) real2 space Ω′ = R. A suitable σ-algebra Σ′ is then the (canonical) Borel
σ-algebra of R which contains all open intervals (a, b) and closed intervals [a, b] of R with a, b
being rational numbers.
In the application such as time series analysis one does in general not describe both spaces (Ω,Σ, P )
and (Ω′,Σ′) in detail, since for discrete probability spaces, i. e., probability spaces with a limited
and/or countable number of elements ω ∈ Ω, and setting Σ = P(Ω) it can be shown that the
mapping

X : Ω → R (1.1a)

is always measurable with a measurability condition

∀x ∈ R : {ω|X(ω) ≤ x} ∈ Σ . (1.1b)

Equation 1.1b means that for each x there exists an element in Σ which is a set of all elementary
events ω ∈ Ω whose mapping X(ω) is equal or smaller as x. A mapping according to Eqs. (1.1)
is referred to as real random variable. In order to define a time series I will in the following
exclusively consider real random variables.

1Please avoid confusion of the probability measure P being a mapping of a set to [0, 1] and the power set P
(calligraphic letter P) being a set of subsets.

2The space Ω′ = {2, 3, . . . , 12} would be sufficient in this example but one often defines a larger more intuitive
and/or better describable space.



2 1. Basic Concepts of Time Series and Stochastic Modeling

An indexed set of random variables {Xt}t∈I where the index set I is either discrete (t ∈ I = N)
or continuous (t ∈ I = R) is referred to as a stochastic process. However, the continuous case is
generally difficult to access due to an unlimited number of random variables.
As a simple example for a discrete real random variable consider a ’randomly’ beating heart
whose beat-to-beat time intervals3 are monitored at 1000Hz (to the split millisecond). Then
the probability P of an event “the beat-to-beat interval is smaller than 965ms” is denoted by
P ({ω|X(ω) ≤ 965}) = P (X ≤ 965) where the notation of the argument is usually simplified
(right side), although P : Σ → [0, 1] and X(ω) ∈ R. In general the probability P of an event
X ≤ x can be expressed by the cumulative probability density function

FX(x) = P (X ≤ x) =

∫ x

−∞
pX(x)dx (1.2)

where the probability density function pX(x) satisfies pX(x) ≥ 0 and
∫R pX(x)dx = 1.

Dependence
Dependence and independence of N random variables Xj with j = 1, 2, . . . , N is studied by means
of the joint probability distribution function, i.e., the probability that X1,X2 . . . ,XN are jointly
less or equal than the real constants x1, . . . , xn,

FX1,X2,...,XN
(x1, x2, . . . , xn) = P (X1 ≤ x1,X2 ≤ x2, . . . ,XN ≤ xN ) . (1.3)

Such a set of N random variables is called independent when the joint probability in Eq. (1.3)
splits into the product of the individual cumulative distribution functions’ marginals

FX1,X2,...,XN
(x1, x2, . . . , xN ) =

N∏

j=1

P (Xj ≤ xj) (1.4)

and it is called dependent otherwise. Note that independence also implies the conditional proba-
bility P (Xj ≤ xj |Xi ≤ xi) = P (Xj ≤ xj) for each pair of random variables Xi,Xj : i 6= j.
For instance, P (Xj ≤ xj) = (2π)−1/2

∫ xj

−∞ exp{−z2/2}dz for standard normal distributed random
variables. If they exist, the one-dimensional distribution functions FXj (x) = P (Xj ≤ x) and their
derivatives, the density functions pXj(x) = ∂FXj (x)/∂x [Eq. (1.2)], yield the mean value functions
µXj = E[Xj ] = 〈Xj〉 =

∫∞
−∞ x pXj (x)dx. In general the nth moment is defined by

µ
(n)
Xj

= E[Xn
j ] =

〈
Xn
j

〉
=

∞∫

−∞

xn pXj(x)dx , n = 1, 2, 3, . . . (1.5)

where n = 1 retrieves the mean value function for which the index n will be dropped.

Measuring Dependence
The most common time-domain approach for measuring linear interdependence between two ran-
dom variables Xi and Xj (1 ≤ i, j ≤ N) is the covariance function4

Cov(Xi,Xj) = E [(Xi − E [Xi])(Xj −E [Xj ])] (1.6a)

or, more importantly, its normalized version, the correlation function

Cor(Xi,Xj) =
Cov(Xi,Xj)√

Var(Xi)Var(Xj)
(1.6b)

3The exact definition what a ’beat’ and a ’beat-to-beat’ interval mean will be discussed in Sect. 2.2.
4Note that in this representation I consider the general case where dependence of two different random variables

is characterized in an abstract way. The indexes do not refer to time but index the set of random variables. For
the moment the expectation value of a random variable is, except from its definition by the mean value function,
not further specified, e. g., it could refer to a time average when Xj describes measurements of some quantity in
time or to a spacial average when Xj describes a sequence of values associated with a position. The well known
’time-lag’ covariance and correlation requires stationarity and is discussed later.
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where E[Xj ] denotes the expectation value (first moment, n = 1) of the jth random variable
according to Eq. (1.5), and Var(Xj) = Cov(Xj ,Xj) denotes the variance (auto-covariance). Note
that due to the normalization in Eq. (1.6b) −1 ≤ Cor(Xi,Xj) ≤ 1. If the linear dependence
between all combinations of theN random variables is studied one constructs a covariance matrix 5

Cov (or, alternatively a correlation matrix Cor) where the matrix element Covi,j = Cov(Xi,Xj)
(or Cori,j = Cor(Xi,Xj)). When Cor(Xi,Xj) = 1 both variables are perfectly correlated and they
are anti-correlated for Cor(Xi,Xj) = −1. In these cases Xi can be expressed by a linear function of
Xj and vice versa. While the absolute value of the correlation function is a measure of the strength
of the linear interrelation its sign indicates the direction of dependence in the sense that “+”
implies values of the same signs in magnitude coincide with each other, i. e., small values (or large
values) in Xi correspond to small values (or large values) in Xj , and a “−” sign indicates opposite
signs in both variables’ magnitude. However, it is not possible to determine whether variable Xi

is influencing Xj, or vice versa. In the case of uncorrelated random variables Cor(Xi,Xj) = 0.
Since the correlation function only quantifies the linear part of a possibly complex dependence
structure, a vanishing correlation not necessarily implies the absence of dependence where, on the
other hand, a correlation different from zero indicates dependence.

Time Series

An ordered sequence {xk}k=1,...,N of measurements obtained from an observable X at successive
times t = tk is called a time series. The time intervals (sampling) between subsequent measure-
ments are not required to be of equal size. Equally sampled time series (∀k : tk+1 − tk = ∆t) and
unequally sampled time series (∃j, k : tj+1 − tj 6= tk+1 − tk) are distinguished.

There are two alternative conceptions of what time series can be thought of. One might interpret
the instances of a time series {xk}k=1,...,N (i) as a set of N realizations of a single random variable
X at distinct times tk, or (ii) as a set momentary realizations (at a fixed time t⋆) of a set of N
different random variables Xk.

In this thesis I will consider a time series according to the first concept, however, allow a physio-
logical complex system such as the cardiorespiratory system which basically consists of the heart,
the blood vessels, and the lungs to be described by different random variables Xj and its realiza-
tions {xj,k}, e.g., time series of beat-to-beat intervals6 or oronasal airflow. The index j which here
indicates different random variables (further denoted as signals) will be dropped in the following
since I will generally focus on either single signals X or the mutual coupling between two signals
X and Y .

The primary objectives of time series analysis are: (i) understanding underlying mechanisms that
generated the single signal, (ii) the exploration of control mechanisms and interactions between
different components each captured by a time series, or (iii) obtaining information about their
(possibly combined) dynamics. The ultimate goal is to understand the dynamics of the much larger
complex system from which the recordings were obtained, and finally, to develop mathematical
models that hopefully describe both the sampled data and the complete system.

Stationarity and Nonstationarity

Stationarity of a time series {xk}k=1,...,N is a special type of regularity over time. Strict stationarity
is fulfilled when the joint probability distribution corresponding to Eq. (1.3) is identical to the
one of any admissible τ -shifted set (τ ∈ Z)

P ( Xn ≤ xn, . . . ,Xn+m < xn+m︸ ︷︷ ︸
m-element subset {xn,...,xn+m} of

subsequent elements of the time series {xk}
1≤n≤N−m

) ≡ P ( Xn+τ ≤ xn, . . . ,Xn+m+τ ≤ xn+m︸ ︷︷ ︸
τ -shifted m-element subset from {xk}

compared with values from the unshifted subset
1−n≤τ≤N−n−m

) (1.7)

for any valid subset of {xk} and m ∈ N. Note that I switched to the concept of a time series being
the realizations in time of a single random variable X; the subscripts now index the realizations

5Often simply denoted by the symbol Σ.
6The time interval between two successive heart beats, see Sect. 2.2.



4 1. Basic Concepts of Time Series and Stochastic Modeling

of X in time. This concept will be used from now on. In real world applications the definition in
Eq. (1.7) is generally too strong. One considers weak stationarity when the first two moments, i.e.,
the mean value [Eq. (1.5) with n = 1] and the variance [Eq. (1.5) with n = 2], are constant in time.
Similarly, one defines nth-order stationarity when the first n moments are constant [Eq. (1.5)].

Covariance and Correlation of Weakly Stationary Time Series

For a weakly stationary time series the first moment and the second moment are constant by
definition and can be estimated by

µx = 〈x〉 =
1

N

N∑

k=1

xk and σ2
x =

〈
(x− µx)

2
〉

=
1

N

N∑

k=1

x2
k −

(
1

N

N∑

k=1

xk

)2

(1.8)

Then the cross-covariance function and the cross-correlation function measuring the linear de-
pendence of two time series {xk} and {yk} (k = 1, . . . , N) only dependent on the time lag s = k−j
between two instances xk and yj. Rewriting Eqs. (1.6) according to the concept of time series and
using the properties in Eq. (1.8) one obtains for the cross-covariance function

Covxy(s) =
〈
(xk − µx)(yk+s − µy)

〉

=





1

N

N−s∑

k=1

(xk − µx)(yk+s − µy) : s = 0, 1, 2, . . .

1

N

N∑

k=1−s

(xk − µx)(yk+s − µy) : s = −1,−2, . . .

(1.9a)

and for the cross-correlation function

Corxy(s) =

〈
(xk − µx)(yk+s − µy)

〉

σxσy

=





1

σxσyN

N−s∑

k=1

(xk − µx)(yk+s − µy) : s = 0, 1, 2, . . .

1

σxσyN

N∑

k=1−s

(xk − µx)(yk+s − µy) : s = −1,−2, . . . .

(1.9b)

Note that in the estimators in Eqs. (1.9) are biased due to the normalization by N rather than
by the ’correct’ number of summands, N − s. This substitution has the advantage that the cross-
covariance matrix and the cross-correlation matrix are non-negative definite [Brockwell and
Davis 2003]. It further facilitates the use of fast Fourier transform to quickly calculate both
covariance and correlation7. I will come back to the issue of normalization in cross-correlation
function in Sect. 4.2.4.
When the signal X is identical to the signal Y , i. e. {xk} = {yk}, Eqs. (1.9) yield the auto-
covariance function (Covxx = Cov, subscripts are dropped where applicable) and the auto-
correlation function (ACF). I will denote the latter in the following by C(s) for simplification,

Cov(s) =
〈
(xk − µx)(xk+s − µx)

〉
=

1

N

N−s∑

k=1

(xk − µx)(xk+s − µx) (1.10a)

C(s) =

〈
(xk − µx)(xk+s − µx)

〉

σxσx
=

1

σ2
xN

N−s∑

k=1

(xk − µx)(xk+s − µx) (1.10b)

7Equations (1.9) can be rewritten as a convolution and derived as the inverse Fourier transform of the product of
the individual Fourier transforms obtained from both time series according to the convolution theorem.
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for s ≥ 0 and expressions for s < 0 are defined analogously to Eqs. (1.9). The auto-correlation
function measures the linear dependence between two points of the same time series at different
times. For an uncorrelated time series the auto-covariance function, and thus, the auto-correlation
function is zero for all non-zero time lags s. All other properties discussed below Eq. (1.6b) remain
valid: −1 ≤ C(s) ≤ 1; the absolute value of C(s) measures the strength of linear dependence;
a negative (positive) sign indicates large values at positions k + s correspond to small (large)
values at positions k and vice versa. In the weak stationary case Eqs. (1.9) exhibit time reversal
symmetry, i. e.,

Covxy(s) = Covxy(−s) and Corxy(s) = Corxy(−s) . (1.11)

Such time series are sometimes referred to as jointly stationary. Correspondingly, time series
not fulfilling above properties are generally called nonstationary. Among other reasons, nonsta-
tionarities are typically introduced by changes in the local mean, trends (linear or higher order
polynomials) or periodicities.

Cross Spectrum, Power Spectrum, and Coherence

Spectral analysis originates from communication engineering where most signals obey oscillations
of many different frequencies around certain stable states. These oscillatory components might be
present for an intermediate time interval or during the complete observational period. In order
to separate and study such superimposed oscillations with respect to their frequency the signal is
expanded in periodic functions (Fourier expansion). The discrete spectral amplitude is the Fourier
transform8 of the signal {xk}k=1,...,N ,

F
(
{xk}

)
= x̂f =

1

N

N∑

k=1

xke
−2πikf , f ∈ (−1/2, 1/2] . (1.12)

The normalization byN ensures x̂0 = µx. Note that f = m/(N∆t) where ∆t denotes the sampling
interval of the signal and m = −N/2 + 1, . . . ,−2,−1, 0, 1, 2, . . . , N/2 is a typical set of grid points
in a fast Fourier transform algorithm for an even N . Without loss in generality I set ∆t = 1 in
the following for simplification. On the other hand, the cross spectrum is defined as the Fourier
transform of the covariance function in Eqs. (1.9a)

Pxy(f) =
1

N

N−1∑

s=1−N

Covxy(s)e
−2πisf , f ∈ (−1/2, 1/2] (1.13)

Note that due the definition in Eq. (1.9a), the cross spectrum in Eq. (1.13) is only valid for weakly
stationary signals. When setting y = x, the covariance reduces to the auto covariance and the
conventional power spectrum of a (single) time series is retrieved,

P (f) = Pxx(f) =
1

N

N−1∑

s=1−N

Covxx(s)e
−2πisf , f ∈ (−1/2, 1/2] (1.14)

In practice the power spectrum P (f) can be derived directly from Eq. (1.12)

P (f) = |x̂f |2 = x̂f x̂
∗
f =

1

N2

N∑

k,l=1

xkxle
−2πikfe+2πilf , (1.15)

where * denotes the complex conjugate. However, there is no consensus on the normalization of
the power spectrum. I useN2 here since it descents from Eq. (1.12). Note that the power spectrum
in Eq. (1.15) is symmetric for real valued time series, and hence, I will only show frequencies in the
range f ∈ [0, 1/2] throughout this thesis. The equivalence of Eqs. (1.14) and (1.15) is formulated

8Throughout this thesis denoted by F .
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in the discrete Wiener-Khinchin theorem [see Appendix A and Honerkamp 1994; Rangarajan
and Ding 2000].

Since the cross spectrum is in general a complex function one can obtain an amplitude function
and a phase function:

APxy(f) =
[
Re(Pxy(f))2 + Im(Pxy(f))2

]1/2
, Φxy(f) = arctan

(
Im(Pxy(f))

Re(Pxy(f))

)
. (1.16)

Analogously to the definition of the correlation function as the quotient of the covariance and the
product of the roots of individual auto covariances (variances) one can then obtain a coherence
spectrum9 as the quotient of the cross spectrum and the product of the individual auto-cross
spectra according to

Cohxy(f) =
APxy(f)√

Pxx(f)
√
Pyy(f)

. (1.17)

While cross-correlation function studies linear dependences between two different signals X =
{xk} and Y = {yk} in the time domain there might be a similar type of linear interrelation
in the frequency domain. E. g., one might want to study coherence, i. e., correlation indexed by
frequency. To elucidate the meaning of such interrelation consider two signals that can be modeled
as the superposition of a high frequency component (HF) and a low frequency component (LF),
xk = xHFk +xLFk and yk = yHFk +yLFk with k = 1, . . . , N . The coherence spectrum in Eq. (1.17) then
measures whether LF components vary simultaneously (large LF coherence) or HF components
vary simultaneously (large HF coherence). In the full coherence spectrum such inferences can be
drawn for any frequency component. However, I will in the following not further employ Eq. (1.17).
An alternative approach for studying simultaneous variations of oscillations at different frequency
will be presented in Sect. 5.3.

White Noise and Random Walks

A sequence of random numbers is generally denoted as noise because of the absence of determinism.
Time series that are constructed of independently distributed random numbers are termed white
noises since the corresponding power spectrum P (f) [Eq. (1.15)] is flat, i.e., all frequencies are
statistically equally distributed. For convenience one choses uniformly or normally distributed
random numbers, however, the term white noise is used for all sequences obeying a flat P (f).

When a noise time series {εk}k=1,...,N is integrated, the time series Yj =
∑j

k=1 εk describes a
one-dimensional random walk. Yj is the position of the random walker after j steps where εj is
the displacement. The concept of many fluctuation analysis methods (presented in Chapt. 3) are
based on the concept of random walks.

1.2. Short- and Long-Range Dependence

Long-range dependence is associated with the term persistence, i.e., the tendency of a random
variable to exhibit similar values in the next time steps. In a persistent dataset large values are
more likely followed by large values and small values are more likely followed by small values.
For instance, the timing of the heart exhibits long-range persistence during rapid-eye-movement
(REM) sleep as we will see in Chapt. 3. Sleep and sleep stages are introduced in Sect. 2.3.

Since long-range persistence is strongly liked with correlation and scaling behaviour, or ’memory’
the terms long-range persistence, long-range correlation, long-range scaling, or long-range memory
are often used synonymously and long-range is usually equivalent with long-term.

There are three equivalent definitions for distinguishing short-range correlations from long-range
correlations.

9The similarity to cross correlation is seen when one recalls that spectra are squared properties.
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Figure 1.1.: Concurrent approaches to short-range and long-range dependence for three example time series [N =
65536]; fragments are shown for (a) a short-term correlated AR(1) process [a0 = 0, a1 = 0.98; light blue], (b) a
long-term correlated signal generated by Fourier filtering [α = 0.7; red], and (c) an uncorrelated Gaussian noise
process [green]. (d-f) Corresponding correlation functions C(s) [(d)], power spectra P (f) [(e)], and fluctuation
functions F (s) obtained by DFA2 [(f); see Sect. 3.1.3 for DFA methodology] in the same color coding. Black dashed
curves represent intermediate behavior [fit: 10 ≤ s ≤ 500] used to calculate annotated scaling exponents. In (d)
the black dashed curve corresponding to the AR(1) realization describes the theoretical C(s); for white noise the
theoretical C(s) vanishes ∀s 6= 0. Power spectra P (f) in (e) have been logarithmically binned [colored triangles]
before fitting. F (s) for the AR(1) signal [light blue in (f)] exhibits random walk long-term behavior [αAR(1) = 1.5]
for short scales. A correct value of αAR(1) = 0.5 is found on larger scales.

1.2.1. Linear Time Space Approach

When the auto-correlation function, see Eq. (1.10b), of the time series decays exponentially and
is thus integrable, a characteristic time scale exists

sx =

∞∫

0

C(s)ds or sx =

∞∑

s=0

C(s) (1.18)

and the time series exhibits short-term correlations (STC). On the other hand, it exhibits long-
term correlations (LTC) if Eq. (1.18) is diverging and the decay in C(s) follows a power law with
a correlation exponent γ describing the correlation strength for large scales s≫ 1.

CLTC(s) ∼ s−γ where 0 < γ < 1 (1.19)

Figure 1.1(a) illustrates the correlation function C(s) for three types of signals. A short-term
correlated auto-regressive process (AR(1)) following Xt = 0.98Xt−1 + εt [light blue in Fig. 1.1],
where the stochastic component or innovation term εt is drawn from a white-noise process, exhibits
a sharply decaying C(s) for scales s > 50 [see also Sect. 1.5.1]. Note, the theoretical behavior
C(s) = 0.98s can be derived by modeling the AR(1) process in terms of a moving average process
(MA) [see Appendix B] yielding a characteristic decay time τ = −1/ ln(0.98) ≈ 50 with C(τ) =
1/e. For long-term correlated signals [modeled by Fourier filtering according to Sect. 1.5.2 with
γ = 0.6; red in Fig. 1.1] C(s) decays according to a power law expressed by a linear function in the
double-logarithmic plot. For pure white noise [green in Fig. 1.1] the theoretical correlation function
C(s) vanishes for all s 6= 0. However, in practice values of C(s) = 0 are not achieved due to edge
effects and a limited series length resulting in a lack of statistics. The small values fluctuating
around zero for large scales (in the asymptotic regime) are a serious problem for obtaining reliable
results based on C(s) or sx.
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1.2.2. Spectral Approach

Due to the equivalence of Eq. (1.14) and (1.15) as established by the Wiener-Khinchin theorem,
long-term correlations can alternatively be defined by a power law decay with a spectral exponent
β in the power spectrum of a signal,

Pxx(f) = P (f) ∼ f−β. (1.20)

The auto-correlation function C(s) for a weakly stationary time series is just a normalized version
of the auto-covariance function. When considering only the positive half of the symmetric power
spectrum it follows for the scaling exponent in the power spectrum [Rangarajan and Ding
2000]

P (f) ∼
∫ ∞

0
C(s)e−2πifsds ∼

∫ ∞

0
s−γe−2πifsds =

−2 sin(πγ/2)Γ(−γ + 1)

(2πf)−γ+1
∼ f−(1−γ) (1.21)

where Γ(ξ) =
∫∞
0 xξ−1e−xdx is the Gamma function which converges for ξ > 0, i. e., for γ < 1.

The latter is fulfilled since 0 < γ < 1 in the case of long-range correlations. Comparing Eqs. (1.20)
and (1.21) yields [Rangarajan and Ding 2000]

β = 1 − γ . (1.22)

Note that Eq. (1.22) is only valid for 0 < β < 1 which is violated in the case of nonstationary data
where β > 1 or in the case of anti correlations where β < 0. The power spectra corresponding to
the same examples as described in Sect. 1.2.1 are depicted in Fig. 1.1(e).
The main advantage of the spectral approach compared with studying the correlation function is
avoiding values close to zero in the asymptotic area and the computationally fast Fourier transform
algorithm. Nevertheless, as can be seen in Fig. 1.1(e) fluctuations in the power spectrum do
also severely increase for large frequencies (Nyquist frequency=1/2 · fsampling). This hampers a
correct determination of β, and an additional logarithmic binning has to take place. Logarithmic
binning means typical averages of log(P (f)) are taken within windows of frequencies systematically
increased by a binfactor yielding equally distributed data points in the double-logarithmic plot.

1.2.3. Nonlinear Approach – Fluctuations

In this approach one focuses on stochastic fluctuations in the time series and derives a fluctuation
function F (s) employing one of various methods designed to study fluctuations in time series,
e. g., fluctuation analysis (FA), detrended fluctuation analysis (DFA) or centered moving average
analysis (CMA) to be discussed in detail in Chapt. 3. For a simple scenario consider a cumulated
random walk Yj =

∑j
k=1 xk. The root of its mean square displacement in non-overlapping windows

ν = 0, . . . , [N/s] − 1 of width s then represents the FA-fluctuation function FFA(s) that scales
according to a power law in the presence of long-term correlations, see Sect. 3.1.2,

FFA(s) =
√〈

(Y(ν+1)s − Yνs)2
〉
∼ sαFA . (1.23)

Note that the square brackets in [N/s] denote the integer division, [N/s] = int(N/s). I will employ
this notation throughout my thesis. However, FA is not capable to deal with nonstationarities
(trends) in the signal which are commonly present in time series recorded from complex systems,
e. g., in heartbeat or in respiration. Other methods as DFA [Sect. 3.1.3] and CMA [Sect. 3.1.4]
were developed to handle data with nonstationarities such as trends. The fluctuation functions
(here of DFA2, see Sect. 3.1.3) corresponding to the same examples as described in Sect. 1.2.1 are
shown in Fig. 1.1(f).
While I have already shown the relationship between the spectral exponent β and the correlation
exponent γ in the derivation of Eq. (1.22), the fluctuation exponent α can also be related to the
correlation exponent γ. One obtains [see also Sect. 3.1.2]

1 − β
(1.22)
= γ

(3.15)
= 2 − 2α . (1.24)
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1.3. Real Time-Frequency Decomposition – Wavelet Analysis

Although, Fourier transform (FT) and the FT based power spectrum are well established linear
tools to study periodicities in time series they have the disadvantage that time information associ-
ated with identified oscillations is by definition inaccessible. For instance consider heartbeat that
is monitored in a sportsman during training time where his physiological state changes between
rest and exercise. Clearly, during resting times his heart will beat slower compared with times
where he is for example fast riding a bike. A spectrum analysis of the complete signal without
separating times that correspond to rest and exercise will clearly identify both fast (exercise)
and slow (rest) oscillations but from the spectrum alone an association of frequency components
with actual time is not possible. The reason is the well defined frequency location of the Fourier
basis (sine and/or cosine functions have a fixed frequency) but a complete delocalization in sam-
ple (time) space. A short-time Fourier transform in a sliding window, mathematically being the
Fourier transform of the convolution of the signal one wants to study and a window function w
of compact support10, only partially overcomes this problem. The windowed Fourier transform
(WFT) follows for the continuous and the discrete case, respectively,

WFT
(
x(t)

)
(ω, τ) = F

(
x(t) ∗ w(t)

)
(ω, τ) =

∫R x(t)w(t − τ)e−iωtdt (1.25a)

WFT
(
{xk}

)
(ω, k′) = F

(
{xk} ∗ {wk}

)
(ω, k′)=

1

N

N∑

k=1

xkwk−k′e
−iωk (1.25b)

where ∗ denotes the convolution, F indicates the Fourier transform, and w is the window function
that is translated over the signal. If the window function is a Gaussian the windowed Fourier
transform is often referred to as Gabor transform [Gabor 1946]. Note that the windowed Fourier
transform is for example used to support medical technicians of sleep laboratories in scoring sleep
stages based on brain wave recordings [see Sect. 2.3]. However, the windows w in the WFT are
of a fixed width; let this width be h. If the part of the signal that is currently covered by the
window w only contained a few periods of a fast oscillatory component with ω ≫ 1/h, its location
in time could not successfully be retrieved by WFT. On the other hand, very slow oscillations
with ω ≪ 1/h cannot be captured because the window is much smaller than a single period.
The solution of this problem are frequency-adaptive window functions which are today known by
the name wavelets but date back to the year 1910 and Alfred Haar who principally invented the
most simple ’wavelet’, the Haar wavelet [Haar 1910]. However, the term wavelet is a coinage
blended from the English word ’wave’ and the French word ’ondelette’ that was established 75
years after Haar by Pierre Goupillaud, Alex Grossman, and Jean Morlet [Goupillaud et al.
1984]. For the wavelet transform Eqs. (1.25) are slightly changed:

WTΨ

(
x(t)

)
(s, τ) =

1√
s

∫R x(t)Ψ( t− τ

s

)
dt (1.26a)

WTΨ

(
{xk}

)
(s, k′) =

1√
s

N∑

k=1

xkΨ

(
k − k′

s

)
(1.26b)

where Ψ(t) denotes the complex conjugate of the mother-wavelet function Ψ(t). Note that there
is no consensus on the normalization of the wavelet transform. I here use 1/

√
s as a normalization

instead of 1/s because this ensures unit energy, i. e., the L2 norm of the wavelet is independent of

the parameters s and τ satisfying
(∫C |Ψ ((t− τ)/s) |2dt

)1/2
=
(∫C |Ψ(t)|2dt

)1/2
. Sometimes one

finds an additional normalization term, 1/
√
cΨ, which descents from the admissibility condition

cΨ = 2π
∫R |F

(
Ψ(t)

)
(ω)|/|ω|dω < ∞, see [Goupillaud et al. 1984; Farge 1992]. Here I set

cΨ = 1. Note that the wavelet Ψ(t) is required to be absolutely integrable (
∫RΨ(t)dt < ∞) and

quadrate integrable (
∫RΨ2(t)dt <∞); the admissibility condition further implies F

(
Ψ(t)

)
(0) = 0,

10Alternatively, w must be a fast decaying function (Schwartz function) as for example a Gaussian.
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i. e., a zero mean of Ψ(t). Among the most popular mother wavelets are the Haar wavelet
[Eq. (1.27a)], derivatives of a Gaussian (DOG) [Eq. (1.27b)], and the Morlet wavelet [Eq. (1.27c)]:

ΨHaar(t) =





−1
2 : −1 ≤ t < 0

1
2 : 0 ≤ t < 1

0 : otherwise

(1.27a)

ΨDOGn(t) =
(−1)n+1

Γ
(
m+ 1

2

) d
m

dtm
e−t

2/2 (1.27b)

ΨMorlet(t) = π−1/4s−1/2eiω0te−t
2/2 (1.27c)

where Γ(z) =
∫∞
0 tz−1e−tdt denotes the Gamma function. Although the parameter ω0 in

Eq. (1.27c) is a frequency that in principle can take any real value, it is generally defined as
an integer11 (ω0 ≥ 3) and considered to be the ’order’ of the Morlet wavelet due to its similar role
in adjusting the wavelet’s shape compared with the order parameter n in ΨDOGn [Eq. (1.27b)].
Note that the Haar wavelet is rather suited to detect steps in the signal than oscillations. Hence,
I will employ in Chapt. 4 explicitly only the Gaussian wavelet and the Morlet wavelet.
Since the wavelet function is complex in general, so is the wavelet transform in Eqs. (1.26). From
its real and imaginary parts one can define a wavelet amplitude, a wavelet phase, and a wavelet
power:

|WT (x)| =

√
Re

2
{

WTΨ(x)
}

+ Im
2
{

WTΨ(x)
}

, (1.28)

ϕWTΨ
(x) = arctan

Im

{
WTΨ(x)

}

Re

{
WTΨ(x)

} , and (1.29)

|WTΨ(x)|2 = Re
2
{

WTΨ(x)
}

+ Im
2
{

WTΨ(x)
}
. (1.30)

1.4. Fractality

Heuristics - A Geometrical Approach
“Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not
smooth, nor does lightning travel in a straight line.”

“I coined fractal from the Latin adjective fractus. The corresponding Latin verb frangere means
’to break’ to create irregular fragments. It is therefore sensible - and how appropriate for our
need! - that, in addition to ’fragmented’ (as in fraction or refraction), fractus should also mean
’irregular’, both meanings being preserved in fragment.”

Benôıd B. Mandelbrot [Mandelbrot 1975]
The approach to studying fluctuations which will be an integral part of this thesis in Chapt. 3 is
strongly linked with the term fractality. What are fractals and what is fractality? In mathematics
fractals are geometric objects that lack a certain characteristic length scale. Their associated
scale-invariant ’complicated’ structures are characterized by a non-integer (at least in most cases)
fractal dimension larger than the topological dimension. While entities which we today refer to
as fractals are already as old as the “Tile Patterns formed by Pentagons“ an artwork by Albrecht
Dürer (1471–1528) [Dürer 1525, Appendix C] or Gottfried Wilhelm Leibniz (1646-1716) who
studied recursive self-similarity, it aroused large interest during the last century in the context of

11The restriction ω0 ≥ 3 is today implemented in most software tools such as ITT IDL or Matlab and originates from
a simplification that took place to obtain Eq. (1.27c) from the mathematically correct Morlet-wavelet function
[Goupillaud et al. 1984, and discussion on parameter b therein]. In the latter an additional exponential term
can be neglected for a ’sufficiently large’ ω0. In this thesis I will set ω0 = 6 which is more than ample. Because
of this simplification Eq. (1.27c) is sometimes referred to as abbreviated Morlet wavelet.
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Figure 1.2.: Illustration of systems exhibiting regular dimensionality: (a) a linear wire, (b) a thin plate, (c) a
cube; and fractal dimensionality: (d-h) different iterations [it=0,1,2,3,4] of the Koch curve. Homogeneous mass
distribution is assumed everywhere.

continuous and non-differential functions in mathematics. The term fractal is strongly linked to
properties like self-affine, self-similar, and scale-invariant which will be explained shortly. In the
sixties Mandelbrot started investigation of self-similarity and published the famous paper How
Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension [Mandel-
brot 1967]. Since then intriguing studies found fractal structures in many other natural systems
as clouds, lightning strikes, plant leaves, particle deposition during growth processes (diffusion-
limited aggregation (DLA)), fracture cracks and many more [Bunde and Havlin 1996]. But what
is a non-integer dimension? Regular dimensions can easily be obtained for Euklidian objects such
as a wire of length L, a thin plate, or a solid cubicle by assuming homogeneous density distribution
and considering how the mass M(L) changes with system size L. This is illustrated in Figs. 1.2(a-
c). Clearly, one finds for an arbitrary rescaling L′ = aL, a ∈ R that M(L′) = M(aL) = adM(L)
where L is the (length) scale, M the mass, and d the dimension of the system. Non-fractal objects
always yield an integer dimension d. Now consider the Koch curve [von Koch 1904] where in
each iteration step the center third of the previous scale is substituted by an equilateral triangle,
see Figs. 1.2(d-h). A rescaling by a = 1/3 leads to a reduction of mass by a factor of 1/4. Thus,

the above definition M(1/3L) = (1/3)dM(L)
!
= 1/4M(L) can only be satisfied by a non-integer

dimension d = df = log 4/ log 3 where df denotes the fractal dimension. Systems exhibiting a
non-integer dimension df are denoted as fractal systems, where the term fractal was coined by
Mandelbrot [Mandelbrot 1975]. However, there are fractals that are characterized by an inte-
ger fractal dimension, i. e., a non-integer fractal dimension is sufficient but not necessary for a
fractal. Among the fractals with an integer fractal dimension are the Sierpiński tetrahedron, the
Julia set, or a random walk in higher dimensions. Fractality is further linked to the phenomenon
of self-similarity, i.e., a part of a fractal object is exactly or statistically similar to the whole
object. Exact similarity is equal to scale-invariance, i.e., when applying a certain scale factor to
the system the shape is not changing. The Koch curve is scale-invariant for a scaling s = 1/a = 3,
i.e., magnification by a factor 3 does not change the appearance of the Koch curve. In self-similar
multi-dimensional objects the same scaling factor has to be applied to each dimension in order
to achieve similarity (isotropic transformation). When different scaling factors (anisotropic trans-
formation) are required, the system is called self-affine, thus, being a more generalized type of
similarity. After this rather phenomenological approach I will put this concept into a more math-
ematical framework and motivate how it can be used to study time series and fluctuations, see
also Chapt. 3.
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Scaling Laws
Scale-invariance (here in general self-affinity) of a function f(x) can be described in a mathematical
fashion by the property

f(ax) = bf(x) = aHf(x) ⇐⇒ f(x) = a−Hf(ax) = ba−Hf(x) (1.31)

where a is the scaling of the abscissa x and b the scaling of the ordinate y = f(x). Equation (1.31)
is satisfied by a power law

f(x) = CxH (1.32)

which will reappear in the context of fluctuations within Chapt. 3. The scaling exponent H is
denoted as Hurst exponent in honor of the geologist E. H. Hurst who became famous due to his
early fluctuation studies of Nile river runoffs [Hurst 1951]. Hurst rescaled-range analysis will
briefly be introduced in Sect. 3.1.1. Note, that power laws exhibit linear behavior (scaling) with
slope H in a double-logarithmic plot, log f(x) = H log x.

Relation to Time Series

It is easy to imagine that a noisy time series with its seemingly irregular structure of edges
and vertices has much resemblance with the geometrical object of a fractal. Hence, it makes
sense to transfer successfully employed methodology to characterize the topological properties of
(geometrical) fractal objects to time series which itself can be imagined as a special type of such
fractal object that is extended in one dimension.

Multifractality
Multifractality can be thought of as a generalization of fractality. Recall, in a fractal system scale
invariance is described by a single scaling law and, thus, a single scaling exponent. Now, there
are systems which are rather composed of many interwoven subsets obeying different scaling laws.
Hence, the complete system, its characteristics, and dynamics, captured by time series, can not be
properly described by a single scaling exponent (monofractal), but rather requires a set of many
different scaling exponents, see Sect. 3.3.

1.5. Stochastic Modeling of Time Series

For testing and validating time series analysis methods as well as for a comparison of results
obtained from applying such methods to real datasets in order to test hypotheses, model data
exhibiting well defined properties are often required. In all chapters dealing with fluctuations,
oscillations, or synchronization properties I will need surrogate long-term correlated datasets,
see Chapts. 3, 4, and 5. In Appendix E.2 I will discuss how short-term correlation might be
misinterpreted by fluctuation analysis methods and therefore also require surrogate short-term
correlated data. There are different approaches available to generate both types of correlations. I
will focus and employ just one for each type here.

1.5.1. Generation of Short-Range Correlated Data

The standard models for short-term memory are autoregressive (AR) processes of the order p (see,
e.g., in [Box et al. 1994]):

xk = a0 +

p∑

j=1

ajxk−j + εk, (1.33)

where {xk}k=1,...,N denotes the generated AR(p) time series, aj with j = 0, . . . , p are the model
parameters (often one sets a0 = 0), and {εk} is some input sequence; usually it is chosen as
independent and normally distributed white noise with zero mean and unit variance. In the
simplest case, p = 1, the autocorrelation function decays with a decay time τ (time constant), see
Appendix B for a derivation:

C(s) = a
|s|
1 , C(τ) = aτ1 = 1/e −→ τ = −1/ ln(a1) . (1.34)
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An example AR(1) signal is depicted in Fig. 1.1(a). In the same figure the correlation function
[Fig. 1.1(d)], the power spectrum [Fig. 1.1(e)], and the DFA2-fluctuation function [Fig. 1.1(f),
see Sect. 3.1.3] corresponding to the example are illustrated. Higher-order AR(p) processes or
additive combinations of different AR(1) with differing parameters a result in a superposition of
short-term dependencies with different time constants τj, j = 1, . . . , p. When some τj are large
such process might spuriously appear long-term correlated when fluctuation functions are studied
for scales smaller than the largest τj. A superposition of three AR(1) processes is discussed in
Appendix E.2.

1.5.2. Generation of Long-Range Correlated Data

Fourier Filtering
For the null hypothesis of an underlying Gaussian linear stochastic process one needs to ensure
that first and second order quantities follow a certain law. A randomized sample can thus be
generated by ensuring the same first and second order moments, but with otherwise random
quantities. Note, that automatically weak stationarity is preserved, see Sect. 1.1.
According to the definition in Sect. 1.2.2 long-range correlated data is characterized by a power-
law decay in the power spectrum. Hence, such data can be generated by adjusting the flat (β = 0)
power spectrum of an uncorrelated white noise time series to a desired target scaling, P (f) ∼
f−βtarget . Note that this method is related but not identical to the amplitude adjusted Fourier
transform (AAFT) method which includes a phase randomization rather than an adjustment in
the power spectrum to a desired spectral exponent and purely aims at generating surrogate data
of similar properties for a given dataset [Theiler et al. 1992].
The Fourier filtering technique comprises three simple steps:

Step 1 – Fourier Transform of Gaussian White Noise:
One starts with a white noise signal {εk}k=1,...,N which I consider throughout this thesis to be gen-
erated by independent, normally distributed random numbers with mean zero and unit variance,
i. e., 〈εkεk′〉 = δkk′ , 〈εk〉 = µǫ = 0, and

〈
ε2k
〉
− 〈εk〉2 = σ2

ε = 1. Then {εk} is Fourier transformed
into frequency space employing Eq. (1.12). Note that it is not necessary to calculate the actual
power spectrum because of the Wiener-Khinchin theorem and Eq. (1.15) stating the equivalence
of the squared Fourier amplitude of the signal and the power spectrum. Since the latter decays
for long-term correlated data according to a power law with spectral exponent β, the Fourier
coefficients {ε̂f} [Eq. (1.12)] must decay with an exponent of β/2.

Step 2 – Adjusting the Power Spectrum:
The power spectrum of the white noise signal {εk} is flat with β = 0, i. e., all frequencies have an
equivalent weight. In order to adjust the power spectrum to a power law the Fourier coefficients
{ε̂f} are multiplied with the factor f−β/2 yielding the coefficients {x̂f}.
Step 3 – Inverse FT:
Finally, the spectrum adjusted signal {x̂f} is transformed back to time domain employing the
inverse Fourier transform

{xk} = F−1
(
{x̂f}

)
=

N/2∑

m=−N/2+1

x̂fe
2πikm/N , f = m/N (1.35)

yielding a long-term correlated time series {xk} for an even N . Note that in this definition there
is no prefactor of 1/N compared with Eq. (1.12).
Although I started with a Gaussian white noise in Step 1, it is possible to begin with any other
signal. In Sect. 3.3.4 I will suggest an algorithm that employs the Fourier filtering technique to
tune long-term correlations in a multifractal model.

Iterative Fourier Filtering – Schreiber-Schmitz Method
In general the Fourier filtering does preserve the distribution of the input signal (e. g. white noise)
only on average [Schreiber and Schmitz 1996]. This property depends on the length of the
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Figure 1.3.: Illustration of the Schreiber-Schmitz algorithm for generating surrogate data: (a) Gaussian white
noise time series µx = 0, σ = 1 [yellow] and a long-term correlated time series with β = 2.0 and α = 1.5 [blue]; (b)
corresponding power spectrum [green] and logarithmically binned spectrum [red], the white noise power spectrum is
flat with β = 0 [not shown]; (c) corresponding value distribution functions [VDF] in the same colors as in (a). The
difference from a normal distribution is obvious for the long-term correlated signal which was generated by Fourier
filtering. In the lower panels results for employing Schreiber-Schmitz’ algorithm [10 iterations] starting with the
same white noise as in (a) are shown: (d) Time series after adjusting (i) the slope of the spectrum to a power law
[blue], and (ii) each frequency component in the power spectrum separately to fit a perfect power law [yellow]. (e)
corresponding power spectra [(i) green, binned version in red, (ii) yellow, binned version marked by blue triangles].
(f) corresponding value distributions in the same colors as in (d).

modeled dataset. Schreiber and Schmitz proposed an iterative algorithm. When the described
algorithm of Fourier filtering is applied to an input signal in order to adjust its power spectrum in
most cases the value distribution of the input signal is changed after the inverse Fourier transform.
However, the value distribution can be adjusted in time domain by rank wise exchanging the values
of the output signal obtained from Step 3, {xk}, with the input signal {εk}. In this step, on the
other hand, long-term correlations and hence the scaling of the power spectrum are again modified.
Employing Fourier filtering followed by an adjustment of the value distribution in an iterative way
finally yields a time series exhibiting the desired long-term correlations and value distribution.
From my own experience generation of long-term correlated data with βtarget < 1.2 does not
notedly alter the distribution compared with the input Gaussian. However, differences in the
distribution after Fourier Filtering become relevant when βtarget > 1.25. In my experiments there
was neither an indication that this effect was induced by edge effects, i. e., N not being a power of
two, nor any noticeable dependence on the series length N as speculated by Schreiber and Schmitz
[Schreiber and Schmitz 1996].
The capabilities of the Schreiber-Schmitz algorithm are illustrated in Fig. 1.3. In the top row
results from employing the standard Fourier filtering method are shown. For a Gaussian white
noise of zero mean and unit variance [yellow in Figs. 1.3(a,c)] the power spectrum [β = 0, not
shown] is adjusted to satisfy β = 2 [Fig. 1.3(b); green, and red after logarithmic binning]. As
can be observed in Fig. 1.3(c) the value distribution of the output signal [blue] does not well
fit the original Gaussian. In the lower panels in Fig. 1.3 the same white noise was used in a
Schreiber-Schmitz iteration (10 iterations) which successfully adjusts long-term persistence and
preserves the original distribution [blue curves in Figs. 1.3(d-f)]. Note that the yellow signal in
Fig. 1.3(d) was obtained by a perfect adjustment to a power law in Step 2 of the Fourier filtering
technique, meaning for each frequency f the correct multiplier to fit the power law was derived
separately.

Note that long-term correlated time series can also be derived from a fractional autoregressive in-
tegrated moving average process – (FARIMA) [Schlittgen and Streitberg 1999] or generated
by the random midpoint displacement method [Feder 1988]. A technique to generate multifractal
time series of arbitrary multifractality strength and simultaneously tuned long-term correlations
will be presented in Sect. 3.3.4 and can be found in [Schumann and Kantelhardt 2010b].



2. Introduction to Human Physiology

This chapter does not report achievements in pure physics but is rather intended to inform the
reader about the very basic mechanisms of human physiology. It gives a short overview about the
autonomous nervous system that is responsible for controlling the cardiorespiratory system and
can be studied by analysing time series from heartbeat and breathing. While respiration signals
are rather intuitive the mechanisms behind heartbeat data require some knowledge about the
physiology of the heart. After introducing the cardiorespiratory system I will discuss brain wave
recordings and the structure of sleep since most of the analyses I will present in the main part
of this thesis [Chapts. 3, 4, and 5] are based on sleep recordings. Data from three databases are
described in Sect. 2.4. Since, this chapter has a rather medical and phenomenological background
theoretical physicists might want to continue with Chapt. 3.

2.1. The Autonomous Nervous System

The autonomous nervous system (ANS) is a part of the peripheral nervous system that controls
and regulates homeostasis of the human body, i. e., it maintains certain controllable physiological
variables such as blood pressure or heart rate in a sustained condition and within a tolerable limit.
Each control circuit forms a closed loop where a controller (brain, nervous system) continuously
obtains the actual value of the variable to control, e. g., mechanoreceptors1 (baroreceptors) in the
blood vessels monitor the blood pressure level, and adjusts this value according to the required
target value. However, due to disturbances and the interaction with other variables the target
value is likely not achieved. Its current state is reported back to the controller by the sensor
via a negative feedback loop. The controller can then readjust the variable’s value according to
the (possibly also changed) target value. Properties that are regulated by the ANS comprise
the content of gasses, ions, and nutrients in tissue; salivation2, perspiration3, the diameter of
pupils, micturition4, or erection; and most importantly digestive, cardiovascular, and respiratory
functions. In this thesis I will exclusively consider the latter two.

The ANS is further subdivided into the three parts: (i) the sympathetic nervous system (SNS),
(ii) the parasympathetic nervous system (PNS), and (iii) the enteric5 nervous system (ENS). For
the cardiorespiratory system [basically comprising the heart, the lungs, and blood vessels, see
Sect. 2.2 for details] that I study in this thesis only sympathetic and parasympathetic (vagal6)
control is of importance. Both components are active on a basal level (sympathetic tone and
parasympathetic tone) and acting complementary. Their ratio, the sympathovagal balance7, de-
termines the control direction. Activation of the parasympathetic branch results in the release of
the neurotransmitter acetylcholin by the vagus nerve which is detected by muscarinic acetylcholin
receptors at the heart that increase the K+ conductance in the cell membranes of the heart and
finally trigger the deceleration of the heart. In contrast, an acceleration of the heart is induced
by sympathetic activation due to the release of epinephrine and norepinephrine which docks to
adrenergic receptors.

1Stretch sensors that ’measure’ the deformation of the blood vessels due to high blood pressure.
2Flow of spittle
3Respiration through the skin
4Discharge of urine
5Bowel control
6Since parasympathetic nerves partially originate from the vagus nerve – indeed parasympathetic innervation of

the heart is mediated by the vagus nerve – both terms, parasympathetic and vagal, are often used synonymously.
7It is for instance measured by the ratio of total power in the LF band and total power in the HF band. Both

bands are explained in Fig. 2.4. See also [Goldberger 1999] for a different measure.
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Figure 2.1.: Schematic picture of the heart with pace-
maker system [blue]. Note that the SA node [intrinsic
frequency approx. 60min-1] is only the primary pace-
maker (healthy), the secondary pacemaker [AV node;
intrinsic frequency approx. 40min-1] and the tertiary
pacemaker [His bundle, AT bundle, and Purkinje sys-
tem; intrinsic frequency approx. 25min-1] can be in-
terpreted as ”Nature’s backup systems” in case the
SA node fails. Note the order of right and left. Im-
proved version of a figure borrowed from [Malmivuo
and Plonsey 1995].

Figure 2.2.: Nomenclature of time points in electrocardiograms
(ECG) after Einthoven. The ECG curve records potential differences
[in mV] and corresponds to cardiac excitation [see text]: (i) depolar-
ization of the atria [positive P-wave], (ii) repolarization of the atria
[isoelectric episode], (iii) depolarization of ventricles [QRS complex;
R positive, and Q and S negative], (iv) completely depolarized state
[isoelectric ST episode], and (v) repolarization of ventricles [extended
T-wave].

Studies have associated parasympathetic activation with the high frequency components (0.15Hz
to 0.4Hz) of heartbeat while sympathetic activation influences low frequency components (0.04Hz
to 0.15Hz) [see Sect. 2.2 for details on heartbeat recordings]. However, the latter issue was
discussed controversially since some studies support the statement that the LF band is additionally
influenced by the parasympathetic nervous system, see [HRV Task Force 1996, and references
therein].

Note that parasympathetic activation is rather fast due to a high concentration of acethyl-
cholinesterase in the sinoatrial node (SA) which triggers the contraction of the heart [see Sect. 2.2]
and quickly hydrolyses the parasympathetic neurotransmitter acetylcholine compared with sym-
pathetic activation. However, we find sympathetic predominance in situations where a quick
response is required, e. g., when quickly getting up from supine position or when getting fright-
ened. In contrast responses to parasympathetic activation seem to be much slower. For instance
think about the time that is required to return to a resting state after exercise. The reason for
this apparent contradiction is originated in the omnipresence of both sympathetic and vagal com-
ponents. Sympathetic activation can be triggered by a reduction in parasympathetic tone which
appears rather fast. Nevertheless, the regulation mechanisms of the autonomous nervous system
mediated by the sympathetic and vagal interaction is not fully understood and ongoing research.

2.2. The Cardiorespiratory System – Heartbeat and Respiration

The cardiorespiratory system consisting of the heart, the blood vessels as well as the lungs is
besides the central nervous system one of the most important complex subsystems in human
physiology. Therefore, it has been studied extensively during the last decades. Most approaches
covered monovariate analysis of either heartbeat or breathing signals, e. g., employing spectral
methods to investigate heart rate variability (HRV) [Akselrod et al. 1981; Kobayashi and
Musha 1982; Goldberger et al. 1990; Keselbrener and Akselrod 1996; HRV Task Force
1996] or exploring correlation behavior and fluctuations by applying detrended fluctuation anal-
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Figure 2.3.: Illustration on the extraction of beat-to-beat interval time series from an electrocardiogram (ECG).
(a) Shown are an ECG fragment of 30s duration [black left axis] and a corresponding nasal pressure signal [red right
axis] recorded from a healthy subject [DAPHNET database]. Note that the amplitudes of the R peaks recover the
respiratory cycle in this fragment. (b) Enlarged part from (a) with detected R peaks. The beat-to-beat interval
[RRI] time series is constructed of the time intervals between consecutive R peaks [marked by green arrows].

Figure 2.4.: (a) Example of heartbeat interval time series recorded from
a post-infraction patient [ISAR-I database]. Red dashed lines mark the
daytime. The transition to sleep associated with a deceleration of the
heart is clearly observed in this patient after 22:00 o’clock. Note that the
irregular spacing of the lines is originated in the X-axis being heartbeat
number and not time. (b) Corresponding power spectrum. The yellow
curve is obtained from logarithmic binning. The dashed yellow-green line
indicates power-law scaling with a spectral exponent β = 1.3. Important
physiological frequency ranges are marked by vertical lines [from left to
right]: ultra low frequency band (ULF) [f ≤ 0.003Hz], very low frequency
band (VLF) [0.003Hz < f ≤ 0.04Hz], low frequency band (LF) [0.04Hz
< f ≤ 0.15Hz], and high frequency band (HF) [0.15Hz < f ≤ 0.4Hz].
The pronounced peak in the HF band is caused by respiration.

ysis [Peng et al. 1995; Bunde et al. 2000; Kantelhardt et al. 2003a; Rostig et al. 2005] or
recently phase rectified signal averaging (PRSA) [Bauer et al. 2006a]. Cross-modulations and
cross-interactions between the components of the cardiorespiratory system have been studied by
means of cross-correlation analysis, transfer function analysis, or (phase) synchronization analysis
[Schäfer et al. 1998; Stefanovska et al. 2000; Lotric and Stefanovska 2000; Toledo et al.
2002; Bartsch et al. 2007].

2.2.1. Heartbeat

Information about the heart, its condition, and its dynamics can be obtained from studying
electrocardiograms (ECGs) which non-invasively measure potential differences induced by cardiac
excitation. ECG recordings were established in physiology by Willem Einthoven who received for
his work on ECG recordings the Nobel Prize in 1924. In order to understand the emergence of
the healthy ECG curve as is shown for two consecutive heartbeats in Fig. 2.2 knowledge about
the electro-physiological heart cycle is needed.

Depolarization and repolarization mechanisms of the heart form the typical shape of an ECG
curve, consult in the following Fig. 2.2 for the P, Q, R, S, T nomenclature invented by Einthoven
and Fig. 2.1 for anatomical orientation. In resting state the heart cells are in an equilibrium of
positive charges on the outside of the cell membrane and negative charges on the inside yielding a
polarization. A contraction of the healthy heart is then stimulated by the sinoatrial node (SA node)
which is only of the size of a few square millimeters and embedded on top of the right atrium8 next

8Note that ’right’ and ’left’ are ordered according to one’s own body and heart.
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to the superior vena cava, see Fig. 2.1. Although the SA is connected to the autonomous nervous
system, and thus its pulse repetition rate can be modulated by parasympathetic and sympathetic
activation, its function as a pacemaker is generally autonomous due to self-excitable cells and a
natural discharge occurs at rate of 60 − 100min-1 [Despopoulos and Silbernagl 2003]. The
SA triggers the depolarization in the right atrium (approx. 50ms after impulse generation) which
evolves to the left atrium (85ms) and down towards the aterioventricular node (AV node). This
depolarization of the atria manifests in the ECG P-wave [Fig. 2.2] while its repolarization cannot
be observed (isoelectric region before QRS-complex). When the pulse arrives at the AV node it
is delayed and relayed to the His bundle (PQ-segment; arrival: 50ms, relay: 125ms) from where
it is conducted further to the Purkinje fibres. Depolarization of the ventricles manifests in the
QRS-complex (inner myocardium9: right 175ms, left 190ms; outer myocardium: right 205ms, left
225ms) where the R peak is associated with the largest action current approximately in direction
of the cardiac apex (’tip’ of the heart). Repolarization of the heart tissue finally generates the
T-wave and a new cardiac cycle can start.

Although, a heartbeat is a rather complex interplay between depolarization and repolarization
(a single cycle from P-wave towards T-wave) the R peak is the most prominent feature in ECG
recordings. In the following I will denote the R peak as beat and the time interval between the R
peaks of two consecutive heart beats as RR interval (RRI) for simplification. The time series which
is constructed from all recorded RR intervals will also be denoted by RRI, see Fig. 2.3. Further
note that the discussed mechanism only applies for a healthy normal (N) beat. The ECG curve
is deformed if the depolarization is triggered by the AV node. This occurs when (i) the intrinsic
frequency of the SA node falls below the one of the AV node (e. g. observed in sportsmen or at
’sinus arrest’), or (ii) the self-excitation frequency of the AV node is increased due to pathologies.
Note that other pathologies that affect polarization and depolarization properties of heart tissue
locally also change the ECG signal.

The most important type of ectopic beats that can disturb the analysis that I present in this
thesis are super ventricular extrasystoles (SVES) and ventricular extrasystoles (VES). They are
distinguished according to the location of the impulse triggering the additional or earlier depo-
larization. Both types are characterized by premature beats triggered, in the first case, by the
AV node or above (’normal’ QRS-complex), and in the latter case by a tertiary pacemaker (His
bundle, AT bundle, Purkinje system; QRS deformation) [Ohly 2008].

QRS detection, in particular the detection of the R peaks, is an especially challenging and time
consuming part of any heartbeat analysis due to many different patterns in the ECG curve and
various artifacts due to movements, changes in body exposition, or recording devices. Today,
there is no fully automatic peak detector available. A software guided detection process always
requires visual inspection of identified beats, and more importantly missed beats and artifacts10.
For principles on QRS detection see the review [Kohler et al. 2002] while an overview on artifacts
in electro-physiological signals in general is given in [Wehrli and Loosli-Hermes 2003].

Heartbeat Related Observables

In order to gain knowledge about heartbeat dynamics and to design scores for cardiac risk assess-
ment, i. e., identifying cardiovascular diseases and patients at cardiovascular risk or forecasting
of dangerous cardiac events such as Sudden Cardiac Deaths (SCD), different quantities of ECG
recordings have been studied. The medically most popular properties that are obtained from RRI
time series (or its inverse the heart rate) can be divided into time domain variables and spectral
variables. Among the first group of observables are: (i) the standard deviation of Normal-R-to-
Normal-R (NN) intervals which is calculated for a predefined time such as 10 min or 24 hours
(SDNN), (ii) the standard deviation of the average NN intervals calculated over short periods,
e. g., 5 minutes (SDANN), (iii) the square root of the mean squared difference of successive NN in-
tervals (RMSSD), (iv) the number of pairs of successive NN intervals differing by more than 50ms
(NN50), and (v) NN50 divided by the total number of NN intervals (pNN50). The second group of

9Myocardial muscle = ’muscle of the heart’
10To give the reader an impression, the time that is to my experience required to classify a single whole night ECG

recording of approximately 8 hours duration is on average 2 hours.
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Figure 2.5.: Illustration of ECG leads after
Wilson. (left panel) The negative reference
electrode is defined by combining leads at-
tached to the left leg [LL], left arm [LA], and
the right arm [RA; in the US additionally right
leg RL]. (right panel) Positioning and notation
of unipolar ECG breast leads. Figures bor-
rowed with permission from [Malmivuo and
Plonsey 1995].

spectral variables comprises the total power in certain frequency ranges11 [see Fig. 2.3]: (i) power
in the high frequency band (HF: f ∈ (0.15Hz, 0.4Hz]), (ii) power in the low frequency band (LF:
f ∈ (0.04Hz, 0.15Hz]), (iii) power in the very low frequency band (VLF: f ∈ (0.0033Hz, 0.04Hz]),
(iv) power in the ultra low frequency (ULF: f ≤ 0.0033Hz) that can only be reliably assessed in
24 hours recordings, and (v) the quotient of total power in the LF band and total power in the
HF band which was proposed as an index of sympathetic to parasympathetic balance12. For a
more detailed overview I point to the standard on HRV parameters [HRV Task Force 1996].

Heart Failure – Sudden Cardiac Death (SCD)

The origin of a myocardial infarction is the closure of a coronary artery which results in a delay of
the depolarization of the heart that can be observed in the ECG by an elevation of the ST episode
[Fig. 2.2]. When the closure is not resolved for a longer period the myocardial tissue becomes
necrotic and looses its capability to polarize and depolarize (reduction in R-peak magnitude).
Finally, an initial myocardial infarction can yield a sudden cardiac death (SCD). However, SCDs
might be prevented by the implantation of a cardioverter defibrilator (CVD) device. Since this
device is rather expensive and an implantation is chancy for the patient, a reliable risk assessment
is required to identify patients at high cardiac risk.

Measurement of Heartbeat

Heartbeat is generally monitored by measuring electrical potentials (mV) between electrodes at-
tached to predefined locations at body. Although there exist a few different approaches, the most
prominent electrode placement technique after Wilson defines a negative indifferent reference elec-
trode of high resistance (5kΩ) as the interconnection of three limb leads (left leg, left arm, and
right arm) and attaches the positive electrode13 to fixed locations on the breast [Wilson et al.
1931a,b,c, 1934]. For positioning and notatiton of breast leads see Fig. 2.5.

2.2.2. Respiration and Respiratory Sinus Arrhythmia

Respiratory signals that I consider in Chapts. 3 and 5 do not have a complicated structure com-
pared with heartbeat and I will not go into details here, see Sect. 2.3.3 for a description of sleep
apnea – a respiratory disorder. For more details on the physiology of respiration I point the reader
to, e. g. [Despopoulos and Silbernagl 2003]. Recordings from respiration ideally oscillate si-
nusoidal where the extrema and the intervals between them are associated with certain respiratory
phases (inspiration and expiration). Respiration can be measured by either one of the following

11While the frequency ranges are well defined and standardized there is no general agreement on a standardized
length of the heartbeat recording or on a standardized width of frequency bins in the fast Fourier transform.
Unless normalized by quantities as total power, reported values as ’power in the HF band’ are meaningless
without a proper description of used frequency bins. This complicates comparison among different studies.

12The meaning of the sympatho-vagal ratio is still under discussion since in particular the mechanisms for generating
power in the LF band are not completely understood.

13Since the negative reference electrode is a composite pole, other leads are referred to as unipolar in contrast to
bipolar leads which possess one negative and one positive pole.
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rather uncomfortable and encumbering and/or invasive and thus ambulatory ill suited methods:
(i) by using stretch sensors embedded in a belt and attached to the chest and/or abdomen survey-
ing excursions and motions of the body surface, (ii) by means of a thermistor and/or a spirometer
(flow meter) incorporated in a mouthpiece, a nose-clamp or a breathing-mask covering the whole
nose-mouth area, (iii) by expensive inductive plethysmographs or respiratory magnetometers, or
(iv) by impedance pneumography based on impedance cardiographic signals [Ernst et al. 1999;
Houtveen et al. 2006]. A major aim of the study I present in Sect. 5.2.1 was to investigate
the possibility of reproducing cardiorespiratory-synchronization properties from heartbeat alone.
That could allow to reduce the number of disturbing respiratory measurements during sleep where
currently three different breathing proxies are typically recorded [see Sect. 2.3].

In this thesis I will focus on data obtained by temperature measurements (method (ii) utilizing
a thermistor) from oronasal airflow recordings. While the continuous oronasal airflow signal will
be employed in section following Sect. 5.2.1, I study the scaling of inter-breath intervals (IBI) in
Sect. 3.2.2. IBIs can be defined in a similar way as RRIs by considering the time interval between
points of the same respiratory phase. For simplification I assume inspiration (cold air is inhaled)
to be completed at minima of oronasal airflow and analogously expiration to be terminated at
temperature maxima (exhaled air is warm).

Respiratory Sinus Arrhythmia

The nonlinear coupling between heartbeat and respiration across different physiological states
during sleep will be investigated in Chapt. 5 by means of phase-synchronization analysis which
will then be introduced. However, the effect of respiratory sinus arrhythmia (RSA) is worth
mentioning. RSA describes the modulation of heartbeat due to respiration [Eckberg 2003;
Yasuma and Hayano 2004]. In vertebrates the heart beats faster during inspiration while it beats
slower during expiration. Indeed this effect can in principle be controlled by deliberately breathing
at a higher or lower frequency. In humans a RSA was associated with cardiac vagal function and
thus with cardiac risk since cardiovascular diseases are often associated with a reduction in vagal
responsiveness. Note that the RSA effect most probably is caused by two interacting coupling
mechanisms (i) a mechanical coupling between the heart and the lungs – the heart is deformed
upon inflation and deflation of the lung, and (ii) an autonomic coupling due to the sympathovagal
balance which influences both heartbeat and respiration but also affects blood pressure and other
components of the complex cardiorespiratory system.

2.3. Sleep - Polysomnographic Recordings

Humans spend about one third of their life sleeping. Sleep and wake stages are found among
almost all vertebrates14. Sleep is essential for our body’s recreation while a disturbed sleep neg-
atively affects our daily physical and mental fitness. During wakefulness the cardiorespiratory
system [Sect. 2.2] is continuously influenced by its environment. For instance, we respond to
external stimuli such as sonic or visual input and are sensitive to mental stress. In contrast, the
cardiorespiratory system is self-sustained during sleep reflecting the intrinsic characteristics of the
autonomous nervous system [Sect. 2.1] and the subjects’ physiology.

More than ten percent of the human population in the industrialized world15 suffer from sleep
related disorders or sleep-wake dysfunctions. Investigating human physiology during sleep is of
high interest not only for identifying sleep related disorders, but also for detecting and under-
standing changes in sleep patterns related to non-sleep-related disorders such as, e.g., Alzheimer’s
or Parkinson’s disease.

The standard procedure in a hospitals’ sleep laboratory includes full night polysomnography
(PSG) – multi-channel sleep recording – where many sensors and electrodes are attached to the
patient’s body in order to measure variables such as heartbeat, respiration, muscle activity, brain

14Sleep among certain migratory birds that do not sleep for days while flying or certain fish cannot be classified in
the way that is discussed in the following. However, it appears that they still have phases of reduced behavioral
responsiveness which might be interpreted as another type of sleep.

15Others were not systematically studied.
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Figure 2.6.: Randomly chosen 30s fragment of a whole night polysomnographic recording from the SIESTA
database, channels are from top to bottom: 6 leads electroencephalogram (EEG) [Fp1-M2, C3-M2, O1-M2, Fp2-M1,
C4-M1, O2-M1, M2-M1], 2 leads electrooculogram (EOG) [Pos8-M1, Pos18-M1], 2 leads elctromyogram (EMG)
[EMG subm., EMG l/r at], electrocardiogram (ECG), 3 channels describing respiration [oro-nasal airflow, chest
movement, abdomen movement), oxygen saturation (SaO2)].

Figure 2.7.: Idealized sleep stages during healthy noc-
turnal sleep [shown are hours after sleep onset]. Sleep
depth increases from top to bottom. Approximately
5 sleep cycles of about 90 min duration are observed.
Each cycle typically progresses from wake via light sleep
towards deep sleep and finally towards REM sleep via
an intermediate short light sleep episode. Intra-sleep
arousals might occur. In sleep research this type of plot
is referred to as a hypnogram.

waves and eye movements [Members of SIESTA EU Project 1998]. A 30s fragment of a PSG
recording taken from the SIESTA database [Sect. 2.4] is depicted in Fig. 2.6. Although the major
aim of these measurements is to monitor natural sleeping behavior, sleep is often disturbed by
the unfamiliar environment and the distempering measuring devices. For that reason PSGs are
obtained from two different nights – an adaptation night where the subject should get used to
the procedure and a recording night where the medical relevant data is recorded. Since I found
differences in scaling behaviour and cardiorespiratory coupling not significantly different during
both nights I will later combine the data from both nights to increase statistics.

It is well known that healthy sleep consists of approximately five cycles of roughly 1-2 hours
duration; for a hypnogram showing the structure of sleep in healthy subjects see Fig. 2.7. Each
cycle usually evolves from non-REM sleep (non-rapid-eye-movement sleep), i. e., from light sleep
stages 1 and 2 followed by the deep sleep stages 3 and 4, to REM sleep (rapid eye movement sleep).
Sleep stages are scored based on the frequency content of brain wave recordings, muscle tone,
and eye movements according to the rules in [Rechtschaffen and Kales 1968] or nowadays
sometimes following the suggestions in [Iber et al. 2007]. I will introduce and differentiate all
above mentioned sleep stages in Sect. 2.3.2 after having explained brain wave recordings.
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Figure 2.8.: Illustration of the 10-20 system to
place EEG electrodes ensuring standardized brain wave
recordings. Panel A shows the left hemisphere and
panel B the skull from above. Symbolics derive from Pg
- nasopharyngeal, Fp - frontal pole, F - frontal, C - cen-
tral, P - parietal, O - occipital (back), A - auricular (ear
lope), and M - mastoid. Odd (even) subscripts denote
electrodes in the left (right) hemisphere, T - temporal.
Figure adapted from [Malmivuo and Plonsey 1995]
under general public license.

band freq. (Hz) band freq. (Hz) band freq. (Hz)

δ 0.5 − 3.99 α 7 − 11.49 β 16 − 22
θ 4 − 6.99 σ 11.5 − 15.99 γ > 30

Table 2.1.: Frequency bands used for EEG analysis.

2.3.1. Brain Waves - The Human Electroencephalogram

The most prominent recording in full night PSG is the electroencephalogram (EEG) measuring
electrical potentials at the cortex by attaching electrodes to the skull. This is in principle similar
to ECG electrodes attached to breast and limbs. However, the generation of EEG signals cannot
be elucidated as easily as for the ECG since the EEG can be thought of a ’mean field’ approach
summarizing the activity of thousands of superimposed neurons firing at individual rates. It is
not possible to access the dynamics of single neurons based on EEG recordings. The oscilla-
tions we observe in the EEG are believed to originate in the thalamus which is characterized
by excitable neurons producing (upon stimulation) single spikes (depolarization) or ’slow spikes’
(hyperpolarization) [Buzsaki 2006].

In order to relate brain wave recordings obtained from different subjects with each other a stan-
dardized system for electrode positioning, the still employed 10-20 system, was developed by
Jasper [Jasper et al. 1958]. Based on the length of the vertex mid-line between nasion and inion
EEG electrodes are positioned in anterior-posterior (front-back) direction by subdividing the mid-
line in 6 segments 10% − 20% − 20% − 20% − 20% − 10%. The same 10-20 arrangement is then
repeated for the mid-line connecting the preaurical points of both hemispheres passing through
the central point Cz resulting in T3, C3, C4, and T4 [for symbols consult Fig. 2.8]. Finally, by
again applying 10-20 division one defines all other points except for the references at the ear (A1,
A2, M1, M2) at the lines through previously marked points, see Fig. 2.8 for details.

Note, often electrodes placed at auricular position (A - ’ear lope’) and at the mastoid process (M
- ’behind the ear’) are considered comparable.

2.3.2. Sleep Stages

Oscillations in the human EEG are classified according to their frequency content. Typically, six
different frequency ranges with increasing frequency labeled by δ, θ, α, σ, β, and γ are defined16,
consult Tab. 2.1.

Based on the frequency content in EEG signals, muscle tone measured by electromyography
(EMG), and monitored eye movements by electrooculography (EOG), sleep is subdivided into
five different physiological stages and nocturnal wakefulness17 within predefined time windows18

16In Sect. 5.3.1 I study (cross-)modulations in EEG data. Then the frequency bands will be slightly modified, i. e.,
the δ band will be divided into two parts and the γ band will be disregarded due to frequency band-pass filters
(0.16Hz-35Hz) that were already employed in the sleep laboratories.

17Note that I remove all wake episodes before sleep onset in the evening and after awakening in the morning
preceding any analysis presented in this thesis. Thus, wake always refers to intra-sleep wake and arousals (short
wake occurring after an apnea event, Sect. 2.3.3).

18A time window of 30s descents from the time when EEGs could not be saved to a hard disk but where plotted
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of 30s [Rechtschaffen and Kales 1968]:

Wakefulness: β waves that typically appear during task solving and α waves which are
usually associated with a relaxed stage, beginning drowsiness, or the closed eyes condition dom-
inate more than 50% of the epoch. Muscle tone is at the highest level; rapid eye movements occur.

Light Sleep Stage 1 (S1): Transition state between wake and sleep. α waves reduce their
frequency and merge into the θ band. Muscle tone reduces, however, sudden twitches or hypnic
jerks might occur. Eye movements are slow and conscious awareness mostly disappears.

Light Sleep Stage 2 (S2): Prevalence of θ waves over other components; sleep spindles (σ
band) occur as do K-complexes (increases of large amplitude followed by a similar decreases).
Muscle tone is low and no eye movements are observed.

Deep Sleep Stage 3 (S3): θ and δ waves dominate more than 20% but less than 80% of the
epoch. Muscle tone is much lower than during light sleep S2.

Deep Sleep Stage 4 (S4): θ and δ waves dominate more than 50% of the epoch. Muscle tone
is very low and no eye movements are recorded19.

Rapid-Eye-Movement (REM) Sleep: Rapid low-voltage EEG; muscle tone at the lowest or
completely absent; rapid phasic eye movements are observed.

According to the suggestions in [Iber et al. 2007] I will in the following consider deep sleep S3
and deep sleep S4 as a combined deep sleep stage. Note that the γ frequency band (> 30Hz)
which was related to cognitive properties such as memory consolidation is not considered for sleep
scoring. While the specific functions of the different sleep stages are still not well understood, it
is believed that deep sleep is essential for physical recreation, while REM sleep is important for
mental recreation.

2.3.3. Sleep Apnea – a Sleep Related Disorder

Sleep disorders often manifest in a disrupted hypnogram characterized by many transitions be-
tween sleep stages and wakefulness and a reduced depth of sleep (less deep sleep). The complaint
about ’bad sleep’ correlates with the number of intra-sleep wake periods [Penzel et al. 2005]. Ac-
cording to the International Classification of Sleep Disorders (ICSD) manual there are currently
88 different sleep disorders defined [Buysse 2001]. A particularly relevant sleep disorder is sleep
apnea. Sleep apnea is a breathing disorder characterized by a temporary reduction in airflow. It
is categorized according to its cause in central sleep apnea due to a dysfunction of the central
nervous system and obstructive sleep apnea due to a mechanical blockade of the upper airways. In
addition, apneas and hypopneas are distinguished considering the airflow magnitude. An apnea
event is defined as the reduction of airflow baseline by more than 70% for a period of at least 10s,
while for hypopneas airflow must only be reduced by 30% for at least 10s [Kryger et al. 2005].
The apnea-hypopnea index being the sum of all apnea and hypopnea events that occur per hour
quantifies the severeness of the sleep apnea disease. Although sleep apneas can in principle emerge
during all sleep stages, they predominantly occur during deep sleep and light sleep. While sleep is
often disrupted by an arousal induced by an apnea event, an apnea appearing during deep sleep
might only yield a transition to light sleep. In severe sleep apnea patients apneas might prevent
deep sleep and thus a proper physical recreation. Disturbed sleep manifests in symptoms such as
daytime sleepiness, afternoon drowsiness, forgetfulness, or impaired concentration, and attention.
For further reading on sleep medicine I recommend the book edited by Kryger, Roth, and Dement
[Kryger et al. 2005].

on endless paper; a DIN A4 page covered a duration of 30s and a sleep stage was associated with each page for
convenience. Today, shorter periods are sometimes scored for researching the dynamics of shorter events such
as arousals or sleep spindles.

19This is indeed consistent with deep sleep S3. While S4 cannot possess less than 50% θ and δ waves per episode,
the main difference to S3 is an even more reduced muscle tone.
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2.3.4. Parkinson’s Disease

Parkinson’s disease (PD) is not a sleep related disorder, however, the PD data that I investigate
in the following are exclusively polysomnographic recordings which were obtained within the EU
project SIESTA, and thus, related to sleep.

PD, first described and named after the English physician James Parkinson in 1817 [Parkinson
1817; Gowers 1893], is among the most prominent movement disorders (motor system disorders).
It is caused by a severe loss in dopamine production and distribution in the brain. PD is typically
accompanied and characterized by tremor (4-6Hz), trembling in extremities, muscle stiffness and
rigidity, a slowing of physical movement (bradykinesia), and sometimes even a loss of physical
movement (akinesia), cognitive dysfunction and language problems, all together leading to an
impaired balance and coordination.

For example, patients with PD have reduced coordination in generating the anti-phase left-right
stepping pattern while walking [Plotnik et al. 2007], and of rhythmic hand movements [Plot-
nik et al. 2009; Nieuwboer et al. 2009]. Interestingly, the sereneness of these deficits were not
correlated with the level of the asymmetry in the classical motor symptoms of PD [Yogev et al.
2007; Plotnik et al. 2005, 2008]. Numerous studies reported about the electro-encephalography
(EEG) activity recorded in patients with PD (for review see [Berendse and Stam 2007]), but
none, to the best of my knowledge, addressed the issue of left-right hemispheric synchroniza-
tion, and studied amplitude-amplitude, frequency-frequency auto-modulation properties as well
as amplitude-frequency cross modulations [see Sect. 5.3.5].

2.4. Databases Used in This Thesis

2.4.1. ISAR-I Database

The ISAR-I database comprises 24-hour ECG recordings recorded from 1455 post-infarction pa-
tients one or two weeks after the infarction20. Data were obtained at Klinikum Rechts der Isar,
Munich and at the German Heart Center, Munich [Barthel et al. 2003; Bauer et al. 2006a]. 70
patients died during a follow-up of two years. Inclusion criteria were diagnosis of acute infarction,
age of 75 years or younger, and the presence of sinus rhythm. The median of the subjects’ age
was 59 years with a quartile range from 51 to 67 years. 300 of all subjects (21%) were women, 242
(17%) suffered from diabetes mellitus (in addition to the myocardial infarction), and 209 (14%)
had a history of myocardial infarctions. The mean left ventricular ejection fraction (LVEF) value,
the gold standard indicator for cardiac risk, was 56%. All patients received up-to-date treat-
ment including beta-blockers (93%), angiotensin converting enzyme inhibitors (90%), and Aspirin
(99%), and most of them underwent a percutaneous coronary intervention (90%).

24-h Holter ECG tachograms were digitally recorded at 128 Hz and automatically processed
with an Oxford Excel Holter system (Oxford Instruments, Abingdon, UK). Our partners visually
verified and manually checked QRS classifications (normal, ventricular ectopic, and artifact) and
corrected them if necessary. LVEF was assessed by left ventriculography in 1274 patients and by
single-plane echocardiography in 181 patients.

2.4.2. SIESTA Database

Full-night polysomnographic data was obtained within the EU project SIESTA21 at seven sleep
laboratories located in five European countries [Dorffner et al. 1998; Danker-Hopfe et al. 2005].
The recordings consist of at least 6-lead electro-encephalogram (EEG), 2-lead electro-oculogram
(EOG), at least 2-lead electro-myogram (EMG, chin and leg), oronasal airflow, respiratory body
movements (belts around chest and abdomen), snoring (microphone), oxygen saturation and

20The myocardial infarction event that occurred directly before the study is referred to as index myocardial infarc-
tion.

21Full project title: Developement of a System for Integrating polysomnographic recordings for dEscribing Sleep
archiTecture and its vAlidation on sleep disturbances (SIESTA).
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Figure 2.9.: (a) Age and
gender characteristics of the
considered study cohort of
disease-free humans [males
blue, females orange]. The
total numbers of data sets
[two nights] are shown for
each age group. (b) Propor-
tion of sleep stages on total
time in bed for all subjects
sorted by age [from left to
right]. The colors indicate
the states, from bottom to
top: wake state - dark blue,
light sleep S1 - yellow, light
sleep S2 - green, deep sleep
S3& S4 combined - red, and
REM sleep - light blue. (c)
Sleep stage distribution av-
eraged over 10 years for all
subjects [large bars in the
center], and separately for fe-
males [left] and males [right];
colors and order as in (b).

single-channel electro-cardiogram (ECG). Sleep stages were identified according to the sleep scor-
ing system of Rechtschaffen and Kales [Rechtschaffen and Kales 1968] by three trained
technicians (two independent scorers and one adjudicator) familiar with polysomnographic data.
Here I focus on studying recordings from ECG, oronasal airflow, and EEG. The sampling of ECG
and EEG data was 100Hz, 200Hz, or 256Hz, in contrast to oronasal-airflow recordings at 16Hz,
20Hz, 100Hz, or 200Hz depending on the laboratory and the equipment. The detailed experimen-
tal setup was reported elsewhere [Dorffner et al. 1998].

The database contains recordings from 190 healthy22 subjects23. Cardiorespiratory data from 180
healthy subjects (85 males and 95 females) at ages from 20 to 89 years qualified for investigating
the scaling behaviour [Chapt. 3], oscillations [Chapt. 4] of heartbeat and respiration, and car-
diorespiratory phase synchronization [Chapt. 5] across sleep stages. All 190 healthy subjects are
regarded in EEG cross-modulation analysis [Chapt. 5]. Sleep-stage distributions and age-group
distributions are summarized in Fig. 2.9.

In addition to disease-free subjects the SIESTA database contains reliable recordings from patients
suffering from (i) sleep apnea (N = 51, age 51.4±9.7 years), (ii) anxiety (N = 18, age 43.3±12.7),
(iii) Parkinson’s disease (PD; N = 15, age 64.2 ± 5.7), (iv) depression (N = 9, age 46.4 ± 12.1),
and (v) periodic leg movement syndrome (PLM; N = 6, age 55.2 ± 13.6).

All subjects gave informed consent, and the study was approved by the local ethics committees of
all involved sleep laboratories. General exclusion criteria were a history of drug abuse or habitation
(including alcohol), psychoactive medication or other drugs, e. g. beta-blockers, and night-shift
work. All healthy (disease-free) subjects reported no symptoms of neurological, mental, medical
or cardiovascular disorders. Additional exclusion criteria for healthy subjects comprised: (i)
significant medical disorders, (ii) a mini mental state examination (MMSE) score < 25 [Folstein
et al. 1975], (iii) a Pittsburgh sleep quality index (PSQI) global score > 5 [Buysse et al. 1988],
(iv) a usual bedtime before 10pm or after 12am, (v) a self-rating anxiety scale (SAS) raw score
≥ 33 [Zung 1971], and (vi) a self-rating depression scale (SDS) raw score ≥ 35 [Zung et al. 1965].

22Since it is physiologically not well defined what the term healthy means, I consider subjects that were classified
’healthy’ according to the SIESTA study protocol as healthy or disease-free [Members of SIESTA EU Project
1998]. Note that the condition healthy has in practice a different meaning in young and in elderly.

23The terms subject and patient are well distinguished in medicine: While a subject is always healthy or disease-free,
a patient is always diseased.
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During the study the consumption of coffee, alcohol, and cigarettes was limited to the subjects’
habitual rate [Dorffner et al. 1998].

2.4.3. DAPHNET Database

The DAPHNET database contains polysomnographic recordings from 44 healthy subjects and 50
sleep apnea subjects in the same age range obtained within the European Union project DAPH-
NET24. This project was not specifically designed for pure sleep research, and hence, only one
sleep laboratory (Charité Berlin) was among the project partners. Polysomnographic data from
the DAPHNET database comprises 3 different EEG channels, 2-lead electro-oculogram (EOG),
and 2-lead electro-myogram (EMG, chin and leg). Respiration was measured by nasal-air pres-
sure and respiratory body movements (belt around abdomen), and obtained from pletysmograms.
In addition to monitored snoring (microphone), oxygen saturation, and single-channel electro-
cardiogram (ECG) blood pressure was recorded by Portapress25 and a pletysmogram. Sleep
stages were identified following the same rules as discussed above [Sect. 2.3.2 Rechtschaffen
and Kales 1968; Iber et al. 2007]. Since I will exclusively focus on EEG recordings from the
DAPHNET database and obtained results are only presented in Appendix F.4, I will not go into
detail here.

24Project title: Dynamical Analysis of PHysiological NETworks (DAPHNET).
25Blood pressure is non-invasively measured at the finger.



3. Studying Fluctuations

In this chapter I study the scaling behaviour of fluctuations in complex systems. A particular
aim is the development of mathematical models that describe the essential dynamics. They shall
help to understand the way the components of the system interact. In principle any attempt
to capture all components of a complex system, extract, and model the complete dynamics of
the system is likely about to fail due to the enormous number of different nonlinearly interacting
components. Even if we were able to capture all components of the system and understand their
isolated dynamics it is impossible that the behaviour of the whole system can be modeled because
of their complicated, i.e., complex, structure. From a certain point of view fluctuations represent
the superposition of many unaccessible1 and complicatedly coupled variables.

In the most simple additive model an observable (time series) {xk}k=1,...,N can be thought of as
a superposition of a periodic component {yk}, a trend component {tk}, and a noise component
(fluctuations) {ξk} [Brockwell and Davis 2003].

xk = yk + tk + ξk , k = 1, . . . , N (3.1)

This chapter is dedicated to investigate the noise component {ξk} in Eq. (3.1) on the basis of a
measurement {xk}, and hence, aims towards a removal of both oscillatory components and trends
on different time scales. As will be seen shortly, detrending algorithms yield information about
the structure of trends and/or oscillations. The later component will be studied in more detail in
Chapt. 4 where I will suggest methods to remove fluctuations from Eq. (3.1).

When fluctuations are inspected more precisely, it is apparent that they are not completely random
for most systems but exhibit a certain structure and follow statistical rules. For instance during
REM sleep it is observed in heartbeat interval data that large values are rather followed by large
values and small values are rather followed by small values. Such persistence is often referred to as
long-term correlation; recall the exact definition of long-term correlations in Sect. 1.2. Analogously,
in anti-correlated time series increases in magnitude are more likely followed by decreases in
magnitude and vice versa. A prominent anti-correlated example is the series of increments of
heartbeat intervals. For a review on fractal structure in physiology see for example [Goldberger
et al. 2002].

3.1. Monofractal Fluctuation Analysis Methods

In the working hypothesis2 of monofractal fluctuations one focusses on identifying power-law
correlations that are characterized by a single scaling exponent in the asymptotic regime, i.e.,
at large time scales. However, deviations from a power law can be observed, for instance, in
the presence of (i) unattended trends, (ii) periodicities, (iii) different scaling on small- and large
time scales [see Fig. 3.2 and related discussion], and (iv) artifacts [see Fig. 3.3 and corresponding
text]. As will be illustrated in the following, cases (i) and (ii) can often be handled by detrending
methods, while (iii) allows for the definition of two (or more) separate power-law scaling regimes,
and (iv) is generally avoided by a proper data preparation before an analysis.

1The reader might find this term rather superficial since in principle any component could be captured assuming it
is known what, where, and how to measure it. Unfortunately, in a complicated and/or complex system profound
knowledge is in general not available.

2For an unknown dataset one usually does not know which type of scaling the noise obeys. When employing a
monofractal analysis method as described in the following, one either assumes only monofractal structure to be
present, or one wittingly ignores other types of order such as multifractality.
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3.1.1. Hurst Rescaled-Range Analysis

More than 20 years before the word fractality was coined by Mandelbrot [Mandelbrot 1975]3

the geologist H. E. Hurst invented a rescaled adjusted range statistics, also known as Hurst-R/S
analysis. He was interested in the statistics of runoff time series recorded from the Nile river in
order to understand the impact of the Assuan dam [Hurst 1951]. Let {xk}k=1,...,N denote a time
series, e.g., heartbeat intervals where k might be the beat number. Then, the R/S method is based
on the first two moments derived locally within windows ν = 0, . . . , [N/s] − 1 of width s (range
width). The local mean 〈x〉ν,s and the local standard deviation Sν,s = [Var({xk}k∈[νs+1,(ν+1)s])]

1/2

in the window ν are defined as

〈x〉ν,s =
1

s

s∑

i=1

xνs+i and Sν,s =

[
1

s

s∑

i=1

(
xνs+i − 〈x〉ν,s

)2
]1/2

. (3.2)

Then, from each point in the window ν the local mean is subtracted and the cumulative time
series, the local profile Yν,s(j), is calculated by

Yν,s(j) =

j∑

i=1

(
xνs+i − 〈x〉ν,s

)
: j = 1, . . . , s (3.3)

yielding – based on its extrema – the range

Rν,s =
s

max
j=1

[Yν,s(j)] −
s

min
j=1

[Yν,s(j)] . (3.4)

Together with Eqs. (3.2) the local rescaled range Rν,s/Sν,s and finally the Hurst rescaled range as
the average over all windows ν can be calculated,

[R/S](s) =
1

[N/s]

[N/s]−1∑

ν=0

Rν,s
Sν,s

. (3.5)

Now, Eq. (3.5) is evaluated for many scales s ∈ N : 1 < s ≤ N . From linear regression in a
double-logarithmic plot the Hurst exponent H is derived,

[R/S](s) ∼ sH . (3.6)

A valueH > 0.5 indicates long-range persistence, whileH < 0.5 is associated with anticorrelations.
Uncorrelated (independent random behavior) is retrieved for H = 0.5. It was shown that H ≈
(1+β)/2 = (2−γ)/2 [Hunt 1951; Mandelbrot and Ness 1968] where the latter two expressions
equal the fluctuation exponent α, see Sects. 1.2, 3.1.2, and Eq. (1.24).

3.1.2. Fluctuation Analysis (FA)

Fluctuation analysis (FA) which was already briefly introduced and used to define long-range
dependence in Sect. 1.2 is quite similar to Hurst-R/S analysis. It is, however, based on the theory
of a random walk. The time series {xk}k=1,...,N is therefore assumed to describe the steps of a
random walker. Then the cumulative time series

Y (j) = Yj =

j∑

k=1

xk , j = 1, . . . , N (3.7)

denotes the FA-profile4 of {xk} and characterizes the position of the random walker at discrete
times tk. In order to study scaling the time series is divided into [N/s] non-overlapping segments
of width s and for each segment the squared displacement of the random walker is obtained by

F 2
FA,ν(s) = [Y ((ν + 1)s) − Y (νs)]2 : ν = 0, 1, . . . , [N/s] − 1 . (3.8)

3For an improved version in English see [Mandelbrot 1982].
4Later a mean-subtracted version will just be referred to as the profile.
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After averaging over all segments this yields the fluctuation function FFA(s), i.e., the square root
of the mean squared displacement. A scaling law can be obtained from evaluating FFA(s) for
many scales s,

FFA(s) =
〈
F 2

FA,ν(s)
〉1/2

=


 1

[N/s]

[N/s]−1∑

ν=0

F 2
FA,ν(s)




1/2

∼ sαFA . (3.9)

The exponent αFA is called the fluctuation exponent. Uncorrelated fluctuations lead to αFA = 1/2,
while αFA > 1/2 indicates positive temporal correlations, and αFA < 1/2 anti-correlations. Note
that integrating the time series according Eq. (3.7) is required to ensure a self-affine structure for
which a scaling law can be obtained [Bunde and Havlin 1994]. If the profile was not derived
before FA or any of the fluctuation analysis methods described in the following, only time series
that are characterized by a fluctuation exponent larger than 1 could be handled. In particular
this requirement is violated for anti-correlated fluctuations.
FA is the simplest fluctuation analysis method to show the relationship between the fluctuation
exponent5 α and the correlation exponent γ. However, this relationship is not exact as we will see
shortly, although, several papers assume an exact relationship. In the following I partially employ
mathematical properties of the auto-correlation function which are given in [e. g., Honerkamp
1994]. A summary of the proof is given in [Kantelhardt et al. 2001]. Consider the squared
version of Eq. (3.9) together with Eq. (3.8)

F 2
FA(s) =

〈


(ν+1)s∑

k=1

xk −
νs∑

k=1

xk




2〉
=

〈


(ν+1)s∑

k=νs+1

xk




2〉
=

〈 (ν+1)s∑

k,l=νs+1

xkxl

〉

=
1

[N/s]

[N/s]−1∑

ν=0

s∑

k,l=1

xνs+kxνs+l =

s∑

k,l=1

〈xνs+kxνs+l〉 .

Now it is usually argued that this term can be expressed by the auto-covariance function
[Eq. (1.9a)] or by the auto-correlation function [Eq. (1.10b)]

F 2
FA(s) =

s∑

k,l=1

Cov(xk, xl) = Var(x)

s∑

k,l=1

C(xk, xl)

which in the case of weak stationarity only depends on the separation |l − k| and the variance
reduces to a constant c.

F 2
FA(s) = c

s∑

k,l=1

C(|l − k|) (3.10)

Note, that Eq. (3.10) is not exact since the correct averaging would take place over the windows
ν. Even if strongly overlapping windows (one step at a time) are considered, Eq. (3.10) does
not exactly yield the standard auto-covariance. However, this inconsistency can be neglected for
very long time series, i. e., in the limit N → ∞, and for overlapping windows. In the approach
involving non-overlapping windows this approximation causes differences between observed and
theoretical slopes (α values) in particular for short time series. In a next step one can expand the
summation over the auto-correlation function in the following way:

s∑

k,l=1

C(|k − l|) = sC(|0|) + (s− 1)C(|1|) + . . .+ (s− (s− 2))C(|s − 2|)+
(s− (s− 1))C(|s − 1|) + (s− 1)C(| − 1|) + . . .

+ (s− (s− 1))C(|1 − s|)
5Since the following relationship is used for all similar fluctuation analysis methods αFA is denoted here and on

the next page by α to emphasize the generality [see also discussion in Sect. 3.1.3].
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yielding
s∑

k,l=1

C(|k − l|) = sC(0) + 2

s−1∑

m=1

(s−m)C(m) . (3.11)

Inserting Eq. (3.11) into (3.10) leads to

F 2
FA(s) = c

[
sC(0) + 2

s−1∑

m=1

(s−m)C(m)

]
(3.12)

For uncorrelated data the correlation function vanishes except for a zero time lag (C(m) = 0 :
∀m 6= 0). Hence, for uncorrelated data only the first term needs consideration, leading to

F 2
FA ∼ s ⇐⇒ FFA ∼ s1/2 , (3.13)

and thus, the fluctuation exponent for an uncorrelated time series (white noise) satisfies α = 0.5.
In the case of long-term persistence the auto-correlation function decays per definition according
to a power law with correlation exponent γ, and hence, for large scales s≫ 1 the second term in
Eq. (3.12) can be approximated yielding

F 2
FA(s) = c

[
sC(0) + 2

∫ s−1

1
sm−γ −m1−γdm

]

= c

[
sC(0) + 2

(
s(s− 1)1−γ − s

(1 − γ)
− (s − 1)2−γ − 1

(2 − γ)

)]

∼ s+ s2−γ .

(3.14)

In the long-term persistent limit 0 < γ < 1. Thus, the left part of Eq. (1.24) follows from

FFA ∼ s(2−γ)/2

together with Eq. (3.9)

α = 1 − γ

2
. (3.15)

3.1.3. Detrended Fluctuation Analysis (DFA)

Analyses of real data as for instance temperature recordings, river runoff time series, heartbeat, or
respiration are generally hampered by nonstationarities such as piecewise trends and/or oscillatory
components. Since Hurst-R/S analysis and FA do not take nonstationarities into account, corre-
lation results obtained from either of both are at risk of misinterpretation. Unattended trends can
affect a fluctuation analysis, e. g., yield spurious scaling behavior or crossovers in the fluctuation
function. Periodicities, on the other hand, might induce twists in the fluctuation function with
positions depending on the period of the oscillation and amplitudes depending on the amplitude
of the oscillation [see also Fig. 3.2].

To overcome this problem Peng et al. invented the detrended fluctuation analysis (DFA) in the
context of studying DNA sequences. They integrated local detrending into the FA procedure
[Peng et al. 1994, 1995]. Peng et al. originally considered the most simple ’detrending’ approach
by removing in each window ν the local mean in a similar way as Hurst did in 1951 [Hurst
1951]. However, the concept can easily be generalized to higher order detrending [Bunde et al.
2000]. Later, Kantelhardt et al. generalized DFA to study multifractality in time series by
introducing detrended fluctuation functions of higher-moments [Kantelhardt et al. 2002]. In
spite of the monofractal DFA being a subset of Multifractal Detrended Fluctuation Analysis (MF-
DFA) introduced in Sect. 3.3.1, I separately describe the DFA algorithm in following to provide
a basis for its application to study scaling in heartbeat and respiration during sleep as presented
in Sect. 3.2.
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Figure 3.1.: Profile
{Yj}j=1,...,N of f−β noise
{xk}k=1,...,N [β = 0.75,
N = 5000; black]. (a) Fitted
detrending 2nd-order polynomi-
als for the MF-DFA2 [purple],
(b) centered moving averages
considering cyclic continuation
[purple] for the MF-CMA
algorithm in segments of scale
s = 799. Green curves are
(a) detrended and (b) CMA
subtracted profiles.

The DFA algorithm consists of four steps:

Step 1:

Analogously to the FA methodology in Sect. 3.1.2, the profile Y of a recording {xk}k=1,...,N is
derived according to

Y (j) = Yj =

j∑

k=1

(xk − 〈x〉) (3.16)

where6 j = 1, . . . , N and the subtraction of the mean 〈x〉 = N−1
∑N

i=1 xi is not mandatory since
it would be removed by the later detrending in Step 2 ; compare with the FA-profile in Eq. (3.7).
Removing the mean value ensures Y (N) = 0 which allows a cyclic continuation of the signal.
While this could be helpful for short time series, a global mean might not be meaningful in
strongly nonstationary signals.

Step 2:

The profile in Eq. (3.16) is divided into non-overlapping windows7 ν : ν = 0, . . . , 2[N/s] − 1 of
width s, s ∈ N [see Fig. 3.1(a) for an illustration]. In order not to neglect data points at the
end of the signal if N is not a multiple of the scale s and to improve statistics in shorter time
series the segmentation starts (i) from the very beginning of the time series yielding the first
[N/s] consecutive segments, and (ii) from the very end of the time series yielding the next [N/s]
windows. Within each window ν nth-order fitting polynomials pn,ν =

∑n
l=0 alx

l are calculated
by least-squares regression and the sum of squared local residuals of regression8 (local variance) is
derived:

F 2
DFAn,ν(s) =

1

s

s∑

i=1

{Y (νs+ i) − pn,ν(i)}2 (3.17a)

for the forward direction and ν = 0, . . . , [N/s] − 1 and

F 2
DFAn,ν(s) =

1

s

s∑

i=1

{
Y
(
N − (ν − [N/s] + 1)s+ i

)
− pn,ν(i)

}2
. (3.17b)

for the backward direction and ν = [N/s], . . . , 2[N/s] − 1, respectively.

Step 3:
Similarly to FA, studying averaged local fluctuations for many different scales9 s ≥ n + 2 yields
a scaling exponent αDFA if the fluctuations follow a power law, see [Taqqu et al. 1995] for an

6Sometimes one includes a value j = 0 corresponding to a Y0 = 0 which motivates a cyclic continuation of the
profile after subtracting the mean value yielding YN = 0.

7[N/s] = int(N/s)
8For that reason DFA is in the literature sometimes referred to as residuals of regressions method.
9A polynomial pn,ν can be uniquely constructed from n+1 grid points. In order to obtain a non-vanishing residual

of regression at least n+ 2 points are necessary.
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analytical proof with n = 1 (DFA1),

FDFA(s) =


 1

2[N/s]

2[N/s]−1∑

ν=0

F 2
DFA,ν(s)




1/2

∼ sαDFA . (3.18)

Step 4:
From linear fits to FDFA(s) in a double-logarithmic plot the fluctuation exponent αDFA can be
obtained [see Figs. 1.1(f), 3.2, or 3.4 for examples]. Note that the variances in Eqs. (3.17) increase
with increasing scale s, and thus, FDFA(s) is a monotonous function. Uncorrelated fluctuations
in the data lead to αDFA = 1/2, while αDFA > 1/2 indicates positive temporal correlations, and
αDFA < 1/2 anti-correlations.

The relation between αDFA, the spectral exponent β [Eq. (1.20)], and the correlation exponent
γ [Eq. (1.19)] is not as easily shown in an analytic way as for FA. However, it was proven that
detrending does not affect the scaling behavior [Heneghan and McDarby 2000]. For both limits
of very small scales and very large scales deviations from a power law are often observed even in
data constructed, e.g., by employing the Fourier filtering technique [Sect. 1.5.2]. In the first case
the number of data points per window ν barely exceeds n + 1 and polynomial regression is very
good yielding only small residuals and a systematically reduced fluctuation function FDFA(s). For
very large scales the number of non-overlapping windows [N/s] is small, hence, statistics becomes
worse resulting in stochastic fluctuations in FDFA(s). For the same reason only scales up to N/4
should be considered reliable.
The characteristics and performance of DFA in various situations were comprehensively tested
by several authors. For instance crossovers between different scaling regimes and the influence of
polynomial trends and periodicities on DFA results were empirically studied by [Kantelhardt
et al. 2001] who also suggested dividing DFA fluctuation functions by a correction function ob-
tained from shuffled data to correct the deviations on very small scales, see Fig. 3.2. Focusing on
DFA1 Hu et. al provide analytical solutions for crossovers, trend scaling, and periodicities [Hu
et al. 2001], while Chen et al. study the influence of nonstationarities [Chen et al. 2002] and find
that cutting out up to 50% of the data points does not change positive long-term correlations but
strongly affects anti-correlated scaling. The study was completed more recently by investigations
on effects of nonlinear transformations [Chen et al. 2005].
Today there are more than 850 papers employing DFA to study datasets from various fields of
interest such as geoscience (temperature recordings, river runoff data, solar activity, wind speed
recordings), medicine (physiological data such as heartbeat, brainwave recordings, respiration,
gait), econophysics (asset return, volatilities), or solid state physics. It was even used as a basic
tool to approach extreme events in extreme value statistics, see for instance [Bunde et al. 2002]
and [Meyers 2009] for a recent review.
However, there were two critical inquiries on the limitations of DFA which should be mentioned.
Firstly, it was argued that DFA – as a heuristic approach to studying long-range memory in time
series – does not have an established limiting distribution which would be needed for specifying
confidence intervals and hypothesis testing. Therefore, DFA should be considered rather as a diag-
nostic tool than a method for drawing statistical inference [Rust 2007]. While this is indeed true
for a single dataset, results can be compared with findings obtained from a DFA of many surrogate
time series (characterized by statistical properties one wishes to probe for). This comparison will
allow assessing estimation errors and defining confidence intervals.
Secondly, it was reported that DFA is sensitive but not specific for detecting long-range dependence
in signals, i.e., if long-range dependence is present in the signal it is identified by DFA but from
finding a fluctuation index α > 0.5 long-range persistence should not generally be concluded
[Maraun et al. 2004]. Nevertheless, I disagree with the strong statement of Maraun et al. which
was obtained from studying three superimposed AR(1) processes only at scales much smaller than
the decay time of the slowest AR(1) component, i.e., in the non-asymptotic regime. For larger
scales DFA does clearly indicate uncorrelated behavior even for the Maraun model. This issue
will be revisited and discussed in Appendix E.2.
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Figure 3.2.: Summary of important DFAn characteristics. (a-d) DFA-fluctuation functions of long-term persis-
tent monofractal data (N = 200000, α = 0.7) with additional polynomial trends Axo [(a) o = 2, A = 10−6 (b)
o = 4, A = 10−15; employing from top to bottom DFA1, DFA2, DFA3, DFA4, DFA5], and with additional periodic-
ities A sin(2πx/T ) [(c) T = 50, (d) T = 1000; from top to bottom A = 25.6, 12.8, 6.4, 3.2, 1.6, 0.8, 0.4, 0.2, 0.1, 0.05;
employing DFA3]. (e,f) DFA-fluctuation functions of long-term persistent monofractal data with constructed
crossover at scale sx = 200 from correlated [α = 0.9] to uncorrelated behavior [α = 0.5; (e)] and from uncor-
related to correlated behavior [same αs; (f)] employing different orders of DFA [from top to bottom: DFA1 to
DFA5; same symbols and colors as in (a,b)]. Fluctuation functions [arbitrary units] are shifted in (a-b) and divided
by s1/2 in (c-f) for clarity. In all panels dashed black lines indicate theoretical slopes and gray dashed lines mark
periods (c,d) or crossovers (e,f) used in the model. Trends of order p cause crossovers in DFAn up to order n = p;
the limit slope is αDFAn = n+ 1 [(a,b)]. Periodicities can disturb fluctuation functions depending on period T and
amplitude A (c,d). Observed crossover positions depend on the DFA order; larger order shifts observed crossover
towards larger scales (e,f). Each curve was obtained by averaging 200 configurations.

3.1.4. Centered Moving Average Analysis (CMA) – And Other Monofractal
Fluctuation Analysis Methods

DFA and Hurst-R/S analysis are doubtlessly the most popular scaling methods to estimate power-
law correlations. However, the computational effort due to the polynomial regression step in DFA
and the jumps of the fitted polynomials at the edges of the windows led to the suggestion of
numerous somewhat related fluctuation analysis algorithms which all provide certain advantages
but also suffer certain limitations. None of them has been widely used, yet.

By definition the standard DFA algorithm yields to discontinuities between polynomial fits of
neighboring non-overlapping windows. It was argued that this unlikely matches real (rather
continuous) trends in the data and detrended moving average methods were advertised to overcome
such limitation, however, at the price of detrending capabilities. The studies of Vandewalle et al.
on moving averages [Vandewalle and Ausloos 1998] motivated Alessio et al. to substitute
the polynomials pn,ν in Eqs. (3.17) by a backward moving average [Alessio et al. 2002] yielding
the backward moving average analysis (BMA). Its characteristics were further investigated and
employed to study financial data in [Carbone et al. 2004a,b]. However, BMA turned out to fail
even for linear trends in the profile, i. e., constant trends in the data.

In a similar way a forward moving average analysis or a centered moving average analysis (CMA)
can be defined [Alvarez-Ramirez et al. 2005], see also [Bashan et al. 2008] for a recent review on
detrended fluctuation analysis variants and moving averaging methods. Especially, the CMA has
the advantage of local mean detrending by including both the dynamics of noise in the past and in
the future, and it worked well for linear trends. Moving averages are in principle low pass filters.
They can be calculated during runtime, and due to their generally much less computational costs
in evaluation compared with DFA, they allow for a better statistics when overlapping windows
are considered. Note that considering overlapping windows is also possible in DFA, however,
computational loads increase significantly especially on large scales.

The CMA algorithm also comprises four steps:

Step 1:

Let {xk}k=1,··· ,N denote the considered time series with xk = x(tk). Then, the profile is calculated
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by Eq. (3.16) as in DFA. The subtraction of the mean is again not mandatory, because it would
be eliminated by the subtraction of local means in Step 3.

Step 2:
A centered moving average of an odd window length s (identified as scale) is obtained for (almost)
every point j of the profile,

CMAs(j) =
1

s

(s−1)/2∑

i=−(s−1)/2

Yj+i, (3.19)

see Fig. 3.1(b). Note that the scales s, i.e., the window widths, in CMA must be odd in contrast to
DFA where s can be even or odd. For all indices j at the edges of the profile, i. e., 1 ≤ j < (s+1)/2
andN−(s−1)/2 < j ≤ N , a centered moving average does not exist. One might either ignore these
points or use weighted averages of corresponding smaller incomplete windows instead. However,
this might cause edge effects especially in short time series. A better approach is the cyclic
continuation of the time series by connecting the very last part of the integrated signal (profile) to
the beginning. When the profile is obtained following Eq. (3.16) there is no sudden jump at the
connecting point. Not removing the mean value, however, will lead to a sudden jump and falsify
the results. In case of a very long time series one might not want to cyclically continue the time
series due to other nonstationarities such as trends. Then, however, the very beginning and the
very end will not contribute much, anyway, due to large statistics.
Subsequently, the profile is again subdivided in 2[N/s] non-overlapping windows ν (segmentation
starts at the very beginning and the very end of the signal), see Fig. 3.1(b) for the forward
direction. For each window ν = 0, . . . , 2[N/s] − 1 the variance (fluctuation) of the profile and the
centered moving average is determined by

F 2
CMA,ν(s) =

1

s

s∑

i=1

{Y (νs+ i) − CMAs(νs+ i)}2 (3.20a)

for the forward direction and ν = 0, . . . , [N/s] − 1, and

F 2
CMA,ν(s) =

1

s

s∑

i=1

{
Y
(
N − (ν − [N/s] + 1)s + i

)
− CMAs

(
N − (ν − [N/s] + 1)s+ i

)}2
.

(3.20b)

for the backward direction and ν = [N/s], . . . , 2[N/s] − 1, respectively. The centered moving
averages in Eqs. (3.20) perform the detrending in CMA (compared to polynomials pn,ν in DFA).
In addition to constant trends in the profile CMA also removes linear trends because the centered
average includes an equal number of points from the past and from the future. This explains the
advanced performance compared to other detrended moving average methods such as BMA.
Note that I consider non-overlapping windows in this thesis for a better comparability with the
DFA algorithm presented in Sect. 3.1.3. Then CMA is related to DFA1. However, overlapping
windows can be considered at reasonable computational costs since computing the sums in
Eqs. (3.20) for the window ν + 1 reduces to subtracting the leading overlap from the sum
corresponding to window ν and adding values from the overlap with window ν + 2. In contrast,
the DFA method [Sect. 3.1.3] requires a separate polynomial regression for each window. I
suggest an adaptive overlap length which increases with the scale s in order to improve statistics
especially on large scales.

Step 3:
Analogous to Eq. (3.18) fluctuations from all windows ν are averaged and calculated for many
different scales s to obtain the CMA fluctuation function

FCMA(s) =


 1

2[N/s]

2[N/s]−1∑

ν=0

F 2
CMA,ν(s)




1/2

∼ sαCMA . (3.21)
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Step 4:

The fluctuation exponent αCMA can finally be derived from a linear fit to the double-logarithmic
plot of Eq. (3.21) if FCMA follows a power-law.

CMA has two immediate advantages over DFA: (i) Systematically reduced values due to a ’well-
suited regression’ on small scales (s < 10) do not occur, and (ii) due to an enhanced statistics,
because of overlapping windows (coming at ’no’ computational costs), larger scales are reliably
accessible compared with DFA. Nevertheless, higher order detrending is not possible with all
moving-average methods and an application to data with strong trends is not possible. For the
same reason a trend classification can not be achieved while trend orders can be quantified by
comparing results from different detrending orders n in DFA.

I suggested a multifractal generalization of CMA [Schumann and Kantelhardt 2010b] which
will be introduced in Sect. 3.3.2, tested, and compared with MF-DFA, see Sect. 3.3.1. Note that
to my opinion today’s computational power, even provided by main stream CPUs, allows for
analyzing data of reasonable length, e.g., up to N = 100000 data points, by employing DFA.
Polynomial fitting requires a matrix inversion only once per scale (window size); beyond this,
fitting is reduced to a simple matrix multiplication. For repeatedly high-load analyses of long
datasets one might even take advantage of modern graphics-processor units (GPUs) which are
specialized in fast matrix-operations10.

Another possible approach to study fluctuations in time series is closely related to wavelet analysis
[see Sect. 1.3]. It takes advantage of the fact that certain wavelet bases are orthogonal to disturbing
features in the signal. For instance nth-order Haar wavelets11 are orthogonal to polynomial
trends of the same order n. They can be utilized to remove such trends in a fluctuation-analysis
algorithm similar to DFA [Koscielny-Bunde et al. 1998a,b; Roman et al. 2008]. There are two
possible reasons why this algorithm did not become as popular as DFA: (i) No generally used
acronym was established, i.e., abbreviations such as WLn, FAHW, WTA, or WTN coexist, and
(ii) this algorithm was introduced in a slightly awkward way without a mathematically required
rescaling. This led to the wrong assumption12 WLn would perform worse compared with DFAn.
In Appendix E.1 I will discuss the methodology of WLn where Eqs. (3.17) for a Haar basis simply
reduce to squared higher-order differences. These can be faster computed compared with residuals
of regressions required in DFA. I employ WLn together with DFA to model data consisting of
three superimposed AR(1) time series considering the same parameters as in [Maraun et al. 2004]
and illustrate why WLn and DFAn provide exactly the same detrending capabilities and yield
equivivalent fluctuation functions for a correct rescaling, see Appendix E.2.

3.2. Fluctuations During Nocturnal Sleep

3.2.1. Impact of Undetected Heartbeats and Extrasystoles on DFA

Beat-to-beat interval time series (RRI), see Sect. 2.2 for a definition, often exhibit a spiky structure,
which is originated either in heartbeats missed by the beat detection software (technical aspect) or
in ectopic heartbeats such as extrasystoles (physiological aspect). In the first case large interbeat
intervals occur which are roughly an integer multiple of the average RRI. Extrasystoles, on the
other hand, are often characterized by a significantly smaller RRI followed by a compensating
pause13 which maintains the average ’timing’ of the heart.

10A common nth-order polynomial-regression algorithm to curves y = {yi}i=1,...,s starts with the Vandermonde
matrix V = (1, t, t2, . . . , tn) where 1 denotes the s-elements vector (1, 1, . . . , 1) and ti = (1, 2i, . . . , si) is the
vector of grid points to the power i. Then the fit matrix follows F = (V TV )−1V T with (.)T and (.)−1 being the
transposed matrix and the inverse. Finally, the fitted curve ỹ is obtained by ỹ = Fy.

11Or better Haar-wavelet alike functions that fulfill the principle requirements of a wavelet, i. e., vanishing mean
and compact support. I will further denote such functions as higher-order Haar-wavelets for simplification.

12In the following I use the acronym suggested in the original publication [Koscielny-Bunde et al. 1998a].
13Here only the timing is considered while the deformed normal beat in the ECG recording is not further considered.

See Sect. 2.2 for details.



36 3. Studying Fluctuations

Figure 3.3.: Impact of two different types of artifacts on DFA2 which are often observed in RRI time series: (a-c)
heart beats missed by peak detector cause longer beat-to-beat intervals [spikes type I], (d-f) extrasystoles consist of a
shorter interval followed by a compensatory pause [spikes type II]. In a long-term persistent signal {xk}k=1,...,200000

[α = 0.9] elements xk are randomly replaced by a value of (a-c) 5 and (d-f) −5 if an associated random number
ζk [{ζk} distributed as N (0, 1)] satisfies |ζk| > rσζ with r ∈ R+, σζ = 1. In (d-f) elements following a spike
were additionally set to a value of 5. In (b,e) DFA2-fluctuation functions are shown; from top to bottom: signal
without artifacts [gray diamonds], signals with artifacts of p ≈ 0.05% [r = 3.5, brown crosses], p ≈ 0.27% [r = 3,
red triangles down], p ≈ 1.2% [r = 2.5, light blue circles], p ≈ 4.6% [r = 2, green squares], p ≈ 13.4% [r = 1.5,
yellow triangles up], p ≈ 31.7% [r = 1, blue diamonds]. Percentages p are derived from the Gaussian error function
p = 1 − erf(r/

√
2) with erf(x) = 2/

√
π

R x

0
exp{−t2}dt. Panels (c,f) illustrate scaling exponents α calculated from

linear fits to logF (s) vs. log s within (i) a small scales range α1 [s ∈ [6, 50]; blue circles], and (ii) a large scales
range α2 [s ∈ [103, 5 · 104], red squares]. Ranges are marked by gray bars in (b,e).

Clearly, such disturbances in RRI signals affect fluctuation-analysis results, and therefore, corre-
sponding changes in the fluctuation function as well as effects on derived scaling exponents have to
be studied. Although, Chen et al. qualitatively studied changes in the DFA1 fluctuation function
induced by spikes in long-term correlated data [Chen et al. 2002]14 they did neither systemati-
cally study higher order detrending nor did they quantify implications for fluctuation exponents
on different scales. Fluctuation functions obtained from RRI signals often exhibit a characteristic
crossover between two scaling regimes. Therefore, two different fluctuation exponents are defined
in heartbeat data: The exponent that characterizes scaling on short scales is denoted by α1 and
the exponent corresponding to long scales is denoted by α2. Before I present results which I
obtained from real physiological time series I would like to motivate why a (unfortunately time-
consuming) beat classification with the utmost care must precede all serious attempts to study
power-law scaling in heartbeat data.

Consider a long-term correlated time series {xk}k=1,...,N of zero mean (µx = 0) and unit variance
(σ2
x = 1) which was generated by Fourier filtering [see Sect. 1.5.2] and subsequently disturbed

by adding randomly occurring spikes. After generation each data point xk is associated with a
normally distributed random number ζk (with mean µζ = 0 and variance σ2

ζ = 1; typically denoted
by N (0, 1)). An elements xk is replaced by a spike if the associated random number ζk satisfies
|ζk| > rσζ = r with the tuning parameter r ∈ R+. Figure 3.3(a) shows a fragment of such a time
series where selected elements are replaced by the value 5. This type (further called type I) of
constructed model data is related to missed heartbeats during the peak detection. For the second
type of spikes (further called type II) resembling certain extrasystoles15 I replaced the selected
elements in the signal with a value of −5 (representing ventricular beats) and the succeeding
element by a value of 5 (representing the compensatory pause), see Fig. 3.3(d).

Results for different percentages of spikes obtained from DFA2 are depicted right of the corre-

14Please note that Chen et al. write they use DFA2 but instead only remove linear trends from the ’integrated
signal’ (profile) which is indeed DFA1 in the standard definition according to the original work [Bunde et al.
2000].

15Although most extrasystoles are followed by a compensating pause, they might also occur additionally between
normally timed heartbeats. This would result in two spikes that are related to type I spikes but are pointing
down.
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sponding model in Figs. 3.3(b,e). From the fluctuation function it is already apparent that even
a small number of spikes strongly affects short-range scaling while long-range persistence, on the
other hand, is practically unaffected. For type II spikes the effect is stronger because each small
value in the signal is followed by a large value, compare Figs. 3.3(b,e) and 3.3(c,f). However, note
that the effect does not exclusively come from twice as many spikes (down and up) compared with
type I spikes but can be elucidated by their impact on the profile: Type I spikes yield nonstation-
arities expressed by jumps to larger values which occur on average – for a fixed scale s – equally
often in each window ν, except for very small scales. Hence, corresponding polynomial fits will be
affected in a similar way. Moreover, such jumps represent trends of order 0 which are removed by
DFA2. In the presence of many spikes smaller windows ’appear’ more uncorrelated which explains
the limit of α1 = 0.5 for type I spikes, see lower blue curve in Fig. 3.3(b) and the change in α1

scaling behavior shown in Fig. 3.3(c). In contrast, for type II spikes the profile itself is disturbed
by spikes pointing down – at a position k of a spike in the signal the profile is reduced by 5 (spike
down) and in the next step, k + 1, this reduction is compensated by adding 5. Second-order
polynomials (DFA2)16 cannot well approximate such spikes in the profile, in particular on small
scales s. The more the scale is increased the less the spikes disturb a polynomial regression, and
the correct scaling (α = 0.9) is obtained, see Figs. 3.3(e,f).

Hence, windows containing spikes result in a too large local fluctuation Fν(s) [see Eq. (3.17)]. As
the percentage of spikes increases more windows exhibit spuriously large local fluctuations, and the
resulting DFA fluctuation function FDFA(s) [Eq. (3.18)] for very small scales, e.g. s < 15, might
even become larger than for intermediate scales as is observed for the blue curve in Fig. 3.3(e).
Consequently, anti-correlated behavior17 could be concluded from corresponding fluctuation ex-
ponents α1.

Figures 3.3(c,f) report the full results from studying the dependence of both scaling exponents α1

and α2 on ratio of spikes in the data. While α2 is practically unaffected by both types of spikes, α1

exhibits uncorrelated behavior for approximately 2.4% spikes (|ζk| > 2.25σζ) and anti-correlations
for a larger percentage of type-II spikes. The dramatical effects of spikes on short-term scaling
exponents imply that careful beat classification must precede any fluctuation analysis unless one
is only interested in long-term persistence.

3.2.2. Fluctuations in Heartbeat and Respiration

In order to better understand autonomous control and its regulation during sleep the correla-
tion structure in heartbeat and respiration has been studied in several databases for disease-free
subjects and patients suffering from various diseases. In particular short-term scaling exponents
were identified to discriminate different stages of heart failures, e.g., chronic heart failure or mul-
tiple organ dysfunction syndrome, see for example [Huikuri et al. 2009] and references therein.
However, previous studies were not based on a large database such as SIESTA [Sect. 2.3] compris-
ing approximately 350 whole-night recordings of disease-free subjects. Most of the results from
employing DFA2 to heartbeat and respiration which I present and discuss in the following were
published in [Schumann et al. 2008b, 2010a].

Data Preparation

In order to separately study correlations within respiratory data and heartbeat data for different
sleep stages as well as nocturnal wakefulness I divide all recordings into segments corresponding
to wake, light sleep S1, light sleep S2, deep sleep (S3 & S4 combined, as suggested in [Iber et al.
2007]), and REM sleep. From each segment the first and last 30s are disregarded since sleep stage
determination during transitions is sometimes complicated and possibly unreliable. Results from
light sleep S1 are skipped for the moment because of insufficient statistics [see Fig. 2.9 or brown
curves in Fig. 3.7]. However, I will partially include results for light sleep S1 in Chapts. 4 and 5.

Heartbeat time positions (R-peaks) were extracted from the ECG data using the semi-automatic
peak detector Raschlab developed by the cardiology group of Klinikum Rechts der Isar, Munich

16And nth order polynomials for DFAn.
17Here only induced by sequences ′0′,−5, 5,′ 0′ where ′0′ represents the value before or after the type II spike.
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Figure 3.4.: Examples of DFA2 heartbeat fluctuation functions for different sleep stages and representative subjects
from three age groups, from bottom to top: young - blue diamonds, intermediate age - red circles, and elderly -
green triangles up. Yellow and gray shaded bars indicate the fitting regimes for αRR,1 (6 ≤ s ≤ 16 heartbeats)
and αRR,2 (50 ≤ s ≤ 200 heartbeats). The slopes of the solid black lines are identical with these fitted exponents.
For comparison gray dash-dotted lines indicate slopes of α = 1/2 (uncorrelated behavior) and α = 1 (1/f noise).
Fluctuation functions and fits are vertically shifted for clarity.

Germany [Schneider 2005]. A beat classification (normal beat, ventricular beat, artifact) was
assigned to each R-peak by the detector and checked by visual inspection. The series of time
intervals between consecutive heart beats (RRI) was calculated, and RR intervals were excluded
if (i) either the beat (R-peak) before the interval or the one after it was not normal, (ii) the
calculated interval was shorter than 330ms or longer than 2000ms, or (iii) the interval was more
than 30% shorter or more than 60% longer compared with the preceding interval. The purpose of
the last filter was to eliminate extrasystoles and ectopic beats unnoticed by the peak detector, see
also Fig. 3.3 and related discussion. Furthermore, all sleep stage segments containing less than
100 normal-to-normal intervals or more than 5% excluded intervals were treated as unreliable and
fully disregarded in the analysis.

Recorded oronasal airflow data were processed by determining the times and values of the signals’
maxima and minima, representing the ends of the expiration and inspiration phases, respectively18.
Since noise in the data mainly consists of spikes (outliers of type I), a simple threshold filter is
sufficient. All data points exceeding a threshold of 95% of the maximum value or dropping
below 95% of the (negative) minimum value within a moving time window are clipped to the
corresponding threshold values. Data was resampled at 4Hz before identifying maximum and
minimum values. In addition a classification scheme assigning to each event a reliability depending
on (i) the length of the identified breathing cycle, (ii) the difference between cutoff threshold and
extremal point, and (iii) a comparison with averages over three preceding and three following
breathing cycles was implemented.

I applied the described filters separately for each subject and each night, taking into account
all reliable segments for the same stage. Preceding Detrended Fluctuation Analysis (DFA2) all
excluded intervals were cut out and the gaps were joined. This procedure was shown not to affect
the DFA results for positively correlated data even if up to 50% of the data is removed [Chen
et al. 2002]. Note that I did not join different segments from the same sleep stage type but
derived local fluctuations FDFA2,ν(s) [Eqs. (3.17)] separately for each segment in order to avoid
strong discontinuities at the joining point.

Fluctuation functions obtained from heartbeat data usually exhibit a crossover between two dif-
ferent scaling regimes. For that reason I distinguish slopes αRR,1 for small scales (6 ≤ s ≤ 16
heartbeats) and slopes αRR,2 for larger scales (50 ≤ s ≤ 200 heartbeats). Note that for the calcu-

18Oronasal airflow was obtained by temperature measurements (thermistor). In the study it was assumed that
during inspiration inhaled air cools down the thermistor while during expiration exhaled air warms up the
thermistor.
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lation of long-range fluctuation exponents (in DFA) the upper boundary is usually set to s = N/4
instead of s = 200. Because the number of transitions between different sleep stages, and hence,
the duration of data fragments varies between different subjects, I have chosen a limit of s = 200
to achieve good statistics (averages over many windows) and to ensure a comparability of results.

In contrast to heartbeat no established crossover is observed in respiration in general. Hence, it
can be characterized by just one fluctuation exponent αRES. From the finding of preferential 4 : 1
cardiorespiratory coupling (which will be discussed in detail in Chapt. 5), i.e., on average a breath
cycle spans four heartbeats, I have defined an associated fitting range of 12 ≤ s ≤ 50 breaths for
comparability with αRR,2.

Short-term correlations quantified by αRR,1 are related to the HF-band. This can be shown by a
simple approximation. Recall that for DFA a scale correction depending on the detrending-order
has to be applied because observed crossovers are shifted towards larger scales compared with the
real crossover, see Fig. 3.2(a,b). For DFA2, sreal ≈ sobserved/2.5 applies [Kantelhardt et al.
2001]. Hence, a considered scaling range [6, 16] heartbeats transforms to a real scaling range of
[2.4, 6.4] heartbeats which corresponds to the frequency band [0.156, 0.417]Hz under the simplified
assumption of an average heartbeat interval of 1s. The HF band is usually associated with
[0.15, 0.4]Hz and parasympathetic activity [see Sect. 2.2 and HRV Task Force 1996]. Scaling
exponents αRR,2 and αRES, on the other hand, describe long-range correlations associated with
the LF and VLF bands. They thus reflect cerebral dynamics in addition to autonomic control;
DFA results for large scales might elucidate additional features of cardiopulmonary control and
coupling.

Effects of Normal Aging on Fluctuation Exponents

Figure 3.4 shows the heartbeat fluctuation functions FDFA2(s) of three representative subjects
from different age groups: (i) young subjects (20-39 years, lowest curves in each panel), (ii)
intermediately aged subjects (40-69 years, center), and (iii) elderly subjects (70-89 years, top) in
double-logarithmic plots. Both scaling regimes for αRR,1 (characterizing short-term correlations)
and αRR,2 (characterizing long-term correlations) are marked by gray bars. The slopes of the
black solid lines are identical with the fitted values of αRR,1 and αRR,2 for the presented examples.

There are two important observations. First, one clearly sees the presence of long-range corre-
lations (αRR,2 ≈ 1 ≫ 1/2) during wakefulness and REM sleep while long-term correlations are
weak or absent during light sleep and deep sleep (αRR,2 ≈ 1/2). This finding is consistent results
reported in [Bunde et al. 2000; Penzel et al. 2003]. Secondly, age differences in the scaling
behavior are apparent, especially when comparing αRR,2 for young and elderly subjects during
wakefulness and REM sleep, and when comparing αRR,1 for young and intermediately aged as
well as intermediately aged and elderly during all sleep stages.

In order to further investigate these age-dependencies I calculated DFA2 fluctuation functions for
heartbeat and oronasal airflow from 180 disease-free healthy subjects19 (85 males and 95 females)
contained in the SIESTA database [see Sect. 2.3] and derived scaling exponents αRR,1, αRR,2, and
αRES.

Some of the individual fluctuation functions do not very well follow a power law most likely due
to unnoticed nonstationarities in the raw data (only a 2nd-order polynomial detrending was per-
formed). To verify the quality of the fits I additionally computed the coefficient of determination
r2 for each slope α and disregarded fits with r2 < 0.98, since these fluctuation functions are not
sufficiently close to a power-law. The full results are reported in Fig. 3.5 where I have plotted for
each sleep stage histograms of all three α values in gray and marked in red the proportion of those
which passed the acceptance criterion. Rechecking the supposedly healthy subjects who failed the
power-law test often revealed unrecognized sleep apnea episodes [see Sect. 2.3]. Since the duration
of such apneas has a characteristic time scale, a crossover in the DFA scaling function is observed
and the power law is violated, see also [Schmitt and Ivanov 2007]. Sleep apnea episodes appear
mostly during deep sleep with an immediate transition to light sleep, or already during light sleep.
Depending on the strength of the apnea event it is often not terminated before an arousal (brief

19Note that I later use brain-wave recordings from 190 disease-free subjects. The reason for a smaller number here is
that some subjects were disregarded due to missing or spoiled (many artifacts) heartbeat or respiration signals.
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Figure 3.5.: Histograms of (a-
d) αRR,1, (e-h) αRR,2, and (i-l)
αRES in wake state, light sleep
S2, deep sleep S3&S4, and REM
sleep. Gray histograms show the
distributions for all 348 datasets
considered in this study, while
the α values from fits with
r2 < 0.98 or incomplete fitting
regimes were excluded for the
red histograms. Dotted lines in-
dicate random uncorrelated be-
havior α = 1/2 and strongly cor-
related behavior α = 1. Note
that the bins were chosen twice
as wide for (a-d) compared with
(e-l).

wake episode as short as 3s) occurs. Due to apneas, deep sleep is reduced or even inhibited and
sleep becomes fragmented (many arousals) yielding a loss of the regenerative function of sleep.

To study effects of normal aging on the correlation structure in heartbeat and respiration all
subjects were classified in seven age groups, each spanning ten years. Figure 3.6 shows mean
values and standard errors of the means for αRR,1, αRR,2, and αRES separately for (i) different sleep
stages, (ii) all age groups, and (iii) all subjects, males, and females. Note that I have combined
results from signals of both nights (adaptation night and recording night) after checking that
differences are not relevant.

Since the distributions in Fig. 3.5 are very close to Gaussians, a Student’s t-test can be applied to
check the significance of differences [Appendix D.1]. The numerical means and standard deviations
(instead of standard errors of the means in Fig. 3.6) for the three α parameters and sleep stages
in young, intermediately aged, and elderly subjects are reported in Tab. 3.1. For all combinations
of these three age groups significances for their difference were obtained by applying a Student’s
t-test [Appendix D.1] and are indicated by symbols based on the corresponding p values, see table
caption for details.

Heartbeat

The most intriguing finding is an age dependence in heartbeat correlations on short time scales,
i. e., in the exponent αRR,1, cp. Figs. 3.6(a-d). In the age range from 20-59 years a significant
increase in αRR,1 is observed across all sleep stages except for wake where the statistical analysis
shows no significant difference between the 20-29 year and the 50-59 year group (t-test: p > 0.05).
This increase is almost independent of gender [see Figs. 3.6(a-d) and Tab. 3.1]. Above 60 years of
age a systematic and significant decrease in αRR,1 occurs with further aging, except during deep
sleep where statistics are insufficient in the elderly groups. Recall from the introduction [Sect. 2.3
and Figs. 2.9(b,c)] that the total time spent in deep sleep is noticeably reduced in elderly subjects
which results together with a generally increased occurrence of ectopic beats in the rejection of
many segments of data. For instance, the average αRR,1 value for the 80-89 year old group during
deep sleep as shown in Fig. 3.6(c) is based on only eight αRR,1 values from six subjects.

The general picture of a maximum in αRR,1 in the age regime of 50-60 years is, nevertheless,
unaffected by the considered sleep stage (or wake). It also occurs in the same way for both, males
and females, proving a high reliability. However, in the intermediate age group of 40-69 years, the
values for females are lower than those for males at a p < 0.03 significance level during wakefulness,
deep sleep and REM sleep [see Table 3.1]. These differences are an additional indication of an
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Figure 3.6.: Age dependence of (a-d) heartbeat short-term fluctuation exponents αRR,1, (e-h) heartbeat, and (i-l)
respiration long-term fluctuation exponents αRR,2 and αRES for wakefulness, light sleep S2, deep sleep S3&S4, and
REM sleep. The mean values for all subjects [black diamonds], men [blue triangles up], and women [orange triangles
down] are shown with error bars representing the standard errors of the means. Black solid lines indicate linear
fits to the means based on all age groups, except for αRR,1, where two separate fit regimes [20-59 and 50-89 years]
were chosen and for deep sleep, where insufficient statistics in elderly did not allow fitting. Note that α values with
r2 < 0.98 or incomplete fitting regimes in F (s) were disregarded. The dotted lines mark α = 1/2 [uncorrelated
behavior] and α = 1 [1/f noise].

earlier decay of αRR,1 in females as could be speculated from Figs. 3.6(a-d). A possible explanation
for this finding seems to require a change in the related control mechanisms which is sufficiently
fundamental to affect all sleep stages and wakefulness. Similar rises were reported to emerge at
the age of 50 years in evening cortisol20 levels associated with an increase in sleep fragmentation
and a decline in REM sleep [Van Cauter et al. 2000]. High cortisol levels have been identified
with physiological stress and an increased cardiac risk. Reduced short-term correlation exponents
(αRR,1) were shown to be a better indicator for predicting cardiac risk and mortality in infarction
patients than standard HRV parameters [Mäkikallio et al. 1999; Huikuri et al. 2000].

Further note that disabling the quality check based on r2 and keeping ectopic beats yielded an
additional decrease in αRR,1 down to values close to 0.5 indicating uncorrelated behavior. This
observation affirms the importance of careful filtering and data preparation, see also Fig. 3.3 and
related discussion. Note that the coefficient of determination is typically not examined carefully
in clinical applications, and hence, the good performance of αRR,1 for predicting cardiac risk and
mortality in infarction patients compared with standard HRV parameters [Mäkikallio et al.
1999; Huikuri et al. 2000; Jokinen et al. 2003] might partly be originated in a sloppy data
preparation. In Elderly more ectopic beats are in general observed which can reduce αRR,1 values.
A correlation of αRR,1 with the number of ventricular premature complexes (VPCs) that are also
used for cardiac risk assessment [Kleiger et al. 1987; Cairns et al. 1997] is, thus, not completely
surprising.

Besides the most interesting age dependence, my analysis shows significant differences in αRR,1

values across sleep stages for all age groups (except the 80-89 years group, where statistics are
not sufficient). These differences are comparable to the age differences within each sleep stage.

20A stress hormone.
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Measure αRR,1 αRR,2 αRES

Wake
Young 1.12 ± 0.25 † 1.02 ± 0.15 † ◦ 0.69 ± 0.16 ⋆
Middle 1.13 ± 0.33 ◦ 0.98 ± 0.15 0.66 ± 0.12
Elderly 0.87 ± 0.35 † 0.89 ± 0.14 ‡ 0.62 ± 0.10
Light sleep S2
Young 0.96 ± 0.26 0.65 ± 0.11 0.54 ± 0.07
Middle 1.12 ± 0.29 † 0.62 ± 0.13 0.53 ± 0.08
Elderly 0.95 ± 0.35 ‡ 0.60 ± 0.14 0.54 ± 0.10
Deep sleep S3&S4
Young 0.80 ± 0.29 0.59 ± 0.13 0.49 ± 0.09
Middle 0.93 ± 0.29 ‡ ◦ 0.60 ± 0.15 0.49 ± 0.11 ◦
Elderly 0.84 ± 0.35 0.60 ± 0.15 0.52 ± 0.07
REM sleep
Young 1.11 ± 0.28 0.88 ± 0.13 † 0.75 ± 0.11 ⋆
Middle 1.23 ± 0.33 ‡ ◦ 0.95 ± 0.15 † 0.74 ± 0.12 ◦
Elderly 1.00 ± 0.36 † 1.00 ± 0.13 0.69 ± 0.12

Table 3.1.: Mean values and standard deviations for fluctuation exponents α during wakefulness, light sleep stage
S2, deep sleep S3&S4, and REM sleep distinguishing three cohort subsets: young [age 20-39], intermediately aged
[age 40-69], and elderly [age 70-89]. The null-hypothesis that values for a pair of cohort subsets are drawn from
identical distributions was checked by a two-sided heteroscedastic Student’s t-test. Three significance levels are
indicated by symbols, p < 0.001 (†), p < 0.01 (‡), and p < 0.03 (⋆). The symbols (†, ‡, ⋆) in the line for young
subjects refer to the test comparing young and elderly, the symbols in the line for intermediately aged subjects to
comparing them with young, and the test in the line for elderly refers to comparing elderly with intermediately
aged. Additionally, the symbol ◦ indicates significant differences [p < 0.03] between males and females in the same
age group.

Specifically, for the 20-29 years old group a significant difference is found between sleep stages
with lowest αRR,1 values during deep sleep, higher values during light sleep and highest values
during REM and wake (see Figs. 3.6(a-d), p < 0.01 for deep versus light sleep and light sleep
versus wake, and p < 0.001 for deep sleep versus REM).

For larger time scales I find αRR,2 ≈ 0.9 ≫ 1/2 indicating long-term persistence during wake and
REM sleep. In contrast, correlations are almost absent during non-REM sleep, i.e., light sleep and
deep sleep, with αRR,2 ≈ 0.6. This confirms the scaling behavior observed previously in a much
smaller cohort of young subjects [Bunde et al. 2000; Penzel et al. 2003] as well as in a group of
elderly subjects [Schmitt et al. 2009], suggesting a common dependence of αRR,2 on sleep stages
for all age groups.

The 50-59 year old group, where the maximum in αRR,1 occurs, exhibits a similar pattern of lowest
values during deep sleep and higher values during light sleep, REM and wake (see Figs. 3.6(a-d)),
with p < 0.01 for deep versus light sleep, p < 0.001 for deep versus REM sleep and no significant
differences between wake, REM and light sleep. Comparing the 20-29 year old group with the
50-59 year old group, a statistically significant age difference is obtained within each sleep stage
(deep sleep p < 0.01, light sleep p < 0.001, REM sleep p < 0.001) but not wake (p > 0.05). The
age differences are statistically similar to the differences across sleep stages for each of the two
groups. Hence, they indicate that the effect of sleep regulation on αRR,1 in heartbeat intervals is
comparable to the effect of aging.

When focusing on the age dependence of αRR,2, significant changes are observed during REM
and wake [see Figs. 3.6(e,h)] while long-term correlation appear to be practically independent of
age during non-REM sleep. During REM sleep, αRR,2 increases from αRR,2 ≈ 0.85 for young
adults (aged 20-29) up to values αRR,2 ≈ 1.05 in the very elderly (aged 80-89). While this
increase is statistically significant for the young and middle age groups, there is no significant
difference when comparing intermediate age and elderly subjects [see Fig. 3.6(h) and Tab. 3.1].
During wakefulness an opposite behavior is observed, i.e., αRR,2 decreases from αRR,2 ≈ 1.05
towards αRR,2 ≈ 0.85 with normal disease-free aging. Except for comparing the young and the
intermediate age groups this decrease is statistically significant for all age group combinations [see
Fig. 3.6(e) and Tab. 3.1]. During light sleep and deep sleep no significant age dependence in αRR,2
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Figure 3.7.: Averaged fluctuation functions considering all healthy subjects (a) and all patients in the same group
of disease (b-f) obtained from DFA2. Note that all individuals contribute up to the scale where fluctuation functions
for the corresponding sleep stage can be reliably derived [s ≤ N/4]. On very large scales less individuals contribute.
Note the strong crossover which is observed in results for non-REM in sleep apnea and periodic leg movement
patients.

is observed [see Figs. 3.6(f,g) and Tab. 3.1]. However, the physiological meaning of described age
dependencies is not yet fully understood.

Respiration

Regarding respiration, results for inter-breath intervals obtained only from maxima in the oronasal-
airflow signal are presented. I have also checked other respiration proxies (inter-breath intervals
from belt recordings and based on signal maxima or minima), but corresponding findings essen-
tially did not differ.

Neglecting the influence of aging, one finds a similar scaling behavior as for the heartbeat at large
scales, i. e., αRES > 1/2 for wake states and REM sleep as well as αRES ≈ 1/2 for deep sleep
[see Figs. 3.6(i-l) and Tab. 3.1], consistent with earlier observations in a much smaller cohort
[Rostig et al. 2005]. Furthermore, it seems that weak long-term correlations in respiration are
present during light sleep while absent during deep sleep [see also the histograms in Fig. 3.5]. The
overall correlations are, however, much weaker than for heartbeat. Supported by almost identical
histograms for males and females (not shown) during all studied sleep stages and wakefulness,
there are hardly any gender effects, although intermediately aged females have (weakly significant)
smaller and larger averages during deep sleep and REM sleep, respectively [see Figs. 3.6(k-l)].

Looking at the age dependence, one recognizes an opposite aging effect during REM sleep com-
pared with heartbeat: αRES decreases with age while αRR,2 increases [compare Figs. 3.6(h,l)].
For wakefulness, both exponents αRES and αRR,2 decrease [see Figs. 3.6(e,i)]. Nevertheless, the
observed age dependences in αRES during wake and REM are only weakly significant [see Tab. 3.1]
due to a more pronounced inter-individual variation compared with heartbeat which manifests in
larger error bars in Figs. 3.6(i,l). No significant age dependencies in respiratory correlations are
observed during non-REM sleep.

For a comprehensive comparison of these findings with results reported by others I refer the reader
to the discussion section of my related paper [Schumann et al. 2010a].

3.2.3. Fluctuations in Patients

Since the SIESTA database also contains data from patients suffering from sleep apnea, Parkin-
son’s disease, anxiety, depression, and periodic leg movement syndrome I would like to briefly show
averaged fluctuation functions for different diseases for completeness. I suggest further studies of
such data as soon as they become available. So far, a systematic study of age-dependence on
correlations in heartbeat (or respiration) in patients cannot be done in the same way as presented
before because (i) much less recordings are available, and (ii) diseases such as apnea or Parkinson
are typically found among elderly people.
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For that reason I do not present results from my investigation of aging effects in different diseases
in the same way as above but rather average individual fluctuation functions as suggested by
various authors in the literature. However, note that due to inter-individual differences averaging
fluctuation functions should only be done to get an idea about ’qualitative’ effects due to different
pathologies.
Figure 3.7 summarizes averaged results from employing DFA2 to healthy subjects and five different
diseases. The most pronounced finding is a strong crossover in non-REM sleep for sleep apnea and
periodic leg movement subjects (PLM), see red, green, and purple curves in Figs.3.7(e,f). Note
that although averages are shown here, this crossover is observed in all individual fluctuation
functions for severe sleep apnea (AHI ≫ 10) and in PLM patients. As explained above, apneas
have a characteristic time scale yielding a crossover during deep sleep and light sleep where apneas
predominantly occur. However scaling exponents should be obtained from individual fluctuation
functions rather than from averaged curves. My results on the scaling in patient’s heartbeat and
respiration are inconclusive, yet, and although there seem to be some dependences on age they are
not further discussed here. I suggest a systematic study in a much larger database as for example
the SHHS (Sleep Heart Health Study) database consisting of N ≈ 6000 recordings which are so
far rather unattended due to the enormous labor costs for data preparation21.

3.3. Multifractal Fluctuation Analysis Methods

In the previous sections I explored monofractal scaling behavior, i.e., the characterization of fluc-
tuations by a single fluctuation exponent. However, many recordings do not exhibit monofractal
scaling behavior captured fully by the scaling exponents22 h(2), β, and γ, but are of more com-
plicated structure that is characterized by many interwoven fractal subsets described by different
scaling exponents.
In the simplest extension of a monofractal time series one observes a crossover between small and
large time scales s in the fluctuation function F (s), leading to two scaling regimes as observed
in a monofractal analysis of heartbeat23. Other time series have more than one crossover, and
others show a spectrum of many different fluctuation exponents due to many interwoven fractal
subsets. The latter case can be imagined by different magnitudes of fluctuations obeying different
scaling laws, i. e., small fluctuations and large fluctuations are described by different scaling
exponents. Hence, a multifractal fluctuation analysis in time series focusses on separating the
scaling properties of fluctuations of different magnitude.
Multifractal scaling behavior was first studied in turbulent and chaotic systems [Benzi et al.
1984; Muzy et al. 1991; Kestener and Arneodo 2004] with later applications to physiol-
ogy and medicine (e. g., DNA sequences [Arneodo et al. 1995], and heartbeat [Ivanov et al.
1999b]), geophysical data (e. g., cloud patterns [Arrault et al. 1997], climate change [Ashke-
nazy et al. 2003], precipitation and river runoff [Kantelhardt et al. 2003b], seismic electric
signals [Varotsos et al. 2003], and wind speeds [Govindan and Kantz 2004]), econophysics
(e. g., price increments and waiting times [Oswiecimka et al. 2005] and volatility [Wang et al.
2006]), and complex systems in general (e. g., eigenvalue spectra [Yang et al. 2004]), see [Meyers
2009] for further applications.
The oldest multifractal analysis method is multifractal box counting (MF-BOX) [Feder 1988]
which is briefly described in Appendix E.3. However, it fails in the presence of non-stationarities
such as trends since it can analyze only normalized measures rather than time series. This de-
ficiency led to the development of the wavelet transform modulus maxima (WTMM) method –
a generalized box counting approach based on wavelet transform [Muzy et al. 1991, 1994; Ar-
neodo et al. 1995]. In the applied sciences multifractal detrended fluctuation analysis (MF-DFA)
[Sect. 3.3.1], a generalization of DFA [Kantelhardt et al. 2002] gained more influence due

21In addition data protection issues prohibiting a transfer of the data to Europe are not resolved yet.
22Monofractal fluctuation exponents α are denoted h(q = 2) in this section in order to avoid confusion with the

local fluctuation (Hölder) exponent α. The meaning of the moment q will become clear in the following.
23This is a simplification used as a motivation. However, heartbeat exhibits an even more complicated, multifractal

structure with many different scaling exponents [Ivanov et al. 1999b].
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to the rather complicated and computational involved procedure of the WTMM algorithm [Ap-
pendix E.4]. For comparisons of these multifractal analysis methods, see [Kantelhardt et al.
2002, 2003b; Oswiecimka et al. 2006; Turiel et al. 2006]. The direct comparisons show that MF-
DFA is at least equivalent to WTMM, while an application of WTMM needs more care and yields
spurious multifractality more often [Oswiecimka et al. 2006]. For extensions of both methods to
higher dimensions, see [Kestener and Arneodo 2004; Gu and Zhou 2006].

In Sect. 3.1.4 I already mentioned the positive aspects of fluctuation analysis methods based on
moving averages. A particularly interesting variant is the CMA technique [Alvarez-Ramirez
et al. 2005; Bashan et al. 2008]. Therefore, I suggest an alternative multifractal analysis method,
coined multifractal centered moving average analysis (MF-CMA) which facilitates a better statis-
tics because less computational costs allow for the consideration of overlapping windows. This
results in better performance on large scales (s > N/4) compared with MF-DFA. Additionally,
MF-CMA works well at small scales (s < 10), especially for large negative and large positive
moments24, that are problematic in MF-DFA. This characteristics make MF-CMA particularly
suited for studying fluctuations in short time series which often arise in applications. However,
unlike for MF-DFA higher order detrending is not possible for it. It can thus serve as an easy
second method in studying multifractal time series with weak trends, when a comparison of the
results of two independent methods is needed to confirm the conclusions.

In order to validate conclusions drawn from a multifractal analysis and to reject spurious scaling
behavior a model to generate multifractal surrogate data of well defined properties is required. In
Sect. 3.3.4 I suggest a generalized binomial multi-fractal model (GB-MFM), in which both, the
long-term correlations (persistence) and the multifractality strength can be tuned easily to any
desired value and easy analytical formulas are available.

3.3.1. Multifractal Detrended Fluctuation Analysis (MF-DFA)

MF-DFA [Kantelhardt et al. 2002] is based on the conventional DFA [Peng et al. 1994;
Bunde et al. 2000; Kantelhardt et al. 2001]. In contrast to MF-CMA [Sect. 3.3.2] it eliminates
higher order polynomial trends depending on detrending order. Despite a modification in the last
steps, the MF-DFA algorithm is similar to the DFA algorithm which was presented in Sect. 3.1.3.

MF-DFA algorithm:

Step 1 and Step 2:

The first two steps are identical with Step 1 and Step 2 in DFA [Sect. 3.1.3], i. e., the profile is
calculated following Eq. (3.16) and subsequently to dividing it into ν = 0, . . . , 2[N/s] − 1 non-
overlapping windows, squared local fluctuations F 2

DFA,ν(s) are derived according to Eqs. (3.17).

Step 3:

In order to study multifractal structure in the time series, i. e., the influence of fluctuations of
different magnitudes on different time scales, Eqs. (3.17) are raised to the power of a real valued
parameter q before the averaging over all segments ν in Eq. (3.18). The parameters q are generally
referred to as moments. The multifractal generalization of Eq. (3.18) is then defined by

FMF-DFAn,q(s) =






 1

2[N/s]

2[N/s]−1∑

ν=0

[
F 2

DFAn,ν(s)
]q/2




1/q

: q 6= 0

exp


 1

4[N/s]

2[N/s]−1∑

ν=0

lnF 2
DFAn,ν(s)


 : q = 0

. (3.22)

24The term ’moment’ will be explained shortly. Negative moments are associated with studying the scaling of small
fluctuations while positive moments correspond to large fluctuations.
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For negative q small fluctuations are dominating Eq. (3.22), while for positive q large fluctuations
have a stronger influence. The classical monofractal DFA method is retrieved for q = 2, compare
Eqs. (3.18) and (3.22). Equation (3.22) constitutes the actual multifractal generalization of the
monofractal variant by introducing higher moments q that weight fluctuations in windows ν
according to their magnitude. The transition from Eq. (3.18) to Eq. (3.22) can be implemented
for any related monofractal method [see Appendix E.1 and in particular Eq. (E.6) for a MF-WLn
method].

Step 4:
To investigate the multifractal scaling behavior, i. e., how the generalized fluctuation functions
FMF-DFAn,q(s) depend on s, Eq. (3.22) has to be calculated for many values of s and for many
moments q. Ideally, FMF-DFAn,q(s) follows a power law for a certain range of s and a fixed value
of q,

FMF-DFAn,q(s) ∼ shMF-DFA,n(q) , s≫ 1 . (3.23)

The generalized fluctuation exponents hMF-DFA,n(q) are then inferred by linear fits to the qth-order
fluctuation function in a double-logarithmic plot of FMF-DFAn,q(s) versus s.
Note that the exponents25 h(q) have a similar meaning in a multifractal fluctuation analysis as
the fluctuation exponents α in a monofractal analysis (q = 2). This explains the earlier mentioned
notation h(2) = α.
Theoretically, if h(q) is a constant for all q, the time series {xk} exhibits monofractal structure,
otherwise it is of multifractal structure. The inversion remains true: when {xk} is a monofractal
time series, h(q) does not depend on q, because the variances in each window ν become equiv-
alent. However, we will see later that even supposedly monofractal data often exhibit spurious
multifractality.

3.3.2. Multifractal Centered Moving Average (MF-CMA) Analysis

Inspired from the multifractal generalization of the detrended fluctuation analysis (MF-DFA)
which was suggested in [Kantelhardt et al. 2002], I will in the following describe a multifractal
centered moving average analysis (MF-CMA) as a generalization of its monofractal variant CMA
[Alvarez-Ramirez et al. 2005]. The MF-CMA method also comprises four steps. Step 1 and Step
2 are identical with its monofractal variant and Eqs. (3.16), (3.19), and (3.20) need to be evaluated.
In Step 3 Eq. (3.21) is generalized in the same way as higher moments q were incorporated in
Eq. (3.18) to obtain Eq. (3.22). This yields the MF-CMA fluctuation function,

FMF-CMA,q(s) =






 1

2[N/s]

2[N/s]−1∑

ν=0

[
F 2

CMA,ν(s)
]q/2




1/q

: q 6= 0

exp


 1

4[N/s]

2[N/s]−1∑

ν=0

lnF 2
CMAn,ν(s)


 : q = 0

∼ shMF-CMA(q) , (3.24)

which is again calculated for many scales s and different moments q in Step 4. From linear
fits to plots of log(FMF-CMA,q(s)) versus log(s) generalized fluctuation exponents hMF-CMA(q) are
obtained for fixed q if fluctuations obey power-law scaling. The properties that I discussed below
Eqs. (3.22) and (3.23) remain valid.

3.3.3. Standard Multifractality Properties

In the traditional multifractal scaling approach used in multifractal box counting [see Appendix E.3
and Feder 1988] and WTMM analysis [see Appendix E.4 and Muzy et al. 1991, 1994] one studies

25For the moment I drop the subscript MF-DFAn because the following properties remain valid for all multifractal
fluctuation analysis methods that are discussed in this thesis.
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the partition function,

Zq(s) =

[N/s]−1∑

ν=0

|p̃s(ν)|q =

[N/s]−1∑

ν=0

∣∣∣∣∣∣

(ν+1)s∑

k=νs+1

xk

∣∣∣∣∣∣

q

∼ sτ(q) (3.25)

with p̃s(ν) being the box probability in the window ν and τ(q) the Rényi exponents. Multifractality
was originally studied on fractal sets. Assume, A is such a set which is covered by a series of cubes
{Ck} of a unit size ε → 0. With each cube a probability measure µk = µ(Ck) satisfying µ(A) = 1
is associated. It can then be motivated to define a generalized (fractal) box dimension [Ott 2002]

Dq =
1

1 − q
lim
ε→0

ln
∑

k µ
q
k

ln(1/ε)
. (3.26)

When the time series is properly normalized to ensure
∑

k xk = 1 the partition function formalism
in Eq. (3.25) can be transfered to time series and from Zq ∼ sτ(q) Renýı exponents can be calculated
to study multifractal scaling. Note that for a fluctuation analysis based on the partition function
the normalization is indeed not required since the scaling is independent. However, it is required
to motivate the equivalence of both approaches by identifying time series element with probability
measures.
Under the assumption the time series is stationary and has a compact support with26 D0 = 1 =
−τ(0), the generalized fluctuation exponents h(q) and the Rényi exponents τ(q) are equivalent
[Kantelhardt et al. 2002].
Similar to the difficulties one faces in proofing the equivalence of the fluctuation exponent, the spec-
tral exponent, and the correlation exponent for DFA [see Sect. 3.1.2 and discussion in Sect. 3.1.3]
it not trivial to show the equivalence of τ(q) and h(q) for MF-DFA. Nevertheless, under the sta-
tionarity condition trends in the data are absent and a higher order detrending is not required.
Thus, a multifractal fluctuation analysis (MF-FA) is sufficient to access multifractal scaling prop-
erties. As I have motivated in Step 4 of the MF-CMA algorithm a multifractal generalization
can be easily achieved for any related fluctuation analysis method. Inserting Eq. (3.8) instead of
F 2

DFAn,ν in Eq. (3.22) yields the MF-FA fluctuation function

FMF-FA,q(s) =


 1

[N/s]

[N/s]−1∑

ν=0

[
F 2

FA,ν(s)
]q/2




1/q

=


 1

[N/s]

[N/s]−1∑

ν=0

|Y ((ν + 1)s) − Y (νs)|q



1/q

∼ sh(q).

(3.27)

From Eq. (3.27) and with the simplification that N is an integer multiple of s one obtains

1

N

N/s−1∑

ν=0

|Y ((ν + 1)s) − Y (νs)|q =
1

N

N/s−1∑

ν=0

∣∣∣∣∣∣

(ν+1)s∑

k=νs+1

xk

∣∣∣∣∣∣

q

=
1

N

N/s−1∑

ν=0

|ps(ν)|q ∼ sqh(q)−1 . (3.28)

This yields together with the partition function approach in Eq. (3.25) and again [N/s] = N/s

τ(q) = qh(q) − 1 . (3.29)

Another well established description of multifractal data is the singularity spectrum f(α) describ-
ing the dimensions f of subsets of the series characterized by the same singularity strength or
Hölder exponent α [Halsey et al. 1986]. The Hölder exponent characterizes the local divergence
(singularity, αν) of box probability densities in the limit s→ 0, p̃s(ν) ∼ sαν .

26D0 = limε→0
ln ÑC(ε)
ln 1/ε

is the box dimension where Ñ denotes the number of boxes of edge length ε > 0 needed

for covering the curve C. For a time series {xk}k=1,...,N of compact support setting Ñ(ε) = N/ε yields a box
dimension D0 = limε→0 − lnN

ln ε
+ 1 = 1. Employing Eq. (3.26) yields the same result.
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In the framework of time series analysis the concept of multifractality means that the support of
a time series can be subdivided into (fractal) subsets that obey a different scaling described by
a local fluctuation exponent α. Theoretically, the Hölder exponent at a position k, αk can be
obtained by studying the scaling of the corresponding local fluctuation Fk(s) ∼ sαk in the limit
s→ 0, i.e., in a ’small window’. Unfortunately, very small scales are not accessible with any of the
previously described methods due to numerical limitations. Similarly to the probability measure
approach, one can study the dimensions f(α) of the fractal subsets of the time series’ support
that are characterized by the same Hölder exponent α. f(α) can be derived from either τ(q) via
a Legendre transform or from h(q),

α = τ ′(q) f(α) = qα− τ(q) = qτ ′(q) − τ(q) (3.30a)

α = h(q) + qh′(q) f(α) = q [α− h(q)] + 1 = q2h′(q) + 1 (3.30b)

Note that the notation α for the Hölder exponents must not be confused with the notation
α = h(2) or α = H (Hurst exponent) frequently used in monofractal studies, i.e., monofractal
fluctuation exponents H [Eq. (3.6)], αFA [Eq. (3.9)], and αDFA [Eq. (3.18)] are not equivalent
with the Hölder exponent α unless the data is monofractal. The maximum value of f(α) is
D0 = −τ(0) = 1 and occurs for q = 0 because this is the dimension of the time series’ support and
the probability measure of the whole (compact) support is 1 [see e.g., Ott 2002]. On the other
hand, f(α) = 0 is valid for all values α that do not characterize the scaling at any location k.
Monofractal fluctuation exponents (H, αFA, αDFA) are retrieved when αk = const. for all subsets
of the support; in this case the singularity spectrum only consists of a single point f(α) = 1. The
width of the singularity spectrum is used to quantify the strength of multifractality and is (in the
infinite limit) equivalently described by

∆h = h(−∞) − h(+∞) ≡ ∆α = α|q=−∞ − α|q=+∞. (3.31)

However, in real world applications both properties ∆h and ∆α are not directly accessible and
one defines a ∆hq = h(−q) − h(+q) for a large value of q (I consider q = 20 in this thesis) and
derives ∆α from the roots of model27 fits to the singularity spectra f(α) (in the following I will
use a quadratic model). This invalidates the strict equality of both quantities in Eq. (3.31) and
∆hq / ∆α.

3.3.4. Generalized Binomial Multi-Fractal Model (GB-MFM)

In order to validate conclusions drawn from a multifractal analysis and to reject spurious scaling
behavior a model to generate multifractal surrogate data of well defined properties is required.
While monofractal surrogate data can be easily generated by Fourier filtering or the Schreiber-
Schmitz method [Sects. 1.5.2 and 1.5.2, or Theiler et al. 1992; Schreiber and Schmitz 1996],
surrogate data tests for multifractal data have usually been restricted to studying randomly shuf-
fled data. Prominent multifractal models are multifractal random cascade processes [Meneveau
and Sreenivasan 1987; Greiner et al. 1998; Bogachev et al. 2008], the multifractal random
walk model [Bacry et al. 2001], and the binomial multifractal model [see, e. g. Feder 1988;
Kantelhardt et al. 2002]. In the following I will focus on the latter model and suggest a gen-
eralized binomial multi-fractal model (GB-MFM) in which one can additionally to the standard
model tune long-term correlations (persistence), i. e., h(2).

Classical Binomial Multifractal Model
The deterministic binomial multifractal model is a time series {xk}k=1,...,2nmax where the k-th
element is constructed according to

xk = anmax−CS{(k−1)2}(1 − a)CS{(k−1)2} (3.32)

27Although, often quadratic or hyperbolic models are sufficient to describe the singularity spectrum other models
might fit better.
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Figure 3.8.: (color online) Generation algorithms of a binomial multifractal for the deterministic case (a-f), the
stochastic case (g-l), and the proposed generalized binomial multifractal additionally exhibiting long-term corre-
lations with spectral exponent β = 1.4 (equivalent with h(2) = 1.2) (m-p). Shown are single configurations with
N = 216 and a binomial parameter a = 0.6. In (a-m) i denotes the number of the iteration. Note that vertical axes
are rescaled in each step for visual reasons.

with a ∈ R fulfilling 0.5 < a < 1 the model parameter. The operator CS{·} denotes the checksum,
and (k − 1)2 is the binary expression of (k − 1). For instance, CS(26) = CS(11010) = 3. Thus
the deterministic binomial multifractal is uniquely defined by the parameter tuple (a, nmax). Note
that the dependent parameter (1−a) in Eq. (3.32) is often denoted by b leading to the equivalent
term ab-model for the binomial multifractal model.

The binomial multifractal can be constructed in nmax+1 iterative steps [see Figs. 3.8(a-f)]: (i = 0)
start with a constant series of N = 2nmax times the number 1, (i = 1) divide the series in two halves
and multiply the first with a and the second with b = (1 − a), (i = 2) divide both halves again
in two halves each and multiply the left half with a and the right half with b, (i = 3, . . . , nmax)
repeat halving and multiplying with a and b = (1−a) until the halves consist of only one element.
For nmax = 16 this is illustrated in Figs. 3.8(a-f) for iterations i = 0, 1, 2, 4, 8, 16. Note that the
relation b = (1 − a) is in principle not required, but ensures that the norm is preserved for all

iterations i, i.e.,
∑

k x
(i)
k = 1.

The stochastic binomial multifractal is constructed in a similar way, except for randomly multi-
plying either the left half with a and the right half with b = (1−a) or vice versa [see Figs. 3.8(g-l)]
for the same nmax = 16).

For both binomial models the scaling properties follow [Kantelhardt et al. 2002]

h(q) =

{
1
q (1 − log2(a

q + (1 − a)q)) : q 6= 0

−1
2(log2 a+ log2(1 − a)) : q = 0

(3.33a)

and

τ(q) =

{
− log2(a

q + (1 − a)q) : q 6= 0

−1 : q = 0
. (3.33b)

The theoretical multifractality strength can then be obtained from the limits q → ±∞ of
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Eq. (3.33a),

h(−∞) = lim
q→−∞

h(q) = − log2(1 − a) and h(+∞) = lim
q→+∞

h(q) = − log2(a) (3.34)

where I used the common trick to neglect the term aq ≈ 0 when q → −∞ and (1 − a)q ≈ 0 for
q → +∞ justified by the property 0.5 > a > 1. Together with Eq. (3.31) this yields

∆α = h(−∞) − h(+∞) = − log2(1 − a) + log2(a) = log2(a/(1 − a)) . (3.35)

Consequently, the model parameter a follows

a = (2−∆α + 1)−1 (3.36)

for a desired multifractality strength ∆α. Besides, h(2) = 1
2

(
1 − log2(a

2 + (1 − a)2)
)

[from setting
q = 2 in Eq. (3.33a)] describes the intrinsic long-term correlations for the ab-model. For instance,
a = 0.6 leads to ∆h20 ≈ 0.485 < ∆α ≈ 0.585 while h(2) ≈ 0.972 and β = 2h(2) − 1 ≈ 0.943.
Again notice that in the standard binomial multifractal model long-range persistence (i. e., αDFA =
h(2)) and multifractality strength (∆hq = h(−q)−h(+q), ∆α = h(−∞)−h(+∞)) are one-to-one
related and cannot be tuned separately; therefore a generalization is needed.

Generalized Binomial Multifractal Model (GB-MFM)
Motivated by the Fourier filtering technique [Sect. 1.5.2] which is employed to generate long-term
correlated surrogate data of arbitrary h(2) emanating from a white noise time series (h(2) = 0.5)
one might incorporate it together with the classical binomial multifractal model in a joint model
which I coin generalized binomial multifractal model (GB-MFM). The GB-MFM algorithm thus
consists of two steps and is illustrated in Figs. 3.8(m-p):

Step 1: Binomial multifractal
In the first step a time series that obeys stochastic or deterministic binomial multifractal
structure is generated according to the formalism described above, e. g., following Eq. (3.32) in
the deterministic case. The stochastic variant is used for illustration in Fig. 3.8(m).

Step 2: Fourier filtering
Arbitrary long-term correlations can be generated by employing the Fourier filtering technique
[Sect. 1.5.2 and Theiler et al. 1992]. (i) The data is fast Fourier transformed (FFT) into the
frequency domain [Fig. 3.8(n)]. (ii) Each (complex) spectral coefficient is multiplied by f−∆β/2,
where f is the frequency and applying β = 2h(2) − 1 yields

∆β = βtarget − βmodel(a) = 2htarget(2) + log2(a
2 − (1 − a)2) − 1 (3.37)

being the difference of the desired and the actual (binomial model) spectral exponent [Fig. 3.8(o)].
(iii) The signal is transformed back to the time domain by inverse FFT yielding a realization of the
GB-MFM [Fig. 3.8(p)]. Thus, one can obtain all parameters necessary for generating surrogate
data of a desired multifractality strength ∆α and long-term correlations h(2) by Eqs. (3.36) and
(3.37). The algorithm is illustrated in Fig. 3.8(m-p) for the stochastic binomial multifractal with
a = 0.6 and nmax = 16 and target long-term correlations of h(2) = (1.4+1)/2 = 1.2. I thoroughly
test the scaling properties of this model in Section 3.3.5.
Recall that the Fourier filtering technique does not preserve the distribution of the time series
elements xk when h(2) ' 1.25, see Sect. 1.5.2. For that reason the Schreiber-Schmitz method
was originally suggested [Schreiber and Schmitz 1996]. In principle it might be possible to
embed the GM-MFM into the Schreiber-Schmitz method by starting with the output of the
binomial generator (Step 1 ) instead of random uncorrelated numbers. In such an algorithm, it
may be possible to tune also the distribution of the data, besides their auto-correlations (i. e.
h(2) or the power spectrum), and their multifractality strength. However, it is known that a
different type of multifractality can be induced by broad distributions [Kantelhardt et al.
2002], and hence, it is not automatically clear to which extend the Schreiber-Schmitz method
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Figure 3.9.: Multifractal analysis of generalized binomial multifractals with parameters a = 0.6 and a = 0.75
applying (a-d, i-l) MF-CMA, (e-h, m-p) MF-DFA2, and (q-t) MF-DFA4. Fluctuation functions in (a,e,i,m,q)
correspond – from top to bottom – to the GB-MFM for h(2) = 1.5 [purple], h(2) = 1.2 [green], h(2) = [1− log2(a

2 +
(1−a)2)]/2 [pure stochastic binomial multifractal, blue], and h(2) = 0.5 [red]. For all parameters, results from 1000
configurations of length N = 216 have been averaged. Fluctuation functions are vertically shifted for (i) different
moments q [shown q ∈ {−20, 2, 20}], and (ii) for different model parameters for clarity. Gray shaded areas mark
fitting ranges for obtaining h(q). Further, associated multifractal scaling parameters h(q) and τ (q) are illustrated in
the center panels, and the f(α) spectra are shown in the lower panels. Solid black curves correspond to theoretical
behaviors for comparison. For both scaling exponents the monofractal case (q = 2) is marked by vertical solid black
lines, and additionally in h(q) plots horizontal solid black lines mark the adjusted h(2) = 0.5 and 1.5.

can be incorporated with the GB-MFM. On the other hand, this might pave the way to adjust
also multifractal properties originating in broad distributions. Note that one can separate both
types of multifractality by randomly shuffling the dataset which destroys multifractality due to
correlations but preserves multifractality due to broad distributions. However, so far I did not
systematically test a combination of GB-MFM and the Schreiber-Schmitz algorithm.
Although, more general multifractal random cascade processes [Meneveau and Sreenivasan
1987; Greiner et al. 1998] or the multifractal random walk model [Bacry et al. 2001] might
appear more advanced, I think that for most applications an easier model is preferred, where
both important quantities, long-term correlations (i. e., h(2)) and multifractality strength (i. e.,
∆h or ∆α) can be tuned without any additional parameter adjustments and based on an easily
implemented procedure.

3.3.5. Analysis of Data from the GB-MFM

Now I want to thoroughly test the GB-MFM model by varying the strength of multifractality
(tuned by the parameter a in Step 1 of the model) and the strength of long-term correlations
(tuned by adjusting h(2) in Step 2 of the model) and analyse modeled data by employing MF-
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Figure 3.10.: Degree of multifractality
expressed by ∆h20 = h(−20) − h(20) <
∆α as a function of the binomial mul-
tifractal parameter a for the pure bi-
nomial multifractal [blue filled circles]
and for the generalized binomial multi-
fractal for three adjusted h(2): 0.5 [red
open triangles down], 1.2 [green open
triangles up], and 1.5 [purple open dia-
monds] derived from fluctuation analysis
applying (a) MF-CMA, (b) MF-DFA1,
(c) MF-DFA2, and (d) MF-DFA4. In-
sets present magnifications in annotated
ranges. Mean values and standard devi-
ations for 1000 configurations are shown.
Note, h20 is slightly underestimated by
MF-DFA4 for a = 0.95 due to finite
size effects causing a crossover for q < 0
within the fit range [64, 16384] used for
all data points.

DFA (including tests with different detrending orders) and MF-CMA.

Figure 3.9 shows average results of the fluctuation functions for 1000 configurations of the
stochastic version of the GB-MFM model. Setting the main model parameter to a = 0.6 (see
Figs. 3.9(a-h)) and 0.75 (see Figs. 3.9(i-t)), the data is supposed to exhibit multifractality strengths
∆αa=0.6 ≈ 0.58 and ∆αa=0.75 ≈ 1.58, respectively [cf. Eq. (3.35)]. In both cases, the multifrac-
tality can be clearly seen in the different slopes (exponents) of the Fq(s) curves in the double-
logarithmic presentation. While the MF-CMA, MF-DFA2, and MF-DFA4 curves are shown for
q = −20, 2, and +20 only [see Fig. 3.9(a,e,i,m,q)], the scaling exponents for many values of q can
be compared with the expected behavior of the model [see Eq. (3.33a)] in the plots of h(q) [see
Fig. 3.9(b,f,j,n,r)]. The four sets of curves belong to different autocorrelations set in the model,
characterized by h(2) = 1.5, 1.2, original h(2, a = 0.6) = 0.972 (or h(2, a = 0.75) = 0.839), and
0.5 [from top to bottom]. Note that there are no two-point correlations in the last case.

I find that the procedure of shifting the h(q) curves by using spectral filtering works very well.
There are hardly any deviations from the expected behavior of h(q) if a = 0.6 [see Figs. 3.9(b,f)]
or for MF-DFA4 [see Fig. 3.9(r)]. Clearly, the detrending capacity of MF-CMA and MF-DFA2
is insufficient to obtain the correct h(q) for a = 0.75 in particular for negative q and large h(2)
[see Figs. 3.9(j,n)]. The reason is the upper limit for scaling exponents: h(2) ≤ n + 1 for DFAn
[Kantelhardt et al. 2001] and h(2) ≤ 2 for CMA, since it is linearly detrending only. Although,
these limits are not strict for q < 2, i. e., in the multifractal versions of both methods, significant
deviations occur if the real h(q) comes close to the limits. One thus has to select a sufficiently
large order n of detrending if large h(q) occur or if results for methods with different detrending
order disagree.

In Figs. 3.9(c,g,k,o,s) corresponding results for τ(q) are shown [see Eq. (3.29)], while
Figs. 3.9(d,h,l,p,t) display the corresponding singularity spectra f(α) obtained by Eq. (3.30).
Again, deviations from the expected curves can be seen for a = 0.75 and MF-CMA as well as MF-
DFA2 only. Evidently, the singularity spectra are very well approximated by parabolas. However,
no tuning of the shape of the singularity spectra is possible in the GB-MFM.

In Fig. 3.10 results for the strength of multifractality, measured by ∆h20 = h(−20)−h(20) / ∆α,
are shown for the GB-MFM as a function of the model parameter a. For the pure model [blue
circles] the theoretical behaviour is fully recovered by all four methods, MF-CMA, MF-DFA1,
MF-DFA2, and MF-DFA4. Note that even values ∆h20 > 4 can be observed in the MF-CMA
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results although this exceeds the possible range of h(2), 0 < h(2) < 2, by a factor of two. This
illustrates that these strict limits for h(2) do not apply for other (in particular negative) values of
q.

Ideally, the strength of multifractality should be also preserved for every adjusted h(2). However,
as can be seen for model parameters a > 0.7, tuning h(2) by Fourier filtering reduces ∆h20

by a level depending on the applied analysis method and the total difference of the model’s
intrinsic correlations (βmodel) and the desired target correlations (βtarget), i. e., according to ∆β
given by Eq. (3.37). Similar, but much weaker problems seem to occur for a ≈ 0.55, where the
multifractality is increased by filtering [see also later discussion around Fig. 3.14]. In both cases,
the multifractality is fairly well preserved for target h(2) = 0.5, i. e., intrinsic correlations of the
model can easily be removed for a wide range of a (and thus ∆hq). As already mentioned in
discussing Fig. 3.9, a higher order of detrending is required for successfully retrieving the correct
h(q) for large h(2) and large a (and thus strong multifractality) in the filtered version of the model.
For relatively weak multifractality (a ≤ 0.7) it is sufficient and computationally convenient to use
MF-CMA. MF-DFA1 is comparable to MF-CMA [see Figs. 3.10(a,b)], although our error bars
obtained as standard deviations of the results for 1000 configurations are slightly lower for MF-
DFA1. For a ≥ 0.75 one must apply at least MF-DFA2 [see Fig. 3.10(c)], while even higher order
detrending is needed for a ≥ 0.85. MF-DFA4 works up to a = 0.9. Note that for MF-DFA4
and a = 0.95 the values shown in Fig. 3.10(d) are slightly lower than the theoretical expectation
(blue circle does not lie on black curve) due to finite size effects. In fact for negative values of
q the associated fluctuation function shows a crossover within the fitting range [64, 16384] used
for all values shown in Fig. 3.10 resulting in an underestimation of h(−20) and finally in an
underestimation of ∆h20. However, I did not want to adjust the range just for a single parameter
set.

Taking into account the exact reproduction of h(q) by all methods in the unfiltered version of the
GB-MFM one can see that the need for using higher order detrending in analyzing data from the
filtered version is most probably due to apparent trends introduced into the data in the second
(Fourier filtering) step. However, since such effects are possible also in real data I recommend
comparing with high-order MF-DFA if strong multifractality is observed. Nevertheless, surrogate
data needed for applications will usually require weaker multifractality (a < 0.75), and MF-CMA
can then be used for analyses and comparisons.

3.3.6. Surrogate Data Generation by Block Shuffling

It is a common approach to compare fluctuation analysis results from real data with results
obtained from the same data after random shuffling, see, e. g. [Kantelhardt et al. 2001, 2002].
The shuffling procedure destroys correlations on all time scales, but preserves the distribution
of the elements. A comparison of both results thus reveals all effects of correlations and allows
distinguishing effects of correlations from those of (possibly broad) distributions.

However, one might also want to destroy correlations in real data within a certain limited range of
time scales only [Schumann and Kantelhardt 2010b]. This is particularly appropriate to test
hypotheses regarding correlations or correlation-caused multifractality on specific scales, e. g., just
below a particular time scale L. In this case there should be no change in the results of fluctuation
analysis upon destroying all correlations for s > L.

Destroying all correlations above a certain scale L can easily be achieved by shuffling blocks of
the data of size L while keeping the order of the values within each block untouched [Schumann
and Kantelhardt 2010b]. For instance, when non-overlapping segments of width L = 100 are
randomly shuffled all correlations for scales L > 100 are destroyed and the generated surrogate
data exhibit uncorrelated and monofractal (h(q) = 1/2) behavior for L > 100 unless there are
remaining effects of broad distributions of the values.

On the other hand, correlations on short scales s < L can be analogously destroyed by shuffling
the data within the blocks of size L keeping the order of the blocks unchanged [Schumann and
Kantelhardt 2010b]. This way, short-term correlations (and possibly related multifractality)
can be selectively destroyed. For example, one can check if multifractality in river runoff below
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Figure 3.11.: Correlations in long-term correlated data [h(q) = 0.9, N = 100000, generated by Fourier filtering] are
destroyed on large scales by shuffling non-overlapping blocks of size L = 50 [bottom, red] and L = 200 [top, orange]
(a,b), and on small scales by shuffling the data inside non-overlapping blocks of the same size (c,d; same order and
color coding). Fq(s)/s

1/2 is shown for q ∈ [−20,−10,−5,−2, 0, 2, 5, 10, 20] and MF-CMA (a,c) as well as MF-DFA2
(b,d) averaged over 1000 configurations. Theoretical slopes h = 0.5 [uncorrelated] and h = 0.9 [model] are indicated
by black dashed lines. Fq=2(s) is marked by triangles, Fq=−20(s) by boxes, and Fq=20(s) by crosses. All curves are
vertically shifted (i) for different q and (ii) for different parameter sets. Vertical lines in the corresponding color
indicate the values of L.

time scales of one year is due to correlations by shuffling the data within blocks of size L = 365
days. Furthermore, it should be possible to first shuffle the data within blocks of length L1 and
then shuffle whole blocks of length L2 to preserve only correlations for L1 < s < L2. I test the
results of both major shuffling modes using MF-DFA and MF-CMA in Sect. 3.4.1.

3.4. Spurious Multifractality in Monofractals

Often multifractal analysis methods are blindly applied to real data and the reliability of scaling
obtained by linear fits in the double-logarithmic regime to resulting fluctuation functions (e. g.
MF-DFA [Sect. 3.3.1]) or partition functions (e. g. WTMM [Appendix E.4]) is often not prop-
erly checked. This Section is dedicated to the question under which circumstances by definition
monofractal signals can exhibit a spurious multifractal structure.

Therefore, we check the scaling behavior of various kinds of surrogate data with both multifractal
analysis methods, MF-DFA and MF-CMA. In particular we want to point out pitfalls (observa-
tions suggesting spurious multifractality) in multifractal analysis of fractal and multifractal data
including data with inhomogeneous scaling behavior.

3.4.1. Spurious Multifractality in Block Shuffled Data

As a first example I consider non-multifractal (monofractal) long-term correlated data with h(2) =
0.9, i. e., γ = 0.2, where either (i) correlations on large scales are removed by shuffling data blocks
of size L, or (ii) correlations on small scales are removed by shuffling the data within these blocks
keeping the order of the blocks. More detailed information on this type of surrogate data were
given in Sect. 3.3.6. Figure 3.11 shows fluctuation functions obtained from MF-CMA and MF-
DFA2 for two different block lengths L = 50 and L = 200 where shuffling of entire blocks was done
for Figs. 3.11(a,b) and shuffling within these blocks took place to create Figs. 3.11(c,d). Note that
I show F (s)/s1/2 vs. s, and hence, uncorrelated behavior corresponds to a horizontal plot in this
presentation. As can be seen in Fig. 3.11(a) CMA results (i. e., MF-CMA results for q = 2) still
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Figure 3.12.: Dependence of observed crossover lo-
cation s× on the considered moment q for block-
shuffled long-term correlated data [h(q) = 0.9, N =
100000] for L = 50 [green triangles], L = 100 [orange
squares], L = 200 [light blue circles], and L = 600
[red stars]. Dashed lines in the same color and sym-
bol indicate the values of L. Results are obtained
by MF-CMA (a) and MF-DFA2 (b) averaging 1000
configurations.

seem to indicate correlations up to scales s× (observed crossover positions) approximately four
times larger than the block size L [marked by vertical lines in the same colors]. For DFA2 s× is even
approximately six times larger than L, see Fig. 3.11(b). The observed crossover positions are thus
deviating even more from the theoretical crossovers as for data with a crossover directly generated
by Fourier filtering: s×,DFA1 ≈ 1.6sreal (related to CMA) and s×,DFA2 ≈ 2.5sreal [Kantelhardt
et al. 2001]

Looking at other moments q 6= 2, one finds that the crossover position sx is strongly dependent
on q, as can be seen in all panels of Fig. 3.11. Figure 3.12 systematically shows this dependence
for four exemplary block sizes L and for both methods [block sizes from Fig. 3.11 are included in
the same colors]. The block size L which can be interpreted similarly to a theoretical crossover
is indicated by dashed lines using corresponding colors and symbols. For negative values of q,
q = −20, the difference is surprisingly large: s×/L ≈ 32 (MF-DFA2) and s×/L ≈ 12 (MF-CMA);
for q = 2 values are roughly s×/L ≈ 8.5 and s×/L ≈ 4.5 while for positive moments q = 20
one finds s×/L ≈ 5.5 and s×/L ≈ 3.75, respectively28. For MF-CMA, s× is not only smaller (as
expected from earlier studies [Kantelhardt et al. 2001; Bashan et al. 2008]) but is also less
dependent on q than for MF-DFA2.

Figures 3.11(c,d) show results from long-term correlated data with short-term correlations elimi-
nated by block shuffling. The crossover positions correspond to the cases with eliminated long-term
correlations. However, the crossover seems to be more pronounced for negative values of q in this
case and somewhat broader in MF-DFA2 compared with MF-CMA. I checked that there are no
effects of odd configurations in the plots.

Having a q dependent crossover at sx [as shown for non-multifractal data in Figs. 3.11 and 3.12]
represents a dangerous pitfall for conclusions regarding multifractality. If (part of) such a broad
crossover happens to be in the considered fitting regime for calculating the slopes h(q), spuri-
ous multifractality will be observed. This is illustrated in Fig. 3.13, where the same long-term
correlated data (h(q) = 0.9) without multifractality is considered with and without block-shuffling.

Figure 3.13 shows the averaged MF-DFA2 [top] and MF-CMA [bottom] fluctuation functions for
both types of non-multifractal data together with the full multifractal analysis: fitted generalized
Hölder exponents h(q) for different fitting regimes [as indicated in Fig. 3.13(a)] and derived singu-
larity spectra f(α). The results show that a certain level of apparent multifractality (∆α ≈ 0.2)
is already observed in the purely long-term correlated data due to finite-size effects, even though
the corresponding fitting regime includes nearly three orders of magnitude (30 < s < 20000).
The data with crossover at L = 200 generated by block shuffling exhibits even stronger spurious
multifractality (∆α ≈ 0.3) if the fitting regime is not changed. Fitting in smaller regimes yields
strongly regime-dependent results. None of them is consistent with the expected monofractal
scaling behavior even if the crossover is not within the fitting regime. A spurious ’inverted’ multi-
fractality is observed on short time scales (30 < s < 400), where h(q) = 0.9 is expected, and even
stronger (∆α ≈ 0.35) spurious normal multifractality on large time scales (4000 < s < 20000),
where h(q) = 0.5 is expected since the correlations above L = 200 were destroyed by block shuf-

28These values are very roughly rounded to give a general idea, indeed there are noticeable differences between
values obtained from different block sizes L and quotients may even vary by 1.
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Figure 3.13.: Comparison of multifractal analysis results from purely long-term correlated data [α = 0.9, N =
100000, top blue curves in (a,b)] and the same data after additional shuffling of non-overlapping blocks [L = 200,
bottom red curves in (a,b)] employing MF-DFA2 (a,c,d) and MF-CMA (b,e,f). All results are based on Nc = 1000
different configurations. In (a,b) multifractal fluctuation functions Fq(s), q ∈ [−20,−10,−5,−2, 0, 2, 5, 10, 20] are
shown. Colored arrows mark different fitting regimes for obtaining h(q); from top to bottom: (i) for purely long-
term correlated data s ∈ [30, 20000] (orange), s ∈ [100, 1000] (black), and (ii) for shuffled data s ∈ [30, 400] (blue),
s ∈ [4000, 20000] (green), and s ∈ [30, 20000] (purple). In the same color coding h(q) is illustrated in (c,e), and f(α)
in (d,f). Values for ∆α are obtained from the roots of second order polynomial fits.

fling. The ’inversed’ singularity spectrum (see blue points in Fig. 3.13(d,f)) is in fact a typical
sign of crossover effects disturbing the scaling behavior. Note that the unexpectedly large spurious
multifractality in the large s regime, where h(q) = 0.5 should be expected after the block shuf-
fling, can be explained as follows. Looking at Eqs. (3.20), (3.24), (3.17), and (3.22) the number of
windows ν becomes one in the limit of large scales (s→ N), leading to only one term in the sums
in Eqs. (3.24) and (3.22). Therefore, the fluctuation functions must become independent of q and
converge in one point for s → N , which can only be achieved by different, slopes depending on
q, i. e., apparent multifractality. This observation constitutes a deficiency of fluctuation analysis
methods in general.

These results indicate that a ’blind’ multifractal analysis, where h(q) or f(α) is automatically
calculated without looking at the scaling behavior of the fluctuation functions, is very dangerous.
A crossover in the data creates spurious multifractality and further increases the apparent ∆α
above the levels expected due to finite size effects. Even comparing the results of two analysis
methods with different detrending capability does not help in these cases. Therefore, careful
checks of possible crossovers and comparisons involving different fitting regimes are needed before
conclusions regarding multifractality should be drawn for real data unless the calculated ∆α values
are much larger than those obtained for non-multifractal data here.

3.4.2. Spurious Multifractality Due to Finite-Size Effects and Nonstationary
Correlations

In order to study systematically, down to which ∆h20 (and ∆α) real multifractality can be de-
tected reliably by MF-CMA and MF-DFAn in data without crossovers in the following results
for monofractal and multifractal data are compared. I find that the non-zero numerical values of
∆h20 and ∆α calculated from MF-DFA2 and MF-CMA results of non-multifractal data depend
mainly on h(2). Since this dependence is much stronger than the N dependence of these finite-size
effects, detailed results are presented in Fig. 3.14.

Figures 3.14(a-c) show ∆h20 and ∆α as well as the ratio of the two parameters versus h(2) for
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Figure 3.14.: Degree of multifractality expressed by ∆h20 and ∆α and their ratio for MF-CMA [triangles] and
different orders of MF-DFA [o(1) diamonds, o(2) crosses, o(1) stars]. Open symbols in (a-c) refer to monofractal
long-term correlated data of h(2) ∈ [0.3, 1.35], N = 100000; filled symbols refer to results from a generalized binomial
multifractal [a = 0.55, N = 216] with tuned h(2) ∈ [0.3, 1.35] as described in Sect. 3.3.5. Open symbols in (d-f)
denote results for pure stochastic binomial multifractals [without tuning h(2)] from bottom to top for parameters
a = [0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95] and only for MF-CMA and MF-DFA2. Black curves illustrate the
theoretical behavior. Note: Although results become stable very quickly each point in every panel is derived by
averaging Nc = 1000 configurations.

both, monofractal data generated by Fourier filtering [open symbols] and multifractal data from
the GB-MFM [a = 0.55; filled symbols; see Sect. 3.3.4 for model details]. One clearly observes
spurious multifractality for the monofractal signals increasing with h(2) up to a ∆h20 ≈ 0.2 and
∆α ≈ 0.3, respectively. These strengths of finite-size multifractality effects are basically the
same for MF-DFA1 and MF-CMA, but become smaller for MF-DFAn with n > 1. Thus, when
multifractality characterized by ∆h20 ≈ 0.2 is found in real world data, this result cannot prove
multifractality on its own. Further tests are necessary, e.g., by comparing results for different
detrending orders n. Supposedly multifractal time series showing ∆h20 ≤ 0.2 or ∆α ≤ 0.3,
respectively, might indeed be monofractal, in particular if h(2) is large, i. e., in the non-stationary
regime h(2) > 1. Therefore, I suggest being very careful with conclusions regarding multifractality
if ∆h20 ≤ 0.2 and/or ∆α ≤ 0.3. An additional effect which might partially be responsible for
the observed spurious multifractality in non-multifractal data might be an altered distribution
of values due to the Fourier filtering technique. In studying the Schreiber-Schmitz method [see
Sect. 1.5.2] I found that the distribution of values is foremost notedly changed for h(2) > 1.25
[see also Fig. 1.3 for an example with h(2) = 1.5]. However, since a similar increase in ∆h20

and ∆α is observed for h(2) < 1 and in particular around h(2) = 0.5, I doubt that a broad
distribution is an appropriate explanation. Such hypothesis could easily be checked by shuffling
the data that destroys multifractality due to correlations but preserves multifractality due to a
broad distribution [Kantelhardt et al. 2002].

The same trends with h(2) are observed for multifractal data, see the filled symbols in Figs. 3.14(a-
c). Considering the GB-MFM with a = 0.55 (corresponding to ∆h20 = 0.192 and ∆α = 0.290), I
find the numerical values of these quantities also increasing with h(2), just as for the monofractal
data [see Figs. 3.14(a,b)]. The ratio of both quantities, however, is fairly constant [see Fig. 3.14(c)]
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Figure 3.15.: Multifractal anal-
ysis of two joined monofractal
long-term correlated data se-
ries [N = 100000 each]. Scaled
results for (a) MF-CMA and
(b) MF-DFA2 are presented for
q ∈ {−20,−10,−5,−2, 0, 2, 5, 10, 20}
with triangles marking q = 2,
boxes q = −20, and crosses
q = +20. Black dashed lines
indicate theoretical slopes for
both patches [from bottom to top]
(h(2)first, h(2)second) = (0.5, 0.6) [red],
(0.7, 0.8) [purple], (0.6, 0.9) [yellow],
and (0.5, 1.0) [green]. All curves are
vertically shifted (i) for different q
and (ii) different parameter sets.
Gray shaded areas indicate the
fitting range. Parts (c,d) show the
numerical h(q) behavior [same order
for q > 0 and color coding as in
(a,b)]; errorbars from 1000 config-
urations; symbols mark theoretical
values for a corresponding bi-fractal.

and strictly below 1.6, unlike the behavior for monofractal data. High ratios ∆α/∆h20 > 2 are
thus clearly indicative of spurious multifractality.

Results for the pure binomial multifractal model without modified long-term correlations are
presented in Figs. 3.14(d-f). The value of h(2) is close to 1 for weak multifractality (a ≈ 0.5)
and approaches 0.5 for strong multifractality (a → 1.0). Consequently, ∆h20 and ∆α drastically
increase with decreasing h(2). The numerical results are very close to the theoretical curves. The
ratio ∆α/∆h20 converges to 1 in the limit of strong multifractality as shown in Fig. 3.14(f). The
results show that both methods work very well for strong multifractality, and the parameters ∆hq
and ∆α become equivalent in this limit.

3.4.3. Spurious Multifractality Due to Patchy Correlation Behavior

As described in Section 3.3.3 real multifractal time series consist of interwoven fractal subsets with
the points in each subset (with fractal dimension f) characterized by different Hölder exponents α
(describing the local scaling behavior). If, however, these subsets are not fractal, there is no real
multifractality. In particular, a time series consisting of large patches of monofractal data with
each patch being characterized by a different (but not q dependent) scaling exponent h(q) = α
cannot be regarded as a multifractal. In fact, analyzing each patch separately would clearly reveal
the monofractal (and nonstationary) nature of the data in this case. In practice, however, the
positions of the patches might not be known, and therefore one might be tempted to study the
whole non-stationary time series by a single multifractal analysis procedure. A practical example
is the fluctuation behavior of human heartbeat, which has been studied by looking at whole 24h
recordings [Peng et al. 1995] and by splitting them into daytime and nighttime [Ivanov et al.
1999a] as well as different sleep stages [Bunde et al. 2000], rest and exercise [Karasik et al. 2002].
Although, consequences of patchy data on a monofractal DFA analysis were studied in [Chen et al.
2002] their impact on a multifractal analysis, e.g., when employing MF-DFA or MF-CMA, were
not studied before. Therefore, I now consider the simple model of independently generated and
joined long-term correlated time series of N = 100000 elements each characterized by different
monofractal scaling behavior (h(2)first and h(2)second).
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Figure 3.15 shows the spurious multifractality appearing for such data. Obviously, both methods,
MF-CMA and MF-DFA2 seem to indicate rather strong multifractality (or better: bi-fractality)
if hfirst and hsecond are sufficiently different, see the two top sets of curves in Figs. 3.15(a,b).
One can see that the larger fluctuation exponent is retrieved in the limit of large positive q
while the smaller one appears for negative q. The strange shapes of the corresponding h(q)
curves shown in Figs. 3.15(c,d), however, clearly indicate that there is something wrong with this
multifractality – for real multifractal data one would expect a monotonously decaying h(q) curve,
i.e., h(−|q|) > h(|q|). In general, any segment of h(q) with positive slope should be considered as
a sincere warning that there are problems with the observed scaling behavior.

If, on the other hand, both exponents hfirst and hsecond differ by just 0.1 the scaling behavior
appears as nearly monofractal, see the two bottom sets of curves in Figs. 3.15(a,b). In this case
the fitted slopes h(q) meander between hfirst and hsecond, see Figs. 3.15(c,d). Except for crossovers
appearing at smaller scales for MF-CMA (originating in the different detrending order) there are
no significant differences between the results of MF-CMA and MF-DFA2.

To understand what is observed let us first recall that stitching together two monofractal patches
of different fluctuation exponents should result in a pseudo bi-fractal when studied as a whole by
MF-CMA or MF-DFA. I use the attribute ’pseudo’ here because although a fluctuation analysis
yields non-monofractal behavior the series is not characterized by interwoven fractal subsets which
I consider to be an integral part of multifractality (or, bi-fractality). In a real bi-fractal series
any sufficiently long subset ensuring reliable statistics exhibits bi-fractal scaling. In the joined-
monofractals case, however, any subset that does only contain parts of either half is immediately
identified as a monofractal.

Next it is necessary to understand why the larger scaling exponent is retrieved for large positive
moments q and the smaller scaling exponent for large negative moments. Therefore, consider
the fluctuation function (exemplarily for MF-DFA; analogous for MF-CMA and other related
methods) in Eq. (3.22). Since in the algorithm non-overlapping windows are considered only
one window contains information of both patches each characterized by h(2)first and h(2)second,
respectively. The qth moment fluctuation function is linear in F qMF-DFA,ν ; let without loss in
generality be h(2)first ≥ h(2)second, and hence,

F (s) ≈
[
F qfirst + F qsecond

]1/q

∼
[
sqh(2)first + sqh(2)second

]1/q
≈





2sh(2) : h(2) = h(2)first ≈ h(2)second, q 6= 0

sh(2)first : h(2)first > h(2)second, q ≫ 0

sh(2)second : h(2)first > h(2)second, q ≪ 0

(3.38)

where the first ’≈’ is used since the equality is violated by the window containing parts of both
patches for most scales s. At this juncture, above argumentation remains valid for overlapping
windows (MF-CMA or statistically enhanced MF-DFA) since although the number of windows
containing the joint of both scaling regimes increases, the number of windows belonging to either
one regime does increase as well.

The discussed property has serious consequences for any multifractal analysis in long datasets
where spurious multifractality might be rooted in many joined monofractal subsets. For instance
multifractality which has been reported in 24h heartbeat by various authors, see [Sassi et al. 2009]
for a recent example, has to be challenged. Although heartbeat data is sometimes subdivided into
daytime and nighttime segments, e.g., 6h segments each in [Ivanov et al. 1999b], subdivision
should be done even more carefully according to certain sleep stages during night or activity vs.
rest during daytime. Nevertheless, to my own opinion and experience with multifractal analyses
of heartbeat during different sleep stages [not discussed in this thesis] it is unlikely that reported
multifractality is completely spurious. This is supported by a recent paper [Ding et al. 2007] whose
results on the other hand appear to my own experience in a much larger database (SIESTA) a
little too smooth considering the strong inter-individual variations in heartbeat, and I urge the
reader to question associated results.



60 3. Studying Fluctuations

Figure 3.16.: Multifractal analysis of long-
term correlated data [N = 100000, 〈xk〉 =
0, 〈x2

k〉 = 1] with additional trends. (a,b)
2nd-order trend Ax2; h = h(2) = 0.95,
A = 0.0001 [orange]; h = 0.75, A = 10−5

[purple]; h = 0.5, A = 10−7 [red]. (c,d)
4th-order trend Ax4; h = 0.95, A = 10−19

[orange]; h = 0.75, A = 10−17 [purple];
h = 0.5, A = 10−15 [red]. Scaled fluctua-
tion functions Fq(s)/s

1/2 obtained by (a,c)
MF-DFA2 and by (b,d) MF-CMA for q ∈
[−20,−10,−5,−2, 0, 2, 5, 10, 20] with trian-
gles marking q = 2, boxes for q = −20, and
crosses for q = +20. Blue dashed lines indi-
cate slopes for initial correlations or linear
fits to fluctuation functions on large scales.
All curves are vertically shifted (i) for differ-
ent q and (ii) for different parameter sets.

3.4.4. Spurious Multifractality in Data With Trends

It is known that trends of different order affect monofractal DFA, see Figs. 3.2(a,b) or [Kan-
telhardt et al. 2001; Hu et al. 2001; Rybski and Bunde 2009]. Since CMA is comparable to
DFA1 (linear detrending in the profile, removal of local means in the signal) one expects to observe
effects of linear or higher order trends in those results as well. However, it was not studied so far
if these effects are different for different moments q in the corresponding multifractal versions of
the methods.

In Fig. 3.16 I study the crossovers observed for monofractal long-term correlated data with ad-
ditional quadratic [Figs. 3.16(a,b)] and forth order polynomial [Figs. 3.16(c,d)] trends using both
multifractal analysis methods, MF-CMA and MF-DFA2 [parameters in figure’s caption]. Since
both of them cannot eliminate these trends, crossovers at positions s× related to the strengths of
the trends are expected from previous studies. Comparing Figs. 3.16(a,b) one clearly observes
the expected crossover behavior for MF-DFA2, while MF-CMA fails to reveal any usable informa-
tion about the underlying scaling except for the weakest trend (bottom curves). The monofractal
partial result which was already reported for monofractal analyses (q = 2) is contained in each
curve group and marked by open triangles up. Clearly the detrending capability of MF-CMA is
too weak for strong trends here.

Interestingly though, all fluctuation functions exhibit strong spurious multifractal (or better rather
bi-fractal) scaling on large time scales, where the positive moments (q > 0) have slopes of ≈ n+ 1
(with n the detrending order), while the negative moments (q < 0) have slopes t+ 1 (with t the
order of the trend). These properties can in principle be analytically derived by evaluating the
following scheme (sketched for MF-DFA):

Assume that both components, the correlated noise xk and the trend tk = Ako of order o are
uncorrelated with each other and additively superimposed. Then it follows for the superimposed
profile (linear) Yx+t = Yx+Yt, and together with their individual nth-order detrending polynomials
in the νth window, pn,ν,x and pn,ν,t, one finds for the corresponding superimposed DFA fluctuation
function

F 2
DFAn,ν,x+t(s) =

1

s

s∑

i=1

{Yx(νs+ i) − pn,ν,x(i) + Yt(νs+ i) − pn,ν,t(i)}2 . (3.39)

Here, I have only considered non-overlapping windows for the forward direction for simplicity.
Similar expressions can easily be obtained for the backward direction and/or overlapping windows.
Since I assumed noise and trend to be uncorrelated it follows that both detrended profiles are
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uncorrelated, and hence, all terms

s∑

i=1

(Yx(νs+ i) − pn,ν,x(i)) (Yt(νs+ i) − pn,ν,t(i)) ≈ 0 (for large s) (3.40)

yielding the superimposed qth moment MF-DFA fluctuation function

FMF-DFAn,x+t,q(s) =


 1

[N/s]

[N/s]−1∑

ν=0

[
F 2

DFAn,ν,x(s) + F 2
DFAn,ν,t(s)

]q/2



1/q

. (3.41)

Equation 3.41 does not trivially separate because in general q ∈ R, and thus, the binomial theorem
does not apply, here. To find an exact solution: (i) the least-square fit of the desired detrending
polynomial to the profile has to be obtained analytically employing software tools capable of
symbolic analysis, (ii) results have to be inserted in Eq. (3.39) followed by Eq. (3.41), and (iii)
the leading terms for both limits q → ∞ and q → −∞ have to be identified. For a much simpler
example see [Hu et al. 2001] where the exact solution for the monofractal DFA1 (q = 2, linear
detrending polynomial) considering a quadratic trend in the profile (linear trend in the signal)
is discussed. Note that this conjecturally simple example already yields a rather complicated
formula. One can imagine that the analytical expression for the generalized multifractal case and
the trends shown in Fig. 3.16 has an even more complex structure. However, the behavior of
FMF-DFAn,x+t,q(s) in Eq. (3.41) can be approximated in the limit of small s and large s where
either stochastic components (from xk) or trend components (from Ak0) dominate, yielding

FMF-DFAn,x+t,q(s) ≈
{
FMF-DFAn,x,q(s) : n+ 2 ≤ s . N

FMF-DFAn,t,q(s) : sx & s ≤ N/4 .
(3.42)

This can easily be understood by imagining a stochastic component superimposed by a quadratic
trend which pans over the whole dataset and is detrended by a linear function (as in MF-DFA1).
For small scales the regression line approximates the quadratic trend rather well due to a small
curvature. Thus, local fluctuations in the windows ν are dominated by stochastic components
rather than trend components, finally yielding a qth-moment MF-DFA function similar to the
one obtained by separately analyzing the stochastic signal. On the other hand on large scales
1 ≪ s ≤ N/4 the fitting straight does rather badly approximate the trend which leads to large
fluctuations not at all representing the behavior of the noise. Fluctuations of the stochastic
component are eclipsed. Analogously, both limits can be explained for higher order trends and
detrending where the detrending order is smaller than the trend order.

But, why do positive q exhibit a scaling of n+ 1 with n being the detrending order and negative
q a scaling of t + 1 with trend order t? So far, I was not able to derive a convincing analytical
expression. However, in their simple toy model for monofractal DFA1 Hu et al. have shown
that the monofractal fluctuation function depends on nonlinear terms of the series length N
and nonlinear terms containing the scale s [Hu et al. 2001]. While Hu et al. neglect purely
s-dependent terms since s < N and q = 2 > 0 for a monofractal analysis, such approximation
is no longer generally valid in the multifractal case where terms containing N will still dominate
moments q > 0 but terms in s with s < N will dominate moments q < 0. Hence, a different
behavior of the multifractal fluctuation function can be expected assuming similar terms in an
exact solution. The Hu et al. model is related but not equivalent (if moments q are involved the
analytical expression will be different!) to the MF-CMA (which is not exactly the same as MF-
DFA1) case in Fig. 3.16(b). Simplifying their reported results yields for the largest components
F (s) ∼ s3 + Ns2. Together with the above argumentation and the assumption that similar
superscripts are retrieved in the generalized qth-moment fluctuation function this would roughly
yield a scaling of h(q < 0) = 3 and h(q > 0) = 2, respectively, in the multifractal case. Both
scaling exponents are observed in Fig. 3.16(b). Nevertheless, an exact multifractal expansion of
Eq. (3.41) allowing for a verification of this hypothesis remains to be done. The same is true for
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Figure 3.17.: Multifractal analysis of long-term correlated data [h(q) = 0.8, N = 100000] with additional peri-
odicities (a,b) of period T = 200 and amplitude A = 0.5 [red], A = 1 [purple] and A = 2 [orange], and (c,d) of
amplitude A = 1 and period T = 100 [orange], T = 200 [purple] and T = 400 [red]. The noise was normalized to
zero mean and unit variance. Scaled fluctuation functions Fq(s)/s

1/2 have been obtained by (a,c) MF-DFA2 and
by (b,d) MF-CMA for q ∈ [−20,−10,−5,−2, 0, 2, 5, 10, 20] with triangles marking q = 2, boxes for q = −20, and
crosses for q = +20. Black dashed lines indicate the theoretical slopes h = 0.8 as well as uncorrelated behavior
[h = 0.5]. Again all curves are vertically shifted (i) for different q and (ii) for different parameter sets.

the positions s× of the crossover which apparently strongly depend on q in the cases of spurious
multifractality.
Be aware that this scaling behavior has no relation with any multifractality or bi-fractality at
all and is only induced by the trends and application of fluctuation analysis methods of ’too’ low
order. For all examples in Figs. 3.16(a,b) MF-DFA3 would fully eliminate the trends and therefore
show no crossover, while MF-DFA5 would be needed to achieve full detrending in Figs. 3.16(c,d).

3.4.5. Spurious Multifractality in Data With Periodicities

Real world data, e. g., time series obtained from temperature or precipitation recordings, are
often disturbed by nearly periodic trends due to, e. g. annual variations. From monofractal
investigations it is known that even weak periodicities in the data can spoil its scaling behavior
[Kantelhardt et al. 2001; Hu et al. 2001]. Effects of periodicities (arrhythmias) can also be
observed in heartbeat and to my experience often during light sleep especially in apnea patients.
To check whether periodic trends can cause spurious multifractality I analyze long-term correlated
data with additional periodicities of different amplitudes and frequencies. Results obtained by MF-
CMA and MF-DFA2 can be found in Fig. 3.17. Obviously, all moments q are affected by the
periodicities. The position of the distortions in the fluctuation functions depends directly on the
period T (see Figs. 3.17(c,d)) while the strength of the distortions depends on the amplitude A of
the periodicities (see Figs. 3.17(a,b)).
However, the strengths of the disturbing effects are also different for different moments q leading
to a possible pitfall regarding conclusions about multifractality. In particular the regime just
below the twists exhibits different slopes with larger h(q) for negative q. Such effect seems to be
stronger for MF-DFA2 than for MF-CMA, compare Figs. 3.17(a,b) in the range 100 < s < 200.
This might lead to a spuriously decaying h(q) curve when blindly fitting over the distortions.
Note, that MF-CMA fluctuation functions show weak additional oscillations directly following the
initial meander due to only constant detrending while sinusoids can be piecewise approximated
by quadratic detrending in MF-DFA2.



4. Investigating Quasiperiodicities

This chapter is devoted to studying periodicities and more importantly quasiperiodicities in time
series. The latter term will be defined shortly. In particular I will focus on two recently developed
methods – namely Phase Rectified Signal Averaging (PRSA) and Bivariate PRSA (BPRSA) –
which are capable of detecting and studying quasiperiodicities in univariate, bivariate, and even
multivariate time series.

As a motivation why studying periodicities in recorded data is of importance recall that many
natural systems exhibit cyclicity on different time scales Among the numerous examples in biologi-
cal and physiological systems are cardio-respiratory rhythms whose mutual phase-synchronization
will be studied in further detail in Chapt. 5, rhythmic motions of limbs in walking, rhythms under-
lying the release of hormones and gene expression, membrane potential oscillations, oscillations
in neuronal signals, and circadian rhythms [see, e. g., Tyson 2002; Glass 2001]. Aside from
living systems oscillations can be found in geophysical data, e.g., for the El-Niño phenomenon,
sunspot numbers, and ice age periods [von Storch and Zwiers 2001] or in economics, e.g.,
stock exchange. In many cases several signals capturing different components of such complex
systems can be recorded simultaneously. A particular example are polysomnographic recordings
such as provided by the SIESTA database [see Sect. 2.3]. In order to elucidate a complex system,
including its control chains and feedback loops, knowledge about the interactions between differ-
ent components generating periodicities is desired. Consequently, there is a need for identifying
periodicities in one recorded signal together with the direction of causal relations to periodicities
in other signals.

Traditional tools used to tackle such questions are cross-correlation analysis [see Sect. 1.1] and
transfer function analysis [Schlittgen and Streitberg 1999]. However, there are three major
drawbacks of both methods: (i) only rather stationary data can be studied, (ii) a linear relationship
between the signals is usually assumed, and (iii) the identification of causalities is hindered by
the fact that the exchange of the two signals under study is identical with time inversion. Non-
stationarities are a major problem when analyzing signals of long duration [Priestl 1988; Peng
et al. 1994; Box et al. 1994; Brockwell and Davis 2003; Kantz and Schreiber 2004].
Many internal and external perturbations are continuously influencing the system and causing
interruptions of the periodic behavior. The interruptions often ’reset’ the regulatory mechanisms
resulting in phase de-synchronization of the oscillations. The signals thus become quasi-periodic,
consisting of many periodic patches as well as noise and trends. In addition, there might be causal
inter-relations between two signals X and Y that cannot be revealed by the traditional methods.
For illustration, assume that a large increase and a large decrease in X (later termed trigger
signal) cause the same specific effect in Y (later termed target signal), while there is no such effect
in Y if X remains unchanged. In this situation with an essentially nonlinear coupling between the
signals, both, cross-correlation analysis and spectral analysis cannot reveal the effect, see Sect. 1.1
for methodology. They show the superposition of the two branches of the interaction with opposite
signs, i.e., no effect. Even if the effects on Y were different for increases and decreases of X, one
could see some relation but could not distinguish the two effects. Hence, one needs a method
that can separately study effects in Y which might occur in response to different causes in X, and
vice versa. A separation of effects with different typical duration or frequency scale seems also
appropriate for distinguishing frequency-band selective inter-relations between X and Y .

Firstly, I will describe and review the Phase Rectified Signal Averaging (PRSA) method which
was originally introduced in the context of assessing cardiac-arrest risk after an index myocardial
infarction event and tested in a large data base comprising all together 2711 post-infarction pa-
tients (N = 1455 in the Munich cohort [ISAR-I, see Sect. 2.4.1], N = 656 in the London cohort,
and N = 600 in the Oulu cohort) [Bauer et al. 2006a,b]. In particular I will present and discuss
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new PRSA results as well as circadian-, diabetes-, and age dependencies of the PRSA based risk-
classification parameter Deceleration Capacity (DC) which I obtained from the Munich cohort
(ISAR-I) [Kantelhardt et al. 2007]. Further, univariate PRSA is employed to sleep data from
the SIESTA database separately for different sleep stages [Schumann et al. 2010a]. The second
part of this chapter is dedicated to a generalization of PRSA to a bivariate phase rectified sig-
nal averaging (BPRSA) [Schumann et al. 2008a] which is somewhat related to cross-correlation
analysis (CCA) [see Eqs. 1.9] but gives additional insights into the system under surveillance — I
will address advantages of BPRSA compared with CCA, discuss its performance and robustness
in the presence of nonstationarities. Finally, a sketch will be given how the method can further
be generalized towards a Multivariate Phase Rectified Signal Averaging (MPRSA).

4.1. Univariate Phase Rectified Signal Averaging (PRSA)

Let X = {xi}, i = 1, . . . , N be a long time series1 representing the signal under investigation
which in this thesis will either be artificial data or heartbeat data, in the bivariate case together
with blood pressure [Sect. 4.2]. Nevertheless, the methodology is not limited to this type of data
but can easily be ported to data from various other sources2.

In addition to periodicities and correlations of interest, X may contain non-stationarities, noise
and recording artifacts. One example for such signal is the series of time intervals between suc-
cessive heartbeats (RRI) [see Sect. 2.2]. Univariate Phase Rectified Signal Averaging (PRSA) was
shown to reduce the signal to a much shorter sequence keeping all relevant quasi-periodicities
but eliminating non-stationarities, artifacts, and noise [Bauer et al. 2006b]. PRSA is based on
the assumption that certain ’typical oscillatory patterns’ are present throughout the signal. Such
quasi-periodic oscillations are characterized by non-constant frequencies throughout the signal
and additional interruptions in their periodic cycles. Usually, internal or external perturbations
– for instance, cardiac arrhythmias or activity changes – lead to phase jumps: an oscillator stops
and then resumes its operation with a random phase offset that is not related with the phase
of the oscillations before the interruption. Both phase jumps and frequency variations destroy
the auto-coherency of the signal and broaden characteristic peaks in its power spectrum yield-
ing a diffuse frequency localization. Additionally, random noise components from various sources
disturb an analysis. The previous chapter, Chapt. 3, was exclusively dedicated to studying the
characteristics of such noise components by various multifractal detrending fluctuation analysis
methods. Now, I aim at a somewhat complementary goal. In a fluctuation analysis oscillatory
components disturb a homogeneous scaling behavior – recall the influence of oscillations presented
for the monofractal (q = 2) case in Fig. 3.2 – and, moreover, can imply spurious multifractality
as depicted in Fig. 3.17. Fluctuations, on the other hand, disturb studies aiming at understand-
ing oscillatory dynamics. Hence, a methodical framework for enhancing quasi-oscillatory traces
hidden in the signal by simultaneously attenuating random fluctuations is needed.

In addition to such rather technical desire there is the medical requirement to distinguish oscilla-
tory components that are associated (in phase) with the deceleration of the heart, i.e., increases
in beat-to-beat intervals, and acceleration of the heart, i.e., decreases in beat-to-beat intervals.
The reason are two complementary parts of the autonomous nervous system [see Sect. 2.2] be-
ing responsible for either of the two. The sympathetic autonomous nervous system affects the
acceleration of the heart while the parasympathetic autonomous nervous system is responsible
for steering its deceleration. Although parasympathetic activation is faster than sympathetic ac-
tivation [HRV Task Force 1996] we recognize sympathetic effects more quickly. For instance,
when we are suddenly frightened or get up quickly from supine to upright position our heart rate

1At least long enough to result in approx. 100 anchor points [see description of PRSA algorithm in Sect. 4.1.1].
Commonly, I suggest a minimum of N = 1000 data points, roughly resulting in 500 anchor points assuming a
series characterized by a homogeneous distribution of increasing events and decreasing events.

2Although results are not presented in this thesis I have applied (bivariate) phase rectified signal averaging to
geophysical data, e.g, El Niño datasets (Sea Surface Temperature (SST) from different locations in the Pacific),
Southern Oscillation Index (SOI), North Atlantic Oscillation Index (NAO), sunspot data, or All Indian Rainfall
Index a proxy of Monsoon activity.
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increases fast. The parasympathetic deceleration of the heart, on the other hand, appears to be
rather slow. This can manifest for example as a longer time that our bodies need to calm down
after exercise compared with the rather quick speedup before. A separate analysis of both effects
would be helpful for researching different components of autonomic control. In addition, it is
believed that results can be exploited to improve mortality-risk assessment due to the empirical
observation that in high-risk patients the heart’s ability to slow down (parasympathetic effect) is
diminished compared with healthy subjects or subjects with a positive prognosis after an index
infarction event [Priori et al. 2001; Huikuri et al. 2009].

Obviously, the desired method needs to combine typical, i.e., average information from many
times of the same event, i.e., the same phase by simultaneously reducing noise. Parasympathetic
activation resulting in the heart’s deceleration is just one example of such an event. For that reason
my collaborators successfully suggested to align similar events together with their surroundings,
i.e., phase rectify the signal, and average to enhance the features while reducing the out-of-phase
noise.

Before describing the PRSA method in detail I would like to mention that although the idea behind
PRSA was originally developed independently, it is similar to event-locked functional magnetic
resonance imaging (efMRI), event-related potentials (ERP) based on electro-encephalographic
(EEG) data, or its magneto-encephalographic (MEG) pendant event-related fields (ERF) analysis
which have been applied to tackle brain and central nervous system related questions in physiology,
(cognitive) psychology, or linguistics during the last two decades, see e.g. [Luck 2005; Polich
2003; Buxton 2002] for an overview. For instance in efMRI studies it is common to expose a
subject to certain stimuli, e.g., showing a photograph of the well known actress Jennifer Aniston3,
at a well-defined time and record changes in neural activity (measured by blood oxygen-level
dependent (BOLD)-fMRI) before, during, and after exposure [Quian Quiroga et al. 2005]. For
statistical reasons the experiment is repeated several times including intermediate ’no-stimulus’
or even ’counter-stimulus’ episodes to reset the brain activity to baseline activity. Scans are
than aligned with respect to stimulus onset and activity profiles are averaged. By comparing the
’normal’ brain activity, i.e., without exposure, with the ’stimulated’ brain activity one can identify
brain regions that were especially active or inactive upon stimulation and study their dynamics.
In sleep EEG it has been found that aligning recordings at times of occurring sleep spindles and
averaging recovers the respiratory cycle [Achermann 2009].

4.1.1. PRSA Algorithm With Variants

The PRSA algorithm comprises 3 steps which are illustrated in Fig. 4.1:

Step 1: Definition of Anchor Points
Anchor points are selected in the time series X = {xi} according to signal-specific features one
wants to study. There are several possibilities: in the most simple version of the PRSA method
the anchor points correspond to increases (or, alternatively, decreases) in the signal as is depicted
in Fig. 4.1(a) where red points mark such anchor points for increase events. A point xi qualifies
as an anchor point if xi > xi−1 (or, alternatively, xi < xi−1) for triggering on increases (or
decreases, respectively). Alternatively, one may define the anchor points by comparing sums (or,
equivalently, averages) of T successive values of the time series before and after the anchor point
candidate xi in order to study a lower frequency regime,

T−1∑

j=0

xi+j >

T∑

j=1

xi−j (4.1a)

T−1∑

j=0

xi+j <
T∑

j=1

xi−j , (4.1b)

3Actress Jennifer Aniston is well known from playing “Rachel Green” in the American comedy show “Friends”.
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Figure 4.1.: Illustration of the PRSA technique: (a) Randomly chosen fragment of a 24h beat-to-beat interval
signal from a post-infarction subject [72 years old, male survivor with diabetes] from the ISAR study. Anchor
points [red filled circles] are selected in the time series RRI(i) according to Eq. (4.1a) with T = 1. Exemplarily,
only 5 of altogether 33162 identified anchor points, i.e., ν8509 [purple], ν8510 [orange], ν8511 [blue], ν8512 [coral],
and ν8513 [green], are depicted together with their corresponding surrounding of length 2L [in same colors; here
L = 52 for clarity] defined around each anchor point. (b) Surroundings of all anchor points are aligned at their
anchor positions [here: only windows ν8509,...,8519 are shown]. (c) PRSA curve, PRSA(k), from averaging over all
surroundings obtained in such way from the whole heartbeat signal [N=79474]. (d) PRSA curve derived analogously
to (a-c) but by setting T = 5 in the anchor condition in Eq. (4.1a). Larger parameters T act as frequency low-
pass filters. One clearly observes a fast oscillation likely related to respiration [period roughly 4 heartbeats per
breath cycle] which is especially present [coherent] during ±20 heartbeats around a deceleration event [an increase
in heartbeat intervals], and a slow oscillation [period approx. 27 heartbeats] that is believed to be related with
blood pressure oscillations.

where the simplest case is retrieved for setting T = 1. The parameter T sets an upper frequency
limit for the periodicities that can be detected by PRSA (a kind of low pass filter, compare also
Figs. 4.1(c,d)).

In principle other boolean valued functions F : Ω → {0, 1} can serve as more sophisticated anchor
criteria where Ω is the sample space of X and F assigns to every point xi ∈ Ω the value true for
the condition ’is an anchor’ or false for the condition ’is not an anchor’4. This allows studying
more complex structures in signals, e.g., two consecutive increases followed by a decrease and an
increase, again. However, F must capture a ’typical’ pattern yielding a sufficiently large number
of selected anchor points to ensure a successful denoising in Step 3 of the algorithm (see below).
If F returned a value ’true’ for only one data point, PRSA would become meaningless.

Typically, in the case of selecting simple increases, approximately half of all points of the time
series will qualify as anchor points. It can be shown mathematically that the PRSA is most
sensitive for strictly periodic oscillations with frequency f ≈ 1/(2.7T ) [Bauer et al. 2006b]:
in order to calculate the parameter T for which the PRSA can most sensitively detect si-
nusoidal signals with frequency f consider – instead of the sums in Eqs. (4.1) – the follow-

ing integral, 1
T

∫ T
0 sin(2πfx) dx = 1−cos(2πfT )

2πfT . Finding the maximum of this expression yields
T ≈ 2.33/(2πf) ≈ 1/(2.7f). Numerical simulations have shown that this value changes to
f ≈ 1/(2.5T ) if the signal contains many phase jumps (non-stationarities).

In general, quasi-periodic oscillations in a noisy time series X will result in anchor points
[Eq. (4.1)(a)] predominantly found in the phase of the steepest ascent (or decent [Eq. (4.1)(b)]),
i.e., when the phase of the signal itself is close to 0 (or close to π). The phase information

4Note that F is meant as an abstract object where a value xi (with known position i in {xi}) is plugged in and a
value 1 or 0 is returned. F might involve other points xj , j 6= i for the anchor decision.
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of the oscillations is thus obtained from the signal itself, and the signal can be phase-rectified
using the anchor points. Although it was not explicitly mentioned in the original work on
PRSA, heartbeat data is almost always disturbed by artifacts and/or ectopic beats which
must not qualify as anchor points, but should remain in the dataset to ensure correct timing.
Especially, in infarction patients a large number of disturbing extrasystoles5 is characteristic,
see Figs. 3.3(a,d) and 4.2(a) for both artificial and real examples. To overcome this problem
originally an additional 5%-threshold was incorporated with the anchor definitions in Eqs. (4.1):
only xi with 0.95xi−1 ≤ xi ≤ 1.05xi−1 qualify as anchor points. This filters out practically all
ectopic beats but might be too strict6. From my own experience with semi-automatic QRS-peak
detection software and the SIESTA database I suggest seriously reconsidering the threshold for
each database under investigation. In SIESTA I implemented thresholds performing much better
in sleep data: 0.7xi−1 ≤ xi ≤ 1.6xi−1.

Step 2: Definition of Surroundings
Windows, i.e., surroundings, of length 2L are identified around each anchor point xiν , ν = 1, . . . ,M
(see colored boxes in Fig. 4.1(a) for 5 examples with L = 52); M is the total number of anchor
points. The surrounding of xiν is

xiν−L, xiν−L+1, . . . , xiν , . . . , xiν+L−2, xiν+L−1. (4.2)

The parameter L has to be chosen larger than the expected coherence time of the periodicities in
the signal; it must definitely exceed the period of the slowest oscillation that one wants to detect.
Note, that it is in principle possible to define an arbitrary surrounding xiν−L1, . . . , xiν , . . . , xiν+L2

where L1, L2 ∈ N. When L1 6= L2 different time spans preceding and succeeding the anchor event
are captured. Usually, we choose L to be a power of two in order to support a Fourier- or wavelet
analysis subsequent to Step 3 (however, not in Fig. 4.1 for clarity).
All anchor points with indexes iν smaller than L+ 1 and larger than N − L+ 1, i.e., at the very
beginning and at the end of the time series, have incomplete surroundings. The same holds for
windows containing missing data points due to, e.g., measurement artifacts, instrument failure,
or outliers. In contrast to the original algorithm, I suggest including such incomplete windows in
Step 3 to improve statistics especially in datasets with more than just a few artifacts.

Step 3: Phase Rectification and Averaging
All windows ν, ν = 1, . . . ,M are aligned at their anchor points xiν as depicted in Fig. 4.1(b),
and the phase-rectified signal average PRSAX(k) is obtained by averaging over all windows [see
Fig. 4.1(c) for T = 1 and Fig. 4.1(d) for T = 5],

PRSAX(k) =
1

M

M∑

ν=1

xiν+k, k = −L, . . . , 0, . . . , L− 1. (4.3)

If xiν+k is a missing data point, it is replaced by 0, and M is substituted by Mk denoting the
number of non-missing points at position k. Including windows with missing data points yields
better statistics and allows investigation of time series with artifacts. In general a well-behaved
average PRSA(k) can be expected when there are at least 100 to 1000 anchor points, i.e., N = 200
to N = 2000 for the length of the record7.
In the average in Eq. (4.3), non-periodic components (not phase-synchronized with the anchor
points), i.e., non-stationarities, non-identified artifacts, and noise, cancel out. Only events that

5The number of extrasystoles has also been used to address cardiac risk in the past. However, extrasystoles are
equally prominent features in EEG recordings of sportsmen and elderly, although, corresponding individuals are
otherwise considered disease-free or ’healthy’ subjects.

6For a beat-to-beat interval of 1000ms this only includes changes ±50ms which is to my opinion too small in at
least healthy subjects characterized by a large heart rate variability compared with infarction subjects. However,
my test with other thresholds in the ISAR data did not significantly alter the results due to the rather long
datasets of N > 80000 elements.

7Of course this is not an exact number but depends on the source signal X. Given numbers are empirical values
from my experience with medical data from various databases.
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Figure 4.2.: (a) Original 24h beat-to-beat interval signal [post-infarction patient, many ventricular beats, survivor,
diabetes type 2]. (b) Corresponding PRSARRI(k) curve triggered on increasing intervals [T = 1, L = 32]. Two
frequency components are immediately recognized [periods: ≈ 3.75 heartbeats (fast respiratory component) and
≈ 27 heartbeats (although a little too slow, likely a blood pressure related component)]. (c,d) Power spectra [black
curves] of the signals shown in (a,b). The Spectra are logarithmically averaged such that the green curves have the
same number of elements: (c) based on the black spectrum, (d) based on a recalculated PRSA curve [L = 2048] to
include more periods of the slower oscillation and get a better frequency resolution. Red dashed lines indicate both
frequency components. The slow component is well captured by both PRSA and the directly obtained spectrum.
The fast component, clearly found in (d), is not seen in (c). Peaks are generally more pronounced in (d). Central
points contributing to Deceleration Capacity (DC=7.82) according to Eq. (4.5) are marked in blue in panel (b).

have a fixed phase relationship with the anchor points, i.e., periodicities and quasi-periodicities,
’survive’ the procedure [see Fig. 4.1(c,d)]. PRSAX(k) represents important features of the original
data containing all quasi-periodicities aligned with phase zero in the center (at k = 0). Applying
the PRSA before traditional spectral analysis significantly improves the quality of the spectra in
the presence of noise and non-stationarities, see Fig. 4.2 and [Bauer et al. 2006b; Kantelhardt
et al. 2007].

Differences between PRSA curves obtained by applying either of the two criteria in Eqs. (4.1) will
indicate missing time reversal symmetry of the original signal. Hence, nonlinear and non time-
reversal invariant processes, with different phenomena occurring during increasing and decreasing
parts, can be studied in detail. Such asymmetry has been reported in high-risk infarction subjects
[Bauer et al. 2006a], but was challenged in a much smaller cohort (20 survivors and 20 non-
survivors) by [Wessel et al. 2007]. Optionally, it might be meaningful to weight the windows
according to some criteria, e.g., according to the magnitude of the change at each anchor position.
With anchors defined at increases Eq. (4.3) becomes

PRSAX,weighted(k) =

M∑

ν=1

ciνxiν+k, k = −L, . . . , 0, . . . , L− 1 . (4.4)

with weights ciν , e.g., ciν = (xiν − xiν−1)/
∑M

µ=1(xiµ − xiµ−1). Other weights can be defined as

well. When I subtract from the PRSA curve its mean value8 to compare results from different
individuals I will in the following denote the corresponding curve by PRSAmr(k).
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4.1.2. Interpretation of PRSA Curves

Figure 4.2 shows the performance of the PRSA technique on biological data, where a (non-
stationary, not pre-processed, and noisy) 24 hours long-term recording of heartbeat intervals
[Fig. 4.2(a)] is depicted together with the corresponding PRSA transformation employing an an-
chor criterion according to Eq. (4.1a) with T = 1 [Fig. 4.2(b)].

In the PRSA-transformed data [Fig. 4.2(b)] two relevant quasi-periodicities can be observed by
eye: (i) a rather fast oscillatory component with a period of roughly 4 heartbeats which is coherent
for approximately 20 heartbeats before and after the trigger event and related to respiration (4
heartbeats typically occur per breathing cycle in this subject), and (ii) a slow oscillation with
a period of approximately 27 heartbeats which might be related to blood pressure oscillations9.
Please note, during the time span of 24 hours the subject does not breathe at a fixed rate. Slight
frequency variations and thus yield a broadened power spectrum (green curve) in Fig. 4.2(d).
Subjects underlying controlled conditions with a forced-breathing rhythm show a much more co-
herent fast component apparent in PRSA curves for much longer time shifts k. I could observe
this effect in data from other projects which I analyzed for collaborators in Oulu, Finland (stim-
ulated sympatho-vagal activation data) and in Halle (intense care patients dying from multiple
organ dysfunction syndrome (MODS)). This effect can be used to check to which extent subjects
in studies with controlled respiratory rhythms are following the instruction. In every study with
supposedly forced breathing which was at my disposal there were some subjects that did not at
all follow such stipulation.

Figures 4.2(c,d) show power spectra associated with the signals in Figs. 4.2(a,b) in black color.
The directly from the PRSA curve [Fig. 4.2(b); N = 2L = 64] calculated PRSA-power spectrum
[black in Fig. 4.2(d)] is rather rough compared with the strongly fluctuation power spectrum in
Fig. 4.2(c) of the complete RRI recording (N=79473). In the latter case one usually overcomes
this problem by logarithmic binning — the result is shown in green. To compare the PRSA-power
spectrum and the standard power spectrum with each other I have calculated a finer sampled
PRSA-power spectrum [green in Fig. 4.2(d)] based on a longer PRSA curve (2L = 4096). Then
I have adjusted the bin size for logarithmically smoothing the spectrum in Fig. 4.2(c) to ensure
a similar number of elements in both spectra. Note obtaining a longer PRSA curve does not at
all affect the 64 center points but includes more information about the anchor events’ past and
future.

From the standard power spectrum a spectral exponent β [cp. Eq. (1.20)] can be derived to
characterize long-term correlations (if power-law correlations are present), see Sect. 1.2. This is
also possible from PRSA-power spectra if the sampling is fine enough. However, the obtained
spectral exponent βPRSA is not identical with β, βPRSA = 2β − 2 [Bauer et al. 2006b]. In
conclusion, PRSA does not render standard spectrum analysis obsolete but might add useful
information about quasi-oscillatory components – here it clearly identifies the fast component
which is not captured by the standard power spectrum.

In PRSAX(k) all periodicities are aligned in the center, i. e. for k = 0, and decay towards larger
positive or negative k if the coherence time is finite [see, e. g. Figs. 4.2(b) and 4.1(c,d)]. This has
two important consequences: (i) the central peak of the PRSA curve contains contributions of
all (quasi-) periodicities in the original signal and (ii) the decay of the oscillations towards large
|k| conveys information about their coherence time. In addition, an asymmetry of the PRSA
curve will indicate a break of time reversal symmetry, which cannot be seen in any power spectra.
Hence, in some applications it can be useful to characterize PRSAX(k) by certain values or slopes
at specific distances from the center. Such parameters, however, will have to be selected according
to specific problems, and no general characterization of PRSAX(k) or all quasi-periodicities in the
original data can be expected from them. One of such characteristic values that has been defined

8This is for a stationary signal equivalent to subtracting the mean from the signal before calculating PRSA curves.
However, due to artifacts, which are filtered in the PRSA algorithm, it is often more applicable to remove the
mean of the PRSA curve.

9I do by purpose not obligingly associate slow oscillations with so called Mayer waves or blood pressure oscillations
since this topic is still controversially discussed, see [Julien 2006] for a review.
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Figure 4.3.: Phase-rectified signal averages aligned at heartbeat decelerations [increasing beat-to-beat interval]
according to anchor criterion Eq. (4.1a) for three representative patients taken from the ISAR-I database: in rows:
(a-c) male 67y, survivor, low risk class [DC=5.68], (d-f) male, 59y, survivor, intermediate risk class [DC=3.19], (g-j)
female, 72y, nonsurvivor, high risk class [DC=2.21]; in columns: different anchor parameters (a,d,g) T=1, (b,e,h)
T=5, and (c,f,i) T=20. Blue circles mark values contributing to deceleration capacity (DC) following Eq. (4.5). The
average value 〈PRSA(k)〉 corresponds to the mean interbeat time interval for each patient. The vertical range of all
plots is the same (22ms). Note, the x-axis index k is not exactly associated with real time but is ’heartbeats’ which
can roughly be translated into time units by multiplication with the average beat-to-beat interval 〈PRSA(k)〉. For
larger T all three patients (increasing risk from top to bottom) become less distinguishable using DC, see also Fig.
4.5.

to assess the risk of sudden cardiac death events in myocardial-infarction patients is Deceleration
Capacity (DC).

4.1.3. PRSA Curves of Cardiac Data

For all N = 1455 post-infarction patients in the ISAR-I database [Munich cohort, see Sect. 2.4.1]
PRSA curves10 were calculated considering different values of the width parameter T in both
Eqs. (4.1) and visually compared by my collaborators at the German Heart Center in Munich.
They found and validated11 a difference in the overall shape of PRSA curves as well as an asym-
metry between PRSA curves obtained separately from triggering on increases [Eq. (4.1a)] and
decreases [Eq. (4.1b)] in RRI depending on the subjects’ mortality12 [Bauer et al. 2006a]. For
illustrating these findings in Fig. 4.3 I have chosen three representatives from the ISAR-I database
and calculated PRSA curves anchored at heartbeat decelerations according to Eq. (4.1a) for T = 1
[Figs. 4.3(a,d,g)], T = 5 [Figs. 4.3(b,e,h)], and T = 20 [Figs. 4.3(c,f,i)].

The first patient (male, 67y) in Figs. 4.3(a-c) survived at least two years13 after index myocardial
infarction (’low risk’, for the definition of the risk classification, see below Eq. (4.5) or [Bauer
et al. 2006a]). The second patient (male, 59y) in Figs. 4.3(d-f) also survived for at least two years
but was classified with ’intermediate risk’. The third patient (female, 72y) in Figs. 4.3(g-i) died
24 days after the initial myocardial infarction and was classified with ’high risk’.

Due to anchoring at heartbeat decelerations the center spike always occurs at position k = 0 for
T = 1, but might be smeared for anchor definitions with T > 1. It is most pronounced for the

10In this original study the standard PRSA was used without considering incomplete windows and without more
carefully checking for ectopic beats. Therefore, the method slightly deviates from the one I suggest here.

11The validation was done by employing PRSA blinded to N = 600 subjects from the Oulu cohort and N = 656
subjects from the London cohort.

12In this chapter I will also use the term cardiac risk which is here understood as the risk to die of sudden cardiac
death (SCD) within 2 years after an initial myocardial infarction.

13In the ISAR-I study there was originally a follow up period of two years after myocardial infarction. Patients
who are still alive after this time period are classified as survivors.
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low-risk patient and significantly smaller for the high-risk patient. This property indicates a more
pronounced heartbeat regulation by the autonomous nervous system and a larger cardiovascular
response to external and endogenous inputs for the low-risk patient. A reduced reflexive-type
responsiveness has been reported in congestive heart failure subjects compared to healthy subjects
[Bernaola-Galvan et al. 2001].

If one employs anchor point criteria based on the comparison of more than two heartbeat intervals
(T > 1), high frequency components are partially suppressed in the PRSA curve and low frequency
periodicities are dominant in all three patients. This suppression is rather strong in low-risk
patients [Figs. 4.3(h,i)] compared with poorer suppression in high-risk patients [Figs. 4.3(h,i)].
Here, increasing the value of T in Eqs. (4.1) corresponds to adding a kind of risk-dependent
low-pass filter which might proof useful for risk stratification in addition to the amplitude of the
central spike.

4.1.4. Wavelet Analysis of PRSA Results

Besides quantifying oscillatory components in PRSA curves by spectral analysis [Fig. 4.2(d)]
one might employ wavelet analysis which allows not only for a frequency decomposition of the
signal but also for associating specific times with these components [see Sect. 1.3 and Schumann
2004]. In the following I consider wavelet amplitudes obtained from the discrete convolution of
a mother wavelet of scale s with the PRSA curve according to Eqs. 1.26b and 1.30. Note that I
drop the ’prime’ in the shift parameter k′ of the wavelet for better comparability with the shift
parameter k in PRSA. The obtained time information can be used to study coherence14 and time
asymmetry in the PRSA curves. Figures 4.4(A,B) show the wavelet amplitude of all nine PRSA
curves from Fig. 4.3 employing two different mother wavelets: (A) a 1st-order Gaussian wavelet
[Eq. (1.27b); depicted in Fig. 4.4(Ak)] and (B) a 6th-order Morlet wavelet [Eq. (1.27c); depicted
in Fig. 4.4(Bk)]. Here I show results from employing two wavelets to point out that the choice of
the wavelet function is important and wavelet amplitude figures have to be interpreted with care.
In Fig. 4.4 I have normalized each panel separately to ensure unit total power and in addition use
the same pseudo-logarithmic color model [cf. Figs. 4.4(Aj,Bj)] for all corresponding plots.

An often neglected property of wavelet transform that severely affects interpretations of results
is the general inequality of wavelet scale s and Fourier wavelength λ as obtained from power
spectra. Thus, a large wavelet amplitude at a scale s⋆ does not necessarily imply an oscillation
at a frequency f = 1/s⋆. The reason for such inconvenience is the rather smeared localization of
the wavelet in Fourier space which is the price for a certain localization of the wavelet in sample
space. Recall Fourier analysis where sine functions have a perfect (delta-peaked) localization in
Fourier space but no localization at all in sample space. This property can be thought of as a
type of uncertainty relation. Now, each wavelet has a characteristic relation between sample space
localization and frequency space localization. The 1st-order Gaussian wavelet has a rather good
localization in sample space but is quite smeared in frequency space compared with the 6th-order
Morlet wavelet which has a good frequency localization (the real part are damped cosine functions)
but a less optimal time localization. Choosing a wavelet is a decision on the ratio between time
and frequency resolution. While the Morlet wavelet is a better choice when one is interested in
frequency resolution, e. g., periodicities in the PRSA curve, the Gaussian wavelet is better suited
to study times of changes in frequency components.

By wavelet transforming pure sinusoids of fixed frequency and studying its relation to the observed
frequency one finds λ ≈ 2.679s for the 1st-order Gaussian wavelet and λ ≈ 1.03s for the 6th-order
Morlet wavelet. Because the typical patterns in physiological time series are oscillations and
an adjustment of scales in corresponding wavelet-amplitude plots is not required (1.03 ≈ 1), I
personally prefer using the 6th-order Morlet wavelet. For instance features observed at scales
sGauss = 1 in Fig. 4.4(A) correspond to features at sMorlet ≈ 2.6 in Fig. 4.4(B) which itself can

14In this chapter coherence time is understood as the time span for that a certain oscillatory component is present
in the PRSA curve. This corresponds with the width of ’bands’ that are established in wavelet-amplitude plots
by compact sequences of large amplitudes for different time shifts k and a fixed scale s.
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directly be read in units heartbeat. The Gaussian wavelet, on the other hand, is a good choice to
study fluctuations [see Appendix E.4].
A second important pitfall when using a 1st-order Gaussian is the strong influence of the kernel
function. From looking at Fig. 4.4(A) one might get the impression that around the center position
(k = 0) there are slow oscillations of a broad frequency range (s = 2, . . . , 32) whose coherence time
is increasing towards larger scales s. While there are indeed such oscillations in the corresponding
PRSA signals [cp. Fig. 4.3] the smeared appearance here comes from the unfavorable frequency
localization and the asymmetry of the wavelet kernel [see Fig. 4.4(Ak)]. The kernel resembles
the central peak in PRSA curves for anchors according to Eq. (4.1a). With an increasing wavelet
scale large wavelet amplitudes are obtained in a broader range around the center at k = 0. The
self-repeating (self-reproducing) structure of smeared areas – here bounded by sharp blue lines –
which is particularly pronounced at small scales (striped character) is only partially originated
in the oscillatory PRSA curves but mainly in the convolution with the Gaussian kernel (good
time localization). Such artifacts are sometimes referred to as self-reproducing kernel artifacts.
Although, the Morlet wavelet in principle suffers from the same problem it is much less pronounced
due to the wavelets’ symmetry together with a weaker time localization, compare Figs. 4.4(A,B).
Keeping both possible pitfalls in mind one can interpret Figs. 4.4(A,B). Both main components,
which were discussed in the previous section, are observed: (i) a high frequency respiratory compo-
nent (roughly s ∈ [1, 4] heartbeats) is especially pronounced for T = 1 around the center position
(k = 0) in Figs. 4.4(Ba,Bd,Bg) but less obvious in the corresponding panels employing a 1st-order
Gaussian wavelet [Figs. 4.4(Aa,Ad,Ag)]. Results from the Morlet wavelet moreover nicely allow an
identification of associated coherence times for each subject. In the low-risk post-infarction patient
[Fig. 4.4(Ba)] a respiratory component of 4 heartbeats period is clearly noticed during the whole
observed time span (±32 heartbeats). While this could already be obtained from PRSA curves
[cp. Fig. 4.3] wavelet plots additionally describe variations (extended red area) in frequency hardly
seen in PRSA signals. Obviously, the coherence time of 4 : 1 respiration, i.e., 4 heartbeats occur
per breathing cycle [see Chapt. 5 for a systematic analysis of cardio-respiratory synchronization],
decreases with cardiac risk – coherent 4 : 1 respiration is observed in the intermediate-risk patient
[Fig. 4.4(Bd)] for approx. ±20 heartbeats before and after heartbeat deceleration and is notedly
diminished (approx. ±7 heartbeats) in the high-risk patient [Fig. 4.4(Bg)]. Note, that coherence
properties are difficult to extract from corresponding panels in Fig. 4.4(A) utilizing a Gaussian
wavelet due to the reproducing kernel. Another property which can be perceived in Fig. 4.4(B)
compared with Fig. 4.4(A) is the shift of wavelet power from respiratory components (plots for
T = 1) towards slow oscillations (plots for T = 20). Please note that this shift comes from in-
creasing the anchor width T and is not a property of the subjects. However, note low-frequency
quasi-periodicities are more pronounced in low-risk patients than in high-risk patients as indi-
cated by orange areas in Figs. 4.4(Ba,Bg). To investigate their coherence times, one would have
to increase the window length L (fixed to 32 here). This correlates with the opinion found among
cardiologists of reduced blood pressure regulation capabilities (baroreflex) in high-risk patients
assuming slow oscillations being related to blood pressure oscillations.
As earlier reported in [Bauer et al. 2006a; Kantelhardt et al. 2007] PRSA curves for example
analyzed by a wavelet transform are usually more asymmetric for high-risk patients compared with
intermediate-risk patients or even low-risk patients. Although, such symmetry characteristics can
be observed in Figs. 4.4(B) for the Morlet wavelet they are much easier recognized in Figs. 4.4(A)
employing the Gaussian wavelet. For example Gaussian wavelets were used to extract features in
heartbeat data as markers of pathologic deviations in [Ivanov et al. 2001].

4.1.5. Definition of Deceleration Capacity (DC)

From studying PRSA curves in all 1455 post-infarction patients of the Munich cohort it was
observed that the simple parameter Deceleration Capacity DC is a superior parameter to assess
total mortality in infarction patients compared with (the current gold standard15) left ventricular

15In medicine a gold standard or nowadays criterion standard refers to a well established standard diagnosing proce-
dure, scoring parameter, or benchmark that is regarded as definitive. Newly suggested parameters and procedures
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(A) Employing 1st-order Gaussian wavelet (B) Employing 6th-order Morlet wavelet

Figure 4.4.: Wavelet power vs. scale obtained from PRSA shown in Fig. 4.3 according to Eq. (1.30) utilizing
(A) a 1st-order Gaussian wavelet and (B) a 6th-order Morlet wavelet – subpanels in rows [same in (A,B)]: (a-c)
male 67y, survivor, low risk class [DC=5.68], (d-f) male, 59y, survivor, intermediate risk class [DC=3.19], (g-j)
female, 72y, nonsurvivor, high risk class [DC=2.21]; in columns: results from anchor criterion Eq. (4.1a) (a,d,g)
T=1, (b,e,h) T=5, and (c,f,j) T=20. Cross-checked area marks cone of influence [area of edge effects]. (j) applied
non-linear color model and (k) a sketch of the employed wavelet (A) wGauß(1) and (B) wMorlet(6). Wavelet power
was normalized to satisfy unit total power in each subpanel and the same approximately logarithmic color models
in (Aj,Bj) are applied to all subpanels in (A) and (B). For clarity and a smoother plot scales 1 > s ≥ 0.25 were
’artificially’ included by enhancing time resolution via repeating each point in the PRSA curves 4 times before the
wavelet transform. Pay attention: Wavelet scale is generally not an equivalent of Fourier wavelength [see text]: for
a (A) 1st-order Gaussian λ[heartbeats]≈ 2.679s and (B) 6th-order Morlet wavelet λ[heartbeats]≈ 1.03s meaning
scales s in (B) can directly be associated with units heartbeat. Wavelet-power asymmetry increases with risk and
average-anchor parameter T tunes a risk-dependent low-pass-frequency filter.

ejection fraction (LVEF)16 [Bauer et al. 2006a; Kantelhardt et al. 2007]. DC is calculated
from the PRSA curve of RRI time series17 in units milliseconds employing the anchor definition
in Eq. (4.1a) with T = 1 by

DC =
1

4
[PRSARRI(0) + PRSARRI(1) − PRSARRI(−1) − PRSARRI (−2)] . (4.5)

From systematically testing the classification capabilities of DC to identify survivors and non-
survivors two threshold values were defined in the ISAR study: ’low-risk’ of death was associated
with DC > 4.5ms, ’intermediate risk’ with 2.5ms< DC ≤ 4.5ms, and ’high risk’ with DC ≤ 2.5ms
[Bauer et al. 2006a]. Note, in Fig. 4.3 I used Eq. (4.5) to derive ’DC’ values for other values of
T , too. Although DC was exclusively defined for T = 1, I kept the notation ’DC’ for comparison.
Above threshold values were obtained for T = 1 only.
The performance of a predictor such as DC is often quantified by Receiver-Operator-Characteristics
(ROC) curves plotting the true positive rate = sensitivity versus the true negative rate = specificity
[see Appendix D.4 for details]. The larger the area under the curve (AUC)18 the better the
prediction. The diagonal connecting (0% sensitivity, 100% specificity) and (100% sensitivity, 0%
specificity) represents the random choice case, i.e., taking an arbitrary patient and ’throwing a coin’
to decide if he would belong to the group of survivors or non-survivors, yielding AUC=0.5. Figure
4.5(a) compares DC with two other established parameters for SCD-risk assessment confirming
its superiority.

have to be compared with such gold standard to judge their performance and quality. An hypothetically ideal
gold standard satisfies 100% sensitivity at 100% specificity [comprehensively defined in Appendix D.4].

16LVEF is defined by the quotient (EDF-ESV)/EDF where EDF is the end-diastolic volume and ESV the end-
systolic volume. EDF and ESV can be assessed by left ventricular angiography, radionuclide scanning, or
echocardiography.

17In the original work 24h heart-beat-interval (RRI) time series sampled at 128Hz were analyzed.
18In finance mathematics AUC is called coefficient of concordance (CoC).
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Figure 4.5.: (a) Receiver-Operator curves indicating performance of three parameters used for cardiac risk classifi-
cation: (i) Left-ventricular ejection fraction [LVEF, the current gold standard; AUC=0.70], (ii) standard deviation of
normal-to-normal beat intervals [SDNN; AUC=0.68], and (iii) PRSA based Deceleration Capacity [DC; AUC=0.77].
The area under the curve [AUC] is used to compare performance [the larger the better]. Note, curves were obtained
via a bootstrapping algorithm and an additional smoothing of the ’staircase like’ resulting ROC curve yielding
somewhat imprecise ROC curves at the lover right edge, see Appendix D.4. In principle [without smoothing] all
curves should pass the point (100%-sensitivity,0%-specificity). (b) DC values are derived for different scales sDC by

DC(sDC) = 1/(2sDC)
h

PsDC−1
i=0 PRSA(i) − P−1

i=−sDC
PRSA(i)

i

where PRSA curves are obtained for different average

widths T in an anchor condition following Eq. (4.1). The significance of the statistical association with mortal-
ity was calculated using the non-parametric Mann-Whitney-U test. Corresponding p-values are color-coded, see
Appendix D.2 and D.3 for methodology. Figure adapted from [Kantelhardt et al. 2007].

Note that although DC has been associated with the central Haar wavelet coefficient I personally
find that using the term wavelet in this case is rather dangerous since PRSA and DC are not
equivalent to a wavelet transform. One might argue, considering a Haar-wavelet basis [see Sect.
1.3] and deriving the wavelet transform only for the center position of the PRSA signal (no
translation in the wavelet transform) the DC value is identical with the central Haar-wavelet
coefficient of scale s = 2. However, this is only true when the specific Haar-mother wavelet is used
and amplitude rescaled, and no translation and dilatation of the mother wavelet is performed.

Nevertheless, one can address the question whether the DC definition in Eq. (4.5) is an optimal
predictor of SCD or other anchor-average widths T in Eqs. (4.1) together with other scales s of the
’Haar alike’ convolution kernel. Results from systematically varying both parameters are shown
in Fig. 4.5(b). This approach led originally to choosing T = 1 and s = 2 for the definition of
DC as presented in Eq. (4.5) and with an anchor criterion based on decelerations according to
Eq. (4.1a).

Since the DC parameter quantifies the central spike of the PRSA curve around deceleration events
and thus determines the capacity of the central nervous system to quickly decelerate heartbeat
it is called deceleration capacity (DC). Since decelerations are triggered by vagal activation DC
has been associated with parasympathetic activity [Bauer et al. 2006a]. Analogously, a similar
risk indicator might be defined based on a PRSA curve obtained by anchor points corresponding
to accelerations [Eq. (4.1b)] yielding a parameter Acceleration Capacity (AC) following the same
definition in Eq. (4.5). Nevertheless, AC was reported to perform much worse [Bauer et al.
2006a].

4.1.6. Age Dependence in Post-Infarction DC

Aging strongly affects human physiology as has been discussed in Sect. 3.2.2. The question arises
about aging effects in DC values. This would have consequences for DC threshold values currently
suggested for risk classification without considering the patient’s age.

Although a multivariate analysis adjusted for age, presence of diabetes mellitus, and history
of myocardial infarction showed that only deceleration capacity (DC), left ventricular ejection
fraction (LVEF) and mean heart rate are associated with total mortality [Bauer et al. 2006a],
there is definitely a systematic dependence of DC on age. Figure 4.6(a) shows, for all patients
that survived the 24 months follow-up period (but independent of the DC risk category), the
age dependence of DC [displayed are medians and both 25% and 75% quartiles as error bars;
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Figure 4.6.: (a) Age dependence of DC for survivors [ISAR-I study]. The symbols show the medians of the DC
values for the specific age groups: males [green triangles up, values shifted up by 9ms, fit: DC/ms = 12.4 − 0.11
age/yrs], females [red triangles down, values shifted up by 5ms, fit: DC/ms = 10.1 − 0.07 age/yrs], males and
females combined [black diamonds, fit: DC/ms = 12.2 − 0.10 age/yrs]. The error bars indicate the values of upper
and lower quartiles. (b,c) Normalized histograms of the DC values after projection onto an age of 60 years for (b)
non-survivors [red continuous curve] and survivors [green dashed curve], (c) survivors with diabetes [red continuous
curve] and without diabetes [green dashed curve]. The average values of DC are (b) 3.21ms and 5.64ms for non-
survivors and survivors [a standard t-test yields p < 10−5 for the equivalence of both histograms] and (c) 5.03ms
and 5.75ms for the diabetes and the non-diabetes group, respectively [t-test yields p < 0.01 for equivalence].

black diamonds = all patients, red triangles down = females, green triangles up = males]. An
approximately linear decrease of DC with age is clearly observed. The trend is nearly identical for
both, men and women – together yielding DC/ms ≈ 12 - age/10 yrs. Note however, that the age
range of the study is limited by 75 years, and there are hardly any patients below the age of 35
years. It is not clear, however, if this decrease of DC should indicate an increased risk of cardiac
death or just corresponds to the generally higher risk of death for older people due to a reduced
parasympathetic tone.

Five percent of the 1455 post-infarction patients did not survive the two years follow-up period
after an index myocardial infarction event. Based on the observed age-dependence in Fig. 4.6(a)
DC values for both survivors and non-survivors can be age-corrected by projecting all values
to those corresponding to age 60 years in the same patient using obtained regression formulas
separately for males and females. Histograms of age-corrected DC values from both groups are
depicted in Fig. 4.6(b). Although, there is a certain overlap of the histograms, a standard two-
sided heteroscedastic Student’s t-test [Appendix D.1] yields the probability p < 10−5 for the
equivalence of both histograms. Such result is not surprising considering that DC was explicitly
designed to separate survivors and non-survivors, but shows the weak influence of aging on the
parameter.

Seventeen percent of the patients in the study (242 out of 1455) suffered from diabetes mellitus (in
addition to the myocardial infarction). Diabetes mellitus is associated with autonomic dysfunction.
I therefore aimed to analyze DC in the 17% of the patients presenting this disease. Since the ratio
of diabetes patients is larger among the old patients, the age dependence studied would already
result in a decreased DC value for the diabetes patients. Hence, I have again corrected all DC
values by the linear trend observed in Fig. 4.6(a); all values are rescaled to those corresponding
to the age of 60. Figure 4.6(c) shows the histograms of DC values for patients with and without
diabetes mellitus. Although, there is a larger overlap of the histograms as in Fig. 4.6(b), a standard
two-sided heteroscedastic Student’s t-test yields the probability p < 0.01 for the equivalence of
both histograms which is in medical applications still believed to be quite significant19. Hence, DC
values are significantly smaller for the patients with additional diabetes compared with diabetes-
free patients which might indicate an increased cardiac risk [see also Sect. 4.1.7].

4.1.7. Circadian Rhythm in PRSA Results

Studying the evolution and stability of DC with dataset length I realized two effects: (i) a strong
inter-individual variability which was not surprising considering my experience with other med-

19In most medical applications three significance levels are generally considered: (i) p < 0.001 strongly significant,
(ii) p < 0.01 ’good’ significance, (iii) p < 0.03 ’still’ significant.
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Figure 4.7.: Circadian influence on PRSA and DC based on 24h ECG recordings of two patients after an index
myocardial infarction; both male survivors without diabetes: (a1-p1) 49 years old, (a2-p2) 44 years old For 3h ECG
fragments [initial time indicated at the very top] the phase-rectified signal averages with means subtracted are
shown on top of the corresponding wavelet power using a 6th order Morlet wavelet. PRSA is shown in the range
k ∈ [−32, 31] but wavelet power was obtained from a longer PRSA signal [L = 256] to improve statistics, In the top
individual two frequency components are coherent for a longer time: (i) a respiratory component [s = 4 heartbeats]
is especially pronounced during daytime in panels (c1-j1) and (ii) a likely blood pressure related component [30 <
s < 40 heartbeats] is most apparent during the evening and bedtime hours (a1,b1,k1-p1). The bottom patient
exhibits: (i) less coherent and less localized respiratory components [2 ≤ s ≤ 5 heartbeats; (a2,b2,m2-p2) bedtime
coherence approx. 15 heartbeats compared with (c1-l1) 5 heartbeats during daytime left and right of trigger event]
and (ii) less located slow oscillations where higher frequencies [s ≈ 15 heartbeats] are less coherent over time. DC
values are lower during daytime compared with night time in both subject.

ical databases and (ii) a variation of DC values separately obtained from different parts of the
signal. This observation suggested studying the time dependence of DC in 24-hour heartbeat
data, i. e., the circadian rhythm effect on DC. Figure 4.7 shows PRSA curves and corresponding
wavelet power obtained in segments of 3 hours duration each starting at 5am in the morning for
two representative examples of male survivors without diabetes from the same age group. It is
immediately observed that PRSA curves and thus DC values are different during daytime and
evening/bedtime hours. This is not surprising considering known physiological differences between
daytime wakefulness and sleep [Ivanov et al. 1999a, 2001; Kantelhardt et al. 2002; Penzel
et al. 2003]. Looking closer at DC values one finds a monotonous change in DC where values are
lowest around noon and the early afternoon and highest during the early morning (peak around
4am to 5am). In sleep research the circadian rhythm20 regulating the timing of sleep is well
known besides its antagonist, the homeostatic mechanism regulating sleep intensity. In order to
determine circadian activity in humans (and vertebrates in general) two proxies are monitored: (i)
The level of melatonin hormone (the hormone of night) which is predominantly produced during
sleep time with the highest concentration around 4am; and (ii) the core body temperature which
practically oscillates inversely to melatonin concentration [see Fig. 4.8(c)].

I have derived and visually inspected PRSA curves, wavelet power, and DC values from all 1455
patients (ISAR-I study) by generating similar figures as depicted in Fig. 4.7. Average DC results
with respect to daytime (same 3 hours segments as in Fig. 4.7) are shown in Figs. (4.8)(a,b)
separately for survivors versus non-survivors as well as for patients with diabetes versus those
not suffering from diabetes mellitus. It can be observed that (i) DC values follow a circadian
rhythm similarly to the schematic melatonin rhythm and that DC values of non-survivors and

20To be more precise: While in cardiology the circadian rhythm refers to a 24-hour rhythm in general, it is refined
in sleep research to a rhythm that originates in the suprachiasmatic nucleus (SCN), a group of cells in the
hypothalamus.
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Figure 4.8.: DC determined in non-overlapping windows of 3h versus daytime based on the ISAR study: (a)
Survivors [green filled circles] vs. non-survivors [red filled squares] and (b) no diabetes [green filled circles] vs.
diabetes [red filled squares]. Shown are median values and both the 25% quartile and the 75% quartile. Note that
green and red plots in (a,b) are horizontally shifted by −15min and +15min for clarity. A clear decrease in DC
is observed from the early morning towards the afternoon. Average values [not shown] follow practically the same
curves and standard errors are very small. During evening and bedtime hours DC increases again. (c) Hand drawn
sketches of core body temperature [black], percentage melatonin concentration [maximum conc. at approx 4am =
100%, red; values taken from Benloucif et al. 2008], and number of deaths [blue; N=2203, values from Muller
et al. 1987] — for comparison.

diabetes patients are systematically lower compared with survivors and non-diabetes patients.
This supports the popular opinion among medical doctors that diabetes increases the cardiac
risk.

The observed decrease in DC during the morning [DC(5am) > DC(8am) > DC(11am);
Figs. 4.8(a,b)] is consistent with the finding of a reduced DC value during REM sleep when
recalling that most time spend in REM sleep occurs before awakening in the morning. It is fur-
ther in full accordance to the observation that most sudden cardiac deaths occur in the morning
between 7am and 11am [see Fig. 4.8(c) and Muller et al. 1987; Müller-Nordhorn et al. 2001].

Limitations of circadian results comprise the neglected age dependence here. I have shown that
DC reduces with aging in the ISAR-I database, and I will report and illustrate a similar systematic
age dependence of DC during sleep in Sect. 4.1.10. This suggests that aging is in also affecting
the daily cycle of DC values.

The observed 24-hour rhythm in DC might additionally be related to the circadian cycle known
from sleep research and its daily synchronization with the day-night cycle via the eyes and the
visual cortex [compare Figs 4.8(a,b) with (c) where both proxies of the circadian rhythm show
a qualitatively similar (or inverse) time course]. Such synchronization might be less effective in
elderly compared with young. The observation of a irregular sleep onset, i.e., practically at all
day times drowsiness might occur, and a much more fragmented sleep in elderly supports the
’less’ effective synchronization hypothesis. In Sect. 5.2.6 I will discuss my research concerning
cardiorespiratory coupling in 190 healthy subjects during sleep. I find a significant decrease with
aging in percentage of of times where respiration and heartbeat are phase synchronized21 during
light sleep and deep sleep. However, note that although the circadian cycle is strongly related to
sleep, cardiorespiratory synchronization might but must not be unrelated with the here observed
variation in DC.

I would like to remark that in principle even a local DC, i.e., the time series of DC values obtained
separately for each anchor-point surrounding can be obtained. This time series turned out to have
multifractal structure (not presented here) which is in accordance with multifractal structure in
heartbeat intervals, see among many others [Ivanov et al. 1999b].

4.1.8. Quasioscillations Across Sleep Stages

Data recording during sleep are much shorter, i.e., approximately 7.8 hours of data per night
are available, compared with 24 hours in Sect. 4.1.7. Daytime- and age-dependent DC findings
discussed there already suggest a time dependence of DC during sleep and wake. As I have
discussed in Sect. 2.3 polysomnographic (sleep) data is subdivided according to five stages —

21The term phase synchronization will become clear in the beginning of Chapt. 5
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Figure 4.9.: PRSA analysis results obtained separately for nocturnal wake, light sleep [stages 1 and 2], deep sleep,
REM sleep, and non-REM sleep [light sleep and deep sleep, combined] in two representative disease-free subjects
from the SIESTA database: (a1-l1) a healthy 32 years old female and (a2-l2) a 78 years old female [apnea-hypopnea-
index AHI=4.0]. Shown are phase-rectified signal averages with subtracted means above their corresponding wavelet
power utilizing a 6th-order Morlet wavelet. Wavelet power was normalized in each panel to ensure a total power of
one. Power increases from white to red; a pseudo-logarithmic color model stretched in both the very low power range
and the large power range was employed separately in each panel guaranteeing a qualitative but not quantitative
comparability between panels. In panels devoted to PRSA curves associated Deceleration Capacity (DC) values are
shown next to the ’number of different segments from the same sleep stage’ / ’total number of windows contributing
to the shown PRSA curve’. In young healthy subjects a long-coherent oscillatory component of rather narrow
frequency bandwidth is apparent during deep sleep [in (h1) approx. 5 heartbeats per breath cycle]. The coherence
time decreases towards light sleep S2 and often even further towards light sleep S1. It is small during REM sleep
and wake. In elderly coherence is notedly decreased during all sleep stages (sometimes still longer during deep sleep)
and respiratory frequency bandwidth is increased. It is typical to find additional slow wave oscillations (likely blood
pressure related) compared to young.

Nocturnal wakefulness (araousals), light sleep S1 and S2, deep sleep, and REM sleep — which
are associated with different physiological states of the autonomous nervous system. Hence, it
is interesting how oscillatory components (observed by PRSA curves) change with sleep stages.
Therefore, I subdivided the data from all 608 ECG recordings in the SIESTA database (disease-
free and diseased considering both adaptation and recording night when possible) according to
the annotated sleep stages and obtained PRSA curves together with their wavelet transforms to
study frequency components and their timing and coherence. From PRSA curves I calculated DC
values separately for each sleep stage.

Fig. 4.9 shows PRSA curves and their corresponding wavelet transforms separately for wakefulness
[(ai,bi); i = 1, 2], light sleep S1 [(ci,di)], light sleep S2 [(ei,fi)], deep sleep [(gi,hi)], REM sleep
[(ii,ji)], and non-REM sleep [light sleep and deep sleep together; (ki,li)] of a young [female age 32;
i = 1] and an elderly [female age 78; i = 2] disease-free representative from the SIESTA database.
Both subjects are considered healthy according to the SIESTA study protocol [Members of
SIESTA EU Project 1998] although this classification should be challenged in some cases from
a cardiologist’s point of view.

For young disease-free subjects in the SIESTA database [see also Figs. 4.10(a1-l1) for an additional
disease-free young subject] strong evidences of coherent respiration related periodicities (3 to 5
heartbeats per breath) seem to be typical. The corresponding frequency band (f = 1/s) is partic-
ularly narrow during non-REM sleep, i. e., good coherence during non-REM sleep. The coherence
length is maximal during deep sleep and decreases towards light sleep S2 and further towards
light sleep S1 [see Figs. 4.9(c1-h1,k1,j1) and 4.10(c1-h1,k1,j1)]. Light sleep S1 [Figs. 4.9(c1,d1)] is a
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transition stage between wakefulness and light sleep S2. It often occurs transiently and/or only for
a short period22. Coherence times of respiratory components during light sleep S1 are normally
larger than corresponding times observed during nocturnal wakefulness (shorter coherence); and
they are smaller compared with light sleep S2 (longer coherence). However, in some disease-free
subjects coherence results from light sleep S1 appear to be more similar to wakefulness while in
other subjects results are more similar to light sleep S2. Note the atypical large coherence length
during wake in the healthy subject shown in Fig. 4.10. It suggests that this subject breathes at a
regular rate which might be related to a relaxed condition before again falling asleep. During REM
sleep and wakefulness respiratory components typically appear to be more random yielding (i) a
broader associated frequency band, i.e., respiration does not occur at such a fixed frequencies as
during deep sleep, and (ii) a much shorter coherence time [cp. Figs. 4.9(i1,j1) and Figs. 4.9(a1,b1)
with Figs. 4.9(g1,h1)].

In young subjects the wavelet power in the slow oscillation range is reduced during all sleep stages
compared with respiratory components. However, a few young subjects also exhibit strong traces
of such slow oscillations during REM sleep, wakefulness, and sometimes even during light sleep
S1 (when it is closer related to wake than to light sleep S2) but never during light sleep S2 and
deep sleep. In elderly subjects which are classified as healthy by the SIESTA group the picture
is quite opposite [see Figs. 4.9(a2-l2)]. The previous sharp and coherent structure of respiratory
components has been changed in particular during non-REM sleep, implying a reduced synchrony
in typical respiratory patterns. These patterns are quickly out of phase as the distance from the
anchored heartbeat deceleration increases and thus cancel out in the averaging step [Eq. (4.3)].
Moreover, respiratory frequencies appear not as fixed as in young. Both effects are expressed by a
smeared out (different frequencies) and localized (short coherence) wavelet power around k = 0 in
the corresponding scales range. There are two possible implications: (i) real respiratory patterns
change with aging, or (ii) respiratory components are less present in heartbeat intervals due to
a reduced cardiorespiratory coupling in elderly. Chapter 5 deals with the analysis of inter-signal
coupling. In particular, cardiorespiratory phase synchronization for SIESTA data is studied in
Sect. 5.2.3 finding a reduction of cardiorespiratory phase synchronization with aging especially
during light sleep S2 and deep sleep [see Fig. 5.10]. Further, note the increased power of slow
wave oscillations which are otherwise a typical feature in sleep apnea subjects [see discussion
Fig. 4.10]. The sleep stage characteristics shown for single subject are like fingerprints which are
mainly identical when comparing results from adaptation night and recording night.

4.1.9. Quasioscillations in Patients

Figure 4.10 shows one representative subject from the SIESTA database classified disease-free
(healthy) [(a1-l1); for comparison] and four representative patients suffering from (obstructive)
sleep apnea [(a2-l2)], Parkinson’s disease [(a3-l3)], anxiety [(a4-l4)], and depression23 [(a2-l2)]. In
most patients suffering from severe sleep apnea (AHI≫10) a strong frequency-localized slow os-
cillation is typical and often observed during all sleep stages, however, sometimes reduced during
deep sleep. More importantly breathing related wavelet power (fast component) is severely dimin-
ished except for deep sleep which even seems totally unaffected (sharp, long coherence) in some
individuals. For many Parkinson patients sleep stage differences of oscillatory patterns are weak-
ened, however, in elderly additional slow components sometimes appear which might be related
to an undetected sleep apnea.

A typical feature in anxiety patients are extended areas of slow oscillations during all or most sleep
stages. However, especially some young anxiety patients look very similar to healthy subjects but
often with reduced respiratory coherence. Such picture is even more pronounced in depression
patients who can practically not be distinguished from healthy subjects although some elderly

22For that reason light sleep S1 related data of long-enough duration ensuring a certain statistical reliability is not
available for each dataset. In Figs. 4.9 and 4.10 I present selected subjects and patients having sufficiently long
episodes of each sleep stage.

23Depression was identified including a self-rating score [Members of SIESTA EU Project 1998]. Hence, it
might be difficult to scientifically quantify the strength of the depression.
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Figure 4.10.: PRSA results for 5 typical representatives from the SIESTA database being healthy or diseased;
separately for nocturnal wake, light sleep [stages 1 and 2], deep sleep, REM sleep, and non-REM sleep [light
sleep and deep sleep, together]. Shown are mean-removed phase-rectified signal averages above their corresponding
wavelet power utilizing a 6th-order Morlet wavelet [Fourier scale = wavelet scale s times 1.03] for a (a1-l1) 35 years
old healthy female; (a2-l2) 38 years old male sleep apnea patient [apnea-hypopnea-index (AHI) of 82.8]; (a3-l3) 61
years old female Parkinson patient [AHI=1.2]; (a4-l4) 56 years old female anxiety patient [AHI=0.9]; and (a5-l5)
35 years old female depression patient. Wavelet power was normalized in each panel to ensure total power one.
Power increases from white to red; a pseudo-logarithmic color model stretched in both the very low power range
and the large power range was employed separately in each panel guaranteeing a qualitative but not quantitative
comparability between panels. In panels devoted to PRSA curves associated Deceleration Capacity (DC) values are
shown next to the number of different segments from the same sleep stage / total PRSA surroundings contributing
to the shown PRSA. Note the different Y-axis used in (a5-k5). All diseases exhibit typical pattern in wavelet power,
except for depression which here appears to be similar to healthy [see text for a detailed discussion].
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Figure 4.11.: Deceleration capacity (DC) versus age for (a) nocturnal wakefulness, (b) light sleep S2, (c) deep sleep
S3&S4, and (d) REM sleep for all subjects [black diamonds], males [blue triangles up], and females [orange triangles
down]. Plotted are median values and both quartiles Q25 and Q75 as lower and upper errors bars, respectively.
Solid straight lines are linear fits to the medians for all subjects; the formulas of the separate fits for males and
females are printed in the top right corner. Red and green dashed lines indicate risk levels previously defined for
post-infarction patients: high cardiac risk DC < 2.5ms and low cardiac risk DC > 4.5ms. Taken from [Schumann
et al. 2010a]

Figure 4.12.: Age dependence of
DC ratios: (a) DCwake / DCREM,
(b) DClight sleep S2 / DCREM, and (c)
DCdeep sleep S3&S4 / DCREM for all
subjects [black diamonds], males
[blue triangles up], and females
[orange triangles down]. Shown
are medians and quartiles as in
Fig. 4.11. Taken from [Schumann
et al. 2010a]

seem to have incipient sleep apnea. This suggests that anxiety and depression do not significantly
affect quasi-oscillatory components in heartbeat.
Incidental apnea episodes which according to SIESTA study rules, however, did not yield a classifi-
cation as apnea patient are typically observed in all Elderly subjects within the SIESTA database.
Further systematic investigation on disease identification algorithms based on these qualitative ob-
servations is required in a larger database recorded using much more specified classification rules
as has been employed in the SIESTA study.

4.1.10. Aging Effects on DC Across Sleep Stages

To investigate effects of healthy aging on DC during sleep I divide the heartbeat data from all
disease-free subjects according the same age groups as were used in Sect. 3.2.2. Light sleep S1 is
again neglected for the same reasons as discussed earlier. The results that are discussed in the
following can also be found in [Schumann et al. 2010a].
For deriving DC based statistical parameters I only considered values in the range 0 ≤ DC ≤ 40ms
to be reliable. Median DC values from including all disease-free subjects in the same age group
are depicted in Fig. 4.11.
A significant decay from younger subjects towards older subjects is obvious in all sleep stages.
The slope of the decay is, however, smaller for females than for males (see different symbols
and regression equations printed in the figure but not shown). In particular young females (age
20-29) exhibit surprisingly low DC values especially during wake. If one would exclude this age
group from the study, the differences of DC slope for males and females during wakefulness would
vanish. In general, DC values for males and females become more similar with aging in all states
and merge for the oldest group except during deep sleep. Recall that deep sleep is significantly
reduced among elderly yielding a reduced statistics.
When exploring individual DC values I recognized lower values during REM sleep and deep sleep
than during light sleep and wakefulness for most of the subjects. To test this observation Fig. 4.12
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shows the mean ratios over DCREM and their standard deviations. In case of a lower DC during
REM sleep the ratios are > 1. This is observed for young subjects during wake and for all age
groups during light sleep S2, i. e., DCREM < DCwake and DCREM < DClight sleep. The results
during deep sleep are inconclusive. Employing a paired Student’s t test [see Appendix D.1]
comparing all DC value combinations I found highly significant differences (p ≪ 0.0001) for the
combinations wake vs. REM sleep, light sleep vs. REM sleep, wake vs. deep sleep, and light sleep
vs. deep sleep. Marginally significant differences (p < 0.05) occurred for wake vs. light sleep. The
DC values during deep sleep and REM sleep were not significantly different.

The observed sleep-stage related changes in DC can be compared with changes in long-term
heartbeat correlations during different sleep stages [Sect. 3.2.2] to improve the understanding of
cardiovascular regulation during sleep. In addition, the results might be applied for the detection
of sleep stages based on ECG instead of more complicated brain recordings. Another possible
application is the identification of anomalous autonomic regulation associated with certain disor-
ders.

4.2. Bivariate PRSA (BPRSA) and Multivariate PRSA (MPRSA)

The previously explored concept of univariate PRSA can be generalized to study interrelations
between two signals X and Y or even more than two signals. While I will mainly focus on the
first case and explain bivariate phase rectified signal averaging (BPRSA) which was published in
[Schumann et al. 2008a], I only briefly mention the even more general case of multivariate phase
rectified signal averaging (MPRSA).

As I have discussed in Sect. 2.1 autonomous control is established by the sympathovagal balance,
i. e., the ratio between parasympathetic and sympathetic tone. Recall that the empirical observa-
tion that this balance is affected by age, gender [Valladares et al. 2008], and more importantly
by certain pathologies led to the development of the PRSA method to separately investigate sym-
pathetic and parasympathetic effects in heartbeat [see Sect. 4.1]. Moreover, the association of
cardiac dysfunction and a history of myocardial infarction with a reduced parasympathetic ac-
tivity [Priori et al. 2001, and references therein] motivated the suggestion of the PRSA-based
parameter DC for mortality-risk assessment, Sect. 4.1.3.

However, as I have also mentioned in Sect. 2.2 the cardiovascular system includes the blood vessels
in addition to the heart. Blood pressure is simultaneously controlled by the autonomous nervous
system and linked to the regulation of the heart. One important autonomic control loop between
both components is the baroreflex, a homeostatic regulation that maintains a ’stable’ blood pres-
sure. An elevated blood pressure reflexively causes the blood pressure to decrease and vice versa.
It is controlled through several stretch sensitive mechanoreceptors (baroreceptors). Activation of
the baroreceptor results in a inhibition of sympathetic components and activation of parasympa-
thetic or vagal components. Due to an initially elevated blood pressure, activated baroreceptors
tend to decrease cardiac output via a decrease in contractility resulting in a lower heart rate and
finally in a decrease in blood pressure. A low blood pressure level relaxes the mechanoreceptor
and stops the sympathetic inhibition and resulting in an increased contractility, heart rate, and
blood pressure. It is believed that cardiovascular illnesses disturb the baroreflex and parameters
that include blood pressure information might even further improve mortality predictors as LVEF
or DC [Sect. 4.1.3]. Thus, the detection of quasi-periodicities reflecting regulation processes of
the autonomic cardiac nervous system that coincide either with increases or decreases of blood
pressure in long-term records of human heartbeat is of high clinical relevance. Autonomic dysfunc-
tion is closely related to cardiac mortality and susceptibility to life-threatening arrhythmic events
[Lown and Verrier 1976]. The assessment of heart rate variability (HRV) by the PRSA based
deceleration capacity (DC) parameter [Bauer et al. 2006a] was shown to be superior to spectral
parameters proposed earlier for risk prediction [Bigger et al. 1992]; for a recent review on DC and
different other nonlinear parameters used in total mortality risk assessment see [Huikuri et al.
2009]. Hence, a PRSA based method that respects the coupling of heartbeat and blood pressure
(BPRSA), i. e., phase rectifies heartbeat at times where blood pressure increases (or decreases)
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Figure 4.13.: Illustration of the BPRSA technique: Shown are fragments of (a) a blood pressure recording [trigger
signal X] and (b) a heartbeat interval (RRI) time series [target signal Y ]. According to Eq. (4.1a) anchor points xiν

are selected in X [(a); violet triangles up] and identified with corresponding points in Y [(b); red triangles down]
which are used as new anchors yiν . For each yiν surrounding windows yiν−L, . . . , yiν , yiν+L−1 are defined [(c) three
example windows ν = 50, 51, 52 of many more; anchor in the center] and aligned at anchor positions [(d) windows
ν = 28, . . . , 52; examples from (c) are shown in same colors]. (e) All surroundings ν = 1, . . . ,M with M the total
number of windows are averaged yielding BPRSAX→Y (k) which illustrates changes in heartbeat at increasing blood
pressure. (f) Likewise, changes in blood pressure caused by increases in heartbeat can be studied by exchanging
trigger and target signal, BPRSAY →X(k).

and vice versa, seems to be promising for the definition of an advanced risk predictor that is even
more superior.

4.2.1. BPRSA Algorithm

Both BPRSA and MPRSA algorithms are nearly identical with the univariate approach described
in the previous subsection [Sect. 4.1], except for the usage of different signals. I here illustrate
the BPRSA recipe using heartbeat and blood pressure signals commonly studied to quantify
baroreflex sensitivity, i.e., the variation of the time intervals between successive heartbeats in
reaction to changes in blood pressure.

Step 1 :
Anchor points are defined in a similar sense as before – e.g., according to Eq. (4.1a) – based
on the trigger signal X = {xi}, i = 1, . . . , N which is for example systolic blood pressure
[purple triangles up in Fig. 4.13(a)]. Subsequently, corresponding anchor points iν , ν = 1, . . . ,M
are identified in the target signal Y = {yi} which are for example heartbeat intervals (RRI)
[red triangles down in Fig. 4.13(b)]. Note, triggering on certain features in the trigger signal
(e.g. increases in blood pressure) does not necessarily imply anchors at the same features (e.g.
increases in RRI) in the target signal since a response might be time delayed.

Step 2 :
Surroundings of width 2L are defined around each anchor in the target signal [Fig. 4.13(c)]
(analogous to Step 2 in the univariate PRSA algorithm).

Step 3 :
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Similarly to Step 3 in the univariate PRSA all surroundings are aligned at their anchor positions
and averaged with respect to previously discussed ’missing points’ or ’incomplete surroundings’
yielding the bivariate phase rectified signal average

BPRSAX→Y (k) =
1

M

Mk∑

ν=1

yiν+k, k = −L, . . . , 0, . . . , L− 1 (4.6)

with Mk ≤M is the number of valid points of Y at position k and M is the total number of anchor
surroundings. BPRSA is a non-symmetric algorithm, i.e., the exchange of trigger signal X and
target signal Y will result in a different BPRSA curve addressing a different question, e.g., how
changes in heartbeat affect systolic blood pressure [cp. Figs. 4.13(e),(f)]. More complex boolean
or weighted anchor criteria, even ones based on more than one trigger signal, are possible. The
latter defines a multivariate PRSA (MPRSA) which is briefly sketched in Sect. 4.2.9.

4.2.2. Limitations of Cross-Correlation Analysis

Cross-correlation analysis (CCA) is a well established tool to quantify time-domain linear inter-
relations between two signals and has already been briefly introduced in Sect. 1.1. Although,
CCA has been employed in many applications, only a few authors have specifically addressed its
reliability [Peterson et al. 1998; Welsh 1999; Vio and Wamsteker 2001]. For two discretely
measured signals {xi} and {yi}, i = 1, . . . , N , the (biased) normalized cross-correlation function
is most commonly defined as in Eq. (1.9b); for convenience the essential part of both equations
is repeated and the notation is adapted to the notation of BPRSA by setting s = k. To avoid
confusion I denote this adapted version by C̃ovxy(k).

C̃ovxy(k) =





1

Nσxσy

N−k∑

i=1

(xi − µx)(yi+k − µy) : k = 0, 1, . . .

1

Nσxσy

N∑

i=1−k

(xi − µx)(yi+k − µy) : k = −1,−2, . . .

(4.7)

where again µα = 1
N

∑N
i=1 αi and σα =

[
1
N

∑N
i=1(αi − µα)

2
]1/2

are means and standard devia-

tions of both series α = x, y, respectively. This definition assumes that both µα and σα do not
vary in time, i.e., they do not depend on the segments of the time series selected for the study.
This corresponds to the assumption of weak stationarity. Strong stationarity additionally requires
constancy of all other moments [see Sect. 1.1]. For studies discussing the replacement of µx and
µy by local estimates, e.g., running averages, see [Scargle 1989; Press et al. 1992]. Note, how-
ever, that some cross-correlations might be reduced or eliminated by this so-called pre-whitening
procedure, which is therefore unsafe.
Another problem of cross-correlation functions is that the exchange of the two signals X and Y
corresponds to replacing k by −k, i.e., time inversion. Hence, causality relations between the
two series can hardly be assessed. In general, the points of C̃ovxy(k) are highly auto-correlated,

e.g., C̃ovxy(k) is strongly correlated with ρxy(k + 1). I.e., neighboring points in C̃ovxy(k) are
stronger correlated with each other than neighboring points in the original time series [Welsh

1999; Jenkins and Watts 1969]. This self-correlation causes long living trends in C̃ovxy(k),
e.g., a slow decay after a peak, which is at risk of misinterpretation.
Furthermore, the sum in Eqs. (4.7) runs over N − k terms, while it is divided by N instead of
N−k. This procedure corresponds to a standard averaging procedure only in the limit of very long
data (N → ∞). Nevertheless, most statistical toolkits employ the definition [Eqs. (4.7)], because
the convolution theorem and fast Fourier transform can be used to speed up the calculations
significantly in this case by application of the Wiener-Khinchin theorem. Some authors even argue
for an increase in precision because the normalization 1/N reduces the mean-square variance of

C̃ovxy(k) (see, e.g., [Jenkins and Watts 1969]). However, this non-matching prefactor results in
a bias towards zero with increasing time lag k for small N , causing a triangular-shaped behavior of



85

C̃ovxy(k). Consequently, the value of |k| > 0 for the center of a peak in C̃ovxy(k) is systematically
underestimated [Welsh 1999]. There are different opinions about which normalization should be

used. I am personally convinced that the correction factor N/(N − k) which transforms C̃ovxy(k)
from Eqs. (4.7) into the (unbiased) correctly normalized cross-correlation function24

C̃CFXY (k) =





1

(N − k)σxσy

N−k∑

i=1

(xi − µx)(yi+k − µy) : k = 0, 1, . . .

1

(N − k)σxσy

N∑

i=1−k

(xi − µx)(yi+k − µy) : k = −1,−2, . . .

(4.8)

should be used to obtain reliable results except for very long data and small |k|. For small |k| and
large N the correction factor approaches 1.
If the considered data is not fully stationary, one might want to use only the values xi with
i = 1, . . . , N − k and yi with i = k + 1, . . . , N for calculating µx,k, µy,k, σx,k, and σy,k. This
approach is known as local cross-correlation in literature; it is equivalent to the Pearson rxy
(product-moment) correlation coefficient for the two overlapping pieces. Since the partial means
and standard deviations will depend on k, the computational effort is significantly increased. The
bias mentioned in the previous paragraph is not completely removed in this approach [Welsh
1999] (although it is weaker than for the standard definitions [Eqs. (4.7)]. In addition, problems
with autoregressive moving average processes (ARMA) were reported [Jenkins and Watts 1969].
Since the cross-correlation approach does not work well for non-stationary data anyway, we do
not consider local cross-correlation here.

4.2.3. Interpretation of BPRSA Curves

In BPRSA, anchor points usually occur in all parts of the trigger signal X. The average of
BPRSAX→Y (k) for all k will, thus, be approximately the global average of the whole target
signal, i.e., µy. Consequently, subtraction of this mean from BPRSAX→Y (k) yields positive and
negative values as in the cross-correlation function. BPRSAX→Y (k)−µy can thus be interpreted in
a similar way as an unnormalized cross-correlation function. If one divides by the global standard
deviation, σy, the resulting quantity

BPRSA
(norm)
X→Y (k) =

BPRSAX→Y (k) − µy
σy

(4.9)

is also normalized. Hence, it can be compared with CCFX,Y (k) in Eqs. (4.8) and interpreted
in a similar way. Note that – different from cross-correlation analysis – this rescaling is just
the last step, and µy does not enter into the calculation of BPRSAX→Y (k). Hence, the shape
of the curve cannot be affected by non-stationarities, i.e., inaccurate µy. There is no practical
advantage of normalized BPRSA, unless the behavior of the curves for different signals, e.g.,
triggering directions (X → Y ) and (Y → X), shall be directly compared. However, the global
mean µy and global standard deviation σy might not exist due to non-stationarities and in this
case normalization is not recommended.
In some applications it is even preferred to study the unnormalized BPRSA curves. For example,
in quantifying the influence of blood pressure upon heartbeat regulation via the baroreflex mech-
anism in the human cardiovascular system, the variation of the time intervals between successive
heartbeats in reaction to increases in blood pressure needs to be measured [example used for
method illustration in Fig. 4.13]. In this case the units of both signals have to be kept, and the
measure characterizing the baroreflex must have the unit ms/mmHg, i.e., time difference divided
by pressure difference. In fact, cross-correlation studies can only yield either quantities without
units (if normalized) or quantities which are products of both original units. Quantities with the
unit of only one original series or their ratio (as needed for the baroreflex) cannot be obtained.

24I changed the notation from ’xy’ to capital letters to ensure comparability with the notation I use for BPRSA
following [Schumann et al. 2008a].
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Hence, there is no way to obtain a meaningful measure for the baroreflex from a cross-correlation
analysis, although the baroreflex is a typical example of a meaningful inter-relation between two
components of a complex system.

Effects occurring in BPRSAX→Y (k) for k > 0 can be easily recognized as consequences of the
triggering events in the trigger signal X. On the other hand, effects seen in BPRSAX→Y (k) for
k < 0 are likely to be causes for the actual triggering events. Note that a similar conclusion is
also valid for the cross-correlation function CCFX,Y (k), since effects observed for k > 0 and k < 0
are probably due to interactions from signal X onto signal Y and vice versa. However, BPRSA
allows separating these causality effects from nonlinear effects, as we will see in the following.

Altogether, four BPRSA curves can be defined, compared with one cross-correlation function:
BPRSAր

X→Y (k) (triggering on increases in X), BPRSAց
X→Y (k) (triggering on decreases in X),

BPRSAր
Y→X(k), and BPRSAց

Y→X(k) (triggering on Y ). By comparing these curves, additional
information on the linearity of the interactions and time reversal symmetry can be obtained. In
the following we will use the symbols ր and ց for BPRSA curves obtained by triggering on
increases and decreases in the trigger signal only when necessary for distinction. In all other cases
BPRSAX→Y means BPRSAր

X→Y .

If the interaction from signal X to signal Y is linear, we will find BPRSAր
X→Y (k) =

−BPRSAց
X→Y (k), since increases and decreases in X must cause opposite effects in Y . Ac-

cordingly, BPRSAր
Y→X(k) = −BPRSAց

Y→X(k) shows that the interaction from Y to X is lin-
ear. If the interaction between both signals is fully symmetric, time inversion is equivalent

with exchanging the signals, BPRSA
ր(norm)
X→Y (k) = BPRSA

ր(norm)
Y→X (−k) and BPRSA

ց(norm)
X→Y (k) =

BPRSA
ց(norm)
Y→X (−k). Deviations from this behavior show non-symmetric coupling as do devia-

tions from CCFX,Y (k) = CCFX,Y (−k) in cross-correlation analysis. However, this can be checked
independent of the linear or nonlinear character of the interactions between the signals. Note that
normalized BPRSA must be considered in this case, Eq. (4.9). It is straightforward to write down
similar relations for testing further hypotheses regarding the inter-relations between both signals.

4.2.4. Comparison of Cross-Correlation Analysis and BPRSA

In this subsection I will discuss how BPRSA overcomes the above described disadvantages of
cross-correlation analysis.

1. Causality and nonlinear interactions. As we have shown in the previous subsection, more
information on the linearity or nonlinearity of the interactions and on time-reversal symmetry can
be obtained from BPRSA curves than from the cross-correlation function.

2. Time delays. The estimation of (positively or negatively) time-delayed inter-relations between
both signals is straightforward, just as in cross-correlation analysis.

3. Missing data and outliers. BPRSA can easily cope with missing data (e.g., measurement
artifacts, instrument failure, or outliers) in both series X and Y . Invalid values in X just cannot
become anchor points. Invalid values in Y will be disregarded [see text following Eq. (4.3)].

4. (Non-)stationarity of the data. In the definition of BPRSA [Sect. 4.2.1 , in particular Eq. (4.6)]
neither means nor standard deviations of both signals X and Y are needed. Hence, no direct
problems arise for non-stationary data. In particular data with a piecewise constant trend, which
is often observed in medical data recordings, will cause no problems in BPRSA, because Eq. (4.6)
is a simple linear arithmetic averaging procedure. The deviations from a small or large local
average will have the same weight in this averaging procedure. Hence, BPRSA does not need
pre-whitening of the data before analysis. Cross-correlation analysis, on the other hand, will be
disturbed severely by a piecewise constant trend, because the deviations xi − µx from the global
average will be dominated by this trend [see Sect. 4.2.8 for an example]. The same holds for an
oscillating trend in the target signal Y which is uncorrelated with the trigger signal X. However,
such a trend in X will selectively cause anchor points and thus disturb also BPRSA; consequently
more anchor points, i.e., longer data, will be needed!

A slowly varying, monotonous (e.g., polynomial) trend in the target signal will bend the BPRSA
curve, since the local means are different in the beginning and at the end of the signal and in the
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Figure 4.14.: Filter-properties of BPRSA and cross-correlation function for differently correlated noises with
µx = µy = 0, σX = σY = 1. The time domain (a,b) and frequency domain (d) plots of 1/fβ -noise with spectral
exponents βX = 0.7 [black curves, shifted] and βY = 1.3 [magenta curves] are shown next to the BPRSAX→Y

[black] and CCFX,Y [blue] in (c) and their correctly normalized and correspondingly color-coded power spectra
with βBPRSAX→Y

≈ 0 [shifted] and βCCFX,Y
≈ 2 in (e). The two long-term correlated noises were generated by

Fourier filtering [Sect. 1.5.2] with different β, starting both procedures with the same original white noise [not
shown]. For all spectra logarithmic binning and linear fitting [yellow dots and lines] were applied to estimate β.

beginning and at the end of each segment. However, this bending is definitely not stronger than
a similar bending of the cross-correlation function. Trends in the trigger signal X will modify the
fraction of anchor points for increases and decreases, which has little effect on BPRSAX→Y (k)
unless these trends are very strong.

5. Enhanced auto-correlations. Unlike the cross-correlation function [Welsh 1999; Jenkins and
Watts 1969], which is often dominated by low frequencies, BPRSA does not show artificially
enhanced auto-correlations. On the contrary, low frequencies are reduced due to the filtering
characteristics (see next point). This makes BPRSA particularly attractive for studying signals
with underlying 1/f - rather than white noise. Note that 1/f -noise is prevalent, e.g., in medical
and geophysical data.

6. Filtering characteristics. Figure 4.14 compares the spectral properties of both, cross-
correlation analysis and BPRSA. Since many interesting data contain long-term auto-correlations
[cp. Sect. 1.2 for definition and Chapt. 3] and are characterized by 1/f -noise in their power spec-
tra, P (f) ∼ f−β with β around 1, consider two such noise series (see Fig. 4.14(a,b)) with βx ≈ 0.7
and βy ≈ 1.3 (see Fig. 4.14(d)). The power spectrum of the cross-correlation function decays as
f−2 (see Fig. 4.14(e)). It is thus dominated by low-frequency components. The BPRSA curve, on
the other hand, yields a nearly flat power spectrum (see also Fig. 4.14(e)). Therefore, additional
peaks and quasi-periodicities can be noticed and determined much easier.

The filtering characteristics of BPRSA can be explained as follows. The scaling behavior of
the BPRSA spectrum is influenced by the anchoring procedure in the trigger signal and by the
averaging of the target signal. We want to estimate the probability p(f) that an oscillating
component with frequency f , yf = Ay sin(2πft) in the target signal Y affects BPRSAX→Y (k)
under the condition that an oscillation with the same frequency f , xf = Ax sin(2πft) causes
anchor points in the trigger signal X. Firstly, xf has to cause anchor points at positions tν ,
meaning xf (tν) has to be larger than xf (tν−∆t) ≈ xf (tν)−∆tx′f = xf (tν)−∆t2πfAx cos(2πftν)
for anchor criterion Eq. (4.1a). This is a valid approximation except for very high frequencies f .
The deviation xf (tν) − xf (tν − ∆t) = ∆t2πfAx cos(2πftν) becomes maximal for tν = n/f with
any integer n. Since anchor points tν are primarily generated at or close to phase zero of the
considered component xf , the later averaging is phase-rectifying in terms of the trigger signal.
The value of the maxima xf (tν)− xf (tν − ∆t) is 2π∆tfAx and thus the probability px to anchor
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Figure 4.15.: Idealized model illustrating the idea of BPRSA to distinguish different oscillatory components in
the target signal which correspond to a certain phase of the trigger signal. (a) Target signal Y [blue] composed of
two pure sinusoids with f1 = 0.042 1/sample units (s.u.) and f2 = 0.136 (s.u.)−1 together with trigger signal X
[green; here a simple flattened sawtooth signal whose flanks symbolize times of signal increase and signal decrease].
(b) Cross-correlation function CCFX,Y and (d) BPRSAX→Y of both signals in (a) employing an anchor criterion
according [green, increases] Eq. (4.1a) and [violet, decreases] Eq. (4.1b). (c,e) Power spectra of CCFX,Y and
BPRSAX→Y . While BPRSA can clearly distinguish between oscillations occurring simultaneously to an increase
or a decrease in the trigger signal, CCF only qualitatively identifies both components.

is proportional to Axf . On the other hand, the component yf has an effect proportional to its
amplitude Ay due to the averaging procedure of Eq. (4.3) and therefore py ∼ Ay. The amplitude
of the considered spectral components in BPRSAX→Y (k) is thus determined by AxAyf . If one
considers two signals X and Y consisting of correlated noise with power spectra

Px(f) ∼ A2
x ∼ f−βX and Py(f) ∼ A2

y ∼ f−βY (4.10)

it follows

PBPRSA(f) ∼ (pxpy)
2 ∼ A2

xf
2A2

y ∼ f−βX−βY +2 = f−βBPRSA (4.11)

with βBPRSA = βX + βY − 2, yielding βBPRSA ≈ 0 if both βX and βY are close to one or their
average is close to one.
Since BPRSA has significant advantages over cross-correlation analysis for studying data with
1/f noise and/or nonlinear interaction as well as non-stationary data, one can imagine several
applications. Next, I describe four specific situations (with and without noise) and illustrate the
performance of BPRSA on model data.

4.2.5. Example I: Event Modulated Oscillations

As already mentioned before there exist applications where a signal Y exhibits typical oscillatory
structure at certain phases of a signal X. A prominent physiological example is respiratory sinus
arrhythmia (RSA), i.e., the modulation of heartbeat with respiration. During inspiration heart-
beat is accelerated while it is decelerated during expiration. RSA is especially pronounced in dogs
and was also reported to improve the efficiency of pulmonary gas exchange [Hayano et al. 1996;
Yasuma and Hayano 2004]. Hence, there are heartbeat (quasi-)oscillations of different period
associated with inspiration and expiration. Another example is the previously discussed barore-
flex. Figure 4.15 shows a simple toy model comprising a signal (target signal) constructed from
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Figure 4.16.: Samples of the
noise series X [(a), pure noise],
Y [(b), generated from X by
Eq. (4.12) with c1 = 0.2], and
Z [(c), c1 = −0.1]. The HF
band [f ∈ [0.25, 0.35] reciprocal
sampling units] is used for the
bandpass filtering, and the total
length of the data is N = 16384.
BPRSA results for α = Y (d)
and α = Z (e): BPRSAր

X→α

[black solid lines], BPRSAր
α→X

[red solid lines], −BPRSAց
X→α

[green triangles], −BPRSAց
α→X

[blue circles] are shown. The
points are connected for visual
reasons only; all values are di-
mensionless.

two different periodic components which are present at different phases of a second signal (trigger
signal). It illustrates the idealized capability of BPRSA to distinguish both effects of different au-
tonomous control (heartbeat deceleration=vagal activation, heartbeat acceleration=sympathetic
predominance). Since all data points of both signals contribute to the cross-correlation function
it is not capable to extract which oscillatory component was present at times of trigger signal
increases (or, alternatively decreases) [Figs. 4.15(b,c)]. BPRSA on the other hand can clearly
distinguish both components since anchor points are chosen exclusively during increasing (or de-
creasing) events in the trigger signal [Figs. 4.15(d,e)].
However, while this concept does work as desired in examples similar to the illustrated one the
performance strongly depends on the ’order’ and ’density’ of anchor points. In long datasets, where
anchor points of opposite anchor criteria (signal increases and decreases) are strongly interwoven,
oscillations coexisting with either criterion survive in the BPRSA averaging step because the
surrounding width L will be larger than the distance to the next anchor of opposite criterion.
Thus, each window and as a result the BPRSA will contain (quasi-)oscillations from both criteria.
For that reason, when studying the baroreflex, oscillatory components associated with either blood
pressure increase or blood pressure decrease can never successfully be distinguished by BPRSA
since heartbeat and blood pressure signals oscillate at a similar frequency (each heartbeat is
followed by a maximum – systole – in blood pressure). However, distinction is possible for RSA
(heartbeat and respiration) on scales smaller than a respiratory cycle. Nevertheless, one might
still benefit from such property in systems where events that one wants to separate are defined by
more complicated anchor criteria other than simple increases and decreases in the trigger signal
and which, hence, occur more rarely.

4.2.6. Example II: White Noises with Linear Relation

May X = {xi} and Ỹ = {ỹi} denote two independent white noise signals with zero mean and unit
variance. Based on Ỹ the signal Y = {yi} is generated by introducing a linear unidirectional cou-
pling with X in a certain frequency band. This is generated by calculating the linear combination
of Ỹ and one or more bandpass filtered components of X,

yi = ỹi +
∑

j

cj BP
(j)
i (X). (4.12)

The bandpass filtering is done in Fourier space, and BP
(j)
i (X) denotes the i-th element of the

series obtained from the related j-th bandpass filter operator acting on X. The prefactors cj
include the coupling strengths |cj | and directions sgn(cj). Finally, Y is normalized to obtain zero
mean and unit variance. Fig. 4.16(a) illustrates the original noise X, while Figs. 4.16(b,c) show
Y and Z for two different values of c1 and cj = 0, ∀j > 1.
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Figure 4.17.: (a) Sinusoidal
signal X and nonlinearly cou-
pled signals (b) Y and (c) Z
according to Eq. (4.13). (d)
BPRSAր

X→Y [black solid lines],
BPRSAր

Y →X [red solid lines],
−BPRSAց

X→Y [green triangles],
−BPRSAց

Y →X [blue circles], (e)
BPRSA for Z instead of Y
accordingly; panel (f) shows
CCFX,Y = CCFY,X and (g)
CCFX,Z = CCFZ,X [black on
red solid lines]

Different coupling strengths |c1| are reflected by different amplitudes of
BPRSAX→α(k) and α = Y,Z, while a different coupling direction results in a different
sign of BPRSAX→α(k) [cp. Figs. 4.16(d,e)]. Since linear coupling is considered here,

BPRSAր
X→α(k) = −BPRSAց

X→α(k) as discussed in Sect. 4.2.3 and illustrated in Figs. 4.16(d,e).
There is no advantage over CCFX,Y (k) which is a linear method and looks very similar in this
example [not plotted].

4.2.7. Example III: Nonlinear Relation

The response of the BPRSA to nonlinearly coupled trigger and target signals strongly depends on
the type of the coupling. The most simple nonlinear coupling is the absolute value. Let us assume
a sinusoidal trigger signal X without noise and a target signal Y that only contains the absolute
value of X, yielding a frequency doubling. When calculating the BPRSA all oscillations cancel
out and BPRSAX−→Y (k) = BPRSAY−→X(k) = 0. In the presence of additional 1/f -noise the
BPRSA will basically show features of the noise and possibly finite size effects. The same holds
for similar nonlinear coupling, e.g., raising to an even power. On the other hand, this elimination
of higher harmonics might be an advantage if one wants to clarify a complex relationship between
two unknown signals.

Now, we study nonlinear coupling without frequency doubling. Three simple oscillating series are
defined by

xi = sin(2πfi), yi = (xi)
9, zi = sgn(xi) |xi|1/9. (4.13)

and illustrated in Figs. 4.17(a-c). The large power of 9 has been chosen for visual reasons only;
it enhances the differences as does the absence of noise. The cross-correlation analysis [see Figs.
4.17(f,g)] cannot distinguish (i) the cases X → Y and X → Z as well as (ii) both possible analysis
directions. Studying only the cross-correlation function could thus lead to the false conclusion of
equivalently related signals Y and Z. BPRSA, on the other hand, can clearly distinguish the four
cases except for BPRSAY→X(k) = BPRSAZ→X(k). However, one has to keep in mind that the
shape of the BPRSA curve needs not be the same as the original target signal [cp. Figs. 4.17(b,d)].
A presence of noise might disturb the BPRSA signal, making the identification of characteristics
in trigger and target signal more difficult, depending on the signal to noise ratio.

4.2.8. Example IV: Influence of Trends in the Signal

Now let X and Y be two independent 1/f -noise signals with zero mean and unit variance gen-
erated by Fourier filtering. Furthermore, be a periodic component A sin(2πfi) incorporated in
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Figure 4.18.: Sinusoids with
frequency f = 1/30, ampli-
tude A = 0.5, and normal-
ized additional 1/f ; length N =
16384. In (a,b), different partial
trends of random offset, slope
and duration were added; (c)
is the same as (b) but with-
out trends. (d) BPRSA results
for Y : BPRSAր

X→Y [black solid
lines], BPRSAր

Y →X [red solid
lines], −BPRSAց

X→Y [green tri-
angles], −BPRSAց

Y →X [blue
circles]. (e) BPRSA for Z re-
placing Y accordingly. Panel (f)
shows CCFX,Y [black], CCFY,X

[red] and (g) CCFX,Z [black],
CCFZ,X [red] accordingly. The
points are connected for visual
reasons only; all values are di-
mensionless.

both signals. Additionally, non-stationarities are introduced by adding piecewise linear trends
as follows: Start with some initial value for the slope a1 and the initial offset a0. At random
positions, the offset and the slope are changed randomly within a previously defined range; the
trends added to X and Y are independent [see Figs. 4.18(a,b)]. For comparison a third signal Z
that equals Y is defined without additional non-stationary trends [Fig. 4.18(c)].
Trends in the trigger signal will hardly affect the identification of the anchor points, because the
anchor criteria defined in Eqs. (4.1) is only based on local fluctuations. Note, that this might be
different when using a more sophisticated boolean anchor function as discussed earlier [compare
BPRSA directions Y → X and Z → X in Fig. 4.18(d,e)].
On the other hand, the influence of trends in the target signal cannot be neglected [see Fig.
4.18(e)]. In case of a significant global trend in the target signal, e.g., more decreasing parts
than increasing parts, the global trend will be present in the BPRSA curve, although it is di-
minished. Note, that due to trends which do not cancel out completely, BPRSAր

X−→Y (k) 6=
−BPRSAց

X−→Y (k) in general [compare solid lines and triangles in Figs. 4.18(d,e)]. When the
BPRSA shows no trend at all, the target signal is either characterized by no trends or the duration
and slopes of increasing and decreasing trends cancel out.
As an implication of the different influences of trends in the trigger and target signal one can
identify which signal is disturbed by trends by comparing the BPRSA for opposite trigger-target
directions (X → Y, Y → X). This is inherently impossible with cross-correlation analysis since
the algorithm does not distinguish between both signals. Besides, trends are harmful for the
definition of a global mean and thus disturb the standard cross-correlation analysis. Therefore,
its results may suggest a wrong correlation behavior. In Figs. 4.18(f),(g) one finds, by chance,
anti-correlated behavior although the signals themselves, i.e., the sinusoids, are strongly positively
correlated. For the same reason a normalized BPRSA as defined in Eq. (4.9) cannot be applied
here. Of course, in this simple example the use of the local cross-correlation function, which is
based on local means rather than on a global mean, might help to remove the influence of the
trends.

4.2.9. Towards a Multivariate Analysis

As I have mentioned in Sect. 4.2.1 it is possible to define more sophisticated anchor criteria
compared to Eqs. (4.1) which includes more than one signal and promotes BPRSA to a multivariate
variant. For instance, the typical behavior of a target signal Y can be studied around points in
time (anchors) with increases of a first trigger signal X1 and positive values of a second trigger
signal X2. This defines a conditional anchor criterion in Step 1 of the BPRSA algorithm. As a
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specific example of such conditional anchor criterion consider the three signals heartbeat intervals,
respiratory phase, and blood pressure describing component of the cardiovascular system. One
could study characteristic heartbeat intervals (target signal Y ) around increasing systolic blood
pressure (first trigger signal X1) coinciding with a certain respiratory phase such as inspiration
(second trigger signal X2).
When more than one trigger signal is involved in a BPRSA variant, I denote the method multi-
variate phase rectified signal averaging (MPRSA). First attempts revealed promising results for
the investigation of baroreflex properties, see also [Bauer et al. 2009].
The capabilities of MPRSA could, for instance, proof useful for verifying the respiratory gating
theory which is still controversially discussed among medical doctors, for a review see [Eckberg
2003]. Respiratory gating theory basically deals with the coupling between respiration, heartbeat,
and baroreflex and claims that respiration modulates the latter two. While the coupling between
respiration and heartbeat is known (and accepted) as respiratory sinus arrhythmia (RSA) [see
Sect. 2.2.2], the coupling between baroreflex and respiration is not well understood. According
to [Rothlisberger et al. 2003] who studied the baroreflex during forced breathing and apnea25

there is a ’strong temporal ordering’ of spontaneous baroreflex sequences which reflects respiratory
gating of sympathetic outflow. Rothlisberger et al. consider a parallel increase in blood pressure
and RRI (acceleration of the heart) as an ’up’ sequence which occurs shortly before and after onset
of expiration, and a decrease in systolic blood pressure accompanied by a deceleration of the heart
as ’down’ sequence that occurs during late expiration and inspiration. In contrast, respiratory
gating seems not to affect the gain of baroreflex oscillations (amplitude of influence) because they
were found to be independent of breathing or apneas [Rothlisberger et al. 2003]. However, the
original studies only included a few short recordings (ten subjects, 3min spontaneous breathing,
3min apnea, and 2min hyperventilation) and the generality of both findings and gating theory
should be tested in a larger database.
Further possible applications of PRSA methods in biology and physiology include rhythmic mo-
tions of limbs in walking, muscle contractions, rhythms underlying the release of hormones that
regulate growth and metabolism, periodicities in gene expression, membrane potential oscillations,
oscillations in neuronal signals, and circadian rhythms [Tyson 2002; Glass 2001]. I believe that
the range of suitable applications for the PRSA methods also include quasi-periodic geophysical
data, e. g., data describing the El-Niño phenomenon, the activity of the sun, and ice age periods
[von Storch and Zwiers 2001]. In addition, the analysis of complex elastic wave patterns to
study seismic events or to determine material properties of granular matter might be improved
by them. The study of non-stationary quasi-periodic complex waveforms is also a common task
in the analysis and recognition of speech or music.

25Here apnea is a deliberate interruption in breathing during wake and not related to sleep apnea.



5. Quantifying Interrelation by Synchronization
Analysis Methods

Synchronization phenomena are a topic in physics with a long history dating back to Christian
Huygens suffering from a sickness. While confined to bed he observed that two clocks on the
wall tend to mutually synchronize after time even when started at different phases [Huygens
1673]. Although classical cross-correlations and cross-coherences can be thought of as a linear
type of synchronization [Quian Quiroga et al. 2002], most authors consider synchronization to
be a nonlinear phenomenon. In the concept of Nonlinear Dynamics synchronization is understood
as an adjustment of rhythms observed in oscillating objects (oscillators) due to a (sufficiently
weak) interaction (coupling) [Pikovsky et al. 2001]. A typical property of such oscillators is
that a small perturbation is followed by a transient process and after some time a restoration of
the original rhythm. In theoretical nonlinear dynamics the common approach is to study model
systems described by equations (deterministic or stochastic) and a known coupling. Time series
analysis on the other hand is a somewhat complementary approach where the underlying system
is mostly unknown and the aim is to extract the dynamics, coupling, and more importantly derive
model equations by studying the output of the system.

In the introduction part we have seen how interrelation between time series can be defined employ-
ing linear (classical) ’synchronization’ methods, i.e., cross-correlation analysis and cross-coherence
analysis. The concept of cross-correlation has been further developed in a wider sense in Chapt. 4.
While methods such as cross-correlation analysis still benefit from their simpleness, they are, un-
fortunately, rather unsuitable for studying physiological time series where nonstationarities are
common, see Chapt. 4. In the context of signals from physiological sources, e.g., heartbeat, respi-
ration, or the human electroencephalogram (EEG), nonlinear methods have proven to be helpful.

In this chapter I will explore concepts of nonlinear synchronization analysis to quantify interrela-
tion of mutli-variate time series (at least two signals), apply them to sleep data from the SIESTA
database [Sect. 2.3] and introduce a related method capable of studying interrelated amplitude
and frequency signals in multivariate data. The latter method was coined Cross-modulation anal-
ysis in our paper [Gans et al. 2009] and we successfully applied cross-modulation analysis to
study effects of Parkinson’s disease on the coupling structure between different physiologically
important oscillatory components in the brain during sleep [Stumpf et al. 2010].

5.1. Introduction to Synchronization Analysis

5.1.1. Concepts of Characterizing and Detecting Synchronization

Nonlinear synchronization analysis aims at understanding and quantifying nonlinear interrelations
between nearly periodic signals. Such periodic signals can be imagined as emerging from the
dynamics of a set of self-sustained oscillators each responsible for the generation of an oscillation
with a certain frequency. Interrelated periodic signals could thus be modeled by introducing
a certain coupling between two or even more such oscillators in the sense that the dynamics
of one oscillator is to some extend plugged into the equations describing the dynamics of the
other oscillator. Neglecting qualitative work already done by Huygens and his successors such
coupled oscillators have been intensely studied in physics for over 40 years now, dating back to the
pioneering work of Winfree who did an early simulation on populations of generalized relaxation
oscillators (as meaningful for firing neurons) [Winfree 1967], or Kuramoto who introduced the
coupled oscillator model to biological and chemical systems [Kuramoto 2003]. A nice popularly
written review can be found in [Strogatz and Stewart 1993], in the revised book by Winfree
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[Winfree 2001], or more recently online [Pikovsky and Rosenblum 2007].

Periodic self-sustained oscillators can theoretically be described in terms of a stable limit cycle of
a nonlinear dynamical system whose dynamics is fully captured by combining all system relevant
variables into a vector ~x(t) where ~̇x(t) = f(~x(t)) describes the dynamics [Pikovsky et al. 2001]. A
periodic solution is then given by ~x0(t) = ~x0(t+ T0) with period T0. The phase φ associated with
an oscillator is then some coordinate along the limit cycle – in mathematics we say φ parametrizes
the motion along a cycle. The phase φ monotonously increases with time along the cycle and
gains a value of 2π per complete cycle. Hence, an angular frequency (natural frequency of the
oscillation)

dφ

dt
= ω0 = const. =

2π

T0
(5.1)

can be defined.

When two self-sustained oscillators are bidirectionally coupled by some coupling functions Q1 and
Q2, their dynamics can be described by the following model equations

φ̇1 = ω1 + ǫQ1(φ1, φ2) = ω1 + ǫ
∑

k,l

ak,l1 eikφ1+ilφ2

φ̇2 = ω2 + ǫQ2(φ1, φ2) = ω2 + ǫ
∑

k,l

al,k2 eilφ1+ikφ2
(5.2)

where the last term is the Fourier series of the 2π periodic coupling function and ǫ is the coupling
strength1. Substituting the unperturbed case φ1,2 = ω1,2t in the sums it becomes obvious that
most summands correspond to ’relatively fast’ oscillations (i · const · t in the exponent) except for
the resonant case (const ≈ 0, lω1 ≈ −kω2) which could be described by a rational frequency ratio
(k = nj; l = −mj; n,m ∈ N+)

nω1 = mω2 (5.3)

and finally yields

φ̇1 = ω1 + ǫq1(nφ1 −mφ2)

φ̇2 = ω2 + ǫq2(mφ2 − nφ1) .
(5.4)

The coupling functions q1,2 simplify the Fourier sums which can be written as q1(∆φn,m) =∑
j a

nj,−mj
1 exp{ij∆φn,m} and q2(−∆φn,m) =

∑
j a

mj,−nj
1 exp{−ij∆φn,m} by introducing the gen-

eralized phase difference or relative phase

∆φn,m = nφ1 −mφ2 . (5.5)

Inserting Eq. (5.5) in Eqs. (5.4) yields

d(∆φn,m)

dt
= −(mω2 − nω1) + ǫq(∆φn,m) , (5.6)

where the leading term mω2 − nω1 denotes the frequency detuning (frequency mismatch) and
measures the difference of the coupled oscillators. From studying the stability, i.e, finding solutions
of d(∆φn,m)/dt = 0, one obtains a stable fix point for ∆φn,m = const. Thus,

|nφ1 −mφ2| = const. (5.7)

which is known as phase locking and, in the case of self-sustained coupled oscillators, immediately
yields after differentiation the equivalent term

nφ̇1 = mφ̇2 (5.8)

1Some authors, e.g., Arkady Pikovsky, call it ’amplitude’ which might be misleading in the following context
where (instantaneous) amplitudes will refer to enveloping curves of oscillating signals determined by a Hilbert
transform.



95

which is referred to as frequency locking or frequency entrainment. Real world oscillators, however,
are constantly perturbed by external forces or influenced by noise resulting in a violation of the
strict equality in Eqs. (5.7) and (5.8).

|∆φn,m| = |nφ1 −mφ2| < const = |nφ1 −mφ2 − δ(t)| nφ̇1 ≈ mφ̇2 (5.9)

The noise induced perturbation δ(t) causes the generalized phase difference to fluctuate around the
unperturbed phase difference. Hence, the frequencies φ̇1,2 have to be substituted by expectation
values Ω1,2 = 〈φ̇1,2〉, i.e., the mean frequencies observed over time. Unfortunately, due to the (time)
averaging nΩ1 = mΩ2 might be satisfied by chance even for uncoupled oscillators. Therefore, the
unrestricted application of Eq. (5.8) is not longer possible and studying phase synchronization or
more precisely phase locking has become more popular in practice.

The advantage of phase synchronized systems is obvious in the presence of noise where the natu-
rally noise-induced phase diffusion, i.e., phase fluctuations around a stable fix point in a potential
yielding non-constant periods of oscillation [Pikovsky et al. 2001], is significantly reduced in
synchronized states. However, phase slips, although reduced in their occurrence, can still occur.
Note that the phases φ1,2 are not cyclic in [0, 2π] but can take any value in R. For practicality
reasons one often maps the generalized phase difference into the interval [0, 2π] and studies the
distribution of the cyclic relative phase differences,

∆Ψn,m(t) = ∆φn,m(t) mod 2π . (5.10)

This distribution shows a peak in the case of phase locking in a statistical sense, see also Fig.
5.1(b,c). It is important to note that signal amplitudes might be uncorrelated while phase-locking
takes place. Linear synchronization analysis methods, which do not study phase interrelation but
the pure signals, might overlook the synchronization.

Descriptive Meaning of the Integers n, m

So far the integers n and m were a rather technical asset to describe the frequency ratio in the
resonant case, recall Eq. (5.3). Before, I discuss how phases ϕ are defined for real data it might
be helpful to establish some understanding of n and m as it will occur in the latter application
in Sects. 5.2 and 5.3. Consider the cardiorespiratory system [Sect. 2.2] and its most prominent
signals heartbeat and oronasal airflow (a respiration proxy). As was discussed earlier the human
heart beats approximately four times per breath (1x inspiration + 1x expiration)2 – heartbeat
is approximately four times faster than respiration. Hence, the phase associated with heartbeat
(ϕ2) grows four times faster than the phase of respiration (ϕ1), i.e., while heartbeat evolves along
cumulative phases from 0 to 4 · 2π = 8π airflow only passes through phases from 0 to 2π. Thus,
when studying their mutual interdependence (later, in particular, phase synchronization) one has
to take this ratio n : m = 4 : 1 into account, that is, the respiratory phase has to be multiplied
by 4 to be comparable with the phase of heartbeat (4ϕ1 = 1ϕ2). In this example phase-locking
is reached when the condition |∆ϕ4,1| = |4ϕ1 − 1ϕ2| < const [Eq. (5.9)] is satisfied. Equivalently,
the frequency of heartbeat (ω2) is 4 times larger than for respiration (ω1) yielding 4ω1 = 1ω2 for
the corresponding frequency locking condition in Eq. (5.9).

5.1.2. Defining Instantaneous Amplitudes, Phases, and Frequencies

Studying synchronization in the following will refer to studying signals in the phase locking regime
according to the first part of Eq. (5.9). Since the approach discussed here is not based on some
known model whose dynamics should be studied but rather focuses on the dynamics captured
by observation, i.e., by measuring time series, the first step in an analysis is dedicated to the
definition of phases for such discrete signals.

2Note, this is an approximation only used for illustration. Of course the correct cardiorespiratory ’timing’ strongly
depends on the medical and physiological state of the individual, i.e., sleep vs. awake, rest vs. exercise, healthy
vs. diseased, speaking vs. quiet, calm vs. scared, and many others. The distribution among different ratios
during sleep is studied in Sect. 5.2.6, see also Fig. 5.11 for an overview.
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General Approach and Point processes
Consider a stable periodic oscillation whose instantaneous phase can then be expressed by the
instantaneous angular velocity ν(θ) = dθ/dt via the integral transformation

φ = ω0

∫ θ

0
[ν(θ)]−1dθ (5.11)

where θ is in general a non-uniformly rotating 2π periodic angular variable and ω0 = 2π/T
is the frequency of the self-sustained oscillation. Note, that in this definition non-uniformly
means the rotation can locally be described by any arbitrary angular velocity. The important
characteristics of the phase are monotonousness and a 2π gain per cycle but not necessarily a
constant instantaneous gain.
For real world data, however, the instantaneous velocities ν(θ) are usually unknown for at least
some time increments and thus the phase definition in Eq. (5.11) cannot be applied. For point
processes such as pulse trains (spike trains) or heartbeat (in the sense of beat positions) one might
estimate the phases locally by linear interpolation. Under the assumption that during the time
interval [tk, tk+1], for instance associated with the time interval between the k-th and (k + 1)-th
heartbeat, a phase gain of 2π is generated it follows from the point-direction equation of linear
functions for any time t : tk ≤ t ≤ tk+1

φ(t) = 2π
t− tk

tk+1 − tk
+ 2πk . (5.12)

Continuous and Evenly Discretized Signals
Most physiological signals, although discretely sampled, as for instance respiration or the human
electroencephalogram (EEG), are not point processes and thus a different concept is needed. When
thinking about phases of continuous signals one immediately remembers the canonical solutions
of the wave equation3 being plane waves, Ψ(x, t) = A(t)ei(kx−ωt) where ϕ(t) = (kx − ωt) is the
instantaneous phase.
If an arbitrary4 signal can be complemented in such way that it produces a similar expression, it is
straightforward to define instantaneous phases and instantaneous amplitudes for the signal. The
solution of the problem dates back to Gabor [Gabor 1946] who introduced the Hilbert transform,
originally invented by David Hilbert in 1905 during his work on analytical functions, to signal
analysis.
The basic idea is to complement an arbitrary real valued signal x(t) (discretization yields a time
series) by its imaginary counterpart ix̃H(t) to obtain an analytic signal x̆(t). The latter allows for
the definition of an instantaneous amplitude A(t) and an instantaneous phase ϕ(t).

x̆ = x(t) + ix̃H(t) = A(t)eiϕ(t) (5.13)

The imaginary part of Eq. (5.13) is conveniently given by the Hilbert transform being the convo-
lution of the real signal x(t) with the function 1/(πt):

(Hx)(t) = x̃H(t) =
1

π
P.V.

∫ +∞

−∞

x(t′)

t− t′
dt′ (5.14)

where P.V. denotes the Cauchy principal value. For discrete time series solving Eq. (5.14) is often
not straightforward, however, from the convolution theorem it follows that

F
(
(Hx)(t)

)
= F

(
x̃(t)

)
= F

(
x(t)

)
F
(

1

πt

)
= F

(
x(t)

)
(−isgn(ν))

x̃H(t) = F−1
(
− isgn(ν)F

(
x(t)

)
(ν)
)
(t) (5.15)

3You might also think of the Schrödinger equation of a free particle i~ ∂
∂t
ψ(r, t) = Hψ(t) with H = − ~

2

2m
∆+V (r, t)

and V (r, t) = 0 which then takes the form of the wave equation.
4This is not quite correctly formulated since the analytical completion algorithm presented in the following requires

the signal to fulfill two prerequisites: (i) a narrow-banded power spectrum, and (ii) the signal must fluctuate
around zero. Here, I understand ’arbitrary’ in this sense.
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where F(g(x)) = ĝ(ν) =
∫∞
−∞ g(x)e−2πiνxdx indicates the forward Fourier transform5 and

F−1(ĝ(ν)) = g(x) =
∫∞
−∞ ĝ(ν)e+2πiνxdν is the inverse (backward) Fourier transform, ν denotes

the frequency, and sgn(ν) is the signum function. Note the negative sign in front of the signum
function6. Some authors tend to define the Fourier transform in a different way, yielding a posi-
tive sign or even an additional prefactor. Nevertheless, x̃H(t) can conveniently be calculated by
transforming the signal to Fourier space, multiplying the result by −isgn(ν), and transforming it
back to time domain.

Having obtained an analytical signal according to Eq. (5.13) the instantaneous amplitude signal
A(t) and the instantaneous phase signal ϕ(t) can be derived. Based on the latter one might define
the instantaneous frequency signal f(t) as the time derivative of the instantaneous phases which
must not be confused with the frequency ν from the Fourier transform.

A(t) =
√
x2(t) + x̃2

H(t) , ϕ(t) = atan2

(
x̃H(t), x(t)

)
,

f(t) =
dϕ(t)

dt
= lim

∆t→0

ϕ(t) − ϕ(t+ ∆t)

∆t

(5.16)

Note the atan2 function7 in the definition of ϕ(t). It implements an additional sign logic compared
to the standard arctan(x̃H(t)/x(t)) function in order to obtain phase values −π < ϕ ≤ π rather
than −π/2 < ϕ ≤ π/2 .

After introducing the basic concepts of calculating instantaneous amplitudes, phases, and frequen-
cies from a continuous analytical signal approach we have to discretize the formulas in order to
deal with time series. Therefore, the fast Fourier transform (FFT) substitutes the continuous FT,
and Eqs. (5.16) become

Ak =
√
x2
k + x̃2

H,k , ϕk = atan2

(
x̃H,k, xk

)
, fk =

ϕk − ϕk+1

∆t
(5.17)

where the index k indicates discrete times tk, k = 1, . . . , N and ∆t now has the meaning of
the sampling. The algorithm can be further simplified by realizing that the multiplier −isgn(ν)
means that negative frequencies have to be multiplied by a factor of +i = exp{iπ/2}, i.e., phases
are shifted by +π/2, and positive frequencies by a factor of −i = exp{+iπ/2}, i.e., phases are
shifted by −π/2. Thus, the Hilbert transform can easily be obtained by swapping real- and
imaginary parts after the forward FFT and negating the real part for negative frequencies and the
imaginary part for positive frequencies8. Further, note that time series are in general real valued
sequences and thus the discrete Fourier transform satisfies a Hermitian redundancy, meaning
F(x)(ν) = F(x)(N − ν) where N is the number of elements in the series and denotes the
complex conjugate. Thus, calculation can be further simplified. Modern FFT algorithms as fftw
take advantage of this property [Frigo et al. 2003].

Although, Eqs. 5.17 can in principle be calculated without limitation, the Hilbert transform in
Eq. 5.14 requires input signals with (i) a narrow frequency band width and (ii) oscillations around
zero in order to result in meaningful complements, i.e., in meaningful instantaneous amplitudes,

5I employ the unitary ordinary frequency definition of the Fourier transform which requires no normalization factor
for simplification.

6Here I use F(1/(πt)) = 1/π P.V.
R ∞

−∞
e−2πiνt

t
dt which can be solved straightforwardly by the residue theorem

from complex analysis
H

C
g(z)dz = 2πi

Pn
k=1 Resak

(g) with Resak
(g) the kth residue of g at the position ak and

the sum over all n residues within the closed curve C. Now, the closed loop can be generalized for integrals
of the type

R ∞

−∞
, and in our case the residual lies on the real axis (a1 = 0), thus contributing only half per

residual. In addition the direction of the curve matters, i.e., P.V.
R ∞

−∞
g(z)eizdz = +πi

Pn
k=1 Resak

(g) and

P.V.
R ∞

−∞
g(z)e−izdz = −πiPn

k=1 Resak
(g) yielding F (1/(πt)) = 1/π P.V.

R ∞

−∞
e−2πiνt

t
dt = {−i : ∀ν > 0,+i :

∀ν < 0, 0 : ν = 0} = −isgn(ν) since the frequency ν can take both positive and negative values. The author
explicitly warns of sloppy use of signs in the literature! When the Fourier transform is defined as in this thesis
(“-” in the exponential for the forward direction and “+” for the backward direction) the signum function must
get a negative sign.

7The function atan2 is available in most programming languages.
8ν < 0 : +iz = exp{i(ϕ+ π/2)} = cos(ϕ+ π/2) + i sin(ϕ+ π/2) = − sinϕ+ i cosϕ = −Im(z) + iRe(z)
ν > 0 : −iz = exp{i(ϕ− π/2)} = cos(ϕ− π/2) + i sin(ϕ− π/2) = sinϕ− i cosϕ = Im(z) − iRe(z)
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phases, and frequencies. When these two prerequisites are not fulfilled, obtained amplitudes are,
for instance, not enveloping the input signal xk. For an extended discussion on Hilbert transform
see [Boashash 1992].
An important issue that has to be considered when employing the analytical completion algorithm
is that the Hilbert transform assumes signals to be sinusoidal which might not always be the case.
For example human gait time series resemble rectangular functions characterized by abruptly
decaying flanks where only the top part is of sinusoidal shape (see Fig. 1(a) in [Bartsch et al.
2007] for an example). In such cases a wavelet based approach where the analyzing wavelet is
chosen according to the typical pattern is better suited. Note, in [Bartsch et al. 2007] consecutive
heal strikes (and toe offs) of the left and right foot are considered as a point process and phases
are defined in a similar way as presented in Eq. (5.12).

Wavelet Based Phases
Based on the wavelet coefficients obtained from the convolution of the signal x(t) and a translated
and dilated mother wavelet Ψ capturing the ’typical pattern’ [WTΨ(s, t) = x(t) ∗ Ψ(t/s); see also
Sect. 1.3] both instantaneous phases and instantaneous amplitudes can be defined analogously to
the presented Fourier (Hilbert) approach for a given scale s

WTΨ(s, t) = A(s, t)eiϕ(s,t) . (5.18)

Since all signals studied in this thesis are rather sinusoidal or point processes this approach will
not further be investigated.

5.1.3. Quantifying Mutual Synchronization

When the essential quantities such as instantaneous phases and instantaneous amplitudes (not
for point processes) have been defined for bivariate (or even multivariate) data, their mutual
interaction has to be quantified. Several methods have been suggested during the last decade.
For example Paluš introduced the mutual information to phase-synchronization analysis, where
I(ϕ1, ϕ2) =

∫ π
−π

∫ π
−π p1,2(ϕ1, ϕ2) log{p1,2(ϕ1, ϕ2)/

(
p1(ϕ1)p2(ϕ2)

)
}dϕ1dϕ2 vanishes in the absence

of phase synchronization and is positive otherwise (p1, p2 probability distributions of phases ϕ1, ϕ2

and p1,2 is there joint-probability distribution) [Paluš 1997]. The concept of information theory
was also adapted by Tass in his measure ρ utilizing the Shannon entropy [see below]. He addi-
tionally suggested a conditional measure λ based on a stroboscopic approach where the phase of
the second oscillator is observed at times where the phase of the first oscillator has a fixed value
(phase stroboscope = look at ϕ2 when ϕ1 is fixed), λ = 〈ϕ2 mod 2πn|ϕ1 mod 2πm = θ〉0≤θ<2π

[Tass et al. 1998]. It has been suggested quantifying horizontal episodes in cardiorespiratory syn-
chrograms (cyclic phase Ψm(t) = ϕ(t)mod 2πm at discrete incidences ti plotted vs. ti [Schäfer
et al. 1998, 1999, see also Sect. 5.2]. They indicate synchronized segments compared to non-
synchronized episodes where phase differences are not stable over a certain time [Toledo et al.
1999]. Phase synchronization in a stochastic sense was studied by Neiman [Neiman et al. 1999]
who considered excitable media, i.e., the FritzHugh-Nagumo equations9 modeling neuron-firing
activity, and derived the cross-diffusion coefficient describing the spreading in time of an ini-
tially localized phase-differences distribution. If the diffusion coefficient decays constantly phase
locking appears (see [Anishchenko et al. 2000] for an application to heartbeat synchronized
by external stimuli such as sound or light). Finally, Rosenblum showed that phase synchroniza-
tion might also be studied by calculating the first Fourier mode of the cyclic phase differences
γn,m = (〈cos ∆Ψn,m〉2t + 〈sin ∆Ψn,m〉2t )1/2 which becomes 1 in the case of perfect phase synchro-
nization and is 0 in the absence of synchronization [Rosenblum et al. 2001].
In the following I will introduce in more detail three of the mentioned quantification approaches
which became most popular in research, i.e., the Shannon entropy based index ρ, the Fourier

9Originally termed ’Bonhoeffer-van der Pole model’ by FitzHugh the FitzHugh-Nagumo model is a favorite model
for reaction-diffusion systems used to simulate electrically excitable media such as heart tissue [Izhikevich and
FitzHugh 2006]. Model equations follow (i) V̇ = f(V ) −W + I + ∂2V/∂x2, (ii) Ẇ = a(bV − cW ) where V
is a ’voltage-like variable’ capturing regenerative self-excitation via a positive feedback loop, W is a ’recovery
variable’ tuning a slower negative feedback, I is the injected current, and a, b, c are parameters for tuning.
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mode index γ, and the synchrogram method. In addition I will demonstrate based on the SIESTA
data, an automatism that allows for conveniently studying synchrograms for large databases. It
goes beyond and (in our experience) performs better than an alternative suggestion of Toledo in
[Toledo et al. 1999].

Entropy Based Synchronization Index
As has been motivated in the previous section phase locking takes place when the cyclic rela-
tive phase difference’s (∆Ψn,m) distribution is peaked, see Eq. (5.10) and associated discussion.
Hence, synchronization strength can be studied by plotting ∆Ψn,m histograms and identifying and
quantifying possibles clusters. When such a cluster of phase differences follows, e.g., a Gaussian
distribution, the signals under investigation exhibit a certain dominating phase relationship most
of the time [cf. Fig. 5.1(b)]. On the contrary, ∆Ψn,m might vary completely random (uniformly
distributed) resulting in a flat histogram non-synchronized signals, see Fig. 5.1(a). While such
qualitative evaluation of synchronization might be helpful as a first approach or for a limited
number of data it is rather unsatisfying for large datasets as typically occur in sleep studies or
other long-term recordings. Examples are found in human brain wave recordings, heartbeat, and
respiration.
In order to quantify the strength of mutual synchronization between two signals of interest by a
single synchronization index ρ, Tass suggested a measure based on the Shannon entropy in the
framework of a nonidentical Rössler system10 and tested it at magnetoencephalograms (MEG)
and records of muscle activity (EMG) of a subject suffering from Parkinson disease [Tass et al.
1998]. In a first step a cyclic relative phase difference ∆Ψn,m(tk) between two instances, whose
mutual synchronization one is interested in, is obtained for each discrete time tk, k = 1, . . . , N .
Then the distribution of ∆Ψn,m(tk) is depicted in a histogram of M bins with a bin width of
b = 2π/M , [see Fig. 5.1(a-c) for an illustration]. Considering pl as the probability of the l-th bin
one can derive the Shannon entropy11 [Shannon and Weaver 1949] by

S = −
M∑

l=1

pl ln pl . (5.19)

If the differences ∆Ψn,m are, in the simplest case, uniformly distributed the bin probabilities
satisfy pl = 1/M ; ∀l yielding a maximal Shannon entropy

Smax = − ln
1

M
(5.20)

and both signals are not phase synchronized, see Fig. 5.1(a). In the other limit a perfect synchro-
nization is expressed by a quasi-delta peaked histogram, i.e., ideally only one bin is characterized
by a probability different from zero (∃ l′ : pl′ = 1 ∧ pl = 0 ∀ l 6= l′; [Fig. 5.1(c)]), yielding

Smin = 0 . (5.21)

Hence, a suitable index to quantify the strength of phase synchronization based on the histogram
of ∆Ψn,m is [Tass et al. 1998]

ρn,m =
Smax − S

Smax
. (5.22)

Obviously, ρn,m ≈ 0 for the independent, i.e., non-synchronized case with S ≈ Smax and ρn,m ≈ 1
for the perfect phase synchronization S ≈ Smin. Here I use the symbol “≈” instead of the

10Two coupled Rössler oscillators in 3d as considered in [Tass et al. 1998] follow: ẋ1,2 = −ω1,2y1,2 − z1,2 + ξ1,2 +
ǫ(x2,1 − x1,2), ẏ1,2 = ω1,2x1,2 + 0.15y1,2 , and ż1,2 = 0.2 + z1,2(x1,2 − 10) with ω1,2 = 1± 0, 015 and ξ1,2 denotes
Gaussian noise with pair correlation 〈ξi(t)ξj(t

′)〉 = 2Dδ(t − t′)δi,j where δ is the Kronecker symbol and D is a
constant to tune the noise amplitude.

11Note, the Shannon entropy is a special case (q = 1) of the Rényi entropy (a generalized box counting)

Hq(s) = 1
1−q

ln
PN(s)

l=1 pq
l of an observable x where q ≥ 0 and only boxes Bl with a positive measure

pl = µ(Bl) =
R

Bl
dµ(x) > 0 are contributing [Rényi 1961]. The ’boxes’ Bl with a side length s → 0

might thus be disjoint, i.e., the covering might have ’holes’. Employing the rule of l’Hospital it follows:

limq→1Hq = − limq→1

n

PN(s)
l=1 pq

l ln pl

.

PN(s)
l=1 pq

l

o

= −PN(s)
l=1 pl ln pl = H1 = S having used

PN(s)
l=1 pk = 1.
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Figure 5.1.: Quantification of synchro-
nization based on the cyclic phase differ-
ence ∆Ψn,m. Synchronization indexes ρ
(a-c) and γ (d-f) are shown for three il-
lustrative examples: phase differences are
uniformly distributed [no synchronization,
(a,d)], Gaussian distributed [notedly syn-
chronized, (b,e)], and delta peaked [per-
fect synchronization, (c,f)]. For each ex-
ample N=1000 phase differences were gen-
erated. Lower panels show phases mapped
into the complex plane and red arrows il-
lustrate their complex average which length
corresponds to the synchronization index γ.
Although, γ was obtained from all ∆Ψn,m

only every 10-th difference is plotted in (d-f)
for clarity.

theoretical “=” to make clear that in the application both limits are not exactly obtained due to
a limited bin width and/or numerical issues introduced by the Hilbert transform. Moreover, note
that the choice of the bin width b generally must be adapted by a trial and error approach. For an
unknown dataset it might not be always determined which bin width (or which number of bins)
is optimal. Usually, one optimizes b so that enough elements fall into each bin while the overall
distribution shape is preserved. Thus, the Shannon entropy based synchronization index ρn,m is
not parameter free. In a sense, ρ can be thought of as characterizing the deviation of the relative
phase distribution from a uniform distribution.

Intensity of the First Fourier Mode

Maybe the most prominent index to quantify the strength of phase synchronization between two
signals is based on studying the intensity of the first Fourier mode of the cyclic relative phase
difference ∆Ψn,m, see Eq. (5.10) [Rosenblum et al. 2001]

γn,m(t) =

√
〈(cos ∆Ψn,m(t))〉2 + 〈(sin ∆Ψn,m(t))〉2 =

∣∣〈ei∆Ψn,m
〉∣∣ (5.23)

where the second expression immediately follows from recalling the Euler formula for complex
numbers. Thus, the synchronization index γ is the complex average of the cyclic phase difference
and its derivation can be visualized in the complex plane as depicted in Fig. 5.1(d-f). When the
phase differences are uniformly distributed, i.e., the signals are not phase synchronized, they cover
the unit circle uniformly, and thus, their average is γ = 0 except for stochastic deviations due to a
limited dataset [Fig. 5.1(d)]. In the case of a delta-peaked distribution (perfect synchronization)
all points merge in the associated complex representation yielding γ = 1 [Fig. 5.1(f)]. In general
0 ≤ γ ≤ 1. For a clearly peaked (monomodal) distribution a cluster point exists on the unit
circle and a ’large’ value of γ < 1 indicates synchronous behavior. Since noise always affects
data measured from complex systems the latter case is generally found in the presence of phase-
synchronization, see also Figs. 5.1(b,e) for a normally-distributed example.

Note that calculating γ is parameter free, i.e., no number of bins has to be optimized and hence γ is
especially suited for automation compared with ρ in Eq. (5.22). However, γ bears a possible pitfall
in the case of a bimodal (or multimodal) phase-difference distribution where many contributions
might cancel out on the unit circle yielding a small or even vanishing value of γ although the signals
are still somewhat synchronized. For instance, assume a bimodal-delta-peaked ∆Ψn,m distribution
where ∆Ψn,m is either π/4 or 5π/4 and both groups have equal weight. Then all components would
cancel out in the average yielding γ = 0. When different parts of such signal are characterized by
a different phase difference this can easily be avoided by studying the time average in Eq. (5.23)
for different parts of the signal, separately. In general, plotting phase difference distributions is
recommended to get some impression about the behavior before an automation and application
to a large database as available from sleep laboratories.



101

-3
0
3
6

re
sp

ir
at

io
n 

[a
.u

.]

16216 16218 16220 16222 16224t [s]

-1
0
1
2

E
C

G
 [

a.
u.

]

-5 0 5
respiration [a.u.]

-5

0

5

16216 16220 16224
t [s]

π

2π

H
ilb

er
t t

ra
ns

fo
rm

of
 r

es
pi

ra
tio

n 
[a

.u
.]

Ψ
1,resp
(1)

Ψ
1,resp
(2)

Ψ
1,resp
(3)

t
0

3:1 synchronization

(a)

(b)

(c) (d)

RRI
k

IBI
k

Ψ
1,

re
sp

(t
R

k) 
[r

ad
]

t
0

Ψ
1,resp
(2) -Ψ

1,resp
(1)

Ψ
1,resp
(3) -Ψ

1,resp
(2)

1
2

3
1 1

2 2

3 3

111

222

33 3

11 1

22 2

3 33

Figure 5.2.: Synchrogram method: (a,b) Three consec-
utive breathing cycles [colors black, blue, red] are shown
above a simultaneously recorded ECG signal. The inter-
breath-interval [IBI] is approximately 3 times longer
than the beat-to-beat interval [RR]. For respiration
[continuous signal] the instantaneous phase is calculated
by a Hilbert transform [HT; Eq. (5.14)] and integrated
to obtain a cumulative phase signal φresp(t) ∈ R+ [see
text]. (c) Respiration plotted versus its HT; each breath
cycle appears as a circle [same colors as in (a)]; the
cyclic respiratory phases [for m = 1] Ψ1,resp(t) manifest
as angles. (d) At the time of each heartbeat Ψ1,resp(tRk

)
is obtained and plotted versus tRk

. The formation
of three parallel horizontal lines [yellow dotted lines]
implies 3 : 1 phase synchronization in this example.
Green vertical dashed lines indicate the beginning of
each breath cycle in (a-d).

Synchrogram Method
The synchrogram method introduced by Schäfer in the framework of studying cardiorespiratory
synchronization [Schäfer et al. 1998, 1999] is a stroboscopic method that aims at exploring n : m
phase synchronization between two oscillators where one oscillator is described by a continuous12

signal and the second signal is a point process. The point process is understood as a sequence of
discrete time points tk with k = 1, . . . , N .
As an example consider the cardiorespiratory system where respiration is the continuous signal
and heartbeat is point process described by the R-peak positions at times tRk

, see Fig. 5.2(a,b).
Now, the idea behind synchrogram analysis is to study the phase of the continuous signal at time
positions tk defined by the point process. “The continuous signal is stroboscopically illuminated
at incidents of a second signal that are described by the point process. In my example this means
we study the phase of respiration at times tRk

of heart beats. When two oscillators are phase
synchronized Eq. (5.9) is satisfied.
Let Φ2(t) = Φpoint(t) ∈ R+ be the cumulative phase13 of the point process and Φ1(t) =
Φcontinuous(t) ∈ R+ is the cumulative phase of the continuous signal in the phase locking con-
dition defined in Eq. (5.9). However, in the application we often calculate instantaneous phases
ϕcontinuous(t) via a Hilbert transform [Eqs. (5.14), (5.17)] and −π < ϕcontinuous(t) ≤ π which must
not be confused with Φcontinuous(t). In order to study arbitrary ratios n : m according to Eq. (5.9)
we require the cumulative phase Φcontinuous(t). Before we can integrate the instantaneous phases
we must map them to the interval [0, 2π) by adding 2π to negative values.
After calculating Φcontinuous(t) we obtain the cyclic phase14

Ψm,continuous(t) = Φcontinuous(t)mod 2πm , (5.24)

i. e., Φcontinuous mapped into the interval [0, 2πm). Note that we have generated a phase signal with
a period of m adjacent cycles from the original signal. In the next step the phases Ψm,continuous(t)
are examined at the times tk associated with the point process. In our example this means we
obtain Ψm,respiration(tRk

) [marked by symbols in Fig. 5.2(a)]. Finally the values Ψm,continuous(tk) are
plotted versus tk to obtain the synchrogram, see Fig. 5.2(d) for a short fragment spanning only 3
breath cycles or 6 heart beats. In the presence of n : m phase synchronization n parallel horizontal
lines are observed. When the point process and the continuous signal do not synchronize, points
in the synchrogram do not align in parallel lines. For a longer synchrogram episode see Fig. 5.6
which is based on an improved synchrogram method that is discussed in the following.

12Note that in practice such continuous signal, e. g. respiration, is indeed sampled. In the following I use the
term ’continuous’ for signals that were sampled with a sampling rate much higher than the features under
investigation.

13Here indicated by Φ instead of φ in Eq. (5.9) to indicate that it is a sampled quantity and not a continuous one.
14Note the single subscript m in Ψm being not a difference compared with ∆Ψn,m that obeys two indexes n,m

[Eq. (5.10)]. Most authors do not put a ∆ to indicate phase differences; this is done in this thesis for clarity.
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5.2. Automated Synchrogram Analysis

Although, the synchrogram method has proven to be very powerful in a variety of applications,
e.g., in studying cardiorespiratory synchronization [Schäfer et al. 1998, 1999; Wu and Hu
2006], the synchronization of heartbeat and music [Kusunoki et al. 2003], or cardio-locomotion
coupling [Gilad et al. 2003], it was only applied to a relatively limited data source. Most publi-
cations deal with just a few (< 10) very short datasets (some seconds to some minutes). In large
databases containing many multivariate, and long recordings visual inspections of many hours of
synchrograms (SIESTA: 7.5h times 608 datasets equals 4560h of synchrogram) are not practically
impossible.

Toledo et al. suggested a method to study the flatness in synchrograms by incorporating the
synchronization index γ [see Sect. 5.1.3] into the synchrogram method [Toledo et al. 2002]. They
successfully employed this method to study phase-synchronization in healthy subjects and heart-
transplant patients, finding an abundant cardio-respiratory synchronization in the latter group.
Moreover, they found in by construction unsynchronized surrogate data that some synchronized
episodes occur randomly [Toledo et al. 2002]. The first finding is not surprising taking into
account that cardio-respiratory synchronization can be associated with a diminished heart rate
variability (HRV) immanent in patients suffering from cardiac diseases15.

In Toledo’s method the phase synchrogram is subdivided into n subgroups where during episodes
exhibiting n parallel these horizontal lines are complete separated from each other. After trans-
forming the cyclic phases Ψm(tk) into the complex plane, a geometrical average over points from
the same subgroup is obtained, i.e., the synchronization index γ in Eq. (5.23) is calculated, and
the associated (average) phase is subtracted from the individual phases. That way, the n formerly
parallel lines merge. Their vertical width is computed in a sliding window and serves as a measure
of synchronization.

In the following I will describe another automated synchrogram analysis which is also based
on dividing the synchrogram into n subgroups – hence it is somewhat similar to the Toledo
approach – but then focuses on studying the n horizontal lines directly by means of standard
deviation. This method is employed in the following to study cardio-respiratory synchronization
in healthy subjects from the SIESTA database and to answer the question whether it is reliable
to derive cardio-respiratory synchronization from a respiration proxy extracted from heartbeat
data [Hamann et al. 2009]. Our study had four major aims: (i) For the first time we studied
cardio-respiratory synchronization in a large database (about 350 datasets of healthy subjects),
(ii) we distinguished sleep stages associated with different physiological states, (iii) we studied
effects of aging and overweight, and (iv) we approached the question whether it is possible to
waive recording respiration without essentially compromising synchronization results. The latter
could be advantageous in an ambulatory setup in terms of complexity and costs.

5.2.1. Reconstruction of Respiration from Heartbeat

A simple reconstruction of respiration from heartbeat is based on the respiratory sinus arrhythmia
(RSA) mechanism [Sect 2.2]. Recall that respiration influences the sympatho-vagal autonomous
nervous system. While inspiration enhances sympathetic components followed by an increase in
heart rate, expiration suppresses sympathetic and activates vagal components resulting in a heart
rate decrease. It is important to note that RSA is not equivalent to cardiorespiratory synchro-
nization. While RSA yields a cyclical variation of heart rate, cardiorespiratory synchronization is
only observed when heartbeats occur at the same instantaneous phases within the breathing cycle
for a period of several consecutive breaths. Both phenomena can occur independent of each other
although an increased RSA might reduce cardiorespiratory synchronization [Schäfer et al. 1998,
1999].

In spectral analysis of RRI data [see Fig. 5.3] two prominent peaks are often observed correspond-
ing to the LF (0.04−0.15Hz) and the HF (0.15−0.4Hz) frequency bands [see Fig. 2.3 and related

15In fact a reduced HRV is used as an indicator of Chronicle Heart Failure (CHF) and a predictor of Sudden Cardiac
Death (SCD).
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Figure 5.3.: (a) Heartbeat interval time series RRi

from a healthy young subject during sleep. (b) Power
spectrum of the signal shown in (a). The LF band
[0.04 − 0.15Hz] is assumed to reflect blood pressure os-
cillations, whereas the HF band [0.15 − 0.4Hz] reflects
respiration via the RSA effect. It can thus be used to
reconstruct the respiratory signal.
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Figure 5.4.: Analysis of respiration signals. (a,b)
Recorded oronasal airflow [black solid line] is compared
with the respiratory signals reconstructed from heart-
beat [red dashed lines] for two segments of a record-
ing from a healthy subject. (c,d) Instantaneous phases
calculated from the oronasal airflow [ϕ1(t), black solid
line] and from the reconstructed respiration [ϕ2(t), red
dashed line] are compared for the same segments. (e,f)
Histogram of the phase differences ϕ1(t)−ϕ2(t) between
real and reconstructed respiration signals. The peak in
(e) indicates that the reconstructed signal resembles the
original signal with an unimportant systematic phase
shift of approximately π/2. The uniform distribution
in (f) indicates that the respiratory signal could not be
reconstructed, probably due to a diminished influence
of the breathing upon the heartbeat signal, i. e., very
weak RSA.

discussion in Sect. 2.2, or HRV Task Force 1996]. While the LF band has been associated
with both sympathetic and parasympathetic activity; the corresponding peak might be related
to blood pressure oscillations (Mayer waves), the HF band was associated with vagal components
only [HRV Task Force 1996].

It has been shown that HF spectral power is significantly influenced by breathing volume and
breathing rate, i. e., changing the breathing pattern alters the HF spectral components [Hirsch
and Bishop 1981; Brown et al. 1993; Penttilä et al. 2001]. Therefore, respiratory components
can be extracted from a heartbeat interval time series by Fourier filtering, i. e., applying a bandpass
filter adjusted to HF components. This way, the RSA effect can be exploited for the reconstruction
of the respiration signal from heartbeat intervals.
Employing this technique, respiration was reconstructed for all healthy subjects in the SIESTA
database (for adaptation night and recording night). Together with the real respiration signal
(oronasal airflow) it was resampled at 4Hz (low pass filter) to eliminate high frequency fluctua-
tions which might disturb the Hilbert transform. Note, that this also ensures the same sampling
frequency since respiration recorded at frequencies 16Hz, 20Hz, 100Hz, or 200Hz depending on
the sleep laboratory.

5.2.2. Assessing Reconstruction Quality

Figures 5.4(a,b) show two exemplary parts of both, recorded respiration (solid black) and ECG
based reconstructed respiration (dashed red), where the latter was derived by employing the
technique described above. The corresponding instantaneous phase signals obtained from Hilbert
transforms are shown in Figs. 5.4(c,d). Let in the following ϕ1(t) denote the instantaneous phase
of measured airflow and ϕ2(t) be associated with the phases of reconstructed respiration. It is
clearly seen that the reconstruction works well in the region shown in Figs. 5.4(a,c), while it
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whole night wake REM non-REM

all 30.5 (150) 17.9 (150) 17.8 (149) 35.9 (150)
σ ≤ 0.2 47.9 (74) 33.3 (33) 44.0 (33) 52.3 (88)
σ ≤ 0.25 39.5 (110) 25.1 (95) 25.5 (95) 44.3 (117)
σ ≤ 0.3 33.2 (136) 20.6 (129) 19.2 (137) 37.4 (143)

Table 5.1.: Average synchronization between recorded oronasal airflow and ECG based reconstructed breathing
within different sleep stages in percent. Results are shown for all subjects and for subjects characterized by different
relative fluctuations σ of the reconstructed breathing. Numbers in brackets denote the number of considered
individuals in the respective group.

Figure 5.5.: (a) Percentage of synchronized time be-
tween real and reconstructed respiration signals vs. rel-
ative fluctuations σ of the reconstructed respiration for
whole nights. Values 0.2 < σ < 0.3 seem appropriate to
exclude subjects with failing reconstruction of respira-
tion. (b) Synchronization percentage during REM sleep
vs. non-REM sleep; each plot represents one subject.
The reconstruction is more reliable during non-REM
sleep.

0 20 40 60 80
Synchronization REM [%]

0

20

40

60

80

Sy
nc

hr
on

iz
at

io
n 

no
n-

R
E

M
 [

%
]

0.1 0.2 0.3
σ

0

20

40

60

80

Ph
as

e-
sy

nc
hr

on
iz

at
io

n 
[%

]

(a) (b)

completely fails in the fragment depicted in Figs. 5.4(b,d). A simple approach to quantify the
reconstruction quality is studying histograms of corresponding phase differences within windows
of limited time. Such histograms of corresponding phase differences are depicted in Figs. 5.4(e,f).

If recorded and reconstructed respiration signals resemble each other, they exhibit 1 : 1 phase syn-
chronization and the histogram is strongly peaked [Fig. 5.4(e)]. For not synchronized signals, i. e.,
when the reconstruction fails, all phase differences have identical probability and the histogram
is flat [Fig. 5.4(f)]. This can be computationally checked either by calculating standard synchro-
nization indexes, e.g., ρ and γ introduced in Sect. 5.1.3 or by a direct study of the histograms.
In the SIESTA data of healthy subjects one finds that the standard indexes strongly depend on
the noise level, sudden phase jumps (slips), and artifacts. In addition, they do not fully vanish
for unsynchronized surrogate data, e.g., for reconstructed respiration from one subject and the
measured oronasal airflow from another. A similar effect of non-vanishing random synchroniza-
tion in cardio-respiratory (heartbeat and respiration) surrogates was reported in another study
by Toledo in [Toledo et al. 2002].

Me and my collaborator Ronny Bartsch, thus, decided to classify the synchronization between
real and reconstructed respiration not based on histograms but by studying the relation of their
cumulative phases. These are calculated from the instantaneous respiratory phases ϕj(t), j = 1, 2,
both defined in (−π, π], by

Φj(t) = ϕj(t) + 2πn, j = 1, 2 (5.25)

where the calculation starts with n = 0 and proceeds by incrementing n if the instantaneous phase
ϕj(t) drops by a value larger than π. Ideally, a new breathing cycle would start with a drop in
phase by 2π, compare Figs. 5.4(a,c) and (b,d). However, smaller values occur in practice due to
limited time resolution, noise, etc. In rare cases, when the instantaneous phase increases by more
than π, n is decremented.

The two respiratory signals can be considered synchronized when the cumulative phase signals
Φ1(t) and Φ2(t) run parallel to each other. This can simply be captured by calculating the mean
phase differences ∆Φν = 〈Φ1(t) − Φ2(t)〉ν and the corresponding standard deviations σ̂ν within
windows ν of length 30s, i. e., 120 data points due to 4Hz sampling. The two signals are defined as
synchronized if the standard deviation σ̂ν is below 0.5rad. This way, we obtained for each subject
the overall percentage of synchronized 30s windows for the whole night as well as separately for
wake, REM sleep and non-REM sleep (cf. Table 5.1).

Figure 5.5(a) shows the percentage of whole-night synchronization between both respiratory sig-
nals (30s, and σ̂ < 0.5rad) as a function of the relative fluctuations σ of the reconstructed respira-
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tion. Considering the time intervals between phase increases of 2π in the cumulative reconstructed
respiratory phases Φ2(t), σ is defined as the quotient of the standard deviation of these breathing
intervals over the mean breathing interval. Since the respiratory data is sometimes nonstationary,
σ is calculated for windows of Tσ = 300s and then these values are averaged over the whole night.

Each point in Fig. 5.5(a) represents one subject from the SIESTA database16. It is obvious that
there are subjects where the reconstruction is rather successful (large percentage of correctly,
i. e., synchronous reconstructed respiration), while for others it more or less fails. The value of
σ is usually larger for subjects with failing reconstruction. The relative fluctuations of the re-
constructed respiration, i. e. σ, can thus be used as an approximate parameter for the quality of
the reconstruction. Consequently, in the following results regarding reconstructed cardiorespira-
tory synchronization are compared taking into account just subjects with values of σ below given
thresholds [see also Table 5.1]. Parameters characterizing the height of the peak in the HF band
of the power spectrum [see Fig. 5.3(b)] did not qualify as better replacements for σ in classifying
good and bad reconstruction of respiration.

Figure 5.5(b) shows the percentage of synchronization between both respiratory signals during
REM sleep versus the corresponding percentage during non-REM sleep in the same subject. Again,
each point represents one subject. One clearly observes that well reconstructed respiration is found
rather during non-REM sleep than during REM sleep, since more subjects are found above the
diagonal in Fig. 5.5(b). This observation is stable for different thresholds for σ, see Table 5.1.
Except for σ ≤ 0.2, results for wakefulness and REM sleep are basically the same, also reflecting
the well known statistical resemblance of REM and wake stages.

5.2.3. Description of an Automated Synchrogram Approach

Since we originally developed the algorithm in order to study cardio-respiratory synchronization
during nocturnal sleep in a set of 150 healthy subjects in the SIESTA database, I will illustrate
the methodology using this data. The results of the complete study are presented in the next
subsections. The reader might find both algorithm and results presented in our paper [Hamann
et al. 2009] and be advised that the method can immediately be ported to any other bivariate set
of signals (continuously sampled signal and a point process) in which one wants to analyze phase
synchronization.

Step 1: Calculation of Instantaneous Phases
After data preparation [see Sect. 5.2.1] instantaneous phase signals ϕ1(t) and ϕ2(t) are calculated
for measured airflow and reconstructed respiration, respectively, by employing Hilbert transform.

Step 2: Calculation of Continuous Phases
From instantaneous phases ϕj , j = 1, 2 (defined in (−π, π]) cumulative respiratory phases Φj(t)
are calculated following Eq. (5.25).

Step 3: Stroboscopic Illumination of Phases
Subsequent to detecting beat positions tk employing a QRS-detector17 the cardiorespiratory
synchrogram is obtained by mapping the times tk =

∑k
i=1RRi of the heartbeats onto the con-

tinuous cumulative phases Φj(t) and wrapping it into [0, 2πm) yielding Ψm(tk). Figures 5.6(a,b)
illustrate two representative parts of corresponding synchrograms for measured oronasal airflow
(a) and reconstructed breathing (b). In these synchrograms for studying phase synchronization
of n heartbeats within one (m = 1) breathing cycle (n : 1 coupling), Ψ1,j(tk) = Φj(tk)mod 2π is
plotted versus tk. In areas with n : 1 phase synchronization n parallel horizontal lines appear.
The lines vanish if synchronization breaks down. Figures 5.6(a,b) show events of 4 : 1 phase
synchronization. The similarities between (a) and (b) indicate a good reconstruction quality

16Due to very time consuming heartbeat detection we analyzed data from only 150 subjects at this time. The worst
40 recordings from the BERLIN lab were still missing.

17Here I employed the semi-automatic detector RaschLab of the LibRasch package [Schneider 2005] and addition-
ally inspected its output for each subject – a tremendously time consuming part of the study compared with
the analysis itself.
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Figure 5.6.: Examples illustrating the automated syn-
chrogram method for real [left] and reconstructed [right]
respiration signals. Symbols in (a,b) show the instanta-
neous respiratory phases at the time of the heartbeats.
(c,d) means and standard deviations of the phases, cal-
culated in time intervals of length τ = 30s around each
point in the horizontal lines. (e,f) Phase points with
a standard deviation larger than the threshold were
deleted and then sequences shorter than the threshold
T were also deleted. Red and green marked elements
fulfill the standard deviation criterion, but sequences in
green being shorter than the minimal duration T are
deleted. Note that T must be slightly smaller for re-
constructed breathing [right], since the continuous seg-
ments are shorter.

in the considered time window. Arbitrary synchronization ratios n : m, i. e., the occurrence
of n heartbeats during m breathing cycles, can be studied easily considering synchrograms of
Ψm,j(tk) = Φj(tk) mod 2πm versus tk and again looking for n parallel horizontal lines.

Step 4: Automated Detection of Synchronized Episodes
To study data of many subjects and nights it is necessary to automatically detect and distinguish
synchronized and unsynchronized areas in the synchrograms [Bartsch et al. 2007]. Therefore, a
centered moving average filter of window length τ is applied separately for every r = 1, . . . , n heart-
beats observed within the m considered breathing cycles in the following sense: (i) m breathing
cycles which are assumed to be in the center of the averaging window are taken and the number n
of heartbeats occurring within these m breathing cycles is counted. The times of these heartbeats

are denoted as t
(r)
c , (ii) a regularly spaced phase interval associated with each single heartbeat

event at center position ∆ψ
(n)
m = 2πm/n is calculated, (iii) all phases ψm(tk) belonging to neigh-

boring breathing cycles within the time interval Tr = [t
(r)
c − τ/2, t

(r)
c + τ/2] are averaged with

respect to their dedicated phase range Rr =
[
(r − 1)∆ψ

(n)
m , r∆ψ

(n)
m

)
, r = 1, . . . , n:

〈Ψ(r)
m 〉(t(r)c ) =

1

NRr

∑

tk∈Tr

Ψ(r)
m (tk) (5.26)

Here, NRr denotes the number of points occurring in the time window Tr and in the phase range
Rr as obtained from the synchrogram. Note, that even when n heartbeats occur during m breath-
ing cycles at the center position, there might be a different number of heartbeats during other
m breathing cycles within the same considered moving average window of width τ . Additionally
to the average one calculates for each of the r heartbeats a standard deviation σ̂r. Next, every

value Ψ
(r)
m (tk = t

(r)
c ) during the centered m breathing cycles is replaced by the corresponding

mean value 〈Ψ(r)
m (tk)〉 as illustrated for n = 4 and m = 1 in Figs. 5.6(c,d). In addition, the four

different σ̂r are shown as error bars. This ’straightens’ the parallel lines indicating synchronized
episodes compared with the plain synchrogram in Figs. 5.6(a,b) and makes them more pronounced.

Step 5: Deletion of Unsynchronized and Short Episodes
In the final step shown in Figs. 5.6(e,f) all points in the synchrogram are removed where the
condition σ̂r < 2πm/nδ is violated and only episodes of constant n that are longer than a minimum
period T are kept [green episodes in Figs. 5.6(c,d) are too short]. The standard deviation parameter
δ ∈ R+ allows for continuous tuning of the methods sensitivity. From the remaining synchronized
episodes, one can determine the percentage of synchronized episodes compared with the total sleep
duration.
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Figure 5.7.: Illustration of higher order cardiorespira-
tory synchronization [m = 2] studied by employing the
suggested automated synchrogram analysis in a young
subject (a-c) versus an elderly subject (d-f). Shown are
400s fragments of (a,d) an inter-breath-interval signal
[IBI], (b,e) the corresponding heart-beat-interval signal
[RR], and (c,f) the automated synchrogram [m = 2,
Ψ2(tk) vs. tk] with marked synchronized episodes [in
red] versus time. Blue dashed lines mark the beginning
and the end of the synchronized episodes. In the young
subject 6 : 2 = 3 : 1 synchronization is depicted while
there is a 7 : 2 episode in the elderly subject. Note the
smaller beat-to-beat intervals [larger heart rate] and the
lower variability in the older subject, which is typical for
an increased cardiac risk often found in elderly. Surpris-
ingly, the length of the cardio-respiratory synchroniza-
tion episode is significantly larger in the younger subject
despite a much larger heart rate variability [HRV].

5.2.4. Optimizing Synchrogram Evaluation Parameters

For the suggested automated analysis of phase synchrograms three parameters need to be opti-
mized [Bartsch et al. 2007]: (i) the (time) width τ of the moving average filter, (ii) the standard
deviation limit parameter δ, and (iii) the minimum episode duration T . In order to optimize the
parameters their influence on the overall whole-night phase synchronization was studied, com-
paring results for real data18 (heartbeat and oronasal airflow) with those for (unsynchronized)
surrogate data. The surrogate data was in this case obtained by randomly combining heartbeat
data from one subject with breathing data from another subject.

Figure 5.8(a) shows the whole-night phase-synchronization percentage for different δ and T . As
expected, the largest ratio of synchronized episodes was found for small T and small δ (i. e., a large
limit for the standard deviations). However, in this case, a rather large number of synchronized
episodes is also reported for the unsynchronized surrogate data. The ratio of the mean percentage
of synchronization in real data over the mean percentage in surrogate data increases from 1.6 for
T = 20s to 3.4 for T = 40s. However, for T = 40s only very few synchronization episodes were
detected. We therefore suggested choosing δ = 5 and T = 30s to optimize the ratio between
correctly detected real synchronization episodes and falsely detected synchronization episodes
in surrogate data. Together with τ = 30s these parameter values provide a good separation
and, furthermore, the time parameters coincide with the time interval of 30s used in sleep stage
classification. Note that δ has a similar influence on the results as T (not shown in detail), while
τ just weakly affects the results.

When comparing synchronized episodes for real and reconstructed respiration [see red episodes
in Figs. 5.6(e,f) for an example], one observes in general shorter synchronized episodes for the
reconstructed respiration. This is due to instabilities in the reconstruction process. We thus
adjusted Trec = 24s for reconstructed breathing, keeping both τ and δ at the same values and
T = 30s. This led to similar total synchronized time in both respiratory signals, see Fig. 5.9.

5.2.5. Phase Synchronization with Reconstructed Breathing

Figure 5.9(a) shows the whole-night percentages of cardiorespiratory synchronization for the real
respiration [left sub-panel] and the reconstructed respiration [right sub-panel] considering sub-
sets of the 150 subjects19 with σ below and above the indicated thresholds [see Sect. 5.2.2 for

18Although, I here show results from the original dataset (only 112 subjects where heartbeat was obtained by an
unpublished experimental beat detector of Stephan Zschiegner [Zschiegner 2004]) I would like to note that
during the study presented in [Hamann et al. 2009] we rechecked the parameters using the data obtained in
Halle by employing the peak detector RaschLab [Schneider 2005].

19SIESTA without Berlin lab where ECG data quality required more attention and which I only finished in April
2009.
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Figure 5.8.: Medians, upper and lower quartiles
[bars] and means [filled symbols] of total-night-
synchronization rates (a) versus T for all original data
[black dotted bars and circles] and surrogate data [ma-
genta striped bars and triangles], left of dotted line
δ = 6, right of dotted line δ = 5. (b) The results for op-
timized parameters [for δ = 5 and T = 30s] are shown
versus body mass indexes [BMI] and gender for wakeful-
ness [blue dotted bars and circles], REM sleep [orange
blank bars and triangles], and non-REM sleep [green
striped bars and diamonds]. Note the similar synchro-
nization behavior in all subgroups. This figure is based
on the original data set of 112 subjects and is adapted
from [Bartsch et al. 2007].
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Figure 5.9.: (a) Median, upper and lower quartile and
mean [dot] of percentage of phase synchronized time re-
garding heartbeat and real breathing signal [left]. The
three sets on the right show the results for heartbeat
and reconstructed respiration for different σ. The vio-
let striped bars represent the values for subjects with
σ below the threshold value and the dark yellow blank
bars for breathing signals with σ above the threshold.
(b) Cardiorespiratory synchronization percentages for
real respiration signals [left set] and reconstructed res-
piration signals [σ < 0.25, right set] during different
sleep stages [wake=blue, REM=red, non-REM=green].

al
l

σ 
< 

 0
.2

σ 
<

 0
.2

5

σ 
<

 0
.3

0

1

2

3

4

5

Ph
as

e-
sy

nc
hr

on
iz

at
io

n 
[%

]

w
ak

e
R

E
M

no
n-

R
E

M

w
ak

e
R

E
M

no
n-

R
E

M

0

1

2

3

4

5
(a) (b)reconstructed resp. reconstructed

resp.
real
resp.

real
resp.

definition]. The close similarity of the results for real and reconstructed respiration prove that
cardiorespiratory synchronization can be calculated based solely on heartbeat data. Comparing
the values with those in the left sub-panel, it seems that the limit σ < 0.25 is most appropri-
ate – median and mean are comparable with results from real respiration. For Fig. 5.9(b) the
data has been split into parts of wakefulness, non-REM sleep, and REM sleep. Again there is
a close similarity for the results based on real respiration and reconstructed respiration. The
main finding of drastically reduced cardiorespiratory synchronization during REM sleep and en-
hanced cardiorespiratory synchronization during non-REM sleep compared with wakefulness is
fully confirmed.

5.2.6. Higher Order Cardiorespiratory Synchronization and Age Dependence

Until now only total phase synchronization (all ratios n : m combined) was studied during REM
sleep and non-REM sleep [Hamann et al. 2009]. Additionally, Figs. 2.9(b,c) underpin the general
observation of tremendous changes in sleep structure during human lifetime. E. g., in elderly the
time spent in deep sleep is decreased in favor of additional and more frequent arousals accompanied
by prolonged light sleep episodes. This motivates a more systematic study of aging effects in
cardiorespiratory phase synchronization.

Therefore, I now consider heartbeat and oronasal airflow from all 190 disease-free subjects con-
tained in the SIESTA database in an automated synchrogram analysis. I separate results accord-
ing to (i) different synchronization ratios, i.e., n : 1, n : 2, or n : 3, (ii) the subject’s individual
age, and (iii) different physiological states during sleep. For two illustrative examples of higher
order cardio-respiratory phase-synchronization in a young subject versus an elderly subject see
Fig. 5.7. All results obtained from a full analysis are shown separately for nocturnal wakeful-
ness, light sleep S1, light sleep S2, deep sleep, and REM sleep in Fig. 5.10. The bar plots were
obtained by averaging n : m phase-synchronization rates for an integer number of heartbeats n



109

Figure 5.10.: Cardiorespiratory phase-synchronization results from 190 healthy subjects during average 7.8h ha-
bitual sleep separately for different sleep stages and for different age groups [left of purple dashed line] versus all
subjects [right of purple dashed line]. (a-e) n : 1 phase synchronization separately [from left to right] for (a) noctur-
nal wakefulness [dark blue], (b) light sleep S1 [light blue], (c) light sleep S2 [green], (d) deep sleep [red], and (e) REM
sleep [yellow]. (f-h) Phase-synchronization results of other ratios [sleep stages in same order and color coding as in
(a-e)]: (f) n : 2, (g) n : 3, and (h) combined n : 1, n : 2, and n : 3 [notice the different percentage-axis]. Shown are
averages in the respective group together with standard errors. Note, the similarities and quasi age independence
during wakefulness, light sleep S1, and REM sleep. Percentage of phase synchronization increases with increasing
sleep depth from wake to deep sleep [recall REM sleep not being ’deep’]. Synchronization during REM sleep is less
pronounced for all ratios and during all sleep stages.

occurring during a fixed number of respiratory cycles m = 1, 2, 3 over all healthy subjects within
the corresponding age range (15 years width20). Figures 5.10(a-e) concentrate on percentage
n : 1 phase-synchronization, i.e., all episodes where n ∈ {1, 2, 3, 4, 5, 6, 7, 8} heartbeats occur per
breath cycle (m = 1) are combined, across nocturnal wakefulness and for different sleep stages
[see Fig. 5.11 for details on single synchronization ratios]. Analogously obtained results for ratios
n : 2 (combining segments where n ∈ {3, 5, 7, 9, 11, 13, 15} heartbeats occur during 2 breath cy-
cles) and n : 3 (n ∈ {4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19} heartbeats per 3 breaths) are illustrated in
Figs. 5.10(f,g) using the same percentage-axis range as in Figs. 5.10(a-e) for comparison.

Although, percentage n : 1 phase-synchronization is slightly increased during light sleep S1 it
appears to be more or less similar during nocturnal wakefulness, light sleep S1, and REM sleep
[Figs. 5.10(a,b,e)]. Contrarily, the proportion of n : 1 phase-synchronization across light sleep S2
and deep sleep is notedly larger for all age groups [Figs. 5.10(c,d)] – in young synchronization
during light sleep S2 (or, deep sleep) is roughly larger by a factor of 3 (or, even 3.5) than during
wake or REM sleep. However, levels for all sleep stages seem to merge towards the oldest group
(≥ 80) where n : 1 phase-synchronization is, despite still being slightly enhanced during deep sleep
and light sleep S2, less different when comparing all stages with each other.

A strong age dependence is observed during light sleep S2 and deep sleep where percentage phase-
synchronization decreases from 6.59% and even 7.31% in young to 2.14% and 2.31% in elderly.
Especially, during deep sleep a tremendous break down in phase-synchronization appears during
the transition from age group 50−64 years to the next age group 65−79 years. When looking closer
at corresponding results from other sleep stages a noticeable change in cardiorespiratory coupling
is also observed, but much less pronounced. In wake, light sleep S1, and REM sleep percentage
phase-synchronization slightly increases until it reaches its maximum for the age group 50 − 64

20Although, a 95 years old female contributes to the oldest group ≥ 80 she is the only one above 90 years. Thus,
in a strict sense the last group is not as homogeneous as the others.
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Figure 5.11.: Detailed percentage phase-synchronization results separately for all calculated ratios n : m [X-axis],
for different sleep stages [panel columns, same colors as in Fig. 5.10], and for all considered age groups [panel rows]:
in years (a1-e1) 20-34, (a2-e2) 35-49, (a3-e3) 50-64, (a4-e4) 65-79, (a5-e5) ≥ 80, and (a6-e6) 20-95 = all disease-free
subjects. Ratios that contribute to n : 1 phase-synchronization in Figs. 5.10(a-e) are annotated in red, ratios n : 2
contributing to Fig. 5.10(f) in gold, and ratios n : 3 contributing to Fig. 5.10(g) in blue. Dotted red lines mark ratios
n : 1 for orientation and error bars indicate standard errors. 4 : 1 synchronization in panel (d2) is 5.075 ± 1.355.
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years and afterwards decreases, again. Such maximum at middle ages was also observed in α1 as
obtained by detrended fluctuation analysis [see Sect. 3.2.2]. It is known from other studies that
sleep significantly changes, e.g., sleep fragmentation is altered, at ages around 50 years [Espiritu
2008] which might be related to but not completely explained by evening cortisol – a stress hormone
– levels which were reported to suddenly and significantly increase at similar ages [Van Cauter
et al. 2000].

Both, aging characteristics and magnitude of cardiorespiratory n:1 phase-synchronization during
light sleep S1 is clearly different from findings during other non-REM sleep stages, i.e., light sleep
S2 and deep sleep. This observation again justifies the separate consideration of both light sleep
stages which took place across previous sections in this thesis and underlines the closeness of wake
and light sleep S1. This also complies with the empirical observation that people who are aroused
from light sleep S1 often claim never having slept.

Except for elderly during deep sleep [see discussion below] and wake all synchronization percent-
ages n : 2 and n : 3 are in general significantly lower than corresponding values for n : 1 synchro-
nization in accordant sleep stages and age groups. However, results for n : 2 phase synchronization
are even notedly lower than corresponding n : 3 percentages suggesting a physiologically larger
importance of n : 3 synchronization.

Neglecting a few exceptions for young and elderly, previous results from n : 1 synchronization
including an even more apparent age-dependent alteration tendency are qualitatively retrieved:
Roughly, an increase in coupling proportion during the first period of life (age≤ 64 years) is
followed by a decrease during the second half of life (age≥ 65). Phase-synchronization percentages
increase from REM sleep to intra-sleep wake, to light sleep stage 1, and to even more elevated
values during light sleep S2, finally yielding deep sleep where the content of synchronized episodes
is largest.

One especially pronounced exception appears in older subjects’ (age groups 65 − 79 and ≥ 80)
n : 3 phase-synchronization percentage which is conspicuously larger than corresponding n : 1
phase-synchronization proportions during deep sleep (during light sleep S2 only in oldest group)
most pronounced during deep sleep suggesting a transition from n : 1 phase synchronization
in Young towards n : 3 phase synchronization in Elderly. Nevertheless, it remains medically
unclear whether a ratio of n : 1 or n : 3 is more advantageous for the cardio-respiratory system.
Assuming being young implies presence of a better autonomous regulation clearly n : 1 cardio-
respiratory phase-synchronization is worthwhile. To check whether or not such transition from
n : 1 to n : 3 synchronization occurs particularly during deep sleep Fig. 5.11 illustrates full phase-
synchronization results for each considered ratio21 n : m and separately for each sleep stage and
age group.

Except for the oldest group [Figs. 5.11(a5-e5)] percentage of phase-synchronization exhibits a
characteristic background distribution22 among ratios which is sometimes interrupted by strong
occurrences of n : 1, primarily n : 4, coupling [marked by red dotted lines for clarity] poking out
particularly during deep sleep [panels (d)] and light sleep S2 [panels (c)], but is otherwise, despite
its overall magnitude [discussed earlier considering Fig. 5.10], more or less stable during all sleep
stages. A similar background distribution was reported in unsynchronized surrogate data and is
hence most likely random [Bartsch:2007].

The magnitude of n : 1 synchronization clearly decreases with aging and ratio distributions appear
most similar for age group 65−79 in Fig. 5.11(a4-d4) when compared between different sleep stages.
This underlines the earlier claim of a reduction in sleep stage dependent cardio-respiratory coupling
with age. However, the earlier speculated transition from n : 1 to n : 3 ratios during deep sleep
is exclusively originated in a strong 10 : 3 coupling appearing simultaneously with a reduced
3 : 1 coupling in Fig. 5.10(d5). They are likely related to individual fluctuations which are more

21In principle even more non-reducible ratios n : m with m > 3 could be considered. The meaningfulness of an
increased ’closeness’ of ratios, however, is not only due to artifacts but also from a physiological point of view
rather questionable.

22Note, in Fig. 5.11 ratios appear correctly ordered but are not arranged according to there exact numerical value
due to space limitations.
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pronounced in elderly [error bars during deep sleep are largest23]. A likely coincidental character
of this finding is supported by a dominating 3 : 1 heartbeat-airflow phase synchronization across
all other sleep stages in the same age group. Although, cardio-respiratory coupling during REM
is weakest in general identified synchronous episodes are governed by n : 1 phase synchronization
while other ratios are diminished. Hence, one cannot conclude a transition from n : 1 to n : 3
phase synchronization with normal aging.

Figure 5.10(h) finally integrates individual results from n : 1, n : 2, n : 3 cardiorespiratory
phase-synchronization and is here considered to be a estimator for total cardiorespiratory phase-
synchronization (other non-reducible ratios n : m with m > 3 are neglected).

5.3. Cross-Modulation Analysis

So far I have presented phase-synchronization results from heartbeat and respiration during sleep.
However, the most prominent signal in sleep research was not yet attended – the elecetroen-
cephalogram (EEG). As introduced in Sect. 2.3 sleep stage classification in is mainly based on
spectral components in EEG recordings. A comprehensive study on coupling between different
components in human EEGs during sleep can further elucidate mechanisms of sleep control and
sleep stage transitions, and is thus worth doing.

A traditional approach, aiming at a complete description of complex systems, is recording and
analyzing multivariate data from (i) different spatial locations and/or (ii) containing different
spectral components. Both types of data are provided by polysomnographic recordings which by
default include multiple EEG leads from different spatial locations on the skull and whose power
in characteristic frequency bands is used for sleep scoring [see Sect. 2.3]. For instance, the SIESTA
database contains for each subject EEG signals recorded during two different nights from at least
six different locations on the skull [Sect. 2.3]. Bipolar electrodes24 were placed according to the
10-20 system [Fig. 2.8] at positions O1-M2 & O2-M1 (left & right occipital, i.e., back), C3-M2
& C4-M1 (left & right center), and Fp1-M2 & Fp2-M1 (left & right frontal pole). Following
the classical approach and motivated by well established clinical sleep stage classification rules
[Rechtschaffen and Kales 1968; Iber et al. 2007] six physiologically relevant oscillatory
components in the frequency range from 0.5Hz to 22Hz [see Tab. 5.2] are extracted from each
EEG signal yielding in the case of SIESTA data altogether 36 different oscillatory signals.

Standard phase-synchronization analysis has recently become quite popular in brain wave studies
[Tass et al. 1998; Stam 2005; Nikulin and Brismar 2006; Will and Berg 2007; Kitajo
et al. 2007] with focuses on epilepsy [Bialonski and Lehnertz 2006], migraine [Angelini et al.
2004], schizophrenia [Bob et al. 2008], as well as Parkinson’s disease (PD) [Tass et al. 1998; Jerbi
et al. 2007] reporting differences in synchronization for different physiological states or pathologies.
However, most studies deal with rather small databases (n < 20 subjects) and short recordings
compared with polysomnographic data (duration approx. 7.8h) and investigate the coupling be-
tween components of similar frequencies. The coupling structure between components of different
frequencies is hardly studied. Phase synchronization between different frequency components in
the EEG cannot be calculated for arbitrary ratios n : m but must in each case correspond to the
considered frequency bands with respect to the locking condition in Eq. (5.9). For example, 1 : 1
synchronization is only meaningful for signals of the same frequency bands extracted from two
different EEG leads (from different locations), while 2 : 1 phase-synchronization could yield useful
information for an α-β coupling although the α frequency range is not exactly mapped to the β
range by the factor of 2 [Tab. 5.2].

Another interesting type of coupling between two signals are auto modulations and cross mod-
ulations of their amplitudes and frequencies. I. e., changes in the amplitude (or, alternatively
frequency) in the first signal could affect amplitude and/or frequency in the second signal and/or

23Partly due to a reduced statistics during deep sleep in Elderly.
24I denote an EEG signal as bipolar when it is measured between a point on the ’upper’ skull and either one of

the points A1, A2, M1, or M2. However, since auricular and mastoid electrodes are considered to be ’neutral’
reference electrodes by some authors, one might consider pairs available in the SIESTA database as unipolar.
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Figure 5.12.: Cross-
modulation analysis in an
EEG recording. The raw EEG
(b) is decomposed into xα

k

[black in (a)] and xδ1
k [in (c)],

tk = k · 0.005s (sampling rate
200Hz). Instantaneous ampli-
tudes Aα

k and Aδ1
k [blue curves

in (a,c)] are reconstructed using
the Hilbert transformed signals
x̃α

k and x̃δ1
k [red]. Next, phases

ψα
k and ψδ1

k [purple in (d,f)]
of mean-shifted amplitudes
Aδ1

k −〈Aδ1
k 〉 and Aα

k −〈Aα
k 〉 [blue

in (d,f)] are calculated. Finally,
complex exponentials [inset in
(e)] of the phase differences
ψα

k − ψδ1
k [purple in (e)] are

averaged over patches of 30 sec.
yielding µν .

band freq. (Hz) band freq. (Hz) band freq. (Hz)

δ1 0.5 − 1.99 θ 4 − 6.99 σ 11.5 − 15.99
δ2 2 − 3.99 α 7 − 11.49 β 16 − 22

Table 5.2.: Frequency bands used for EEG analysis. Note that the δ band was divided into two new bands, δ1 and
δ2, in contrast to Tab. 2.1; the γ band is disregarded here.

vice versa.

To study the latter more sophisticated type of coupling we introduced cross-modulation analysis
[explained in Sect. 5.3.1] and applied it to EEG data from 190 disease-free subjects from the
SIESTA database. Results are discussed in Sect. 5.3.3 and were published in [Gans et al. 2009].
Recently, we further employed cross-modulation analysis to study effects of Parkinson’s disease
on the coupling structure in sleep EEG, see Sect. 5.3.5 and [Stumpf et al. 2010].

5.3.1. Cross-Modulation Analysis Algorithm

The cross-modulation analysis method consists of four steps, where the first two steps are
basically equivalent to studying phase synchronization in quasi-continuous signals. Although, the
method can again in principle be employed for investigating signals of any source (prerequisites:
narrow frequency band, oscillations around zero) it has, so far, only been employed in studying
electro-encephalograms (EEGs) recorded during habitual sleep (SIESTA and DAPHNET data).
Hence, I will illustrate the algorithm based on EEG signals and then present results which we
partly published in [Gans et al. 2009; Stumpf et al. 2010]. Note that in the following the
algorithm will be presented specifically for the SIESTA database and corresponding values for
the DAPHNET database are noted in curly braces “{.}”.

Step 1:
Each EEG signal is decomposed into frequency components according to Tab. 5.2 employing the
Fourier filtering technique [Theiler et al. 1992], i.e., (i) the signal is fast Fourier transformed
(FFT) into the frequency domain where (ii) the transformed signal is bandpass frequency filtered
keeping only Fourier coefficients of the desired band, and (iii) the inverse fast Fourier transform
(FFT−1) is applied to transform the bandpass filtered signal back into the time domain. This
is illustrated in Fig. 5.12 where a raw EEG fragment is shown in Fig. 5.12(b) together with
its α and δ1 components in Figs. 5.12(a,c) [black curves]. Applying Fourier filtering to all six
{three} synchronous EEG recordings yields ’six EEG leads’ {’three EEG leads’} × ’six frequency
components’ equal 36 {18} time series, altogether. Note, quantities denoting different time series
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of the same kind but from different raw signals are distinguished by superscripts j and l in the
following.

Step 2:
Each of the 36 {18} time series xjk is complemented by its imaginary counterpart25 x̃jk defined
by a first Hilbert transform according to Eqs. (5.14) and (5.15) to obtain an analytical signal
xjk + ix̃jk = Ajk exp(iϕjk). Here, k ∈ N+ indexes discretized time t → tk = k∆t with sampling

∆t. Then instantaneous amplitudes Ajk, instantaneous frequencies f jk , and instantaneous phases

ϕjk are defined following Eq. (5.17). For the raw EEG in Fig. 5.12(b) red curves in Figs. 5.12(a,c)

illustrate x̃αk and x̃δ1k while blue curves are corresponding instantaneous amplitude signals Aαk and

Aδ1k .

Taking each unique pair of instantaneous phases {ϕjk, ϕlk} one can study and quantify phase-

synchronization properties by considering phase differences ∆ϕj,ln,m(tk) = nϕjk −mϕlk and calcu-

lating indexes such as γj,ln,m = |〈i∆ϕj,ln,m〉| or ρj,ln,m following Eqs. (5.23) and (5.22).
However, in cross-modulation analysis instantaneous phases of the EEGs are only required for
the definition of instantaneous frequencies f jk [Eq. (5.17)] and are, thus, not further discussed
here. Recall that a Hilbert transform requires two essential prerequisites in order to result in
meaningful complements, amplitudes, and phases: (i) narrow-banded input signals, and (ii)
signals oscillating around zero. The first property is ensured by the bandpass filtering in Step
1, and the latter by subtracting the signal’s mean value. Further note that frequency signals
f jk might be hampered by occasional artifacts (spikes) due to sudden phase jumps. For that
reason, an additional filtering step has to be included where frequencies exceeding the designated
frequency band [Step 1, Tab. 5.2] are replaced by a moving average, see Fig. 5.13. The moving
average is calculated, i. g., by considering frequency adaptive windows of width a × 1/fc where
fc denotes the center frequency of the frequency band an a (we use a = 10) is a parameter to
adjust the averaging depending on the data.

Figure 5.13.: Fragment of an instantaneous frequency signal ob-
tained from human EEG after Fourier filtering adjusted to the
alpha-frequency band. Note the frequent spikes in the original sig-
nal exceeding the band boundaries marked by solid horizontal lines.
The associated moving average filtered frequency signal is shown
in red. Figure adapted from [Gans et al. 2009].

Step 3:
In order to study the relationship of instantaneous amplitudes Ajk and frequencies f jk from (i)
different spatial locations and (ii) from different frequency components describing the complex
brain system one can consider signals Ajk and f jk as new input signals and employ a second

Hilbert transform [Eq. (5.15)] to derive their corresponding instantaneous phases ψj
′

k , where the
index j′ again denotes the signal number. One amplitude and one frequency signal are generated
from each of the six {three} EEG recordings considering six frequency bands at a time. This
leads to 2× 6× 6 = 72 {2× 3× 6 = 36} unique phase signals in total. Figures 5.12(d,f) illustrate
fragments of instantaneous amplitude signals Aαk and Aδ1k [blue] together with the corresponding

phase signals ψαk and ψδ1k [purple]. Based on the phase differences

∆ψj,ln,m(tk) = nψjk −mψlk (5.27)

between each pair (j, l) of two signals [∆ψα,δ11,1 (tk), orange in Fig. 5.12(e)] a modulation index

25In the following I drop the subscript H in x̃j
H(tk) = x̃j

k.
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µj,lν,n,m is defined similarly to the synchronization index γj,ln,m and again obtained within predefined
non-overlapping time windows ν of width ∆τ , e.g., ∆τ = 30s [circle in Fig. 5.12(e); based on a
longer fragment than the one shown, i.e., 30s].

µj,lν,n,m =
〈
ei∆ψ

j,l
n,m(tk)

〉
, (5.28)

where tk ∈ [t1 + (ν − 1)∆τ, t1 + ν∆τ ], ν = 1, . . . , [N∆t/∆τ ]. Note that in the definition of

Eq. (5.27) the phase difference ∆ψj,ln,m is not confined to the interval [0, 2π). However, this is not
problematic here because the complex exponential in Eq. (5.28) is a 2π periodic function.

Step 4:

Recall that phases ψjk obtained by the second Hilbert transform employing an atan2 operator
have a range (−π,+π]. Our observations show that there are two typical modulations associated

with: (i) phase differences ∆ψj,ln,mmod 2π close to zero, i.e., both signals j and l ’behave alike’

or positively modulated, and (ii) phase differences ∆ψj,ln,mmod 2π close to a value of ±π, i.e.,
both signals ’behave opposed’ or negatively modulated. This motivates the definition of positive
modulations µj,l+,n,m and negative modulations µj,l−,n,m according to

µj,l+,n,m =

∑

〈∆Ψj,l
n,m〉ν∈(−π

2
,π
2
)

∣∣∣µj,lν,n,m
∣∣∣

[N∆t/∆τ ]
and µj,l−,n,m =

∑

〈∆Ψj,l
n,m〉ν 6∈(−π

2
,π
2
)

∣∣∣µj,lν,n,m
∣∣∣

[N∆t/∆τ ]
, (5.29)

where 〈∆Ψj,l
n,m〉ν = arg(µj,ln,m) denotes the expectation value of the cyclic phase difference

∆Ψj,l
n,m = ∆ψi,ln,mmod 2π within the time window ν or simply the argument of the modulation

index. In practice the decision which µj,iν belongs to which index in Eq. (5.29) can easily be

made by evaluating | arg µj,lν | that is smaller π/2 for the (first) positively modulated case and
larger (or equal) π/2 for the negatively modulated case26. I have chosen the expectation value
expression in Eq. (5.29) to make the reader aware of the fact that inside a window ν not all

individual phase differences must lie in the same hemisphere ((−π/2, π/2), [π/2,−π/2 ∧
= 3π/2]).

Further, note the normalization in Eq. (5.29) by the total number of windows ν instead
of the number of windows contributing to the sums in order not to exaggerate modulation
indexes which are only based on a few windows. For short time series or applications where
a finer resolution is desired, windows ν can also be defined as overlapping windows in Step 3.
This, however, requires a normalization by the correct total number of such windows in Eq. (5.29).

The application of the described algorithm yields 2× (72×72)/2 = 5184 {2× (36×36)/2 = 1296}
unique modulation coefficients. Thus, for a given pair of signals (xj , xl) one can separately study
positive and negative amplitude-amplitude and frequency-frequency auto-modulations as well as
amplitude-frequency cross-modulations. The latter type can also be studied for a single signal.
For instance, positive amplitude-amplitude modulation means that an increase in the amplitude
of the first signal positively influences (increases) the amplitudes in the second signal and vice
versa. Negative amplitude-frequency cross-modulation on the other hand would indicate that an
enhanced frequency consequently causes reduced amplitudes. This is especially characteristic of
1/f noise where amplitudes are larger for smaller frequencies [see Sect. 5.3.4].

In contrast to our related publications [Gans et al. 2009; Stumpf et al. 2010] I have decided to
present a generalized cross-modulation analysis that allows for studying higher order modulations
in this thesis. This way I can motivate the next steps that I would like to take in the future.
The algorithms as suggested in both papers can be retrieved by setting n = m = 1 in the
above described (generalized) cross-modulation-analysis. In the following the published and due
to page limitations only very few unpublished results [see Appendix] are presented and subscripts
n = m = 1 are dropped.
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Figure 5.14.: Scheme how
cross-modulation results are ar-
ranged throughout this chapter.

5.3.2. A Matrix Representation of Results

Even when setting m = n = 1 one obtains a large number of modulation coefficients (Nc = 5184)
which are, hence, not easy to handle and interpret. To avoid confusion we suggested in our
publication [Gans et al. 2009] a convenient way to visualize calculated positive and negative
modulation coefficients in a matrix representation. I have illustrated the corresponding matrix
scheme in Fig. 5.14: Modulation coefficients calculated following Eq. (5.29) are ordered according
to: (i) frequency bands [from left to right and top to bottom δ1, δ2, θ, α, σ, β], (ii) signal combina-
tions arranged in four sub-matrices amplitude-amplitude auto modulations [top left], frequency-
amplitudes cross modulations [top right and lower left], and frequency-frequency auto modulations
[lower right], (iii) positive direction [µ+, upper triangle] and negative direction [µ−, lower trian-
gle], and (iv) EEG leads in each cubicle of fixed frequency-band combinations. The order of the
latter is from left to right and top to bottom: left and right occipital (back) EEG leads (O1-
M2, O2-M1); left and right central EEG leads (C3-M2, C4-M1); and left and right frontal pole
EEG leads (Fp1-M2, Fp2-M1) as depicted in the enlarged cubicle for positive σ − β amplitude-
frequency cross-modulation coefficients in Fig. 5.14. This scheme is employed to visualize cross-
and auto-modulation results for sleep data from the SIESTA database.

5.3.3. Cross-Modulated Amplitudes and Frequencies During Disease-Free Sleep

Figure 5.15 shows average results from a cross-modulation analysis separately applied to EEG data
from 190 healthy subjects in the SIESTA database during nocturnal wakefulness [Fig. 5.15(A)],
light sleep S2 [Fig. 5.15(B)], deep sleep [Fig. 5.15(C)], and REM sleep [Fig. 5.15(D)]. Modulation
coefficients are arranged according to Fig. 5.14, except for decreasing positive amplitude-amplitude
modulations by a factor of 2 and increasing negative amplitude-amplitude modulations by a factor
of 8 in panels (a) to enhance details. As can immediately be seen, certain features as for example
traces of a diagonal in panels (b) are present across all sleep stages while others are only present
during certain sleep stages [in Fig. 5.15 marked by red ellipses]. For a discussion on surrogate
data to test whether such features are spurious or real see Sect. 5.3.4. Note that we checked that
matrices remain practically the same when a second band-pass filter was employed before the
second Hilbert transform to ensure narrow frequency bands. The reason is that instantaneous
amplitude and frequency signals (Ajk and f jk) already fluctuate within narrow bands after the
first Hilbert transform. Before averaging over all 190 disease-free subjects qualitative stability of
results was further checked (i) for single individuals [three examples are depicted in Appendix F.1],
(ii) for three randomly chosen subsets comprising roughly 63 subjects each [results shown in

26Whether an argument of exactly π/2, −π/2 belongs to either one of the modulation indexes is unimportant.
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(A) Cross-modulation matrix for wakefulness (B) Cross-modulation matrix for light sleep S2

(C) Cross-modulation matrix for deep sleep (D) Cross-modulation matrix for REM sleep

Figure 5.15.: Average cross-modulation results from 190 healthy subjects [SIESTA database] separately for (A)
nocturnal wakefulness, (B) light sleep, (C) deep sleep, and (D) REM sleep. Matrices are arranged according to
the scheme in Fig. 5.14 showing amplitude-amplitude auto modulations in panels (a), amplitude-frequency cross
modulations in panels (b,c), and frequency-frequency auto modulations in panels (d). Modulation strength |µ±|
increases from blue to green, yellow, and red. Note: The color code is modified in panels (a) where values in the

upper triangle (µ
A

j
k

Al
k

+ ) are increased by a factor of 8 and values in the lower triangle (µ
A

j
k

Al
k

+ ) are decreased by a
factor of 2 to enhance details. Red ellipses mark typical features associated with the respective sleep stage. Figures
adapted from supplements of our paper [Gans et al. 2009].

Appendix F.2], and (iii) for a linear decomposition of all six EEGs by independent component
analysis in three random subjects [Hyvärinen et al. 2001; Ziehe et al. 2004; Meinecke et al.
2005].

Red main diagonals correspond to unit self-modulation coefficients, i.e., combining amplitude
and frequency signals with themselves. The checkerboard structure around the self-modulation
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coefficients which is especially pronounced for frequency-frequency auto modulations [Fig. 5.15
panels (d)] originates in enhanced interrelations when combining signals of the same frequency
band from neighboring electrodes and the same hemisphere, i.e., left (right) occipital & left (right)
central and left (right) central & left (right) frontal. Since EEG recordings represent integrals over
action potentials from an extended region in the brain, they are spatially rather unlocalized and,
thus, redundant information is expected to be obtained from neighboring EEG leads in the same
hemisphere and for the same signal type. Secondary diagonals in Figs. 5.15(Ab,Bb,Cb,Db) are
likely related to 1/f noise as is discussed in Sect. 5.3.4.

A prominent feature present during nocturnal wakefulness but not during sleep stages is a positive
fαk f

β
k modulation [red circle in Fig. 5.15(Ad)] which is related but not identical with phase-

synchronization between α and β brain waves [Nikulin and Brismar 2006] or their long-range
temporal correlations [Nikulin and Brismar 2004] during wake. The main cause in my opinion
is a fluctuating transition between being awake and conscious where β waves (focal waves) are
especially present and falling asleep again where the brain descents from β to fast α and finally
to a slow α towards increased θ and δ. During an arousal the α frequency has to increase since
the subject reaches wakefulness and on the other hand as soon as the subject transits to a more
conscious state high frequent β is established.

Traces of negative auto-modulation of α amplitude with δ amplitude are observed during all sleep
stages and wakefulness, however, they are especially strong during deep sleep [Figure 5.15(Ca)] and
enhanced during wake [Figure 5.15(Aa)] while at the lowest during REM sleep [Figure 5.15(Da)].
Hence, an increase in α amplitude is accompanied by a decrease in δ amplitude and vice versa.
Prevalent α waves are the typical pattern of the wake state with closed eyes while δ waves are
the main property of deep sleep. Consequently, sleep onset intrinsically results in a reduction in
α activity and an incidental increase in δ amplitude that evolves via the light sleep stage towards
deep sleep. REM sleep, on the other hand, is characterized by an overall reduced EEG amplitude,
high varying frequencies, and an apparent mostly ’random’ and ’chaotic’ appearance compared
with all other stages [cp. Sect. 2.3], maybe due to rapid eye movements. This explains its fainted
α− δ amplitude anti-modulation. The reason for corresponding modulation indexes being largest
in occipital EEG leads is the generally larger α activity in the brain’s rear parts.

Only throughout light sleep S2 and deep sleep (deeper non-REM sleep) a strong negative mod-
ulation of σ amplitudes with σ frequency [Figs. 5.15(Bb,Cb)] is prevalent and appears exclu-
sively in central and frontal EEG leads. Aside such Aσkf

σ
k anti-modulation one observes addi-

tional positive fαk A
σ
k cross-modulations [Figs. 5.15(Bc,Cc)] and negative fαk f

σ
k auto-modulations

[Figs. 5.15(Bd,Cd)] which again are predominant in central- and frontal EEG leads compared
with wakefulness and REM sleep where their values are weaker (particularly during REM sleep)
and not concentrated in central- and frontal EEGs. σ waves are associated with sleep spindles
[Sect. 2.3] which have a short duration of typically 2 to 4 seconds but can be as short as 0.5 seconds
or as long as 10 seconds. Sleep spindles are predominantly found in frontal EEG leads (especially
in young) and in central EEG leads during light sleep S2 but are also a typical pattern during
deep sleep while almost absent in other sleep stages [Olbrich and Achermann 2005]. This
explains the prevailing observation of σ-related modulations during light sleep and deep sleep and
especially in both central- and frontal leads [Figs. 5.15(B,C)]. Although, Aσkf

σ
k anti-modulation

complies with my own observation that sleep spindles of larger amplitude have smaller frequencies
and vice versa I do not know about this being systematically checked in sleep research. Sleep
spindles have been associated with electromagnetic stimulation (e. g., the use of cellular phones
shortly before bedtime significantly increases the number of sleep spindles during the first 30min
of non-REM sleep [Huber et al. 2000]) and with cognitive function and performance (their num-
ber is decreased in mental retardation, see [Spinosa and Garzon 2007] and references therein).
However, it remains open whether an increased σ activity has a positive effect on sleep quality
and thus would be a desired effect. Both fαk A

σ
k modulation and fαk f

σ
k anti-modulation might be

explained by the closeness of the two frequency bands. Since fσk decreases when Aσk increases
(anti-modulation) the frequency might migrate into the lower frequency band which is α and,
thus, increase α frequency – Aσk increase causes fαk increase. On the other hand, an fαk increase



119

(A) EEG data from different nights (B) EEG data from 1/f noise

Figure 5.16.: Cross-correlation analysis results for surrogate data generated by (A) combining EEG data from
different nights recorded in the same subject [for instance Aσ

k from the first night is combined with fα
k from the

second night] and (B) 1/f -correlated random noise [β = 1]. In panels (a) the same value modification as in
Fig. 5.15(a) was applied.

might fade to the σ band and reduce its frequency fσk .

Except for frequency-frequency modulations inter-band coupling is generally attenuated through-
out deep sleep compared with other sleep stages which might indicate a reduced cerebral control
during deep sleep.

5.3.4. Surrogate Testing

Testing a method with surrogate or randomized data is the classical approach in time series analysis
to check the significance of findings, i.e., identify real and spurious features in representations
such as Fig. 5.15. Two easy ways to design surrogate data for cross-modulation analysis in brain
wave recordings during sleep are (i) combining EEG data recorded in the same subjects but
from different nights or (ii) feeding artificially generated time series of correlated 1/f noise into
the cross-modulation analysis algorithm. The first approach is justified by the observation that
brain recordings in the same subject but from different nights obey similar characteristic features.
Modulation indexes are derived between each pair of amplitude and frequency signals recorded
during two different nights. Corresponding cross-modulation results are depicted in Fig. 5.16(A).
The second approach is motivated by the observation of long-term correlations and 1/f -noise
in signals from many living systems and findings are illustrated in Fig. 5.16(B). In both figures
differentiated modulation structure as in Fig. 5.15 is absent which implies discussed findings
are unlikely27 to be spurious. However, frequency-frequency modulations in the δ and θ bands
[Figs. 5.16(Ad,Bd)] appear enhanced and, thus, findings in corresponding areas in Fig. 5.15 are
likely spurious.

Another feature of Fig. 5.16(Bb) is the earlier mentioned characteristic secondary diagonal which
links its concomitant appearance in Fig. 5.15 to 1/f noise. This makes sense when recalling that
the power spectrum of 1/f noise decays as a power law with a spectral exponent β = 1 [Sect. 1.2]
which means an increase in frequency is associated with a decrease in amplitude (A ∝ f−β/2).

Note also that the same enhancement by a factor of 8 in the anti-modulation triangle and the same
reduction by a factor of 2 in the positive modulation triangle took place in Figs. 5.16(Aa,Ba). This

27In a strict sense only the hypotheses of pure 1/f noise and ’random’ can be discarded.
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was originally done here to ensure the same rescaling as in Figs. 5.15(Aa,Ba,Ca,Da), however, it is
subject to misinterpretation now. In reality both triangles corresponding to positive and negative
modulation in panels (a) exhibit practically the same modulation values which would result in a
similar picture as in panels (b). Discussed features in Figs. 5.15 are indeed enhanced compared
with surrogate findings.

5.3.5. Cross-modulation in Parkinson’s Disease

Besides recordings from disease-free subjects the SIESTA database contains polysomnographic
recordings from Parkinson’s disease (PD) patients which were gathered in the Barcelona and
the Vienna laboratories [see also Sect. 2.3]. However, when studying the fluctuations I had to
realized that disease classification in the SIESTA database could be questioned in several cases.
In particular many PD patients simultaneously experience sleep apnea expressed in an apnea-
hypopnea index (AHI) significantly larger than 10 per hour which might be related with their
increase age. Especially in males, an age above 50 has been associated with an increased risk of
sleep apnea disease. Thus, we decided to select only PD patients (NPD = 10) with an AHI< 10/h
from the SIESTA database and also selected age-matched disease-free subjects (Ndf = 10) from
the same labs. For simplicity and since we originally intended to compare our results to the results
from the DAPHNET database [Sect. 2.3] not all six available electrodes were considered but only
both central EEG leads C3-M1 & C4-M1 and the occipital lead O1-M2.
EEG recordings from patients and controls were analyzed by employing the cross-modulation
analysis algorithm [Sect. 5.3.1] yielding cross-modulation indexes µj,l+ and µj,l− (Steps 1-4 ) where

1 : 1 phase-synchronization indexes γj,l1,1 = γj,l (Steps 1-2, and also setting m = n = 1; subscripts
again dropped) were additionally derived. Note that for 1:1 phase-synchronization quantified by
γj,l only signals from the same frequency bands can be compared with each other, i.e., j = l : j ∈
{β, σ, α, θ, δ1, δ2}.

Figure 5.17.: Results from a comparative phase-synchronization analysis as well as from a cross-modulation analysis
of 10 Parkinson’s disease patients [in all panels red bars] versus 10 age-matched healthy controls [in all panels, blue
bars]. (a,b) Whole night’s average phase-synchronization indexes γ for each group and for all six frequency bands
obtained from (a) central EEG leads from the left and right hemisphere (C4-M1 vs. C3-M2) and (b) central and
occipital [back] EEG leads from the left hemisphere (C3-M2 vs. O1-M2). (c,d) Whole-night-averaged amplitude-
frequency cross-modulation indexes; (c) µ+ and (d) µ− for the band combinations printed below the bars: σ−θ, β−θ
in (c) and α− δ1, α− δ2 in (d) for healthy subjects and Parkinson patients. Values in (c,d) are means of both intra-
hemisphere combinations (C3-M2,C3-M2 and C4-M1,C4-M1) for the left four bars, and of both inter-hemisphere
combinations (C3-M2,C4-M1 and C4-M1,C3-M2) for the four right bars. Standard deviations are indicated by error
bars.

Figures 5.17(a,b) compare phase-synchronization results obtained from disease-free subjects [con-
trols, light blue] with those from PD patients [red] where indexes γj,j were separately calculated
for pairs of signals from different locations on the skull and for all six frequency bands [see
Tab. 5.2 for definition]. Phase-synchronization between central signals from the left and from the
right hemisphere (C3-M2, C4-M1) is clearly reduced in PD patients compared with age-matched
disease-free controls for all bands [Fig. 5.17(a)]. On the other hand, a comparison of phase syn-
chronization indexes γj,j obtained from pairs of signals recorded at left center position (C3-M2)
and left occipital (left back) position (O1-M2), i.e., different anteriorposterior positions in the
same hemisphere, yields no significant difference between controls and PD patients [Fig. 5.17(b)].
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sleep stage location δ1 δ2 θ α σ β
wake left-right 0.74 † ◦ 0.73 † ‡ 0.65 † ‡ 0.76 ◦ 0.77 ◦ 0.7 ⋆ ‡
light left-right 0.81 0.80 ⋆ ◦ 0.72 ⋆ ‡ 0.77 ◦ 0.72 ⋆ ‡ 0.82
deep left-right 0.90 0.85 0.76 ‡ 0.67 † ‡ 0.75 ◦ 0.95
REM left-right 0.78 † ‡ 0.75 † ‡ 0.68 † ‡ 0.69 † ‡ 0.76 0.8

whole night left-right 0.82 ⋆ ◦ 0.78 ⋆ ‡ 0.70 ⋆ ‡ 0.74 ⋆ ‡ 0.75 0.78
whole night center-back 0.97 1.00 1.07 0.91 1.01 1.03

Table 5.3.: Ratios of 1:1 phase-synchronization indexes γj,j : j ∈ {δ1, δ2, θ, α, σ, β} for PD patients and age-
matched disease-free controls, γj,j

PD/γ
j,j
df , across different sleep stages and for different electrode locations. Significant

differences between PD patients and controls are indicated by symbols, t test: p < 0.01 (†), p < 0.05 (⋆) and
Wilcoxon test p < 0.01 (‡), p < 0.05 (◦).

Besides, inter-hemispheric phase-synchronization decreases with increasing frequency (from δ1 to
β) while intra-hemispheric phase-synchronization is independent of frequency [cp. Figs. 5.17(a,b)].

In order to quantify and verify differences between both groups of subjects the ratio of the average
phase-synchronization indexes, i. e., the values γParkinson/γhealthy controls, were studied separately
for nocturnal wakefulness and different sleep stages (light sleep S2, deep sleep, and REM sleep)
employing two different, significance tests – (i) a paired two-sided heteroscedastic Student’s-t test
[Appendix D.1] and (ii) a Wilcoxon rank-order test28 [see Appendix D.2]. Results are reported
in Tab. 5.3 together with values for the whole nights averages. Symbols behind the numbers
indicate significance for both statistical tests [see table caption]. The last row exemplarily reports
non-significant intra-hemispheric results for comparison. We consider differences between the two
groups as significant, if both tests indicate probabilities p < 0.05 for equality. Then we find a
major reductions in PD phase-synchronization during REM sleep and during night-time wake.
The absence of significance in both the σ and β band during REM sleep is substantiated by the
earlier discussed property of σ waves predominantly occurring during light sleep 2 and deep sleep
and β waves being associated with conscious task solving and focused thinking [see Sect. 5.3.3].
Similarly, a reduced (Student’s-t test) significance in the α band and σ band during nocturnal
wakefulness can be explained by a reduced power of α and σ waves during wake – α waves indicate
an increased drowsiness, sleep onset, and the transition to light sleep stages 1 & 2, and σ waves
mainly occur during light sleep S2 and deep sleep. However, reductions in a few bands are weakly
significant also during light sleep (non-REM S2 only) and for the whole night averages; the latter
corresponding to the data also presented in Fig. 5.15(a). The only significant decrease during deep
sleep (in the α band) seems not to be meaningful, since statistics is rather weak for deep sleep
[see Fig. 2.9 for sleep stage distribution] All ratios in the last row of Tab. 5.3 corresponding to
Fig. 5.17(b) fluctuate around one thus confirm no significant differences between both disease-free
controls and PD patients.

Figures 5.17(c,d) show selected and averaged results, i.e., intra-hemispheric [left panel halves]

and inter-hemispheric [right panel halves] positive cross modulations µA
σfθ

+ & µA
βfθ

+ [Fig. 5.17(c)]

and negative cross modulations µA
αfδ1

− & µA
αfδ2

− [Fig. 5.17(d)], from a cross-modulation analysis
which yielded figures similar to Fig. 5.15 separately for PD patients and for disease-free controls
[these figures can be found in Appendix F.3]. Note that the selected cross-modulation indexes
show the most significant difference between disease-free controls and PD patients [dark red areas
in Fig. 5.18; discussed later]. Depicted modulation indexes were averaged over similar EEG
lead combinations after confirming the appropriateness of such averaging by an initial separate
consideration. For instance, the values for the last two bars of the right half of Fig. 5.17(c) are
defined by

µA
βfθ

+ =
1

2

(
µ
Aβ

C3−M2,f
θ
C4−M1

+ + µ
Aβ

C4−M1,f
θ
C3−M2

+

)
. (5.30)

28The Student’s-t test is more common in physics, but becomes rather unreliable for a small number of considered
data points (here Ndf = NPD = 10). The Wilcoxon rank-order test, on the other hand, is a standard significance
test employed in medical applications and hence is more accepted there.
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Figure 5.18.: Significance of differences in (cross)-modulation indices µ+ (upper triangle) and µ− (lower triangle)
between PD patients and age-matched healthy controls as obtained from Student’s t tests. Blue cubicles indicate
probabilities p < 0.05, orange cubicles p < 0.01, and dark red cubicles p < 0.001 for equality of the cross-modulation
indices in patients and controls. White cubicles indicate non-significant differences. The first row and column refer
to amplitudes in the δ1 band, the second to amplitudes in the δ2 band, etc. The seventh row and column refer to
frequencies in the δ1 band, etc., so that all possible band combinations are represented. The results are simplified
by harmonically averaging individual significance levels obtained for all nine studied electrode combinations based
on the two central and one occipital EEG leads. The detailed results for the highly significant points (p < 0.001,
dark red) are reported in Fig. 5.17.

In this more evolved type of analysis, differences between disease-free subjects and PD patients are
also significant for signals recorded within the same brain hemisphere [left halves of Figs. 5.17(c,d)].
In addition, higher levels of significance are achieved for the comparison of the two groups than in
the phase-synchronization results [Figs. 5.17(a,b)]. For both electrodes in the same brain hemi-

sphere and electrodes in different hemispheres µA
σfθ

+ , µA
βfθ

+ , µA
αfδ1

− , and µA
αfδ2

− are significantly
reduced in PD patients – a Student’s-t test yields p < 0.001 for equivalence.

By cross-modulation-analysis of both whole-nights data (adaptation and recording night) aver-
aged separately over PD patients and age-matched disease-free subjects a full significance matrix
ordered similarly to the scheme in Fig. 5.14 – with only three EEG leads (C3-M2, C4-M1, and O1-
M2) – can be derived employing a paired heteroscedastic Student’s-t test. In order to simplify the
altogether 1296 unique p values the nine individual significance values in each cubicle representing
the same band combinations but different electrode combinations (and in particular those for intra-
and inter-hemisphere effects) have been harmonically averaged. Results are depicted in Fig. 5.18,
where the cubicle’s color indicates the probability for an equivalence of modulation indexes from
PD patients and age-matched disease-free subjects for the corresponding signal combination and
in the corresponding frequency band [p < 0.001 dark red, p < 0.01 orange, < 0.05 blue; white
cubicles indicate non-significant modulation]. Note, that some individual cross-modulation in-
dexes in a cubicle might not be significantly different while the majority of the nine is. Note also
that there is no significant increase of any average cross-modulation coefficient in PD patients.
Figure 5.18 proves that significant decreases of cross-modulation indexes occur also for other band
combinations in addition to those reported in detail in Figs. 5.17(c,d). We expect that some
additional features could be quantified when significance matrices are separately calculated for
individual sleep stages.

In addition to the here presented results we studied cross-modulations in EEG recordings from
sleep apnea patients and healthy subjects of corresponding age (DAPHNET database). The full
cross-modulation matrices can be found in Appendix F.4 separately for all sleep stages and noc-
turnal wakefulness and for apnea patients [Fig. F.5] and age-matched healthy subjects [Fig. F.6].
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Although there are significant differences between healthy controls and apnea patients which ex-
hibit larger cross-modulation coefficients in general, I will not further discuss these (preliminary)
results. Note that results obtained from recordings of the SIESTA database cannot directly be
compared with the ones obtained from the DAPHNET database because of a different experimen-
tal setup (recording devices and study protocol).



6. Summary

During my PhD thesis I have studied time series from physiological complex systems. The selection
of databases presented in this thesis contains time series capturing the dynamics of both the
cardiorespiratory system and the brain system.

Fluctuations
In Chapt. 3 I focused on studying fluctuations in physiological time series such as heartbeat and
respiration. I have introduced the standard monofractal fluctuation analysis methods in Sect. 3.1.
Further, I discussed in Appendix E.1 and illustrated in Appendix E.2 that a wavelet based fluc-
tuation analysis can proof useful in studying large databases because it is characterized by less
computationally costs and provides equivalent detrending capabilities compared with detrended
fluctuation analysis (DFA) which is the most established method today.
I have employed 2nd-order DFA to heartbeat and respiration from 180 healthy subjects and stud-
ied the effects of healthy aging on the scaling behavior in to different scales ranges. The short-term
fluctuation exponent α1 associated with parasympathetic autonomous control and sometimes em-
ployed to assess cardiac risk shows a strong age dependence during all sleep stages [Sect. 3.2.2]. Its
value increases with disease-free aging for young towards intermediately aged subjects and then
reduces again towards elderly. The long-term fluctuation exponent α2 shows a similar qualitative
behavior as the fluctuation exponent associated with respiration, i. e., it indicates uncorrelated
signals during deep sleep and only weak correlations during light sleep. During nocturnal wake-
fulness and rapid-eye-movement sleep (REM) significant long-term correlations are found. While
there is no age dependence in long-term scaling during light sleep and deep sleep there is a decrease
in the fluctuation exponent upon aging during wake and respiratory REM. In heartbeat during
REM I obtained an opposite behavior, i. e., an increase in α2 upon aging.

In Sect. 3.3.4 I suggested a generalized binomial-multifractal model (GB-MFM) that allows for
an independent adjustment of multifractality strength and monofractal correlation (h(2)). I com-
prehensively studied this model employing both the standard multifractal DFA (MF-DFA) and
a newly suggested multifractal centered moving averaging analysis (MF-CMA). I think that the
GB-MFM can be employed in time series for hypothesis testing against a model of certain mul-
tifractality and correlation. I have further discussed that any fluctuation function based method
can trivially be generalized to a multifractal variant, this was shown in Appendix E.1 for wavelet
fluctuation analysis.
Then I focused on studying spurious multifractality appearing in certain types of monofractal data,
see Sect. 3.4 . I motivated that weak multifractality with ∆h < 0.2 can be obtained from purely
monofractal data generated by Fourier filtering. In particular a block shuffling technique was
suggested to selectively destroy correlations on small, large, or intermediate scales, see Sect. 3.3.6.

Although, there were already attempts to study the statistics of ectopic beats this was never done
for sleep data. It is known that the number of premature beats can be used as a predictor of total
mortality. Hence, it is expected that other pathologies affect the statistics on ectopic beats as
well. One could investigate properties such as return intervals of extrasystoles in diseased patients
versus healthy controls.

Quasioscillations

In Chapt. 4 I have reviewed phase-rectified signal averaging (PRSA) and introduced deceleration
capacity (DC) which was proven to be a better predictor of total mortality in post-infarction
patients than the currently used gold standard left-ventricular ejection fraction (LVEF), see
Sects. 4.1, 4.1.3 . I have suggested improved anchor criteria and an inclusion of windows with
missing data points as generally observed in large datasets. In order to study the daily rhythm
in DC I have separated 24 hours ECG recordings from post-infarction patients into episodes of 3
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hours duration [Sect. 4.1.7]. Knowledge of the daily rhythm is required for an improvement of risk
classification thresholds and for a generalization from 24 hours recordings to short-term recordings
of just a few hours or minutes. I obtained the intriguing result that there is a 24 hours cycle in
DC. DC is lowest in the late morning which strongly correlates with the empirical observation
that most deaths occur around 10am-11am. This finding supports the thesis of DC being a well
performing predictor for total mortality. I further found that DC is systematically reduced in
diabetes patients which complies with the general belief that diabetes increases cardiac risk.
I employed the PRSA method for the first time to polysomnographic recordings [Sect. 4.1.8] and
studied the effects of Parkinson’s disease, sleep apnea, depression, periodic leg movement, and
anxiety on oscillations in heartbeat interval data [Sect. 4.1.9]. I reported notedly differences for
different sleep stages and diseases. Most prominent differences in sleep apnea subjects compared
with healthy controls. There were no significant differences between recordings from different
nights.
Finally, I studied the age dependence of DC in both post-infarction patients and healthy subjects
during sleep [Sects. 4.1.6 and 4.1.10]. I obtained for both groups of subjects similar results
indicating a linear reduction in DC upon aging. This finding, however, might be related to an
in general higher cardiac risk in elderly. Moreover, DC seems to be reduced during REM sleep
suggesting a higher risk during REM sleep compared with non-REM sleep. However, sleep itself
is considered to be cardioprotective by most cardiologists.
In the second part of Chapt. 4 I generalized PRSA to a bivariate method and illustrated its po-
tential use to study interrelated signals such as heartbeat and blood pressure [Sect. 4.2]. I hope in
the future to systematically investigate the changes in heartbeat upon variations in blood pressure
which are related to the baroreflex. We believe to exploit results from an bivariate analysis to
additionally improve total mortality risk classification. I further suggest to systematically investi-
gate the regulation between heartbeat, blood pressure, and respiration in a multivariate analysis
in order to validate the respiratory gating theory. First results from 30min of simultaneously
recorded heartbeat and blood pressure are promising. I believe that multivariate PRSA can also
be employed to study data from various other sources in interdisciplinary research.

Synchronization
The first part of Chapt. 5 was dedicated to investigating the mutual coupling between heartbeat
and respiration in terms of phase synchronization. Therefore, I suggested an automated method
to characterize phase synchrograms which are usually studied by visually inspection in much
smaller datasets separately for each subject, see Sect. 5.2. I employed automated synchrogram
analysis to study aging effects upon cardiorespiratory phase synchronization across sleep stages
in Sect. 5.2.6. While there are no significant aging effects during wakefulness, light sleep S1, and
REM sleep n : 1 phase synchronization systematically reduces with healthy aging during light sleep
S2 and deep sleep. Most total synchronization was found during deep sleep. In the second part of
Chapt. 5 I introduced cross-modulation analysis to study cross modulations between amplitudes
and frequencies in brain wave recordings. The advantage of cross-modulation analysis is that there
is no limitation on which type of signals is studied compared to other synchronization methods
that require fixed frequency ratios between the signals under investigation. I introduced cross-
modulation analysis in a more general way in Sect. 5.3.1 compared with our papers because I would
like to motivate future directions of research. I think higher order cross-modulation analysis, i. e.
for parameters m and n in an analogous way as higher order phase synchronization was studied
in Sect. 5.2.6. I am convinced that this can yield an improved understanding of complex systems.
Moreover, I think it should be possible to implement a time delayed version of cross-modulation
analysis which then facilitates studying the dynamics of modulations in a similar way as one
studies the dynamics in time domain by cross-correlation analysis or BPRSA.
Furthermore, I would like to investigate the mutual synchronization in a multivariate analysis.
The SIESTA database contains for each subject many more signals that were not systematically
analysed yet. The results from such a study might be useful for implementing an automatic sleep
stage detector.



A. Wiener-Khinchin Theorem

To see the equivalence of Eqs. (1.14) and (1.15) consider the separation s = l − k, and let g and
h be some functions that map the index space (k ∈ I = N) to the real space (g(k), h(k) ∈ R).
Then the following expression which has the same structure as the double sum in Eq. (1.15) can
be derived:

N∑

k,l=1

g(k)h(k + (l − k)) =

g(1)h(1 + (1 − 1)) + g(2)h(2 + (2 − 2)) + . . . + g(N)h(N + (N −N))︸ ︷︷ ︸
l=k

+

g(1)h(1 + (2 − 1)) + . . . + g(N − 1)h((N − 1) + (N − (N − 1)))︸ ︷︷ ︸
s=l−k=+1

+ . . .+ g(1)h(1 + (N − 1))︸ ︷︷ ︸
s=l−k=N−1

+

g(2)h(2 + (1 − 2)) + g(3)h(3 + (2 − 3)) + . . .+ g(N)h(N + ((N − 1) −N))︸ ︷︷ ︸
s=l−k=−1

+

. . . + g(N)h(N + (1 −N))︸ ︷︷ ︸
s=l−k=1−N

N∑

k,l=1

g(k)h(k + (l − k)) =
N−1∑

s=0

N−s∑

k=1

g(k)h(k + s) +
−1∑

s=1−N

N∑

k=|s|+1

g(k)h(k + s)

=
N−1∑

s=0

N−s∑

k=1

g(k)h(k + s) +
−1∑

s=1−N

N−|s|∑

k=1

g(k + |s|)h(k + |s| + s)

Now, in the last double sum s < 0 yields |s|+ s = 0. When g = h the double sums can be unified
and the sum over k equals the auto-covariance function [Eq. (1.9a) with y = x] times1 N

N∑

k,l=1

g(k)g(k + (l − k)) =

N−1∑

s=1−N

N

N

N−|s|∑

k=1

g(k)g(k + |s|) = N

N−1∑

s=1−N

Covgg(s) (A.1)

By combining Eqs. (1.15) and (A.1) one finally obtains the power spectrum as the Fourier trans-
form of the auto-covariance function2.

P (f) =
1

N

N−1∑

s=1−N

Covxx(s)e
−iωs (A.2)

This property can rigorously be shown in the continuous case and is then known as the Wiener-
Khinchin Theorem. Note that Eq. (A.2) is only in the limit N → ∞ equivalent with the definition
in Eq. (1.13).

1For the unbiased version of Eq. (1.9a) the factor becomes N − |s|.
2Note: Indeed, I did not use Eq. (A.1), but instead the previous representation since g(k) = xk and h(k + s) =
xk+se

−iωs. However, the sums can then be unified in the same way as shown yielding the auto-covariance
function and a remaining e−iωs term.



B. Auto Correlation in AR(1) Time Series

Setting p = 1 and a0 = 1 in the definition in Eq. (1.33) an AR(1) process follows

xk = a1xk−1 + εk , x1 = ε1, k = 2, . . . , N (B.1)

where {εk}k=1,...,N are drawn from a normalized normal distribution N (0, 1). Recursively inserting
Eq. (B.1) in itself yields

xk = a1xk−1 + εk

= a2
1xk−2 + εk + a1εk−1

= a3
1xk−3 + εk + a1εk−1 + a2

1εk−2

...

xk =

∞∑

j=0

aj1εk−j . (B.2)

Note that Eq. (B.2) represents an infinite moving average process (MA(∞)) with the parameters
bj = aj1. MA(q) processes generally follow xk =

∑q
j=0 bjεk−j with b0 = 1. Obviously, Eq. (B.2)

only converges for |a1| < 1 which is satisfied in the example in Sect. 1.5.1 and Fig. 1.1 where
a1 = 0.98. AR(p) processes in general [Eq. (1.33)] can be expressed by a MA(∞) processes if the
roots of their corresponding characteristic polynomial 1−a1z−a2z

2−. . .−apzp = 0 are outside the
unit circle [Schlittgen and Streitberg 1999]. This condition can be obtained from rewriting
the definition of an AR(p) process in Eq. (1.33) with the backshift operator Bxk = xk−1

(1 −
p∑

j=1

a1B
j)xk = εk . (B.3)

Because the noise {εk} is stationary (here I set µε = 0, and Covεε(s̃) = σ2
ε = δ(s̃) by definition),

the AR(1) process being linear in ε is also stationary. For the expectation value of the AR(1) time
series follows with 〈εk〉 = µε = 0

〈xk〉 = 〈a1xk−1 + εk〉 = a1 〈xk−1〉 = . . . = 0 (B.4)

and for the variance considering Eq. (B.4) and using that {εk} and {xk} are uncorrelated

〈
x2
k

〉
=
〈
a2

1x
2
k−1

〉
+
〈
ε2k
〉

+ 〈2a1xk−1εk〉︸ ︷︷ ︸
=0

σ2
x = 〈xk〉2 =

σ2
ε

1 − a2
1

(B.5)

According to Eq. (1.10b) the auto-correlation function of an AR(1) process {xk} is then expressed
by (without loss in generality s > 0)

C(s) = Corxx(s) =
1

σ2
xN

N−s∑

k=1

xkxk+s
(B.2)
=

1

σ2
xN

N−s∑

k=1

∞∑

i=0

ai1εk−i

∞∑

j=0

aj1εk+s−j

=
1

σ2
x

∞∑

i=0

∞∑

j=0

ai1a
j
1

1

N

N−s∑

k=1

εk−iεk+s−j =
1

σ2
x

∞∑

i=0

∞∑

j=0

ai1a
j
1Covεε(s+ i− j)
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where from the vanishing auto-covariance function (and vanishing auto-correlation function) of
white noise for all time lags different from zero (Covεε(s̃) = σ2

ε = δ(s̃) with s̃ = s + i− j) follows
j = s+ i, and hence, the auto-correlation function of the AR(1) process yields

C(s) =
1

σ2
x

∞∑

i=0

a2i
1 a

s
1σ

2
ε = as1 (B.6)

where I used the limit of the geometric series
∑∞

i=0(a
2
1)
i = 1/(1 − a2

1) and Eq. (B.5). To satisfy

C(s) = C(−s) Eq. (B.6) can be adapted to C(s) = a
|s|
1 for arbitrary time lags s. One might then

define a characteristic decay time τ where C(τ) = 1/e

τ = −1/ ln a1 . (B.7)



C. Tile Patterns formed by Pentagons

Figure C.1.: Tile of pentagons from page 67 of [Dürer 1525] borrowed from Sächsische Landesbibliothek – Staats-
und Unversitätsbibliothek Dresden



D. Statistical Tests

D.1. Student’s t-Test

A prominent test of statistical inference in medical time series analysis is the Student t-test for
testing the null hypothesis of equal means against the hypothesis of different means.

Let in the following {xk}k=1,...,Nx and {yk}k=1,...,Ny denote two time series with estimators (indi-
cated by ’hats’, i.e. µ̂)

µ̂x =
1

Nx

Nx∑

k=1

xk and µ̂y =
1

Ny

Ny∑

k=1

yk (D.1)

for their true expectation values µx and µy. First consider only the signal {xk}. In order to
test the null hypothesis µx = µ0 versus µx 6= µ0 for a given mean value µ0 a test statistic T is
constructed following

T =
µ̂x − µ0

ŝx

√
Nx (D.2)

where

ŝ2x =
1

Nx − 1

Nx∑

k=1

(xk − µ̂x)
2 (D.3)

is an unbiased estimator for the variance, or the sample variance1. T follows a Student’s t
distribution with ν = N − 1 degrees of freedom. The t distribution is described by a probability
density

p(ν, t) =
1√

νB
(

1
2 ,

ν
2

)
(

1 +
t2

ν

)− ν+1
2

=
Γ
(
ν+1
2

)
√
πνΓ

(
ν
2

)
(

1 +
t2

ν

)− ν+1
2

(D.4)

where B = Γ(a)Γ(b)
Γ(a+b) denotes the beta function and Γ(z) =

∫∞
0 ξz−1e−ξdξ is the gamma function.

With increasing ν, i. e., increasing N and ŝ2x → σ2
x, the t distribution approaches the normal

distribution. The probability that a value t is found in the interval t1 < t < t2 is then given by

P (t1 < t < t2) =

∫ t2

t1

p(ν, t)dt . (D.5)

The null hypothesis of µx being equal to µ0 is rejected for a significance level α if the value T is
outside the interval (−tν,α/2, tν,1−α/2). While this example corresponds to a two-sided test, one
could also test for the hypothesis that µx ≤ µ0 which is rejected for T ≥ tν,1−α (one-sided test).
For a given degree of freedom ν = N−1 and a given significance level α the values tν,1−α or tν,1−α/2
can be found in tables2. Statistical computer programs have the t-test already implemented.

Above described method can easily be adapted to test the hypothesis that µx = µy versus µx 6= µy.
Under the assumption σ2

x = σ2
y = σ2 (homescedastic) the T statistic in Eq. (D.2) becomes

T =

µ̂x − µ̂y

σ2
(

1
Nx

+ 1
Ny

)

√
ŝ2xy/σ

2
=

√
NxNy

Nx +Ny
· µ̂x − µ̂y

ŝxy
(D.6)

1The variance of the population follows for a weakly stationary time series σ2
x = 1/Nx

PNx

k=1(xk − µx)2.
2Always check which version is given.
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with the weighted average variance

ŝ2xy =
1

Nx +Ny − 2

[
(Nx − 1)ŝ2x + (Ny − 1)ŝ2y

]
(D.7)

where ŝ2x and ŝ2y follow Eq. (D.3). When the variances σ2
x and σ2

y are not equal (heteroscedastic)
one defines

T =
µ̂x − µ̂y√
ŝ2x
Nx

+
ŝ2y
Ny

. (D.8)

However, T is only approximately t distributed with a degree of freedom following

ν =

(
ŝ2x
Nx

+
ŝ2y
Ny

)2

1

Nx − 1

(
ŝ2x
Nx

)2

+
1

Ny − 1

(
ŝ2y
Ny

)2 . (D.9)

In this thesis I consider a two-sided heteroscedastic Student’s t-test and derive values by employing
a software tool (ITT IDL).

D.2. Wilcoxon Rank Order Test and Mann-Whitney U Test

The Wilcoxon rank order test [Wilcoxon 1945] is equivalent to the Mann-Whitney U test Mann
and Whitney [Mann and Whitney 1947].

Let {xk}k=1,...,Nx and {yk}k=1,...,Ny denote two time series with continuous distribution functions3

fx and fy. {xk} is called stochastically smaller than {yk} if fx(a) > fy(a) for all a. The Wilcoxon-
Mann-Whitney U statistics tests the hypothesis that fx = fy against {x} being stochastically
smaller than {yk}.
Test Algorithm:

Both time series are pooled and ordered by their rank without respecting their original set affili-
ation yielding {zm}m=1,...,Nx+Ny . For instance, in the case the ranking is performed according to
the numerical values of {xk} and {yk} it is satisfied z1 < z2 <, . . . , zNx+Ny . Note that ranking
according to other properties might be applicable depending on the type of the observable. How-
ever, here I focus on ranking by value. Then the ranks (indexes m of {zm}) corresponding to {xk}
and {yk} are summed

Rx =
∑

zm∈{xk}

m and Ry =
∑

zm∈{yk}

m. (D.10)

Note that Rx + Ry = (Nx + Ny)(Nx + Ny + 1)/2 being the sum of the first Nx + Ny natural
numbers. Then the U statistic is obtained for both subsets

Ux = NxNy +
Nx(Nx + 1)

2
−Rx and Uy = NxNy +

Ny(Ny + 1)

2
−Ry (D.11)

where Ux + Uy = NxNy. Note that non of the time series was preferentially selected over the
other. Thus, both Ux and Uy are valid test statistics. However, in the application the smaller
value Umin = min{Ux, Uy} is preferred for statistical inference. For the Umin statistics there exist
tables [see, e. g. Mann and Whitney 1947] where one can look up the probability that for a
given pair (Nx, Ny) the value of Umin is smaller than a fixed value U∗. As for the Student’s t-test

3Cumulative probability density functions.
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Figure D.1.: Example distribution of a score in a trial population
(non-survivors [red] and survivors [blue]). The brown dashed line
marks the cutoff value that is used for discrimination. Subjects with
scores above the cutoff value are classified as survivors (negative
outcome in a test for death) while individuals with a lower score are
classified as non-survivor (positive test result). The true positive

(TP) value denotes the number of individuals that are correctly
classified as non-survivor; the true negative (TN) value indicates
the number of correctly classified survivors; the false positive

(FP) value corresponds to the number of patients classified as non-
survivor but who indeed survived; the false negative (FN) value
is the number of patients that are classified survivor but truly died.

these tables are implemented in statistical software tools. Further, it can be shown that for large
time series the quantity

Z =
U −NxNy√

NxNy(Nx +Ny + 1)

12

∼ N (0, 1) (D.12)

is approximately normal distributed with zero mean and unit variance. Equation (D.12) is more
frequently employed compared with look-up tables for the U statistics.

D.3. P-Value

The P -value or p-value corresponding to a statistical test is a calculated (or estimated) probability
for rejecting a null hypothesis, i. e. in the case of a Student’s t-test for two different time series
{xk}k=1,...,Nx and {yk}k=1,...,Ny the probability that both estimators for the expectation value µ̂x
and µ̂y are equal. Note, although in medical applications a small p-value such as p < 0.001 is a
assumed to be an indication of, for instance, different mean values of two sample population [see
e. g. Sects. 4.1.3 or 5.3.5] this assumption has no foundation in statistics. Null hypotheses can only
be rejected, but a rejection does not imply a meaningful or important difference of the means. For
the (plain) Mann-Whitney-U test the p-value is the probability that both distribution functions
fx and fy are equal. In medical time series analysis three different significance levels are typically
distinguished: (i) p < 0.05 (or p < 0.03) corresponding with statistically significant, (ii) p < 0.01
corresponding with well significant, and (iii) p < 0.001 highly significant. A p-value larger than
0.5 is associated with not significant. There is no consensus on the p-value used for distinguishing
significant and not significant. Sometimes, one choses p < 0.03 rather than p < 0.05.

D.4. Receiver Operating Characteristics (ROC) Plots and

Bootstrapping

ROC curves are generally used in medicine to quantify the diagnostic performance of a score [such
as deceleration capacity (DC) in Chapt. 4] to discriminate different populations in an experiment,
e. g., differentiate diseased patients from healthy controls. While the ROC methodology was
originally developed in the context of radar experiments in the 1950s to tune radar devices to
operate in an optimal condition, i. e., large number of correctly identified planes versus a small
number of falsely identified objects, it is today well established in medical trials [Metz 1978;
Griner et al. 1981; Zweig and Campbell 1993]. For an illustration consider a medical trial
such as the ISAR-I study [Sect. 2.4] where one obtains for each individual in the database some
parameters (or scores4) one wishes to employ for distinguishing post-infarction patients that died
within a follow up period5 of two years from those that survived. Such parameters are for instance

4With score I further denote both the parameter itself and its value.
5The time after an initial myocardial infarction that was recorded in the trial.
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deceleration capacity (DC) or left ventricular ejection fraction (LVEF) [see Sect. 4.1.3]. Ideally, one
then defines a threshold value (cutoff point) that discriminates both groups of patients (survivors
and non-survivors). A score below the cutoff value might correspond to non-survivors and a
score above the cutoff value might correspond to survivors. However, in general such a parameter
will not perfectly discriminate both groups of patients, but rather some times falsely identify
survivors as non-survivors and vice versa. Hence, the question arises for which cutoff value an
optimal discrimination, e. g., a large number of truly classified survivors and non-survivors with
only a few false classifications, is obtained. Figure D.1 illustrates a possible situation where the
distributions of the scores for both subgroups overlap [non-survivors in red and survivors in blue].
A cutoff value is marked by a brown dashed line. In a test where one wants to identify non-
survivors (positive outcome is a ’non-survivor’ is found) the number of patients whose score is
above the cutoff point and that are indeed survivors is called the true negative value (TN) [above
cutoff and below blue curve in Fig. D.1], while falsely identified survivors correspond to the false
negative value (FN) [above cutoff and below red curve in Fig. D.1]. On the other hand, the number
of patients that exhibit scores below the cutoff point and are true non-survivors is denoted by the
true positive value (TP) [below cutoff and below red curve in Fig. D.1], while the false positive
value (FP) represents the patients that were classified as non-survivors but indeed did not die
during the follow up time.
To judge the performance of the score and to decide which cutoff point is optimal one then defines
the sensitivity or true positive rate (TPR) as the probability that a test result is positive for a
non-survivor, and the specificity or true negative rate (TNR) as the probability that the result is
negative for a survivor.

Sensitivity = 100% · TP

TP + FN︸ ︷︷ ︸
TPR

Specificity = 100% · TN

FP + TN︸ ︷︷ ︸
TNR

(D.13)

Note that both sensitivity and specificity are usually given in percent while rates are between 0 and
1. For completeness I would like to mention that there are other quantities in use which are also
based on on TP,FP, TN,FN . However, I do only use sensitivity and specificity in this thesis [see
for instance Fig. 4.5(a)]. These quantities comprise the positive likelihood ratio (PLR) describing
the ratio between the probability of a positive test result obtained for true non-survivors and the
probability of a positive test result obtained for survivors. Analogously, the negative likelihood
ratio (NLR) is the ratio of the probability that a negative result is given in the presence of a
non-survivor and the probability that a negative result is given in the absence of a non-survivor
(presence of a survivor).

PLR =
TPR

FPR
=

Sensitivity

1 − Specificity
NLR =

FNR

TNR
=

1 − Sensitivity

Specificity
(D.14)

Moreover, the positive predictive value (PPV) is the probability that a positive test result is
obtained for a non-survivor and the negative predictive value (NPV) is analogously the probability
that a negative test result is obtained for a survivor.

PPV =
TP

TP + FP
NPV =

TN

FN + TN
(D.15)

Finally, the Receiver Operating Characteristics (ROC) curve is traditionally obtained by plotting
the TPR (or sensitivity) versus the FPR or (100% − specificity) for many different cutoff values.
However, in medical applications one often finds ROC curves being defined as specificity versus
sensitivity, see Figs. 4.5(a) and D.2 for a few examples and consider the discussion on bootstrapping
below. The diagonal in a ROC curve connecting 100% sensitivity at 0% specificity with 100%
specificity at 0% sensitivity (in the traditional version 1− specificity) is associated with a random
choice of survivors and non-survivors. Thus a score that performs better as a random classification
yields a ROC curve above the diagonal. When the score yields a ROC curve completely below the
diagonal, an inverted score has good performance with an ROC curve above the diagonal (either
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the criteria above/below cutoff point have to be swapped or the score has to be negated). For
perfect discrimination (FN = FP = 0) the ROC curve would pass the point 100% sensitivity
and 100% specificity. Usually, the area under the ROC curve (AUC) is employed to compare the
performance of different scores, i. e., the larger the value AUC the better the score6.
Note that in general the decision of a cutoff value is additionally linked to a cost function. A
falsely identified non-survivor who receives an extended care might be ’cheaper’ than a falsely
identified survivor who dies due to omitted treatments. Moreover, ROC curves, i. e. AUC values,
require a large enough number of elements in both subgroups. For instance in the case where only
a few positive events (deaths) front many negative events (survivors) a good overall performance
would be achieved by never triggering an alarm since catching the few positive events will likely
correspond with an increase in false positive identified events.

Bootstrapping
Especially, in medical trials that did not include a very large number of individuals or in the case
when the groups that one wishes to distinguish contain a very different number of individuals the
ROC curves appear as a staircase since varying the cutoff value might not yield a change in TP ,
TN , FN , and FP and hence the corresponding point in the ROC curve does not change, either.
To smoothen such ROC curves and to obtain statistical errors the bootstrapping methodology was
established [Efron 1979; Moise et al. 1985; Efron and Tibshirani 1993]. For a given set of
data, i. e., pairs of score value and associated true outcome (dead or alive), many surrogate sets
of the same number of elements are generated by randomly drawing elements from the original
set by allowing repetitions. For each surrogate set a ROC curve is calculated, and finally, all ROC
curves are averaged and properties as standard deviation and standard error can be obtained.
During the study of a different large database containing recordings from post-infarction patients
and healthy subjects7 from observation the question arose whether the number of n consecutive
increases in heartbeat intervals (RRI) in 24h ECG recordings could be used as a score for dis-
criminating post-infarction survivors and non-survivors within a two years follow up. Figure D.2
reports ROC curves for related scores Sn where n denotes the number of consecutive increases in
RRI. As can be seen a score based on the number of n = 4 consecutive RRI increases (deceleration
of the heart) has an AUC of approximately 75% of the unit square. Although, this is a little less
efficient than deceleration capacity (DC) defined via PRSA curves (AUC = 77% in the ISAR-I
cohort), it is already significantly superior to the currently used gold standard ’left ventricular
ejection fraction’ (AUC = 70% in the ISAR-I cohort). Why four consecutive decelerations exhibit
such good performance is at the moment physiologically not understood.

6Indeed this is a rough measure since for a certain application a particular point in a ROC curve might represent
an optimized cutoff point. A score that performs best for the corresponding combination of specificity and
sensitivity must not necessarily obey the largest overall AUC. This might in particular be the case if the
distributions of the score are significantly different from normal distributions or for combined scores.

7Provided by Dr. Przemyslaw Guzik affiliated with Karol Marcinkowski University of Medical Science, Department
of Cardiology and Intensive Therapy, Poznan, Poland.
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Figure D.2.: ROC curves obtained from 1455 post-infarction patients of the ISAR-I database for (a-f) single scores
Sn, and (g-i) combined scores where n is the number of consecutive increases in beat-to-beat intervals. Red curves,
corresponding AUC values, and standard deviations are obtained from N = 1000 surrogate datasets [light green
ROC curves] obtained via the bootstrapping method. The blue curve and AUCo value correspond to the original
dataset [no repetitions].



E. Further fluctuation analysis methods

E.1. Wavelet Based (Multifractal) Fluctuation Analysis

As already discussed in Sect. 3.1.4 certain wavelets, see also 1.3 for a discussion on wavelet trans-
form, are orthogonal to certain characteristic features (such as polynomial trends) in the signal.
Hence, wavelets can be utilized for a detrended fluctuation analysis. Particularly interesting are
the Haar wavelet [Eq. (1.27a)] and Haar-wavelet-alike functions which are orthogonal to higher
order polynomials. These functions can be defined as follows:

Ψ
(0)
Haar(t) =





1 : 0 ≤ t < 1
2

−1 : 1
2 ≤ t < 1

0 : else

Ψ
(1)
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

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−1
2 : 0 ≤ t < 1

3

1 : 1
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3

−1
2 : 2

3 ≤ t < 1

0 : else

Ψ
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Haar(t) =
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

−1
3 : 0 ≤ t < 1

4

1 : 1
4 ≤ t < 1

2

−1 : 1
2 ≤ t < 3

4
1
3 : 3

4 ≤ t < 1

0 : else

. (E.1)

Note that only the function Ψ
(0)
Haar represents a true wavelet function. The Haar wavelet has in

principle no other orders than this first order which I will term in the following the zeroth order.
The convenience of the later notation will allow a direct comparison with the DFA order and
will become clear shortly, for a description of DFA consult Sect. 3.1.3. However, one can define
Haar-wavelet-alike functions which are often considered as Haar wavelets of higher order, see e. g.
[Roman et al. 2008], although such denotation is mathematically sloppy. In the following I will
adopt this notation for simplification.

The beauty of Haar wavelets is that the convolution in a wavelet transform following Eq. (1.26b)
reduces to simple nth-order differences of parts from the signal for a given scale s. For other
mother wavelets the in the following described fluctuation analysis algorithm would become more
complicated since the discretized integrals of Eqs. (1.26) have to be calculated. Moreover, the
’detrended features’ are no longer polynomials.

The in the following introduced wavelet detrended fluctuation analysis method WLn is a cor-
rected version of the one introduced by Koscielny-Bunde [Koscielny-Bunde et al. 1998a,b]. In
acknowledgement of the original research I here use the same acronym WLn as was suggested by
Koscieny-Bunde et al.. However, following the scheme of constructing acronyms that was used for
DFAn and CMA a better suited abbreviation would be WDFAn where n is the detrending order.
Currently, there might be no other fluctuation analysis method on the market that is defined in
more different ways considering normalization and scaling, or denoted by different acronyms, e. g.,
WL, WTA, WTN, or FAHW.

Corrected WLn

Let {xk}k=1,...,N denote the time series on wishes to study. The WLn algorithm consists also
of four steps where Step 2 is slightly modified compared with the DFAn methodology in Sect. 3.1.3.

Step 1:

The mean subtracted cumulative time series, the profile {Yj}j=1,...,N , is calculated according
to Eq. (3.16). The subtraction of the mean is also not mandatory for WLn due to the later
detrending; see discussion concerning Eq. (3.16) in Sect. 3.1.3.
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Step 2:

Having obtained the profile one again divides {Yj} into 2 × [N/s] consecutive non-overlapping
segments of length s, starting at the beginning and at the end of {Yj}. In each segment ν, ν =
0, . . . , 2[N/s] − 1 the profile is averaged:

µν,s =
1

s

s∑

i=1

Yνs+i (E.2a)

for the forward direction and ν = 0, . . . , [N/s] − 1 and

µν,s =
1

s

s∑

i=1

Y
(
N − (ν − [N/s] + 1)s + i

)
(E.2b)

for the backward direction and ν = [N/s], . . . , 2[N/s] − 1, respectively. Note that one could
speed up the calculation especially for small scales s by only deriving the cumulative profiles in
Eqs. (E.2) and including the division by the scale s in a later step. Then only one division is
required. However, the notation of means is more intuitive for illustration.

An nth-order Haar-wavelet in the definitions in Eqs. E.1 is orthogonal to polynomial trends of
order n, i.e., the 0th order Haar-wavelet is orthogonal to constant trends, the 1st order Haar-
wavelet to linear trends and so on.

One can then define a fluctuation function by considering the n-th order differences of the local
means from the profile following Eqs. (E.2) in segments of scale s. These are related to a discrete
convolution with dilated versions of the Haar wavelets in Eqs. E.1. The squared local WLn
fluctuations in the window ν are then defined by

F 2
WL0,ν(2s) =

[
1

2
(µν,s − µν+1,s)

]2

(E.3a)

F 2
WL1,ν(3s) =

[
1

4
(µν,s − 2µν+1,s + µν+2,s)

]2

(E.3b)

F 2
WL2,ν(4s) =

[
1

8
(µν,s − 3µν+1,s + 3µν+2 − µν+3,s)

]2

(E.3c)

for n = 0, 1, 2. The normalization factors 1/2, 1/4, and 1/8 descending from the number of
contributing sums (µ.,.) are not mandatory since we are interested in scaling rather than absolute
values. However, including such a normalization eases a comparison between different detrending
orders. Higher order detrending can be defined by employing higher order Haar-wavelet functions.
Note that the detrending in Eqs. E.3 takes place not at a fixed scale s as in DFAn [Sect. 3.1.3]
and as claimed by Koscielny-Bunde et al. [Koscielny-Bunde et al. 1998a,b] but on a scale
(n+ 2)s where n is the detrending order. For instance, linear trends are removed from the profile
in windows of 3s when employing WL1 but not within windows of scale s. To my knowledge
there is no publication taking care of this issue. As a result differences between DFAn and WLn
were reported for the same detrending order. This is not true! A polynomial detrending of the
same order should result in the same results for any detrending method unless something was
implemented wrongly. For an illustration of the true equivalence of DFAn and WLn consult
Appendix E.2.

Step 3:

The WLn fluctuation functions are derived by averaging over all local fluctuations.

FWLn((n+ 2)s) =


 1

2[N/s]

2[N/s]−1∑

ν=0

F 2
WLn,ν((n+ 2)s)




1/2

(E.4)
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Note that without cyclic continuation at the end of the profile the index ν cannot exactly take
values up to 2[N/s] because the definitions in Eq. (E.3) require valid windows in the ’future’
depending on the detrending order, e. g., at least two segments more are required for WL1 to
obtain a valid µν+2,s. I have chosen a sloppy definition in Eq. (E.4) to emphasize the similar
structure as in Eq. (3.18) for DFAn. For a large number of windows there is no noticeable
difference.

Step 4:
Finally, Eq. (E.4) is evaluated for many scales s and a scaling exponent αWLn can be obtained
in the case of power law fluctuations from linear fits to FWLn((n+ 2)s) in the double-logarithmic
regime.

FWLn((n+ 2)s) ∼ sαWLn (E.5)

Multifractal WLn
WLn can be generalized to a multifractal variant in a similar way as DFAn was generalized to MF-
DFAn and CMA was generalized to MF-CMA by introducing higher moments q. Equation E.4
then becomes

FMF-WLn,q((n+ 2)s) =


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2[N/s]−1∑
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]q/2
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1/q

: q 6= 0

exp
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 1

4[N/s]

2[N/s]−1∑

ν=0

lnF 2
WLn,ν((n+ 2)s)


 : q = 0

∼ shWLn(q). (E.6)

where I was again a little sloppy in the sum, see discussion below Eq. (E.4).

E.2. Equivalence of DFAn and WLn

Maraun et al. discussed in their paper [Maraun et al. 2004] shortcomings of DFA in the presence
of short-range correlations. They studied a superposition of three AR(1) time series [Eq. (B.1)]
characterized by three different characteristic decay times of the auto-correlation function, τ1 = 3,
τ2 = 21, τ3 = 500. Indeed Maraun et al. defined three different parameters a1 which can be
translated into decay times following Eq. (B.7). Recall that AR(1) processes by definition are
short-term correlated. The Maraun model is defined as

xk =

3∑

i=1

Aiyk,i with yk,i = a1,iyk−1,i + εk,i (E.7)

where the Ai are some weights to tune the influence if the ith AR(1) process and a1,i = exp{−1/τi}.
I follow the original model by setting A1 = 0.931, A2 = 0.396, and A3 = 0.098 [Maraun et al.
2004]. I generated Nc = 1000 different realizations of the Maraun model of N = 106 elements each
and employed both DFA2 and WL2 to study correlations in the model. The associated averaged
fluctuation function are depicted in Figs. E.1(a,b) [in (a) DFA2=black; in (b) WL2=red with
uncorrected detrending scales and WL2=dark pink with corrected detrending scales]. Clearly,
DFA2 shows spurious long-term correlated behavior. However, the oscillations in the fluctuation
function already indicate that there is something wrong. While Maraun et al. blame DFA for
falsely indication of long-range dependence, this inference is rather ’unfair’. Obviously, no method
can identify short-range correlations that establish on larger scales than the investigated ones.
When larger scales are considered in an analysis employing DFA (Maraun et al. study scales up
to s = 104), uncorrelated behavior, expressed by a fluctuation exponent αDFA = 0.5, is clearly
determined.
On the other hand, I discussed in the previous section [Appendix E.1] that detrending of WLn acts
on larger scales while obtained results are indeed equivalent to results obtained from DFAn when
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Figure E.1.: Equivalence of WLn and DFAn fluctuation analysis methods for n = 2 illustrated by employing
the Maraun model of three superimposed AR1 processes [Maraun et al. 2004, see discussion and]. Shown are
averaged fluctuation functions of Nc = 1000 configurations obtained from employing (a) DFA2 and (b) WL2. (a,b)
From top to bottom: fluctuation functions for a pure AR1 model [τ = 500, a1 = 0.998, N1 = 105; light blue], the
Maraun model [τ1 = 3, τ2 = 21, τ3 = 500, N2 = 106; black=DFA2, red=WL2], and results for the Maraun from
WL2 after scale correction [dark pink; same curve in (a,b)]. Note that after scale correction results from WL2 and
DFA2 are identical. There is no difference in detrending capabilities. (c,d) Histograms of fluctuation exponents
obtained for the Maraun model and for different fit ranges as marked by arrows in the same colors in (a,b) [DFA2
(c); uncorrected WL2 (d)]. (e) Standard deviation versus mean value corresponding to results in (c,d) for WL2 [left
curve] and DFA2 [right curve]. Symbols are shown in the same colors as before. Note that WL2 clearly indicates a
transition to uncorrelated behavior while from DFA2 long-term correlations might be speculated.

a proper rescaling to equivalent detrending scales is performed. This equivalence is illustrated
for the Maraun model in Fig. E.1(a) where I have plotted the original DFA2 fluctuation function
[black] next to the rescaled WL2 fluctuation function [dark pink]. It is obvious that both are
the same! Hence, both the fluctuation exponent αDFA and the exponent α′

WL which is derived
within the same fitting regime after rescaling are identical. Note that deriving differences (WLn)
is computationally more efficient than obtaining polynomial fits (DFAn). Therefore, WLn offers
a better performance with the same detrending capabilities compared with DFA2. The only
advantage of DFAn is the possibility of deriving fluctuations independent of the detrending order
for arbitrary scales s ≥ n + 2 while WLn by definition can only yield fluctuation functions for
scales that are integer multiples of otherwise arbitrary scales (s′ = (n+ 2)s).

Further note that the uncorrected WL2 fluctuation function already indicates short term correla-
tions [flat region of red curve in Fig. E.1(b)] for the Maraun model. For comparison Figs. E.1(a,b)
show results from a fluctuation analysis of a pure AR(1) time series with τ = 500 for both methods
[blue curves].

Figures E.1(c,d) show the distribution of individual scaling exponents α obtained from each of the
Nc = 1000 datasets within different fitting regimes [indicated by colored arrows in (a,b)] employing
DFA2 [(c)] and WL2 [(d)]. The distributions are broader for WL2 compared with DFA2 for the
same regimes. However, the reason is the different true scale of WL2. Indeed, uncorrected scales
in WL2 correspond to a true scale that is four times larger. In this region variations between
realizations are much stronger due to reduced statistics (less summands F 2

WL2,ν contribute in
Eq. (E.4)).
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E.3. Multifractal Box Counting (MF-Box)

Let {xk}k=1,...,N be a time series; then the multifractal box-counting technique for time series
works as follows:

Step 1:

The profile {Yk} is calculated according to Eq. 3.7. Note that the mean is not subtracted in this
version.

Step 2:

Analogously to other fluctuation analysis methods the profile is divided into ν = 0, . . . , [N/s] − 1
segments of scale s. And the local fluctuations are obtained following

FBox,ν(s) =
s∑

i=1

[Y ((ν + 1)s + i) − Y (νs+ i)] . (E.8)

Note that there is no square in this case.

Step 3:

The multifractal partition function is obtained by introducing higher moments q and summing all
windows ν.

ZMF-Box,q(s) =

[N/s]−1∑

ν=0

[FBox,ν(s)]
q (E.9)

Note that in the partition function in Eq. (E.9) no window are obtained for starting the separation
of the profile at the end. However, this is in principle also possible. However, the value of
ZMF-Box,q(s) then becomes approximately twice as large since in the box counting method there
is no normalization by the number of windows.

Step 4:

From evaluating Eq. (E.9) for many scales s and for different moments q one can in the presence of
power law correlations derive a scaling exponent from linear fits in the double-logarithmic regime.

ZMF-Box,q(s) ∼ sτMF-Box(q) (E.10)

Note that MF-Box does not yield a scaling exponent h(q). Since it is based on the partition
function, the Rényi exponents τ(q) are directly obtained, see Sect. 3.3.3 for a relation between
both types of exponents1. In the classical approach the multifractality via segment counting
method the summands FBox,ν(s) are substituted by the box probability2 pν,s. Therefore, one

sometimes normalizes {xk} to ensure
∑N

k=1 xk = 1, and thus, obtain probabilities. However, such
normalization does not affect the scaling behaviour and is not required unless the value of the
partition function is of interest.

Since Eq. (E.8) can in principle be zero or numerically identically to zero Eq. (E.9) might diverge
for negative moments which is a limitation of MF-Box. One has to check for such summands. To
overcome this problem wavelet transform modulus maxima (WTMM) was invented.

E.4. Wavelet Transform Modulus Maxima (WTMM)

The wavelet transform modulus maxima (WTMM) was originally introduced to incorporate de-
trending capabilities of wavelets in a generalized box counting method. Such detrending is par-
ticularly required for studying non-stationary data (with trends). In order to overcome problems
with negative moments later a maximum operation was included in the definition of the partition
function. For a comprehensive overview on WTMM see the original work [Muzy et al. 1991,

1Sometimes time series are classified by a generalized entropy D(q) = τ (q)/τ (q − 1).
2Do not confuse this notation with the detrending polynomials in DFAn.
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1994], an application to DNA sequences in [Arneodo et al. 1995], or more recently [Bunde et al.
2002; Meyers 2009].
The WTTM method is performed in three steps:

Step 1:
Wavelet coefficients are obtained by the convolution of the signal {xk} with a mother wavelet Ψ(t)
for each pair of scale s ∈ N and time shift k′ ∈ N according to

WT{{xk}}Ψ(s, k′) =
1

s

N∑

k=1

xkΨ

(
k − k′

s

)
(E.11)

which Ψ denoting the complex conjugate of Ψ. Here I use the original normalization, 1/s, as
suggested by Muzy et al.. Note that everywhere else in this thesis I use a normalization 1/s1/2

as discussed in Sec. 1.3 below Eqs. 1.26. The requirements for the mother wavelet Ψ as discussed
Sect. 1.3 remain valid. However, in order to achieve higher order detrending it is further required
that higher moments vanish

∞∫

−∞

xnΨ(t)dt = 0 . (E.12)

This is equivalent with the wavelet being orthogonal to higher order polynomial trends where
n denotes the order of the trend. This requirent is satisfied for nth-order Gaussian derivatives
ΨDOGn whose first n moments according to Eq. (E.12) vanish, see Eq. (1.27b) for a definition of
ΨDOGn.

Step 2:
Having calculated the wavelet transform following Eq. (E.11) one obtains from its modulus
|WTΨ(s, k′)| the wavelet skeleton: (i) Local maxima are identified for fixed scales s, i. e., a
maxima is found at position s, k′ if |WTΨ(s, k′ − 1)| < |WTΨ(s, k′)| ≥ |WTΨ(s, k′ + 1)| where
the ’equal’ case might be defined differently. (ii) Maxima lines are defined in the space-scale
half-plane by starting at a maxima position at large scales [obtained in (i)] and following the
nearest maxima down towards lower scales s′ < s. It has been shown that at least one maxima
line points to the position of every singularity in the original signal.

Step 3:
A multifractal partition function is then defined by

ZWTMM,q(s) =
∑

l∈L(s)


 sup

(s′,k′)∈l
s′≤s

|WTΨ(s′, k′)|




q

, ∀q ∈ R (E.13)

where L denotes the set of all maxima lines obtained in Step 2 and l is a particular maxima
line evolving towards the smallest s′. The supremum was included in Eq. (E.13) to ensure a
monotonous behavior of ZWTMM,q(s). Practically, the supremum means that maxima values are
moved upwards along the maxima line until the currently considered scale is reached.



F. Additional cross-modulation results

F.1. Cross-Modulation in Individuals

Figure F.1.: Cross-modulation matrices obtained from EEG recordings of three randomly chosen disease-free
individuals from the SIESTA data base. The arrangement of frequency bands and of all six EEG leads complies the
scheme in Fig. 5.14. Figure taken from supplemental material of our paper [Gans et al. 2009].
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F.2. Cross-Modulation in Random Subgroups

Figure F.2.: Averaged cross-modulation matrices of three subgroups that were generated by randomly subdividing
all second nights recordings of disease-free individuals in the SIESTA database. The arrangement of frequency
bands and of all six EEG leads complies the scheme in Fig. 5.14. Figure taken from supplemental material of our
paper [Gans et al. 2009].
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F.3. Cross-Modulation Matrices for Parkinson Patients and
Age-Matched Disease-Free Controls

Parkinson Patients

(A) Wake (B) Light sleep S1 (C) Light sleep S2

(D) Deep sleep (E) REM sleep (F) Whole night

Figure F.3.: Averaged cross-modulation matrices of EEG recordings (adaption and recording night) from 10
Parkinson patients (20 datasets) taken from the SIESTA database. Frequency bands and modulation coefficients
are ordered according to Fig. 5.14 only considering EEG recordings from both central leads C3-M1 and C4-M2, and
from the occipital lead O1-M2 (same order as described in enlarged cubicle in Fig. 5.14).
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Age-Matched Disease-Free Controls

(A) Wake (B) Light sleep S1 (C) Light sleep S2

(D) Deep sleep (E) REM sleep (F) Whole night

Figure F.4.: Averaged cross-modulation matrices of recordings (adaption and recording night) from 10 disease-free
(’healthy’) controls (20 datasets) taken from the SIESTA database. All subjects where age matched and laboratory
matched with Parkinson patients considered in Fig. F.3. Frequency bands and modulation coefficients are ordered
according to Fig. 5.14 only considering EEG recordings from both central leads C3-M1 and C4-M2, and from the
occipital lead O1-M2 (same order as described in enlarged cubicle in Fig. 5.14).
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F.4. Cross-Modulation Matrices for Sleep Apnea Patients and
Age-Matched Disease-Free Controls

Sleep Apnea Patients

(A) Wake (B) Light sleep S1 (C) Light sleep S2

(D) Deep sleep (E) REM sleep

Figure F.5.: Averaged cross-modulation matrices of EEG recordings (adaption and recording night) from 47 sleep
apnea patients (94 datasets) taken from the DAPHNET database. Frequency bands and modulation coefficients
are ordered according to Fig. 5.14 only considering EEG recordings from both central leads C3-M1 and C4-M2, and
from the occipital lead O1-M2 (same order as described in enlarged cubicle in Fig. 5.14).
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Age-Matched Disease-Free Controls

(A) Wake (B) Light sleep S1 (C) Light sleep S2

(D) Deep sleep (E) REM sleep

Figure F.6.: Averaged cross-modulation matrices of recordings (adaption and recording night) from 47 disease-free
(’healthy’) controls (94 datasets) taken from the DAPHNET database. All subjects where age matched with sleep
apnea patients considered in Fig. F.5 and data was recorded in the same laboratory at Charité Berlin. Frequency
bands and modulation coefficients are ordered according to Fig. 5.14 only considering EEG recordings from both
central leads C3-M1 and C4-M2, and from the occipital lead O1-M2 (same order as described in enlarged cubicle
in Fig. 5.14).
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Mäkikallio, T. H., Hoiber, S., Kober, L., Torp-Pedersen, C., Peng, C. K., Gold-
berger, A. L., and Huikuri, H. V. Fractal analysis of heart rate dynamics as a predictor of
mortality in patients with depressed left ventricular function after acute myocardial infarction.
trace investigators. trandolapril cardiac evaluation. Am. J. Cardiol., 1999; 83:836–839.

Malmivuo, J. and Plonsey, R. Bioelectromagnetism - Principles and Applications of Bioelectric
and Biomagnetic Fields (printed version: Oxford University Press, New York, 1995), open web
book edition.

Mandelbrot, B. B. How long is the coast of britain? statistical self-similarity and fractional
dimension. Science, 1967; 156(3775):636–638.

Mandelbrot, B. B. Les objets fractals, forme, hasard et dimension. (Flammarion, Paris, 1975).
English translation: Fractals: Form, Chance and Dimension (1977).

Mandelbrot, B. B. The Fractal Geometry of Nature (W. H. Freeman & Co., 1982). Im-
proved version of original publication: Les objets fractals, forme, hasard et dimension (1975);
translation: Fractals: Form, Chance and Dimension (1977).

Mandelbrot, B. B. and Ness, J. W. V. Fractional brownian motions, fractional noises and
applications. SIAM Review, 1968; 10(4):422–437.



Bibliography 155

Mann, H. and Whitney, D. On a test of whether one of 2 random variables is stochastically
larger than the other. Annals of Mathematical Statistics, 1947; 18(1):50–60.

Maraun, D., Rust, H. W., and Timmer, J. Tempting long-memory – on the interpretation of
dfa results. Nonlin. Proc. Geophys., 2004; 11:495–503.

Meinecke, F., Ziehe, A., Kurths, J., and Muller, K. Measuring phase synchronization of
superimposed signals. Phys. Rev. Lett., 2005; 94(8).

Members of SIESTA EU Project. Protocol - recording of standardized all-night sleep records.
Technical Report 2.0, 1998.

Meneveau, C. and Sreenivasan, K. R. Simple multifractal cascade model for fully-developed
turbulence. Phys. Rev. Lett., 1987; 59(1424).

Metz, C. E. Basic principles of roc analysis. Seminars in Nuclear Medicine, 1978; 8(4):283 –
298.

Meyers, R. A. (ed.). Encyclopedia of Complexity and Systems Science (Springer, 2009).

Moise, A., Clement, B., Ducimetiere, P., and Bourassa, M. Comparison of receiver
operating curves derived from the same population - a bootstrapping approach. Computers and
Biomedical Research, 1985; 18(2):125–131.

Muller, J., Ludmer, P., Willich, S., Tofler, G., Aylmer, G., Klangos, I., and Stone,
P. Circadian variation in the frequency of sudden cardiac death. Circulation, 1987; 75(1):131–
138.
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Schäfer, C., Rosenblum, M., Kurths, J., and Abel, H. Heartbeat synchronized with venti-
lation. Nature, 1998; 392(6673):239–240.
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