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Abschließend möchte ich mich bei meiner Freundin Yvonne Pöschl für Ihre Unterstützung
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1. Introduction

The fundamental process of gene expression is well-established: the DNA-sequence of a gene
is transcribed to messenger RNA (mRNA) by a DNA-dependent RNA polymerase and, in
turn, mRNA is translated to a poly-peptide, which may then fold to a protein. Regulatory
mechanisms affect each stage of this process, and as a consequence the final amount of product.
With advancing research, our picture of gene regulation becomes more complete – and more
complex.

The initiation of transcription is mediated by transcription factors, which bind to specific sites
on the DNA and enhance or inhibit transcription of a gene to mRNA. Transcription factors
often bind coordinately to cis-regulatory modules comprising several transcription factor bind-
ing sites (Jeziorska et al., 2009). In eukaryotes, the binding of transcription factors competes
with a structural element of chromosomal DNA, namely nucleosomes (Narlikar et al., 2007).
In nucleosomes, a stretch of approximately 147 bp of DNA is wound around a histone oc-
tamer, which makes this stretch virtually inaccessible to transcription factors due to steric
hindrance. Hence, nucleosomes may influence transcriptional regulation besides their primary
role in the compaction of chromatin. While originally a single transcription start site (TSS)
was assumed, it has become evident during the last years that multiple, alternative TSS may
exist for one gene (Mitchell et al., 1986; Roni et al., 2007). Additionally, the TATA box, which
is typically located in close vicinity to the TSS, appears to be less important for transcription
than assumed in the past. Today, 80 to 90 percent of the promoters of eukaryotic genes are
expected to be TATA-less (Gershenzon and Ioshikhes, 2005).

In eukaryotes, the synthesized pre-mRNA is further processed. This co-transcriptional and
post-transcriptional processing includes the capping of the 5’ end and poly-adenylation of the
3’ end, and splicing of the pre-mRNA. Splicing constitutes the excision of introns from the
primary transcript, while the remaining exons are joined to form the mature mRNA. Splicing
is predominantly accomplished by RNA-protein complexes called spliceosomes, although self-
splicing introns are known as well. Introns are terminated by a donor splice site at the 5’
end and an acceptor splice site at the 3’ end, which are recognized in the splicing process.
Today it is known that the splicing process in eukaryotes is not deterministic. So called
alternative splicing includes the skipping of complete exons or retention of introns, and the
use of alternative donor and acceptor splice sites (Black, 2003). Hence, a single gene may
encode for multiple proteins.

Recently, another post-transcriptional mode of gene regulation has gained increased interest,
namely microRNAs (Enright et al., 2003; John et al., 2004). MicroRNAs are short endogenous
RNA molecules that bind to mRNA in plants and animals, and cause the degradation of the
transcript or a repression of its translation. Gene expression may additionally be affected by
the rate of translation. Due to the wobble position of codons, multiple species of tRNAs supply
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1. Introduction

the same amino acids. Since these tRNAs are differently abundant in the cell, the choice of
the wobble nucleotide may influence the rate of translation (Man and Pilpel, 2007).

It can be expected that this is not the end of the story. The Encode project found that most
bases of the human genome are part of at least one primary transcript (The ENCODE Project
Consortium, 2007). This is in stark contrast to the estimation that only approximately 1.5%
of the human genome code for proteins, and that approximately 2.5% of the transcripts have
a known function, while most bases of the human genome have been considered “junk DNA”.
Hence, the function of the majority of existing transcripts is still to be elucidated.

Bioinformatics, especially statistical sequence analysis, plays an important role in elucidating
all these regulatory processes. Since wet-lab experiments are time-consuming and expensive,
in silico analyses are often the only feasible way for studying gene regulation on a genomic
scale. Bioinformatics approaches have been developed for predicting transcription start sites,
for recognizing binding sites of known transcription factors, for de-novo discovery of transcrip-
tion factor binding sites and cis-regulatory modules, for predicting nucleosome positioning,
for recognizing donor and acceptor splice sites and predicting alternative splicing, and for
predicting targets of microRNAs.

However, none of these approaches is perfect and the falsification of false-positive predictions
by wet-lab experiments is often of little interest and leads to frustration. In the field of
statistical sequence analysis, two main directions are investigated to improve computational
predictions and reduce the number of false-positives. The first focuses on the development
of more sophisticated and appropriate models of the sites of interest, whereas the second
concentrates on improved learning principles for determining the parameters of these models.
In this work, we mainly follow the second direction, although we adapt the employed statistical
models to the characteristics of the given biological phenomena to some extend as well.

Historically, generative learning principles like the maximum likelihood or maximum a-post-
eriori principle have been applied to problems of bioinformatics very early and are still the
prevalent principles of parameter estimation. While generative learning principles focus on an
accurate representation of the data, discriminative learning principles are tailored to an accu-
rate classification. For most applications, the model that generated the data is unknown and
presumably no statistical model might fully reflect the underlying biological process. In this
work, we investigate the utility of a Bayesian discriminative learning principle termed maxi-
mum supervised posterior for different applications from the field of statistical sequence analy-
sis. We employ the maximum supervised posterior principle for the prediction of transcription
factor binding sites, donor splice sites, miRNA target sites, and nucleosome positioning, and
for the de-novo discovery of cis-regulatory modules.

For the prediction of transcription factor binding sites and donor splice sites, we adapt ex-
isting models, namely Markov models and decision tree models, to discriminative parameter
learning. For de-novo discovery of single motifs and cis-regulatory modules comprising binding
sites of two motifs, we present a novel approach that combines discriminative learning with
an explicit model of the position distribution of binding sites. We propose a new approach
using an extended ensemble approach for the prediction of nucleosome positioning, which can
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incorporate discrete sequence information as well as numerical properties of DNA. For the pre-
diction of miRNA target sites, we extend profile HMMs to explicitly model the complementary
basepairing in the miRNA-mRNA duplex, which is also learned discriminatively.

The maximum supervised posterior principle requires numerical optimization of parameters.
However, none of the statistical models and densities employed for the above mentioned ap-
proaches is suited for unconstrained numerical optimization in its standard parameterization.
Hence, we must derive parameter transformations that map between constrained standard
parameters and unconstrained parameters that can directly be optimized numerically. Since
the Bayesian maximum supervised posterior principle incorporates a prior on the parameters
of the employed models, we must also transform conjugate prior densities according to the
parameter transformations to make them applicable to the unconstrained parameters. The
corresponding transformation of the parameters of Markov models and the conjugate Dirichlet
prior and a subset of the methods for de-novo discovery of single motifs have been developed
and published (Keilwagen et al., 2010b,a) in close collaboration with Jens Keilwagen. In this
collaboration, we also derived some of the foundations of the discriminative learning of decision
tree models.

This work is structured as follows: In the following chapter, we give a more detailed overview
to the biological aspects of regulatory mechanisms that are relevant for this work. In the
“Methods” chapter, we introduce the discriminative maximum supervised posterior principle,
the employed statistical models and densities, and other concepts that are of general im-
portance for all applications. The chapter “Applications” comprises sections for the specific
applications of the maximum supervised posterior principle. Each of these sections gives a
short overview of the bioinformatic background and related work, describes the methods and
data that are specific for the given application, and finally presents and discusses the results of
experiments and – except for the prediction of microRNA targets – benchmark studies. After
a short chapter describing the implementation of the studied models, learning principles, and
algorithms, we conclude the work with an assessment of the utility of the maximum supervised
posterior for statistical sequence analysis and classification.
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2. From gene to product

This chapter gives a concise overview of biological processes that determine the product of a
gene and the rate of its production. Here, we focus on biological processes and aspects of their
mechanisms that are relevant for the computational approaches presented in the remainder of
this work.

2.1. Transcription factors and cis-regulatory modules

Transcription factors are proteins that bind to specific DNA signals in the promoter region of
a gene and enhance or repress the transcription of that gene. Several families of transcription
factors with different structural properties exists. Figure 2.1 shows x-ray structures of two
different transcription factors binding to a DNA double helix. The structural feature of GATA
displayed on the left are two zinc fingers, each including an alpha helix with contact to the DNA
and a complexed zinc ion. C/EBP shown on the right belongs to the family of leucine zipper
transcription factors which exhibit two zipper-like alpha helices as DNA binding domains.
Other families of transcription factors include homeo domain factors, helix-turn-helix factors,
or beta-scaffold factors.

Figure 2.1.: X-ray structures of the zinc finger transcription factor GATA (left) and the leucine zipper
transcription factor C/EBP (right) bound to the DNA helix (orange). Both structures are
obtained from the protein data bank at http://www.pdb.org (Berman et al., 2000) with
accessions 1NWQ (C/EBP, Miller et al. (2003)) and 3DFV (GATA, Bates et al. (2008))

Figure 2.2 outlines the organization of a eukaryotic promoter. General transcription factors,
like the TATA binding protein, facilitate the formation of the transcription initiation complex
including RNA polymerase. These are located within the core promoter in close vicinity to
the transcription start. In contrast, specific transcription factors, which are responsible for
complex patterns of regulation, may bind in great distance to the transcription start: specific
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2.2. Nucleosome depletion

enhancers are reported several thousand basepairs upstream of the transcription start (Levine
and Tjian, 2003). However, most transcription factor binding sites can be found in a maximum
distance of 500 to 1000 bp from the transcription start (Kim et al., 2008), which is a reasonable
region for computational de-novo discovery with regard to statistics and computation time.

In higher eukaryotes, transcription factor binding sites are often organized in cis-regulatory
modules. Cis-regulatory modules comprise several binding sites of a set of transcription factors
that bind coordinately to regulate the transcription of a gene. By this means, the number and
complexity of specific regulatory patterns that can be achieved by a limited set of transcription
factors is greatly increased, which is one of the reasons for the diversity of metazoans despite
the surprisingly low number of genes (Levine and Tjian, 2003).

Figure 2.2.: Schematic overview of a eukaryotic promoter. RNA polymerase II binds at the tran-
scription start site. A general transcription factor (GTF) bind in close proximity of the
transcription start, while two specific transcription factors (STF1 and STF2) bind coor-
dinately to a cis-regulatory module in great distance to the transcription start site.

Since transcription factors are proteins that are encoded by genes themselves, one transcription
factor may activate or repress the expression of other transcription factors. By this means, a
regulatory cascade may be initiated by a set of factors, e.g. as a reaction to external stimuli like
stress factors or pathogens. This also has the effect that genes that are co-expressed under given
conditions may be regulated by different factors that are part of the same regulatory pathway,
which complicates the computational de-novo discovery of transcription factor binding sites.

2.2. Nucleosome depletion

The foremost purpose of nucleosomes is the compaction of eukaryotic chromatin. In each
nucleosome ∼ 147 bp of DNA are wound in 1.67 super-helical turns around a histone octamer
as depicted in figure 2.3. The histone octamer consist of one tetramer comprising two copies
of each of the core histones H3 and H4, and two dimers of the core histones H2A and H2B.
Each histone in the octamer is a protein with a helix-turn-helix-turn-helix motif.

The affinity of DNA to the histone core depends on structural features of the DNA including
the specific bases that are in contact with the histones and long-range properties like the
bendability of the DNA double helix. Each DNA strand is in contact with the histone core
every 10 bp due to the helical turn, which is most likely the origin of ∼ 10 bp periodic
patterns that are observed for A/T dinucleotides or geometrical properties like tip (Richmond
and Davey, 2003; Segal et al., 2006). Such features of DNA can be used by computational
approaches to predict the positioning of nucleosomes on a chromosome from DNA sequence
(Miele et al., 2008; Segal et al., 2006; Field et al., 2008; Yuan and Liu, 2008).
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2. From gene to product

Figure 2.3.: X-ray structure of DNA wound around a histone octamer in a nucleosome. The structure
is obtained from the protein data bank, accession 2NZD (Ong et al., 2007).

The arrangement of nucleosomes on the DNA is often visualized as “beads on a string”. How-
ever, the “beads” are not evenly spaced along chromosomes. The spacing and local clustering
of nucleosomes is related to the function of a region of DNA. Protein-coding regions are often
highly occupied by nucleosomes and the level of occupancy correlates with the rate of tran-
scription (Lee et al., 2007). In contrast, regulatory active regions in promoters are depleted
of nucleosomes and for many genes an exceptionally low nucleosome occupancy can be ob-
served approximately 100 bp upstream of the transcription start site (Lee et al., 2007; Field
et al., 2008). Hence, an accurate map of nucleosome positioning can guide the prediction
of biologically functional transcription factor binding sites (Narlikar et al., 2007; Ucar et al.,
2009).

2.3. Splicing

The spliceosome, which catalyzes splicing in eukaryotes, comprises five small nuclear ribonu-
cleoprotein particles (snRNPs), namely U1, U2, U4, U5, and U6, and additional proteins.
Each snRNP is a complex of proteins and one small nuclear RNA (snRNA). The binding
between snRNPs and the pre-mRNA is accomplished by complementary basepairing between
the snRNA and the pre-mRNA. Three sites on the pre-mRNA are directly involved in the
splicing process: the donor splice site at the 5’ end of the intron, the acceptor splice site at
the 3’ end of the intron, and the branch-point located within the intron.

An overview of the splicing process is depicted in figure 2.4. Splicing is initiated by a binding
of U1 to the donor splice site at the 5’ end of the intron. In this step, the snRNA of U1
recognizes the first six nucleotides of the intron, including the consensus GT at the first two
positions of the intron in case of canonical donor splice sites. The branch-point is recognized
by the snRNA of U2. After the binding of U2 to the branch-point, a complex of U4, U5, and
U6 additionally binds to the donor splice site via a recognition site in the snRNA of U6. This
binding depends on the nucleotides at the last two positions of the exons, commonly referred
to as position −1 and −2, the consensus G at the first position of the intron, and positions
+4 to +6 on the intron side. Since the binding sites of U6 and U1 overlap, a strong binding
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2.4. Degradation and translational silencing induced by microRNAs

Figure 2.4.: Overview of the splicing process mediated by snRNPs U1, U2, U4, U5, and U6 of the
spliceosome.

of U1 may inhibit the binding of the U4/U5/U6 complex and as a consequence the complete
splicing process (Brow, 2002).

In the following step, U1 and U4 are released from the spliceosome and U6 is shifted towards
the intron. The recognition site of the U6 snRNA, which was previously located at positions
−2 to +1 of the pre-mRNA, now binds to positions +4 to +6. Due to an interaction between
U6 bound to the donor splice site and U2 bound to the branch-point, both regions are brought
into close vicinity, which facilitates a first transesterification resulting in a lariat intermediate.
In the lariat intermediate, the bond between exon and intron is replaced by a binding of the
5’ end of the intron to a consensus A at the branch-point. In a second transesterification, the
two ends of the exons are joined and the lariat intron is released (Brow, 2002).

Against this biological background, the recognition of donor splice sites by computational
approaches corresponds to predicting the binding sites of U1 and U6 at positions −2 to +6 at
the 5’ end of the intron.

2.4. Degradation and translational silencing induced by microRNAs

MicroRNAs (miRNAs) are transcribed from DNA and undergo maturation before they become
functional. Transcription of miRNAs is most likely accomplished by RNA polymerase II, which
is also responsible for transcribing protein-coding genes. The maturation of the transcript is
illustrated in figure 2.5. In animals, the primary transcript called pri-miRNA folds into a
stem-loop structure – also referred to as hairpin – flanked by unpaired RNA sequences on
both sides of the stem. These are removed by an RNA endonuclease called Drosha yielding
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2. From gene to product

Figure 2.5.: Maturation of pri-miRNA to the final miRNA in metazoans. The trimming of the pri-
miRNA is accomplished by two enzymes, Drosha and Dicer. After the double-stranded
miRNA duplex is separated by Helicase, the miRNA is loaded into RISC.

the stem-loop structure of the pre-miRNA. The pre-miRNA is transported from the nucleus
into the cytoplasm, where the loop structure is removed by another endonuclease called Dicer.
The two strands of the remaining RNA duplex, which corresponds to the stem of the original
stem-loop structure, are then separated by a helicase yielding the mature miRNA of ∼ 22 nt
length. The strand of the miRNA duplex that corresponds to the mature miRNA depends on
the side of the duplex which can be separated with less effort by the helicase. The maturation
of miRNAs in plants proceeds in similar steps but requires other enzymes than for animals
(Bartel, 2004; Ghosh et al., 2007).

The mature miRNA is loaded into the RNA-induced silencing complex (RISC), which is re-
quired for the function of the miRNA. RISC may down-regulate the expression of a target
gene either by cleavage of the mRNA or by translational repression. The target gene is deter-
mined by complementarity to the loaded miRNA. If the miRNA is highly complementary to
the target site on the target gene, the mRNA will be cleaved in a mechanism assumed to be
similar to that of small interfering RNAs (siRNAs). Otherwise, RISC represses translation of
the target gene (Bartel, 2004). However, the exact mechanism of RISC is still unknown.

Target sites of miRNAs in plants and animals show different characteristics. In plants, the
miRNA sequence is highly complementary to the target site and target sites are predominantly
found in coding regions of genes. In contrast, miRNA targets in animals are often located in
the 3’ UTRs of target genes and require perfect complementarity only in a seed region of
∼ 7 nt at the 5’ end of the miRNA. Hence, translational repression instead of mRNA cleavage
seems to be the prevalent mechanism of miRNAs in animals (Bartel, 2004; Lewis et al., 2005).
As Bartel (2004) points out, the preference for 3’ UTRs observed in animals could also be an
artifact, since the first miRNA target site was found in a 3’ UTR and guided research to this
region.

8



3. Methods

This chapter presents the foundations of discriminative learning of statistical models. It de-
fines discriminative learning principles in section 3.2, Markov models for the representation of
discrete sequences in section 3.3.1, and densities for modelling continuous data in section 3.3.2.
As we use Bayesian approaches for all of the applications, we also define priors on the param-
eters of Markov models and densities in section 3.4.

3.1. Statistical foundation and notation

All problems treated in the following can be considered as classification problems: We obtain a
data set X of N sequences x1,x2, . . . ,xN , i.e. X = (x1,x2, . . . ,xN ). Each of these sequences
xn is defined over an alphabet Σ, which in case of DNA sequences is Σ = {A,C,G, T}. For a
sequence of length L this can be formalized by xn ∈ ΣL. The goal is to assign each sequence
xn to the correct class c from a pre-defined set of admissible classes C, |C| = K. For instance,
sets of such classes could be transcription factor binding sites and non-binding sites, splice
donor sites and non-donor sites, or sequences bound in nucleosomes and linker sequences.

A common setting in statistical sequence classification is to learn probabilistic models with
parameters θ from a given training data set of sequences xn and associated class labels cn.
We denote by c = (c1, c2, . . . , cN ) the vector of the correct classes for each of the sequences
in the data set X = (x1,x2, . . . ,xN ). For classification, the learned model is applied to new
sequences and each sequence is commonly assigned to that class yielding the maximum class
posterior P (c |x,θ)

c∗ = argmax
c

P (c |x,θ) (3.1)

= argmax
c

P (x, c |θ) ,

where P (x, c |θ) denotes the likelihood of sequence x and class c given parameters θ. The
functional form of the likelihood depends on the chosen statistical model, distribution, or
density.

Results of classification and classification accuracy highly depend on the principle which is used
to estimate the parameters θ. One of the most prevalent principles of parameter estimation
in bioinformatics applications is maximum likelihood (ML) estimation, which has been used
in a variety of applications, e.g. the computational prediction of transcription factor binding
sites and splice sites (Staden, 1984; Zhang and Marr, 1993; Salzberg, 1997; Burge, 1998; Yeo
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and Burge, 2004). Among all possible parameter values, ML chooses those that maximize the
likelihood P (X, c |θ)

θ∗ML = argmax
θ

P (X, c |θ) , (3.2)

which decomposes to the product of independent likelihoods for each of the sequences in case
of independent, identically distributed (i.i.d.) data, i.e.

i.i.d.= argmax
θ

N∏
n=1

P (xn, cn |θ) . (3.3)

Despite its popularity, ML estimation entails certain disadvantages from a Bayesian perspec-
tive as well as under practical considerations. First, it disregards uncertainty in parameter
estimation induced by the limited size of the training data set, which is the case for many
bioinformatics applications. And it is prone to over-fitting if the training data are too limited,
e.g. if certain events cannot be observed in the training data although they might be possible
in general. Second, it does not allow for including a-priori knowledge about the parameters
into parameter estimation. These disadvantages may be overcome – at least to some extent –
by imposing a prior p (θ |α) on the parameters, where α denotes the hyper-parameters of the
prior density, leading to the posterior P (θ |X, c,α) of the parameters θ given the training
data X and c, and hyper-parameters α:

P (θ |X, c,α) =
P (X, c |θ) p (θ |α)

P (X, c)
(3.4)

Maximum a-posteriori (MAP) estimation optimizes the parameters with respect to this pos-
terior

θ∗MAP = argmax
θ

P (θ |X, c,α)

= argmax
θ

P (X, c |θ) p (θ |α) , (3.5)

hence, searching for the most likely parameter values when considering the training data as
well as the a-prior knowledge represented by the hyper-parameters α. If the parameters of
the likelihoods for the different classes are independent, MAP and ML estimation of these
parameters can be carried out independently on the data stemming from the corresponding
class.

ML and MAP estimation are called generative principles (Bishop, 2006), as they aim at an
accurate description of the distribution of the training sequences X and the associated classes
c. Hence, both principles are appropriate if the goal is to obtain a model that can generate
new data which are most similar to the original training data under the constraints of the
chosen statistical model.

However, neither of the generative approaches does directly optimize the parameters with
respect to the classification task. Hence, the classification accuracy achieved by generative
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3.2. Discriminative objective functions

approaches may stay behind possibilities when training data are limited. This is the motivation
for defining discriminative principles as presented in the next section.

3.2. Discriminative objective functions

Support vector machines (SVMs) (Cortes and Vapnik, 1995; Smola and Schölkopf, 1998) are
probably the most widespread discriminative learning method in bioinformatics. SVMs have
been applied to many problems of sequence classification, e.g. the recognition of transcription
start sites (Sonnenburg et al., 2006) and translation initiation sites (Meinicke et al., 2004),
gene finding (Schweikert et al., 2009), the prediction of transcription factor binding sites (Jiang
et al., 2007), or de-novo motif discovery (Schultheiss et al., 2009). The power of SVMs highly
depends on the chosen kernel, which maps the input data to a, usually higher dimensional,
feature space, where samples of the two classes can be separated by a linear hyper-plane.
In case of sequence classification, SVMs – depending on the application – may exhibit two
potential disadvantages: First, SVMs have originally been defined for two-class problems,
and multi-class problems must be mapped to a number of two-class problems to fit the SVM
framework. Second, the weights of an SVM are less easy to interpret than e.g. the probabilities
of a probabilistic model, even though recent approaches like POIMs (Sonnenburg et al., 2008)
have improved the interpretability of SVMs.

Another discriminative learning method, namely logistic regression (Ng and Jordan, 2002),
has gained increased attention in bioinformatics during the last years. Like SVMs, logistic
regression was originally proposed for general machine learning problems. In the field of
bioinformatics, it has been applied to the prediction of nucleosome positioning (Yuan and
Liu, 2008), the regulation of genes by sigma transcription factors (de Hoon et al., 2004), or
the analysis of microarray data (Liao and Chin, 2007). Logistic regression defines the class
posterior P (c = 1 |x,β) , c ∈ {1, 2} by the logistic function applied to the dot product of a
real-valued parameter vector β and the input features x:

P (c = 1 |x,β) =
1

1 + exp (−βT x)
(3.6)

Logistic regression in its original definition entails disadvantages similar to those of SVMs:
Again, the parameters are real-valued and hence not always intuitively interpretable, and it
is only applicable to two-class problems. Soft max (Heckerman and Meek, 1997) (also called
multinomial logistic regression (Cawley et al., 2007) or multiclass logistic regression (Bishop,
2006)) extends logistic regression to multiple classes but retains real-valued parameters:

P (c |x,β) =
exp

(
βT

c x
)∑

c̃ exp
(
βT

c̃ x
) (3.7)

The definition of conditional likelihood presented in the next section can be understood as
a generalization of soft max, where the dot product may be replaced by more complex and
potentially non-linear functions of parameters β defined by different classes of statistical mod-
els. The supervised posterior presented in section 3.2.2 additionally imposes a prior on the
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parameters and hence can be seen as a Bayesian variant of conditional likelihood and the
discriminative analogon to the posterior.

3.2.1. Maximum conditional likelihood for class-conditional statistical models

The maximum conditional likelihood (MCL) principle (Greiner and Zhou, 2001; Wettig et al.,
2003; Grossman and Domingos, 2004; Roos et al., 2005) aims at finding those parameters θ

that maximize the conditional likelihood (CL) P (c |X,θ) of the correct class labels c given
the training sequences X and parameters θ:

θ∗MCL = argmax
θ

P (c |X,θ) (3.8)

Again, we assume that all data points (xn, cn) are independent and identically distributed.
Therefore, the conditional likelihood P (c |X,θ) can be expressed as the product of indepen-
dent class posteriors P (cn |xn,θ), i.e.

P (c |X,θ) =
N∏
n

P (cn |xn,θ) . (3.9)

Comparing equation (3.9) to the classification criterion (3.1), we observe that MCL is closely
linked to the classification task. Hence, we anticipate that parameters θ∗MCL learned by MCL
may lead to a more accurate classification than those learned by generative principles.

In contrast to logistic regression or soft max, we now define the class posterior P (c |x,θ)
based on the likelihoods P (x, c |θ) for each of the classes.

P (c |x,θ) =
P (x, c |θ)
P (x |θ)

=
P (x, c |θ)∑
c̃ P (x, c̃ |θ)

(3.10)

The definition of the class posterior in terms of class-dependent likelihoods allows for using
any statistical model in the discriminative conditional likelihood principle that can also be
employed for the generative principles. This includes popular discrete sequence models, like
position weight matrices (Staden, 1984; Stormo et al., 1982), weight array models (Zhang and
Marr, 1993), or higher order Markov models (Yakhnenko et al., 2005; Keilwagen et al., 2007;
Grau et al., 2007b) – introduced in section 3.3.1 – with multinomial likelihood.

In analogy to models working on discrete input, we may apply this definition of conditional
likelihood to densities p (y, c |θ) for sequences y = y1y2 . . . yL of continuous values y` ∈ R,
yielding

P (c |y,θ) =
p (y, c |θ)∑
c̃ p (y, c̃ |θ)

. (3.11)

All results derived in this section about the conditional likelihood for discrete data are readily
transferred to continuous data as well.

The optimization of the parameters according to equation (3.8) cannot be carried out ana-
lytically for any of the statistical models considered in this work. Hence, we must resort to
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numerical optimization techniques, e.g. gradient ascent, conjugate gradients, or second-order
quasi-Newton methods (Wallach, 2004). However, these optimization techniques work on un-
constrained parameter values, and methods like log-barrier functions (Guo et al., 2005) would
be necessary to limit the allowed values of a parameter to e.g. [0, 1]. For large numbers of
parameters, this would on the one hand complicate the optimization problem, and on the other
hand potentially abolish useful properties of the objective function as for instance concavity.

Hence, we choose an alternative approach by deriving unconstrained optimization problems:
For all parameters, including those that must be limited to some interval, we define a trans-
formation t(β) from parameters β ∈ RD that are allowed to sweep over the reals to the
constrained parameters θ ∈ P ( RD, i.e. t : RD → P. As a result, we can now optimize the
objective function with respect to the unconstrained parameters β. If we need the original
parameters θ, e.g. because these are easier to interpret, they can be obtained by applying
the transformation θ = t(β). In case of the MCL principle defined in equation (3.8), we can
replace the parameters θ by the transformed parameters t(β), and obtain

β∗
MCL = argmax

β
P (c |X, t(β))

=: argmax
β

P (c |X,β) (3.12)

We call β∗
MCL the MCL estimate of the parameters β. As for any objective function, we can

equivalently optimize the parameters with respect to the log CL

β∗
MCL = argmax

β
logP (c |X,β) , (3.13)

= argmax
β

N∑
n=1

logP (cn |xn,β)

which often results in more tractable gradients and less numerical problems for optimization.

Like ML estimation, the MCL principle tends to over-fit to the training data if these are of
limited size and it does not allow for including a-priori knowledge into parameter estimation.
The problem of over-fitting may be even more severe for MCL than it is for the generative
principles (Ng and Jordan, 2002). In part, this can be explained by the comparably large
number of parameters used to model a small domain, i.e. the possible classes. In the ML case,
the number of parameters is the same, but the modelled domain is significantly larger being
all classes and all possible sequences in these classes.

This problem is addressed by a Bayesian approach called maximum supervised posterior (Wet-
tig et al., 2002; Grünwald et al., 2002; Cerquides and de Mántaras, 2005) presented in the next
section.

3.2.2. Maximum supervised posterior

The maximum supervised posterior (MSP) principle is defined in analogy to the step from ML
to MAP estimation. Instead of CL alone, we now optimize the parameters with respect to a
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product of CL and a prior q (β |α) on the parameters β with hyper-parameters α.

β∗
MSP = argmax

β
P (c |X,β) q (β |α) (3.14)

= argmax
β

[
N∏
n

P (cn |xn,β)

]
q (β |α)

Priors q (β |α) that are originally defined on real-valued parameters β ∈ RD are Gaussian
and Laplace priors, which will be presented in detail in section 3.4.1. However, a number of
popular and often conjugate priors for many families of distribution are defined on parameters
θ ∈ PD ( RD, which cannot be optimized by unconstrained numerical optimization techniques.
For instance, in case of Markov models, this is the widely used Dirichlet prior (section 3.4.2),
while in case of Gaussian likelihoods, these are normal-gamma or – in the multi-variate case
– normal-Wishart densities (section 3.4.3).

It is worthwhile to use these priors for the discriminative MSP principle as well for two reasons:
First, the use of equivalent priors for MAP and MSP allows for an unbiased comparison of
the classification accuracy observed for both principles, since the influence of different priors
on the classification result is eliminated (Keilwagen et al., 2010b). Second, these priors are
known to be conjugate to the likelihood of the employed model. Hence, the priors and their
hyper-parameters can often be interpreted intuitively as additional observations from a set of
pseudo-data.

In section 3.2.1, we introduced a transformation t(β) from β to θ. We can use t(β) to
transform a prior p (θ |α) to a prior q (β |α) defined on parameters β ∈ RD. Following the
substitution rule for integrals, we obtain

q (β |α) = p (t(β) |α)
∣∣∣∣det

(
∂t(β)
∂β

)∣∣∣∣ , (3.15)

where det
(

∂t(β)
∂β

)
is the Jacobian of t.

3.2.3. Soft-labelling

In some applications, we have no exact knowledge about the class-membership of the input
data. Rather, we assign each input sequence xn a probability wn,c ∈ [0, 1] of belonging to class
c, where ∀n = 1, . . . , N :

∑
c̃wn,c̃ = 1. The goal is, to learn parameters β such that for all

sequences xn in the training data and all classes c, the class posterior P (c |xn,β) is as close
as possible to the corresponding probability wn,c.

A common choice for classification problems with soft-labelling is to minimize the mean
squared error (MSE) between the probabilities wn,c and the corresponding class posteriors
P (c |xn,β):

β∗
MSE = argmin

β

1
KN

N∑
n=1

K∑
c=1

(P (c |xn,β)− wn,c)
2 (3.16)
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3.2. Discriminative objective functions

When using logistic regression (equation (3.6)) for the class posterior, this model is equivalent
to a neural network composed of a single neuron with a logistic activation function. Since
MSE is a common cost function for neural networks, learning the parameters β could be
accomplished by standard algorithms for neural networks. For a single neuron this would
amount to gradient descent or similar methods.

However, MSE is not directly linked to the probabilistic nature of our formulation of the
class posterior (equation (3.10)), and it might be worthwhile to search for other, probabilistic
objective functions that can incorporate soft-labelling. One desirable property of such an
objective function might be, that it degrades to conditional likelihood if the probabilities wn,c

are either 0 or 1, i.e. in case of hard-labelling. Another property might be, that it utilizes that
the vector wn = (wn,1, . . . , wn,K) is a probability vector , i.e. wn,k ∈ [0, 1] and

∑
k wn,k = 1,

and P (c |xn,β) is a discrete probability distribution on the classes c.

Here, we propose an objective function which exhibits both properties and which can be
optimized by the same algorithms that we use for standard MCL. We define

β∗
MCL = argmax

β

N∑
n=1

K∑
c̃=1

wn,c̃ logP (c̃ |xn,β) . (3.17)

=: argmax
β

log CL(w|X,β), (3.18)

where w = (w1, . . . ,wN ) in analogy to the definition of c. If we know the correct class labels
exactly, i.e. if the probabilities are defined as

wn,c̃ =

{
1 if c̃ = cn

0 otherwise
,

we can replace the weights wn,c̃ by Kronecker deltas δa,b, which are 1 if a = b and 0 otherwise,
resulting in

β∗
MCL = argmax

β

N∑
n=1

K∑
c̃=1

δc̃,cn logP (c̃ |xn,β) (3.19)

= argmax
β

N∑
n=1

logP (cn |xn,β) (3.20)

= argmax
β

logP (c |X,β) . (3.21)

We see from the last line that we obtain the original definition of MCL of equation (3.13) in
this case, and, hence, fulfill the first property.

If we augment equation (3.17) by a constant with respect to the parameters β

β∗
MCL = argmax

β

N∑
n=1

K∑
c̃=1

(wn,c logP (c̃ |xn,β)− wn,c logwn,c) , (3.22)
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Figure 3.1.: Comparison of MSE (dashed lines) and Kullback-Leibler divergence for a two-class problem
with wn,1 = 0.5 (red), wn,1 = 0.3 (green), and wn,1 = 0.85 (blue).

and invert the sign

β∗
MCL = argmin

β

N∑
n=1

K∑
c̃=1

(−wn,c logP (c̃ |xn,β) + wn,c logwn,c) , (3.23)

we find that this objective function actually minimizes the sum of the Kullback-Leibler di-
vergences (Kullback and Leibler, 1951) DKL between wn and the probability distribution
P (c |xn,β) for sequence xn:

β∗
MCL = argmin

β

N∑
n=1

DKL(wn||P (c |xn,β)) (3.24)

Kullback-Leibler divergence is a common choice (Ben-Gal et al., 2005; Gunewardena and
Zhang, 2008; Ellrott et al., 2002; Keles et al., 2003) to measure the divergence of two probability
distributions, which are wn and P (c |xn,β) in this case, and accordingly fulfills the second
property. Hence, it appears to be an appropriate measure for learning with soft labels as
well.

We illustrate Kullback-Leibler divergence for a two-class problem and a single input sequence
xn in figure 3.1, and we compare Kullback-Leibler divergence to MSE for different values of the
probability of the first class wn,1. From figure 3.1, we observe that Kullback-Leibler divergence
is defined only for admissible values of P (c |xn,β) and values approaching the limits of 0 or
1 are strongly disfavored. In contrast, the parabolic characteristic of MSE disregards the
constraints on P (c |xn,β). However, both objective functions show a similar characteristic in
the vicinity of the optima.

Considering equation (3.17) and comparing it to equation (3.13), we observe that this objective
function corresponds to MCL estimation of the parameters β using weighted input data. Each
sequence xn serves as an input for each of the classes c = 1, . . . ,K weighted by the probability
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3.3. Statistical models and densities

wn,c for class c. The only modification that is necessary to utilize the probabilities wn,c in
the numerical optimization is to extend conditional likelihood (and its gradients) to weighted
data.

This weighted variant of conditional likelihood can be multiplied by a prior to obtain the
supervised posterior in the same manner as for conditional likelihood without weights. We
define the weighted variant of the maximum supervised posterior principle as

β∗
MSP = argmax [log CL(w|X,β) + log q (β |α)] . (3.25)

3.3. Statistical models and densities

Up to now, the likelihood P (x, c |β) has been utilized as an abstract placeholder, which can
be replaced by different probability distributions or densities depending on the assumptions
made about the statistical characteristics of the data. In this section, we introduce Markov
models, which define a family of likelihoods on discrete sequences. In case of continuous
random variables, we consider univariate and multivariate Gaussian densities as well as Gamma
densities. Since we want to use these for the discriminative MSP principle, we also define
specific parameter transformations that allow for unconstrained numerical optimization of the
parameters.

3.3.1. Discrete random variables: Markov models

We start the derivation of Markov models with the general decomposition of the likelihood
P (x, c |φ) defined on constrained parameters φ. Following Bayes, we can decompose the
likelihood as

P (x, c |φ) = P (c|φ)P1(x1|c,φ)
L∏

`=2

P`(x`|x1, . . . , x`−1, c,φ), (3.26)

where the (conditional) probability distributions P`(x`|x1, . . . , x`−1, c,φ) may depend on the
current position `.

A Markov model of order dc assumes that for class c the probability of symbol x` at position `
in the sequence x does not depend on all preceding symbols x1, . . . , x`−1 but only on the last
dc symbols called the context :

P (x, c |φ) = P (c|φ)P1(x1|c,φ)
L∏

`=2

P`(x`|x`−dc , . . . , x`−1, c,φ), (3.27)

where xi is the empty string iff i ≤ 0.

If the probabilities P`(x`|x`−dc , . . . , x`−1, c,φ) are position-independent, i.e. ∀`, k = (dc +
1), . . . , L : P`(a|b, c,φ) = Pk(a|b, c,φ), a ∈ Σ, b ∈ Σdc , we call the Markov models homoge-
neous and inhomogeneous otherwise. Markov models belong to the class of graphical models.
The dependencies assumed by Markov models can be represented by a directed acyclic graph
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Figure 3.2.: DAG structure representing an inhomogeneous (top) and a homogeneous (bottom) Markov
model of order dc = 3. Both models exhibit a position-dependent initial distribution at the
first three positions. While the conditional distributions at the remaining positions remain
position-dependent for the inhomogeneous Markov model as indicated by the coloring of
nodes, we use the same conditional probability distribution for the rest of the sequences
in case of the homogeneous Markov model.

(DAG) with nodes representing the random variables at positions ` and directed edges repre-
senting the possible dependencies. Figure 3.2 depicts the graph structure of an inhomogeneous
and a homogeneous Markov model of order dc = 3. Both models exhibit a position-dependent
initial distribution at the first three positions. The coloring of nodes indicates the (in-) homo-
geneity of the conditional probability distributions at positions 4 and above. The probability
distributions of the inhomogeneous model remain positions dependent for the other positions,
whereas the homogeneous model assumes that the distributions at positions ` ≥ 4 are identi-
cal. In both cases, the conditional probability distribution at position ` ≥ 4 depends on the
symbols observed at positions `− 3 through `− 1.

The class of Markov models includes two models, which are widely used in bioinformatics
applications, namely the position weight matrix (PWM) (Stormo et al., 1982; Staden, 1984),
and the weight array model (WAM) (Zhang and Marr, 1993; Salzberg, 1997). The PWM
model is an inhomogeneous Markov model of order dc = 0 and assumes that the nucleotides at
all positions in the sequence are drawn independently. The WAM model is an inhomogeneous
Markov model of order dc = 1 and assumes that the probability of symbol x` at position `

depends only on the symbol observed at position ` − 1 and the class c. PWM models and
WAM models have been used for the prediction of transcription factor binding sites (Staden,
1984; Kel et al., 2003; Chekmenev et al., 2005) and cis-regulatory modules (Berman et al.,
2002; Pape et al., 2009), translation initiation sites (Stormo et al., 1982), nucleosome positions
(Segal et al., 2006), and splice sites (Staden, 1984; Zhang and Marr, 1993; Salzberg, 1997).
PWM models are also used for de-novo motif discovery (Bailey and Elkan, 1994; Thompson
et al., 2003; Redhead and Bailey, 2007).
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3.3. Statistical models and densities

3.3.1.1. Inhomogeneous Markov models

In the following, we formalize Markov models using constrained parameters φ. We define
parameters φc representing the probability of the classes c, parameters φ1,a|c for the probability
of observing symbol a at position 1 in the sequence given class c, and parameters φ`,a|b,c for
observing symbol a at position ` given the observation of b at positions ` − dc to ` − 1 and
class c.

The parameters define proper probability distributions and, hence,

• ∀c ∈ C : φc ∈ [0, 1] and
∑

c̃ φc̃ = 1,
• ∀c ∈ C,∀a ∈ Σ : φ1,a|c ∈ [0, 1] and

∑
ã φ1,ã|c = 1, and

• ∀c ∈ C,∀` = 2, . . . , L,∀a ∈ Σ,∀b ∈ Σmin{dc,`−1} : φ`,a|b,c ∈ [0, 1] and
∑

ã φ`,ã|b,c = 1.

Let φ1|c = (φ1,a1|c, . . . , φ1,a|Σ||c), and φ`|b,c = (φ`,a1|b,c, . . . , φ`,a|Σ||b,c). We assume parameter
independence (Heckerman et al., 1995), i.e. the parameter vectors φ1|c, and φ`|b,c at all
positions ` = 2, . . . , L and for all contexts b are pair-wise independent.

We can re-write equation (3.27) as

P (x, c |φ) = P (c|φc)P1(x1|c,φ1|c)
L∏

`=2

P`(x`|x`−dc , . . . , x`−1, c,φ`|x`−dc ,...,x`−1,c)

and finally denote the likelihood directly using the parameters

P (x, c |φ) = φcφ1,x1|c

L∏
`=2

φ`,x`|x`−dc ,...,x`−1,c. (3.28)

If we insert this definition of the likelihood into the definition of the class posterior (equa-
tion (3.10), p. 12), we obtain

P (c |x,φ) =
φcφ1,x1|c

∏L
`=2 φ`,x`|x`−dc ,...,x`−1,c∑

c̃ φc̃φ1,x1|c̃
∏L

`=2 φ`,x`|x`−dc̃
,...,x`−1,c̃

. (3.29)

As noted in section 3.2.1, the parameters in φ, which are constrained to the interval [0, 1], are
not suited for numerical optimization. Hence, we seek a parameterization of the class posterior
in terms of real-valued parameters. Wettig et al. (2003) propose such a parameterization by
defining

P (c |x, ξ) =
exp

(
ξc + ξ1,x1|c +

∑L
`=2 ξ`,x`|x`−dc ,...,x`−1,c

)
∑

c̃ exp
(
ξc̃ + ξ1,x1|c̃ +

∑L
`=2 ξ`,x`|x`−dc̃

,...,x`−1,c̃

) , (3.30)

where ξc ∈ R is the parameter for class c, ξ1,a|c ∈ R is the parameter for symbol a at position
1 given class c, and ξ`,a|b,c ∈ R is the parameter for symbol a at position ` given class c and
context b.

We want to find a transformation (Wettig et al., 2003; Keilwagen et al., 2010b) from uncon-
strained parameters ξ to the constrained parameters φ to show that, using this transformation,
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the two definitions of the class posterior of equations (3.29) and (3.30) are equivalent. We de-
fine the transformation t as

φc = tc(ξ) :=
exp (ξc)Zc(ξ)∑
c̃ exp (ξc̃)Zc̃(ξ)

(3.31)

φ1,a|c = t1,a|c(ξ) :=
exp

(
ξ1,a|c

)
Z1,a|c(ξ)∑

ã exp
(
ξ1,ã|c

)
Z1,ã|c(ξ)

(3.32)

φ`,a|b,c = t`,a|b,c(ξ) :=
exp

(
ξ`,a|b,c

)
Z`,a|b,c(ξ)∑

ã exp
(
ξ`,ã|b,c

)
Z`,ã|b,c(ξ)

, (3.33)

where the normalization terms Z(ξ) are defined as

ZL,a|b,c(ξ) = 1, (3.34)

Z`,a|b1...bdc ,c(ξ) =
∑

ã

exp
(
ξ`+1,ã|b2...bdca,c

)
Z`+1,ã|b2...bdca,c(ξ) (3.35)

Z1,a|c(ξ) =
∑

ã

exp
(
ξ2,ã|a,c

)
Z2,ã|a,c(ξ) (3.36)

Zc(ξ) =
∑

ã

exp
(
ξ1,ã|c

)
Z1,ã|c(ξ) (3.37)

and the last parameters are fixed to zero, i.e. ξK := 0, ∀c ∈ C : ξ1,|Σ||c := 0, and ξ`,|Σ||b,c := 0.

We can also define an inverse transformation from φ-parameters to ξ-parameters as

ξc = t−1
c (φ) := log

(
φc

φK

)
(3.38)

ξ1,a|c = t−1
1,a|c(φ) := log

(
φ1,a|c

φ1,|Σ||c

)
(3.39)

φ`,a|b,c = t−1
`,a|b,c(φ) := log

(
φ`,a|b,c

φ`,|Σ||b,c

)
(3.40)

Are more detailed derivation of this parameterization is given in (Keilwagen et al., 2010b).
In (Wettig et al., 2003; Keilwagen et al., 2010b), this transformation is extended to moral
Bayesian networks, which are a generalization of Markov models with an arbitrary moral
structure of the underlying DAG.

If we insert the transformation into equation (3.28), we find that many of the normalization
terms cancel and we obtain

P (x, c|ξ) =
1

Z(ξ)
exp

(
ξc + ξ1,x1|c +

L∑
`=2

ξ`,x`|x`−dc ,...,x`−1,c

)
, (3.41)

where

Z(ξ) =
∑

c

exp (ξc)Zc(ξ), (3.42)
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which, using equations (3.34) through (3.37), can be expanded to

Z(ξ) =
∑

c

∑
x∈ΣL

exp

(
ξc + ξ1,x1|c +

L∑
`=2

ξ`,x`|x`−dc ,...,x`−1,c

)
. (3.43)

Using the likelihood of equation (3.41) for the class posterior of equation (3.10) (p. 12), the
normalization terms Z(β) cancel as well, and we obtain the definition of the class posterior
of equation (3.30) without explicit use of any of the normalization terms. However, we will
need the normalization terms, when we define a transformed product-Dirichlet prior on the
parameters ξ in section 3.4.2.

It can be proven that MCL is a concave optimization problem (Wettig et al., 2003) for Markov
models parameterized in terms of ξ when stated in terms of the log conditional likelihood.
Thus, the values of the parameters ξ∗MCL obtained by numerical optimization do not depend
on the initialization and one run of the optimization is sufficient to reliably obtain the globally
optimal parameters. Since the priors on the parameters of Markov models introduced in
section 3.4 are log concave functions of the parameters as well, the same holds true when
optimizing the parameters according to the discriminative MSP principle. A proof of concavity
of conditional likelihood for inhomogeneous Markov models and of the transformed Dirichlet
prior is given in appendix A.1.

When we consider two-class problems, i.e. c ∈ {1, 2}, we can slightly re-write equation (3.30)
as

P (c |x, ξ) =
1

1 + exp
(
ξ2 − ξ1 + ξ1,x1|2 − ξ1,x1|1 +

∑L
`=2

[
ξ`,x`|x`−d2

,...,x`−1,2 − ξ`,x`|x`−d1
,...,x`−1,1

]) . (3.44)

We can interpret the differences of parameter values ξ`,x`|x`−d2
,...,x`−1,2 − ξ`,x`|x`−d1

,...,x`−1,1 as
alternative, real-valued parameters of the class posterior. The length of the context considered
by these alternative parameters is then equal to the maximum of the two orders d1 and d2.
This elucidates that the expressiveness of the class posterior is determined by the maximum
order of d1 and d2 or – in other words – we can choose d1 arbitrarily if d1 ≤ d2 without
affecting the expressiveness of the class posterior, and vice versa. We could even omit the
parameters of the model having the lower order without losing expressiveness of the class
posterior. Considering MSP instead of MCL, i.e. imposing a prior on the parameters ξ, may
abolish this property, depending on the employed prior and its hyper-parameters (Grau et al.,
2007a).

Equation (3.44) also shows the close relation between MCL for Markov models and logistic
regression (see equation (3.6)) if we consider two-class problems. If we encode the sequence x

as a binary vector of length L·|Σ| and use the differences ξ1−ξ2, ξ1,a|1−ξ1,a|2, and ξ`,a|b,1−ξ`,a|b,2

as entries of the parameter vector β of equation (3.6) (p. 11), we obtain the same functional
form as in equation (3.44).
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3.3.1.2. Homogeneous Markov models

In analogy to equation (3.28), we define the likelihood of a homogeneous Markov model of
order dc in terms of φ-parameters

P (x, c |φ) = φc

dc∏
`=1

φ`,x`|x`−dc ,...,x`−1,c

L∏
`=dc+1

φx`|x`−dc ,...,x`−1,c., (3.45)

where the parameters φ`,x`|x`−dc ,...,x`−1,c are responsible for the position-dependent initial dis-
tribution of the first dc symbols in x, whereas the parameters φx`|x`−dc ,...,x`−1,c representing the
conditional probabilities at the remaining positions dc + 1 through L positions are position-
independent, i.e. homogeneous.

We cannot use the parameter transformation defined for inhomogeneous models to obtain
unconstrained parameters ξ in case of homogeneous Markov models, because the normaliza-
tion terms Z(ξ) depend on the parameters at subsequent positions. Hence, the homogeneity
of parameters would lead to cyclic dependencies between the homogeneous parameters. Ad-
ditionally, homogeneous Markov models can model sequences of arbitrary length and the
interpretation of the ξ-parameters in terms of probabilities would depend on the length of the
considered sequences. Hence, we define independent local transformations (Meila-Predoviciu,
1999) for the parameters of homogeneous Markov models, which involve those parameters
living on the same simplex. Let ξ`|g,c = (ξ`,a1|g,c, . . . , ξ`,a|Σ||g,c), g ∈ Σ`−1 denote the vectors
of the parameters of the initial distribution. Let ξb,c = (ξa1|b,c, . . . , ξa|Σ||b,c) denote the vec-
tors of homogeneous parameters conditional on context b ∈ Σdc and class c. We define the
transformations thom from ξ-parameters to φ-parameters as

φc = thom,c(ξ) :=
exp (ξc)∑
c̃ exp (ξc̃)

(3.46)

φ`,a|g,c = thom,`,a|g,c(ξ`|g,c) :=
exp

(
ξ`,a|g,c

)∑
ã exp

(
ξ`,ã|g,c

) (3.47)

φa|b,c = thom,a|b,c(ξb,c) :=
exp

(
ξa|b,c

)∑
ã exp

(
ξã|b,c

) (3.48)

The inverse transformation of equation (3.38) remains valid for homogeneous Markov models
(Meila-Predoviciu, 1999).

Although this transformation results in unconstrained parameters ξ, which can be optimized
numerically, we do not obtain a log concave conditional likelihood for homogeneous Markov
models of orders greater than zero. Hence, we must restart numerical optimization from
different initializations to obtain globally optimal parameters ξ∗MSP with high probability.
However, we may use the parameter values obtained by the generative MAP principle as
initialization, which assures that the parameters obtained by numerical optimization yield a
supervised posterior that is not lower than for MAP parameters. This strategy is also referred
to as using plug-in parameters.
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A A C T G C C G A . . .
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(a) Periodic Markov model of order 3 with period 3 for phase 1.

A A C T G C C G A . . .

P1 P2 P3 P P P P P P P P

(b) Homogeneous Markov model of order 3

Figure 3.3.: Graphical representation of a periodic and a homogeneous Markov model. The homoge-
neous Markov models employs the same conditional probability distribution for positions
4 and above, whereas the periodic Markov model re-uses probability distributions with a
period of 3 as indicated by the coloring of nodes.

3.3.1.3. Periodic Markov models

We use another class of Markov models, namely periodic Markov models, for discriminating
coding and non-coding sequences in section 4.3. On the one hand, periodic Markov models
are similar to homogeneous Markov models in re-using identical probability distributions for
different positions. On the other hand, these probability distributions are re-used only with
a given period and, similar to inhomogeneous Markov models, are not position independent.
Since we use the periodic Markov model for its capability to represent codons, we consider
only periodic Markov models with a period and order of 3 in the following. This also simplifies
formalization, although the extension to other periods and orders is straightforward.

The 3-periodic Markov model explicitly models codons, where the probability of a certain
nucleotide x` at position ` depends on its localization within the codon. In a periodic Markov
model of order 3 this probability also depends on the three preceding nucleotides, i.e. the
probability of the first nucleotide in a codon depends on all three nucleotides of the preceding
codon, the probability of the second nucleotide depends on the first nucleotide in the current
codon and the last two nucleotides of the preceding codon, and the probability of the third
nucleotide depends on the previous two nucleotides in the current codon and the last nucleotide
of the preceding codon.

Figure 3.3 shows a graphical representation of a 3-periodic Markov model of order 3 in com-
parison to a homogeneous Markov model of order 3. While we assume the same conditional
probability distribution for positions 4 and above in case of the homogeneous Markov model,
the periodic Markov model re-uses conditional probability distributions with a period of 3,
i.e. the conditional probability distribution at position ` is the same as at position `+ 3, but
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potentially different from those at positions ` + 1 and ` + 2. Figure 3.3 visualizes the case
of phase 1 for which the reading frame starts at position 1, whereas the complete model is
a mixture model over the three possible frames on one strand. The differentiation between
forward and complementary strand could be accomplished by a surrounding mixture model
over the two strands.

In this case, we skip the definition in terms of constrained parameters φ and first define
the 3-periodic Markov model in terms of probabilities which are then expressed in terms of
real-valued parameters ξ. We define

PpMM(x|c, ξ) =
3∑

f=1

[
P (f |c, ξ)Pinit,f (x1, x2, x3|c, ξ)·

L∏
`=3

P(f+`)mod3(x`|x`−1, . . . , x`−3, c, ξ))
]
, (3.49)

where the mixture probabilities P (f |c, ξ) of the three phases f ∈ {1, 2, 3} are parameterized
as

P (f |c, ξ) =
exp(ξf |c)∑2

f̃=0
exp(ξf̃ |c)

, (3.50)

the initial probability distribution of phase f is defined as

Pinit,f (x1, x2, x3|c, ξ) =
exp(ξpMM,f,x1|c)∑
a∈Σ exp(ξpMM,f,a|c)

exp(ξpMM,f,x2|x1,c)∑
a∈Σ exp(ξpMM,f,a|x1,c)

exp(ξpMM,f,x3|x1,x2,c)∑
a∈Σ exp(ξpMM,f,a|x1,x2,c)

, (3.51)

and the periodic conditional probabilities of the i-th nucleotide, i ∈ {1, 2, 3}, of a codon are
defined as

Pi(x`|x`−1, x`−2, x`−3, c, ξ) =
exp(ξpMM,i,x`|x`−1,x`−2,x`−3,c)∑
a∈Σ exp(ξpMM,i,a|x`−1,x`−2,x`−3,c)

. (3.52)

As for homogeneous Markov models of higher order, we do not obtain a concave conditional
likelihood for periodic Markov models. Hence, we use plug-in parameters using uniform
P (f |c, ξ) for periodic Markov models as well.

3.3.2. Continuous random variables

Although we consider (discrete) nucleotide sequences in this work, we need to handle con-
tinuous random variables and corresponding densities in some cases as well. Examples for
continuous values derived from sequence are physico-chemical properties like melting temper-
ature or free energy, geometrical properties like twist or shift, and probabilistic measures like
the entropy of k-mer compositions. These measures are presented in detail in section 4.3.2.6
(p. 99). In this work, we consider Gaussian and gamma densities for modelling continuous
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random variables. We define the likelihood P (y, c |β) of a continuous sequence y and class c
given parameters β as

p (y, c |β) = P (c|β)p(y|c,β), (3.53)

where P (c|β) denotes the a-priori probability of class c given parameters β, and p(y|c,β)
denotes the likelihood of y given class c and parameters β. In contrast to Markov models
(cf. equation (3.31), we parameterize the a-priori class probabilities P (c|β) and the densities
p (y, c |β) independently. We define P (c|β) as

P (c|β) =
exp(βc)∑
c̃ exp(βc̃)

. (3.54)

Since the parameters of the densities responsible for different classes are parameterized inde-
pendently as well, we waive denoting the dependency of p(y|c,β) on the class explicitly in the
following sections.

3.3.2.1. (Bivariate) Gaussian density

Let Y be a Gaussian distributed random variable with values y ∈ R. The Gaussian density
with mean µ ∈ R and precision λ ∈ R+ of values y is defined as

N (y|µ, λ) =

√
λ

2π
exp

(
−1

2
λ(y − µ)2

)
. (3.55)

More commonly, the Gaussian density is parameterized by a variance parameter σ2 = 1
λ . How-

ever, the parameterization by the precision λ is more convenient for numerical optimization,
the definition of a conjugate prior, and the multivariate Gaussian distribution.

Figure 3.4.: Gaussian density for different values of µ and κ. The location of the maximum of the
density is controlled by the parameter µ. The parameter κ influences the variance of the
density, where smaller values κ lead to greater variances.

Since the precision λ is limited to positive values, we define a transformation λ = exp(κ), κ ∈ R
for unconstrained numerical optimization. The resulting Gaussian density in terms of µ ∈ R
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and κ ∈ R is defined as

N (y|µ, κ) =

√
exp (κ)

2π
exp

(
−1

2
exp (κ) (y − µ)2

)
. (3.56)

The Gaussian density for different values of µ and κ is depicted in figure 3.4.

For the position distribution employed for de-novo discovery of cis-regulatory modules (see
section 4.2), we also need the multivariate, in this case bivariate, generalization of the Gaussian
density. Let Y = (Y1, . . . , YD) be a vector of random variables assuming values y ∈ RD. The
multivariate Gaussian density with mean vector µ and precision matrix Λ of values y is defined
as

N (y|µ,Λ) =
det(Λ)1/2

(2π)D/2
exp

(
−1

2
(y − µ)TΛ(y − µ)

)
(3.57)

In case of the bivariate Gaussian density, we may express the precision matrix Λ in terms of
the precisions λi of random variables Yi and the correlation ρ1,2 between random variables Y1

and Y2

Λ =

(
λ1 −ρ1,2

√
λ1λ2

−ρ1,2

√
λ1λ2 λ2

)
. (3.58)

The dependencies λi,j = −ρi,j

√
λiλj do not hold for general precision matrices of higher-

variate Gaussian densities. Since, we only need bivariate Gaussian densities in the following,
we limit the further derivations to the bivariate case.

Again, we seek a parameterization of the bivariate Gaussian density that is defined on uncon-
strained parameters. To this end, we use the same transformation λi = exp(κi), κi ∈ R
as in the univariate case for the precisions. Additionally, we define the co-precision as
λ1,2 = − tanh(r1,2)

√
exp(κ1) exp(κ2), r1,2 ∈ R, where the hyperbolic tangent maps the real-

valued parameter r1,2 to the interval (−1, 1) as required for correlation. This leads to a
definition of the precision matrix in terms of the vector of precisions κ = (κ1, κ2) and the
correlation parameter r1,2

Λ(κ, r1,2) =

(
exp(κ1) − tanh(r1,2)

√
exp(κ1) exp(κ2)

− tanh(r1,2)
√

exp(κ1) exp(κ2) exp(κ2)

)
, (3.59)

which can then be used to define the bivariate Gaussian density in terms of µ, κ, and r1,2:

N (y|µ,κ, r1,2) =
det(Λ(κ, r1,2))1/2

(2π)D/2
exp

(
−1

2
(y − µ)TΛ(κ, r1,2))(y − µ)

)
. (3.60)

We use the bivariate Gaussian density to model the distribution of the occurrence of multiple
motifs in a sequence of length L. In this case, we decide to restrict the means µi to the interval
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[1, L]. We achieve this by an additional transformation µi(νi) = L exp(νi)
1+exp(νi)

, νi ∈ R, and yield

N (y|ν,κ, r1,2) =
det(Λ(κ, r1,2))1/2

(2π)D/2
exp

(
−1

2
(y − µ(ν))TΛ(κ, r1,2))(y − µ(ν))

)
, (3.61)

where ν = (ν1, ν2) and µ(ν) = (µ1(ν1), µ2(ν2)).

The bivariate Gaussian density is defined for continuous values of y, whereas we consider only
discrete positions ` for the position distribution in section 4.2. We deal with this problem by
normalizing the Gaussian density by the sum over all admissible positions in section 4.2.

3.3.2.2. Gamma density

Let Y be a gamma distributed random variable with values y ∈ R+. The gamma density with
shape a ∈ R+ and rate b ∈ R+ of values y is defined as

G(y|a, b) =
ba

Γ (a)
ya−1e(−by) (3.62)

Alternatively, the gamma density can be parameterized by a scale parameter s = 1
b and the

decision for either of the two parameterizations is somewhat arbitrary.

Again, we need to define transformations for the two limited parameters a and b. We choose
a = exp(γ) and b = exp(β), yielding the density

G(y|γ, β) =
eβ exp(γ)

Γ (eγ)
e(exp(γ)−1) log(y)−exp(β)y (3.63)

The gamma density is depicted in figure 3.5 for different values of γ and β.

Figure 3.5.: Gamma density for different values of γ and β.
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3.4. Priors

In section 3.2.2, we defined the supervised posterior as the product of conditional likelihood
P (c |X,β) and a prior q (β |α) on the parameters β. In this section, we present priors for
the parameters of Markov models, as well as for the parameters of Gaussian and gamma
densities. For Markov models, we define Gaussian, Laplace, and Dirichlet priors, and we
discuss advantages and drawbacks of choosing any of these priors. For the Gaussian density,
we define the conjugate normal-gamma prior, whereas for the gamma density, we derive a
conjugate density via the general definition of a conjugate prior for the exponential family.

3.4.1. Markov models: Gaussian and Laplace priors

Gaussian and Laplace priors are a common choice for the parameters of Markov random fields
(Chen and Rosenfeld, 1999) and logistic regression (Madigan et al., 2005; Genkin et al., 2005;
Cawley et al., 2007). The natural parameterization of Markov random fields is closely related
to the parameterization of Markov models in terms of ξ-parameters chosen here. Furthermore,
Markov models are included in the class of Markov random fields as special cases. Hence, it
may be worthwhile to investigate Gaussian and Laplace priors for Markov models as well.

We define the Gaussian prior for a parameter ξi, i.e, ξc, ξ1,a|c, or ξ`,a|b,c, as

p(ξi|µi, σ
2
i ) =

1√
2πσ2

i

exp

(
−1

2
(ξi − µi)

2

σ2
i

)
, (3.64)

where µi denotes the prior mean and σ2
i denotes the prior variance of parameter ξi. In

contrast to the Gaussian density presented in section 3.3.2.1, we choose the more common
parameterization in terms of the variance, because mean and variance are hyper-parameters
in this case and therefore do not need to be optimized. We assume that all parameters in ξ

are independent, yielding the complete prior

p(ξ|µ,σ2) =

[
K−1∏
c=1

p(ξc|µc, σ
2
c )

]
· (3.65)

K∏
c=1

|Σ|−1∏
a=1

p(ξ1,a|c|µ1,a|c, σ
2
1,a|c)

L∏
`=2

∏
b∈Σmin{`−1,dc}

p(ξ`,a|b,c|µ`,a|b,c, σ
2
`,a|b,c),

where µ denotes the vector of all prior means

µ = (µ1, . . . , µK−1, µ1,a1|1, . . . , µ1,a|Σ|−1|K , µ2,a1|a1,1, . . . , µL,a|Σ|−1|a|Σ|...a|Σ|,K) (3.66)

and σ2 denotes the vector of all prior variances

σ2 = (σ2
1, . . . , σ

2
K−1, σ

2
1,a1|1, . . . , σ

2
1,a|Σ|−1|K , σ

2
2,a1|a1,1, . . . , σ

2
L,a|Σ|−1|a|Σ|...a|Σ|,K). (3.67)

The assumption of the independence of all parameters is clearly violated for those parameters
living on a common simplex, which is a conceptual drawback of the Gaussian as well as the
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Laplace prior.

The prior means µc and prior variances σ2
c for the classes c are chosen problem specific and

reflect the a-priori probabilities of the classes. In the following, we a-priorily assume that all
nucleotides occur with the same probability. This corresponds to assuming that all parameters
ξ1,a|c and ξ`,a|b,c are equal to zero. Therefore, we choose ∀c ∈ C,∀a ∈ Σ : µ1,a|c = 0 and
∀c ∈ C,∀` ∈ [1, L],∀a ∈ Σ,∀b ∈ Σmin(`−1,dc) : µ`,a|b,c = 0.

We define the variances as σ2
1,a|c = κc |Σ| and σ2

`,a|b,c = κc |Σ|min(`−1,dc), where κc is a class-
specific constant. The motivation for this choice is that we assume that the allowed variability
of the parameters ξ`,a|b,c should increase with increasing order. This accounts for the increasing
relative influence of the prior compared to the decreasing number of samples with given context
b, which may be balanced by a higher variance (Grau et al., 2007b).

Additionally, this choice of variances has the following property: Assume that we model
position ` either with order d or with order d+1. The a-priori means at this position are zero
in both cases. In the first case the variance is σ2

`,a|b,c = κc |Σ|d, whereas in the second case it

is σ2
`,a|bbd+1,c = κc |Σ|d+1. For each parameter ξ`,a|b,c in the first model we have |Σ| different

parameters ξ`,a|bbd+1,c with augmented context bbd+1, bd+1 ∈ Σ in the second model. Further
assume that the additional context bd+1 is irrelevant and, hence, ∀bd+1 ∈ Σ : ξ`,a|bbd+1,c =
ξ`,a|b,c. Under these assumptions, we obtain the following Gaussian prior for the order d+1:

∏
bd+1∈Σ

1√
2πκc |Σ|d+1

exp

(
−1

2

(
ξ`,a|b,c − 0

)2
κc |Σ|d+1

)
(3.68)

=

 1√
2πκc |Σ|d+1

|Σ|

exp

(
−1

2

(
ξ`,a|b,c

)2
κc |Σ|d

)
, (3.69)

which is proportional to the prior for order d

∝ 1√
2πκc |Σ|d

exp

(
−1

2

(
ξ`,a|b,c

)2
κc |Σ|d

)
(3.70)

Hence, we may state that, with this choice of the variances and means, the total influence of
the prior on the parameters of a model of order d+1 is equal to the influence on the parameters
of a model of order d.

In analogy to the Gaussian prior, we define the Laplace prior with mean µi and scale si for
parameter ξi as

p(ξi|µi, si) =
1

2si
exp

(
−|ξi − µi|

si

)
, (3.71)
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and the complete prior as

p(ξ|µ, s) =

[
K−1∏
c=1

p(ξc|µc, sc)

]
· (3.72)

K∏
c=1

|Σ|−1∏
a=1

p(ξ1,a|c|µ1,a|c, s1,a|c)
L∏

`=2

∏
b∈Σmin{`−1,d}

p(ξ`,a|b,c|µ`,a|b,c, s`,a|b,c).

We choose the a-priori means in the same manner as for the Gaussian prior, and we choose the
scale parameters such that the variance of the Laplace density is equal to the corresponding
variance of the Gaussian density. This leads to the definition of the scale parameters as

si =
√
σ2

i /2. The motivation for this choice is to make the Gaussian and Laplace prior
comparable to some extent.

The two drawbacks that are common to both the Gaussian and the Laplace prior are that
both make incorrect assumptions about the independence of parameters and that their hyper-
parameters cannot be interpreted intuitively in terms of a-priori assumptions about the data,
which is a consequence of both priors not being conjugate to the likelihood of Markov models.
In the next section we introduce the Dirichlet prior, which does not exhibit these disadvan-
tages.

3.4.2. Markov models: Dirichlet prior

Commonly, the Dirichlet prior on the parameters of Markov models is defined in the φ-
parameterization. As the parameters in different classes, at different positions, and for different
contexts are assumed to be independent (Heckerman et al., 1995), the product-Dirichlet prior
is the product of independent Dirichlet densities, each defined on a subset of parameters which
live on a common simplex:

p (φ |α) = Γ(α.)
K∏

k=1

φαk−1
k

Γ(αk)

L∏
`=1

∏
b∈Σmin(dk,`−1)

Γ(α`,.|b,k)
∏
a∈Σ

φ
α`,a|b,k−1

`,a|b,k

Γ(α`,a|b,k)
, (3.73)

where α. =
∑

k αk and α`,.|b,k =
∑

a α`,a|b,k, and b is the empty string for ` = 1.

We transform this definition of the Dirichlet prior to the space of ξ-parameters using the
transformation defined in equations (3.31) through (3.33) (p. 20). A detailed derivation of the
transformed prior is given in (Keilwagen et al., 2010b). The Jacobian of the transformation
amounts to (Keilwagen et al., 2010b)

det
(
∂t(ξ)
∂ξ

)
=

K∏
k=1

exp (ξk)Zk(ξ)∑
c̃ exp (ξc̃)Zc̃(ξ)

L∏
`=1

∏
b∈Σmin(dk,`−1)

∏
a∈Σ

exp
(
ξ`,a|b,k

)
Z`,a|b,k(ξ)∑

ã exp
(
ξ`,ã|b,k

)
Z`,ã|b,k(ξ)

.

Consequently, the transformed Dirichlet prior is defined as
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q (ξ |α) = Γ(α.)
K∏

k=1

1
Γ(αk)

(
exp (ξk)Zk(ξ)∑
c̃ exp (ξc̃)Zc̃(ξ)

)αk

(3.74)

L∏
`=1

∏
b∈Σmin(dk,`−1)

Γ(α`,.|b,k)
∏
a∈Σ

1
Γ(α`,a|b,k)

(
exp

(
ξ`,a|b,k

)
Z`,a|b,k(ξ)∑

ã exp
(
ξ`,ã|b,k

)
Z`,ã|b,k(ξ)

)α`,a|b,k

We use BDeu (Bayesian Dirichlet likelihood-equivalent, uniform) hyper-parameters (Hecker-
man et al., 1995; Buntine, 1991) in the following. Such hyper-parameters have the properties
that they can be interpreted as pseudo-counts stemming from a common set of pseudo-data,
and assume that all possible sequences of length L occur with equal probability in the pseudo-
data. These two properties allow for the application of the Dirichlet prior to the parameters
of Markov models of differing orders while modelling the same a-priori information.

We define the hyper-parameters based on a set of joint hyper-parameters αx|c for each sequence
x ∈ ΣL:

α`,a|b,c :=
∑

x∈ΣL

αx|c · δx`,a · δx`−dc ...x`−1,b (3.75)

αc :=
∑

x∈ΣL

αx|c (3.76)

The hyper-parameter αc is often referred to as equivalent sample size (Heckerman et al., 1995;
Buntine, 1991; Grau et al., 2007b), as it is equal to the size of the a-priorily observed set of
pseudo-data in class c. Without further assumptions about the joint hyper-parameters, this
choice of hyper-parameters corresponds to the BDe (Bayesian Dirichlet likelihood-equivalent)
prior (Heckerman et al., 1995).

Under the assumption of uniform pseudo-data, the joint hyper-parameters αx|c are equal for
each sequence x ∈ ΣL. This results in a definition of the hyper-parameters α`,a|b,c based on
the equivalent sample size αc for class c

α`,a|b,c :=
αc

|Σ||b|+1
. (3.77)

In case of BDeu hyper-parameters, many of the normalization terms of equation (3.74) cancel.
Since Z(ξ) =

∑
c̃ exp (ξc̃)Zc̃(ξ), we obtain a simplified version of the transformed product-

Dirichlet prior for Markov models

q (ξ |α) =
1

Z(ξ)α.
Γ(α.)

K∏
k=1

eαkξk

Γ(αk)

L∏
`=1

∏
b∈Σmin(dk,`−1)

Γ(α`,.|b,k)
∏
a∈Σ

eα`,a|b,kξ`,a|b,k

Γ(α`,a|b,k)
(3.78)

∝ 1
Z(ξ)α.

exp

 K∑
k=1

αkξk +
L∑

`=1

∑
b∈Σmin(dk,`−1)

∑
a∈Σ

α`,a|b,kξ`,a|b,k

 . (3.79)

A more general definition of the transformed product-Dirichlet prior, which applies to moral
Bayesian networks as well as Markov random fields is given in (Keilwagen et al., 2010b). A
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proof of the concavity of the transformed product-Dirichlet of equation (3.79), which is relevant
for numerical optimization, is given in appendix A.1.

The product-Dirichlet prior for homogeneous Markov models in φ-parameterization is defined
as

p (φ |α) = Γ(α.)
K∏

k=1

φαk−1
k

Γ(αk)

 dc∏
`=1

∏
g∈Σ`−1

Γ(α`,.|g,k)
∏
a∈Σ

φ
α`,a|g,k−1

`,a|g,k

Γ(α`,a|g,k)

 · (3.80)

 ∏
b∈Σdc

Γ(α.|b,k · (LE − dc))
∏
a∈Σ

φ
αa|b,k·(LE−dc)−1

a|b,k

Γ(αa|b,k · (LE − dc))

 ,
where LE denotes the expected length of sequences to be scored. The term (LE − dc) accounts
for the employment of the same homogeneous parameters for all positions ` > dc.

In case of homogeneous Markov models, we transform the product-Dirichlet prior according
to the transformation thom. The Jacobian can be computed independently for each transfor-
mation of those parameters living on a common simplex in this case, resulting in

det
(
∂thom(ξ)

∂ξ

)
=

K∏
k=1

exp(ξk)∑
k̃ exp(ξk̃)

 dc∏
`=1

∏
g∈Σ`−1

∏
a∈Σ

exp(ξ`,a|g,k)∑
ã exp(ξ`,ã|g,k)

 · (3.81)

 ∏
b∈Σdc

∏
a∈Σ

exp(ξa|b,k)∑
ã exp(ξã|b,k)


yielding the transformed product-Dirichlet prior for homogeneous Markov models

q (ξ |α) =
Γ(α.)∏K

k=1 Γ(αk)

K∏
k=1

(
exp(ξk)∑
k̃ exp(ξk̃)

)αk

· (3.82) dc∏
`=1

∏
g∈Σ`−1

Γ(α`,.|g,k)∏
a∈Σ Γ(α`,a|g,k)

∏
a∈Σ

(
exp(ξ`,a|g,k)∑
ã exp(ξ`,ã|g,k)

)α`,a|g,k

 ·
 ∏

b∈Σdc

Γ(α.|b,k · (LE − dc))∏
a∈Σ Γ(αa|b,k · (LE − dc))

∏
a∈Σ

(
exp(ξa|b,k)∑
ã exp(ξã|b,k)

)αa|b,k·(LE−dc)
 .

The hyper-parameters of this prior are chosen according to the assumption of uniform pseudo-
data in the same manner as for inhomogeneous Markov models.

Since the periodic Markov model is parameterized in close analogy to homogeneous Markov
models, we can adapt this product-Dirichlet prior with a slight modification of hyper-para-
meters for the periodic Markov model as well. For the mixture parameters over the three
frames, βf |c, we define hyper-parameters αf |c = αk

3 assuming that all frames occur with equal
probabilities. The parameters of the initial probability distribution depend on the chosen
frame f . Hence, we use the transformed product-Dirichlet prior in analogy to the initial
distribution of homogeneous Markov models, but set the ESS to αk

3 . Finally, the parameters
of the periodic part are used for a single frames, but each of the sets parameters is used only
every three basepairs. Hence, we use the original ESS αk, but adapt the expected length
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Figure 3.6.: The transformed Dirichlet prior (red line) for one free parameter ξ in comparison to the
Laplace prior (green line) and Gaussian prior (black line) for different values of hyper-
parameters. All densities are plotted on a logarithmic scale, and the hyper-parameters
of the Gaussian and Laplace prior are chosen such that all three priors achieve the same
maximum value.

LE , i.e. the expected number of symbols in the sequence aside the initial three positions, to
L′

E = LE
3 .

Compared to the Gaussian or Laplace priors, the Dirichlet prior has the advantage that its
hyper-parameters are easily interpretable in terms of pseudo-data, and it is the commonly used
prior when learning Markov models by the generative MAP principle. Hence, it allows for an
unbiased comparison of the MSP and MAP principle for the same model, i.e. Markov models
of the same order. When using BDeu hyper-parameters, it also allows for a comparison of
Markov models of different orders learned by MAP or MSP using the same a-priori information
(Keilwagen et al., 2010b).

Figure 3.6 illustrates the densities of Gaussian, Laplace and the transformed Dirichlet for one
free parameter ξ using different values of the hyper-parameters α, while the hyper-parameters
of the Gaussian and Laplace priors are chosen such that all densities achieve the same maximum
value. The densities are plotted on a logarithmic scale to illustrate the linear characteristic
of the Laplace prior and the quadratic characteristic of the Gaussian prior. Interestingly, the
transformed Dirichlet prior lies in between these two extremes. It shows an almost quadratic
characteristic near the maximum, whereas it is linear in the far tails.

3.4.3. Gaussian density: Normal-Gamma and Normal-Wishart priors

A conjugate prior for the Gaussian density with mean µ and precision λ presented in sec-
tion 3.3.2.1 (p. 25) is the normal-gamma density with a-priori mean µ0, equivalent sample size
γ, shape parameter τ1 and rate parameters τ2:

p(µ, λ|µ0, γ, τ1, τ2) =
τ τ1
2
√
γ

Γ (τ1)
√

2π
λτ1− 1

2 e−λ[τ2+ 1
2
γ(µ−µ0)2]. (3.83)

The a-priori mean defines the a-priorily expected value of the mean parameter µ, while the
shape and scale parameter model a-priori assumptions about the precision λ. If we a-priorily
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expect a mean precision λ0 with variance λ1, we can derive the corresponding values of τ1
and τ2 from the expectation τ1

τ2
and variance τ1

τ2
2

of the Gamma density, leading to τ1 = λ2
0

λ1

and τ2 = λ0
λ1

. The confidence in the a-priori information about the mean is represented by the
equivalent sample size γ, which again can be interpreted as the size of a set of pseudo-data,
which has been observed before seeing the actual training data.

As we parameterize the Gaussian density in terms of µ and κ in section 3.3.2.1, we need to
transform the normal-gamma density accordingly. The Jacobian amounts to exp(κ) in this
case, leading to the transformed normal-gamma density

p(µ, κ|µ0, γ, τ1, τ2) =
τ τ1
2
√
γ

Γ (τ1)
√

2π
eκ(τ1+ 1

2)e− exp(κ)[τ2+ 1
2
γ(µ−µ0)2]. (3.84)

We also use bivariate Gaussian densities in this work (see section 3.3.2.1) to model the joint
distribution of motif occurrences in a set of sequences in section 4.2. A conjugate prior for
the multivariate Gaussian density N (y|µ,Λ) is the normal-Wishart density (DeGroot, 2004),
which amounts to the product of a multivariate Gaussian prior for the mean vector µ and a
Wishart density for the precision matrix Λ

p(µ,Λ|µ0,Λ0, γ, α) = N (µ|µ0, γΛ) · W(Λ|Λ0, α), (3.85)

where µ0 denotes the vector of prior means, Λ0 denotes the a-priori precision matrix, and γ

and α denote the equivalent sample sizes of the Gaussian and the Wishart component of the
prior. In many cases it might be reasonable to set γ = α, because other assignments would
contradict the concept of a-priorily observed pseudo-data. However, there are cases where we
might feel more confident in our a-priori assumptions about the mean vector than the precision
matrix, or vice versa.

The Gaussian component of the prior is defined as (DeGroot, 2004)

N (µ|µ0, γΛ) =
det(γΛ)1/2

(2π)D/2
exp

(
−1

2
(µ− µ0)

T γΛ (µ− µ0)
)
, (3.86)

and the Wishart component is defined as

W(Λ|Λ0, α) ∝ det (Λ0)
α/2 det (Λ)

α−D−1
2 exp

(
−1

2
tr (Λ0Λ)

)
. (3.87)

A-priorily, we assume that the random variables at the different dimensions of the multivariate
Gaussian density are statistically independent. We can model this assumption by setting all
off-diagonal elements of the a-priori precision matrix Λ0 to zero (DeGroot, 2004). Hence, the
trace of the matrix-product tr (Λ0Λ) is equal to the sum of the products of the on-diagonal
elements of Λ0 and Λ, and the determinant det (Λ0) is equal to the product of the on-diagonal
elements of Λ0

W(Λ|Λ0, α) ∝

(
D∏

d=1

λ0,d

)α/2

det (Λ)
α−D−1

2 exp

(
−1

2

D∑
d=1

λ0,dλd

)
. (3.88)
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In section 3.3.2.1, we define a transformation Λ(κ, r1,2) for the precision matrix of a bivariate
Gaussian density. In the following we want to transform the normal-Wishart density according
to this transformation for the bivariate case.

The Jacobian of the transformation is the product of the on-diagonal elements of the Jacobi
matrix in this case, because the derivatives of λi = exp(κi) are zero for the other parameters
κj , j 6= i and r1,2:

∂Λ(κ, r1,2)
∂ (κ, r1,2)

=

∣∣∣∣∣
2∏

d=1

exp
(

3
2
κd

)(
−sech (r1,2)

2
)∣∣∣∣∣

=
2∏

d=1

exp
(

3
2
κd

)
sech (r1,2)

2 , (3.89)

where sech (.)2 denotes the square of the hyperbolic secant, which is the first derivative of the
hyperbolic tangent.

Considering the definition of Λ(κ, r1,2) in equation (3.59) (p. 26), we find that we can factor√
exp(κi) out of row i and we can factor

√
exp(κj) out of column j of the determinant

det (Λ(κ, r1,2)), resulting in

det (Λ(κ, r1,2)) = det

(
1 − tanh(r1,2)

− tanh(r1,2) 1

)
2∏

d=1

exp(κd). (3.90)

In the following, we denote

T (r1,2) =

(
1 − tanh(r1,2)

− tanh(r1,2) 1

)
. (3.91)

If we insert all of these results into equation (3.88) for the bivariate case, we obtain

W(κ, r1,2|Λ0, α) ∝

(
2∏

d=1

λ0,d

)α/2 [
det (T (r1,2))

2∏
d=1

exp (κd)

]α−3
2

· (3.92)

exp

(
−1

2

2∑
d=1

λ0,d exp(κd)

)
·

2∏
d=1

exp
(

3
2
κd

)
sech (r1,2)

2 ,

which we can rewrite as follows:

W(κ, r1,2|Λ0, α) ∝

[
2∏

d=1

(
λ0,d

2

)α/2

exp
(
κd
α

2

)
exp

(
−
λ0,d

2
exp(κd)

)]
·

det (T (r1,2))
α−3

2 sech (r1,2)
2 (3.93)

∝

[
2∏

d=1

G
(
κd

∣∣∣∣α2 , λ0,d

2

)](
1− tanh(r1,2)2

)α−3
2 sech (r1,2)

2 (3.94)

Additionally, we transform the Gaussian component according to µd = L exp(νd)
1+exp(νd) , νd ∈ R of
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equation (3.61) (p. 27). The Jacobian of this transformation amounts to

∂µ(ν)
∂ν

=
2∏

d=1

L
exp(νd)

(1 + exp(νd))
2 , (3.95)

resulting in the transformed Gaussian density

N (ν|µ0, γΛ) =
det(γΛ)1/2

(2π)D/2
exp

(
−1

2
(µ(ν)− µ0)

T γΛ (µ(ν)− µ0)
) 2∏

d=1

L
exp(νd)

(1 + exp(νd))
2 .

The transformed normal-Wishart density of ν, κ, and r1,2 with hyper-parameters γ, α, Λ0,
and µ0 is then defined as the product of the transformed Wishart density and the transformed
Gaussian density, yielding

p(ν,κ, r1,2|µ0,Λ0, γ, α) = N (ν|µ0, γΛ(κ, r1,2)) · W(κ, r1,2|Λ0, α). (3.96)

3.4.4. Gamma density: Conjugate priors for the exponential family

In case of the gamma density defined in section 3.3.2.2, no conjugate prior is readily available.
To derive such a conjugate prior, we use the general definition of a conjugate prior for the
exponential family (Bishop, 2006).

All densities stemming from the exponential family for values y ∈ RD′
can be expressed in

terms of abstract parameters η ∈ RD

P (y|η) = h(y)g(η)eη
T u(y), (3.97)

where h(y) is a normalization constant depending on the data y, g(η) is a normalization
constant depending on the parameters η, and u(y) is a function u : PD′ → QD,P,Q ⊆ R.

The conjugate prior for the exponential family is then defined as

p(η|χ, ν) = f(χ, ν)g(η)νeνηT χ, (3.98)

where ν is the equivalent sample size, χ is the vector of specific hyper-parameters, and f(χ, ν)
is a normalization constant depending on the hyper-parameters. Comparing equation (3.62)
(p. 27) to the definition of the exponential family of equation (3.97), we define

η := (a, b)

h(y) := y−1

g(a, b) :=
ba

Γ (a)
u(y) := (log(y),−y)

With these prerequisites, we can now define a conjugate prior with equivalent sample size α
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and specific hyper-parameters χ1 and χ2 for the gamma density as

p(a, b|χ1, χ2, α) = f(χ1, χ2, α)
(

ba

Γ (a)

)α

eα(aχ1+bχ2). (3.99)

Despite this prior being conjugate to the gamma density, we are yet missing an intuitive
interpretation of the hyper-parameters χ1 and χ2. With the goal of obtaining such an in-
terpretation, we compare the definition of the prior to the likelihood of a set of independent
gamma distributed values y:

G(y|a, b) = e−
PN

n=1 log(yn)

(
ba

Γ (a)

)N

ea
PN

n=1 log(yn)−b
PN

n=1 yn (3.100)

As expected, the equivalent sample size α corresponds to the size of the data set N . By
factoring N out of the exponent, we obtain

G(y|a, b) = e−N log(ȳgeo)

(
ba

Γ (a)

)N

eN [a log(ȳgeo)−bȳar], (3.101)

where ȳgeo denotes the geometric mean and ȳar denotes the arithmetic mean of the values y.
We can, hence, interpret χ1 as the logarithm of the expected geometric mean and χ2 as the
expected arithmetic mean, and set the values of both hyper-parameters accordingly.

In section 3.3.2.2, we defined a transformation for the shape and rate parameter of the gamma
density as a = exp(γ) and b = exp(β) to obtain positive values a and b for parameters γ, β ∈ R.
The Jacobian is exp(γ) exp(β) in this case, resulting in the transformed conjugate prior for
the gamma density with parameters γ and β

p(γ, β|χ1, χ2, α) = f(χ1, χ2, α)

(
eβ exp(γ)

Γ (ea)

)α

eα[exp(γ)χ1+exp(β)χ2] · eγ · eβ. (3.102)

The normalization constant f(χ1, χ2, α) must be chosen such that p(γ, β|χ1, χ2, α) defines a
proper density, i.e. ∀γ,∀β : p(γ, β|χ1, χ2, α) > 0 and∫

R

∫
R
p(γ, β|χ1, χ2, α)dγdβ = 1. (3.103)

We consequently define f(χ1, χ2, α) as

f(χ1, χ2, α) =

(∫
R

∫
R

(
eβ exp(γ)

Γ (ea)

)α

eα[exp(γ)χ1+exp(β)χ2] · eγ · eβdγdβ

)−1

. (3.104)

This integral cannot be solved analytically. Hence, we must use numerical integration tech-
niques if we need a normalized prior for the gamma density, which would be the case for
instance when using the (supervised) posterior as a criterion for model selection.
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3.5. Assessment of classifiers

In many situations, we want to compare the accuracy of a number of classifiers and decide
which of these is suited best for a given application. For instance, the classifiers considered may
differ in the employed models or in the learning principles used to learn the parameters. To this
end, we learn each classifier on a training data set and test its accuracy on an independent
test data set. Classification performance may be measured by a wealth of measures. The
performance measures used in this work are presented in section 3.5.1. In some applications,
we do not have enough data available to partition the data into dedicated training and test
data sets while preserving statistically meaningful results. In section 3.5.2, we present two
approaches to overcome this problem, namely cross validation and holdout sampling.

3.5.1. Performance measures

For the definition of performance measures, we assume that we obtain an already trained
classifier with parameters β. This classifier together with its parameters constitutes the class
posterior P (c |x,β) for a sequence x and class c. We further assume that we obtain a test data
set comprising a set of sequences X = (x1, . . . ,xN ) and associated class labels c = (c1, . . . , cN ).
We can now use the classification criterion of equation (3.1) (p. 9) to assign to each sequence
xn the most probable class, which we denote by c∗(xn,β).

The classification rate of a classifier on the test data set X, c is defined as

CR(X, c,β) =
1
N

N∑
n=1

δcn,c∗(xn,β), (3.105)

where the Kronecker delta is equal to 1 if both indices are equal and 0 otherwise.

We can define a number of additional performance measures for the case of two-class problems,
where we can slightly reformulate the classification criterion. We assign a sequence x to the
first class, i.e. c∗(xn,β) = 1, if the following inequation holds

P (c = 1 |x,β)
P (c = 2 |x,β)

> T, (3.106)

or, equivalently

logP (x, c = 1 |β)− logP (x, c = 2 |β) > log T, (3.107)

and to the second class otherwise, where T denotes a threshold. The difference on the left
side of inequation (3.107) is often referred to as log likelihood ratio. If the threshold T is
equal to 1, we obtain an alternative formulation of equation (3.1). Other values of T may be
interpreted as adjustments of the a-priori class probabilities of the two classes: If T > 1, we
shift the a-priori class probabilities in favor of class 2. If on the other hand T < 1, we prefer
class 1. Hence, we can control the number of predictions for class 1 and class 2 by means of
the threshold T . We denote this dependence of the classification result on the threshold by
c∗T (xn,β).
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We define the entries of the confusion matrix, namely true positives, true negatives, false
positives, and false negatives for a given threshold T . The true positives (TP) are the number
of sequences xn belonging to the positive class, i.e. cn = 1, which are also assigned to class 1,
i.e. c∗T (xn,β) = 1, and the true negatives (TN) are the number of sequences xn belonging to
the negative class, i.e. cn = 2, which are also assigned to class 2, i.e. c∗T (xn,β) = 2:

TP (T ) =
N∑

n=1

δcn,1 · δc∗T (xn,β),1 TN(T ) =
N∑

n=1

δcn,2 · δc∗T (xn,β),2 (3.108)

Considering false predictions, the false positives are the number of sequences xn belonging to
the negative class, i.e. cn = 2, which are erroneously assigned to class 1, i.e. c∗T (xn,β) = 1
and the false negatives are the number of sequences xn belonging to the positive class, i.e.
cn = 1, which are erroneously assigned to class 2, i.e. c∗T (xn,β) = 2:

FP (T ) =
N∑

n=1

δcn,2 · δc∗T (xn,β),1 FN(T ) =
N∑

n=1

δcn,1 · δc∗T (xn,β),2 (3.109)

The sensitivity (Sn) of a classifier for threshold T is then defined as the percentage of sequences
belonging to the positive class that are classified correctly:

Sn(T ) =
TP (T )

TP (T ) + FN(T )
(3.110)

The sensitivity is also called recall in some contexts. The specificity (Sp) for threshold T is
defined as the number of sequences belonging to the negative class and are classified correctly.
It is also common to measure the classification accuracy for the negative class by means of
the false positive rate (FPR) which is the percentage of falsely classified sequences stemming
from the negative class:

Sp(T ) =
TN(T )

TN(T ) + FP (T )
FPR(T ) =

FP (T )
TN(T ) + FP (T )

= 1− Sp(T ) (3.111)

Finally, we measure the percentage of correctly classified sequences in all sequences assigned
to the positive class by the positive predictive value and the percentage of correctly classified
sequences in all sequences assigned to the negative class by the negative predictive values:

PPV (T ) =
TP (T )

TP (T ) + FP (T )
NPV (T ) =

TN(T )
TN(T ) + FN(T )

(3.112)

The positive predictive value is also referred to as precision of the classifier.

All measures considered so far depend on the chosen threshold T and are called point measures.
We define additional measures of classification accuracy which assess the overall performance
of classifiers. The receiver operating characteristic (ROC) curve is the plot of Sn(T ) against
1 − Sp(T ) = FPR(T ) for all possible thresholds T . An example of a ROC curve is given
in figure 3.7(a). A classifier which is randomly guessing achieves equal Sn(T ) and FPR(T )
for each threshold T resulting in a straight line from (0, 0) to (1, 1), which is plotted in red
in figure 3.7(a). On the other extreme, a perfect classifier (green line) yields Sn(T ) = 1 for
any threshold T and, hence, regardless of FPR(T ). In most applications, the ROC curve
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Figure 3.7.: Examples of an ROC and a PR curve. The red line shows the curves of random guessing.
The black line illustrates the curves of a classifier which performs better than random
guessing but is not perfect. The green line corresponds to a perfect classifier.

of the considered classifier lies between these two extremes as illustrated by the black line in
figure 3.7(a). If the ROC curve of a classifier is located below the diagonal of random guessing,
classification may be improved by switching class labels.

The comparison of curves is not always a convenient way to compare classifiers, for instance if
we want to average classification performance over a number of test data sets. We measure the
overall accuracy of a classifier by the area under the ROC curve (AUC-ROC), which integrates
over all FPR(T ) ∈ [0, 1]. The AUC-ROC of random guessing is 0.5, whereas that of a perfect
classifier is 1.0. As the test data set X comprises only a finite number of sequences, reasonable
values of T correspond to log likelihood ratios that can be observed for elements of X, and
we obtain at most N discrete points (FPR(T ), Sn(T )). We compute AUC-ROC by a linear
interpolation between these points (Davis and Goadrich, 2006).

The precision-recall curve (PR curve) is the plot of PPV (T ) against Sn(T ) for all possible
thresholds T . Figure 3.7(b) illustrates the PR curve of a perfect classifier, a classifier which
is randomly guessing, and a realistic classifier. In contrast to the ROC curve, the PR curve is
not necessarily monotonic or concave. As Davis and Goadrich (2006) point out, a non-linear
interpolation between the points (Sn(T ), PPV (T )) yields a more accurate approximation of
the PR curve than a linear one. If we increase the threshold such that all sequences are
classified as negative, we obtain Sn(T ) = 0 and PPV (T ) = 0

0 . According to the interpolation
proposed by (Davis and Goadrich, 2006), PPV (T ) must be set to the last defined value in
this case. Using this interpolation, we may integrate PPV (T ) over all Sn(T ) and obtain the
area under the precision-recall curve (AUC-PR).

If the test data set contains an unbalanced number of sequences for the two classes, the ROC
curve or AUC-ROC may be less suited for comparing classifiers: Assume that the test data
set contains 10 sequences from the positive class and 1000 sequences from the negative class.
Further assume a classifier, which assigns a log likelihood ratio of −1 to 990 out of the 1000
negative sequences and a log likelihood ratio of 1 to the remaining 10 negative and all positive
sequences. With these log likelihood ratios, we still obtain Sn(0) = 1 and FPR(0) = 0.01 for
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Figure 3.8.: ROC and PR curve on an unbalanced data set. Figure (a) shows a histogram of the
scores of the negative class (black) and the positive class (red). Both classes are clearly
overlapping. Figure (b) and (c) illustrate the ROC and PR curves computed on these
scores.

a threshold of 0. By increasing the threshold to 1 we obtain Sn(1) = 0 and FPR(1) = 0. We
interpolate linearly between these points and the resulting AUC-ROC is 0.995, although the
positive class completely overlaps with the negative class. Hence, the AUC-ROC of classifiers
separating the classes more clearly can be expected between 0.995 and 1.0. A more realistic
example of an ROC curve on an unbalanced data set is depicted in figure 3.8(b). In such
cases, the area under the precision-recall curve (PR curve) may be more meaningful for the
comparison of classifiers. Considering the example of unbalanced classes, we obtain Sn(T ) = 1
and PPV (T ) = 0.5 for all thresholds −1 < T < 1, whereas for T = 1 we obtain Sn(1) = 0 and
PPV (1) = 0

0 := 0.5, as 0.5 is the last defined PPV. The resulting AUC-PR amounts to 0.5,
which reflects that the positive class is completely overlapping the negative class. A similar
behavior can be observed in figure 3.8(c).

However, this behavior of the ROC curve can also be perceived as an advantage over the PR
curve, since we obtain an assessment of classification accuracy that does not depend on the
a-priori probability of the two classes (Fawcett, 2006).

If the number of sequences in the positive class considerably exceeds the number of those in
the negative class, we use an inverted variant of the PR curve. In this case, we plot NPV
against Sp, which is equivalent to the original definition of the PR curve when switching class
labels and inverting the sign of all log likelihood ratios. We refer to this curve as PRI curve
and to the area under the PRI curve as AUC-PRI.

3.5.2. Cross validation and sampling

The data available in bioinformatics applications are often limited. For instance, typical data
sets of transcription factor binding sites comprise between 30 and 300 binding sites. Hence,
partitioning the data into training and test data sets entails disadvantages for the comparison
of different classifiers. First, the resolution of performance measures is limited to a low number
of discrete values. Second, the values of these measures may vary highly depending on the
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chosen partitioning and, hence, the generalizability of such results is questionable. Several
approaches for a robust measurement of classification accuracy on limited data exist. In the
following, we use two of these, namely cross validation and stratified holdout sampling.

A K-fold cross validation requires K non-overlapping data sets (X1, c1), . . . , (XK , cK). These
data sets may either be obtained by partitioning some original data set or originate from
biological background, e.g. different chromosomes of an organism. In each cross validation
run k = 1, . . . ,K, the classifiers of interest are trained on K − 1 of the data sets ∪i6=k(Xi, ci)
and classification performance is tested on the remaining data set (Xk, ck) using performance
measures as presented in section 3.5.1. These measures are then averaged over all K cross
validation runs. As a measure of deviation from the average performance we can also compute
the standard error over the K runs, which estimates the deviation that can be expected if the
cross validation is repeated using another partitioning of the data.

A K-fold stratified holdout sampling starts from one original data set (X, c). In each of the K
iterations, we randomly sample without replacement p% of the data set as training data set
and the remaining (100− p)% are used as test data set. In each iteration k the classifiers are
trained on the sampled training data set and the performance measures are computed on the
non-overlapping test data set. Like for cross validation, the performance measures are averaged
over the K iterations and the standard error of these measures is computed. Compared to
cross-validation, stratified holdout sampling permits the assessment of classifiers on smaller
data sets due to is sampling procedure, which allows for a larger number K of iterations.

Cross validation and holdout sampling experiments are called stratified, if we ensure that the
proportion of sequences stemming from the different classes is equal in each training and test
data set. In order to prevent overlaps between training and test data, we do not sample
sub-sequences of the same original sequences into different partitions of the data, although
this could lead to more balanced sizes of the sampled training and test data over different
iterations.
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This chapter comprises applications of the Bayesian discriminative MSP principles to a variety
of problems in bioinformatics that are related to gene regulation. In the first section, we
employ the discriminative MSP principle and the generative MAP principle for learning the
parameters of Markov models, and we compare the classification accuracy achieved by both
learning principles for the recognition of known transcription factor binding sites (TFBSs)
stemming from prokaryotes as well as eukaryotes. In real-world applications, we often neither
know the exact binding sites of the factors of interest, nor do we know which transcription
factor is responsible for the regulation of a set of genes. Rather we obtain a number of genes
which are for instance co-expressed and, hence, potentially co-regulated. In the second section,
we present an approach for finding motifs in a set of promoters of such genes. This task is
often referred to as de-novo motif discovery and is still one of the most challenging problems
of bioinformatics. The prediction of TFBSs typically suffers from a large number of false-
positives. Although a given stretch of DNA is highly similar to the binding sites of a specific
transcription factor, this very stretch may not be accessible to a transcription factor because
of chromatin structure. One major building block of chromatin organization are nucleosomes.
DNA bound in nucleosomes can not be bound by transcription factors and consequently may
be no functional regulatory element. With the goal of excluding these parts of DNA from
the prediction of TFBSs, a new method for the prediction of nucleosome positions from DNA
sequence is proposed in the third section. Although not directly involved in gene regulation,
splicing of pre-mRNA yielding mature mRNA does affect the final gene product, i.e. the
protein or enzyme, of most genes in eukaryotic organisms. In the fourth section, we present
a novel approach for the prediction of splice donor sites and we demonstrate its utility on
splice donor sites stemming from different organisms. During the last years another mode of
gene regulation besides binding of transcription factors has come into focus, namely miRNAs.
MiRNAs are short RNA sequences which bind to mRNA and either inhibit translation or
facilitate the degradation of the bound mRNA. We present a new approach for predicting the
targets of a given miRNA in the fifth section.
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4.1. Recognition of transcription factor binding sites

Transcription factors bind to short stretches of DNA in the promoter regions of genes and, as
a consequence, activate or repress the transcription of that gene (see also section 2.1). The
prediction of these TFBSs has been a major topic of bioinformatics almost since its beginnings
and is still a challenging problem today.

4.1.1. Background

As one of the first, Staden (1984) uses position weight matrix (PWM) models – also referred
to as position specific scoring matrices (PSSMs) – to model promoters of Escherichia coli
including the -35 and -10 boxes. These boxes correspond to the binding sites of the prokaryotic
transcription factor σ70, which are also considered in this work. Staden adapts the concept
of PWM models from (Stormo et al., 1982), who employ PWM models to model translation
initiation sites of E. coli. While Stormo et al. learn the parameters of the PWM model by the
perceptron algorithm, which originally emerged in the field of artificial neural networks, Staden
defines these parameters as the logarithms of the relative frequencies of each nucleotide at each
position. Besides some specific treatment of zero-occurrences, Staden’s approach corresponds
to learning the parameters of the PWM by the maximum likelihood (ML) principle as presented
in section 3.1, where the score defined by (Staden, 1984) corresponds to the log-likelihood.

To date, PWM models are at the heart of popular tools like MatchTM (Kel et al., 2003) or
P-Match (Chekmenev et al., 2005), which use weight matrices from the Transfac R© database
(Wingender et al., 1996; Matys et al., 2006). PWM models are also used by Berman et al.
(2002) and Pape et al. (2009) to represent binding sites of individual transcription factors in
cis-regulatory modules. Weindl et al. (2007) use non-standard weight matrices that directly
represent binding energies to predict binding sites of the σ70 transcription factor. Many ap-
proaches for the de-novo discovery of motifs also rely on PWM models (see also section 4.2).

Zhang and Marr (1993) generalize the PWM model to dinucleotide frequencies in an approach
termed weight array method or weight array model (WAM) and apply it to the recognition of
splice donor sites of Schizosaccharomyces pombe. WAM models are equivalent to Markov mod-
els of order 1 as presented in section 3.3.1, and accordingly drop the assumption of statistical
independence between positions. Zhang and Marr (1993) show that modelling dinucleotide
frequencies and, hence, dependencies between directly adjacent positions can improve the
prediction accuracy of splice donor sites. Markov models of order 1 are also employed by
(Salzberg, 1997) for the detection of eukaryotic translation initiation sites, splice donor sites,
and splice acceptor sites. Salzberg (1997) also presents a dynamic programming approach
for computing consensus sequences from the conditional probabilities of a first order Markov
model.

Current research focusses on two main directions: improving the statistical models for repre-
senting TFBSs and utilizing enhanced principles for learning the parameters of these models.
Following the former direction, Ellrott et al. (2002) propose permuted Markov models (PMMs)
for the prediction of binding sites of the human transcription factor HNF4α. Permuted Markov
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models allow for permuting the positions of the binding sites before defining dependencies ac-
cording to a standard Markov model and, as a consequence, capture non-adjacent dependencies
between positions. In (Ellrott et al., 2002) this permutation is chosen such that the dependency
between adjacent positions after the permutation is maximized as measured by χ2.

The concept of permuted Markov models is extended to permuted variable length Markov
models (PVLMMs) by Zhao et al. (2005), who consider the prediction of splice donor sites
from SpliceDB (Burset et al., 2001) and transcription factor binding sites from Transfac R©.
PVLMMs combine PMMs with the concept of variable length Markov models (Rissanen, 1983;
Bühlmann and Wyner, 1999), which are also termed variable length Markov chains or variable
order Markov (VOM) models. In VOM models, the length of the context at each position,
i.e. the number of preceding symbols taken into account (see section 3.3.1), may depend on
the specific symbols observed at the context positions. This approach allows for modelling
only those dependencies that are supported by the data, and can greatly reduce the number of
parameters to be estimated. The variable order approach is also used by (Ben-Gal et al., 2005)
in conjunction with modelling non-adjacent dependencies by Bayesian networks (Heckerman
et al., 1995) for predicting the binding sites of the σ70 transcription factor of E. coli. These
variable order Bayesian networks are also applied to eukaryotic TFBSs from Transfac R© in
(Posch et al., 2007).

Bayesian networks and Bayesian trees are also proposed by Barash et al. (2003), who com-
pare the prediction performance of PWM models to Bayesian trees, mixtures of PWMs, and
mixtures of Bayesian trees on data sets of TFBSs from Transfac R©. Barash et al. (2003) also
investigate the utility of these models for de-novo motif discovery. Mixture models are also
employed by King and Roth (2003), who propose a model that is a mixture of singleton PWM
models, i.e. PWM models with parameters estimated from a single sequence, for the prediction
of TFBSs from Transfac R©.

Other approaches are single layer perceptrons using dinucleotide features employed by (Rani
et al., 2007) for the prediction if prokaryotic σ-factors, and the ab-initio prediction of TFBSs
for transcription factors without known binding sites (Kaplan et al., 2005). Kaplan et al.
(2005) demonstrate the utility of their approach by learning general binding preferences of
zinc-finger transcription factors from known binding sites and transferring these findings to
other factors from the same family.

Regarding enhanced learning principles, Yakhnenko et al. (2005) use Markov models of orders
1 to 3 learned by the discriminative maximum conditional likelihood (MCL) principle (see also
section 3.2.1) to predict subcellular localization signals of prokaryotic and eukaryotic proteins
from the SwissProt database (Boeckmann et al., 2003). Discriminatively learned Markov
models are also used by Grau et al. (2007b) for predicting eukaryotic TFBSs from Transfac R©.
In contrast to (Yakhnenko et al., 2005), the parameters are learned by the Bayesian MSP
principle using Gaussian and Laplace priors.

The methods used by Grau et al. (2007b) are a subset of those employed in the following, where
we compare the classification performance of Markov models learned by the discriminative
MSP principle to that of Markov models learned by the generative MAP principle. The
main goal of this study is to investigate the potential of Bayesian discriminative learning
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principles compared to generative ones. For this reason, we restrict the analyses to models
of low complexity, namely Markov models. Another aspect of this study is the comparison of
Gaussian, Laplace, and Dirichlet priors employed for the MSP principle.

4.1.2. Data

For the comparison of learning principles and priors, we consider binding sites of the prokary-
otic σ70-factor, binding sites of 7 mammalian TFs obtained from the Transfac R© database
(Wingender et al., 1996; Matys et al., 2006), and binding sites of two TFs from the Jaspar
database (Sandelin et al., 2004) stemming from Arabidopsis thaliana.

The binding sites of the σ70-factor and the corresponding background data set are those used
in (Ben-Gal et al., 2005) stemming from E. coli. The foreground data set contains 238 TFBSs
of length 12 that are present in the PromEC database1 (Lisser and Margalit, 1993) as well
as RegulonDB 3.0 (Salgado et al., 2000) and that could be mapped uniquely to non-coding
regions of the E. coli genome. The background data set is selected such that it should not
contain any σ70 TFBSs. To this end, Ben-Gal et al. (2005) extract intergenic regions from the
complete E. coli genome that are located between two tail-to-tail genes situated on opposite
strands. This data set contains 472 sequences of different lengths comprising ∼ 77.6 kbp in
total.

The sets of mammalian TFBSs comprise binding sites of length 16 bp of the TF AP-1 (112
TFBSs), steroid hormone receptors (AR/GR/PR, 104 TFBSs), C/EBP (149 TFBSs), GATA
(110 TFBSs), NF1 (96 TFBSs), Sp1 (257 TFBSs), and thyroid hormone receptor-like factors
(Thyroid, 127 TFBSs) obtained from Transfac R©, which are also considered in (Posch et al.,
2007; Grau et al., 2007b). AP-1 stands for “activator protein 1”, which is a dimeric transcrip-
tion factor playing a role in cell proliferation and survival (Karin et al., 1997). The data set of
steroid hormone receptors contains binding sites of androgen receptors (AR), glucocorticoid
receptors (GR), and progesterone receptors (PR), which are activated by binding of a steroid
hormone, and in turn bind to DNA and regulate gene expression (Evans, 1988). C/EBP is an
acronym for CCAAT-enhancer binding proteins, which is a family of at least six TFs binding
to the CCAAT box and regulating several cellular processes like proliferation, differentiation,
or inflammation (Ramji and Foka, 2002). The GATA family contains at least three distin-
guishable TFs, which bind to variations of the motif GATA and play a role in development (Ko
and Engel, 1993). X-ray structures of C/EBP and GATA have been presented in section 2.1.
NF1 stands for “nuclear factor 1”, a family of basal TFs that play a role in chromatin re-
modelling due to their competition with the formation of nucleosomes (Blomquist et al., 1999;
Chikhirzhina et al., 2008). Sp1 is a family of TFs that is essential in early stages of embryonic
development (Marin et al., 1997). Thyroid hormone receptor-like factors bind to the hormone
thyroid and act in a similar way as described for the steroid hormone receptors (Evans, 1988).
As background data set we choose second exons of human genes following (Kel et al., 2003),
which are also selected in (Posch et al., 2007; Grau et al., 2007b). This choice minimizes the
chance of false negatives in the background data set. However, it also simplifies classification

1http://margalit.huji.ac.il/promec/index.html
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compared to a prediction of TFBSs in (non-coding) promoter sequences. The background
data set contains 267 exons with a total length of ∼ 68.1 kbp.

In order to diversify the comparison, we additionally include TFBSs of two TFs of the plant
Arabidopsis thaliana into the study. These are AGL3 and Agamous (AG), which both belong
to the family of MADS-box genes and play a role in floral meristem identity (Mizukami et al.,
1996). We obtain 90 AGL3 binding sites of length 11 and 97 AG binding sites of length
10 from the Jaspar database (Sandelin et al., 2004). We randomly choose a selection of 97
promoter sequences of A. thaliana available from TAIR2 comprising ∼ 48, 5 kbp in total as a
background data set.

4.1.3. Model

As noted in the introduction, Markov models including PWM models and WAM models are
widely used for the prediction of TFBSs. In most of the cases these are learned by one
of the generative learning principles, namely ML or MAP. Here, we propose to learn the
parameters of Markov models by the discriminative MSP principle (see section 3.2.2). Since
the supervised posterior amounts to the product of the conditional likelihood and a prior on
the parameters of the models and the a-priori probabilities of the classes, the choice of the
prior influences the parameters learned and, consequently, the prediction of TFBSs. Here we
compare three different priors, namely product-Dirichlet priors (section 3.4.2), Gaussian, and
Laplace priors (section 3.4.1). Product-Dirichlet priors are a common choice when learning
the parameters of Markov models or more general Bayesian networks by the generative MAP
principle (Heckerman et al., 1995; Ben-Gal et al., 2005; Keilwagen et al., 2010b), whereas
Gaussian and Laplace priors are often applied to the parameters of Markov random fields
(Chen and Rosenfeld, 1999) and logistic regression (Madigan et al., 2005; Genkin et al., 2005;
Cawley et al., 2007). However, as the product-Dirichlet prior is conjugate to the likelihood
of Markov models, we consider it a “natural” choice for this class of models. Utilizing the
transformed product-Dirichlet prior presented in section 3.4.2, we can eliminate the influence
of the prior from the analysis by using exactly the same hyper-parameters representing identical
a-priori assumptions for the generative MAP principle and the discriminative MSP principle.

Markov models are already defined in section 3.3.1, while the employed priors are defined in
section 3.4. What is left to specify are the considered orders of the Markov models and the
hyper-parameters of the employed priors. We denote by tfbs the class of TFBSs and by bg
the class of background sequences, i.e. C = {tfbs, bg} and |C| = 2. Here, we test Markov
models of order dtfbs ∈ {0, 1}, i.e. PWM models and WAM models, for modelling TFBSs, and
Markov models of order dbg ∈ {0, 1, 2, 3, 4} for modelling background sequences. Regarding
the product-Dirichlet prior employed for the MAP and the MSP principle, we consistently
specify the equivalent sample size (ESS) for the class of TFBSs as 4 and for the background
class as 1024, reflecting that we expect TFBSs occur with relative low frequency on a genomic
scale.

For Gaussian and Laplace priors, we must define the a-prior mean µc and variance σ2
c for the

prior on the a-priori class probabilities and the constants κc that are used for determining the
2http://www.arabidopsis.org/
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variances for the parameters of the Markov models, while the corresponding prior means are
fixed to zero. We derive µc and σ2

c from the results of a study by Stepanova et al. (2005), who
investigate the frequency of occurrence of the binding sites of 184 different TFs in mammalian
genomes. We use equation (3.38) (p. 20) on the relative frequencies reported by Stepanova
et al. (2005) to derive the prior mean and variance in the space of ξ-parameters, resulting in
µtfbs = −8.634 and σ2

tfbs = 5.082 (Grau et al., 2007b).

To determine appropriate values of κc, we perform a pre-study using the binding sites of the
mammalian TF Sp1. For this data set, we perform a grid search on κtfbs (0.001 to 5, 12 values)
and κbg (0.0005 to 0.5, 10 values), where we fix the order of the TFBS (foreground) model
to dtfbs = 0 and vary the background order from dbg = 0 to dbg = 3. For each combination,
we use a 100-fold stratified holdout sampling procedure (see section 3.5.2) and determine
the resulting average AUC-ROC. For each pair (κtfbs , κbg), we then average AUC-ROC over
all background orders and choose the (κ∗tfbs , κ

∗
bg) that yields the maximum AUC-ROC. The

values determined by this procedure are κ∗tfbs = 2 and κ∗bg = 0.005 for the Gaussian prior and
κ∗tfbs = 0.005 and κ∗bg = 0.002 for the Laplace prior. We fix these values of the κtfbs and κbg

in all further analyses, which implies that, using Gaussian and Laplace priors, the results for
Sp1 and AUC-ROC are biased by the pre-study. However, we focus on other performance
measures, namely Sn, PPV, and AUC-PR, in the following.

4.1.4. Results & Discussion

We compare the classification performance of the generative MAP principle using the product-
Dirichlet prior (MAP) and the discriminative MSP principle using the transformed product-
Dirichlet prior (MSP-D), the Gaussian prior (MSP-G), and the Laplace prior (MSP-L) on the
ten data sets introduced in section 4.1.2. We use Sn for a fixed Sp of 99.9%, PPV for a fixed Sn
of 95%, and AUC-PR (see section 3.5.1) as performance measures. Sn for a fixed Sp of 99.9%
measures the rate of true TFBSs that are also predicted as TFBSs if we fix the threshold such
that we correctly classify 99.9% of the background sequences, or stated differently, such that
we erroneously classify 0.1% of the background sequences as TFBSs. PPV for a fixed Sn of
95% measures the rate of correct predictions in all sequences classified as TFBSs if for the same
threshold we recover 95% of the true TFBS. AUC-PR is a measure of the overall performance
of a classifier. We compute the values of these performance measures for all learning principles
tested and all combinations of Markov models in each iteration of a 1000-fold stratified holdout
sampling procedure (see section 3.5.2) and report the average performance together with the
standard error. The standard error gives an estimate of the range of deviation from the
reported average that can be expected if we repeat the experiment. With a probability of
0.95 this deviation is at most two-fold the standard error, or stated differently, we expect a
difference exceeding two-fold the standard error by chance with probability 0.05. Hence, we
consider a difference of performance exceeding two-fold the standard error significant.

4.1.4.1. Comparison of overall classification performance

Figure 4.1 presents the Sn (first column), PPV (second column), and AUC-PR (third column)
achieved by the studied learning principles. For each learning principle, we test all combi-
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nations of Markov models of order 0 and 1 in the foreground and Markov models of order 0
to 4 in background. For each learning principle, we choose from these the combination that
gained the best classification performance with respect to the current measure. For instance,
a Markov model of order 1 in the foreground class (TFBSs) combined with a Markov model
of order 2 in the background yields the best performance of all Markov models learned by the
MAP principle on the AP-1 data set.

Considering the AP-1 data set, MSP-D achieves the best Sn of 0.675, the best PPV of 0.241,
and the best AUC-PR of 0.642. The improvement of classification performance gained by
MSP-D over MAP and MSP-L is significant for all three performance measures, since it exceeds
two-fold the standard error as indicated by the error bars. The differences between MSP-D
and MSP-G, however, are not significant for any of the three performance measures. For
all studied classifiers, the optimal combination of the orders of Markov models differs only
slightly between the three performance measures. Interestingly, MAP prefers an order of 1 for
the foreground class combined with a fairly low order of 2 in the background class, whereas
for MSP-D a combination of order 0, i.e. a PWM model, in the foreground and a higher order
(3 or 4) in the background yields the best classification performance with respect to all three
measures. The latter can be observed for the remaining data sets as well and we scrutinize
this observation in more detail in figure 4.3.

Turning to the AR/GR/PR data set, we find a similar pattern, where again MSP-D yields
the best classification performance with regard to all three measures. On this data set, MSP-
D achieves a Sn of 0.589, a PPV of 0.226, and an AUC-PR of 0.548. MSP-D significantly
outperforms all other classifiers considering Sn and AUC-PR, whereas for PPV only the im-
provement over MSP-L is significant. In contrast to the AP-1 data set, MAP achieves the best
classification performance by a combination of two PWM models on the AR/GR/PR data set,
while for MSP-D a combination of a PWM model and a higher order Markov model performs
best. The choice of optimal orders for MSP-G and MSP-L is more unsteady for this data set
than it is for AP-1.

MSP-D also performs best on the data set of C/EBP TFBSs yielding a Sn of 0.323, a PPV
of 0.074, and an AUC-PR of 0.321. Considering Sn and AUC-PR, the improvement gained
by the discriminatively learned classifiers over MAP is remarkable and highly significant.
One explanation for this improvement might be the heterogeneity of the binding sites of the
members of the C/EBP family. For this reason the model assumption of a single Markov model
is wrong and it is known (Greiner et al., 2005) that in such cases discriminative parameter
learning particularly improves classification accuracy. This assumption is supported by the
observation that MAP performs best with regard to Sn and AUC-PR for the most complex
of the studied models on this data set, which in part can compensate for the heterogeneity of
binding sites. Regarding PPV, MSP-L performs significantly worse than MAP, MSP-D, and
MSP-G, which yield a comparable PPV. However, PPV reflects the general poor classification
performance of all approaches on the C/EBP data set. It states that less than 10% of the
predicted BSs are correct leaving more than 90% of false positives if we require 95% of the
true BSs to be recovered.

As for the previous data sets, MSP-D performs best on the GATA data set with regard to all
three performance measures with a Sn of 0.767, a PPV of 0.468, and an AUC-PR of 0.674.
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Figure 4.1.: Classification performance of Markov models using the generative MAP principle (MAP),
the discriminative MSP principle with product-Dirichlet prior (MSP-D), Gaussian prior
(MSP-G), and Laplace prior (MSP-L). For each combination of learning principle and
prior, the best combination of foreground and background order is presented. The cor-
responding values are given in parentheses, e.g. “MAP: (1, 3)” for MAP-trained Markov
models of order 1 in the foreground and order 3 in the background. For each data set
and each performance measure, the bar of the classifier yielding the best classification
performance is marked in green. The error bars indicate a deviation of two-fold standard
error in both directions.
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However, in this case the improvement over the next best classifier is significant for none of
the three performance measures. Comparing MAP and MSP-D, which use the same a-priori
information represented by identical hyper-parameters of the product-Dirichlet prior, we find
a significant improvement of MSP-D over MAP with respect to PPV and AUC-PR, whereas
the values of Sn differ only insignificantly.

MSP-D significantly outperforms MAP on the NF1 data set as well. However, in contrast to
Sn and PPV, where MSP-D yields the best values of 0.707 and 0.349, respectively, MSP-G
achieves a slightly better AUC-PR of 0.616 using a background model of lower order than
MSP-D. Again, the improvement of the best classifier over the next best one is significant for
none of the performance measures.

On the Sp1 data set all classifiers perform comparably well as measured by AUC-PR. Although
MSP-D yields the largest Sn of 0.761, PPV of 0.538, and AUC-PR of 0.799, its improvement
over the best of the remaining classifiers is significant only for Sn. Focusing the comparison
on MAP and MSP-D, which use the same prior, we find a significant improvement of MSP-D
over MAP with regard to Sn and PPV.

As a last mammalian TF, we consider the BSs of the Thyroid data set. On this data set,
MSP-D performs best for none of the three performance measures and is outperformed by
MAP yielding a Sn of 0.510, and by MSP-G yielding a PPV of 0.222 and an AUC-PR of
0.508. Comparing MAP and MSP-D we find a significant improvement of MSP-D over MAP
with regard to PPV and AUC-PR.

MSP-G also achieves the best Sn of 0.753, the best PPV of 0.494, and the best AUC-PR of 0.720
on the AGL3 data set stemming from A. thaliana. The differences between MSP-D and MSP-
G are not significant for any of the three performance measures. However, both significantly
outperform MAP with regard to Sn and PPV, and MSP-L for all three measures. For the
second plant data set, we also find a generally inferior performance of MSP-L compared to the
other classifiers. MAP yields the best Sn of 0.768 and the best PPV of 0.505, whereas MSP-D
yields the best AUC-PR of 0.759 for the AG data set. MAP and MSP-D gain a significant
improvement of Sn over MSP-G and MSP-L. Considering PPV, MAP significantly outperforms
the three other approaches, whereas MAP, MSP-G, and MSP-L achieve a significantly lower
AUC-PR than MSP-D on this data set.

Finally, we analyze classification performance on the σ70 data set stemming from E. coli. We
observe a ranking of MAP scoring best, followed by MSP-D and MSP-G, and MSP-L scoring
worst with regard to Sn, where all differences are significant. While MAP yields the best
Sn of 0.446, MSP-D achieves the largest PPV of 0.157 and AUC-PR of 0.510. In both cases
the improvement of MSP-D over MAP and MSL-L is significant, while between MSP-D and
MSP-G this is the case regarding AUC-PR and Sn.

We summarize the results on the ten data sets in tables 4.1(a) through 4.1(e). Here, we
additionally include the performance measures AUC-ROC and FPR for a fixed Sn of 0.95 into
the analysis. In each cell of the tables, we count the data sets for which the classifier given in the
header of the column performs significantly better than the classifier specified in the header
of the row. A better classification performance corresponds to greater values of Sn, PPV,
AUC-PR, and AUC-ROC, whereas for FPR lower values indicate improved performance.
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Table 4.1.: Summary of the comparison using five performance measures. Each sub-table shows a
statistic about the number of data sets for which the learning principle specified in the
header of the column yields a significant improvement of classification performance over
the learning principle specified in the header of the row. For instance, MSP-D yields a
significantly larger Sn than MSP-L for 8 of the 10 data sets.

(a) Sn

greater
MAP MSP-D MSP-G MSP-L

sm
a
ll
er

MAP 6 3 2
MSP-D 1 0 0
MSP-G 3 5 1
MSP-L 5 8 5

(b) PPV

greater
MAP MSP-D MSP-G MSP-L

sm
a
ll
er

MAP 7 7 2
MSP-D 1 0 0
MSP-G 1 0 0
MSP-L 6 9 9

(c) AUC-PR

greater
MAP MSP-D MSP-G MSP-L

sm
a
ll
er

MAP 8 5 1
MSP-D 0 0 0
MSP-G 0 4 0
MSP-L 6 8 8

(d) AUC-ROC

greater
MAP MSP-D MSP-G MSP-L

sm
a
ll
er

MAP 6 7 1
MSP-D 2 2 1
MSP-G 2 2 0
MSP-L 5 8 9

(e) FPR

smaller
MAP MSP-D MSP-G MSP-L

g
re

a
te

r MAP 6 5 1
MSP-D 0 2 1
MSP-G 1 0 0
MSP-L 8 8 8

Considering the first column of table 4.1(a) we find that MAP significantly outperforms MSP-
D regarding Sn on one data set, MSP-G on three data sets, and MSP-L on five data sets. In
turn, MSP-D yields a significantly improved Sn over MAP for six data sets, and over MSP-G
and MSP-L for five and eight data sets, respectively. The table shows that regarding Sn,
MSP-D achieves the best overall performance of all tested classifiers, as it performs better
than any of the other classifiers for at least half of the data sets. The other extreme is MSP-L
which performs significantly worse than any of the other classifiers for at least half of the data
sets.

This inferiority of MSP-L becomes even more articulate for PPV and AUC-PR, where MSP-L
performs worse than the other classifiers for six to nine data sets. With regard to PPV, MSP-
D outperforms MAP for seven of the ten data sets, whereas the opposite holds true for only
one data set. The classification performance of MAP is inferior to that of MSP-G in seven
cases as well. In contrast, the PPV reached by MSP-D and MSP-G differs significantly for
none of the ten data sets. Considering AUC-PR, MAP is again significantly outperformed by
MSP-D as well as MSP-G in the majority of cases. For none of the data sets, MSP-D performs
significantly worse than any of the tools, while MSP-G is surpassed only by MSP-D for four
of the ten data sets.

The general picture remains similar with regard to AUC-ROC and FPR. Again, MSP-L is
clearly inferior to the other classifiers, and MAP is more often outperformed by MSP-D and
MSP-G than vice versa. However, the dominance of MSP-D over MSP-G is less pronounced
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4.1. Recognition of transcription factor binding sites

for AUC-ROC than it was for Sn and AUC-PR, as MSP-G outperforms MSP-D in two cases
and in just as many cases we find the opposite. MSP-G yields a significantly lower FPR than
MSP-D in two cases, whereas MSP-D does not perform significantly better than MSP-G for
any of the ten data sets.

4.1.4.2. Influence of Gaussian vs. product-Dirichlet prior

MSP-G and MSP-D show an improved classification performance over MAP and MSP-L with
regard to Sn, PPV, AUC-PR, AUC-ROC, and FPR. Comparing the results of MSP-G and
MSP-D in table 4.1, we find a slight advantage of MSP-D which is particularly noticeable
for Sn and AUC-PR. As both use the discriminative MSP principle, these differences can be
attributed to the employed priors and associated hyper-parameters.

In figure 4.2, we investigate in which aspects the two priors, namely the Gaussian prior and
the transformed product-Dirichlet prior, are different. To this end, we plot the density of the
Gaussian prior for the chosen κtfbs = 2 and the density of the transformed Dirichlet prior with
αtfbs = 4 against the value of parameter ξA on a logarithmic scale. The Gaussian prior assumes
all parameters to be independent (see section 3.4.1), whereas the transformed Dirichlet prior
explicitly models the interdependencies of parameters living on the same simplex. Thus we also
consider different values of the other two free parameters, ξC and ξG, whereas the parameter
ξT is not free but fixed to a value of 0 (see section 3.4.2).
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Figure 4.2.: Comparison of the density of the transformed Dirichlet prior with equivalent sample size
αtfbs = 4 to the density of the Gaussian prior with κ∗tfbs = 2 for parameter ξA. While all
parameters are assumed to be independent for the Gaussian prior, the value of the density
of the transformed Dirichlet prior depends on the values of the remaining free parameters
ξC and ξG.

A first obvious difference, which has already been noted in section 3.4.2, is the almost linear
decline of the transformed Dirichlet prior in the tails, where the Gaussian prior shows a
quadratic characteristic. Although the transformed Dirichlet prior is almost quadratic in the
vicinity of the maximum, this region is fairly narrow with regard to the values of ξA. From
figure 4.2 we can also observe the effects of the interdependency between ξA, and ξC and ξG. If
ξC and ξG are equal to 0, the maximum of the density with regard to ξA is located at a value of
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0, which corresponds to a uniform probability distribution over all four nucleotides. If ξC or ξG
deviate from 0, we find that the maximum with regard to ξA is shifted into the same direction,
which also shifts the optimal parameters in the direction of a uniform distribution, reflecting
the choice of hyper-parameters. Nevertheless, these deviations leave the characteristic of
the density above ξA = 5 almost unchanged. Hence, reasons for the advantage of MSP-D
over MSP-G might be the explicit modelling of interdependencies between parameters on the
same simplex and the combination of a linear characteristic in the far tails, which penalizes
justified deviations from the uniform distribution less than a quadratic decline, and a quadratic
characteristic in the vicinity of the maximum, which is more convenient than the discontinuity
of the Laplace prior.

4.1.4.3. Influence of the order for MAP and MSP-D

We might argue that the choice of hyper-parameter for the different priors greatly influences
classification performance and, hence, the results of the comparison. This is definitely true for
the Gaussian and the Laplace prior, i.e. MSP-G and MSP-L. Although the values of the κc,
which determine the hyper-parameters, are carefully chosen in a pre-study, it is conceivable to
find other values of κc that lead to an improved overall performance of MSP-G and MSP-L on
these data sets. However, regarding the comparison of MSP-D to MAP we can at least state
that both use equivalent priors with identical hyper-parameters and, hence, this comparison is
unbiased by the influence of different priors, and the improvement of classification performance
achieved by MSP-D can be attributed to the discriminative learning principle. Nonetheless, a
recent study (Keilwagen et al., 2010c) gives indication that the discriminative MSP principle
and the generative MAP principle react differently to an increase or decrease of ESS and each
principle prefers different magnitudes of ESS. Hence, although the comparison is unbiased, it
may not be “fair” from a more general perspective.

In the following, we scrutinize the different behavior of discriminative and generative learning
principles with regard to the orders of the employed Markov models. Since the comparison of
MAP and MSP-D is unbiased by the choice of priors, we limit the further analyses to these
two approaches. Figure 4.3 presents AUC-PR of MAP and MSP-D for all tested combinations
of orders on three exemplary data sets that represent well the spectrum across all data sets.
Considering the results of MAP and MSP-D on the C/EBP data set, we find a general tendency
to prefer higher order background models. The only exception is the combination of two PWM
models for MAP, which performs notably well compared to the other combinations learned
by MAP. While the order of the foreground model has only minor influence for MAP, we find
a clear decrease of AUC-PR considering MSP-D for order 1 in the foreground as opposed to
those combinations using a PWM model, which can possibly be attributed to over-fitting. We
also find that the optimal combination of model orders, which is (1, 4) for MAP and (0, 4) for
MSP-D, yields a significant improvement of AUC-PR compared to all other combinations of
orders for both learning principles.

The latter can not be observed for the Sp1 data set. The behavior of MAP with regard to
model orders appears fairly erratic on first sight, but with the exception of the combination
of two PWM models, we find an increasing AUC-PR with increasing order of the background
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Figure 4.3.: Comparison of MAP and MSP-D for all tested combination of orders of the employed
Markov models on three exemplary data sets. For each data set the bar of the combination
of orders yielding the greatest AUC-PR is marked in green.

model up to order 3, whereas AUC-PR decreases for order 4. For MAP, we also find a
tendency to prefer a WAM model in the foreground instead of a PWM model. However, the
optimal combination of orders (1, 3) does not improve classification performance significantly
as compared to (0, 0). Again, we observe a clear preference of MSP-D for a PWM model
in the foreground. However, a clear distinction between different orders of the background
model cannot be made and we observe only a slight improvement for higher order background
models, if we use a first order model in the foreground.

On the σ70 data set, the clear preference of MSP-D with regard to the foreground order is
superimposed by the predominance of lower order background models. The best combination
of orders (0, 2) using MSP-D is significantly superior to all other combinations on this data
set, whereas for MAP the combinations of a PWM model in the foreground and a first or
second order Markov model in the background achieve comparable values of AUC-PR.

Summarizing the results, we do not find a congruent preference regarding model orders for
MAP and MSP-D. For MSP-D, we observe the tendency that a PWM model in the foreground
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combined with a higher order Markov model in the background achieves the best AUC-PR.
In contrast, MAP shows no consistent preference of model orders. However, we do find that
a combination of two PWM models often performs surprisingly well. One explanation for the
low performance of WAM models in the foreground for MSP-D could be over-fitting. For the
chosen hyper-parameters, we use the same hyper-parameters for the parameters of a fourth
order Markov model in the background (1024

45 = 1) as for a PWM model in the foreground
( 4
41 = 1), whereas the hyper-parameters for the WAM model are 4

42 = 0.25. However, it is
not obvious, why this does affect MSP-D but not MAP, which uses the very same hyper-
parameters.

4.1.4.4. Classification performance on small data sets

Finally, we investigate on the Sp1 data set, how the classification performance of MAP and
MSP-D depends on the amount of training data. To this end, we extend the stratified holdout
sampling by an additional sub-sampling on the partitions used for training to artificially re-
duce the size of the training data set. Since the background data set contains a number of long
sequences and we only sample complete sequences (see section 3.5.2, p. 41), we cut the back-
ground data set into chunks of 100 bp beforehand. Conducting an independent sub-sampling
on the foreground and background data set, we adhere to a stratified schema and keep the
proportions of the two classes constant. We present the results with regard to AUC-PR for
sub-sampled training data sets of 5% to 100% of the original size in figure 4.4. The evaluation
for the other considered performance measures gives similar results (data not shown). Besides
the different treatment of the background data, the results for 100% of the training data cor-
respond to those presented in figure 4.3. Considering the first row of figure 4.4, we find that
MSP-D (dashed line) performs equally or better than MAP (solid line) for all relative sizes of
the training data. The improvement of MSP-D over MAP is especially noticeable for dbg = 1
and dbg = 2, which can already be anticipated from figure 4.3.

The picture is less clear for dtfbs = 1 as shown in the second row of figure 4.4. For dbg = 2 and
dbg = 1, MAP even achieves a greater AUC-PR than MSP-D for relative sizes of the training
data of 40% and above. Interestingly, MSP-D still performs better than MAP for the smallest
training data sets. Hence, we may state that although MSP-D yields a lower maximum AUC-
PR for the largest training data sets, it approaches this maximum faster than MAP with
increasing relative size of the training data. This observation is not in accordance with the
findings of Ng and Jordan (2002), who compare the classification performance of MAP-trained
näıve Bayes classifiers and logistic regression for varying sizes of the training data on data sets
from the UCI machine learning repository. Ng and Jordan (2002) find that although logistic
regression has a lower asymptotic generalization error, i.e. a higher classification performance
on independent test data using large training data sets, the näıve Bayes classifier may converge
faster to its asymptotic performance. For discrete data, the MAP-trained näıve Bayes classifier
corresponds to MAP using two PWM models (cf. figure 4.4(a)), whereas logistic regression is
equivalent to a classifier using two PWM models trained by the discriminative MCL principle
(see sections 3.2.1 and 3.3.1). The main difference – besides the specific data sets – between
the study of Ng and Jordan (2002) and the evaluations presented here is that we use the MSP
learning principle instead of MCL in the discriminative setting. Since MAP and MSP-D use
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Figure 4.4.: Comparison of MAP (solid line) and MSP-D (dashed line) for different sizes of the training
data on the Sp1 data set. We plot AUC-PR against the percentage of sub-sampled data
that are used for the training.

equivalent priors with identical hyper-parameters in the study presented here, we may state
that the differences we find can be attributed to the different learning principles alone.

4.1.5. Conclusions

We compare the classification performance of Markov models trained by the generative MAP
principle and the discriminative MSP principle for the prediction of TFBSs on ten data sets
stemming from mammals, A. thaliana, and E. coli. We find that the MSP principle with
Gaussian and transformed product-Dirichlet priors outperforms the MAP principle in the
majority of cases. As MSP with a transformed product-Dirichlet prior and MAP use equivalent
priors with identical hyper-parameters, this improvement in classification performance can be
attributed to the Bayesian discriminative MSP learning principle alone. Our results give
indication that the discriminative learning of parameters by MSP might be beneficial for
other problems in bioinformatics as well, some of which are scrutinized in the remainder of
this work.
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4.2. De-novo discovery of cis-regulatory modules

In the last section, we considered the recognition of known transcription factor binding sites.
However, often we know neither the exact binding position nor the binding motif of the
transcription factor of interest. Instead, we are faced with a number of approximate binding
regions or a selection of putative promoters of potentially co-regulated genes. These are
determined by wet-lab techniques, which we shortly describe in the next sub-section. De-novo
motif discovery aims at inferring the binding motif and corresponding binding sites from the
given sequences. Here, we propose a novel approach for de-novo motif discovery that employs
the discriminative MSP principle to search for differentially abundant motifs and utilizes the
positional preference of binding sites, and we extend this approach to the discovery of cis-
regulatory modules comprising binding sites of two different transcription factors.

4.2.1. Wet-lab techniques

DNase footprinting (Galas and Schmitz, 1978) uses Deoxyribonuclease I (DNase I) to digest
DNA that is not bound in proteins, e.g. transcription factors. The remaining fragments of
undigested DNA are then sequenced by the Maxam-Gilbert method. For obtaining informa-
tion about binding of a specific transcription factor, this factor must be available in purified
form for the incubation of DNA. DNase footprinting is able to identify binding sites with an
accuracy of up to 1 bp. However, distinct runs of gel-electrophoresis are necessary for each
considered sequence and, hence, DNase footprinting is time-consuming and only suitable for
low-throughput experiments.

EMSA (electrophoretic mobility shift assay) (Fried and Crothers, 1981; Hellman and Fried,
2007) utilizes that protein-DNA complexes migrate more slowly than free DNA in electrophore-
sis and bands of labeled DNA are shifted on the gel, depending on the binding of the studied
protein to DNA. By adding different concentrations of a transcription factor to the DNA so-
lution, the binding affinity of transcription factors can be studied, and binding affinities of
different factors can be compared. However, EMSA does not elucidate exact binding sites
of the transcription factor of interest, but is only capable of measuring the general binding
affinity to a (longer) DNA sequence.

For ELISA (enzyme-linked immunosorbent assay) (Benotmane et al., 1997; Mönke et al., 2004),
short DNA sequences are immobilized and incubated with the transcription factor of interest.
After a washing step, the bound transcription factor is detected using a specific antibody. Since
for many transcription factors specific antibodies do not exist, often recombinant variants are
employed that exhibit artificial tags at the N- or C-terminus of the transcription factor. These
tags can be detected by generic antibodies.

Antibodies are also used for chromatin immunoprecipitation combined with microarrays (ChIP-
on-chip or ChIP-chip) (Sun et al., 2003; Wu et al., 2006). For ChIP-chip, DNA is cross-linked
to the transcription factor of interest and the free DNA is either digested by nuclease or
sheared by sonication. The complexes of DNA and transcription factor are then extracted
using antibodies and the linked transcription factor is removed. For detecting the resulting
DNA fragments on the microarray, these are labeled by a fluorescent tag. The labeled DNA
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is hybridized to the probes of a microarray and the binding to probes is detected as a fluo-
rescence image. This image is further processed resulting in a list of intensities for each of
the probes. Similar to microarrays measuring mRNA abundance, these intensities must be
normalized and statistical tests or more complex models must be employed to finally decide
if the DNA corresponding to a specific probe is bound by the factor of interest. Hence, the
annotation of binding regions depends on the computational methods used for the latter step.
If genome-wide tiling arrays exist for the studied organism, ChIP-chip can be used to obtain
a genome-wide map of binding sites for the factor of interest. However, the spotted probes
of the applied tiling arrays often comprise several hundred basepairs (Sun et al., 2003), which
limits the resolution of this technique.

The first steps of ChIP-chip, i.e. the immunoprecipitation, are also applied for chromatin
immunoprecipitation combined with parallel sequencing (ChIP-seq) (Johnson et al., 2007).
However, instead of microarrays, high-throughput parallel sequencing is used to analyze the
extracted sequences. The resulting sequence reads are then mapped to the genome, and regions
covered by a minimum number of reads and considerably enriched with reads compared to
a control experiment are annotated as binding sites of the factor of interest (Johnson et al.,
2007). The resolution of ChIP-seq depends on the employed sequencing technique and the
length of the DNA fragments selected for sequencing, but is typically considerably higher than
using ChIP-chip confining the putative binding sites to tens or a few hundred of basepairs.

The latter techniques all depend on the availability of either a specific antibody for the tran-
scription factor of interest or a tagged, recombinant variant of this factor. Often neither
does exists and we must resort to other, more indirect techniques for genome-scale analysis
of gene regulation. One such technique is gene expression profiling by microarrays (Lock-
hart and Winzeler, 2000). Current microarrays can measure mRNA levels of thousands of
genes of an organism, e.g. the ATH1 chip for A. thaliana contains probes for more than 22500
genes. Microarrays can be used to identify genes that are differentially expressed under certain
conditions, e.g. external stress factors, hormone supply, or different stages of development.
Assuming that co-expression is related to co-regulation, we expect specific cis-regulatory el-
ements or modules to be enriched in the promoter regions of these genes compared to the
promoter regions of the remaining genes.

Given a set of promoter regions, de-novo motif discovery approaches can be used to identify
these elements. De-novo motif discovery is also used to infer the binding motif and exact
binding sites in the approximate regions determined by ChIP-chip and, depending on the
achieved resolution, ChIP-seq experiments.

4.2.2. Related work

One of the first approaches for de-novo motif discovery is proposed by Lawrence and Reilly
(1990), who use an OOPS (one occurrence per sequence) model which is learned by the gen-
erative ML principle using the expectation-maximization (EM) algorithm. The OOPS model
assumes that each sequence in the data set contains exactly one occurrence of the motif of
interest. Lawrence and Reilly (1990) use a homogeneous Markov model of order 0 to model the
flanking parts of the sequence, i.e. those positions that are not covered by a motif occurrence.
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As a motif model, they employ PWM models and more specific models for e.g. palindromic
motifs. The EM algorithm is also employed by Bailey and Elkan (1994) in the MEME al-
gorithm for de-novo motif discovery. In contrast to Lawrence and Reilly (1990), Bailey and
Elkan (1994) use a two-component mixture model, where the one component models motif
occurrences by a PWM model and the other component uses a homogeneous Markov model
of order 0 for modeling a background distribution of nucleotides. For learning this model,
the input sequences are cut into overlapping sub-sequences of length w, where w denotes the
length of the motif to be found. Due to overlapping, the MEME algorithm has the tendency
to converge to repetitive sequences, which Bailey and Elkan (1994) compensate for by an ad-
ditional normalization step. In (Bailey and Elkan, 1995), MEME is extended by an option to
choose between the original two-component mixture model and the OOPS model. MEME is
still one of the most frequently used programs for de-novo motif discovery, especially via the
MEME web server (Bailey et al., 2006).

In (Lawrence et al., 1993), the EM algorithm for learning the OOPS model is replaced by
Gibbs sampling. Additionally, the model is extended to multiple different motifs, which is
simplified by using sampling instead of an EM algorithm considering all combinations of motif
occurrences. Lawrence et al. (1993) also include heuristics to compensate for phase shifts and to
automatically adapt the motif length w. The generative MAP principle is used for estimating
the parameters of the models. The Gibbs sampler is extended to multiple instances for each of
the considered motifs in (Thompson et al., 2003). While the former two Gibbs samplers report
the optimal MAP solution after convergence, the centroid Gibbs sampler (Thompson et al.,
2007) considers for each sequence the sampled solutions, i.e. the number of sites, the motifs
describing these sites and the positions of occurrence, over a large number of iterations after
an initial burn-in phase. The reported solution is then the centroid of all sampled solutions,
i.e. the solution with the minimum pair-wise distance to all sampled solutions.

Improbizer (Ao et al., 2004) employs a combination of a PWM model and a homogeneous
Markov model as well, which are learned by a heuristic procedure similar to the EM algorithm,
using 6-mers found in the data to initialize the PWM model. For learning the background
distribution represented by the homogeneous Markov model, Improbizer can utilize an ad-
ditional, typically large, background data set to compensate for organism-specific properties
like G/C-content. Optionally, Improbizer may learn a Gaussian position distribution of motif
occurrences, which is also used to predict motif occurrences.

Positional information is also utilized by Kim et al. (2008) in conjunction with Gibbs sampling.
The proposed algorithm A-GLAM models the position distribution by a Gaussian density
similar to Improbizer. Kim et al. (2008) choose a PWM model as the motif model, while the
background or flanking sequences are modeled by a third order homogeneous Markov model.
Since A-GLAM uses a Bayesian approach, it applies the common choice of a product-Dirichlet
prior to the parameters of the sequence models. As a prior for the parameters of the position
distribution, (Kim et al., 2008) use the product of a uniform density for the mean parameter
and a gamma density for the precision.

In contrast to the previous approaches, Weeder (Pavesi et al., 2001) does not employ a statis-
tical model representing the sequence motif, but searches for over-represented patterns in the
sequences of interest. These patterns correspond to common sub-strings that occur in most of
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the sequences of interest with a user-specified maximum number of mismatches. The search for
common sub-strings with mismatches is accomplished efficiently by generalized suffix trees.

All the former approaches have in common that they search for motifs or patterns that are
over-represented in a target data set comprising the sequences of interest. However, such
motifs frequently appear over-represented in the entire genome or in all promoter regions and
are not specific for the target data set. To overcome this problem, discriminative approaches
have been proposed that search for differentially abundant motifs in a set of target sequences
compared to a control data set. The control data set may either be chosen specifically, for
instance as promoters of genes that are not differentially expressed in experiments, or sampled
from all promoter sequences except those in the target data set.

The discriminative matrix enumerator (DME, Smith et al. (2005)) searches for PWM models
that are over-represented in the target data set relative to a control data set. To this end,
DME enumerates weight matrices that are reasonably different from a uniform distribution,
which excludes very degenerate motifs. DME chooses the PWM model that maximizes the log
likelihood ratio between the likelihood of all w-mers in the target data set and the likelihood of
all w-mers in the control data set. Since the number of matrices that are initially enumerated
is limited due to computation time, the chosen matrix is further refined by a local search
among slightly deviating matrices in a chosen neighborhood.

Redhead and Bailey (2007) propose discriminatively enhanced motif elicitation (DEME) for
motif discovery in protein and DNA sequences. DEME optimizes a ZOOPS (zero or one oc-
currence per sequence) model with respect to conditional likelihood. However, the frequencies
observed from the data are augmented by pseudo counts, resulting in an objective function
similar to the supervised posterior utilizing a product-Dirichlet prior. DEME uses a PWM
model for representing the motif and a homogeneous Markov model of order 0 for representing
flanking sequences. Another homogeneous Markov model of order 0 is used for modeling all
sequences in the control data set.

Although the previous approaches can detect binding sites of multiple motifs, typically by
removing all occurrences of the first motif from the data and restarting the algorithm, they
do not model cis-regulatory modules explicitly. Cis-regulatory modules comprise multiple
binding sites of identical or different transcription factors, which bind coordinately to have
a regulatory effect. This coordinate binding may entail a specific order of binding sites or
preferred distances between the sites.

In a recent review, Loo and Marynen (2009) assign approaches for the detection of cis-
regulatory modules (CRMs) into three classes: CRM scanners that search for occurrences
of a pre-defined cis-regulatory module for instance in the entire genome, CRM screeners that
use a data base of pre-defined PWM models representing the binding sites of different factors
and search for over-represented combinations of such binding sites, and CRM builders that
learn new PWM models forming a CRM model given promoters of potentially co-regulated
genes. The latter class is essentially an extension of the above mentioned approaches for de-
novo motif discovery to multiple factors and binding sites. In the following, we consider only
CRM builders.
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CoBind (GuhaThakurta and Stormo, 2001) models two cooperatively binding transcription
factors by two PWM models. Binding sites according to these PWM models may occur in a
sequence as non-overlapping sub-sequences. The objective function optimized by CoBind is
the log-likelihood of the two PWM models given start positions of motif occurrences, which is
normalized to the likelihood of the sequences in a control data set. The optimization of param-
eters with respect to this objective function is accomplished by a combination of sampling and
optimization: start positions of motif occurrences in the sequences of the target data set are
drawn similar to Gibbs sampling, and given these start positions, the parameters of the two
PWM models are optimized by gradient descent. After a fixed number of iterations, CoBind
reports the PWM models that achieved the maximum objective function and corresponding
binding sites.

CisModule (Zhou and Wong, 2004) models each sequence by a hierarchical mixture model. At
each position of a sequence, this model may open a new CRM with a certain probability or,
with the complementary probability, proceed with flanking sequence, which is modeled by a
homogeneous Markov model of order 1. To reduce computational complexity, the length of
CRMs is fixed. At each position within a CRM, a similar decision is made to either start a
binding site of a transcription factor, which is represented by a PWM model, or to consider
this position as flanking. After closing a CRM, CisModule may either start the next CRM or
proceed with flanking sequence. This process is repeated until the end of the current sequence
is reached and CisModule proceeds with the next sequence. The parameters of CisModule
are optimized by Gibbs sampling, and positions that are located within a sampled CRM in at
least 50% of the sampling iterations are finally predicted as CRM occurrences.

EMCModule (Gupta and Liu, 2005) uses a combination of PWM models for binding sites
within CRMs and homogeneous Markov models for flanking sequences. In contrast to the
previous approaches, EMCModule initially requires a selection of candidate PWM models,
which can be obtained either from databases like Transfac R© or Jaspar, or by single motif
discovery approaches. For optimizing the selection of PWM models, EMCModule employs a
method called evolutionary Monte Carlo, which combines the evolutionary selection of PWM
models with sampling, whereas the parameters of the PWM are learned by the MAP princi-
ple. EMCModule finally reports the combination of PWM models that yields the maximum
posterior and corresponding CRMs.

Valen et al. (2009) propose a discriminative approach called Motif Annealer (MoAn) for the
de-novo discovery of CRMs. MoAn considers binding sites of at most two transcription fac-
tors, which are represented by PWM models, whereas flanking sequences are modeled by a
homogeneous Markov model of order 0. Similar to the approach proposed in this work, MoAn
explicitly models the co-occurrence of both motifs, the occurrence of each single motif, and
the occurrence of none of the motifs in each of the sequences, resulting in a mixture model
over these possibilities. Valen et al. (2009) optimize the parameters of MoAn with respect to
conditional likelihood and to this end employ a simulated annealing approach to escape local
maxima.

Table 4.2 summarizes the above approaches and classifies these according to the employed
learning principle, i.e. either generative or discriminative, and the capability of learning a po-
sition distribution of binding sites from the data. Approaches that explicitly model CRMs are
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Table 4.2.: Classification of approaches for de-novo motif discovery according to the employed learning
principle and the capability to learn a position distribution from the data. Approaches
marked with an asterisk are specifically designed for the de-novo discovery of cis-regulatory
modules.

Position distribution
fixed learned from data
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marked with an asterisk. Most of the existing approaches use a generative learning principle,
i.e. the ML or MAP principle, or a pattern-based approach in case of Weeder, and do not learn
a position distribution. For all approaches considered here, the fixed position distribution is
a uniform distribution over all admissible start positions. To the best of our knowledge, no
approach exists that uses a discriminative approach for discovering differentially abundant
motifs in conjunction with learning the position distribution from the data. Here, we propose
such an approach that is also capable of modeling cis-regulatory modules comprising at most
two different motifs.

4.2.3. Model

This section is structured as follows. We introduce the ZOOPS model including a position dis-
tribution that allows for the de-novo discovery of single motifs in section 4.2.3.1, and we extend
this model to cis-regulatory modules comprising two different motifs in section 4.2.3.2. We
define the position distributions used for these two models in section 4.2.3.3. In section 4.2.3.4,
we define priors for the sequence models and the position distribution. Finally, we describe
a heuristic employed for an automatic adaption of motif length and the compensation for
phase shifts in section 4.2.3.5 and we explain how we use the learned model to predict motif
occurrences in a set of given sequences in section 4.2.3.6.

We learn the parameters of the employed models by the discriminative MSP principle (see
section 3.2.2, p. 13). To this end, we need the likelihood of sequence x and class c, where
c ∈ {target , control}. Here, target denotes the class of target sequences and control denotes
the class of sequences stemming from the control data set. We decompose this likelihood into
the a-priori probability of class c given parameters βtarget and βcontrol , and the probability of
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sequence x given class c and class-dependent parameters βc, yielding

P (x, c|β) = P (c|βtarget , βcontrol )P (x|c,βc), (4.1)

where β = (βtarget , βcontrol ,βtarget ,βcontrol ). We parameterize the a-priori class probabilities in
terms of real-valued parameters βc as

P (c|βtarget , βcontrol ) =
exp(βc)∑
c̃ exp(βc̃)

(4.2)

to allow for unconstrained numerical optimization (cf. sections 3.2.1, p. 12).

4.2.3.1. ZOOPS model with position distribution

We start the derivation of the ZOOPS model employed for the de-novo discovery of single
motifs with the model for sequences that do not contain a binding site of the considered
motif. This model is also used for the class of control sequences that are assumed to contain
no binding sites. Similar to most of the other approaches, we model such sequences by a
homogeneous Markov model of order 0. Accordingly, we define the probability P0(x|c,βc) of
sequence x given class c and parameters βc as

P0(x|c,βc) = PhMM(0)(x|c,βc,hMM ), (4.3)

where the homogeneous Markov model is parameterized in terms of real-valued parameters as
defined in section 3.3.1 and βc,hMM denotes the subset of parameters in βc that are used for
this Markov model.

To derive the model for those sequences stemming from class target that contain a binding
site, we first assume that we know the position ` at which this site starts. We define the joint
probability Pm(x, `|c,βc) of sequence x and start position ` given class c and parameters βc

as the product of

• the probability of position ` according to the position distribution Ppos(`|c,βc,pos) with
parameters βc,pos,

• the probability of the nucleotides occurring in the flanking sequence before the binding
site, which are modelled by the same homogeneous Markov model with parameters
βc,hMM that is also used in equation (4.3),

• the probability of the nucleotides within the binding site, i.e. x`, . . . , x`+w−1 and w

denoting the length of the motif, which are represented by a strand model enclosing a
PWM model with parameters βc,m, and

• the probability of the nucleotides in the flanking sequence after the binding site according
to the homogeneous Markov model.

We define

Pm(x, `|c,βc) = Ppos(`|c,βc,pos)PhMM(0)(x1, . . . , x`−1|c,βc,hMM )·
PS

m(x`, . . . , x`+w−1|c,βc,m)PhMM(0)(x`+w, . . . , xL|c,βc,hMM ), (4.4)
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which we may alternatively state as

Pm(x, `|c,βc) = PhMM(0)(x|c,βc,hMM )Ppos(`|c,βc,pos)
PS

m(x`, . . . , x`+w−1|c,βc,m)
PhMM(0)(x`, . . . , x`+w−1|c,βc,hMM )

,

(4.5)

where βc includes βc,pos, βc,hMM , and βc,m.

The strand model is defined as

PS
m(x|c,βc,m) = P (fw|βc,m)PPWM(x|c,βc,m) + P (bw|βc,m)PPWM(xrc|c,βc,m), (4.6)

where xrc denotes the reverse complement of x, and the a-priori probabilities of the for-
ward strand P (fw|βc,m) and backward strand P (bw|βc,m) are parameterized in analogy to
equation (4.2) in terms of real-valued parameters βfw|c,m and βbw|c,m. The PWM model
PPWM(x|c,βc,m) is parameterized as defined in section 3.3.1.

Actually, we do not know the start position ` of the binding site. Rather this is one information
we want to determine by de-novo motif discovery. Hence, we regard the random variable
emitting the start positions as a hidden variable and determine the probability of sequence x

given class c and parameters βc as the marginal probability over all admissible start positions
`, i.e.

Pm(x|c,βc) =
L−w+1∑

`=1

Pm(x, `|c,βc). (4.7)

We finally define the probability PZOOPS(x|c,βc) of sequence x given the ZOOPS model as a
mixture of P0(x|c,βc) and Pm(x|c,βc)

PZOOPS(x|c,βc) = P (u = 0|c,βc)P0(x|c,βc) + P (u = 1|c,β)Pm(x|c,βc), (4.8)

where P (u = 0|c,βc) denotes the a-priori probability that a sequence does not contain a
binding site and P (u = 1|c,β) denotes the complementary a-priori probability. These a-priori
probabilities are parameterized in analogy to equation (4.2) in terms of real-valued parameters
β0|c and β1|c.

4.2.3.2. Multiple motif model with position distribution

The ZOOPS model can be readily extended to multiple motifs. We assume that we observe
a binding site of the first motif m1 at position `1 and a binding site of the second motif m2

at position `2 of sequence x. The numbering of motifs does not imply an order of occurrence
and the two motifs may occur at arbitrary positions `1 and `2 as long as the two motifs do
not overlap. We define the joint probability of sequence x and these two positions in analogy
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to equation (4.5) as

Pm1,m2(x, `1, `2|c,βc) = PhMM(0)(x|c,βc,hMM )Ppos(`1, `2|c,βc,pos)

PS
m1

(x`1 , . . . , x`1+w1−1|c,βc,m1)
PhMM(0)(x`1 , . . . , x`1+w1−1|c,βc,hMM )

PS
m2

(x`2 , . . . , x`2+w2−1|c,βc,m2)
PhMM(0)(x`2 , . . . , x`2+w2−1|c,βc,hMM )

, (4.9)

where Ppos(`1, `2|c,βc,pos) denotes the joint position distribution of `1 and `2 given class c
and parameters βc,pos, and PS

m1
(x`1 , . . . , x`1+w1−1|c,βc,m1) and PS

m2
(x`2 , . . . , x`2+w2−1|c,βc,m2)

denote the probabilities of the binding sites given the strand models for motif m1 and m2,
respectively.

Again, we do not know the start position `1 and `2 and, hence, marginalize over all admissible
start positions, yielding the marginal probability of sequence x given class c and parameters
βc

Pm1,m2(x|c,βc) =
L−w1+1∑

`1=1

L−w2+1∑
`2=1

Pm1,m2(x, `1, `2|c,βc). (4.10)

Here, we do not take into account, that the binding sites of the two motifs are not allowed
to overlap. We deal with this problem by assigning positions `1, `2 that would result in
overlapping binding sites a probability of zero via the position distribution.

In analogy to the ZOOPS model, we define the probability of sequence x given the multiple
motif (MuMo) model as a mixture model over the different combinatorial possibilities of motif
presence and absence, i.e.

PMuMo(x|c,βc) = P (u1 = 1, u2 = 1|c,βc)Pm1,m2(x|c,βc)+

P (u1 = 1, u2 = 0|c,βc)Pm1(x|c,βc)+

P (u1 = 0, u2 = 1|c,βc)Pm2(x|c,βc)+

P (u1 = 0, u2 = 0|c,βc)P0(x|c,βc), (4.11)

where P (u1 = 1, u2 = 1|c,βc) denotes the a-priori probability that a sequence contains binding
sites for both motifs, P (u1 = 1, u2 = 0|c,βc) and P (u1 = 0, u2 = 1|c,βc) denote the a-priori
probabilities of single motif occurrences, and P (u1 = 0, u2 = 0|c,βc) denotes the a-priori
probability that none of the motifs occurs in a sequence. Again, these a-priori probabilities
are parameterized in terms of real-valued parameters β1,1|c, β1,0|c, β0,1|c, and β0,0|c.

Since the model representing motif co-occurrence conceptually contains the same motifs that
are also used in the models containing a single motif, we use the same strand models with
identical parameters for the first motif in Pm1,m2(x|c,βc) and Pm1(x|c,βc), and for the second
motif in Pm1,m2(x|c,βc) and Pm2(x|c,βc), respectively.

In theory, the extension of this approach to more than 2 motifs is straightforward. However,
the runtime of each iteration of the numerical optimization increases exponentially in the
number of considered motifs if we use a position distribution modeling correlations between
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motif occurrences, since we must explicitly compute the sum over admissible combinations
of positions. For this reason, numerical optimization becomes practically infeasible for more
than 2 motifs using input sequence of several hundred basepairs.

4.2.3.3. Position distributions

The binding sites of many transcription factors occur at preferred distances from the transcrip-
tion start site (TSS). The distribution of these positions may be modelled well by a Gaussian
density (Kim et al., 2008). However, seldom binding sites may also occur in larger distance
of the preferred position and some factors also exhibit a very broad distribution of binding
sites. Hence, we decide for a position distribution that is a mixture of a Gaussian density and
a uniform distribution. Since the Gaussian density models continuous values, but we consider
only discrete positions, we re-normalize the Gaussian density by the sum over all admissible
positions. We define the probability of position ` given class c and parameters βc,pos as

Ppos(`|c,βc,pos) = P (N|βc,pos)
1

Z1(βc,pos)
N (`|νc,pos, κc,pos) + P (U|βc,pos)

1
L− w + 1

, (4.12)

where Z1(βc,pos) denotes the normalization constant over all admissible position defined as

Z1(βc,pos) =
L−w+1∑

`=1

N (`|νc,pos, κc,pos). (4.13)

We parameterize the Gaussian density in terms of real-valued parameters νc,pos and κc,pos as
defined in section 3.3.2.1 (p. 25) and we parameterize the mixture probabilities as

P (N|βc,pos) =
exp(βN|c,pos)

exp(βN|c,pos) + exp(βU|c,pos)
and P (U|βc,pos) =

exp(βU|c,pos)
exp(βN|c,pos) + exp(βU|c,pos)

.

We define the bivariate position distribution of positions `1 and `2 in analogy to the univariate
case as a mixture of a bivariate Gaussian density (see section 3.3.2.1, p. 25) and a uniform
distribution over the admissible positions. We forbid combinations of positions that would
lead to overlapping binding sites by explicitly setting the corresponding probabilities to zero.
This is formalized by a Kronecker δ, which is equal to 1 if the intersection of the two intervals
comprising the positions within the binding site is equal to the empty set and 0 otherwise. We
define the probability of positions `1 and `2 given class c and parameters βc,pos as

Ppos(`1, `2|c,βc,pos) = δ[`1,`1+w1−1]∩[`2,`2+w2−1],∅

[
P (N|βc,pos)

1
Z2(βc,pos)

N (`1, `2|ν,κ, r1,2)+

P (U|βc,pos)
1

(L− w1 − w2 + 1)2 + (L− w1 − w2 + 1)

]
, (4.14)

where the mixture probabilities are parameterized identically to the univariate case and
Z2(βc,pos) denotes a normalization constant summing over all admissible combinations of po-
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sitions, i.e.

Z2(βc,pos) =
L−w1+1∑

`1=1

L−w2+1∑
`2=1

δ[`1,`1+w1−1]∩[`2,`2+w2−1],∅ N (`1, `2|ν,κ, r1,2). (4.15)

and assures that Ppos(`1, `2|c,βc,pos) is a proper probability distribution over the space of ad-
missible combinations of positions. The bivariate Gaussian density is parameterized according
to section 3.3.2.1, where ν = (ν1, ν2), κ = (κ1, κ2), and r1,2 denotes the parameter of corre-
lation between the positions of the two motifs. In analogy to the motif models, we re-use the
parameters ν1 and κ1 for the univariate position distribution of the first motif in the single-
motif component Pm1(x|c,βc), and ν2 and κ2 for the position distribution of the second motif
in Pm2(x|c,βc). This entails the assumption that – although occurrences of the two motifs
may be correlated – the positions of binding sites of a single motif follow the same marginal
distribution regardless of the presence of the second motif.

The normalization constants and, consequently, the position distribution depend on the length
L of the sequence. Hence, we consider only target and control data sets that comprise sequences
of identical length L. If we used a sequence-dependent normalization instead, the probabilities
of identical positions in different sequences would differ and contradict the idea of a common
position distribution of binding sites. In real-world applications, we consider this not a major
limitation, because in most cases we can elongate all shorter sequences to the length of the
longest sequence when extracting the data.

4.2.3.4. Priors

We use transformed Beta priors, which are a special case of the transformed Dirichlet prior (see
section 3.4.2, p. 30) for one free parameter, for the class parameters βc, the mixture parameters
βfw|c,m and βbw|c,m of the strand model, the mixture parameters β0|c and β1|c of the ZOOPS
model, and the mixture parameters βN|c,pos and βU|c,pos of the position distribution. For the
parameters of the homogeneous Markov model and the parameters of the PWM model enclosed
in the strand model, we choose transformed product-Dirichlet priors with hyper-parameters
according to the assumption of uniform pseudo data, and we use another transformed Dirichlet
prior for the mixture parameters β1,1|c, β1,0|c, β0,1|c, and β0,0|c of the MuMo model.

We define the hyper-parameters of these priors based on the hyper-parameters αc for the class
parameters βc. In the experiments, we set αc = 4. We a-priorily assume that each motif occurs
in a fraction pmotif of the sequences and set the hyper-parameters for the mixture parameters
of the ZOOPS model to α0|c = pmotif · αtarget and β1|c = (1 − pmotif) · αtarget , and set the
hyper-parameters for the mixture parameters of the MuMo model to β1,1|c = p2

motif · αtarget ,
β1,0|c = β0,1|c = pmotif ·(1−pmotif) ·αtarget , and β0,0|c = (1−pmotif)2 ·αtarget , where pmotif = 0.7.
We further assume a-priorily that the motif occurs in either of the strand orientations with
equal probability, resulting in hyper-parameters of αfw|c,m = αbw|c,m = 0.5 ·pmotif ·αtarget . This
choice of hyper-parameters is also valid for the MuMo model, since we use the same strand
models for the component representing the joint occurrence of motifs, and the corresponding
components representing the occurrence of a single motif.
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For the PWM model enclosed in the strand model, we use an equivalent sample size (ESS)
of pmotif · αtarget , since this PWM model is employed for both strands. For the homogeneous
Markov model in the control class, we use an ESS of αcontrol and we set the expected length
of the sequences to LE = L, whereas we use an ESS of αtarget for the homogeneous Markov
model representing flanking sequences and set the expected length to LE = pmotif · (L−w) +
(1 − pmotif) · L in case of the ZOOPS model and LE = p2

motif · (L − w1 − w2) + pmotif · (1 −
pmotif) · (L−w1)+pmotif · (1−pmotif) · (L−w2)+(1−pmotif)2 ·L according to the lengths of the
parts of the sequence that are modeled by this homogeneous Markov model in the different
components and the a-priori probabilities assigned to these components.

Finally, we set the hyper-parameters of the mixture parameters of the position distribution
to αN|c,pos = pN · pmotif · αtarget and αU|c,pos = (1− pN ) · pmotif · αtarget in the univariate case
and αN|c,pos = pN · p2

motif · αtarget and αU|c,pos = (1− pN ) · p2
motif · αtarget in the bivariate case.

We choose pN = 0.2 in order to assign a high probability to the uniform distribution if the
binding sites are spread uniformly over the sequences, instead of learning an artificially small
precision to adapt the Gaussian density to this distribution.

For the parameters of the Gaussian densities employed in the position distribution, we use a
transformed normal-gamma prior in the univariate case and a transformed normal-Wishart
prior in the bivariate case (see section 3.4.3, p. 33). In both cases, we set the a-priori
means to the center of the sequence, i.e. µ0 = L

2 and µ0 = (L
2 ,

L
2 ), respectively. Since we

are not confident in this a-priori assumption, we set the ESSs for the mean parameters to
γ = 10−4 · αN|c,pos.

We further set the hyper-parameters of the normal-gamma prior to τ1 = 0.5 · αN|c,pos and
τ2 = 0.5 · αN|c,pos · 502, which results in an expected precision of 1

502 corresponding to a
standard deviation of 50. Since the normal-Wishart density requires that α > 3, we set
the corresponding hyper-parameters to λ0,d = 0.5 · pN · p2

motif · (αtarget + 8) · 502 and α =
0.5 · pN · p2

motif · (αtarget + 8), which results in the same expected precisions κ1 and κ2 as for
the normal-gamma prior.

The complete prior on the parameters of the ZOOPS and MuMo model, respectively, is then
the product of all the component priors defined above. Since we re-use the parameters ν1,
ν2, κ1, and κ2 of the bivariate Gaussian density in the corresponding univariate Gaussian
densities of the MuMo model, these parameters are subject to the normal-gamma and the
normal-Wishart prior.

4.2.3.5. Heuristic adaption of motif length and compensation for phase shifts

Similar to other approaches, the log supervised posterior using the ZOOPS or the MuMo
model is not a concave function of the parameters and thus numerical optimization may get
stuck in local optima or saddle points. A part of these local optima can be attributed to phase
shifts, i.e. situation where the algorithm discovers only a shifted variant of the correct motifs
which misses some of the relevant positions. Here, we propose a heuristic that compensates
for phase shifts and additionally allows for an automatic adaption of the motif length w.
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To this end, we determine the number of irrelevant positions at the left and right border of
the PWM model representing the motif as follows: Let pi denote the probability distribu-
tion at position i of the PWM model, let prc

i denote the reverse complementary probability
distribution, and let q denote the probability distribution of the homogeneous Markov model
representing flanking sequences. As a measure for the deviation of pi from the distribution of
the homogeneous Markov model, we use the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951). Since the PWM model is enclosed in a strand model, we compute the mean
KL divergence of pi and prc

i to q. We define

D(pi||q) := P (fw|βc,m)DKL(pi||q) + P (bw|βc,m)DKL(prc
i ||q). (4.16)

We assess the significance of this deviation by simulations: we draw 1, 000, 000 probability
distributions p′ from a Dirichlet density with parameters α = (N + pmotif · αtarget) · q, where
N denotes the number of sequences in the target data set and pmotif · αtarget is the ESS of
the PWM model. The drawn probability distributions p′ represent a population of proba-
bility distributions that deviate from q only by chance. For each of the distributions p′, we
compute D(p′||q) and use these values to fit a gamma density, which we find appropriate by
inspecting histograms of the D(p′||q). We then determine the (1− α)-percentile of the fitted
gamma density and consider all deviations D(pi||q) greater than this percentile significant
for a significance level of α. We call positions i with probability distributions pi that do not
deviate significantly from q irrelevant. In the following, we use α = 10−30 for single motifs
and α = 10−15 for multiple motifs.

Let n` denote the consecutive number of irrelevant positions at the left border of the motif
and let nr denote the consecutive number of irrelevant positions of the right border. We
first test if all positions of the PWM model are considered irrelevant by the heuristic, i.e.
n` + nr ≥ w. If this is the case, we set the length of the motif to 1 , which effectively removes
the motif, since a motif of length 1 will most likely approach an uninformative probability
distribution. A complete erasure of the motif model is not considered mainly for technical
reasons, because it would require extensive post-processing, e.g. the adaption of the bivariate
position distribution to the univariate case or, alternatively, the removal of the component
comprising both motifs. If n` + nr < w, we shift the parameters of the PWM model to one
side such that the larger number of irrelevant positions is excluded from the model, i.e. if
n` ≥ nr, we shift the parameters to the left, and if n` < nr, we shift the parameters to
the right. We set the parameters of the newly included positions at the opposite side to a
uniform distribution over the nucleotides. For instance, assume that n` = 1 and nr = 0.
In this case, we shift the parameters of the PWM model to the left by setting ∀a ∈ Σ :
ξ`,a|c := ξ`+1,a|c, ` = 1, . . . , w − 1, and ξw,a|c := 0.

We avoid cyclic sequences of operations by keeping a history of performed operations. If a
proposed shift operation would result in a cycle, it is forbidden by the history and we shrink
the motif by removing n` positions from the left border and nr positions from the right border
of the PWM model. Accordingly, the length of the resulting PWM model is adapted to
w − n` − nr. If we do not find irrelevant positions at either border of the PWM model, we
expand the PWM model by appending additional positions to both sides of the PWM model.
If the current PWM model is shorter than the length that was initially specified when starting

70



4.2. De-novo discovery of cis-regulatory modules

the algorithm, we expand the PWM model evenly on both sides such that we obtain the
initial length. Otherwise, one position is appended to each side of the PWM model. The
newly included positions are again set to a uniform distribution over the nucleotides.

After each heuristic step, i.e. each shift, shrink, or expand operation, we restart the numerical
optimization. We repeat with this cycle of heuristic adaption of the PWM model and numerical
optimization until either all operations are forbidden by the history or we reach a pre-defined
maximum number of heuristic steps. Finally, we report the ZOOPS or MuMo model that
achieved the maximum supervised posterior after optimization among all models considered
during these iterations.

Even using this heuristic, numerical optimization may get stuck in local optima. Hence, we
start the optimization multiple times using random initializations. To exclude less promising
initializations, we conduct a pre-selection on a fixed number of random initializations for each
run of the optimization. For each random initialization considered, we evaluate the corre-
sponding supervised posterior and finally start the numerical optimization for that random
initialization which achieved the maximum supervised posterior. For the ZOOPS model, we
test 50 independent starts of the optimization, each selecting the initial parameters from 100
independent random initializations. For the MuMo model, we reduce the number of indepen-
dent starts to 20 due to the increased runtime, which is partly compensated for by selecting
the initial parameters from 1000 independent random initializations for each of the 20 starts.

4.2.3.6. Prediction of binding sites

We predict binding sites based on the joint probabilities Pm(x, `|c,βc) of sequence x and posi-
tion `. In case of the MuMo model, we compute these as marginal distributions P ′

mi
(x, `|c,βc),

i.e.

P ′
m1

(x, `|c,βc) =
P (u1 = 1, u2 = 0|c,βc)

P (u1 = 1, u2 = 0|c,βc) + P (u1 = 1, u2 = 1|c,βc)
Pm1(x, `|c,βc) (4.17)

P (u1 = 1, u2 = 1|c,βc)
P (u1 = 1, u2 = 0|c,βc) + P (u1 = 1, u2 = 1|c,βc)

∑
`2

Pm1,m2(x, `, `2|c,βc)

and accordingly for P ′
m2

(x, `|c,βc).

We compute these joint probabilities for each admissible position ` in each sequence x of
the control data set, to obtain a background distribution of joint probabilities. We then
choose a threshold T on the joint probabilities such that a fraction of α of the positions in
all sequences of the control data set achieves a joint probability above this threshold. If we
apply this threshold for predicting binding sites at all position ` in each sequence x for which
Pm(x, `|c,βc) > T , we predict at most α ·N ′ · (L− w + 1) binding sites in a control data set
comprising N ′ sequences. We use the same threshold to predict significant occurrences of the
motif in the sequences of the target data set. Since we assume that the control data set does
not contain occurrences of the motif of interest, this choice of the threshold should keep the
number of false positive predictions in the target data set low.

71



4. Applications

4.2.4. Data

Several benchmark data sets for the assessment of de-novo motif discovery algorithms have
been proposed over the last years (Tompa et al., 2005; Sandve et al., 2007; Kim et al., 2008).
However, these benchmark data sets often comprise only a small number of fairly long se-
quences. To assess the significance of motifs discovered in such data sets, we extract putative
promoter regions of length 2000 from TAIR (Swarbreck et al., 2008) and search for common
sub-strings with one mismatch allowed in 5, 10, and 100 randomly selected promoters. With
a probability of almost 1, we find such common sub-strings of lengths up to 8 in data sets
with at most 100 promoters, and common sub-strings of lengths up to 10 in the data sets
comprising 5 promoters. The lengths of these common sub-strings are in the range that can
also be expected for transcription factor binding sites, and we anticipate that this problem
could be even more severe for fuzzy motifs represented by PWM models. Hence, we decide to
create new benchmark data by planting known binding sites of different transcription factors
into randomly selected putative promoter regions of length 500.

To this end, we obtain the seven largest data sets of known binding sites from Jaspar (Sandelin
et al. (2004), retrieved 10/9/2009). These are binding sites of the transcription factors
AGL3 (MA0001) and AG (MA0005) of Arabidopsis thaliana, Cf2 II (MA0015) of Drosophila
melanogaster, NHLH1 (MA0048), MEF2A (MA0052), and SOX9 (MA0077) of Homo sapiens,
and Myb.PH3 (MA0054) of Petunia x hybrida. We plant the binding sites of the factors of A.
thaliana into randomly selected promoters of the same species obtained from TAIR and use
another set of randomly selected promoters as control data set; we apply the same procedure to
the binding sites of the factors of H. sapiens using randomly selected promoters obtained from
the human promoter database3, and to the binding sites of the factor of D. melanogaster using
randomly selected promoters of the same species from the eukaryotic promoter database4. For
the binding sites of the factor stemming from Petunia, we also use promoters from TAIR, since
no promoter regions for Petunia are available.

For each of the target data sets, we randomly select 70% of the promoter regions into which we
plant a binding site, while we do not plant a binding sites into the remaining 30%. We plant
the binding sites into the promoter regions at positions that are selected either according to a
uniform position distribution (denoted as uniform data sets in the following) or according to
a Gaussian distribution (denoted as Gaussian data sets). Each of the binding sites is either
implanted on the forward or the backward strand, which is chosen randomly as well. The
means of the employed Gaussian distributions are drawn uniformly from the interval [20, 480]
and the standard deviations are drawn uniformly from the interval [20, 80]. This procedure
results in 14 benchmark data sets for discovering single motifs.

Based on the two data sets created for MA0048, we create four additional benchmark data sets.
Here, we additionally plant “decoy” binding sites of MA0052 into the sequences of the target
and the control data sets, once following a uniform position distribution and once following a
Gaussian position distribution.

3http://zlab.bu.edu/∼mfrith/HPD.html
4http://www.epd.isb-sib.ch/index.html
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4.2. De-novo discovery of cis-regulatory modules

For assessing the predictions of the approaches for the de-novo discovery of cis-regulatory
modules, we create four benchmark data sets by planting binding sites of two different tran-
scription factors into the sequences of the target data set. Similar to the benchmark data sets
for single motifs, binding sites of each of the two motifs are planted into 70% of the promoters
in the target data set, and this subset of promoters is drawn independently for the two motifs.
As a consequence, approximately 9% of the promoters do not contain a planted binding site,
42% contain a binding site of only one of the motifs, and the remaining 49% contain binding
sites of both motifs. We create two benchmark data sets by planting binding sites of MA0001
and MA0005 into promoters of A. thaliana, once following a uniform position distribution and
once following a bivariate Gaussian distribution, and we create two additional data sets by
applying the same procedure to binding sites of MA0048 and MA0052, and promoters of H.
sapiens.

We additionally consider two real-world data sets of auxin responsive genes, which are also
considered in (Keilwagen et al., 2010a). The first data set comprises 48 promoters of genes that
exhibit a two-fold increase of gene expression after auxin exposure for 15, 30, or 60 minutes in
a cell suspension culture of A. thaliana cells (Paponov et al., 2008). Auxin is a plant hormone
that plays a pivotal role in many regulatory processes related to plant growth and development.
We choose cell suspension data in this case, since, due to its homogeneity, measurements of gene
expression levels are not influenced by additional factors like tissue-specific expression levels.
As a control data set, we randomly select 1000 promoters of genes that are not contained in the
target data set, but have dedicated probes on the ATH1 microarray chip used for expression
profiling.

We use an additional independent test set of 113 promoters of genes that are differentially
expressed in seedlings of A. thaliana according to the same criteria applied for cell suspension
culture (Paponov et al., 2008), but that are not contained in the cell suspension target data
set. As a control data set we choose all 21012 promoters of A. thaliana genes that are present
on the ATH1 chip, but are neither contained in the cell suspension target or control data set
nor in the target data set for the seedling data.

4.2.5. Assessment

Several measures have been proposed for the assessment of de-novo motif discovery including
nucleotide PPV and nucleotide Sn (Tompa et al., 2005). These measures are defined by
regarding de-novo motif discovery as a classification problem: Each position ` in each sequence
x may either be covered by a binding site (positive class) or not (negative class) according to the
annotation. Using these annotations and predictions resulting from de-novo motif discovery,
we define true positives (TP), false negatives (FN), false positives (FP), and, consequently
Sn and PPV (cf. section 3.5.1, p. 38). As noted in the previous section, the prediction of
binding sites by the ZOOPS and MuMo model depends on a threshold T . In analogy to other
classification problems, we can vary this threshold and plot the resulting values of PPV against
the values of Sn, yielding a PR curve that represents the overall prediction performance of
these tools (Keilwagen et al., 2010a).
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All other approaches considered in this work apply a pre-defined threshold for predicting
binding sites, which complicates the generation of PR curves. However, all approaches report
either p-values or scores for each of the predicted binding sites. We use these p-values or scores
to compute partial PR curves up to the maximum Sn determined by the threshold.

4.2.6. Results & Discussion

In this section, we compare the ZOOPS model using a position distribution and learned by the
discriminative MSP principle as proposed in this work to several other approaches for de-novo
motif discovery, namely MEME, Gibbs sampler, Improbizer, Weeder, A-GLAM, DME, and
DEME. We also compare the MuMo model for de-novo discovery of cis-regulatory modules
proposed in this work to other approaches that are specifically designed for this task, namely
CoBind, CisModule, and MoAn. We also tested EMCModule but stopped computations after
two weeks of runtime without any output. We refer to the approach proposed in this work as
MuMFi, which is an acronym for “multiple motif finder”.

We run all of the programs using default parameters with the following exceptions: if available
and not the default, we use switches for searching on both strands, for enabling a position
distribution, and for using a ZOOPS model instead of OOPS. We start each of the programs –
including the implementation of MuMFi – once specifying correct length of the motif and once
with switches for the automatic adaption of motif length. If such a switch is not available, we
set the length of the motif to 15. A list of the calls for all programs is given in appendix A.2.

4.2.6.1. Benchmark for single motifs

We give an overview of the results of the comparison for all uniform and all Gaussian data sets
in figure 4.6. Instead of complete PR curves, we use a condensed presentation that displays
the achieved PPV for different values of Sn as bars. Here, we choose Sns of 0.1, 0.3, 0.5, 0.7,
and 0.9, which gives a reasonable overview of the complete PR curve. As mentioned in the
previous section, all approaches to which we compare MuMFi use internal thresholds for their
predictions. Hence, the maximum Sn reached by these approaches may remain below some
of the chosen values of Sn, which we represent as missing bars in the barplots. For those
approaches that do not achieve a Sn of at least 0.1 on a given data set, the corresponding
block comprises only missing bars.

Figure 4.6(a) presents the results of all approaches on the uniform data sets if these are started
with given correct length of the motif. We find that the discriminative approaches, namely
DEME, DME and MuMFi discover the correct motifs for the largest number of data sets.
DEME and DME find the correct motif for 8 of the 9 data sets, while MuMFi is successful
in all 9 cases. However, MuMFi yields a lower PPV than DEME and DME for MA0052 and
the MA0048 data sets. A-GLAM discovers the correct motif for 3 data sets, Gibbs sampler
for 1 data set, Improbizer for 4 data sets, MEME for 3 data sets, and Weeder for 5 data
sets. Scrutinizing the achieved values of PPV, we observe that some of the motifs appear
to be more challenging than others: for instance, all approaches except A-GLAM discover
the correct motif for the MA0052 data set, whereas only DEME, Weeder, and MuMFi are
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Figure 4.5.: Sequence logos of the binding sites of MA0005 (a) and MA0052 (b). The binding motif of
MA0052 is highly conserved at all positions, whereas the motif of MA0005 exhibits many
less conserved positions.

successful for MA0005. The sequence logos of the motifs of MA0005 and MA0052, which are
presented in figure 4.5, show that this might be attributed to a different level of conservation
of the two motifs. While MA0052 is highly conserved across all positions of the motif, MA0005
is considerably conserved only at the bordering positions 1, 2, 9, and 10, and at position 5.

Turning to the results for initially unknown lengths of the motifs in figure 4.6(b), we observe
that the accuracy of some of the considered approaches is greatly decreased. The maximum
PPV yielded by DEME decreases from values of almost 1 in figure 4.6(a) to values that
are consistently below 0.75 for unknown motif length. The deterioration of performance is
even more dramatic for DME, which is not capable of discovering any of the motifs without
the length of the motif specified. Since neither DEME nor DME adapt the motif length
automatically, this means that DME did not succeed in determining an elongated variant of the
correct motif, whereas the reduced accuracy of DEME for MA0005, MA0052, and the MA0048
data sets can presumably be attributed to the incorrect lengths of the discovered motifs.
Other approaches, namely A-GLAM, Improbizer, MEME, and Weeder, are less sensitive to
the specification of the motif length. However, these approaches did already fail to discover the
correct motif for many data sets with known motif length. Interestingly, MuMFi still discovers
all 9 motifs and achieves an even improved accuracy for MA0001 and MA0015 compared to
the results for known motif length. We will scrutinize this phenomenon in a few paragraphs.

Considering the results for the Gaussian data sets and known motif length, which are presented
in figure 4.6(c), we find a similar picture as for the uniform data sets. The results of DEME,
DME, Gibbs sampler, MEME, and Weeder are virtually unchanged regarding the data sets for
which the correct motif could be discovered and regarding accuracy on these data sets. This
behavior can be expected, since neither of these approaches learns a position distribution from
the data (cf. table 4.2), and we planted identical binding sites into the same promoters for
the uniform and Gaussian data sets. In contrast, the results of those approaches that learn a
position distribution, namely A-GLAM, Improbizer, and MuMFi, profit from the appropriate
modeling of the position distribution to different degrees. On the one hand, A-GLAM achieves
increased values of PPV for MA0015 and, in contrast to the uniform data sets, correctly
discovers MA0048 and MA0077 for the Gaussian data sets. On the other hand, it does not
discover the motif for the MA0001 data set, which is discovered by A-GLAM for the uniform
position distribution. The accuracy of Improbizer is increased for most data sets for which a
motif is discovered at all, namely MA0015, MA0048, and MA0077. Finally, MuMFi profits
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Figure 4.6.: Overview of the prediction performance of all approaches on all data sets. The results in
the first row are determined on the uniform data sets, and those in the second row are
determined on the Gaussian data sets. In the left column, we present the result for the
experiments where we start all approaches with the correct length of the motif, and in the
right column the length of the motif is either fixed to 15 or – if available – learned from
the data. In each block of each sub-figure, we plot the values of PPV for a Sn of 0.1, 0.3,
0.5, 0.7, and 0.9, i.e. specific points on the PR curve, as bars. For some of the approaches,
the maximum Sn is limited to a value below 0.9 due to an internally applied threshold,
which results in missing bars for the corresponding values of Sn. In each sub-figure, the
columns labeled “MA0048+MA0052” correspond to the data sets with additional decoy
motif.
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4.2. De-novo discovery of cis-regulatory modules

from the Gaussian position distribution for all data sets except MA0077 and, in contrast to
the uniform data sets, achieves similar values of PPV as DEME and DME for MA0048 and
MA0052.

As a last overview, we examine the results of all approaches for the Gaussian data set if these
are started with unknown motif length in figure 4.6(d). As for the uniform data sets, the
performance of DEME and DME suffers from the lack of an automatic adaption of the motif
length. Compared to known motif length, A-GLAM additionally discovers the correct motif
for MA0052, whereas its achieves an decreased accuracy for the MA0077 data set. While
the results of Improbizer are virtually unchanged compared to the known motif length, Gibbs
sampler does not find the correct motifs for any of the 9 Gaussian data sets if it is not provided
the correct motif length. The results of MEME are similar to those for the known motif length
regarding MA0048 and MA0052, but it now fails to discover the correct motif for MA0054.
Weeder finds the correct motif for 5 of the Gaussian data sets with unknown length of the
motif as opposed to 4 correctly identified motifs for known motif length. Finally, the results of
MuMFi are virtually identical for known and unknown motif length on the Gaussian data sets.
This indicates that MumFi could successfully adapt the length of the motif by the heuristic
described in section 4.2.3.5. We consider this last benchmark the most realistic, since the
binding sites of most transcription factors exhibit a non-uniform position distribution and in
real-world applications we seldom know the correct length of the motif in advance.
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Figure 4.7.: PR curves for the uniform MA0001 data set comprising binding sites and promoters stem-
ming from Arabidopsis thaliana. Approaches with Sn and PPV below 0.1 are omitted for
clarity.

As one specific example, we consider the complete PR curves of MuMFi for the uniform
MA0001 data set, and we compare these to the partial PR curves achieved by the other
approaches. In figure 4.7 and the following plots, we omit approaches that did neither reach a
Sn nor a PPV above 0.1 to avoid an uninformative cluster of curves in the lower left corner of
the plots. Comparing figure 4.7(a) to figure 4.7(b), we find in accordance with figure 4.6 that
DME and A-GLAM achieve greater values of PPV than MuMFi if the correct motif length is
specified in advance, whereas MuMFi is the only approach that discovers the correct motif of
MA0001 for unknown motif length. As already noted for the overview, MuMFi achieves an
even improved PR curve if the motif length is not specified, which seems counter-intuitive.
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(a) MuMFi, known length
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(b) MuMFi, unknown length
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(c) Sequence logo according to annotation

Figure 4.8.: Sequence logos of the binding sites predicted by MuMFi with given (a) and adapted (b)
length of the motif compared to the sequence logo of the annotated binding sites (c).

To investigate potential reasons for this observation, we plot the sequence logos of the binding
sites predicted by MuMFi for given motif length and unknown motif length in figure 4.8, and
compare these to the sequence logo of the annotated binding sites. Here and in the following, we
generate the sequence logos for MuMFi by predicting occurrences of the discovered motifs using
a p-value of α = 10−4 (see section 4.2.3.6), estimating a PWM model by the generative ML
principle from these predictions, and plotting the sequence logo for the estimated PWM model.
We find that both sequence logos of the predictions of MuMFi are similar to the sequence logo
of the annotated binding sites and comprise the correct number of positions. However, the
sequence logo for unknown motif length shows a greater conformity to the sequence logo of
figure 4.8(c), especially at positions 8 and 9. One possible explanation for these differences
might be that additional iterations of numerical optimization during the adaption of the motif
length (cf. section 4.2.3.5) helped MuMFi to escape local optima in case of unknown motif
length.

As another example, we study the effects of the position distribution of the planted binding
sites on the accuracy of the different approaches. To this end, we present the results of
the approaches studied on the uniform and Gaussian data sets for MA0015 in figure 4.9.
Comparing figures 4.9(a) and 4.9(b), we find that approaches that explicitly model a position
distribution, namely A-GLAM, Improbizer, and MuMFi, yield considerably improved PR
curves for the Gaussian data set. Among these approaches, MuMFi achieves the best values
of PPV for the larger values of Sn, whereas A-GLAM performs slightly better than MuMFi
for a Sn below approximately 0.35. In contrast, Weeder obtains almost identical PR curves
on the uniform and the Gaussian data set, as it can not exploit the position distribution for
predicting binding sites.

Finally, we demonstrate the advantages of discriminative approaches for discovering differen-
tially abundant motifs as opposed to over-represented motifs. To this end, we compare the
performance of all approaches on the Gaussian data set for MA0048 to that on the Gaussian
data set for MA0048 with an additionally planted decoy motif, namely MA0052. The drawn
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Figure 4.9.: PR curves for the uniform (left) and Gaussian (right) MA0015 data set and unknown
length of the motif. Approaches with Sn and PPV below 0.1 are omitted for clarity.
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Figure 4.10.: PR curves for binding sites of the TF MA0048 of Homo sapiens placed in randomly
selected promoters of the same species. In the right plot, an additional decoy motif
(MA0052) is planted into the target and control sequences. Tools with Sn and PPV
below 0.1 are omitted for clarity.

positions for the binding sites of MA0048, the binding sites, and the promoter sequences into
which these binding sites are planted are identical in both cases to assure that differences
in accuracy can be attributed solely to the presence of the decoy motif. The results of this
experiment are depicted in figure 4.10.

Many of the studied approaches discover the correct motif of MA0048 in the data set without
decoy motif. A-GLAM, MEME, Improbizer, DEME, DME, and MuMFi achieve satisfactory
PR curves, whereas Weeder does not yield a PPV or Sn above 0.4. On the data set with
planted decoy motif, this picture changes considerably. None of the generative approaches is
able to discover the correct motif in this case, most likely due to the high conservedness of the
decoy motif MA0052 (cf. figure 4.5), which is hence preferred to MA0048 by the generative
approaches. In contrast, the PR curves of the discriminative approaches, namely DEME,
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DME, and MuMFi, for the data sets with and without decoy motif differ only slightly.

4.2.6.2. Benchmark for multiple motifs

We also compare MuMFi in its variant for the de-novo discovery of cis-regulatory modules to
other approaches that are specifically designed for this task, namely CoBind, CisModule, and
MoAn. Since all studied approaches adapt the length of motifs, we only consider the case of
an unknown motif length in the following.
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Figure 4.11.: PR curves regarding the binding sites of MA0048 (a) and MA0052 (b) for the uniform
data set comprising binding sites of both factors.

As a first benchmark data set, we consider the uniform data set with planted binding sites
of MA0048 and MA0052. We compute the PR curves separately for each of the motifs, and
we resolve label switching by reporting the best curves of the two possible combinations of
annotated and predicted motifs. The results of this analysis are illustrated in figure 4.11.
We find that CoBind, MoAn, and MuMFi achieve a satisfactory accuracy for both motifs,
whereas CisModule performs considerably worse for MA0048 and fails to identify the correct
motif of MA0052. For MA0048, MuMFi achieves considerably larger values of PPV than
CoBind and MoAn for a broad range of Sn. Since MuMFi can not profit from a non-uniform
position distribution in this case, and MoAn and MuMFi both use a discriminative objective
function, we might speculate that the improvement of PPV gained by MuMFi over MoAn
can be attributed to the heuristic compensating for phase shifts and the parameter prior
employed in the MSP principle. For MA0052, MuMFi achieves slightly improved values of
PPV compared to MoAn for a Sn below 0.8, whereas MoAn yields a sightly larger PPV for Sn
between 0.8 and 0.9. Although the PR curve of CoBind stays below that of MuMFi for most
valued of Sn, the differences between the two approaches are only minor for a Sn below 0.6.

Turning to the corresponding results on the Gaussian data sets for MA0048 and MA0052,
which are displayed in figure 4.12, we find a slightly different picture for CoBind. While
CoBind achieves a considerably improved accuracy for the binding sites of MA0048, the PR
curve for MA0052 is notably lowered. Comparing MuMFi to CoBind and MoAn, we observe
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Figure 4.12.: PR curves regarding the binding sites of MA0048 (a) and MA0052 (b) for the Gaussian
data set comprising binding sites of both factors.

that CoBind yields a better accuracy than MuMFi for MA0048 and MoAn yields a better
accuracy for MA0052 than MuMFi. However, neither of the two approaches does consistently
outperform MuMFi on this data set. Like for the uniform data set, CisModule does not achieve
reasonable accuracies for any of the two motifs.
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Figure 4.13.: PR curves regarding the binding sites of MA0001 (a) and MA0005 (b) for the uniform
data set comprising binding sites of both factors.

In addition, we test the approaches on two other benchmark data sets, for which binding sites
of MA0001 and MA0005 are planted into promoters of A. thaliana using a uniform and a
Gaussian position distribution. We first consider the uniform data set. The PR curves of the
studied approaches are presented in figure 4.13. We find that CoBind, MoAn, and MuMFi
discover the binding sites of MA0001 with similar accuracy, whereas CisModule again fails
to find the correct motif. Turning to the binding sites of MA0005, all approaches except
CoBind essentially fail to discover the correct motif. We investigate potential reasons of this
observation in the following.
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Figure 4.14.: Sequence logos of the annotated binding sites of MA0001 (a) and MA0005 (b).

The sequence logos of MA0001 and MA0005 are depicted in figure 4.14. These show two
properties of the motifs: first, both are highly conserved only at a fraction of positions and
most of these are located at the borders of the motifs, and second, both motifs are fairly
similar at the conserved positions. This is an example for possible pitfalls of discriminative
approaches like MoAn and MuMFi, which focus on motifs that discriminate target and control
sequences best. Since the motifs of both factors are similar and the binding sites of both
factors exhibit a uniform position distribution, one joint representation of both motifs may
be sufficient for discrimination. Hence, a second motif, which may be sightly differentially
abundant between target and control data set but not a motif of interest, is learned if this
improves the discrimination between the two data sets.
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Figure 4.15.: Sequence logos of the binding sites predicted by MuMFi on the uniform data set com-
prising binding sites of MA0001 and MA0005.

The sequence logos of the binding sites predicted by MuMFi, which are presented in figure 4.15,
support this assumption. The motif on the left is a mixture of the reverse complementary motif
of MA0001 and the motif of MA0005. In contrast, the second motif of binding sites discovered
by MuMFi is conserved only at position 14 and shows no similarity to the motifs of interest.

Turning to the Gaussian data set for the same factors, we observe that CisModule identified
the correct motif of MA0001 in this case. However, the remaining three approaches yield
significantly larger values of PPV across the range of Sn than CisModule. While the accuracy
of MuMFi is only slightly increased for MA0001 compared to the results on the uniform
data set, MuMFi is now able to discover the correct motif and binding sites of MA0005. In
contrast, MoAn still fails to identify the motif of MA0005. This might be an indication that
the position distribution modeled by MuMFi but not by MoAn might be responsible for the
increased performance.

We scrutinize this assumption in figure 4.17, where we present the sequence logos of the

82



4.2. De-novo discovery of cis-regulatory modules

0.0 0.4 0.8

0.
0

0.
4

0.
8

nucleotide Sn

nu
cl

eo
tid

e 
P

P
V

MuMFi

CoBind

CisModule

MoAn

(a) MA0001

0.0 0.4 0.8

0.
0

0.
4

0.
8

nucleotide Sn

nu
cl

eo
tid

e 
P

P
V

MuMFi

CoBind

(b) MA0005

Figure 4.16.: PR curves regarding the binding sites of MA0001 (a) and MA0005 (b) for the Gaussian
data set comprising binding sites of both factors.
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Figure 4.17.: Sequence logos and position distribution of the binding sites predicted by MuMFi on the
Gaussian data set comprising binding sites of MA0001 and MA0005. The plots of the
position distribution show a histogram of the positions of the binding sites predicted by
MuMFi and the position distribution learned by MuMFi as a solid black line.

binding sites predicted by MuMFi. Additionally, we plot a histogram of the positions of the
predicted binding sites and the position distribution learned by MuMFi. We observe that both
sequence logos represent the specialties of MA0001 and MA0005 well and even slightly amplify
conserved nucleotides. Considering the position distribution of the predictions, we find that
the binding sites of MA0001 and MA0005 are clustered at distinct regions of the promoter
sequence. However, MuMFi still predicts some occurrences of MA0001 in the region around
position 350, which is the center of the cluster of MA0005 binding sites, most likely due to
the similarity of the two motifs. This last benchmark endorses that discriminative learning of
parameters and learning the position distribution from the data support the de-novo discovery
of relevant motifs and corresponding binding sites.
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4.2.6.3. Applying MuMFi to promoters of auxin responsive genes

In a final study, we investigate the utility of MuMFi on real-world data. To this end, we learn
the parameters of the sequence models and the position distribution on the cell suspension
target data set comprising promoters of auxin responsive genes and the corresponding control
data set. We first learn MuMFi with a ZOOPS model, i.e. with a single motif model. The
motif and position distribution discovered by MuMFi are depicted in figure 4.18. MuMFi finds
a motif that is similar to the canonical auxin response element (ARE) TGTCTC (Paponov
et al., 2008), but nonetheless exhibits some interesting differences. First, the consensus Cs of
the canonical ARE at position 4 and 6 are not fully conserved, but may also be replaced by G.
Second, MuMFi discovers a highly conserved C at position 8 of the motif, which is not part
of the canonical ARE.

Turning to the position distribution learned by MuMFi, we find a strong positional preference
of occurrences of the discovered motif. Most of the predicted binding sites are located at most
250 bp upstream of the TSS and – on the cell suspension data set comprising 48 sequence –
no predicted binding site is located more than 300 bp upstream of the TSS. In figure 4.18, we
additionally plot the position distribution learned by MuMFi as a solid black line. We find that
the position distribution is in good accordance with the predicted binding sites. The mean of
the Gaussian density is located 128 bp upstream of the TSS with a precision of ∼ 2.1× 10−4,
which corresponds to a standard deviation of ∼ 70. The Gaussian component of the position
distribution obtains a mixture probability of 0.94.
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Figure 4.18.: Sequence logo and histogram of positions of the binding sites detected by MuMFi on the
cell suspension data set with one allowed motif. In addition to the histogram of binding
site positions, we plot the position distribution learned by MuMFi as a solid black line.

We assess the relevance of the motif and position distribution on the independent data set of
auxin responsive genes in seedlings and the control data set comprising the promoters of all
genes that are on the ATH1 chip but neither in the cell suspension training data nor in the
seedling target data set. As a reference, we search for perfect matches of the canonical ARE in
these two data sets. In addition to the region from −500 to −1 relative to the TSS, we search
for the canonical ARE in a shortened region from −250 to −1, to evaluate the contribution
of the positional preference discovered by MuMFi. For the seedling target data set and the
control data set, we report the number of sequences that exhibit at least one occurrence of the
canonical ARE and the number of sequences that contain at least one binding site predicted by
MuMFi in table 4.3. Given these numbers, we additionally report the p-value of the enrichment
of the canonical ARE and the discovered motif, respectively, relative to the control data set
according to Fisher’s exact test.

Considering perfect matches of the canonical ARE in the [−500,−1] region, we find at least
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one occurrence in 36 of the 113 promoters in the seedling target data set compared to 4741 out
of 21012 promoters for the control data set. This corresponds to a ∼ 1.4-fold enrichment of
the canonical ARE in the target promoters relative to the control promoters, which results in
a p-value of 1.5× 10−2. Hence, we consider the enrichment of the canonical ARE statistically
significant. Turning to the search for the canonical ARE in the [−250,−1] region, the number
of promoters in the target data set containing the ARE consensus is reduced to 26, whereas
only 2564 promoters of the control data set contain the ARE within the shortened region.
Consequently, we find a ∼ 1.9-fold enrichment of the canonical ARE in the shortened region,
which corresponds to a p-value of 1.0×10−3. Since the p-value according to Fisher’s exact test
decreases more than 10-fold due to the restriction of the considered region, we may conclude
that the position distribution learned by MuMFi also contributes considerably to the specificity
of the canonical ARE for auxin responsive genes.

Table 4.3.: Number of sequences stemming from the seedling and control data set that contain at
least one occurrence of the canonical auxin response element (ARE) TGTCTC or at least
one occurrence of the motif predicted by MuMFi, respectively. For the canonical ARE,
we determine occurrences in the promoter region up to 500 bp upstream of the TSS and
occurrences restricted to at most 250 bp upstream of the TSS. For each combination of
the predictions within the seedling and control data set, we report p-values according to
Fisher’s exact test.

TGTCTC MuMFi
seedling control p-value seedlings control p-value

total 113 21012 113 21012
predicted [-500,-1] 36 4741 1.5× 10−2

26 2137 6.0× 10−5

predicted [-250,-1] 26 2564 1.0× 10−3

The predictions of MuMFi depend on a threshold T , which we choose such that we obtain the
same number of sequences with a least one predicted binding site as for the canonical ARE
in the region [−250,−1] of the target data set. Using this threshold, MuMFi predicts at least
one binding site in only 2137 of the 21012 promoters of the control data set. This corresponds
to a ∼ 2.3-fold enrichment of the motif discovered by MuMFi in the target data set relative
to the control data set, which results in a p-value of 6 × 10−5. Since, we observe a 16-fold
decrease of the p-value compared to the canonical ARE in the [−250,−1] region and a 250-fold
decrease compared to the canonical ARE in the [−500,−1] region, we may conclude that the
combination of the motif and the position distribution learned by MuMFi is highly specific for
auxin responsive genes.

In (Keilwagen et al., 2010a), another approach called Dispom is proposed, which differs from
MuMFi for single motifs only in the determination of irrelevant positions for the heuristic and
in the choice of the position distribution. Dispom determines irrelevant positions by means
of the number of sequences that are predicted to contain a binding sites before and after a
potential modification. On the one hand, this heuristic leads to slightly improved PR curves
compared to MuMFi (Keilwagen et al., 2010a). On the other hand, the heuristic of Dispom
requires exhaustive testing for each position considered, which involves the computation of
p-values for determining the number of sequences bound.

Dispom uses a skew normal position distribution. Since the extension of the skew normal
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distribution to the multivariate case modeling correlations is not straightforward, we stick
to the bivariate Gaussian distribution for MuMFi. In (Keilwagen et al., 2010a), Dispom is
applied to the cell suspension and seedling data sets as well. On the cell suspension data set,
Dispom discovers a motif and position distribution which is highly similar to those learned
by MuMFi. Keilwagen et al. (2010a) use this motif to define a refined consensus sequence of
AREs as TGTSTSBC. Searching for the refined ARE in the [−250,−1] region results in at
least one occurrence in 21 of the 113 promoters of the seedling target data set and at least one
occurrence in 1252 of the 21012 promoters of the control data set, yielding an even decreased
p-value of 3.5× 10−6.
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Figure 4.19.: Sequence logos and histograms of positions of the binding sites detected by MuMFi on
the cell suspension data set with two motifs allowed. In addition to the histogram of
binding site positions, we plot the marginal position distribution learned by MuMFi as
a solid black line.

Although the motif and position distribution learned by MuMFi and the refined ARE defined
by (Keilwagen et al., 2010a) are highly specific for auxin responsive genes, only a fraction of
the promoters of the target data sets contains these elements. To investigate if an additional
motif or a combination of motifs might explain the differential expression of a larger number of
the auxin responsive genes, we learn MuMFi for cis-regulatory modules on the cell suspension
data as well. The two motifs and corresponding position distributions learned by MuMFi are
depicted in figure 4.19. The first motif discovered by MuMFi might be a shifted variant of
the motif presented in figure 4.18, which is also supported by the histogram of positions of
occurrences of this motif. In contrast, the binding sites of the second motif exhibit a less
stringent position distribution. Considering the position distribution learned by MuMFi, we
find a mixture probability of almost 1 for the uniform component, although this is contradicted
by the positions of predicted binding sites of the first motif. For the first motif, we obtain a
considerably higher p-value of 6.1× 10−4 on the seedling data than for the motif and position
distribution discovered by MuMFi using a single motif, whereas the second motif yields a lower
p-value of 5.3× 10−5.

This indicates a potential shortcoming of MuMFi in its current implementation: The position
distributions of the component comprising two motifs and the components comprising single
motifs share the parameters for mean, precision, and mixture probabilities. If one of the motifs
occurs uniformly in the target promoters, this may affect the position distribution of a second,
non-uniformly distributed motif as well, leading to less accurate predictions for the second
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motif. Hence, it may be worthwhile to also consider a variant of MuMFi without shared
parameters in the future.

4.2.7. Conclusions

In this work we propose MuMFi, a novel approach for the prediction of cis-regulatory modules
comprising binding sites of at most two different motifs. This approach incorporates a model
for the position distribution of binding sites, which is a mixture of a uniform and a Gaussian
distribution and is able to capture correlations between the binding sites of the two motifs.
The parameters of the statistical models for motifs and flanking sequence and the parameters
of the position distribution are learned by the discriminative MSP principle.

We compare MuMFi to seven other approaches for de-novo discovery of single motifs on
18 benchmark data sets with single planted motif, and find that it outperforms the other
approaches with regard to the total number of motifs discovered. In most cases, MuMFi also
achieves a comparable or even improved accuracy compared to the other approaches studied
as measured by the PR curve. We find that the strengths of MuMFi are the combination of
learning a position distribution from data, learning parameters discriminatively, and using a
heuristic to compensate for phase shift and to automatically adapt the length of the motif.

We also demonstrate the utility of MuMFi on benchmark data sets comprising binding sites
of two different motifs. For these data, we show that the accuracy of MuMFi greatly profits
from the combination of discriminative learning and learning the position distribution from
the data.

Applying MuMFi to the promoters of auxin responsive genes, we find a motif that may be
interpreted as a refined and elongated variant of the canonical auxin response element. This
motif, combined with a strong positional preference discovered by MuMFi, is highly specific for
auxin responsive genes and yields a 250-fold decreased p-value in Fisher’s exact test compared
to the canonical auxin response element without positional preference.
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4.3. Prediction of nucleosome positioning

4.3.1. Background

Nucleosomes are building-blocks of eukaryotic chromatin organization. Besides their impor-
tance for the compaction of eukaryotic genomes, nucleosome positioning influences the binding
of transcription factors by steric hindrance (see also section 2.2). Hence, we are interested in
the prediction of nucleosome positioning from sequence to reduce the number of false-positives
when predicting TFBSs.

4.3.1.1. Sources of verified nucleosome positions

Most techniques for the experimental determination of nucleosome positions share the same
initial step (Yuan et al., 2005; Lee et al., 2007; Field et al., 2008): Genomic DNA is extracted
from cell cultures, cross-linked, and then digested by micrococcal nuclease. Micrococcal nucle-
ase (MNase) is an endo-/exo-nuclease with a relatively low binding specificity and preferentially
cuts A/T-dinucleotides (see also figure 4.36). Regions of DNA bound in nucleosomes are not
accessible to MNase and consequently are protected from digestion, whereas linker sequences,
i.e. the regions between the nucleosomes, are digested. After the digestion is stopped, the
histone cores are removed by proteinase.

The detection of the undigested nucleosomal DNA is then accomplished either by hybridization
to tiling microarrays (Yuan et al., 2005; Lee et al., 2007) or by parallel sequencing (Field et al.,
2008). In the latter case, we directly obtain the sequences of nucleosomal DNA, whereas
the evaluation of tiling microarrays requires the mapping from hybridization intensities to
nucleosome positions. Additionally, the resolution achievable depends on the spacing of the
tiling microarray. Yuan et al. (2005) use 50 nt probes tiled every 20 bp, whereas (Lee et al.,
2007) achieve a resolution of 4 bp on an Affymetrix tiling microarray. The mapping from
intensities to positions is commonly conducted employing hidden Markov models (HMMs)
(Yuan et al., 2005; Lee et al., 2007; Yassour et al., 2008).

Field et al. (2008) obtain approximately 503, 000 reads of nucleosomal DNA by parallel se-
quencing of a pool of eight independent biological replicates of Saccharomyces cerevisiae. The
454 pyrosequencing technique used by Field et al. (2008) is capable of sequencing fragments
up to ∼ 200 bp, which is sufficient to reliably detect nucleosomal DNA with a length of ∼ 147
bp. The reads are then mapped to the genome excluding those reads that map to repetitive
regions and filtering for a required length of 127− 177 bp. The resulting set of approximately
380, 000 uniquely mapped reads corresponds to a five-fold coverage of the yeast genome. These
data are also used in this work to learn a model of nucleosome positioning.

4.3.1.2. Related work

Several attempts have been made to predict nucleosome positioning from DNA sequence. For
yeast (S. cerevisiae), Ioshikhes et al. (2006) calculate the relative frequency of AA and TT
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dinucleotides along the sequences of approximately 200 well-positioned nucleosomes, i.e. nucle-
osomes with a low mobility. This pattern of length 139 is then slid along genomic sequences to
scan for potential nucleosome positions. Ioshikhes et al. (2006) convert the genomic sequence
under the sliding window to a sequence of relative AA/TT occurrences as well and measure its
correlation to the pre-defined pattern. The resulting correlations are used as scores to predict
non-overlapping nucleosome positions.

A similar approach is proposed by Segal et al. (2006), who use a WAM model smoothed
over three neighboring positions combined with a homogeneous Markov model of order 0 as
background model to scan for nucleosome positioning signals in yeast. The resulting scores
serve as the input of a dynamic programming approach similar to the forward-backward al-
gorithm for HMMs, which computes the final probabilities of nucleosome occupancy. Segal
et al. (2006) find ∼ 10 bp periodic A/T dinucleotides for sequences bound in nucleosomes and
similar periodicities in nucleosome-bound sequence from chicken.

Nucleosome positioning in yeast is also studied by Peckham et al. (2007), who employ support
vector machines (SVMs) with a linear kernel. The kernel considers the number of occurrences
of all 1 to 6-mers of the input sequence. Each input sequence is converted into a vector of the
number of k-mer occurrences for each possible k-mer in Σk, where k = 1, . . . , 6 and k-mers
and their reverse complement are identified, e.g. ACG and CGT are considered as the same
k-mer. The approach of Peckham et al. (2007) is adapted by Gupta et al. (2008) to predict
nucleosome positions in human DNA sequences.

Lee et al. (2007) use a linear model on features selected by the Lasso method (Tibshirani, 1994)
to predict nucleosome positions according to data obtained by tiling microarrays, which are
presented in the same publication. The features selected by Lasso are the helical properties tip,
tilt, propeller twist, and roll (see section 4.3.2.6), several k-mer occurrences, and the known
binding sites of three transcription factors.

Liu et al. (2008) use the occurrences of A/T-dinucleotides and the computationally determined
curvature of the DNA helix as input of a wavelet analysis to predict nucleosome positions in
DNA sequences stemming from chromosome 1 and 2 of yeast. In accordance to Segal et al.
(2006), they find periodic signals of A/T dinucleotides along the nucleosomes.

Wavelets are also employed by Yuan and Liu (2008), who use a wavelet transform with Haar
wavelets. The wavelet coefficients are computed on each of 16 binary sequences representing
dinucleotide occurrences for each of the 16 dinucleotide. An automatically selected subset of
these coefficients serves as input of a logistic regression (see section 3.2). The final assignment
of nucleosome positions is accomplished by an HMM working on the probabilities that are
the results of logistic regression. This HMM accounts for steric hindrance between adjacent
nucleosomes.

All of the previous approaches derive their ground truth from the analysis of tiling microarrays
or low-throughput sequencing. Field et al. (2008) are the first, who use MNase digest in
conjunction with high-throughput parallel sequencing to obtain ∼ 380, 000 uniquely mapped
nucleosome positions. They train a slightly modified version of the model of Segal et al. (2006)
using a homogeneous Markov model of order 4 on these data and show that their model
performs best compared to the approaches of (Ioshikhes et al., 2006), (Segal et al., 2006),
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(Lee et al., 2007), (Peckham et al., 2007), and (Yuan and Liu, 2008). The data of (Field
et al., 2008) are also considered in this work. In (Lubliner and Segal, 2009) this approach
is combined with an explicit model of dependencies between adjacent nucleosomes and the
authors show that prediction performance can be improved for in vitro as well as in vivo
nucleosome positioning.

Morozov et al. (2009) employ a biophysical model for predicting DNA geometry within nucle-
osomes and use this model to predict genome-wide nucleosome occupancy as well. The geo-
metrical properties modelled are twist, roll, tilt, slide, shift, and rise (see also section 4.3.2.6),
and they show that their predictions are highly correlated with experimental results using the
first four properties.

4.3.2. Model

The approach presented here is driven by two main ideas: Firstly, coding and non-coding se-
quences differ in general properties like G/C-content or the presence of coding potential, which
might superimpose the signals of nucleosome positioning. Hence, nucleosome positioning in
coding and non-coding regions should be modelled separately. Secondly, nucleosome position-
ing might be influenced by a number of different features of the affected stretches of DNA,
which all contribute to the final probability of nucleosome formation. Additionally, we utilize
preferred lengths of the linker sequences between nucleosome in a post-processing step.

4.3.2.1. Voting of components

We model the differentiation between coding and non-coding sequences by a two-stage process.
First, we learn a classifier that discriminates coding from non-coding sequences. Second, we
learn independent component classifiers for discriminating DNA bound in nucleosomes from
linkers given that this stretch of DNA is either coding or non-coding. In order to prevent a
blurring of the distinctive properties of nucleosome-bound sequences in coding and non-coding
DNA, we introduce another category called border, which refers to stretches of DNA that are
at a border between coding and non-coding regions and thus exhibit properties of both types
of DNA.

The full setup is depicted in figure 4.20. The colored boxes on the left side represent the three
component classifiers that model the probability of nucleosome formation given sequence x

is coding (c, blue box), non-coding (n, green box), or at a border region (b, red box). Each
component classifier comprises a number of elementary classifiers, which are represented by
the inner boxes enclosed in the boxes of the component classifiers.

In the component classifier for region m ∈ {c, n, b}, the votings P (nuc|x,m, t,βm,t) of the
set Tm of elementary classifiers are combined by weighted voting. The weights P (t|βm) of
the elementary classifiers are a-priori probabilities and do not depend on the sequence x.
Each elementary classifier considers a feature or a set of closely related features of a sequence.
The specific elementary classifiers in Tm and the number of elementary classifiers Tm may be
different for each of the component classifiers. The parameters βm of component classifier m
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border

P (nuc|x, b, Tb, βb)

P (nuc|x, b, Tb, βb,Tb)

...

P (nuc|x, b, 1, βb,1) P
P (Tb|βb,Tb)

P (1|βb,Tb)

non-coding

P (nuc|x, n, Tn, βn)

P (nuc|x, n, Tn, βn,Tn)

...

P (nuc|x, n, 1, βn,1) P
P (Tn|βn,Tn)

P (1|βn,Tn)

coding

P (nuc|x, c, Tc, βc)

P (nuc|x, c, Tc, βc,Tc)

...

P (nuc|x, c, 1, βc,1) P
P (Tc|βc,Tc)

P (1|βc,Tc)

PP (n|x, βw) P (nuc|x, {Tm}, β)
P
(c|x

,β
w )

P
(b
|x

,β
w
)

elementary
classifiers

component
classifiers

coding/
non-coding
classifier

Figure 4.20.: Voting of components. The three component classifiers for coding, non-coding and border
sequences are represented by blue, green, and red boxes, respectively. Each component
classifier consists of a number of elementary classifiers, which are illustrated by inner
boxes enclosed in the boxes of the component classifiers. The elementary classifiers
employ specific features of the DNA sequence x. The t-th elementary classifier uses its
features to compute the probability P (nuc|x,m, t,βm,t) of nucleosome formation given
region m. These are combined by weighted voting using a-priori weights P (t|βm,Tm)
yielding the voting P (nuc|x,m, Tm,βm) of the component classifier given the elementary
classifiers in set Tm. These votings are combined by another weighted voting using
the probabilities P (m|x,βw) as weights, which are the probabilities that x is a coding,
non-coding, or border sequence. Finally, we obtain the probability P (nuc|x, {Tm},β) of
nucleosome formation given the sets {Tm} of selected elementary classifiers.

comprise all sets of parameters βm,t of the employed elementary classifiers and the parameters
for the a-priori probabilities of these elementary classifiers.

The probabilities P (nuc|x,m, Tm,βm),m ∈ {c, n, b}, of nucleosome formation according to the
component classifiers are combined by another weighted voting. In contrast to the weighted
voting of elementary classifiers, the probabilities P (m |x,βw) used as weights depend on the
sequence. These correspond to the probabilities that x is a coding, non-coding, or border
sequence, and are obtained from the classifier discriminating these three classes, where βw

denotes the parameters of this classifier. We define the combined probability of nucleosome
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formation P (nuc |x, {Tm},β) as

P (nuc |x, {Tm},β) =
∑

m∈{c,n,b}

P (m |x,βw)P (nuc |x,m, Tm,βm) , (4.18)

where β = (βw,βc,βn,βb). This voting scheme shows some analogies to boosting (Freund and
Schapire, 1996; Jing et al., 2005) and other ensemble approaches (Cerquides and de Mántaras,
2005; Kim and Pavlovic, 2005). However, in contrast to previous approaches the weights
P (m |x,βw) of the voting depend on the current sequence x. In the following, we consider
sequences x of length L = 200.

We learn the parameters βm of the component classifiers and the parameters βw of the classifier
discriminating coding, non-coding, and border sequences by the discriminative MSP principle.
In case of the component classifiers, the classes considered are nucleosome-bound sequences
and linker sequences, and the corresponding class posteriors required for the definition of condi-
tional likelihood (see section 3.2.1, p. 12) are P (nuc|x,m, Tm,βm) and 1−P (nuc|x,m, Tm,βm),
respectively. For the classifier discriminating coding, non-coding, and border sequences,
we consider these very classes, and the class posteriors correspond to P (m |x,βw) ,m ∈
{c, n, b}.

The MSP principle also requires the definition of priors on the parameters βm and βw. The
specific priors used for the parameters of the elementary classifiers, the parameters of the
weights used in the component classifiers, and the parameters of the classifier discriminating
coding, non-coding, and border sequences are presented in the following sections, where we
also concretize these classifiers. For the specification of the hyper-parameters of all priors, we
adhere to the assumption of uniform pseudo-data. In most cases, we can determine hyper-
parameters according to this assumption analytically, while in some cases we must resort to
simulations.

The remainder of this section is structured as follows. In the next sub-section, we present
the classifier that discriminates coding, non-coding, and border sequences. We give more
detail on the weighted voting of elementary classifiers employed by the component classifiers
in sub-section 4.3.2.3. We introduce the elementary classifiers employing Markov models in
sub-section 4.3.2.4 and 4.3.2.5, and those employing numerical properties of DNA sequences
in sub-section 4.3.2.6. For learning the component classifiers, we map coverage by nucleosome
reads to probabilities of nucleosome formation as described in sub-section 4.3.2.7 and we
select elementary classifiers by a greedy approach presented in sub-section 4.3.2.8. Finally, we
describe the post-processing step for utilizing preferred linker lengths in sub-section 4.3.2.9.

4.3.2.2. Discriminating coding from non-coding sequences

Discriminating coding from non-coding sequences is closely related to gene finding, which in-
volves the prediction of transcription starts or exon-intron boundaries aside from more general
properties like base composition, codon usage, or the presence of stop codons. Here, we con-
centrate on the latter properties, because these utilize neither the location of the sequence on
the chromosome nor its neighborhood, and, hence, can be employed for isolated, short (200
bp) sequences that we consider for the prediction of nucleosome positioning.
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Class posterior

We define the class posterior P (m |x,βw) based on the a-priori probability P (m|βw) of class
m, where m ∈ {c, n, b}, and a score S(x|m,βw) of sequence x given class m and the parameters
βw as

P (m |x,βw) =
P (m|βw)S(x|m,βw)∑
m̃ P (m̃|βw)S(x|m̃,βw)

. (4.19)

The score S(x|m,βw) can be normalized to a proper likelihood. However, normalization is
not necessary and can be omitted, since the class posterior as defined in equation (4.19) is
always normalized, i.e.

∑
m∈{c,n,b} P (m |x,βw) = 1.

We parameterize the a-priori probabilities as

P (m|βw) =
exp(βm)∑
m̃ exp(βm̃)

, (4.20)

where the βm ∈ R are a subset of βw. We omit the index w here and in the following, when
we refer to the parameters for one specific class to reduce notational complexity.

The score S(x|m,βw) is composed of the likelihood PStrand(x|m,βw) that basically models
base composition and codon usage, and a score SStop(x|m,βw) that models the distribution
of stop codons over the potential reading frames:

S(x|m,βw) = PStrand(x|m,βw)SStop(x|m,βw), (4.21)

As we will see in a few paragraphs, the distribution of stop codons is a proper probability
distribution over the number of reading frames exhibiting a stop codon, but not over all
possible sequences x ∈ ΣL and, hence, referred to as a score. Although the independence
assumption, implied by using the product of the likelihood PStrand(x|m,βw) and the score
SStop(x|m,βw), is clearly not valid in general, we consider the degree of dependency low and
thus neglectable.

Base composition in non-coding sequences should not depend on the strand considered. Addi-
tionally, we do not consider the annotated strand orientation of the genes from that we extract
coding sequences. Hence, we utilize a strand model for the first likelihood PStrand(x|m,βw),
which is a mixture model over the forward and backward strand applying the same component
likelihood once to the original sequence x and once to its reverse complement xrc, i.e.

PStrand(x|m,βw) = P (fw|βw)PMM(x|m,βw) + P (bw|βw)PMM(xrc|m,βw), (4.22)

where the index MM indicates that we employ Markov models for the component likelihood
PMM(x|m,βw) as described in the next paragraph. We parameterize the mixture probabilities
in terms of real valued parameters βfw|m, βbw|m ∈ R as

P (fw|βw) =
exp(βfw|m)

exp(βfw|m) + exp(βbw|m)
and P (bw|βw) =

exp(βbw|m)
exp(βfw|m) + exp(βbw|m)

, (4.23)

where βfw|m and βbw|m are again included in βw.
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For the component likelihood PMM(x|m,βw), we split the sequence x in halves to adequately
model sequences stemming from the border region, which comprise coding as well as non-
coding parts with different properties. Each of the two halves is modelled by a mixture of
a homogeneous Markov model of order 3 (hMM) and a 3-periodic Markov model of order 3
(pMM) as introduced in section 3.3.1 (p. 17), resulting in the combined likelihood

PMM(x|m,βw) =
[
P1(hMM|βw)PhMM,1(x1, . . . , xL/2|m,βw)+

P1(pMM|βw)PpMM,1(x1, . . . , xL/2|m,βw)
]
·[

P2(hMM|βw)PhMM,2(xL/2+1, . . . , xL|m,βw)+

P2(pMM|βw)PpMM,2(xL/2+1, . . . , xL|m,βw)
]
, (4.24)

where the mixture probabilities are parameterized in analogy to those of the strand model in
terms of parameters βhMM,i|m, βpMM,i|m ∈ R as

Pi(hMM|βw) =
exp(βhMM,i|m)

exp(βhMM,i|m) + exp(βpMM,i|m)
(4.25)

Pi(pMM|βw) =
exp(βpMM,i|m)

exp(βhMM,i|m) + exp(βpMM,i|m)
. (4.26)

The 3-periodic Markov model explicitly represents the codon structure of coding sequences,
where the probability of a certain nucleotide x` at position ` depends on its localization within
the codon.

We anticipate that the mixture probabilities Pi(hMM|βw) and Pi(pMM|βw) adapt to the
characteristics of coding, non-coding, and border sequences. For coding sequences, we expect
a high probability for the periodic Markov model in both halves, whereas the homogeneous
Markov model should obtain a higher probability for non-coding sequences. For sequences
at the borders between coding and non-coding regions, the model should favor the periodic
Markov model in one of the halves and the homogeneous Markov model in the other. Due to
the enclosing strand model, it does not matter, which of the two models is favored for which
of the two halves.

As second component of the score S(x|m,βw) we use a model for the distribution of stop
codons (TAA, TGA, and TAG) over the three reading frames on the forward strand and the
three reading frames on the backward strand. It is known (Nicorici and Astola, 2004; Creanza
et al., 2009) that the number of reading frames containing at least one stop codon discriminates
well between coding and non-coding sequences: Considering one strand of coding sequences
of length 160, Nicorici and Astola (2004) find that with high probability (∼ 0.97) only two of
the three potential reading frames do contain a stop codon, whereas for non-coding sequences
of the same length, they observe stop codons in all three reading frames with a probability of
∼ 0.86. These observations can be explained by the fact that only one stop codon exists in the
correct frame, which may not be contained in the 160 bp considered, whereas the number of
stop codons is not controlled in the two incorrect reading frames. Stop codons in the incorrect
reading frames may even be favorable, as they stop translation in a wrong frame early. Finally,
the occurrence of stop codons in non-coding sequences depends only on the base composition
and the length of the sequence, as stop codons are meaningless in non-coding DNA.
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Let nStop(x) be the number of reading frames of sequence x on either of the two strands that
contain at least one stop codon. We define the score of sequence x with respect to the number
of stop codons as

SStop(x|m,βw) = P (nStop(x)|m,βw), (4.27)

where P (nStop(x)|m,βw) is a proper probability distribution over the number of reading frames
that contain at least one stop codon, i.e.

∑6
n=1 P (n|m,βw) = 1, but is not normalized over

all sequences x ∈ ΣL. Hence, it is only considered a score SStop(x|m,βw) with regard to a
sequence x. The probability of observing at least one stop codon in n of the six potential
reading frames is parameterized as

P (n|m,βw) =
exp(βStop,n|m)∑6

ñ=1 exp(βStop,ñ|m)
, (4.28)

where the βStop,n|m ∈ R are a subset of the parameters in βw.

We learn all parameters of the classifier distinguishing coding, non-coding, and border se-
quences including the parameters of the a-priori probabilities of the three classes, the mixture
parameters, the parameters of the homogeneous and periodic Markov models, and the param-
eters of the score modeling stop codons. We optimize the parameters βw by the discriminative
MSP principle, i.e.

β∗
w = argmax

βw

[
N∏

n=1

P (cn |xn,βw)

]
q (βw |αw) , (4.29)

where cn ∈ {c, n, b} denotes the correct class of sequence xn, and q (βw |αw) denotes the prior
on the parameters βw with hyper-parameters α, which has yet to be defined.

Prior and hyper-parameters

We start the definition of prior and hyper-parameters with the definition of equivalent sam-
ple sizes (ESS) αm (cf. section 3.4) for the three classes. These are used as hyper-parameters
of a transformed Dirichlet prior (see section 3.4.2, p. 30) on the parameters of the a-priori class
probabilities βm. The same ESS is used for the parameters of the strand model PStrand(x|m,βw)
and the distribution of stop codons SStop(x|m,βw). For the latter, we use another transformed
Dirichlet prior, and we equally distribute the ESS over the six possible outcomes resulting in
hyper-parameters αStop,n|m = αm

6 for parameter βStop,n|m.

The assumption of uniformly distributed pseudo data also leads to an even distribution of
the ESS over the two strands, resulting in hyper-parameters αfw|m = αbw|m = αm

2 , which
are used in a transformed Beta prior on the parameters βfw|m and βbw|m. As the mixture of
the Markov models PMM(x|m,βw) is used for both strands, once for the original sequence x

and once for its reverse complement xrc, the ESS remains αm for the mixture. This ESS is
then evenly distributed over the two components of the mixture, and we use hyper-parameters
αhMM,i|m = αpMM,i|m = αm

2 for another transformed Beta prior on the mixture parameters
βhMM,i|m and βpMM,i|m = αm

2 .
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The priors on the parameters of the homogeneous and periodic Markov models are product-
Dirichlet priors defined in section 3.4.2 using an ESS of αm

2 and an expected length of LE =
200.

The complete prior q (βw |αw) is then the product of all the component priors described above.
Throughout the experiments, we use αm = 4.

4.3.2.3. Component classifiers

As mentioned in the beginning of this section, we assume that different features contribute to
nucleosome positioning. We represent this assumption by defining the component classifiers
as a weighted voting of elementary classifiers, each considering a specific feature or a set of
closely related features of a sequence. In contrast to the enclosing voting of components, the
weights applied to the votings of elementary classifiers are a-priori weights, i.e. do not depend
on the sequence, in this case. The elementary classifiers are selected by a greedy algorithm
presented in section 4.3.2.8 and the set of elementary classifiers Tm selected may be different
for coding, non-coding, and border sequences.

P (nuc|x,m, T,βm,T )

...

P (nuc|x,m, 1,βm,1) ∑
P (Tm|βm,Tm)

P (1|βm,Tm)

P (nuc|x,m, Tm,βm)

Figure 4.21.: Weighted voting of elementary classifiers used as component classifiers (cf. figure 4.20).
The votings P (nuc |x,m, t,βm,t) of elementary classifiers are weighted by P (t|βm,Tm

)
and added to the final voting P (nuc |x,m, Tm,βm) of the component classifier.

A graphical representation of the voting is given in figure 4.21, which corresponds to one of the
boxes representing component classifiers in figure 4.20. The t-th elementary classifier in Tm

votes with probability P (nuc |x,m, t,βm,t) for x being bound in a nucleosome. The votings
of the elementary classifiers are weighted by a-priori probabilities P (t|βm,Tm) and combined
to a final probability of nucleosome formation P (nuc |x,m, Tm,βm) given the sequence x, the
type of the component m ∈ {c, n, b}, and parameters βm. We formalize this weighted voting
as

P (nuc |x,m, Tm,βm) =
∑
t∈Tm

P (t|βm,Tm)P (nuc |x,m, t,βm,t) , (4.30)

where βm = (βm,Tm ,βm,1, . . . ,βm,Tm). The probabilities used as weights are parameterized in
terms of parameters βt|m ∈ R as

P (t|βm,Tm) =
exp(βt|m)∑

t̃∈Tm
exp(βt̃|m)

, (4.31)
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and we denote by βm,Tm the vector of all βt|m. Again, we apply a transformed Dirichlet
prior to the parameters βm,Tm using an ESS of αm, which is equally distributed over the Tm

hyper-parameters αt|m.

The class posterior P (nuc |x,m, t,βm,t) given sequence x of typem in the elementary classifier
t with parameters βm,t is defined as

P (nuc |x,m, t,βm,t) =
P (nuc|βm,t)Sm,t(x|nuc,βnuc,m,t)

P (nuc|βm,t)Sm,t(x|nuc,βnuc,m,t) + P (link|βm,t)Sm,t(x|link,βlink,m,t)
,

(4.32)

where P (nuc|βm,t) denotes the a-priori probability of nucleosome formation parameterized in
analogy to equation (4.20) and βm,t = (βnuc|m,t, βlink|m,t,βnuc,m,t,βlink,m,t). Sm,t(x|nuc,βnuc,m,t)
and Sm,t(x|link,βlink,m,t) are scores of sequence x given it is a nucleosome-bound or linker se-
quence, respectively. The functional form of these scores depends on the sequence features
that are used in elementary classifier t. We consider two fundamental types of scores. The first
is composed of Markov models capturing general k-mer frequencies, and is actually a proper
likelihood over the sequences x ∈ ΣL. The second type comprises the densities of several
numerical sequence features.

4.3.2.4. Homogeneous Markov models

We illustrate in figure 4.22 how homogeneous Markov models are arranged in the elementary
classifiers. We divide the input sequence of length L = 200 into four quarters, where the first
quarter is modelled by a homogeneous Markov model of order d1, the second quarter by a
homogeneous Markov model of order d2, which is re-used for the reverse complement of the
third quarter as indicated by the inverse direction of the second green box, and, finally, the
fourth quarter is modelled by another homogeneous Markov model of the same order as the
first one. The Markov model in the center depicted as green box scores 100 bp in total, which
are assumed to be located at the core of nucleosome-bound sequences. The two Markov models
at the borders depicted in red and blue, respectively, model the transition from nucleosome-
bound sequence to linker, which should be localized approximately in these 50 bp regions.
By using different Markov models with different parameters at the two borders, we allow for
variability in this transition. The combination of homogeneous Markov models is enclosed in
a strand model, which allows for inversion of the sequence of Markov models and is visualized
by the outer grey box in figure 4.22

Score We formalize the strand model using a combination of homogeneous Markov mod-
els with order d1 at the borders and order d2 in the center given class c ∈ {nuc, link} and
parameters βm,t,m ∈ {c, n, b}, as

S
hMM(d2,d1)
m,t (x|c,βc,m,t) = P (fw|c,βc,m,t)PhMM(x|c, d2, d1,βc,m,t)+ (4.33)

P (bw|c,βc,m,t)PhMM(xrc|c, d2, d1,βc,m,t), (4.34)
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hMM1(d1) hMM2(d2) hMM2(d2) hMM3(d1)

Figure 4.22.: Arrangement of homogeneous Markov models in the elementary classifier. The first
and the last Markov model share the same order but may employ different probability
distributions as indicated by the differing colors. The Markov model in the center is
applied once to the second quarter to the sequence and once to the reverse complement
of the third quarter, which is represented by the orientation of boxes. The combination
of these three Markov models is enclosed in a strand model, which is illustrated by the
outer grey box.

where βc,m,t denotes the subset of parameters in βm,t that are used for class c and the mix-
ture probabilities of the strand model P (fw|c,βc,m,t) and P (bw|c,βc,m,t) are parameterized
in analogy to equation (4.23). The combination of homogeneous Markov models amounts
to the product of the corresponding likelihoods parameterized according to section 3.3.1 and
applied to the first quarter of the sequence x1, . . . , xL/4, the second quarter xL/4+1, . . . , xL/2,
and the reverse complement of the third quarter [xL/2+1, . . . , x3L/4]rc and the fourth quarter
[x3L/4+1, . . . , xL]rc, i.e.

PhMM(x|c, d2, d1,βc,m,t) = PhMM1(d1)(x1, . . . , xL/4|βc,m,t,1)PhMM2(d2)(xL/4+1, . . . , xL/2|βc,m,t,2)·
PhMM2(d2)([xL/2+1, . . . , x3L/4]

rc|βc,m,t,2)PhMM3(d1)([x3L/4+1, . . . , xL]rc|βc,m,t,3), (4.35)

where βc,m,t,k denotes the subset of parameters in βc,m,t that are used for the homogeneous
Markov model k ∈ {1, 2, 3}. Here, we consider orders d2 ∈ {0, 1, 2, 3} at the center and orders
d1 ∈ {0, . . . , d2} at the borders, i.e. the order of the Markov models at the borders is at most
the order of the Markov model at the center.

Prior and hyper-parameters We use a transformed beta prior on the parameters of the
mixture probabilities of the strand model. As hyper-parameters, we use αfw|c,m,t = αbw|c,m,t =
αm

T ·2·2 , where T is the number of elementary classifiers in the component classifierm. This choice
of hyper-parameters follows from the assumption of uniform pseudo data (see section 3.4.2)
and assumes a uniform a-priori distribution of nucleosome-bound sequences and linkers as
well as the two strand orientations. Accordingly, we set the equivalent sample sizes of the
homogeneous Markov models to αm

T ·2 at the borders, since this models are used for both strands,
and to αm

T for the homogeneous Markov model at the center, which is used for both strands
and the second and third quarter of the input sequence. We set the expected length (see
section 3.4.2, p. 30) of all homogeneous Markov models to LE = L

4 .

4.3.2.5. Inhomogeneous Markov model

Score In addition to the homogeneous Markov models, we define another score that uses an
inhomogeneous Markov model of order 1 (see section 3.3.1) for the class of nucleosome-bound
sequences, and a homogeneous Markov model of order 4 for modelling the linker sequences,
which is similar to the heuristically learned model employed by (Field et al., 2008). We denote
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this score as

SiMM
m,t (x|c,βc,m,t) =

{
PiMM(1)(x|nuc,βc,m,t), if c = nuc
PhMM(4)(x|link,βc,m,t), if c = link.

(4.36)

Prior and hyper-parameters We use two transformed product-Dirichlet priors with equiva-
lent sample size αm

T ·2 as defined in section 3.4.2 for the parameters of the inhomogeneous Markov
model and the parameters of the homogeneous Markov model.

4.3.2.6. Numerical properties of DNA sequences

Besides homogeneous Markov models, we also employ a number of numerical properties com-
puted from the sequence x, some of which are motivated by previous findings of specific
properties of nucleosome-bound sequences and linkers. These properties include the entropy
of k-mer frequencies, the number of CTG trinucleotides, the length of consecutive tracts of A
or T nucleotides, and the wavelet energies of geometrical and physicochemical properties of
the DNA helix. For each of the properties introduced in the following, we first describe how
the property is determined from DNA sequence. We then define the score for modeling the
property, and finally introduce the prior on the parameters of the score and the associated
hyper-parameters under the assumption of uniform pseudo data.

Entropy

Entropy measures the deviation of a given probability distribution from the uniform distribu-
tion. Here, we apply it to the relative frequencies of k-mer occurrences, which gives an overall
rating of the over- or under-representation of k-mers. The entropy Hk(x) estimated from the
relative frequencies of k-mers in sequence x amounts to

Hk(x) = −
∑
b∈Σk

nb(x)∑
b̃ nb̃(x)

log
(

nb(x)∑
b̃ nb̃(x)

)
, (4.37)

where nb(x) denotes the number of occurrences of k-mer b in sequence x. Here, we consider
the entropies of 1- to 4-mers.

Additionally, we consider the entropy of k-mers for a reduced alphabet that identifies nu-
cleotides and their complements, i.e. we define a symbol W that matches the nucleotides A
and T in x, and another symbol S that matches G and C. The estimated entropy of k-mers
for this reduced alphabet amounts to

Hc
k(x) = −

∑
b∈{W,S}k

nb(x)∑
b̃ nb̃(x)

log
(

nb(x)∑
b̃ nb̃(x)

)
. (4.38)

Scores As the entropy is always positive, we model the distribution of values of the entropies
by transformed gamma densities (see section 3.3.2.2) with shape γc,m,t,k and rate βc,m,t,k.
The index t indicates here and in the following that these parameters are used in one of the
elementary classifiers indexes by t.
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We define the score of sequence x with respect to the entropy of k-mers as

SH
m,t(x|c,βc,m,t) =

4∏
k=1

G(Hk(x)|γc,m,t,k, βc,m,t,k), (4.39)

where in this case βc,m,t = (γc,m,t,1, βc,m,t,1, . . . , γc,m,t,4, βc,m,t,4).
Although each single density G(Hk(x)|γc,m,t,k, βc,m,t,k) is normalized, SH

m,t(x|c,βm,t) is not
normalized over all possible input sequences x and hence referred to as a score.

We define the score of sequence x with respect to the entropy for the reduced alphabet as

SHc

m,t(x|c,βc,m,t) =
4∏

k=1

G(Hc
k(x)|γc,m,t,k, βc,m,t,k), (4.40)

where βc,m,t = (γc,m,t,1, βc,m,t,1, . . . , γc,m,t,4, βc,m,t,4).

Priors and hyper-parameters In section 3.4.4, we defined a conjugate prior for the trans-
formed gamma density. Besides the equivalent sample size α, this prior requires the specifi-
cation of the logarithm of the expected geometric mean χ1,c,m,t,k and the expected arithmetic
mean χ2,c,m,t,k. We set the equivalent sample size to αm

T ·2 in analogy to the elementary classifier
using homogeneous Markov models. The expected arithmetic mean under the assumption of
uniform pseudo data can be determined analytically. This assumption entails that all k-mers
b ∈ Σk occur with identical relative frequencies qb that amount to the product of the relative
frequencies of single nucleotides q = 1

|Σ| , and we can determine the expected arithmetic mean
as

χ2,c,m,t,k =
∑

x∈ΣL

1
|Σ|L

∑
b∈Σk

qb log qb (4.41)

=
∑
b∈Σk

[
k∏

i=1

q

]
log

[
k∏

i=1

q

]
(4.42)

= k · |Σ| · q log q. (4.43)

We know that the geometric mean is always less than or equal to the arithmetic mean. As we
cannot determine the geometric mean analytically, we set χ1,c,m,t,k := log(χ2,c,m,t,k · 0.9995),
which appears to be an appropriate value in simulations.

Number of CTG trinucleotides

CTG trinucleotides and the reverse complement CAG have been reported to be a main de-
terminant of nucleosome formation (Wang et al., 1994; Lee et al., 2007; Gupta et al., 2008).
However, the results of Peckham et al. (2007) indicate that the occurrence of CTG/CAG alone
does not discriminate well between nucleosome-bound sequences and linkers. Nonetheless, we
include the number of CTG/CAG trinucleotides into the set of numerical properties. We
define

CTG(x) := nCTG(x) + nCAG(x) + 1, (4.44)
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4.3. Prediction of nucleosome positioning

where nCTG(x) and nCAG(x) count the number of CTG and CAG trinucleotides in x, respec-
tively. We add a constant of 1 to the counts, as we want to model CTG(x) by a transformed
gamma density, which is not defined in case of CTG(x) = 0.

Score We define the score for the number of CTG/CAG trinucleotides in sequence x as

SCTG
m,t (x|c,βc,m,t) = G(CTG(x)|γc,m,t, βc,m,t), (4.45)

where βc,m,t = (γc,m,t, βc,m,t).

Prior and hyper-parameters For obtaining the hyper-parameters of the conjugate prior of
the gamma density, we approximate the distribution of CTG/CAG trinucleotides by a bi-
nomial distribution under the assumption of uniform pseudo data. Since we cannot ob-
serve overlapping occurrences of CTG or CAG, we count at most N = bL

3 c of these trin-
ucleotides. Let k denote the number of occurrences of CTG or CAG trinucleotides. Let
p := P (C) · (P (A) + P (T )) · P (G), where under the assumption of uniform pseudo data
P (A) = P (C) = P (G) = P (T ) = 1

4 , i.e. p = 1
32 . We set the hyper-parameters of the

prior to the expectation of log(k + 1) and (k + 1) with respect to the binomial distribution,
respectively, i.e.

χ1,c,m,t =
∑

k

log(k + 1)
(
N

k

)
pk(1− p)N−k (4.46)

χ2,c,m,t =
∑

k

(k + 1)
(
N

k

)
pk(1− p)N−k (4.47)

As before, we set the equivalent sample size to αm
T ·2 .

AT tracts

Long poly-A or poly-T tracts, briefly termed as poly-A/T tracts, are widely reported to prevent
formation of nucleosomes (Suter et al., 2000; Yuan et al., 2005; Peckham et al., 2007; Segal and
Widom, 2009). Hence, we include the length of the longest, second, third, and fourth longest
poly-A/T tract, and the number of poly-A/T tracts with a length greater than or equal to 3,
5, and 7 into the set of numerical properties. We formalize the number of poly-A/T tracts of
minimum length n as

Nn
AT (x) =

∣∣∣{i|∃k ≥ n : xi . . . xi+k−1 ∈ {Ak, T k} ∧ xi−1 6∈ {A, T} ∧ xi+k 6∈ {A, T}}
∣∣∣+ 1

and we define the length of the k-th longest poly-A/T tract as

Lk
AT (x) = max{n|∃i : xi . . . xi+n−1 ∈ {An, Tn} ∧Nn

AT (x) ≥ k}+ 1,

Again, we add a constant of 1 to these values to ensure that the transformed gamma density
is always defined.
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Scores We use Nn
AT (x) and Lk

AT (x) to define two scores, one for the number of poly-A/T
tracts of minimum lengths 3, 5, and 7

SNAT
m,t (x|c,βc,m,t) =

∏
n∈{3,5,7}

G(Nn
AT (x)|γc,m,t,n, βc,m,t,n), (4.48)

where βc,m,t = (γc,m,t,3, βc,m,t,3, . . . , γc,m,t,7, βc,m,t,7), and one for the length of the k-th longest
poly-A/T tract, k ∈ {1, 2, 3, 4}

SLAT
m,t (x|c,βc,m,t) =

4∏
k=1

G(Lk
AT (x)|γc,m,t,k, βc,m,t,k), (4.49)

where βc,m,t = (γc,m,t,1, βc,m,t,1, . . . , γc,m,t,4, βc,m,t,4).

Prior and hyper-parameters Again, we use the conjugate prior of the gamma density and
need to determine hyper-parameters under the assumption of uniform pseudo data. In this
case, we can determine the joint cumulative distribution function P (K ≥ k,N ≥ n|L) of
observing at least k poly-A/T tracts of minimum length n in a sequence of length L analyt-
ically (see appendix A.3). From the joint cumulative distribution function, we compute the
probability that k poly-A/T tracts of a length of at least n occur in a sequence of length L

as

P (K = k,N ≥ n|L) = P (K ≥ k,N ≥ n|L)− P (K ≥ k + 1, N ≥ n|L), (4.50)

and we compute the probability that the k-th longest poly-A /T tract is of length n as

P (K ≥ k,N = n|L) = P (K ≥ k,N ≥ n|L)− P (K ≥ k,N ≥ n+ 1|L). (4.51)

These two probabilities can be used to determine the expectations of the logarithm of the
geometric mean and the arithmetic mean required as hyper-parameters of the conjugate prior
for the transformed gamma density. We define the hyper-parameters for the prior on the
parameters of the score SNAT

m,t (x) for the number of poly-A/T tracts of minimum length n

as

χ1,c,m,t,n =
L∑

k=0

log(k + 1)P (K = k,N ≥ n|L) (4.52)

χ2,c,m,t,n =
L∑

k=0

(k + 1)P (K = k,N ≥ n|L), (4.53)

and we define the hyper-parameters for the prior on the parameters of the score SLAT
m,t (x) for
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the length of the k-th longest poly-A/T tract as

χ1,c,m,t,n =
L∑

n=0

log(n+ 1)P (K ≥ k,N = n|L) (4.54)

χ2,c,m,t,n =
L∑

n=0

(n+ 1)P (K ≥ k,N = n|L). (4.55)

Again, the equivalent sample size is set to αm
T ·2 .

Wavelets

Wavelet energies for the prediction of nucleosome positioning have been proposed by Yuan
and Liu (2008), who use the wavelet energies of Haar wavelets in a logistic regression (sec-
tion 3.2). Here, we extend this approach to the more general MSP learning principle, and we
use Mexican hat wavelets instead of Haar wavelets. The mexican hat wavelet ψ(y) is defined
as the normalized, negative second derivative of the Gaussian density (see section 3.3.2.1) with
a standard deviation of 1 and mean 0, i.e.

ψ(t) = c · (1− t2) exp(−1
2
t2), (4.56)

where c is a normalization constant. The wavelet function of t ∈ [0, 1] for scale i ∈ R+ and
shift k ∈ 0, 1, . . . , 2i − 1 is defined as (Yuan and Liu, 2008)

ψ(t, i, k) = 2
i
2ψ(2it− k), (4.57)

and results in a scaled and shifted variant of the original mexican hat. The wavelet function
is then used in a convolution with the numerical signal f(x, `) computed from sequence x at
position ` to obtain wavelet coefficients φf (x, i, k)

φf (x, i, k) =
L∑

`=1

f(x, `)ψ(
`

L
, i, k). (4.58)

The index f indicates that the coefficients depend on the function f . We obtain a large wavelet
coefficient φf (x, i, k) > 0 if the signal f(x, `) matches the wavelet function with scale i shifted
by k well, a low coefficient φ(x, i, k) < 0 if the signal matches the negative wavelet function,
and a coefficient of 0, if both are uncorrelated.

Here we focus on two scales, namely 3 and 64. The corresponding wavelet functions are
depicted in figure 4.23. The wavelet function with scale 3 is chosen as it matches sinusoidal
signals with approximately 10 bp periodicities well, i.e. we obtain large absolute values of
the wavelet coefficients every ∼ 5 bp for such signals. Periodic signals of approximately 10
bp have been reported as important features of nucleosome-bound sequences (Richmond and
Davey, 2003; Segal et al., 2006; Liu et al., 2008; Field et al., 2008), e.g. for A/T and G/C
dinucleotides or helical properties like tip. In contrast, the wavelet function with scale 64
is not capable of capturing periodicities in signals of length L = 200. Instead, it matches a
general characteristic of transition between the center and the borders of a signal.
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Figure 4.23.: Wavelet function of the mexican hat wavelets for scales 3 and 64 and a sequence of length
L = 200.

Based on the wavelet coefficients, we define two kinds of wavelet energies. The first is the sum
of wavelet coefficients over all possible shifts k

Ef,1(x, i) =
L∑

k=1

φf (x, i, k), (4.59)

which is an aggregate measure for how well the wavelet function matches the signal. However,
it considers the sign of the coefficient, and consequently may lead to the extinction of high
absolute coefficients with opposite sign. The magnitude of the absolute values of coefficients
are measured by the second wavelet energy, which is defined in analogy to (Yuan and Liu,
2008) as

Ef,2(x, i) =
L∑

k=1

φf (x, i, k)2. (4.60)

In the following, we introduce numerical properties of DNA sequences that are considered as
numerical signals f(x, `) for obtaining the wavelet energies. We convert the discrete sequences
x to numerical values according to experimentally determined values of physicochemical and
geometrical properties of di- or trinucleotides. These are either obtained from SRS5 or ex-
tracted from the specified publication. We employ the following physicochemical properties
determined for dinucleotides:

• The change of free energy of helix formation measured in units of kcal/mol (Sugimoto
et al., 1996);

• The melting temperature of the DNA helix in degree Celsius, i.e. the temperature at
which the DNA helix dissociates (Sugimoto et al., 1996);

• The base stacking energy of adjacent bases in kcal/mol, which results from interaction
of the aromatic rings of nucleotides (values of Rein (1973) as reported in (Ornstein et al.,
1978)).

5http://srs6.bionet.nsc.ru/srs6bin/cgi-bin/wgetz?-page+LibInfo+-lib+PROPERTY
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(a) Reference (b) Propeller twist (c) Tip

(d) Reference (e) Rise (f) Roll

(g) Slide (h) Tilt (i) Twist

Figure 4.24.: Geometrical properties of the DNA-helix. Sub-figures (a) and (d) depict the reference
for the geometry of single and adjacent basepairs, respectively.

We also employ the following geometrical properties of the DNA helix, which are illustrated
in figure 4.24:

• The persistence length, which is the length of DNA in nm for which the DNA molecule
can be considered as an elastic rod, and is a measure for the stiffness of the DNA (Sivolob
and Khrapunov, 1995);

• The propeller twist, which is the rotational angle in degrees between the two bases in a
basepair (Gorin et al., 1995);

• Rise, which is the distance between adjacent basepairs in Ångström and influences the
pitch of the DNA helix (Karas et al., 1996);

• Roll, i.e. the opening angle between adjacent basepairs orthogonal to the axis through
the two bases of a basepair, of free and complexed DNA (Suzuki et al., 1996);

• Slide of free and complexed DNA, which is the translation in Ångström along this axis
(Suzuki et al., 1996);

• Tilt of free and complexed DNA, which is the opening angle between adjacent basepairs
along this axis (Suzuki et al., 1996);

• Tip, which is the angle of the conjoint rotation of the two bases in a basepair orthogonal
to the helical axis (Karas et al., 1996);

• Twist, i.e. the rotation of one basepair against the adjacent one around the helical axis
(Karas et al., 1996);

• Vstep, which is a measure for the size of the space of admissible basepair conformations
with unit deg3Å3 (Olson et al., 1998);

• Bendability, which measures the flexibility of the DNA helix and has been experimentally
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determined for trinucleotides (Brukner et al., 1995).

Additionally, we consider a numerical representation of the occurrence of A/T and G/C din-
ucleotides, which is neither a physicochemical nor a geometrical property.

Each property determined for dinucleotides can be represented by a matrix r, where the rows
are indexed by the first nucleotide and the columns are indexed by the second nucleotide of
a dinucleotide. As a comprehensible example, we present the dinucleotide matrix r for the
occurrence of A/T and G/C dinucleotides, which is

r =


1 0 0 1
0 −1 −1 0
0 −1 −1 0
1 0 0 1

 , (4.61)

where the rows correspond to A, C, G, and T at the first position of the dinucleotide, and the
columns correspond to A,C,G, and T at the second position of the dinucleotide. We refer to the
entries of the matrix r as rx`,x`+1

, e.g. rC,G for a C at the first position and a G at the second
position of the dinucleotide, which can be found in the third column of the second row of the
matrix. The matrices for the remaining properties are given in appendix A.4. Bendability,
which has been determined for trinucleotides, can be represented by a tensor r with entries
rx`,x`+1,x`+2

, where the three dimensions are indexed by the first, second, and third nucleotide
of the trinucleotide, respectively.

In analogy to (Yuan and Liu, 2008), we smooth the resulting sequence of numerical values by
computing the mean value over a window of length 3, yielding the final numerical signal

fr(x, `) =
1
3

2∑
j=0

rx`+j ,...x`+j+R−1
, (4.62)

where ` ∈ {1, . . . , L−R+ 1}, and R = 2 for the properties based on dinucleotides and R = 3
for bendability.

Scores We model the wavelet energies E1(x, i) ∈ R by a transformed Gaussian density

S
Ef,1(i)
m,t (x|c,βc,m,t) = N (Ef,1(x, i)|µc,m,t, κc,m,t), (4.63)

where i ∈ {3, 64} denotes the scale and βc,m,t = (µc,m,t, κc,m,t), and we model the wavelet
energies E2(x, i) ∈ R+ by a transformed gamma density

S
Ef,2(i)
m,t (x|c,βc,m,t) = G(Ef,2(x, i)|γc,m,t, βc,m,t), (4.64)

where βc,m,t = (γc,m,t, βc,m,t).

Priors and hyper-parameters We use a normal-gamma prior (see section 3.4.3) on the pa-
rameters of the transformed Gaussian density. For the specification of hyper-parameters, we
need the expected mean µ0 for the Gaussian part, and the expected mean and variance of the
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gamma-part of the normal-gamma density. Due to the complexity of the mapping from the
discrete input sequences x to the wavelet energies, these expected values are not determined
analytically, but obtained from simulations. To this end, we draw 100, 000 sequences accord-
ing to the assumption of uniform pseudo data and compute the wavelet energies Ef,1(x, i)
from these random sequences. In turn, we use these values to compute the mean µ̂ and vari-
ance σ̂2 of the obtained wavelet energies. We set the a-priori mean µ0 = µ̂, and choose the
hyper-parameters τ1 and τ2 such that the expectation and variance of the gamma-part of the
normal-gamma density are equal to the estimated precision 1

σ̂2
.

The hyper-parameters of the conjugate prior of the gamma density are determined in the
same manner. From the 100, 000 uniformly drawn sequences, we compute the wavelet energies
Ef,2(x, i) and use these to determine estimates of the logarithm of the expected geometric and
the arithmetic mean required to define the hyper-parameters χ1 and χ2.

In all cases, we use an equivalent sample size of αm
T ·2 .

4.3.2.7. Mapping coverage to probabilities

Although the nucleosome positioning obtained by Field et al. (2008) using parallel sequencing
and subsequent mapping to the genome is more reliable than previous data from tiling mi-
croarrays, we do not anticipate that it is error-free. One potential source of errors is incomplete
digestion by MNase, which leads to false positives in the identification of nucleosomal DNA.
Additionally, the number of reads - though large - is limited and, hence, sequences actually
bound in nucleosomes might be overlooked. We also assume that the number of reads that
cover a specific position on a chromosome gives an indication of the strength of nucleosome
formation. We should observe many reads for stretches of DNA that are tightly bound in
nucleosome, whereas loosely bound stretches of DNA should be covered by a low number of
observed reads, since these are bound in nucleosomes only for a fraction of analyzed yeast
cells.

We want to utilize information about the certainty and strength of nucleosome formation for
learning the parameters of the component classifiers. To this end, we aim at a mapping from
the coverage by nucleosome reads to a probability of nucleosome formation. These probabilities
can be used for parameter learning by the weighted variant of the MSP principle for the case
of soft-labelling, which we introduced in section 3.2.3 (p. 14). In the following, we describe
how we derive such a mapping under the assumption of a random experiment.

We define a random variable B with realizations ` ∈ [1, L] corresponding to positions on the
genomic region considered, where L denotes the length of this genomic region. This random
variable models the situation where a histone core approaches a genomic position and is
available for nucleosome formation. We further define a random variables R` with realization
r ∈ {T, F} for observing a nucleosome read (T ) or not (F ), and random variables M` with
realizations m ∈ {T, F} for finding the center of a nucleosome-bound sequence at a given
position. We are interested in the probability P (M` = T |K = k,B = `,N) of position ` being
the center of a nucleosome-bound sequence given that we observe k of N total reads at this
position.
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We start the derivation of this probability with considering a single read and the probability
P (B = `, R` = T |M` = m) of drawing position ` and observing a read at this position given
M` = m. We decompose this probability according to the assumption that positions are drawn
from B independent of the realization of M`, yielding

P (B = `, R` = T |M` = m) = P (B = `)P (R` = T |M` = m,B = `). (4.65)

P (R` = T |M` = T,B = `) is the probability to observe a read given a histone core is available
at position ` and given that this position is the center of a nucleosome-bound sequence, which
should be close to 1 if we sequence a sufficient total number of reads N . P (R` = T |M` =
F,B = `) is the probability to observe a read, although this position is not bound in a
nucleosome, due to some source of error in the experiment. We define the probabilities of
drawing a position ` as P (B = `) = p`, and we define P (R` = T |M` = T,B = `) = pT and
P (R` = T |M` = F,B = `) = pF .

Extending the experiment to multiple independent reads, the probability of observing k reads
at position ` in N independent drawings given it is the center of a nucleosome-bound sequence,
i.e. M` = T , amounts to

P (K` = k,B = `|M` = T,N,p) =
(
N

k

)
(p`pT )k (1− p`pT )N−k , (4.66)

where K` is a random variable representing the number of observed reads at position ` with
realizations k ∈ [0, N ], and p = (p`, pT , pF ). The corresponding probability given M` = F

amounts to

P (K` = k,B = `|M` = F,N,p) =
(
N

k

)
(p`pF )k (1− p`pF )N−k . (4.67)

Additionally, we introduce an a-priori probability P (M` = T |pnuc) := pnuc of nucleosome
formation at a given position `. We can now express the probability P (M` = T |K` = k,B =
`,N, pnuc,p) of nucleosome formation given that k of N reads are observed at position ` and
given parameters p and pnuc in terms of the a-priori probability P (M` = T |pnuc) of nucleosome
formation and the probability P (K` = k,B = `|M` = F,N,p) of observing k reads at the
center of a nucleosome (M` = T ) or a linker (M` = F ), yielding

P (M` = T |K` = k,B = `,N, pnuc,p)

=
P (M` = T |pnuc)P`(K` = k,B = `|M` = T,N,p)

P (K` = k,B = `|N, pnuc,p)

=
pnuc (p`pT )k (1− p`pT )N−k

pnuc (p`pT )k (1− p`pT )N−k + (1− pnuc) (p`pF )k (1− p`pF )N−k
. (4.68)

Here, we set ∀` : p` = 1
L , where L denotes the length of the considered genomic region. We

set pF = 0.1, pT = 1.0, and pnuc = 0.8 · 147
20 , which reflects the average length of a nucleosome-

bound sequence of 147 bp and the uncertainty due to the sequencing of reads longer than 147
bp of ∼ 20 bp (Yair Field, personal communication). The resulting mapping from the number
of reads to probabilities of nucleosome formation is illustrated in figure 4.25. We observe that
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Figure 4.25.: Mapping from number of reads k to probabilities of nucleosome formation P (M` = T |K =
k,N,p).

using this mapping even a coverage by 0 reads leads to a probability P (M` = T |K` = 0, B =
`,N, pnuc,p) of nucleosome formation slightly different from 0, a coverage of 1 results in a
probability P (M` = T |K` = 1, B = `,N, pnuc,p) of approximately 0.5, and a coverage of 3
and above corresponds to a probability of almost 1.

For each chromosome of Saccharomyces cerevisiae we compute the number k of reads centered
at each position l from the mapped reads (see section 4.3.3) and apply a Gaussian smoothing
with a standard deviation of 20 to the obtained coverages. The resulting smoothed coverages
are then mapped to probabilities according to equation (4.68). These probabilities serve as
weights for the weighted variant of the MSP principle (see equation (3.25)) when learning the
component classifiers in the next section. We denote the weights for a sequence xn centered
at position ` by wn = (P (M` = T |K` = k`, B = `,N, pnuc,p), 1 − P (M` = T |K` = k`, B =
`,N, pnuc,p)), and we denote the vector of all weights by w = (w1, . . . ,wN ) in analogy to the
vector of correct classes c.

4.3.2.8. Learning of component classifiers

The learning of the component classifiers is conducted for each type of DNA, i.e. coding,
non-coding, and border sequences, independently. We use a three-stage learning procedure,
which first learns the parameters of the elementary classifiers independently, greedily selects
the elementary classifiers to be employed in a component classifier, and, finally, jointly learns
the parameters of the selected elementary classifiers and the mixture probabilities used in the
weighted voting.

The pseudo code of this learning algorithm is presented in figure 4.26 and explained in the
following. We assess elementary classifiers and preliminary component classifiers by a two-fold
cross validation on the training data. In order to reduce variations of performance during one
learning procedure due to different partitionings, we partition the data set of training sequences
Xm and the associated weights wm beforehand. We denote the set of elementary classifiers
that may be selected for the component classifiers by E . Initially, the set E comprises all
elementary classifiers introduced above. We denote the elementary classifiers by the employed
score Sm,t in the following.
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Partition Xm and wm into Xm,1,Xm,2 and wm,1,wm,2

/* Elementary classifiers */
E :=

⋃3
d2=0

⋃i
d1=0{S

hMM(d2,d1)
m,t } ∪ {SiMM

m,t , S
H
m,t, S

Hc

m,t, S
CTG
m,t , SNAT

m,t , S
LAT
m,t }⋃

i∈{3,64}
⋃

r{S
Efr ,1(i)
m,t , S

Efr ,2(i)
m,t }

for Sm,t ∈ E do
for i ∈ {1, 2} do

// optimize parameters of elementary classifier Sm,t

βi
m,t = argmax

βm,t

[log CL(wi|Xi,βm,t) + log q (βm,t |αm,t)]

done
done
/* Select best elementary classifier */

Tm :=

{
argmax
Sm,t∈E

{[
log CL(wm,1|Xm,1,β

2
m,t) + log CL(wm,2|Xm,2,β

1
m,t)

]}}
last := maxSm,t∈E

{[
log CL(wm,1|Xm,1,β

2
m,t) + log CL(wm,2|Xm,2,β

1
m,t)

]}
/* Select further elementary classifiers */
do

opt := NIL; best := −∞
E := E \ Tm

for Sm,t ∈ E do
T ′

m := Tm ∪ {Sm,t}
for i ∈ {1, 2} do

// optimize parameters βm,T ′
m

of weights of voting
βi

m,T ′
m

:= argmax
βm,T ′

m

[
log CL(wi|Xi,β

i
m \ βi

m,Tm
∪ βm,T ′

m
∪ βi

m,t)

+ log q
(
βi

m \ βi
m,Tm

∪ βm,T ′
m
∪ βi

m,t

∣∣αm \αm,Tm ∪αm,T ′
m
∪αm,t

)]
βi

m
′ := βi

m \ βi
m,Tm

∪ βi
m,T ′

m
∪ βi

m,t

done

curr :=
[
log CL(wm,1|Xm,1,β

2
m
′) + log CL(wm,2|Xm,2,β

1
m
′)
]

if curr > best then
best := curr
opt := Sm,t

fi
done
T ′

m := Tm ∪ {opt}
for i ∈ {1, 2} do

// optimize all parameters for T ′

βi
m
′ := argmax

βm

[log CL(wi|Xi,βm) + log q (βm |αm)]

done

best :=
[
log CL(wm,1|Xm,1,β

2
m
′) + log CL(wm,2|Xm,2,β

1
m
′)
]

if best > last then
// retain T ′

m

Tm := T ′
m

last := best
fi

while Tm changed
/* optimize all parameters for Tm on complete data */
β∗

m := argmax
βm

[log CL(wm|Xm,βm) + log q (βm |αm)]

Figure 4.26.: Pseudo code of the algorithm for learning the component classifiers.
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4.3. Prediction of nucleosome positioning

For each of the elementary classifiers Sm,t, we learn parameters βi
m,t from the sequences in

partition Xm,i and associated weights wm,i by the weighted variant of the discriminative
MSP principle (see section 3.2.3, p. 14). We do not explicitly denote the dependency of the
conditional likelihood on the score Sm,t, whenever the employed score can be derived from the
denotation of parameters βm,t.

We select the best elementary classifiers by means of the weighted variant of conditional
likelihood in a two-fold cross validation. We do not include the value of the prior into the
evaluation, because training and test data do not overlap and thus over-fitting effects should
not be relevant. For each elementary classifier Sm,t, we consider parameters β1

m,t and β2
m,t that

are learned from the first and second partition of the data, respectively. We use the parameter
values β2

m,t for the evaluation of the conditional likelihood on the first partition, i.e. Xm,1

and wm,1, and we use the parameter values β1
m,t for the evaluation on the second partition.

We include into the set of selected elementary classifiers Tm that classifier Sm,t yielding the
maximum sum of these two values of conditional likelihood. This sum is stored in a variable
last after the selection.

In the following while-loop, we greedily augment the set of selected elementary classifier, as
long as the conditional likelihood in the evaluation increases. Again, we test each elementary
classifier in E – except those already selected and consequently included into Tm. In a learning
step, we adjust only the parameters βi

m,T ′
m

responsible for the weights of the voting, but
retain all other parameters of the previously trained preliminary component classifier and the
newly selected elementary classifier. We evaluate the augmented component classifier with
parameters β1

m
′ and β2

m
′ learned on the first and second partition, respectively, using the sum

of conditional likelihoods. If the current preliminary component classifier achieves a better
result curr than the previously selected, we remember Sm,t as the new selection opt together
with the corresponding sum of conditional likelihoods best .

After one iteration of the selection, we include the final selection opt into a preliminary set of
selected classifiers T ′

m, and now optimize6 all parameters βi
m
′ on the corresponding partitions of

the data. We again evaluate the augmented selection using these optimized parameters. If the
resulting sum of conditional likelihoods best is greater than the previously optimal value last ,
the selection of elementary classifiers in T ′

m is retained. If we do not observe an improvement,
we discard the augmented selection in T ′

m and Tm remains unchanged, which terminates the
while-loop.

Finally, we learn the optimal parameters β∗
m of the component classifier using the elementary

classifiers in the final set Tm on the complete training data Xm,wm.

4.3.2.9. Utilizing preferences of linker lengths

In the previous sections, we explained, how the parameters of the classifier distinguishing cod-
ing, non-coding, and borders sequences are learned, how we select the elementary classifiers
of component classifiers and learn their parameters, and how the votings of the component
classifiers are combined in weighted voting to obtain the probability of nucleosome formation

6In the implementation, we stop the optimization after at most 50 steps to reduce runtime.

111



4. Applications

0 100 200 300 400 500

50
0

15
00

25
00

distance between reads
fr

eq
ue

nc
y

Figure 4.27.: Frequencies of observed distances between centers of nucleosome reads computed on the
mapped reads of (Field et al., 2008).
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Figure 4.28.: Factors used to re-weight probabilities of nucleosome formation. A region of ±20 bp
round the nucleosome predicted at position l is masked by setting probabilities to 0,
while scores in the preferred distance of ∼ 160 bp are up-weighted.

P (nuc |x, {Tm},β) for a sequence x. After having obtained these probabilities for all subse-
quences of, for instance, a chromosome of S. cerevisiae, we add another post-processing step
to obtain the final prediction of nucleosome positioning, which is motivated in the following.

The binding of nucleosomes to DNA is often illustrated as “beads on a string”. The arrange-
ment of these “beads”, i.e. the nucleosomes, is not arbitrary, but preferred distances between
nucleosomes and, as a consequence, preferred lengths of the linker sequences between the nu-
cleosomes can be observed (Wang et al., 2008; Lubliner and Segal, 2009). In figure 4.27, we
plot the number of pairs of nucleosome reads that exhibit a certain distance between their cen-
ters as observed from the mapped reads of Field et al. (2008). We find that the largest number
of pairs occurs for very short distance (20 and below). These distances can be attributed to
the expected impreciseness of the experimental method, since different reads belonging to the
same nucleosome position may be shortened to a different degree by MNase. Another peak of
observed frequency can be observed for a distance of ∼ 160 bp. Under the assumption that
∼ 147 bp of DNA are bound in a nucleosome, this corresponds to a very short linker length.
Since we do not restrict the analysis to directly neighboring reads, the preferred distance of
160 bp between nucleosome centers re-occurs as lower peaks at ∼ 320 bp and ∼ 480 bp.
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4.3. Prediction of nucleosome positioning

With the goal of utilizing these preferred linker lengths for the prediction of nucleosome
positions, we apply a simple post-processing step to the probabilities obtained from the
voting of components. As a first step, we apply a Gaussian smoothing with standard de-
viation of 25 to the obtained probabilities to avoid local discontinuities. We consider all
positions along a chromosome and select that position ` exhibiting the highest probability
P (nuc |x`−100, . . . , x`+99, {Tm}β). For ±20 bp around this position `, we set the probabili-
ties of nucleosome formation to 0. This does not imply that we consider a slightly shifted
positioning impossible, but reflects that we can not determine the positioning of nucleosomes
more accurately experimentally. Additionally, we slightly upweight the probabilities in the
preferred distance by a bell-shaped function, where the maximum corresponds to a 1.25-fold
increase of probability. This procedure can be perceived as a point-wise multiplication of the
original vector of probabilities with the function depicted in figure 4.28. In a window of ±20
bp around the center this function is equal to 0, whereas in a distance of ∼ ±160 bp we
find factors greater than 1 with a maximum of 1.25. We determine the next maximum from
these re-weighted probabilities and report the original probability as probability of nucleosome
formation at this position. If multiple positions in the direct vicinity of the chosen position
exhibit the same or an even higher original probability, we relocate the reported position to
the average of these positions. Although this procedure does not modify the probabilities
of nucleosome formation, it affects the order of reporting and, consequently, allows for slight
shifts in the predicted positioning of nucleosomes accounting for preferred distances between
adjacent nucleosomes.

4.3.3. Data & Evaluation

We use the data of Field et al. (2008) for the subsequent experiments. We obtain the
mapped reads of (Field et al., 2008) from http://genie.weizmann.ac.il/pubs/field08/

data/YeastMappedReads.tab.gz. The filtered reads of length between 127 and 177 bp are
further post-processed using the following protocol (Yair Field, personal communication): First
all reads are extended to a minimum length of 147 bp. The resulting reads are then shrunken
by 63 bp on either side, resulting in intervals of length 21 for reads of length 147 and in larger
intervals for longer reads. Each read contributes to the coverage at the positions within this
associated interval with a weight of one, i.e. the coverage at position ` is equal to the number
of reads with a shrunken interval overlapping this position. Field et al. (2008) define regions
that exhibit a coverage above a number of thresholds to reflect different levels of nucleosome
stability. The thresholds considered are 1, i.e. all regions occupied by nucleosomes, 2, 4, 8,
and 16. For each of the thresholds, consecutive regions with a minimum coverage according to
this threshold are determined, and the resulting intervals of minimum coverage are reduced to
±20 bp around their center. We present the number of such regions for the different coverages
in table 4.4.

Linker regions are defined as consecutive regions of length 50 to 500 bp without mapped reads,
excluding repetitive regions that are not considered in the initial mapping. In analogy to the
regions occupied by nucleosomes, the linker regions are reduced to their center ±20 bp. The
resulting lists of chromosomal intervals of length 41 bp are kindly provided by Yair Field
(personal communication) and these are used for the experiments presented here.
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4. Applications

Table 4.4.: Number of nucleosome-bound sequences and linkers across all 16 chromosomes of S. cere-
visiae as determined from the mapped reads of (Field et al., 2008).

coverage 1 2 4 8 16
number of nucleosome-bound regions 84410 69703 38787 12076 1601
number of linkers 8017

We evaluate the classification performance of the voting of components in a cross validation
experiment over the 16 chromosomes of S. cerevisiae. For each iteration of the cross vali-
dation, we exclude the data, i.e. the chromosomal intervals of nucleosome-bound sequences
and linkers, of one chromosome from the training data, and test the learned classifier on the
excluded chromosome. We use all regions with a minimum coverage of 1 and all linkers in the
training data for learning the classifier, whereas we independently test the learned classifier
for minimum coverages of 1, 2, 4, 8, and 16. However, due to the mapping from coverage to
probabilities (see section 4.3.2.7) the stability of nucleosome formation is still reflected in the
training data. Since the number of nucleosome-bound sequences and linkers varies consider-
ably for the different chromosome due to their length, we average the considered performance
measures over the 16 chromosomes, weighted by the number of nucleosome-bound sequences
and linkers.

Like Field et al. (2008), we use AUC-ROC as performance measure. However, for low minimum
coverages, the test data contain approximately 10 times as many annotated nucleosome-bound
sequences as linkers. On the other hand, the number of annotated nucleosome-bound sequences
with a minimum coverage of 16 is approximately a fifth of the number of linkers. Hence, we
also consider AUC-PR and AUC-PRI. AUC-PR is especially appropriate for high coverages,
while AUC-PRI gives a good impression of classification performance for low coverages (see
section 3.5.1).

4.3.4. Results & Discussion

We start the evaluation of the proposed approach with a comparison of classification perfor-
mance to that of the approach of Field et al. (2008). We then analyze to which degree the
different aspects of voting of components, namely the elementary classifiers used in component
classifiers, weighting of data, and post-processing, contribute to classification performance. We
scrutinize some of the selected classifiers for features of nucleosome binding, and we investigate
which role periodicities play in nucleosome positioning. Finally, we survey predictions in their
genomic context and compare the predictions of both approaches considered.

4.3.4.1. Comparison to Field et al. (2008)

First, we compare the classification performance of voting of components with mixtures of
elementary classifiers as component classifiers (voting-mix) to the approach of Field et al.
(2008) by means of AUC-ROC, which was also chosen in their study. Since Field et al. (2008)
could show that their approach yields a superior classification performance compared to the
approaches of (Ioshikhes et al., 2006), (Segal et al., 2006), (Peckham et al., 2007), and (Yuan
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4.3. Prediction of nucleosome positioning

and Liu, 2008) on the data obtained by parallel sequencing, we consider only this approach in
the following comparison. In addition to the originally reported values of AUC-ROC, we com-
pute AUC-ROC on the scores available at http://genie.weizmann.ac.il/pubs/field08/

field08 genomes.html as model score, which differs slightly from the reported values due to
rounding (see figure 4.29(a)). We also test the Genomica7 file available on the same web-page,
which result in lower values of AUC-ROC than using the model scores. Field et al. (2008) use
a different procedure for obtaining the average AUC-ROC over all chromosomes, where they
first merge the scores for all 16 test data sets and use these merged scores to determine the
ROC curve. However, applying this procedure to the average occupancy scores results in only
slightly different values of AUC-ROC compared to the weighted averaging. We stick to the
variant of weighted averaging, because it allows for computing standard errors along with the
mean values, which give an estimate of the significance of observed differences between the
considered approaches. Here, we consider a deviation of two-fold the standard error significant.
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Figure 4.29.: Comparison of the classification performance of voting of components using mixtures of
selected elementary classifiers as component classifiers (voting-mix, red) to that of the
approach of (Field et al., 2008). For AUC-ROC (a), we show the performance as reported
in (Field et al., 2008) (dark blue) and as computed from the model scores available
at http://genie.weizmann.ac.il/pubs/field08/field08 genomes.html (light blue).
Since AUC-PR (b) and AUC-PRI (c) are not evaluated in (Field et al., 2008), we resort
to the computation on the available score in these cases. Error bars indicate two-fold
standard error in both directions.

The results considering AUC-ROC are presented in figure 4.29(a) for levels of coverage between
1 and 16. We find that voting-mix (red) consistently yields a higher AUC-ROC compared to
the values reported in (Field et al., 2008) (dark blue) and the values of AUC-ROC computed
from the average occupancy scores (light blue). We conclude from the error bars, which

7Genomica is a browser for genome annotations published by the same group
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indicate two-fold the standard error in both directions, that this improvement is significant in
all five cases. Voting-mix yields an AUC-ROC of 0.907 even for a coverage of 1 compared to
0.89 reported in (Field et al., 2008) and 0.894 computed on the model scores. Interestingly,
voting-mix can achieve a considerably higher classification accuracy than the approach of
(Field et al., 2008) for coverages of at least 16 as well, improving AUC-ROC from 0.98 and
0.984, respectively, to 0.991. Since AUC-ROC can be interpreted as the probability that a
randomly chosen nucleosome-bound sequence obtains a higher score than a randomly chosen
linker sequence (Fawcett, 2006), this improvement means that using voting-mix the probability
of false predictions is reduced almost by half.

In addition to AUC-ROC, we consider AUC-PR as performance measure for the higher levels
of coverage, namely 4, 8, and 16 as presented in figure 4.29(b). Again, voting-mix significantly
outperforms the approach of (Field et al., 2008) for all levels of coverage considered. Inter-
estingly, the approach of (Field et al., 2008) achieves an average AUC-PR of only 0.902 for
a coverage of 16 and above, whereas classification accuracy rapidly increases with lowering
the level of coverage. For a minimum coverage of 8, this approach already yields an AUC-PR
of 0.974, and for a minimum coverage of 4, AUC-PR further increases to 0.987. This can
partly be explained by the number of nucleosome-bound regions defined for these coverages,
which increases by a factor of ∼ 7.5 from coverage 16 to 8. We might speculate that many
of these additional regions obtain a high probability of nucleosome formation and, hence, the
overall PPV increases. Interestingly, we do not observe this deterioration of performance from
coverage 8 to 16 for voting-mix. One reason for this observation might be that we assign high
weights to sequences exhibiting a high coverage when learning the component classifiers of
voting-mix and, hence, the parameters of voting-mix reflect the properties of highly-covered
sequences better than those of the approach of (Field et al., 2008).

Considering AUC-PRI as performance measure for regions with a low minimum coverage
in figure 4.29(c), we find an improved classification performance of voting-mix compared to
the approach of (Field et al., 2008) as well. In contrast to AUC-PR for high coverages, the
magnitude of improvement gained by voting-mix is similar for all coverages from 1 to 4. Again,
all observed differences in AUC-PRI are significant considering the two-fold standard error.
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Figure 4.30.: ROC curve for a coverage of 4, PR curve for a coverage of 16, and PRI curve for a
coverage of 1 comparing the approach of (Field et al., 2008) (red line) to voting mix
(black line).

The areas under the ROC curve, the PR curve, and the PRI curve are aggregate measures
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and, hence, only give an overall picture of classification performance. In order to investigate
if the observed differences between voting-mix and the approach of (Field et al., 2008) can
be attributed to deviations of classification performance in practically relevant regions of the
curves, we present the three curves for chromosome 4 in figure 4.30. We choose chromosome 4,
because it is the largest chromosome of S. cerevisiae and for this reason the corresponding test
data set comprises the largest number of supporting points for plotting the curves. However,
the general picture remains the same for the other chromosomes (data not shown). For a
coverage of 4 we observe a difference of 0.014 in AUC-ROC between voting-mix and the
approach of (Field et al., 2008). Considering the ROC curve for the same coverage presented in
figure 4.30(a), we find that voting-mix yields the same or an even better Sn than the approach
of (Field et al., 2008) across the whole range of FPR. The greatest differences between the
two approaches can be observed for an FPR between 0.05 and 0.25, where both approaches
achieve an Sn above 0.7. Since lower values of Sn would leave a great fraction of nucleosome-
bound sequences unrecognized and a higher FPR would result in many erroneously classified
linker regions, we may state that the improvement of AUC-ROC gained by voting-mix can be
attributed to a practically relevant region of the ROC curve.

If we consider the same interval of Sn for the PR curve for a minimum coverage of 16 in
figure 4.30(b), we find an almost consistently greater PPV for voting-mix than for the approach
of (Field et al., 2008). However, both approaches yield a PPV above 0.5 for the whole range
of Sn indicating a generally reasonable classification performance. An FPR between 0.05
and 0.25, as considered for the ROC curve, corresponds to a Sp between 0.75 and 0.95 for
the PRI curve for minimum coverage 1, since the linker regions considered do not change
for the different levels of coverage. We observe from figure 4.30(c) that in this region of the
PRI curve, both approaches achieve a low NPV of at most 0.3, which means that for every
correctly predicted linker sequence we obtain approximately two additional false negatives,
i.e. two nucleosome-bound sequences that are erroneously predicted as linkers. However, since
the number of nucleosome-bound sequences for a coverage of 1 is approximately 10 times as
high as the number of linker sequences, this ratio of true negatives to false negatives is more
acceptable than it appears at first sight.

Summarizing the above results, we find that voting-mix significantly outperforms the approach
of (Field et al., 2008) considering AUC-ROC, AUC-PR, and AUC-PRI, and we ascertain that
the observed differences in the AUC values can be attributed to practically relevant regions
of the corresponding curves. In the following, we investigate the contributions of the different
aspects of voting-mix to this improved classification performance.

4.3.4.2. Selected elementary classifiers

As a first analysis, we investigate which of the elementary classifiers are selected for the
component classifiers for coding, non-coding, and border sequences. The results of this analysis
are visualized in figure 4.31, where we consider the classification performance, the number
of iterations of the cross validation in which an elementary classifier is selected, and the
average weight assigned to selected classifiers. We exclude from this illustration all elementary
classifiers that are never selected by the greedy selection procedure.
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In the left block of figure 4.31, we present the classification performance of component clas-
sifiers that consist only of the elementary classifier specified by the row name. We measure
classification performance by the average AUC-PRI for a coverage of 1 over all 16 iterations
of cross validation, i.e. over all 16 chromosomes. Classification for a coverage of 1 is the
most challenging classification task of all coverages considered. In addition to AUC-PRI on all
types of sequences presented in the first column of this block, we also measure classification
performance separately considering the coding, non-coding, and border sequences in the test
data sets.

We find that the elementary classifiers using homogeneous Markov models yield a consistently
high AUC-PRI for all types of sequences. The classification of non-coding sequences especially
profits from higher order Markov models, whereas this tendency is less pronounced for coding
and border sequences. Coding and border sequences are also classified well by the elementary
classifiers using the distribution of wavelet energies computed on the occurrence of A/T vs.
G/C dinucleotides, computed on the base stacking energy, and computed on the melting
temperature, using a scale of 64.

Interestingly, the elementary classifier using the number of CTG/CAG trinucleotides, which
have been reported to be relevant for nucleosome formation (Wang et al., 1994; Lee et al.,
2007; Gupta et al., 2008), is never selected for any of the component classifiers and for this
reason is omitted from figure 4.31. Similarly, long poly-A/T tracts are known to be relevant
for nucleosome depletion (Suter et al., 2000; Yuan et al., 2005; Peckham et al., 2007; Segal
and Widom, 2009), but the elementary classifier using the length of poly-A/T tracts exhibits
a generally low classification performance. In contrast, the elementary classifier using the
entropy of k-mers for the reduced A/T vs G/C alphabet, which is one of the most simple
numerical properties considered, classifies coding and border sequences surprisingly well.

The only wavelet energy for a scale of 3 that is actually selected is that for roll of complexed
DNA. This is notable, because the mexican hat wavelet with a scale of 3 is generally capable of
detecting ∼ 10 bp periodicities, which have been widely found for nucleosome-bound sequences
(Richmond and Davey, 2003; Segal et al., 2006; Liu et al., 2008; Field et al., 2008). We scru-
tinize the presence of these periodicities in nucleosome-bound sequences in section 4.3.4.5.

Turning to the second block of figure 4.31, which visualizes the number of cross validation
iterations in which an elementary classifier is selected for one of the component classifiers, we
find that three elementary classifiers are selected with exceptional total frequency. These are
the elementary classifier using homogeneous Markov models of orders d1 = 1 at the borders
and d2 = 2 in the center, the elementary classifier using the wavelet energy E1 computed on
the occurrence of A/T vs. G/C dinucleotides with a scale of 64, and the elementary classifier
using the wavelet energy E2 on the values of the geometrical property slide with scale 64.
Considering the elementary classifiers selected for coding, non-coding, and border sequences
separately, we observe that the elementary classifier using the homogeneous Markov models is
mostly used for coding and non-coding sequences, the elementary classifier using the wavelet
on A/T vs G/C dinucleotides is mainly selected for coding and border sequences, and the
elementary classifier using slide is used most frequently for non-coding sequences. We find
a similar pattern considering the elementary classifiers selected if we learn the component
classifiers on the data of all 16 chromosomes, as indicated by the asterisks. It is also notable
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Figure 4.31.: Elementary classifiers selected for the component classifiers for coding, non-coding, and
border sequences. In the left block, we visualize the classification performance as mea-
sured by AUC-PRI for coverage 1 obtained by a component classifier using only the
elementary classifier specified by the row name. The columns of this block visualize
AUC-PRI considering all data, only coding sequences, only non-coding sequences, and
only border sequences. In the second block, we present the number of iterations of cross
validation in which the corresponding elementary classifier is selected for the component
classifiers of coding, non-coding, and border sequences, and in a fourth column we sum
these numbers over all three types of sequences. At the bottom of the four columns, we
give the maximum number that can be achieved in the corresponding column. We mark
by an asterisk those elementary classifiers that are selected if we learn the component
classifier on the data of all 16 chromosomes. In a third block, we visualize the average
weight assigned to elementary classifiers in all 16 iterations of cross validation. We rep-
resent by a gray rectangle those elementary classifiers that are never selected for a given
type.
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that the wavelet energy using slide is frequently selected for the component classifiers although
it yields a mediocre classification performance. One might speculate that, although slide
alone discriminates nucleosome-bound sequences from linkers worse than many of the other
elementary classifiers, it contributes additional information to the classification task that is
not fully captured by other selected elementary classifiers.

Besides the elementary classifiers mentioned above, some additional elementary classifiers are
selected specifically for coding, non-coding, or border sequences. For coding sequences, these
are the wavelet energy E2 computed for melting temperature using a scale of 64, the wavelet
energy E1 computed on the geometrical property Vstep, and, with lower frequency, the wavelet
energy E2 computed on propeller twist. Except Vstep, these are also selected when learning
the component classifier for coding sequences on the data of all chromosomes. The elementary
classifier using homogeneous Markov models of order d1 = 0 and d2 = 3 is specifically selected
for non-coding sequences, whereas order d2 = 2 is preferred for border sequences. The latter
selection could be interpreted as a combination of the order d1 = 0 at the borders selected for
non-coding sequences and the order d2 = 2 at the center selected for coding sequences, since
border sequences are expected to share properties of coding and non-coding sequences. The
wavelet energy E2 for base stacking energy with scale 64 is also selected specifically for border
sequences. Interestingly, base stacking energy is not selected for coding sequences, although
the achieved classification performance on coding and border sequences is comparable.

The average weight of the elementary classifiers within the voting of the component classifiers is
visualized in the right block of figure 4.31. Generally, it shows a similar pattern as observed for
the number of selections. Notable exceptions are the elementary classifiers using homogeneous
Markov models and the wavelet energies for melting temperature and Vstep for the coding
sequences. Although these elementary classifiers are selected in almost all iterations of cross
validation they obtain a low weight compared to that of the wavelet energy for A/T vs. G/C
dinucleotides. Strikingly, the elementary classifier using homogeneous Markov models of order
d1 = 0 and d2 = 3 gains an exceptionally high weight for non-coding sequences.

In the following, we scrutinize two of the elementary classifiers for features of nucleosome-
bound sequences and linkers, namely the elementary classifier using homogeneous Markov
models of order d1 = 1 and d2 = 2, and the elementary classifier using the wavelet energy E1

for A/T vs. G/C dinucleotides with scale 64.

We present an illustration of the classifier using homogeneous Markov models in figure 4.32(a).
For the graphical representation, we compute the stationary dinucleotide distribution at the
borders and the stationary trinucleotide distribution at the center for the model representing
nucleosome-bound sequences and for the model representing linkers. We then compute the log
ratio of the two stationary distributions for nucleosome-bound sequences and linkers for each
di- or trinucleotide independently. In figure 4.32(a), positive log ratios, i.e. di- or trinucleotides
to which the model for nucleosome-bound sequences assign a higher probability than that for
linkers, are represented by green squares, whereas negative log ratios are printed in red. The
left column of figure 4.32(a) corresponds to the models learned on coding sequences, and the
right column corresponds to the models learned on non-coding sequences.

Considering the stationary distributions of the first order Markov models at the borders of
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(a) Log ratios of the stationary distributions
of homogeneous Markov models of orders
d1 = 1 and d2 = 2 for coding (left) and
non-coding (right) sequences. Green col-
ors represent positive log ratios, i.e. di- or
trinucleotides to which the stationary dis-
tribution for nucleosome-bound sequences
assigns higher probabilities than the sta-
tionary distribution for linkers, whereas
red colors represent negative log ratios.
The blocks at the top and at the bottom
represent the first order Markov models at
the borders, while the block in the middle
represents the second order Markov model
at the center.

coding

−100 0 100 200 300

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

wavelet energy

de
ns

ity

−
8

−
6

−
4

−
2

0
2

lo
g 

cl
as

s 
po

st
er

io
r 

ra
tio

non-coding

−100 0 100 200 300

0.
00

0
0.

00
4

0.
00

8
0.

01
2

wavelet energy

de
ns

ity

−
8

−
6.

2
−

4.
4

−
2.

6
−

0.
8

1
lo

g 
cl

as
s 

po
st

er
io

r 
ra

tio

(b) Histogram of wavelet energies E1 for A/T
vs. G/C dinucleotides using scale 64 for
coding (top) and non-coding (bottom) se-
quences. The histogram for nucleosome-
bound sequences is plotted in green, whereas
the histogram for linkers is plotted in red.
The blue line illustrates the log ratio of the
class posteriors for nucleosome-bound and
linker sequences. Regions where this line lies
above 0 are classified as nucleosome-bound se-
quences using a classification threshold of 0.

Figure 4.32.: Graphical representation of elementary classifiers using homogeneous Markov models and
wavelet energies of A/T vs. G/C dinucleotides.
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coding sequences, we find opposing preferences for dinucleotides at the two borders. While GC
and CG dinucleotides in nucleosome-bound sequences are preferred at the border visualized at
the bottom, the same dinucleotides are preferred for linker sequences at the other border. In
contrast, we find a slight preference for GA, AG, and GG dinucleotides for nucleosome-bound
sequences at the border displayed at the top, whereas these dinucleotides obtain a higher
probability in linkers regarding the border presented at the bottom. The preference pattern
of GG dinucleotides can also be found for non-coding sequences, for which we do not observe
additional strong preferences.

Turning to the stationary distributions of trinucleotides at the center regions displayed in the
middle blocks, we find as a common pattern of coding and non-coding sequences a strong
preference of AAA and TTT trinucleotides in linker sequences, and a lower preference for the
other trinucleotides comprising only A and T nucleotides. This observation is in accordance
with previous findings, that poly-A and poly-T tracts are strong indicators of nucleosome de-
pletion (Suter et al., 2000; Yuan et al., 2005; Peckham et al., 2007; Segal and Widom, 2009).
This may also explain why the elementary classifiers that model poly-A/T tracts explicitly, i.e.
NAT and LAT are seldom selected for the component classifiers, since the preferences modelled
by homogenous Markov models may be sufficient for discriminating nucleosome-bound from
linker sequences, and homogenous Markov models are often among those elementary classi-
fiers selected first. Interestingly, we also find a preference for CTG and CAG trinucleotides
in nucleosome-bound sequences for the non-coding regions, while this preference is less pro-
nounced in coding sequences. Similar to the poly-A/T tracts, this may be one of the reasons
why the elementary classifiers that model only the occurrence of these trinucleotides are never
selected for any of the component classifiers.

For coding sequences, we find additional strong preferences for trinucleotides comprising only
C and G in nucleosome-bound sequences, which can not be observed for non-coding sequences.
This may be an indication that coding nucleosome-bound sequences either exhibit a generally
higher G/C-content than coding linkers, or comprise a considerably high number of these very
trinucleotides. We also find a slight preference for other trinucleotides consisting of two G/C
nucleotides and one A/T nucleotide in nucleosome-bound sequences, which might support the
former interpretation.

As a second classifier, we consider the elementary classifier using the distribution of wavelet
energies E1 for A/T vs. G/C dinucleotides with a scale of 64 in figure 4.32(b). For coding
and non-coding sequences, we plot in each case two histograms, one for the wavelet energies
for nucleosome-bound sequences (green) and one for the wavelet energies of linker sequences
(red). In addition, we draw the value of the log class posterior ratio as a blue line into the same
plot, and we indicate the class border with respect to the wavelet energies for a classification
threshold of 0 by a black line.

From the histograms, we conclude that modelling the wavelet energies by a Gaussian density
is appropriate. We also observe a considerably larger number of nucleosome-bound sequences
than linker sequences in coding regions, whereas both classes occur with approximately the
same frequency in non-coding regions. This observation is in accordance with previous findings
that coding sequences are often bound in nucleosomes with short linkers between them, while
the (non-coding) promoter regions are often depleted for nucleosome to allow the binding of
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Figure 4.33.: Classification performance as measured by AUC-PRI for coverage 1 (left), AUC-ROC for
coverage 4 (center), and AUC-PR for coverage 16 (right) of a weighted voting of compo-
nent classifiers for coding, non-coding, and border sequences (voting mix) compared to
a single component classifier learned on the merged data of all three types of sequences
(all-data-mix). In addition, we consider a weighted voting of component classifiers com-
prising only the elementary classifier using homogeneous Markov models of orders j = 1
and i = 2 learned on coding, non-coding, and border sequences (voting-hMM(1,2)) and
learned on the merged data (all-data-hMM(1,2)).

transcription factors (Yuan et al., 2005; Peckham et al., 2007; Lee et al., 2007). The short
linker lengths in coding regions may also result in an artificially low number of linker sequences,
as these are filtered for a minimum length of 50 bp beforehand (see section 4.3.3).

4.3.4.3. Influence of differentiating coding and non-coding sequences

As another aspect of voting-mix, we assess the influence of the differentiation into coding, non-
coding, and border sequences. To this end, we learn a single component classifier including the
selection of elementary classifiers on merged training data sets comprising all three types of
sequences in each iteration of the cross validation. We evaluate the classification performance
of the joint component classifier (all-data-mix ) using AUC-PRI as performance measure for
a coverage of 1, AUC-ROC for coverage 4, and AUC-PR for coverage 16, and we compare
the achieved classification performance to that of voting-mix. These results are presented in
figure 4.33. We additionally include component classifiers into the analysis that comprise only
the elementary classifier using homogeneous Markov models of orders d1 = 1 and d2 = 2,
which turned out to be a frequently selected and reasonably performing elementary classifier
in the previous section. We denote the corresponding classifier using a weighted voting by
voting-hMM(1,2), and we denote the classifier learned on the merged training data by all-
data-hMM(1,2).

Considering the two component classifiers learned using greedy selection of elementary classi-
fiers, we find that the differentiation into coding, non-coding, and border sequences utilized by
voting-mix yields a significant improvement over all-data-mix regarding AUC-PRI for coverage
1 and AUC-ROC for coverage 4, whereas the improvement is not significant regarding AUC-
PR for coverage 16. This might be an indication that strong nucleosome positioning signals,
which are responsible for the high coverage, are less prone to superimposition by G/C-content
or coding potential. Hence, these are modelled well by all-data-mix, whereas the weaker sig-
nals of lower coverages profit from the differentiation of voting-mix. The improvement gained
by voting-hMM(1,2) over all-data-hMM(1,2) is greater than observed for the more complex
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Figure 4.34.: Classification performance as measured by AUC-PRI for coverage 1 (left), AUC-ROC
for coverage 4 (center), and AUC-PR for coverage 16 (right) of voting-mix learned on
input sequences weighted by the probabilities inferred from coverages and using the post-
processing (voting-mix), without post-processing (voting-mix w/o post-processing), and
voting mix learned on input sequences exclusively assigned to one of the two classes
(voting-mix unweighted data).

component classifiers. In this case, voting-HMM(1,2) yields a significantly higher AUC-PRI
for coverage 1, a significantly higher AUC-ROC for a coverage of 4, and a significantly higher
AUC-PR for coverage 16 than all-data-hMM(1,2). One reason for this observation might be
that the less complex component classifiers especially profit from the increased degrees of free-
dom induced by the differentiation into coding, non-coding, and border sequences, whereas the
component classifiers of all-data-mix are capable of compensating for the loss of differentiation
by a greater internal variability. Interestingly, voting-hMM(1,2) using fairly simple component
classifiers already performs better than the approach of (Field et al., 2008) regarding all three
performance measures (cf. figure 4.29).

4.3.4.4. Influence of weighting and post-processing

We also investigate the contribution of the weighting of data by the probabilities reflecting
coverage (see section 4.3.2.7) and of the post-processing step that incorporates preferred linker
lengths into the final prediction. To this end, we compare in figure 4.34 the classification
performance as measured by AUC-PRI for coverage 1, AUC-ROC for coverage 4, and AUC-
PR for coverage 16 of voting-mix to that of voting-mix without the post-processing step, i.e.
directly using the class posteriors P (nuc |x,β) for the prediction, and to that of voting-mix
learned on the input sequences that are either exclusively assigned to the class of nucleosome-
bound sequences or to the class of linkers.

Considering the contribution of post-processing to classification performance, we find that uti-
lizing preferred linker lengths is especially beneficial for the lower coverages, as we observe sig-
nificant differences of AUC-PRI for a coverage of 1 and AUC-ROC for a coverage of 4 regarding
voting-mix with and without post-processing. In contrast, the classification performance for a
coverage of 16 as measured by AUC-PR does not profit significantly from post-processing. We
expect the positioning of nucleosomes to be more rigid for those nucleosome-bound sequences
exhibiting a high coverage than for those with a low coverage. Hence, the exact positioning
of more loosely positioned nucleosomes may depend on the formation of other nucleosomes in
the vicinity and preferred linker lengths in vivo. We might speculate that this is the reason
why the positioning of nucleosome-bound sequences with a low coverage is also more exact in
silico when utilizing these dependencies.
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4.3. Prediction of nucleosome positioning

Turning to the contribution of mapping coverage to probabilities and using these probabilities
as weights on the input sequences, we find a significant improvement of classification perfor-
mance with respect to the measures considered for all three levels of coverage compared to the
training on unweighted data. This improvement might be expected for the higher coverages,
that are under-represented in the training data (see table 4.4), which is partly compensated for
by higher weights. The improvement observed for a coverage of 1 is less foreseeable as, for the
same reason, we could expect a better adaption of the component classifiers to low coverages
if all input sequences obtain the same weight for learning the component classifiers. However,
if we assume that the same properties of DNA sequences are responsible for the positioning of
strong and weak formation of nucleosomes, these should be more prevalent in sequences ex-
hibiting a higher coverage, which could lead to an improvement of the classification of loosely
bound sequences as well.

4.3.4.5. Periodicities

Periodicities of ∼ 10 bp regarding different properties of DNA like the geometrical property tip
(Richmond and Davey, 2003) or the occurrence of A/T and G/C dinucleotides (Segal et al.,
2006; Liu et al., 2008; Field et al., 2008) are widely accepted as being major determinants
of nucleosome positioning. We present the periodic pattern of A/T and G/C dinucleotides
observed for the data of (Field et al., 2008) in figure 4.35(a). For the generation of the
figure, we follow the protocol of (Field et al., 2008): we first select only those reads with a
length of 146 to 148 bp. Sequences of even length are included twice with a weight of 0.5
shifting the original sequence 1 bp in each direction. All sequences are considered once in
the original orientation and once as their reverse complement. From this set of sequences, we
count position-wise the number of occurrences of A/T and G/C dinucleotides and we smooth
the obtained relative frequencies by computing the average relative frequencies over three
neighboring positions. Finally, the relative frequencies are normalized such that the mean
relative frequency of A/T dinucleotides and the mean relative frequency of G/C dinucleotides
is equal to 0.25, respectively.

Surprisingly, the greedy selection of elementary classifiers for voting-mix almost never chooses
elementary classifiers than can capture such periodicities, i.e. the combination of an inho-
mogeneous Markov model of order 1 and a homogeneous Markov model of order 4 or the
elementary classifiers using wavelet energies for a scale of 3. However, although voting-mix
does not exploit periodicities, it yields a superior classification performance compared to the
approach of (Field et al., 2008).

These findings raise the question, how specific for nucleosome-bound sequences the observed
periodicities are, and if these could even be an artifact resulting from the digestions by MNase.
In figure 4.36, we present a sequence logo of restriction sites of MNase determined from the
ends of the mapped reads of (Field et al., 2008). The PWM visualized by the sequence logo
is generated by a strand model (see e.g. section 4.3.2.2) learned by the generative ML prin-
ciple using expectation-maximization. The corresponding DNA sequences are cut by MNase
between positions 3 and 4 of the sequence logo. From the sequence logo we observe a mild
preference for A/T dinucleotides at the restriction site.
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(a) Reads of length 146 − 148 bp from (Field et al., 2008).
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(b) Artificially generated sequences with dinucleotide correlations.
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(c) Reads of length 167 − 169 bp from (Field et al., 2008).

Figure 4.35.: Periodic patterns of A/T (black line) and G/C (red line) dinucleotides as observed in the
data of (Field et al., 2008) considering (a) reads of length 146−148 bp, (c) reads of length
167 − 169 bp, and (b) as observed in artificially generated data using only correlations
of dinucleotides and the restriction preference of MNase.

In combination with a strong correlation pattern of dinucleotides, this preference could gen-
erally be responsible for periodic patterns as observed in figure 4.35(a). We demonstrate the
validity of the latter proposition by simulations. To this end, we randomly generate sequences
by drawing dinucleotides from a homogeneous Markov model of order 3 with strong correla-
tions between the dinucleotides, such that we obtain three consecutive dinucleotides of the
same type, i.e. either A/T or G/C dinucleotides, with high probability, and afterwards switch
the type of dinucleotides with a similarly high probability. Additionally, we ensure that the
relative frequencies at the borders of the generated sequences are in accordance with the pref-
erence for A/T dinucleotides at the restriction site of MNase. We present the periodic patterns
found for these artificial data in figure 4.35(b). Obviously, strongly periodic sequences can be
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Figure 4.36.: Sequence logo of a strand model learned on the restriction sites of MNase. MNase cute
the sequence between positions 3 and 4 as indicated by the dashed grey line.

generated by a homogeneous Markov model using only correlations between dinucleotides,
if we additionally fix the relative frequencies of dinucleotides at the borders, although these
occur with a period of ∼ 13 bp in this example.

In order to check if the periodicities present in figure 4.35(a) are due to correlations or due
to specific properties of nucleosome-bound sequences, we conduct a simple test. If the period-
icities would be the result of correlations combined with the restriction preference of MNase,
we should observe similar patterns for other lengths of reads. If, on the other hand, these
periodicities are related to the positioning of nucleosomes, they should be less articulate for
longer reads, since nucleosome positions can appear shifted within the longer reads and for
this reason are not perfectly aligned. Hence, we extract reads of length 167 to 169 from the
data of (Field et al., 2008) and apply the same protocol to these as to the shorter reads before.
The results of this analysis are depicted in figure 4.35(c). We find that a considerable part of
the periodic pattern we observed in figure 4.35(a) is lost at the center region between positions
−50 and +50 for reads of length 167 − 169 bp. This might be an indication that ∼ 10 bp
periodicities are relevant for nucleosome positioning. However, we do not observe an overall
extinction of the periodic signal. Since voting-mix yields a superior classification performance
compared to the approach of (Field et al., 2008), we might speculate that periodic signals
mostly control local nucleosome positioning, whereas the general tendency of a sequence to be
bound in a nucleosome is mostly controlled by other properties of DNA.

4.3.4.6. Evaluation of predictions

Finally, we examine the predictions of voting-mix and the approach of (Field et al., 2008) in
their genomic contexts. On the one hand, we consider the five genomic regions that are also
presented in (Field et al., 2008), and on the other hand, we choose five additional regions where
the predictions of the two approaches differ considerably. For both approaches, the prediction
of regions covered by nucleosomes depend on the classification threshold. We choose this
threshold such that both approaches yield a sensitivity of 0.95 for a coverage of 4, i.e. correctly
recover 95% of the nucleosome-bound sequences covered by at least 4 reads. In figures 4.37
and 4.38, we plot the model scores of (Field et al., 2008) as a solid blue line, and we plot the
probabilities of nucleosome formation of voting-mix as a solid red line. The scores of voting-
mix appear smoother than those of the approach of (Field et al., 2008) in the figures due to
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the post-processing, which is not the case for the original scores of voting-mix (not shown).
For the approach of (Field et al., 2008), we additionally include the scores of the Genomica
file available at http://genie.weizmann.ac.il/pubs/field08/field08 genomes.html as a
dashed blue line, since these were also used in the figures of (Field et al., 2008). We indicate
regions that are covered by nucleosomes according to the prediction using the previously
chosen thresholds as straight blue and red lines, respectively. If one of the approaches predicts
a nucleosome-bound sequence centered around some position `, we assume that a stretch of
DNA of length 147 is bound in this nucleosome and, hence, positions ` − 73 to ` + 73 are
considered as covered. As a reference, we also include the positions of the mapped reads into
the figure, and we add yellow arrows representing position and orientation of genes within the
genomic regions considered.

For positions 299000 to 300500 on chromosome 2, we do not find notable differences between
the predictions of the two approaches. Both predict a nucleosome-free region in the potential
promoter region of the gene RPL4A, while the remainder of these positions is predicted to
be covered by nucleosomes. Another region within the gene YBR030W that is not covered
by nucleosomes according to the mapped reads obtains scores below the threshold for both
approaches. However, the corresponding segments are not long enough to open a nucleosome-
free region.

In contrast, we do find differences between the predictions for positions 1107500 to 1109000
on chromosome 4. Voting mix predicts two short nucleosome-free regions in the vicinity of
positions 1107500 and 1108500, respectively. The latter, very short nucleosome-free region is
supported by the mapped reads and is similarly discovered by the approach of (Field et al.,
2008), whereas the former appears to be incorrect. Considering the mapped reads in this
region, we might conclude that the nucleosomes around position 1107500 are only loosely
positioned, which could lead to a weaker signal of nucleosome positioning in the sequence and,
hence, to the false prediction by voting-mix. A weaker signal in this region is also detected by
the approach of (Field et al., 2008), but most of the corresponding scores are still above the
chosen threshold.

Turning to positions 341800 to 343300 of chromosome 5, we find a large number of mapped
reads within the putative promoter region of the genes MET6 and IES5. These nucleosome-
covered positions and a short nucleosome-free region in the vicinity of the TSS of MET6
are correctly discovered by both approaches. In contrast, a broad nucleosome-free region in
the putative promoter region of the neighboring gene IES5 is only predicted by voting-mix.
Since nucleosome-bound and nucleosome-free regions in promoters can be used to exclude
false-positive predictions of transcription factor binding sites, we consider differences in such
regions especially important.

The last genomic regions presented in figure 4.37 are positions 126800 to 128300 of chromosome
9. In this region, we find a fairly long intergenic region between the two genes AYR1 and SIM1.
Voting-mix predicts two nucleosome-free regions around position 127500 and approximately at
position 127900, which are both supported by the mapped reads. In contrast, the approach of
(Field et al., 2008) detects only a small portion of the former nucleosome-free region. However,
position 127500 is possibly located upstream of the promoter region of SIM1 and this difference
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Figure 4.37.: Predictions of voting-mix and the approach of (Field et al., 2008) in their genomic con-
texts. In a first block we plot genes as yellow lines, where the arrowheads indicate the
orientation of the gene. In the next block, we plot the reads of nucleosome bound se-
quences mapped onto the genome by (Field et al., 2008). In the last two blocks, we
illustrate the predictions of the approach of (Field et al., 2008) (blue) and voting-mix
(red). In each case, we plot a straight line over regions that are predicted to be covered
by nucleosomes, and we also plot the scores that are considered for the prediction. The
additional dashed blue curve corresponds to the scores of the Genomica file provided
by (Field et al., 2008) (see also section 4.3.4.1). The straight dashed red and blue lines
indicate the thresholds that are used for the prediction of the two approaches.

might be less relevant for excluding false positive predictions of transcription factor binding
sites.

In figure 4.38, we present the predictions for six additional genomic regions. Positions 264800
to 266300 of chromosome 10 comprise the potential promoter regions of a head-to-head configu-
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ration of two genes, namely DPB11 and SIP4. Comparing the location of the mapped reads to
the predictions of the two approaches, we find that both fail to reliably identify nucleosome-
covered and nucleosome-free regions. Regions that are predicted to be nucleosome-free are
covered by several of the mapped reads, and the short nucleosome-free region before the TSS
of DPB11 is only partly recovered by voting-mix. However, since the scores of the two ap-
proaches are not articulately contradicting, we might speculate that nucleosome positioning
in this region can not be fully explained by signals detected from sequence, but also depends
on other, epi-genetic properties like methylation patterns.

Considering positions 359000 to 360500 of chromosome 10, we again find largely consistent
predictions of the two approaches. The only exception is a short nucleosome-free region ap-
proximately at position 360000, which is only discovered by voting-mix, and which is also
supported by the mapped reads. In the potential promoter region of the head-to-head genes
GYP6 and YJL043W, we find a large number of consistently positioned reads, which are also
reflected by the scores of both approaches.

Positions 409800 to 411300 of chromosome 12 comprise a putative promoter of the gene PDC5,
which is widely covered by nucleosomes according to the mapped reads. Nonetheless, both
approaches predict nucleosome-free regions in this promoter. The nucleosome-free region pre-
dicted by the approach of (Field et al., 2008) around position 410550 is covered by six mapped
reads and, hence, most probably incorrect. In contrast, the nucleosome-free region according
to voting-mix is only covered by a few, loosely positioned reads, which again might lead to a
weaker signal of nucleosome positioning.

Turning to the predictions for positions 666800 to 668300 of chromosome 13, we find another
nucleosome-free region that is only predicted by voting-mix. In this case, we can not clearly
distinguish from the mapped reads, if this prediction is correct or not. The remainder of this
region is highly covered by mapped reads. This is reflected by the scores of both approaches,
which consistently stay above the chosen threshold.

As another example, we examine positions 830500 to 832000 of the same chromosome. Here,
voting-mix predicts a broad nucleosome-free region spanning a large fraction of the potential
promoter of the gene CAT8. This nucleosome-free region is not discovered by the approach
of (Field et al., 2008), which strongly predicts a nucleosome located around position 831500.
If we use the predicted nucleosome-covered and nucleosome-free regions for excluding of false
positive transcription factor binding sites, the prediction of voting-mix would clearly give a
more accurate result in this case.

As a last genomic region, we consider positions 17500 to 19000 of chromosome 14. For this
region, we find notable differences between the two approaches as well. Voting-mix predicts
a broad nucleosome-free region around position 17750, which is clearly not supported by
the mapped reads. In contrast, the approach of (Field et al., 2008) correctly predicts these
positions as nucleosome-covered.

130



4.3. Prediction of nucleosome positioning

position

265000 265500 266000

265000 265500 266000

chromosome 10: 264800 − 266300

DPB11 SIP4G
en

es
M

ap
pe

d 
R

ea
ds

F
ie

ld
 e

t a
l.

vo
tin

g−
m

ix

position

359000 359500 360000 360500

359000 359500 360000 360500

chromosome 10: 359000 − 360500

GYP6 YJL043WG
en

es
M

ap
pe

d 
R

ea
ds

F
ie

ld
 e

t a
l.

vo
tin

g−
m

ix

position

410000 410500 411000

410000 410500 411000

chromosome 12: 409800 − 411300

CKI1 PDC5G
en

es
M

ap
pe

d 
R

ea
ds

F
ie

ld
 e

t a
l.

vo
tin

g−
m

ix

position

667000 667500 668000

667000 667500 668000

chromosome 13: 666800 − 668300

RAD14 ERG2G
en

es
M

ap
pe

d 
R

ea
ds

F
ie

ld
 e

t a
l.

vo
tin

g−
m

ix

position

830500 831000 831500 832000

830500 831000 831500 832000

chromosome 13: 830500 − 832000

CAT8G
en

es
M

ap
pe

d 
R

ea
ds

F
ie

ld
 e

t a
l.

vo
tin

g−
m

ix

position

17500 18000 18500 19000

17500 18000 18500 19000

chromosome 14: 17500 − 19000

RPD3G
en

es
M

ap
pe

d 
R

ea
ds

F
ie

ld
 e

t a
l.

vo
tin

g−
m

ix

Figure 4.38.: Predictions of voting-mix and the approach of (Field et al., 2008) in their genomic con-
texts (cf. figure 4.37).
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4.3.5. Conclusions

In this section, we present a novel approach for discriminating nucleosome-bound sequences
from linkers that differentiates between coding and non-coding sequences and automatically
selects elementary classifiers representing different aspects of nucleosome formation. These
elementary classifiers are combined in component classifiers for coding, non-coding, and border
sequences, which in turn are combined in a weighted voting to yield the final probability of
nucleosome formation. We assess the classification performance of this approach by means of
AUC-ROC, AUC-PR, and AUC-PRI, and we find that it consistently outperforms the current
state-of-the-art approach of (Field et al., 2008). Scrutinizing the selected elementary classifiers,
we find several known features of nucleosome-bound sequences and linkers represented, e.g.
a preference for poly-A/T in linkers, and a preference for CAG/CTG and general G/C-rich
trinucleotides in nucleosome-bound sequences. However, periodicities, which are considered
important features of nucleosome-bound sequences, are not covered by the selected elementary
classifiers. Against the background of superior classification performance, we may speculate
that these periodicities are relevant for local nucleosome positioning, but less important for
the general potential of a sequence to be bound in a nucleosome. Considering the predictions
of the novel approach and the approach of (Field et al., 2008) in their genomic context, we find
notable differences that become especially relevant when using predicted nucleosome-covered
regions to eliminate non-functional predictions of transcription factor binding sites.
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4.4. Recognition of donor splice sites

4.4. Recognition of donor splice sites

The computational prediction of splice sites has been in the focus of bioinformatics research
for more than two decades. The two main sites of interest are donor splice sites at the 5’ end
and acceptor splice sites at the 3’ end of introns. Acceptor splice sites have an AG at positions
−2 and −1 relative to the 3’ end of the intron, whereas donor splice sites exhibit a canonical
consensus GT or a non-canonical GC at positions 1 and 2 of the intron.

4.4.1. Background

A first statistical approach for the prediction of donor and acceptor splice sites is proposed by
Staden (1984), who uses position weight matrices (PWMs) learned by the generative maximum
likelihood (ML) principle for modelling both types of sites. PWM models entail the assumption
that the nucleotides at each position occur statistically independently. Zhang and Marr (1993)
extend the PWM model to dinucleotides and, hence, to dependencies between directly adjacent
positions. The proposed weight array matrix (WAM) model is applied to splice donor sites
of Schizosaccharomyces pombe (see also section 4.1.1). WAM models, which are equivalent to
first order Markov models, are also used by Salzberg (1997) for the recognition of eukaryotic
donor and acceptor splice sites. Zhao et al. (2005) predict donor splice sites from SpliceDB
(Burset et al., 2001) with permuted variable length Markov models (PVLMMs) which extend
Markov models to non-adjacent dependencies as well as context-specific orders. PVLMMs are
described in more detail in section 4.1.1.

The maximal dependence decomposition (MDD) algorithm (Burge, 1998) combines a decision
tree with a number of PWM models at its leaves to represent the heterogeneity of donor splice
sites. Each inner node of the decision tree represents a binary decision: If the nucleotide at
position ` in a sequence x is equal to the consensus, we proceed to the consensus child and
to the non-consensus child otherwise. When we finally reach a leaf of the decision tree, we
score the sequence according to the PWM model at this leaf and the probability of the path
from the root to that leaf. The structure of the decision tree is learned by a greedy algorithm.
Burge (1998) employs the MDD algorithm for the prediction of human donor splice sites and
also proposes a gene finder (Burge and Karlin, 1997), which employs the decision tree of MDD
as one of its components. The decision tree model is also one of the bases of the maximum
supervised posterior decomposition (MSPD) algorithm presented in this work.

Yeo and Burge (2004) propose maximum entropy models (MEM) for the prediction of hu-
man donor splice sites. MEMs correspond to Markov random fields (MRFs) learned by the
generative ML principle. Yeo and Burge (2004) find that, among the considered MEMs, the
model comprising all two-point dependencies between positions yields the best accuracy for
the prediction of human splice donor sites.

With focus on improved learning principles, Keilwagen et al. (2007) learn Markov models
of different orders by the discriminative maximum conditional likelihood (MCL) principle.
They show that discriminatively learned Markov models can achieve an improved classification
accuracy as compared to (Yeo and Burge, 2004) on data sets of human splice donor and
acceptor sites also considered by Yeo and Burge (2004).
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4.4.2. Maximum supervised posterior decomposition

In this work, we propose maximum supervised posterior decomposition (MSPD) for the compu-
tational prediction of donor splice sites. MSPD combines the decision tree model of the MDD
algorithm (Burge and Karlin, 1997) with the discriminative maximum supervised posterior
(MSP) principle. Again, we assume a training data set of sequences X = (x1, . . . ,xN ) and
associated class labels c = (c1, . . . , cN ).

Burge (1998) defines a binary decision tree having PWM models (see section 3.3.1) at its
leaves. Each inner node of the decision tree holds a consensus nucleotide K ∈ Σ and a split
position ` ∈ 1, . . . , L, where L denotes the length of the donor splice sites. The consensus
nucleotide K is defined as that nucleotide which occurs most frequently at position `. We
denote the set of non-consensus nucleotides by K = Σ\{K}. Each inner node has exactly two
children: one consensus child and one non-consensus child. For an input sequence x, each
inner node represents a binary decision: If the nucleotide x` at the split position ` is equal to
the consensus nucleotide at the current inner node, i.e. x` = K, this sequence is modelled in
the subtree below the consensus child. If this nucleotide is included in the set of non-consensus
nucleotides, i.e. x` ∈ K, it is modelled in the subtree below the non-consensus child. Starting
at the root, we can apply these binary decisions in a recursive manner, until we reach a leaf
b. Thus the decision tree defines a partitioning of the data, where each partition is modelled
by an independent PWM model.

Figure 4.39 illustrates the partitioning of the data according to the binary decisions at the
inner nodes. In this example, the first split at the root is conducted for a “T” at position
+6. The consensus child of the root is already a leaf, which is responsible for all sequences
with a “T” at position +6 regardless of the nucleotides at other positions. The non-consensus
child, however, is another inner node, which partitions for an “A” at position -2. Hence, all
sequences that contain no “T” at position +6 are partitioned again according to this split.

-3 -2 -1 +1 +2 +3 +4 +5 +6

A C A G T A A G T

C C G G T T G G T

C G A G T A G C C

G A C G T C A C G

C G G G T T A T C

G A A G T T C G A

+6, T

-3 -2 -1 +1 +2 +3 +4 +5 +6

A C A G T A A G T

C C G G T T G G T
T

-2, A

V

-3 -2 -1 +1 +2 +3 +4 +5 +6

G A C G T C A C G

G A A G T T C G AA

-3 -2 -1 +1 +2 +3 +4 +5 +6

C G A G T A G C C

C G G G T T A T C

B

Figure 4.39.: Decision tree with two inner nodes and three leaves. The sequences of the left table
are partitioned according to the decisions represented by the inner nodes. The resulting
partitions are itemized in the leaves.

The path from the root and consequently the considered leaf depends on the sequence. Addi-
tionally, we allow different structures of the decision trees in different classes and we denote
the structure of the decision tree in class c by τc. To reflect these dependencies, we denote the
leaf that we reach for a concrete sequence x in the decision tree of class c by b(τc,x).
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We define the leaf probability P (b|ξ) as the probability of reaching leaf b, or equivalently, the
probability of traversing the path from the root to that leaf. With these prerequisites, we
define the likelihood of sequence x and class c given the parameters ξ of the decision tree and
the PWM models at its leaves as

P (x, c | τc, ξ) = P (c|ξ) · P (b(τc,x)|c, ξ) · P (x | c, b(τc,x), ξ) , (4.69)

where P (c|ξ) denotes the a-priori probability of class c, P (b(τc,x)|c, ξ) denotes the leaf prob-
ability of the leaf b(τc,x) for sequence x and class c, and P (x | c, b(τc,x), ξ) corresponds to
the likelihood defined by the PWM model at leaf b(τc,x).

MSPD comprises two tasks: Learning the structures τc of the decision trees in the classes
c ∈ C, and learning the parameters β of these decision trees. We learn the structures of the
decision trees by a greedy algorithm which requires optimized parameters in each step. Hence,
we start the presentation of our algorithm with learning the parameters ξ for fixed structures
τc.

4.4.2.1. Parameter estimation

We learn the parameters ξ by the discriminative MSP principle as defined in section 3.2.2,
i.e.

ξ∗MSP = argmax
ξ

[
N∏

n=1

P (xn, cn | τcn , ξ)∑
c̃ P (xn, c̃ | τc̃, ξ)

]
q (ξ |α) . (4.70)

Like for the other models considered in this work, MSP estimation for MSPD must be carried
out numerically. To this end, we parameterize the model in analogy to the parameterization
of Markov models described in section 3.3.1. The likelihoods P (x | c, b(τc,x), ξ) of the PWM
models at the leaves are parameterized as

P (x | c, b(τc,x), ξ) =
1

Zb(τc,x)|c(ξ)
exp

(
L∑

`=1

ξ`,x`|b(τc,x),c

)
, (4.71)

where the normalization constant for leaf b is defined as

Zb|c(ξ) =
∑

x∈ΣL

δb,b(τc,x) exp

(
L∑

`=1

ξ`,x`|b,c

)
(4.72)

and corresponds to the normalization constant defined in equation (3.37) in section 3.3.1. We
further decompose the leaf probabilities into probabilities of traversing the edges on the path
from the root to that leaf. Let π = (π1, . . . , πd), denote the path from the root π1 to leaf
b = πd, and let P (πi|πi−1) denote the probability of going to child πi after having visited the
parent node πi−1 on that path. The probability of leaf b is then defined as

P (b|c, ξ) = P (π1|c, ξ)
d∏

i=2

P (πi|πi−1, c, ξ), (4.73)
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where πd = b and the probability of starting at the root P (π1|c, ξ) is always 1 and can, hence,
be omitted.

We parameterize the probabilities P (πi|πi−1, c, ξ), i.e. the probability of visiting a child πi

from its direct parent πi−1, as

P (πi|πi−1, c, ξ) =
exp

(
ξπi|c

)
Zπi|c(ξ)

Zπi−1|c(ξ)
, where Zπi−1|c(ξ) =

∑
π̃i

exp
(
ξπ̃i|c

)
Zπ̃i|c(ξ), (4.74)

and π̃i denotes the consensus and non-consensus children of node πi−1. If πi is the leaf of the
current path, i.e. πi = πd, the normalization constants Zπ̃i|c(ξ) are equal to the normalization
constants Zb|c(ξ) of equation (4.72) of the corresponding leaves.

We insert these definitions into equation (4.73) to obtain the leaf probabilities in terms of ξ

parameters

P (b|c, ξ) =
d∏

i=2

exp
(
ξπi|c

)
Zπi|c(ξ)

Zπi−1|c(ξ)
(4.75)

=
1

Zπ1|c(ξ)

[
d∏

i=2

exp
(
ξπi|c

)]
Zπd|c(ξ) (4.76)

and find that all of the normalization except the normalization constants Zπ1|c(ξ) of the root
and Zπd|c(ξ) = Zb|c(ξ) of the leaf b cancel.

The normalization constant of the root node, i.e. Zπ1|c(ξ), is also the normalization constant
of the tree τc of class c, which we define as

Zc(ξ) := Zπ1|c(ξ). (4.77)

With these prerequisites, we can finally define the parameterization of the class probabilities
P (c|ξ) as

P (c|ξ) =
exp (ξc)Zc(ξ)

Z(ξ)
, where Z(ξ) =

∑
c̃∈C

exp (ξc̃)Zc̃(ξ). (4.78)

We insert these definitions into the likelihood of equation (4.69) and obtain

P (x, c | τc, ξ) =
exp (ξc)Zc(ξ)

Z(ξ)
· 1
Zπ1|c(ξ)

[
d∏

i=2

exp
(
ξπi|c

)]
·

Zπd|c(ξ) · 1
Zb(τc,x)|c(ξ)

exp

(
L∑

`=1

ξ`,x`|b(τc,x),c

)
. (4.79)

As Zπ1|c(ξ) = Zc(ξ) and πd denotes the leaf b(τc,x), we can further simplify the definition of
the likelihood, yielding

P (x, c | τc, ξ) =
1

Z(ξ)
exp (ξc) ·

[
d∏

i=2

exp
(
ξπi|c

)]
· exp

(
L∑

`=1

ξ`,x`|πd,c

)
. (4.80)
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As for the Markov models, the normalization constants Z(ξ) cancel as well, if we define the
class posterior P (c |x, ξ):

P (c |x, τ , ξ) =
exp

(
ξc +

∑d
i=2 ξπi|c +

∑L
`=1 ξ`,x`|πd,c

)
∑

c̃∈C exp
(
ξc̃ +

∑d̃
i=2 ξπ̃i|c̃ +

∑L
`=1 ξ`,x`|π̃d̃,c̃

) , (4.81)

where τ = (τ1, . . . , τK),K = |C|. Although we waive to denote it explicitly, the paths in
the decision trees and, consequently, d, d̃, πi, and π̃i depend on the leaf b(τc,xn) chosen for
sequence xn in the decision tree τc.

Wettig et al. (2003) prove that the log conditional likelihood of Markov models in this param-
eterization (see section 3.3.1) is a concave function of the parameters ξ. We can easily see that
the same can be proven for the MSPD decision trees in the parameterization defined above.
To this end, we compare equation (3.30) (p. 19) to equation (4.81) and find that both exhibit
the same kind of functional dependence on the parameters ξ. Hence, the result of (Wettig
et al., 2003) can be directly transferred to the decision tree models of MSPD and we obtain
optimal parameters ξ∗MCL using the MCL principle regardless of the initialization. A more
general proof that also includes log concavity of the prior defined in the following is given in
appendix A.1.

We want to use the MSP principle for estimating the optimal parameters ξ∗MSP. To this end, we
need to define a prior q (ξ |α) with hyper-parameters α on the parameters ξ. In section 3.4.2,
we defined a transformed product-Dirichlet prior for Markov models in ξ parameterization.
This prior can be used almost directly for the parameters of the PWM models at the leaves,
because these are just Markov models of order 0, and we use the same parameterization as
defined in section 3.3.1. However, the splitting into consensus and non-consensus branch entails
that we can observe only the consensus nucleotide K in the consensus branch, whereas K can
never be observed in the non-consensus branch. We deal with this specialty by i) excluding
the split position from the prior in the consensus branch and ii) reducing the alphabet – and
consequently the number of parameters – to K̄ in the non-consensus branch. The first can be
justified by the insight that the consensus nucleotide appears deterministically in the consensus
branch and, hence, no uncertainty in the parameter estimation needs to be modelled. The
probability of K is fixed to 1, while the probabilities of the other symbols x ∈ K̄ are fixed
to 0. As another consequence of the split, the consensus nucleotide cannot appear in the
non-consensus branch. Hence, the reduction of the alphabet at the split position in the non-
consensus branch is reasonable as well.

We define the prior for the probabilities of the outgoing edges of node πi−1 as a transformed
Beta prior, where the Beta distribution is the specialization of the Dirichlet distribution for one
free parameter. Let πi denote the consensus child of πi−1 and let π′i denote the non-consensus
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child of πi−1. Then the prior q
(
ξπi|c, ξπ′i|c

∣∣∣απi|c, απ′i|c

)
is defined as

q
(
ξπi|c, ξπ′i|c

∣∣∣απi|c, απ′i|c

)
:= Γ(απi|c + απ′i|c)

1
Γ(απi|c)

(
exp

(
ξπi|c

)
Zπi|c(ξ)

Zπi−1|c(ξ)

)απi|c

·

1
Γ(απ′i|c)

exp
(
ξπ′i|c

)
Zπ′i|c(ξ)

Zπi−1|c(ξ)

απ′
i
|c

. (4.82)

As the parameterization of the class probabilities (see equation (4.78)) is the same as in the
case of Markov models (see section 3.3.1, equation (3.31)), we can again apply the Dirichlet
prior of section 3.4.2 to the parameters ξc.

We choose the hyper-parameters α according to the assumption of uniform pseudo data in
analogy to Markov models (see section 3.4.2). The hyper-parameter αc is equal to the equiv-
alent sample size of class c. Again, we assume uniformly distributed pseudo data. This
assumption implies that before the first split each nucleotide appears αc

|Σ| times at each posi-
tion in the set of pseudo data. Accordingly, we choose the hyper-parameter of the consensus
child π2 of the root π1 as απ2|c := αc

|Σ| and the hyper-parameter of the non-consensus child π′2,

which is responsible for the remaining |Σ| − 1 nucleotides, as απ′2|c := αc(|Σ|−1)
|Σ| . In case of a

DNA-alphabet, this amounts to απ2|c = 1
4αc and απ′2|c = 3

4αc. With the same reasoning, we
generally define the hyper-parameters for the probabilities of the consensus child πi and the
non-consensus child π′i given their common parent πi−1 as

απi|c :=
απi−1|c

|Σ|
and απ′i|c :=

απi−1|c (|Σ| − 1)
|Σ|

. (4.83)

Finally, the equivalent sample size of the PWM at a leaf b = πd is equal to απd|c and con-
sequently (see section 3.4.2) the hyper-parameters of the parameters ξ`,a|b,c for symbol a at
position ` of this PWM amount to α`,a|b,c = 1

|Σ`|απd|c, where Σ` denotes the local alphabet,
which may be reduced due to a split at position ` in the predecessors of πd in the decision tree.
We use αc = 256 throughout the analyses presented in section 4.4.5. The complete product-
Dirichlet prior is then the product of the Dirichlet prior for the class probabilities, the Beta
prior for the probabilities of consensus and non-consensus edges, and the product-Dirichlet
prior of the parameters of the PWMs at the leaves.

With this choice of hyper-parameters, most of the normalization constants (cf. equation (4.82))
cancel in the same manner as for the likelihood (equation (4.76)) and we obtain a simplified
definition of the prior

q (ξ |α) =
c

Z(ξ)α.
exp

∑
c∈C

αc ξc +
∑
π∈τc

απ|c ξπ|c +
∑
b∈τc

∑
`

∑
a

α`,a|b,c ξ`,a|b,c

 , (4.84)

where c is a constant comprising Γ-terms that only depend on the hyper-parameters, π ∈ τc

denotes the nodes in τc except the root, and b ∈ τc denotes the leaves of τc. As we prove
in appendix A.1, this prior is a log concave function of the parameters ξ. Since conditional
likelihood for decision tree models in this parameterization is also log concave, the supervised
posterior is a log concave function of the parameters as well.
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4.4.2.2. Structure learning

The greedy algorithm for learning the structures τ = (τ1, . . . , τK),K = |C| of the decision
trees is outlined in figure 4.40. We initialize all decision trees in all classes with a single leaf,
which corresponds to a single PWM model for the complete data. We then consider in each
class c ∈ C and at each leaf b in the decision tree τc each admissible split position ` in this
leaf. We call a split position admissible, if it has not already been used as a split position
by one of the predecessors of b in τc. Temporarily, we replace leaf b by an inner node with
split position ` having two children, one for the consensus nucleotide K and one for the non-
consensus nucleotides K. We denote this temporary structure by τ̃c and replace the original
tree τc in τ by τ̃c. We then compute the supervised posterior P (c|X, τ̃ , ξ̃∗)q(ξ̃∗|α) using the
optimal parameters ξ̃∗ for the provisional structure. After testing all admissible splits, we
persistently conduct the split that yields the maximum supervised posterior.

foreach c ∈ C do
τc := PWM

done
τ := (τ1, . . . , τK)
do

ξ∗old = argmax
ξ

P (c |X, τ , ξ) q (ξ |α)

SP := P (c |X, τ , ξ∗old) q (ξ∗old |α)
τ ′ := τ
SP′ := −∞
foreach c ∈ C do

foreach leaf b in τc do
foreach admissible split position ` in b do

τ̃c := τc
split τ̃c in leaf b at position `
τ̃ := (τ1, . . . , τc−1, τ̃c, τc+1, . . . , τK)
ξ̃∗ = argmax

ξ
P (c |X, τ̃ , ξ) q (ξ |α)

S̃P := P
(
c
∣∣∣X, τ̃ , ξ̃∗

)
q
(
ξ̃∗
∣∣∣α)

if S̃P > SP′ then
SP′ := S̃P
τ ′ := τ̃

fi
od

od
od
if SP′ > SP then

SP := SP′

τ := τ ′

fi
while split possible
ξ∗final = argmax

ξ
P (c |X, τ , ξ) q (ξ |α)

Figure 4.40.: Pseudo code of the greedy algorithm for learning the tree structures of MSPD.
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If the maximum supervised posterior SP′ reached in the current iteration is larger than the
previous SP, we retain the corresponding structures τ ′. We repeat the iterations until no
admissible split can be found in any of the trees τc. Hence, at the end of the algorithm, τ

holds the structures that yield the largest supervised posterior among all structures that are
tested by this greedy procedure. We justify the selection of the optimal structure by means
of the supervised posterior in section 4.4.5.1. Finally, we obtain the optimal parameters ξ∗final

with respect to the supervised posterior given the chosen structures τ .

4.4.3. Discriminant sequence logos

Sequence logos (Schneider and Stephens, 1990) are a popular visualization of the probability
distributions of a PWM model. In a sequence logo, the probabilities of nucleotides are displayed
as relative heights of the corresponding letters. The letters at each position are stacked and
ordered according to the probabilities, i.e. the most probably occurring nucleotide is displayed
topmost, while the least probably occurring nucleotide is placed at the bottom of the stack.
The size of the stack is scaled according to the deviation from the uniform distribution. This
deviation is measured in terms of the so-called information content 2−H(X`), where H(X`)
denotes the entropy of the distribution of the random variable X` emitting the nucleotides in
units of bits. Examples of sequence logos are given in figure 4.41(a)
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(b) Discriminant sequence logo

Figure 4.41.: Sequence logos of the probability distributions of two PWM models (a) and the discrim-
inant sequence logo for plotting the first distribution against the second (b).

Here, we propose an alternative sequence logo that aids the viewer in the perception of dif-
ferences between the distributions represented by two PWM models. Let p` = (p1, . . . , p|Σ|)
denote the probability distribution at position ` in the first PWM and let q` = (q1, . . . , q|Σ|)
denote corresponding probability distribution in the second PWM, where in the case of DNA
sequences Σ = {A,C,G, T} and |Σ| = 4. We aim at a joint representation of the p` and
q` that highlights positions ` with relevant differences between p` and q`. To this end, we
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4.4. Recognition of donor splice sites

plot the stacked letters representing the p` on the positive scale and those representing the q`

on the negative scale. In analogy to the original sequence logo, we order the stacked letters
according to the probabilities such that the nucleotides with the highest probability are placed
at the very top and the very bottom, respectively, whereas the nucleotides occurring with the
lowest probability are located at the axis. We scale the stacked letters by the Jensen-Shannon
divergence (Lin, 2002), which is defined as

DJS(p`, q`) =
1
2

[DKL(p`,m`) +DKL(q`,m`)] , (4.85)

where

m` =
1
2

[p` + q`] (4.86)

and DKL denotes the Kullback-Leibler divergence (Kullback and Leibler, 1951). In contrast to
the Kullback-Leibler divergence, the Jensen-Shannon divergence is limited to [0, 1] (Lin, 2002)
and, hence, better suited as a scaling factor of discriminant sequence logos. Jensen-Shannon
divergence has also been successfully applied to the segmentation of DNA sequences (Grosse
et al., 2002).

An example of a discriminant sequence logo is given in figure 4.41(b). This discriminant
sequence logo is an alternative representation of the two sequence logos presented in fig-
ure 4.41(a). The example illustrates the utility of discriminant sequence logos for locating
differences between PWM models. In the two sequence logos of figure 4.41(a) the most impor-
tant positions appear to be position 1 and 6, whereas the remaining positions do not exhibit a
major deviation from the uniform distribution. With stress on the differences, the discriminant
sequence logo reveals that the largest deviations between the two PWM models can be found
at positions 3 and 6. While the deviation at position 6 (C vs. G) is easily observed from the
sequence logos as well, the deviation at position 3 is more subtle and can likely be overlooked.
Hence, we use discriminant sequence logos in the following, whenever we are interested in the
differences between distributions.

4.4.4. Donor splice sites

We use two sources of data to evaluate the MSPD algorithm. First, we use the data set of
(Yeo and Burge, 2004), which contains 12, 623 human canonical donor splice sites and 269, 155
decoy sites, i.e. sequences that exhibit the canonical GT at positions +1 and +2 but are
no functional donor splice sites. This data set is already partitioned into training and test
data sets, and we adopt this partitioning. Second, we use data sets compiled in (Sonnenburg
et al., 2007) for five species, namely Arabidopsis thaliana (thale cress), Caenorhabditis elegans
(nematode), Drosophila melanogaster (fruit fly), Danio rerio (zebra fish), and Homo sapiens
(human). Besides canonical donor splice sites, these data also contain non-canonical sites with
GC at positions +1 and +2, respectively. The sizes of the data sets are listed in table 4.5.
Sonnenburg et al. (2007) also suggest partitionings into five parts for each of the five data sets,
which we use in a 5-fold cross validation.
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Table 4.5.: Number of donor and decoy sites in the six data sets.

Data set Yeo & Burge A. thaliana C. elegans D. melanogaster D. rerio H. sapiens
donor sites 12,623 76,659 64,844 29,788 143,495 160,601
decoy sites 269,155 3,311,934 2,846,598 4,126,777 33,175,785 76,335,126

Sonnenburg et al. (2007) originally provide sequences of length 398 bp, which they cut down to
length 141 bp for the analysis. However, most of the algorithms considered in this dissertation
do not work on sequences of such length for reasons of computation time: Estimating the
parameters of the MEM model is limited to shorter sequences due to the computation of the
partition function, which sums over all |Σ|L possible sequences of length L. Finding the optimal
permutation of a PVLMM is an NP-hard problem and, hence, limited to short sequences as
well. Finally, the greedy algorithm for learning the decision tree structures of MSPD tests all
admissible split positions in each iteration. Hence, we cut the sequences to a length of 9 bp
where 3 positions are located at the end of the exon, which is the same choice of positions
as for the data set of (Yeo and Burge, 2004), and covers the positions bound by U1 and U6
during splicing (see section 2.3).

4.4.5. Results & Discussion

In this section, we evaluate MSPD on the six data sets introduced in the previous section.
We first investigate if the supervised posterior is a suitable measure for selecting tree struc-
tures. We then compare the classification performance of MSPD to five other algorithms for
donor splice site prediction. Finally, we scrutinize the tree structures learned for features that
are specific for donor splice sites, and we use MSPD as an exploratory method for finding
differences between donor splice sites of different organisms.

4.4.5.1. Supervised posterior for structure selection

For investigating if the supervised posterior is suited for selecting tree structures, we start the
MSPD algorithm for learning the structures on the first training data set for D. melanogaster.
In each iteration, i.e. after conducting a persistent split, we evaluate the performance of the
resulting classifier on the corresponding test data set. We repeat this procedure for all five
training data sets and corresponding test data sets for D. melanogaster.

Figure 4.42 shows the plot of the performance measures AUC-ROC and AUC-PR (see sec-
tion 3.5.1) against the supervised posterior (SP). The lines start with a combination of two
PWMs in the lower left corner and continue to the largest trees in the upper right corner.
Besides one major dip we find a good correlation of AUC-ROC and SP for the first parti-
tioning as well as for the averaged results. The Pearson correlation coefficient between the
values of AUC-ROC and SP amounts to 0.890 on the first partitioning and 0.854 on the av-
eraged results. We observe an even stronger correlation between AUC-PR and SP, where we
find correlation coefficients of 0.983 and 0.96, respectively. We compare these values to the
correlations between AUC-ROC and AUC-PR, which may serve as a base line of the range of
correlations that can be expected in this scenario. These correlation coefficients are 0.921 and
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Figure 4.42.: Relation between the value of the supervised posterior on the training data and classifica-
tion performance on the test data for D. melanogaster. The left figure shows a plot of the
performance as measured by AUC-ROC against SP for the first partitioning (black line)
and averaged over all five partitionings (red line). The figure in the middle illustrates the
same analysis for AUC-PR vs. SP. As an indication of the relevance of the correlation
we repeat the analysis for AUC-PR vs. AUC-ROC in the right figure.

0.897, respectively, indicating a relevant correlation between the supervised posterior and the
two performance measures. Although the best trees with respect to AUC-ROC or AUC-PR
are not exactly equal to those yielding the largest supervised posterior, we judge the supervised
posterior a reasonable measure for the selection of tree structures.
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Figure 4.43.: Plot of SP against the number of leaves for the first partitioning (black line) and averaged
over all five partitionings (red line) for D. melanogaster.

We plot SP against the total number of leaves across the trees of both classes in figure 4.43.
We find that most of the improvement in SP is gained approximately during the first 10 splits.
Trees with more than 15 leaves yield only slightly increasing SPs.

Because the optimal trees are too large for a reasonable interpretation, we restrict the total
number of leaves across the trees of both classes to 7 in section 4.4.5.3. To obtain an assessment
of the performance lost due to this restriction, we include these classifiers into the comparison
presented in the next section. We also observe that the curve of SP against the number of
leaves is fairly smooth. Hence, we stop the iterations of structure learning, if SP does not
increase for more than five iterations in order to save computation time.
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4.4.5.2. Comparison of classification performance

We compare the classification performance of MSPD to five other popular approaches for the
prediction of donor splice sites. The classifiers considered are (i) a combination of a WAM
model (Zhang and Marr, 1993) for the donor splice sites and a WAM model for the decoy
sites (abbreviated by WAM), (ii) a combination of a PVLMM of initial order 3 and a variable
length Markov model (VLMM) of initial order 2 as proposed by Zhao et al. (2005) (PVLMM),
(iii) a combination of two MDD decision trees (Burge, 1998) using identical significance levels
(MDD), (iv) a combination of two MEM models using all two-point dependencies, which was
the best model in (Yeo and Burge, 2004) (MEM), and (v) a combination of two inhomogeneous
Markov models of order 2 learned by the discriminative MSP principle (iMM(2)). We use an
equivalent sample size of 256 in both classes for MSPD and iMM(2) throughout the analyses.
We also test the combination of an MDD decision tree for modelling donor splice sites and a
PWM model for the decoy sites, which achieves a consistently lower classification performance
than the combination of two MDD decision trees and is hence omitted in the final comparison.
In addition to iMM(2), we also evaluate the performance of MSP-trained Markov models of
orders 1, 3, and 4 and find that iMM(1) performs considerably worse than iMM(2), while the
results iMM(3) and iMM(4) differ only slightly in both directions from the results of iMM(2).
Keilwagen et al. (2007) originally propose to learn these inhomogeneous Markov models by
the non-Bayesian MCL principle, which also results in a reduced classification performance.
For these reasons, we include only the MSP-trained iMM(2) into the comparison presented in
the following. For the largest two data sets, namely those of D. rerio and H. sapiens, we could
not conduct experiments for PVLMM, because the current version of the program is unable
to handle data sets of this size.

We use AUC-ROC and AUC-PR as measures of classification performance, because AUC-ROC
is a common general measure of classification performance, whereas AUC-PR is better suited
in cases of unbalanced class abundances (Davis and Goadrich, 2006) (cf. table 4.5). These
two measures are also selected in (Sonnenburg et al., 2007). Additionally, we include FPR
for a fixed Sn of 95%, i.e. the point on the ROC curve that measures the rate of erroneously
classified decoy sites if we correctly recover 95% of the true donor splice sites. For the data set
of (Yeo and Burge, 2004) we perform a single training on the dedicated training data set and
test the resulting classifiers on the independent test data set. For the remaining data sets, we
adopt the partitioning proposed by Sonnenburg et al. (2007) in a 5-fold cross validation (see
section 3.5.2).

Figure 4.44 presents the classification performance of the five approaches and MSPD on the
data sets of (Yeo and Burge, 2004) and the five organisms from (Sonnenburg et al., 2007)
considering AUC-ROC. We additionally include MSPD with exactly 7 leaves across all decision
trees into the analysis, since we examine trees of this size in the next section, where we search
for specific patterns of donor splice sites. We conduct a 5-fold cross validation for the five data
sets of (Sonnenburg et al., 2007) and, hence, obtain standard errors together with the values
of AUC-ROC. We can use these standard errors to assess the significance of the differences
in classification performance. We consider a difference significant, if it exceeds two-fold the
standard error. In the barplots of figure 4.44 et seqq. the two-fold standard errors are indicated
as error bars.

144



4.4. Recognition of donor splice sites

MSPD−7

MSPD

iMM(2)

MEM

MDD

PVLMM

WAM

AUC−ROC

0.976 0.978 0.980

0.9801

0.9804

0.9799

0.9794

0.9789

0.9789

0.9768

(a) Yeo and Burge (2004)

MSPD−7

MSPD

iMM(2)

MEM

MDD

PVLMM

WAM

AUC−ROC

0.978 0.980 0.982

0.9811

0.9825

0.9815

0.9813

0.9816

0.9803

0.9793

(b) A. thaliana

MSPD−7

MSPD

iMM(2)

MEM

MDD

PVLMM

WAM

AUC−ROC

0.985 0.987 0.989

0.9879

0.9886

0.9882

0.9880

0.9874

0.9869

0.9861

(c) C. elegans

MSPD−7

MSPD

iMM(2)

MEM

MDD

PVLMM

WAM

AUC−ROC

0.9890 0.9900 0.9910

0.9905

0.9911

0.9912

0.9911

0.9899

0.9901

0.9899

(d) D. melanogaster

MSPD−7

MSPD

iMM(2)

MEM

MDD

WAM

AUC−ROC

0.982 0.984 0.986

0.9849

0.9862

0.9853

0.9852

0.9852

0.9835

(e) D. rerio

MSPD−7

MSPD

iMM(2)

MEM

MDD

WAM

AUC−ROC

0.972 0.974 0.976 0.978

0.9740

0.9778

0.9754

0.9749

0.9756

0.9739

(f) H. sapiens

Figure 4.44.: AUC-ROC achieved by the combination of two WAM models (WAM), a PVLMM of
order 3 and a VLMM of order 2 (PVLMM), two MDD decision trees (MDD), two MEM
models (MEM), two inhomogeneous Markov models trained by MCL (iMM(2)), two
MSPD decision trees (MSPD), and MSPD limited to exactly 7 leaves (MSPD-7). The
error bars in figure b) through f) indicate two-fold the standard error observed in the
cross validation experiment.

For five out of the six data sets, MSPD yields the largest AUC-ROC of all considered ap-
proaches. The only exception is the data set of D. melanogaster for which we observe a
comparable AUC-ROC for MEM, iMM(2), and MSPD. MSPD yields an AUC-ROC of 0.9804
compared to 0.9794 for MEM and 0.9799 for iMM(2) on the data set of (Yeo and Burge,
2004), 0.9825 compared to 0.9813 and 0.9815, respectively, for A. thaliana, 0.9886 compared
to 0.9880 and 0.9882 for C. elegans, 0.9911 compared to 0.9911 and 0.9912 for D. melanogaster,
0.9862 compared to 0.9852 for MEM and 0.9853 for iMM(2) on the D. rerio data set, and
an AUC-ROC of 0.9778 for H. sapiens, where MEM yields 0.9749 and iMM(2) achieves an
AUC-ROC of 0.9754. The improvement of MSPD over the other approaches is significant for
A. thaliana, D. rerio, and H. sapiens, whereas it is not significant for C. elegans compared to
iMM(2).

MEM significantly outperforms MDD only for D. melanogaster and performs even worse in
case of H. sapiens. Similarly, the improvement of iMM(2) over MEM with respect to AUC-
ROC is significant for none of the five data sets. Against this background, we might reason
that the improvement gained by the combination of the decision tree model and discriminative
learning by MSP is relevant compared to earlier improvements.

PVLMM achieves an AUC-ROC that is comparable to that of MDD on the tested data sets
with exception of the A. thaliana data set, where it performs significantly worse. MSPD
limited to exactly 7 leaves across both decision trees performs significantly worse than MEM
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Figure 4.45.: AUC-PR achieved by the seven considered classifiers. The error bars in figure b) through
f) indicate two-fold the standard error observed in the cross validation experiment.

only in two of the five data sets of (Sonnenburg et al., 2007), while it yields an even improved
AUC-ROC for the data set of (Yeo and Burge, 2004). It therefore appears justifiable to limit
the examination of the learned decision trees to trees of this size in the next section.

Turning to AUC-PR as measure of performance in figure 4.45, we find a similar picture.
MSPD performs best compared to the other five approaches for all six data sets. Again, the
difference between MEM, iMM(2), and MSPD is not significant for D. melanogaster, whereas
it is significant for A. thaliana, D. rerio, H. sapiens, and C. elegans. For the latter data set we
could not observe a significant improvement of MSPD over iMM(2) with respect to AUC-ROC.
We compare the values of AUC-PR gained by MSPD to the best of the previous approaches
for the six data sets and find a AUC-PR of 0.688 compared to 0.683 for iMM(2) on the data
set of (Yeo and Burge, 2004), 0.597 compared to 0.590 for MEM on the A. thaliana data
set, 0.735 compared to 0.725 for iMM(2) on the C. elegans data set, 0.657 compared to 0.654
(MEM) for D. melanogaster, 0.325 compared to 0.310 for MEM on the D. rerio data set, and
an AUC-PR of 0.195 compared to 0.186 for iMM(2) on the data set of H. sapiens.

Using AUC-PR, the difference between MDD and MEM becomes more articulate than it was
the case for AUC-ROC. MEM yields a significantly larger AUC-PR for three of the five data
sets, and the improvement is almost significant for the remaining two data sets. Notably, the
combination of two WAM models, published in 1993, outperforms MDD for two of the six
data sets ((Yeo and Burge, 2004) and H. sapiens) and yields a larger AUC-PR than PVLMM
on the D. melanogaster data set. Generally, the performance of PVLMM is fairly unsteady:
its AUC-PR is in the same range as that of MEM and considerably above that of MDD on
the data set of (Yeo and Burge, 2004), whereas it performs worst of all studied approaches on
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Figure 4.46.: FPR achieved by the seven considered classifiers. The error bars in figure b) through f)
indicate two-fold the standard error observed in the cross validation experiment. In this
case, lower values mean superior classification performance.

the D. melanogaster data and yields an AUC-PR between those of WAM and MDD for A.
thaliana and C. elegans. The improvements of iMM(2) over MEM as compared by AUC-PR
is, again, not significant, and iMM(2) performs even significantly worse than MEM for A.
thaliana. Considering AUC-PR, MSPD-7 performs comparably well as MEM for all six data
sets.

Comparing the absolute differences between the different approaches in AUC-PR to those in
AUC-ROC supports the theoretical consideration that, for unbalanced data sets, AUC-PR is
better suited for a comparison of classifiers than AUC-ROC. For AUC-PR the differences in
separability between the data sets stemming from different organisms become more obvious
as well. One reason for this observation might be that (Sonnenburg et al., 2007) include sites
with a non-canonical GC at positions +1 and +2 into the sets of both, the donor splice site
and the decoy sites. However, the ratio of canonical and non-canonical sites in the set of
decoys is not controlled to be the same as in the set of donors. Depending on the fraction of
non-canonical sites in the considered organism, the presence of a C at position +2 could thus
identify potential decoys to a different degree. Another possible explanation is the mere size of
the data sets for D. rerio and H. sapiens. We consider sequences of length 9 over an alphabet
of size 4 resulting in only 262, 144 possible sequences. However, the decoy data sets for these
organisms contain 33, 175, 785 and 76, 335, 126 sequences, respectively, rendering a relevant
overlap between donor sites and decoy sites more probable than for the other organisms.
Finally, the differences between the organisms might also occur due to a different abundance
of alternative splicing, which might result in less rigid donor splice sites.
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We consider FPR for a fixed Sn of 95% as a third performance measure. Since we aim
at keeping the rate of false positives as low as possible, lower values correspond to better
classification performance for FPR. In general, the results with respect to FPR are similar to
those for AUC-ROC and AUC-PR: MSPD achieves the best (lowest) FPR for all six data sets,
where the improvement over the best existing approach is significant for three (A. thaliana, D.
rerio, and H. sapiens) of the five data sets that are analyzed in a cross validation experiment,
whereas it is not significant in case of D. melanogaster and C. elegans. MSPD yields an FPR
of 0.068 for the data set of (Yeo and Burge, 2004) compared to the next larger FPR of 0.0706
for iMM(2), 0.0666 compared to 0.0684 (MEM) for A. thaliana, 0.0496 compared to 0.0510 for
iMM(2) on the C. elegans data set, 0.0334 compared to 0.0335 (MEM) for D. melanogaster,
an FPR of 0.0463 compared to 0.0491 for MEM on the D. rerio data set, and, finally, an
FPR of 0.079 compared to 0.087 achieved by MEM on the data set stemming from H. sapiens.
Like for AUC-ROC, we observe a significant improvement of MEM over MDD only for D.
melanogaster considering FPR. Again, iMM(2) does not gain a significant improvement over
MEM, and performs even significantly worse on the D. rerio data set. Considering FPR,
PVLMM consistently achieves an FPR between those of WAM and MDD.

Summarizing the results for the three performance measures, we find that MSPD yields a
considerably improved performance compared to existing approaches. The magnitude of im-
provement on the studied data sets is larger than those gained by MEM (Yeo and Burge, 2004)
or iMM(2) (Keilwagen et al., 2007) over the original MDD algorithm (Burge and Karlin, 1997;
Burge, 1998). In the next section we aim at elucidating which properties of MSPD might be
responsible for its superior classification performance.

4.4.5.3. MSPD decision trees

We start the examination of decision tree structures with exactly 7 leaves learned by MSPD
with the H. sapiens data set. As a first step, we compare the tree structures obtained for the
different partitionings as depicted in figure 4.47 to assess the stability of these structures. The
thickness of the borders of the inner nodes indicates the contribution of the corresponding
splits to the improvement of SP achieved by the final decision tree compared to a combination
of two PWM models, i.e. trees of size one without any split.

We find that the general structure of the decision trees is identical over the five partitionings.
The only difference we find is the split position used in the non-consensus branch of split
position +5 in the foreground tree. In three out of five cases we observe an additional split on
the consensus T at position +2, whereas the algorithm introduces a split on the consensus G
at position −1 in the remaining two cases. Considering the thickness of the borders of these
alternative nodes, we observe that these splits are responsible for the smallest improvement of
SP of all splits in the foreground tree. Against the background of these rather small differences,
we restrict the analyses to the tree learned on the first partitioning for all considered data sets.
However, we refer to this difference when scrutinizing the foreground tree of the H. sapiens
data set in the following.

We consider the structure of the decision trees learned by MSPD and examine patterns in the
occurrence of nucleotides that are discovered by the splits chosen. To this end, we visualize
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Figure 4.47.: Decision tree structures with 7 leaves across both classes as obtained for the five par-
titionings of the H. sapiens data set. The thickness of the borders of the inner nodes
indicates the contribution of the corresponding split to the increase in SP achieved by
the full tree compared to two PWM models.

the structures of the decision trees in the foreground and background on the H. sapiens data
set in figure 4.48. While the tree structures are those obtained by MSPD, we populate both
structures with the sequences present in the data and determine the (conditional) relative
frequencies of nucleotides in the partitions determined by the decision trees. For each of the
trees, we conduct this procedure for the donor splice sites and the decoy sites and use the
resulting relative frequencies to plot discriminant sequence logos (see section 4.4.3). We visu-
alize the relative frequencies of consensus and non-consensus nucleotides at the split position
by discriminant sequence logos as well, but adapt these to the alphabet of size two, i.e. K

and K, where the non-consensus nucleotides are displayed next to each other with the same
height. Since discriminant sequence logos scale nucleotides according to the divergence of the
relative frequencies observed in splice sites and decoy sites, this visualization helps to identify
specific properties of donor splice sites that are present in the data.

We use the frequencies calculated from the data instead of discriminatively learned parameters,
because the discriminatively learned parameters of both trees are influenced by the foreground
and the background data set. Hence, the contributions of the sequences of the two classes to
the parameter values can not be distinguished. However, we can compare the discriminant
sequence logos to the corresponding sequence logos for the discriminatively learned parameters
and investigate which characteristics of the data lead to the parameters learned.

Considering the root of the foreground tree, we find that a G at position +5 occurs with high
frequency in the donor splice sites but with lower frequency in the decoy sites. The importance
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Figure 4.48.: Foreground (a) and background (b) tree learned on the H. sapiens data set. The thickness
of the borders around the inner nodes indicates the contribution of the corresponding
split to the increase in SP. The one-position discriminant sequence logos depicted in the
inner nodes visualize the relative frequencies of the consensus nucleotide and the non-
consensus nucleotides in the data at this position. The latter are symbolized by the
three non-consensus nucleotides displayed next to each other. The split position and
corresponding consensus are given below the logo. The discriminant sequence logos in
the leaves represent the corresponding conditional relative frequencies found in the data.
Nucleotides that are determined either by the selection of data (G at position +1) or the
splits at predecessors in the tree are printed in gray with full height.

of G at position +5 is confirmed by the fact that the split at the root node of the foreground tree
gains the largest increase in SP of all splits considered. Turning to the non-consensus branch of
the root, we observe a split for a G at position −1, which occurs in this partition of the donor
sites with even higher frequency than the G at position +5, whereas the frequencies in the
decoy sites remain virtually unchanged. The non-consensus leaf of this inner node is visited
by donor sites with almost negligible frequency. These observations lead to two statements:
i) at least one of the positions +5 and −1 must be G for a functional donor site and ii) a G
at position −1 may compensate for a lack of G at position +5. Considering the consensus
leaf of the node “-1, G” we find an increased frequency of the consensus A at position +3 and
at position −2 compared to the remaining leaves. This also indicates that a compensation
of a non-G nucleotide at position +5 is possible by a strong binding to positions −1 and −2
on the exon side and position +3 on the intron side. These findings are in accordance with
those of (Burge and Karlin, 1997), who find a general compensatory effect between the exon
and the intron side of donor splice sites, a strong compensatory relation between positions +5
and −1, and a positive dependency of position −2 on position −1. The strong demand for a
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G at position −1 and +5 is also found by Carmel et al. (2004), who investigate dependency
structures within donor splice sites based on comparative studies between human and mouse.
Carmel et al. (2004) also note the general dependency between exon and intron side and a
possible compensatory effect between positions −2 and +5. In contrast to previous findings,
we observe that position +4 is of minor relevance if the G at position +5 is missing. We even
find that all positions downstream of +3 are of minor relevance if the G at position +5 is
absent as represented by the two leaves in the non-consensus branch of the root.

The compensatory effects between position −1 and −2, and +5 and +6 can possibly be
attributed to the simultaneous binding of U6 to these positions at the beginning of the splicing
process (cf. section 2.3).

Considering the consensus branch of the root, i.e. the sequences with a G at position +5, we
find two further splits for positions +4 and +6. In those sequences that exhibit the consensus
at positions +4 through +6 represented in the leaf in the upper right, we observe a reduced
relevance of the exon side indicating that a strong binding of U6 on the intron side is sufficient
for a functional donor splice site. This is again in accordance with the findings of (Burge and
Karlin, 1997) and (Carmel et al., 2004), who both find similar dependencies between positions
+4, +6, and +5. Notably, −1 becomes relevant as soon as either +6 or +4 is not equal to
the consensus as can be observed from the discriminant sequence logos in the non-consensus
leaves of nodes “+4, A” and “+6, T”. In case of lacking consensus at position +4 we also find
that position +3 is less relevant than in the two leaves in the consensus branch under node
“+4, A”.

A compensatory effect between positions −2 and +5 is also detectable in the background tree.
Here, the root node splits for an A at position −2 on the exon side. On the one hand, we
observe an increased relevance of position −1 in the consensus case and a reduced divergence
between donor and decoy sites on the intron side. On the other hand, a lack of A at position
−2 is compensated by a better accordance to the consensus on the intron side.

Surprisingly, the differences between canonical donor splice sites, which have a T at positions
+2, and non-canonical donor splice sites, which have a C this position, seem to be of minor
relevance, since these are neither used for a split nor do we observe widespread differences at
position +2 in the discriminant sequence logos at different leaves. One difference we do observe
is a relatively high abundance of non-canonical splice sites in the non-consensus leaf of “-1, G”
as indicated by the low divergence between donor and decoy sites at position +2 compared
to the consensus leaf. Stated differently, given a non-consensus nucleotide at position +5 we
observe a positive correlation between the canonical T at position +2 and a G at position −1.
This might be one reason why we also found a split at position +2 instead of −1 in the trees
depicted in figure 4.47. However, this could also be a random effect due to the low frequency
of observing G neither at position +5 nor at position −1.

In the following, we want to evaluate how the findings on the data – guided by the discrimi-
natively learned structure of the decision trees – are also represented by the discriminatively
learned parameters. In figure 4.49, we depict the foreground and background tree learned on
the H. sapiens data set. In contrast to figure 4.48, we do not plot discriminant sequence logos,
but sequence logos that illustrate the discriminatively learned parameters. A first observation
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4 / 3
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than in he depth of the tree. Additionally, all parameters in the foreground and background
tree are optimized conjointly and, hence, these parameters may also be influenced e.g. by the
a-priori probabilities of the classes. Unfortunately, this also complicates the interpretation of
the consensus and non-consensus probabilities learned by MSPD.
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Figure 4.49.: Foreground (a) and background (b) tree learned on the H. sapiens data set. In contrast
to figure 4.48, the sequence logos in the leaves visualize the parameters of the models
learned by MSPD. Again, nucleotides determined by the selection of data or splits at
predecessors in the tree are printed in gray.

In the foreground tree, the parameters in the two leaves below “-1,G” in the non-consensus
branch of the root support our previous findings. Especially the importance of position +3 if
we observe G only at position −1 but not at position +5 is emphasized by the discriminatively
learned parameters. In contrast, position −2 appears to be relevant, but less than could be
expected from the frequencies visualized in figure 4.48. Turning to the consensus branch of the
root, we find again that the exon side looses importance in case of the consensus at positions
+4 through +6. The compensatory effect of position −1 if either position +4 or position +6
lacks the consensus, however, becomes even more evident from the discriminatively learned
probabilities. The same holds true for position +3, which is more relevant if an A is present
at position +4 than in the non-consensus case.

Considering the background tree, we find the compensatory effect between position −2 and
the intron side only slightly supported. In the consensus branch of the root, we find deviations
from the uniform distribution for positions −3 and −1, whereas for the non-consensus branch,
we find similar deviations for positions +3 and +4. However, the parameters do not reflect the
preference for G at position +5 if position −2 is not equal to the consensus A. One explanation
might be that this relation is already sufficiently modelled in the foreground tree.

With regard to the differences between canonical and non-canonical donor splice sites, we find
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that, in the foreground tree, the parameters at position +2 assign almost equal probabilities
to A, G, and T, and a probability close to 0 to C. Stated differently, the discriminative MSP
principle preferentially learn that position +2 must not be C in the foreground class. A slight
deviation from this observation can be observed only for the non-consensus leaf under “-1,
G”, which has been discussed earlier. Such effects, where the model of the foreground class
essentially represents an inverted property of the sequences in the background class, may also
interfere with learning the probabilities of consensus and non-consensus at the split positions.

We conclude from these findings that most of the observation from figure 4.48 are supported by
the discriminatively learned parameters of figure 4.49. However, besides their discriminative
power, the parameters learned by MSPD are less suited for exploring specific properties of
donor splice sites than the discriminative structure combined with discriminant sequence logos
reflecting the differences between donor and decoy sites present in the data. Hence, we only
use the latter approach in the following.

We verify our findings on the decision trees learned from the training data sets of (Yeo and
Burge, 2004) (data not shown). Besides the statements regarding non-canonical donor splice
sites, which are not included in these data, we find all properties stated for the H. sapiens
data set of (Sonnenburg et al., 2007) confirmed.

Most of the properties of donor splice sites that we derive from the H. sapiens trees are also
valid for the other organisms. All exhibit a strong preference for G at position +5 and for all
organisms this split is located at the root of the foreground tree with the greatest contribution
to the final SP. We can also confirm a general compensatory effect between the exon and the
intron site of the donor splice site, which is especially pronounced between positions +5 and
−1. We find consistently among the different organisms that a strong intron side renders the
exon side less relevant, although position −1 appears to be of greater general importance than
−2 and −3. We also find confirmed that a lack of +5 is a “blocker” on the intron side, i.e. the
relevance of positions +4 and +6 is greatly decreased in this case. The differentiation between
canonical and non-canonical donor splice sites remains of minor relevance across the studied
organisms.

As a specific example we consider the decision tree structures learned by MSPD on the D.
melanogaster data set, which are depicted in figure 4.50. Comparing the foreground and
background tree to those learned on the H. sapiens data set, we find similar structures and
a large overlap between the split positions for these two data sets. However, the split on
position −1 in the non-consensus branch of the root of the foreground tree is replaced by a
split on position +2, which also appeared in some of the trees for H. sapiens (see figure 4.47).
Additionally, position −2 in the background tree and position +6 in the foreground tree are
exchanged.

We also find notable differences. On the one hand, we observe in the root node of the fore-
ground tree that the consensus G at position +5 is more conserved in D. melanogaster than
in H. sapiens. On the other hand, we observe a C at position +2 of the decoy sites with a
higher frequency than T in all leaves of both trees, except for the non-consensus branch of the
root of the foreground tree. The high abundance of C at position +2 of the decoy sites might
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Figure 4.50.: Foreground (a) and background (b) tree learned on the D. melanogaster data set. For a
description of the visualization see figure 4.48.

be one of the reasons of the good performance of all approaches on this data set compared to
the other organisms as presented in the previous section.

We also find some additional properties we did not observe for the H. sapiens data set. Con-
sidering the background tree, we find a strong positive correlation between a T at position
+6 and a G at position +5. This is in accordance with the findings of Carmel et al. (2004)
for H. sapiens. In the background tree we also find a compensatory effect of position −1 if
position +6 does not exhibit the consensus T. The general relevance of positions −1 and +6
in D. melanogaster has also been found by Lo et al. (1994). Although both properties are
not noticeable in the trees learned for H. sapiens, they do not contradict any of the former
results.

In the following, we want to use MSPD as an exploratory tool to find differences between the
donor splice sites of the studied organisms. To this end, we start the MSPD training using
the donor splice sites of one organism as foreground and of another organism as background
data set. Since the splicing machinery, especially the snRNA U6 that is one of the snRNAs
binding to donor sites, is evolutionary conserved (Brow and Guthrie, 1988), the differences
between the donor splice sites of the studied organisms are expected to be less articulate than
the differences between donor splice sites and decoy sites. Hence, we upscale the discriminant
sequence logos in the illustrations by a factor of 4 in the following.

As a first example, we consider the differences between the donor splice sites of D. melanogaster
and H. sapiens. The structures of the learned decision trees are depicted in figure 4.51. In the

154



4.4. Recognition of donor splice sites

-2, A

+4, A

P(A)=0.53 / 0.64

-1, G

P(B)=0.47 / 0.36

P(A)=0.71 / 0.59

P(B)=0.29 / 0.41

P(G)=0.62 / 0.68

P(H)=0.38 / 0.32

(a) D. melanogaster

+3, A

P(A)=0.6 / 0.58

+5, G

P(B)=0.4 / 0.42

P(G)=0.94 / 0.86

P(H)=0.06 / 0.14

(b) H. sapiens

Figure 4.51.: Decision trees learned for the discrimination of splice donor sites of D. melanogaster and
H. sapiens.
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two leaves of the consensus branch of the root of the tree for D. melanogaster, we find that the
consensus G at position −1 occurs more frequently for H. sapiens than for D. melanogaster. In
this branch, in the consensus leaf below “+4,A”, we find the consensus G at position −1 with
a relative frequency of 0.61 for D. melanogaster and a relative frequency of 0.82 for H. sapiens.
In the non-consensus leaf of “+4,A”, we find the consensus with a relative frequency of 0.78
for D. melanogaster and 0.94 for H. sapiens. For the consensus T at position +6, we find the
opposite, as the consensus occurs with relative frequencies of 0.65 and 0.67, respectively, for D.
melanogaster and relative frequencies of 0.41 and 0.41, respectively, for H. sapiens. Since these
differences are present in the consensus branch of “-2,A”, one might speculate that the positive
feedback between the adjacent positions −1 and −2 is more relevant for a functional donor
splice site in H. sapiens than in D. melanogaster, whereas dependencies between position −2
on the exon side and position +6 at the intron side are more decisive in D. melanogaster than
in H. sapiens.

We observe a similar pattern in the tree for H. sapiens, where the presence of a G at position
+5, represented by the consensus leaf of the inner node “+5,G”, is more closely linked to the
occurrence of a T at position +6 for D. melanogaster than for H. sapiens. In the consensus
leaf of “+5,G”, we find the consensus T at position +6 with a relative frequency of 0.82 for
D. melanogaster and a relative frequency of 0.55 for H. sapiens, while in the non-consensus
leaf, we find relative frequencies of 0.49 and 0.28, respectively. Combining these two results,
we could also speculate that position +6 is generally more relevant in D. melanogaster and
that this is also reflected by stronger relations to positions +5 as well as −2.

We examine the differences between the donor splice sites of A. thaliana and C. elegans as an-
other example. The resulting decision tree structures together with the discriminant sequence
logos are presented in figure 4.52. The most prominent difference is already perceivable from
the roots of the foreground and background tree. In the root of the foreground tree, we find
the consensus G at position +5 more prevalently in the donor splice sites of C. elegans than
in those of A. thaliana resulting in relative frequencies of 0.76 and 0.51, respectively.

In the root of the background tree, we observe a more strongly conserved G at position −1 for
A. thaliana than for C. elegans obtaining relative frequencies of 0.78 and 0.59, respectively.
We also discover the latter difference in the foreground tree in the non-consensus leaf of node
“+3, A”, where we find the consensus G at position −1 with a relative frequency of 0.80 for A.
thaliana and a relative frequency of 0.56 for C. elegans. This indicates that a compensation of
a lack of A at position +3 by a G at position −1 occurs more frequently in A. thaliana than
in C. elegans. On the other hand, a compensation by A at position +4 appears with a slight
preference in C. elegans, as we find it with a relative frequency of 0.74 as opposed to 0.58 for
A. thaliana in the non-consensus leaf of “+3, A”.
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+5, G

+3, A

P(G)=0.51 / 0.76

+4, A

P(H)=0.49 / 0.24

P(A)=0.59 / 0.52

P(B)=0.41 / 0.48

P(A)=0.5 / 0.57

P(B)=0.5 / 0.43

(a) A. thaliana

-1, G

+6, T

P(G)=0.78 / 0.59

P(H)=0.22 / 0.41

P(T)=0.48 / 0.54

P(V)=0.52 / 0.46

(b) C. elegans

Figure 4.52.: Decision trees learned for the discrimination of splice donor sites of A. thaliana and C.
elegans.
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4.4.6. Conclusions

In this section, we propose maximum supervised posterior decomposition (MSPD), which
learns structure and parameters of decision tree models by the discriminative MSP principle.
We apply MSPD to the problem of predicting canonical and non-canonical donor splice sites.
We find that the resulting classifiers yield an improved classification performance compared to
popular models for the prediction of donor splice sites, namely the WAM model, PVLMMs,
the original MDD, discriminatively learned iMMs, and the MEM model. However, the clas-
sification performance of all approaches studied is considerably inferior to that achieved by
Sonnenburg et al. (2007) on sequences of length 141 bp. Hence, it might be worthwhile to
enclose MSPD decision trees into a model that can effectively be learned for sequences of this
length, e.g. a Markov model learned by the MSP principle.

Scrutinizing some of the decision trees learned, we confirm known properties of donor splice
sites like a compensatory effect between exon and intron side of donor splice sites, especially
between positions +5 and −1, or general positive correlations between positions +4, +6, and
+5. However, we also find interesting new properties. For instance, we observe that position
+5 acts as a “blocker” on the neighboring positions +4 and +6, i.e. if the consensus at +5
is lacking, these position become considerably less relevant. Surprisingly, the differentiation
between canonical and non-canonical sites appears to be almost irrelevant in our analyses.
Using MSPD as an exploratory tool for discovering variations between different organisms, we
find notable differences in the relevance of the consensus Gs at positions +5 and −1, and in
the strength of compensatory effects between intron and exon side.
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4.5. Prediction of microRNA targets

MicroRNAs (miRNAs) are short (∼ 22 nt) non-coding RNAs that bind to partially comple-
mentary sites on mRNA target sequences and induce cleavage of the miRNA-mRNA duplex or
repress translation of the bound mRNA (Brennecke et al., 2005; Fu et al., 2007; Ghosh et al.,
2007). Cleavage or repression is mediated by the RNA-induced silencing complex (RISC)
bound to the miRNA. In plants, miRNAs exhibit an almost perfect complementarity to their
target site (Rhoades et al., 2002; Reinhart et al., 2002), often bind to protein-coding regions
of mRNA, and – due to the high complementarity – often cause degradation of the bound
mRNA (Enright et al., 2003). In contrast, miRNAs in animals require a high complementar-
ity only at the 5’ end of the miRNA, often termed the seed region (Brennecke et al., 2005),
and preferentially bind to the 3’ untranslated region (UTR) of the mRNA. Due to the imper-
fect complementarity, animal miRNAs predominantly repress translation instead of inducing
degradation of the mRNA (Enright et al., 2003).

4.5.1. Background

As one of the first attempts to predict targets of given miRNAs computationally, Rhoades
et al. (2002) consider 16 miRNAs of Arabidopsis thaliana. For each of these miRNAs, they
search for complementary sites in mRNAs with at most 3 mismatches and no gaps allowed. For
14 of the miRNAs, Rhoades et al. (2002) find potential target sites, which are predominantly
located within genes that code for transcription factors involved in development.

Lewis et al. (2003) propose an algorithm for the prediction of targets of vertebrate miRNAs
called TargetScan. TargetScan requires a perfect complementarity between positions 2 and 8
at the 5’-end of the miRNA and a potential target. Such potential target sites are elongated up
to the first mismatch, but allowing for G:U wobble basepairs. Using RNAfold (Hofacker et al.,
1994), the binding between the 3’ portion of the miRNA and the 5’ region on the mRNA next to
the seed region is optimized and the resulting free energy is computed. Predictions are verified
using orthologous UTR sequences from other organisms. Lewis et al. (2005) propose a refined
version called TargetScanS, which demands a shorter region of the target to be complementary
to nucleotides 2 − 7 of the miRNA. In turn, it either requires position 8 to match as well –
resulting in the original seed region of TargetScan – or an A directly downstream of the seed
region, which may bind to the prevalent nucleotide U at position 1 of miRNAs.

In contrast to TargetScan, miRanda (Enright et al., 2003) does not require perfect complemen-
tarity at the seed region. Instead, it uses an algorithm similar to Smith-Waterman sequence
alignment for the detection of potential target sites with similarity scores of +5 for G:C and
A:U basepairs, +2 for G:U wobble basepairs, and −3 for mismatches. The alignment scores
for the first 11 positions of the alignment are weighted by a factor of 2 to account for the im-
portance of the seed region. Additional rules for potential target sites are that no mismatches
occur at positions 2 to 4, less than 5 mismatches occur between positions 3 and 12, at least
one mismatch is present from position 9 to L − 9, where L is the length of the alignment
of miRNA and target site, and less than 2 mismatches are observed for the last 5 positions.
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Potential target sites fulfilling these requirements are additionally filtered for a minimum sim-
ilarity score of the alignment and for minimum free energy as computed by the Vienna RNA
folding package (Wuchty et al., 1998).

Stark et al. (2003) align the first 8 positions of the miRNA to potential target sites using
HMMer (Eddy, 1996) with a scoring matrix that allows for G:U mismatches. The resulting
hits are elongated such that potential targets are 5 bp longer than the corresponding miRNA
and the free energy of the miRNA-mRNA duplex is computed using Mfold (Mathews et al.,
1999). After a normalization step that facilitates the comparison of the free energies for
different lengths of miRNAs, potential targets are ranked according to the normalized free
energy.

PicTar (Krek et al., 2005) searches for perfectly complementary seed regions of 7 nt starting
from position 1 or 2 of the miRNA. Mismatches in the seed region are allowed, if these do not
increase the free energy of binding. Additionally, Krek et al. (2005) apply a filter with respect
to the free energy of the complete miRNA-mRNA duplex, where the applied threshold is more
stringent for targets with imperfect basepairing in the seed region. The resulting target sites
of miRNAs are then combined in an HMM-like approach to predict coordinated target sites
of a fixed set of miRNAs and, consequently, target genes that are putatively regulated by this
set of miRNAs.

Rehmsmeier et al. (2004) propose RNAhybrid, which extends RNA secondary structure pre-
diction to two RNA sequences, namely the miRNA and the target site. In contrast to other
approaches for RNA secondary structure prediction, RNAhybrid forbids intramolecular inter-
actions. RNAhybrid computes the minimum free energies of putative miRNA-mRNA duplexes,
normalizes the computed energies to the length of the considered sequences, and models these
by an extreme value distribution to assess the significance of achieved energies. The proba-
bility of multiple potential target sites within a common target UTR is modeled by a Poisson
distribution to compute p- and E-values. Finally, putative targets are selected with respect
to the computed E-values.

Similar to PicTar, DIANA-microT (Maragkakis et al., 2009) prefers perfect complementarity
of 7 to 9 nt starting from position 1 or 2 of the miRNA. However, if the considered target site
shows good complementarity to the 3’ end of the miRNA, the length of this seed region may be
reduced to 6 nt and single G:U wobble basepairs are allowed. DIANA-microT uses orthologous
UTRs from up to 27 organisms for assessing the conservation of target sites. Finally, the score
of a potential UTR target sequence is computed as the average of all potential target sites,
which are weighted by the strength of binding and level of conservation relative to a set of
“mock” miRNA sequences.

Selbach et al. (2008) measure the effect of miRNA levels on protein concentrations in wet lab
experiments and find that single species of miRNA may repress the translation of hundreds
of different proteins. However, often the level of down-regulation is fairly mild and Selbach
et al. (2008) seldom observe more than 4-fold differences in protein concentration. Selbach
et al. (2008) use these results to assess the predictions of target genes of a number of ap-
proaches, including TargetScanS, PicTar, miRanda, and DIANA-microT. They find that only
for TargetScanS, PicTar, and DIANA-microT more than 50% of the predicted target UTRs are
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supported by experimental evidence. In another study, Boross et al. (2009) study the overlap
between the predictions of four different sources of predictions, namely the data base miRBase
(Griffiths-Jones et al., 2006, 2008), PITA (Kertesz et al., 2007), PicTar, and TargetScan. They
observe that less than 1% of the union of these predictions is supported by all four sources,
and only 12.4% are predicted by at least two. These two studies reveal that the prediction
accuracy of current approaches is still far from perfect. One reason for this shortcoming is
that the number of experimentally verified target sites is still very low – for instance, less than
100 experimentally verified targets are reported in TarBase (Papadopoulos et al., 2009).

In contrast to previous approaches, we propose an approach for predicting target sites of
given miRNAs that is capable of learning rules of miRNA-target site binding from data sets
comprising pairs of target sites and associated miRNAs. This approach employs an extension of
profile hidden Markov models (HMMs) (Krogh et al., 1994), which we call conditional profile
HMM (CoProHMM), and learns the parameters of the CoProHMM by the discriminative
MSP principle (see section 3.2.2, p. 13). As a proof of concept, we learn the CoProHMMs on
the predictions of existing approaches. Due to the limited number of experimentally verified
target sites, we augment a training data set of verified target sites by predictions of existing
approaches, and we use the CoProHMM learned from these data for predicting target sites.

4.5.2. Model

CoProHMM consists of three types of states, namely match states, insert states, and delete
states. We model the binding of miRNA and mRNA in the match states of the CoProHMM.
For each nucleotide in the miRNA, we define one match state, which emits the nucleotide in
the mRNA with a probability that depends on the observation in the miRNA. If an mRNA
and the associated miRNA are perfectly complementary, we anticipate that only match states
are visited for the emission of the complete sequence of the mRNA. Otherwise, delete states
allow for skipping nucleotides of the miRNA and, hence, the insertion of gaps into the mRNA
sequence. On the other hand, insert states allow for including additional nucleotides into the
sequence of the mRNA corresponding to gaps in the miRNA. We expect that insert and delete
states are visited, if this improves the alignment of mRNA and miRNA in subsequent match
states.

I1I0 IKI2 IK+1

MK+1M1M0 MKM2

DK+1D2 DKD0 D1

Figure 4.53.: Plan9 architecture of the proposed CoProHMMs. Circles represent silent delete states
that do not emit symbols of the target site, diamonds represent insert states that emit
symbols of the target site regardless of the sequence of the miRNA, and rectangles rep-
resent match states that emit symbols of the target site with probabilities conditional on
symbols of the miRNA. Each admissible path starts at D0 and ends at DK+1. States
with dashed borders are not visited in admissible paths.
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We use a plan9 architecture (Krogh et al., 1994) for the proposed CoProHMMs, which is
illustrated in figure 4.53. We represent silent delete states Dk by circles, insert states Ik by
diamonds, and match statesMk by rectangles. Each insert state emits one symbol of a putative
target site following a probability distribution that does not depend on the given miRNA but
may be different for different insert states Ik. In contrast, the emission probabilities of the
match states are defined as conditional probability distributions, where in match state Mk the
probability of the symbol observed in the putative target site depends on the symbol observed
in the miRNA at position k. In figure 4.53, edges represent transition probabilities that are
not fixed to 0. From each node of column k, we can reach node Ik in the same column, and
nodes Mk+1 and Dk+1 in the next column. Each admissible path in the CoProHMM starts at
D0 and ends at DK+1. Hence, the states M0, IK+1, and MK+1 are never visited in admissible
paths, and are only included to simplify recursive definitions in the following. Here, we use
K = 22, since this is the length of a typical miRNA.

We define the emission probabilities at the insert and match states, and the transition proba-
bilities in terms of real-valued parameters β to allow for an unconstrained optimization of the
supervised posterior. We define the emission probability PIk

(a|βIk
) of symbol a in a putative

target site for insert state Ik given parameters βIk
as

PIk
(a|βIk

) =
exp(βa|Ik

)∑
ã∈Σ exp(βã|Ik

)
, (4.87)

where βIk
= (βA|Ik

, βC|Ik
, βG|Ik

, βU |Ik
).

In analogy, we define the conditional emission probability PMk
(a|r,βMk

) of symbol a in a
putative target site for match state Mk given the sequence of the miRNA r and parameters
βMk

as

PMk
(a|r,βMk

) = PMk
(a|rk,βMk

) (4.88)

=
exp(βa|rk,Mk

)∑
ã∈Σ exp(βã|rk,Mk

)
, (4.89)

where rk denotes the k-th symbol of the miRNA r and βMk
= (βA|A,Mk

, βC|A,Mk
, . . . , βU |U,Mk

, ).

According to the plan9 architecture, we define the transition probability PT (V |Sk,βT,Sk
) of

going to node V if we are currently at node Sk given parameters βT,Sk
as

PT (V |Sk,βT,Sk
) =


exp(βV |Sk

)P
Ṽ ∈{Ik,Mk+1,Dk+1}

exp(βṼ |Sk
) if V ∈ {Ik,Mk+1, Dk+1}

0 otherwise
, (4.90)

where βT,Sk
= (βIk|Sk

, βMk+1|Sk
, βDk+1|Sk

).

Generative learning of the parameters of an HMM is typically accomplished by the Baum-
Welch algorithm, which is a special case of expectation maximization (EM). One step of this
algorithm is the computation of forward variables FSk

(`,x|r,β), which are defined as the
probability of the first l symbols of the sequence x and visiting node Sk in time interval
s(`,x|r), given parameters β and, in case of CoProHMMs, the sequence r of the miRNA,
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i.e.

FSk
(`,x|r,β) = P (x1, . . . , x`, Sk ∈ s(`,x|r)|r,β) . (4.91)

A node Sk is visited in time interval s(`,x|r) if it is contained in a path from D0 to DK+1,
and the symbols x1 to x` have been emitted either by predecessors of Sk in the path or Sk

itself, whereas x`+1 is emitted by a successor of Sk in this path.

We use these forward variables for a recursive definition of the likelihood P (x|target , r,βtarget)
of sequence x given the class of target sequences target , the sequence of the miRNA r and
parameters βtarget . We define the likelihood as

P (x|target , r,βtarget) = FDK+1
(L,x|rβtarget), (4.92)

which, following the definition of the forward variables, amounts to

P (x|target , r,βtarget) = P (x1, . . . , xL, DK+1 ∈ s(L,x|r)|r,βtarget) . (4.93)

Using this definition, the likelihood P (x|target , r,βtarget) is not necessarily normalized over
all possible sequences x ∈ ΣL of given length L. However, we may extend the sequence of
each putative target site by a sentinel symbol #, which is emitted by DK+1 with probability
1 and with probability 0 by all other states, and achieve a normalization over all sequences
x ∈ ΣL#. Since the length of putative target sites varies, we consider this laxity of minor
influence.

For determining the forward variables of all states recursively, we must assure that the forward
variables are evaluated according to the topological order of states. This can be achieved by
considering states in the order of the columns of the plan9 architecture and, within column k,
by computing the forward variables of delete and match states before computing the forward
variable of the insert state. In analogy to original profile HMMs, we recursively define the
forward variables of insert state Ik as

FIk
(`,x|r,β) =

[
FIk

(`− 1,x|r,β) PT (Ik|Ik,βT,Ik
)+

FDk
(`− 1,x|r,β) PT (Ik|Dk,βT,Dk

)+

FMk
(`− 1,x|r,β) PT (Ik|Mk,βT,Mk

)
]
PIk

(x`|βIk
). (4.94)

Since symbol x` is emitted by state Ik, we consider the forward variables FSk
(`− 1,x|r,β) of

all direct predecessors Sk of Ik in the plan9 architecture for position `−1, which are multiplied
by the transition probability from Sk to Ik. The sum of these values is equal to the probability
of reaching Ik from any of its direct predecessors after the emission of symbols x1 to x`−1,
which is finally multiplied by the emission probability of x` at state Ik.

Similarly, we define the forward variables of match state Mk using its predecessors from the
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previous column of the plan9 architecture (cf. figure 4.53) as

FMk
(`,x|r,β) =

[
FIk−1

(`− 1,x|r,β) PT (Mk|Ik−1,βT,Ik−1
)+

FDk−1
(`− 1,x|r,β) PT (Mk|Dk−1,βT,Dk−1

)+

FMk−1
(`− 1,x|r,β) PT (Mk|Mk−1,βT,Mk−1

)
]
PMk

(x`|r,βMk
). (4.95)

Finally, we define the forward variables of delete state Dk as

FDk
(`,x|r,β) = FIk−1

(`,x|r,β) PT (Dk|Ik−1,βT,Ik−1
)+

FDk−1
(`,x|r,β) PT (Dk|Dk−1,βT,Dk−1

)+

FMk−1
(`,x|r,β) PT (Dk|Mk−1,βT,Mk−1

), (4.96)

where the position ` does not increase, since the delete state does not emit a symbol of x.

We initialize the forward variables as follows: We can observe D0 only before the emission of
the first symbol. Hence, we define

FD0(`,x|r,β) =

{
1 if ` = 0
0 otherwise.

. (4.97)

We cannot reach M0 in any admissible path and, consequently,

∀` : FM0(`,x|r,β) = 0. (4.98)

Finally, the forward variables of all emitting states for ` = 0 are defined as

∀Sk ∈ {I1,M1, I2, . . . , IK+1,MK+1} : FSk
(0,x|r,β) = 0. (4.99)

In addition to the CoProHMM, which models the class of target sites, we use a homogeneous
Markov model of order 1 (see section 3.3.1, p. 22) with parameters βhMM,bg to model the class
of background, i.e. non-target, sequences:

P (x|bg , r,βc) = PhMM(1)(x|βhMM,bg). (4.100)

We define the class posterior using the class-conditional likelihoods P (x|target , r,βtarget) of
equation (4.92) and P (x|bg , r,βc) as

P (c |x, r,β) =
P (c|β)P (x|c, r,βc)∑
c̃ P (c̃|β)P (x|c̃, r,βc̃)

, (4.101)

where P (c|β) denotes the a-priori probability of class c. We parameterize the a-priori class
probabilities as

P (c|β) =
exp(βc)∑
c̃ exp(βc̃)

, (4.102)

where βc ∈ R.
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As an additional requisite of the MSP principle, we define a prior on the parameters β. For
the homogeneous Markov model of class bg , we use a transformed product-Dirichlet prior as
defined in section 3.4.2 (p. 30) with equivalent sample size (ESS) αbg and expected length
LE = 22. We define another product-Dirichlet prior for the parameters of the emission and
transition probabilities, which is – in analogy to Markov models of order 0 – the product of
independent transformed Dirichlet priors for each set of transition parameters βT,Sk

, and each
set of emission parameters βIk

and βMk|b = (βA|b,Mk
, . . . , βU |b,MK

), b ∈ {A,C,G,U} living on
a common simplex. For each state Sk, we define a local ESS αtarget ,Sk

depending on the ESS
αtarget of class target . We set the local ESS of D0 and DK+1 to αtarget ,D0 = αtarget ,DK+1

=
αtarget , since these two nodes are at the beginning and the end of every admissible path in the
CoProHMM. We set the local ESS of the remaining delete states to αtarget ,Dk

= αtarget

10 , we set
the local ESS of the insert states to αtarget ,Ik

= αtarget

10 , and we set the local ESS of the main
states to αtarget ,Mk

= 8·αtarget

10 , which represents the a-priori assumption that the main states
should be used more frequently than delete and insert states.

Using these local ESSs, we further define the hyper-parameters of the transformed Dirichlet
priors for the transition parameters βV |Sk

as αDk+1|Sk
=

αtarget,Sk
10 , αIk+1|Sk

=
αtarget,Sk

10 , and

αMk+1|Sk
=

8·αtarget,Sk
10 . According to the assumption of uniform pseudo data, we set the

hyper-parameters of the emission parameters βa|Ik
of the insert states to αa|Ik

=
αtarget,Ik

4 ,
a ∈ {A,C,G,U}, and we set the hyper-parameters of the emission parameters βa|b,Mk

of the

match states to αa|b,Mk
=

αMk+1|Sk

16 , a, b ∈ {A,C,G,U}.

Finally, we define a transformed Beta prior on the parameters βc of the a-priori class prob-
abilities using hyper-parameters αbg and αtarget . In the following experiments, we use αbg =
αtarget = 4.

4.5.3. Data

We extract all human target sites and associated miRNAs predicted by TargetScan, RNAhy-
brid, and miRanda from miRNAMap8 (Hsu et al., 2008). Additionally, we consider predicted
target sites and associated miRNAs of DIANA-microT (Maragkakis et al., 2009), which are
kindly provided by Manolis Maragkakis (personal communication). From each of these four
data sets, we randomly sample 200, 000 target sites and associated miRNAs as training data
sets for the subsequent study. We refer to these data sets as TargetScan data set, RNAhybrid
data set, miRanda data set, and DIANA-microT data set.

From miRecords9 v. 1 (Xiao et al., 2009), we additionally obtain predicted and verified hu-
man target sites and associated miRNAs. In this case, we only consider target sites with
experimental evidence, i.e. predicted target sites in UTRs of genes that are validated targets
of the corresponding miRNA, and target sites that are directly validated, e.g. by mutation
experiments. This data set contains 667 indirectly verified target site and 12 directly verified
target sites. We refer to this data set as miRecords data set.

8ftp://mirnamap.mbc.nctu.edu.tw/miRNAMap2/miRNA Targets/Homo sapiens/miRNA targets hsa.txt.

tar.gz
9http://mirecords.biolead.org/download data.php?v=1
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Additionally, we create a data set joining the data from the different sources. To this end,
we randomly select 60, 000 target sites from the TargetScan data set, 20, 000 target sites from
the RNAhybrid data set, 20, 000 target sites from the miRanda data sets, 60, 000 target sites
of the DIANA-microT data set, and all target sites from the miRecords data set. We select
a greater number of predictions for TargetScan and DIANA-microT than for RNAhybrid and
miRanda, since these two approaches achieved the best accuracy in the study by Selbach et al.
(2008). We refer to this data set as joint data set.

We generate a background data set, i.e. a data set of non-target sites, by drawing sub-
sequences of length 30 from 3’-UTRs of human genes according to NCBI Genbank10, human
genome build 37.1. We choose UTRs to avoid a potential bias in base composition or other
properties of DNA, which could perturb the subsequent prediction of target sites. We assign
each of these sub-sequences a miRNA randomly selected from the mature human miRNAs
listed at miRBase11 (Griffiths-Jones et al., 2006, 2008). The resulting background data set
comprises 100, 000 non-target sites and associated miRNAs.

In order to represent our confidence in the predicted and verified target sites, we assign a
weight to each pair of target site and miRNA. For the predictions of TargetScan, RNAhybrid,
miRanda, and DIANA-microT, and for the background data set, we use weights of 1. For the
miRecords data set, we use a weight of 50 for indirectly validated target sites, and a weight
of 500 for directly validated target sites.

For learning the CoProHMMs by the discriminative MSP principle, we use the sequences of
the miRNAs in 5’-3’ orientation and the sequences of the target and non-target sites in 3’-
5’ orientation, since the employed CoProHMMs consider at most 22 nt of the miRNA and
additional symbols in the miRNA at the 3’ end are omitted.

4.5.4. Results & Discussion

We use a graphical representation to illustrate the CoProHMMs learned by the discriminative
MSP principle. The representation of one column of a CoProHMM is depicted in figure 4.54.
Like in figure 4.53, rectangles represent match states, diamonds represent insert states, and
circles represent delete states. The thickness of outgoing edges represents the transition prob-
abilities to the successors of a node, where thicker edges correspond to a higher transition
probability.

We illustrate the emission probabilities of insert states by a row of colored boxes. The color of
a box corresponds to the nucleotides, the saturation of each box represents the emission prob-
ability, and the brightness of the colors in a row represents the deviation of the corresponding
probability distribution from a uniform distribution over the four nucleotides. In analogy, the
conditional emission probabilities of match states are represented by a matrix comprising such
colored rows, where each row corresponds to the probability distribution conditional on one
of the nucleotides observed in the miRNA. From the match state in figure 4.54, we observe
bright colors for complementary nucleotides in the target site and the miRNA, e.g. U in the

10http://www.ncbi.nlm.nih.gov
11http://www.mirbase.org
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target site given an A in the miRNA is represented by the bright red box in the upper right
of the matrix.

Figure 4.54.: One column of the graphical representation of a CoProHMM. The darkness of the back-
ground of nodes represents how frequently nodes are visited according to the forward
variables. The thickness of edges represents transition probabilities. The colored row vec-
tors within the diamonds representing insert states reflect emission probabilities: green
corresponds to A, blue corresponds to C, orange corresponds to G, and red corresponds to
U. The saturation of these colors represents the corresponding emission probabilities and
the brightness represents the deviation from a uniform distribution. In colored matrices
within the rectangles representing match states, each row corresponds to one nucleotide
observed in the miRNA in the order A, C, G, U and the colors within this row represent
the conditional emission probabilities given the nucleotide in the miRNA in analogy to
the emission probabilities of the insert states.

We also compute the probability of visiting a state from the forward variables of all input
sequences. These probabilities are visualized by the darkness of the background of each node.
The darker the background of a node the higher the probability of visiting this node. In nodes
representing delete states, this background fills the complete circle, while for insert and match
states the background is partly covered by the colored row or matrix representing emission
probabilities. In figure 4.54, the match state is visited with the highest probability, the insert
state is visited with a fairly low probability, and the delete state is visited with a probability
of almost 0.

We present the graphical representation of the CoProHMMs learned on the miRanda data set,
the TargetScan data set, the miRecords data set, and the joint data set in figure 4.55. We learn
CoProHMMs on the predictions of miRanda and TargetScan to investigate if CoProHMMs
can adapt to the characteristics of these approaches. Considering the CoProHMM learned on
the miRanda data set, which is depicted in figure 4.55(a), we find that from position 1 to 7 the
corresponding match states are used with the highest probability, whereas insert and delete
states obtain a low probability. Starting from position 8, these probabilities are gradually
shifted to the insert and delete states, and between positions 13 and 19 the three types of
states are visited with almost identical probabilities. From position 20 to 22, the probability
of the match states gradually decreases and is shifted predominantly to the delete states. One
reason for the latter observation might be that some of the targets predicted by miRanda are
shorter than 22 nt, which necessitates visiting delete states to reach the final state DK+1.

Turning to the emission probabilities of the insert states, we observe that the corresponding
probability distributions are close to a uniform distribution at all positions as indicated by the
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reduced brightness of the colored boxes in the graphical representation. From the conditional
emission probabilities of the match states, we observe a general tendency to complementary
base pairings between the target site and the miRNA. This tendency is especially pronounced
for the match states at position 2 to 8 in the seed region, but can also be observed for the
match state at position 1 and those at position 9 to 19 of the miRNA, whereas it declines over
the remaining 3 positions. In the graphical representation, we also detect a slight preference
for G:U wobble basepairs compared to the remaining non-complementary basepairs, as the
red box in the last column of the third row and the orange box in the third column of the last
row exhibit a slightly increased saturation.

If we relate these finding to the miRanda approach, we can attribute the majority of observa-
tions to characteristics built into miRanda: the preference for complementary basepairs across
almost all match states and the slight preference for G:U wobble basepairs are most likely a
result of the Smith-Waterman like alignment employed by miRanda. Additionally, miRanda
assigns a weight of 2 to the first 11 positions of the alignment, which is also reflected by the
increased probabilities of visiting match states in the seed region, although this preference
already begins to decline at position 8 of the learned CoProHMM.

As a second example, we consider the CoProHMM learned on the TargetScan data set in
figure 4.55(b). We observe a similar pattern of preferences regarding the probability of visiting
states as for the miRanda data set. The main differences are an increased probability of visiting
the insert and delete states up to position 1, a more abrupt shift of probability from the main
states to predominantly the insert states starting from position 8, and an exceptionally high
probability of visiting the insert state at position 22, most likely cycling several times in this
state as indicated by the thickness of the recursive edge. The latter could again be explained
by the length of the target sites predicted by TargetScan and by the preferential use of insert
states at columns 8 to 18.

Notable differences between the CoProHMM learned on the TargetScan data set and that
learned on the miRanda data set can be observed for the conditional emission probabilities at
the match states. At position 2 to 8 if figure 4.55(b), we find complementary basepairs almost
exclusively, while a slight preference for complementary basepairs is present at the bordering
positions 1 and 9. In contrast, the remaining positions exhibit only very slight preferences for
specific basepairs.

Again, these findings are closely related to the main characteristics built into TargetScan.
The perfect complementarity at position 2 to 8 of the CoProHMM reflects the according
requirement of TargetScan. We also observe a reduced preference for complementary basepairs
at positions 1 and 9, which most likely can be attributed to the fact that initial perfect matches
in the seed region may be elongated to either side in TargetScan. However, we do not observe
a preference for G:U wobble basepairs at these two positions, although these are allowed in
TargetScan.

We also learn CoProHMMs on the RNAhybrid and DIANA-microT data sets (not shown).
For the RNAhybrid data set, we observe similar characteristics as for the miRanda data set.
The major exception exist for the insert state at position 22 of the CoProHMM, which is more
similar to that for the TargetScan data set, and for the conditional probability distributions
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of the match states in the seed region, which exhibit a slightly reduced preference for comple-
mentary basepairs. The CoProHMM learned on the DIANA-microT data set is similar to that
for the TargetScan data set. However, in this case the insert and delete states up to position
1 are visited with a probability of almost 0, and the preference for complementary basepairs
already begins to decline at position 8, which is most likely an effect of 6 nt seed, which are
also allowed in DIANA-microT.

In figure 4.55(c), we present the CoProHMM learned on the miRecords data set, which com-
prises predicted target sites from the UTRs of verified target genes as well as directly verified
target sites. On this data set, we observe similar general tendencies as for the miRanda and
TargetScan data sets. These are high probabilities for the match states in the seed region, a
shift of probabilities to insert and delete states outside the seed region, and a strong preference
for complementary basepairs in the match states of the seed region. However, we also observe
variations of these rules e.g. at the conditional emission probabilities of the main states at
position 3 and 5, and a rather erratic preference for specific nucleotides outside the seed re-
gion. These variations are likely due to the limited size of the miRecords data set, which
comprises 679 target sites and associated miRNAs, resulting in over-fitting effects especially
for the conditional probability distributions of the match states.

Finally, we consider the CoProHMM learned on the joint data set, which is presented in
figure 4.55(d). As expected, this CoProHMM combines characteristics of the considered ap-
proaches. The seed region exhibits a high similarity to that of the CoProHMM learned on the
TargetScan data set, although the preference for complementary basepairs is less stringent.
In contrast, the shift of probabilities from match states to insert and delete states appears to
be less abrupt than for the TargetScan data set and more similar to that of the CoProHMM
learned on the miRanda data set. Additionally, the match states outside the seed region ex-
hibit a preference for complementary basepairs which is stronger than can be observed for the
TargetScan data set, but less articulate than for the miRanda data set.

We use the classifier comprising this CoProHMM and the corresponding homogeneous Markov
model in the subsequent studies, when we predict putative target sites of given miRNAs.
In the following, we consider three human miRNAs, namely hsa-miR23a, hsa-miR145, and
hsa-miR196a, with the largest number of experimentally verified target sites according to
miRecords. These miRNAs and all associated target sites are excluded from the joint data set
to avoid an overlap of training and test data. Given each of these miRNAs, we compute the log
class posterior ratios of the class posterior given the CoProHMM and the class posterior given
the homogeneous Markov model for each overlapping sub-sequence of length 30 of 3’-UTRs
of human genes. In the following, we illustrate the results for the UTRs of three genes, each
containing of verified target sites of one of the miRNAs considered.

Figure 4.56(a) depicts the profile of log class posterior ratios for a 500 nt fragment of the
UTR of gene NM 024901.1 given the miRNA hsa-miR23a. The position of the experimentally
verified target site is marked by a black circle. We find that the sub-sequence at this position
clearly achieves the largest log class posterior ratio of all considered positions. This indicates
that the rules of miRNA-target site interaction inferred by CoProHMMs from the data are
also suited to predict target sites of miRNAs that have not been part of the training data.
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Figure 4.56.: Profile of log class posterior ratios of the classifier learned on the joint data set using a
CoProHMM and a homogeneous Markov model of order 1 for three UTRs given the miR-
NAs hsa-miR23a, hsa-miR145, and hsa-miR196a, respectively. The annotated positions
of experimentally verified target sites are indicated by black circles.

The picture for the UTR of the human gene NM 02415.2, which is of length 291 bp, given
the miRNA hsa-miR145 in figure 4.56(b) is similar. Again, we observe the greatest log class
posterior ratio for the sub-sequence at the position of the experimentally verified target site.
However, in this case the log class posterior ratio is only marginally greater than that of
another sub-sequence approximately at position 2920. Considering a fragment of length 500
nt of the 3’-UTR of NM 022658 given the miRNA hsa-miR196a in figure 4.56(c), we find two
additional distinct peaks at positions 1779 and 1919 of the log class posterior ratio besides
that of the experimentally verified target site, which reach comparable values of the log class
posterior ratio.
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To investigate if these additional predictions are putative target sites of hsa-miR196a, we
compute the alignments of these three sequences and the sequence of hsa-miR196a using
the Viterbi algorithm for the CoProHMM. The resulting three alignments are presented in
figure 4.57, where the first two alignments correspond to the two additionally predicted target
sites, and the third alignment comprises the experimentally verified target site. We find
that the first two alignments exhibit a perfect complementarity at the first 8 positions of the
alignment. In both cases, we observe a considerable number of gaps at the 3’ end of the miRNA,
which are most likely due to the high probability of the self transition of the last insert state
of the CoProHMM (cf. figure 4.55(d)). According to the annotation of miRecords, these two
putative target sites are also predicted by miRanda and TargetScan. In the third alignment, 10
perfectly complementary positions are intercepted by two G:U wobble basepairs. In turn, the
third alignment also exhibits multiple complementary basepairs outside the seed region, while
only individual complementary basepairs can be observed for the regions outside the putative
seed in the other two alignments. This alignment is in agreement with the annotation of the
verified target sites in miRecords, and is also predicted by miRanda and RNAhybrid.

utr=NM_022658 end=1779 score=7.41
miRNA: 5’ UAGGUAGUUUCAUGUUGUUGGG------------ 3’

|||||||| | | :
target: 3’ AUCCAUCAUA-CAAUUUCU---AAAUAAUAAUAA 5’

utr=NM_022658 end=1919 score=7.98
miRNA: 5’ UAGGUAGUU-UCAUGUUGUUGGG------- 3’

|||||||| | | :| : ||
target: 3’ AUCCAUCACUAUUUUAUGCGACCUCCAAAG 5’

utr=NM_022658 end=2017 score=8.71
miRNA: 5’ UAGGUAGUUUCAUGUUGUUGGG--------- 3’

||||:|||:||| |||||||||
target: 3’ AUCCGUCAGAGU-CAACAACCCAAAAGAAUC 5’

Figure 4.57.: Alignment of putative target sites in the UTR of NM 022658 to the sequence of the
miRNA hsa-miR196a according to the CoProHMM learned on the joint data set. Ver-
tical lines indicate perfectly complementary basepairs, while colons indicate G:U wobble
basepairs.
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4.5.5. Conclusions

We propose conditional profile HMMs (CoProHMMs), which are an extension of profile HMMs,
for modeling the target sites of given miRNAs. As a proof of concept we learn the parameters
of CoProHMMs on the predictions of several existing algorithms and associated miRNAs,
and we demonstrate that CoProHMMs adapt well to the characteristics of the considered
approaches. This gives indication that CoProHMMs might also be capable of learning general
rules of miRNA-target site interactions from verified target sites if these become available in
sufficient quantities.

Additionally, we learn a CoProHMM on a data set incorporating predicted as well as exper-
imentally verified target sites of given miRNAs. On an independent test data set, we show
that the learned CoProHMM predicts verified target sites of miRNAs that have not been part
of the training data. We scrutinize additionally predicted putative target sites and find that
these might be functional target sites as well.

For the prediction of target genes exhibiting possibly multiple target sites of different miRNAs,
the next step would be to enclose CoProHMMs in another model, e.g. a semi-hidden Markov
model.
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For all experiments presented in this work, we use Jstacs (Grau et al., 2008), an open-source
Java framework for the statistical analysis and classification of biological sequence data. Jstacs
is a joint project of the groups “Pattern Recognition and Bioinformatics” and the “Bioinfor-
matics” at the Institute of Computer Science of Martin Luther University Halle–Wittenberg
and the “Research Group Data Inspection” at the Leibniz Institute of Plant Genetics and
Crop Plant Research in Gatersleben. We created Jstacs with the goal of having ready-to-use
implementations for frequently recurring tasks like reading and representing sequence data or
assessing different classifiers, and providing a standardized foundation for the implementation
of new statistical models or classifiers. Since Jstacs is open-source software, we make these
facilities available to the scientific community. In the following, we give an introduction to the
general structure of Jstacs, and we illustrate the utility of Jstacs for one specific example.

For sequence data, we use a numerical representation of the discrete symbols, which for in-
stance allows for an efficient access to elements of arrays. This numerical representation is
encapsulated in the class Sequence, which also holds the mapping from numerical values to
the original symbols and provides methods for the access to single symbols, the excision of sub-
sequence, or the determination of the reverse complementary sequence. In Jstacs, Sequences
are aggregated in Samples representing data sets, which for instance provide methods for gen-
erating random partitionings of the original Sample required for holdout sampling. Jstacs also
comprises an adaptor to the sequence representation of BioJava (Holland et al., 2008).

Statistical models that are to be learned by discriminative learning principles like MCL or MSP,
must either implement the interface NormalizableScoringFunction or extend the abstract
class AbstractNormalizableScoringFunction. NormalizableScoringFunction extends the
interface ScoringFunction which is intended for more general scoring functions – as opposed
to statistical models – that do not necessarily define a proper probability distribution over the
input sequences. For defining a new statistical model, a user of Jstacs only needs to implement
methods that compute the log likelihood of a sequence given the model and the corresponding
gradient with respect to the parameters, and to compute the value and gradient of the prior.
Additionally, Jstacs requires the specification of a method that returns an XML-representation
of the learned model, which can later be used to restore the model for additional analyses.

Jstacs defines a hierarchy of inheritance for classifiers using different kinds of scoring functions
or statistical models. The abstract class AbstractClassifier constitutes the root of this
hierarchy and defines standardized methods for the training of a classifier, the classification
of sequences, or the evaluation of several performance measures on a given test data set. The
latter methods are implemented in the abstract sub-class ScoreClassifier, which comprises
one ScoringFunction for each class considered. A specific implementation of a classifier
learned by the discriminative MSP principle is available as the class MSPClassifier defined for

174



NormalizableScoringFunctions. The user may choose from different numerical optimization
techniques including conjugate gradients and second order quasi-Newton methods supplied by
Jstacs for learning the parameters of the a-priori class probabilities of this classifier and the
parameters of the enclosed NormalizableScoringFunctions,

The assessment of different classifiers in cross validation or holdout experiments in Jstacs is
established by the abstract class ClassifierAssessment. Standardized extensions of this
abstract class for cross validation (KFoldCrossValidation) and stratified holdout sampling
(RepeatedHoldOutExperiment) are defined on AbstractClassifiers, which makes different
classifiers readily comparable. Additionally, Jstacs provides a generic implementation of all
performance measures considered in this work in the class ScoreBasedPerformanceMeasure-
Definitions, which is also employed by the class ScoreClassifier.

Since we designed Jstacs strictly object oriented and due to the different levels of inheritance,
algorithms like the numerical optimization techniques or classifiers like the MSPClassifier

are implemented on a high level of abstraction. This facilitates a great variability of the tasks
that can be accomplished using Jstacs and allows for a modular design of novel approaches.
For instance, we implement a ScoringFunction in Jstacs that represents Bayesian networks
that are to be learned by one of the discriminative learning principles. Since inhomogeneous
Markov models are a special case of Bayesian networks, this implementation can be used
for all applications presented in this work that require inhomogeneous Markov models. By
this means, we can use the identical implementation of inhomogeneous Markov models for
the prediction of transcription factor binding sites, for the PWM model that represents the
motif for de-novo motif discovery, for the elementary classifier using an inhomogeneous Markov
model of order 1 for the prediction of nucleosome positioning, and for the PWM models at
the leaves of the decision tree model.

Similarly, we define an abstract class representing parameter priors, which is inherited by
the implementations of Gaussian, Laplace, and transformed product-Dirichlet priors. Since
the MSPClassifier is defined on the abstract prior, we can easily plug in Gaussian, Laplace,
and Dirichlet priors. As mentioned above, the implementation of stratified holdout sampling
is defined on an abstract superclass of the MSPClassifier, which is also the superclass of
classifiers that are to be learned generatively.

With the classes described in the previous two paragraphs, we have all methods at hand
that we need for the first study presented in this work, namely the evaluation of classifiers
learned by the MAP and MSP principle for the prediction of transcription factor binding
sites. The source code of the main-method that accomplishes the experimental part of the
complete study is given in appendix A.5 and illustrates how such a study can be conducted
with marginal effort using Jstacs. In a similar manner, the models for all applications studied
in this work are implemented using Jstacs. Other ScoringFunctions implemented for this
work include the ZOOPS and MuMo models, and the position distributions employed for
the de-novo discovery of cis-regulatory modules in section 4.2, the decision tree model used in
section 4.4, the conditional profile HMM of section 4.5, and the Gaussian and gamma densities
used in section 4.3. Since Jstacs is open-source software under GPL1, all classes used in this
work are either already publicly available or will be made public in a future release of Jstacs.

1GNU General Public License

175



6. Conclusions

In this work, we investigate the utility of the discriminative maximum supervised posterior
(MSP) principle for statistical sequence analysis and classification in bioinformatics. While
generative principles for learning the parameters of statistical models aim at an accurate
representation of the distribution of the data, discriminative learning principles are tailored
to an accurate classification of the data. The MSP principle optimizes the parameters of
employed statistical models with respect to the supervised posterior, which is the product of
the conditional likelihood and a prior on the parameters of the models. While conditional
likelihood is a measure for the accuracy of classification on the training data, the prior helps
to avoid over-fitting and allows to incorporate a-priori assumptions aside the training data.
Hence, the MSP principle is a discriminative analogon of the generative maximum a-posteriori
(MAP) principle, which amounts to the product of likelihood and prior.

We apply the MSP principle to the prediction of sequence signals that are related to biological
processes influencing the product of a gene at different stages of gene expression. Applications
considered in this work are the prediction of transcription factor binding sites, the discrimina-
tion of nucleosome-bound sequences and linkers, the prediction of donor splice sites, and the
prediction of miRNA target sites. In case of prediction, the classification task is to distinguish
functional sites from non-functional sites. We additionally consider the de-novo discovery of
transcription factor binding sites and cis-regulatory modules, where the goal is to discover
motifs and binding sites that are specific for the promoters of a target set of co-regulated
genes. In the discriminative context, this translates to the task of finding that motif or set of
motifs which is suited best to distinguish the promoters in the target set from the promoters
of other, unrelated genes.

Considering the prediction of transcription factor binding sites, we learn the parameters of
inhomogeneous Markov models of different orders by the MSP principle for ten data sets
comprising binding sites of different transcription factors of mammals, A. thaliana, and E. coli
and associated background data sets. Since Markov models in standard parameterization are
not suited for numerical optimization, we use a parameterization of Markov models in terms
of real-valued parameters, and we derive a prior on these parameters by transforming the
conjugate product-Dirichlet prior to this parameterization. Hence, we can use the equivalent
product-Dirichlet priors for the MSP and the MAP principle, which avoids a potential bias
on the results due to the choice of different priors. We find that the discriminative MSP
principle with product-Dirichlet prior significantly outperforms the generative MAP principle
for the majority of the studied data sets. Since we use identical hyper-parameters for the
product-Dirichlet prior on the parameters of the Markov models for the MSP and the MAP
principle, we may conclude that in this case the improvement of classification performance
can be attributed to the discriminative learning principle alone. In a subsequent study, we

176



investigate how the MSP and MAP principle are affected by the size of training data. We
find, that the MSP principle again outperforms the MAP principle in the majority of cases
yielding an improved classification performance even for small data sets.

The results for the prediction of transcription factor binding sites indicate that the discrimina-
tive MSP principle can be of value for sequence classification as a general concept. Hence, we
employ the MSP principle for other problems related to sequence classification as well. How-
ever, we do not focus on the direct comparison of learning principles in the following studies,
but we broaden benchmarks and comparisons to other state-of-the-art approaches that have
been proposed for these specific problems.

Since in real-world problems, we often neither know the exact location of binding sites nor
the binding motif of the transcription factor of interest, the de-novo discovery of transcription
factor binding sites or cis-regulatory modules is highly relevant for the elucidation of transcrip-
tional regulation. For the de-novo discovery of cis-regulatory modules, we learn the parameters
of an extended ZOOPS by the discriminative MSP principle. Here, we extend the ZOOPS
model to two motifs, which may occur coordinately in promoters, representing cis-regulatory
modules comprising binding sites of two different transcription factors. We include a Gaus-
sian position distribution of the binding sites into the model, since the binding sites of most
transcription factors are known to occur non-uniformly distributed in the promoters. Again,
we apply the transformed product-Dirichlet prior to the parameters of the sequence models.
We derive a parameterization of the bivariate Gaussian distribution using unconstrained pa-
rameters, and we transform the conjugate normal-Wishart prior accordingly. Additionally, we
develop a heuristic to automatically adapt the length of the motif and to compensate for phase
shifts.

As a first benchmark study, we compare this approach – called MuMFi – considering a single
motif to several other approach for de-novo motif discovery, namely MEME, Gibbs Sampler,
A-GLAM, Weeder, Improbizer, DME, and DEME. We find that MuMFi is the only approach
that can successfully discover the correct motif in 18 benchmark data sets. If we do not
specify the correct motif length in advance, MuMFi still discovers all motifs with high accuracy,
whereas the other approaches perform considerably worse. Weeder is the only of the approaches
studied that discovers 5 of the 9 motifs, while other approaches like Improbizer or A-GLAM
yield a higher accuracy for single data sets, but recover a smaller number of motifs correctly.
These results demonstrate that the combination of discriminative learning of the parameters,
incorporating a model for the position distribution of binding sites, and an automatic adaption
of the motif length are highly beneficial for the de-novo discovery of single motifs.

In a second benchmark study, we compare MuMFi for cis-regulatory modules comprising
binding sites of two motifs to other approaches that are specifically designed for the de-novo
discovery of cis-regulatory modules, namely CisModule, CoBind, and MoAn. We find that
MuMFi performs comparable or even better than the existing approaches and, again, the
performance of MuMFi can be attributed to the combination of the MSP principle and the
explicit modeling of the position distribution.

Finally, we apply MuMFi to promoters of auxin responsive genes, and find a motif that can
be interpreted as a refined and elongated variant of the canonical auxin response element. We
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also find that occurrences of this motif exhibit a clear positional preference centered around a
mean value approximately 130 bp upstream of the transcription start site.

Approaches for the computational prediction of transcription factor binding sites typically
suffer from a large number of false-positives, i.e. non-functional predicted binding sites. Since
DNA bound in nucleosomes is virtually inaccessible to transcription factors due to steric hin-
drance, an accurate prediction of nucleosome positioning, especially nucleosome-free regions,
may help to exclude a subset of the false-positives from predictions. Hence, we investigate
if the MSP principle combined with an appropriate model may improve the computational
prediction of nucleosome positioning as well.

The approach proposed in this work uses a two-stage process. First, we use one classifier
to distinguish coding sequences, non-coding sequences, and sequences at the border between
coding and non-coding regions, since we anticipate that the signals of nucleosome positioning
may be superimposed and, hence, blurred by general properties of coding and non-coding
sequences. Second, we use independent component classifiers for each of the three types of se-
quences that distinguish nucleosome-bound from nucleosome-free sequences. Each component
classifier combines simple elementary classifiers by weighted voting. The employed elemen-
tary classifiers are selected independently for each component classifier by a greedy approach.
For learning the parameters of component classifiers, we employ a novel variant of the MSP
principle for soft-labelling. The votings of the component classifiers are also combined by
weighted voting. However, we extend previous ensemble approaches by using weights that
depend on the sequence to be classified. These weights correspond to the probability that a
sequence is coding, non-coding, or at a border according to the first classifier. Additionally,
we include information about preferred lengths of the linkers between nucleosomes into the
final prediction.

We compare the classification accuracy of this approach to the current state-of-the-art ap-
proach on a ground truth obtained by parallel sequencing of nucleosome-bound sequences in
yeast. We find that the proposed approach distinguishes nucleosome-bound and nucleosome-
free sequences with a considerably higher accuracy than the existing approach for all levels of
coverage considered. Interestingly, this improved accuracy is achieved, although the compo-
nent classifiers do not comprise elementary classifiers that can detect periodic signals, which
are known to be relevant for nucleosome positioning. We assume that such periodic signals
determine the local positioning of nucleosomes, but do not reflect the general tendency of a
sequence to be bound in a nucleosome. In contrast, other known determinants of nucleosome
formation are supported by the learned classifiers as the inhibition of nucleosome formation by
poly-A/T tracts or the preference for CTG trinucleotides in nucleosome-bound sequences.

To investigate the relevance of the improved classification performance, we compare the pre-
dictions of the two approaches in their genomic context. We observe several nucleosome-free
regions in putative promoters that are correctly predicted by the proposed approach but not
by the previous approach. We also find well-positioned nucleosomes in promoter regions that
are only discovered by the proposed approach. Hence, we may conclude that the observed
improvement in classification accuracy is especially relevant if we utilize the predicted nu-
cleosome positions to reduce the number of false-positive predictions of transcription factor
binding sites.
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Splicing is another process that determines the product of a gene. In this work, we propose a
novel approach called maximum supervised posterior decomposition for the prediction of donor
splice sites, which employs the MSP principle as well. In this case, we use a decision tree model
with simple position weight matrix models at its leaves, which has originally been proposed for
the generative maximal dependence decomposition approach. Here, we learn the parameters of
the decision tree model including the parameters of the position weight matrices by the MSP
principle, and we select the structure of the decision tree in a greedy algorithm by means of the
supervised posterior. We prove that the supervised posterior using these decision tree models
in the proposed parameterization is a log concave function of the parameters. Hence, we obtain
globally optimal parameters by numerical optimization regardless of the initialization.

We compare the classification accuracy of maximum supervised posterior decomposition to
several other approaches for the prediction of donor splice sites, namely weight array models,
permuted variable length Markov models, Markov models learned by the MSP principle, max-
imum entropy models, and maximal dependence decomposition. As benchmark data sets, we
use donor splice sites and decoy sites from A. thaliana, D. melanogaster, D. rerio, C. elegans,
and H. sapiens. We find that maximum supervised posterior decomposition yields a similar
or even improved classification performance compared to the existing approaches for all data
sets and considered performance measures.

Scrutinizing some of the decision tree models learned, we find many known properties of
donor splice sites supported. The exploration of decision trees is supported by a novel variant
of sequence logos that facilitates the perception of differences between donor splice sites and
decoy sites. The properties discovered include the importance of position +5 on the intron
side and position −1 on the exon side and a compensatory effect between the intron and exon
side, where a strong binding on the exon side may compensate for a lower binding affinity
on the intron side and vice versa. In addition to previous findings, we observe that a lack of
the consensus at position +5 greatly reduces the relevance of the adjacent positions +4 and
+6. Interestingly, the discrimination of canonical donor splice sites with the consensus GT at
positions +1 and +2 and non-canonical donor splice sites seems to be of minor importance for
the general recognition of donor splice sites. We additionally use maximum supervised poste-
rior decomposition as an exploratory tool to detect differences between the donor splice sites
of different organisms. Comparing donor splice sites of H. sapiens and D. melanogaster, and
A. thaliana and C. elegans, we observe different levels of conservation for positions −1, +5,
and +6, and we find differences in the compensatory effects between intron and exon side.

Finally, we employ the MSP principle for the prediction of miRNA target sites. Here, we
propose an extended profile HMM with plan9 architecture called conditional profile HMM for
modelling the dependence of target sites on the sequence of the miRNA. While the definition
of delete and insert states remains unchanged, the emission probabilities of the match states
are extended to conditional probability distributions of the nucleotides in target sites given
the nucleotides in the associated miRNAs. In contrast to previous approaches, conditional
profile HMMs can learn characteristics of miRNA-mRNA binding from data. In this work, we
learn the parameters of conditional profile HMMs by the discriminative MSP principle.

As a proof of concept, we learn the parameters of a classifier comprising a conditional profile
HMM for the class of target sites and a homogeneous Markov model of order 1 for non-target
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sites on the predictions of existing approaches, namely miRanda, TargetScan, RNAhybrid, and
DIANA-microT. We observe that the conditional profile HMM adapts well to the character-
istics of these approaches. Subsequently, we learn the same classifier on a data set containing
experimentally verified target sites, predicted target sites in UTRs of experimentally verified
target genes, and predictions of the four existing approaches considered. We use the learned
classifier to predict putative target sites of three miRNAs in UTRs with annotated, verified
target sites. We find that the classifier employing the conditional profile HMM discovers ver-
ified target sites and predicts additional putative target sites. An alignment of the predicted
target sites to the corresponding miRNA shows that these are in accordance with known
characteristics of miRNA-mRNA binding.

Summarizing the above, learning the parameters of appropriate models by the discrimina-
tive MSP principle improves the prediction of transcription factor binding sites, donor splice
sites and nucleosome positions, and the de-novo discovery of single motifs and cis-regulatory
modules. We also achieve promising results for the prediction of miRNA target sites. Hence,
our findings suggest that the discriminative MSP principle is of general value for statistical
analysis and classification of biological sequences.

Although we establish enhanced approaches for the prediction and understanding of many
biological processes in this work, the connections between the different applications are not
elaborated in this work. On the one hand, an additional study connecting all approaches
would have been beyond the scope of this work. On the other hand, the sources of data and
the organisms for which these data have been collected are too inhomogeneous to be promising
for a unified study. For instance, genome-wide data about nucleosome positioning is currently
available only for yeast, where the number of spliced genes is fairly low and transcriptional
regulation is by far less complex than in metazoans or plants. And up to now, proteom-wide
effects of miRNAs have been studied only for a limited number of over-expressed miRNAs in
a special human cell line.

However, it can be expected that the amount of available data will greatly increase within the
next years due to improved and affordable experimental techniques like parallel sequencing.
In a scenario, where large-scale data about nucleosome positioning, and data about mRNA
levels and protein levels under the condition of interest are available, a unified approach could
provide a deeper insight into the interaction between the different mechanisms that determine
the product of a gene and the rate of its production. Accurate predictions of nucleosome-free
regions could guide the de-novo discovery of cis-regulatory modules that up- or down-regulate
a set of genes according to mRNA levels, e.g. by an informative and sequence-dependent
position distribution. Once these modules are discovered, a genome-wide prediction could
identify additional genes that are putatively regulated by the same set of transcription factors.
If mRNA and protein levels are measured under the same condition, these could be related
to translational repression by miRNAs, and potential feedback, e.g. due to repression of the
translation of transcription factors, could be detected. The combination of these information
could then result in a deeper understanding of the origins of observed phenotypes.

Since the methods proposed in this work have been successfully applied to each of the individual
tasks, we might anticipate that these might also be useful in a unified approach that integrates
data from all levels of gene regulation.
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A.1. Log concavity of conditional likelihood and transformed

product-Dirichlet prior

Here, prove log concavity for a function g that includes conditional likelihood for Markov
models and decision trees and the transformed product-Dirichlet prior as special cases. To
this end, we renumber the parameters ξ using an abstract index n, i.e. we consider a vector
of parameters ξ = (ξ1, . . . , ξN ). We define g as a function of these parameters as

g(ξ) =
exp (h(ξ))

(
∑

i exp (fi(ξ)))γ , (A.1)

where h and the fj are linear functions of the parameters

h(ξ) =
∑

n

bnξn, (A.2)

fj(ξ) =
∑

n

aj,nξn, (A.3)

where bn ∈ R, and the factors aj,n ∈ R may be different for each function fj .

In case of conditional likelihood given a sequence x, the function h in the enumerator corre-
sponds to one function fk of the functions fi in the denominator and, hence, ∀n : bn = ak,n.
The parameters of Markov models and decision trees that are used depend on the sequence
x and the selection of parameters corresponds to setting the values of the bn and ak,n either
to 0 or to 1. The definition of conditional likelihood for inhomogeneous Markov models that
corresponds to this functional form is given in equation (3.30) (p 19), and the corresponding
definition for decision tree models is given in equation (4.81) (p. 137).

In case of the transformed product-Dirichlet prior, the factors bn of h correspond to the hyper-
parameters of the parameters ξn. The sum over the different functions fi in the denominator
corresponds to the normalization constant Z(ξ), and γ corresponds to the sum over the ESSs
for the different classes. The definition of the product-Dirichlet prior in this functional form
is given in equation (3.79) (p. 31) for inhomogeneous Markov models and in equation (4.84)
(p. 138) for decision tree models.

To prove that g is a log concave function of the parameters, the parameters must be a convex
set, which is the case, since ξ ∈ RN , and the following inequality (Jensen’s inequality) must
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hold

log g
(
αξ(1) + (1− α)ξ(2)

)
≥ α log g

(
ξ(1)
)

+ (1− α) log g
(
ξ(2)
)
, (A.4)

where α ∈ [0, 1]. Since g has no discontinuities, it is enough to show that this inequality holds
for α = 1

2 , i.e.

log g

(
ξ(1) + ξ(2)

2

)
≥ 1

2
log g

(
ξ(1)
)

+
1
2

log g
(
ξ(2)
)
. (A.5)

We insert the definition of g into this inequality, and obtain

h

(
ξ(1) + ξ(2)

2

)
− γ log

(∑
i

exp

(
fi

(
ξ(1) + ξ(2)

2

)))
!
≥ (A.6)

1
2
h
(
ξ(1)
)

+
1
2
h
(
ξ(2)
)
− 1

2
γ log

(∑
i

exp
(
fi

(
ξ(1)
)))

− 1
2
γ log

(∑
i

exp
(
fi

(
ξ(2)
)))

.

Since h is a linear function of the parameters, the first term on the left side and the first two
terms on the right side of the inequality cancel. Afterwards, we can divide both sides by −γ

2 ,
which inverts the inequality and results in

2 log

(∑
i

exp

(
fi

(
ξ(1) + ξ(2)

2

)))
!
≤ log

(∑
i

exp
(
fi

(
ξ(1)
)))

+ log

(∑
i

exp
(
fi

(
ξ(2)
)))

.

We exponentiate both sides, which does not affect the inequality, since the exponential function
is strictly monotonic, yielding

(∑
i

exp

(
fi

(
ξ(1) + ξ(2)

2

)))2
!
≤

(∑
i

exp
(
fi

(
ξ(1)
)))

·

(∑
i

exp
(
fi

(
ξ(2)
)))

, (A.7)

which we can re-state as[∑
i

exp

(
fi

(
ξ(1)

2

))
exp

(
fi

(
ξ(2)

2

))]2
!
≤∑

i

exp

(
fi

(
ξ(1)

2

))2
 ·
∑

i

exp

(
fi

(
ξ(2)

2

))2
 . (A.8)

The last inequality holds according to the Cauchy-Schwarz inequality.

Thus, g is a concave function of the parameters ξ. This result can be directly transferred to
conditional likelihood using Markov models and decision trees, and the associated transformed
product-Dirichlet priors.
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A.2. Calls of de-novo motif discovery programs

In the following, we specify the calls of the de-novo discovery programs used in section 4.2.
The placeholder <target> represents the target data set, <control> represents the control
data set, and <length> represents the length of the correct motif.

A-GLAM

unknown length:

./aglam -4 500 <target>

known length:

./aglam -a <length> -b <length> -4 500 <target>

Meaning of additional arguments:

• -4 anchor position of the position distribution
• -a, -b minimum and maximum length of the motif

DEME

unknown length:

./deme -p <target> -n <control> -w 15

known length:

./deme -p <target> -n <control> -w <length>

Meaning of additional arguments:

• -w length of the motif

DME

unknown length:

./dme2 -v -n 200 -w 15 -o <outfile> -b <control> <target>

known length:

./dme2 -v -n 200 -w <length> -o <outfile> -b <control> <target>

Meaning of additional arguments:

• -o followed by path to the output-file <outfile>

• -v verbose output
• -n number of motifs to produce
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Gibbs sampler

unknown length:

./Gibbs <target> 15 -n

known length:

./Gibbs <target> <length> -n

Meaning of additional arguments:

• -n use nucleic acid alphabet

Centroid Gibbs sampler

unknown length:

./Gibbs <target> 15 100 -E 1 -bayes -n

known length:

./Gibbs <target> <length> 100 -E 1 -bayes -n

Meaning of additional arguments:

• -n use nucleic acid alphabet
• -E maximum sites per sequence, use recursive sampler
• 100 expected total number of binding sites
• -bayes use Bayesian sampling

Improbizer

unknown length:

./ameme good=<target> bad=<control> numMotifs=1 rcToo=on \

motifOutput=<target>-motif.txt

./ameme motifMatcher=on seqFile=<target> rcToo=on \

motifs=<target>-motif.txt hits=<target>-hits.txt

known length:

./ameme good=<target> bad=<control> numMotifs=1 rcToo=on constrainer=1000 \

tileSize=<length> motifOutput=<target>-motif.txt

./ameme motifMatcher=on seqFile=<target> rcToo=on \

motifs=<target>-motif.txt hits=<target>-hits.txt

Meaning of additional arguments:

198



A.2. Calls of de-novo motif discovery programs

• numMotifs number of motifs
• tileSize length of motif
• constrainer=1000 fix motif length
• motifMatcher=on predict motif occurrences
• rcToo=on search on both strands

MEME

unknown length:

./meme -dna -mod zoops -minw 6 -maxw 20 -nmotifs 1 -revcomp -text <target>

known length:

./meme -dna -mod zoops -w <length> -nmotifs 1 -revcomp -text <target>

Meaning of additional arguments:

• -dna use nucleic acid alphabet
• -mod zoops use ZOOPS model
• -minw,-maxw minimum and maximum motif length
• -w motif length
• -nmotifs number of motifs
• -revcomp search on both strands
• -text text output instead of HTML

Weeder

unknown length:

./weederlauncher.out <target> <organism> large S

known length:

./weederTFBS.out -f <target> -R 50 -O <organism> -W <length> -e 3 -S -T 10

./adviser.out <target> S

Meaning of additional arguments:

• [-O ¡organism¿] organism, AT for A. thaliana, DM for D. melanogaster, HS for H. sapiens
• large search for motifs of maximum length 12 with at most 4 mismatches
• S,-S search on both strands
• -R 50 percentage of sequence that must contain the motif
• -W length of the motif
• -e number of allowed mismatches
• -T number of reported motifs
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CisModule

./CisModuleU -i <target> -o <outfile> -K 2 -w 5 -W 15

Meaning of additional arguments:

• -K 2 search for two motifs
• -w, -W minimum and maximum length of the motifs
• -o followed by path to the output-file <outfile>

CoBind

./co-bind -p <target> -n <control> -a <alphabetfile> -Z 100 -c 1 -m 20

Meaning of additional arguments:

• -a path to the file specifying the alphabet <alphabetfile>
• -Z 100 maximum distance between sites, default was 50
• -c 1 search on both strands
• -m 20 number of training runs

MoAn

moan -D -c <target> <control>

Meaning of additional arguments:

• -D search on both strands
• -c search for two motifs
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A.3. Distribution of poly-A or poly-T tracts

In this section, we derive the joint cumulative distribution P (K ≥ k,N ≥ n|L) of finding
at least k poly-A/T tracts of minimum length n in a random sequence of length L. Let pa

be the probability to observe nucleotide a ∈ {A,C,G, T} at a given position of the random
sequence.

We derive the joint cumulative distribution in a recursive manner. To this end, we define an
additional random variable Z of a state that represents the length of the currently observed
poly-A/T tract. If Z = 0, the current poly-A/T tract has length 0, if Z = l, l > 0 the current
poly-A tract has length l, and if Z = −l, l > 0 the current poly-T tract has length l.

Admissible transitions between the states are

• a transition from any state to Z = 0, i.e. stopping the current poly-A/T tract or
proceeding with non-A/T nucleotides,

• a transition from any state Z < 1 to Z = 1, i.e. starting a poly-A tract,
• a transition from any state Z > −1 to Z = −1, i.e. starting a poly-T tract,
• a transition from state Z = i, i > 0 to Z = i + 1, i.e. the elongation of a poly-A tract,

and
• a transition from state Z = −i, i > 0 to Z = −i−1, i.e. the elongation of a poly-T tract.

In the following, we consider the joint probability P (Z = z,K ≥ k,N ≥ n|L = `) of being in
state z and finding at least k poly-A/T tracts of minimum length n in a random sequence of
length L.

From any state z, we can go to state Z = 0 with transition probability 1− pA − pT , while the
number k of poly-A/T tracts of minimum length n does not change, i.e.

P (Z = 0,K ≥ k,N ≥ n|L = `) = P (Z = z,K ≥ k,N ≥ n|L = `− 1)(1− pA − pT ). (A.9)

Due to this transition, we emit a symbol different from A or T and elongate the random
sequence by one position to length L = `

For the probability of being in state Z = 1 and finding at least k poly-A/T tracts of minimum
length n, we must distinguish two cases. If n = 1, the transition to Z = 1 from some state
Z < 1 opens a new poly-A tract of the required minimum length, i.e.

P (Z = 1,K ≥ k,N ≥ 1|L = `) = P (Z < 1,K ≥ k − 1, N ≥ 1|L = `− 1)pA. (A.10)

Otherwise, k and n are not changed, and we obtain

P (Z = 1,K ≥ k,N ≥ n|L = `) = P (Z < 1,K ≥ k,N ≥ n|L = `− 1)pA. (A.11)

In analogy, we derive for state Z = −1, i.e. opening a new poly-T tract

P (Z = −1,K ≥ k,N ≥ 1|L = `) = P (Z > 1,K ≥ k − 1, N ≥ 1|L = `− 1)pT , and (A.12)

P (Z = −1,K ≥ k,N ≥ n|L = `) = P (Z > 1,K ≥ k,N ≥ n|L = `− 1)pT (A.13)
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Similarly, we distinguish two cases when elongating an existing poly-A tract, i.e. Z > 1.
Either, the elongated poly-A tract now reaches the required minimum length n , i.e. Z = n,
and we obtain

P (Z = n,K ≥ k,N ≥ n|L = `) = P (Z = n− 1,K ≥ k − 1, N ≥ n|L = `− 1)pA, (A.14)

or we either have not reached the minimum required length yet or we already reached this
length in an earlier transition, i.e. Z 6= n, and obtain

P (Z = z,K ≥ k,N ≥ n|L = `) = P (Z = z − 1,K ≥ k,N ≥ n|L = `− 1)pA. (A.15)

In analogy, we obtain for poly-T tracts

P (Z = −n,K ≥ k,N ≥ n|L = `) = P (Z = −n+ 1,K ≥ k − 1, N ≥ n|L = `− 1)pT , and
(A.16)

P (Z = −z,K ≥ k,N ≥ n|L = `) = P (Z = −z + 1,K ≥ k,N ≥ n|L = `− 1)pT . (A.17)

We initialize the recursion for a random sequence of length L = 1. We set the probability of
being in state Z = 0, i.e. emitting a single nucleotide different from A or T, and observing at
least 0 poly-A/T tracts of minimum length n to P (Z = 0,K ≥ 0, N ≥ n|L = 1) = (1−pA−pT ).
We further set the probability of being in state Z = 1, i.e. emitting a single A, and observing
at least 0 poly-A/T tracts of minimum length n to P (Z = 1,K ≥ 0, N ≥ n|L = 1) = pA. In
the special case that n = 1, we also intitialize P (Z = 1,K ≥ 1, N ≥ 1|L = 1) = pA. In analogy,
we define for the poly-T tracts P (Z = −1,K ≥ 0, N ≥ n|L = 1) = pT and P (Z = −1,K ≥
1, N ≥ 1|L = 1) = pT . All other probabilities are set to P (Z = z,K ≥ k,N ≥ n|L = 1) = 0.

We finally obtain the desired joint cumulative distribution P (K ≥ k,N ≥ n|L) by a marginal-
ization over all possible states, i.e.

P (K ≥ k,N ≥ n|L = `) =
∑̀
z=−`

P (Z = z,K ≥ k,N ≥ n|L = `). (A.18)

A.4. Numerical properties of the DNA helix

Free energy

r =


1.9 1.3 1.6 1.5
1.9 3.1 3.6 1.6
1.6 3.1 3.1 1.3
0.9 1.6 1.9 1.9
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Melting temperature

r =


54.5 97.73 58.42 57.02
54.71 85.97 72.55 58.42
86.44 136.12 85.97 97.73
36.73 86.44 54.71 54.5



Base stacking energy

r =


−6.09 −11.25 −6.62 −7.21
−6.75 −8.38 −9.68 −6.62
−10.47 −15.34 −8.38 −11.25
−5.26 −10.47 −6.75 −6.09



Persistence length

r =


35.0 60.0 60.0 20.0
60.0 130.0 85.0 60.0
60.0 85.0 130.0 60.0
20.0 60.0 60.0 35.0



Propeller twist

r =


−17.3 −6.7 −14.3 −16.9
−8.6 −12.8 −11.2 −14.3
−15.1 −11.7 −12.8 −6.7
−11.1 −15.1 −8.6 −17.3



Rise

r =


3.16 3.41 3.63 3.89
3.23 4.08 3.6 3.63
3.47 3.81 4.08 3.41
3.21 3.47 3.23 3.16



Roll

r =


0.3 0.5 4.5 −0.8
0.5 6.0 −6.2 4.5
−1.3 −6.2 6.0 0.5
2.8 −1.3 0.5 0.3
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Roll complexed

r =


0.8 −0.2 5.6 0.0
6.4 3.3 6.5 5.6
2.4 −2.0 3.3 −0.2
2.7 2.4 6.4 0.8



Slide

r =


−0.1 −0.2 0.4 −0.4
1.6 0.8 0.7 0.4
0.0 0.4 0.8 −0.2
0.9 0.0 1.6 −0.1



Slide complexed

r =


0.1 −0.6 −0.3 −0.7
0.4 −0.1 0.7 −0.3
0.1 −0.3 −0.1 −0.6
0.1 0.1 0.4 0.1



Tilt

r =


0.5 0.1 2.8 0.0
−0.7 2.7 0.0 2.8
0.9 0.0 2.7 0.1
0.0 0.9 −0.7 0.5



Tilt complexed

r =


1.9 0.3 1.3 0.0
0.3 1.0 0.0 1.3
1.7 0.0 1.0 −0.1
0.0 1.7 0.3 1.9



Tip

r =


1.76 2.0 0.9 1.87
−1.64 0.71 0.22 0.9
1.35 2.5 0.71 2.0
6.7 1.35 −1.64 1.76
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Twist

r =


38.9 31.12 32.15 33.81
41.41 34.96 32.91 32.15
41.31 38.5 34.96 31.12
33.28 41.31 41.41 38.9



Vstep

r =


2.9 2.3 2.1 1.6
9.8 6.1 12.1 2.1
4.5 4.0 6.1 2.3
6.3 4.5 9.8 2.9



Bendability

r =




−0.274 −0.205 −0.081 −0.28
−0.0060 −0.032 −0.033 −0.183
0.027 0.017 −0.057 −0.183
0.182 −0.11 0.134 −0.28

 ,


0.015 0.04 0.175 0.134
−0.246 −0.012 −0.136 −0.057
−0.0030 −0.077 −0.136 −0.033

0.09 0.031 0.175 −0.081

 ,


−0.037 −0.013 0.031 −0.11
0.076 0.107 −0.077 0.017
0.013 0.107 −0.012 −0.032
0.025 −0.013 0.04 −0.205

 ,


0.068 0.025 0.09 0.182
0.194 0.013 −0.0030 0.027
0.194 0.076 −0.246 −0.0060
0.068 −0.037 0.015 −0.274
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A.5. Listing of source code for section 4.1

/* * * * *

* Set external parameters

* * * * */

// working directory

String home = args [0];

// foreground data

String fgfile = args [1];

// background data

String bgfile = args [2];

// number of threads for computations

int threads = Integer.parseInt( args [3] );

// number of iterations of the holdout sampling

int numberIterations = Integer.parseInt( args [4] );

// algorithm for numerical optimization

byte alg = Optimizer.QUASI_NEWTON_BFGS;

// set the alphabet to a DNA alphabet

AlphabetContainer dnaAlpabet = new AlphabetContainer(new DNAAlphabet ());

/* * * * *

* Read foreground and background data

* * * * */

Sample fg = new Sample(dnaAlpabet ,new SparseStringExtractor(home+"/"+fgfile));

Sample bg = new Sample(dnaAlpabet ,new SparseStringExtractor(home+"/"+bgfile));

// length of trancription factor binding sites

int length = fg.getElementLength ();

/* * * * *

* Define hyper -parameters of priors

* * * * */

double essFg = 4;

double essBg = 1024;

double [] classMus = new double []{ -8.634};

double [] classVars = new double []{5.082};

double [] kg = new double []{2 ,0.005};

double [] kl = new double []{0.005 ,0.002};

/* * * * *

* Set parameters for numerically optimized

* classifiers

* * * * */

GenDisMixClassifierParameterSet parameters = new

GenDisMixClassifierParameterSet( dnaAlpabet , length , alg , 1E-8,1E-8,1E-2,

true , KindOfParameter.PLUGIN , true , threads );

/* * * * *

* Create classifiers to be compared

* * * * */

LinkedList <AbstractClassifier > list = new LinkedList <AbstractClassifier >();

// foreground orders

for(int i=0;i<2;i++){

// background orders
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for(int j=0;j<5;j++){

// Markov models learned by MAP principle

AbstractClassifier cl = new ModelBasedClassifier(

new BayesianNetworkModel(new

BayesianNetworkModelParameterSet(dnaAlpabet , length , essFg , "",

ModelType.IMM , (byte)i, LearningType.ML_OR_MAP)),

new BayesianNetworkModel(new

BayesianNetworkModelParameterSet(dnaAlpabet , length , essBg , "",

ModelType.IMM , (byte)j, LearningType.ML_OR_MAP))

);

list.add( cl );

// Markov models learned by MSP principle with transformed

product -Dirichlet prior

cl = new MSPClassifier( parameters ,

new CompositeLogPrior (),

new BayesianNetworkScoringFunction(dnaAlpabet ,length ,essFg ,true ,

new InhomogeneousMarkov(i)),

new BayesianNetworkScoringFunction(dnaAlpabet ,length ,essBg ,true ,

new InhomogeneousMarkov(j))

);

list.add( cl );

// Markov models learned by MSP principle with Gaussian prior

cl = new MSPClassifier( parameters ,

new SeparateGaussianLogPrior(kg ,classVars ,classMus),

new BayesianNetworkScoringFunction(dnaAlpabet ,length ,essFg ,true ,

new InhomogeneousMarkov(i)),

new BayesianNetworkScoringFunction(dnaAlpabet ,length ,essBg ,true ,

new InhomogeneousMarkov(j))

);

list.add( cl );

// Markov models learned by MSP principle with transformed Laplace prior

cl = new MSPClassifier( parameters ,

new SeparateLaplaceLogPrior(kl ,classVars ,classMus),

new BayesianNetworkScoringFunction(dnaAlpabet ,length ,essFg ,true ,

new InhomogeneousMarkov(i)),

new BayesianNetworkScoringFunction(dnaAlpabet ,length ,essBg ,true ,

new InhomogeneousMarkov(j))

);

list.add( cl );

}

}

/* * * * *

* Create object for assessment by

* stratified holdout sampling

* * * * */

RepeatedHoldOutExperiment exp = new RepeatedHoldOutExperiment( list.toArray(

new AbstractClassifier [0] ));

/* * * * *
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* Performance , measures to be computed ,

* includes Sn for Sp of 0.999, PPV for Sn of 0.95, and FPR for Sn of 0.95

* * * * */

MeasureParameters mp = new MeasureParameters(false ,0.999 ,0.95 ,0.95);

/* * * * *

* Parameters of assessment

* * * * */

ClassifierAssessmentAssessParameterSet assessPS = new

RepeatedHoldOutAssessParameterSet(

PartitionMethod.PARTITION_BY_NUMBER_OF_SYMBOLS , length , true ,

numberIterations , new double []{0.1 ,0.1});

/* * * * *

* Start holdout sampling

* * * * */

ListResult lr = exp.assess( mp , assessPS , new DefaultProgressUpdater (), fg ,bg

);

/* * * * *

* Write results to disk

* * * * */

FileManager.writeFile( new File(home+"/"+fgfile+"_results.xml"), lr.toXML () );
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