# Analysen zur Transkriptionsregulation und zum *trans*-Spleißen am *mod(mdg4)*-Locus von *Drosophila melanogaster*

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.)

vorgelegt der

Naturwissenschaftlichen Fakultät I Biowissenschaften

der Martin-Luther-Universität Halle-Wittenberg

von

Herrn Michael Volkmar

geb. am: 21. Juni 1976 in: Bad Langensalza

Gutachter

- 1. Dr. Rainer Dorn
- 2. Prof. Dr. Harald Saumweber
- 3. Prof. Dr. Klaus Humbeck

Verteidigung: Halle (Saale), den 11. August 2010

Das Unverständnis der Menschen war für die Natur noch nie ein Anlaß, an ihren Methoden etwas zu ändern.

> Matt Ridley (übersetzt von Sebastian Vogel)

# Abkürzungs- und Fremdwortverzeichnis

| AS                                                                            | Aminosäure                                                                      |  |  |  |  |  |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|--|--|--|
| bp                                                                            | Basenpaar(e)                                                                    |  |  |  |  |  |
| cDNA                                                                          | copy-DNA, einzel- oder doppelsträngige DNA-Kopie der mRNA                       |  |  |  |  |  |
| ChIP                                                                          | Chromatinimmunopräzipitation                                                    |  |  |  |  |  |
| Ct                                                                            | threshold cycle, PCR-Zyklus, bei dem eine gewählte Fluoreszenzintensität        |  |  |  |  |  |
|                                                                               | (SYBR Green in Real-time qRT-PCRs dieser Arbeit) überschritten wird             |  |  |  |  |  |
| DAPI                                                                          | 4,6-Diaminino-2-phenylindol                                                     |  |  |  |  |  |
| Df                                                                            | Defizienz                                                                       |  |  |  |  |  |
| EGFP                                                                          | enhanced green fluorescent protein                                              |  |  |  |  |  |
| E(var)                                                                        | enhancer of variegation                                                         |  |  |  |  |  |
| FITC                                                                          | Fluorescein-5-isothiocyanat                                                     |  |  |  |  |  |
| FRT                                                                           | Flip recombinase (,,Flippase") recombination target                             |  |  |  |  |  |
| g                                                                             | Äquivalent einer Erdbeschleunigung (9,81 m s <sup>-2</sup> )                    |  |  |  |  |  |
| kb                                                                            | Kilobase(n) (1.000 Basenpaare)                                                  |  |  |  |  |  |
| kD                                                                            | Kilodalton                                                                      |  |  |  |  |  |
| LTR                                                                           | long terminal repeat                                                            |  |  |  |  |  |
| Μ                                                                             | Molekulargewicht (M <sub>app</sub> : apparentes Molekulargewicht)               |  |  |  |  |  |
| Mb                                                                            | Megabase $(1,0\times10^6 \text{ bp})$                                           |  |  |  |  |  |
| mRNA                                                                          | messenger-RNA                                                                   |  |  |  |  |  |
| nested PCR "verschachtelte" PCR, bei der das Amplifikat einer vorangegangenen |                                                                                 |  |  |  |  |  |
|                                                                               | template dient, mit Primern, deren Bindestelle im Originalamplifikat liegt      |  |  |  |  |  |
| PCR                                                                           | polymerase chain reaction                                                       |  |  |  |  |  |
| rpm                                                                           | rotations/revolutions per minute, Umdrehungen pro Minute                        |  |  |  |  |  |
| RT                                                                            | reverse Transkription; Raumtemperatur                                           |  |  |  |  |  |
| second site                                                                   | Mutation außerhalb des untersuchten Bereichs bzw. ungleich der untersuchten     |  |  |  |  |  |
|                                                                               | Mutation                                                                        |  |  |  |  |  |
| Su(var)                                                                       | suppressor of variegation                                                       |  |  |  |  |  |
| Su(Hw)                                                                        | suppressor of hairy wing                                                        |  |  |  |  |  |
| Target-ID                                                                     | entspricht Teilsequenz einer mRNA, 100 bis 400bp, setzt sich zusammen aus       |  |  |  |  |  |
|                                                                               | einer Gruppe von $\approx$ 25bp-Oligonukleotiden, immobilisiert auf Affymetrix- |  |  |  |  |  |
|                                                                               | Microarrays, deren Hybridisierungssignale zusammengefaßt werden                 |  |  |  |  |  |
| U                                                                             | Unit, Einheit der Enzymaktivität                                                |  |  |  |  |  |

Bemerkungen zur Rechtschreibung und Grammatik in dieser Arbeit:

Generell wurde die "alte" deutsche Rechtschreibung (dt. Orthographiekonferenz, 1901) verwendet. In Genetik, Molekularbiologie und verwandten Gebieten etablierte englische Fachbegriffe (z.B. *upstream*: in Transkriptionsrichtung vor … bzw. auf dem codierenden DNA-Strang 5' von … gelegen) wurden nicht ins Deutsche übertragen; sie sind kursiv gesetzt und wurden teilweise, zu Gunsten besseren Sprachverständnisses, gebeugt.

Zur besseren Handhabung von Sequenzen wurde eine locusinterne Skalierung festgelegt. Zur Umrechnung zwischen dieser und der annotierten *Drosophila melanogaster*-Genomsequenz sei angemerkt, daß Position 1 auf der *mod(mdg4)*-Skala der *D. melanogaster*-Genomposition 3R:17.205.907 (Release 5, entspricht. Position 10.001 korrespondiert zu 3R:17.195.907, Position 20.001 3R:17185.907 und Position 30.001 entspricht 3R:17.175.907. ,Proximal' bedeutet in Richtung der gemeinsamen Exons 1-4, und ,distal' weist in Richtung des 3'Endes des Gens. ,*upstream*' und ,*downstream*' beziehen sich auf eine – in Transkriptionsrichtung vor (5') bzw. hinter (3') einer bezeichneten Position gelegene – Stelle auf dem codierenden DNA-Strang.

# Inhaltsverzeichnis

| 1. Einleitung                                                                      | 1     |
|------------------------------------------------------------------------------------|-------|
| 1.1 Gegenstand der Arbeit                                                          | 7     |
| 2. Material und Methoden                                                           | 10    |
| 2.1 Genetische Methoden                                                            | 10    |
| 2.1.1 Anzucht und Haltung der Fliegen                                              | 10    |
| 2.1.2 Keimbahntransformation                                                       | 10    |
| 2.1.3 Verwendete Mutationen in und außerhalb von mod(mdg4)                         | 10    |
| 2.1.4 P-Element-Mobilisierung und -Reversion                                       | 13    |
| 2.1.5 Erzeugung chromosomaler Umbauten und einer Defizienz mittels der DrosDel-    |       |
| <i>P{RS}</i> -Elemente                                                             | 14    |
| 2.1.6 Knock out der Isoform mod(mdg4)-64.2 – "Ends-in gene targeting"              | 17    |
| 2.2 Molekularbiologische Methoden                                                  | 19    |
| 2.2.1 DNA-Isolation aus Fliegen                                                    | 20    |
| 2.2.2 Inverse PCR                                                                  | 20    |
| 2.2.3 Southern Blot                                                                | 21    |
| 2.2.4 Verwendete Escherichia coli-Stämme                                           | 22    |
| 2.2.5 Real-time quantitative RT-PCR                                                | 22    |
| 2.3 Statistische Ergebnisbewertung bei genetischen Experimenten                    | 25    |
| 2.3.1 Test binominal verteilter Gesamtheiten                                       | 25    |
| 2.3.2 Fisher-Irwin-Test                                                            | 25    |
| 3. Ergebnisse                                                                      | 27    |
| 3.1 Generierung und Analyse isoformspezifischer mod(mdg4)-Mutanten                 | 27    |
| 3.1.1 Mobilisierung der P-Elemente P{RS5}-5-HA-1224 und P{KG}08515                 | 27    |
| 3.1.2 Molekularbiologische Analysen der Revertanten                                | 29    |
| 3.1.2.1 Bestimmung der Deletionsbruchpunkte                                        | 29    |
| 3.1.2.2 Expressionstests & Promotorenidentifizierung                               | 32    |
| 3.1.3 Genetische Analysen der Revertanten                                          | 41    |
| 3.1.3.1 Rezessive Letalität                                                        | 42    |
| 3.1.3.2 Koordinationsphänotyp                                                      | 44    |
| 3.1.3.3 Weibliche Sterililität                                                     | 45    |
| 3.1.3.4 <i>stuck-like</i> -Phänotyp                                                | 47    |
| 3.1.3.5 Homöotische Transformation                                                 | 49    |
| 3.1.3.6 Suppression des <i>Bar-Stone</i> -Phänotyps von YB <sup>S</sup>            | 50    |
| 3.1.3.7 Enhancer der Positionseffektvariegation (PEV)                              | 52    |
| 3.1.4 Phänotypen und immuncytologische Untersuchung der Revertante Rev31           | 54    |
| 3.1.4.1 Mißbildung der posterioren Flügelquerader und ektopische Scutellar-borster | n. 54 |
| 3.1.4.2 Komplementation von Mutationen des gemeinsamen mod(mdg4)-Teils durc        | h     |
| Revertante Rev31                                                                   | 56    |
| 3.1.4.3 Immuncytologische Untersuchungen an Polytänchromosomen der Revertan        | te    |
| Rev31                                                                              | 57    |
| 3.1.5 Funktionelle Analyse der Isoform <i>mod(mdg4)</i> -64.2                      | 59    |

| 3.1.5.1 Nachweis der Mod(mdg4)-64.2-Assoziation an HeT-A, ChIP-on-membrane 59                        |
|------------------------------------------------------------------------------------------------------|
| 3.1.5.2 Deletion des spezifischen Exons/Knock out der Isoform mod(mdg4)-64.2 61                      |
| 3.1.5.3 Microarray-Analyse der $\Delta 64.2$ -Mutation $\Delta 13$ 85c V l und weiterer ausgewählter |
| <i>mod</i> ( <i>mdg4</i> )-Mutationen                                                                |
| 3.1.5.3.1 Analyse der Microarray-Expressionsdaten von GG295 und Rev31                                |
| 3.2 Analyse des trans-Spleißens am Beispiel mod(mdg4)                                                |
| 3.2.1 Verlust der Fähigkeit zum <i>trans</i> -Spleißen in Revertante Rev31                           |
| 3.2.2 Konservierung des mod(mdg4)-Locus zwischen Drosophila melanogaster und                         |
| D. virilis                                                                                           |
| 3.2.2.1 Nachweis chimärer D. virilis/D. melanogaster-mod(mdg4)-mRNAs                                 |
| 3.2.2.2 Genetische Analysen zum nachweis von mRNA-trans-Spleißen am mod(mdg4)-                       |
| Locus mit D. virilis- und D. melanogaster-Transgenen                                                 |
| 3.2.3 Molekularbiologische Analyse des trans-Spleißens an D. virilis mod(mdg4)-h64.288               |
| 3.2.3.1 Genomische Transgene von D. virilis mod(mdg4)-h64.2-Mutationen                               |
| 3.2.4 Etablierung eines Systems zur in vivo-Analyse des trans-Spleißprozesses                        |
| 3.2.4.1 EGFP- <i>trans</i> -Spleißen                                                                 |
| 3.2.5 Teilung von <i>mod(mdg4)</i> durch induzierte chromosomale Umbauten und funktionelle           |
| Analyse des geteilten Locus                                                                          |
| 3.2.5.1 Etablierung, Verifizierung und molekularbiologische Analyse der                              |
| chromosomalen Rearrangements                                                                         |
| 3.2.5.2 Funktionelle Untersuchung der Isoform <i>mod(mdg4)</i> -56.3 in den chromosomalen            |
| Rearrangements                                                                                       |
| 3.2.5.3 T(2;3)26A,mod(mdg4) als Testsystem für Effektoren des trans-Spleißens 105                    |
| 4. Diskussion                                                                                        |
| 5. Zusammenfassung 127                                                                               |
| 6. Literaturliste                                                                                    |
| Anhang 1 141                                                                                         |
| Anhang 2                                                                                             |

# 1. Einleitung

Bei höheren Organismen besteht eine Diskrepanz zwischen Anzahl der Gene und der Größe ihres Proteoms. Beim Menschen zum Beispiel sind, nach anfänglichen Schätzungen von 100.000, heute etwa 21.000 Gene annotiert (Imanishi et al., 2004). Demgegenüber stehen ca. eine Million Proteine (ebd.), die von diesen Genen produziert werden. Es bedarf also Mechanismen, die es ermöglichen, aus einer relativ kleinen Anzahl von Genen eine sehr viel größere Anzahl Proteine zu erhalten. Diese Mechanismen und ihre weit verbreitete Anwendung sind es, die die Komplexität des menschlichen Organismus aus nur 21.000 Genen die z.B. *Caenorhabditis elegans* 18.000 ermöglichen, und mit Genen und Drosophila melanogaster mit 14.600 Genen nicht erreichen. Aber wie werden aus wenigen Genen viele Proteine? Die genetische Information durchläuft auf ihrem Weg von der DNA-Sequenz zur dreidimensional gefalteten, eventuell posttranslational modifizierten Aminosäuresequenz mehrere Ebenen, auf denen – fein reguliert – Komplexität "erzeugt" wird. Die Rekombination auf DNA-Ebene z.B. bei B-Lymphocyten generiert zwar pro Zelle/Klon nur eine Genversion, doch trägt jeder Klon, der eine Antikörpervariante produziert, zur Komplexität und damit zur Wirksamkeit des Immunsystems bei. Bei der Transkription sind es die Nutzung alternativer Promotoren und Transkriptionsstopsignale, die es ermöglichen, aus einem Gen verschiedene prä-mRNAs zu transkribieren. Die vielfältigen Möglichkeiten des alternativen Spleißens ermöglichen verschiedene Exonkombinationen und die Aufnahme von Intronsequenz in die reife mRNA (exon extension, intron retention). Das RNA editing verändert sogar die genetische Information der mRNA. Aus einer mRNA können während der Translation durch Nutzung von IRES(internal ribosome entry site)-Sequenzen und sogenannter nicht-kanonischer Start- und Stopcodons mehrere Proteine entstehen. Phänomene wie das programmed frame-shifting und bypassing (Chandler und Fayet, 1993; Pel et al., 1992; Ivanov et al., 1998; Maldonado und Herr, 1998) können während der Translation andere Proteine entstehen lassen, als sie im genetischen Code der mRNA festgelegt sind. tRNAs, deren Anticodon komplementär zu einem Stopcodon in der mRNA ist, können das entstehende Protein C-terminal verlängern.

Unter all diesen Mechanismen trägt das alternative (RNA)-Spleißen am meisten zur Proteinvielfalt bei. Während bei einzelligen Eukaryonten die Anzahl der Gene, die mehr als ein Intron besitzen – eine Voraussetzung für das alternative Spleißen –, stark schwankt (nur sechs *Saccharomyces cerevisiae*-Gene besitzen mehr als ein Intron, wohingegen mehr als

30% der Gene von *Schizosaccharomyces pombe* mehrere Introns enthalten), wurde bei diesen Organismen bisher kein alternatives Spleißen beobachtet (Ast, 2004; Wood *et al.*, 2002). Bislang konnte alternatives Spleißen ausschließlich in mehrzelligen Eukaryonten nachgewiesen werden. So werden bei *Drosophila melanogaster* 50% der Gene alternativ gespleißt und 92 – 94% aller menschlichen Gene weisen in ihren mRNAs mehr als eine Exon-Kombination auf (Wang *et al.*, 2008).

Das *trans*-Spleißen ist ein Sonderfall des Spleißens: Mindestens zwei unabhängige prä-RNAs werden zu einer reifen RNA zusammengefügt. Aus allen Reichen sind Genprodukte belegt, bei denen Exons aus verschiedenen prä-(m)RNAs kombiniert werden: tRNAs aus Archaea (Randau *et al.*, 2005), die *nad5*-Gene in den Mitochondrien von *Oenothera* und *Arabidopsis*, (Knoop *et al.*, 1991), die *spliced leader*-Sequenzen und der RNAi-Regulator ERI-6/7 aus *C. elegans* (Blumenthal, 1998; Liang *et al.*, 2003; Fischer *et al.*, 2008), ein Skorpion-Giftpeptid (Zeng *et al.*, 2006), Carnitinoctanoyltransferase (Caudevilla *et al.*, 2001), Östrogenrezeptor  $\alpha$  (Flouriot *et al.*, 2002) und *ACAT1* aus dem Menschen (Li *et al.*, 1999; Yang *et al.*, 2004) sind einige Beispiele für Gene, deren Produkte via *trans*-Spleißen entstehen.

Konkurrieren mehrere *trans*-Spleißakzeptoren um einen *trans*-Spleißdonor oder umgekehrt, spricht man von alternativem *trans*-Spleißen. Beim Menschen wurde alternatives, interchromosomales *trans*-Spleißen am Beispiel des Gens *CDC2L2* nachgewiesen (Jehan *et al.*, 2007). Ähnlich den SL-RNAs der Trypanosomen (Blumenthal, 2005), wird bei diesem Gen eine 67 Basen lange, nichtcodierende, von der *male-specific region of the Y chromosome* (MSY)-Region transkribierte RNA zur *CDC2L2*-prä-mRNA (codierender Locus auf Chromosom 1p36) *trans*-gespleißt. Die Yq12 benannte RNA enthält keine proteincodierende Sequenz, sondern bildet die 5'UTR (*untranslated region*) der entstehenden mRNA. Sie enthält ein CCAAT-Motiv, das eine testisspezifische Expression der dieser *CDC2L2*-Isoform ermöglicht.

Die Drosophila melanogaster-Gene modifier of midget4 und longitudinals lacking (lola, Horiuchi et al., 2003) sind die einzigen bekannten Gene, deren Isoformen durch <u>alternatives</u> trans-Spleißen generiert werden, und die dabei codierende Sequenzen miteinander verknüpfen. Am komplexen Genlocus mod(mdg4) gelang Dorn et al. (2001) der erste Nachweis des trans-Spleißens in Drosophila und den Arthropoden überhaupt. mod(mdg4) und lola besitzen auch eine ähnliche Struktur: Im 5'Bereich beider Loci finden sich vier gemeinsame, in jeder gebildeten mRNA enthaltene, Exons gefolgt vom trans-Spleißdonor. Hier werden die isoformspezifischen Exons (*trans*-Spleißakzeptoren) angefügt, die die variablen C-Termini der Mod(mdg4)- bzw. Lola-Proteine codieren.

Der *mod(mdg4)*-Locus codiert auf rund 27kb eine Familie von 31 Chromatinproteinen. Jedes der 31 Proteine besteht aus einem gemeinsamen N-Terminus von 402 Aminosäuren, codiert von Exons 1-4 im 5' Bereich des Gens, und einem isoformspezifischen C-Terminus, der von einem Exon 5 (bzw. 5 und 6) codiert wird. Neun der isoformspezifischen Exons werden vom antiparallelen DNA-Strang transkribiert (Abb. 1.1) – ein erster Hinweis auf die Komplexität des Locus und die Notwendigkeit des *trans*-Spleißens zur Generierung der Isoform-mRNAs. Der gemeinsame N-Terminus enthält im vorderen Teil die circa 100 Aminoäuren große BTB/POZ-Domäne (Broad-complex, Tramtrac, Brick-á-brac / Pox virus and Zinc finger; Bardwell und Treisman, 1994; Dorn *et al.*, 1993b). Diese in Transkriptionsfaktoren häufig vorkommende Domäne vermittelt eine Homo- oder Hetero-dimerisierung von Proteinen (Ahmad *et al.*, 1998; Read *et al.*, 2000; Mazur *et al.*, 2005), für einige BTB/POZ-Proteine wurde auch eine Homotetramerisierung und Oligomerisierung postuliert (Espinás *et al.*, 1999; Stogios *et al.*, 2005).

Die variablen C-Termini der Mod(mdg4)-Proteine enthalten je nach Isoform 71 bis 208 Aminosäuren. Der variable Teil des Proteins ist auch für die Namensgebung der Isoformen verantwortlich – sie werden nach dem aus der cDNA-Sequenz berechneten Proteinmolekulargewicht benannt. So codiert die Isoform mod(mdg4)-64.2 für das Protein Mod(mdg4)-64.2 mit einem abgeleiteten Molekulargewicht von 64,2kD. 28 der 31 Mod(mdg4)-Proteine enthalten in ihrem C-Terminus die nach konservierten Aminosäuren benannte FLYWCH-Domäne, eine ein C<sub>2</sub>H<sub>2</sub>-Motiv enthaltende Untergruppe der WRKY-Domäne (Babu *et al.*, 2006). Die FLYWCH-Domäne vermittelt wahrscheinlich eine sequenzspezifische Protein-DNA-Interaktion (Beaster-Jones und Okkema, 2004; Babu *et al.*, 2006)<sup>11</sup>. Der C-Terminus der Proteinisoform Mod(mdg4)-58.0 enthält eine BEN-Domäne (Abhiman *et al.*, 2008), während die Isoform Mod(mdg4)-65.0 im spezifischen Teil eine BED-Domäne besitzt (Labrador *et al.*, 2003). Im C-Terminus der Isoform Mod(mdg4)-55.1 konnten keine bekannten Domänen nachgewiesen werden.

<sup>&</sup>lt;sup>1</sup> Die Protein-Protein-Interaktion von Mod(mdg4)-67.2 und Su(Hw) geht nicht, wie in anderen Arbeiten diskutiert, auf die FLYWCH-Domäne sondern auf den C-Terminus zurück. Die Aberration  $mod(mdg4)^{76}$  produziert ein verkürztes Protein Mod(mdg4)-67.2 mit einer Länge von 567 statt 610 Aminosäuren. Dieses verkürzte Protein enthält die vollständige FLYWCH-Domäne (Positionen 451-512), ist jedoch nicht in der Lage, Su(Hw) zu binden (Gause *et al.*, 2001).



Abbildung 1.1 Schematische Darstellung der genomischen Region des komplexen mod(mdg4)-Locus und der bekannten insertionellen Mutationen im Locus. Die gemeinsamen Exons 1-4 sind links im grau unterlegten Bereich unterhalb der Skala dargestellt. Downstream davon, im spezifischen Teil des Gens sind 31 isoformspezifische Exons 5 (bzw. 5 und 6) aufgeführt. Sie sind nach dem theoretischen Molekulargewicht der codierten Proteinisoformen in kD bezeichnet. Gefüllte Boxen stehen für codierende Sequenz, leere für 5'- bzw. 3'UTR. Die trans-Spleißakzeptoren sind durch Aufstriche gekennzeichnet. Neun isoformspezifische Exons werden vom Gegenstrang codiert, sie sind nach oben versetzt dargestellt und ihre trans-Spleißakzeptoren weisen in Bezug auf den Locus Richtung downstream (rechts). Die insertionellen Mutationen sind durch Dreiecke dargestellt, die beiden mit Z3 bezeichneten Mutationen sind EMS-induzierte Mutationen im codierenden Bereich des spezifischen Exons der Isoform mod(mdg4)-56.3 (Koundakjian et al., 2004; Thomas et al., 2006). Der schwarze Balken unterhalb der Exons 1-3 markiert die Deletion mod(mdg4)<sup>neo129 R32</sup>. Die Karte ist nach Dorn et al. (2001) modifiziert Der komplexe mod(mdg4)-Locus wurde unabhängig in mehreren Experimenten identifiziert, darunter als *modifier of midget4* (Georgiev und Gerasimaova, 1989) bei der Suche nach *Enhancer*- und *Suppressor*-Mutationen für den  $y^2$ -Phänotyp (Biessmann, 1985 und 1986; Geyer *et al.*, 1986), als *Enhancer* für Positionseffektvariegation (Dorn *et al.*, 1993a), bei der Suche nach Mutanten mit veränderter Synapsenmorphologie (Gorczyca *et al.*, 1999) und als Effektor der *nondisjunction* in der männlichen Meiose I (Thomas *et al.*, 2006).

Viele der bekannten mod(mdg4)-Mutationen liegen im Bereich der gemeinsamen Exons. Mutationen des gemeinsamen Teils sind spätestens im Puppenstadium rezessiv letal und weisen damit mod(mdg4) als ein essentielles Gen für Drosophila melanogaster aus. Die rezessive Letalität geht entweder auf eine einzelne, essentielle Isoform zurück oder sie ist ein additiver Effekt, der sich um so stärker ausprägt, je mehr mod(mdg4)-Isoformen nicht mehr gebildet werden können. In unserer Arbeitsgruppe wurde der mod(mdg4)-Locus unter der Bezeichnung E(var)3-93D als ein starker dominanter Enhancer der Positionseffektvariegation (PEV) im  $w^{m4h}$ -System identifiziert (Dorn *et al.*, 1993a). Desweiteren zeigen homozygote Escaper-Männchen der gleichen Mutation ( $E(var)3-93D^{neo129}$ , siehe 2.1.3) eine homöotische Transformation des fünften ins vierte Abdominalsegment, die in transheterozygoten Tieren mit einer Trithorax-Defizienz und Mutationen anderer Gene der trx-Gruppe weiter verstärkt wird. Gleiches gilt für das PEV-Enhancement (Dorn et al., 1993b; Gerasimova und Corces, 1998; Büchner et al., 2000). mod(mdg4) wird daher der trx-Gengruppe zugeordnet. Bei der Untersuchung einer Mutation des mod(mdg4)-Exon 1 beobachteten Gorczyca et al. (1999) sogenanntes back-branching, die fehlerhafte Verzweigung von Motorneuronen und die Innervierung der falschen Muskeln.

Die beschriebenen Phänotypen werden von Mutanten des gemeinsamen Teils des Locus hervorgerufen, die alle gebildeten Isoformen betreffen. Neben diesen Mutationen, die alle die erwähnten pleiotropen Effekte aufweisen, wurden auch Mutationen der spezifischen Exons von mod(mdg4) identifiziert. Mit Hilfe dieser Mutanten läßt sich die Funktion der betreffenden mod(mdg4)-Isoform analysieren. Zum Beispiel handelt es sich bei der Isoform, die das *yellow*-Allel  $y^2$  (*gypsy*-Retrotransposoninsertion im 5'regulatorischen Bereich des *yellow*-Gens) beeinflußt, um die Isoform mod(mdg4)-67.2. Sie ist neben Su(Hw), CP190, dTopors, CP60 und EAST am Aufbau des *gypsy-insulator* beteiligt, einem Chromatinisolator, der *Enhancer*-Wirkung auf die Promotoren von Nachbargenen unterbindet durch Ausbildung von Chromatindomänen und als *chromatin boundary* Eu- von Heterochromatin trennt (Pai *et al.*, 2004; Capelson und Corces, 2005; Georgiev *et al.*, 2008). Eine Funktion der Isoform mod(mdg4)-56.3, aufgeklärt durch Untersuchung einer Mutation im spezifischen Exon dieser

Isoform, besteht in der Vermittlung der Paarung homologer Chromosomen in der Prophase I der männlichen Meiose von *Drosophila*, bei der kein synaptonemaler Komplex gebildet wird. Thomas *et al.* (2006) beschreiben die Isoform als essentiell für die korrekte Segregation der homologen Chromosomen. Die Bindestelle von Mod(mdg4)-56.3 an die Chromosomen ist wahrscheinlich das 240bp-Repeat in den intergenischen Bereichen zwischen den ribosomalen Genen (*internal/external transcribed spacer*, ITS/ETS; McKee *et al.*, 1992 und 2000). Eine Mutation der Isoform führt zu *nondisjunction*, der ungleichen Verteilung von Chromosomen auf die Tochterzellen.

Die Aufklärung zweier Funktionen des Genlocus mod(mdg4), die von zwei Isoformen erfüllt werden, wirft die Frage nach Redundanz auf: Kann eine mod(mdg4)-Isoform den Ausfall einer anderen komplementieren? Einen Hinweis geben immuncytologische Untersuchungen der Verteilungsmuster einzelner Mod(mdg4)-Proteine an Polytänchromosomen aus larvalen Speicheldrüsen. Hierbei wurden keine Übereinstimmungen oder Überlappungen gefunden (Gabler, 2003). Es ist also möglich, daß jede Proteinisoform eine separate Funktion hat und die Isoformen untereinander nicht redundant sind (Dorn und Krauss, 2003; Thomas *et al.*, 2006, Georgiev und Gerasimova, 1989). Die Auswirkung auf PEV, die homöotische Transformation und die Sterilität, die bei  $E(var)3-93D^{neo129}$ -Escaper-Weibchen auftritt, könnten also ihre Ursachen im Ausfall von drei verschiedenen mod(mdg4)-Isoformen haben.

Während der immuncytologischen Untersuchungen an Polytänchromosomen konnte für die Isoform Mod(mdg4)-64.2 eine Assoziation mit den Telomeren nachgewiesen werden, wahrscheinlich mit dem Retrotransposon *HeT-A* (M. Gabler, pers. Mitteilung). In *Drosophila* werden die Telomere nicht mittels Transposase in ihrer Länge erhalten, sondern es transponieren drei verschiedene Retrotransposons, *HeT-A*, *TART* und *TAHRE* an die Chromsomenenden, sodaß dort *head-to-tail*-Wiederholungen vollständiger und partieller Elemente als Telomer vorliegen (Abad *et al.*, 2004a,b, George *et al.*, 2006). Alle Telomere außer 3L wiesen ein deutliches Signal auf. Am Telomer dieses Chromsomenarms befindet sich im Referenzstamm des Genomprojekts kein *HeT-A*-Element (Abad *et al.*, 2004a).

Betrachtet man die Bindungsstellen der Isoformen Mod(mdg4)-64.2, -67.2 und -56.3, so wird als Muster die Assoziation mit – unter anderem – repetitiven Sequenzen im *Drosophila*-Genom ersichtlich.

# 1.1 Gegenstand der Arbeit

Zu Beginn der vorliegenden Arbeit war nur für eine Isoform eine spezifische Mutation bekannt:  $mod(mdg4)^{ul}$  (Georgiev und Gerasimaova, 1989). Vor kurzem konnten von Thomas *et al.* (2006) Mutationen im isoformspezifischen Exon von mod(mdg4)-56.3 (Z-Allele, siehe Abb. 1.1) identifiziert werden. Diese spezifischen Mutationen haben in beiden Fällen die Funktionsaufklärung für die betroffene Isoform erst ermöglicht.

Ein Schwerpunkt der vorliegenden Arbeit war daher die systematische Isolation von Mutationen im spezifischen Bereich des Locus sowie deren molekularbiologische und funktionelle Charakterisierung. Durch Mobilisierung von *P*-Elementen in dem Teil des Gens, der die isoformspezifischen Exons beherbergt, sollten einander überlappende Deletionen erzeugt werden. Diese Deletionen sollten es ermöglichen, Phänotypen, die anhand von Mutationen des gemeinsamen Teils dem Gen *mod(mdg4)* zugeordnet wurden, auf den Ausfall bestimmter Isoformen zurückzuführen. Zudem sollte nach Phänotypen gesucht werden, die durch die rezessive Letalität der Mutationen des gemeinsamen Teils eventuell überdeckt werden bzw. sich in den *Escaper*-Tieren nicht manifestieren.

Die Mutationen sollten auch dazu genutzt werden, im spezifischen Teil des Locus vermutete intragenische Promotoren zu identifizieren und die Regulation des Locus aufzuklären. Hierbei sollte die am weitesten *upstream* codierte Isoform *mod(mdg4)*-64.2, deren isoformspezifisches Exon sich den gemeinsamen *mod(mdg4)*-Exons in gleicher Orientierung anschließt, mit Hilfe verschiedener Transgene eingehend molekularbiologisch untersucht werden. Neben der Wirkung eines putativen Promotorelements unmittelbar *upstream* des isoformspezifischen Exons sollte der Einfluß eines *exonic splice enhancer* (ESE) auf die Expression der Isoform untersucht werden.

Die Isoform *mod(mdg4)*-64.2 ist jedoch nicht nur wegen der Position ihres spezifischen Exons sondern vor allem wegen ihres Bindemusters an Polytänchromosomen interessant. Neben zwölf reproduzierbaren Signalen in euchromatischen Bereichen (Wagner, 2007) ist Mod(mdg4)-64.2 vor allem mit den Enden der Chromosomen assoziiert. Dies läßt eine Funktion im Zusammenhang mit den Telomeren vermuten, die durch eine gezielte Deletion des isoformspezifischen Exons (*Ends-in gene targeting*; Xie und Golic, 2004), als Nullmutante für die Isoform, untersucht werden sollte. Die angewandte Methode erlaubt es, trotz der Komplexität und Verschachtelung des Locus, *mod(mdg4)*-64.2 zu deletieren, ohne die Bildung der anderen 30 Isoformen des Locus zu beeinflussen.

Die Generierung der 31 mod(mdg4)-Isoformen mittels trans-Spleißens ist zwar ausführlich belegt (Dorn et al., 2001; Gabler et al., 2005), auch können in vitro trans-Spleiß-Experimente in gewissem Maße den Prozeß nachbilden, doch ein Testsystem zur in vivo-Analyse des trans-Spleißens sollte wesentlich zum besseren Verständnis z.B. beteiligter Faktoren oder kritischer Parameter wie räumliche Entfernung der Spleißpartner und eventuelle Transportprozesse beitragen. Das System sollte einen einfach detektierbaren und quantifizierbaren Marker (EGFP) generieren. Da mod(mdg4) das am intensivsten erforschte Beispiel für trans-Spleißen in D. melanogaster darstellt, ist seine Sequenz das beste Vorbild für ein rationales Design der trans-Spleißpartner, auch wenn bei Verwendung von mod(mdg4)-Outronsequenzen<sup>12</sup> eine gewisse Kreuzreaktion mit prä-mRNAs des endogenen Locus zu erwarten ist (Dorn et al., 2001). Die beiden Teile des Markers sollen mittels trans-Spleißen zu einer reifen mRNA zusammengefügt werden. Sie sollten, als induzierbare Transgene in großer Zahl und verschiedenen Kombinationen ins D. melanogaster-Genom eingebracht, es ermöglichen, Distanzeffekte auf die Effizienz des trans-Spleißen messen, denn nach der Transkription müssen die beiden prä-mRNAs des Markergens den räumlichen Abstand zwischen den Transgeninsertionsstellen per Diffusion überwinden, ehe sie mittels Spliceosom zu einer reifen mRNA verknüpft werden. Eine weitere Anwendung des Systems wäre das Einbringen von Spleißfaktormutationen, um ihren Einfluß auf den trans-Spleißprozeß zu untersuchen. Dies ließe sich auch ausweiten als systematische, genomweite Suche nach Effektoren des trans-Spleißens, z.B. mittels der Defizienzen des DrosDel-Projekts (Ryder et al., 2004 und 2007).

Aus den Ergebnissen dieser Experimente und der Tatsache, daß es Gene gibt, deren Exons an verschiedenen Stellen in Genomen von Archaea und Pflanzen codiert sind (Randau *et al.*, 2005; Knoop *et al.*, 1997), ergibt sich die Frage nach der Notwendigkeit der physischen Integrität von *mod(mdg4)*. Falls alle Isoformen des Gens durch *trans*-Spleißen synthetisiert werden, ist die konservierte Struktur des Locus in verschiedenen *Drosophila*-Arten und *Anopheles gambiae* (Krauss und Dorn, 2004) dann nicht obsolet? Kann der Locus auch im zerteilten Zustand noch funktionieren, d.h. ausreichende Mengen mRNA durch *trans*-Spleißen bilden? Um dies zu untersuchen, sollten mit Hilfe der DrosDel-Elemente (Ryder *et al.*, 2004) definierte chromosomale Rearrangements induziert werden, deren einer Bruchpunkt sich etwa in der Mitte des *mod(mdg4)*-Locus befindet (*P{RS5}5-HA-1224*), und die die beiden Teile des Locus unterschiedlich weit voneinander entfernen. Im Hintergrund

<sup>&</sup>lt;sup>2</sup> Outron: keine genetische Information enthaltende Sequenz, die im Gegensatz zum Intron nur einseitig von einer Spleißstelle (Spleißdonor oder -akzeptor) flankiert ist; das jeweils andere Ende wird vom Transkriptionsstart (TSS) oder Transkriptionsstopsignal definiert.

der etablierten Chromosomenmutationen sollten die molekulare und physiologische Konzentration von *mod(mdg4)*-Isoformen untersucht werden, deren Transkriptionseinheiten (gemeinsamer Teil, isoformspezifischer Teil) voneinander weg verlagert sind. Soweit möglich sollte in diesem System außerdem getestet werden, ob *mod(mdg4)*-prä-mRNAs ausschließlich miteinander *trans*-spleißen, oder ob sie "promiskuitiv" (Kikumori *et al.*, 2001 und 2002) heterologe *trans*-Spleißreaktionen mit den prä-mRNAs anderer Gene eingehen, was zu intergenisch-chimären mRNAs führen würde.

# 2. Material und Methoden

# 2.1 Genetische Methoden

#### 2.1.1 Anzucht und Haltung der Fliegen

Anzucht und Haltung von *Drosophila melanogaster* erfolgten auf Standardmedium (alle Bestandteile, wenn nicht anders angegeben in w/v: 1% Agar-Agar; 4% Grieß; 5% Zuckerrübensirup; 1,33% Bierhefe; 1,33% Maismehl; 4% Rosinenbrei; 0,167% (v/v) Propionsäure), das zur Vermeidung von Schimmelbildung und Bakterienwachstum mit 0,67% (v/v) Nipagin (150g·l<sup>-1</sup> Methylhydroxibenzoat; 50g·l<sup>-1</sup> Propylbenzoat in 90% Ethanol) sowie abwechselnd mit 143µM Ampicillin bzw. 33,75µM Tetracyclin versetzt wurde. Stämme wurden bei 18°C gehalten, Kreuzungen bei 25°C durchgeführt. Für Ablagen zum Sammeln von Embryonen wurde ein Medium aus 2,2% Agar, 10% Zucker und Aktivkohle (nach Bedarf) verwendet. Zur Stimulation der Eiablage wurde das Medium mit Bäckerhefe, auf die Oberfläche gegeben, supplementiert.

## 2.1.2 Keimbahntransformation

Um transgene *Drosophila melanogaster* zu erzeugen, wurde die Methode von Rubin und Spradling (1982) angewendet und wie folgt abgewandelt: Alle Transgene waren  $w^+$ -markiert. Abhängig von der Transgengröße wurden 300 bis 700ng Transformationsvektor mit 150ng Transposasequelle gemischt (in V=10µ1; Robertson *et al.*, 1988) und mittels einer Glaskapillare in den apikalen Pol 0-40min alter, dechorionisierter Embryonen  $w^{1118}_{iso}$  injiziert.

## 2.1.3 Verwendete Mutationen in und außerhalb von mod(mdg4)

Die ausführliche Beschreibung der verwendeten Mutationen und *Balancer*-Chromosomen inklusive cytologisch bestimmter Inversionsbruchpunkte sowie dominanter und rezessiver Mutationen kann Lindsley und Zimm (1992) bzw. FLYBASE (www.flybase.bio.indiana.edu) entnommen werden.

Zur besseren Handhabung von Sequenzen wurde eine locusinterne Skalierung festgelegt. Zur Umrechnung zwischen dieser und der annotierten *Drosophila melanogaster*-Genomsequenz sei

angemerkt, daß Position 1 auf der *mod(mdg4)*-Skala der *D. melanogaster*-Genomposition 3R:17.205.907 entspricht; Position 10.001 korrespondiert zu 3R:17.195.907 und Position 30.001 entspricht 3R:17.175.907.

| Tabelle 2.1 In dieser Arbeit verwendete mod(mdg4)-Mut | tationen. |
|-------------------------------------------------------|-----------|
|-------------------------------------------------------|-----------|

| Mutation                        | Eigenschaften                                                                   |  |  |  |  |
|---------------------------------|---------------------------------------------------------------------------------|--|--|--|--|
| $(m d_0 4)^{02}$                | Insertion eines gypsy-Retrotransposons in drittes Intron von                    |  |  |  |  |
| mou(mag4)                       | <i>mod</i> ( <i>mdg4</i> ) (3R:17.202.239) (alias: 71-4)                        |  |  |  |  |
| 1/ 1 / neo129                   | <i>P</i> -Elementinsertion (pUChsneo $ry^+$ ) in drittes Intron von $mod(mdg4)$ |  |  |  |  |
| mod(mdg4) <sup>maa</sup>        | (3R:17.202.202)                                                                 |  |  |  |  |
|                                 | Revertante von $mod(mdg4)^{neo129}$ , Deletion der ersten drei                  |  |  |  |  |
|                                 | gemeinsamen Exons von mod(mdg4), 205bp P-Elementrest an                         |  |  |  |  |
| mod(mdg4) <sup>neo129 R32</sup> | Insertionsstelle verblieben (M. Gabler, persönliche Mitteilung); P-             |  |  |  |  |
|                                 | Elementrest besitzt Promotoraktivität; 5'verkürzte mRNAs entstehen,             |  |  |  |  |
|                                 | deren codierte Mod(mdg4)-Proteine nicht funktionell sind                        |  |  |  |  |
|                                 | Defizienz 93D6-7 bis 93E1 (Mohler und Pardue, 1982), die den                    |  |  |  |  |
| Df(3R)GC14                      | kompletten mod(mdg4)-Locus deletiert, umfaßt mindestens 13                      |  |  |  |  |
|                                 | weitere Gene inkl. ebony                                                        |  |  |  |  |
| $mod(mdg4)^{L3101}$             | P-Elementinsertion in drittes Exon von mod(mdg4) (3R:17.202.327)                |  |  |  |  |
| 14 1 4 04                       | Revertante von $mod(mdg4)^{L3101}$ , resultiert in 56bp-Einschub im ORF         |  |  |  |  |
| mod(mdg4)                       | von mod(mdg4) (M. Gabler, persönliche Mitteilung) (alias: 8-6)                  |  |  |  |  |
| 1/ 1/07                         | EMS-induzierte Mutationen D35S D93N innerhalb der BTB-Domäne                    |  |  |  |  |
| moa(mag4)                       | im gemeinsamen Teil von <i>mod(mdg4)</i> (alias: A I 351)                       |  |  |  |  |
|                                 | insertionelle Mutation in den Bereich der gemeinsamen Exons 1-4                 |  |  |  |  |
| moa(mag4)                       | (alias: 70II; R. Dorn, persönliche Mitteilung)                                  |  |  |  |  |
|                                 | γ-strahleninduzierte Defizienz der cytologischen Bereiche 93D6 bis              |  |  |  |  |
|                                 | 93E1 (Mohler und Pardue, 1982; Walldorf et al., 1984), Bruchpunkt               |  |  |  |  |
| $D\ell(2D) = C = A$             | wurde im Rahmen dieser Arbeit 18.701 (3R:17.187.207) bis 18.782                 |  |  |  |  |
| DJ(SK)eGp4                      | (3R:17.187.125) eingegrenzt; distaler Teil von mod(mdg4) deletiert;             |  |  |  |  |
|                                 | Isoformen downstream von mod(mdg4)-55.3 werden nicht mehr                       |  |  |  |  |
|                                 | gebildet                                                                        |  |  |  |  |
|                                 | P-Element-Revertante einer Insertion in tinman (laut Gerasimova                 |  |  |  |  |
| $D\mathcal{L}(2D) = D^2$        | et al., 1995), Deletion schließt proximal ebony ein, distaler                   |  |  |  |  |
| DJ(3K)eB2                       | Bruchpunkt (P-Elementinsertionsstelle, 15bp P-Sequenz sind                      |  |  |  |  |
|                                 | erhalten) 14.935 (3R:17.190.971); Isoformen ab mod(mdg4)-58.0                   |  |  |  |  |

|                   | werden nicht mehr gebildet                                     |  |  |  |
|-------------------|----------------------------------------------------------------|--|--|--|
| P{RS5}5-HA-1224   | P-Elementinsertion bei 3R:17.191.073                           |  |  |  |
|                   | P-Elementinsertion bei 3R:17.203.088 in mod(mdg4)-Exon 1;      |  |  |  |
|                   | Transkription: Promotoren von white und/oder CG32795 und       |  |  |  |
| P{RS3}CB-6686-3   | P{RS3}-3'P-Elementende; ausgwählte Isoformen wurden nachgewie- |  |  |  |
|                   | sen; komplementiert andere Mutationen des gemeinsamen Teils    |  |  |  |
|                   | vollständig (ausführliche Daten: siehe Anhang 2 A2.1)          |  |  |  |
| P(KC)08515        | P-Elementinsertion bei 3R:17.185.384, exakte Bezeichnung:      |  |  |  |
| I {KG}00515       | $P{SUPor-P}mod(mdg4)^{KG\ 08515}$                              |  |  |  |
| <i>P{EY}10282</i> | P-Elementinsertion bei 3R:17.175.340                           |  |  |  |
| 73 5578           | EMS-induziert; Allel aus Zuker-Kollektion (Koundakjian et al., |  |  |  |
| <i>LJ-JJ</i> /0   | 2004); Mutation W449Stop in Mod(mdg4)-56.3                     |  |  |  |

 Tabelle 2.2 In dieser Arbeit verwendete Drosophila melanogaster-Linien mit Mutationen und/oder Transgenen außerhalb von mod(mdg4).

| Linie                | Mutationen                                                                                            |  |  |  |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Dr, Δ2-3 / TM6C, Sb  | Transposasequelle, regulatorisches zweites Intron deletiert ( $\Delta 2$ -3), in                      |  |  |  |  |  |
|                      | der Keimbahn aktiv; <i>Dr</i> -Marker                                                                 |  |  |  |  |  |
| a-31                 | $y^{l}$ ac sc pn (keine Mutation in mod(mdg4))                                                        |  |  |  |  |  |
| e-27                 | $w^{m4h}$ ; se ss e ro                                                                                |  |  |  |  |  |
| $YB^S y^+$           | Y-Chromosom mit dominanter <i>Bar-Stone</i> -Mutation und $y^+$ -Marker,                              |  |  |  |  |  |
|                      | vermutlich aus $T(1;Y)$ nicht invertierter Sequenz $(l(1)J1^+ y^+ ac^+)$ mit                          |  |  |  |  |  |
|                      | In(1)sc <sup>8</sup> entstanden (Brosseau und Lindsley, 1958; Brosseau et al.,                        |  |  |  |  |  |
|                      | 1961)                                                                                                 |  |  |  |  |  |
| Bloomington #2057    | $y^1 \ oc^{R3.2}$ ; $Gr22b^1 \ Gr22d^1 \ cn^1 \ CG33964^{R4.2} \ bw^1 \ sp^1$ ; $LysC^1 \ lab^{R4.2}$ |  |  |  |  |  |
|                      | $MstProx^1$ $GstD5^1$ $Rh6^1$ <e>; Referenzstamm des</e>                                              |  |  |  |  |  |
|                      | Drosophila melanogaster-Genomprojekts                                                                 |  |  |  |  |  |
| da-Gal4              | P{GAL4-da.G32}UH1/TM6C, Nummer der Linie im Bloomington                                               |  |  |  |  |  |
|                      | Stock Centre: 5460; Gal4-Expression unter daughterless-Promotor                                       |  |  |  |  |  |
| Actin-Gal4 (2. Chr.) | P{Act5C-GAL4}25F01/SM6, Nummer der Linie im Bloomington                                               |  |  |  |  |  |
|                      | Stock Centre: 4414; Gal4-Expression unter Actin-Promotor                                              |  |  |  |  |  |
| Actin-Gal4 (3. Chr.) | P{Act5C-GAL4}17bF01/TM6C, Nummer der Linie im Bloomington                                             |  |  |  |  |  |
|                      | Stock Centre: 3954; Gal4-Expression unter Actin-Promotor                                              |  |  |  |  |  |
| T80-Gal4             | P{GawB}T80/SM6, Nummer der Linie im Bloomington Stock                                                 |  |  |  |  |  |
|                      | Centre: 1878; Gal4-Expression in Imaginalscheiben des 3. Larven-                                      |  |  |  |  |  |
|                      |                                                                                                       |  |  |  |  |  |

Sulai Ofalstamoutationan

| . 1  | •    |
|------|------|
| etad | nme  |
| stau | iums |

| ementinsertion in <i>hephaestus</i> (3R: 27.763.903), alle<br>nen außer <i>heph</i> -PM (FBpp0111778) betroffen |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| nen außer heph-PM (FBpp0111778) betroffen                                                                       |  |  |  |  |
|                                                                                                                 |  |  |  |  |
| -Elementinsertion in hephaestus (3R:27.756.268), alle                                                           |  |  |  |  |
| heph-Isoformen betroffen                                                                                        |  |  |  |  |
| sertion $P{GT1}{l(2)}37Cb^{BG01776}$ in CG10689, alias                                                          |  |  |  |  |
| Cb                                                                                                              |  |  |  |  |
| tra <sup>1</sup> , ca. 1kb große Deletion in transformer                                                        |  |  |  |  |
| P{PZ}Prp19 <sup>07838</sup> cn <sup>1</sup> , P-Elementinsertion in Prp19                                       |  |  |  |  |
| <i>P{lacW}noi</i> <sup>i3E</sup> , <i>P</i> -Elementinsertion in <i>noisette</i>                                |  |  |  |  |
| P{lacW}B52 <sup>s2249</sup> , P-Elementinsertion in B52                                                         |  |  |  |  |
| <i>P{SUPor-P}SC35<sup>KG02986</sup></i> , <i>P</i> -Elementinsertion in <i>SC35</i>                             |  |  |  |  |
| 9 P{lacW}snRNA:U4:39B <sup>k09410</sup> , P-Elementinsertion in Gene für U4                                     |  |  |  |  |
| egion 39B und <i>CG</i> 8678                                                                                    |  |  |  |  |
| $28^{06751}$ , <i>P</i> -Elementinsertion in <i>U2af38</i>                                                      |  |  |  |  |
|                                                                                                                 |  |  |  |  |

#### 2.1.4 P-Element-Mobilisierung und -Reversion

Das zu mobilisierende P-Element tragende Tiere wurden mit einer Transposasequelle ( $\Delta 2$ -3 ohne regulatorisches zweites Intron, in Keimbahn aktiv, dominant Dr-markiert) gekreuzt, die transheterozygoten F1-Tiere (Dr und  $w^+$ ) selektiert und weiter gekreuzt. Im Falle einer beabsichtigten Mobilisierung vom X-Chromosom wurden männliche F1-Tiere selektiert, mit  $w^{-}$ -Weibchen gekreuzt und in der F2-Generation wiederum  $w^{+}$ -markierte männliche Tiere selektiert. Da das männliche X-Chromosom ausschließlich an weiblichen Nachwuchs muß das **P**-Element mobilisiert worden *P*weitergegeben wird, sein. In Elementausbauexperimenten wurde wiederum mit der Transposasequelle (Dr,  $\Delta 2$ -3/TM6C, Sb; in einem Fall Dr,  $\Delta 2-3$  Rev31/TM6C, Sb) gekreuzt und Dr w<sup>+</sup> doppelt markierte Tiere selektiert. Diese wurden mit einem Balancerstamm für das dritte Chromosom (w; TM6C, Sb *eb* / TM2, *Ubx eb*) gekreuzt. In der F2-Generation wurden Tiere selektiert, die den  $w^+$ -Marker verloren hatten und ein Balancer-Chromosom trugen (d.h. eb<sup>+</sup>-Phänotyp). Nach Aufbau einer heterozygoten, stabilen Linie mit einem Balancerchromosom als Homologen wurde aus einem Tier per single fly prep genomische DNA extrahiert und für die PCR-Analyse der Mutation eingesetzt. Für weiterführende Untersuchungen wurden homozygote oder transheterozygote Tiere (Ausgangs-*P*-Element oder definierte Deletionen) verwendet.



**Abbildung 2.1** (A) Position und Orientierung der Primer für die PCR zur Gruppierung der Revertanten. (B) Typische PCR-Ergebnisse mit genomischer DNA heterozygoter Revertanten bei internem Umbau des *P*-Elements (links) und einseitigen Ausbauten bzw. einseitigen Deletionen (Mitte und rechts).

Engels *et al.* (1990) beschreiben eine bessere deletionserzeugende Mobilisierung von *P*-Elementen, wenn sich an der Position der Insertionsstelle auf dem homologen Chromosom eine Defizienz befindet. Daher wurden für das  $P\{KG\}08515$ -Mobilisierungsexperiment Transposasequelle und  $P\{RS5\}$ -5-HA-1224-Revertante Rev31 (siehe Abb. 3.1) rekombiniert und  $P\{KG\}08515$  mit diesem Chromosom als Homologem mobilisiert, wie im folgenden Kreuzungsschema dargestellt.

P:  $\frac{P\{KG\}08515}{\text{TM6C}, Sb} \propto \frac{Dr, \Delta 2 - 3 \text{ Rev31}}{\text{TM6C}, Sb}$ 

F1:  $\frac{P\{KG\}08515}{Dr,\Delta 2-3 \text{ Rev}31} \propto \frac{\text{TM6C}, Sb}{\text{TM2}, Ubx}$ 

F2: Selektion  $w^- Dr^+ Sb$  oder  $w^- Dr^+ Ubx$  und Linienaufbau

# 2.1.5 Erzeugung chromosomaler Umbauten und einer Defizienz mittels der DrosDel-*P*{*RS*}-Elemente

Zur Etablierung der chromosomalen Umbauten (Chromosomenmutationen) mit einem Bruchpunkt in mod(mdg4) wurde das *P*-Element *P*{*RS5*}*5-HA-1224* (siehe Tabelle 2.1 und 2.3) in Kombination mit den in Tabelle 2.3 aufgeführten *P*{*RS*}-Elementen (*rearrangement screen*, Golic und Golic, 1996) verwendet.

**Tabelle 2.3** Für chromosomale Umbauten verwendete P(RS)-Elemente und erzeugte Chromosomenmutationen. Die Orientierung des *P*-Elements besagt, wie es 5' $\rightarrow$ 3' relativ zum annotierten *Drosophila melanogaster*-Genom ausgerichtet ist.

| <b>P-Element</b> | Eigenschaften                                      | Umbau /Defizienz           |  |
|------------------|----------------------------------------------------|----------------------------|--|
| 5-HA-1224        | P{RS5}-Elementinsertion bei 3R:17.191.073          | alle                       |  |
|                  | (cytologische Region 93D8; Orientierung vorwärts)  |                            |  |
| CB-0716-3        | P{RS3}-Elementinsertion bei 2L:5.949.427           | T(2;3)26 $A$ , $mod(mdg4)$ |  |
|                  | (cytologische Region 26A3; Orientierung vorwärts)  |                            |  |
| CB-6279-3        | P{RS3}-Elementinsertion bei 3R:12.260.706          | In(3R)89C,mod(mdg4)        |  |
|                  | (cytologische Region 89B16; Orientierung vorwärts) |                            |  |
| CB-5827-3        | P{RS3}-Elementinsertion bei 3R:18.552.029          | In(3R)mod(mdg4),94C        |  |
|                  | (cytologische Region 94C4; Orientierung vorwärts)  |                            |  |
| CB-6403-3        | P{RS3}-Elementinsertion bei 3R:17.122.251          | Df(3R)ED6050               |  |
|                  | (cytologische Region 93D4; Orientierung rückwärts) |                            |  |

Die verwendeten P{RS3}-Elemente wurden nach ihrer Position und Orientierung im Genom so gewählt, daß ihre Kombination mit  $P\{RS5\}$ -5-HA-1224 in den gewünschten chromosomalen Umbauten resultierte. Die Kreuzungen wurden wie in Ryder et al. (2004) beschrieben, durchgeführt. Zunächst wurde bei allen P-Elementen das FRT(flippase recombination target)flankierte Exon des white-Markers durch hitzeschockvermittelte Expression der FLP-Rekombinase entfernt (Abb. 2.2 A); es entstand ein remnant-Element, das ein Exon des Markergens besitzt, also im  $w^{1118}_{iso}$ -Hintergrund zu weißäugigen Tieren führt. Durch FLPvermittelte Rekombination von 5-HA-1224r mit einem P{RS3r}-Element entstanden zwei verschiedene Elemente, eines, das den wiederhergestellten white-Marker enthält ( $w^{+}$ ), und eines, das zwischen den P-Elementenden lediglich ein FRT enthält. Während bei entgegengesetzter Orientierung der Ausgangselemente (entspricht gleicher Orientierung der FRTs) Deletionen und Duplikationen entstehen, kommt es bei gleicher Orientierung der P-Elemente (entspricht entgegengesetzter Orientierung der FRTs) je nach Insertionsort zu Inversionen bzw. Translokationen, wobei die Elemente die Bruchpunkte der chromosomalen Umbauten darstellen. So wurde zum Beispiel bei der Inversion In(3R)89C, mod(mdg4) die Sequenz zwischen 3R:12.260.706, was dem Insertionsort von P{RS3}-CB-6279-3 entspricht, und *P*{*RS5*}-5-*HA*-1224 an Position 3R:17.191.073 invertiert (siehe Tab. 2.3).

Die Rekombination zwischen 5-HA-1224r und CB-6403-3r führt zu der 68,8kb großen Defizienz Df(3R)ED6050, die  $w^+$  markiert ist und einer entsprechenden Duplikation ( $w^-$ ). Hier wurde das  $w^+$ -Element mit TM6C, Sb balanciert; das das  $w^-$ -Element enthaltende

Duplikationschromosom wurde nicht selektiert. Die Defizienz Df(3R)ED6050 umfaßt den distalen Teil von mod(mdg4) (20 isoformspezifische Exons mod(mdg4)-58.0 bis -54.5), CG16791 und das Gen für die Hitzeschock-RNA  $\omega$  (CR31400), und endet ca. 2kb vor dem folgenden Gen SIFR (CG10823).

Alle chromosomalen Umbauten und die Defizienz Df(3R)ED6050 wurden per PCR und Sequenzierung bestätigt. Dazu wurde eine das  $w^+$ -Element überspannende PCR mit Primern aus den flankierenden genomischen Regionen durchgeführt (grüne Pfeile in Abb. 2.2 A), das PCR-Produkt mittels pGEM-T Cloning Kit (Promega) in pGEM<sup>®</sup>-3Zf(+) ligiert und sequenziert (5,7kb  $w^+$ -Element plus flankierende genomische Bereiche, "*one step confirmation*", www.drosdel.co.uk). Eine PCR über das  $w^-$ -Element hinweg ist nicht möglich, da die 5'P-Elementenden in einem DNA-Einzelstrang eine stabile Haarnadelstruktur mit einem Stamm von ca. 580bp ausbilden, während das FRT den *loop* des *hairpins* (ca. 200bp) formt.







**Abbildung 2.2** Generierung chromosomaler Umbauten mittels  $P\{RS\}$ -Elementen. (A) FLP-Rekombinase-vermittelter Ausbau des von zwei FRTs (*flippase recombination targets*) flankierten *white*-Exons, Entstehung von  $P\{RSr\}$ -Elementen. Durch FLP-vermittelte Rekombination eines  $P\{RS5r\}$ - und eines  $P\{RS3r\}$ -Elements entstehen je ein  $w^+$ - und  $w^-$ Element, die die Bruchpunkte der chromosomalen Umbauten markieren. grüne Pfeile: Position der Primer zur überspannenden PCR (*"one step confirmation"*), durchgestrichene Pfeile: PCR nicht möglich (**B**) Schema der FLP-Rekombinase-vermittelten Rekombination eines drittchromosomalen  $P\{RS5r\}$ - und eines  $P\{RS3r\}$ -Elements auf dem zweiten Chromosom, wobei eine reziproke T(2;3)-Translokation entsteht.

#### 2.1.6 Knock out der Isoform mod(mdg4)-64.2 – "Ends-in gene targeting"

Die Methode des "*Ends-in gene targeting*" (Xie und Golic, 2004) wurde angewendet, um das isoformspezifische Exon der Isoform mod(mdg4)-64.2 zu deletieren, ohne daß nach erfolgter Deletion Fremdsequenz am Mutationsort zurückbleibt. Dazu wurden zunächst die sogenannten Donorkonstrukte, die die gewünschte Mutation sowie beidseitig flankierend 3kb der endogenen mod(mdg4)-Sequenz enthielten, erstellt. Die verwendeten PCR-Primer sind in Anhang 1 unter "für Ends-in-Konstrukte" aufgelistet. In Abb. 2.3 sind die Transgene für die Deletion des isoformspezifischen Exons ( $\Delta 64.2$ ) sowie für den Austausch der 404. Aminosäure der Proteinisoform (T<sub>404</sub>) gegen ein Stopcodon und nachfolgend einer *Kpn*I-Schnittstelle zur Nachweisbarkeit der Mutation (64.2Stop) schematisch dargestellt. Die Vorgehensweise beim Zusammenfügen der Teilamplifikate und Ligation in den Transformationsvektor pTV2 ist analog der in Xie und Golic (2004) beschriebenen und wird darum hier nicht detailliert beschrieben. Die Konstrukte wurden anschließend in den Transformationsvektor pTV2 (von K. Golic zur Verfügung gestellt) kloniert und mittels Keimbahntransformation in  $w^{1118}_{iso}$  (Rubin und Spradling, 1982) eingebracht (1.200 Embryos je Konstrukt ergaben eine Linie 64.2Stop) und 16 Linien  $\Delta 64.2$ ).



Abbildung 2.3 Transgene/Donorkonstrukte für Ends in-vermittelten *Knock out* der Isoform mod(mdg4)-64.2. Beide Transgene reichen von Position 3.800 bis 11.447 (locusinterne Skala), das  $\Delta$ 64.2-Konstrukt enthält eine Deletion von 7.081 bis 8.026, während bei 64.2Stop ein Threonincodon (T<sub>404</sub> in Mod(mdg4)-64.2) gegen ein Stopcodon ausgetauscht wurde. Beide Transgene besitzen an Position 5.562 eine I-*SceI*-Restriktionsschnittstelle.<sup>13</sup>

Die Mobilisierung und Linearisierung der Donor-DNA erfolgte durch Einkreuzung und hitzeschockvermittelte Expression der FLP-Rekomkinase und I-*Sce*I. Da nur das  $\Delta 64.2$ -Konstrukt mobilisiert werden konnte, sind die weiteren Schritte für dieses Konstrukt/Experiment beschrieben:

P: 
$$\frac{P\{\text{Donor }\Delta 64.2\}}{\text{homozygot bzw. SM6, }Cy} \times y^1 w^*; \frac{P\{ry^{+t7.2} = 70\text{FLP}\}11 P\{ry^{+t1.8} = 70\text{I} - SceI\}2B noc^{\text{Sco}}}{CyO S^2}$$

(Hitzeschock 60min 37°C bei 0 bis 48h)

F1:  $w^{\text{mosaik}}$  und  $w^{-}CyO^{+}$  selektiert, Einzeltier  $\times w^{1118}_{iso}$ 

F2: 
$$w^+ \times w^-; \frac{\text{TM6C}, Sb}{\text{TM2}, Ubx}$$

Drei bis fünf Tage nach Beginn der F2-Kreuzung wurde die DNA der  $w^+$ -Fliegen nach der *single fly prep*-Methode isoliert und mittels PCR getestet, ob die FLP-vermittelte Mobilisierung der Donor-DNA erfolgreich war. Zeitigte diese PCR das gewünschte Ergebnis, also ein "leeres" Donorelement, wurde in einer zweiten PCR das Vorhandensein der Mutation  $\Delta 64.2$  überprüft. War auch dieser Test erfolgreich, wurden aus den entsprechenden Kreuzungen balancierte Linien aufgebaut und diese auf den korrekten Insertionsort der Donor-DNA hin getestet.

Bei Integration des Donorkonstrukts in den endogenen *mod(mdg4)*-Locus kommt es zu einer partiellen Duplikation, die im nächsten Schritt der *"Ends-in gene targeting"*-Mutagenese aufgelöst wurde. Dabei ist abhängig von der Position des Rekombinationsereignisses innerhalb des duplizierten Bereichs ob Wildtyp- oder mutierte Sequenz zurückbleiben.

<sup>&</sup>lt;sup>3</sup> Auf eine Darstellung der für die Keimbahntransformation verwendeten Plasmide wurde aufgrund eines "CONFIDENTIAL!"-Aufdrucks auf den Dokumentationen der pTV2-Plasmidsequenz und MCS verzichtet.

P: 
$$\frac{\text{partielle Duplikation } (z.B.\Delta 1385c)}{\text{homozygot bzw. TM6C, } Sb} \times w^{1118}; \frac{P\{v^{+t1.8} \text{ hs} - I - CreI.R\} 1 \text{ A } Sb^1}{\text{TM6 } Hn, Ubx}$$

(Hitzeschock 60min 37°C bei 0 bis 48h)

F1:  $w^{\text{mosaik}} Sb$  und  $w^{-} Sb$  selektiert; Einzeltier  $\times w^{1118}_{iso}$ 

F2: 
$$w^{-}$$
 selektiert  $\times w^{-}; \frac{\text{TM6C}, Sb}{\text{TM2}, Ubx}$ 

Nach Expression der I-*Cre*I-Restriktionsendonuklease kam es bei den F1-Tieren zu teils extremen körperlichen Mißbildungen, unabhängig, ob das Duplikations- oder Balancer-Chromosom vererbt worden waren (siehe Anhang 2 als Dokumentation). Aus der F2-Kreuzung wurden balancierte und später homozygote Linien mit deletiertem spezifischen Exon der Isoform *mod(mdg4)*-64.2 aufgebaut und die Mutation mittels PCR, Southern Blot und Sequenzierung (Position 2.000 bis 13.000 locusinterne Skala) analysiert.

## 2.2 Molekularbiologische Methoden

Molekularbiologische Standardmethoden wie z.B. PCR, Herstellung chemisch kompetenter *E. coli*-Zellen (Inoue-Methode) oder Trennung von Restriktionsfragmenten in Agarosegelen wurden nach Sambrook und Russell (Hrsg., 2001) bzw. nach Protokollen und Empfehlungen der Hersteller verwendeter Reagenzien und Kits durchgeführt. Genutzte Kits werden bei ihrer ersten Erwähnung in dieser Arbeit namentlich mit Hersteller angegeben.

Die Präparation von Plasmid-DNA erfolgte nach der *boiling prep*-Methode (Holmes und Quigley, 1981), Präparationen größeren Maßstabs mittels Plasmid-Mini- (MBI Fermentas) oder, für Keimbahntransformationen, Plasmid-Midi-Kit (Macherey&Nagel). Nucleinsäure-verdaus wurden mit Restriktionsendonucleasen der Firma MBI Fermentas durchgeführt. DNA-Elution aus Agaraosegelen erfolgte mittels *freeze & squeeze*-Technik oder Nucleobond II-Kit (Macherey&Nagel) bzw. Qiaquick Gel Extraction Kit (Qiagen). Ligationen von DNA-Fragmenten wurden über Nacht bei 18°C oder nach Lund *et al.* (1996) inkubiert.

PCRs wurden nach den in Kleppe *et al.* (1971) dargelegten Prinzipien geplant. Die Amplifikation der Zielsequenzen erfolgte mittels der thermophilen DNA-Polymerasen (Saiki *et al.*, 1986) *Taq* (Invitrogen), *Pfu*, *Pfu*-Turbo (beide Stratagene) oder iProof (Bio-Rad). Eine Liste der verwendeten Primer ist aufgrund ihres Umfangs dieser Arbeit als Anhang 1 beigefügt.

Die Klonierung von PCR-Amplifikaten erfolgte in pGEM<sup>®</sup>-3Zf(+). DNA-Sequenzreaktionen wurden mit BigDye® Terminator v1.0 bzw. v1.1 Cycle Sequencing Kit durchgeführt und die Reaktionsgemische mit ABI Prism® 377 bzw. ABI Prism® 3130xl Genetic Analyzer (Applied Biosystems) aufgetrennt.

Die Auswertung der Sequenzdateien erfolgte mit Chromas Lite 2.01 (Technelysium, Ltd.) und Generunner 3.05 (Hastings, Ltd.). Sequenzvergleiche wurden mittels nblast (Altschul *et al.*, 1990 und 1997) unter Verwendung des annotierten *Drosophila melanogaster*-Genoms bzw. *Drosophila virilis*-BAC-Sequenz (v3.x bis v5.2 www.ncbi.nlm.nih.gov und www.flybase.bio.indiana.edu/blast) durchgeführt.

Als Transformationsvektoren für Transgene wurden pW8 (Klemenz *et al.*, 1987) und die pUAST-Variante pCaSpeR3 (Duffy *et al.*, 2002) verwendet.

#### 2.2.1 DNA-Isolation aus Fliegen

Um geringe Mengen genomischer DNA aus einzelnen adulten Tieren zu isolieren, fand die *single fly prep*-Methode (abgewandelt nach Gloor *et al.*, 1991) Anwendung. Für die Isolation großer Mengen genomischer DNA erwiesen sich die Methoden nach Brandstädter *et al.* (1994) und Jowett *et al.* (1986) als erfolgreich.

## 2.2.2 Inverse PCR

Die inverse PCR diente der Ermittlung von unbekannten *P*-Elementinsertionsorten. Nach Isolation der genomischen DNA des zu untersuchenden Genotyps wurde diese mit einem Restriktionsenzym mit 4bp Erkennungssequenz verdaut und anschließend unter Bedingungen religiert, die bevorzugt zu einer Zirkularisierung der Restriktionsfragmente führen. Die Ligationsreaktion diente anschließend als PCR-*template*. Zunächst erfolgte eine Amplifikation mit 5'P\_forw-1 und 5'P\_rev-1 (siehe Anhang 1), dann schloß sich eine *nested* PCR mit 5'P\_forw-2 und 5'P\_rev-2 an. Die PCR-Produkte wurden nach Agarosegelelektrophorese aus dem Gel eluiert und  $\leq 5\mu$ l Eluat mit 8pmol 5'P\_rev-2 je 20\mul-Reaktion sequenziert. Die exakte Insertionsstelle wurde durch Abgleich (nblast) der Sequenzdaten mit der *Drosophila*-Genomdatenbank identifiziert.

## 2.2.3 Southern Blot

Genomische DNA des zu untersuchenden, homozygoten Genotyps wurde über Nacht (16h) mit ausgewählten Restriktionsenzymen (1U/µg DNA) verdaut. Die elektrophoretische Auftrennung der Verdaus erfolgte bei 1V/cm in 0,8% Agarose in 1× TAE für mindestens 12h. Nach alkalischer Behandlung des Gels (45min in 1M NaOH, 1,5M NaCl) und anschließender Neutralisierung (45min in 1M Tris/HCl; 1,5M NaCl; pH7,4) wurden die Restriktionsfragmente mittels Kontaktblot auf eine Nylonmembran übertragen. Der Blotpuffer war 20× SSC. Die DNA wurde durch UV-Lichtexposition mit der Membran quervernetzt. Anschließend wurde die Membran in Hybridisierungspuffer (0,1ml/mm<sup>2</sup>; MRC, GB) überführt und  $\geq$ 1h vor Zugabe der radioaktiven Sonde präinkubiert.

Herstellung der Sonden: Ausgangsmaterial für die Herstellung der Sonden für den Southern Blot waren die pBluescript-Plasmide ,pBS+0-7,5Bam' und ,pBS+7,2 aus 480' welche beide genomische mod(mdg4)-Sequenz enthalten. Je 1µg Plasmid wurde  $\geq$ 2h mit 10U BamHI verdaut und anschließend die Fragmente in einem 0,8% igen Agarosegel getrennt. Die ca. 7kb großen Banden wurden ausgeschnitten und die DNA aus den Agaroseblöcken eluiert. Diese Vorgehensweise wurde angewandt um die Menge pBluescript in der radioaktiv zu markierenden DNA zu verringern, da ein starkes Signal aus der Kreuzhybridisierung von pBluescript mit dem eingesetzten DNA-Größenstandard (DNA Ladder Mix, MBI Fermentas) erwartet wurde. Eine geringe Menge des Vektors wurde jedoch in den Geleluaten beibehalten durch eine verkürzte Auftrennung im Agarosegel; somit konnte eine Markierung der aus den Restriktionsverdaus entstandenen Banden wie auch des DNA-Größenstandard sichergestellt werden. Die DNA-Konzentration der Geleluate wurde spektrophotometrisch bestimmt und beide äquimolar gemischt. 50ng des Gemischs wurden nach Empfehlung des Herstellers mit dem Megaprime DNA Labeling Kit (Amersham;  $25\mu$ Ci  $\alpha$ -[<sup>32</sup>P]-dATP) radioaktiv markiert (Feinberg und Vogelstein, 1983 und 1984). Nicht eingebaute Nukleotide wurden durch Gelfiltrationschromatographie mit ProbeQuant® G-50 Micro Columns (Amersham) entfernt. Das Filtrat wurde direkt in den Hybridisierungspuffer gegeben und bei 65°C über Nacht (≥10h) inkubiert. Anschließend wurde die Membran mehrfach für je 30min mit 2× SSC, 0,1% (w/v) SDS bei Raumtemperatur gewaschen, bis im Puffer keine Radioaktivität mehr nachweisbar war. Der Blot wurde aus der Inkubationsröhre genommen und nach Entfernung überschüssiger Feuchtigkeit in Haushaltsfrischhaltefolie eingeschlagen. Zur Detektion der radioaktiven Signale erfolgte die Exposition mit einer BAS-MS imaging plate (Fujifilm) für unterschiedliche Zeiten um ggf. unterschiedliche Signalintensitäten ausgleichen zu können.

## 2.2.4 Verwendete Escherichia coli-Stämme

Für die in dieser Arbeit durchgeführten molekularbiologischen Arbeiten wurde zum Teil der *E. coli*-Stamm DH5 $\alpha$  (Invitrogen, als *subcloning efficiency* chemisch kompetente Zellen) verwendet. Zur Herstellung chemisch kompetenter Zellen mit höheren Transformationsraten ( $\leq 1.10^9$ cfu/µg; Inoue-Methode), Expansion schwieriger Klone und Kultivierung für Plasmidpräparationen im Mini- und Midi-Maßstab wurden XL1-Blue MRF' (Stratagene) genutzt. Genetische Marker der verwendeten *E. coli*-Stämme:

- DH5 $\alpha$ :  $\Box$  F-  $\phi$ 80dlacZM15 (lacZYA-argF)U169 deoR recA1 endA1 hsdR17(r k-, m k+) phoA supE44 thi-1 gyrA96 relA1  $\lambda$ -
- XL-1Blue MRF':  $\Delta$ (mcrA)183  $\Delta$ (mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-1 recA1 gyrA96 relA1 lac [F' proAB lacI<sup>q</sup>Z $\Delta$ M15 Tn5 (Kan<sup>r</sup>)]

# 2.2.5 Real-time quantitative RT-PCR

Die Real-time RT-qPCR wurde zur absoluten und relativen Quantifizierung von mRNA-Mengen aus isolierter Gesamt-RNA angewendet. Um Reproduzierbarkeit der Ergebnisse zu gewährleisten wurde das Quantitect Real-time RT-PCR-Kit (Qiagen) wie folgt benutzt: Es wurden zwischen 0,1 und 100ng Gesamt-RNA je 25µl-Reaktion eingesetzt. Für jede mRNA wurden vier Konzentrationen jeweils als Duplett analysiert. Die Primerkonzentration betrug 250nM wobei der reverse-Primer gleichzeitig als Primer für die reverse Transkription genutzt wurde. Die eingesetzten Primer sind intron- bzw. outronspannend abgeleitet und schlossen zugunsten einer möglichst hohen PCR-Effizienz einen Bereich ≤180bp ein. Als housekeeping-Gen wurde rp49 gewählt, mod(mdg4)-mRNAs wurden quantifiziert mit einem forward-Primer aus dem gemeinsamen Exon 4 und einem reverse-Primer aus dem isoformspezifischen Exon 5. Die Sequenzen der Primer sind im Anhang 1 aufgeführt. Bei relativer Quantifizierung einer mod(mdg4)-mRNA dienten als Standard entweder rp49 oder die Summe aller mod(mdg4)mRNAs, indem eine Amplifikation innerhalb des gemeinsamen Teils (mel-ex2-fwd & melex3-rev) durchgeführt wurde. Im Falle einer absoluten Quantifizierung wurde für das jeweilige Transkript eine cDNA synthetisiert, ein Fragment bekannter Größe dieser cDNA in pGEM<sup>®</sup>-3Zf(+) kloniert, das Plasmid in einer Midi-Präparation isoliert (spektrophotometrische

Konzentrationsbestimmung) und in einer Verdünnungsreihe als externer Standard eingesetzt. Die Reaktion wurde in einem iCycler (Bio-Rad) durchgeführt nach folgendem Reaktionsschema:

| 50°C                                                                         | 30min        | reverse Transkription                      |  |
|------------------------------------------------------------------------------|--------------|--------------------------------------------|--|
| 95°C                                                                         | 15min        | hotstart-Enzymaktivierung                  |  |
| danach                                                                       | n 40 Zyklen: |                                            |  |
| 94°C                                                                         | 10s          | Denaturierung                              |  |
| 64°C                                                                         | 30s          | annealing                                  |  |
| 72°C                                                                         | 10s+7s       | Elongation & Datenerfassung, 1. Temperatur |  |
| 80°C                                                                         | 7s           | Datenerfassung, 2. Temperatur              |  |
| 83°C                                                                         | 7s           | Datenerfassung, 3. Temperatur              |  |
| danach Schmelzpunktbestimmung der Amplifikate durch Temperaturinkremente von |              |                                            |  |
|                                                                              |              |                                            |  |

1K×min<sup>-1</sup> im Bereich 60 bis 95°C und Fluoreszenzmessung in Abständen von 30s

Dieses Programm wurde für sämtliche Real-time RT-qPCRs verwendet. Die Datenerfassung bei drei verschiedenen Temperaturen wurde durchgeführt für den Fall, daß während der PCR Primeroligomere entstehen, deren Schmelztemperatur höher als 72°C ist und in die SYBR-Green interkalieren kann, was zu einer Verfälschung der Fluoreszenzmessung zur Konzentrationsbestimmung doppelsträngiger DNA führen würde. In einem solchen Fall wäre die RT-qPCR mit neu abgeleiteten Primern wiederholt worden. Untereinander verglichen wurden immer Meßwerte, die bei gleicher Temperatur, z.B. 72°C, gewonnen wurden. Der Programmablauf mit Datenerfassung bei drei Temperaturen, als Sicherheitsmerkmal bei der Etablierung der Technik eingeführt, wurde beibehalten, da keine Beeinträchtigung der PCR-Effizienz festgestellt wurde. Im Anschluß an die PCR wurde der Schmelzpunkt der Amplifikate bestimmt, um zu testen ob während der PCR nur ein oder mehrere Amplifikate (Primeroligomere) entstanden. Vor Verwendung eines Primerpaares in der Real-time RTqPCR wurde das PCR-Produkt im Agarosegel aufgetrennt um zu verifizieren, daß das Primerpaar nur ein Amplifikat generiert. Dieses Amplifikat wurde außerdem sequenziert um sicherzustellen, daß damit die korrekte mRNA vervielfältigt wird.

Die Auswertung der Rohdaten erfolgte mittels der iCycler iQ v3.1-Software (Bio-Rad) und Microsoft Excel. Es wurden **ausschließlich** Reaktionen ausgewertet, deren lineare Regression einen Korrelationskoeffizienten R≥0,98 bei halblogarithmischer Auftragung der PCR-Zyklen versus Ct (*threshold cycle*: PCR-Zyklus während dessen die SYBR Green-Fluoreszenz den gewählten *threshold* übersteigt) zeigte. Es wurden ausschließlich Reaktionen verglichen, deren apparente PCR-Effizienz (lineare Regression der  $\Delta$ Ct der verschiedenen Verdünnungen einer RNA) ähnliche Werte zeigten.

Nach Auswertung der Daten wurden die mRNA-Konzentrationen bei absoluter Quantifizierung in Kopien je  $\mu$ g Gesamt-RNA angegeben. Kenntnis der Größe und Konzentration des externen Plasmidstandards erlauben die Berechnung der molekularen Konzentration. Bei gleichem *threshold* (meist 150 RFU, *relative fluorescence units*) in parallelen RT-qPCR-Reaktionen von Plasmidstandard und RNAs sind deren Ct-Werte vergleichbar, was die Berechnung der molekularen Konzentration der *mod(mdg4)*-mRNAs erlaubt.

Bei relativer Quantifizierung von mRNAs wird neben der zu bestimmenden mod(mdg4)mRNA entweder das *housekeeping*-Gen rp49 oder ein Amplicon im gemeinsamen Teil von mod(mdg4) bestimmt. Die Differenz der Ct-Werte beider Reaktionen ( $\Delta$ Ct) ist ein Maß für den Konzentrationsunterschied der mod(mdg4)-mRNA zur Menge aller mod(mdg4)-mRNAs (siehe Anmerkung unten) bzw. zu rp49. Beim Vergleich zweier Proben kann dieser Konzentrationsunterschied unterschiedlich groß sein. Die Differenz dieser Unterschiede, mit  $\Delta\Delta$ Ct bezeichnet, ist ein Maß für die Hoch- bzw. Herunterregulation der zu bestimmenden mod(mdg4)-mRNA im untersuchten Genotyp. Wenn z.B. im Wildtyp der  $\Delta$ Ct 5 beträgt und im untersuchten Genotyp 3 ( $\Delta\Delta$ Ct=-2), dann zeigt dies eine Hochregulation der entsprechenden mRNA an, während ein Wert von z.B.  $\Delta$ Ct=8 ( $\Delta\Delta$ Ct=3) eine im Vergleich geringere mRNA-Menge anzeigen würde.

Im Rahmen dieser Arbeit wurde der  $\Delta$ Ct-Wert des Vergleichsgenotyps, meist  $w^{1118}_{iso}$ , als Null definiert um die Differenz des  $\Delta$ Ct der untersuchten Genotypen ( $\Delta\Delta$ Ct) deutlicher herauszustellen, z.B. wurde statt  $\Delta$ Ct( $w^{1118}_{iso}$ )=5 und  $\Delta$ Ct(Mut)=7,5 der Term  $\Delta\Delta$ Ct(Mut- $w^{1118}_{iso}$ )=2,5 angegeben. Dies erübrigt normalerweise die Angabe des  $\Delta\Delta$ Ct für  $w^{1118}_{iso}$  ( $\Delta\Delta$ Ct( $w^{1118}_{iso}$  - $w^{1118}_{iso}$ )=0). Zugunsten der Angabe einer Standardabweichung wurde der Wert jedoch mit angeführt (z.B. 0±0,1; siehe Tab. 3.3).

Anmerkung zum Gebrauch des Amplifikats aus dem gemeinsamen Teil von *mod(mdg4)* als Referenz zur Quantifizierung von mRNAs des Locus: Durch Positionierung des *forward*-Primers in Exon 2 und des *reverse*-Primers in Exon 3, wird mit diesem Amplifikat die Summe aller *mod(mdg4)*-mRNAs und evtl. vorhandene *cis*- aber noch nicht *trans*-gepleißte prä-mRNA des gemeinsamen Teils nachgewiesen. Für diesen Nachweis (*cis*- aber noch nicht *trans*gespleißte prä-mRNA) gibt es keine experimentellen Belege. Untersuchungen an *Euglena gracilis* zeigen entgegen der Lehrmeinung, daß *trans*- zeitlich vor *cis*-Spleißen erfolgen kann (Canaday *et al.*, 2001). Die Mengen der mit diesem Primerpaar nachgewiesenen RNA-Spezies wurde als konstant angenommen oder mit dem *rp49*-Amplifikat als Referenz quantifiziert (siehe z.B. Tab. 3.15)

#### 2.3 Statistische Ergebnisbewertung bei genetischen Experimenten

Die Korrelation eines bestimmten Phänotyps mit einer Mutation erfolgte mittels statistischer Testverfahren. Dabei wird die Wahrscheinlichkeit berechnet, daß der Phänotyp zufällig ausgewählter Tiere unabhängig von der Mutation auftritt (Nullhypothese). Ist diese Wahrscheinlichkeit p kleiner als die Signifikanzgrenze (z.B. p<0,01), so kann die Nullhypothese abgelehnt werden, d.h. das gemeinsame Auftreten von Mutation und Phänotyp ist statistisch signifikant belegt. Die Berechnung der Wahrscheinlichkeit p erfolgte mittels zweier verschiedener Testverfahren (Ross, 2006).

#### 2.3.1 Test binominal verteilter Gesamtheiten

Beim (t-)Test von binominal verteilten Gesamtheiten (TbvG) testet man die Nullhypothese, daß die Wahrscheinlichkeit für das Auftreten des Phänotyps in der Kontrolle (meist  $w^{1118}_{iso}$ ) identisch zur Wahrscheinlichkeit des Auftretens in der Mutante ist. Dabei fließt das Auftreten in der Referenz als Konstante p<sub>0</sub> in die unten stehende Gleichung ein, während n die Gesamtzahl der untersuchten Tiere und i die Anzahl der phänotypausprägenden Mutanten ist.

Die Wahrscheinlichkeit, daß die Nullhypothese korrekt ist, berechnet sich wie folgt:

$$p = 1 - \sum_{i=x}^{n} {\binom{n}{i}} p_0^{i} \cdot (1 - p_0)^{n - i}$$
 (Gleichung 2.1)

#### 2.3.2 Fisher-Irwin-Test

Eine Alternative zum Test von binominal verteilten Gesamtheiten ist der Fisher-Irwin-Test, bei dem die Wahrscheinlichkeit der Nullhypothese mit dem Test der Erwartungswerte in zwei Bernoulli-verteilten Gesamtheiten auf Gleichheit berechnet wird. Im Gegensatz zur binominal verteilten Gesamtheit wird hier berücksichtigt, daß das Auftreten des Phänotyps im Wildtyp (im Experiment: Referenzstamm  $w^{1118}_{iso}$ ) keine Konstante ist, sondern lediglich anhand einer Stichprobe abgeschätzt wurde. Die zu testende Nullhypothese lautet, daß die Wahrscheinlichkeiten für die Ausprägung des Phänotyps in Wildtyp und Mutante gleich sind. Hierbei wird mit Hilfe folgender Gleichung die Wahrscheinlichkeit p der Nullhypothese getestet.

$$p = \left(\frac{P\{X = b+1\}}{P\{X = b\}}\right) = \frac{\binom{a+b}{a} \cdot \binom{c+d}{c}}{\binom{n}{a+c}} = \frac{(a+b)! \cdot (c+d)! (a+c)! (b+d)!}{n! \cdot a! \cdot b! \cdot c! \cdot d!} \qquad (\text{Gleichung 2.2})$$

n = Anzahl Tiere in beiden Kreuzungen

a = Anzahl Tiere Mutante mit Phänotyp

b = Anzahl Tiere Mutante ohne Phänotyp

c = Anzahl Tiere Wildtyp mit Phänotyp

d = Anzahl Tiere Wildtyp ohne Phänotyp

# 3. Ergebnisse

# 3.1 Generierung und Analyse isoformspezifischer mod(mdg4)-Mutanten

Der Locus modifier of mdg4 wurde in zahlreichen genetischen Assays anhand von Mutationen identifiziert (siehe Einleitung). Meist handelt es sich dabei um Mutanten des gemeinsamen Teils des Gens, die sich auf alle Isoformen auswirken. Eine Zuordnung der Funktion einzelner Isoformen ist so nicht möglich. Mutationen im spezifischen Teil des Gens, die einzelne oder Gruppen von Isoformen betreffen, sind nötig, um dieses Ziel zu erreichen. Die Analyse von spezifischen Mutationen für zwei Isoformen (mod(mdg4)-67.2 und mod(mdg4)-56.3; Gerasimova et al., 1995; Gause et al., 2001; Thomas et al., 2006), führte zur Aufklärung der Funktion der betreffenden Isoformen. Da die Funktion der anderen Isoformen unbekannt ist bzw. aus den pleiotropen Phänotypen der Mutationen des gemeinsamen Teils nicht zugeordnet werden kann, sollte ein phänotypunabhängiger genetischer Ansatz zur funktionellen Analyse des Locus gewählt werden. Durch die Mobilisierung von zwei im spezifischen Teil des mod(mdg4)-Locus inserierten P-Elementen sollte eine Serie überlappender Deletionen isoliert und molekularbiologisch charakterisiert werden. Die anschließenden genetischen Analysen des Mutantenmaterials sollten Rückschlüsse auf die Funktion und funktionelle Differenzierung zwischen den Isoformen (und eventuelle Redundanzen) ermöglichen.

#### 3.1.1 Mobilisierung der P-Elemente P{RS5}-5-HA-1224 und P{KG}08515

Das *P*-Element *P*{*RS5*}-5-*HA*-1224 ist an Position 14.834 (3R:17.191.073) des mod(mdg4)-Locus inseriert, zwischen den isoformspezifischen Exons von mod(mdg4)-54.7 und -58.0. *P*{*RS5*}-5-*HA*-1224 ist homozygot lebensfähig und w<sup>+</sup>-markiert; der genetische Hintergrund ist  $w^{1118}_{iso}$ .

Wegen seines Insertionsortes wurde das *P*-Element mehrfach mit dem Ziel mobilisiert, Deletionen im Bereich der isoformspezifischen Exons zu erzeugen (siehe 2.1.4). Durch Einwirkung einer eingekreuzten Transposase auf das *P*-Element wird dieses (auch) in Keimbahnzellen ausgeschnitten und an anderer Position wieder eingefügt. Der Ausbau, die Mobilisierung des *P*-Elements geschieht dabei nicht immer exakt, sodaß es zu genomischen Deletionen und anderen Mutationen kommen kann. Durch Kreuzung mit einem Balancer-Stamm für das dritte Chromosom, auf dem der mod(mdg4)-Locus liegt, können die Chromosomen stabilisiert werden, von denen das *P*-Element erfolgreich mobilisiert wurde und die nun keinen  $w^+$ -Marker mehr tragen. Hierzu wurden unter den aus der Mobilisierung hervorgehenden weißäugige bzw.  $w^-$ -Tiere, Revertanten, selektiert.

Desweiteren wurde das *P*-Element  $P\{KG\}08515$  – an Position 20.524 des mod(mdg4)-Locus (3R:17.185.383) – in einem umfangreichen Experiment mobilisiert. Das *P*-Element ist zwischen den isoformspezifischen Exons von mod(mdg4)-67.2 und mod(mdg4)-55.7 lokalisiert. Vor der Mobilisierung wurden Rekombinationskreuzungen durchgeführt mit dem Ziel, eine stark ausgeprägte, *second site*-bedingte, rezessiv semiletale Mutation vom Chromosom zu entfernen.

Die aus den Mobilisierungen erhaltenen Revertanten wurden durch eine PCR mit flankierenden genomischen und *P repeat*-Primern (siehe 2.1.4) in vier Gruppen eingeteilt: Als (1) <u>Umbau</u> im Element wurde definiert, wenn beide *P*-Elementenden mittels PCR nachweisbar waren. Bei einem (2) <u>einseitigen Ausbau</u> bleiben 5'- oder 3'*P*-Elementende erhalten. Auf der jeweils anderen Seite des *P*-Elements erfolgt ein exakter Ausbau ohne Deletion angrenzender genomischer Sequenz. Nach einem (3) <u>exakten Ausbau</u> ist in homozygoten Tieren dem Element unmittelbar benachbarte genomische Sequenz nachweisbar. Eine (4) <u>Deletion</u> liegt vor, wenn mit den verwendeten Primern kein oder ein kleineres PCR-Produkt erhalten wurde.

Anschließend wurden für Revertanten mit Deletion und, da mit dieser PCR (siehe 2.1.4) eine Deletion genomischer Sequenz bei gleichzeitigem Erhalt eines *P*-Elementfragments nicht ausgeschlossen werden kann, mit einseitigem Ausbau stabile Linien etabliert und im homozygoten Zustand genauer molekular charakterisiert. Nach ausführlicheren PCR-Analysen wurden Revertanten mit erhalten gebliebenen *P*-Elementresten und gleichzeitiger Deletion genomischer Sequenz ebenfalls in die Kategorie Deletion eingruppiert.

Umfang und Ergebnisse dieser Jump out-Experimente sind in Tabelle 3.1 dargestellt.

**Tabelle 3.1** (nächste Seite) Ergebnisse der Mobilisierungsexperimente von  $P\{RS5\}$ -5-HA-1224 und  $P\{KG\}$ 08515. Revertanten: fertile  $w^-$ -Tiere; Umbau: beide P-Elementenden erhalten; einseitiger Ausbau: ein P-Ende bleibt erhalten, auf anderer Seite exakter Ausbau; exakter Ausbau: bei Mobilisierung Wiederherstellung der Wildtypsequenz; Deletion: unexakte Mobilisierung, die in ein- oder beidseitiger Deletion genomischer Sequenz resultiert, ein P-Ende kann erhalten geblieben sein; Bezeichnung: experimentspezifische Bezeichnung der Revertanten (siehe Abb. 3.1). In Klammern: Prozent Ausnahmetiere, die in die entsprechende Gruppe fallen und in letzter Spalte relative Ausbeute von Deletionen relativ zur Anzahl Revertanten.

| Bezeichnung des      | Revertanten / Art der Mutation |       |         | on          |                 |
|----------------------|--------------------------------|-------|---------|-------------|-----------------|
| Experiments          | Kreuzungen                     | Umbau | exakter | einseitiger | Deletion (und   |
| I                    | gesamt                         |       | Ausbau  | Ausbau      | Bezeichnung)    |
| P{RS5}-5-HA-1224     |                                |       |         |             |                 |
| März 2003            | 131/200                        | 46    | 69      | 11          | 5 (Rev; 4%)     |
|                      |                                | (35%) | (53%)   | (8%)        |                 |
| Dezember 2003        | 521/750                        | 233   | 239     | 40          | 9 (mit Zahl     |
|                      |                                | (45%) | (46%)   | (8%)        | bezeichnet; 2%) |
| R-Stämme (Okt. 2005) | 348/350                        | 153   | 162     | 26          | 7 (R; 2%)       |
|                      |                                | (44%) | (47%)   | (7%)        |                 |
| P{KG}08515           |                                |       |         |             |                 |
| GG-Experiment        | 281/938                        | 196   | 35      | 32          | 18 (GG; 6%)     |
| Sommer 2006          |                                | (70%) | (13%)   | (11%)       |                 |
|                      |                                |       |         |             |                 |

Die Mobilisierung von  $P\{KG\}08515$  wurde mit einer Defizienz des *P*-Element-Insertionsortes auf dem homologen Chromosom durchgeführt (siehe 2.1.4). Nach Engels *et al.* (1990) sollte dabei ein höherer Anteil von deletionserzeugenden Mobilisierungsereignissen auftreten. Zwar ist die Anzahl der durchgeführten Mobilisierungsexperimente nicht ausreichend für belastbare statistische Aussagen, jedoch fällt im Vergleich zu den Experimenten mit  $P\{RS5\}$ -5-HA-1224 die höhere Ausbeute von Deletionen auf. Gleichzeitig steigt der Prozentsatz von Umbauten bei weniger exakten Ausbauten (siehe Tabelle 3.1). Ein daraufhin eingeleitetes Experiment mit  $P\{RS5\}$ -5-HA-1224 ergab jedoch keine Deletion genomischer Sequenz (200 Kreuzungen, "Z-Stämme", Daten nicht gezeigt).

In den folgenden Kapiteln wird die molekularbiologische Analyse der erzeugten Revertanten beschrieben. Zugunsten besserer Übersicht und Verständlichkeit werden die Mutationen in Kurzform benannt, z.B. Rev31 statt  $mod(mdg4)^{P(RS5)-5-HA-1224 \text{ Rev31}}$  und GG295 statt  $mod(mdg4)^{P(KG)08515 \text{ Rev }GG295}$ .

#### 3.1.2 Molekularbiologische Analysen der Revertanten

#### 3.1.2.1 Bestimmung der Deletionsbruchpunkte

Von Revertanten, bei denen infolge unexakten *P*-Elementausbaus genomische Sequenz deletiert worden war, wurden balancierte Linien aufgebaut und diese auf das Auftreten homozygoter Tiere hin untersucht. Zur Charakterisierung der Deletionen wurde genomische DNA der homozygoten Revertanten bzw., bei rezessiver Letalität der zu analysierenden Mutation, DNA transheterozygoter Tiere als template für PCR-Analysen eingesetzt. Zunächst wurden kleine Sequenzabschnitte in verschiedenen Abständen zur ursprünglichen P-Elementinsertionsstelle amplifiziert um herauszufinden, ob die jeweiligen Primerbindestellen innerhalb oder außerhalb des deletierten Bereichs liegen. Im Anschluß wurden Primer aus den der Insertionsstelle nächstliegenden Amplicons, bei denen die PCR erfolgreich war, für eine deletionsüberspannende PCR verwendet. Das PCR-Produkt wurde kloniert und sequenziert. Wildtypsequenz Durch einen Vergleich mit der von mod(mdg4)(blast2seq: www.ncbi.nlm.nih.gov/blast) konnten die exakten Bruchpunkte der jeweiligen Deletion bestimmt werden. In Abbildung 3.1 sind die im Rahmen dieser Arbeit bestimmten Deletionen abgebildet. Die ebenfalls in der Abbildung aufgeführten Revertanten MA26, LL93, JA und JK wurden im Rahmen eines unabhängigen Experiments (Studentenpraktikum) erzeugt, aber im Rahmen dieser Arbeit molekular charakterisiert.

In 27 der 41 Revertanten konnten noch Reste des ursprünglichen *P*-Elements nachgewiesen werden. Bei sieben dieser Revertanten ist ausreichend *P*-Elementsequenz vorhanden, daß diese als Promotor wirken kann (vgl. Abb. 3.2, Tab. 3.3 und Anhang A2.1), was bei der funktionellen Analyse der locusinternen Transkriptionseinheiten berücksichtigt werden muß. Bei zwei  $P\{RS5\}$ -5-HA-1224-Revertanten (349, 439) und zwei  $P\{KG\}$ 08515-Revertanten (GG48, GG71) kam es zu einer partiellen Duplikation des mod(mdg4)-Locus (graue Balken in Abb. 3.1). Die duplizierte Sequenz, die in allen drei Fällen mit Base 8684 beginnt, ist zwischen den Bruchpunkten der Deletionen eingefügt. Aufgrund der veränderten Struktur des Locus und der Duplikation von zwei bzw. drei isoformspezifischen Exons in den vier betroffenen Genotypen wurden diese nicht für weitere Analysen im Rahmen dieser Arbeit verwendet.

Abbildung 3.1 (folgende Seite) Durch Mobilisierung von  $P\{RS5\}$ -5-HA-1224 und  $P\{KG\}$ 08515 entstandene Revertanten mit genomischen Deletionen. Die schwarzen Balken verdeutlichen die Ausdehnung der Deletionen, deren Bruchpunkte (locusinterne Skala) und ggf. die Länge zurückgebliebener *P*-Elementsequenz in Klammern hinter der Bezeichnung der Revertanten angegeben sind. Die grauen Balken geben duplizierte Sequenz an.


### 3.1.2.2 Expressionstests & Promotorenidentifizierung

Sowohl die Struktur des *modifier of mdg4*-Locus (siehe Abb. 3.1) als auch Transgenanalysen deuten darauf hin, daß die Transkription der Isoformen des Locus durch multiple Promotoren et al., 2001; Gabler et al., 2005). Die  $P_{-}$ reguliert wird (Dorn mittels der Elementmobilisierungen erhaltenen Revertanten erlauben den funktionellen Nachweis der Promotorelemente. Auf Basis der exakt bestimmten Deletionsbruchpunkte der Revertanten sollte untersucht werden, welche Isoformen außerhalb der deletierten Bereiche ebenfalls nicht mehr exprimiert wurden. Der Ausfall der Isoformen und die erhaltenen Expressionsmuster können auf die Deletion des Promotors der Transkriptionseinheit zurückgeführt werden. Dessen Position kann durch konservierte DNA-Motive – in der Regel zwei CAAT-Motive, gefolgt von einer TATA-Box (TATAA/T) – bestimmt werden.

Von je ca. 20 5-7 Tage alten, homozygoten Weibchen wurde Gesamt-RNA isoliert. Rezessiv letale Mutationen wurden gekreuzt, um transheterozygote Tiere zu erhalten, deren Genotyp Analysen zur Position und Funktion der (im Überlappungsbereich beider Allele vermuteten) Promotoren zuläßt. Mittels RT-PCRs wurde die Expression der die Deletion umgebenden *mod(mdg4)*-Isoformen in den Revertanten untersucht. Die Ergebnisse sind in den Abbildungen 3.2 und 3.3 zusammengefaßt.



Abbildung 3.2 (A) Semiquantitativer Nachweises von mod(mdg4)-Isoform-mRNAs in homozygoten Revertanten von  $P\{RS5\}$ -5-HA-1224 mittels RT-PCR. Die Positionen der isoformspezifischen Exons sind in Abbildungsteil B dargestellt. mod(mdg4)-56.3 liegt außerhalb des untersuchten Bereichs und diente neben rp49 (housekeeping-Gen) als Kontrolle. (B) Zusammenfassung der Expressionsanalyse +: Amplifikat vergleichbar Kontroll-RNA; ±: Bande

deutlich schwächer im Vergleich zu Kontroll-RNA; –: kein Amplifikat in RT-PCR; auf der Skala (in kb, locusinterne Positionen) über der Exon-Intron-Struktur des betreffenden Bereichs im *mod(mdg4)*-Locus sind die Positionen der vier identifizierten Promotorelemente als abgeknickte Pfeile dargestellt.

Vergleicht man die RT-PCR-Ergebnisse der Isoformen mod(mdg4)-58.0 bis -55.3 in den Revertanten JK14 und 499 (Spleißakzeptor von mod(mdg4)-65.0 ist deletiert) einerseits mit denen der Revertanten 213, Rev57 und RevX andererseits, kann man die Position des Promotors, der die Transkription der vier betroffenen Isoformen treibt, *upstream* des Insertionsortes von *P*{*RS5*}-5-*HA*-1224 eingrenzen (Promotor #7, siehe Tab. 3.3).

Ein Vergleich der Expressionsmuster von mod(mdg4)-58.0 bis -55.3 in verschiedenen Revertanten mit gleichem distalen Bruchpunkt (=Insertionsort von P{RS5}-5-HA-1224) -Promotor #7 ist in allen betrachteten Revertanten deletiert - zeigt einen diametralen Unterschied: Die Revertanten 186, Rev+13 und 99 einerseits bilden die Isoformen mindestens auf Wildtypniveau während die Revertanten 213, Rev57 und RevX keine Expression zeigen. Der Grund hierfür ist P-Elementsequenz, die bei der Mobilisierung von 5-HA-1224 zurückgeblieben ist. Sie beinhaltet im Fall der Revertanten 186, Rev+13 und 99 das 5'P-Elementende und einen Teil des 3'Exons des white-Markers (Golic und Golic, 1996), jedoch nicht den im P-Element enthaltenen Hitzeschock-Promotor. Trotzdem kann diese Sequenz in Richtung P-Element  $\rightarrow$  31bp-TIR (*terminal inverted repeat*)  $\rightarrow$  isoformspezifisches Exon von mod(mdg4)-58.0 als Promotor wirken. Damit stehen die Isoformen mod(mdg4)-58.0 bis -55.3 nicht mehr unter der Kontrolle des endogenen Promotors, sondern werden im Falle des intakten P{RS5}-5-HA-1224 und in Revertanten, bei denen das 5'Ende des P-Elements erhalten blieb, ektopisch transkribiert. Obwohl die RT-PCRs zur Promotoridentifikation die Expression der untersuchten mod(mdg4)-Isoformen nur semiquantitativ darstellen, läßt sich eine im Vergleich zur Kontrolle stärkere Expression beobachten (vgl. Abb. 3.2 (A), RT-PCRs für mod(mdg4)-65.0). In die entgegengesetzte Richtung ist diese Wirkung noch wesentlich deutlicher (siehe Abb. 3.2 (A): P{RS5}-5-HA-1224 und Revertante 499 im Vergleich mit  $w^{1118}_{iso}$  bei den Isoformen *mod(mdg4)*-54.7, -52.4 und -55.8). Die Promotorwirkung eines  $P{RS}$ -Elements konnte auch in CB-6686-3 belegt werden, einer Insertion ( $P{RS3}$ ) in das erste Exon von mod(mdg4) (siehe Anhang A2.1).

Der zweite identifizierte Promotor befindet sich in Transkriptionsrichtung *upstream* des isoformspezifischen Exons von mod(mdg4)-54.7 (Promotor #6, siehe Tab. 3.3). Der Promotor bzw. essentielle Bestandteile desselben befinden sich zwischen den proximalen Bruchpunkten

der Revertanten Rev+13 und 186, also zwischen den Positionen 14.536 und 14.650 (siehe Abb. 3.2 (B)).

Der dritte Promotor (#5) befindet sich zwischen den isoformspezifischen Exons von *mod(mdg4)*-53.6 und -52.4. Seine Aktivität wird durch den Vergleich der RT-PCR-Ergebnisse der Revertanten 99, 213 und 110 einerseits und Rev57 andererseits belegt.

Der vierte mit diesen Experimenten identifizierte Promotor (#4) befindet sich in Transkriptionsrichtung *upstream* des isoformspezifischen Exons von *mod(mdg4)*-55.6, wie die Gegenüberstellung der Resultate der RT-PCRs von Rev57 und RevX (Abb. 3.2 (B)) zeigt.

Zusammenfassend kann festgestellt werden, daß in der Umgebung des Insertionsortes von  $P\{RS5\}$ -5-HA-1224 vier Promotorelemente identifiziert wurden, die sich bezogen auf die jeweilige Transkriptionsrichtung 5'seits der Isoformen mod(mdg4)-55.6, -52.4, -54.7 und -58.0 befinden (Promotoren #4, 5, 6 und 7 in Tab. 3.3). Die Deletion eines Promotorelements führt zum Expressionsverlust der spezifischen Exons, die von diesem Promotor ausgehend transkribiert werden, auch wenn die Exons physisch intakt sind.

Die Promotoren #6, 5 und 4, die jeweils 5' der *trans*-Spleißakzeptoren von *mod(mdg4)*-54.7, -52.4 und -55.6 identifiziert wurden, könnten Haupt- (#6) und interne Promotoren einer Transkriptionseinheit sein, oder es handelt sich um drei unabhängige Transkriptionseinheiten mit Transkriptionsstopsignal am jeweiligen 3'Ende. Dies wurde mittels Real-time RT-qPCR untersucht (Tab. 3.2).

**Tabelle 3.2** Real-time RT-qPCR-Analyse ausgewählter mod(mdg4)-Isoformen an homozygoten Revertanten von  $P\{RS5\}$ -5-HA-1224. Angegeben sind  $\Delta\Delta$ Ct-Werte der Isoform-mRNA mit Standardabweichung (siehe 2.2.5). Je größer die Zahlen, desto geringer die mRNA-Menge im Vergleich zum Standard, der Summe aller mod(mdg4)-mRNAs (Amplifikat im gemeinsamen Teil). n.b.: nicht bestimmt

| Isoform          | mod(mdg4)-53.6 | mod(mdg4)-52.4   | mod(mdg4)-62.3    |
|------------------|----------------|------------------|-------------------|
| Genotyp          |                |                  |                   |
| $w^{III8}_{iso}$ | $0 \pm 0,47$   | $0 \pm 0,17$     | $0 \pm 0,47$      |
| 186              | $0 \pm 0,48$   | $-0,3 \pm 0,12$  | n.b.              |
| 99               | n.b.           | >13 <sup>1</sup> | $3,2 \pm 0,52$    |
| 213              | n.b.           | >13 <sup>1</sup> | $6,9 \pm 0,45$    |
| Rev57            | n.b.           | >13 <sup>1</sup> | $5,8 \pm 0,33$    |
| 110              | n.b.           | $2,2 \pm 0,68$   | n.b. <sup>2</sup> |

<sup>1</sup> Aufgrund geringer Expression dieser Isoform in Kombination mit starker Herunterregulation war eine Quantifizierung mittels Real-time RT-qPCR bei diesen Revertanten nicht möglich, da Ct-Werte >35 ermittelt wurden bzw. die Änderung der Ct-Werte nur gering mit der Variation der RNA-Menge korrelierte (R<<0,98). <sup>2</sup> experimentell mehrfach mißglückt, nicht nochmals wiederholt Die Untersuchung der Revertante 186 zeigte, daß sich die mRNA-Mengen der untersuchten mod(mdg4)-Isoformen nicht von denen im verwendeten Referenzstamm  $w^{1118}{}_{iso}$  unterscheiden. Real-time RT-qPCRs zur Quantifizierung der mRNA-Mengen von mod(mdg4)-52.4 und mod(mdg4)-55.8 (nicht gezeigt) waren bei Revertanten, deren Deletion größer war als bei 186, nicht erfolgreich (kein nachweisbares Amplifikat; außer Revertante 110). So kann lediglich die Aussage getroffen werden, daß beide Isoformen in ihrer Expression stark herunterreguliert wurden. In nichtquantitativen RT-PCRs konnten die mRNAs der Isoformen nur mittels *nested* PCR nachgewiesen werden (insgesamt 70 Zyklen), was für einen schwachen oder nur in wenigen Geweben aktiven Promotor #5 (in Transkriptionsrichtung 5' des isoformspezifischen Exons von mod(mdg4)-52.4) spricht.

Die Revertanten 99 und 213 mit deletiertem Promotor *upstream* des isoformspezifischen Exons von mod(mdg4)-54.7 zeigen keine Expression von mod(mdg4)-54.7 und -53.6 sowie eine stark verminderte Expression von mod(mdg4)-52.4 und -55.8. Dies läßt den Schluß zu, daß es sich bei den vier isoformspezifischen Exons um eine einzige Transkriptionseinheit handelt. Die Alternative, eine Deletion einer wichtigen regulatorischen Sequenz für den Promotor #5 *upstream* von mod(mdg4)-52.4 im Falle der Revertanten 99 und 213 ist unwahrscheinlich, zieht man auch die Ergebnisse der semiquantitativen RT-PCRs von Revertante Rev+13 heran (siehe Abb. 3.2 (B)). Bei dieser Mutante ist lediglich die erste CAAT-Box des Promotors #6 *upstream* von mod(mdg4)-54.7 deletiert (zweite CAAT- und TATA-Box blieben erhalten) was zum Ausfall dieser und der folgenden Isoform mod(mdg4)-53.6 führt. Die Expressionshöhen von mod(mdg4)-52.4 und -55.8 sind gleich den bei den Revertanten 99 und 213 ermittelten.

Die gemessene mod(mdg4)-52.4-mRNA-Menge der Revertante 110 ist trotz ähnlichem proximalen Bruchpunkt und größerer distaler Ausdehnung der Deletion viel höher als bei den Revertanten 99, 213 und Rev57. Damit korreliert die Nicht-Ausprägung von Phänotypen, die sich bei den genannten Vergleichsrevertanten zeigen und die auf den Ausfall bzw. verringerte Expression der Isoformen mod(mdg4)-54.7 bis -53.1 eingegrenzt wurden (siehe 3.1.3). Als Ursache kommen die Deletion einer negativ regulatorischen Sequenz im Bereich zwischen dem Insertionsort von  $P\{RS5\}$ -5-HA-1224 an Position 14.834 (3R:17.191.073) und dem distalen Bruchpunkt (Pos. 16.852) der Revertante oder eine partielle Duplikation des Locus in Frage.<sup>14</sup> Da eine in Ausdehnung, Position der Bruchpunkte und Expressionsmuster

<sup>&</sup>lt;sup>4</sup> Hier sind nicht partielle Duplikationen zwischen den Deletionsbruchpunkten wie in den Revertanten 349, 439, GG71 und GG48 gemeint. Alle Deletionen wurden sequenziert und mehrfach durch PCR mit deletionsüberspannenden Primern überprüft. Vermutet wird stattdessen die Insertion der entsprechenden isoformspezifischen Exons an anderer Stelle im Genom wie in Dörfel (2007) beschrieben.

vergleichbare Revertante fehlt, sind die mit dieser Revertante erhaltenen Daten nicht unabhängig überprüfbar.

Aus den Real-time RT-qPCRs zur Bestimmung der mod(mdg4)-62.3-Transkriptmenge in den Revertanten 99, 213 und Rev57 (Tab. 3.2) lassen sich keine Erkenntnisse gewinnen, ob die Exons von *mod(mdg4)*-55.6, -62.3 und -53.1 isoformspezifischen eine separate Transkriptionseinheit bilden oder ob sie Teil der oben beschriebenen sind, die dann die fünf isoformspezifischen Exons von mod(mdg4)-52.4 bis -53.1 enthielte. Auffällig ist jedoch, daß bei Revertante 99 - obwohl in ihrer Ausdehnung größer als 213 - mehr mRNA der analysierten Isoform gebildet wird. Vermutlich ist hierfür wiederum der Rest des P-Elements verantwortlich was auch den etwas erhöhten Wert für mod(mdg4)-52.4 bei Revertante 186 erklären würde, die ebenfalls einen P-Elementrest enthält (siehe Abb. 3.1). Damit ist für P{RS5}-5'-Fragmente eine Promotor- bzw. transkriptionsaktivierende Aktivität bestätigt. Diese wirkt aus dem P-Elementrest in Richtung über den deletierten Bereich hinweg in die dahinter liegende genomischen Sequenz (31bp-TIR  $\rightarrow$  P-Elementrest  $\rightarrow$  Sequenz "jenseits" der Deletion).

Mit Hilfe der  $P\{RS5\}$ -5-HA-1224-Revertanten ließen sich vier intragenische Promotoren im Bereich um den Insertionsort des *P*-Elements identifizieren. Dagegen wurden die bei der Mobilisierung von  $P\{KG\}08515$  entstandenen Revertanten zur Identifizierung von intragenischen Promotoren im 3'Bereich des Locus genutzt. Die Ergebnisse dieser RT-PCRs zur Promotoranalyse sind im folgenden dargestellt (Abb. 3.3).



Abbildung 3.3 Semiquantitativer Nachweis von mod(mdg4)-mRNAs mittels RT-PCR in ausgewählten Revertanten von  $P\{KG\}08515$ , in Revertante Rev31 und in transheterozygoten 459/Df(3R)ED6050-Escapern. Zusammenfassung der Expressionsanalyse +: Amplifikat ähnlich stark wie bei Kontroll-RNA; -: kein Amplifikat in RT-PCR; Auf der Skala (in kb, locusinterne Positionen) über der Exon-Struktur des betreffenden Bereichs im mod(mdg4)-Locus sind die

Positionen der vier neu identifizierten Promotorelemente als abgeknickte Pfeile dargestellt. blaue Klammer: fusionierte spezifische Exons von mod(mdg4)-65.0 und -55.7.

In der Umgebung der Insertionsstelle von  $P\{KG\}08515$  konnten ebenfalls vier Promotorelemente identifiziert werden (Promotoren #8, 9, 10 und 11; siehe Tab. 3.3).

Mittels der RT-PCR-Ergebnisse von GG58, GG221 und GG265 konnte der Promotor für die isoformspezifischen Exons von *mod(mdg4)*-67.2 und -59.0 (Promotor #8) identifiziert werden. Bei GG58 sind der komplette Promotor und das erste isoformspezifische Exon (Exon 5) von *mod(mdg4)*-67.2 deletiert, was zum Ausfall der Transkriptionseinheit führt, die die spezifischen Exons der Isoformen *mod(mdg4)*-67.2 und -59.0 enthält. Die Revertante GG265 weist in Bezug auf diese Transkriptionseinheit ein identisches Expressionsmuster auf. Dies ist wahrscheinlich darauf zurückzuführen, daß das erste C einer CCAAT-Sequenz an Position 19.848 der locusinternen Skala im deletierten Bereich liegt. Die CAAT-Box verliert dadurch ihre Funktion (Lewin, 2000) und konnte, wegen des Ausfalls beider Isoformen, als essentiell für die Funktion des Promotors identifiziert werden.

Für den Promotor #8 konnte keine TATA-Box bestimmt werden. Die CAAT-Boxen des Promotors befinden sich bei 19.847 und 19.806. Die CCAAT-Sequenz bei Position 19.919 hat keinen Einfluß auf die Transkription der spezifischen Exons von *mod(mdg4)*-67.2 und -59.0, wie mit den RT-PCRs an GG221 (Deletion 19.917-21.802) belegt wurde.

Der Vergleich der Expressionsmuster der Revertanten GG58 und GG265 bestätigt einen Promotor *upstream* des Exons 5 von *mod(mdg4)*-55.7 (Promotor #9). Durch den Vergleich von GG265 und GG221, bei denen eine Expression der Isoform *mod(mdg4)*-58.8 nachweisbar ist, mit GG295 (siehe Abb. 3.3) konnte ein weiterer Promotor *upstream* des isoformspezifischen Exons von *mod(mdg4)*-58.8 (Promotor #10) identifiziert werden.

Von GG295, deren distaler Bruchpunkt im Exon 5 der Isoform mod(mdg4)-58.8 liegt, wird keine mod(mdg4)-58.8-mRNA mehr gebildet (siehe Abb. 3.3), wohl aber mRNAs der weiter distal codierten Isoformen, was auf einen weiteren Promotor in diesem Bereich schließen läßt. Dieser Promotor (#11) befindet sich im Exon 5 und Intron zwischen Exon 5 und 6 von mod(mdg4)-58.8. Er wird in Revertante 459 deletiert, was zum Ausfall aller getesteten Isoformen bis hin zum 3'Ende des Locus führt. Da Revertante 459 rezessiv letal ist, wurde für die RT-PCRs Gesamt-RNA von transheterozygoten 459/Df(3R)ED6050-Tieren verwendet (in der Defizienz Df(3R)ED6050 werden die 20 distalen isoformspezifischen mod(mdg4)-Exons deletiert; siehe auch 2.1.5).

Eine Besonderheit der vom Promotor #11 ausgehenden Transkriptionseinheit ist, daß der erste in der prä-mRNA vorhandene Spleißakzeptor der des Exons 6 von *mod(mdg4)*-58.8 ist.

Mittels RT-PCR wurde nachgewiesen, daß es an dieser Position nicht zum *trans*-Splicing mit den gemeinsamen Exons 1-4 kommt (,–' am 3'Ende der Deletion von GG295 in Abb. 3.3). Die Festlegung dieser Splice-Akzeptor-Site auf *cis*-Splicing bzw. ihre Unfähigkeit, *in trans* zu spleißen, konnte aufgrund des Mangels vergleichbarer molekularer Situationen nicht eingehender untersucht werden.

Aus der Position des Promotors #11 innerhalb des spezifischen Teils der Isoform mod(mdg4)-58.8 kann abgeleitet werden, daß es sich hier um einen internen Promotor handelt, dem kein Transkriptionsstopsignal vorausgeht. Die Transkriptionseinheit, in der er sich befindet, beginnt *upstream* von mod(mdg4)-55.7 oder -58.8 (Promotoren #9 oder #10). Die Funktion des Promotors #11 liegt demzufolge in einer Verstärkung der Transkription der isoformspezifischen Exons von mod(mdg4)-51.4+folgende oder in der Expression dieser Isoformen in Geweben, in denen die Promotoren #9 und/oder #10 nicht aktiv sind.

Die Analyse der Mutante GG293 zeitigte keine Information über intragenische Promotoren im spezifischen Teil des *mod(mdg4)*-Locus, ist jedoch in anderer Hinsicht interessant: Die Deletion in dieser Revertante erstreckt sich vom spezifischen Exon der Isoform *mod(mdg4)*-65.0 bis in das von -55.7, was zu einer Fusion beider Exons führt. Der *trans*-Spleißakzeptor des Fusionsexons wurde um 7bp in Richtung gemeinsamer Exons 1-4 verschoben, vermutlich aufgrund der Deletion einer regulatorischen Sequenz, die die korrekte Position der *trans*-Splice-Site beeinflußt. Als Ergebnis ist der Leserahmen der Isoform verschoben, wie in Abb. 3.4 gezeigt.

| 398(aa)     | <br>N    | T        | E   | A   | Q   | E                 | S   | R   | S   | K   |
|-------------|----------|----------|-----|-----|-----|-------------------|-----|-----|-----|-----|
| 1192(nt)    | AAC      | ACA      | GAG | GCT | CAA | G <mark>AG</mark> | TCA | AGA | TCA | AAA |
| 408         | W        | S        | L   | R   | R   | R                 | L   | G   | T   | H   |
| 1222        | TGG      | AGC      | CTT | CGC | CGA | CGC               | CTG | GGC | ACT | CAT |
| 418         | R        | M        | L   | L   | W   | P                 | P   | L   | P   | S   |
| 1252        | CGG      | ATG      | CTG | CTG | TGG | CCG               | CCC | TTG | CCG | TCA |
| 428<br>1282 | P<br>CCT | T<br>ACT | TAA | GCG | ACG | AGG               |     |     |     |     |

Abbildung 3.4 Ausschnitt der mRNA-Sequenz (nt) mit Aminosäure-Übersetzung (aa) der Fusionsisoform aus mod(mdg4)-65.0 und -55.7 der Revertante GG293 N: Exon 4; N: 7bp-Einschub in die mRNA nach Änderung der *trans*-Spleißakzeptorposition; N: Sequenz isoformspezifisches Fusionsexon; .: Stopcodon

Neben der Entstehung einer neuen, wahrscheinlich nicht funktionellen Isoform ist auch die Regulation des Locus in dieser Mutante verändert. Mindestens das spezifische Exon der Isoform mod(mdg4)-52.2 steht nun unter der transkriptionellen Kontrolle des Promotors #7

statt des Promotors #9. Wenn die 14 distalen isoformspezifischen Exons (ab mod(mdg4)-55.7 bzw. *downstream* von Promotor #9) eine Transkriptionseinheit bilden, es also *upstream* des Exons 5 von mod(mdg4)-58.8 keinen Transkriptionsstop gibt, dann werden in GG293 alle distalen Exons zwar immer noch dort transkribiert, wo die Promotoren #10 und #11 aktiv sind, stehen aber nun nicht mehr unter Kontrolle des Promotors #9 sondern statt dessen unter der Kontrolle des Promotors #7. Da beide Promotoren vermutlich nicht zur gleichen Zeit in den gleichen Geweben aktiv sind, ist die Folge eine ektopische Expression aller Isoformen ab mod(mdg4)-52.2.

Mit Hilfe der Revertanten, die bei den Mobilisierungen von  $P\{RS5\}$ -5-HA-1224 und  $P\{KG\}08515$  erzeugt wurden, konnten insgesamt acht intragenische Promotoren identifiziert werden. Transkriptionseinheiten, die zwei (Promotor #8) bis zu 14 isoformspezifische Exons codieren (Promotor #9), stehen unter ihrer Kontrolle. Tabelle 3.3 faßt die wichtigsten Informationen über die identifizierten Promotoren zusammen.

Zwei weitere intragenische Promotoren *upstream* des isoformspezifischen Exons der Isoformen *mod(mdg4)*-64.2 und -60.1 waren mit den vorhandenen Revertanten experimentell nicht zugänglich. Ihre Funktionalität im *D. melanogaster-mod(mdg4)*-Locus konnte darum bisher nicht dokumentiert werden. Sie wurden mit Hilfe von *D. virilis*-Transgenen nachgewiesen (siehe 3.2.3.1). Sie sind der Übersichtlichkeit halber auch in Tabelle 3.3 aufgeführt.

Die identifizierten Promotoren weisen meist (9 von 11) zwei CAAT-Boxen und eine TATA-Box (Ausnahme Promotor #8) auf. Ein *downstream promoter element* (DPE; Büchner *et al.*, 2000) konnte lediglich bei dem Promotor des gemeinsamen Teils nachgewiesen werden, bei den intragenischen Promotoren von *mod(mdg4)* ist dieses Element nicht vorhanden. In der rechten Spalte der Tabelle 3.3 sind bei einigen Transkriptionseinheiten Spannen angegeben. Diese entsprechen der genauestmöglichen Angabe zur Anzahl der isoformspezifischen Exons in der jeweiligen Transkriptionseinheit, die anhand der vorliegenden experimentellen Daten möglich war.

**Tabelle 3.3** Identifizierte intragenische Promotorelemente in *mod(mdg4)*, geordnet nach Position der TATA-Box (locusinterne Skala). Die Promotoren wurden nummeriert, wobei Promoter 1 der der gemeinsamen Exons ist. Relative Transkriptionsrichtung vorwärts: Transkription erfolgt in der gleichen Richtung wie die der gemeinsamen Exons 1-4; rückwärts: isoformspezifische Exons sind auf dem Gegenstrang codiert, Transkription erfolgt antiparallel zu den gemeinsamen Exons 1-4. Die Größe der Transkriptionseinheiten (Anzahl Exons 5) wurde abgeleitet aus den Ergebnissen der semiquantitativen RT-PCRs und Real-time RT-qPCRs.

| Dromotor (Icoforman)                                                 | Position | relative               | Anzahl Exons 5 in     |  |
|----------------------------------------------------------------------|----------|------------------------|-----------------------|--|
|                                                                      | TATA-Box | Transkriptionsrichtung | Transkriptionseinheit |  |
| 1 <i>mod(mdg4)</i><br>gemeinsame Exons 1-4                           | 2.715    | vorwärts               | -                     |  |
| $2 \pmod{(mdaA)}$                                                    |          |                        |                       |  |
| $\frac{2}{64} 2 \cdot folgondo$                                      | 7.055    | vorwärts               | 4                     |  |
| $\frac{1}{2} = \frac{1}{2} \left( \frac{1}{2} + \frac{1}{2} \right)$ |          |                        |                       |  |
| 5 (moa(mag4)-                                                        | 7.749    | vorwärts               | 3                     |  |
| 60.1+folgende)                                                       |          |                        |                       |  |
| 4  (mod(mdg4)-                                                       | 12.366   | rückwärts              | 3                     |  |
| 55.6+folgende)                                                       |          |                        |                       |  |
| $5 \pmod{(mdg4)}$ -                                                  | 13,409   | rückwärts              | 2-5                   |  |
| 52.4+folgende)                                                       | 101107   |                        |                       |  |
| 6 ( <i>mod</i> ( <i>mdg4</i> )-                                      | 14 070   | nii alaaviinta         | 2.7                   |  |
| 54.7+folgende)                                                       | 14.272   | Tuckwalts              | 2-1                   |  |
| 7 ( <i>mod</i> ( <i>mdg4</i> )-                                      | 14760    |                        | 4                     |  |
| 58.0+folgende)                                                       | 14.762   | vorwarts               | 4                     |  |
| 8 (mod(mdg4)-                                                        |          |                        |                       |  |
| 67.2+folgende)                                                       | -        | rückwärts              | 2                     |  |
| 9 ( <i>mod</i> ( <i>mdg4</i> )-                                      |          |                        |                       |  |
| 55.7+folgende)                                                       | 20.969   | vorwärts               | 2-14                  |  |
| 10 (mod(mdg4)-                                                       | 21.020   |                        | 10                    |  |
| 58.8+folgende)                                                       | 21.920   | vorwarts               | 12                    |  |
| 11 ( <i>mod</i> ( <i>mdg4</i> )-                                     | 22 107   |                        | 11                    |  |
| 51.4+folgende)                                                       | 22.197   | vorwarts               | 11                    |  |

Die durchgeführten Experimente waren auf die Identifikation der intragenischen Promotorelemente ausgelegt, Aufschluß über Gewebespezifität bzw. temporale Aktivität der Promotoren geben sie nicht. Für einige *mod(mdg4)*-mRNAs aus verschiedenen Transkriptionseinheiten wurde gezeigt, daß sie während der Embryonalentwicklung und Puppenphase/Metamorphose überproportional gebildet werden (siehe Anhang A2.2; Costello *et al.*, 2008; Arbeitman *et al.*, 2002).

Öffentlich zugängliche und im Rahmen dieser Arbeit aufbereitete Daten anderer Experimente (Flyatlas; Chintapalli *et al.*, 2007; siehe Abb. 3.5 und Anhang A2.2) bieten einen ersten Zugang zur Gewebespezifität der intragenischen *mod(mdg4)*-Promotoren, was für funktionelle

Analysen der Isoformen von Bedeutung sein kann. Sie belegen für adulte Tiere eine relative Überexpression aller untersuchten *mod(mdg4)*-Isoformen im Gehirn und den Ovarien. Einige Isoformen sind auch z.B. im Thorax-Abdomen-Ganglion oder den männlichen akzessorischen Drüsen hoch exprimiert.



Abbildung 3.5 Übersicht der relativen *mod(mdg4)*-mRNA-Mengen in verschiedenen *Drosophila melanogaster*-Geweben. : hochreguliert (propotional hoher Anteil in aus Gewebe isolierter RNA gegenüber dem Anteil in RNA, die aus dem Gesamtorganismus isoliert wurde), : nicht-verändertes mRNA-Level, : herunterreguliert; zum besseren Vergleich mit den ausgewerteten Originaldaten (siehe Anhang A2.2) wurden die englischen Gewebebezeichnungen beibehalten.

## 3.1.3 Genetische Analysen der Revertanten

Die überwiegende Zahl bisher analysierter und publizierter mod(mdg4)-Mutationen betrifft den gemeinsamen Teil des Locus. Der gemeinsame Teil des Locus codiert die Exons 1-4, die in allen mod(mdg4)-mRNAs enthalten sind. Eine Mutation in diesem Bereich betrifft alle Isoformen und sollte sozusagen alle Phänotypen auslösen, die bei Mutationen beliebiger isoformspezifischer Exons auftreten würden. Ausnahmslos alle *loss of function*-Mutationen des gemeinsamen Teils von mod(mdg4) sind rezessiv letal. Die Letalitätsphase erstreckt sich vom Larven- bis ins Puppenstadium, was wahrscheinlich auf die maternale Komponente des Locus zurückzuführen ist (Büchner *et al.*, 2000; siehe auch Anhang A2.2, Abb. A2).

Daraus läßt sich allerdings nur ableiten, daß eine oder mehrere Isoformen des *mod(mdg4)*-Locus für die Lebensfähigkeit von *Drosophila melanogaster* essentiell ist. Genetische Analysen von Mutationen des spezifischen Teils des Gens sollten es ermöglichen, die Isoform(en) zu identifizieren bzw. einzugrenzen, deren Ausfall die rezessive Letalität verursacht. An männlichen, adulten, homozygoten *Escaper*-Tieren von  $mod(mdg4)^{neo129}$  wurde eine homöotische Transformation des Abdominalsegments A5 in A4 beobachtet (Dorn *et al.*, 1993b; Büchner *et al.*, 2000). Mit Mutationen im spezifischen Teil des Gens, die nicht die Isoform(en) betreffen, die die rezessive Letalität bedingen, sollte es möglich werden, andere Funktionen des Gens zu untersuchen, die bisher nicht entdeckt bzw. charakterisiert werden konnten. Außerdem kann die funktionelle Differenzierung der mod(mdg4)-Isoformen auf diese Weise untersucht werden. Haben verschiedene Isoformen auch verschiedene, abgegrenzte Funktionen? Oder besteht zwischen ihnen eine funktionelle Redundanz, sodaß bei Ausfall einer Isoform eine andere ihre Funktion teilweise oder vollständig übernehmen kann? Hinweise auf eine Differenzierung ohne Redundanz gaben bereits immuncytologische Untersuchungen (Gabler, 2003 und pers. Mitteilung), entsprechende funktionelle Untersuchungen werden aber erst durch die etablierten und in ihren Expressionsmustern charakterisierten Revertanten möglich.

Zunächst wurden die *P*-Elementstämme *P{RS5}-5-HA-1224* und *P{KG}08515* auf phänotypische Auffälligkeiten untersucht. *P{RS5}-5-HA-1224* zeigt keine erkennbaren Abnormitäten. Die Deregulation der von den Promotoren #4 bis #7 ausgehend transkribierten spezifischen Exons (siehe 3.1.2.2, Abb. 3.2 Teil A) führt demnach nicht zu sichtbaren Phänotypen. *P{KG}08515* zeigt, abgesehen von der *second site-*bedingten, rezessiven Semiletalität (siehe 3.1.2.1), ebenfalls keine Phänotypen im Vergleich mit der Referenz  $(w^{1118}_{iso})$ .

Danach wurden Komplementationen verschiedener *mod(mdg4)*-Allele mit den Revertanten aus beiden Mobilisierungen durchgeführt um homozygot/transheterozygot auftretende Phänotypen zu identifizieren. Die bekannte Größe der Deletionen und Expressionsmuster lassen dabei Schlüsse auf die verantwortliche Isoform bzw. Transkriptionseinheit, in der sich diese Isoform befindet, zu.

#### 3.1.3.1 Rezessive Letalität

Die rezessive Letalität als Phänotyp von Mutationen im gemeinsamen Teil des mod(mdg4)-Locus (Dorn *et al.*, 1993a; Büchner *et al.*, 2000) sollte mit Hilfe des Revertantenmaterials analysiert werden. Ziel war es, herauszufinden, ob die Nicht-Expression aller mod(mdg4)-Isoformen der rezessiven Letalität zugrunde liegt oder ob sich dieser Phänotyp auf eine bzw. eine Gruppe von mod(mdg4)-Isoformen eingrenzen läßt. Zu diesem Zweck wurden zunächst Revertanten mit möglichst großen Deletionen untersucht. **Tabelle 3.4** Komplementation von Revertante Rev31 im Stamm und mit zwei Defizienzen Df(3R)GC14 (Deletion des kompletten mod(mdg4)-Locus, für Beschreibung siehe 2.1.3) und Df(3R)ED6050 (20 distale spezifische Exons deletiert, siehe 2.1.5). Angegeben sind homozygote bzw. transheterozygote Tiere im Verhältnis zur Gesamtzahl F1-Tiere. Die Komplementationen wurden nach Geschlechtern getrennt ausgewertet. +:  $\geq 85\%$ ; sv: subvital, 50-85\%; sl: semiletal, 5-50%; -: letal (<5%) (nach Hadorn, 1955)

| Rev31 mit    | Komplementation $\mathcal{J}$ | Komplementation $\bigcirc$ |
|--------------|-------------------------------|----------------------------|
| Allel        |                               |                            |
| Rev31        | <b>sl</b> 101/1040 (29%)      | <b>sl</b> 177/1138 (47%)   |
| Df(3R)GC14   | <b>sl</b> 44/486 (27%)        | <b>sl</b> 67/529 (38%)     |
| Df(3R)ED6050 | + 98/319 (92%)                | + 105/358 (88%)            |

Die Revertante Rev31 (siehe auch 3.1.4), deren Deletion die 18 proximal codierten isoformspezifischen Exons umfaßt, zeigt eine starke rezessive Semiletalität, die im transheterozygoten Genotyp mit der Defizienz des gesamten mod(mdg4)-Locus, Df(3R)GC14, bestätigt wird. Die Defizienz Df(3R)ED6050, bei der die 20 distalen isoformspezifischen Exons deletiert sind, kann jedoch fast vollständig komplementiert werden. Damit lassen sich die Isoformen zwischen mod(mdg4)-58.0 und -55.7, die sowohl in Rev31 wie auch in Df(3R)ED6050 deletiert sind, als Ursache der rezessiven Letalität ausschließen.

Ein Ausfall der Isoformen von *mod(mdg4)*-64.2 bis -55.7 (entspricht Umfang der Deletion von Rev31, siehe Abb. 3.1) verursacht eine starke Semiletalität, sodaß anhand dieser Daten allein nicht unterschieden werden kann zwischen einem additiven Effekt, bei dem die Lebensfähigkeit mit steigender Zahl ausgefallener Isoformen sinkt, und einer Isoform/Isoformengruppe im distalen Teil des Gens, die (bei Nicht-Expression) für die rezessive Letalität verantwortlich ist.

Darum wurde im weiteren die rezessiv letale Revertante 459 untersucht, bei der die distal codierten Isoformen aufgrund der Deletion des Promoters #11 nicht mehr gebildet werden können (siehe Abb. 3.3). Aus Komplementationen im Stamm und mit der mod(mdg4)-Defizienz Df(3R)GC14 konnten keine homozygoten bzw. transheterozygoten Tiere erhalten werden (je ca. 400 F1-Tiere). Die Komplementation von Revertante 459 mit Df(3R)ED6050 ergab eine Rettung von weniger als 2% (6 von 1061 F1-Tieren). Anhand der Ergebnisse dieser Kreuzungsauswertung kann die rezessive Letalität auf die Isoformen zwischen mod(mdg4)-58.0 und -54.5, der am weitesten distal codierten, eingegrenzt werden. Bezieht man die Resultate der Komplementation Rev31/Df(3R)ED6050 mit ein, bleiben noch 13 Isoformen

zwischen *mod(mdg4)*-52.2 und -54.5, von denen eine oder eine Kombination mehrerer Isoformen bei funktionellem Ausfall die rezessive Letalität verursacht.

### 3.1.3.2 Koordinationsphänotyp

Während der Experimente zur Eingrenzung der potentiell für die rezessive Letalität verantwortlichen *mod(mdg4)*-Isoform wurde ein bisher für *mod(mdg4)* nicht beobachteter Phänotyp identifiziert: Bei den Revertanten Rev57, RevX und Rev64 war der Aufbau einer homozygoter Linien nicht erfolgreich. Wurden mehr als zehn homozygote Tiere selektiert und untereinander gekreuzt, ließ sich die Linie maximal eine Generation erhalten. Die homozygoten Tiere starben teils schon vor den Kreuzungen, weshalb zunächst eine rezessive Letalität (<5% Überlebensrate nach Hadorn, 1955) angenommen wurde (Balschun, 2006; Dörfel, 2007).

Die Ergebnisse eines Komplementationsexperiments der genannten Revertanten mit Df(3R)GC14, einer Defizienz des gesamten mod(mdg4)-Locus, lassen jedoch lediglich eine Subvitalität (50-85% nach Hadorn, 1955) erkennen (Tabelle 3.5). Die früheren Ergebnisse, die zur Annahme der rezessiven Letalität führten, liegen wahrscheinlich in einer weniger häufigen Auszählung der schlüpfenden F1-Generation begründet (einmal täglich), da die transheterozygoten Tiere eine ausgeprägte Koordinationsschwäche ihrer Bewegungen aufweisen. Ihre Bewegungen waren langsamer und unsicherer als die der Kontrolltiere. Als Folge ihrer Unfähigkeit, sich auf dem Futter zu bewegen bzw. sich ggf. daraus zu befreien und die Gefäßwand zu erklettern, starben die Tiere letztlich an Erschöpfung (vermutlich) und versanken im Futter. Der Effekt war bei homozygoten und Df(3R)GC14-transheterozygoten Tieren zu beobachten. Bei der Revertante 110, die als Kontrolle diente, trat dieser Phänotyp nicht auf.

**Tabelle 3.5** Komplementation der mod(mdg4)-Defizienz Df(3R)GC14 mit verschiedenen *P{RS5}-5-HA-1224*-Revertanten. Gekreuzt wurden TM6C-balancierte Männchen der Revertantenlinien mit Weibchen der TM6C-heterozygoten Defizienz. Als Zahlenwerte festgehalten sind: transheterozygote Tiere/Gesamtzahl F1-Tiere. +:  $\geq$ 85%; **sv**: subvital, 50-85%; **sl**: semiletal, 5-50%; -: letal (<5%) (nach Hadorn, 1955)

| Revertante | <b>Komplementation</b> mit ♀ |  |  |
|------------|------------------------------|--|--|
|            | Df(3R)GC14                   |  |  |
| 110        | + 208/602 (104%)             |  |  |
| Rev57      | sv 449/1700 (79%)            |  |  |

| RevX  | <b>sv</b> 127/490 (78%) |
|-------|-------------------------|
| Rev64 | sv 594/2162 (82%)       |

Der beobachtete Effekt auf die Bewegungskoordination war zu 100% penetrant, ließ sich in seiner Schwere aber nicht mittels Klettertest (*climbing assay*) bzw. Lauftests quantifizieren, da keines der beobachteten Tiere in der Lage war, eine senkrechte Gefäßwand zu erklimmen (gestörter Haftreflex) bzw., auf ein Gitter zur Distanzmessung gesetzt, sich kaum bewegte.

Die Lebensspanne scheint bei den untersuchten Revertanten nicht beeinträchtigt zu sein. Wurden die homozygoten bzw. Df(3R)GC14-transheterozygoten Tiere nach Geschlechtern getrennt in liegenden statt stehenden Röhrchen gehalten, war die Lebensspanne mit der Kontolle  $w^{1118}_{iso}$  vergleichbar. Die Trennung der Tiere nach Geschlecht war notwendig, da bei Haltung homozygoter Tiere beider Geschlechter in einem Röhrchen mit einiger Penetranz der *stuck-like*-Phänotyp (siehe 3.1.3.4) auftrat, was zu einer verkürzten Lebensdauer führte.

Des weiteren zeigten mit Df(3R)GC14 transheterozygote Männchen der Revertanten in Kreuzungen mit  $w^{1118}_{iso}$  normale Fertilität, Weibchen jedoch eine stark verminderte Fertilität. Die gleichen Effekte traten bei Kreuzung homozygoter Tiere auf. Aus Abbildung 3.5 geht hervor, daß die für die Auslösung der Phänotypen (beidgeschlechtliche) Bewegungskoordinationsschwäche und weibliche Semisterilität in Frage kommenden Isoformen zwischen mod(mdg4)-54.7 und -53.1 sowohl im Gehirn wie auch in den Ovarien stark, in den Hoden aber wenig exprimiert sind. Dies könnte ein Indiz dafür sein, daß der Ausfall der entsprechenden Isoformen bzw. ihre geringere Expression in Weibchen neben der gestörten Bewegungskoordination zusätzlich die verminderte Fertilität auslöst, während in Männchen zwar auch die Bewegungen beeinträchtigt sind, die Fruchtbarkeit aber erhalten bleibt, da die genannten Isoformen keine essentielle Funktion bei der männlichen Reproduktion spielen.

Unklar ist jedoch, ob die Phänotypen durch die Deletion eines spezifischen Exons ausgelöst werden, oder ob verschiedene mod(mdg4)-Isoformen betroffen sein müssen, damit beide Phänotypen auftreten. Die Untersuchung von Revertanten mit kleineren Deletionen könnte dies klären.

### 3.1.3.3 Weibliche Sterililität

Zu Beginn der Analyse weiblicher Fertilität war bekannt, daß homozygote  $mod(mdg4)^{neo129}$ -Weibchen (*Escaper*) steril sind (Dorn *et al.*, 1993a). Zudem wurde mittels Northern Blot eine starke maternale Komponente von mod(mdg4) nachgewiesen (Büchner *et al.*, 2000).

Neben den in 3.1.3.2 beschriebenen Linien (Rev64, Rev57 und RevX) wurde auch bei den Revertanten 213, R124 und MA26 eine starke Semisterilität festgestellt, wenn homozygote oder transheterozygote Tiere miteinander gekreuzt wurden. Obwohl Revertante 99, deren Fertilität nicht eingeschränkt ist, eine ausgedehntere Deletion als 213 und MA26 aufweist, wird hier, vermittelt durch den verbliebenen *P*-Elementrest, unter anderem die Transkriptionseinheit des Promotors #7 (isoformspezifische Exons von mod(mdg4)-58.0 & folgende) transkribiert, bei 213 und MA26 nicht. Um festzustellen, ob ein Ausfall dieser vier isoformspezifischen Exons als Ursache des Phänotyps in Frage kommt, wurden weitere Revertanten getestet. In den Mutanten 434 und 499, die die Isoformen mod(mdg4)-58.0 bis -65.0 nicht mehr bilden können (Abb. 3.2), tritt der Phänotyp nicht auf. Allerdings wird in beiden mod(mdg4)-55.3 noch exprimiert. Weiterhin zeigt die Revertante GG293, deren Deletion das spezifische Exon der Isoform mod(mdg4)-55.3 einschließt und zum Ausfall von mod(mdg4)-65.0 führt

(Deletionsbruchpunkt in codierender Sequenz, siehe Abb. 3.3 und 3.4), normale homozygote Fertilität. Die Revertante 110, bei der die komplette Transkriptionseinheit des Promotors #7 ausfällt (Abb. 3.2), ist ebenfalls homozygot lebensfähig und fertil<sup>15</sup>. Somit kann die Transkriptionseinheit mod(mdg4)-58.0+folgende (Promotor #7) bzw. ihr Ausfall nicht Ursache der homozygoten weiblichen Semisterilität sein.

Die Deletion der Transkriptionseinheit unter Kontrolle des Promotors #6, die die spezifischen Exons der Isoformen mod(mdg4)-54.7 und -53.6 umfaßt, ist den semisterilen Revertanten, aber auch den Revertanten 99 und 110, die in ihrer Fertilität nicht eingeschränkt sind, gemein. Die Unterschiede, die letztlich zur Ausprägung des Phänotyps führen, müssen demnach in der Expressionshöhe der fünf Isoformen liegen, deren spezifische Exons *downstream* des Promotors #5 liegen (mod(mdg4)-52.4+folgende; siehe auch Tab. 3.3 und Abb. 3.2).

Die verminderte Expression einer oder mehrerer der fünf Isoformen zwischen *mod(mdg4)*-52.4 und -53.1 führt zur beobachteten Semisterilität. Die Revertanten, die diese Isoformen vermehrt exprimieren (99, 110; siehe auch Tab. 3.2), zeigen normale Fertilität.

Der funktionelle Ausfall mindestens einer weiteren Isoform läßt die homozygoten Weibchen **vollständig** steril werden läßt: Die einzige Revertante, bei der homozygote weibliche Sterilität (wie bei homozygoter  $mod(mdg4)^{neo129}$ ) festgestellt wurde, ist Revertante Rev31. Während sich Kreuzungen homozygoter Rev31-Männchen mit  $w^{1118}_{iso}$ -Jungfrauen normal entwickeln, konnten im reziproken Fall nur mit sehr geringer Frequenz Eier mit erkennbar beginnender Embryonalentwicklung identifiziert werden. Eine mikroskopische Untersuchung der Ovarien

<sup>&</sup>lt;sup>5</sup> Die Revertanten 99, 434, 499 und 110 werden seit über 20 Generationen als homozygote Linien im Labor gehalten, ohne daß Auffälligkeiten oder Beeinträchtigungen in Bezug auf die Fertilität zu beobachten sind.

homozygoter Rev31-Weibchen zeigte keine auffälligen morphologsichen Veränderungen (Dorn, pers. Mitteilung).

In Rev31 unterliegen alle gebildeten mod(mdg4)-Isoformen einer moderaten Überexpression (siehe 3.2.1). Diese Überexpression führt nicht zur Sterilität, wie mit Tieren des Genotyps Rev31/Df(3R)ED6050 (vgl. 3.1.3.1) belegt wurde, die eine normale Fertilität aufweisen (Erhalt als Linie seit >30 Generationen). Die Isoform(en), deren Ausfall zur Sterilität in homozygoten Weibchen führt, liegt also im Bereich der 18 proximal codierten isoformspezifischen Exons (zwischen mod(mdg4)-64.2 und -55.7). Wird wiederum der Genotyp Rev31/Df(3R)ED6050 einbezogen, kann der Bereich auf die proximalen 11 spezifischen Exons eingegrenzt werden (mod(mdg4)-64.2 bis -54.7).

### 3.1.3.4 stuck-like-Phänotyp

Bei der Kreuzungsauswertung zur Analyse homozygoter Fertilität der Revertanten fiel auf, daß die gekreuzten Tiere bestimmter Linien oft während der Kopulation starben bzw. am Futter festklebten und verendeten ohne sich voneinander zu lösen. Der zuerst von A. Dörfel (pers. Mitteilung) beobachtete Effekt besitzt Ähnlichkeit mit den Kopulationsphänotypen *stuck (sk:* Hall *et al.*, 1980; Yamamoto *et al.*, 1997) und *lingerer (lig:* CG8715; Kuniyoshi *et al.*, 2002), ist jedoch wesentlich stärker ausgeprägt. So ließen sich die Fliegen weder durch Vortexen (*sk:* Yamamoto *et al.*, 1997) noch Auseinanderziehen voneinander lösen, auch wurde nur selten beobachtet, daß sich die Tiere selbständig voneinander lösen konnten, mitunter durch Abriß von Teilen des weiblichen Abdomens. Das Männchen war in den beobachteten Fällen nicht in der Lage, sich der abgerissenen Terminalia zu entledigen.



**Abbildung 3.5** Ausprägung des *stuck-like*-Phänotyps bei Kreuzung homozygoter Tiere von Revertante R124 (links) und Revertante 213 (rechts). Das linke Bild zeigt typische, im Futter entstehende, kreisförmige bis ovale Muster, die beim Versuch des Weibchens entstehen, sich vom bereits am Futter festgeklebten/verendeten Männchen zu befreien. Meist starben beide Tiere, während sie noch verbunden waren (rechtes Bild).

Um die mod(mdg4)-Isoform, deren Ausfall den *stuck-like*-Phänotyp hervorruft, zu identifizieren, wurden je 20 Kreuzungen verschiedener Kombinationen analysiert. Neben der Kreuzung homozygoter Revertantentiere untereinander wurden homozygote Männchen und Weibchen auch mit  $w^{1118}_{iso}$  gekreuzt um geschlechtsspezifische Unterschiede in der Ausprägung des Phänotyps festzustellen (Tab. 3.7).

**Tabelle 3.7** Kreuzungen zur Eingrenzung der für den *stuck-like*-Phänotyp verantwortlichen *mod(mdg4)*-Isoform: Anzahl der Kreuzungen mit Manifestation des Phänotyps/Anzahl Kreuzungen für diese Kombination.

| Revertante       | homozygote $3 \times 9$ | hom. $\mathcal{J} \times \mathcal{Q} \mathbf{w}^{1118}_{iso}$ | $\Im \mathbf{w}^{1118}_{iso} \times \text{hom. } \Im$ |
|------------------|-------------------------|---------------------------------------------------------------|-------------------------------------------------------|
| MA26             | 8/20                    | 2/20                                                          | 1/20                                                  |
| R124             | 13/20                   | 1/20                                                          | 1/20                                                  |
| 213              | 5/20                    | 3/20                                                          | 0/20                                                  |
| 499              | 1/20                    | 0/20                                                          | 0/20                                                  |
| JK14             | 3/20                    | 1/20                                                          | 0/20                                                  |
| GG293            | 1/20                    | 0/20                                                          | 0/20                                                  |
| $w^{1118}_{iso}$ | 0/20                    |                                                               |                                                       |

Nach 24 Stunden wurden die ersten zusammenhängenden Paare beobachtet; die in Tabelle 3.7 angegebenen Zahlen wurden nach 6-7 Tagen erreicht, was auf eine verzögerte Paarung hindeutet. Der *stuck-like*-Phänotyp prägt sich nur dann deutlich aus, wenn homozygote Männchen und Weibchen der jeweiligen Linie miteinander gekreuzt werden. In den Kontrollkreuzungen homozygoter Tiere mit  $w^{1118}_{iso}$  tritt er weniger häufig oder nicht auf. Damit kann *stuck-like* nicht die Ursache der weiblichen Semisterilität (siehe oben) sein.

Die Verteilung von stuck-like in den Kreuzungen schließt eine Isoform in der Transkriptionseinheit mod(mdg4)-58.0+folgende (Promotor #7) als verursachend aus, da deren partielle Deletion (in 499, JK14 und GG293) kaum zu einer Manifestation des Phänotyps führt (der erhöhte Wert von 3/20 bei JK14 wird als Ausreißer angesehen, da die Deletion in dieser Revertante kleiner ist als die in Revertante 499). Die verantwortliche Isoform muß daher eine der sieben zwischen mod(mdg4)-54.7 und -53.1 sein. Anhand der durchgeführten Kreuzungen läßt sich keine sichere, weitere Eingrenzung erreichen. Schließt man jedoch indirekt von der normalen Fertilität der Linien Revertante 99 und 110, scheint dem Phänotyp stuck-like ebenso wie der weiblichen Semisterilität ein Dosiseffekt zugrunde zu liegen, hervorgerufen durch die verminderte Expression der von den Promotoren #4 und #5 kontrollierten Transkriptionseinheiten (*mod*(*mdg4*)-52.4+folgende, *mod*(*mdg4*)-55.6+folgende). Mit Hilfe des Revertantenmaterials läßt sich weiterhin nicht ausschließen, daß mehr als eine Isoform an der Ausprägung des Phänotyps beteiligt ist.

Lichtmikroskopische Untersuchungen des Abdomens homozygoter Revertanten zeigten keine offensichtlichen morphologischen Auffälligkeiten der äußeren Geschlechtsorgane. Sie erschienen im direkten Vergleich mit  $w^{1118}_{iso}$  normal ausgebildet und ohne anatomische Abweichungen. Subtile Veränderungen können aber nicht ausgeschlossen werden.

Vermutlich ist ein Verlust der neuromuskulären Kontrolle der Grund für die tödlich endende Kopulation. Gorczyca *et al.* (1999) beschrieben eine insertionelle Mutation in den Promotor der gemeinsamen Exons 1-4: *branch point disrupted* (*bpd*; siehe auch Abb. 1.1). Die Phänotypen dieser Mutation wurden in Larven untersucht und äußern sich in einer veränderten Synapsenmorphologie und einer fehlerhaften Verzweigung von Motorneuronen, in dessen Folge die falschen Muskeln innerviert werden. Da *bpd*, wie alle Mutationen des gemeinsamen Teils von *mod(mdg4)*, in späten Larven- bzw. in Puppenstadien rezessiv letal ist, ist der mögliche Zusammenhang zwischen den in Larven beobachteten Veränderungen und den in Adulten auftretenden Störungen der Kopulation bzw. Bewegungskoordination nur ein Indiz.

### 3.1.3.5 Homöotische Transformation

Homozygote *Escaper*-Männchen von  $mod(mdg4)^{neol29}$  zeigen eine partielle Transformation des Abdominalsegments A5 in A4, was sich in einer gestörten Pigmentierung des Segments äußert. Dorn *et al.* (1993b) ordneten mod(mdg4) daraufhin der *trithorax*-Gruppe zu. Mit Hilfe der verfügbaren Revertanten sollte die Isoform identifiziert werden, deren Ausfall zur beobachteten homöotischen Transformation führt.

Im Rahmen dieser Arbeit wurde zunächst die semiletale Revertante Rev31 untersucht, bei der 18 isoformspezifische Exons deletiert sind. Diese zeigte einen signifikanten Transformationsphänotyp (Abb. 3.6). Von diesem Ergebnis ausgehend wurden Revertanten mit kleineren Deletionen untersucht. MA26, deren Deletion das isoformspezifische Exon von mod(mdg4)-54.7 umfaßt, in der aber weitere Isoformen nicht oder nur in geringem Maße transkribiert werden (Abb. 3.2), zeigt ebenfalls eine homöotische Transformation, Revertante 99 (nicht gezeigt) aber nicht. Der Phänotyp kann also auf Dosiseffekten der Isoformen unter Kontrolle von Promotor #5 (mod(mdg4)-52.4+folgende) oder auf dem Ausfall der Transkriptionseinheit von Promotor #6 (mod(mdg4)-58.0+folgende) beruhen. Daher wurden die Revertanten 499 und JK14 auf Veränderungen der Pigmentierung männlicher Abdomen untersucht.



**Abbildung 3.6** Homöotische Transformation des Abdominalsegments A5 in A4 in vier bis sechs Tage alten, homozygoten Männchen folgender Genotypen: (A)  $w^{1118}_{iso}$ ; (B) Rev31; (C) MA26; (D) JK14

Bei JK14, der kleinsten Mutation in diesem Bereich (Deletion der spezifischen Exons von mod(mdg4)-58.0), ist eine deutliche Fehlpigmentierung des betreffenden Abdominalsegments zu beobachten. Die für die homöotische Transformation verantwortliche Isoform kann mit Hilfe von JK14 auf den Ausfall der Isoform mod(mdg4)-58.0 und/oder die abgeschwächte Expression von mod(mdg4)-55.2, die in dieser Revertante festgestellt wurde, eingegrenzt werden. Allerdings ist hier der Phänotyp nicht so stark ausgeprägt, wie zum Beispiel bei Rev31. Es kann also nicht ausgeschlossen werden, daß andere Isoformen bzw. deren funktioneller Ausfall an der Ausprägung der homöotischen Transformation beteiligt sind bzw. diese verstärken.

Zudem wurde mittels des Antikörpers anti-Mod(mdg4)-58.0<sup>BTB-534</sup> (detektiert alle Mod(mdg4)-Proteine) polytäne Speicheldrüsenchromosomen von Revertanten untersucht, deren Deletionen in der Region des isoformspezifischen Exons von mod(mdg4)-58.0 liegen. Dabei wurde eine Bande in der cytologischen Region, in der sich auch der *Ubx*-Locus befindet (cytolog. Region 89D6-9; Gabler *et al.*, 2005 und pers. Mitteilung), nicht mehr detektiert. Dies ist ein weiteres Indiz, daß die Isoformen mod(mdg4)-58.0 oder -55.2 an den Ultrabithorax-Locus binden und so die Segmentierung beeinflussen. Eine immuncytologische Analyse von transgenen Fusionsproteinen, z.B. Mod(mdg4)-58.0-EGFP, die eine eindeutige Zuordnung der Isoform ermöglichen, wird derzeit in der Arbeitsgruppe durchgeführt (Gabler, pers. Mitteilung).

## 3.1.3.6 Suppression des Bar-Stone-Phänotyps von YB<sup>s</sup>

Im Rahmen von Kreuzungen zur Rolle der Isoform mod(mdg4)-56.3 bei nondisjunction von

Geschlechtschromosomen bei der Meiose I in *Drosophila melanogaster*-Männchen (Thomas *et al.*, 2006) wurde von der Arbeitsgruppe um Bruce McKee ein dominant *Bar-Stone*markiertes Y-Chromosom eingesetzt (Y $B^S$ ; siehe 2.1.3; Brosseau, 1958; Brosseau *et al.*, 1961), das in einem senkrecht spaltförmigen Augenphänotyp und einer verringerten Ommatidienzahl resultiert, wie in Abbildung 3.7 C-E zu sehen. Bei weiterführenden Unersuchungen stellte sich heraus, daß Mutationen im spezifischen Teil von *mod(mdg4)* rezessiv Einfluß auf die Ausprägung des *Bar-Stone*-Phänotyps von Y $B^S$  haben (B. McKee, pers. Mitteilung). Die Revertanten sollten genutzt werden, um die für diesen Phänotyp verantwortliche *mod(mdg4)*-Isoform einzugrenzen.

In den getesteten Mutanten nimmt die Anzahl der Ommatidien je Auge im Vergleich zu  $B^S$  stark zu und die senkrecht schlitzartige Form rundet sich ab, proximal bleibt eine deutliche Indentierung ("Delle", Abb. 3.7 A und B) erhalten, der  $B^S$ -Phänotyp wird nicht vollständig supprimiert. Um die verantwortliche Isoform einzugrenzen, wurden Jungfrauen der zu testenden Linien mit Männchen, die sowohl das mutierte  $YB^S$ -Chromosom wie auch eine Defizienz der infrage kommenden spezifischen Exons aufweisen,  $YB^S y^+$ ; Df(3R)GC14/TM6C, *Sb* bzw.  $YB^S y^+$ ; 459/TM6C, *Sb*, gekreuzt und balancerfreie, transheterozygote F1-Männchen selektiert. In Abbildung 3.7 sind repräsentative Augenphänotypen abgebildet.



**Abbildung 3.7** Suppression des *Bar-Stone-Phänotyps* von YB<sup>S</sup> in transheterozygoten Revertanten. (A) YB<sup>S</sup> y<sup>+</sup>; MA26/Df(3R)GC14, (B) YB<sup>S</sup> y<sup>+</sup>; 213/Df(3R)GC14, (C) YB<sup>S</sup> y<sup>+</sup>; 186/459, (D) YB<sup>S</sup> y<sup>+</sup>; 499/Df(3R)GC14, (E) YB<sup>S</sup> y<sup>+</sup>; 213/Df(3R)GC14 nach Kreuzung mit rotäugiger Linie a-31 (w<sup>+</sup> y<sup>1</sup>, für *mod*(*mdg4*) Wildtyp). Die Pfeile in (A) und (B) weisen auf die Indentierung ("Delle"), die bei Suppression des B<sup>S</sup>-Phänotyps erhalten bleibt.

Bei den Revertanten MA26 und 213 (A und B in Abb. 3.7) zeigt sich eine deutliche Suppression des *Bar-Stone-*Phänotyps, die nach Kreuzung der transheterozygoten Tiere mit der Linie ( $w^+ y^1$ , für *mod*(*mdg4*) Wildtyp) nicht mehr auftritt (Abb. 3.7, E). Weder die Revertante 186 noch 499 (C, D in Abb. 3.7) zeigen eine Suppression des *Bar-Stone-*Phänotyps, woraus abgeleitet werden kann, daß entweder die Isoform *mod*(*mdg4*)-55.3 (funktionell in Revertante 499, siehe Abb. 3.2, B) oder ein Ausfall bzw. eine physiologisch zu geringe Transkriptmenge

der Isoformen zwischen mod(mdg4)-54.7 und -53.1 für die Suppression des YB<sup>S</sup>-Phänotyps verantwortlich ist.

### 3.1.3.7 Enhancer der Positionseffektvariegation (PEV)

Mutanten im gemeinsamen Teil des mod(mdg4)-Locus zeigen ein dominantes *Enhancement* der Positionseffektvariegation im  $w^{m4h}$ -System (Dorn *et al.*, 1993a, Büchner *et al.*, 2000 und unveröffentlicht).

Durch Inversion auf dem X-Chromosom  $In(1)w^{m4h}$  wird der *white*-Locus in die Nähe eines heterochromatischen Bereichs gebracht. Gleichzeitig wird die Chromatinbarriere (*chromatin boundary*), die Hetero- von Euchromatin trennt, durch die Inversion wegverlagert. Die daraufhin erfolgende, zufällige Ausbreitung bzw. Zurückziehen des Heterochromatins bedingt in den Augen eine mosaikartige Verteilung von weißen und normal pigmentierten Ommatidien, je nachdem, ob das *white*-Gen in der jeweiligen Zelle vom Heterochromatin eingeschlossen wird oder nicht.

Dieser sogenannte *white mottled*-Phänotyp (Muller, 1930; Tartof *et al.*, 1984; Weiler und Wakimoto, 1995 und 2002) bietet eine Möglichkeit, die Funktion von Chromatinproteinen *in vivo* zu untersuchen. Mutationen von Proteinen, die wie *mod(mdg4)* an der Etablierung oder Aufrechterhaltung von Euchromatin beteiligt sind, führen zu einer verstärkten Ausbreitung des Heterochromatins über das *white*-Gen hinaus – in den Komplexaugen treten mehr weiße, d.h. nicht pigmentierte, Facetten auf. Diese Proteine werden als *Enhancer of variegation*, *E(var)*, klassifiziert. Die Mutation von Heterochromatinproteinen (*suppressor of variegation*, *Su(var)*) hingegen führt zu einem Zurückweichen des Heterochromatins, sodaß das *white*-Gen von Euchromatin umgeben ist, transkribiert werden kann und die Ommatidien rot pigmentiert sind.

Durch Kreuzung verschiedener mod(mdg4)-Allele mit  $w^{m4h}$ ;  $Cy/T(2;3)ap^{Xa} Su(var)2$ - $I^{01}/TM3$  sollte die mod(mdg4)-Isoform, die den E(var)-Effekt hervorruft, eingegrenzt werden. Su(var)2- $I^{01}$  (Dorn *et al.*, 1986) als starker dominanter Suppressor ruft eine fast vollständige Wildtyp-Pigmentierung hervor (siehe Abb. 3.8). Die Mutation wurde eingekreuzt um signifikante *Enhancer of PEV*-Effekte der mod(mdg4)-Mutationen eindeutig identifizieren zu können (Dorn *et al.*, 1993a,b; Büchner *et al.*, 2000; Laible *et al.*, 1997).



**Abbildung 3.8** Genetische Interaktion verschiedener mod(mdg4)-Allele mit Su- $var(2)1^{01}$ . Enhancer of variegation resultieren mit  $In(1)w^{m4h}$  in einem white mottled-Phänotyp – die Mutationen in mod(mdg4) sind epistatisch (Bateson und Saunders, 1902) über Su- $var(2)1^{01}$ . Jeweils links ist ein repräsentatives Facettenauge der untersuchten F1-Männchen  $w^{m4h}$ ; +/ $T(2;3)ap^{Xa}$  Su-(var)2- $1^{01}/mod(mdg4)$ -Allel dargestellt. Als Vergleich ist jeweils rechts das Auge eines aus der gleichen Kreuzung hervorgegangenen Kontrolltiers ( $mod(mdg4)^+$ ) abgebildet.

 $mod(mdg4)^{02}$  (gypsy-Insertion in drittes Intron) und  $mod(mdg4)^{neo129 R32}$  (Exons1-3 deletiert, alle mod(mdg4)-mRNAs sind 5'verkürzt und nicht funktionell; siehe auch 2.1.3) als Mutationen des gemeinsamen Teils des Locus zeigen den erwarteten dominanten *Enhancer of variegation*-Phänotyp und dienten als Kontrolle und Referenz für die Stärke der Phänotypausprägung. Von den übrigen getesteten Allelen zeigte lediglich Df(3R)eB2 einen *Enhancer*-Phänotyp. Da diese Defizienz aber neben dem distalen Teil des mod(mdg4)-Locus noch mindestens 12 weitere Gene umfaßt und der noch vorhandene Teil des mod(mdg4)-Locus in dieser Mutante nicht ausreichend molekular charakterisiert ist (siehe 2.1.3; alle spezifischen Exons ab mod(mdg4)-58.0 deletiert; wird andererseits von Gerasimova *et al.*, 1995 als Revertante eines *P*-Elements in *tinman* beschrieben), läßt sich die Ausprägung des Phänotyps nicht sicher auf den Ausfall der 20 distal codierten Isoformen zurückführen.

Obwohl die getesteten Revertanten und die Defizienz Df(3R)eGp4 einander überlappen und so jedes isoformspezifische Exon von mod(mdg4) abdecken, wurde bei keiner Mutante der für

eine *Enhancer*-Wirkung charakteristische *white mottled*-Phänotyp beobachtet. Demnach ist entweder der Ausfall mehrerer Isoformen, wie er in keiner der getesteten Revertanten als Kombination vorkommt, notwendig um den *Enhancer of variegation*-Phänotyp hervorzurufen, oder eine Mutation der gemeinsamen Exons ist für die dominante Ausprägung des *Enhancer*-Phänotyps verantwortlich (Dorn *et al.*, 1993a).

# 3.1.4 Phänotypen und immuncytologische Untersuchung der Revertante Rev31

Im Gegensatz zu anderen *P{RS5}-5-HA-1224*-Revertanten mit großen Deletionen, wie z.B. 439, 459 und GG48, zeigt die Revertante Rev31 keine rezessive Letalität sondern lediglich Semiletalität (siehe Tab. 3.4). Dies ermöglicht die Analyse mehrerer Phänotypen an adulten Tieren, die in dieser Kombination nicht bei Revertanten mit kleineren Deletionen auftreten. Darüber hinaus manifestieren sich in adulten homozygoten Rev31-Tieren einige Phänotypen, die in kleineren/überlappenden Revertanten nicht beobachtet werden konnten. Diese Phänotypen und die Ergebnisse genetischer Untersuchungen an Rev31 werden im Weiteren beschrieben.

Es sei an dieser Stelle noch einmal darauf hingewiesen, daß die beschriebenen Phänotpyen dem Ausfall der proximalen 18 Isoformen oder der Überexpression der verbleibenden Isoformen zugeordnet werden müssen (siehe 3.1.3.1).

## 3.1.4.1 Mißbildung der posterioren Flügelquerader und ektopische Scutellarborsten

Bei der lichtmikroskopischen Untersuchung homozygoter Rev31-Tiere fielen zwei Besonderheiten auf. Zum einen eine manchmal nicht ausgebildete Querverbindung der vierten und fünften Flügel-Longitudinaladern (posteriore Flügelquerader) und die Ausbildung ektopischer Scutellarborsten. Da in  $w^{1118}_{iso}$ , dem verwendeten Referenzstamm (alle *P{RS5}-5-HA-1224*-Revertanten wurden in diesem Hintergrund erzeugt), ebenfalls ektopisch Scutellarborsten gebildet werden, wurde die Penetranz dieses Phänotyps in beiden Linien untersucht. Um eine natürliche Varianz auszuschließen, wurden die erhaltenen Ergebnisse mittels zweier statistischer Verfahren (siehe 2.3) untersucht, dem p-Test für binominal verteilte Gesamtheiten und dem Fisher-Irwin-Test. p-Werte <0,05 wurden in beiden Tests (p-Test für binominal verteilte Gesamtheiten – TbvG, Fisher-Irwin-Test – FI) als signifikant angesehen. p<0,05 bedeutet, daß eine zufällige Ausprägung des Phänotyps unabhängig vom Genotyp mit einer Wahrscheinlichkeit von <5% auftritt.

Die Kontrollinie  $w^{III8}_{iso}$  sowie die Parentalgeneration der untersuchten Rev31-Tiere wurden zeitgleich im gleichen Brutschrank gehalten, was Temperatureinflüsse auf die Anzahl gebildeter Scutellarborsten ausschließt.



**Abbildung 3.9** (vorige Seite) (A) Vergleich repräsentativer posteriorer Flügelqueradern in  $w^{1118}_{iso}$ und Revertante Rev31. (B) Detailansichten der normal ausgebildeten (zweimal  $w^{1118}_{iso}$ , links) und mißgebildeten (viermal Rev31, rechts) posterioren Flügelquerader

**Tabelle 3.8** Phänotypen der homozygoten Revertante Rev31 im Vergleich mit  $w^{1118}_{iso}$ . Mißgebildete oder unvollständig ausgebildete posteriore Flügelquerader und die Verdopplung und ektopische Ausbildung von Scutellarborsten wurden für beide Genotypen erfaßt. Dabei sind vor dem Schrägstrich die Tiere mit ausgeprägtem Phänotyp, dahinter die Gesamtzahl der untersuchten Tiere dargelegt.

| Phänotyp           | w <sup>1118</sup> iso  | Rev31             | p (TbvG)              | <b>p</b> ( <b>FI</b> ) |
|--------------------|------------------------|-------------------|-----------------------|------------------------|
| defekte posteriore | ♂ <sup>°</sup> 0 / 270 | ് 48 / 110 (43%)  | p<1.10 <sup>-63</sup> | p=0                    |
| Flügelquerader     | ♀ 0 / 317              | ♀ 242 / 275 (88%) | p=0                   | p=0                    |
| defekte            | ් 17 / 273 (6%)        | ð 12 / 114 (10%)  | p<0,022               | p<0,21                 |
| Scutellarborsten   | ♀ 57 / 319 (18%)       | ♀ 129 / 274 (47%) | p<1.10 <sup>-27</sup> | p=0                    |

Die Penetranz beider Phänotypen ist in Weibchen höher als in Männchen. Da sowohl die Anzahl untersuchter männlicher Tiere der Revertante Rev31 wie auch der relative Unterschied in der Ausbildung ektopischer Scutellarborsten bei  $w^{1118}_{iso}$  und Rev31 mit 17/273 gegenüber 12/114 zu klein sind, liegt der berechnete p-Wert im Fisher-Irwin-Test nicht im Signifikanzbereich. Für die Weibchen von Rev31 ist hingegen statistisch abgesichert, daß Scutellarborsten vermehrt ektopisch gebildet werden.

Der Ausfall einer oder mehrerer der 18 proximal codierten Isoformen führt mit einer 43bzw. 88%-igen Penetranz zur Fehlbildung der posterioren Flügelquerader. Eine Funktion des *mod(mdg4)*-Locus bei der Organogenese der Flügel kann somit als gesichert gelten. Dansereau *et al.* (2002) beschreiben für das Gen *hephaestus* somatische Klone, die neben zahlreichen anderen Phänotypen auch Defekte der posterioren Flügelquerader aufweisen. Allerdings tritt bei den betreffenden Klonen der gegenteilige Phänotyp auf: Der Mittelteil der Ader fehlt, während die Verbindungen zu den Longitudinaladern intakt sind. Gegen eine genetische Interaktion (einer von Rev31 in ihrer Expression veränderten *mod(mdg4)*-Isoform) mit *hephaestus* spricht außerdem die unveränderte Expression des Gens in der homozygoten Revertante Rev31 (Daten nicht gezeigt).

# 3.1.4.2 Komplementation von Mutationen des gemeinsamen *mod(mdg4)*-Teils durch Revertante Rev31

Rev31 weist eine ausgeprägte rezessive Semiletalität auf (siehe Tab. 3.4). Die gemeinsamen Exons 1-4 liegen jedoch nicht im deletierten Bereich der Revertante. Demnach geht die Semiletalität auf das Fehlen isoformspezifischer Exons zurück und die Revertante Rev31 sollte in der Lage sein, rezessiv letale Mutationen des gemeinsamen Teils des Locus zu retten. Um diese Vermutung zu bestätigen wurden Komplementationskreuzungen mit einigen Mutantenallelen (siehe 2.1.3) ausgewertet.

**Tabelle 3.9** Komplementationen von Rev31 mit Mutationen des gemeinsamen Teils des mod(mdg4)-Locus. Eine Beschreibung der verwendeten mod(mdg4)-Mutationen findet sich unter 2.1.3. Angegeben sind transheterozygote Tiere im Verhältnis zur Gesamtzahl F1-Tiere. Die Komplementationen wurden nach Geschlechtern getrennt ausgewertet. +:  $\geq$ 85%; sv: subvital, 50-85%; sl: semiletal, 5-50%; -: letal (<5%) (nach Hadorn, 1955)

| Allel                           | 8                | 9                 |
|---------------------------------|------------------|-------------------|
| $mod(mdg4)^{04}$                | + 372/1138 (98%) | + 405/1192 (102%) |
| $mod(mdg4)^{02}$                | + 67/183 (110%)  | + 61/217 (85%)    |
| mod(mdg4) <sup>neo129 R32</sup> | + 153/434 (106%) | + 182/539 (101%)  |

| $mod(mdg4)^{07}$    | + 65/157 (124%)  | + 58/160 (109%)  |
|---------------------|------------------|------------------|
| $mod(mdg4)^{03}$    | + 44/141 (94%)   | + 60/165 (109%)  |
| $mod(mdg4)^{L3101}$ | + 208/582 (107%) | + 210/549 (115%) |
| $mod(mdg4)^{28-4}$  | + 35/121 (87%)   | + 35/119 (88%)   |

Die transheterozygoten F1-Tiere wurden auf Phänotypen untersucht, die bei homozygoten Rev31-Tieren auftraten. Die transheterozygoten Tiere bildeten nicht vermehrt ektopische Scutellarborsten aus, die posteriore Flügelqueradern (siehe 3.1.4.1) war bei allen untersuchten Tieren intakt und die Bewegungskoordination (siehe 3.1.3.2) schien ebenfalls nicht beeinträchtigt. Die transheterozygoten Männchen waren normal fertil. Die transheterozygoten Weibchen hingegen wiesen eine ebenso ausgeprägte rezessive Sterilität auf wie homozygote Rev31-Weibchen (siehe 3.1.3.3). Zur quantitativen Analyse der weiblichen Sterilität wurden Weibchen des Genotyps Rev31/ $mod(mdg4)^{neo129 R32}$  mit  $w^{1118}_{iso}$ -Männchen gekreuzt und die Entwicklung der Embryonen über 96h verfolgt. Aus 4851 Eiern schlüpften innerhalb von 36h sechs Larven, von denen keine das Puppenstadium erreichte (Beobachtungszeitraum der Larven: 14d).

Da die Analysen der sterilen Weibchen  $\text{Rev31/mod}(mdg4)^{neo129\ R32}$  neue Erkenntnisse zum Mechanismus des *trans*-Spleißens in *mod*(*mdg4*) erbrachten, sind sie im zweiten Ergebnisteil dieser Arbeit, in Kapitel 3.2.1, aufgeführt.

# 3.1.4.3 Immuncytologische Untersuchungen an Polytänchromosomen der Revertante Rev31

Der *mod(mdg4)*-Locus codiert eine Familie von Chromatinproteinen. Immuncytologische Analysen mit einem Antikörper, der alle Isoformen erkennt (anti-Mod(mdg4)-58.0<sup>BTB-534</sup>) zeigen mehrere hundert Banden an Polytänchromosomen aus larvalen Speicheldrüsen (Büchner *et al.*, 2000; Gabler *et al.*, 2005), darunter z.B. auch Signale an den Telomeren.

Immuncytologische Untersuchungen an Polytänchromosomen aus Revertante Rev31 zeigen ein deutlich reduziertes Bandenmuster. Gegenüber entsprechenden Analysen an der Referenz  $w^{1118}_{iso}$  ist bei homozygoter Rev31 auch kein Signal an den Telomeren der Polytänchromosomen erkennbar. Zudem erscheinen die Telomere im Vergleich mit korrespondierenden Chromosomen von  $w^{1118}_{iso}$  verkürzt (Abb. 3.10). Der Ausfall einer oder mehrerer Isoformen führt in Rev31 also zu einer Erosion der Chromosomennenden, was auf eine Funktion des mod(mdg4)-Locus in der *telomere maintenance* hindeutet.



**Abbildung 3.10** (vorige Seite) (A) Unterschiedlich lange Telomere an Chromosomenarm 2R an Polytänchromosomen aus larvalen Speicheldrüsen in heterozygoten Rev31-Larven (Rev $31/w^{1118}_{iso}$ ). (B) Fluoreszenz-*in situ*-Hybridisierung mit *HeT-A*-Sonde (grün) am 2R-Telomer von Rev $31/w^{1118}_{iso}$ . Die DNA ist mit DAPI gefärbt (rot).

Gleichzeitig konnte Manuela Gabler in ihrer Diplomarbeit (2003) mit Hilfe eines mod(mdg4)-64.2-cDNA-EGFP-Transgens nachweisen, daß die Isoform Mod(mdg4)-64.2 neben zahlreichen euchromatischen Bindungsstellen mit allen Telomeren außer dem des 3L-Chromosoms assoziiert ist. Ein Bestandteil aller Telomere, an denen das Protein nachgewiesen wurde, ist das Retrotransposon *HeT-A*. Das Telomer des 3L-Chromosoms ist in  $w^{1118}_{iso}$ , dem genetischen Hintergrund aller erzeugten Revertanten, neben der TAS (*telomere associated sequence*) ausschließlich aus *TART* aufgebaut (Abad *et al.*, 2004). Daraus ergibt sich eine hohe Wahrscheinlichkeit, daß Mod(mdg4)-64.2 an *HeT-A* bindet. Eine Fluoreszenz-*in situ*-Hybridisierung an Polytänchromosomen aus heterozygoten Rev31-Larven mit einer *HeT-A*-Sonde zeigt neben der Verkürzung der Telomere auch eine Abnahme des *HeT-A*-Signals (Abb. 3.10 (B)).

Geht die in Rev31 beobachtete Telomerverkürzung auf den Ausfall der Isoform mod(mdg4)-64.2 zurück? Eine definierte Mutation, die ausschließlich das spezifische Exon dieser Isoform deletiert, sollte die funktionelle Analyse der Isoform Mod(mdg4)-64.2 ermöglichen und ein Vergleich mit Rev31 ergeben, ob der an der Revertante beobachtete Telomerphänotyp auf den Ausfall der Isoform mod(mdg4)-64.2 beruht. Zur Beantwortung (unter anderem) dieser Fragestellung sollte gezielt das isoformspezifische Exon von mod(mdg4)-64.2 deletiert werden (siehe 3.1.5.2).

### 3.1.5 Funktionelle Analyse der Isoform mod(mdg4)-64.2

### 3.1.5.1 Nachweis der Mod(mdg4)-64.2-Assoziation an HeT-A, ChIP-on-membrane

In verschiedenen Arbeiten unserer Arbeitsgruppe wurde eine Assoziation der Proteinisoform Mod(mdg4)-64.2 mit den Telomeren von Polytänchromosomen beobachtet. Ein Mod(mdg4)-64.2-EGFP-Fusionsprotein konnte an allen außer dem 3L-Telomer nachgewiesen werden (Gabler, 2003; Brückner, 2007; Wagner, 2007). Abad *et al.* (2004) zeigten, daß das Telomer des 3L-Chromosoms des Stammes, der für das *Drosophila*-Genomprojekt sequenziert wurde, kein *HeT-A*-Retrotransposon enthält. Dies läßt vermuten, daß Mod(mdg4)-64.2 mit *HeT-A* assoziiert ist. Desweiteren konnte EGFP-Fluoreszenz des Fusionsproteins reproduzierbar an zwölf Stellen im Euchromatin von Polytänchromosomen der Speicheldrüse nachgewiesen werden (Wagner, 2007).

Zum Nachweis der endogenen Proteinisoform Mod(mdg4)-64.2 wurde ein anti-Peptid-Antikörper gegen die 15 C-terminalen Aminosäuren generiert. Sollte das Protein an das Retrotransposon *HeT-A* binden, ließe sich diese Assoziation mittels Chromatinimmunopräzipitation belegen, wobei *HeT-A*-DNA-Fragmente angerreichert werden sollten. Für diesen Nachweis wurden je 50ng PCR-Amplifikat des 5'- und 3'UTR (<u>untranslated region</u>) von *HeT-A* auf einer Nylonmembran kovalent immobilisiert.

An den Polytänchromosomen sind neben den Telomeren auch an mehreren euchromatischen Positionen Signale immuncytologisch nachweisbar, zum Beispiel ein starkes, reproduzierbar auftretendes Signal in der cytologischen Region 26B. Mit Hilfe verschiedener DrosDel-Defizienzen (Ryder *et al.*, 2004) konnten die Bindestelle(n) auf die Positionen 2L: 6.000.124 bis 2L: 6.054.407 eingegrenzt werden (M. Gabler, pers. Mitteilung). Um die Bindestelle(n) des Proteins innerhalb dieser Region weiter einzugrenzen, wurde ein *genomic tiling array* angefertigt, der aus 1,1 bis 1,7kb großen, einander überlappenden PCR-Amplifikaten besteht. Diese decken neben den 54kb (2L:6.000.124-6.054.407) auch beiderseits 3kb flankierende Sequenz ab. Jeweils 50ng der PCR-Amplifikate wurden ebenfalls auf der Nylonmembran immobilisiert. Die verwendeten PCR-Primer sind Anhang 1 zu entnehmen (unter "Primer für 50kb tiling array in Region 26B").

Aus S2-Zellen wurde Chromatin isoliert und die Chromatinimmunopräzipitation (ChIP; nach Sambrook und Russell (Hrsg.), 2001) durchgeführt. Das Chromatin wurde mit anti-Mod(mdg4)-64.2-Antikörper inkubiert um die Mod(mdg4)-64.2-DNA-Komplexe anzureichern. Es wurden zwei verschiedene Experimente mit affinitätsgereinigtem und IgG-angereichertem anti-Mod(mdg4)-64.2-Antikörper sowie ein Kontrollexperiment (mit Präimmunserum) durchgeführt. Nach Isolation der DNA-Fragmente aus den Protein-DNA-Komplexen wurden Oligonukleotidprimer ligiert, die DNA mittels PCR amplifiziert und anschließend [ $^{32}$ P]-radioaktiv markiert. Die markierten Amplifikate des angereicherten Chromatins wurden mit der, die PCR-Amplifikate von *HeT-A* und der Region 26B tragenden, Nylonmembran inkubiert.



Abbildung 3.11 Autoradiogramm der Chromatinimmunopräzipitation (ChIP-*on-membrane*) mit polyklonalem anti-Mod(mdg4)-64.2-Antikörper aus S2-Zellen. (A) Experiment mit Präimmunserum als Kontrolle; (B) affinitätsangereichertes Antiserum durch Inkubation mit antigengekoppelter Matrix; (C) IgG-angereichertes Antiserum durch Inkubation mit Protein G-Sepharose (GE Healthcare).

Vergleicht man die drei Experimente miteinander, so ist eine Anreicherung der untranslatierten Bereiche von *HeT-A* zu erkennen (Dots in Spalte 7), trotz der geringeren *HeT-A*-Kopienzahl der S2-Zellen im Vergleich zu *Drosophila*-Stämmen. Während in S2-Zellen rund 14 Kopien von *HeT-A* vorliegen, sind es ca. 45 in Oregon R, dem Wildtypstamm, aus dem die S2-Zellen kultiviert wurden, und ca. 35 im Referenzstamm des *Drosophila*-Genomprojekts (George *et al.*, 2006). Diese Zahlen beziehen sich auf *HeT-A*-Elemente, die den vollständigen *open reading frame* enthalten. Da bei Addition eines *HeT-A* an ein Chromosomenende dessen 5'Ende den neuen Abschluß des Chromosoms bildet und von dort erodiert wird (Pardue, 1990), sind Fragmente, die 3'*HeT-A*-Sequenz enthalten, stärker repräsentiert (Abad *et al.*, 2004a; George *et al.*, 2006). Die Methode der ChIP ist aufgrund der Bruchstückgrößen bei der Fragmentierung der genomischen DNA (100-1000bp) und der Tandemanordnung der *HeT-A*-Elemente in den Telomeren, bei der die UTRs benachbarter Elemente direkt aufeinander folgen, nicht geeignet, die Bindestelle von Mod(mdg4)-64.2 auf den 5'UTR oder 3'UTR von *HeT-A* festzulegen. Die Anreicherung von *HeT-A* wurde durch

eine Chromatinimmunopräzipitation, gefolgt von einer quantitativen PCR (ChIP-qPCR) für den 5'UTR und 3'UTR von *HeT-A* bestätigt (Daten nicht gezeigt).

Neben der Anreicherung der *HeT-A*-UTRs wurden auch Sequenzen, die drei Fragmenten des 50kb *tiling array* entsprechen, angereichert: Erstens das Fragment 2L:5.997.124 bis 2L:5.998.239 (Position 1a in Abb. 3.11), das aber außerhalb des mittels Immuncytologie eingegrenzten Bereichs, im ORF von *lid* (*CG9088*) liegt. Zweitens 2L:6.043.932 bis 2L:6.045.523 (Position 5f), ein Bereich in *ade2* (*CG9127*), circa 500bp *downstream* des Transkriptionsstarts beginnend. Zum dritten der Bereich 2L:6.052.337 bis 2L:6.053.894 (Position 6d), der den 3'Teil des Gens *CG9135* und den intergenischen Bereich zwischen *CG9135* und *CG13995* umfaßt. Der *tiling array* ergab in beiden Experimenten mit anti-Mod(mdg4)-64.2-Antikörper (B und C in Abb. 3.11) reproduzierbar eine Anreicherung der gleichen Fragmente.

Eine unabhängige Bestätigung (alle durchgeführten Experimente beruhen auf der Spezifität nur eines polyklonalen Antiserums) kann durch eine Chromatinimmunopräzipitation des transgencodierten Mod(mdg4)-64.2-EGFP-Fusionsproteins mittels anti-EGFP-Antikörper erreicht werden, denn eine C-terminale EGFP-Fusion beeinträchtigt weder die Verteilung der Mod(mdg4)-Proteine auf den Polytänchromosomen (Gabler, 2003 und pers. Mitteilung) noch, soweit untersucht, deren Funktion (Thomas *et al.*, 2006).

### 3.1.5.2 Deletion des spezifischen Exons/Knock out der Isoform mod(mdg4)-64.2

Die Spezifität der Mod(mdg4)-Proteine wird von ihrem spezifischen C-Terminus, codiert vom isoformspezifischen Exon(s), vermittelt. Daneben betreffen Mutationen des gemeinsamen Teils alle 31 Isoformen des Locus. Um die funktionelle Analyse einer mod(mdg4)-Isoform zu ermöglichen, muß deren isoformspezifisches Exon mutiert werden. Eine gezielte Mutagenese des spezifischen Exons von mod(mdg4)-64.2 würde es gestatten, ihre Funktion *in vivo* zu untersuchen. Zum Beispiel könnte so geklärt werden, ob der Verlust dieser Isoform verantwortlich ist für den in Revertante Rev31 beobachteten Telomerphänotyp (siehe 3.1.4.3) oder ob dieser auf den Ausfall einer anderen Isoform zurückgeht.

Zum einen sollte eine Mutation etabliert werden, die ausschließlich das isoformspezifische Exon der Isoform deletiert (" $\Delta 64.2$ "). Außerdem wurde eine weitere Mutation geplant, die ein Stopcodon in den 5'Bereich des isoformspezifischen Exons einfügt (T<sub>404</sub>Stop). Hierzu wurde die Methode des "*Ends-in gene targeting*" (Xie und Golic, 2004) angewendet. Die Klonierung der Transgenkonstrukte, die Etablierung der Transgene und deren Mobilisierung sowie die Durchführung von Nachweis-PCRs sind im Kapitel 2.1.6 beschrieben.

Das Donorelement zur Einführung des Stopcodons in das isoformspezifische Exon von mod(mdg4)-64.2 konnte nicht erfolgreich mobilisiert werden (ca. 400 Kreuzungen). Daher konnte nur der *Knock out* der Isoform durch die  $\Delta$ 64.2-Elemente umgesetzt werden.

Für das Experiment wurden zwei Donorelemente auf dem zweiten Chromosom,  $\Delta 64.2 \# 2$ und  $\Delta 64.2 \# 13$  (im folgenden mit  $\Delta 2$  und  $\Delta 13$  bezeichnet) ausgewählt. Es wurden etwa 600 Kreuzungen durchgeführt (siehe 2.1.6).

Von 12 erfolgreichen Mobilisierungen (leeres Donorelement und Mutation  $\Delta 64.2$  vorhanden) waren sechs ( $\Delta 2$  30,  $\Delta 2$  39a,  $\Delta 13$  9a,  $\Delta 13$  42a,  $\Delta 13$  54 und  $\Delta 13$  85c) Insertionen ins dritte Chromosom, die sechs anderen Integrationen der Donor-DNA erfolgten in die Chromosomen 2 und X.

Durch die erfolgreiche Etablierung von stabilen Linien ließ sich die Integration in das dritte Chromosom, nicht jedoch die Position bestimmen, an der das  $\Delta 64.2$ -Konstrukt eingefügt wurde. Der Integrationsort der Donor-DNA sollte durch Fluoreszenz-*in situ*-Hybridisierung (FISH) festgestellt werden. Hierzu wurde mittels PCR und unter Verwendung von Digoxigenin-11-dUTP eine Sonde (6.704-8.333 locusinterne Skala an  $\Delta 64.2$ -DNA) generiert, die an das die Donor-DNA tragende Chromosom einmal in voller Länge (über die Deletion  $\Delta 64.2$  hinweg) sowie partiell an endogene *mod(mdg4)*-Sequenz einmal mit dem 5'Sondenende (Pos. 6.704-7.080) und einmal mit dem 3'Ende (Pos. 8.027-8.333) assoziieren kann. Bei Integration außerhalb von *mod(mdg4)* sollten zwei Signale detektiert werden (Integrationsort und endogener Locus), wird die Donor-DNA in den Locus eingefügt, sollte ein Signal entstehen, das an beiden Chromosomen unterschiedlich stark ausgeprägt ist.

Es wurde ein unikales Signal in der cytologischen Region 93D detektiert. In keinem Präparat wurden zwei Banden detektiert, und die meisten Präparate wiesen, wie erwartet, unterschiedlich stark gefärbte homologe Chromosomen auf (heterozygote Larven, Abb. 3.12). Da die verwendete Sonde auch endogene *mod(mdg4)*-Sequenz detektiert, wurde in einem zweiten Experiment der Transformationsvektor pTV2 als Sonde (ohne Transgen) verwendet. Die Ergebnisse des ersten FISH-Experiments wurden bestätigt, es zeigte sich ausschließlich eine Bande in der cytologischen Region 93D.



Abbildung 3.12 Repräsentative Aufnahmen der Fluoreszenz-*in situ*-Hybridisierung an Polytänchromosomen der Speicheldrüse heterozygoter Larven von  $\Delta 13~85c$  (links) und  $\Delta 2~39a$  (rechts). Als Sonde wurde ein Digoxigenin-11-dUTP-markiertes, deletionsüberspannendes PCR-Amplifikat benutzt, das durch einen FITC-gekoppelten anti-Digoxigenin-Antikörper nachgewiesen wurde (grünes Signal). Die DNA wurde mit DAPI gefärbt (rot).

Weiterhin konnten durch verschiedene PCRs z.B. mit Primern aus dem  $w^+$ -Marker und nicht in der Donor-DNA enthaltenen mod(mdg4)-Sequenz die Integration des Konstrukts an die gewünschte Position in mod(mdg4) nachgewiesen werden.

Die Integration der Donor-DNA in mod(mdg4) führte zu einer partiellen Duplikation des Locus. Um diese unter Beibehaltung der  $\Delta 64.2$ -Mutation zu entfernen wurde zunächst ein Doppelstrangbruch an einem Ende der Transgensequenz gesetzt. Dazu wurde ein hitzeschockinduzierbares I-*Cre*I-Transgen eingekreuzt und induziert (siehe 2.1.6). Die duplizierten Bereiche sollten sich parallel anordnen und die partielle Duplikation durch ein *Crossing over* aufgelöst werden, was phänotypisch am Verlust des w<sup>+</sup>-Markers erkennbar ist. Da die duplizierte Sequenz den Bereich um das isoformspezifische Exon von mod(mdg4)-64.2 mit umfaßt, ist abhängig von der Position der Rekombination, ob die  $\Delta 64.2$ -Mutation erhalten bleibt oder verloren geht (vgl. Xie und Golic, 2004).

Etwa 40% aller Tiere, in denen das Restriktionsenzym I-*Cre*I exprimiert wurde, erwiesen sich als steril. Außerdem kam es häufig zu Mißbildungen (siehe Anhang A2.3), die wahrscheinlich auf I-*Cre*I-Aktivität an anderen Stellen als der Erkennungssequenz in der Donor-DNA zurückzuführen sind. Das Auftreten solcher Phänotypen wurde von Xie und Golic (2004) nicht beschrieben. Bei drei Linien  $\Delta 2$  30,  $\Delta 13$  42a und  $\Delta 13$  54 konnten aus den zwölf F1-Kreuzungen je Linie in der F2-Generation keine fertilen  $w^-$ -Tiere selektiert werden. Ein weiteres Experiment zur Auflösung der partiellen Duplikation in diesen Linien wurde nicht durchgeführt.

Nach 3 bis 5 Tagen wurde der F2-Kreuzung (siehe 2.1.6) die  $w^{\text{mosaik}}$  Sb- bzw.  $w^{-}$  Sb-Fliege entnommen (bei  $\Delta 2$  39a,  $\Delta 13$  9a und  $\Delta 13$  85c), genomische DNA extrahiert & mittels PCR

überprüft, ob die Mutation  $\Delta 64.2$  noch vorhanden ist. Nur in diesen Fällen wurden balancierte und parallel homozygote Linien aufgebaut.

Mit dem Aufbau von hetero- bzw. homozygoten Linien ist nach Xie und Golic (2004) der genetische Teil des Experiments beendet. O'Keefe *et al.* (2007) berichten jedoch von einer unspezifischen *second site*-Mutation mit der Empfehlung, nach Beendigung der Kreuzungen die entstandene, gewünschte Mutation einige Generationen frei gegen einen Wildtypstamm segregieren zu lassen. Die für eine genauere Untersuchung ausgewählten Linien  $\Delta 13$  9a II h,  $\Delta 13$  85c V l,  $\Delta 2$  39a IV b und  $\Delta 2$  39a III a wurden für vier Generationen mit  $w^{1118}_{iso}$  gekreuzt und anschließend wieder jeweils eine TM6C, *Sb*-stabilisierte Linie aufgebaut (für Erklärung der Linienbezeichnung und Umbenennungsschlüssel der Linien-Arbeitsnamen: siehe Anhang A2.3).

Bei den ausgewählten Linien wurde mod(mdg4) von Position 2.000 bis 13.000 sequenziert um Mutationen auszuschließen. Bei  $\Delta 13$  9a II h,  $\Delta 2$  39a IV b und  $\Delta 2$  39a III a wurden zwischen den Linien übereinstimmende Polymorphismen zum annotierten *Drosophila melanogaster*-Genom und an Position 5.562 eine intakte I-*Sce*I-Schnittstelle gefunden. Diese Mutanten wurden nicht weiter untersucht. Die Sequenzierung der genomischen DNA von Linie  $\Delta 13$  85c V l ergab im gesamten Bereich keine Mutation außer der gewünschten Deletion des spezifischen Exons der Isoform mod(mdg4)-64.2. Eine zweite untersuchte Linie  $\Delta 13$  85c III d hingegen weist neben der gewünschten Exondeletion eine weitere Deletion der locusinternen Positionen 9.365 bis 11.083 auf, die vermutlich Ergebnis eines exonukleolytischen Abbaus während der Auflösung der partiellen Duplikation ist.

Um die weitere Umgebung der eingeführten Deletion auf Mutationen zu untersuchten wurde eine Southern-Analyse durchgeführt (Abb. 3.13 B, siehe auch 2.2.3). Dabei dienten die in Abb. 3.13 A dargestellten *Bam*HI-Fragmente als Sonden (für Herstellung der <sup>32</sup>P-markierten Sonden siehe 2.2.3).

Die erhaltenen Bandenmuster entsprechen den erwarteten Restriktionsfragmenten. So wird z.B. in den *Bam*HI-Restriktionen der beiden Mutanten statt der 6,7kb- und 7,5kb-Banden des Referenzstamms (Bande bei >10kb resultiert aus unvollständiger Restriktion der genomischen  $w^{1118}{}_{iso}$ -DNA) nur eine Bande bei ≈13kb bzw. ≈11kb detektiert, da die *Bam*HI-Schnittstelle (Pos. 7.559) im Bereich der  $\Delta$ 64.2-Deletion liegt. Das verkürzte Fragment von  $\Delta$ 13 85c III d ist auf die zusätzliche Deletion von 1,7kb (Pos. 9.365-11.083) zurückzuführen. Die *Sac*I-Restriktion zeigt ebenfalls den Erfolg der *"Ends-in gene targeting"*-Mutagenese. Das 7.792bp-Fragment des Referenzstamms erscheint in beiden Mutanten etwa 1kb kleiner, was der Größe der  $\Delta$ 64.2-Deletion entspricht. Die *Eco*RI- und *Hind*III-Verdaus zeigen, daß es in der Umgebung der eingeführten Mutation nicht zu größeren Deletionen bzw. Rearrangements

gekommen ist, sowohl bis zu 2kb *upstream* des *mod(mdg4)*-Locus (1,5kb-Bande in *Eco*RI-, 2kb-Bande in *Hind*III-Restriktion), wie auch bis Position ca. 21.000 der locusinternen Skala (8kb-Bande in *Eco*RI-Restriktion; entspricht 7.909bp-Fragment in Abb. 3.13 A).

Als abschließender Test der Mutationen wurden RT-PCRs der sieben proximal codierten *mod(mdg4)*-Isoformen an Gesamt-RNA von homozygoten Mutantentieren durchgeführt (Abb. 3.13 C).



Abbildung 3.13 Molekulare Charakterisierung der zwei erzeugten mod(mdg4)-64.2-*Knock out*-Mutanten  $\Delta 13\ 85c\ V\ 1^{16}$  und  $\Delta 13\ 85c\ III\ d$  im Vergleich mit  $w^{1118}_{iso}$ . (A) Restriktionsfragmentgrößen der mod(mdg4)-Referenzsequenz, fettgedruckte Zahlen geben die Position der Restriktionsenzymschnittstellen nach locusinterner Skala an, klein geschriebene die entstehenden Fragmentgrößen. Die *Bam*HI-Fragmente 1-7.559 und 7.559-14.254 wurden als Sonden für die Southern-Analyse genutzt. (B) Southern Blot; je Restriktion 10µg genomische DNA des angegebenen homozygoten Genotyps; in  $w^{1118}_{iso}$  resultieren einige der Banden aus partiellem Verdau der genomischen DNA. (C) Semiquantitativer mRNA-Nachweis der proximal codierten sieben mod(mdg4)-Isoformen durch RT-PCR (RNA homozygoter Genotypen, Gen für ribosomales Protein RpL32 (rp49) als Kontrolle)

<sup>&</sup>lt;sup>6</sup> Arbeitsbezeichnung für Δ13 85c V l ist Mu55, für Δ13 85c III d Mu68 (siehe auch Anhang A2.3)

Die durchgeführten Tests, Southern Blot und RT-PCRs, belegen, daß der *Knock out* der Isoform *mod(mdg4)*-64.2 durch *"Ends-in gene targeting*" erfolgreich war. Durch eine Sequenzierung der umliegenden genomsichen Sequenz über die Ausdehnung des für die Mutagenese eingesetzten Donorelements hinaus konnte sichergestellt werden, daß im Fall der Linie  $\Delta 13$  85c V l ausschließlich die gewünschte Deletion ins Genom eingeführt wurde. Die Linie  $\Delta 13$  85c III d trägt zusätzlich eine Deletion von 9.365 bis 11.083 (locusinterne Skala), die zum Ausfall der Isoformen *mod(mdg4)*-55.1 und -53.1 führt.

Ein mögliches Manko des mod(mdg4)-64.2-Knock outs ergab sich (nach Etablierung der  $\Delta 64.2$ -Mutation) aus einem anderen Experiment: Mit Hilfe von D. virilis-mod(mdg4)-Transgenen konnte ein Promotor im spezifischen Exon der Isoform Dvi-mod(mdg4)-h64.2 nachgewiesen werden, der die Expression von Dvi-mod(mdg4)-h60.1 und wahrscheinlich ebenfalls -h53.5 und -h55.1 treibt (siehe Tab. 3.18). Dieser Promotor (Pr. #3 in Tabelle 3.3), dessen Elemente CAAT-Boxen und TATA-Box zwischen beiden Arten konserviert sind, liegt innerhalb des beim "Ends-in gene targeting" deletierten Bereichs und könnte neben D. virilis auch in D. melanogaster funktionell sein, was aufgrund fehlender Mutationen in diesem Bereich des Locus bisher nicht nachweisbar ist. Sollte der Promotor funktionell sein, könnten einige der Ergebnisse aus Experimenten mit Δ13 85c V l nicht auf den Ausfall der Isoform mod(mdg4)-64.2 zurückgehen sondern auf den Ausfall von mod(mdg4)-60.1, -53.5 oder -55.1 in den Geweben, in denen Promotor #3 aktiv ist; Promotor #2 liegt außerhalb des deletierten Bereichs und die drei Isoformen können ausgehend von diesem Promotor weiterhin gebildet werden. Die diesbezüglichen Daten des FlyAtlas-Projekts (siehe Abb. 3.5 und Anhang A2.3) lassen vermuten, daß Promotor #3 keine starke Aktivität in den untersuchten Geweben aufweist.

# 3.1.5.3 Microarray-Analyse der $\triangle$ 64.2-Mutation $\triangle$ 13 85c V I und weiterer ausgewählter *mod(mdg4)*-Mutationen

Die pleiotropen Effekte von Mutationen im gemeinsamen Teil von mod(mdg4) sowie die Bindung der Mod(mdg4)-Proteine an jeweils mehreren Dutzend bis hunderten Stellen an Polytänchromosomen deuten darauf hin, daß die Genprodukte des Locus an der Regulation der Expression einer Vielzahl von Genen beteiligt sind. Mit  $\Delta 13$  85c V l konnte eine definierte Mutation eingeführt werden, die eine einzelne Isoform deletiert – mod(mdg4)-64.2. Um von Mod(mdg4)-64.2 in ihrer Transkription regulierte Gene zu identifizieren, wurde eine genomweite Expressionsanalyse durchgeführt. Dazu wurden mehrere unabhängige Gesamt-RNA-Präparationen von  $w^{1118}_{iso}$ , dem Kontrollgenotyp für dieses Experiment, und  $\Delta 13$  85c V l
auf Affymetrix-Microarrays (Drosophila Genome 2.0) hybridisiert. Außerdem wurden Transkriptomanalysen der Genotypen Revertante Rev31 (homozygot), Revertante GG295 (homozygot) und  $mod(mdg4)^{neo129 R32}/+$  durchgeführt (Imagenes, Berlin). Um eventuelle experimentelle Fehler zu minimieren, wurde  $\Delta 13$  85c V l als Triplikat, alle anderen RNAs als Duplikate<sup>17</sup> verwendet, d.h. beim Vergleich von  $w^{1118}_{iso}$  mit  $\Delta 13$  85c V l wurden insgesamt fünf unabhängige RNA-Präparationen auf fünf Arrays hybridisiert, die Signalstärken ausgelesen und erst dann zu den Gruppen ,Wildtyp' und ,Mutante' zusammengefaßt.

Vor der Auswertung der Daten wurde die Expression von fünf bei molekularbiologischen Arbeiten mit *Drosophila* häufig genutzten *housekeeping*-Genen untersucht. (Tabelle 3.10). Die geringen Expressionsunterschiede von vier der *housekeeping*-Gene zwischen  $w^{1118}_{iso}$  und  $\Delta 13~85$ c V l in allen fünf getesteten RNAs weisen auf eine gute Qualität der Daten und hohe Reproduzierbarkeit zwischen den einzelnen Microarrays. Die Expression der 18S ribosomalen RNA wird durch den Ausfall von *mod(mdg4)*-64.2 um den Faktor 7 herunterreguliert und ist daher nicht als Kontrolle geeignet.

**Tabelle 3.10** Expressionsveränderung von *housekeeping*-Genen in  $\Delta 13$  85c V l im Vergleich mit  $w^{1118}_{iso}$ . Aufgeführt sind die Mittelwerte der log<sub>2</sub>-fache Veränderung<sup>18</sup> der zum jeweiligen Gen gehörenden Target-IDs auf dem Microarray (zusammengefaßt mittels GeneSpring GX<sup>©,TM</sup> Software).

| Gen      | $\log_2$ -Veränderung ( $\Delta 13 85$ c V l: $w^{1118}_{iso}$ ) |
|----------|------------------------------------------------------------------|
| GAPDH    | 0,0964                                                           |
| eIF-4a   | -0,0307                                                          |
| Actin    | 0,1683                                                           |
| rp49     | -0,007                                                           |
| 18S rRNA | -2,8298                                                          |

Da für Mod(mdg4)-64.2 bereits eine Assoziation an das Retrotransposon *HeT-A* nachgewiesen werden konnte, wurde unter allen Target-IDs des Affymetrix "Drosophila Genome 2.0"-Arrays nach Transposons gesucht. Dabei konnte festgestellt werden, daß sich die Regulation durch mod(mdg4)-64.2 auf Klasse I-Elemente (Retrotransposons) beschränkt. Andere mod(mdg4)-Isoformen regulieren auch Klasse II-Elemente (DNA-Transposons) in ihrer Transkription, wie aus den Daten des Microarrays von Rev31 hervorgeht. (Aufgrund der Fülle

<sup>&</sup>lt;sup>7</sup> Aufgrund eines Fehlers auf Seiten der Firma sind die Daten für  $w^{1118}_{iso}$ , Rev31, GG295 und  $mod(mdg4)^{neo129 R32}/+$  nur als Duplikate statt Triplikate verfügbar.

<sup>&</sup>lt;sup>8</sup> Ein log<sub>2</sub>-Wert von 1 bedeutet doppelte Signalstärke bzw. doppelte mRNA-Menge in  $\Delta 13~85$ c V l gegenüber des Wildtyps  $w^{1118}_{iso}$ , ein Wert von -1 entspricht halber Signalstärke bzw. 50% mRNA-Menge.

dieser Daten ist die entsprechende Tabelle dieser Arbeit im Anhang als Tabelle A2 beigefügt worden.) Vor allem Retrotransposons der Klassen LTR und LINE-like<sup>19</sup> sind in  $\Delta 13$  85c V l in ihrer Expression signifikant verändert, wie Tabelle 3.11 zeigt. Aus den erhaltenen Daten konnten jedoch keine Gesetzmäßigkeiten abgeleitet werden, ob ein Retrotransposon durch den Ausfall von *mod(mdg4)*-64.2 in seiner Expression positiv oder negativ beeinflußt wird. Elemente derselben Klasse LTR (*long terminal repeats*) werden bei Ausfall von *mod(mdg4)*-64.2 positiv (z.B. *opus, HeT-A, invader4*) und negativ (297, *invader5*) verändert.

Unter den stark regulierten Sequenzen findet sich mit der Target-ID 1631874\_at (UniProt-ID Q4V613) auch ein laut der Flybase-Datenbank unbekanntes Transposon. Das Alignment mit dem *D. melanogaster*-Genom ergibt etwa 15 Volllängen- und ca. 50 Teilsequenzen des Elements. Das Transposon besitzt im 3'Bereich (ab Position 468 der Target-ID-Sequenz) über eine Länge von 125bp eine 96%-ige Übereinstimmung mit *HMS-Beagle{}4605* und über 57bp eine 87%-ige Übereinstimmung mit den Transposons *Stalker2* und *412*. Damit läßt es sich den Retrotransposons der LTR-Klasse (*long terminal repeats*) zuordnen.

Vier weitere nicht annotierte Target-IDs korrespondieren mit Teilsequenzen anderer Transposons. Wegen der lediglich partiellen Übereinstimmung wurde in Tabelle 3.11 der Suffix "-*like*" angefügt.

Der in Tabelle 3.11 dargestellte Dreifachvergleich zwischen den Daten von  $\Delta 13~85c~V~l$ , Rev31 und GG295 wurde mit dem Ziel durchgeführt, Transposons zu identifizieren, die von Mod(mdg4)-64.2 reguliert werden. Diese sollten in den Datensätzen von  $\Delta 13~85c~V~l$  und Rev31 gleich "gerichtet" und etwa gleich stark, nicht jedoch in GG295 verändert sein, da deren Deletion das spezifische Exon von mod(mdg4)-64.2 nicht mit einschließt. Dies trifft auf *17.6like*, *Stalker-like*, *Ivk{}1098-like*, *G4*, *Doc2-element* und *invader5* zu. Andere Retrotransposons wie z.B. *opus* und *G6* werden offenbar von mehreren mod(mdg4)-Isoformen in ihrer Expression gegenteilig reguliert, wie die differierenden Werte für  $\Delta 13~85c~V~l$  und Rev31 zeigen. Auch *HeT-A* scheint neben Mod(mdg4)-64.2 noch von einer anderen Isoform des Locus negativ reguliert zu werden, da in  $\Delta 13~85c~V~l$  die *HeT-A*-Transkriptmenge um das 2,9fache (log<sub>2</sub>2,9=1,53), in Rev31 aber um den Faktor 12 (log<sub>2</sub>Signaldifferenz=3,6) steigt.

<sup>&</sup>lt;sup>9</sup> Transposons werden unterteilt in Klasse I-Elemente bzw. Retrotransposons, und weiter in Elemente mit langen repetitiven Sequenzen an ihren Enden (LTR) und welche ohne (LINE und SINE). Klasse II-Elemente transponieren nicht über RNA wie die Retrotransposons sondern über ein DNA-Intermediat. Sie besitzen terminale, invertierte Repeats (TIRs). Neben diesen Klassen gibt es Sonderformen wie das FB-Element oder DINEs.

**Tabelle 3.11** (nächste Seite) Signifikant in ihrer Expression veränderte Retrotransposons in  $\Delta 13$  85c V l. Angegeben ist die log<sub>2</sub>-fache Veränderung des Hybridisierungssignals der Target-ID, die das Element repräsentiert. Es sind nur Elemente erfaßt, die um mindestens den Faktor 2 (llog<sub>2</sub>Signaldifferenzl≥1) in ihrer Transkriptmenge abweichen. Die Signifikanzgrenze ist p≤0,2 für  $\Delta 13$  85c V l, p-Werte >0,2 in Rev31 und GG295 wurden grau unterlegt. Nicht signifikant veränderte (log<sub>2</sub>x<1 oder p>0,2) Transposons sind im Anhang 2 dargestellt.

| NT                     | Vlasa       | Δ13 85c V l    | Target-ID                 | Rev31 (p-      | GG295 (p-      |
|------------------------|-------------|----------------|---------------------------|----------------|----------------|
| Name                   | Klasse      | (p-Wert)       |                           | Wert)          | Wert)          |
| in Δ13 85c V 1         | hochregu    | liert          | •                         | •              |                |
| 17.6-like              | LTR         | 2,87 (0,0254)  | 1624379_s_at <sup>1</sup> | 0,82 (0,0884)  | 0,58 (0,3925)  |
| Stalker-like           | LTR         | 2,82 (0,0101)  | 1628406_s_at <sup>1</sup> | 0,58 (0,1196)  | 0,47 (0,1668)  |
| Ivk{}1098-             | LINIE       | 2 80 (0 0278)  | 1(07745                   | 1 41 (0 5502)  | 0.7((0.(0.27)) |
| like                   | LINE        | 2,80 (0,0378)  | 1627745_s_at              | 1,41 (0,5505)  | 0,70 (0,0027)  |
| <i>G4</i>              | LINE        | 2,71 (0,0592)  | 1626453_x_at              | 2,25 (0,0405)  | 0,39 (0,8244)  |
| -?- <sup>2</sup>       | LTR         | 2,64 (0,0148)  | 1631874_at                | 1,58 (0,0800)  | 0,97 (0,0430)  |
| Doc2-element           | LINE        | 2,30 (0,0322)  | 1632295_s_at              | 1,39 (0,0008)  | 0,40 (0,1880)  |
| opus                   | LTR         | 1,79 (0,0249)  | 1638469_s_at              | -0,90 (0,0174) | -0,58 (0,0583) |
| invader4               | LTR         | 1,61 (0,0635)  | 1625791_s_at              | -1,54 (0,4372) | 0,80 (0,6915)  |
| HeT-A                  | LINE        | 1,53 (0,0003)  | 1630585_s_at              | 3,60 (0,0012)  | 0,68 (0,0228)  |
| Tirant                 | LTR         | 1,49 (0,1702)  | 1640955_s_at              | -0,02 (0,9333) | 2,42 (0,0114)  |
| <i>G6</i>              | LINE        | 1,41 (0,1173)  | 1626205_s_at              | -0,52 (0,1030) | -2,23 (0,0179) |
| Ivk                    | LINE        | 1,38 (0,0579)  | 1629641_s_at              | 0,55 (0,5939)  | 0,32 (0,7789)  |
| ZAM                    | LTR         | 1,23 (0,0203)  | 1634666_at                | -0,08 (0,9231) | 0,62 (0,3774)  |
| Quasimodo <sup>3</sup> | LTR         | 1,18 (0,1103)  | 1635258_s_at              | 3,20 (0,0325)  | -0,36 (0,4283) |
| GATE                   | LTR         | 1,05 (0,1018)  | 1623960_s_at              | 0,54 (0,5279)  | 0,24 (0,8826)  |
| in Δ13 85c V11         | herunterreg | guliert        |                           |                |                |
| 297                    | LTR         | -1,56 (0,0570) | 1629669_x_at              | 0,05 (0,9183)  | 0,08 (0,9324)  |
| invader5               | LTR         | -1,01 (0,1029) | 1623845_s_at              | -0,44 (0,6940) | 0,51 (0,7380)  |

<sup>1</sup> in Affymetrix-Datenbank nicht als Transposon gekennzeichnet, *nblast* mit Datenbank annotierter Transposons (Flybase) ordnete die in Spalte1 aufgeführten Bezeichnungen zu. Da keine 100% ige Übereinstimmung gefunden wurde, ist den Namen die Silbe "-*like*" angefügt worden.

<sup>2</sup> nicht in Datenbank annotierter Transposons (Flybase) enthalten, UniProt-ID Q4V613, LTR-Klasse

<sup>3</sup> in NCBI-Nucleotide-Datenbank als *cruiser* bezeichnet

In allen drei Mutationen auf gleiche Weise und im gleichen Ausmaß deregulierte Transposons wurden nicht identifiziert, womit experimentelle Artefakte und *inbreeding-* / *imprinting*-Effekte (da die Kontrolltiere dem  $w^{1118}_{iso}$ -Stamm entnommen wurden ohne vorherige Auskreuzung und Re-Etablierung), ausgeschlossen werden können.

Der Vergleich der Microarraydaten der drei Mutationen macht deutlich, daß mod(mdg4) in sehr komplexer Weise die Expression von Transposons moduliert. Das Retrotransposon *Tirant* z.B. wird von mod(mdg4)-64.2 und einer Isoform, deren spezifisches Exon im deletierten Bereich von GG295 liegt, in seiner Expression supprimiert (d.h. bei Ausfall der Isoformen höhere Expression), während eine dritte mod(mdg4)-Isoform im Bereich der Rev31 diese Suppression ausgleicht (siehe Tab. 3.11).

Neben Retrotransposons werden durch den Ausfall von *mod(mdg4)*-Isoformen auch Gene in ihrer Expression verändert. Da der "Drosophila Genome 2.0"-Chip über 18.000 Target-IDs umfaßt, wurde zu Filterung und Vergleich der Daten das von J. Gräßler im Rahmen eines Praktikums in unserer Arbeitsgruppe entwickelte Programm "Microarrayanalyse" (v1.0) eingesetzt. Anschließend wurde in Flybase nach Funktionen gesucht, die den als verändert Genen experimentell zugeordnet worden waren. identifizierten Theoretische, auf Sequenzähnlichkeiten beruhende Funktionen eines Gens wurden zugunsten von Ergebnissen genetischer Screenings und direkter genetischer, molekularbiologischer oder proteinchemischer Analysen zurückgestellt. Außerdem wurden Gene/Target-IDs mit eindeutigen Signaldifferenzen aus den Originaldaten in die Aufstellungen integriert, auch wenn die statistische Analyse p>0,05 ergab (Tab. 3.12 und 3.13). Gene Ontology-Datenbanken wurden für diese Analyse nicht genutzt, da die schlechte Annotation von Gen-/Genproduktfunktionen die Ergebnisse verzerrt hätte (siehe dazu Ergebnisse der PANTHER®-Analyse in Anhang 2, 2.4)

Bei Ausfall der Isoform mod(mdg4)-64.2 werden Teile des Immunsystems der Tiere und Gene, die Einfluß auf die männliche Meiose und/oder Spermienentwicklung haben, negativ beeinflußt. Hochreguliert sind hingegen Komponenten von Ionenkanälen (Tab. 3.12). Je zwei Gene aus G-Protein-gekoppelten Signalkaskaden und Gene, deren Mutation zu Bewegungsstörungen führt, sind ebenfalls höher exprimiert. Außerdem wurde die drei- bis vierfache cut-mRNA Menge (je nach Target-ID) und jeweils die 2,8-fache Menge (log<sub>2</sub>Signaldifferenz=1,5) trx- (trithorax), br- (broad complex), JIL-1-mRNA (Su(var)3-1) gemessen.

Tabelle 3.12 Durch den Ausfall von mod(mdg4)-64.2 in ihrer Expression stark veränderte GeneProzeß, FunktionGenlog2-fache Veränderung<br/>(p-Wert)Expression verringert(p-Wert)

|                           | dro2 (Affy-ID 1629230_at)  | -4,034 (0,0002) |
|---------------------------|----------------------------|-----------------|
|                           | Ugt86Dd (Fbgn0040256)      | -2,81 (<0,0001) |
|                           | DptB (CG10794)             | -2,27 (0,0013)  |
|                           | Vago (FBgn0030262)         | -1,97 (0,0031)  |
|                           | Corin (CG2105)             | -1,68 (0,0946)  |
| männliche Meiose und/oder | JYalpha (CG17923)          | -2,43 (0,1737)  |
| Spermienentwicklung       |                            |                 |
|                           | <i>r-cup</i> (FBgn0031142) | -2,01 (0,0113)  |
|                           | can (FBgn0011569)          | -1.96 (0,1071)  |
|                           | bol (CG4760)               | -1,70 (0,1682)  |
| Expression erhöht         |                            |                 |
| Ionenkanäle               | pHCl (Fbgn0036542)         | 2,76 (0,1569)   |
|                           | GluClalpha (Fbgn0024963)   | 2,22 (0,0092)   |
|                           | SK (FBgn0029761)           | 2,03 (0,0665)   |

Insgesamt wurden 747 Target-IDs mit p<0,05 und einer  $|\log_2 \text{Signaldifferenz}|>1$  erhalten, wofür zum Teil die Überexpression der Transkriptionsrepressors Her ( $\log_2 \text{Sigdiff.=3,56}$ ) verantwortlich sein dürfte. Zudem besteht in der Mutante  $\Delta 13$  85c V l wahrscheinlich eine Diskrepanz zwischen verändertem Transkriptom, das mittels der Microarrays analysiert wurde, und dem veränderten Proteom für alle mRNAs, die ein EDEN-Translationsrepressorelement beinhalten. Durch die Überexpression von *bru-3* ( $\log_2 \text{Sigdiff.=2,25}$ ) werden diese mRNAs in geringerem Umfang in Proteine translatiert.

Neben Retrotransposons und den beschriebenen Genen ist mod(mdg4)-64.2 auch in die Regulation anderer Elemente involviert. Eine Suche nach diesen Sequenzen in der Datenbank von Affymetrix (NetAffx) zeigte, daß ein Großteil dieser Target-IDs auf Hild *et al.* (2003) zurückgeht. Dabei handelt es sich um eine Arbeit zum Versuch, das komplette Transkriptom von *Drosophila melanogaster* zu erfassen (*transcriptional profiling*). 40 der 100 am stärksten in ihrer Expression veränderten Sequenzen der Microarray-Analyse von  $\Delta 13$  85c V l haben lediglich die Hild *et al.*-Referenz, jedoch keine FlyBase-Annotierung. mod(mdg4)-64.2 könnte demnach auch in Prozesse involviert sein, deren beteiligte Gene (oder Isoformen) bisher nicht annotiert wurden.

### 3.1.5.3.1 Analyse der Microarray-Expressionsdaten von GG295 und Rev31

Das spezifische Exon von mod(mdg4)-55.7 ist sowohl in Rev31 wie auch GG295 deletiert. Ein Vergleich der Expressionsprofile (siehe Abb. 3.3) zeigt, daß die Isoformen mod(mdg4)-52.2 und -58.8 in GG295 ausfallen, in Rev31 aber gebildet werden. Eine differentielle Analyse der Expressionsdaten beider Mutationen erlaubt es daher, Kandidatengene zu identifizieren, die durch mod(mdg4)-55.7 reguliert werden: die Gene sollten sich in ihrer Expression bei Rev31 und GG295 gleich verändern. Die Expression der Gene, die unter der Kontrolle der anderen beiden mod(mdg4)-Isoformen stehen, sollte in Rev31 unverändert bleiben oder sich in den Mutanten (wegen der Überexpression der Isoformen in Rev31) diametral verändern. Insgesamt wurden 180 Gene identifiziert, deren veränderte Expression auf das Fehlen der Isoform mod(mdg4)-55.7 zurückgeht (Tabelle 3.13). Rund 400 Gene, die direkt oder indirekt von mod(mdg4)-52.2 oder -58.8 reguliert werden, konnten aus den vorliegenden Daten und ohne weitere Anhaltspunkte nicht soweit analysiert werden, daß eine Zuordnung putativer Funktionen der Isoformen möglich ist. Einige der potentiell von mod(mdg4)-52.2 oder -58.8 regulierten Gene sind in Anhang A2, Tabelle A3 dargestellt. Aufgrund einer Überexpression der in Rev31 nicht deletierten Isoformen, darunter mod(mdg4)-52.2 und -58.8, ist Vorsicht vor einer Überinterpretation dieser Daten geboten (Erläuterung, siehe Tabelle A3 und Beitext).

**Tabelle 3.13** Ausgewählte Gene, die durch die Deletion des isoformspezifischen Exons vonmod(mdg4)-55.7 in ihrer Expression verändert werden.

| Prozeß, Funktion    | Gen                  | log <sub>2</sub> -fache | log <sub>2</sub> -fache |
|---------------------|----------------------|-------------------------|-------------------------|
|                     |                      | Veränderung in          | Veränderung in          |
|                     |                      | GG295                   | Rev31 (p-Wert)          |
|                     |                      | (p-Wert)                |                         |
| Expression verringe | <u>rt</u>            |                         |                         |
| Embryonal-          | LCBP1 (FBgn0036901)  | -3,00 (0,0014)          | -3,81 (0,0015)          |
| entwicklung         |                      |                         |                         |
|                     | paired (FBgn0003145) | -2,67 (0,0353)          | -1,66 (0,1180)          |
|                     | snail (FBgn0003448)  | -1,79 (0,0910)          | -3,44 (0,0406)          |
| Glutathionhaushalt, | GstE8 & -9           | -3,81 (0,0006)          | -1,71 (0,0109)          |
| -synthese,          | (FBgn0063491 &       |                         |                         |
| Detoxifikation      | FBgn0063492)         |                         |                         |
|                     | Prx2540-2            | -3,45 (0,0460)          | -1,56 (0,0536)          |

|                  | (FBgn0033518)          |                |                |
|------------------|------------------------|----------------|----------------|
|                  | Trxr-2 (FBgn0037170)   | -2,81 (0,0060) | -2,77 (0,0003) |
|                  | VGlut (FBgn0031424)    | -1,17 (0,0067) | -2,24 (0,0023) |
| Entwicklung      | Twin of m4/Barbu       | -4,91 (0,1607) | -4,41 (0,1629) |
| Sinnesorgane und | (FBgn0026320)          |                |                |
| peripheres NS    |                        |                |                |
|                  | Brother of Bearded A   | -3,07 (0,1702) | -5,52 (0,1574) |
|                  | (FBgn0040487)          |                |                |
|                  | split locus enhancer   | -1,78 (0,1113) | -3,22 (0,0069) |
|                  | protein mB             |                |                |
|                  | (FBgn0002735)          |                |                |
|                  | tenectin (FBgn0039257) | -1,38 (0,0265) | -1,13 (0,0381) |
|                  | asense (FBgn0000137)   | -1,36 (0,0804) | -1,14 (0,0586) |
|                  | miranda (FBgn0021776)  | -1,34 (0,1762) | -1,47 (0,1845) |
|                  | scabrous (FBgn0003326) | -1,29 (0,0276) | -1,48 (0,0240) |

Die in Gruppen zusammengefaßten Daten zeigen, daß essentielle Gene der Segmentierung und Organogenese um 70% (*snail*) bis 87% (*LCBP1*) geringer exprimiert werden. Die Embryonalentwicklung von Revertanten, bei denen die Isoform *mod(mdg4)-55.7* ausfällt, sollte demnach gestört sein. Ebenso sind potentiell die Entgiftungsprozesse durch Glutathion gestört (Glutathion-S-Transferasen). Darüber hinaus sind eine Reduktase, die oxidiertes (GSSG) in reduziertes (GSH) Glutathion umwandelt und mit *VGlut* ein Glutamat-Transporter (Glutamat ist Ausgangspunkt der GSH-Synthese) herunterreguliert. Messungen der intrazellulären GSH-Konzentration und des GSH-GSSG-Verhältnisses sowie andere Expressionsveränderungen belegen. Bei der dritten Gruppe von Genen, die herunterreguliert ist, handelt es sich um Transkriptionsfaktoren und Bestandteile von Signalkaskaden (Notch), die eine Rolle in der Entwicklung des (sensorischen) peripheren Nervensystems und der Sinnesorgane spielen. Außerdem könnten durch die verringerten Mengen *sisterless A, deadpan* (Numeratorgene) und *male-specific lethal-3* (X-Chromosom-Hyperaktivierung) Defekte bei der Geschlechtsfestlegung und Dosiskompensation auftreten.

Auch Gene, die die Lebensspanne von *Drosophila* beeinflussen (*methuselah*, *methuselahlike*-Gene; Lin *et al.*, 1998; Cvejic *et al.*, 2004) sind in beiden Revertanten dereguliert. Die Auswirkungen bzw. der mögliche Phänotyp läßt sich hier jedoch nicht prognostizieren, da z.B. die erhöhte Expression von *mthl7* einer schwächeren Expression von *mthl8* gegenübersteht. Aufgrund der festgestellten Veränderungen der Expression von Segmentierungsgenen und Genen, die in die Entwicklung des peripheren Nervensystems involviert sind, wurden die homozygoten GG295-Tiere auf die Phänotypen ,ektopische Scutellarborsten', ,mißgebildete Flügelquerader' und ,homöotische Transformation des Abdominalsegments A5 in A4' (eingegrenzt auf mod(mdg4)-58.0/55.2) untersucht. Die Phänotypen konnten nicht beobachtet werden.

### 3.2 Analyse des trans-Spleißens am Beispiel mod(mdg4)

*mod(mdg4)* stellt für die Analyse des *trans*-Spleißvorgangs ein sehr gut geeignetes Studienobjekt dar, da die reifen mRNAs des Locus generell durch diesen Prozeß entstehen. Bisherige Publikationen wiesen das *trans*-Spleißen durch Sequenzierung von *mod(mdg4)*cDNAs (Büchner *et al.*, 2000) und Northern Blots über die *trans-splice junction* (Exon 4-Exon 5; Labrador *et al.*, 2001) am endogenen Locus nach. Dorn *et al.* (2001) erbrachten den Nachweis, daß von einem Transgen auf einem anderen Chromosom codierte, spezifische *mod(mdg4)*-Exons mit den (endogenen) Exons 1-4 verknüpft werden können. Im Rahmen der vorliegenden Arbeit konnte *trans*-Spleißen ausschließlich zwischen dem *trans*-Spleißdonor am 3'Ende von Exon 4 und den Spleißakzeptoren am 5'Ende der Exons 5, nicht jedoch mit den Spleißakzeptoren der Exons 6 nachgewiesen werden. Ein Exon-Exon-Übergang "4-6" konnte selbst in Revertanten nicht beobachtet werden, in denen das spezifische Exon 5 einer Isoform deletiert ist, das Exon 6 erhalten bleibt und transkribiert wird (z.B. GG295, 459; siehe Abb. 3.3).

Die in diesem Teil der Arbeit beschriebenen Experimente zielen auf eine noch eingehendere Analyse des *trans*-Spleißens, so zum Beispiel für das Spleißen notwendige Sequenzen, die funktionelle Konservierung in *D. virilis*, die Frage, ob die Integrität des Locus eine Voraussetzung für das *trans*-Spleißen ist, und möglicherweise in den Prozeß involvierte Spleißfaktoren.

### 3.2.1 Verlust der Fähigkeit zum trans-Spleißen in Revertante Rev31

Die *P{RS5}5-HA-1224*-Revertante Rev31 trägt eine Deletion von Position 6.502 bis 21.447 (locusinterne Skala), die 18 isoformspezifische Exons umfaßt. Die betroffenen Isoformen werden im homozygoten Genotyp nicht mehr gebildet, die verbleibenden andererseits überexprimiert: Eine 3'RACE an RNA aus homozygoten adulten Rev31-Weibchen ergab drei intensive Banden, die bei einer 3'RACE an  $w^{1118}_{iso}$ -RNA nicht auftreten und die den mRNAs der Isoformen *mod(mdg4)*-52.2, -58.8 und -56.3 entsprechen. Semiquantitative RT-PCRs ergaben eine gegenüber dem Referenzstamm  $w^{1118}_{iso}$  erhöhte Transkriptmenge dieser Isoformen. Mittels Real-time RT-qPCR wurde eine Zunahme der *mod(mdg4)*-56.3-mRNA um den Faktor 2 in der homozygoten Revertante Rev31 im Vergleich mit  $w^{1118}_{iso}$  nachgewiesen.



Abbildung 3.14 3'RACE an homozygoter Rev31-RNA. In den Bahnen 2 und 4 wurden RACE-PCRs mir verschiedenen Vorwärtsprimern aufgetragen. Für die PCR in Bahn 3 wurde als *template* eine reverse Transkriptionsreaktion eingesetzt, in die kein Enzym gegeben wurde (-RT-Kontrolle). Die Banden aus Bahn 4 wurden kloniert und sequenziert um ihre Identität zu bestimmen und den korrekten Exon 4-Exon 5-Übergang zu bestätigen.

In Komplementationsexperimenten mit Mutanten des gemeinsamen Teils von *mod(mdg4)* konnte Rev31 deren rezessive Letalität vollständig retten (siehe Tabelle 3.9), die transheterozygoten Weibchen erwiesen sich aber als steril (vgl. Kapitel 3.1.3.3). Da dieser Phänotyp auch bei homozygoten Weibchen der Revertante Rev31 auftritt, wurde vermutet, daß das interchromosomale *trans*-Spleißen zwischen der intakten prä-mRNA des gemeinsamen Teils vom Rev31-Chromosom mit den prä-mRNAs der proximalen 18 isoformspezifischen Exons vom homologen Chromosom nicht oder nicht effizient genug funktioniert.

Um diese Hypothese zu testen, erschien die Mutation des gemeinsamen Teils  $mod(mdg4)^{neo129\,R32}$  (siehe 2.1.3) am besten geeignet. Aufgrund eines unexakten *P*-Elementausbaus sind die ersten drei gemeinsamen Exons deletiert, was zum Ausfall desselben führt und durch entsprechende Platzierung von PCR-Primern einen allelspezifischen Nachweis vereinfacht. Zunächst wurde aus 5-7d alten Weibchen des Genotyps Rev31/mod(mdg4)<sup>neo129 R32</sup> RNA isoliert und mittels semiquantitativer RT-PCR die mRNA-Mengen ausgewählter mod(mdg4)-Isoformen bestimmt. In Abbildung 3.15 ist dies am Beispiel der Isoform mod(mdg4)-64.2 gezeigt. Um ausschließlich mRNAs nachzuweisen, deren gemeinsame Exons 1-4 vom Rev31-Chromosom stammen, wurde ein *fwd*-Primer im Exon2 (im Bereich der  $mod(mdg4)^{neo129\,R32}$ -Deletion) eingesetzt. Mit diesem Primer läßt sich die mod(mdg4)-64.2-mRNA weder in adulten Rev31/mod(mdg4)^{neo129\,R32}-Weibchen noch in den Embryonen einer Auskreuzung mit  $w^{1118}_{iso}$ -Männchen nachweisen (*semi-nested* PCR, insgesamt 72 Zyklen). Das gleiche Ergebnis wurde für mod(mdg4)-67.2 erzielt (nicht gezeigt). Die mRNA der Isoform mod(mdg4)-51.4, deren isoformspezifisches Exon nicht von Rev31 deletiert wurde, ergab ein RT-PCR-Amplifikat. Ebenso die Isoformen mod(mdg4)-58.8 und -56.3 (nicht gezeigt).

Mit Vorwärtsprimern innerhalb der deletierten Sequenz auf dem  $mod(mdg4)^{neo129 R32}$ -Chromosom ließen sich in diesem Genotyp keine mRNAs nachweisen, die aus interchromosomalem *trans*-Spleißen entstanden waren.



**Abbildung 3.15** RT-PCR-Analyse von mod(mdg4) in  $w^{1118}_{iso}$ -Weibchen (Kontrolle), Weibchen des Genotyps Rev31/ $mod(mdg4)^{neo129 R32}$  (Bahnen 2 und 3) und Embryonen aus der Kreuzung dieser Weibchen mit  $w^{1118}_{iso}$ -Männchen (Bahnen 4 und 5). Untersuchte Isoformen: mod(mdg4)-64.2 (spezif. Exon innerhalb der Rev31-Deletion) mod(mdg4)-51.4 (außerhalb der Rev31-Deletion); Die verwendeten PCR-Vorwärtsprimer binden in Exon 2 (innerhalb der  $mod(mdg4)^{neo129 R32}$ -Deletion) bzw. Exon 4, das in beiden Allelen vorhanden ist.

Die Zunahme der mRNA-Konzentration von auf dem gleichen Chromosom codierten Isoformen bei gleichzeitigem Verlust der Fähigkeit zum interchromosomalen *trans*-Spleißen legt den Schluß nahe, daß bei Rev31 der Transkriptionsstop des gemeinsamen Teils des *mod(mdg4)*-Locus deletiert wurde. Das würde dazu führen, daß vom Promotor der gemeinsamen Exons ausgehend ein durchgehendes Transkript gebildet wird, aus dem durch alternatives *cis*-Spleißen die reifen mRNA gebildet werden.

Wurde für den Nachweis der Isoform mod(mdg4)-64.2 in Rev31/mod(mdg4)<sup>neo129 R32</sup> ein Vorwärtsprimer aus dem gemeinsamen Exon 4 und reverse-Primer aus den isoformspezifischen Exon (innerhalb der Rev31-Deletion) eingesetzt, entstehen Amplifikate. Diese gehen höchstwahrscheinlich auf die Promotoraktivität des 205bp großen  $mod(mdg4)^{neo129}$ -P-Elementrestes im Intron 3 des mod(mdg4)-Locus auf dem mod(mdg4)<sup>neo129 R32</sup>-Chromosom zurück. Dabei entstehen 5' verkürzte Transkripte, denen die Exons 1-3 fehlen. Da von mod(mdg4)-Exons 2 und 3 die für die Proteinfunktion essentielle BTB-Domäne codiert wird, wären aus den verkürzten Transkripten entstehende Proteine höchstwahrscheinlich nicht funktionell. Die Transkriptionseinheiten der isoformspezifischen Exons sind von der *mod(mdg4)*<sup>neo129 R32</sup>-Mutation nicht betroffen.

Aus den experimentellen Ergebnissen wurde die Arbeitshypothese abgeleitet, daß sich das Transkriptionsstopsignal der Transkriptionseinheit, die die gemeinsamen Exons 1-4 enthält, im deletierten Bereich der Revertante Rev31 befindet. Somit würde in diesem Genotyp eine prämRNA gebildet werden, die die gemeinsamen Exons 1-4 und die spezifischen Exons der 13 Isoformen von mod(mdg4)-52.2 bis -54.5 enthält. Als Konsequenz würden reife mRNAs überwiegend durch *cis*-Spleißen gebildet<sup>110</sup> und ein *trans*-Spleißen zwischen den gemeinsamen Exons aus dem Transkript des Rev31-Chromosoms und den prä-mRNAs, die von dem Chromosom gebildet werden, das die Mutation des gemeinsamen mod(mdg4)-Teils trägt, findet nur in geringem Maße oder gar nicht statt.

Das ausschließliche *cis*-Spleißen innerhalb von mod(mdg4) bei Rev31 konnte im Rahmen der Arbeit nicht nachgewiesen werden. Die Länge der Sequenz von rund 1,5kb zwischen Exon 4 und dem isoformspezifischen Exon von mod(mdg4)-52.2, die nun per Definition ein Intron ist, ermöglicht vermutlich ein geringes Maß von *trans*-Spleißen, die entstehenden mRNAs sind allerdings nicht mittels RT-PCR nachweisbar (siehe Abb. 3.15). Ein Indiz für tatsächlich stattfindendes interchromosomales *trans*-Spleißen ist die vollständige Komplementation der rezessiven Letalität von  $mod(mdg4)^{neo129 R32}$  bzw. die der rezessiven Semiletalität von Rev31 im transheterozygoten Genotyp Rev31/ $mod(mdg4)^{neo129 R32}$  (siehe Tabelle 3.9). Andererseits ist die mRNA-Menge, die so gebildet wird, nicht ausreichend, um die Sterilität der transheterozygoten Weibchen (Tab. 3.14) zu retten.

Um zu testen, ob die Sterilität durch einen intakten gemeinsamen Teil (Exons 1-4) gerettet werden kann, wurden Transgene aus *D. virilis* eingekreuzt, die unterschiedlich große Fragmente des *D. virilis-mod(mdg4)* enthalten. Getestet wurden drei verschieden große Transgene von 11,5kb, 9,5kb und 6,8 kb Größe<sup>111</sup>, die alle mindestens den gemeinsamen Teil des *D. virilis-mod(mdg4)*-Locus enthalten. Diese Transgene konnten die Fertilität der Weibchen retten. Zwei 2,7kb große Fragmente, die drei isoformspezifische Exons von *D. virilis-mod(mdg4)* aber nicht dessen gemeinsamen Teil enthalten, konnten die Fertilität nicht retten. Außerdem konnte beobachtet werden, daß Weibchen, die die beiden rezessiv letalen Allele *Df(3R)ED6050* (intakter gemeinsamer Teil und proximale 11 spezifische Exons) und *mod(mdg4)<sup>neo129 R32</sup>* (alle isoformspezifischen Exons intakt) tragen, normal fertil sind und auch sonst keine phänotypischen Auffälligkeiten zeigen.

**Tabelle 3.14** (nächste Seite) Fertilitätstest von Weibchen verschiedener Genotypen mit und ohne *D. virilis*-Transgenen. Die Rekombination von Transgenen mit mod(mdg4)-Allelen wurde mit einem Bindestrich dargestellt, z.B.  $3-P(w^+ Dvi 11.5kb) - \text{Rev31}$ . Pro Röhrchen wurden drei Weibchen mit ca. fünf  $w^{1118}_{iso}$ -Männchen gekreuzt; je Genotyp wurden mindestens vier Röhrchen ausgewertet.

<sup>&</sup>lt;sup>10</sup> überwiegend aber nicht notwendigerweise ausschließlich, da *trans*-Spleißen nicht auf Outron-abhängige Ereignisse festgelegt ist (siehe Diskussion) Das "Einspleißen" in eine intakte RNA *up*- und *downstream* eines *cis*-spleißenden Exons und Verdrängen desselben durch ein Outron-flankiertes Exon wird auch bei der SMaRT-Technik ausgenutzt (Puttaraju *et al.*, 1999; Liu *et al.*, 2002; Rodriguez-Martin *et al.*, 2005).

<sup>&</sup>lt;sup>11</sup> Das Transgen von 6,8kb Größe enthält nur die gemeinsamen Exons 1-4. Die größeren Transgene enthalten zusätzlich 3 (9,5kb) bzw. 5 (11,5kb) isoformspezifische Exons; siehe Abb 3.18.

| Genotyp der getesteten Weibchen                                        | weibl. Fertilität |
|------------------------------------------------------------------------|-------------------|
| Rev31 / mod(mdg4) <sup>neo129 R32</sup>                                | steril            |
| $\operatorname{Rev31}/\operatorname{mod}(\operatorname{mdg4})^{02}$    | steril            |
| $3 - P(w^+ Dvi \ 2.7kb) - \text{Rev}31 \ / \ mod(mdg4)^{neo129 \ R32}$ | steril            |
| <i>3-P(w<sup>+</sup> Dvi 2.7kb</i> C→A II) – Rev31 /                   | steril            |
| $mod(mdg4)^{neo129 R32}$                                               |                   |
| $3 - P(w^+ Dvi \ 11.5kb) - \text{Rev31} / mod(mdg4)^{neo129 \ R32}$    | fertil            |
| 3-P(w <sup>+</sup> Dvi 11.5kb) – mod(mdg4) <sup>neo129 R32</sup> /     | fertil            |
| $mod(mdg4)^{neo129 R32}$                                               |                   |
| $P(w^+ Dvi 9,5kb spin \rightarrow \leftarrow II) - \text{Rev31}/$      | fertil            |
| $mod(mdg4)^{neo129 R32}$                                               |                   |
| $2 - P(w^+ Dvi \ 6.8kb); \text{Rev31} / mod(mdg4)^{neo129 R32}$        | fertil            |
| Df(3R)ED6050 / mod(mdg4) <sup>neo129 R32</sup>                         | fertil            |

Bemerkenswert ist, daß eine generierte Linie mit dem Transgen  $P(w^+ Dvi \ 6.8kb)$ , das lediglich den gemeinsamen Teil zur Verfügung stellt. die Fertilität von Rev31 / mod(mdg4)<sup>neo129 R32</sup> retten konnte, obwohl sich das Transgen auf dem zweiten Chromosom befindet, also zur Generierung reifer mod(mdg4)-mRNAs durch trans-Spleißen die prä-mRNAs von gemeinsamen und spezifischen Exons eine räumliche Distanz überwinden mußten, die vermutlich wesentlich größer ist als die im endogenen Locus. Darüber hinaus ist interessant, daß es in diesem Genotyp chimäre D. virilis-D. melanogaster-mRNAs sind, die die normale Fruchtbarkeit der Weibchen wiederherstellen.

### 3.2.2 Konservierung des *mod(mdg4)*-Locus zwischen *Drosophila melanogaster* und *D. virilis*

### 3.2.2.1 Nachweis chimärer D. virilis/D. melanogaster-mod(mdg4)-mRNAs

Kraus und Dorn (2004) wiesen eine Konservierung des *mod(mdg4)*-Locus in *Drosophila virilis*, *D. pseudoobscura*, *Anopheles gambiae* und *Bombyx mori* nach. Da die Genstruktur in *D. virilis* im Bereich der gemeinsamen Exons bisher nicht vollständig experimentell belegt ist, wurde zunächst eine 5'RACE durchgeführt, um den Transkriptionsstart und die Sequenz des Exon 1 zu bestimmen.

```
mel 2646 -----TTTCGTACTAA---C-ATTTAAAAAAAAAATATCAAAGCACATC
vir 2565 ATATGTACATTCTCCATTTGGAAATAAAACCAATTTAAAA----TTGTTCAAATCAATAC
                   *** * * ***
                             * *******
                                            ****
mel 2686 AA-----
vir 2621 AATTTAATTTCGAATTTCAACTGTTTTTTTGACAGTTGAACGTAATTTTTGAATTTGAAT
mel 2688 -----CTATCAATATTCATAAA-----AGTATTTCGATATAAATATTTTA-
*** *** **** **** *
              *** *
                    *
                      *
vir 2741 TACAGATACTCACATCGATACATCGATTACATATCAGCATACCTGC-CCAGTATAAAAGT
                ***** ** * * * * *
mel 2771 --ATCTCGTCGCCTG---GTA-ACACTTCTAATTTT---CACGTCAAAGAACTCGGACGC
vir 2800 CTGGCTCATCCCTAGCTAGTATACATTTATTTCGTTGTACTCGTTGAAAAAGTTGGACGC
         *** ** *
                 *
                    *** *** ** *
                                * *
                                    * **** ** **
                                              * *****
mel 2822 GTTCTGCGTGTCGGCCGCGCGCGAAA-----AAACTCTGGCTTTAGTTAGTTA
vir 2860 AA-CTGCGCGTCATCAGCGCAGGAAAAGTAATTATTTTAAATTTGTGCAGCAAATAAGTA
         **** *** * **** * ***
                                   *** *
mel 2871 TTTTATTGGAAAAATATTTAGTCAAGAGCCAACAAACGCATAG---ATACAGAAAAGT--
* * *** * **** * ****
                                         ********
                        MADDEQFSL
                                             C
mel 3137 ATTGATTT-----TCGTCCAAGATGGCGGACGACGAGCAATTCAGCTTGTGC
vir 3254 ATTGATTTCTACGCTCGTCCAAGATGGCGGACGACGAGCAATTCAGTTTGTGC
       *******
                 ********************************
```

Abbildung 3.16 Alignment der *mod(mdg4)*-genomischen Sequenzen von *D. melanogaster* und *D. virilis* im Bereich Promotor bis Translationsstart ohne Intron 1. CAAT- und TATA-Boxen sind mit Kästchen markiert. Der transkribierte Bereich ist grau unterlegt. Der Doppelpfeil mit invertierten Spitzen kennzeichnet den Exon 1-Exon 2-Übergang. Die Basenpositionen (links) entsprechen den internen Skalen beider Loci.

Um neben der strukturellen auch die funktionelle Konservierung des Locus in D. melanogaster und D. virilis zu prüfen, wurde untersucht, ob trans-Spleißen zwischen mod(mdg4)-prämRNAs beider **Spezies** möglich ist. Zum Nachweis chimärer D. virilis/D. melanogaster-mod(mdg4)-mRNAs wurden drei verschiedene experimentelle Ansätze gewählt. Gegenstand dieser Experimente war die Isoform mod(mdg4)-64.2, deren Identität im weiteren nach Herkunftsspezies mit Dme, Dvi bzw. Dvi/Dme bezeichnet wird (Dvi/Dme für eine chimäre mRNA, deren gemeinsame Exons aus D. virilis, ihr 3'Bereich, das isoformspezifische Exon, aus D. melanogaster stammt). Für die Untersuchungen wurde jeweils Gesamt-RNA adulter (5-7d) D. melanogaster-Weibchen eingesetzt, die verschiedene D. virilismod(mdg4)-Transgene (alle in pW8) trugen. Zunächst wurden RT-PCRs durchgeführt mit einem forward-Primer, der spezifisch für das gemeinsame Exon 4 von D. virilis-mod(mdg4) ist (402virF in Anhang 1), und einem reverse-Primer, der bei der gewählten Annealing-Temperatur an die isoformspezifischen Exons von mod(mdg4)-64.2 beider Arten paßt (93D-64.2-B-RT; T<sub>ann</sub>=55°C). Das RT-PCR-Amplifikat wurde anschließend mit PvuII, das je eine Schnittstelle an unterschiedlichen Positionen im isoformspezifischen Exon beider Spezies erkennt, verdaut und die entstehenden Fragmente analysiert. Als Kontrollen für dieses Experiment dienten *D. virilis*-RNA und Referenz-cDNAs von *Dvi-mod(mdg4)*-h64.2 (h: homolog) und eines chimären cDNA-Klons *Dvi/Dme-mod(mdg4)*-64.2. Als Kontrolle für mögliche Artefakte wie z.B. *template switching* während der reversen Transkription oder PCR wurden außerdem *D. virilis*-RNA und *D. melanogaster*-RNA, zu gleichen Konzentrationen gemischt, und ein Gemisch der Referenz-cDNAs für die RT-PCRs eingesetzt (Abb. 3.17, Teil C, Bahnen 3 und 4). Bei keiner dieser Kontrollen wurde ein Bandenmuster erhalten, das auf andere Amplifikate als die von *Dvi-mod(mdg4)*-h64.2 hindeutet (keine Amplifikation von *D. melanogaster-mod(mdg4)*-64.2 da *D. virilis*-spezifischer *forward*-Primer)

Die Konzentration der Fragmente aus den *Pvu*II-Verdaus der Produkte der semiquantitativen RT-PCR läßt auf die relative Konzentration chimärer *Dvi/Dme-mod(mdg4)*-64.2-mRNA im Vergleich zu *Dvi-mod(mdg4)*-64.2-mRNA schließen. Verschiedene transgene Linien wurden entsprechend untersucht (Abb. 3.17, Teil D). Eine photometrische Auswertung der elektrophoretisch getrennten Fragmente ergab einen Anteil von unter 5% chimärer mRNA.



Abbildung 3.17 (A) Alignment der isoformspezifischen C-Termini der Mod(mdg4)-64.2-Proteinhomologen aus *Drosophila melanogaster* und *D. virilis*. Der grau unterlegte Bereich markiert die konservierte FLYWCH-Domäne. (B) Schematische Struktur der Amplifikate nach nichtspeziesdiskriminierender RT-PCR. Der Pfeil markiert die *trans*-Spleißposition. –: *Dvi* Exon

4; -: isoformspezifisches Exon Dvi-mod(mdg4)-h64.2; -: isoformspezifisches Exon Dme-mod(mdg4)-64.2. (C) Kontrollexperimente, PvuII-Verdau von PCR- und RT-PCR-Amplifikaten, Bahn 1: Referenz-cDNA Dvi-mod(mdg4)-h64.2; Bahnen 2 und 3: zwei verschiedene ReferenzcDNA-Klone Dvi/Dme-mod(mdg4)-64.2; Bahn 4: RT-PCR an Gemisch D. melanogaster- und D. virilis-RNA; Bahn 5: PCR an Gemisch Dvi-mod(mdg4)-h64.2-Referenz-cDNA und Dvi/Dme-<math>mod(mdg4)-Referenz-64.2-cDNA; (D) PvuII-Verdau von RT-PCR-Amplifikaten aus Gesamt-RNA der angegebenen Genotypen. Bahn 1:  $2-P(w^+ Dvi 11.5kb)/+$ ; Bahn 2:  $3-P(w^+ Dvi 11.5kb)/+$ ; Bahn 3:  $2-P(w^+ Dvi 11.5kb)/+$ ;  $mod(mdg4)^{neo129}$ ; Bahn 4:  $3-P(w^+ Dvi 11.5kb)$  $mod(mdg4)^{02}$ 

Die semiquantitativen RT-PCRs, gefolgt von PvuII-Verdau und Analyse der Restriktionsfragmente erlauben nur eine ungefähre Quantifizierung der chimären mRNAs. Daher wurden die RT-PCR-Amplifikate von 3- $P(w^+ Dvi 11.5kb)/+$  in einem zweiten Experiment in pGEM-3Zf ligiert. 282 erhaltene Klone wurden mit speziesspezifischen Primern darauf getestet, ob sie Dvi- oder Dvi/Dme-mod(mdg4)-64.2-cDNA enthalten. Drei cDNA-Klone erwiesen sich als Dvi/Dme-mod(mdg4)-64.2-cDNA-Chimären, was einer Rate von ca. einem Prozent entspricht. Ein Abschnitt aller als chimär getesteter Klone und von 59 zufällig ausgewählten D. viriliscDNA-Klonen wurde sequenziert um die Identität der Klone zu bestätigen und die Sequenz um die *trans*-Spleißposition zu überprüfen. Bei allen Klonen konnten zum einen die Identität (drei mal Dvi/Dme und 59 mal Dvi/Dvi) und zum anderen am Exon-Exon-Übergang die korrekte Sequenz nachgewiesen werden und somit *template switching* als mögliche Fehlerquelle ausgeschlossen werden.

Der dritte Ansatz zur Quantifizierung chimärer Dvi/Dme-mod(mdg4)-cDNAs war die Realtime RT-qPCR-Analyse. In diesem Experiment wurde die Konzentration verschiedener mRNAs bestimmt. Dazu wurden zwei Transgene als homozygote Linien verwendet. Das Transgen  $3-P(w^+ Dvi \ 11.5kb)$  codiert die gemeinsamen Exons 1-4 und die fünf proximalen isoformspezifischen Exons von Dvi-mod(mdg4)-h64.2 bis -h53.1 und ist auf dem dritten Chromosom lokalisiert. Das Transgen  $2-P(w^+ Dvi \ 6.8kb)$  enthält lediglich die gemeinsamen Exons 1-4 und keine isoformspezifischen Exons. Dieses P-Element ist ins zweite Chromosom inseriert.

**Tabelle 3.15** Real-time RT-qPCR-Analyse der mod(mdg4)-mRNA-Konzentrationen. Gesamt-RNA wurde aus 5-7d alten Weibchen von  $w^{1118}_{iso}$ ,  $w^{1118}_{iso}$ ;  $3-P(w^+ Dvi \ 11.5kb)/3-P(w^+ Dvi \ 11.5kb)$  und  $w^{1118}_{iso}$ ;  $2-P(w^+ Dvi \ 6.8kb)/2-P(w^+ Dvi \ 6.8kb)$  isoliert. Die Quantifizierung erfolgte als Dreifachbestimmung mit unabhängigen RNA-Präparationen. Für verwendete Primer: siehe Anhang 1 unter "für Real-time RT-qPCRs". Die ermittelten Werte wurden zunächst mit Hilfe von Plasmidstandards auf Kopien je  $\mu g$  Gesamt-RNA umgerechnet und dann auf das *housekeeping*-Gen *rp49* (*rp49*=1) normalisiert.

Construe

|                                  |                          | Genotyp                       |                               |
|----------------------------------|--------------------------|-------------------------------|-------------------------------|
| relative Expression <sup>1</sup> | $u^{1118}$ (Ventrelle)   | $w^{1118}_{iso}; 3-P(w^+ Dvi$ | $w^{1118}_{iso}; 2-P(w^+ Dvi$ |
|                                  | <i>w iso</i> (Kontrolle) | 11.5kb)                       | 6.8kb)                        |
|                                  |                          | gemeinsame Exons 1-4          | 4                             |
| D. melanogaster                  | $76,0 \pm 12,1$          | $75,6 \pm 13,8$               | $44,2 \pm 5,4$                |
| D. virilis                       | -                        | $59,2 \pm 12,7$               | $27,8 \pm 6,2$                |
|                                  | mRN                      | As von <i>mod(mdg4)</i> -Iso  | formen                        |
| <i>Dme</i> 64.2                  | $0,667 \pm 0,042$        | $0,314 \pm 0,044$             | $0,132 \pm 0,010$             |
| Dvi h64.2 (transgen)             | -                        | $1,200 \pm 0,178$             | -                             |
| Dvi/Dme 64.2 (chimär)            | -                        | $0,008 \pm 0,001$             | $0,005 \pm 0,001$             |
| Dme 67.2                         | $0,654 \pm 0,085$        | $0,451 \pm 0,051$             | $0,214 \pm 0,013$             |
| Dvi/Dme 67.2 (chimär)            | -                        | $0,021 \pm 0,004$             | $0,025 \pm 0,003$             |
| <sup>1</sup> rp49=1              |                          |                               |                               |

Die Expression des gemeinsamen Teils von mod(mdg4) ist in  $w^{1118}_{iso}$  76-fach höher als die des housekeeping-Gens rp49, während die Transkripte von mod(mdg4)-64.2 (0,667) und -67.2 (0,654) in etwa so hoch exprimiert werden wie rp49 (1). mod(mdg4)-67.2 wird in der Literatur (Gerasimova et al., 1995; Büchner et al., 2000) als abundanteste Isoform beschrieben, deren mRNA-Konzentration wesentlich über der anderer Isoformen liegt. Die vergleichbare Konzentration von mod(mdg4)-64.2-mRNA als am weitesten proximal codierter Isoform erscheint plausibel. Die Konzentration des gemeinsamen Teils (gespleißte Form, Intron zwischen Exon 2 und 3 ist entfernt) ist dagegen um fast zwei Größenordnungen größer als rp49, was aber dadurch erklärt werden kann, daß der gemeinsame Teil mit den Exons 1-4 als trans-Spleißdonor zur Generierung aller stark exprimiert werden muß. In der Linie 3-P(w<sup>+</sup> Dvi 11.5kb) ist die Expression des endogenen gemeinsamen Teils unverändert (75,6) gegenüber  $w^{1118}_{iso}$ , hingegen wird der gemeinsame Teil des Transgens geringer exprimiert (59,2). Die Expression der Isoform mod(mdg4)-64.2 ist um den Faktor 2 geringer (0,314 verglichen mit 0,667). Die transgencodierte Isoform Dvi-mod(mdg4)-h64.2 zeigt eine doppelt so hohe Expression wie die endogene (1,200 vgl. mit 0,667), was auf die geringe "Konkurrenz" von lediglich fünf trans-Speißakzeptoren im Transgen zurückgeführt werden kann - die prämRNAs des endogenen Locus mit ihren trans-Speißakzeptoren dürften am Insertionsort des Transgens eine geringe lokale Konzentration haben - oder auf eine generell stärkere Expression der Isoform in D. virilis. Die Isoform mod(mdg4)-67.2 wird vom Transgen nicht codiert. Sie wird, analog zu *mod(mdg4)*-64.2, in Gegenwart des *D. virilis*-Transgens in geringerer Konzentration gebildet (0,451 gegenüber 0,654). Dabei könnte es sich um Ergebnisse einer negativen *Feedback*-Schleife oder um generelle Veränderungen der Transkriptionsrate handeln.

Mit *reverse*-Primern, die zwischen den mod(mdg4)-64.2- bzw. mod(mdg4)-67.2-mRNAs beider Spezies diskriminieren <sup>112</sup>, wurde die Konzentration der chimären mRNAs bestimmt. *Dvi/Dme-mod(mdg4)*-64.2-mRNA macht ca. 2,5% der entsprechenden endogenen Isoform (0,008:0,314) und 0,7% im Vergleich mit der *Dvi-mod(mdg4)*-h64.2-mRNA (0,008:1,200). Damit konnten die Ergebnisse des Experiments mit den cDNA-Klonen (siehe oben) bestätigt werden. Die Konzentration chimärer *Dvi/Dme-mod(mdg4)*-67.2-mRNA beläuft sich auf 4,7% verglichen mit der endogenen Isoform (0,021:0,451).

Die Expression transgener und endogener gemeinsamer Exons wie auch der endogenen Isoformen mod(mdg4)-64.2 und -67.2 ist in  $2-P(w^+ Dvi \ 6.8kb)$  reduziert. Die Konzentration chimärer mRNAs betrug im Vergleich zu den korrespondierenden endogenen Transkripten 3,8 bzw. 11,7% (0,005:0,132 bzw. 0,025:0,214). Die höheren relativen Konzentrationen können durch das Fehlen isoformspezifischer Exons im Transgen erklärt werden, wodurch alle *D. virilis*-gemeinsamen Exons als *trans*-Spleißdonor zur Verfügung stehen.

Bei diesen Quantifizierungen wurden *D. virilis-* und chimäre *D. virilis/D. melanogaster*mRNAs in transgenen Linien analysiert, die keine Mutation im endogenen *mod(mdg4)*-Locus tragen. In dieser Wildtypsituation in Bezug auf den endogenen Locus, wird von diesem relativ viel *trans*-Spleißdonor, die endogenen Exons 1-4, in unmittelbarer Nähe zu den *trans*-Spleißakzeptoren der isoformspezifischen Exons gebildet, was deren Konzentration im Nucleoplasma in größerem Abstand zum Locus stark vermindert. Wird der gemeinsame Teil des Locus nicht transkribiert, steigt die lokale Konzentration verfügbarer *trans*-Spleißakzeptoren. Ein Transgen, das die gemeinsamen *mod(mdg4)*-Exons 1-4 von *D. virilis* codiert, wäre dann die einzige Möglichkeit, funktionelle, chimäre *mod(mdg4)*-mRNAs zu synthetisieren. Die Diffusion der prä-mRNAs ist dabei ein limitierender Faktor und direkt von der Position des Transgens abhängig.

<sup>&</sup>lt;sup>12</sup> ΔΔCt=9 bei Verwendung von *Dme-reverse*-Primer gegenüber *Dvi-reverse*-Primer an *D. virilis*-RNA und ΔΔCt=14 bei *Dvi-reverse*-Primer gegenüber *Dme-reverse*-Primer an *D. melanogaster*-RNA, d.h. 500- bis 16000-fach schlechtere Amplifikation bei Verwendung der PCR-Primer an cDNA der "falschen" Art (bei einer angenommenen PCR-Effizienz von 100%)

## 3.2.2.2 Genetische Analysen zum nachweis von mRNA-*trans*-Spleißen am *mod(mdg4)*-Locus mit *D. virilis*- und *D. melanogaster*-Transgenen

In vorangegangenen Arbeiten (Büchner *et al.*, 2000) konnte gezeigt werden, daß die rezessive Letalität von Mutationen des gemeinsamen Teils von mod(mdg4) durch ein Transgen gerettet werden konnte, das den 5'Bereich des Locus einschließlich der Exons 1-4 enthält. Es sollte nun geprüft werden, ob Transgene, die die korrespondierende Sequenz aus *D. virilis* enthalten, ebenfalls in der Lage sind, diese Mutationen zu retten. Zwar konnte die Existenz chimärer mRNAs nachgewiesen werden (siehe oben), ihre physiologische Funktion sollte nun analysiert werden. Dazu wurden Komplementationsexperimente mit der rezessiv letalen mod(mdg4)-Mutation  $mod(mdg4)^{02}$  mit Dvi-mod(mdg4)-Transgenen durchgeführt (Tabelle 3.16). Des weiteren konnten folgende Linien etabliert und über mehrere Generationen homozygot erhalten werden:  $3 \cdot P(w^+ Dvi \ 11.5kb) - mod(mdg4)^{neo129}$  (>30 Generationen) und  $2 \cdot P(w^+ Dvi \ 6.8kb)/+$ ;  $mod(mdg4)^{neo129 R32}$  (>20 Generationen).

**Tabelle 3.16** Komplementation der rezessiv letalen Mutation  $mod(mdg4)^{02}$  durch verschiedene *D. virilis*-Transgene. Alle Transgene codieren die gemeinsamen Exons 1-4, die 9,5kb bzw. 11,5kb großen Transgene desweiteren zwei bzw. fünf isoformspezifische Exons. Drittchromosomale Transgene wurden vor dem Experiment mit  $mod(mdg4)^{02}$  rekombiniert.

Transgen

# Komplementation $mod(mdg4)^{02}$

| Transgene auf dem zweiten Chromosom                                                 |      |
|-------------------------------------------------------------------------------------|------|
| $2 - P(w^+ Dvi \ 6,8kb) \ / +; \ mod(mdg4)^{02}$                                    | 11%  |
| $2 - P(w^+ Dvi \ 11, 5kb) \ / +; \ mod(mdg4)^{02}$                                  | 27%  |
| $2 - P(w^+ Dvi \ 9,5kb \ spin \rightarrow \leftarrow V) \ / \ +; \ mod(mdg4)^{02}$  | 47%  |
| $2 - P(w^+ Dvi \ 9,5kb \ spin \rightarrow \leftarrow VI) \ / \ +; \ mod(mdg4)^{02}$ | 57%  |
| Transgene auf dem dritten Chromosom                                                 |      |
| 3-P(w <sup>+</sup> Dvi 11,5kb) mod(mdg4) <sup>02</sup>                              | 79%  |
| 3-P(w <sup>+</sup> Dvi 9,5kb C→A) mod(mdg4) <sup>02</sup>                           | 88%  |
| 3-P(w <sup>+</sup> Dvi 9,5kb spin → $\leftarrow$ II) mod(mdg4) <sup>02</sup>        | 146% |

Die erfolgreiche Komplementation der Mutation zeigt, daß *Dvi/Dme-mod(mdg4)*-Chimären auch die physiologischen Funktionen der endogenen *mod(mdg4)*-Isoformen ausfüllen können. Die unterschiedlichen Komplementationsraten der Transgene scheinen abhängig von der

Position im Genom zu sein, also dem räumlichen Abstand zum endogenen mod(mdg4)-Locus. Obwohl die getesteten *D. virilis*-Transgene unterschiedlich groß sind und unterschiedlich viele isoformspezifische Exons codieren, rettet das größte Transgen die rezessive Letalität von  $mod(mdg4)^{02}$  nicht am besten. Trotzdem kann nicht ausgeschlossen werden, daß für die Komplementation nicht nur die Position des Transgens (und in Verbindung damit die Chromatinstruktur in seiner Umgebung) verantwortlich ist, sondern auch das Vorhandensein von *D. virilis*-isoformspezifischen Exons in einigen verwendeten Transgenen die experimentellen Ergebnisse verfälschen kann. Die Funktionalität von transgencodierten *D. virilis*-Proteinisoformen in *D. melanogaster* wurde bereits nachgewiesen (Gabler, 2003; Gabler *et al.*, 2005).

In einem weiteren experimentellen Ansatz sollte systematisch geprüft werden, in wie weit tatsächlich die Position des Transgens in Genom die Effizienz des *trans*-Spleißens beeinflußt. Hierfür wurde ein Transgen etabliert, welches die proximalen 7080bp des *D. melanogaster-mod(mdg4)*-Locus<sup>113</sup> umfaßt und ausschließlich die gemeinsamen Exons 1-4 codiert. Es konnten 29 unabhängige transgene Linien durch keimbahnvermittelte Transformation etabliert werden. Diese Transgene wurden für ein Komplementationsexperiment mit  $mod(mdg4)^{02}$  eingesetzt.

**Tabelle 3.17** Komplementation der rezessiven Letalität des Allels  $mod(mdg4)^{02}$  durch das Transgen  $P\{w^+ Dme \ mod(mdg4)^{common \ region}\}$ . Die Komplementation ergibt sich aus dem Verhältnis  $Sb^+w^+$ -Tiere zur Gesamtzahl der  $w^+$ -Tiere in F1. Gekreuzt wurden  $Q P\{w^+ Dme \ mod(mdg4)^{common \ region}\}$ ;  $mod(mdg4)^{02}$ /TM6C mit  $\partial \ mod(mdg4)^{02}$ /TM6C; für X-chromosomal lokalisiert Transgene wurde auch die reziproke Kreuzung durchgeführt (Transgen paternal eingebracht). Auf dem 3. Chromosom lokalisierte Transgene wurden zuvor mit  $mod(mdg4)^{02}$  rekombiniert. n.b. nicht bestimmt

| Tuanagan       | Lokalisierung | % Komplementation |
|----------------|---------------|-------------------|
| Transgen       | (Chromosom)   | $mod(mdg4)^{02}$  |
| T2 (paternal)  | Х             | 0%                |
| T2             | Х             | 0%                |
| T6 (paternal)  | Х             | 0%                |
| T7 (paternal)  | Х             | 0%                |
| Τ7             | Х             | 0%                |
| T12 (paternal) | Х             | 0%                |
| T12            | Х             | n.b.              |

<sup>&</sup>lt;sup>13</sup> Um mögliche Inkompatibilitäten der Proteine auszuschließen, die in 60·10<sup>6</sup> Jahren getrennter Evolution (Casacuberta und Pardue, 2003) von *D. melanogaster* und *D. virilis* entstanden sein könnten, wurde für dieses Experiment die Sequenz des Transgens von *D. melanogaster* abgeleitet statt vorhandene *D. virilis*-Transgene zu mobilisieren.

| T15 (paternal)                  | Х | 0%                 |
|---------------------------------|---|--------------------|
| T15                             | Х | 0%                 |
| T5                              | 2 | 0%                 |
| T20                             | 2 | 0%                 |
| T24                             | 2 | 0%                 |
| Т8                              | 2 | $5\%^{-1}$         |
| T13                             | 2 | $33\%^{-1}$        |
| Т9                              | 3 | $5\%^{-1}$         |
| T19                             | 3 | $12\%$ $^{1}$      |
| T3                              | 3 | $38\%^{\ 2}$       |
| T4                              | 3 | 68% <sup>2</sup>   |
| T21                             | 3 | 69% <sup>2</sup>   |
| T17                             | 3 | $95\%$ $^2$        |
| T16                             | 3 | 103% <sup>2</sup>  |
| T11                             | 4 | ♂ 13% <sup>1</sup> |
| T25                             | 4 | $29\%$ $^2$        |
| <sup>1</sup> Tiere waren steril |   |                    |

<sup>2</sup> Tiere waren eingeschränkt fertil

Tabelle 3.17 zeigt deutlich eine Positionsabhängigkeit der Fähigkeit des Transgens  $P\{w^+ Dme \ mod(mdg4)^{common \ region}\}$ , die rezessive Letalität des Allels  $mod(mdg4)^{02}$  zu retten. Keines der X-chromosomal lokalisierten Transgene ist dazu in der Lage. Einige der auf dem 2. Chromosom lokalisierten Transgene können die rezessive Letalität von  $mod(mdg4)^{02}$  teilweise komplementieren ( $\leq 33\%$ ), ebenso viertchromosomale Transgene. Transgene auf dem 3. Chromosom wurden mit  $mod(mdg4)^{02}$  rekombiniert ( $w^{1118}_{iso}$ ;  $P\{w^+ mod(mdg4)^{common \ region}\}$   $mod(mdg4)^{02}/TM6C)$  und dann mit  $mod(mdg4)^{02}/TM6C$  gekreuzt. Die Komplementationsraten reichen hier von 5% bis zur vollständigen Rettung in zwei Fällen (95% und 103%).

Durch eine *in situ*-Hybridisierung der Transgene und des endogenen Locus könnten deren Positionen und der Abstand zueinander im (fixierten) Zellkern bestimmt werden. Der dreidimensionale Abstand zwischen Transgen und endogenem Locus entspricht der Diffusionsstrecke, die die prä-mRNAs – das Transkript mit den Exons 1-4 von Transgen und die Transkripte mit den isoformspezifischen Exons vom endogenen Locus – vor dem *trans*-Spleißvorgang überwinden müssen. Möglicherweise sind der Abstand beider Positionen im Kern ausschlaggebend für die Effizienz des *trans*-Spleißens und damit für die Komplementationsrate.

An den Tieren aus den Komplementationskreuzungen wurden homöotische Transformation der Abdominalsegmente (A. Dörfel, pers. Mitteilung) und eingeschränkte weibliche Fertilität bis Sterilität (siehe Tab. 3.17) beobachtet, was auf zu geringe mRNA-Mengen der Isoformen mod(mdg4)-54.7 bis -53.1 (Fertilität, siehe 3.1.3.3) und mod(mdg4)-58.0 und/oder -55.2 (homöotische Transformation, siehe 3.1.3.4) schließen läßt. Bei den Komplementationen mit *D. virilis*-Transgenen wurde keine homöotische Transformation beobachtet. Die Fertilität der transheterozygoten Tiere war zudem ausreichend, um zum Beispiel die Linien 2- $P(w^+ Dvi 11,5kb)/+$ ;  $mod(mdg4)^{02}$ ,  $2-P(w^+ Dvi 11,5kb)/+$ ;  $mod(mdg4)^{neo129}$ ,  $2-P(w^+ Dvi 11,5kb)/+$ ;  $mod(mdg4)^{neo129}$ ,  $R^{32}$  und  $2-P(w^+ Dvi 6,8kb)/+$ ; Rev31/mod(mdg4)^{neo129},  $R^{32}$  zu etablieren und für mehr als 20 Generationen zu erhalten. Ein Unterschied zwischen den Transgenen beider Spezies besteht darin, daß für die genomischen *D. virilis-mod(mdg4)*-Konstrukte der Vektor pW8 genutzt wurde, die *D. melanogaster-mod(mdg4)*-Transgene im Transformationsvektor. Während die Transkriptionsrichtung der genomischen Sequenzen im Transformationsvektor. Während die Transkriptionsrichtung der *D. virilis-mod(mdg4)*-Transgene in Richtung w<sup>+</sup>-Marker (und des SV40-Polyadenylierungssignals) gerichtet ist, sind die *D. melanogaster*-Sequenzen entgegengesetzt orientiert in Richtung 5'*P*-Elementende (A. Dörfel und R. Dorn, pers. Mitteilung).

Diese Unterschiede zwischen beiden Experimenten (*D. virilis*-Transgene gegenüber *D. melanogaster*-Transgenen) schmälern zwar nicht deren individuelle Erkenntnisse, doch bieten sie möglicherweise eine Begründung für die fehlende Vergleichbarkeit zwischen ihnen und können erklären, warum z.B. einerseits sämtliche  $P\{w^+ mod(mdg4)^{common region}\}$ -Transgene auf dem zweiten Chromosom in Kombination mit  $mod(mdg4)^{02}$  steril sind, andererseits 2- $P(w^+ Dvi \ 6,8kb)$  in Kombination mit Mutationen des gemeinsamen Teils aber fertil ist (Linien mit homozygoter  $mod(mdg4)^{02}$ -,  $mod(mdg4)^{neo129}$ - und  $mod(mdg4)^{neo129} R^{32}$ -Mutation wurden für >20 Generationen erhalten).

## 3.2.3 Molekularbiologische Analyse des *trans*-Spleißens an *D. virilis mod(mdg4)*-h64.2

### 3.2.3.1 Genomische Transgene von D. virilis mod(mdg4)-h64.2-Mutationen

Im Rahmen dieser Arbeit sollte die Isoform mod(mdg4)-64.2, ihre Regulation und Funktion eingehend untersucht werden. Die endogene Isoform ist experimentell schwer zugänglich (siehe 3.1.5). Daher sollten die Experimente mit mod(mdg4)-64.2-Transgenen durchgeführt werden. Diese wurden von der *D. virilis-mod(mdg4)*-h64.2-Sequenz abgeleitet, da (a) die funktionelle Konservierung dieser Isoform zwischen beiden Arten nachgewiesen wurde (Gabler, 2003) und (b) sich die Nukleotidsequenz des isoformspezifischen Exons hinreichend von der endogenen unterscheidet, um mittels PCR spezifisch *Dvi-mod(mdg4)*-h64.2 nachweisen zu können.

Vier *D. virilis mod(mdg4)*-Transgene konnten als transgene Linien für die verschiedenen Fragestellungen etabliert werden (Abb. 3.18 B; fünf weitere konnten zwar erstellt aber nicht als transgene Linien etabliert werden, siehe Anhang A4). Alle Mutageneseprimer sind im Anhang 1 aufgelistet unter "Primer für *Drosophila virilis*-Transgene".



**Abbildung 3.18** In dieser Arbeit verwendete *D. virilis mod(mdg4)*-Transgene. Exons sind als Rechtecke dargestellt, die farbige Unterlegung markiert codierende Sequenz (grau) und untranslatierte Bereiche (weiß). Die *trans*-Speiß-Sites sind durch Ab- bzw. Aufstriche gekennzeichnet. (A) Bereits etablierte *D. virilis mod(mdg4)*-Transgene  $P(w^+ Dvi \ 11,5kb)$  und  $P(w^+ Dvi \ 6,8kb)$ . (B) Im Rahmen dieser Arbeit konstruierte und etablierte *D. virilis*-Transgene, von oben nach unten:  $P(w^+ Dvi \ 9,5kb \ spin \rightarrow \leftarrow)$ ,  $P(w^+ Dvi \ 9,5kb \ C\rightarrow A)$ ,  $P(w^+ Dvi \ 9,5kb \ 64.2$ -Promotormut) und  $P(w^+ Dvi \ 9,5kb \ 64.2$ -ESE)

- Das P(w<sup>+</sup> Dvi 9,5kb spin →←)-Transgen, bei dem die enthaltenen isoformspezifischen Exons entgegengesetzt orientiert sind ("spin": spezifische Exons invertiert), ermöglicht eine Aussage, ob die isoformspezifischen Exons von Dvi-mod(mdg4)-h64.2 & folgende einen eigenen Promotor besitzen, es sich also um eine selbständige Transkriptionseinheit handelt, oder vom Promotor des gemeinsamen Teils mit transkribiert werden.
- Im Konstrukt P(w<sup>+</sup> Dvi 9,5kb C→A) wurde ein Cystein, das in allen bekannten FLYWCH-Domänen konserviert ist, gegen ein Alanin ausgetauscht um die Auswirkung dieser Mutation auf die Funktion des Proteins zu untersuchen.

- In P(w<sup>+</sup> Dvi 9,5kb 64.2-Promotormut) wurde die putative Promotorsequenz upstream des Dvi-mod(mdg4)-h64.2-Exons gegen eine gleich lange Sequenz aus E. coli ausgetauscht, die keine Promotoraktivität besitzt. Die ausgetauschte Sequenz beinhaltet die CAAT- und die TATA-Box des Promotors und endet etwa 40bp upstream des Polypyrimidintraktes. So kann Dvi-mod(mdg4)-h64.2-mRNA durch cis-Spleißen entstehen, wenn das (experimentell noch nicht nachgewiesene) Transkriptionsstopsignal des gemeinsamen mod(mdg4)-Teils nicht effizient wirkt und die Transkripte auch die isoformspezifischen Exons umfassen. Enthält die ausgetauschte Sequenz jedoch einen aktiven Promotor, sollte die Expression von Dvi-mod(mdg4)-h64.2 in diesem Transgen herabgesetzt sein.
- Caudevilla *et al.* (2001) identifizieren im Carnitinoctanoyltransferase(COT)-Gen der Ratte die Sequenz GAAGAAG als wichtig für das *trans*-Spleißen (*exonic splice enhancer*, ESE). Eine Mutation zu A<sub>7</sub> resultierte in 50-60%iger Reduktion des *trans*-Spleißprodukts. Da diese ESE-Sequenz im isoformspezifischen Exon von *Dvimod(mdg4)*-h64.2 vorhanden ist, wurde sie im Transgen *P(w<sup>+</sup> Dvi 9,5kb* 64.2-ESE) mutiert (GAAGAAG → A<sub>7</sub>).

Der gemeinsame Teil der Transgene ist funktionell intakt und kann Mutationen im Bereich der gemeinsamen Exons des endogenen *D. melanogaster-mod(mdg4)*-Locus komplementieren (siehe Tabelle 3.16). Im Fall des  $P(w^+ Dvi \ 9,5kb \ spin \ \rightarrow \ )$ -Transgens X.I erfolgte die Insertion ins dritte Intron des endogenen Locus und führte zu dessen funktionellem Ausfall. Nach Entfernung einer *second site*-Mutation auf dem Chromosom durch Rekombination war  $P(w^+ Dvi \ 9,5kb \ spin \ \rightarrow \ )$  X.I homozygot lebensfähig und zeigte normale Fertilität. Zudem war das Transgen in der Lage, Mutationen des gemeinsamen Teils auf dem homologen Chromosom zu komplementieren (Tabelle 3.18). Die F1-Tiere waren, wie bei den anderen Komplementationen mit *D. virilis*-Transgenen ebenfalls normal fertil.

Das Transgen wurde in Tabelle 3.16 (siehe 3.2.2.2) nicht mit aufgeführt, da die Distanz zwischen Insertionsort des Transgens und dem endogenen Locus, um die es in jenem Experiment ging, bei X.I gleich null ist und der genetische Hintergrund während der Entfernung der *second site*-Mutation verändert wurde (*ss se eb ro*; vgl. Lindsley und Zimm, 1992; siehe Tab. 2.2). Diese Transgenlinie ist insofern besonders, daß im homozygoten Zustand alle synthetisierten *mod(mdg4)*-Isoformen sich entweder vollständig aus *D. virilis*-Exons zusammensetzen (transgencodiert sind *Dvi-mod(mdg4)*-h64.2, -h60.1 und -h53.5) oder es handelt sich um Chimären, deren gemeinsamer Teil vom Transgen und deren spezifischer Teil von den endogenen isoformspezifischen Exons stammt. Die homozygote Lebensfähigkeit

und die Abwesenheit aller unter 3.1.4 beschriebenen Phänotypen ist ein Beleg für die funktionelle Konservierung des gemeinsamen Teils des Locus.

**Tabelle 3.18** Komplementation der rezessiv letalen Mutationen  $mod(mdg4)^{02}$  und  $mod(mdg4)^{07}$ durch das Transgen  $P(w^+ Dvi 9,5kb spin \rightarrow \leftarrow)$  X.I.

| Mutation         | Komplementation |  |  |
|------------------|-----------------|--|--|
| $mod(mdg4)^{02}$ | 104% (410/1180) |  |  |
| $mod(mdg4)^{07}$ | 105% (507/1455) |  |  |

Die Mutationen im bzw. in der Nähe des isoformspezifischen Exons von *Dvi-mod(mdg4)*h64.2 in den verschiedenen Transgenen sollten sich auf die Expression der Isoform auswirken. Aus den transgenen Linien wurde Gesamt-RNA isoliert, um mittels Real-time RT-qPCR die relative Konzentration der *Dvi-mod(mdg4)*-h64.2-mRNA zu bestimmen.

**Tabelle 3.19** Real-time RT-qPCRs zum Nachweis von Dvi-mod(mdg4)-h64.2 und -h60.1 in *D. virilis-mod(mdg4)*-Transgenen. Die angegebenen  $\Delta\Delta$ Ct-Werte sind auf 2- $P(w^+ Dvi 11,5kb)$ (=0) normiert. Als Referenz und Bezugsgröße zur  $\Delta$ Ct-Berechnung diente ein Amplifikat aus dem gemeinsamen Dvi-mod(mdg4)-Exons des Transgens um Positionseffekte der Transgeninsertion an verschiedenen Orten im Genom auszugleichen. Je höher die angegebenen Werte, desto geringer ist die relative Konzentration der untersuchten mRNA. n.b.: nicht bestimmt

| Genotyp                                                               | $\Delta\Delta$ Ct h64.2 <sup>+14</sup> | $\Delta\Delta$ Ct h60.1 <sup> 12</sup> |
|-----------------------------------------------------------------------|----------------------------------------|----------------------------------------|
| 2-P(w <sup>+</sup> Dvi 11,5kb)                                        | $0 \pm 0,4$                            | $0 \pm 0,4$                            |
| $P(w^+ Dvi 9, 5kb spin \rightarrow \leftarrow I)$                     | $1,3 \pm 0,2$                          | $3,7 \pm 0,6$                          |
| $P(w^+ Dvi \ 9,5kb \ spin \rightarrow \leftarrow II)$                 | $1,5 \pm 0,4$                          | n.b.                                   |
| $P(w^+ Dvi 9, 5kb C \rightarrow A)$                                   | $0 \pm 0,3$                            | $0,3 \pm 0,6$                          |
| P(w <sup>+</sup> Dvi 9,5kb 64.2-Promotormut IV)                       | $5,0 \pm 1,1$                          | n.b.                                   |
| P(w <sup>+</sup> Dvi 9,5kb 64.2-Promotormut III)                      | $5,3 \pm 1,0$                          | $-0,4 \pm 1,0$                         |
| <i>P</i> ( <i>w</i> <sup>+</sup> <i>Dvi</i> 9,5 <i>kb</i> 64.2-ESE) I | $1,8 \pm 0,4$                          | n.b.                                   |

Das Transgen 2- $P(w^+ Dvi 11,5kb)$  diente bei den Real-time RT-qPCRs als Kontrolle. Die Auswirkungen der Anwesenheit von zwei zusätzlichen isoformspezifischen Exons in diesem Transgen (*Dvi-mod(mdg4)*-h55.1 und -53.1, letzteres ohne zugehörigen Promotor) dürften wegen der hohen Expression des gemeinsamen *D. virilis-mod(mdg4)*-Teils gering sein und sich innerhalb der Abweichungen zwischen den qPCR-Wiederholungen bewegen. Das Transgen,

<sup>&</sup>lt;sup>14</sup> Ich bitte die hohen Standardabweichungen der Real-time RT-qPCRs zu entschuldigen. Die PCRs wurden aus Zeit- und Kostengründen nicht so oft wiederholt und optimiert, daß konziliantere Standardabweichungen erreicht werden konnten.

das die C $\rightarrow$ A-Mutation beinhaltet, kann ebenfalls als Kontrolle angesehen werden, da sich die Mutation nicht auf Transkriptebene auswirken sollte. Tatsächlich hat die Mutation des Cysteincodons im Transgen  $P(w^+ Dvi \ 9,5kb \ C \rightarrow A)$  keinen Einfluß auf die Konzentration des RT-PCR-Amplifikats: der  $\Delta$ Ct-Wert entspricht dem von  $2-P(w^+ Dvi \ 11,5kb)$ .

Zunächst wurde die *Dvi-mod(mdg4)*-h64.2-Expression in zwei  $P(w^+ Dvi 9,5kb spin \rightarrow \leftarrow)$ -Transgenen untersucht. Die Isoform wird von beiden Transgenen immer noch gebildet. Der korrekte Übergang von Exon 4 des gemeinsamen Teils zum isoformspezifischen Exon wurde mittels Sequenzierung bestätigt. Die Expression der Isoform und der fehlerfreie Exon-Exon-Übergang lassen auf das Vorhandensein eines aktiven Promotors *upstream* des isoformspezifischen Exons schließen. Die umgekehrte Orientierung des spezifischen Exons resultiert allerdings in einer geringeren mRNA-Konzentration der Isoform ( $\Delta\Delta$ Ct=1,3 bzw. 1,5, d.h. mRNA-Konzentration um 60-65% verringert).

Bei dem Transgen  $P(w^+ Dvi \ 9,5kb \ 64.2$ -Promotormut) wurde der Promotor *upstream* des isoformspezifischen Exons von Dvi-mod(mdg4)-h64.2 mutiert (siehe Abb. 3.18). Die Expressionsanalyse ergab, daß verglichen mit der Wildtypsequenz nur noch rund 3% der mRNA-Menge gebildet werden ( $\Delta\Delta$ Ct=5). Dies ist ein weiteres Indiz für die Existenz eines Promotors, der die Transkription des isoformspezifischen Exons von Dvi-mod(mdg4)-h64.2 treibt und für seine Lokalisation im mutierten Bereich *upstream* des isoformspezifischen Exons.

Das alternative trans-Spleißen in mod(mdg4) unterliegt nicht nur der Regulation durch intragenische Promotoren. Die trans-Spleißakzeptoren in den prä-mRNAs mit mehreren isoformspezifischen Exons stehen auch untereinander in Konkurrenz um den gemeinsamen Teil (trans-Spleißdonor). Dabei kann die Konzentration einer Isoform durch Sequenzmotive – und daran bindende Proteine - beeinflußt werden. Die Sequenz GAAGAAG im isoformspezifischen Exon von Dvi-mod(mdg4)-h64.2 ist ein exonic splice enhancer-Motiv, das eine Rolle beim trans-Spleißen spielt (Caudevilla et al., 2001). Das Transgen P(w<sup>+</sup> Dvi 9,5kb 64.2-ESE) I trägt die Mutation GAAGAAG $\rightarrow$ A<sub>7</sub>, die zwar den Spleiß-Enhancer zerstört, aber eine stille Mutation ist, d.h. die codierte Aminosäuresequenz wird nicht verändert (auch die Codonhäufigkeit ist vergleichbar, was ribosome stalling ausschließen sollte). Die Dvimod(mdg4)-h64.2-mRNA-Konzentration, die aus  $P(w^+ Dvi 9,5kb 64.2-ESE)$  I entsteht, ist um 71±8% gegenüber dem Referenztransgen verringert (ΔΔCt=1,8±0,4). Demnach ist die Fähigkeit zum trans-Spleißen nach der Mutation des exonic splice enhancer nur noch teilweise vorhanden. Die Abnahme der mRNA-Konzentration um rund 70% fällt sogar noch deutlicher aus, als die von Caudevilla et al. (2001) ermittelten Werte. In jenen Experimenten führte die Mutation GAAGAAG $\rightarrow$ A<sub>7</sub> zu einer Abnahme der mRNA-Menge um 50-60%.

Die zweite, in einigen der Trangene untersuchte, Isoform ist Dvi-mod(mdg4)-h60.1. In der Referenz 2- $P(w^+ Dvi \ 11,5kb)$  und in  $P(w^+ Dvi \ 9,5kb \ C \rightarrow A)$  wurde die gleiche relative Konzentration ermittelt. In  $P(w^+ Dvi \ 9,5kb \ spin \rightarrow \leftarrow)$  fällt die mRNA-Menge im Verhältnis zu -h64.2 etwas stärker. Bemerkenswert ist, daß in  $P(w^+ Dvi \ 9,5kb \ 64.2$ -Promotormut) die RT-PCR-Amplifikatmenge wieder ähnlich der Referenz ist, obwohl der Promotor *upstream* des isoformspezifischen Exons von Dvi-mod(mdg4)-h64.2 mutiert ist. Dieses Ergebnis deutet darauf hin, daß sich zwischen den untersuchten isoformspezifischen Exons ein weiterer Promotor befindet.

Beide durch die Real-time RT-qPCR-Experimente identifizierte Promotoren befinden sich in *D. virilis*-Transgenen. Ihre CAAT- und TATA-Boxen sind aber in der genomischen Sequenz von *D. melanogaster* konserviert; daher wurden sie in die Tabelle 3.3 aufgenommen. Ein funktioneller Nachweis der Promotoraktivitäten im endogenen Locus ist mit dem vorliegenden Material nicht möglich.

## 3.2.4 Etablierung eines Systems zur *in vivo*-Analyse des *trans*-Spleißprozesses

#### 3.2.4.1 EGFP-trans-Spleißen

Im vorangegangenen Kapitel konnte gezeigt werden, daß die proximal codierte Isoform *mod(mdg4)*-64.2 durch *trans*-Spleißen gebildet werden kann, obwohl durch die Position und Orientierung des isoformspezifischen Exons auch eine Synthese der reifen mRNA durch *cis*-Spleißen möglich wäre. Um die Frage zu beantworten, welche Faktoren den Vorgang des *trans*-Spleißens ermöglichen, sind funktionelle Analysen erforderlich um notwendige und hinreichende Elemente sowie beteiligte Spleißfaktoren zu identifizieren. Zu diesem Zweck sollte ein System etabliert werden, das es erlaubt, den Prozeß des *trans*-Spleißens umfassend *in vivo* zu analysieren.

Als Reporter wurde EGFP gewählt. Das EGFP-Gen, das in seiner Wildtypform kein Intron besitzt, wurde an geeigneter Stelle geteilt. An den 5'Teil des Gens wurde die Sequenz angefügt, die unmittelbar 3' des gemeinsamen Exons 4 von *mod(mdg4)* beginnt (siehe Abb. 3.19 A). Dies ist bei *mod(mdg4)* die Position, an der das *trans*-Spleißen ansetzt und die alternativen isoformspezifischen Exons angefügt werden. Um alle möglicherweise wichtigen Sequenzen zu integrieren, wurden rund 2kb Outronsequenz an die 5'Hälfte des EGFP-Gens fusioniert (Position 5.127 bis 7.082, locusinterne Skala) bis unmittelbar vor das am weitesten proximal codierte isoformspezifische Exon. Dieses Konstrukt wurde in eine pUAST-Variante (pCaSpeR-3) eingefügt. Damit steht es unter transkriptioneller Kontrolle des UAS-Promotors,

der durch Gal4 induzierbar ist. *downstream* des Konstrukts – EGFP-A – befindet sich ein SV40-Polyadenylierungssignal im Transformationsvektor.

Das zweite Konstrukt – EGFP-B – besteht aus 2kb Sequenz *upstream* des spezifischen Exons von mod(mdg4)-55.1 als *trans*-Spleißakzeptor (Position 7.587 bis 9.543, locusinterne Skala) und dem 3'Bereich des EGFP-Gens (siehe Abb. 3.19 A). Dieses Konstrukt wurde ebenfalls in pCaSpeR3 ligiert.

Von EGFP-A konnten 17 transgene Linien etabliert werden, von EGFP-B drei, darunter eine X-chromosomale Insertion, von der mittels Transposase-vermittelter Remobilisierung 40 weitere unabhängige Insertionen erzeugt werden konnten. Durch die große Anzahl von Transgenen sind zahlreiche Kombinationen der EGFP-A- und EGFP-B-Transgene möglich.

Eine aktive Transkription beider Transgene wurde durch die Einkreuzung Gal4-bildender Transgene, sogenannter Treiber, erreicht. Dies sind Transgene, die ein Gal4-Gen enthalten, dem der Promotor eines anderen *Drosophila*-Gens vorgeschaltet ist. Durch die Aktivität dieses Promotors (ubiquitär, zell-, entwicklungsstadienspezifisch, induzierbar) kann eine gezielte Synthese von Gal4 erreicht werden, das durch Aktivierung des UAS-Promotors die Transkription von EGFP-A bzw. EGFP-B induziert. Für die durchgeführten Experimente wurden für das zweite Chromosom Actin-Gal4, für das dritte Chromosom *daughterless*-Gal4 und ein weiterer Actin-Gal4-Treiber (Beschreibungen der Linien siehe 2.1.3) genutzt.

Zunächst sollte getestet werden, ob die EGFP-Konstrukte überhaupt *trans*-spleißen können. Dazu wurde aus 0-16h alten Embryonen mit nur einem Gal4-induzierten Transgen (EGFP-A oder EGFP-B) Gesamt-RNA isoliert und mittels RT-PCR die Fähigkeit der Transgen-prämRNAs untersucht, zum endogenen Locus *in trans* zu spleißen. Dabei sollte sich EGFP-A als *trans*-Spleißdonor wie der gemeinsame Teil von *mod(mdg4)* verhalten und zu den prä-mRNAs der isoformspezifischen Exons spleißen. Zum Nachweis von *trans*-Spleiß-Produkten von EGFP-A wurden ein *forward*-Primer aus EGFP und ein *reverse*-Primer aus dem isoformspezifischen Exon *mod(mdg4)*-64.2 verwendet. Die durchgeführte RT-PCR war erfolgreich, das erhaltene Amplifikat wurde sequenziert und der korrekte Übergang von der EGFP-Sequenz in das spezifische Exon von *mod(mdg4)*-64.2 nachgewiesen. Die RT-PCR wurde mit einem *forward*-Primer aus EGFP und einem *reverse*-Primer aus dem isoformspezifischen Exon von *mod(mdg4)*-55.1 wiederholt. Auch hier wurde der korrekte Übergang von EGFP-Sequenz zum isoformspezifischen Exon von *mod(mdg4)*-55.1 bestätigt.

Für EGFP-B wurde geprüft, ob die vom Transgen codierte prä-mRNA in der Lage ist, zu den endogenen gemeinsamen Exons 1-4 von mod(mdg4) zu spleißen, da dieses Konstrukt in Konkurrenz zu den *trans*-Spleißakzeptoren der isoformspezifischen Exons um den gemeinsamen Teil von mod(mdg4) tritt. Zum Nachweis des *trans*-Spleißens von EGFP-B

wurde ein *forward*-Primer aus dem *mod(mdg4)*-Exon 4 und ein *reverse*-Primer aus dem 3'Bereich von EGFP verwendet. Durch Sequenzierung des RT-PCR-Produkts konnte der korrekte Übergang von Exon 4 zum EGFP-B-Exon belegt werden.

Damit konnte gezeigt werden, daß treiberinduzierte Transgenkonstrukte zu endogenen *mod(mdg4)*-prä-mRNAs *trans*-spleißen können und daß *mod(mdg4)*-Outronsequenz ausreichend ist, quantitativ nachweisbares *trans*-Spleißen zu ermöglichen. Außerdem konnte gezeigt werden, daß während des Spleißprozesses die korrekten Exon-Exon-Übergänge erzeugt wurden.

Nachdem nachgewiesen wurde, daß beide EGFP-Konstrukte zum endogenen Locus *trans*spleißen können, wurde das eigentliche Ziel des Projekts verfolgt, detektierbare und quantifizierbare Mengen EGFP *in vivo* mittels *trans*-Spleißens zu synthetisieren. Dazu wurden transgene Linien mit je einem EGFP-A- und EGFP-B-Transgen sowie dem *daughterless*- oder Actin-Gal4-Treiber durch Kreuzung erzeugt. Tiere generierter Linien wurden zunächst auf Fluoreszenz im grünen Spektralbereich untersucht. Es war keine Fluoreszenz nachweisbar, die sich von der Hintergrundfluoreszenz der Embryonen, Larven, Puppen und adulter Tiere (Präparation der inneren Organe und Quetschpräparate) unterschied. Ein PCR-Test bestätigte, daß beide EGFP-Transgene sowie der Gal4-Treiber in den untersuchten Tieren vorhanden waren.

Da keine EGFP-Fluoreszenz zu detektieren war, wurde auf das Vorhandensein intakter EGFP-mRNA untersucht. Die EGFP-mRNA konnte mittels RT-PCR nachgewiesen werden, ihre Sequenzierung zeigte die Einhaltung der definierten Exon-Intron-Grenzen – das *trans*-Spleißprodukt weist den korrekten Exon-Exon-Übergang auf und der EGFP-Leserahmen ist intakt.

Intakte, mittels RT-PCR nachweisbare EGFP-mRNA bei gleichzeitig fehlender EGFP-Fluoreszenz ließ vermuten, daß die Menge gebildeter mRNA zu gering ist, also der *trans*-Spleißprozeß nicht effizient genug abläuft, und in der Konsequenz nicht ausreichend Protein gebildet wird, um sich von der Hintergrundfluoreszenz abzuheben. Möglicherweise lag der Grund für die schlechte Effizienz darin, daß beide Transgene an verschiedenen Positionen ins Genom integriert wurden. Dadurch müssen entstehende prä-mRNAs weite Strecken durch Diffusion zurücklegen, ehe sie mit ihrem *trans*-Spleißpartner zu einer reifen mRNA verknüpft werden können. Um dieses Problem zu beheben, wurden im nächsten Schritt beide EGFP-Teile in einem Transgen codiert. Dazu wurden drei Transgene mit verschiedenen Anordnungen von EGFP-A und EGFP-B synthetisiert. Zum einen wurde eine Struktur gewählt, in der ein *cis*-Splicing der beiden EGFP-Hälften möglich ist (siehe Abb. 3.19; acht transgene Linien), dazu eine Kopf-an-Kopf-Orientierung (vier Linien) und eine Tandemanordnung (drei Linien).



**Abbildung 3.19** (A) Transgenkonstrukte EGFP-A und EGFP-B, die mittels *trans*-Spleißen EGFP-mRNA bilden. Außerdem dargestellt ist die Y-förmige Struktur, die während des Spleißvorgangs aus den Outronbereichen gebildet wird und nur beim *trans*-Spleißen entsteht. (B) Transgenkonstrukte mit EGFP-A- und -B-Kombinationen, von oben nach unten: *cis*-Splicing-Anordnung, Tandem-Anordnung, Kopf-an-Kopf-Anordnung.

UAS: Gal4-induzierbarer Promotor; SV: SV40-Polyadenylierungssignal

Obwohl sich in allen drei Transgenen beide Transkriptionseinheiten in räumlicher Nähe zueinander befinden, die Diffusionsstrecke der prä-mRNAs vor dem *trans*-Spleißen als limitierender Faktor also wegfällt, konnte nicht ausreichend Protein gebildet werden um eine deutlich sichtbare Fluoreszenz zu erzeugen, die eindeutig EGFP zugeordnet werden kann. Mittels RT-PCR konnte bei allen Konstrukten *trans*-gespleißte EGFP-mRNA nachgewiesen werden.

Mit Hilfe der EGFP-*trans*-Spleißkonstrukte konnte nachgewiesen werden, daß das Vorhandensein von *mod(mdg4)*-Outronsequenzen in prä-mRNAs ausreicht, um das *trans*-Spleißen künstlich definierter Exons zu ermöglichen. In allen untersuchten Fällen konnte mittels Sequenzierung nachgewiesen werden, daß die Exon-Exon-Übergänge basengenau eingehalten wurden, sowohl beim Spleißen der transgencodierten Transkripte untereinander als auch beim Spleißen zu prä-mRNAs des endogenen *mod(mdg4)*-Locus. Jedoch konnte mit dem System nicht genug EGFP-mRNA (und in Folge EGFP-Protein) synthetisiert werden, daß eine klar vom Hintergrund unterscheidbare Fluoreszenz detektiert werden konnte.

Aufgrund der zu geringen Menge gebildeten EGFPs, eignet sich das System nicht zum in vivo-Test für den trans-Spleißprozeß, denn für eine Analyse der trans-Spleißeffizienz hätte auf molekularbiologische (Realtime-RT-qPCR) bzw. proteinchemische (Western Blot, ELISA) Methoden zurückgegriffen werden müssen.

Ein alternatives System, bei dem sich eine Änderung der *trans*-Spleißeffizienz *in vivo* in einfach quantifizierbaren Größen/Mengen niederschlägt, bieten die bekannten Funktionen der Isoformen Mod(mdg4)-67.2 (*insulator*-Aktivität an  $y^2$  und  $ct^6$ , Gerasimova *et al.*, 1995 und 1998) und -56.3 (*nondisjunction*, Thomas *et al.*, 2006).

## 3.2.5 Teilung von *mod(mdg4)* durch induzierte chromosomale Umbauten und funktionelle Analyse des geteilten Locus

## 3.2.5.1 Etablierung, Verifizierung und molekularbiologische Analyse der chromosomalen Rearrangements

In den vorigen Kapiteln wurden einige Aspekte der Analyse des *trans*-Spleißens dargestellt. In den beschriebenen Experimenten wurden verschiedene, der Fragestellung angepaßte Transgene von *mod(mdg4)* eingesetzt. Der endogene Locus spielte bei diesen Experimenten eine eher untergeordnete Rolle, wurde lediglich als Kontrolle bzw. als Donor isoformspezifischer Exons genutzt. Die schlechte experimentelle Zugänglichkeit des endogenen Locus bzw. die Notwendigkeit aufwendiger Protokolle zu dessen gerichteter Manipulation (siehe 3.1.5.2) schränken seine Verwendbarkeit für Analysen bei vertretbarem experimentellen Aufwand ein.

Basis für die in diesem Kapitel beschriebenen Versuche ist das  $P\{RS5\}$ -Element (*rearrangement screen*, Golic und Golic, 1996)  $P\{RS5\}$ 5-HA-1224, das sich an Position 18.434 (3R:17.191.073) zwischen den spezifischen Exons von mod(mdg4)-54.7 und -58.0 befindet, etwa 360bp *upstream* von mod(mdg4)-58.0. Damit wird das *P*-Element flankiert von einerseits den gemeinsamen Exons 1-4 und den proximal codierten elf isoformspezifischen Exons und andererseits von den 20 distal codierten isoformspezifischen Exons. Diese Position prädestiniert das Element für die Mutagenisierung des mod(mdg4)-Locus. Die ungerichtete Mutagenese durch Transposase-vermittelte Remobilisierung wurde bereits beschrieben (siehe 3.1). Im Weiteren wird die gerichtete Mutagenese durch Induzierung definierter Chromosomenmutationen beschrieben, wobei  $P\{RS5\}$ 5-HA-1224 einen Bruchpunkt markiert.

Die  $P\{RS\}$ -Elemente der DrosDel-P-Elementkollektion (Ryder *et al.*, 2004) können dazu genutzt werden, definierte Defizienzen im *D. melanogaster*-Genom zu erzeugen, ebenso können mit ihnen aber auch chromosomale Umbauten induziert werden. Die Generierung der Chromosomenmutationen, die etabliert und für Analysen verwendet wurden, ist im Kapitel 2.1.5 ausführlich beschrieben. Es wurden eine reziproke Translokation T(2;3)26A,mod(mdg4)

(mit  $P\{RS3\}CB-0716-3r$ ), zwei parazentrische Inversionen In(3R)89C,mod(mdg4) und In(3R)mod(mdg4),94C (mit  $P\{RS3\}CB-6279-3r$  bzw.  $P\{RS3\}CB-5827-3r$ ) sowie die 68kb große Defizienz Df(3R)ED6050 (mit  $P\{RS3\}CB-6403-3r$ ) erzeugt, in welcher die 20 distal codierten isoformspezifischen Exons deletiert sind<sup>+15</sup>. Die gleichen distal codierten spezifischen Exons werden durch die Inversionen 1,4Mb im Fall von In(3R)mod(mdg4),94C bzw. 4,9Mb im Fall von In(3R)89C,mod(mdg4) von den gemeinsamen Exons 1-4 und den proximal codierten elf isoformspezifischen Exons wegverlagert. Die reziproke Translokation T(2;3)26A,mod(mdg4) verlagert die gemeinsamen und die elf proximalen spezifischen Exons des mod(mdg4)-Locus, zusammen mit dem distalen Teil des Chromosoms 3R (cytologische Regionen 93D9-100) auf den linken Arm des zweiten Chromosoms (siehe Abb. 2.2 B, Material & Methoden).

Die generierten Rearrangements sind, ebenso wie die Defizienz  $w^+$ -markiert. Die korrekte Sequenz eines PCR-Produkts mit Primern aus den flankierenden genomischen Bereichen über das  $w^+$ -Element hinweg, welches einen Bruchpunkt der Umbauten sowie die Defizienz kennzeichnet (*"one step confirmation"*, siehe Abb. 2.2 A) dient als Beleg für die erfolgreiche Etablierung der beabsichtigten Chromosomenmutationen. Alle PCR-Amplifikate enthielten die erwarteten Sequenzen. Inversionen und Translokation, nicht aber die Defizienz besitzen weiterhin ein Element, das den anderen Bruchpunkt im Genom markiert und aus zwei 5'*P*-Enden und einem FRT dazwischen besteht. Aus thermodynamischen Gründen<sup>116</sup> ist dieses Element einer überspannenden PCR nicht zugänglich.

Da bei *Drosophila* die homologen Chromosomen gepaart in der Zelle vorliegen (*somatic chromosome pairing*, Metz, 1916; Hiraoka *et al.*, 1993; Csink und Henikoff, 1998), sollten in Präparaten heterozygoter Rearrangement-Genotypen aufgrund der Chiasmata charakteristische Chromosomenfiguren auftreten. Daher wurden, als ergänzende Methode der Verifizierung der chromosomalen Umbauten mittels PCR und Sequenzierung, in Zusammenarbeit mit M. Gabler Quetschpräparate polytäner Speicheldrüsenchromosomen aus heterozyoten Larven angefertigt und mikroskopisch ausgewertet. Die Cytologien der Chromosomen (Abb. 3.20) zeigen die erwarteten Figuren: Bei der heterozygoten Translokation ist deutlich die kreuzartige Struktur zu erkennen, bei den Inversionen bilden die gepaarten Chromosomen Schleifen (Abb. 3.20 B, C). Im Fall der *In(3R)mod(mdg4),94C*-Inversion ist die Schleife aufgrund ihrer relativ geringen Größe nicht gut zu erkennen.

<sup>&</sup>lt;sup>15</sup> Die Bezeichnung der Defizienz folgt den Konventionen des DrosDel-Konsortiums, die chromosomalen Rearrangement sind nach den Bruchpunkten in mod(mdg4) und der Position des verwendeten  $P\{RS3\}$ -Elements (cytolog. Region) benannt. <sup>16</sup> Bildung einer extrem stabilen Haarnadelstruktur mit einem Stamm von ca. 580bp aus den beiden 5'P-Elementenden und

einem loop von etwas mehr als 200bp, in dem sich die FRT-Sequenz befindet



**Abbildung 3.20** Speicheldrüsenpolytänchromosomen aus heterozygoten Larven der chromosomalen Rearrangements. (A)  $w^{1118}_{iso}$ ; +/T(2;3)26A, mod(mdg4)/+ (B)  $w^{1118}_{iso}$ ; +/In(3R)89C, mod(mdg4)/+, (C)  $w^{1118}_{iso}$ ; +/In(3R)mod(mdg4), 94C/+. Die Angaben in den Abbildungen bezeichnen die Chromosomenarme und die cytologischen Regionen, der Pfeil in (C) markiert die Position der Inversion. Die DNA wurde mit DAPI angefärbt.

Quelle: Die fluoreszenzmikroskopischen Aufnahmen wurden von M. Gabler angefertigt.

Nach ihrer Etablierung wurde zunächst getestet, ob die sich die Chromosomenmutationen auf die Lebensfähigkeit der Tiere auswirken. Die Defizienz Df(3R)ED6050, die die 20 distalen spezifischen Exons einschließt, ist rezessiv letal. Beide Inversionen und die Translokation erwiesen sich hingegen als homozygot vital und fertil (derzeit als homozygote Linien für >40 Generationen erhalten). Ebenso zeigen sie keine auffälligen Phänotypen. Und dies, obwohl die Architektur des mod(mdg4)-Locus in den homozygoten Rearrangements zerstört ist und sich die codierenden Bereiche – d.h. gemeinsamer und isoformspezifischer Teil – von 20 Isoformen an weit voneinander entfernten Positionen im Genom befinden. Da die distal codierten mod(mdg4)-Isoformen als essentiell für die Lebensfähigkeit nachgewiesen wurden (siehe 3.1.3.1), müssen sie trotz des nicht mehr intakten Locus noch in einem ausreichenden Umfang gebildet werden, um ihre biologische Funktion zu erfüllen.

Daher wurde die Expression mehrerer Isoformen untersucht, deren spezifische Exons *downstream* des Bruchpunktes lokalisiert sind, und mit der Expression von Isoformen verglichen, deren spezifische Exons nicht von den Chromosomenmutationen betroffen sind. Hierzu wurden semiquantitative RT-PCRs an RNA der homozygoten Genotypen durchgeführt. Nachgewiesen wurde die Expression von einerseits *mod(mdg4)*-64.2 und -53.1, deren spezifische Exons proximal zum Rearrangement-Bruchpunkt codiert sind, und andererseits von *mod(mdg4)*-67.2, -56.3, -58.8 und -51.4, deren isoformspezifische Exons in drei Transkriptionseinheiten *downstream* des Bruchpunkts codiert sind (Promotoren #8, #10 und #11).

Die mRNA-Konzentration der Isoformen mod(mdg4)-64.2 und -53.1 nimmt in den homozygoten Mutationsgenotypen zu (Abb. 3.21). Die Expression der Isoformen mod(mdg4)-67.2, -56.3, -58.8 und -51.4 ist in den homozygoten Rearrangements deutlich geringer als in der Referenz  $w^{1118}_{iso}$ . Dabei fällt auf, daß bei allen vier getesten Isoformen die Intensität der RT-PCR-Bande zunimmt von der Translokation über In(3R)89C,mod(mdg4) zu In(3R)mod(mdg4),94C (kleinere Translokation).



**Abbildung 3.21** Semiquantitative RT-PCR-Analyse homozygoter chromosomaler Rearrangements und transheterozygoter Defizienz Df(3R)ED6050/Revertante Rev31. *rp49* dient als Kontrolle. Die isoformspezifischen Exons von mod(mdg4)-64.2 und -53.1 sind proximal, die der anderen aufgeführten Isoformen distal des Rearrangement-Bruchpunkts lokalisiert. Das isoformspezifische Exon der Isoform mod(mdg4)-67.2 liegt in den überlappenden deletierten Bereichen der Defizienz Df(3R)ED6050 und von Rev31. unten: semiquantitative RT-PCR-Analyse an homozygoter  $P{RS5}{5}$ -HA-1224 im Vergleich zu  $w^{1118}_{iso}$  einer mod(mdg4)-Isoform, deren spezifisches Exon in Juxtaposition zum *P*-Element liegt

Die Transkriptionseinheiten unter der Kontrolle der Promotoren #6 und #7, die sich unmittelbar proximal bzw. distal des Bruchpunkts befinden, sind in den chromosomalen Rearrangements im Vergleich zur verwendeten Kontrolle  $w^{1118}_{iso}$  ebenfalls disreguliert. Allerdings werden hier die Effekte, die die Expressionsveränderungen der weiter oben beschriebenen Isoformen bewirken, bei weitem überwogen vom Vorhandensein der  $w^+$  bzw.  $w^-$ -Elemente. Die Promotorwirkung der *P*-Elementenden (siehe 3.1.2.2 und Anhang A2.1) führt zu einer starken Überexpression der Isoformen, deren spezifisches Exon in einer der Transkriptionseinheiten liegt, die die Bruchpunkte der Chromosomenmutationen flankieren. Exemplarisch ist dies in Abb. 3.21 für die Isoform mod(mdg4)-54.7 in der homozygoten

 $P\{RS5\}5$ -HA-1224 gezeigt, Translokation und Inversionen zeigen eine ähnliche Disregulation. Bei mod(mdg4)-52.4 und -55.8 wurde der gleiche Effekt nachgewiesen (siehe Abb. 3.2 A, dort von *P*-Elementresten von  $P\{RS5\}5$ -HA-1224 verursacht).

## 3.2.5.2 Funktionelle Untersuchung der Isoform *mod(mdg4)*-56.3 in den chromosomalen Rearrangements

Thomas et al. (2006) konnten Mod(mdg4)-56.3 an Chromosomen während der Prometaphase der ersten meiotischen Teilung (Meiose I) in den Testis von Drosophila-Männchen nachweisen. Ein vorangegangenes Screening der Zuker-Sammlung (Koundakjian et al., 2004) identifizierte diese Isoform als erforderlich für die korrekte Verteilung der homologen Chromosomen auf die Tochterzellen während der männlichen Meiose I, bei der kein synaptonemaler Komplex gebildet wird. Eine Mutation von mod(mdg4)-56.3 führt zu einem hohen Anteil von nondisjunction, d.h. es entstehen Spermatiden und Spermien, die kein und die beide Fehlverteilung welche, homologe Chromosomen tragen. Bei der Geschlechtschromosomen entwickeln sich, in Kombination mit dem X-Chromosom der Oocyte, X0-Männchen und XXY-Weibchen.

In den chromosomalen Umbauten wurde bereits eine verringerte mRNA-Menge der Isoform *mod(mdg4)*-56.3 nachgewiesen (siehe Abb. 3.21). Nun sollte die physiologisch effektive Konzentration der Isoform bestimmt werden. Wenn der *nondisjunction*-Phänotyp direkt mit der Mod(mdg4)-56.3-Konzentration korreliert, statt die Unterschreitung eines Schwellenwertes zu erfordern, ließe sich die physiologische Konzentration der Isoform anhand der *nondisjunction*-Rate (NDJ) bestimmen. Mit abnehmender Transkriptmenge in den homozygoten Rearrangements, die sich wahrscheinlich in einer ebenso abnehmenden Proteinmenge widerspiegelt, sollte es zu immer höheren NDJ-Raten in entsprechenden Kreuzungen kommen.

Um die verschiedenen Geschlechtschromosomkonstellationen in der F1-Generation feststellen zu können, wurden Männchen des zu analysierenden Genotyps erzeugt, die statt des nicht markierten ein dominant  $B^{S}$ -markiertes Y-Chromosom besitzen (Y $B^{S}y^{+}$ , Brosseau und Lindsley, 1958; Brosseau *et al.*, 1961). Diese Männchen wurden im Alter von 0-2 Tagen mit Jungfrauen einer  $w^{+}y^{1}$ -markierten Referenzlinie (a-31, siehe auch Material & Methoden) gekreuzt<sup>117</sup> und aus Geschlecht und Phänotyp der F1-Generation<sup>118</sup> auf das jeweils in den

<sup>&</sup>lt;sup>17</sup> 2 $^{\circ}$  0-2d YB<sup>S</sup> y<sup>+</sup>;[zu testender Genotyp] x 3 $^{\circ}$  a-31: 3d auf dem ersten Röhrchen, 3d auf zweitem Röhrchen (jeweils mit Bäckerhefe als Futterzusatz)

Spermien enthaltene Geschlechtschromosom(en) geschlossen. Normal pigmentierte F1-Männchen mit  $B^{S}$ -Phänotyp besitzen das Geschlechtschromosomenpaar XY $B^{S}$ , während X0-Männchen *yellow* und ohne Augenphänotyp sind. In diesen Fällen wurde von Spermium das Y $B^{S}$ -Chromosom (für XY $B^{S}$ -Genotyp) bzw. kein Geschlechtschromosom (für X0-Genotyp) übertragen. Die Form der Augen bei Weibchen mit der Konstellation XX ist normal, ebenso ihre Körperpigmentierung, da sie auf dem paternalen X-Chromosom das Wildtypallel von *yellow* tragen (Spermium mit einem X-Chromosom). Das gilt auch für XXY $B^{S}$ -Weibchen (Spermium mit XY $B^{S}$ -Genotyp, *yellow*-Wildtypallel auf dem X-Chromosom und Y $B^{S}$   $\underline{y}^{+}$ ), die aber den  $B^{S}$ -Phänotyp ausprägen.

**Tabelle 3.20** Analyse der Geschlechtschromosomen-*nondisjunction* (NDJ) in den chromosomalen Rearrangements mit Bruchpunkt in mod(mdg4). Weibchen mit  $y^1$ -markierten X-Chromosomen (a-31) wurden mit  $B^S y^+$  (Bar-Stone)-markierten Y-Chromosomen und der mod(mdg4)-Mutation, die in Spalte 1 angegeben ist, gekreuzt. Die Konstellation der Geschlechtschromosomen in den Spermien wurde aus Geschlecht und Phänotyp der F1-Tiere geschlossen. Der NDJ-Anteil wurde als Division der Summe der X0-Männchen und XXY-Weibchen durch die Gesamtzahl der F1-Tiere (n) berechnet.

| Genotyp der gekreuzten                          | Spermienklasse |      |      |      |       |                             |
|-------------------------------------------------|----------------|------|------|------|-------|-----------------------------|
| Männchen (paternales/maternales<br>Allel)       | Х              | Y    | XY   | 0    | n     | % NDJ                       |
| Z3-5578 / Df(3R)GC14                            | 541            | 347  | 326  | 359  | 1573  | ♂50,8<br>♀37,6 <sup>1</sup> |
| Df(3R)GC14 / Z3-5578                            | 189            | 120  | 146  | 98   | 553   | 44,1                        |
| Df(3R)6050 / Z3-5578                            | 3310           | 2417 | 1770 | 1384 | 8881  | 35,5                        |
| T(2;3)26A,mod(mdg4) /<br>mod(mdg4) <sup>+</sup> | 1321           | 1298 | 3    | 1    | 2623  | 0,15                        |
| In(3R)89C,mod(mdg4) /<br>mod(mdg4) <sup>+</sup> | 771            | 599  | 0    | 0    | 1370  | 0                           |
| In(3R)mod(mdg4),94C /<br>mod(mdg4) <sup>+</sup> | 6649           | 5950 | 8    | 5    | 12599 | 0,1                         |
| T(2;3)26A,mod(mdg4)                             | 1048           | 750  | 400  | 371  | 2569  | 30,0                        |
| In(3R)89C,mod(mdg4)                             | 1018           | 854  | 131  | 125  | 2128  | 12,0                        |
| In(3R)mod(mdg4),94C                             | 867            | 796  | 27   | 45   | 1735  | 4,1                         |
|                                                 |                |      |      |      |       |                             |

<sup>&</sup>lt;sup>18</sup> Die Kreuzungen/Generationen zum Aufbau des gewünschten Genotyps wurden nicht berücksichtigt, die in der Kreuzung eingesetzten Tiere wurden als Parentalgeneration (P), die daraus hervorgehenden, in der Tabelle aufgelisteten Tiere als erste Filialgeneration (F1) definiert.
| T(2;3)26A,mod(mdg4) / Z3-5578                                         | 2063 | 1885 | 437 | 359 | 4744 | 16,8 |
|-----------------------------------------------------------------------|------|------|-----|-----|------|------|
| In(3R)89C,mod(mdg4) / Z3-5578                                         | 4547 | 3867 | 259 | 191 | 8864 | 5,1  |
| T(2;3)26A, mod(mdg4) hs-cDNA<br>mod(mdg4)-56.3 (2. Chr.) <sup>2</sup> | 954  | 831  | 86  | 86  | 1957 | 8,8  |
| T(2;3)26A, mod(mdg4) hs-cDNA<br>mod(mdg4)-56.3 (3, Chr.) <sup>2</sup> | 786  | 649  | 94  | 95  | 1624 | 11,6 |

<sup>1</sup> getrennt aufgeführt, da Unterschied von >5% zwischen den Geschlechtern

<sup>2</sup> 24h Eiablage, Hitzeschock 1h bei 37°C nach 48h (ab Beginn der Eiablage; Alter der Embryonen bzw. Larven: 24 bis 48h) und weiterhin im Abstand von 24h bis erste Puppen im Röhrchen; Positionen der *mod(mdg4)*-56.3-cDNA-Transgene: 3L 67E4 und 2R 55E-F

Zunächst wurde untersucht, wie ein Ausfall des isoformspezifischen Exons von mod(mdg4)-56.3 die Verteilung der Geschlechtschromosomen beeinflußt. Da sowohl die Defizienz des gesamten mod(mdg4)-Locus Df(3R)GC14 wie auch die partielle Defizienz Df(3R)6050, die das isoformspezifische Exon einschließt, rezessiv letal sind, wurden sie transheterozygot mit der EMS-Mutation Z3-5578 getestet. Diese trägt ein vorzeitiges Stopcodon *upstream* der potentiell für die Chromatinassoziation notwendigen FLYWCH-Domäne (W<sub>449</sub>Stop). In beiden untersuchten Genotypen, Z3-5578/Df(3R)GC14 und Df(3R)GC14/Z3-5578 (paternale bzw. maternale Einbringung des Allels), liegen die *nondisjunction*-Raten bei knapp 50%, d.h. es entstehen gleich häufig Spermatiden mit einem wie mit der falschen Anzahl Geschlechtschromosomen (null oder zwei). Bei der Kombination von Z3-5578 und der partiellen mod(mdg4)-Defizienz Df(3R)6050 liegt die Rate bei 35%. Dies entspricht in etwa den Ergebnissen von Thomas *et al.* (2005; 37% bzw. 41% für Z3-Allel/Df(3R)T16). Eine weitere Kontrolle sind die Kreuzungen, die mit den heterozygoten chromosomalen Rearrangements durchgeführt wurden. Bei allen drei Experimenten liegen die *nondisjunction*-Raten mit ca. 0,1% auf Wildtypniveau.

Dann wurden die chromosomalen Rearrangements im homozygoten Zustand analysiert. Während die Translokation eine geringe partielle Rettung des *nondisjunction*-Phänotyps (30%) zeigt, werden in den Inversionen die Geschlechtschromosomen nur zu 12 bzw. 4% falsch verteilt. Auffallend ist dabei, daß von der Translokation zur großen Inversion In(3R)89C,mod(mdg4) (12,0%) zur kleinen Inversion In(3R)mod(mdg4),94C (4,1%) auch die *nondisjunction*-Rate abnimmt, was mit der mRNA-Menge von mod(mdg4)-56.3 nach den RT-PCRs korreliert.

Anschließend wurde die Kombination Z3-5578 mit heterozygoter Translokation (16,8%) bzw. heterozygoter Inversion (5,1%) getestet. Die *nondisjunction*-Raten dieser Genotypen liegen unter denen der korrespondierenden homozygoten Rearrangements. Eine Erklärung hierfür ist, daß bei *Drosophila* die homologen Chromosomen in der Zelle gepaart vorliegen,

und sich im Falle von T(2;3)26A, mod(mdg4) / Z3-5578 der strukturell intakte Locus auf dem Z3-5578-Chromosom und die beiden Teile des mod(mdg4)-Locus auf den Translokationschromosomen am Tranlokationskreuz (siehe Abb. 3.20 A) in größerer Nähe zueinander befinden, als das in der homozygoten Translokation der Fall ist. Das gleiche gilt für In(3R)89C, mod(mdg4) / Z3-5578 an der Basis der Schleife.

Die hitzeschock-induzierte Expression einer transgencodierten mod(mdg4)-56.3-EGFPcDNA im Hintergrund der homozygoten Translokation T(2;3)26A,mod(mdg4) (Transgene wurden zuvor auf Translokationschromosomen rekombiniert; Hitzeschocks täglich 1h, 37°C während der Embryonalentwicklung) führte zu einer erheblichen Reduktion der *nondisjunction*-Rate, wenn auch keine vollständige Rettung erreicht werden konnte (8,8% NDJ für Transgen auf dem 2. Chromosom, 11,6% für drittchromosomales Transgen). Die Resultate dieser Experimente stehen im Widerspruch zu den Ergebnissen von Thomas *et al.* (2006), die mittels hitzeschock-induzierter Expression der gleichen Transgen-cDNAs eine vollständige Rettung des *nondisjunction*-Phänotyps in verschiedenen Genotypen erreichten. Ein möglicher Grund für die Diskrepanz kann in abweichenden Protokollen der Hitzeschockgabe liegen. Protein-Turnover, also der Abbau des Mod(mdg4)-56.3-EGFP, kann als Grund für die im Vergleich höheren NDJ-Raten zwar nicht ausgeschlossen werden, ist aber unwahrscheinlich. Eine zeitaufgelöste Analyse der Kreuzung zeigt, daß die *nondisjunction*-Raten unter früh und spät schlüpfenden Tiere annähernd gleich sind (tendenziell sogar abnehmend).

Mit den durchgeführten Experimenten konnte belegt werden, daß die Isoform mod(mdg4)-56.3 für die korrekte Verteilung der Geschlechtschromosomen während der männlichen Meiose I essentiell ist – eine *nonsense*-Mutation im ORF der Isoform führt zu einer unkontrollierten, zufälligen Verteilung, während eine transgene Expression die *nondisjunction*-Rate senkt. Zweitens wurde nachgewiesen, daß der NDJ-Phänotyp rezessiv ist. Die heterozygoten Chromosomenmutationen bilden ausreichende Mengen der Isoform, sodaß der Phänotyp nicht auftritt. Drittens konnte gezeigt werden, daß in den homozygoten chromosomalen Rearrangements, in denen der mod(mdg4)-Locus auf zwei Orte im Genom verteilt ist, trotzdem physiologische Mengen der Isoform mod(mdg4)-56.3 gebildet werden, die den NDJ-Phänotyp teilweise retten. Die homozygoten Chromosomenmutationen weisen dabei unterschiedliche NDJ-Raten auf, die mit den mRNA-Mengen von mod(mdg4)-56.3 und mit der "Größe" der jeweiligen Mutation korrelieren. Je größer die Distanz zwischen den codierenden Bereichen (1,4Mb  $\rightarrow$  4,9Mb  $\rightarrow$  anderes Chromosom), desto höher die NDJ-Rate. Der nondisjunction-Phänotyp, dessen Ausprägung von der Expression der Isoform mod(mdg4)-56.3 abhängt, wird in der Translokation T(2;3)26A, mod(mdg4) partiell gerettet. Dies eröffnet die Möglichkeit, den Prozess des trans-Spleißens in vivo ohne Verwendung von Transgenen zu analysieren. Die homozygote Translokation T(2;3)26A, mod(mdg4) weist eine nondisjunction-Rate von 30% auf, welche sich sowohl von den Raten der Null-Allele (>35%) wie auch des Wildtyps und den kleineren chromosomalen Rearrangements unterscheidet. Diese Besonderheit der T(2;3)-Translokation sollte es ermöglichen, positive und negative Effektoren des trans-Spleißprozesses zu identifizieren. Dazu wurden bekannte Spleißfaktormutationen mit der Translokation rekombiniert (Mount und Salz, 2000; Furuyama und Bruzik, 2002). Da alle Mutationen, für die Linien erhalten wurden, rezessiv letal sind, können lediglich dominante bzw. Haploinsuffizienzeffekte auf den trans-Spleißprozeß untersucht werden.

Alle Mutationen, die mit T(2;3)26A, mod(mdg4) rekombiniert werden konnten, wurden gekreuzt, um Männchen zu erhalten, die das YB<sup>S</sup> y<sup>+</sup>-Chromosom enthielten, homozygot für T(2;3)26A, mod(mdg4) und heterozygot für die Spleißfaktormutationen (maternal eingebracht) waren. Diese Tiere wurden mit Jungfrauen der oben erwähnten w<sup>+</sup> y<sup>1</sup>-markierten Referenzlinie (a-31) gekreuzt. Für die Mutation  $B52^{s2249}$  wurden die Effekte der maternalen und paternalen Einbringung des Allels in die zu untersuchenden Männchen getestet (Tab. 3.21, 1. und 2. Zeile).

**Tabelle 3.21** (nächste Seite) Analyse der Geschlechtschromosomen-*nondisjunction* (NDJ) in homozygoter T(2;3)26A,mod(mdg4) und heterozygoter Spleißfaktormutation. Weibchen mit  $w^+ y^l$ -markierten X-Chromosomen (a-31) wurden mit  $B^S y^+$  (Bar-Stone)-markierten Y-Chromosomen, der homozygoten Translokation und der in Spalte1 angegebenen Spleißfaktormutation gekreuzt. Die Konstellation der Geschlechtschromosomen in den Spermien wurde aus Geschlecht und Phänotyp der F1-Tiere geschlossen. Der NDJ-Anteil wurde als Division der Summe der X0-Männchen und XXY-Weibchen durch die Gesamtzahl der F1-Tiere (n) berechnet.

| Genotyp der gekreuzten                 | Spermienklasse |      |     |     |      | 0%   |
|----------------------------------------|----------------|------|-----|-----|------|------|
| Männchen                               | v              | v    | vv  | 0   | n    |      |
| (paternales/maternales Allel)          | Λ              | 1    | ΛΙ  | 0   |      | ΠDJ  |
| $T(2;3) B52^{s2249} / T(2;3)$          | 290            | 242  | 167 | 74  | 773  | 31,2 |
| $T(2;3) / T(2;3) B52^{s2249}$          | 634            | 485  | 338 | 244 | 1701 | 34,2 |
| T(2;3) / T(2;3) Prp19 <sup>07838</sup> | 716            | 612  | 313 | 325 | 1966 | 32,5 |
| $T(2;3) \ / \ T(2;3) \ noi^{j3E}$      | 1293           | 1068 | 711 | 531 | 3603 | 34,5 |

| T(2;3) / T(2;3) CG10689 <sup>BG01776</sup> | 1853 | 1491 | 999 | 891 | 5234 | <u>36,1</u> |
|--------------------------------------------|------|------|-----|-----|------|-------------|
| $T(2;3) / T(2;3) tra^{l}$                  | 821  | 639  | 327 | 382 | 2169 | 32,7        |
| $T(2;3) / T(2;3) heph^2$                   | 402  | 274  | 167 | 149 | 992  | 31,8        |
| $T(2;3) / T(2;3) heph^{03429}$             | 577  | 475  | 336 | 291 | 1679 | <u>37,3</u> |

Die nondisjunction-Raten in den meisten Kreuzungen sind gegenüber der homozygoten Translokation moderat erhöht. Darum wurde ein Minimum von 35% festgelegt (entspricht Df(3R)6050/Z3-5578). Die Spleißfaktormutationen  $CG10689^{BG01776}$  und  $heph^{03429}$  zeigen eine erhöhte nondisjunction gegenüber der Translokation ohne Spleißfaktormutation. Da die Abweichungen (36,1% : 30,0% bzw. 37,3% : 30,0%) gering sind und um herauszufinden, ob sie das Ergebnis natürlicher Varianz sind, die bei Kreuzungsergebnissen auftritt, wurden die Ergebnisse der Auszählung statistisch überprüft. Dazu wurde der t-Test für binominal verteilte Gesamtheiten angewandt (siehe 2.3.2). Der Fisher-Irwin-Test konnte bei so großen Kreuzungsumfängen aus technischen Gründen nicht angewendet werden.<sup>119</sup> Der berechnete p-Wert gibt dabei die Wahrscheinlichkeit an, ob eine Korrelation zwischen Mutation und Phänotyp besteht, d.h. mit einer Wahrscheinlichkeit von z.B. p=0,01 sind die ermittelten NDJ-Werte Produkte natürlicher Varianz in der Kreuzung. Der Test der Translokation mit CG10689<sup>BG01776</sup> (RNA-Helicase) gegenüber der Translokation ohne Mutation ergab  $p=3,5\cdot10^{-22}$ . Für die Translokation mit *heph*<sup>03429</sup> (*P*-Insertion in konstitutives Exon von *heph*; Heph-Protein bindet an den Polypyrimidintrakt in Introns von prä-mRNAs) wurden  $p=2,1\cdot10^{-11}$ ermittelt. Aufgrund der niedrigen p-Werte können die Ergebnisse als signifikant angesehen werden.

Die Einbringung der Spleißfaktormutation von maternaler oder paternaler Seite in die zu untersuchenden Männchen kann Einfluß auf das Ergebnis der Kreuzung haben, wie die unterschiedlichen Werte für das Allel  $B52^{s2249}$  zeigen (erste und zweite Zeile in Tab. 3.21). Obwohl die Unterschiede beim Umfang der durchgeführten Kreuzungen nicht signifikant waren (Fisher-Irwin-Test: p<0,15; TbvG: p<0,041), sind sie ein Hinweis auf eine nur bedingte Vergleichbarkeit der Effekte bei maternaler bzw. paternaler Vererbung der Mutation.

<sup>&</sup>lt;sup>19</sup> Die Größe der Zwischenergebnisse überstieg  $1 \times 10^{307}$  bei n(ges)>2700 und damit die Möglichkeiten zur Berechnung, die mir im Rahmen dieser Arbeit und privat zur Verfügung standen. n(ges) meint hier die addierten Kreuzungsumfänge von n=2569 für T(2;3) und n=... (siehe Tab. 3.21) für T(2;3)/T(2;3)-Spleißfaktormutation.

# 4. Diskussion

Der Genlocus *mod(mdg4)* in *Drosophila melanogaster* zeichnet sich durch eine besondere Genstruktur aus. Von ihm werden, durch komplexe Regulationsmechanismen gesteuert, mehr als 30 Proteinisoformen gebildet, die wichtige Funktionen im Chromatin haben.

Im Rahmen der vorliegenden Dissertation konnte ein besseres Verständnis der Expressionsregulation dieses Locus durch multiple intragenische Promotoren sowie zur funktionellen Differenzierung der Mod(mdg4)-Proteinisoformen erarbeitet werden. Für die Isoform Mod(mdg4)-64.2 konnte ein Knockout etabliert und Experimente zur Funktionsaufklärung durchgeführt werden. Zudem konnte ein *in vivo*-Testsystem für den Prozeß des *trans*-Spleißens etabliert werden – ein Vorgang, bei dem Exons von zwei verschiedenen Primärtranskripten verbunden werden und der essentiell für die Funktion von *mod(mdg4)* ist, da alle bisher identifizierten Isoformen des Locus durch diesen Prozeß gebildet werden. Darüber hinaus konnte die funktionelle Konservierung des *trans*-Spleißvorgangs zwischen den entfernt verwandten Arten *Drosophila melanogaster* und *D. virilis* nachgewiesen werden.

#### Regulation des mod(mdg4)-Locus

Ein Ziel der vorliegenden Arbeit war es, einen besseren Einblick in die Regulation des Locus *modifier of mdg4* zu erhalten. Die Struktur des Locus ist sehr komplex: den 5'Bereich bilden vier gemeinsame Exons (1-4), die in jeder reifen mod(mdg4)-mRNA enthalten sind. Daran schließen sich 31 verschiedene Exons 5 (bzw. 5 und 6) an, die spezifisch für die Isoformen sind und die die C-Termini der Mod(mdg4)-Proteinisoformen codieren. Neun dieser isoformspezifischen Exons werden vom antiparallelen DNA-Strang codiert (Dorn *et al.*, 2001; Dorn und Krauss, 2003 und 2004; Labrador und Corces, 2003). Da die RNA Polymerase II unter normalen Umständen<sup>120</sup> nicht in der Lage ist, während der Transkription auf den antiparallelen DNA-Strang zu wechseln, legt bereits die Genstruktur von mod(mdg4) das Vorhandensein intragenischer Promotoren nahe.

Im Rahmen dieser Arbeit sollten diese Promotoren lokalisiert werden. Durch Remobilisierung der *P*-Elemente  $P\{RS5\}5$ -HA-122 und  $P\{KG\}08515$  wurden unterschiedlich große Deletionen im spezifischen Bereich des Gens erhalten (siehe Abb. 3.1), deren Untersuchung auf differentielle Expression der deletionsflankierenden mod(mdg4)-Isoformen

<sup>&</sup>lt;sup>20</sup> Im Gegensatz zu z.B. T7 RNA Polymerase, die auch größere Läsionen in der DNA-Matrize überwinden kann (Rong *et al.*, 1998), wurde für RNA Pol II *template switching* nur unter sehr speziellen Bedingungen wie Hepatitis D-Infektion (RNA-Synthese von einer RNA-Matrize; Chang und Taylor, 2002) und Infektion mit linearer Retrovirus-<u>D</u>NA ohne 3'LTR (*end-to-end template switching*; Kandel und Nudler, 2002) nachgewiesen.

zur Identifizierung von acht intragenischen Promotoren führte (Promotoren #4 bis #11; siehe Tab. 3.3). Zwei weitere intragenische Promotoren (Promotoren #2 und #3) konnten mit Hilfe von *D. virilis*-Transgenen identifiziert werden. Eine graphische Übersicht zu den Promotoren im *mod(mdg4)*-Locus ist in Abbildung 4.1 gegeben (geknickte Pfeile an der kb-Skala).

Die hohe Anzahl intragenischer Promotoren – nur auf Basis der Genstruktur sind fünf intragenische Promotoren das Minimum; experimentell wurden zehn gefunden – deutet darauf hin, daß sie eine wichtige Rolle bei der Regulation der Genaktivität von *mod(mdg4)* spielen. Die Promotoren innerhalb der Transkriptionseinheiten (z.B. #3, #4 und #11; Tab. 3.3) dienen nicht der Verstärkung der Expression (Tsuda *et al.*, 2000), sondern sie aktivieren die Transkription in zusätzlichen Geweben, z.B. in den männlichen akzessorischen Drüsen (Promotor #10, siehe Abb. 3.5 und Anhang A2.2).

Neben der räumlichen Regulation ist die *mod(mdg4)*-Genaktivität durch die intragenischen Promotoren auch zeitlich reguliert (*developmental timecourse*; siehe Anhang A2.2; Arbeitman *et al.*, 2002; Costello *et al.*, 2008). Allgemein ist zu erkennen, daß alle analysierten *mod(mdg4)*-Isoformen in Embryo und Puppe hochreguliert sind. Bei genauerer Betrachtung zeigen sich Unterschiede zwischen Isoformen in verschiedenen Transkriptionseinheiten, vor allem in den Larvenstadien, in der Puppe kurz vor dem Schlüpfen und geschlechtsspezifische Abweichungen in adulten Fliegen. Die intragenischen Promotoren erlauben also eine räumlich und zeitlich differenzierte Transkription.

In Experimenten mit mod(mdg4)-Transgenen aus *Drosophila virilis* konnte gezeigt werden, daß selbst die Isoform mod(mdg4)-64.2, deren spezifisches Exon am weitesten proximal codiert ist, mittels *trans*-Spleißen synthetisiert wird und daß das isoformspezifische Exon von einem separaten Promotor transkribiert wird (Kapitel 3.2.3). Durch Austausch der Promotorsequenz vor dem spezifischen Exon sank die mRNA-Menge von Dvi-mod(mdg4)-h64.2 um 97% (siehe Tab. 3.18). In einem anderen Transgen wurde die Orientierung des isoformspezifischen Exons und der zwei folgenden (mod(mdg4)-60.1 und -53.5) inklusive der putativen Promotorsequenz umgekehrt ( $P(w^+ Dvi 9,5kb spin \rightarrow \leftarrow)$ , siehe Abb. 3.18), was eine Bildung der Isoform-mRNA aus einer einzigen prä-mRNA des Transgens mittels *cis*-Spleißen unmöglich macht. Die ermittelte Dvi-mod(mdg4)-h64.2-mRNA-Konzentration aus diesem Transgen beträgt 35-45% verglichen mit der Referenz (Transgen mit *D. virilis*-Wildtypsequenz)<sup>121</sup>. Die Expression der Isoform aus diesem Konstrukt und die sehr starke Reduktion der mRNA-Menge im Fall des mutierten Promotors weisen auf eine eigenständige Transkriptionseinheit hin. Die Reifung der Dvi-mod(mdg4)-h64.2-mRNA durch intramole-

<sup>&</sup>lt;sup>21</sup> Die umgekehrte Orientierung der isoformspezifischen Exons wurde durch ungerichtete Ligation eines *Xba*I-Fragments erreicht, in welchem möglicherweise <u>nicht</u> der komplette Promotor und/oder regulatorische Sequenzen enthalten waren. Dies würde die geringere *Dvi-mod(mdg4)*-h64.2-mRNA-Menge erklären.

kulares *cis*-Spleißen aus einem durchgehenden Primärtranskript kann anhand dieser experimentellen Ergebnisse zwar nicht ausgeschlossen werden, nimmt man die RT-qPCR-Daten als Referenz, trägt *cis*-Spleißen aber maximal 3% zur mRNA-Synthese von *Dvi-mod(mdg4)*-h64.2 bei (siehe Tabelle 3.18).

Die Promotoren #2 und #3 wurden im Rahmen der Arbeit anhand von *D. virilis*-Transgenen untersucht. Obwohl sehr gut speziesdiskriminierende Primer verwendet wurden<sup>122</sup>, kann eine Beeinflussung der Ergebnisse durch den  $mod(mdg4)^+$ -Hintergund nicht ganz ausgeschlossen werden (chimäre mRNAs, siehe 3.2.2). Die Funktion der identifizierten Promotoren #2 und #3 im endogenen mod(md4)-Locus konnte nicht experimentell untersucht werden, doch sind die typischen Promotorsequenzelemente wie CAAT-Boxen und TATA-Box zwischen den Arten konserviert, sodaß die Funktion der Promotoren wahrscheinlich auch erhalten blieb.

Die Anzahl der intragenischen Promotoren und die zum Teil verschachtelten Transkriptionseinheiten widerlegen die von Labrador *et al.* (2001) postulierten zwei *mod(mdg4)*-Primärtranskripte, (1) der Locus vom Promotor des gemeinsamen Teils aus "vorwärts" und (2) der Locus zum Teil, ausgehend vom Promotor vor dem isoformspezifischen Exon von *mod(mdg4)*-67.2, antiparallel. Zudem zeigt die Aufarbeitung von Rohdaten quantitativer Microarrays verschiedener *Drosophila melanogaster*-Gewebe (Chintapalli *et al.*, 2007; Abb. 3.5; Anhang A2.2), daß Isoformen, von beiden antiparallelen DNA-Strängen codiert, in den gleichen Geweben hoch exprimiert sind, was im von Labrador *et al.* vorgeschlagenen Modell zu doppelsträngiger RNA (bestehend aus den Primärtranskripten) und im weiteren zur Bildung von siRNAs führen würde (Okamura *et al.*, 2008), die für *mod(mdg4)* nicht nachgewiesen wurden (Ghildiyal *et al.*, 2008).

Der Transkription nachgeschaltet ist die Generierung reifer *mod(mdg4)*-mRNAs durch alternatives *trans*-Spleißen. Dabei wird aus den prä-mRNAs mit mehreren isoformspezifischen Exons ein Spleißakzeptor selektiert und mit dem Spleißdonor (gemeinsame Exons) verknüpft. Neben der transkriptionellen Kontrolle durch die verschiedenen intragenischen Promotoren kann die Konzentration der reifen *mod(mdg4)*-mRNAs auch durch die relative Stärke der verschiedenen *trans*-Spleißakzeptoren in den prä-mRNAs bestimmt werden. Diese *splice site strength* (Graveley *et al.*, 1998; Fahey und Higgins, 2007) ist zwar intrinsisch bezogen auf die Sequenzebene, kann jedoch durch die Bindung von sequenzspezifischen Spleißfaktoren an exonische/intronische *splice enhancer* (ESE/ISE) bzw. *silencer* (ESS/ISS) beeinflußt werden (Ito *et al.*, 2001; Scamborova *et al.*, 2004; Sironi *et al.*, 2004; Kiesler *et al.*, 2005; Lev-Maor *et al.*, 2007; Wang und Burge, 2008). Caudevilla *et al.* (2001) identifizierten einen *exonic* 

<sup>&</sup>lt;sup>22</sup> 500- bzw. 16.000-fach schlechtere Amplifikation der entsprechenden Isoform der "falschen" Art bei angenommener PCR-Effizienz von 100%; in RT-qPCRs ergaben sich  $\Delta\Delta$ Ct-Werte von 9 bzw. 14

*splice enhancer*, der das *trans*-Spleißen zweier Carnitin-Octanoyltransferase-prä-mRNAs in *Rattus norvegicus* positiv reguliert. Das verantwortliche DNA-Motiv GAAGAAG ist auch in zwei isoformspezifischen Exons von *D. melanogaster* und *D. virilis* konserviert, neben mod(mdg4)-64.2 auch in mod(mdg4)-53.1. In beiden Spezies befindet es sich an ähnlichen Positionen im Exon 5; die mit einem *D. virilis-mod(mdg4)*-h64.2-Transgen gewonnenen Erkenntnisse sollten sich also auf *D. melanogaster* übertragen lassen. Die Reduktion der Isoform-mRNA-Konzentration um 70% im Vergleich nichtmutierter mit GAAGAAG $\rightarrow$ A<sub>7</sub>-mutierter ESE-Sequenz (Real-time RT-qPCR, siehe Tab. 3.19) belegt die Funktionalität des Motivs als *exonic trans-splice enhancer*. Vergleichbare Ergebnisse wurden auch von Caudevilla *et al.* erhalten (50-60% Reduktion).

Das alternative *trans*-Spleißen und die Modulation der Spleißakzeptorstärke, die am Beispiel des ESE der Isoform Dvi-mod(mdg4)-h64.2 nachgewiesen werden konnte, stellt nach den multiplen intragenischen Promotoren die zweite Stufe der Expressionsregulation am mod(mdg4)-Locus dar.

Das trans-Spleißen ist essentiell für die Aktivität des mod(mdg4)-Locus. Um den trans-Spleißprozeß und damit überhaupt die Synthese reifer mod(mdg4)-mRNAs zu ermöglichen, ist als trans-Spleißpartner der Primärtranskripte von den intragenischen Promotoren eine prämRNA erforderlich, die die gemeinsamen Exons 1-4 enthält. Um diese prä-mRNA transspleißkompetent zu generieren, ist ein Transkriptionsstopsignal downstream von Exon 4 notwendig<sup>123</sup>. Einen Hinweis auf die Existenz des Transkriptionsstops bietet die molekulare Analyse der P{RS5}5-HA-1224-Revertante Rev31 (15kb-Deletion ab Position 6.502; siehe Abb. 3.1). In dieser Revertante wird wahrscheinlich der gesamte Locus als eine einzige prä-mRNA vom starken Promotor des gemeinsamen Teils ausgehend transkribiert, sodaß reife mod(mdg4)-mRNAs durch intramolekulares, also cis-Spleißen gebildet werden. Aufgrund der dreidimensionalen Bewegungsmöglichkeiten von Spleißdonor und -akzeptoren in einem Molekül (Pasman und Garcia-Blanco, 1996; Spleißreaktion ist infolge physikalischer Verbindung, wenn auch lang und flexibel, von Spleißdonor und -akzeptor keine Reaktion zweiter Ordnung mehr) ist eine höhere Konzentration derjenigen Isoform-mRNAs zu erwarten, deren spezifischen Exons in Rev31 nicht deletiert sind. Tatsächlich ist die Expression von z.B. mod(mdg4)-56.3 in der homozygoten Revertante Rev31 auf das ca. Dreifache erhöht. Gleichzeitig konnten in transheterozygoten Tieren von Rev31 mit loss of function-Allelen des gemeinsamen Teils von mod(mdg4) keine Isoform-mRNAs nachgewiesen werden, deren isoformspezifisches Exon im Bereich der Deletion von Rev31 lag (siehe Abb. 3.15). Obwohl

<sup>&</sup>lt;sup>23</sup> vgl. mod(mdg4) (Tab. 3.15, Isoformen in ähnlicher Kopienzahl wie housekeeping-Gen rp49) mit z.B. Puttaraju et al. (1999), wo trans-Spleißen als Konkurrenzreaktion zum cis-Spleißen an einem "normalen" Intron, d.h. durchgehendem Transkript zu <<1% trans-gespleißter mRNA führt (siehe auch Liu et al., 2002)</p>

mittels nested RT-PCRs kein interchromosomales trans-Spleißen zwischen den Allelen nachweisbar war, könnte es doch in geringem Umfang stattfinden, da der trans-Spleißprozeß nicht notwendigerweise Outrons erfordert, sondern auch an Introns beobachtet wurde (exon repetition: Dixon et al., 2005 und 2007; Finta und Zaphiropoulos, 2002). Bei langen Introns in Rev31 liegen zwischen Exon 4 und dem nächsten Spleißakzeptor 1,5kb - oder wenn die Synthese der 3'Spleißposition (Spleißakzeptor) verzögert wird z.B. durch RNA Pol II pausing sites (Herbert et al., 2006; von Hippel, 2006) kann trans-Spleißen auch durch "Einspleißen" eines trans-Spleißpartners in eine prä-mRNA zwischen zwei intakte cis-Spleißsites stattfinden (Takahara et al., 2005). Dies wäre eine Erklärung für die bei transheterozygoten Linien  $(\text{Rev31/mod}(mdg4)^{neo129 R32}, \text{Rev31/mod}(mdg4)^{02})$  beobachteten Phänotypen, die in ihrer Ausprägung lediglich zum Teil denen der homozygoten Revertante Rev31 entsprechen. So wird einerseits die rezessive Letalität von  $mod(mdg4)^{neo129}$ ,  $mod(mdg4)^{neo129 R32}$ und mod(mdg4)<sup>02</sup> in den Rev31-transheterozygoten Tieren vollständig gerettet, andererseits sind die transheterozygoten F1-Weibchen jedoch steril (vgl. Tab. 3.9 und 3.14; Sterilität z.B. auch in homozygoter Rev31 und homozygoten mod(mdg4)<sup>neo129</sup>-Escaper-Tieren). Die Position des vermuteten Transkriptionsstopsignals des gemeinsamen Teils (Exons 1-4) konnte zwischen den Positionen 6.502, dem proximalen Ende der Deletion in Revertante Rev31, und 7.104 (5'Ende des spezifischen Exons von mod(mdg4)-64.2) eingegrenzt werden.

### Phänotypen der mod(mdg4)-Mutationen

Die zur Aufklärung der Locusregulation etablierten Revertanten deletieren isoformspezifische Exons bzw. deren Promotoren führen zum Verlust bzw. zu einer verringerten Expression der betroffenen Isoformen (in verschachtelten Transkriptionseinheiten bei Deletion des proximalen aber nicht des nachfolgenden Promotors; siehe Abb. 3.2B). Sofern die Funktionen der *mod(mdg4)*-Isoformen nicht redundant sind, sollten die bei verschiedenen Revertanten auftretenden Phänotypen unterschiedlich sein und ihre Untersuchung Rückschlüsse zulassen auf die Funktion der betroffenen Isoformen.

Die meisten der bisher bekannten *mod(mdg4)*-Funktionen konnten anhand von Mutationen des gemeinsamen Teils identifiziert werden. Diese Mutationen sind im Larven- bis Puppenstadium rezessiv letal, sodaß lediglich dominante Effekte, wie der *Enhancer*-Effekt auf die Positionseffektvariegation (PEV; Dorn *et al.*, 1993b), oder Phänotypen an homozygoten *Escaper*-Tieren (homöotische Transformation, weibl. Sterilität; Büchner *et al.*, 2000) bzw. Larven (Gorczyca *et al.*, 1999) beobachtet werden konnten. Aus den pleiotropen Effekten der

Mutationen des gemeinsamen Teils lassen sich keinerlei Rückschlüsse auf die Funktion einzelner mod(mdg4)-Isoformen ziehen. Andererseits ermöglichen Mutationen, die ein isoformspezifisches Exon betreffen, funktionelle Untersuchungen ebendieser Isoform. Bis heute sind nur zwei der 31 mod(mdg4)-Isoformen funktionell analysiert worden: mod(mdg4)-67.2 als essentieller Teil von gypsy-Chromatinisolatoren (Georgiev und Gerasimova, 1989; Gerasimova *et al.*, 1995, 1998, 2007) und mod(mdg4)-56.3, das eine Rolle bei der Paarung der homologen Chromosomen während der Pro- und Prometaphase der männlichen Meiose I spielt (Surrogat für synaptonemalen Komplex; Thomas *et al.*, 2006; McKee *et al.*, 2007). In beiden Fällen gelang die Aufklärung der Funktion durch isoformspezifische Mutationen, bei mod(mdg4)-67.2 in Form einer *stalker*-Elementinsertion in Exon 5 und im Fall von mod(mdg4)-56.3 durch eine EMS-induzierte Mutation (W<sub>449</sub> $\rightarrow$ Stop), die ein vorzeitiges Stopcodon entstehen ließ.

Zur Identifizierung der intragenischen Promotoren wurden für die etablierten Revertanten die exakten Deletionsbruchpunkte kartiert und Expressionsprofile erstellt (Abb. 3.2, 3.3; Tab 3.2), d.h. es ist für jede Mutante bekannt, welche mod(mdg4)-Isoformen in welchem Umfang (semiquantitativ) exprimiert werden. Auftretende Phänotypen lassen sich so dem Ausfall bzw. der verminderten Expression weniger, im Idealfall einer Isoform zuordnen. Sollte eine funktionelle Redundanz zwischen Isoformen vorliegen, so betrifft sie nicht die untersuchten Phänotypen oder die Redundanz besteht zwischen Isoformen, deren spezifische Exons räumlich unmittelbar benachbart liegen und in den untersuchten Mutanten jeweils beide deletiert wurden. Jedoch wäre eine funktionelle Komplementation am ehesten zwischen den phylogenetisch am nächsten verwandten Isoformen denkbar, die in mod(mdg4) aber nicht benachbart codiert sind und daher nicht gemeinsam in den untersuchten Revertanten deletiert sind (vgl. Anhang A2.6; Krauss und Dorn, 2004)<sup>124</sup>. Außerdem weisen alle bisher untersuchten Mod(md4)-Proteinisoformen distinkte, nicht-überlappende Bindemuster an Polytänchromosomen auf (Büchner et al., 2000; Gabler, pers. Mitteilung). Die Zuordnung von Phänotypen zum Ausfall bestimmter Isoformen sowie die spezifische Verteilung der Isoformen an Chromosomen lassen die Schlußfolgerung zu, daß jede mod(mdg4)-Isoform eine spezifische physiologische Funktion hat.

Die für *mod(mdg4)*-67.2 und -56.3 beschriebenen Phänotypen konnten an Revertanten nachgewiesen werden, deren Deletion entweder das spezifische Exon der entsprechenden Isoform umfaßt oder den Promotor einschließt, von dem die Transkription des betreffenden isoformspezifischen Exons ausgeht (Gabler, pers. Mitteilung; Volkmar *et al.*, in Präp.).

<sup>&</sup>lt;sup>24</sup> Ausnahme: Die spezif. Exons von mod(mdg4)-56.3 und -54.6 liegen benachbart und beide Isoformen sind phylogenetisch nahe verwandt (siehe Abb. A5). Allerdings wird der *non-disjunction*-Phänotyp eindeutig von mod(mdg4)-56.3 hervorgerufen wie Komplementationen mit transgencodierter mod(mdg4)-56.3-cDNA belegen (siehe Tab. 3.20; Thomas *et al.*, 2006).

113

Daneben konnten sechs neue, bisher nicht beschriebene Phänotypen für mod(mdg4)beobachtet und auf wenige Isoformen eingegrenzt werden (siehe Abbildung 4.1). Diese Phänotypen treten alle rezessiv auf. Revertanten, die die spezifischen Exons der Isoformen mod(mdg4)-53.1 bis -54.7 bzw. deren Promotoren deletieren, zeigten eine stark eingeschränkte Bewegungskoordination (siehe 3.1.3.2): Die Tiere waren nicht in der Lage, sich aus dem Futter zu befreien und die Gefäßwand zu erklettern. Sie starben i.d.R. im/auf dem Futter. Von Gorczyca *et al.* (1999) wurde für eine *P*-Elementinsertion ins Exon 1 von mod(mdg4) in Larven eine fehlerhafte Innervierung von Muskeln durch Motorneuronen und eine veränderte Synapsenmorphologie beschrieben. Die beschriebene Mutation ist jedoch, wie alle *loss of function*-Mutationen im gemeinsamen Teil von mod(mdg4), larval-pupal letal, sodaß Effekte in Adulten nicht analysiert werden können. Nichtsdestoweniger könnten die Koordinationsstörungen in den homozygoten Revertanten das Ergebnis fehlerhafter Neuroanatomie/-physiologie sein, die evtl. auch Defekte der motorischen Endplatten umfassen.

Ein zweiter Phänotyp wurde in Anlehnung an Hall *et al.* (1980; *stuck, sk) stuck-like* benannt, ist allerdings von wesentlich stärkerer Ausprägung. Im Gegensatz zu *sk*, wo sich das Männchen nach der Kopulation zwar verzögert aber immer erfolgreich vom Weibchen lösen kann, bleibt die Verbindung bei *stuck-like* in der großen Mehrzahl der Fälle bis zum Tod erhalten (siehe Abb. 3.5). Die inneren und äußeren Genitalien beider Geschlechter sind morphologisch unauffällig. Schließt man subtile Deformationen der Genitalien<sup>125</sup> aus, die während der Kopulation zu einer untrennbaren Verbindung führen, könnte auch dieser Phänotyp auf Veränderungen in der Neuroanatomie/-physiologie zurückzuführen sein. Ein regulatorischer Effekt auf die Gene *stuck* bzw. *lingerer* durch den Ausfall einer/mehrerer *mod(mdg4)*-Isoformen ist unwahrscheinlich, da die beobachteten Effekte sehr viel stärker sind als die beschriebenen *sk*- bzw. *lig*-Phänotypen (Hall *et al.*, 1980; Yamamoto *et al.*, 1997; Kuniyoshi *et al.*, 2002) und *lig* nicht unter den durch Rev31 signifikant veränderten Genen ist.<sup>126</sup>

Als dritter neu erfaßter mod(mdg4)-Phänotyp tritt bei einigen Revertanten in Kombination mit dem YB<sup>S</sup>-Chromosom (Brosseau und Lindsley, 1958; Brosseau *et al.*, 1961) eine teilweise Reversion des dominanten *Bar-(of)-Stone*-Phänotyps auf (siehe Abb. 3.7). Da das YB<sup>S</sup>-Chromosom nicht molekular charakterisiert ist, kann keine immuncytologische oder molekularbiologische Methode (z.B. ChIP) angewendet werden, um zu prüfen, ob es sich hier um epigenetische Veränderung handelt. Interessant ist, daß der Ausfall oder die verminderte Expression von mod(mdg4) in diesem Fall epistatisch zu einer dominanten Mutation (B<sup>S</sup>) ist.

<sup>&</sup>lt;sup>25</sup> Morphologische Veränderungen könnten trotz größtmöglicher Sorgfalt bei der Durchführung der lichtmikroskopischen Untersuchungen übersehen worden sein.

<sup>&</sup>lt;sup>26</sup> Rev31 deletiert die spezifischen Exons der in Frage kommenden Isoformen. Expressionsanalyse mittels Affymetrix Dros\_Genome2-Array: *sk*-Phänotyp verursachendes Gen ist nicht kloniert, daher ist keine Aussage über Interaktionen möglich.

Der vierte beobachtete Phänotyp ist die verstärkte Ausbildung ektopischer Borsten auf dem Scutellum (siehe Tab. 3.8); er wurde nur bei homozygoten Tieren der Revertante Rev31 beobachtet. Da dieser Phänotyp auch bei dem verwendeten Referenzstamm  $w^{1118}_{iso}$  auftritt, wurden die Ergebnisse statistisch überprüft und es wurde für Weibchen eine signifikante Erhöhung des Anteils ektopischer Scutellarborsten festgestellt (Anzahl analysierter männlicher Tiere war zu gering für statistisch signifikantes Ergebnis).

Die unvollständige Ausbildung der posterioren Flügelquerader tritt ebenfalls bei Rev31 und geschlechtsabhängig mit unterschiedlicher Penetranz auf (siehe Tab. 3.8), kommt jedoch in der  $w^{1118}_{iso}$ -Referenz nicht vor. Dansereau *et al.* (2002) beschreiben für somatische Mutationen von *hephaestus* unter anderem Defekte der posterioren Flügelquerader. Der Mittelteil der Ader fehlt, während die Verbindungen zu den Longitudinaladern intakt sind, während bei Rev31 der mittlere Teil vorhanden ist aber die Verbindungen zu den Flügellängsadern fehlen (siehe Abb. 3.9). Die Expression von *hephaestus* ist in der homozygoten Revertante Rev31 unverändert, was gegen eine Interaktion spricht. Andererseits beeinflussen beide Gene Teile der Notch-Signalkaskade (vgl. Tab. 3.13), die u.a. die Entwicklung der Flügel (Dansereau *et al.*, 2002) und des peripheren sensorischen Nervensystems (siehe ektopische Borsten) steuert.

Der sechste neue Phänotyp wurde bei der immuncytologischen Untersuchung von Polytänchromosomen der Revertante Rev31 identifiziert. Die Telomere der Chromosomen wiesen eine verstärkte Erosion auf (siehe Abb. 3.10). Von M. Gabler (2003) wurde eine Assoziation von Mod(mdg4)-Proteinen an Telomere nachgewiesen. Der Ausfall einer oder mehrerer *mod(mdg4)*-Isoformen in Rev31 könnte, z.B. durch die Deregulation der Retrotransposons, aus denen die Telomere in *Drosophila* aufgebaut sind (Tab 3.11, Tab A2), zu einer verminderten Aufbaurate (Transposition der Retrotransposons an die Chromosomenenden, verringerte Transkription?) oder zu einem erhöhten Abtrag von Telomersequenz führen (Biessmann *et al.*, 1990a, b, 2005; Mason *et al.*, 2000; Frydrychova *et al.*, 2007).

Neben der Erfassung und Analyse neuer Phänotypen der *P*-Elementrevertanten sollte im Rahmen der Arbeit auch versucht werden, bekannte Phänotypen von Mutationen im gemeinsamen Teil des Locus einzelnen Isoformen oder Isoformgruppen zuzuordnen. Dies gelang für die homöotische Transformation des Abdominalsegments A5 in A4, die von Dorn *et al.* (1993b; Büchner *et al.*, 2000) in homozygoten  $mod(mdg4)^{neo129}$ -Escapern erstmals beschrieben wurde. Der Phänotyp konnte auf den Ausfall der Isoform mod(mdg4)-58.0 und/oder die reduzierte mRNA-Menge von mod(mdg4)-55.2 eingegrenzt werden, ist in der entsprechenden homozygoten Revertante JK14 jedoch etwas schwächer ausgeprägt als z.B. in  $mod(mdg4)^{neo129}$ -Escapern oder Rev31. Eine Verstärkung des Phänotyps durch den Ausfall weiterer Isoformen kann daher nicht ausgeschlossen werden. Eine immuncytologische Untersuchung der Speicheldrüsenpolytänchromosomen von Revertanten mit deletierter Isoform mod(mdg4)-58.0 ergab eine mögliche Bindestelle in der Nähe des *Ubx*-Locus (M. Gabler, pers. Mitteilung), ein weiteres Indiz für die mögliche Kausalität von Ausfall der mod(mdg4)-58.0/-55.2 und homöotischer Transformation.

Die rezessive Letalität von allen Mutanten des gemeinsamen Teils konnte auf die 13 am weitesten distal codierten Isoformen eingegrenzt werden (mod(mdg4)-52.2 bis -54.5). Diese Eingrenzung gelingt jedoch nur indirekt, da die proximalen 18 Isoformen auch einen Einfluß auf das Überleben der Tiere haben. Ihr Ausfall, wie in Revertante Rev31, führt zu starker Semiletalität. Vergleicht man die Komplementationsrate von Revertante 459 mit Df(3R)ED6050 (letal; 6/1061 F1-Tiere; keine Expression von mod(mdg4)-58.0 bis -54.5; für Annotierung siehe Abb. 3.1) mit transheterozygoten Rev31/Df(3R)ED6050-Tieren (Überlappung beider Deletionen umfaßt spezif. Exons von mod(mdg4)-58.0 bis -55.7), die normal lebensfähig und fertil sind, so kann die rezessive Letalität auf den Ausfall einer oder mehrerer Isoformen zwischen mod(mdg4)-52.2 und -54.5 eingegrenzt werden. <sup>127</sup>

Der dominante Enhancer of variegation-Phänotyp im Positionseffektvariegationssystem (PEV; Dorn et al., 1993a) konnte nicht auf eine bzw. eine Gruppe von mod(mdg4)-Isoformen eingegrenzt werden, obwohl Mutationen des spezifischen Teils getestet wurden, die in ihrer Kombination alle isoformspezifischen Exons abdecken. Eine mögliche Ursache, warum dieser Phänotyp nicht eingegrenzt werden konnte, ist ein dominant negativer oder haploinsuffizienter Effekt der Mutation des gemeinsamen Teils, während die Mutationen im spezifischen Teil des Locus in diesem Fall rezessiver Natur sind. Da der gemeinsame Teil von mod(mdg4) im Überschuß vorliegt (Büchner et al., 2000; Gabler et al., 2005) sollte eine heterozygote Deletion eines spezifischen Exons gut kompensiert werden können. Sinkt jedoch die Konzentration des gemeinsamen Teils um die Hälfte, ist eine verstärkte Konkurrenz der trans-Spleißakzeptoren um die verbliebenen prä-mRNAs zu erwarten. Wird infolgedessen eine Schwellenkonzentration unterschritten, tritt der PEV-Phänotyp auf. Das Vorhandensein von Schwellenkonzentrationen für *mod(mdg4)*-mRNAs legt z.B. die Analyse des *cut*<sup>6</sup>-Phänotyps nahe (mod(mdg4)-67.2; Gabler, pers. Mitteilung). Eine zweite mögliche Erklärung ist, daß für die Ausprägung des PEV-Phänotyps der Ausfall mehrerer mod(mdg4)-Isoformen notwendig ist, deren Kombination in den durchgeführten Analysen nicht getestet wurde.

Der Ausfall der 18 proximal codierten Isoformen in Rev31 führt zu weiblicher Sterilität, wie sie auch in *Escapern* von Mutationen des gemeinsamen Teils von *mod(mdg4)* gefunden wurde (Dorn *et al.*, 1993b; Gerasimova *et al.*, 1995). Zur Identifizierung der für die Sterilität verantwortlichen Isoformen wurden folgende Ergebnisse herangezogen: In der normal fertilen

<sup>&</sup>lt;sup>27</sup> Die Revertanten 439 und GG48 (siehe Abb. 3.1) bestätigen die mit Revertante 459 erhaltenen Ergebnisse.

Linie  $\Delta 13$  85c III d werden mod(mdg4)-64.2, -55.1 und -53.1 nicht mehr gebildet (siehe Abb. 3.13). Eine Deletion bzw. eingeschränkte Transkription der isoformspezifischen Exons zwischen mod(mdg4)-53.1 und -52.4 resultiert in weiblicher <u>Semi</u>sterilität (siehe 3.1.3.3). Schließlich sind transheterozygote Rev31/*Df*(3*R*)*ED6050*-Weibchen, in denen die Isoformen mod(md4)-58.0 bis -55.7 nicht gebildet werden, normal fertil. Die (vollständige) Sterilität wird also durch den Ausfall von mod(mdg4)-60.1, -53.5 oder einer Kombination mehrerer Isoformen hervorgerufen. Unklar bleibt, ob der Grund der Sterilität in strukturellen Abnormitäten der Ovarien begründet liegt, ob die Weibchen eventuell überwiegend unbefruchtete Eier legen oder ob es fehlende maternale RNAs sind, die die Embryonal-entwicklung verhindern.



Abbildung 4.1 In Mutationen des spezifischen Teils von *mod(mdg4)* beobachtete Phänotypen und Zuordnung der verantwortlichen Isoformen bzw. Isoformgruppen. durch Analyse der Revertanten die den entsprechenden Phänotyp ausprägen.

#### Isoform mod(mdg4)-64.2: Funktion und Knockout

Für die Isoform Mod(mdg4)-64.2 konnte von M. Gabler (2003) eine Assoziation mit den Telomeren von Polytänchromosomen aus Speicheldrüsen nachgewiesen werden. In den verwendeten Linien ist ( $w^{1118}_{iso}$ -Hintergrund) am Chromosomenarm 3L kein *HeT-A*-Element vorhanden (Abad *et al.*, 2004; Brückner, 2007 und pers. Mitteilung). Hier fehlte in den immuncytologischen Analysen auch ein Signal für Mod(mdg4)-64.2. Daher liegt der Schluß nahe, daß das Protein mit dem *HeT-A*-Retrotransposon assoziiert ist. Um dies zu prüfen, wurde eine Chromatinimmunopräzipitation in Kombination mit Filterhybridisierung (ChIP *on membrane*; siehe 3.1.6.2; Sambrook und Russell, 2001; Clark und Shen, 2006) durchgeführt. Es konnte eine Anreicherung von *HeT-A*-UTRs nachgewiesen werden (Abb. 3.11). In diesem Experiment konnten auch drei Bereiche in der cytologischen Region 26B2-5 reproduzierbar angereichert

werden. Die Bindung von Mod(mdg4)-64.2 an *HeT-A* sowie an genomische Bereiche könnte auf ein generelles Prinzip bei Mod(mdg4)-Proteinen hindeuten – die Bindung sowohl an (Retro-)Transposons wie auch an genomische Sequenzen. So wurde für Mod(mdg4)-67.2, neben *gypsy* auch die Assoziation mit endogenen *chromatin insulator sites* nachgewiesen (Georgiev und Gerasimova, 1989; Gerasimova *et al.*, 1995, 1998, 2007; Nègre et al., 2010).

Zunächst wurde Revertante Rev31 zur Untersuchung der Telomerassoziation von Mod(mdg4)-64.2 eingesetzt. Die Ergebnisse (siehe Abb. 3.10) ließen sich jedoch nicht dem Ausfall der Isoform mod(mdg4)-64.2 zuordnen (vgl. Abb. 3.1; 17 weitere Isoformen deletiert). Daher wurde mit Hilfe des "*Ends-in gene targeting*" (Xie und Golic; 2004) ein gezielter mod(mdg4)-64.2-*Knock out* generiert. Da diese Methode mit ihrer erfolgreichen Anwendung in der Arbeitsgruppe etabliert werden konnte, wurde im Material & Methoden-Kapitel 2.1.6 ausführlich auf ihre Durchführung sowie im Ergebniskapitel 3.1.6.1 und Anhang A2.3 auf kritische Punkte und angewendete Kontrollen eingegangen. Es wurde die Mutante  $\Delta 13$  85c V l erhalten, die ausschließlich die gewünschte Mutation, eine Deletion der Basen 7.081 bis 8.026 des mod(mdg4)-Locus trägt (locusinterne Skala). Desweiteren entstand eine zweite Mutante ( $\Delta 13$  85c III d), die neben mod(mdg4)-64.2 ebenfalls die spezifischen Exons von mod(mdg4)-55.1 und -53.1 deletiert, vermutlich durch exonucleolytischen Abbau während der Auflösung einer partiellen Duplikation die im Laufe der Mutagenese entsteht.

Um von mod(mdg4)-64.2 regulierte Zielgene zu identifizieren, wurde eine Transkriptomanalyse durchgeführt, die zwischen  $\Delta 13\ 85c\ V\ 1\ und\ w^{1118}{}_{iso}\ 733\ signifikant$  in ihrer Expression veränderte Gene ergab (763 Target-IDs;  $p\leq 0,05$ )<sup>128</sup>. Der spezifische *Knock out* von mod(mdg4)-64.2 beeinflußt die Transkription von Retrotransposons/Klasse I-Elementen, z.B. *opus, HeT-A, invader4* und -5 sowie 297, nicht jedoch von Klasse II-Elementen (DNA-Transposons). Eine Gesetzmäßigkeit, welche Retrotransposons positiv oder negativ in ihrer Transkription reguliert werden, oder ein DNA-Bindemotiv für die FLYWCH-Domäne (Beaster-Jones und Okkema, 2004; Nègre *et al.*, 2010) von Mod(mdg4)-64.2 ließen sich nicht ableiten. Zudem zeigt ein Vergleich von  $\Delta 13\ 85c\ V\ 1$ , Rev31 und GG295 (siehe Tabelle 3.11), daß wahrscheinlich mehrere Mod(mdg4)-Isoformen die Expression derselben Transposons beeinflussen; so aktiviert neben Mod(mdg4)-64.2 mindestens eine weitere Isoform (unter 18, die in Revertante Rev31 ausfallen) die Expression von *HeT-A* (vgl. Rev31 in Tab. 3.11). Interessant ist in diesem Zusammenhang auch, daß verstärkte Transkription von *HeT-A* in  $\Delta 13\ 85c\ V\ 1\ und\ Rev31\ nicht\ mit\ der\ Transposition\ an\ die\ Chromosomenenden\ bzw. Telomere$ 

<sup>&</sup>lt;sup>28</sup> Ein Signifikanzkriterium p $\leq$ 0,01 schlösse 403 Target-IDs ein. Die nicht überlappende Mutation GG295 wurde in diesem Fall als externe Negativkontrolle verwendet. Differentielle Expression:  $|\log_2$ Signaldifferenz $\geq$ 1, d.h.  $\leq$  halbe bzw.  $\geq$  doppelte Signalstärke.

korreliert (Biessmann et al., 1992; Abad und Villasante, 1999; Abad et al., 2004; Brunmeir et al., 2010). So zeigt zwar Rev31 eine Erosion von Telomersequenz (siehe Abb. 3.10),  $\Delta 13$  85c V l jedoch nicht. Hierfür sind drei Erklärungen denkbar. (1) In Rev31 ist gegenüber  $\Delta 13.85$ c V l zusätzlich eine Komponente des Transpositionskomplexes dereguliert. Andererseits wäre denkbar, daß (2) aufgrund der starken *HeT-A*-Überexpression in Rev31 die reverse Transkriptase, die nicht von HeT-A codiert wird, aber für dessen Transposition notwendig ist und von anderen Elementen rekrutiert werden muß, von der 12-fach erhöhten *HeT-A*-Transkriptmenge (siehe Tab. 3.11:  $2^{3,6} \approx 12$ ) austitriert wird, was zu einer insgesamt geringeren Transpositionsrate führt. Wenn die von HeT-A rekrutierte reverse Transkriptase das von TART und/oder TAHRE codierte Enzym sein sollte, wäre auch die Erosion am Telomer von z.B. Chromosomarm 2R erklärbar (siehe Abb. 3.10), das neben HeT-A auch aus TART aufgebaut ist (Abad et al., 2004a). Biessmann et al. identifizierten die Telomer-lokalisierten HeT-A-, TART- und TAHRE-Bereiche der Telomere als euchromatisch und potentiell transkriptionell aktiv (Biessmann et al., 2005, 2006; Golubowsky et al., 2001; Mason et al., 2003, 2004). Als Konsequenz ist ein Mechanismus vorstellbar, der die Telomere anhand der jeweiligen Transkriptmengen der Elemente reguliert (3). Bei einer erhöhten HeT-A-Transkription könnte dieser Mechanismus mit einer Transpositionsrate reagieren als sei eine ausreichende Menge von HeT-A an den Telomeren vorhanden, während diese tatsächlich aber erodieren. Die Erosion des 2R-Telomers, das neben HeT-A auch TART enthält, welches in seiner Transkription in Rev31 kaum verändert wird (Anhang 2: Tab. A2), kann mit diesem potentiellen Mechanismus jedoch nicht erklärt werden.

Der Vergleich von  $\Delta 13\ 85c\ V\ l$ , Rev $31\ und\ GG295\ zeigt\ außerdem,\ daß\ einige Retrotransposons durch Mod(mdg4)-64.2 und andere Mod(mdg4)-Isoformen gegenteilig in ihrer Expression reguliert werden (vgl. z.B.$ *opus, invader4, G6*und 297 in Tab. 3.11).

Neben den Retrotransposons wird auch die Expression zahlreicher proteincodierender Gene durch den Ausfall von Mod(mdg4)-64.2 in  $\Delta 13\ 85c\ V\ 1$  beeinflußt. Die umfangreichen Veränderungen im Transkriptom nach Deletion der Isoform ( $\approx 4\%$  des *Drosophila*-Genoms) können zum Teil damit begründet werden, daß die Isoform Teil regulatorischer Netzwerke auf Transkriptionsebene (veränderte Gene *trx*, *br*, Her), epigenetischer/Histon-Modifikation (*JIL-1* bzw. *Su(var)3-1*) und Translation (*bru-3*) ist. Zudem zeigen immuncytologische Untersuchungen von Mod(mdg4)-64.2-EGFP-Fusionsproteinen (Gabler, 2003; Wagner, 2007) viele Dutzend Signale an Speicheldrüsen-Polytänchromosomen, was eine direkte Wirkung auf die Transkription der den Bindestellen benachbart liegenden Gene haben könnte, ähnlich der gestörten *insulator*-Aktivität bei Mutationen der Isoform Mod(mdg4)-67.2 (Gerasimova *et al.*, 1998, 2007; Volkmar *et al.*, in Präp.). Eine Einschränkung der arraygestützten Transkriptomanalyse ist die Verwendung von Gesamt-RNA adulter Weibchen (komplette Tiere), obwohl die Expression der Isoform gewebespezifisch unterschiedlich hoch ist (siehe Tabelle 3.5). Es konnten also nur Mod(mdg4)-64.2-Zielgene identifiziert werden, deren Expressionsunterschiede in einem bzw. mehreren Geweben so ausgeprägt ist, daß dieser Unterschied auch in Gesamt-RNA noch deutlich heraustritt. Von Experimenten mit der Isoform Mod(mdg4)-56.3 ist bekannt, daß auch die Chromatinassoziation der Mod(mdg4)-Proteine gewebs- und zellzyklusspezifisch variieren kann (Thomas et al., 2005; Wagner, 2007) und demzufolge eine veränderte Expression der Zielgene in verschiedenen Geweben oder Zelltypen zu erwarten ist. Zudem sollte die Auswertung der Microarray-Experimente mit einer neueren, umfassenderen Annotation des Drosophila-Transkriptoms wiederholt werden, denn unter den 100 am stärksten deregulierten Target-IDs finden sich neben annotierten auch 35 von Hild et al. (2003) identifizierte Transkripte, deren zugehörige Gene noch nicht in die aktuelle Annotation des Drosophila-Genoms (Release 5, 2008) eingegangen sind. Anhand der aktuellen Annotierung können als potentielle Phänotypen, die durch den Ausfall von Mod(mdg4)-64.2 entstehen, vorausgesagt werden: eine Beeinträchtigung der Immunabwehr und der männlichen Meiose sowie Spermienentwicklung, da mehrere Gene, die in diese Prozesse involviert sind, in  $\Delta 13$  85c V l signifikant dereguliert sind (siehe Tabelle 3.13).

Ursprünglich als Kontrollen für  $\Delta 13\ 85c\ V\ 1$  vorgesehen, können die Microarray-Datensätze von Rev31 und GG295 (vgl. Abb. 3.1 und 3.3, Tab. 3.13) durch Vergleich untereinander – ihre Deletionen überlappen sich um das isoformspezifische Exon von mod(mdg4)-55.7 – zur Identifizierung von Genen verwendet werden, die von dieser Isoform direkt oder indirekt in ihrer Expression reguliert werden.<sup>129</sup> Ein Vergleich beider Expressionsdatensätze erbrachte 180 Target-IDs, die in beiden Genotypen konkordant verändert waren, darunter drei Gengruppen, die aufgrund ihrer verminderten Expression vermutlich zu einer gestörten Entwicklung der Sinnesorgane und des peripheren Nervensystems, einer verminderten Glutathionsynthese und Glutathion-vermittelten Detoxifikation und die Embryonalentwicklung beeinträchtigen. Genauer, in Embryonen beider Mutanten müßte es aufgrund des Ausfalls von mod(mdg4)-55.7 zu Phänotypen bei Segmentierung und Organogenese kommen. Obwohl in GG295 keine homöotische Transformation zu beobachten ist, könnte der Ausfall der Isoform mod(mdg4)-55.7 ein Grund sein, warum die Transformation in Rev31 stärker ausgeprägt ist als in allen Revertanten mit kleineren Deletionen und viel intensiver als in JK14 (siehe Abb. 3.6).

Mit Hilfe der Affymetrix-Microarraydaten konnte ein Einblick in die Veränderungen des Transkriptoms verschiedener *mod(mdg4)*-Revertantenlinien gewonnen werden und es wurden

<sup>&</sup>lt;sup>29</sup> Analyse der gleichen Datensätzen (Rev31 und GG295) ergab auch ca. 400 Gene, deren Expression von den Isoformen *mod(mdg4)*-52.2 und/oder -58.8 reguliert wird; siehe Anhang A2.3

Schlüsse über mögliche molekulare Ursachen von Phänotypen der entsprechenden Revertanten gezogen. Da jedoch bis zu 30% aller Microarraysondengruppen / Target-IDs wenig reproduzierbar sind (D.L. Eizirik, pers. Mitteilung) und aufgrund der komplexen Genstruktur des *mod(mdg4)*-Locus mit verschachtelten Transkriptionseinheiten und gewebeabhängiger Promotoraktivität können die Microarraydaten nur der Kandidatenidentifizierung dienen und die veränderten Transkriptmengen müssen mittels RT-qPCR (ggf. von Gewebe-RNA) überprüft werden.

#### Untersuchungen zum Prozeß des trans-Spleißens

Existieren in einer prä-mRNA mehrere Spleißakzeptoren, so konkurrieren diese um den Spleißdonor, wobei neben z.B. dem Vorhandensein von Spleißfaktoren auch die intrinsische Stärke der Spleißakzeptoren (*splice site strength*; Fahey und Higgins, 2007) die resultierende Konzentration der Isoform-mRNAs bestimmt. Beim *trans*-Spleißen befinden sich Spleißdonor und Spleißakzeptoren in verschiedenen prä-mRNA-Molekülen. Darum spielen sowohl die Stärke der *trans*-Spleißakzeptoren als auch deren lokale Konzentration in räumlicher Nähe zum *trans*-Spleißdonor eine Rolle für die Expressionshöhe der verschiedenen Isoformen (Dorn *et al.*, 2001). Um den Einfluß räumlicher Trennung von *trans*-Spleißdonor und -akzeptoren am *mod*(*mdg4*)-Locus zu untersuchen wurden definierte Chromosomenmutationen generiert, die die gemeinsamen Exons von einigen der isoformspezifischen Exons trennen: eine reziproke T(2;3)-Translokation und zwei Inversionen (1,4Mbp bzw. 4,9Mbp; siehe 2.1.5 und Abb. 4.2).

In allen drei erzeugten homozygoten chromosomalen Rearrangements werden weiterhin mRNAs der Isoformen gebildet, deren isoformspezifische Exons durch die Rearrangements aus der Nähe des gemeinsamen Teils wegverlagert wurden. Dies belegt, daß *mod(mdg4)* nicht auf die Integrität des Locus angewiesen ist, also die konservierte Reihenfolge der Transkriptionseinheiten und die unmittelbare räumliche Nähe der *trans*-Spleißpartner. Die Expressionshöhe der Isoformen, deren spezifische Exons infolge der Chromosomenmutationen verlagert wurden, korrelierte umgekehrt mit der Größe der Mutation (siehe Abb. 3.21): Während diese Isoformen in der 1,4Mbp-Inversion noch fast auf Wildtypniveau gebildet werden, zeigen sie in der größeren Inversion und noch stärker in der Translokation eine schwächere Expression. Im Gegenzug ist die Expression der Isoformen erhöht, deren spezifische Exons von den Rearrangements nicht verlagert wurden (siehe *mod(mdg4)*-64.2 und -53.1 in Abb. 3.21).

Die unabhängigen Transkriptionseinheiten von mod(mdg4) ermöglichen die Synthese von prä-mRNAs des gemeinsamen Teils (Spleißdonor) und von prä-mRNAs, die isoformspezifische Exons (Spleißakzeptoren) enthalten, auch an verschiedenen Stellen im Genom. Sobald *trans*-Spleißdonor und -akzeptor zusammentreffen, werden die prä-mRNAs zu funktionalen Isoform-mRNAs zusammengefügt. Im Falle der T(2;3)-Translokation bedeutet dies für die 20 distalen mod(mdg4)-Isoformen eine Verknüpfung durch interchromosomales *trans*-Spleißen (Abb. 4.2). In der Literatur lediglich zwei weitere Gene im Tierreich beschrieben, deren Exons von zwei verschiedenen Chromosomen codiert werden, die also auf interchromosomales *trans*-Spleißen zur Generierung reifer mRNAs angewiesen ist. Dabei handelt es sich um ACAT1 (Li *et al.*, 1999) und um eine Isoform von *CDC2L2* (*CDC2L2*  $\beta$  sv13; Jehan *et al.*, 2006).



Abbildung 4.2 Schematische Darstellung der Chromosomen in der homozygoten (links) bzw. heterozygoten (rechts) Translokation T(2;3)26A,mod(mdg4). In der homozygoten Situation können die distal codierten 20 mod(mdg4)-Isoformen nur durch interchromosomales *trans*-Spleißen synthetisiert werden. Die Distanz zwischen den Spleißpartnern wird durch die rote gestrichelte Linie symbolisiert. In der heterozygoten Translokation befinden sich die Teile des Locus auf den Translokationschromosomen in räumlicher Nähe zueinander. Grund hierfür ist das *somatic chromosome pairing* (Metz, 1916; Hiraoka *et al.*, 1993; Csink und Henikoff, 1998; Vazquez *et al.*, 2002).

Für die verringerte mRNA-Menge der Isoformen, deren prä-mRNAs in den Rearrangements über eine Distanz zusammengeführt werden, z.B. *mod(mdg4)*-67.2 und -51.4 (siehe Abb. 3.21), ist die einfachste Erklärung eine größere räumliche Entfernung zwischen *trans*-Spleißdonor und -akzeptor (siehe Abb. 4.2) im Vergleich zum endogenen Locus. Möglich ist zudem die Lokalisierung beider Teile des *mod(mdg4)*-Locus in verschiedenen Kompartementen des Zellkerns, was das Zusammentreffen der prä-mRNAs erschweren würde, oder eine Veränderung des epigenetischen Kontexts für den Teil des Locus, der nicht die gemeinsamen Exons enthält. Ein starker RNA Polymerase II-Promotor, wie der des gemeinsamen Teils von

*mod(mdg4)*, kann als *chromatin barrier* wirken (Zhao und Dean, 2004) und demzufolge seine Wegverlagerung durch Inversion bzw. Translokation einen negativen Einfluß auf die Transkription der "zurückgebliebenen" Exons haben, wenn die neue benachbarte Sequenz keinen starken Promotor enthält, transkriptionell weniger aktiv oder gar heterochromatisch ist. Dieser Chromatineffekt wiederum würde durch den künstlichen Promotor beeinflußt, den die *P*-Elementreste tragen, mit deren Hilfe die Chromosomenmutationen etabliert wurden ("FRT" in Abb. 4.2; vgl. auch Abb. 2.2B die Struktur der Elemente und Abb. 3.21 für den Beleg der Promotoraktivität des Elementrests auf benachbart codierte Isoformen). Möglich ist außerdem auch eine Beeinflussung des Chromatins durch die veränderte Expression der Mod(mdg4)-Isoformen, die selbst Chromatinproteine sind (Immunfluoreszenzsignale an Polytän-chromosomen für den Großteil der untersuchten Isoformen, M. Gabler, pers. Mitteilung; Mod(mdg4)-67.2: Bestandteil eines *chromatin insulators*; Gerasimova *et al.*, 1995).

Nicht nur die mittels RT-PCR meßbare Expression sondern auch die physiologisch wirksame Konzentration, d.h. die bekannten Funktionen der Isoformen, deren codierende Exons beidseitig des Bruchpunktes liegen, bleibt in den homozygoten Rearrangements erhalten: Für die Isoform mod(mdg4)-67.2 in vollem Umfang und für die Isoform mod(mdg4)-56.3 zum Teil (Volkmar *et al.*, in Präp.; Gabler, pers. Mitteilung).

Trotz verringerter Menge Mod(mdg4)-67.2 in der homozygoten Translokation (RT-PCR siehe Abb. 3.21; Western Blot, M. Gabler, pers. Mitteilung) ist ihre Funktion auf die gypsy-Retrotransposon-induzierten Mutationen  $ct^6$  und  $y^2$  (Georgiev und Gerasimova, 1989; Gerasimova *et al.*, 1995) nicht unterscheidbar vom Wildtyp (Volkmar *et al.*, in Präp.). Die Funktion von mod(mdg4)-56.3, die eine essentielle Rolle bei der Paarung homologer Chromosomen vor der ersten meiotischen Teilung in *Drosophila melanogaster*-Männchen (Thomas *et al.*, 2006) spielt, wird hingegen von den chromosomalen Rearrangements meßbar beeinträchtigt: In homozygoten Tieren kommt es zu erhöhter *nondisjunction* (NDJ) von Geschlechtschromosomen (siehe Tab. 3.20). Dabei ist auffällig, daß von der homozygoten 1,4Mbp-Inversion zur T(2;3)-Translokation auch die NDJ-Rate steigt, die heterozygoten Situationen aber Wildtyp-NDJ-Raten aufweisen. Wahrscheinlich werden hier beide Teile des mod(mdg4)-Locus vom nichtmutierten Chromosom zueinander in räumliche Nähe gebracht (siehe Abb. 4.2, vgl. Abb. 3.20, Translokationskreuz) durch sogenannte "somatische" Chromosomenpaarung, die von Vazquez *et al.* (2002) auch in Spermatogonien beobachtet wurde.

Durch die Nähe der Transkriptionseinheiten des gemeinsamen Teils und der spezifischen Exons 5-6 von mod(mdg4)-56.3 steigt die lokale Konzentration beider prä-mRNAs und folglich die Expression von mod(mdg4)-56.3 bis auf ein Niveau, das phänotypisch nicht vom

Wildtyplevel unterschieden werden kann. Der gleiche Mechanismus gilt für die transheterozygoten Konstellationen mit einer Mutation des isoformspezifischen Exons von mod(mdg4)-56.3 (Z3-5578), da es sich dabei nur um eine Punktmutation (W449 $\rightarrow$ Stop) handelt, der chromosomale Kontext aber unverändert ist. In diesem Fall befinden sich zwei intakte Transkriptionseinheiten für den gemeinsamen Teil von mod(mdg4) und ein nicht mutiertes spezifisches Exon (auf einem der Translokationschromosomen) in räumlicher Nähe, sodaß ausreichend reife mRNA von mod(mdg4)-56.3 gebildet werden kann, damit kein NDJ-Phänotyp ausgeprägt wird. Die Expressionshöhe der Isoform als Ursache der *nondisjunction* wird durch die partielle Rettung des Phänotyps mittels induzierter Expression transgencodierter mod(mdg4)-56.3-cDNA ebenfalls bestätigt (siehe Tab. 3.20).

Ein möglicher Einfluß von *meiotic drive* auf die Ergebnisse der analysierten Kreuzungen läßt sich ausschließen: Zum einen befindet sich die *nondisjunction*-hervorrufende Mutation auf dem dritten Chromosom, während experimentell die Verteilung der Geschlechtschromosomen untersucht wurde, der Effekt wäre also zumindest indirekt (untersuchtes <u>Auto</u>som bei Thomas *et al.* (2006) war Chromosom 2). Zum anderen wäre bei *meiotic drive* zu Ungunsten des YB<sup>S</sup>-Chromosoms, also einer negativen Selektion, die Anzahl auftretender X0-Männchen erhöht, während gleichzeitig XXY-Weibchen (XXYB<sup>S</sup>) unterrepräsentiert wären. Die *nondisjunction*-Raten beider Geschlechter aus einer Kreuzung, also X0:XY bei Männchen und XXY:XX bei Weibchen, wichen jedoch nie mehr als 5% voneinander ab (einzige Ausnahme Z3-5578/Df(3R)GC14 allerdings umfaßt Df(3R)GC14 mindestens 13 Gene; siehe Tab. 2.1).

Um den Einfluß der räumlichen Trennung von Donor und Akzeptoren des *trans*-Spleißen in mod(mdg4) zu untersuchen, sind die drei etablierten chromosomalen Rearrangements nicht ausreichend. Da die Etablierung der Rearrangements relativ aufwendig ist, wurden für eine umfangreichere Analyse 19 transgene Linien von  $P\{w^+ Dme \ mod(mdg4)^{common \ region}\}$  etabliert (codiert gemeinsame mod(mdg4)-Exons). Abhängig von der Position des Transgens war die Komplementation der rezessiv letalen *loss of function*-Mutation  $mod(mdg4)^{02}$  im gemeinsamen Teil des endogenen Locus unterschiedlich hoch (siehe Tab. 3.17). Nur drittchromosomale Transgene konnten die rezessive Letalität partiell (5-69%) oder vollständig komplementieren, und nur bei vollständiger Komplementation der rezessiven Letalität wurde auch die weibliche Sterilität teilweise komplementiert. Dies ist ein weiterer Beleg dafür, daß die verschiedenen Funktionen des Locus, also dessen Isoformen, verschieden sensitiv gegenüber Änderungen der Expressionshöhe sind (siehe oben, Mod(mdg4)-67.2- und -56.3).

In vivo-Testsystem für trans-Spleißen

Im Rahmen der Arbeit sollte ein System zur *in vivo*-Analyse des *trans*-Spleißen entwickelt werden. Zunächst wurde EGFP als Reporter gewählt (siehe Abb. 3.19) und es konnte gezeigt werden, daß die verwendeten *mod(mdg4)*-Outron-Sequenzen ausreichend sind, um transgencodierte EGFP-prä-mRNAs mit endogenen *mod(mdg4)*-prä-mRNAs durch *trans*-Spleißen verbinden zu können. Auch intakte EGFP-mRNA mit korrekter ORF-Sequenz entsteht und konnte mittels RT-PCR nachgewiesen werden – der *proof of principle* war damit erfolgreich. Die synthetisierte EGFP-Proteinmenge war jedoch nicht ausreichend, um ein fluoreszenzbasiertes Testsystem zu etablieren.

Ein anderes Testsystem zur in vivo-Analyse des trans-Spleißprozesses ergibt sich aus der Funktion der Isoform mod(mdg4)-56.3 im Hintergrund der homozygoten Translokation T(2;3)26A, mod(mdg4). Die herabgesetzte Expression der Isoform führt zu nondisjunction (NDJ; Thomas et al., 2006) deren Rate durch Verfolgung eines dominant markierten Y-Chromosoms (YB<sup>S</sup>) analysiert werden kann ( $T(2;3)26A, mod(mdg4) \approx 30\%$ ; siehe Tab. 3.20). Mit Hilfe dieses Testsystems wurde nach Effektoren des trans-Spleißens gesucht. Dazu YB<sup>S</sup>-Chromosom, mit heterozygoter wurden Männchen Spleißfaktormutation und  $YB^S$ : homozygoter T(2;3)-Translokation erzeugt (8 T(2;3)26A, mod(mdg4) / T(2;3)26A, mod(mdg4) Spleißfaktormut.), in denen die NDJ-Rate bestimmt wurde. Die rezessiv letale Natur der getesteten Spleißfaktormutationen erlaubte dabei lediglich die Suche nach dominanten Einflüssen auf das trans-Spleißen (z.B. Haploinsuffizienz).

*heph*, ein Polypyrimidintraktbindeprotein (Dansereau *et al.*, 2002), und *CG10689*, eine RNA-Helicase, wurden als erste Effektoren des *trans*-Spleißens überhaupt identifiziert (siehe Tabelle 3.21). Da die Einbringung heterozygoter Mutationen dieser Gene eine Erhöhung der NDJ-Rate zur Folge hatte, sollten deren Produkte essentiell für den *trans*-Spleißprozeß sein oder zumindest einen positiven Einfluß darauf haben. Eine Charakterisierung der Gene war im Rahmen der Arbeit nicht möglich, könnte aber z.B. durch Detektion der Proteine in Spliceosomen mittels goldgekoppelter Antikörper und Elektronenmikroskopie (Azubel *et al.*, 2004) oder eine Präparation *mod(mdg4)*-prä-mRNA-haltiger Spliceosomen und anschließende Coimmunopräzipitation (Azubel *et al.*, 2006, Sperling *et al.*, 1985) erfolgen.

Mit der *nondisjunction*-Analyse im Hintergrund der homozygoten Translokation T(2;3)26A,mod(mdg4) wurde ein einfach anzuwendendes genetisches Testsystem etabliert, mit dessen Hilfe Effektoren des *trans*-Spleißprozesses identifiziert werden können. Im Rahmen dieser Arbeit wurden rezessiv letale Allele von Spleißfaktoren untersucht, mit dem System können aber auch homozygote Mutationen untersucht werden, solange letale Wechselwirkungen mit der homozygoten T(2;3)26A,mod(mdg4) oder mit YB<sup>S</sup> (T(1;Y)-Translokation, siehe Tab. 2.2; Brosseau und Lindsley, 1958; Brosseau *et al.*, 1961) bestehen.

### Evolutionäre Konservierung des mod(mdg4)-Locus und des trans-Spleißens

Unter den *Drosophila*-Arten, deren Genom bisher sequenziert wurde, weisen *Drosophila melanogaster* und *D. virilis* die größte genetische Distanz auf (Drosophila 12 Genomes Consortium, Clark *et al.*, 2007: Figure 1). Ihr letzter gemeinsamer Vorfahre lebte vor rund 62 Millionen Jahren (Beverley und Wilson, 1984). Die *mod(mdg4)*-Loci beider Spezies eignen sich also aufgrund ihrer genetischen Distanz sehr gut, um die funktionelle Konservierung des Locus innerhalb der Gattung *Drosophila* zu untersuchen.

Ein durch eine erfolgreiche 5'RACE ermöglichter Vergleich des nicht translatierten mod(mdg4)-Exons 1 beider Spezies ergab eine relativ geringe Übereinstimmung (siehe Abb. 3.16), was die Ergebnisse von Krauss und Dorn (2004) bestätigt, wonach innerhalb des gemeinsamen Teils von mod(mdg4) auf DNA- wie Proteinebene lediglich die BTB-Domäne hoch konserviert ist. Die vergleichende, artübergreifende Phylogenieanalyse der FLYWCH-Domänen aus den isoformspezifischen C-Termini (siehe Anhang 2 Abb. A5) von D. melanogaster, D. virilis und D. pseudoobscura bestätigt einige Ergebnisse einer früheren Analyse von Dorn und Krauss (2003), z.B. die Mod(mdg4)-59.0 und -54.7-Dichotomie. Andere, wie die (dort auch nur schwach unterstützte) Verwandtschaft der FLYWCH-Sequenzen von C. elegans Peb-1 mit Mod(mdg4)-52.0 und -55.3 wurden mit hoher statistischer Unterstützung widerlegt. Das generelle Aussehen des Phylogramms ("Schneeflocken-Struktur", U. Volkmar und V. Knoop, pers. Mitteilung) ist ein Indiz für ein hohes Alter des Locus und eine lange, getrennte Evolution seiner Isoformen. Das Fehlen gemeinsamer Sequenzabschnitte zwischen mehreren Isoformen (was zu einer Gruppierung im Baum führen würde) legt zudem nahe, daß die einzelnen Isoformen wahrscheinlich innerhalb kurzer Zeit entstanden sind. Bei einem Vergleich der homologen Sequenzen der verschiedenen untersuchten Spezies zeigt sich, daß die Mod(mdg4)-Isoformen höchstwahrscheinlich schon im gemeinsamen Vorfahren von Drosophila und Anopheles existiert haben (Ordnung der Diptera) und der Locus wahrscheinlich noch älter ist (Astlängen in den shortest trees (nicht gezeigt), Einordnung der Bombyx mori-Sequenz (Lepidoptera) in den Baum). Innerhalb der Gattung Drosophila kann anhand einiger Isoformen die geringere evolutionäre Distanz von D. melanogaster und D. pseudoobscura im Vergleich zur Distanz zwischen D. melanogaster und D. virilis nachvollzogen werden, andere zeigen eine Trichotomie (z.B. Mod(mdg4)-64.2 und -55.8).

Neben der phylogenetischen wurde die funktionelle Konservierung des Locus in *D. melanogaster* und *D. virilis* untersucht. Durch *trans*-Spleißen zwischen transgencodierten und endogenen mod(mdg4)-prä-mRNAs werden chimäre mRNAs gebildet. Eine solche chimäre mRNA mit den gemeinsamen Exons von D. virilis und dem endogen codierten isoformspezifischen Exon von (*D. melanogaster-)mod(mdg4)-*64.2 konnte in drei unabhängigen Experimenten nachgewiesen und quantifiziert werden – je nach Transgen betrug die Konzentration der Dvi/Dme-mod(mdg4)-64.2-mRNA bis zu 2,5% im Vergleich mit der entsprechenden endogenen Isoform-mRNA (siehe Tabelle 3.15; Gabler et al., 2005). Die Fähigkeit von mod(mdg4)-prä-mRNAs beider Spezies, miteinander in trans zu spleißen ist auch unter dem Aspekt interessant, daß einerseits dieser Prozeß trotz der Aufspaltung beider Arten vor langer Zeit noch möglich ist, andererseits aber keine mRNA-Chimären zwischen *mod(mdg4)* und *lola* experimentell nachgewiesen werden konnten (nicht gezeigt) bzw. in Sequenzdatenbanken gefunden wurden. Bei lola handelt es sich um einen Locus im Drosophila-Genom mit zu mod(mdg4) ähnlicher Struktur, dessen Isoform-mRNAs auch mittels trans-Spleißen generiert werden (Goeke et al., 2003; Horiuchi et al., 2003). Ein gezielter Abbau (nonsense-mediated decay) solcher mod(mdg4)-lola-mRNA-Chimären ist wahrscheinlich nicht der Grund für ihre Nicht-Nachweisbarkeit, da sich in beiden Fällen die trans-Spleißposition innerhalb eines Codons hinter der zweiten Base befindet, der Leserahmen also nicht gestört wird. Es muß also eine Unkompatibilität zwischen den prä-mRNAs beider Loci bestehen oder ein effizienter Kontrollmechanismus diese Art von trans-Spleißen unterbinden.

Die Konservierung von mod(mdg4) zwischen *D. melanogaster* und *D. virilis* beschränkt sich nicht nur auf die Fähigkeit zum *trans*-Spleißen. Darüber hinaus wurde auch die Funktion des gemeinsamen N-Terminus der Mod(mdg4)-Proteine erhalten. So sind *D. virilis*-Transgene in der Lage, die rezessiv letalen Mutationen  $mod(mdg4)^{neo129}$  und  $mod(mdg4)^{02}$  zu komplementieren (siehe Tab. 3.16). Hier zeigen sich, wie für *Dme-mod(mdg4)*-Transgene (siehe oben) beschrieben, Unterschiede der Komplementation je nach Insertionsort des Transgens im Genom (Gabler *et al.*, 2005; siehe Tabelle 3.14). Die Komplementation rezessiv letaler Allele des gemeinsamen Teils ist dabei bei allen getesteten Transgenen so ausgeprägt, daß keine Phänotypen wie z.B. homöotische Transformation oder Semisterilität beobachtet wurden – mehrere Linien, die ausschließlich chimäre *Dvi*(gem. Teil)-*Dme*-Mod(mdg4)-Proteine bilden, wurden für >20 Generationen erhalten. Dies spricht für eine vollständige funktionelle Konservierung des gemeinsamen Teils in allen Funktionen, nicht nur was die Aufgabe der BTB-Domäne betrifft (Dimerisierung (Read *et al.*, 2000; Mazur *et al.*, 2005), sondern z.B. auch mögliche Interaktoren wie Chip (Morcillo *et al.*, 1997), die für die Funktion von Mod(mdg4)-Proteinen notwendig sind.

## 5. Zusammenfassung

Gegenstand der Experimente, die in der vorliegenden Arbeit dokumentiert wurden, ist der komplexe Locus *modifier of mdg4* in *Drosophila melanogaster*, dessen Isoformen durch den Prozeß des *trans*-Spleißens zwischen vier, in jeder *mod(mdg4)*-mRNA enthaltenen, gemeinsamen Exons und 31 verschiedenen isoformspezifischen Exons 5 (bzw. 5 und 6) gebildet werden.

Ziele der Arbeit waren die funktionelle Analyse des Locus, im Speziellen die Identifikation intragenischer Promotoren, die funktionelle Analyse der Isoform *mod(mdg4)*-64.2 durch Generierung eines *Knock out* und die Etablierung eines Testsystems zur *in vivo*-Analyse des *trans*-Spleißprozesses.

Mittels Mutationen im spezifischen Teil des Locus und mod(mdg4)-Transgenen aus der verwandten Art *Drosophila virilis* konnte nachgewiesen werden, daß alle isoformspezifischen Exons von intragenischen Promotoren ausgehend transkribiert werden und daß alle Isoformen, die von mod(mdg4) synthetisiert werden, durch *trans*-Spleißen gebildet werden. Mit Hilfe der Revertanten und der *D. virilis*-Transgene konnten wahrscheinlich alle intragenischen Promotoren in mod(mdg4) identifiziert werden.

Die generierten Mutationen im spezifischen Teil des *mod(mdg4)*-Locus ermöglichten zudem funktionelle Analysen, die mit den bisher verfügbaren Mutanten (im gemeinsamen Teil des Locus) aufgrund deren rezessiver Letalität nicht möglich war. Die beobachteten, neuen Phänotypen konnten dem Ausfall bestimmter Isoformen oder Isoformgruppen des Locus zugeordnet werden. Bekannte Phänotypen von Mutationen des gemeinsamen Teils konnten ebenfalls auf den Ausfall weniger (im günstigsten Fall zweier) *mod(mdg4)*-Isoformen eingegrenzt werden.

Ein weiterer Gegenstand der Arbeit war die Untersuchung der Isoform mod(mdg4)-64.2. Neben Daten zur Regulation – das isoformspezifische Exon wird von einem separaten Promotor aus transkribiert und die Effizienz der *trans*-Spleißakzeptor-Site am 5'Ende durch einen *trans*-Spleiß-Enhancer (ESE) erhöht – konnten Einblicke in die Funktion der Isoform gewonnen werden. Mod(mdg4)-64.2 ist mit dem *HeT-A*-Retrotransposon assoziiert und beeinflußt dessen Transkription negativ. Ein *Knock out* der Isoform durch gerichtete Deletion des isoformspezifischen Exons mittels "*Ends-in gene targeting*" zeigte, daß *mod(mdg4)*-64.2 neben *HeT-A* auch die Transkription anderer Retrotransposons beeinflußt. Durch einen Vergleich des Transkriptoms der *Knock out*-Mutation mit dem Referenzstamm  $w^{1118}_{iso}$  auf einem Microarray konnten Gene identifiziert werden, deren Expression durch den Ausfall von *mod(mdg4)*-64.2 verändert wird. Zu klären bleibt, ob es sich dabei um direkte oder indirekte Zielgene der Isoform handelt.

Im Rahmen der vorliegenden Arbeit konnten eine reziproke T(2;3)-Translokation und zwei Inversionen erzeugt werden, deren einer Bruchpunkt sich im spezifischen Teil des mod(mdg4)-Locus befindet. An diesen chromosomalen Rearrangements konnte gezeigt werden, daß mod(mdg4) nicht der räumlichen Nähe seiner codierenden Sequenzen bedarf, sondern Isoformen auch über eine Distanz innerhalb des Zellkerns noch effektiv bilden kann. Außerdem konnte gezeigt werden, daß mod(mdg4)-Outronsequenzen hinreichend sind, den Prozess des *trans*-Spleißens zu ermöglichen.

Der *nondisjunction*-Phänotyp, hervorgerufen durch verminderte Expression von mod(mdg4)-56.3 in der homozygoten T(2;3)-Translokation, wurde als Testsystem zur Identifikation von Effektoren des *trans*-Spleißens verwendet. Mit der RNA-Helicase *CG10689* und dem Polypyrimidintraktbindeprotein *heph* konnten zwei potentielle, positive Effektoren des Prozesses identifiziert werden.

Außerdem konnte die funktionelle Konservierung des Locus zwischen den Arten *Drosophila melanogaster* und *D. virilis* und das Auftreten chimärer mRNAs nachgewiesen werden. Ohne signifikante Einbußen in Vitalität oder Fertilität konnte der gemeinsame Teil des endogenen Locus durch den transgencodierten gemeinsamen Teil des *D. virilis-mod(mdg4)*-Locus komplementiert werden. Dies gelang auch, wenn sich das Transgen auf dem zweiten Chromosom befand und die reifen *mod(mdg4)*-mRNAs durch interchromosomales *trans*-Spleißen gebildet wurden.

# 6. Literaturliste

Abad, J. P., and Villasante, A. (1999). The 3' non-coding region of the Drosophila melanogaster HeT-A telomeric retrotransposon contains sequences with propensity to form G-quadruplex DNA. FEBS Lett 453, 59-62.

Abad, J. P., De Pablos, B., Osoegawa, K., De Jong, P. J., Martin-Gallardo, A., and Villasante, A. (2004a). Genomic analysis of Drosophila melanogaster telomeres: full-length copies of HeT-A and TART elements at telomeres. Mol Biol Evol *21*, 1613-1619.

Abad, J. P., De Pablos, B., Osoegawa, K., De Jong, P. J., Martin-Gallardo, A., and Villasante, A. (2004b). TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres. Mol Biol Evol *21*, 1620-1624.

Abhiman, S., Iyer, L. M., and Aravind, L. (2008). BEN: a novel domain in chromatin factors and DNA viral proteins. Bioinformatics 24, 458-461.

Ahmad, K. F., Engel, C. K., and Prive, G. G. (1998). Crystal structure of the BTB domain from PLZF. Proc Natl Acad Sci U S A 95, 12123-12128.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol 215, 403-410.

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389-3402.

Arbeitman, M. N., Furlong, E. M., Imam, F., Johnson, E., Null, B. H., Baker, B. S., Krasnow, M. A., Scott, M. P., Davis, R. W., and White, K.P. (2002). Gene expression during the life cycle of Drosophila melanogaster. Science 297, 2270-2275

Ashburner, M. (1989). Drosophila. *A laboratory handbook*. (Cold Spring Harbor, NY., Cold Spring Harbor Laboratory Press).

Ast, G. (2004). How did alternative splicing evolve? Nat Rev Genet 5, 773-82.

Azubel, M., Wolf, S. G., Sperling, J., and Sperling, R. (2004). Three-dimensional structure of the native spliceosome by cryo-electron microscopy. Mol Cell *15*, 833-839.

Azubel, M., Habib, N., Sperling, R., and Sperling, J. (2006). Native spliceosomes assemble with pre-mRNA to form supraspliceosomes. J Mol Biol *356*, 955-966.

Babu, M. M., Iyer, L. M., Balaji, S., and Aravind, L. (2006). The natural history of the WRKY-GCM1 zinc fingers and the relationship between transcription factors and transposons. Nucleic Acids Res *34*, 6505-6520.

Balschun, T. (2006). Isolierung und Charakterisierung von Mutationen des komplexen Genlokus *mod(mdg4)* von *Drosophila melanogaster*. Diplomarbeit, Martin-Luther-Universtät Halle-Wittenberg, Institut für Biologie, Institutsbereich Genetik, Abteilung Entwicklungsgenetik

Bardwell, V. J., and Treisman, R. (1994). The poz domain: A conserved protein-protein interaction motif. Genes Dev 8, 1664-1677.

Bateson, W., and Saunders, E. (1902). Experiments in the physiology of heredity. Rep Evol Comm R Soc 1:1-160

Beaster-Jones, L., and Okkema, P. G. (2004). DNA binding and in vivo function of C. elegans PEB-1 require a conserved FLYWCH motif. J Mol Biol *339*, 695-706.

Beverley, S. M., and Wilson, A. C. (1984). Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol 21, 1-13.

Biessmann, H. (1985). Molecular analysis of the yellow gene (y) region of Drosophila melanogaster. Proc Natl Acad Sci U S A 82, 7369-7373.

Biessmann, H., and Green, M. M. (1986). Molecular analysis of insertional mutations in the yellow gene region of Drosophila. J Mol Biol *191*, 573-576.

Biessmann, H., Mason, J. M., Ferry, K., d'Hulst, M., Valgeirsdottir, K., Traverse, K. L., and Pardue, M. L. (1990a). Addition of telomere-associated HeT DNA sequences "heals" broken chromosome ends in Drosophila. Cell *61*, 663-673.

Biessmann, H., Carter, S. B., and Mason, J. M. (1990b). Chromosome ends in Drosophila without telomeric DNA sequences. Proc Natl Acad Sci U S A 87, 1758-1761.

Biessmann, H., Champion, L. E., O'Hair, M., Ikenaga, K., Kasravi, B., and Mason, J. M. (1992). Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. Embo J *11*, 4459-4469.

Biessmann, H., Prasad, S., Semeshin, V. F., Andreyeva, E. N., Nguyen, Q., Walter, M. F., and Mason, J. M. (2005). Two distinct domains in Drosophila melanogaster telomeres. Genetics *171*, 1767-1777.

Biessmann, H., Prasad, S., Walter, M. F., and Mason, J. M. (2006). Euchromatic and heterochromatic domains at Drosophila telomeres. Biochem Cell Biol *83*, 477-485.

Blumenthal, T. (2005). Trans-splicing and operons. WormBook, 1-9.

Brandstädter, J., Rossbach, C., and Theres, K. (1994). The pattern of histone H4 expression in the tomato shoot apex changes during development. Planta *192*, 69-74.

Brosseau, G.E., and Lindsley, D.L. (1958). A dominantly marked Y chromosome: YB<sup>S</sup>. D. I. S. *32*, 116.

Brosseau, G. E., Nicoletti, B., Grell, E. H., AND Lindsley, D. L. (1961). Production of Altered Y Chromosomes Bearing Specific Sections of the X Chromosome in Drosophila. Genetics *46*, 339-346.

Brückner, S. (2007). Zytologische Analyse am komplexen Locus mod(mdg4) bei Drosophila melanogaster. Diplomarbeit, Martin-Luther-Universtät Halle-Wittenberg, Institut für Biologie, Institutsbereich Genetik, Abteilung Entwicklungsgenetik

Brunmeir, R., Lagger, S., Simboeck, E., Sawicka, A., Egger, G., Hagelkruys, A., Zhang, Y., Matthias, P., Miller, W. J., and Seiser, C. (2010). Epigenetic Regulation of a Murine Retrotransposon by a Dual Histone Modification Mark. PLoS Genet *6*, e?

Büchner, K., Roth, P., Schotta, G., Krauss, V., Saumweber, H., Reuter, G., and Dorn, R. (2000). Genetic and molecular complexity of the position effect variegation modifier mod(mdg4) in Drosophila. Genetics *155*, 141-157.

Capelson, M., and Corces, V. G. (2005). The ubiquitin ligase dTopors directs the nuclear organization of a chromatin insulator. Mol Cell 20, 105-116.

Casacuberta, E., and Pardue, M. L. (2003). HeT-A elements in Drosophila virilis: retrotransposon telomeres are conserved across the Drosophila genus. Proc Natl Acad Sci U S A *100*, 14091-14096.

Caudevilla, C., Codony, C., Serra, D., Plasencia, G., Roman, R., Graessmann, A., Asins, G., Bach-Elias, M., and Hegardt, F. G. (2001). Localization of an exonic splicing enhancer responsible for mammalian natural trans-splicing. Nucleic Acids Res 29, 3108-3115.

Chandler, and Fayet, (1993). Translational frameshifting in the control of transposition in bacteria. Mol Microbiol. 7, 497-503.

Chang, J.H., and Taylor, J. (2002). In vivo RNA-directed transcription, with template switching, by a mammalian RNA polymerase. Embo J 21, 157-164.

Chetverina, D., Savitskaya, E., Maksimenko, O., Melnikova, L., Zaytseva, O., Parshikov, A., Galkin, A. V., and Georgiev, P. (2007). Red flag on the white reporter: a versatile insulator abuts the white gene in Drosophila and is omnipresent in mini-white constructs. Nucleic Acids Res.

Chintapalli, V. R., Wang, J., and Dow, J. A. T. (2007). Using FlyAtlas to identify better *Drosophila* models of human disease. Nature Genetics *39*, 715-720

Clark, D. J., and Shen, C. H. (2006) Mapping histone modifications by nucleosome immunoprecipitation. Methods Enzymol. *410*, 416-30.

Costello, J. C., Dalkilic, M. M., and Andrews, J. R. (2008). Microarray Normalization Protocols. FlyBase ID: FBrf0202545 (2008.1.21). Personal communication to FlyBase Csink, A.K., and Henikoff, S. (1998). Large-scale chromosomal movements during interphase progression in Drosophila. J Cell Biol *143*, 13-22.

Cvejic, S., Zhu, Z., Felice, S. J., Berman, Y., and Huang, X. Y. (2004). The endogenous ligand Stunted of the GPCR Methuselah extends lifespan in Drosophila. Nat Cell Biol *6*, 540-546.

Dansereau, D. A., Lunke, M. D., Finkielsztein, A., Russell, M. A., and Brook, W. J. (2002). Hephaestus encodes a polypyrimidine tract binding protein that regulates Notch signalling during wing development in Drosophila melanogaster. Development *129*, 5553-5566.

Dixon, R. J., Eperon, I. C., Hall, L., and Samani, N. J. (2005). A genome-wide survey demonstrates widespread non-linear mRNA in expressed sequences from multiple species. Nucleic Acids Res *33*, 5904-5913.

Dixon, R. J., Eperon, I. C., and Samani, N. J. (2007). Complementary intron sequence motifs associated with human exon repetition: a role for intragenic, inter-transcript interactions in gene expression. Bioinformatics 23, 150-155.

Dörfel, A. (2007). Isolation und funktionelle Charakterisierung von Mutanten für den komplexen Locus "*modifier of mdg4*" in *Drosophila*. Diplomarbeit, Martin-Luther-Universtät Halle-Wittenberg, Institut für Biologie, Institutsbereich Genetik, Abteilung Entwicklungsgenetik Dorn, R., Heymann, S., Lindigkeit, R., and Reuter, G. (1986) Suppressor mutation of position-effect variegation in Drosophila melanogaster affecting chromatin properties. Chomosoma 93, 398-403

Dorn, R., Szidonya, J., Korge, G., Sehnert, M., Taubert, H., Archoukieh, E., Tschiersch, B., Morawietz, H., Wustmann, G., Hoffmann, G., and et al. (1993a). P transposon-induced dominant enhancer mutations of position-effect variegation in Drosophila melanogaster. Genetics *133*, 279-290.

Dorn, R., Krauss, V., Reuter, G., and Saumweber, H. (1993b). The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc Natl Acad Sci U S A *90*, 11376-11380.

Dorn, R., Reuter, G., and Loewendorf, A. (2001). Transgene analysis proves mRNA transsplicing at the complex mod(mdg4) locus in Drosophila. Proc Natl Acad Sci U S A 98, 9724-9729.

Dorn, R., and Krauss, V. (2003). The modifier of mdg4 locus in Drosophila: functional complexity is resolved by trans splicing. Genetica *117*, 165-177.

Drosophila 12 Genomes Consortium, Clark, A. G., Eisen, M. B., Smith, D. R., Bergman, C. M., Oliver, B., Markow, T. A., Kaufman, T. C., Kellis, M., Gelbart, W., Iyer, V. N. *et al.* (2007) Evolution of genes and genomes on the Drosophila phylogeny. Nature. *450*, 203-218.

Duffy, J. B. (2002). GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34, 1-15.

Engels, W. R., Johnson-Schlitz, D. M., Eggleston, W. B., and Sved, J. (1990). High-frequency P element loss in Drosophila is homolog dependent. Cell *62*, 515-525.

Espinás ML, Jiménez-García E, Vaquero A, Canudas S, Bernués J, Azorín F. (1999) The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J Biol Chem 274, 16461-9.

Fahey, M.E. and Higgins, D.G. (2007) Gene expression, intron density, and splice site strength in Drosophila and Caenorhabditis. J Mol Evol *65*, 349-357.

Feinberg, A. P., and Vogelstein, B. (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem *132*, 6-13.

Feinberg, A. P., and Vogelstein, B. (1984). "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem *137*, 266-267.

Finta, C., and Zaphiropoulos, P. G. (2002). Intergenic mRNA molecules resulting from transsplicing. J Biol Chem 277, 5882-5890.

Fischer, S. E. J., Butler, M. D., Pan, Q., and Ruvkun, G. (2008) Trans-splicing in C. elegans generates the negative RNAi regulator ERI-6/7 Nature. doi:10.1038/nature07274

Flouriot, G., Brand, H., Seraphin, B., and Gannon, F. (2002). Natural trans-spliced mRNAs are generated from the human estrogen receptor-alpha (hER alpha) gene. J Biol Chem 277, 26244-26251.

Frydrychova, R. C., Biessmann, H., Konev, A. Y., Golubovsky, M. D., Johnson, J., Archer, T. K., and Mason, J. M. (2007). Transcriptional activity of the telomeric retrotransposon HeT-A in Drosophila melanogaster is stimulated as a consequence of subterminal deficiencies at homologous and nonhomologous telomeres. Mol Cell Biol *27*, 4991-5001.

Furuyama, S., and Bruzik, J. P. (2002). Multiple roles for SR proteins in trans splicing. Mol Cell Biol 22, 5337-5346.

Gabler, M. (2003). Immunzytologische Analyse von Mod(mdg4) Protein-Isoformen bei *Drosophila melanogaster*. Diplomarbeit, Martin-Luther-Universtät Halle-Wittenberg, Institut für Biologie, Institutsbereich Genetik, Abteilung Entwicklungsgenetik

Gabler, M., Volkmar, M., Weinlich, S., Herbst, A., Dobberthien, P., Sklarss, S., Fanti, L., Pimpinelli, S., Kress, H., Reuter, G., and Dorn, R. (2005). Trans-splicing of the mod(mdg4) complex locus is conserved between the distantly related species Drosophila melanogaster and D. virilis. Genetics *169*, 723-736.

Gause, M., Morcillo, P., and Dorsett, D. (2001). Insulation of enhancer-promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between suppressor of hairy-wing and modifier of mdg4 proteins. Mol Cell Biol *21*, 4807-4817.

George, J. A., DeBaryshe, P. G., Traverse, K. L., Celniker, S. E., and Pardue, M. L. (2006). Genomic organization of the Drosophila telomere retrotransposable elements. Genome Res *16*, 1231-1240.

Georgiev, P. G., and Gerasimova, T. I. (1989). Novel genes influencing the expression of the yellow locus and mdg4 (gypsy) in Drosophila melanogaster. Mol Gen Genet 220, 121-126.

Georgiev, P. G., and Corces, V. G. (1995). The su(Hw) protein bound to gypsy sequences in one chromosome can repress enhancer-promoter interactions in the paired gene located in the other homolog. Proc Natl Acad Sci U S A *92*, 5184-5188.

Georgiev, P., Golovnin, A., Melnikova, L., Krivega, I., Kostuchenko, M., and Volkov, I. (2008). Nuclwoskeletal proteins EAST and CP60 modulate activity of the gypsy insulator in Drosophila melanogaster. Abstract A. Dros. Conf. 49: 269B (FBrf0203648)

Gerasimova, T. I., Gdula, D. A., Gerasimov, D. V., Simonova, O., and Corces, V. G. (1995). A Drosophila protein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell *82*, 587-597.

Gerasimova, T. I., and Corces, V. G. (1998). Polycomb and trithorax group proteins mediate the function of a chromatin insulator. Cell *92*, 511-521.

Gerasimova, T. I., Lei, E. P., Bushey, A. M., and Corces, V. G. (2007). Coordinated control of dCTCF and gypsy chromatin insulators in Drosophila. Mol Cell *28*, 761-772.

Gesteland, R. F., Cech, T. R. and Atkins, J. F. (1999). The RNA World. (Cold Spring Harbor, New York, CSHL Press).

Geyer, P.K., Spana, C., and Corces, V.G. (1986). On the molecular mechanism of gypsyinduced mutations at the yellow locus of Drosophila melanogaster. EMBO J *10*, 2657-62. Ghildiyal, M., Seitz, H., Horwich, M.D., Li, C., Du, T., Lee, S., Xu, J., Kittler, E.L., Zapp, M.L., Weng, Z., *et al.* (2008). Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science *320*, 1077-1081.

Gloor, G. B., Nassif, N. A., Johnson-Schlitz, D. M., Preston, C. R., and Engels, W. R. (1991). Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253, 1110-1117.

Goeke, S., Greene, E. A., Grant, P. K., Gates, M. A., Crowner, D., Aigaki, T., and Giniger, E. (2003). Alternative splicing of lola generates 19 transcription factors controlling axon guidance in Drosophila. Nat Neurosci *6*, 917-924.

Golic, K. G., and Golic, M. M. (1996). Engineering the Drosophila genome: chromosome rearrangements by design. Genetics *144*, 1693-1711.

Golubovsky, M. D., Konev, A. Y., Walter, M. F., Biessmann, H., and Mason, J. M. (2001). Terminal retrotransposons activate a subtelomeric white transgene at the 2L telomere in Drosophila. Genetics *158*, 1111-1123.

Gorczyca, M., Popova, E., Jia, X. X., and Budnik, V. (1999). The gene mod(mdg4) affects synapse specificity and structure in Drosophila. J Neurobiol *39*, 447-460.

Gräßler, J. Programm "Microarrayanalyse" v0.9 und v1.0

Graveley, B. R., Hertel, K. J., and Maniatis, T. (1998). A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. Embo J *17*, 6747-6756.

Hadorn, E. (1955) Letalfaktoren in ihrer Bedeutung für Erbpathologie und Genphysiologie der Entwicklung. Thieme-Verlag, Stuttgart (Original der englischsprachigen Veröffentlichung von 1961).

Hall, J. C., Siegel, R. W., Tompkins, L., and Kyriacou, CP. (1980). Neurogenetics of courtship in *Drosophila*. Stadler Genet. Symp. 12, 43-82.

Herbert, K. M., La Porta, A., Wong, B. J., Mooney, R. A., Neuman, K. C., Landick, R., and Block, S. M. (2006). Sequence-resolved detection of pausing by single RNA polymerase molecules. Cell *125*, 1083-1094.

Hild, M., Beckmann, B., Haas, S., Koch, B., Solovyev, V., Busold, C., Fellenberg,K., Boutros, M., Vingron, M., Sauer, F., *et al.* (2003) An integrated gene annotation and transcriptional profiling approach towards the full gene content of the Drosophila genome. Genome Biol. *5*, R3.

von Hippel, P. H. (2006). Transcriptional pausing caught in the act. Cell *125*, 1027-1028. Hiraoka, Y., Dernburg, A.F., Parmelee, S.J., Rykowski, M.C., Agard, D.A., and Sedat, J.W. (1993). The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol *120*, 591-600.

Holmes, D. S., and Quigley, M. (1981). A rapid boiling method for the preparation of bacterial plasmids. Anal Biochem *114*, 193-197.

Horiuchi, T., Giniger, E., and Aigaki, T. (2003). Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. Genes Dev *17*, 2496-2501.

Imanishi, T., Itoh, T., Suzuki, Y., O'Donovan, C., Fukuchi, S., Koyanagi, K.O., Barrero, R.A., Tamura, T., Yamaguchi-Kabata, Y., Tanino, M., *et al.* (2004). Integrative annotation of 21,037 human genes validated by full-length cDNA clones. PLoS Biol. *6*, e162.

Ito, T., Takeshima, Y., Sakamoto, H., Nakamura, H., and Matsuo, M. (2001). Purine-rich exon sequences are not necessarily splicing enhancer sequence in the dystrophin gene. Kobe J Med Sci 47, 193-202.

Ivanov, I.P., Simin, K., Letsou, A., Atkins, J.F., and Gesteland, R.F. (1998). The Drosophila gene for antizyme requires ribosomal frameshifting for expression and contains an intronic gene for snRNP Sm D3 on the opposite strand. Mol Cell Biol. *18*, 1553-1561.

Jehan, Z., Vallinayagam, S., Tiwari, S., Pradhan, S., Singh, L., Suresh, A., Reddy, H. M., Ahuja, Y. R., and Jesudasan, R. A. (2006). Novel noncoding RNA from human Y distal heterochromatic block (Yq12) generates testis-specific chimeric CDC2L2. Genome Res *17*, 433-440.

Jowett, T., Rizki, T. M., and Rizki, R. M. (1986). Regulation of synthesis of larval serum proteins after transplantation of larval fat body into adult Drosophila melanogaster. Dev Biol *116*, 23-30.

Kandel, E.S., and Nudler, E. (2002). Template switching by RNA polymerase II in vivo: Evidence and implications from a retroviral system. Mol Cell *10*, 1495-1502.

Kiesler, E., Hase, M. E., Brodin, D., and Visa, N. (2005) Hrp59, an hnRNP M protein in Chironomus and Drosophila, binds to exonic splicing enhancers and is required for expression of a subset of mRNAs. The Journal of Cell Biology *168*, 1013–1025

Kikumori, T., Cote, G. J., and Gagel, R. F. (2001). Promiscuity of pre-mRNA spliceosomemediated trans splicing: a problem for gene therapy? Hum Gene Ther *12*, 1429-1441.

Kikumori, T., Cote, G. J., and Gagel, R. F. (2002). Naturally occurring heterologous transsplicing of adenovirus RNA with host cellular transcripts during infection. FEBS Lett *522*, 41-46.

Klemenz, R., Weber, U., and Gehring, W. J. (1987). The white gene as a marker in a new Pelement vector for gene transfer in Drosophila. Nucleic Acids Res. *15*, 3947-3959.

Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I., and Khorana, H. G. (1971). Studies on polynucleotides. XCVI. Repair replications of short synthetic DNA's as catalyzed by DNA polymerases. J Mol Biol *56*, 341-361.

Knoop, V., Schuster, W., Wissinger, B., and Brennicke, A. (1991). Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria. Embo J *10*, 3483-3493.

Knoop, V., Altwasser, M., and Brennicke, A. (1997). A tripartite group II intron in mitochondria of an angiosperm plant. Mol Gen Genet 255, 269-276.

Koundakjian, E. J., Cowan, D. M., Hardy, R. W., and Becker, A. H. (2004). The Zuker collection: a resource for the analysis of autosomale gene function in Drosophila melanogaster. Genetics *167*, 203–206.

Krauss, V., and Dorn, R. (2004). Evolution of the trans-splicing Drosophila locus mod(mdg4) in several species of Diptera and Lepidoptera. Gene *331*, 165-176.

Kuniyoshi, H., Baba, K., Ueda, R., Kondo, S., Awano, W., Juni, N., und Yamamoto, D. (2002). *lingerer*, a *Drosophila* gene involved in initiation and termination of copulation, encodes a set of novel cytoplasmic proteins. Genetics *162*, 1775-1789.

Labrador, M., Mongelard, F., Plata-Rengifo, P., Baxter, E. M., Corces, V. G., and Gerasimova, T. I. (2001). Protein encoding by both DNA strands. Nature *409*, 1000.

Labrador, M., and Corces, V. G. (2003). Extensive exon reshuffling over evolutionary time coupled to trans-splicing in Drosophila. Genome Res *13*, 2220-2228.

Laible, G., Wolf, A., Dorn, R., Reuter, G., Nislow, C., Lebersorger, A., Popkin, D., Pillus, L., and Jenuwein, T. (1997). Mammalian homologues of the Polycomb-group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S. cerevisiae telomeres. Embo J *16*, 3219-3232.

Lev-Maor, G., Goren, A., Sela, N., Kim, E., Keren, H., Doron-Faigenboim, A., Leibman-Barak, S., Pupko, T., and Ast, G. (2007) The "alternative" choice of constitutive exons throughout evolution. PLoS Genet. *Nov* 3(11), e203.

Lewin, B. (2000). Genes VII (Oxford ; New York, Oxford University Press).

Li, B. L., Li, X. L., Duan, Z. J., Lee, O., Lin, S., Ma, Z. M., Chang, C. C., Yang, X. Y., Park, J. P., Mohandas, T. K., *et al.* (1999). Human acyl-CoA:cholesterol acyltransferase-1 (ACAT-1) gene organization and evidence that the 4.3-kilobase ACAT-1 mRNA is produced from two different chromosomes. J Biol Chem 274, 11060-11071.

Liang, X. H., Haritan, A., Uliel, S., and Michaeli, S. (2003). trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot Cell 2, 830-840.

Lin, Y. J., Seroude, L. and Benzer, S. (1998). Extended life-span and stress resistance in the Drosophila mutant methuselah. Science 282, 943–946.

Lindsley, D. L., and Zimm, G. G. (1992). The genome of Drosophila melanogaster (San Diego, Academic Press).

Liu, X., Jiang, Q., Mansfield, S. G., Puttaraju, M., Zhang, Y., Zhou, W., Cohn, J. A., Garcia-Blanco, M. A., Mitchell, L. G., and Engelhardt, J. F. (2002). Partial correction of endogenous DeltaF508 CFTR in human cystic fibrosis airway epithelia by spliceosome-mediated RNA trans-splicing. Nat Biotechnol *20*, 47-52.

Lund, A. H., Duch, M., and Pedersen, F. S. (1996). Increased cloning efficiency by temperature-cycle ligation. Nucleic Acids Res 24, 800-801.

Maldonado, R., and Herr, A.J. (1998). Efficiency of T4 gene 60 translational bypassing. J Bacteriol. *180*, 1822-1830.

Mason, J. M., Haoudi, A., Konev, A. Y., Kurenova, E., Walter, M. F., and Biessmann, H. (2000). Control of telomere elongation and telomeric silencing in Drosophila melanogaster. Genetica *109*, 61-70.

Mason, J. M., Konev, A. Y., and Biessmann, H. (2003). Telomeric position effect in drosophila melanogaster reflects a telomere length control mechanism. Genetica *117*, 319-325.

Mason, J. M., Ransom, J., and Konev, A. Y. (2004). A deficiency screen for dominant suppressors of telomeric silencing in Drosophila. Genetics *168*, 1353-1370.

Mazur, A. M., Georgiev, P. G., and Golovnin, A. K. (2005a). Analysis of interaction between proteins containing the BTB domain in the yeast two-hybrid system. Dokl Biochem Biophys 400, 24-27.

McKee, B. D., Habera, L., and Vrana, J. A. (1992). Evidence that intergenic spacer repeats of Drosophila melanogaster rRNA genes function as X-Y pairing sites in male meiosis, and a general model for achiasmatic pairing. Genetics *132*, 529-544.

McKee, B. D., Hong, C. S., and Das, S. (2000). On the roles of heterochromatin and euchromatin in meiosis in drosophila: mapping chromosomal pairing sites and testing candidate mutations for effects on X-Y nondisjunction and meiotic drive in male meiosis. Genetica *109*, 77-93.

Metz, C.W. (1916). Chromosome studies on the Diptera II. The paired association of chromosomes in the Diptera and its significance. J Exp Zool 21, 213–279.

Mongelard, F., Labrador, M., Baxter, E. M., Gerasimova, T. I., and Corces, V. G. (2002). Trans-splicing as a novel mechanism to explain interallelic complementation in Drosophila. Genetics *160*, 1481-1487.

Morcillo, P., Rosen, C., Baylies, M. K., and Dorsett, D. (1997). Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev *11*, 2729-2740.

Mount, S. M., and Salz, H. K. (2000). Pre-messenger RNA processing factors in the Drosophila genome. J Cell Biol *150*, F37-44.

Muller, H. (1930). Types of visible variations induced by X-rays in Drosophila. Genetics 22, 299–334.

Nègre, N., Brown, C. D., Shah, P. K., Kheradpur, P., Morrison, C. A., Henikoff, J. G., Feng, X., Ahmad, K., Russell, S., White, R. A. H., *et al.* (2010). A Comprehensive Map of Insulator Elements for the Drosophila Genome. PLoS Genetics *6*, e1000814

O'Keefe, L. V., Smibert, P., Colella, A., Chataway, T. K., Saint, R., and Richards, R. I. (2007). Know thy fly. Trends Genet 23, 238-242.

Okamura, K., Balla, S., Martin, R., Liu, N., and Lai, E.C. (2008). Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol *15*, 581-590.

Okamura, K., Balla, S., Martin, R., Liu, N., and Lai, E.C. (2008). Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol *15*, 998.

Pai, C. Y., Lei, E. P., Ghosh, D., and Corces, V. G. (2004). The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell *16*, 737-748.

Pardue, M. L., Rashkova, S., Casacuberta, E., DeBaryshe, P. G., George, J. A., and Traverse, K. L. (2005). Two retrotransposons maintain telomeres in Drosophila. Chromosome Res *13*, 443-453.

Pasman, Z., and Garcia-Blanco, M. A. (1996). The 5' and 3' splice sites come together via a three dimensional diffusion mechanism. Nucleic Acids Res 24, 1638-1645.

Pel, H.J., Rep, M., and Grivell, L.A. (1992) Sequence comparison of new prokaryotic and mitochondrial members of the polypeptide chain release factor family predicts a five-domain model for release factor structure. Nucleic Acids Res. 20, 4423-4428.

Puttaraju, M., Jamison, S. F., Mansfield, S. G., Garcia-Blanco, M. A., and Mitchell, L. G. (1999). Spliceosome-mediated RNA trans-splicing as a tool for gene therapy. Nat Biotechnol *17*, 246-252.

Randau, L., Munch, R., Hohn, M. J., Jahn, D., and Soll, D. (2005). Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5'- and 3'-halves. Nature 433, 537-541.

Read, D., Butte, M. J., Dernburg, A. F., Frasch, M., and Kornberg, T. B. (2000). Functional studies of the BTB domain in the Drosophila GAGA and Mod(mdg4) proteins. Nucleic Acids Res 28, 3864-3870.

Robertson, H. M., Preston, C. R., Phillis, R. W., Johnson-Schlitz, D. M., Benz, W. K., and Engels, W. R. (1988). A stable genomic source of P element transposase in Drosophila melanogaster. Genetics *118*, 461-470.

Rodriguez-Martin, T., Garcia-Blanco, M. A., Mansfield, S. G., Grover, A. C., Hutton, M., Yu, Q., Zhou, J., Anderton, B. H., and Gallo, J. M. (2005). Reprogramming of tau alternative splicing by spliceosome-mediated RNA trans-splicing: implications for tauopathies. Proc Natl Acad Sci U S A *102*, 15659-15664.

Rong, M., Durbin, R. K., and McAllister, W. T. (1998). Template Strand Switching by T7 RNA Polymerase. J Biol Chem 273, 10253-10260.

Ross, S.M. (Übers. Heinisch, C.) (2006) Statistik für Ingenieure und Naturwissenschaftler. 3. Auflage; Elsevier GmbH, München, Spektrum Akademischer Verlag (ist ein Imprint der Elsevier)

Rubin, G. M., and Spradling, A. C. (1982). Genetic transformation of Drosophila with transposable element vectors. Science *218*, 348-353.

Ryder, E., Blows, F., Ashburner, M., Bautista-Llacer, R., Coulson, D., Drummond, J., Webster, J., Gubb, D., Gunton, N., Johnson, G., *et al.* (2004). The DrosDel collection: a set of P-element insertions for generating custom chromosomal aberrations in Drosophila melanogaster. Genetics *167*, 797-813.

Ryder, E., Ashburner, M., Bautista-Llacer, R., Drummond, J., Webster, J., Johnson, G., Morley, T., Chan, Y. S., Blows, F., Coulson, D., *et al.* (2007). The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. Genetics *177*, 615-629.

Saiki, R. K., Bugawan, T. L., Horn, G. T., Mullis, K. B., and Erlich, H. A. (1986). Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature *324*, 163-166.
Sambrook, J., and Russell, D. W. (2001). Molecular cloning : a laboratory manual, 3rd edn (Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press).

Sambrook, J., and Russell, D. W. (2006). The condensed protocols from Molecular cloning : a laboratory manual (Cold Spring Harbor, N.Y., Cold Spring Harbor Laboratory Press).

Scamborova, P., Wong, A., and Steitz, J. A. (2004). An intronic enhancer regulates splicing of the twintron of Drosophila melanogaster prospero pre-mRNA by two different spliceosomes. Mol Cell Biol 24, 1855-1869.

Sironi, M., Menozzi, G., Riva, L., Cagliani, R., Comi, G. P., Bresolin, N., Giorda, R., and Pozzoli, U. Silencer elements as possible inhibitors of pseudoexon splicing. Nucleic Acids Res. *32*, 1783-1791.

Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol *98*, 503-517.

Sperling, R., Sperling, J., Levine, A. D., Spann, P., Stark, G. R. and Kornberg, R. D. (1985). Abundant nuclear ribonucleoprotein form of CAD RNA. Mol Cell Biol *5*, 569–575.

Stogios, P.J., Downs, G.S., Jauhal, J.J., Nandra, S.K., and Privé, G.G. (2005). Sequence and structural analysis of BTB domain proteins. Genome Biol *6*, R82.

Takahara, T., Tasic, B., Maniatis, T., Akanuma, H., and Yanagisawa, S. (2005). Delay in synthesis of the 3' splice site promotes trans-splicing of the preceding 5' splice site. Mol Cell *18*, 245-251.

Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24, 1596-1599.

Tartof, K. D., Hobbs, C., and Jones, M. (1984). A structural basis for variegating position effects. Cell 37, 869-878.

Thomas, S. E., Soltani-Bejnood, M., Roth, P., Dorn, R., Logsdon, J. M., Jr., and McKee, B. D. (2005). Identification of two proteins required for conjunction and regular segregation of achiasmate homologs in Drosophila male meiosis. Cell *123*, 555-568.

Thomas, S.E., and McKee, B.D. (2007). Meiotic pairing and disjunction of mini-X chromosomes in drosophila is mediated by 240-bp rDNA repeats and the homolog conjunction proteins SNM and MNM. Genetics 177, 785-799.

Tsuda, M., Egashira, M., Niikawa, N., Wada, Y., and Honke, K. (2000) Cancer-associated alternative usage of multiple promoters of human GalCer sulfotransferase gene. Eur J Biochem. 267, 2672-2679.

Vazquez, J., Belmont, A. S., and Sedat, J. W. (2002). The dynamics of homologous chromosome pairing during male Drosophila meiosis. Curr Biol *12*, 1473-1483.

Wagner, E. (2007). Funktionelle Analyse der konservierten FLYWCH-Protein-Domäne des *mod(mdg4)* Lokus bei *Drosophila melanogaster*. Diplomarbeit, Martin-Luther-Universtät Halle-Wittenberg, Institut für Biologie, Institutsbereich Genetik, Abteilung Entwicklungsgenetik

Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P., and Burge, C. B. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature doi:10.1038/nature07509

Wang, Z., and Burge, C. B. (2008) Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA *14*, 802-813.

Weiler, K.S., and Wakimoto, B.T. (1995). Heterochromatin and gene expression in Drosophila. Annu Rev Genet 29, 577-605.

Weiler, K. S., and Wakimoto, B. T. (2002). Suppression of heterochromatic gene variegation can be used to distinguish and characterize E(var) genes potentially important for chromosome structure in Drosophila melanogaster. Mol Genet Genomics *266*, 922-932.

Wood, V., Gwilliam, R., Rajandream, M.A., Lyne, M., Lyne, R., Stewart, A., Sgouros, J., Peat, N., Hayles, J., Baker, S., et al. (2002). The genome sequence of Schizosaccharomyces pombe. Nature *415*,871-80.

Xie, H. B., and Golic, K. G. (2004). Gene deletions by ends-in targeting in Drosophila melanogaster. Genetics *168*, 1477-1489.

Yamamoto, D., Jallon, J. M., and Komatsu, A. (1997). Genetic dissection of sexual behaviour in *Drosophila melanogaster*. Annu. Rev. Entomol. *42*, 551-585.

Yang, L., Lee, O., Chen, L., Chen, L., Chang, C.C.Y., Zhou1, P., Wang, Z.Z., Ma, H.-H., Sha, H.-F., Feng, J.-X., *et al.* (2004). Human acyl-coenzyme A:cholesterol acyltransferase 1 (acat1) sequences located in two different chromosomes (7 and 1) are required to produce a novel ACAT1 isoenzyme with additional sequence at the N-terminal. J Biol Chem Manuscript M408155200 (August 18, 2004)

Zeng, X. C., Luo, F., and Li, W. X. (2006). Characterization of a novel cDNA encoding a short venom peptide derived from venom gland of scorpion Buthus martensii Karsch: transsplicing may play an important role in the diversification of scorpion venom peptides. Peptides 27, 675-681.

Zhao, H., and Dean, A. (2004). An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucl Acids Res *32*, 4903–4914.

**Anhang 1**: Primer für 50kb tiling array für Region 26B auf Chromosom 2L (ChIP-*on-membrane*-Experiment, siehe 3.1.5.1): Die Zahl bezeichnet die Position innerhalb der Sequenz zwischen beiden Defizienz-P-Elementen (Minus-Vorzeichen: Primer bindet vor dem "vorderen" P-Element); Sequenz zwischen den P-Elementen endet bei 54284, danach: Amplifikate der 3' flankierenden 3kb

(Spalte 1 auf der Membran in Abb. 3.11) mel-3000F GTATCTACATCAAATCGCCGCACACC mel-1884B GCCGTGCTGCCCAATCAATAATC mel-1908F CGGATTATTGATTGGGCAGCACG mel-866R CCGAACCCAGTGCGATTGTGTG mel-1100F TCCTGATCTATATGCACCGACTTGGC 240B AGCAGCTGATTTCACTGGTCTCGC 117F CACACTGGCGAGCAGAATTTCATACG 1015B GGTGAATTTCAATATGCATTTCGGAAAG 913F GTGATCAAGAACAAGCAATGCGGCTAC 2133B TATTAGTCAATGTCCACGAAGACGGAATG 2076F GTACGCTATGTGTCTAACTAAAGCAAACGC 3682B TTGCTCAGCTGGACGGAGAGTCTGG 3665F CTCCGTCCAGCTGAGCAACTGC 4903B GGAGGTAGCCAATGCACTAAGGTATGTTG 4867F CGTATTTCCAACATACCTTAGTGCATTG 6050R TCTCCTCGAGGTGAGTTGCAGTTG (Spalte 2)

6026F GCAACTGCAACTCACCTCGAGGAG 7497R CTTTAAGAGCCACCTCACTCTGATGTACTACC 7465F TGGTAGTACATCAGAGTGAGGTGGCTC 8728R GCTCAGTAAATGGATTCAGATCGCAG 8712F GAATCCATTTACTGAGCAGTTGGGGCT 9923B CAACCAACTGCACACGCAGATG 9859F CCATCGGCGAGTTCAGAGGACTCAG 11469R GTCCTGAAGCAACTAACCTTTGATGAGAC 11452F GGTTAGTTGCTTCAGGACCTTGCCAC 12567R CAGTGAGGGTAAATTGTTGGTGCACG 12559F TTCAATGTCGTGCACCAACAATTTACC 13797R AGCCTCACGAGCCTCCAGCTG 13745F GTCTTGCCCAGAAATCGCTGCTG 15158B CGATGGTTGACACAAGCCAAATGC 15094F GCACATCTGCAGGGGGCTAATAACG 16678B CATTCATGGGCAGATACAGATAGCTATCC (Spalte 3)

16617F CGGAACAATTCATTAGAGAGCGGG 18136B CCGTATGTTGTGTGCACTTGCAGC 18111F GCGCTGCAAGTGCACACAACATAC 19434B GCATTATATCCTGATCATCTCGCACTCC 19367F TCGCTGAGATTGTGTATTCCTGGTGC 20664B GTTGCGGTTTCCAGCGATTCCTC 20575F GGCATACAACAAATGAAAGCGAAACG 21868B GCTCTCGACGGTAACAACACTGATCC 21758F CGCATTGATCACTTATCGCTCTGAATTG 23031B CGATCCGCGAAAGGTATTGCTGG 22964F TGCCTTGGTATGAACACAGCGC 24407B CGGTCACACTGGCACACAACGTG 24334F TCAACCATTTTGTGTAATTCGCGG 25824B AATGACTAGACACATCCAATGCAGTGC 25798F GCACTGCATTGGATGTGTCTAGTCAT 27172B TCCATAGCCACCTCTACTATTCCGCC (Spalte 4)

27132F CACGTCTTGATTGAAGGCGGAATAGTAG 28402B GAGCCACACTTAGCAAACTGCCTTCA 28373F TGACTGAAGGCAGTTTGCTAAGTGTGG 29713B CCACTACGTGCAGCCTTCTCGTCC 29675F ATCCGCAACTAATTAGGACGAGAAGG 30982B TGCGGCTTTCGTGTCAGTTTAATTAG 30933F CGCAGCCACATTTGAGCATTTCTAC 32244B GACATCCGCTGGCTTATGCTCGTC 32122F TATTGAACCTCCGAGGAAGTGGCTAATC 33460B GGATCTGGTTGCTCCTAGTGGCC 33400F GGCATCAATGGAGAAATCGCTGTG 34796B GACTGGCCTCGCCTATGCACTAATAG 34787F GAGGCCAGTCGCGTAGTTGTCTG 36139B GACGGCTGGGCGGTATATGAAC 36038F GCAAATTGCGTAGGACTCGTTTAGC 37376B CACATCACGACCTCTACATGGACCAC (Spalte 5)

37308F TCGAATCTAGGGCCAGTTGCTCG 38695B AGTCGCGTTCCAAGTTGATGCC 38626F GTTGATGACGAAGTCATTCCCTTGAC 39959B GAGAATTGAGATCGTTGCAGTGCAG 39956F TCTCGGGTGGTTCGGGACATG 41296B GCCCTATGTGCCATCTTCATTCGAAG 41221F CGCGTTGTTAAACATAATCTGCCAAG 42558B GACGGAGGATTGCTTGTTTGCG 42486F CCGATAGATCCACTCTAAGGCCACTC 43902B GCAAGCTCTGTGGAGATACAAGGATC 43808F GGTTCAATTTATTCTCCATTTCGGC 45400B CACGACATGGTCATCCTTCGCTAC 45287F CATGCGCACGGACACCACG 46830B TGGCACGATGGACATGGACAGC 46765F TGAATGGCTTGAGAATAGAGGAAGGTG 48233B CAAGATAATGGACTACGAGAGCGAGAAG (Spalte 6)

48181F GACGAGTGCTGATCTGGTTGACTATCTTC 49599B GTCTTTCAATTTGGTCACTTCCGTTCAG 49498F TGAGCAAGCAAGGTATGAACACGTAC 50801B CTTACAGTTCTGTGTGCGGCTTAATTAC 50715F CCATCGATACATGTTCCAGCTCTGTAAC 52274B CGGACCTCGGTAGTTAATTGGCG 52214F CGGTGTGGGAAATACGCATGC 53771B GCCAGTGATAAACGAGTGCAGTCTAAATAC 53564F TCGAACAGAGTGAGCAAAAGCAACC 54810B CGGGCAGGACACTTTCTAATTAGTTTCG 54782F GCGAAACTAATTAGAAAGTGTCCTGCC 56302B CAATACGGAGCAGCAATTAGTCGC 56183F TGCCATGCAAGAGATATGAATCACCG 57283B CCAGGAGATCGGCAATGCAGACG

Ends in zum *Knock out* des isoformspezifischen Exons von *mod(mdg4)*-64.2:

pTV-Seq\_F GGAGAGTCACAAAACGAATAGAG pTV-Seq\_B CTGTCAAGTAGACCCATACGGC 3800fwd\_SacI\_NotI tgagetegeggeegeCTCGCTCTGGCTCGCACG 5561rev\_Cfr42I cegeggGTTCGGCTTCACGTTGACATCAG 5563fwd\_Kpn\_Xba tggtacetetagaCGTGAAGAGCTGCAACTACTCAAGG 7107Stop-rev\_Kpn tggtacectaATCTGCGAGAGAGTCGAGGAAAAACCG 7117fwd\_Kpn tggtaceAGTTTCATTCGCAGCCAGAAGAAGAAC 11447rev\_Not-Xba tetegageggeegeGCTGGAGCAATACTGGATGATGAATC 11447rev\_Not-Xba2 ttetagageggeegeTGGAGCAATACTGGATGATGAATC 1-SceI-Not1 GGCCTAGGGATAACAGGGTAAT I-SceI-Not2 GGCCATTACCCTGTTATCCCTA 5563fwd\_SacI\_Xba tgagetetetagaCGTGAAGAGCTGCAACTACTCAAGG 7080rev\_SacI tgageteGCATGGGGTTTAGTGGGCATAATAT

Primer für Drosophila virilis-Transgene: int4-amp-fwd CTTGGTGATTTGTGCTAATAAAACATAATTCTCTTACTGTCATGCC int4-amp-rev GAATCGTATGATTAAAATGTCGTGTCGGTCGCCGCATACACTATTC k404-mut-fwd GCTGATGCAGCTGGCTAAATCCAATTTATAC k404-mut-rev GTATAAATTGGATTTAGCCAGCTGCATCAGC ESE-mut\_fwd CAATTTATACGCAGCCAAAAAAAAAAACGCACAGCTTGTC ESE-mut\_rev GAC AAG CTG TGC GTT TTT TTT TTG GCT GCG TAT AAA TTG 64.2 Bam fwd GGATCCTAGAGGCTATCTAAACGAAAGTTAC 64.2 Bam rev GGATCCATGCAGCTTAAGCTTGTGCGAC 60.1 Sac fwd CCGCGGTAGAAGGTGGCACATTTAGTT 60.1 Sac rev CCGCGGGTCGTGTATGAGCATCAAGGAGG 2,7kb Apa-Xba rev GGGCCCTCTAGAGAAAGGCGAGAGG vir7078fwd GTGTGACTTGTGTGTGGTGAATGATCCC vir64.2only-Xba-rev tctagaTAACAGTAATTGTAACTAGTTGTCTGCTTGTT ECFP Bam fwd GGATCCATGGTGAGCAAGGGCGAG ECFP Bam rev GGATCCTCAATAATATTGGATCTATAACT ECFP-Bam\_rev2 GGATCCTTACTTGTACAGCTCGTCCATG EYFP Sac fwd CCGCGGATGGTGAGCAAGGGCGAG EYFP Sac rev CCGCGGTTACTTGTACAGCTCGTCC

Primer für Real-time RT-qPCR und qPCR: RT-EGFP-fwd CTGGTGAACCGCATCGAGCTGAAGG RT-EGFP-rev GCGGATCTTGAAGTTCACCTTGATGCC rp49\_fwdTGTCCTTCCAGCTTCAAGATGACCATC rp49\_rev CTTGGGCTTGCGCCATTTGTG mel ex2-rev2 (fit-vir) TTGCGGAAAAAGGGCGAGCAGAC mel\_ex2\_fwd TTCTTCCGCAAGATGTTCACTCAGATG mel\_ex3\_rev TGAATTGGATGAGGTCCTTCAGCG mel-ex4-rev GAGGTGCTGCTGGCGGCGGG mel-ex3-fwd GAACAACGTCAGCCACTCGGCGC mel\_ex4\_fwd TCCAAGGCTGTGGTCAAGCAACAGTCC neu-mel-ex4-fwd CAAATACGAGCGGTGGCGGAGTGAC mel\_64-2\_rev TGGCTGCGAATGAAACTGATCTCCG mel\_60-1\_rev TTGGAGTAGTTGTGGCAGCGCCAATAC mel\_55-1\_rev TTTGAATCGGTGCTATATGTCGTGCAG mel\_53-1\_rev TGGTGAAGAAGAACTGGGTGGCGTCAC mel52.4rev CGTCGGCAAACACAACTGTGGCG mel52.4rev GTTCCGTCGGCAAACACAACTGTGG mel54.7rev GGCAGGTGCAACTTGAAGTCATCCTC mel53.6rev GTTCTTCCCACCGCGGCGATTG mel55.8rev CCTCGGTTGGAGCGCACATACTG mel55.6rev GGAGATGGCGCAATGTCGAAAGATG vir\_ex1\_fwd GCACCGTTTGGTGTGTGTCTGTCTGC

genomische *mod(mdg4)*-Primer (*D. melanogaster & D. virilis*): mel1561fwd CGCACACATTGTACCTGACTATCAGATTC mel2002fwd CATTTCGAATCTTGGCATTGCACC mel2834fwd GGCCGCGCTAGCAAAAAACTCTG Mod-trastart

tgcggccgcACACTTCTAATTTTCACGTCAAAGAACTCG 93DgemF4 ACCGATTGGTGTTATCCGTCTG Primer501 CTTCCAAGGCTGTGGTCAAGC mel-6181-rev ATCCGTAAATATCGTGAAATTCTTCAGAC 6668fwd TGCATCCGAATTACACGGCCTATTTG mel-6699-rev TGTGAACAAATAGGCCGTGTAATTCG 6704fwd ATTATTTCCAGCTTGTGACGGTGTGTTTG 64.2\_RT TCCTTCCGTGGTTCG 64-2\_fwd\_Xba tctagagatacggagatcagtttcattc 64-2\_rev\_Kpn ggtaccctaggggtgctcgctcttc 64.2\_fwd\_Kpn ggtaccgatacggagatcagtttcattc 64.2\_rev\_Xba tctagactaggggtgctcgctcttc mel7111fwd GAGATCAGTTTCATTCGCAGCCAG mel7723fwd CTACAGTCAATCAGTTGGAAAGTC 60.1\_fwd\_Kpn ggtaccgaggacgagctggtttttatag 60.1\_rev\_Xba tctagactattcgtgcatgagcatcatg mel8460rev CGATGAACTCTTGCTTCTGCTCC mel8969fwd CGACGATAGAGGAAAATTAGTCCACGAG mel9209rev CTTTATGAGGACGAGGTGGGCAATC

vir\_ex2\_rev TCAGGTCCTTCAAAGCCGAATGG vir\_ex3\_fwd CGTGGTCAAGCAGCAATCGCAAAG vir-ex2\_rev\_neu ATCAGGTCCTTCAAAGCCGAATGGC vir-ex1-fwd-2 TTTACCCAAATGCCATCGAATACCCAC vir-ex2-rev-2 CCTCGCCGCAATACATAAACTGAATCAGG vir-ex2-fwd GCGGAGTCGCTGCAAATAAAGGG vir-ex3-rev TCTCATCGCCCAACACATCGTCAACGG vir-ex1-fwd3 CGCACCGTTTGGTGTGTCTGTCTGC vir\_64-2\_rev GTTGTCTGGCCATTCGCTTGGGTC vir\_60-1\_rev GGGCTCTCGATGAACAGCAGCTGAC vir\_55-1\_rev CGAGTTGCGTGTTCTCTGGCTGTAGG vir\_53-1\_rev CTGACCCTTGGTGAAGTAGAAGATCGG HeT128fwd GCCAAAGACTCTCACGCGCATAAC HeT309rev TGTTATGGCGGCAGCTTGTCG HeT286fwd AACCGACAAGCTGCCGCCATAAC HeT483rev CGCGTGGAGTATTATGTAGATTTAGCG HeT938fwd CATCCTGCTGCCGACACACAG HeT1088rev ATGCAGTGGCAACAGGAGGTGG HeT1900fwd CCATGACGACTCCTCTGTCACGATG HeT2103rev CGCCGCAGTCGTTTGGTGAGTATC Tsp26A-785F GCTGGAGGCCCATCTGATTAGTGTG Tsp26A-905B CATCCATTCTTCGCCTGCTTGAAC

9644 TGGAAGGCTGAACCTAAAGAACCC mel9884rev GGGTAATATCATCCTTTCCTCATCCACTC 10613 fwd ATCCACTTGGTGCCGCGTCCATT 10798 TGGGTTGTGGAGAAAGTTCGGAG mel11335fwd GTGCCGCCCACAATGCCC mel11686rev GGCGCTGCAACCAATGGTG mel11961fwd TCTGATTATAGGCGACGCTTCTTTGG 12030rev GTAGCTACAAAGTATATCTGACCCAGCC 12094fwd GGCAGTGCCAGTAGGTTGTGGTATC mel12276rev GACATCTTTCGACATTGCGCCATC mel12514fwd CGAGTGTTAACGCAGAGTGGATTCC mel12821rev AACTCGAAAATAGCGCAGTATGTGC mel12978fwd TGCTACTTCTTAGAGATACGTCCGCTCAC 13032rev GCCATAATCACTCCCGTACGGAT mel13208rev TCGCCACAGTTGTGTTTGCCG 13345fwd CCAAATGAACAGTGATTCCATTACACC mel13415fwd TGTGACTAACAATTGCCGAAGCCTG mel13736rev CATGCTACCAACTGGTGCCCAATC mel13846fwd

ACCTTTATTAGACTAATGAGATGGCACAGG 1-UKN-B GGCTTAAAGGCATCCGCCGGATG 2-UKN-B GGATTTGGTCACCACACGGGCGGAGC 14028rev CTTCACCCTCAATCGTCGGATCA mel14161rev TGCACCTGCCTCTCCTCGTG antiHA1224F-rev CAGCCCTGGGTGCAAGCGCTTG HA1224F CAAGCGCTTGCACCCAGGGCTG HA1224B GGATGCTCCGCGGGCTTCGGGATGGCAG 14697fwd CTAACACGGAACGAGCTGTTTGCATGACG 14865fwd GCCCTTTTACCGAGGACTCGCTGTGC 14892fwd CGAGTGCAGCCCTGGCATTGTTGC mel14725rev CGTCATGCAAACAGCTCGTTCCGTG 14907fwd CATTGTTGCTGCCATTTCCTTGTCTAC mel15246fwd ACCAGTAACTGATAGCGTGCAGAAGTC mel15614rev GTGGTCAATGAACTCCTGTACTGCG mel15811fwd GTGTCATCCAGTCGCTGAAGGC 15967fwd CACGCTACGTGAAACACAGCTGCC 16106rev TTCGTCCAGCAGGTCAGTCGTG mel16121rev CTGCAGCTCCGGAAATTCGTC mel16318fwd GCCTTCGCCGACGCCTG mel16628rev GCACAGTGCCGTTGGCCTTG 17121fwd CAAATCGAGCCACCTAAACCTAAGCTA mel17370fwd CAGTCTTGCTGCTCATAGACGTCCG 17473rev TGCAACGCCAGGATCCGATAAG mel17694rev AGCTGTGTCTATTACCTATGCAGTGCAG mel18343fwd GTATAGGAAGCGGCTACATCTTGGG 18421fwd CGGCGGCTGTGAGGGAACTCAACTTC 18446fwd CTTGTGGATCAGCATCCCAGCCGC 18473fwd GGCCGCCTCAATACGCTTGTTGTCGC mel18622fwd GCACTTAACCGATCGGTTTTGGACG mel18701rev ACCGCTCCAATCTTAAGTTCTTCGG 18782rev AACACGTCCGCAACTGTGGTCC mel19116fwd CAGTGCTTTTTGCAGTCGTCGC mel19175rev GAAGAAGTGGACCCCAATGATTTCCG 67.2-B-RT atatgactcccgattcgccagg 20046revGGTGCCAAACATCGATAACATAGTGAG mel20828fwd GTCCACCTTGCTACCAATCAACCC mel21011rev CTATTTATTGCAGGCAATTCCCGATAC 21138fwd CGCGTGGCCAGTGGATTGATAAGC mel21219fwd ACATGTACAAGAAGGAGGCCAGTTTC mel21538rev TGCCACATGAGTTTAATGAGCTTATGG mel21518rev CTTATGGTAGGTAATGCATGCAACTGG mel9557fwd GGCTGCACGACATATAGCACCG mel10165fwd CGAGTTAGGAAGATCATATAGGCGTTC mel10475rev TGTGATCCAAAATGTAACTGAGAGTGTG mel19415rev TACGAGGGCGAGCACGTGCAC mel19456fwd ACTCCTCGCCGTGCTCACGG mel19792rev CACATCCGCATCTGCAACTAAG mel21594fwd AGACCAGAACAAGGGCGTCCTC 21718rev CATGATGCCTGGTGAGTCGAGGTCG mel21881rev TGGTAAAATGGTATTCGGTATATTGTACATTG mel21983fwd CAAATTCGACTACCAGATCAGCGTG mel22537rev GAGCCGTACTTTCGCGCCTTAG mel22822fwd GTTCTGTTGCGTACTACTCGTACATCACC mel23124rev CGATTTTCAAGATTTGTATTCTACAATAAATAAGC mel23332fwd ACCGTCGCAGTAACCTGAAGACC 23697fwd AAGGACGCTCAACTTAAGCATCGAGG mel23737rev GCAGGTTGTTAAGGTCCTCGATGC mel23938fwd CATTTGATGTGTTAACGGATCCCATC mel24263rev TGTATGTGTCCCGATTCAGACTTCTG mel24887fwd TAAGCTGCAACGTCTACATGATTACCC mel25186rev GAGAGGCGGAACATCGGTTCTTAAC mel25097fwd AACTGGCTGTCTTCGGCACTGG 25195rev AATAAGTACGAGAGGCGGAACATCGG mel-25573-fwd CATGATCACAGCCGGAAATTCCCTAG mel25675rev CTTAAATGTAAGCCTATGACGCATCCAG mel25870fwd TCGCGGACTCCAAGAAGAACGG mel26169rev CGGTTTCATTATCCAACTCAGCCTC mel26492fwd GCAGATTCAGTTCTCCGTGTCCAAAC mel26791rev TGCGCCATGCTCTGAGGAAGAC mel27038fwd AATGGCATTCGCTTTCTGATCATGAG mel-27153-rev GTCTCCTTTAACATGGTGATGCGTG mel27337rev AAGTTCATTGAGCTCCTCCTCGTGC mel27559fwd TCGAGTACGTTGTCAGCCAGAAGG mel27830rev TGGAATTCATAACCATAGCCAAAAGATG mel28300fwd GTACCTCACATTTGGCCACTTTTAGTTG mel-28414-fwd GTGCCAGGTATCGAAGTTCGAACTG mel28573rev TGTATAAAAATGCTTTAAGATTTATTCAACAGG

TGTATAAAAATGCTITTAAGATTTATTCAACAGG mel28816fwd CGCAAGCGAGGTATAATGATTGTCAAG mel29160rev GCTAATGCTCGGGATCTTTAGACTTAAGG mel29920fwd TGCATGGCCAGCTCTCAAATTGATAC mel30682rev CGAGCCAAGGGAAATTGTATCTATGGG

Primer für Antigenkonstrukte zur Generierung polyklonaler Antikörper gegen Mod(mdg4)-64.2 und -60.1: 64.2-AB\_pKM\_Nco\_fwd CCATGGATACGGAGATCAGTTTCATTC 64.2-AB\_pKM\_Hind\_rev AAGCTTCTAGGGGTGCTCGCTCTTC 60.1-AB\_pKM\_Nco\_fwd CCATGGAGGACGAGCTGGTTTTTATAG 60.1-AB\_pKM\_Hind\_rev AAGCTTCTATTCGTGCATGAGCATCATG 64.2-AB\_pGEX\_Eco\_fwd GAATTCGATACGGAGATCAGTTTCATTC 64.2-AB\_pGEX\_Sal\_rev GTCGACCTAGGGGTGCTCGCTCTTC 60.1-AB\_pGEX\_Eco\_fwd GAATTCGAGGAGCAGCTGGTTTTTATAG 60.1-AB\_pGEX\_Eco\_fwd GAATTCGAGGACGAGCTGGTTTTTATAG

Primer zum Nachweis von Splice-Faktormutanten und DrosDel-Defizienzen auf 2L:

Gbp\_Prp19\_rev TGGCGGTTTCGGTTTCACCACAGC SC35\_571fwd CCAGGGATCGCTACACACGTGAGAG tra1-fwd CGCATAACCCTAAAGTTAAAATACTCGCTTG tra1-rev TACGTGACGCGCTGGCGCTTC tra1\_rev2 ATTGGAGGCGGACACCACACG tra1\_rev3 GATGAGCTATTGGAGGCGGACACCAC U2A\_F GTTCATCACCAACTCGCGTCGG U2A\_wt\_B CCCAGGTTCTCGATTTGTGGAATCTTA U2A-mut\_B CCCAGGTTCTCGATTTGTGGAATCTTT heph2\_275rev CGATGTCGGCTGTTGTGCGTC heph03429\_299rev GTGCCCGGGTGGTGTGAAAAAG CG10689\_123rev GCGCTGGGTGCTTTATCACGAG HA3038\_173R GAATAAAACGGGTGTGAAGTGGAGGGC SZ3596\_294F GTCCACTGACGCCAAGTCCAACG HA2983\_280R CAGCGAGTAACAGGTATCCTCTGGTCG HA1599\_216R CCACTCAATAGCAACATGATGATGCACC CB0509\_379R TGCACTTCCTCCGAGTCAAACCGC CB5641\_142F CCAGTGTAATGCAGCTATATTGGGTTGG SZ3215\_163R TGACAGCTCGGCTCAAGAACGC CB0337\_250F TGCTGTTTGAACTCGACGACGACG CB0383\_227F ATCACGATACGACAGCCGAAGAAATGG CB5668\_230F CAACGGCAATCGAGCGATCAAG CB0211\_438R GTGATCGTGGCGTGCAGAGACATG

biotinylierte Primer für LAM-PCR (*linear amplification mediated* PCR): Bio14701fwd CACGGAACGAGCTGTTTGCATG Bio18455fwd CAGCATCCCAGCCGCCTTG Vektoretten-Primer:

vec-top\_Bam gatcAATTAAGGAGAGGACgctGTCTGTCGAAGGTAAGGAACGGAcgaGAGAAGGGAGAG vec-top\_Xba ctagAATTAAGGAGAGGACgctGTCTGTCGAAGGTAAGGAACGGAcgaGAGAAGGGAGAG vec-top\_Eco aattAATTAAGGAGAGGACgctGTCTGTCGAAGGTAAGGAACGGAcgaGAGAAGGGAGAG vec-bottom CTCTCCCTTCTCgaATCGTAACCGTTCGTACGAGAATCGCtGTCCTCTCCTT vec-prim ATCGTAACCGTTCGTACGAGAATCGC vec-prim2 AACCGTTCGTACGAGAATCGCC vec-seq ATCGCTGTCCTCCTT

sonstige Primer:

Bam-Pst-Lig GATCTGCA 1896 CGACGGGACCACCTTATGTTATTTCATCATG 1896-2 catgatgaataa cataaggtgg tcccgtcg Act496fwd CCAAGGCCAACCGTGAGAAGATG Act795rev TGTCACGGACGATTTCACGCTCAG rp49\_RT-F GATGACCATCCGCCCAGCATAC rp49\_RT-B AGTAAACGCGGTTCTGCATGAGC aTub-RT-F TGACTCCCAGCTGTGTGTCGCATC aTub-RT-B TTGCGAATCCTGTCCAGGACCAC mel-mau\_ex4\_fwd CGCCCAACTTGTGCCGCAACAGATC mel-mau\_64-2\_rev

CTTATACAGTTGTCGCTGGCCAATCCTCG mel-mau\_55-1\_rev CCTTCATGCGAGGCAATCCCACATAC mini white 5' rev GTTCAATGATGTCCAGTGCAG mini white 3' fwd GCTTGGATTTCACTGGAAC m-white-5'-fwd GCCAAGAGGATCAGGAGCTATTAATTC m-white-3'-rev CCGAAGTCTTAGAGCCAGATATGCGAG HeT-A\_5'UTR\_fwd tttactctgtctccgtacctccaccagcaaagt HeT-A\_5'UTR\_rev

GTTGGGTTTTTGTTATATTAAACGATAAGTGTAAG HeT-A\_3'UTR\_fwd ccaattaatcttacaactacttatattctttaat HeT-A\_3'UTR\_rev TAACTTTGCTGGTGGAGGTACG EGFP-A\_fwd ATGGTGAGCAAGGGCGAGGAG EGFP-A\_rev GTTGTGGCTGTTGTAGTTGTACTCCAGC EGFP-B\_fwd GTCTATATCATGGCCGACAAGCAGAAG EGFP-B\_rev CCTTGTACAGCTCGTCCATGCCG EGFP\_RT GGTACCTTGTACAGCTCG

RT-EGFP-fwd2 TGGTGAACCGCATCGAGCTGAAGG RT-EGFP-rev2 CACCTTGATGCCGTTCTTCTGCTTGTC T17anchor

AGATCACATATGTATTCCAAACTTGAACACTTTCC CA07012\_rev

TTCTTCAGACACCCTTTAATTCGGAACCATAT 46\_F GGTCATCACCCGCGACGGACAC 46\_B CTGTCACACTCTTAAGGCGTCCGTTCTC K46\_pr\_F TGGGCTGGAAGCGGTGAGGAGAG AR AATACTCAAGCTATGCATCC T7 GTAATACGACTCACTATAGGGC B2e\_3R-rev TGAGTTCCGATTTCGGCGCGACTG 52.2RT AATGGTAAAATGGTATTCGG KG08515\_F GCCTTGATACACCATCGATTGTTGAGC KG08515 B

CCTTTAACTGGCTACAAGTCGATTGATAGTC KG08515\_B2 CATGCTTATCAATCCACTGGCCACG zam\_gag\_fwd CAAACAACTCGCTCCGTGTTAGAATCAC zam\_gag\_rev TGTCGAGTTGGCCTGGAGTACCATC anti1896 CATGATGAAAATAACATAAGGTGGTCCCGTCG mel11375fwd CGTATTTCAGGTGCATCCCCAGCTCG mel30960rev TGATATTAGGCAAAACGCATCGGC mel29920fwd tgcatggccagctctcaaattgatacc (Andrea) 3'white-fwd GCTCGCATATCTGGCTCTAAGACTTCGG Ubx\_probe\_F GGCCATAAATCTCCAGGTGACGG Ubx\_probe\_R CAGCAGCGAGTCCCATTTCTTCAG 5-HA-5045-F ATTTCTGACCTGTGCCGACTGAGTTC yellow192fwd GATCCTTGTGACCCTGATCACCTTG yellow491rev CGCCAATCTGGATACGGAATTAGC white177fwd GAGCTATTAATTCGCGGAGGCAG white476rev CGGTATGTGTCGCTCGTTGCAG white1374fwd AAGGCCACCTGGTTCATGCAG white1687rev TTGCCCAGAAAGTATGTGTCACAGC abd-a2112fwd AATGGCTGGGTGCGATGGCTTAG abd-a2409rev CTTCCTTAGGCCTTTGCCGCTATTC abd-b2317fwd CAAGAAGACACACTCCGCAGTCTAGG abd-b2619rev ATTCGAAAGCGACTTCAACTATGGG Ubx3319fwd GTTTGAGAGAGTCTTCGCGGGCTAC Ubx3624rev GCGGTAGTACGTATACATCTTCTGCAGG ct-a6195fwd CAGTGCGGAGTTCACGACGAAAG ct-a6494rev CATCGTCGTCGTCCTCCTGTTTG 2R-fwd TTAATAGAAACGCAATAGGACACACAGC 2R-rev CAATGAAACTTACCCAATGAATGTAGGTC Y-Chr\_fwd TTCACTGTTGCTAGGCCACTCCC Y-Chr\_rev CCAGCTTGGACACTTCGAGTTCCC X-Chr\_fwd GGAATCAGAAGGTCGTGTGTGATGTAG X-Chr\_rev AAACAATGGTTCCGGGTAAATGAAGAG CB-5786-B2 GGTCCAAGTTCCCCTGAAATTCGG

## Anhang 2

#### A2.1 Transkription in P{RS3}CB-6686-3

 $P\{RS3\}CB-6686-3$  ist eine P-Elementinsertion in das erste, nicht translatierte Exon von mod(mdg4) (locusinterne Position 2.809; im Genom 3R:17.203.088). Trotz dieser Position sind die Ergebnisse von (semiquantitativen) RT-PCRs zum Nachweis verschiedener mod(mdg4)-Isoformen in homozygoten  $P\{RS3\}CB-6686-3$ -Tieren den mit RNA des Referenzstammes  $w^{1118}_{iso}$  erhaltenen sehr ähnlich. Darüber hinaus komplementiert  $P\{RS3\}CB-6686-3$  alle untersuchten mod(mdg4)-Mutationen sehr gut, einschließlich insertioneller Mutationen des gemeinsamen Teils und der Defizienz des gesamten mod(mdg4)-Locus Df(3R)GC14:

**Tabelle A1:** Komplementation von  $P\{RS3\}CB-6686-3$  mit ausgewählten mod(mdg4)-Allelen. Angegeben sind transheterozygote Tiere im Verhältnis zur Gesamtzahl F1-Tiere. Die Komplementationen wurden nach Geschlechtern getrennt ausgewertet und anschließend zusammengefaßt wenn sich die Ergebnisse um nicht mehr als 5% unterschieden. +:  $\geq 85\%$ ; sv: subvital, 50-85%; sl: semiletal, 5-50%; -: letal (<5%) (nach Hadorn, 1955)

| $ \bigcirc P\{RS3\}CB-6686-3 \\ \bigcirc mod(mdg4)-Allel $ | Komplementation  |
|------------------------------------------------------------|------------------|
| $mod(mdg4)^{02}$                                           | + 260/616 (127%) |
| $mod(mdg4)^{04}$                                           | + 388/982 (119%) |
| $mod(mdg4)^{07}$                                           | + 172/319 (162%) |
| $mod(mdg4)^{neo129}$                                       | + 397/611 (195%) |
| mod(mdg4) <sup>neo129 R32</sup>                            | + 317/655 (145%) |
| Rev31                                                      | + 336/776 (130%) |
| Df(3R)ED6050                                               | + 296/844 (105%) |
| Df(3R)eGp4                                                 | + 241/514 (141%) |
| Df(3R)GC14                                                 | + 125/316 (119%) |

Da trotz des Integrationsortes zwischen Promotor und Translationsstart sowohl mit der Referenz ( $w^{1118}_{iso}$ ) vergleichbare Mengen der mRNAs gebildet werden, wie auch die Funktion des Locus nicht beeinträchtigt scheint, wurde eine 5'RACE an Gesamt-RNA homozygoter, adulter *P{RS3}CB-6686-3-*Weibchen durchgeführt. Bereits die erste PCR (*nested* PCR war nicht notwendig, was für hohe RNA-Konzentrationen spricht) ergab zwei Banden von ca. 550bp und ca. 900bp, die in pGEM-3Zf ligiert und anschließend sequenziert wurden. Die PCR-

Amplifikate entsprechen zwei verschieden langen, abundanten mRNAs. Eine enthält an ihrem 5'Ende 32bp *P*-Element und dahinter Sequenz der Exons 1-3 von *mod(mdg4)*. Die andere enthält an ihrem 5'Ende Sequenz des X-Chromosoms, die der Sequenz *downstream* des *white*-Gens entspricht. Daran schließt sich *P*-Elementsequenz (3'*P*-Ende) an, gefolgt von den ersten drei gemeinsamen Exons von *mod(mdg4)* (siehe Abbildung). Das Fehlen von Intronsequenz zwischen den *mod(mdg4)*-Exons in beiden RACE-PCR-Amplifikaten bestätigt die Isolierung und Amplifikation von mRNAs.



| CAGTAGACCA   | GAGTCGCATG | CTCCCGGCCG | CCTGGCCGCG | GGATTGGCCC | GCGTCGACTA | 60  |
|--------------|------------|------------|------------|------------|------------|-----|
| GTACGGGGGG   | GGGGGGGGGG | GGAATAACAA | AATATTAGTC | GACGGTAGCG | GTCCGGTTGT | 120 |
| TTTCGTGCTC   | ATCGCGGGTA | CGTATTTATT | TTTAAAAAAT | AATAAACGCG | GCAAACACAA | 180 |
| TCACACAAAT   | GTGCAGGCAC | AGTGGGACAA | AGTGCGCTAA | ATTTGGATAT | GTAATAAATC | 240 |
| CAAAACCAAA   | AAGAAAACAA | AAAACGGTAA | AATATTTTAC | TGTTGTTAAA | ATTCGATCAT | 300 |
| TCATTATTCG   | CTGCATGAAT | TAGCTTTGCG | TACTCGCAAA | TTATTAAAAA | TAAAACTTTA | 360 |
| AAAATAATTT   | CGTCTAATTA | ATATTATGAG | TTAATTCAAA | CCCCACGGAC | ATGCTAAGGG | 420 |
| TTAATCAACA   | ATCATATCGC | TGTCTCACTC | AAACTCAATA | CGACACTCAA | AATACTATTC | 480 |
| CTTTCACTCG   | CACTTATTGC | AAGCATACGT | TAAGTGGATG | TCTCTTGCCG | ACGGGACCAC | 540 |
| CTTATGTTAT   | TTCATCATGA | CTCGGACGCG | TTCTGCGTGT | CGGCCGCGCT | AGCAAAAAAC | 600 |
| TCTGGCTTTA   | GTTAGTTATT | TTATTGGAAA | AATATTTAGT | CAAGAGCCAA | CAAACGCATA | 660 |
| GATACAGAAA   | AGTATTGATT | TTCGTCCAAG | ATGGCGGACG | ACGAGCAATT | CAGCTTGTGC | 720 |
| TGGAACAACT   | TCAACACGAA | TTTGTCGGCC | GGCTTCCACG | AGTCGCTATG | CCGCGGCGAC | 780 |
| CTGGTGGACG   | TCTCGCTGGC | CGCCGAGGGC | CAAATAGTGA | AGGCCCACCG | ATTGGTGTAT | 840 |
| CCGTCTGCTC ( | GCCCTTCTTC |            |            |            |            |     |
|              |            |            |            |            |            |     |

| Basen 1-45    | Vektorsequenz pGEM-3Zf                                                           |
|---------------|----------------------------------------------------------------------------------|
| Basen 46-64   | RACE-fwd-Primer                                                                  |
| Basen 65-82   | d(G)-Sequenz, entstanden während 5'RACE durch d(C)-tailing des rev. Transkripts  |
| Basen 83-170  | entsprechen 2.683.833-2.683.746 auf X-Chromosom (3B3, downstream des white-Gens) |
| Basen 171-309 | entsprechen 2.681.641-2.681.503 auf X-Chr. (3B3, downstream des white-Gens)      |
| Basen 322-559 | entsprechen 2.998-2.761 in pUAST-C5 (P-Elementvektor-Referenz)                   |
| Basen 560-860 | entsprechen mod(mdg4)-Exons 1 bis 3 (ohne Intronsequenzen)                       |

**Abbildung A1:** 5'RACE an *P{RS3}CB-6686-3*. links: die Agarosegelelektrophorese mit zwei Banden, die den beobachteten abundanten Transkripten von 550bp und 900bp entsprechen; rechts: Ausschnitt aus Sequenz des 900bp-Amplifikats, links des senkrechten Trennstrichs befindet sich *P*-Elementsequenz, rechts davon das Exon1 von *mod(mdg4)* distal der Insertionsstelle, darunter die Sequenz des 900bp-5'RACE-Amlifikats in pGEM-T ligiert und mit Vektorprimer sequenziert und die Legende zur Sequenz

Die von Promotoren im P-Element ausgehende Transkription im homozygoten P{RS3}CB-6686-3-Genotyp ist in Stärke, Gewebe- und Entwicklungsspezifität der des endogenen Promotors von mod(mdg4) ausreichend ähnlich (vermutlich ubiquitär) um zu gewährleisten, daß die Embryonalentwicklung ohne erkennbare rezessive Letalität möglich ist, die für insertionelle Mutationen in den gemeinsamen Teil von mod(mdg4) typisch ist (siehe Tabelle A1). In adulten homozygoten Tieren wurden keinerlei Phänotypen beobachtet, sodaß von einer physiologisch hinreichenden Transkription des gemeinsamen Teils von mod(mdg4)ausgegangen werden kann.

Im Stamm  $P{RS3}CB-6686-3$  steht mod(mdg4) unter transkriptioneller Kontrolle von Promotorelementen im  $P{RS3}$ -Element. Da die Sequenz der  $P{RS}$ -Elemente (Golic und Golic, 1996) nicht in öffentlichen Datenbanken hinterlegt wurde und die 5'RACE die Vollständigkeit des Transkripts nicht garantiert (Transkriptionsstart erreicht oder nicht), kann weder bestätigt noch widerlegt werden, ob der für die Transkription des *white*-Markers verantwortliche Promotor und/oder der Promotor von *CG32795*, das im Genom unmittelbar *downstream* von *white* lokalisiert und im  $P{RS3}$ -Element teilweise enthalten ist, die Expression von mod(mdg4) treibt. Darüber hinaus wirkt auch das  $P{RS3}-3'P$ -Elementende als Promotor. Sollte in der erstgenannten Situation eine komplette CDS innerhalb des *P*-Elements transkribiert und translatiert werden, muß der Translationsstart im Exon 2 von mod(mdg4) als IRES (*internal ribosome entry site*) funktionieren.

Da zu den  $P\{RS\}$ -Vektoren keinerlei Sequenzinformationen zur Verfügung stehen, ist nicht bekannt, ob darin die Sequenz vorhanden ist, die zum Aufbau des Wari-Chromatin-*insulator* nötig ist (Chetverina *et al.*, 2007). Die Wirkung eines solchen *insulator*-Elements dürfte ebenfalls Einfluß auf die Transkription des gemeinsamen Teils von mod(mdg4) haben. Es sei weiterhin angemerkt, daß anscheinend das in den  $P\{RS3\}$ -Elementen enthaltene Polyadenylierungssignal nicht effektiv funktioniert, wie zumindest die mittels 5'RACE nachgewiesene, längere mRNA zeigt.

Für die Transkription der spezifischen mod(mdg4)-Exons in der Nähe des Insertionsortes von P(RS5)5-HA-1224, für Revertanten mit teilweise erhalten gebliebenem P-Element (siehe 3.1.2.2) und evtl. andere, Nicht-P(RS)-Elemente bedeutet dies: Ausgehend von den 5'- bzw. 3'P-Elementenden erfolgt eine (ektopische) Transkription. Diese Promotoraktivität(-en) wurde nicht entwicklungsstadien- bzw. gewebespezifisch getestet. Sie ist bzw. sind jedoch "ausreichend ubiquitär", um die unter Punkt 3.1.3 beschriebenen Phänotypen nicht auftreten zu lassen. Zum Beispiel wurde bei den Revertanten 186 und 99 der Phänotyp einer homöotischen Transformation des fünften ins vierte Abdominalsegment nicht beobachtet, was auf die im P-Elementfragment beginnende, ausreichend starke Transkription der isoformspezifischen Exons von mod(mdg4)-58.0 und -55.2 zurückgeführt wird.



#### A2.2 entwicklungsstadien- und gewebespezifische Expression von mod(mdg4)-Isoformen

**Abbildung A2:** Zeitaufgelöste Expression (*developmental timecourse*) einiger *mod*(*mdg4*)-Isoformen (Costello *et al.*, 2008; Arbeitman *et al.*, 2002); logarithmische Skala am rechten Rand; grüne Balken: relative Überexpression im Vergleich zur Gesamt-RNA; rote Balken: relativ geringere Expression

von Flyatlas veröffentlichte Originaldaten, aus denen Abbildung 3.5 im Ergebnisteil erstellt wurde:

| 1636765_at mod(mdg | 34)-51.4    |         |        |      | Larval fat body    | $52 \pm 8$               | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60   | Down |
|--------------------|-------------|---------|--------|------|--------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| Tissue             | mRNA        | Present | Enrich | Affy | Whole fly          | $85 \pm 3$               | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |
|                    | Signal      | Call    | ment   | Call |                    |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |      |
| Brain              | $80 \pm 2$  | 4 of 4  | 2.60   | Up   | 1627053 at mod(md  | (A) 50.1                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |      |
| Head               | $28 \pm 2$  | 4 of 4  | 0.90   | None | Tissue             | mRNA                     | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Enrich | Δffv |
| Thoracicoabdomina  | $53 \pm 2$  | 4 of 4  | 1.70   | Up   | 115500             | Signal                   | Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ment   | Call |
| l ganglion         |             |         |        |      | Brain              | 77 + 3                   | 4  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 220    | Un   |
| Crop               | $29 \pm 1$  | 4 of 4  | 0.90   | None | Head               | $20 \pm 1$               | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60   | Down |
| Midgut             | $15 \pm 1$  | 3 of 4  | 0.50   | Down | Thoracicoabdomina  | $57 \pm 3$               | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.60   | Un   |
| Tubule             | $18 \pm 1$  | 4 of 4  | 0.60   | Down | l ganglion         | 57 ± 5                   | + 01 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00   | Op   |
| Hindgut            | $20 \pm 1$  | 4 of 4  | 0.60   | Down | Cron               | $22 \pm 1$               | 4  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60   | Down |
| Ovary              | $82 \pm 3$  | 4 of 4  | 2.70   | Up   | Midout             | 11 + 1                   | 0  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30   | Down |
| Testis             | $10 \pm 1$  | 4 of 4  | 0.30   | Down | Tubule             | $11 \pm 1$<br>$14 \pm 0$ | 3  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.30   | Down |
| Male accessory     | $18 \pm 1$  | 3 of 4  | 0.60   | Down | Hindout            | $1 + \pm 0$<br>11 + 1    | 4  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.40   | Down |
| glands             |             |         |        |      | Ovary              | 122 + 3                  | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.40   | Un   |
| Adult carcass      | $22 \pm 2$  | 2 of 4  | 0.70   | Down | Testis             | 7 + 1                    | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20   | Down |
| Larval tubule      | $11 \pm 1$  | 4 of 4  | 0.40   | Down | Male accessory     | 14 + 1                   | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40   | Down |
| Larval fat body    | $18 \pm 2$  | 2 of 4  | 0.60   | Down | glands             | 1.771                    | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10   | Down |
| Whole fly          | $31 \pm 2$  | 4 of 4  |        |      | Adult carcass      | 12 + 1                   | 1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30   | Down |
|                    |             |         |        |      | Larval tubule      | $12 \pm 1$<br>18 ± 1     | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50   | Down |
| 1634258 at mod(mdg | 4)-64.2     |         |        |      | Larval fat body    | $20 \pm 1$               | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60   | Down |
| Tissue             | mRNA        | Present | Enrich | Affy | Whole fly          | $35 \pm 1$               | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |      |
|                    | Signal      | Call    | ment   | Call | ,                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |      |
| Brain              | $201 \pm 5$ | 4 of 4  | 2.40   | Up   | 1(20022 1 1/ 1     | () (2.2.2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |      |
| Head               | $76 \pm 1$  | 4 of 4  | 0.90   | None | 1628932_at mod(mdg | <i>(4)-62.3</i>          | D (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E · 1  | A 66 |
| Thoracicoabdomina  | $129 \pm 3$ | 4 of 4  | 1.50   | Up   | I issue            | MKNA                     | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Enrich | AIIY |
| l ganglion         |             |         |        |      | р. <sup>с</sup>    | Signal                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ment   | Call |
| Crop               | $41 \pm 3$  | 4 of 4  | 0.50   | Down | Brain              | $80 \pm 3$               | 4 OI 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.50   | Up   |
| Midgut             | $48 \pm 2$  | 0 of 4  | 0.60   | Down | Theresises hearing | $51 \pm 1$               | 4 01 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00   | Down |
| Tubule             | $31 \pm 1$  | 4 of 4  | 0.40   | Down |                    | $34 \pm 4$               | 4 01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.00   | None |
| Hindgut            | $37 \pm 2$  | 4 of 4  | 0.40   | Down | r gangnon<br>Cron  | $26 \pm 1$               | 4  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60   | Down |
| Ovary              | $187 \pm 8$ | 4 of 4  | 2.20   | Up   | Ciop               | $30 \pm 1$               | 4 01 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00   | Down |
| Testis             | $44 \pm 2$  | 4 of 4  | 0.50   | Down | Tubula             | $20 \pm 2$               | 4 01 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.40   | Down |
| Male accessory     | $84 \pm 2$  | 4 of 4  | 1.00   | None | Lindgut            | $30 \pm 1$<br>$24 \pm 1$ | 4 01 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.30   | Down |
| glands             |             |         |        |      | Overv              | 24 ± 1<br>178 ± 5        | 4014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.20   | Un   |
| Adult carcass      | $50 \pm 3$  | 4 of 4  | 0.60   | Down | Testis             | $7 \pm 0$                | -701 + 201 + 201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 1201 + 12 | 0.10   | Down |
| Larval tubule      | $48 \pm 2$  | 4 of 4  | 0.60   | Down | Male accessory     | 7 ± 0<br>31 ± 1          | 2  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10   | Down |
|                    |             |         |        |      | whate accessory    | JI I I                   | + 01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00   | DOWI |

| alanda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                  |        |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------|--------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.1.2                   | 1 - 6 1          | 0.00   | D        |
| Adult carcass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $31 \pm 2$               | 4 01 4           | 0.60   | Down     |
| Larval tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $23 \pm 2$               | 4 of 4           | 0.40   | Down     |
| Larval fat body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $24 \pm 4$               | 4 of 4           | 0.40   | Down     |
| Whole fly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $56 \pm 2$               | 4 of 4           |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |        |          |
| 1626650 at mod(mdg-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4)-55.7                  |                  |        |          |
| Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mRNA                     | Present          | Enrich | Affy     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signal                   | Call             | ment   | Calĺ     |
| Brain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $112 \pm 5$              | 4 of 4           | 2.60   | Up       |
| Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39 + 2                   | 4 of 4           | 0.90   | None     |
| Thoracicoabdomina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76 + 6                   | 4 of 4           | 1.80   | Un       |
| l ganglion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1010                     | 1011             | 1.00   | Сp       |
| Cron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $36 \pm 2$               | 4  of  4         | 0.80   | None     |
| Midgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $36 \pm 3$               | 4  of  4         | 0.80   | None     |
| Tubula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $30 \pm 3$               | 4 01 4<br>4 of 4 | 0.80   | Down     |
| T ubule<br>Hindaut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $20 \pm 0$<br>22 $\pm 2$ | 4 01 4<br>4 of 4 | 0.00   | Down     |
| Overv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $33 \pm 2$<br>08 $\pm 1$ | 4 01 4<br>4 of 4 | 0.80   | Un       |
| Oval y<br>Testia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90 ± 1                   | 4 01 4           | 2.30   | Doum     |
| 1 estis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $14 \pm 1$               | 4 01 4           | 0.30   | Down     |
| Male accessory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $42 \pm 7$               | 4 01 4           | 1.00   | None     |
| glands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 07 . 0                   | 4 6 4            | 0.60   | Б        |
| Adult carcass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $27 \pm 3$               | 4 of 4           | 0.60   | Down     |
| Larval tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $23 \pm 4$               | 4 of 4           | 0.50   | Down     |
| Larval fat body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $45 \pm 2$               | 4 of 4           | 1.10   | None     |
| Whole fly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $43 \pm 3$               | 4 of 4           |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |        |          |
| 1636471 at mod(mdg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4)-54 7                  |                  |        |          |
| Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mRNA                     | Present          | Enrich | Affv     |
| 115500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Signal                   | Call             | ment   | Call     |
| Brain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31gnai<br>80 ± 7         | 4  of  4         | 2.60   | Un       |
| Dialli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $09 \pm 2$               | 4 01 4           | 2.00   | Nona     |
| The sector shall be a first sector of the se | $20 \pm 0$               | 4 01 4           | 0.80   | None     |
| Inoracicoaddomina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $/4 \pm 4$               | 4 01 4           | 2.20   | Up       |
| I ganglion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |        |          |
| Crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $28 \pm 2$               | 4 of 4           | 0.80   | None     |
| Midgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $22 \pm 4$               | 1 of 4           | 0.70   | None     |
| Tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $11 \pm 1$               | 0 of 4           | 0.30   | Down     |
| Hindgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $22 \pm 2$               | 1 of 4           | 0.70   | Down     |
| Ovary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $86 \pm 4$               | 4 of 4           | 2.60   | Up       |
| Testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $23 \pm 0$               | 4 of 4           | 0.70   | None     |
| Male accessory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $30 \pm 5$               | 1 of 4           | 0.90   | None     |
| glands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |                  |        |          |
| Adult carcass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $19 \pm 3$               | 1 of 4           | 0.60   | Down     |
| Larval tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $40 \pm 3$               | 4 of 4           | 1.20   | None     |
| Larval fat body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $42 \pm 4$               | 4 of 4           | 1.30   | None     |
| Whole fly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33 + 3                   | 4 of 4           |        |          |
| () note my                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00 = 0                   |                  |        |          |
| 1.00000 1 1/ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.50.6                   |                  |        |          |
| 162/603_at mod(mdg-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4)-53.6                  |                  |        |          |
| Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mRNA                     | Present          | Enrich | Affy     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signal                   | Call             | ment   | Call     |
| Brain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $52 \pm 0$               | 4 of 4           | 4.70   | Up       |
| Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $20 \pm 0$               | 0 of 4           | 1.80   | Up       |
| Thoracicoabdomina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $38 \pm 1$               | 4 of 4           | 3.50   | Up       |
| l ganglion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  |        |          |
| Crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $20 \pm 1$               | 0 of 4           | 1.90   | Up       |
| Midgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 ± 2                    | 0 of 4           | 0.80   | None     |
| Tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 ± 1                    | 0 of 4           | 0.50   | Down     |
| Hindgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $17 \pm 2$               | 0 of 4           | 1.50   | None     |
| Ovary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $17 \pm 1$               | 1 of 4           | 1.50   | Up       |
| Testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6+0                      | 0 of 4           | 0.60   | Down     |
| Male accessory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $20 \pm 6$               | 0  of  4         | 1.80   | None     |
| alands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20 ± 0                   | 0 01 4           | 1.00   | Ttone    |
| A dult carcase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16 ± 5                   | 0  of  4         | 1.50   | None     |
| Lorral tabala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $10 \pm 3$               | 1 of 4           | 2.20   | Lin      |
| Larval tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $20 \pm 1$               | 1  of  4         | 2.30   | Up       |
| Larval fat body                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $29 \pm 3$               | 0 of 4           | 2.60   | Up       |
| whole fly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $11 \pm 0$               | U 0I 4           |        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |        |          |
| 1640268_at mod(mdg-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4)-55.1                  |                  |        |          |
| Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mRNA                     | Present          | Enrich | Affy     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signal                   | Call             | ment   | Call     |
| Brain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 97 ± 8                   | 4 of 4           | 2.10   | Up       |
| Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $50 \pm 3$               | 4 of 4           | 1.10   | None     |
| Thoracicoabdomina                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $106 \pm 2$              | 4 of 4           | 2.30   | Un       |
| l ganglion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                  | •      | - P      |
| Crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 36 + 1                   | 4 of 4           | 0.80   | Down     |
| Midout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 + 2                   | 0  of  4         | 0.20   | Down     |
| Tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $31 \pm 2$               | 4  of  4         | 0.70   | Down     |
| Hindout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $29 \pm 1$               | 4 of 4           | 0.60   | Down     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |                  |        | ~ 0 1111 |

| Ovary                                                                                                                                                                                                                                                                                  | $110 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.30                                                                                                                                                     | Up                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Testis                                                                                                                                                                                                                                                                                 | 13 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Male accessory                                                                                                                                                                                                                                                                         | 54 + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.20                                                                                                                                                     | None                                                                                                                       |
| olands                                                                                                                                                                                                                                                                                 | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1120                                                                                                                                                     | 110110                                                                                                                     |
| Adult carcass                                                                                                                                                                                                                                                                          | 39 + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.80                                                                                                                                                     | None                                                                                                                       |
| I arval tubule                                                                                                                                                                                                                                                                         | $46 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.00                                                                                                                                                     | None                                                                                                                       |
| Larval fat body                                                                                                                                                                                                                                                                        | $40 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                     | None                                                                                                                       |
| Whole fly                                                                                                                                                                                                                                                                              | $40 \pm 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.00                                                                                                                                                     | None                                                                                                                       |
| whole fly                                                                                                                                                                                                                                                                              | 4/ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                                                                            |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| 1624020_at mod(mdg-                                                                                                                                                                                                                                                                    | 4)-60.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| Tissue                                                                                                                                                                                                                                                                                 | mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Enrich                                                                                                                                                   | Affy                                                                                                                       |
|                                                                                                                                                                                                                                                                                        | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ment                                                                                                                                                     | Call                                                                                                                       |
| Brain                                                                                                                                                                                                                                                                                  | $116 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.80                                                                                                                                                     | Up                                                                                                                         |
| Head                                                                                                                                                                                                                                                                                   | $34 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.50                                                                                                                                                     | Down                                                                                                                       |
| Thoracicoabdomina                                                                                                                                                                                                                                                                      | 77 ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.20                                                                                                                                                     | None                                                                                                                       |
| l ganglion                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| Crop                                                                                                                                                                                                                                                                                   | $24 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.40                                                                                                                                                     | Down                                                                                                                       |
| Midgut                                                                                                                                                                                                                                                                                 | $11 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20                                                                                                                                                     | Down                                                                                                                       |
| Tubule                                                                                                                                                                                                                                                                                 | $14 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20                                                                                                                                                     | Down                                                                                                                       |
| Hindgut                                                                                                                                                                                                                                                                                | $21 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Ovary                                                                                                                                                                                                                                                                                  | $167 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.60                                                                                                                                                     | Up                                                                                                                         |
| Testis                                                                                                                                                                                                                                                                                 | $14 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20                                                                                                                                                     | Down                                                                                                                       |
| Male accessory                                                                                                                                                                                                                                                                         | $28 \pm 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.40                                                                                                                                                     | Down                                                                                                                       |
| glands                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| Adult carcass                                                                                                                                                                                                                                                                          | $22 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Larval tubule                                                                                                                                                                                                                                                                          | $18 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Larval fat body                                                                                                                                                                                                                                                                        | 27 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.40                                                                                                                                                     | Down                                                                                                                       |
| Whole fly                                                                                                                                                                                                                                                                              | 64 + 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0110                                                                                                                                                     | 2000                                                                                                                       |
| whole ity                                                                                                                                                                                                                                                                              | 0120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                            |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| 1625283_at mod(mdg-                                                                                                                                                                                                                                                                    | 4)-55.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| Tissue                                                                                                                                                                                                                                                                                 | mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Enrich                                                                                                                                                   | Affy                                                                                                                       |
|                                                                                                                                                                                                                                                                                        | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ment                                                                                                                                                     | Call                                                                                                                       |
| Brain                                                                                                                                                                                                                                                                                  | $54 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.20                                                                                                                                                     | Up                                                                                                                         |
| Head                                                                                                                                                                                                                                                                                   | $18 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.40                                                                                                                                                     | Down                                                                                                                       |
| Thoracicoabdomina                                                                                                                                                                                                                                                                      | $41 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.90                                                                                                                                                     | None                                                                                                                       |
| l ganglion                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| Crop                                                                                                                                                                                                                                                                                   | $15 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Midgut                                                                                                                                                                                                                                                                                 | $11 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Tubule                                                                                                                                                                                                                                                                                 | 9 ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.20                                                                                                                                                     | Down                                                                                                                       |
| Hindgut                                                                                                                                                                                                                                                                                | 11 ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Ovary                                                                                                                                                                                                                                                                                  | $111 \pm 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.50                                                                                                                                                     | Up                                                                                                                         |
| Testis                                                                                                                                                                                                                                                                                 | $14 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Male accessory                                                                                                                                                                                                                                                                         | $16 \pm 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.40                                                                                                                                                     | Down                                                                                                                       |
| glands                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| Adult carcass                                                                                                                                                                                                                                                                          | $16 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.40                                                                                                                                                     | Down                                                                                                                       |
| Larval tubule                                                                                                                                                                                                                                                                          | $14 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Larval fat body                                                                                                                                                                                                                                                                        | $14 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.30                                                                                                                                                     | Down                                                                                                                       |
| Whole fly                                                                                                                                                                                                                                                                              | $44 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                                                                            |
|                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| 1622152 at madim da                                                                                                                                                                                                                                                                    | 1) 52 4 (9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                            |
| Tisana                                                                                                                                                                                                                                                                                 | <i>t)-33.4 (?)</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | December                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Endat                                                                                                                                                    | A                                                                                                                          |
| Issue                                                                                                                                                                                                                                                                                  | mKNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Enrich                                                                                                                                                   | AIIY                                                                                                                       |
| D :                                                                                                                                                                                                                                                                                    | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ment                                                                                                                                                     | Call                                                                                                                       |
| Brain                                                                                                                                                                                                                                                                                  | /h + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 6 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 00                                                                                                                                                     | TT                                                                                                                         |
|                                                                                                                                                                                                                                                                                        | $20 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.00                                                                                                                                                     | Up                                                                                                                         |
| Head                                                                                                                                                                                                                                                                                   | $20 \pm 3$<br>$7 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 of 4<br>3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.00<br>0.90                                                                                                                                             | Up<br>None                                                                                                                 |
| Head<br>Thoracicoabdomina                                                                                                                                                                                                                                                              | $7 \pm 1$<br>21 ± 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 of 4<br>3 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00<br>0.90<br>2.50                                                                                                                                     | Up<br>None<br>Up                                                                                                           |
| Head<br>Thoracicoabdomina<br>l ganglion                                                                                                                                                                                                                                                | $20 \pm 3$<br>7 ± 1<br>21 ± 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 of 4<br>3 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00<br>0.90<br>2.50                                                                                                                                     | Up<br>None<br>Up                                                                                                           |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop                                                                                                                                                                                                                                        | $20 \pm 3$<br>$7 \pm 1$<br>$21 \pm 2$<br>$10 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.00<br>0.90<br>2.50<br>1.20                                                                                                                             | Up<br>None<br>Up<br>None                                                                                                   |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut                                                                                                                                                                                                                              | $20 \pm 3$<br>$7 \pm 1$<br>$21 \pm 2$<br>$10 \pm 0$<br>$8 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00<br>0.90<br>2.50<br>1.20<br>0.90                                                                                                                     | Up<br>None<br>Up<br>None<br>None                                                                                           |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule                                                                                                                                                                                                                    | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90                                                                                                             | Up<br>None<br>Up<br>None<br>None<br>Down                                                                                   |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut                                                                                                                                                                                                         | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00                                                                                                     | Up<br>None<br>Up<br>None<br>Down<br>None                                                                                   |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary                                                                                                                                                                                                | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 28 \pm 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20                                                                                             | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up                                                                             |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis                                                                                                                                                                                      | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40                                                                                     | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down                                                                     |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory                                                                                                                                                                    | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 10 \\ 12 \pm 2 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40                                                                             | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None                                                             |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands                                                                                                                                                          | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 12 \pm 2$  | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40                                                                             | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None                                                             |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass                                                                                                                                         | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90                                                                     | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None                                                     |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule                                                                                                                        | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 10 \pm 10 \\ 10 $                                                                   | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10                                                             | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None                                                     |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body                                                                                                     | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00                                                     | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None<br>None                                     |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly                                                                                        | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 10 \pm 0 \\ 1$ | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00                                                     | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None<br>None                                     |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly                                                                                        | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 8 \pm 1 \\ 10 \pm 0 \\ 10 \pm 1 \\ 10 \pm 10 \\ $    | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>4 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00                                                     | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None                                             |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1631742_s_at mod(mate)                                                              | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 4g4 - 54.2 & \&$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>4 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>2 of 4<br>2 of 4<br>4 of 4<br>3 of 4<br>4 of 4<br>3 of 4<br>4 of 4<br>4 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>3 of 4<br>3 of 4<br>2 of 4<br>3 | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00<br>)-56.3                                           | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None                                             |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br><b>1631742_s_at</b> mod(mod<br>Tissue                                               | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 4g4)-54.2 \& mRNA$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>4 of 4<br>H 2 of 4<br>H                                                                                                                                                                                       | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00                                                     | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None<br>None                                     |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br><b>1631742_s_at</b> mod(mod                                                         | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 10g4)-54.2 & mr \\ Mr \\ Signal$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>4 of 4<br>4 of 4<br>Present<br>Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00<br>)-56.3<br>Enrich ment                            | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None<br>None                                     |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br><b>1631742_s_at</b> mod(mathebrick)<br>Tissue                                       | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ lg4)-54.2 & \\ mRNA \\ Signal \\ 195 \pm \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\$                                                                                                                                                                                                                                                                                                                                  | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>4 of 4<br>How the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00<br>)-56.3<br>Enrich<br>ment<br>3.00                 | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None<br>None<br>Affy<br>Call<br>Up               |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br><b>1631742_s_at</b> mod(mathebrick)<br>Tissue                                       | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 10 \\ 4 \\ 9 \\ 4 \\ 195 \pm 14 \\ 14 \\ 14 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>How the second seco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00<br>)-56.3<br>Enrich<br>ment<br>3.00                 | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None<br>None                                     |
| Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br><b>1631742_s_at</b> mod(mathebrick)<br>Tissue<br>Brain<br>Head                      | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 18 \pm 2 \\ 8 \pm 1 \\ 19 \\ 4 \\ 195 \pm 14 \\ 56 \pm 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>H of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4                                                                                                                                                                                                                                                                                                                                                                              | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00<br>)-56.3<br>Enrich<br>ment<br>3.00<br>0.90         | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None<br>None<br>Affy<br>Call<br>Up<br>Down       |
| Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br><b>1631742_s_at</b> mod(mathebrick)<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina | $20 \pm 3 \\ 7 \pm 1 \\ 21 \pm 2 \\ 10 \pm 0 \\ 8 \pm 1 \\ 7 \pm 0 \\ 8 \pm 2 \\ 28 \pm 2 \\ 3 \pm 0 \\ 12 \pm 2 \\ 8 \pm 2 \\ 9 \pm 1 \\ 8 \pm 2 \\ 8 \pm 1 \\ 12 \pm 2 \\ 8 \pm 1 \\ 12 \pm 2 \\ 8 \pm 1 \\ 195 \pm 1 \\ 14 \\ 56 \pm 1 \\ 118 \pm 6 \\ 10 \\ 118 \pm 6 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>5 of 4                                                                                                                                                                                                                                                                                                                                                                              | 3.00<br>0.90<br>2.50<br>1.20<br>0.90<br>0.90<br>1.00<br>3.20<br>0.40<br>1.40<br>0.90<br>1.10<br>1.00<br>)-56.3<br>Enrich<br>ment<br>3.00<br>0.90<br>1.80 | Up<br>None<br>Up<br>None<br>Down<br>None<br>Up<br>Down<br>None<br>None<br>None<br>None<br>Affy<br>Call<br>Up<br>Down<br>Up |

| Crop                | $41 \pm 1$               | 4 of 4           | 0.60         | Down         |
|---------------------|--------------------------|------------------|--------------|--------------|
| Midgut              | $30 \pm 3$               | 1 of 4           | 0.50         | Down         |
| Tubule              | $51 \pm 0$               | 4 of 4           | 0.80         | Down         |
| Hindgut             | $34 \pm 2$               | 4 of 4           | 0.50         | Down         |
| Ovary               | $163 \pm 7$              | 4 of 4           | 2.50         | Up           |
| Testis              | 11 + 0                   | 0  of  4         | 0.20         | Down         |
| Male accessory      | $32 \pm 1$               | 0  of  4         | 0.50         | Down         |
| glands              | 52 - 1                   | 0.01.1           | 0.50         | Down         |
| A dult carcase      | $23 \pm 1$               | 0  of  4         | 0.40         | Down         |
| Auun carcass        | $23 \pm 1$               | 1 - 6 4          | 0.40         | Down         |
| Larval tubule       | $41 \pm 2$               | 4 01 4           | 0.60         | Down         |
| Larval fat body     | $74 \pm 5$               | 4 of 4           | 1.20         | None         |
| Whole fly           | $64 \pm 2$               | 4 of 4           |              |              |
|                     |                          |                  |              |              |
| 1630536 at mod(mdo  | 4)-65 0                  |                  |              |              |
| Tissue              | mRNA                     | Precent          | Enrich       | Affy         |
| 1 Issue             | Cionol                   | Call             | mant         | Call         |
| Durin               |                          |                  |              | Can          |
| Brain               | /0±0                     | 4 01 4           | 2.80         | Up           |
| Head                | $16 \pm 0$               | 1 01 4           | 0.60         | Down         |
| Thoracicoabdomina   | $60 \pm 4$               | 4 of 4           | 2.20         | Up           |
| l ganglion          |                          |                  |              |              |
| Crop                | $20 \pm 2$               | 3 of 4           | 0.70         | None         |
| Midgut              | $20 \pm 1$               | 2 of 4           | 0.70         | Down         |
| Tubule              | $20 \pm 0$               | 3 of 4           | 0.70         | Down         |
| Hindgut             | $16 \pm 0$               | 1 of 4           | 0.60         | Down         |
| Ovary               | $71 \pm 5$               | 4 of 4           | 2.60         | Up           |
| Testis              | 8 + 1                    | 0  of  4         | 0.30         | Down         |
| Male accessory      | $29 \pm 4$               | 3  of  4         | 1 10         | None         |
| alanda              | 29 I 4                   | 5 01 4           | 1.10         | None         |
| gianus              | 22 1 4                   | 0-64             | 0.90         | Nana         |
| Adult carcass       | $22 \pm 4$               | 0 01 4           | 0.80         | None         |
| Larval tubule       | $27 \pm 1$               | 4 of 4           | 1.00         | None         |
| Larval fat body     | $4 \pm 2$                | 0 of 4           | 0.20         | Down         |
| Whole fly           | $27 \pm 2$               | 4 of 4           |              |              |
|                     |                          |                  |              |              |
| 1(21022 4 1/ 1      | 1 50.0                   |                  |              |              |
| 1031835_at moa(mag4 | <i>i)-58.0</i>           | <b>D</b>         | <b>F</b> · 1 |              |
| Tissue              | mRNA                     | Present          | Enrich       | Affy         |
|                     | Signal                   | Call             | ment         | Call         |
| Brain               | 163 ±                    | 4 of 4           | 1.50         | Up           |
|                     | 11                       |                  |              |              |
| Head                | $70 \pm 2$               | 4 of 4           | 0.70         | Down         |
| Thoracicoabdomina   | $177 \pm 4$              | 4 of 4           | 1.70         | Up           |
| l ganglion          |                          |                  |              |              |
| Crop                | 68 + 4                   | 4  of  4         | 0.60         | Down         |
| Midout              | 47 + 3                   | 4  of  4         | 0.40         | Down         |
| Tubula              | $60 \pm 4$               | 0  of  4         | 0.70         | Down         |
| Lindout             | $69 \pm 4$               | 0 01 4           | 0.70         | Down         |
| Hindgut             | $00 \pm 0$               | 4 01 4           | 0.60         | Down         |
| Ovary               | $189 \pm 2$              | 4 of 4           | 1.80         | Up           |
| Testis              | $83 \pm 1$               | 4 of 4           | 0.80         | None         |
| Male accessory      | $113 \pm$                | 4 of 4           | 1.10         | None         |
| glands              | 10                       |                  |              |              |
| Adult carcass       | 75 ± 7                   | 4 of 4           | 0.70         | None         |
| Larval tubule       | $85 \pm 5$               | 4 of 4           | 0.80         | None         |
| Larval fat body     | 76 ± 5                   | 4 of 4           | 0.70         | None         |
| Whole fly           | 106 +                    | 4  of  4         |              |              |
|                     | 10                       | . 01 7           |              |              |
|                     | 10                       |                  |              |              |
|                     |                          |                  |              |              |
| 1638041_at mod(mdg4 | 4)-56.3                  |                  |              |              |
| Tissue              | mRN                      | Presen           | Enrichmen    | Affy         |
|                     | А                        | t Call           | t            | Call         |
|                     | Signal                   |                  |              |              |
| Brain               | 34 + 4                   | 4  of  4         | 4 70         | Un           |
| Head                | 0 + 2                    | 4  of  4         | 1 30         | None         |
| Thomasiaaahdamina   | $9 \pm 2$                | 4 01 4           | 2.40         | Le           |
|                     | $23 \pm 3$               | + 01 4           | 5.40         | Uр           |
| i ganglion          | 10 . 1                   | 2 64             | 1.40         | NT           |
| Crop                | $10 \pm 1$               | 3 of 4           | 1.40         | None         |
| Midgut              | $8 \pm 0$                | 4 of 4           | 1.20         | None         |
| Tubule              | $8 \pm 0$                | 2 of 4           | 1.20         | Up           |
| Hindgut             | $7 \pm 0$                | 3 of 4           | 1.00         | None         |
| Ovary               | $10 \pm 0$               | 4 of 4           | 1.50         | Up           |
| Testis              | $2 \pm 0$                | 0 of 4           | 0.30         | Dow          |
|                     | -                        |                  |              | n            |
| Male accessory      | $4 \pm 1$                | 0 of 4           | 0.60         | None         |
| glands              |                          |                  |              |              |
| Adult carcase       | 11 ± 2                   | 1  of  4         | 1.60         | None         |
| Lorval tubula       | 10 ± 1                   | 1 01 4<br>1 of 4 | 1.00         | None         |
| Larval fat had-     | $10 \pm 1$<br>$14 \pm 1$ | + 01 4           | 2.00         | INOILE<br>LI |
| Larvai iat body     | 14 ± 1                   | 4 0I 4           | 2.00         | Up           |
| whole fly           | / ± 1                    | ∠ 0I 4           |              |              |
|                     |                          |                  |              |              |

| 1631500_at mod(mdg-                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4)-52.0                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mRNA                                                                                                                                                                                                                                                                                                                                                                                             | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enrich                                                                                                                                                                                                                   | Affy                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Signal                                                                                                                                                                                                                                                                                                                                                                                           | Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ment                                                                                                                                                                                                                     | Call                                                                                                    |
| Brain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $39 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.90                                                                                                                                                                                                                     | Up                                                                                                      |
| Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $13 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.00                                                                                                                                                                                                                     | None                                                                                                    |
| Thoracicoabdomina                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $32 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.40                                                                                                                                                                                                                     | Up                                                                                                      |
| l ganglion                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                         |
| Crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $15 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                       | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.10                                                                                                                                                                                                                     | None                                                                                                    |
| Midgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7 ± 1                                                                                                                                                                                                                                                                                                                                                                                            | 0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                     | Down                                                                                                    |
| Tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $10 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                       | 2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                                                                                                                                                                                                     | Down                                                                                                    |
| Hindgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 ± 1                                                                                                                                                                                                                                                                                                                                                                                            | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                                                                                                                                     | None                                                                                                    |
| Ovary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $46 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.40                                                                                                                                                                                                                     | Up                                                                                                      |
| Testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $6 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                        | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                     | Down                                                                                                    |
| Male accessory                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 + 2                                                                                                                                                                                                                                                                                                                                                                                           | 2 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80                                                                                                                                                                                                                     | None                                                                                                    |
| glands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                         |
| Adult carcass                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 + 3                                                                                                                                                                                                                                                                                                                                                                                            | 0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.70                                                                                                                                                                                                                     | None                                                                                                    |
| Larval tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13 + 1                                                                                                                                                                                                                                                                                                                                                                                           | 3  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.00                                                                                                                                                                                                                     | None                                                                                                    |
| Larval fat body                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $16 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                       | 3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.30                                                                                                                                                                                                                     | None                                                                                                    |
| Whole fly                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $10 \pm 1$<br>13 + 1                                                                                                                                                                                                                                                                                                                                                                             | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.50                                                                                                                                                                                                                     | rtone                                                                                                   |
| whole ity                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5 ± 1                                                                                                                                                                                                                                                                                                                                                                                          | 4 01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                         |
| 1637723 at mod(mda                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4)-556                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                         |
| Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mRNA                                                                                                                                                                                                                                                                                                                                                                                             | Present                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enrich                                                                                                                                                                                                                   | Affv                                                                                                    |
| 115540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Signal                                                                                                                                                                                                                                                                                                                                                                                           | Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ment                                                                                                                                                                                                                     | Call                                                                                                    |
| Brain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $302 \pm 7$                                                                                                                                                                                                                                                                                                                                                                                      | 4  of  4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.90                                                                                                                                                                                                                     | Un                                                                                                      |
| Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $01 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                                                                                                                                     | Down                                                                                                    |
| Thoraciacabdomina                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 250 +                                                                                                                                                                                                                                                                                                                                                                                            | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.20                                                                                                                                                                                                                     | Un                                                                                                      |
| 1 noracicoa du omina                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 339 ±                                                                                                                                                                                                                                                                                                                                                                                            | 4 01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.20                                                                                                                                                                                                                     | Ор                                                                                                      |
| r gangnon                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104 + 2                                                                                                                                                                                                                                                                                                                                                                                          | 4 - 6 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                     | D                                                                                                       |
| Crop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $104 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                      | 4 01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                                                                                                                                     | Down                                                                                                    |
| Midgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $19 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                       | 4 01 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                     | Down                                                                                                    |
| Tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $85 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.50                                                                                                                                                                                                                     | Down                                                                                                    |
| Hindgut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $72 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.40                                                                                                                                                                                                                     | Down                                                                                                    |
| Ovary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $367 \pm 7$                                                                                                                                                                                                                                                                                                                                                                                      | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.30                                                                                                                                                                                                                     | Up                                                                                                      |
| Testis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $23 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.10                                                                                                                                                                                                                     | Down                                                                                                    |
| Male accessory                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $128 \pm$                                                                                                                                                                                                                                                                                                                                                                                        | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.80                                                                                                                                                                                                                     | Down                                                                                                    |
| glands                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                         |
| Adult carcass                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 71 ± 7                                                                                                                                                                                                                                                                                                                                                                                           | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.40                                                                                                                                                                                                                     | Down                                                                                                    |
| Larval tubule                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $143 \pm 7$                                                                                                                                                                                                                                                                                                                                                                                      | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.90                                                                                                                                                                                                                     | None                                                                                                    |
| Larval fat body                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $89 \pm 4$                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.60                                                                                                                                                                                                                     | Down                                                                                                    |
| Whole fly                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $161 \pm 8$                                                                                                                                                                                                                                                                                                                                                                                      | 4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                          |                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                         |
| 1627483 at mod(mdg                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4)-54.5                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                          |                                                                                                         |
| <b>1627483_at</b> mod(mdg-<br>Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4)-54.5<br>mRN                                                                                                                                                                                                                                                                                                                                                                                   | Presen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Enrichmen                                                                                                                                                                                                                | Affv                                                                                                    |
| 1627483_at mod(mdg-<br>Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4)-54.5<br>mRN<br>A                                                                                                                                                                                                                                                                                                                                                                              | Presen<br>t Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enrichmen                                                                                                                                                                                                                | Affy<br>Call                                                                                            |
| 1627483_at mod(mdg-<br>Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4)-54.5<br>mRN<br>A<br>Signal                                                                                                                                                                                                                                                                                                                                                                    | Presen<br>t Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enrichmen<br>t                                                                                                                                                                                                           | Affy<br>Call                                                                                            |
| <b>1627483_at</b> mod(mdg-<br>Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4)-54.5<br>mRN<br>A<br>Signal<br>30 + 1                                                                                                                                                                                                                                                                                                                                                          | Presen<br>t Call                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enrichmen<br>t                                                                                                                                                                                                           | Affy<br>Call<br>Un                                                                                      |
| <b>1627483_at</b> mod(mdg-<br>Tissue<br>Brain<br>Head                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4)-54.5<br>mRN<br>A<br>Signal<br>30 ± 1                                                                                                                                                                                                                                                                                                                                                          | Presen<br>t Call<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Enrichmen<br>t<br>3.20                                                                                                                                                                                                   | Affy<br>Call<br>Up                                                                                      |
| <b>1627483_at</b> mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoraciocabdomina                                                                                                                                                                                                                                                                                                                                                                                                              | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>18 ± 1                                                                                                                                                                                                                                                                                                                               | Presen<br>t Call<br>4 of 4<br>3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Enrichmen<br>t<br>3.20<br>1.00<br>2.00                                                                                                                                                                                   | Affy<br>Call<br>Up<br>None                                                                              |
| <b>1627483_at</b> mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>Laganglion                                                                                                                                                                                                                                                                                                                                                                                                | 4)-54.5<br>mRN<br>A<br>Signal<br>30 ± 1<br>9 ± 0<br>18 ± 1                                                                                                                                                                                                                                                                                                                                       | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enrichmen<br>t<br>3.20<br>1.00<br>2.00                                                                                                                                                                                   | Affy<br>Call<br>Up<br>None<br>Up                                                                        |
| <b>1627483_at</b> mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion                                                                                                                                                                                                                                                                                                                                                                                                | 4)-54.5<br>mRN<br>A<br>Signal<br>30 ± 1<br>9 ± 0<br>18 ± 1                                                                                                                                                                                                                                                                                                                                       | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enrichmen<br>t<br>3.20<br>1.00<br>2.00                                                                                                                                                                                   | Affy<br>Call<br>Up<br>None<br>Up                                                                        |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Mident                                                                                                                                                                                                                                                                                                                                                                                     | 4)-54.5<br>mRN<br>A<br>Signal<br>30 ± 1<br>9 ± 0<br>18 ± 1<br>9 ± 3<br>7 ± 1                                                                                                                                                                                                                                                                                                                     | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80                                                                                                                                                                   | Affy<br>Call<br>Up<br>None<br>Up<br>None                                                                |
| <b>1627483_at</b> mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tabala                                                                                                                                                                                                                                                                                                                                                                    | 4)-54.5<br>mRN<br>A<br>Signal<br>30 ± 1<br>9 ± 0<br>18 ± 1<br>9 ± 3<br>7 ± 1                                                                                                                                                                                                                                                                                                                     | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00                                                                                                                                                           | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None                                                        |
| <b>1627483_at</b> mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule                                                                                                                                                                                                                                                                                                                                                                    | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$                                                                                                                                                                                                                                                                      | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00                                                                                                                                                           | Affy<br>Call<br>Up<br>None<br>None<br>None                                                              |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut                                                                                                                                                                                                                                                                                                                                                                | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$                                                                                                                                                                                                                                                        | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>1 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10                                                                                                                                           | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None                                                |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary                                                                                                                                                                                                                                                                                                                                                       | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$                                                                                                                                                                                                                                           | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>2.50                                                                                                                                   | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>Up                                          |
| 1627483_at mod(mdg<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis                                                                                                                                                                                                                                                                                                                                              | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$                                                                                                                                                                                                                                           | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>4 of 4<br>0 of 4<br>1 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50                                                                                                                                   | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>Up<br>Dow                                   |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis                                                                                                                                                                                                                                                                                                                                             | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$                                                                                                                                                                                                                              | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>4 of 4<br>0 of 4<br>1 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50                                                                                                                                   | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>Up<br>Dow<br>n                              |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory                                                                                                                                                                                                                                                                                                                           | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$                                                                                                                                                                                                                              | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>4 of 4<br>0 of 4<br>0 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80                                                                                                                           | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>Up<br>Dow<br>n<br>None                              |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands                                                                                                                                                                                                                                                                                                                 | 4)-54.5<br>mRN<br>A<br>Signal<br>30 ± 1<br>9 ± 0<br>18 ± 1<br>9 ± 3<br>7 ± 1<br>9 ± 1<br>10 ± 1<br>20 ± 1<br>5 ± 0<br>7 ± 1                                                                                                                                                                                                                                                                      | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80                                                                                                                           | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>Up<br>Dow<br>n<br>None                              |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass                                                                                                                                                                                                                                                                                                | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$                                                                                                                                                                                                                 | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90                                                                                                                   | Affy<br>Call<br>Up<br>None<br>None<br>None<br>Up<br>Dow<br>None<br>None                                 |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule                                                                                                                                                                                                                                                                               | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$15 \pm 2$                                                                                                                                                                                     | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>2.00<br>1.00<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50                                                                                                           | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>None<br>None                                |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body                                                                                                                                                                                                                                                            | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$                                                                                                                                                                                      | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50                                                                                                   | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None                              |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly                                                                                                                                                                                                                                               | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$                                                                                                                                                                         | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>4 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50                                                                                                   | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None                              |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly                                                                                                                                                                                                                                               | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4) 57.4                                                                                                                                                              | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>4 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>3 of 4<br>3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50                                                                                                   | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>None<br>None                                |
| 1627483_at mod(mdg<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly                                                                                                                                                                                                                                                | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4                                                                                                                                                              | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>3 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50                                                                                                   | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>None<br>None                                |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue                                                                                                                                                                                                              | 4)-54.5<br>mRN<br>A<br>Signal<br>30 ± 1<br>9 ± 0<br>18 ± 1<br>9 ± 3<br>7 ± 1<br>9 ± 1<br>10 ± 1<br>20 ± 1<br>5 ± 0<br>7 ± 1<br>8 ± 1<br>11 ± 1<br>5 ± 2<br>9 ± 1<br>4)-57.4<br>mRNA<br>Signal                                                                                                                                                                                                    | Present<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50                                                                                                   | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None                              |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue                                                                                                                                                                                                              | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$20 \pm 1$                                                                                                                              | Present<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>1 of 4<br>2 of 4<br>0 of 4<br>2 of 4<br>0 | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>2.00                                                                         | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None                |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue<br>Brain                                                                                                                                                                                                     | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 4$                                                                                                                | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>2 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>5 of 4<br>4 of 4<br>5 of 4<br>4 of 4<br>1 of 4<br>0  | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>2.20                                                                 | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None        |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue<br>Brain<br>Head                                                                                                                                                                                             | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$7 \pm 2$                                                                                                   | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>2 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>2 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0  | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>0.216                                                        | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None        |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina                                                                                                                                                                        | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$                                                                                                  | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>3 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40                                                         | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None                      |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion                                                                                                                                                          | 4)-54.5<br>mRN<br>A<br>Signal<br>30 ± 1<br>9 ± 0<br>18 ± 1<br>9 ± 3<br>7 ± 1<br>9 ± 1<br>10 ± 1<br>20 ± 1<br>5 ± 0<br>7 ± 1<br>8 ± 1<br>11 ± 1<br>5 ± 2<br>9 ± 1<br>4)-57.4<br>mRNA<br>Signal<br>94 ± 4<br>24 ± 2<br>73 ± 3                                                                                                                                                                      | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>1 of 4<br>0 of 4<br>1  | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40                                                         | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None                      |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop                                                                                                                                                  | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$<br>$28 \pm 2$<br>$10 \pm 1$                                                                      | Present<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40<br>0.90                                                 | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None                      |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut                                                                                                                                        | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$<br>$28 \pm 2$<br>$19 \pm 3$<br>$17 \pm 1$                                                        | Present<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>4 of 4<br>0 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40<br>0.90<br>0.60                                         | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None                      |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule                                                                                                                              | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$<br>$28 \pm 2$<br>$19 \pm 3$<br>$17 \pm 0$                                                        | Present<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40<br>0.90<br>0.60<br>0.60<br>0.25                         | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None                      |
| <ul> <li>1627483_at mod(mdg-<br/>Tissue</li> <li>Brain<br/>Head<br/>Thoracicoabdomina<br/>I ganglion<br/>Crop<br/>Midgut<br/>Tubule<br/>Hindgut<br/>Ovary<br/>Testis</li> <li>Male accessory<br/>glands<br/>Adult carcass<br/>Larval tubule<br/>Larval fat body<br/>Whole fly</li> <li>1640554_at mod(mdg-<br/>Tissue</li> <li>Brain<br/>Head<br/>Thoracicoabdomina<br/>I ganglion<br/>Crop<br/>Midgut<br/>Tubule<br/>Hindgut</li> </ul>                                                | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$<br>$28 \pm 2$<br>$19 \pm 3$<br>$17 \pm 0$<br>$21 \pm 1$                                          | Present<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40<br>0.90<br>0.60<br>0.60<br>0.70                         | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None        |
| <ul> <li>1627483_at mod(mdg-<br/>Tissue</li> <li>Brain<br/>Head<br/>Thoracicoabdomina<br/>I ganglion<br/>Crop<br/>Midgut<br/>Tubule</li> <li>Hindgut<br/>Ovary<br/>Testis</li> <li>Male accessory<br/>glands</li> <li>Adult carcass</li> <li>Larval tubule</li> <li>Larval fat body</li> <li>Whole fly</li> <li>1640554_at mod(mdg-<br/>Tissue</li> <li>Brain<br/>Head<br/>Thoracicoabdomina<br/>I ganglion</li> <li>Crop<br/>Midgut<br/>Tubule</li> <li>Hindgut<br/>Ovary</li> </ul>   | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$<br>$28 \pm 2$<br>$19 \pm 3$<br>$17 \pm 0$<br>$21 \pm 1$<br>$66 \pm 0$                            | Present<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40<br>0.90<br>0.60<br>0.60<br>0.70<br>2.20                 | Affy<br>Call<br>Up<br>None<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None        |
| <ul> <li>1627483_at mod(mdg-<br/>Tissue</li> <li>Brain<br/>Head<br/>Thoracicoabdomina<br/>I ganglion<br/>Crop<br/>Midgut<br/>Tubule</li> <li>Hindgut<br/>Ovary<br/>Testis</li> <li>Male accessory<br/>glands<br/>Adult carcass</li> <li>Larval tubule</li> <li>Larval tubule</li> <li>Larval tubule</li> <li>Larval tubule</li> <li>Tissue</li> <li>Brain<br/>Head<br/>Thoracicoabdomina<br/>I ganglion<br/>Crop<br/>Midgut<br/>Tubule</li> <li>Hindgut<br/>Ovary<br/>Testis</li> </ul> | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$<br>$28 \pm 2$<br>$19 \pm 3$<br>$17 \pm 0$<br>$21 \pm 1$<br>$66 \pm 0$<br>$8 \pm 1$               | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1  | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>0.80<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40<br>0.90<br>0.60<br>0.60<br>0.70<br>2.20<br>0.30 | Affy<br>Call<br>Up<br>None<br>Up<br>Dow<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None |
| 1627483_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly<br>1640554_at mod(mdg-<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory                                                                              | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$<br>$28 \pm 2$<br>$19 \pm 3$<br>$17 \pm 0$<br>$21 \pm 1$<br>$66 \pm 0$<br>$8 \pm 1$<br>$24 \pm 3$ | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>1 of 4<br>0 of 4<br>1  | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40<br>0.90<br>0.60<br>0.60<br>0.70<br>2.20<br>0.30<br>0.80 | Affy<br>Call<br>Up<br>None<br>Up<br>Dow<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None |
| 1627483_at mod(mdg-<br>Tissue Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis Male accessory<br>glands<br>Adult carcass<br>Larval tubule<br>Larval fat body<br>Whole fly 1640554_at mod(mdg-<br>Tissue Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis Male accessory<br>glands                                                                                   | 4)-54.5<br>mRN<br>A<br>Signal<br>$30 \pm 1$<br>$9 \pm 0$<br>$18 \pm 1$<br>$9 \pm 3$<br>$7 \pm 1$<br>$9 \pm 1$<br>$10 \pm 1$<br>$20 \pm 1$<br>$5 \pm 0$<br>$7 \pm 1$<br>$8 \pm 1$<br>$11 \pm 1$<br>$5 \pm 2$<br>$9 \pm 1$<br>4)-57.4<br>mRNA<br>Signal<br>$94 \pm 4$<br>$24 \pm 2$<br>$73 \pm 3$<br>$28 \pm 2$<br>$19 \pm 3$<br>$17 \pm 0$<br>$21 \pm 1$<br>$66 \pm 0$<br>$8 \pm 1$<br>$24 \pm 3$ | Presen<br>t Call<br>4 of 4<br>3 of 4<br>4 of 4<br>1 of 4<br>0 of 4<br>0 of 4<br>1 of 4<br>1 of 4<br>0 of 4<br>1  | Enrichmen<br>t<br>3.20<br>1.00<br>2.00<br>1.00<br>0.80<br>1.00<br>1.10<br>2.10<br>0.50<br>0.80<br>0.90<br>1.20<br>0.50<br>Enrich<br>ment<br>3.00<br>0.80<br>2.40<br>0.90<br>0.60<br>0.60<br>0.70<br>2.20<br>0.30<br>0.80 | Affy<br>Call<br>Up<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None                      |

| Larval tubule              | $24 \pm 1$               | 4 of 4   | 0.80      | None       |
|----------------------------|--------------------------|----------|-----------|------------|
| Larval fat body            | $20 \pm 1$               | 4 of 4   | 0.70      | Down       |
| Whole fly                  | $30 \pm 2$               | 4 of 4   |           |            |
|                            |                          |          |           |            |
| 1634052_s_at mod(m         | dg4)-58.6                | & mod(md | g4)-54.1  |            |
| Tissue                     | mRNA                     | Present  | Enrich    | Affy       |
|                            | Signal                   | Call     | ment      | Call       |
| Brain                      | $86 \pm 1$               | 4 of 4   | 2.90      | Up         |
| Head                       | $23 \pm 1$               | 4 of 4   | 0.80      | Down       |
| Thoracicoabdomina          | $80 \pm 5$               | 4 of 4   | 2.70      | Up         |
| l ganglion                 |                          |          |           |            |
| Crop                       | $16 \pm 2$               | 3 of 4   | 0.60      | Down       |
| Midgut                     | $15 \pm 1$               | 0 of 4   | 0.50      | Down       |
| Tubule                     | $13 \pm 0$               | 2 of 4   | 0.50      | Down       |
| Hindgut                    | $16 \pm 1$               | 3 of 4   | 0.50      | Down       |
| Ovary                      | $70 \pm 2$               | 4 of 4   | 2.40      | Up         |
| Testis                     | $8 \pm 0$                | 2 of 4   | 0.30      | Down       |
| Male accessory             | $16 \pm 1$               | 0 of 4   | 0.50      | Down       |
| glands                     |                          |          |           |            |
| Adult carcass              | $15 \pm 3$               | 0 of 4   | 0.50      | Down       |
| Larval tubule              | $21 \pm 2$               | 4 of 4   | 0.70      | Down       |
| Larval fat body            | $17 \pm 3$               | 1 of 4   | 0.60      | Down       |
| Whole fly                  | $29 \pm 1$               | 4 of 4   |           |            |
|                            |                          |          |           |            |
| 1638829_s_at mod(m         | dg4)-55.7                | & mod(md | g4)-52.2  |            |
| Tissue                     | mRN                      | Presen   | Enrichmen | Affy       |
|                            | А                        | t Call   | t         | Call       |
|                            | Signal                   |          |           |            |
| Brain                      | 133 ±                    | 4 of 4   | 3.70      | Up         |
|                            | 2                        |          |           |            |
| Head                       | $42 \pm 3$               | 4 of 4   | 1.20      | None       |
| Thoracicoabdomina          | 108 ±                    | 4 of 4   | 3.00      | Up         |
| l ganglion                 | 1                        |          |           |            |
| Crop                       | $36 \pm 1$               | 4 of 4   | 1.00      | None       |
| Midgut                     | $19 \pm 2$               | 1 of 4   | 0.50      | Dow        |
| 0                          |                          |          |           | n          |
| Tubule                     | $25 \pm 1$               | 4 of 4   | 0.70      | Dow        |
|                            |                          |          |           | n          |
| Hindgut                    | $20 \pm 1$               | 3 of 4   | 0.60      | Dow        |
| 8                          |                          |          |           | n          |
| Ovary                      | 84 + 3                   | 4  of  4 | 2.30      | Un         |
| Testis                     | 6+1                      | 0  of  4 | 0.20      | Dow        |
| 105115                     | 0 ± 1                    | 0.01.4   | 0.20      | n          |
| Male accessory             | 24 + 4                   | 2  of  4 | 0.70      | None       |
| glands                     | 2121                     | 2011     | 0.70      | rtone      |
| Adult carcase              | $31 \pm 3$               | 4  of  4 | 0.90      | None       |
| Adult calcass              | $31 \pm 3$<br>$16 \pm 1$ | 4014     | 0.90      | Dow        |
| Larvai tubule              | $10 \pm 1$               | 5 01 4   | 0.30      | Dow        |
| Lowyol fot hody            | 20 1 2                   | 1 of 1   | 0.80      | II<br>Dowy |
| Larvai lat body            | $20 \pm 2$               | 4 01 4   | 0.80      | Dow        |
| With a la flag             | 26 + 1                   | 1 - 6 1  |           | n          |
| whole fly                  | $30 \pm 1$               | 4 01 4   |           |            |
|                            |                          |          |           |            |
| 1622976_at mod(mdg         | 4)-54.6                  |          |           |            |
| Tissue                     | mRN                      | Presen   | Enrichmen | Affy       |
|                            | А                        | t Call   | t         | Call       |
|                            | Signal                   |          |           |            |
| Brain                      | $56 \pm 2$               | 4 of 4   | 2.60      | Up         |
| Head                       | 18 + 1                   | 4 of 4   | 0.90      | None       |
| Thoracicoabdomina          | $37 \pm 2$               | 4 of 4   | 1 70      | Un         |
| l ganglion                 | 57 ± 2                   | + 01 +   | 1.70      | Op         |
| Cron                       | 22 + 2                   | 4  of  4 | 1.00      | None       |
| Midout                     | $11 \pm 0$               | 4  of  4 | 0.50      | Dow        |
| wildgut                    | 11 ± 0                   | - 01 -   | 0.50      | n          |
| Tubule                     | $13 \pm 0$               | 4  of  4 | 0.60      | Dow        |
| Tubule                     | 15±0                     | 4 01 4   | 0.00      | n          |
| Hindout                    | 14 + 0                   | 4  of  4 | 0.70      | None       |
| Ovary                      | $1 + \pm 0$<br>50 + 1    | 4 of 4   | 2 70      | Up         |
| Testis                     | 6±0                      | 701+     | 0.30      | Dow        |
| 1 05018                    | 0±0                      | 2 01 4   | 0.50      | n          |
| Male accessory             | $11 \pm 0$               | 2  of  A | 0.50      | n<br>Dow   |
| alanda                     | 11 ± 0                   | 2 01 4   | 0.50      | DOW        |
| giallus<br>A dult corresso | $12 \pm 1$               | A of A   | 0.60      | II<br>Dow  |
| Adult carcass              | $1 \perp \pm 1$          | 4 01 4   | 0.00      | DOW        |
| Lowvol to-b1-              | 17 . 1                   | 1 - 6 1  | 0.80      | 11<br>N    |
| Larval tubule              | $1/\pm 1$                | 4 OI 4   | 0.80      | None       |
| Larvai fat body            | $50 \pm 3$               | 4 of 4   | 1.40      | None       |
| whole fly                  | $21 \pm 2$               | 4 of 4   |           |            |

| <b>1639308_at</b> mod(mdg4)-58.6                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Tissue                                                                                                                                                                               | mRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Presen                                                                                                                                                      | Enrichme                                                                                                               | Affy                                                                                         |  |  |
|                                                                                                                                                                                      | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t Call                                                                                                                                                      | nt                                                                                                                     | Call                                                                                         |  |  |
|                                                                                                                                                                                      | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
| Brain                                                                                                                                                                                | 38 ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 of 4                                                                                                                                                      | 3.20                                                                                                                   | Up                                                                                           |  |  |
| Head                                                                                                                                                                                 | $15 \pm 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 of 4                                                                                                                                                      | 1.30                                                                                                                   | None                                                                                         |  |  |
| Thoracicoabdomina                                                                                                                                                                    | $24 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                      | 2.00                                                                                                                   | Up                                                                                           |  |  |
| l ganglion                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                        | - 1                                                                                          |  |  |
| Crop                                                                                                                                                                                 | $15 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                      | 1.30                                                                                                                   | None                                                                                         |  |  |
| Midout                                                                                                                                                                               | 9+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0  of  4                                                                                                                                                    | 0.80                                                                                                                   | None                                                                                         |  |  |
| Tubule                                                                                                                                                                               | 9 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0  of  4                                                                                                                                                    | 0.80                                                                                                                   | Down                                                                                         |  |  |
| Hindout                                                                                                                                                                              | $11 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3  of  4                                                                                                                                                    | 0.00                                                                                                                   | None                                                                                         |  |  |
| Overv                                                                                                                                                                                | $37 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\int df 4$                                                                                                                                                 | 3 20                                                                                                                   | Un                                                                                           |  |  |
| Tostis                                                                                                                                                                               | $37 \pm 2$<br>$2 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4014                                                                                                                                                        | 0.20                                                                                                                   | Down                                                                                         |  |  |
| Mala accessory                                                                                                                                                                       | 5 ± 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.014                                                                                                                                                       | 0.50                                                                                                                   | Down                                                                                         |  |  |
| Nate accessory                                                                                                                                                                       | $5\pm0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 01 4                                                                                                                                                      | 0.50                                                                                                                   | Down                                                                                         |  |  |
| glands                                                                                                                                                                               | 7 . 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 64                                                                                                                                                        | 0.70                                                                                                                   | N                                                                                            |  |  |
| Adult carcass                                                                                                                                                                        | $1 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 01 4                                                                                                                                                      | 0.70                                                                                                                   | None                                                                                         |  |  |
| Larval tubule                                                                                                                                                                        | $12 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 01 4                                                                                                                                                      | 1.10                                                                                                                   | None                                                                                         |  |  |
| Larval fat body                                                                                                                                                                      | $12 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 of 4                                                                                                                                                      | 1.10                                                                                                                   | None                                                                                         |  |  |
| Whole fly                                                                                                                                                                            | 11 ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 of 4                                                                                                                                                      |                                                                                                                        |                                                                                              |  |  |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
| <b>1639006_at</b> mod(mdg                                                                                                                                                            | 4)-53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
| Tissue                                                                                                                                                                               | mRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Presen                                                                                                                                                      | Enrichmen                                                                                                              | Affy                                                                                         |  |  |
|                                                                                                                                                                                      | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t Call                                                                                                                                                      | t                                                                                                                      | Call                                                                                         |  |  |
|                                                                                                                                                                                      | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
| Brain                                                                                                                                                                                | $19 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3 of 4                                                                                                                                                      | 1.50                                                                                                                   | None                                                                                         |  |  |
| Head                                                                                                                                                                                 | $14 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 of 4                                                                                                                                                      | 1.10                                                                                                                   | None                                                                                         |  |  |
| Thoracicoabdomina                                                                                                                                                                    | $15 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                      | 1.20                                                                                                                   | None                                                                                         |  |  |
| l ganglion                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
| Crop                                                                                                                                                                                 | $13 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 of 4                                                                                                                                                      | 1.00                                                                                                                   | None                                                                                         |  |  |
| Midout                                                                                                                                                                               | 4 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 of 4                                                                                                                                                      | 0.40                                                                                                                   | None                                                                                         |  |  |
| Tubule                                                                                                                                                                               | 7 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 of 4                                                                                                                                                      | 0.50                                                                                                                   | Dow                                                                                          |  |  |
| Tubule                                                                                                                                                                               | 1 = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01.1                                                                                                                                                      | 0.50                                                                                                                   | n                                                                                            |  |  |
| Hindaut                                                                                                                                                                              | $7 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0  of  4                                                                                                                                                    | 0.60                                                                                                                   | None                                                                                         |  |  |
| Overv                                                                                                                                                                                | $1 \pm 1$<br>$11 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 of 4                                                                                                                                                      | 2.20                                                                                                                   | Un                                                                                           |  |  |
| Testis                                                                                                                                                                               | $41 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 01 4<br>1 of 4                                                                                                                                            | 5.20                                                                                                                   | Nama                                                                                         |  |  |
| 1 estis                                                                                                                                                                              | $5 \pm 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1014                                                                                                                                                        | 0.40                                                                                                                   | INOILE<br>I.I.,                                                                              |  |  |
| Male accessory                                                                                                                                                                       | 25 ± 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 OI 4                                                                                                                                                      | 2.00                                                                                                                   | Up                                                                                           |  |  |
| glands                                                                                                                                                                               | 16.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 64                                                                                                                                                        | 1.00                                                                                                                   |                                                                                              |  |  |
| Adult carcass                                                                                                                                                                        | $16 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 of 4                                                                                                                                                      | 1.30                                                                                                                   | None                                                                                         |  |  |
| Larval tubule                                                                                                                                                                        | $8 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 of 4                                                                                                                                                      | 0.70                                                                                                                   | None                                                                                         |  |  |
| Larval fat body                                                                                                                                                                      | 8 ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 of 4                                                                                                                                                      | 0.70                                                                                                                   | None                                                                                         |  |  |
| Whole fly                                                                                                                                                                            | $12 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                      |                                                                                                                        |                                                                                              |  |  |
|                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
| 1628921_s_at mod(ma                                                                                                                                                                  | dg4)-59.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
| Tissue                                                                                                                                                                               | mRNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Present                                                                                                                                                     | Enrich                                                                                                                 | Affy                                                                                         |  |  |
|                                                                                                                                                                                      | Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Call                                                                                                                                                        | ment                                                                                                                   | Call                                                                                         |  |  |
| Brain                                                                                                                                                                                | $88 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                      | 1.50                                                                                                                   | Up                                                                                           |  |  |
| Head                                                                                                                                                                                 | $35 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                      | 0.60                                                                                                                   | Down                                                                                         |  |  |
| Thoracicoabdomina                                                                                                                                                                    | 67 ± 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 of 4                                                                                                                                                      | 1.20                                                                                                                   | None                                                                                         |  |  |
| l ganglion                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                        |                                                                                              |  |  |
| Crop                                                                                                                                                                                 | $43 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                      | 0.70                                                                                                                   | None                                                                                         |  |  |
| Midout                                                                                                                                                                               | 39 + 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 of 4                                                                                                                                                      | 0.70                                                                                                                   | Down                                                                                         |  |  |
| Tubule                                                                                                                                                                               | 37 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 of 4                                                                                                                                                      | 0.60                                                                                                                   | Down                                                                                         |  |  |
| Hindout                                                                                                                                                                              | $29 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4  of  4                                                                                                                                                    | 0.50                                                                                                                   | Down                                                                                         |  |  |
| Ovary                                                                                                                                                                                | 117 + 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4  of  4                                                                                                                                                    | 2.00                                                                                                                   | Un                                                                                           |  |  |
| Testis                                                                                                                                                                               | $8 \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1  of  4                                                                                                                                                    | 0.10                                                                                                                   | Down                                                                                         |  |  |
| Male accessory                                                                                                                                                                       | $\frac{0}{278} \pm 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4  of  4                                                                                                                                                    | 3.90                                                                                                                   | Un                                                                                           |  |  |
| alanda                                                                                                                                                                               | 220 ± 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 01 4                                                                                                                                                      | 5.70                                                                                                                   | Сp                                                                                           |  |  |
| A dult corress                                                                                                                                                                       | $40 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4  of  4                                                                                                                                                    | 0.70                                                                                                                   | Down                                                                                         |  |  |
| Adult carcass                                                                                                                                                                        | $40 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 01 4                                                                                                                                                      | 0.70                                                                                                                   | Down                                                                                         |  |  |
| Larval tubule                                                                                                                                                                        | 21+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 OI 4                                                                                                                                                      | 0.50                                                                                                                   | Down                                                                                         |  |  |
| Larval fat body                                                                                                                                                                      | 20 . 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 6 4                                                                                                                                                       | 0.00                                                                                                                   | <b>D</b>                                                                                     |  |  |
|                                                                                                                                                                                      | $38 \pm 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4                                                                                                                                                      | 0.60                                                                                                                   | Down                                                                                         |  |  |
| Whole fly                                                                                                                                                                            | $38 \pm 3$<br>$58 \pm 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 of 4<br>4 of 4                                                                                                                                            | 0.60                                                                                                                   | Down                                                                                         |  |  |
| Whole fly                                                                                                                                                                            | $38 \pm 3$<br>$58 \pm 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4 of 4<br>4 of 4                                                                                                                                            | 0.60                                                                                                                   | Down                                                                                         |  |  |
| Whole fly<br>1628562_s_at mod(ma                                                                                                                                                     | $38 \pm 3$<br>$58 \pm 5$<br>1g4)-67.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 of 4<br>4 of 4                                                                                                                                            | 0.60                                                                                                                   | Down                                                                                         |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue                                                                                                                                    | $38 \pm 3$<br>$58 \pm 5$<br>$38 \pm$ | 4 of 4<br>4 of 4<br>Present                                                                                                                                 | 0.60<br>Enrich                                                                                                         | Down                                                                                         |  |  |
| whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue                                                                                                                                    | $38 \pm 3$<br>$58 \pm 5$<br>1g4)-67.2<br>mRNA<br>Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 of 4<br>4 of 4<br>Present<br>Call                                                                                                                         | 0.60<br>Enrich<br>ment                                                                                                 | Down<br>Affy<br>Call                                                                         |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue<br>Brain                                                                                                                           | $38 \pm 3$<br>$58 \pm 5$<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20<br>38/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4                                                                                                               | 0.60<br>Enrich<br>ment<br>1.00                                                                                         | Down<br>Affy<br>Call<br>None                                                                 |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue<br>Brain<br>Head                                                                                                                   | $38 \pm 3$<br>$58 \pm 5$<br>364)-67.2<br>mRNA<br>Signal<br>$130 \pm 4$<br>$76 \pm 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4                                                                                                     | 0.60<br>Enrich<br>ment<br>1.00<br>0.60                                                                                 | Down<br>Affy<br>Call<br>None<br>Down                                                         |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina                                                                                              | $38 \pm 3$<br>$58 \pm 5$<br>$3g_4$ )-67.2<br>mRNA<br>Signal<br>$130 \pm 4$<br>$76 \pm 2$<br>$101 \pm 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4<br>4 of 4                                                                                           | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80                                                                         | Down<br>Affy<br>Call<br>None<br>Down<br>Down                                                 |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>l ganglion                                                                                | $38 \pm 3 \\ 58 \pm 5 \\ g_{d})-67.2 \\ mRNA \\ Signal \\ 130 \pm 4 \\ 76 \pm 2 \\ 101 \pm 7 \\ \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4<br>4 of 4                                                                                           | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80                                                                         | Down<br>Affy<br>Call<br>None<br>Down<br>Down                                                 |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop                                                                        | $38 \pm 3 \\ 58 \pm 5 \\ 38 \pm 3 \\ 58 \pm 5 \\ 38 \pm 5 \\ 3$                                                                                                                                          | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4                                                                                 | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80                                                                 | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>None                                         |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop                                                                        | $38 \pm 3 \\ 58 \pm 5 \\ 38 \pm 3 \\ 58 \pm 5 \\ 38 \pm 5 \\ 3$                                                                                                                                          | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4                                                                                 | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80                                                                 | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>None                                         |  |  |
| Whole fly<br>1628562_s_at mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut                                                                     | $38 \pm 3 \\ 58 \pm 5 \\ 84 + 5 \\ 58 \pm 5 \\ 87 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 78 + 5 \\ 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4                                                                       | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80<br>0.80                                                         | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>None<br>Down                                 |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(mat<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule                                                   | $38 \pm 3 \\ 58 \pm 5 \\ 38 \pm 5 \\ 30 \pm 4 \\ 76 \pm 2 \\ 101 \pm 7 \\ 105 \pm 12 \\ 87 \pm 5 \\ 151 \pm 8 \\ 38 \pm 5 \\ 151 \pm 8 \\ 38 \pm 5 \\ 101 \pm 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4                                                                       | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80<br>0.80<br>0.70<br>1.20                                         | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>None<br>Down<br>Up                           |  |  |
| Whole fly<br><b>1628562_s_at</b> mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut                                         | $38 \pm 3 \\ 58 \pm 5 \\ 38 \pm 5 \\ 30 \pm 4 \\ 76 \pm 2 \\ 101 \pm 7 \\ 105 \pm 1 \\ 12 \\ 87 \pm 5 \\ 151 \pm 8 \\ 85 \pm 3 \\ 38 \pm 38 \\ 38 \pm$                                                                                                                                             | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4<br>4 of 4                                                   | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80<br>0.80<br>0.70<br>1.20<br>0.70                                 | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>Up<br>Down<br>Up<br>Down                     |  |  |
| Whole fly<br>1628562_s_at mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>l ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary                                       | $38 \pm 3 \\ 58 \pm 5$ $38 \pm 6$ $38 \pm 3$ $30 \pm 4$ $76 \pm 2$ $101 \pm 7$ $105 \pm$ $12$ $87 \pm 5$ $151 \pm 8$ $85 \pm 3$ $241 \pm 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4                                         | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80<br>0.80<br>0.70<br>1.20<br>0.70<br>1.90                         | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>Up<br>Down<br>Up                             |  |  |
| Whole fly<br>1628562_s_at mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis                             | $\begin{array}{c} 38 \pm 3 \\ 38 \pm 3 \\ 58 \pm 5 \\ \end{array}$ $\begin{array}{c} g4) - 67.2 \\ mRNA \\ signal \\ 130 \pm 4 \\ 76 \pm 2 \\ 101 \pm 7 \\ \end{array}$ $\begin{array}{c} 105 \pm 12 \\ 87 \pm 5 \\ 151 \pm 8 \\ 85 \pm 3 \\ 241 \pm 5 \\ 37 \pm 3 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4           | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80<br>0.80<br>0.70<br>1.20<br>0.70<br>1.90<br>0.30                 | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>Up<br>Down<br>Up<br>Down<br>Up<br>Down       |  |  |
| Whole fly<br>1628562_s_at mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory           | $\begin{array}{c} 38 \pm 3 \\ 38 \pm 3 \\ 58 \pm 5 \\ \\ g4) - 67.2 \\ \\ mRNA \\ \\ Signal \\ 130 \pm 4 \\ 76 \pm 2 \\ 101 \pm 7 \\ \\ 105 \pm \\ 12 \\ 87 \pm 5 \\ 151 \pm 8 \\ 85 \pm 3 \\ 241 \pm 5 \\ 37 \pm 3 \\ 605 + \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4 | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80<br>0.70<br>1.20<br>0.70<br>1.20<br>0.70<br>1.90<br>0.30<br>4.80 | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>Up<br>Down<br>Up<br>Down<br>Up               |  |  |
| Whole fly<br>1628562_s_at mod(ma<br>Tissue<br>Brain<br>Head<br>Thoracicoabdomina<br>I ganglion<br>Crop<br>Midgut<br>Tubule<br>Hindgut<br>Ovary<br>Testis<br>Male accessory<br>glands | $\begin{array}{c} 38 \pm 3 \\ 38 \pm 3 \\ 58 \pm 5 \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 of 4<br>4 of 4<br>Present<br>Call<br>4 of 4<br>4 of 4 | 0.60<br>Enrich<br>ment<br>1.00<br>0.60<br>0.80<br>0.80<br>0.70<br>1.20<br>0.70<br>1.90<br>0.30<br>4.80                 | Down<br>Affy<br>Call<br>None<br>Down<br>Down<br>Up<br>Down<br>Up<br>Down<br>Up<br>Down<br>Up |  |  |

| Adult carcass      | 71 ± 2      | 4 of 4 | 0.60     | Down | Crop            | $27 \pm 1$ | 3 of 4 | 0.60 | Down |
|--------------------|-------------|--------|----------|------|-----------------|------------|--------|------|------|
| Larval tubule      | $135 \pm 3$ | 4 of 4 | 1.10     | None | Midgut          | $13 \pm 0$ | 2 of 4 | 0.30 | Down |
| Larval fat body    | 159 ±       | 4 of 4 | 1.30     | None | Tubule          | $42 \pm 3$ | 4 of 4 | 0.90 | None |
| •                  | 11          |        |          |      | Hindgut         | $31 \pm 3$ | 4 of 4 | 0.70 | Down |
| Whole fly          | $126 \pm 3$ | 4 of 4 |          |      | Ovary           | 107 ±      | 4 of 4 | 2.30 | Up   |
| -                  |             |        |          |      | -               | 3          |        |      | _    |
| 1632973_at mod(md) | g4)-58.8    |        |          |      | Testis          | $16 \pm 0$ | 4 of 4 | 0.40 | Down |
| Tissue             | mRN         | Presen | Enrichme | Affy | Male accessory  | $88 \pm 7$ | 4 of 4 | 1.90 | Up   |
|                    | А           | t Call | nt       | Call | glands          |            |        |      |      |
|                    | Signal      |        |          |      | Adult carcass   | $23 \pm 1$ | 0 of 4 | 0.50 | Down |
| Brain              | 149 ±       | 4 of 4 | 3.20     | Up   | Larval tubule   | $23 \pm 3$ | 3 of 4 | 0.50 | Down |
|                    | 6           |        |          | -    | Larval fat body | $40 \pm 3$ | 4 of 4 | 0.80 | None |
| Head               | $34 \pm 1$  | 4 of 4 | 0.70     | Down | Whole fly       | $47 \pm 3$ | 4 of 4 |      |      |
| Thoracicoabdomina  | 103 ±       | 4 of 4 | 2.20     | Up   |                 |            |        |      |      |
| l ganglion         | 1           |        |          | -    |                 |            |        |      |      |

# A2.3 Phänotypen nach hitzeschockvermittelter I-*Cre*I-Expression und Nomenklaturschlüssel der Linien nach erfolgreicher Insertion der Donor-DNA in *mod(mdg4)*



**Abbildung A3:** Phänotypen nach hitzeschockinduzierter I-*Cre*I-Expression. (A-C) Phänotypen des Komplexauges; (D) gespaltener Thorax (Kreuzungsschema siehe 2.1.6)

Zur Nomenklatur der Linien:  $\Delta 2$  bzw.  $\Delta 13$  beziehen sich auf die Donorlinien, die folgenden Zahlen entsprechen der Kreuzungsnummer während der Mobilisierung des Donorelements. Kleine Buchstaben wurden verwendet, wenn mehrere Tiere aus einer Mobilisierungskreuzung selektiert wurden. Zusätzlich wurde eine römische Zahl, die der Nummer der Duplikations-Auflösungskreuzung (= F1-Tiere) entspricht, und nachstehend ein kleiner Buchstabe, der die Nummer der F2-Kreuzung benennt, angefügt. Aufgrund der nun relativ komplexen Linien-Bezeichnungen im Ergebnis der "Ends-in gene targeting"-Kreuzungen wurden diese Linien umbenannt.

Schlüssel für Umbenennung der Linien nach den "Ends-in gene targeting"-Kreuzungen:

| Mu2 | $= \Delta 2$ 39a III f | Mu32 = $\Delta 2$ 39a IV c   |
|-----|------------------------|------------------------------|
| Mu3 | $= \Delta 2$ 39a IV n  | Mu35 = $\Delta 2$ 39a III h  |
| Mu5 | $= \Delta 2$ 39a III g | Mu37 = $\Delta 2$ 39a IV a   |
| Mu6 | $= \Delta 13$ 9a II h  | Mu38 = $\Delta 13$ 85c IV p  |
| Mu7 | $= \Delta 13$ 85c IV h | Mu39 = $\Delta 2$ 39a III k  |
| Mu9 | = Δ13 85c III a        | Mu43 = $\Delta$ 13 85c III j |

| Mu10 | $= \Delta 13 85$ c V k  | Mu46 | = Δ13 85c IV j           |
|------|-------------------------|------|--------------------------|
| Mu11 | $= \Delta 13$ 85c III b | Mu48 | $= \Delta 13$ 9a IIIg    |
| Mu13 | $= \Delta 13 85$ c IV c | Mu55 | $= \Delta 13 85 c V 1$   |
| Mu16 | $= \Delta 2$ 39a IV h   | Mu57 | $= \Delta 2$ 39a IV g    |
| Mu18 | $= \Delta 13 85$ c V f  | Mu60 | $= \Delta 2$ 39a III k   |
| Mu19 | $= \Delta 2$ 39a III b  | Mu62 | = Δ13 9a II g            |
| Mu20 | $= \Delta 13 85$ c Va   | Mu66 | $= \Delta 2$ 39a IV b    |
| Mu21 | = Δ2 39a IV j           | Mu68 | $= \Delta 13 85$ c III d |
| Mu24 | $= \Delta 13$ 85c III k | Mu77 | $= \Delta 2$ 39a III     |
| Mu28 | $= \Delta 13 85 c V h$  |      |                          |

### A2.4 ergänzende Microarraydaten zu Δ13 85c V1 und Rev31

**Tabelle A2:** In  $\Delta 13\ 85c\ V1$  nicht signifikant in ihrer Expression veränderte Transposons (log<sub>2</sub>x<1 oder p>0,2), alphabetisch geordnet, und entsprechendes Signal von Revertante Rev31 als Vergleich. p-Werte im t-Test von p>0,2 wurden grau unterlegt.

| Name      | Δ13 85c V l (p-<br>Wert) | Rev31 (p-Wert) | Target-ID    |
|-----------|--------------------------|----------------|--------------|
| 412       | 0,23 (0,5780)            | 1,08 (0,0056)  | 1640167_s_at |
| 1731      | 0,62 (0,4572)            | -1,02 (0,1286) | 1625050_s_at |
| Baril     | -0,37 (0,5765)           | -0,54 (0,4794) | 1637622_s_at |
| Bari2     | 0,26 (0,7885)            | 1,06 (0,3411)  | 1636749_at   |
| blood     | 0,59 (0,1255)            | -0,23 (0,5795) | 1635886_s_at |
| Burdock   | -0,79 (0,0534)           | -0,91 (0,1378) | 1633959_s_at |
| Circe     | 0,23 (0,8974)            | 0,42 (0,6714)  | 1626288_at   |
| copia     | 0,13 (0,3195)            | 0,44 (0,0262)  | 1632683_s_at |
| diver2    | 0,41 (0,7366)            | 0,59 (0,6988)  | 1641421_s_at |
| G-element | -0,31 (0,6417)           | -0,34 (0,7058) | 1626130_s_at |
| G3        | -0,08 ( <u>0,9073</u> )  | 0,57 (0,5249)  | 1632902_s_at |
| gtwin     | 0,46 (0,6195)            | -0,18 (0,8679) | 1637055_s_at |
| mdg1      | -0,92 (0,0202)           | -0,90 (0,0794) | 1625195_s_at |
| gypsy2    | 0,06 (0,9378)            | -2,38 (0,1930) | 1635829_s_at |
| gypsy5    | -0,79 (0,2610)           | -0,75 (0,0815) | 1626434_s_at |

| дурsуб       | 1,06 (0,5459)   | 0,57 (0,0920)   | 1635017_at    |
|--------------|-----------------|-----------------|---------------|
| H-element    | -0,09 (0,7279)  | 0,001 (0,9978)  | 1623559_s_at  |
| HeT-A        | 0,85 (0,2339) 1 | 3,85 (0,0522)   | 1624224_at    |
| HMS-Beagle   | -0,56 (0,1397)  | 1,59 (0,0142)   | 1633998_s_at  |
| invader3     | 0,32 (0,7267)   | 1,59 (0,0545)   | 1627936_s_at  |
| INE-1        | -0,92 (0,4743)  | 2,09 (0,2455)   | 1634508_at    |
| mariner2     | 0,09 (0,8107)   | -0,67 (0,5005)  | 1637377_x_at  |
| micropia     | 0,76 (0,2465)   | 0,73 (0,1097)   | 1641450_s_at  |
| P-element    | 1,67 (0,5046)   | 2,47 (0,4224)   | 1628989_at    |
| qbert        | 0,28 (0,3163)   | -0,65 (0,2093)  | 1641210_s_ at |
| rooA         | 0,70 (0,1673)   | -0,27 (0,5860)  | 1638228_s_at  |
| rover        | -0,78 (0,0913)  | -0,17 (0,2414)  | 1624377_s_at  |
| Rtla         | 1,38 (0,2440)   | -0,50 (0,7221)  | 1624631_x_at  |
| <i>Rt1b</i>  | -0,51 (0,1527)  | -1,02 (0,0184)  | 1623349_x_at  |
| Rtlc         | -0,68 (0,5192)  | -0,003 (0,9976) | 1634338_x_at  |
| S-element    | 0,62 (0,5440)   | 0,48 (0,7525)   | 1631713_x_at  |
| <i>S2</i>    | 2,34 (0,3911)   | 0,21 (0,7138)   | 1641296_at    |
| springer     | -0,45 (0,0056)  | 0,25 (0,0126)   | 1624543_s_at  |
| Stalker3     | -0,43 (0,7546)  | -0,17 (0,9045)  | 1627940_at    |
| Tabor        | -0,15 (0,4560)  | 3,01 (0,0008)   | 1631349_s_at  |
| TART-element | -0,20 (0,6523)  | -0,16 (0,7233)  | 1638428_at    |
| TART-element | -0,08 (0,5469)  | -0,59 (0,0313)  | 1629242_x_at  |
| Toml         | 0,77 (0,0052)   | 0,40 (0,0849)   | 1623158_s_at  |
| Toml         | -0,64 (0,4184)  | -0,65 (0,5339)  | 1632924_at    |
| transib3     | 1,75 (0,3386)   | -0,94 (0,5246)  | 1627374_at    |
| transib3     | 0,12 (0,7533)   | 0,05 (0,9976)   | 1635012_x_at  |
| transib4     | -0,37 (0,4262)  | -3,51 (0,0266)  | 1627177_x_at  |
| Transpac     | -0,66 (0,0349)  | -0,03 (0,8064)  | 1640242_s_at  |

<sup>1</sup> schlechte Hybridisierung bei dieser Target-ID: Werte in  $w^{1118}_{iso}$ : 26 und 36; in Mu55: 42, 44 und 81



Ergebnisse der Analyse differentiell exprimierter *target* IDs mittels PANTHER<sup>®</sup> (www.pantherdb.org):

Von 747 *target* IDs (dereguliert mit p<0,05 und llog2foldl>1) sind für 180 weder Gensymbol noch UniGeneID o.ä. verfügbar. 567 nicht-redundante Gensymbole wurden analysiert. Davon sind lediglich 344 in *gene ontology*-Datenbanken (GO) für *D. melanogaster* gelistet (entspricht 46% der veränderten *target* IDs und 61% der untersuchten Gene). In der *"Molecular Function"*-Datenbank erfolgten 363 Treffer, davon für 197 Gene *"molecular function unclassified"* (desweiteren 23 Proteasen, 21 Hydrolasen, 19 TFs, 14 Oxidoreductasen, 10 NA-binding, 10 Transpoter, 9 Phosphatasen, ...). Die Suche in der *"Biological Process"*-Datenbank ergab 397 Gentreffer, davon für 206 Gene "Biological process unclassified" (39 Proteinmetabolismus & -modifikation, 24 Transport, 19 Nukleosid-, Nukleotid & NS-Metabolismus, 15 Lipid-, Fettsäuren- & Steroidmetab., 12 Entwicklungsprozesse, 10 "other metabolism", 9 Signaltransduktion, ...).

| Symbol                                              | Name                           | log <sub>2</sub> x | p-Wert  |
|-----------------------------------------------------|--------------------------------|--------------------|---------|
| stet (FBgn0020248)                                  | rhomboid-2                     | -4,80              | 0,0155  |
| <i>Eip63E</i> (FBgn0005640)                         | Pftaire                        | -3,65              | 0,00009 |
| DmsR-2 (FBgn0035329)                                | Dromyosuppressin<br>receptor 2 | -3,33              | 0,0794  |
| <i>Or42b</i> (FBgn0033043)                          | Odorant receptor 42b           | -3,32              | 0,0615  |
| <i>Ste12DOR</i> , Ste:CG33236 (multiple CG-Nummern) | Stellate orphon                | -3,28              | 0,0127  |
| gt (FBgn0001150)                                    | giant                          | -3,23              | 0,0730  |

**Tabelle A3:** Auswahl der stark ( $||og_2x|>1,7$ ) putativ von mod(mdg4)-52.2 oder -58.8 regulierten Gene, sortiert nach Stärke der Abweichung der Expression vom Referenzstamm  $w^{1118}_{iso}$ .

| Cyp12d1-d, Cyp12d1-p              |                                     |       |        |
|-----------------------------------|-------------------------------------|-------|--------|
| (FBgn0050489,FBgn0053             | Cyp12d1-p,Cyp12d1-d                 | -2,98 | 0,0017 |
| 503)                              |                                     |       |        |
| Sb (FBgn0003319)                  | stubbloid                           | -2,76 | 0,0797 |
| Ama (FBgn0000071)                 | amalgam                             | -2,75 | 0,0992 |
| sca (FBgn0003326)                 | scabrous                            | -2,72 | 0,1663 |
| <i>Cpr51A</i> (FBgn0033942)       | CG10112                             | -2,72 | 0,0828 |
| Mst35Ba (FBgn0013300)             | protamine                           | -2,52 | 0,0142 |
| <i>Obp46a</i> (FBgn0033508)       | Odorant-binding protein<br>46a      | -2,51 | 0,003  |
| cona (FBgn0038612)                | corona                              | -2,38 | 0,0037 |
| GstE1 (FBgn0034335)               | glutathione-S-transferase           | -2,30 | 0,0005 |
| alc (FBgn0033383)                 | beta homologue                      | -2,28 | 0,1426 |
| Task6 (FBgn0038165)               | Task6                               | -2,21 | 0,0025 |
| <i>PFE</i> (FBgn0032661)          | Pray For Elves                      | -2,16 | 0,0714 |
| kay (FBgn0001297)                 | shroud                              | -2,14 | 0,0712 |
| <i>Kif3C</i> (FBgn0039925)        | Kif3C                               | -2,12 | 0,0013 |
| fan (FBgn0028379)                 | farinelli                           | -2,08 | 0,0464 |
| Pxd (FBgn0004577)                 | Peroxidase                          | -1,83 | 0,0374 |
| to (FBgn0039298)                  | takeout                             | -1,82 | 0,0031 |
| Taf12L (FBgn0031623)              | ryan express                        | -1,81 | 0,1064 |
| <i>Cyp12d1-d</i><br>(FBgn0053503) | Cyp12d1-d                           | -1,77 | 0,0325 |
| HLHm7 (FBgn0002633)               | Enhancer of split m7                | -1,76 | 0,0887 |
| hochreguliert                     |                                     |       |        |
| Gr39a (FBgn0041244)               | Gustatory receptor 39a              | 1,74  | 0,1427 |
| Pk34A (FBgn0028410)               | Pk34A                               | 1,84  | 0,1034 |
| unc (FBgn0003950)                 | section 5                           | 1,87  | 0,0897 |
| GstD4 (FBgn0010040)               | <i>Glutathione S transferase</i> D4 | 1,90  | 0,0972 |
| bsh (FBgn0000529)                 | brain-specific homeobox             | 1,95  | 0,0081 |
| Fer1 (FBgn0037475)                | 48 related 1                        | 1,96  | 0,1347 |
| Gr2a (FBgn0027796)                | Gustatory receptor 2a               | 2,04  | 0,0516 |

| Ntl (FBgn0031934)                 | CG7075                         | 2,34 | 0,0548 |
|-----------------------------------|--------------------------------|------|--------|
| Obp58d (FBgn0034770)              | Odorant-binding protein<br>58d | 2,39 | 0,0748 |
| sha (FBgn0003382)                 | kojak                          | 2,47 | 0,1193 |
| <i>Obp58c</i> (FBgn0034769)       | Odorant-binding protein<br>58c | 2,50 | 0,0085 |
| <i>dmrt93B</i> (FBgn0038851)      | doublesex-Mab related<br>93B   | 3,06 | 0,0611 |
| Osi19 (FBgn0037429)               | Osiris                         | 3,25 | 0,0047 |
| <i>RacGAP84C</i><br>(FBgn0045843) | RnRacGAP                       | 3,51 | 0,0405 |

Bei den mit Hilfe der Datensätze Rev31 und GG295 identifizierten Zielgenen für mod(mdg4)-52.2 und -58.8 ist Achtsamkeit vor einer Überinterpretation geboten. In der Revertante Rev31 konkurrieren die Spleißakzeptoren von nur noch 13 (statt über 30) isoformspezifischen Exons um den Spleißdonor am 3'Ende von Exon 4. Zudem gibt es starke Indizien für einen Übergang von *trans*- (intermolekular) zu *cis*-Spleißen (intramolekular) (siehe Kap.3.2.1), was aufgrund der Einschränkung von Freiheitsgraden der Koordination der Moleküle zu einer Erhöhung der mRNA-Mengen, also einer Überexpression der nicht deletierten Isoformen (im Fall von mod(mdg4)-56.3 mittels RT-qPCR betimmt: circa Faktor drei) im Vergleich zur Wildtypsituation führen kann. Dies wiederum kann, wie der Ausfall von Isoformen, zur Deregulation von Zielgenen führen. Bei der differentiellen Analyse beider Datensätze wurden ca. 400 Target-IDs identifiziert (Auswahl siehe oben), deren mRNA-Menge in GG295 signifikant gegenüber  $w^{1118}_{iso}$  verändert ist, in Rev31 aber unverändert (unterhalb der Signifikanzgrenze) oder gegenteilig reguliert ist.



#### A2.5 D. virilis-mod(mdg4)-Konstrukte ohne etablierte Transgene

**Abbildung A4.** Im Rahmen der Arbeit erstellte *D. virilis-mod(mdg4)*-Konstrukte, von denen jedoch keine Transgene etabliert werden konnten. Bei pW8 (Dvi 9,5kb wt) handelt es sich um eine verkürzte Version des 11,5kb großen Konstrukts, das die Grundlage für die  $P(w^+ Dvi 11,5kb)$ -Transgene bildet, ohne Mutation. Mit dem Konstrukt pW8 (Dvi 9,5kb FRET) sollte eine mögliche Colokalisation der Proteinisoformen *Dvi*-Mod(mdg4)-64.2 und -60.1 untersucht werden durch Fluoreszenzenergietransfer (FRET) von ECFP auf EYFP, die jeweils C-terminal an die Isoformen fusioniert wurden (pW8 (Dvi 9,5kb h64.2-ECFP) ist eine Variante dieses Konstrukts ohne EYFP-Fusion an h60.1). Bei pW8 (Dvi 9,5kb LOF) handelt es sich um eine *loss of function*-Mutante der Isoform *Dvi*-Mod(mdg4)-h64.2 durch Austausch der zweiten, vom isoformspezifischen Exon codierten Aminosäure (K<sub>404</sub>) gegen ein Stopcodon. Mit pW8 (Dvi 9,5kb h64.2 only) sollte ein Transgen etabliert werden, das neben dem gemeinsamen Teil lediglich das isoformspezifische Exon von *Dvi-mod(mdg4)*-h64.2 enthält.



#### A2.6 Phylogramm verschiedener mod(mdg4)-Homologen-FLYWCH-Sequenzen

Abbildung A5: Ergebnis der phylogenetsichen Analyse der FLYWCH-Domäne von Proteinen mit zu Mod(mdg4)-Proteinen analoger Domänenstruktur (N-Terminus enthält eine BTB/POZ-Dimerisierungsdomäne und der C-Terminus die FLYWCH-Domäne). Die Ausnahme bildet die FLYWCH-Domäne des *C. elegans*-Proteins Peb-1, das als "Außengruppe" für die Erstellung des Phylogramms diente. Gezeigt ist der *strict consensus*-Baum als Zusammenfassung der 170 kürzesten Phylogramme der *maximum parsimony*-Analyse (Länge=1960 Schritte; CI=0,399). Die Werte über einigen Ästen (*bootstraps*) stehen für das Vorhandensein des Astes in Prozent bei 100-facher Wiederholung der *Bootstrapping*-Analyse. Die Länge der radialen Äste entspricht im *strict consensus*-Baum weder der Anzahl der Substitutionen noch ist sie ein Maß für die Zeit der getrennten evolutionären Entwicklung der die Proteine codierenden Gene bzw. der Spezies. Software: MEGA4 (Tamura *et al.*, 2007)

Ag: *A. gambiae*; Bm: *B. mori*; Ce: *C. elegans*; Dm: *D. melanogaster*; Dp: *D. pseudoobscura*; Dv: *D. virilis* 

#### **Publikationsliste**

Soling, A., Sackewitz, M., Volkmar, M., Schaarschmidt, D., Jacob, R., Holzhausen, H.-J., and Rainov, N.G. (2005). Minichromosome Maintenance Protein 3 Elicits a Cancer-Restricted Immune Response in Patients with Brain Malignancies and Is a Strong Independent Predictor of Survival in Patients with Anaplastic Astrocytoma. Clin Cancer Res *11*, 249-258.

Gabler, M., Volkmar, M., Weinlich, S., Herbst, A., Dobberthien, P., Sklarss, S., Fanti, L., Pimpinelli, S., Kress, H., Reuter, G., *et al.* (2005). Trans-splicing of the mod(mdg4) complex locus is conserved between the distantly related species Drosophila melanogaster and D. virilis. Genetics *169*, 723-736.

# <u>Lebenslauf</u>

persönliche Daten:

| Name          | Michael Volkmar                            |
|---------------|--------------------------------------------|
| geboren       | 21. Juni 1976 in Bad Langensalza/Thüringen |
| Nationalität  | deutsch                                    |
| Familienstand | verheiratet                                |

# Ausbildung:

| 1983 – 1985 | Pestalozzi-Schule, Sömmerda                                        |
|-------------|--------------------------------------------------------------------|
| 1985 – 1990 | Karl Marx-Obschule, Sömmerda                                       |
| 1990 – 1995 | Albert Schweitzer-Gymnasium, Sömmerda, Abitur 1995                 |
| 1995 – 1996 | Grundwehrdienst                                                    |
| 1996 – 2001 | Studium der Biochemie an der Martin-Luther-Universität             |
|             | Halle-Wittenberg                                                   |
| 2000 - 2001 | Diplomarbeit am Institut für Biotechnologie der                    |
|             | Martin-Luther-Universität Halle-Wittenberg                         |
|             | Thema: "Matrixunterstützte Reaktivierung von rekombinant           |
|             | hergestellten Proteinen"                                           |
| 2001 - 2002 | wissenschaftlicher Mitarbeiter im Neuroonkologischen Labor an der  |
|             | Klinik für Hirnchirurgie der Medizinischen Fakultät der            |
|             | Martin-Luther-Universität Halle-Wittenberg                         |
| 2002 - 2007 | wissenschaftlicher Mitarbeiter am Institut für Genetik, Abteilung  |
|             | Entwicklungsgenetik der Martin-Luther-Universität Halle-Wittenberg |
| seit 2008   | wissenschaftlicher Mitarbeiter im "Laboratoire de Epigenetique du  |
|             | Cancer" der Freien Universität Brüssel (U.L.B.)                    |

Halle, den 13. März 2010

# **Eidesstattliche Erklärung**

Hiermit erkläre ich an Eides statt, daß ich die vorliegende Arbeit selbständig und nur unter Verwendung der angegebenen Hilfsmittel und Literatur angefertigt habe. Die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen habe ich als solche kenntlich gemacht.

Halle, den 13. März 2010

## **Danksagung**

Dr. Rainer Dorn danke ich für die Überlassung des interessanten Arbeitsthemas, die Einführung in genetische Arbeiten mit *Drosophila melanogaster*, die ständige Diskussionsbereitschaft, das kritische Abwägen der Durchführbarkeit von Experimenten und seine Hilfe bei umfangreichen Kreuzungen.

Bei Prof. Dr. Gunter Reuter bedanke ich mich für die Möglichkeit, die vorliegende Arbeit in der Arbeitsgruppe Drosophilagenetik am Institut für Genetik der Martin-Luther-Universität durchzuführen, die zahlreichen Ressourcen, auf die ich dank seiner zurückgreifen konnte sowie für zahlreiche interessante und mitunter spätabendliche Diskussionen.

Mauela Gabler danke ich für ihre Hilfsbereitschaft, die Anfertigung immuncytologischer Analysen, die ausgezeichnete Zusammenarbeit und Arbeitsteilung im Labor, die Kaffeepausen, etc. pp.

Bei Andrea Dörfel, Tobias Balschun, den Diplomanden und Praktikanten des Labors Dorn bedanke ich mich für die Hilfe bei Experimenten, die Revertanten und die Denkanstöße aus den Diskussionen.

Der Arbeitsgruppe Entwicklungsgenetik am Institut für Genetik der Martin-Luther-Universität danke ich für die freundliche Aufnahme und die gute Arbeitsatmosphäre.

Besonderer Dank für Zuspruch wenn ich den brauchte, für Ablenkung wenn sie nötig war und für immerwährende Unterstützung gilt meiner Familie und am allermeisten Ute.