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Abstract

Hidden Markov Models (HMMs) are very popular tools in the field of computational
biology for the analysis of sequential data from genomic studies. In this field, currently
almost all HMM-based approaches make use of the theory behind standard first-order
HMMs that model dependencies between directly adjacent positions in a sequence of
data. This modeling of first-order dependencies can be a limitation for the analysis
of sequential data. To overcome this, the algorithmic basics of first-order HMMs are
comprehensively extended to higher-order HMMs for realizing dependencies between
a position and corresponding most recent predecessor positions in a sequence of data.
An important part of these extensions establishes the basis to integrate biological prior
knowledge about a data set into the training of HMMs by using the Bayesian Baum-
Welch algorithm. The goal of making use of such information is to improve the realiza-
tion of biologically meaningful models. In addition to this, genomic features comprising
the distance between adjacent genes on a chromosome or the orientation of adjacent
genes to each other are modeled by a specifically developed HMM with scaled transi-
tion matrices. This model is applied to the extended analysis of recent high-throughput
DNA microarray data sets of different organisms. In the context of the analysis of hu-
man gene expression data, HMMs with scaled transition matrices are used to model
chromosomal distances of adjacent genes for improving the identification of differen-
tially expressed genes in breast tumors. For the yeast Saccharomyces cerevisiae and
the model plant Arabidopsis thaliana, HMMs with scaled transition matrices that distin-
guish between orientations of adjacent genes on a chromosome are applied to refine
the prediction of transcription factor target genes from ChIP-chip1 data. Besides this
extended HMM, another extension, the parsimonious higher-order HMM, is developed
based on the theory behind higher-order HMMs. The parsimonious higher-order HMM
reduces the huge number of free transition parameters of a higher-order HMM in a
data-dependent manner. Both, higher-order and parsimonious higher-order HMMs
are applied to recent Array-CGH2 data for predicting sequence polymorphisms in the
genomes of two important accessions of Arabidopsis thaliana. Generally, all exten-
sions of HMMs are compared to standard first-order HMMs and other typically used
methods. Moreover, the predictions of all methods are comprehensively validated by
making use of published literature, specific data bases, comparison to other technolo-
gies, or additional wet-lab experiments.

1ChIP-chip: Chromatin-immunoprecipitation coupled with hybridization on a DNA microarray (chip)
2Array-CGH: Comparative genomic hybridization on a DNA microarray
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1 Introduction

Hidden Markov Models (HMMs) are probabilistic models for the analysis of sequential
data. The theory behind these models has initially been developed and studied in the
late 1960s and early 1970s in a series of papers (Rabiner (1989)). First practical ap-
plications of HMMs have been published in the domain of speech recognition (Rabiner
(1989); Juang and Rabiner (1991)). Strengths of HMMs include their sound mathemat-
ical grounding and the availability of efficient algorithms for sequential data analysis.
HMMs can be visualized by mathematical graphs that easily enable the design of a
model for a specific application. All these characteristics have contributed to the broad
usage of HMMs as one of the basic models in applied sciences (Mac Donald and Zuc-
chini (1997); Durbin et al. (1998); Jelinek (1998)). In the field of speech recognition,
HMMs are used to classify spoken words, digits, or even more complex speech signals
(Rabiner (1989); Juang and Rabiner (1991); Jelinek (1998)). More recent applications
in this field use HMMs for the separation of speech and music (Ajmera et al. (2002)),
or for the automatic recognition of human emotions from speech signals (Schuller et al.
(2003)). Other applications of HMMs can be found in the field of image segmentation
(Li and Gray (2000)). This includes the usage of HMMs for the segmentation of radar
images taken by satellites (Derrode et al. (2004)) as well as the classification of images
into land-usage categories (Mari and Le Ber (2006)).
About two decades ago first applications of HMMs have found their way into com-
putational biology. Based on these models, human genetic linkage maps have been
constructed by Lander et al. (1987), and the compositional structure of DNA sequences
has been analyzed by Churchill (1989). Over the years, several applications of HMMs
have been identified including the analysis of DNA and protein sequences as well as
the analysis of DNA microarray data. In the context of DNA and protein sequence data
analysis, applications comprise gene finding (Kulp et al. (1996); Krogh (1997)), pair-
wise sequence alignments (Durbin et al. (1998)), homology searches (Krogh (1994);
Eddy (1998)), and the characterization of protein structures (Campoux et al. (1999);
Bystroff et al. (2000)). An overview of these applications is provided by the textbook of
Durbin et al. (1998) and by the reviews of Cherry (2001) and de Fonzo et al. (2007).
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1. Introduction

In the last decade, the DNA microarray technology has been developed to a powerful
platform for the functional analysis of genomes. Applications include the analysis of
gene expression profiles (Duggan et al. (1999); Lipshutz et al. (1999); Schulze et al.
(2001)), the prediction of target regions of DNA-binding proteins like transcription fac-
tors or histones (Ren et al. (2000); Iyer et al. (2001); Martienssen et al. (2005)), and
the study of sequence polymorphisms like deletions or amplifications of DNA segments
between genomes (Mantripragada et al. (2004); Pinkel and Albertson (2005); Clark
et al. (2007)). The DNA microarray technology provides the opportunity to analyse
thousands of features (oligonucleotides or longer single-stranded DNA fragments) si-
multaneously within a single biological experiment. The features are located on a glass
slide at high density to identify a complex mixture of target molecules (Ekins and Chu
(1999)). In most studies, these target molecules represent either DNA or RNA isolated
from cells or tissues (Hoheisel (2006)). Every feature has the capacity to be recog-
nized by its complementary target sequence through base pairing, and the labeling of
this complementary sequence by radioactively marked DNA bases or fluorescent dyes
enables the quantification of the amount of complementary sequences that bound to
specific features (Lipshutz et al. (1999); Duggan et al. (1999)). A broad overview of
latest technologies and applications of microarrays is given in the recent reviews by
Hoheisel (2006) or Shiu and Borevitz (2008).
In this thesis, DNA microarray data sets provided through cooperations at the IPK
Gatersleben and DNA microarray data sets available from public sources are analyzed.
In the domain of gene expression microarray data, the breast cancer data set published
by Pollack et al. (2002) is considered. To study target regions of DNA-binding pro-
teins, ChIP-chip (chromatin immunoprecipitation coupled with hybridization to a DNA
microarray; see Ren et al. (2000) or Iyer et al. (2001)) experiments by Lee et al. (2002)
are used to identify target genes of yeast cell cycle transcription factors. As part of
a cooperation in the project Arabido-Seed (2006-2009), ChIP-chip data of the seed-
specific transcription factor ABI3 of the model plant Arabidopsis thaliana is studied.
For the analysis of genomic differences between two genomes, Array-CGH (compara-
tive genomic hybridization on a DNA microarray; see Martienssen et al. (2005)) data of
two accessions of A. thaliana available through the cooperation with A. Banaei (2008-
2009) is investigated.
Generally, the huge number of measurements and the low number of replicates of a
biological experiment put great challenges on the development of methods for the anal-
ysis of DNA microarray data (Piatetsky-Shapiro and Tamayo (2003)). In this context,
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1. Introduction

HMMs have been applied successfully to the clustering of gene expression time course
data (Schliep et al. (2003, 2004); Yuan and Kendziorski (2006)), to the genome-wide
prediction of DNA target regions of transcription factors or histones from ChIP-chip data
(Li et al. (2005); Ji and Wong (2005); Humburg et al. (2008)), or for the identification
of deletions and amplifications of DNA regions in Array-CGH data of tumors (Fridlyand
et al. (2004); Marioni et al. (2006); Rueda and Diaz-Uriarte (2007)). Most of these
HMM approaches are based on the standard first-order HMM that has been reviewed
by Rabiner (1989). First extensions of this HMM are realized by Marioni et al. (2006)
and Rueda and Diaz-Uriarte (2007) through the integration of chromosomal distances
of measured features to improve the analysis of Array-CGH data.
In general, additional genomic information like chromosomal locations, distances or
chromosomal orientations of features represented on a DNA microarray could be use-
ful to enhance the HMM-based data analysis. Besides this, only little attention has cur-
rently been paid on the integration of biological prior knowledge about an experiment.
This prior knowledge includes information like under-expressed genes are expected to
have lower expression levels than unchanged expressed genes in tumor, a DNA tar-
get region bound by a transcription factor is expected to have greater measurements
than a non-target region, as well as amplifications of DNA segments are expected to
have greater measurements than unchanged DNA segments. The modeling of such
biological prior knowledge by an HMM could improve the specification of a biologically
meaningful model for the analysis of DNA microarray data. In addition to this, so far,
no attention has been given to HMMs that model higher-order dependencies between
measured features in the context of their chromosomal locations. The standard first-
order HMM only realizes dependencies between a feature and its directly adjacent
feature on a chromosome. Thus, the extension of the theory behind a first-order HMM
to a higher-order HMM that models dependencies between a feature and its most re-
cent predecessor features could provide further improvements for the analysis of DNA
microarray data.
Published applications of higher-order HMMs are very rare except that like de Villiers
and du Preez (2001) and Lee and Lee (2006) in the domain of speech recognition,
those by Mari and Le Ber (2006) and Benyoussef et al. (2008) in the domain of image
segmentation, or the study by Ching et al. (2003) for the modeling of DNA sequences.
Still, a comprehensive introduction to the algorithmic basics of higher-order HMMs is
currently not available. For that reason, the first main objective of this thesis is the
general development of the algorithmic basics of higher-order HMMs. This includes

3



1. Introduction

the integration of additional genomic features as well as the ability to model biological
prior knowledge. The second main objective of this thesis is to develop two specific
extensions of HMMs with respect to the algorithmic basics of the higher-order HMMs.
The first extension represents a parsimonious higher-order HMM that integrates a spe-
cific algorithmic concept that has been introduced by Bourguignon and Robelin (2004)
and which has been later refined by Gohr (2006). The second extension considers an
HMM with scaled transition matrices that has initially been described in Seifert (2006)
for including additional genomic information into the analysis of gene expression data.
This model is now extended to enable the integration of biological prior knowledge. The
third main objective of this thesis is to apply the developed HMMs to the previously de-
scribed data sets to demonstrate the broad usability of specific HMMs on specific types
of data sets. This leads directly to the fourth objective of this thesis, the validation of the
analysis results obtained from specific HMMs using independent validation data like bi-
ological validation experiments done by biologists, comparisons to published data sets,
or by analyzing published literature and specific data bases. The general data analysis
pipeline used in this thesis is shown in Fig. 1.1.
In summary, this thesis comprises a theoretical part (chapters 2 – 4) in which the theory
behind standard HMMs is extended and an application part (chapters 5 – 8) in which
the developed models are used to analyze DNA microarray data of a broad range of
current research directions. Chapter 2 gives an overview of Markov Models to provide
the basics for HMMs. In chapter 3 the transition from Markov Models to HMMs is mo-
tivated and the algorithmic basics of higher-order HMMs are developed. In chapter 4
the parsimonious higher-order HMM is introduced. Chapter 5 considers the extension
of the HMMs with scaled transition matrices to enable the integration of biological prior
knowledge. In chapter 6 breast cancer gene expression data is analyzed by making
use of chromosomal distances between genes. Chapter 7 comprises the analysis of
ChIP-chip data of the yeast S. cerevisiae and of the model plant A. thaliana by uti-
lizing gene pair orientations on DNA. In chapter 8 genomic differences between two
accessions of A. thaliana are determined based on Array-CGH data. Finally, general
conclusions and an outlook to possible future directions are given in chapter 9.
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Figure 1.1: General overview of the DNA microarray data analysis pipeline applied in this
thesis. Data generated in a biological experiment is organized as a sequential data set by
making use of additional genomic information. The sequential data set is analyzed by specific
HMMs developed in this thesis. The analysis results are further validated by independent data
sources.
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2 Markov Models

The Markov Model (MM) is a probabilistic model for representing dependencies in se-
quential data. The theory behind this model goes back to the Russian mathematician
Andrej A. Markov (1856-1922). In many disciplines, including physics, chemistry, and
biology, MMs have been applied successfully to represent temporal and spatial se-
quences (Berchtold and Raftery (2002)). The textbook by Durbin et al. (1998) includes
a good introduction to MMs for the analysis of DNA sequence data. A more gen-
eral introduction to MMs can be found in the textbook of Bishop (2006). Generally, a
MM is used to model statistical dependencies between consecutive data points in a
sequence of data points. Different MMs can be considered to model these dependen-
cies by making assumptions about the number of consecutive data points that have
an effect on the next data point. First-order MMs only model dependencies between a
current data point and its next data point, while higher-order MMs extend this by mod-
eling dependencies between a specific number of predecessor data points of a next
data point (Berchtold and Raftery (2002)). Additional information about the data can
be integrated into these modeling assumptions to improve the modeling of sequential
data. In this chapter, MMs and motivated extensions are outlined to provide the basics
of this thesis.

Goals of this Chapter

1. Homogeneous first-order MMs are briefly introduced and extended to inhomoge-
neous first-order MMs that integrate additional information into the state-transition
process.

2. Homogeneous first-order MMs are extended to homogeneous higher-order MMs.
Based on this, homogeneous higher-order MMs are extended to inhomogeneous
higher-order MMs.

6



2. Markov Models

2.1 First-Order Markov Models

The basis for the modeling of sequential data by a MM can be derived from the joint
distribution

P [ ~Q ] = P [Q1 ] ·
T−1∏
t=1

P [Qt+1 |Qt, . . . , Q1 ] (2.1)

for a sequence of discrete random variables ~Q := (Q1, . . . , QT ). Each discrete ran-
dom variable Qt is taking values in the finite set of states S := {S1, . . . , SN}. The
joint distribution in (2.1) models statistical dependencies between each next random
variable Qt+1 and all its predecessors Qt, . . . , Q1. These long-range dependencies
can be relaxed by making a specific assumption about the conditional distribution
P [Qt+1 |Qt, . . . , Q1 ]. Here, the first-order Markov assumption is defined by

P [Qt+1 |Qt, . . . , Q1 ] := P [Qt+1 |Qt ] (2.2)

to model statistical dependencies only between the next random variable Qt+1 and
its direct predecessor Qt. This assumption is frequently used in different applications
including the analysis of DNA sequences (Durbin et al. (1998)), or considering the
analysis of wind direction, social behavior, and financial time series data (Berchtold
and Raftery (2002)). The first-order Markov assumption in (2.2) can be defined as
being independent of the specific time step t or as being time-dependent. Both cases
are considered subsequently.

2.1.1 Homogeneous First-Order Markov Model

A homogeneous first-order MM models statistical dependencies between a next ran-
dom variable Qt+1 and its direct predecessor random variable Qt independent of the
time step t. That is, the attribute ’homogeneous’ defines that the probability of observ-
ing Qt+1 = j given that Qt = i is identical for each time step t. Based on this, the
homogeneous first-order MM λ = (~π,A) is defined by the following parameters.

1. The initial state distribution ~π := (πS1 , . . . , πSN
) defines for each state i ∈ S the

probability πi := P [Q1 = i ] of starting in this state at time step t = 1. Two
stochastic constraints must be fulfilled by ~π.

a) ∀i ∈ S : πi ∈ [0, 1]

7



2. Markov Models

b)
∑

i∈S πi = 1

2. The transition matrix A = (aij) defines for each current state i ∈ S and each next
state j ∈ S the transition probability aij := P [Qt+1 = j |Qt = i ] for the transition
from i to j at all time steps t. Each row i ∈ S of A has to fulfill two stochastic
constraints.

a) ∀j ∈ S : aij ∈ [0, 1]

b)
∑

j∈S aij = 1

For a state sequence ~q := (q1, . . . , qT ) with qt ∈ S for each time step 1 ≤ t ≤ T , the
likelihood of ~q under the homogeneous first-order MM λ is given by

P [ ~Q = ~q |λ ] = P [Q1 = q1 |λ ] ·
T−1∏
t=1

P [Qt+1 = qt+1 |Qt = qt, λ ]

= πq1 ·
T−1∏
t=1

aqtqt+1 .

This formula is obtained based on the joint distribution in (2.1) that is modified by in-
tegrating the first-order Markov assumption in (2.2) in consideration that λ represents
a homogeneous MM. The statistical dependencies modeled by a homogeneous first-
order MM can be represented by a first-order Markov chain shown in Fig. 2.1. A state-
transition diagram like that shown in Fig. 2.2 can be used to visualize the initial state
distribution and the transition matrix of a specific homogeneous first-order MM.

Q1 Q2 Q3 Q4
. . . QT

Figure 2.1: Markov chain ~Q := (Q1, . . . , QT ) represented by a homogeneous first-order MM.
Each data point modeled by the random variable Qt+1 is assumed to be depending on its direct
predecessor data point modeled by the random variable Qt. This assumption corresponds to a
graph with links between consecutive random variables.

2.1.2 Inhomogeneous First-Order Markov Model

The inhomogeneous first-order MM extends the homogeneous first-order MM by real-
izing time-dependent state-transitions. This means, the transition from the current state
modeled by the random variable Qt to the next state modeled by the random variable

8



2. Markov Models

− +

a−− a++

a−+

a+−π− π+

Figure 2.2: State-transition diagram of a two-state homogeneous first-order MM with states
S := {−, +} represented by labeled circles. The initial state probability of each state i ∈ S is
given by the corresponding arrow labeled with πi. The transition probability of a transition from
a current state i ∈ S to a next state j ∈ S is represented by the arrow labeled with aij .

Qt+1 is explicitly depending on the time step t at which the transition is done. The draw-
back of this is the increase in the number of transition parameters that are required to
model state sequences. Here, to overcome this, the finite set C := {1, . . . , C} of tran-
sition classes is introduced to reduce the number of transition parameters. Based on
this, for each transition class c ∈ C a corresponding transition matrix Ac is defined in
analogy to the transition matrix of the homogeneous first-order MM.

• The transition matrix Ac = (aij(c)) defines for each current state i ∈ S and each
next state j ∈ S the transition probability aij(c) := P [Qt+1 = j |Qt = i, c ] for the
transition from i to j at time step t using the transition class c. Each row i ∈ S of
Ac has to fulfill two stochastic constraints.

1. ∀j ∈ S : aij(c) ∈ [0, 1]

2.
∑

j∈S aij(c) = 1

All transition matrices of the inhomogeneous first-order MM are represented by the set
of transition matrices A := {A1, . . . , AC}. Time-dependent transitions between states
are realized by defining a transition class sequence ~c := (c1, . . . , cT−1) with ct ∈ C for
each time step 1 ≤ t < T . Each ct specifies that the transition matrix Act has to be
used at time step t for the transition from the current state modeled by the random
variable Qt to the next state modeled by the random variable Qt+1. That means, for a
state sequence ~q = (q1, . . . , qT ) the probability for the transition from qt to qt+1 is given
by aqtqt+1(ct). The likelihood of a state sequence ~q with respect to a transition class

9



2. Markov Models

sequence ~c is given by

P [ ~Q = ~q |~c, λ ] = P [Q1 = q1 |λ ] ·
T−1∏
t=1

P [Qt+1 = qt+1 |Qt = qt, ct, λ ]

= πq1 ·
T−1∏
t=1

aqtqt+1(ct)

under the inhomogeneous first-order MM λ. The formula of the likelihood is obtained in
analogy to that of the homogeneous first-order MM by additionally integrating the tran-
sition class sequence for realizing time-dependent state-transitions. For C = 1 transi-
tion class, the inhomogeneous first-order MM simplifies to the homogeneous first-order
MM.
To illustrate the time-dependent state-transition process, the state-transition diagram of
an inhomogeneous first-order MM with two states and two transition classes is shown
in Fig. 2.3. A corresponding Markov chain of length 6 that is realized by this model
for a given transition class sequence ~c = (1, 2, 2, 1, 2) is exemplarily shown in Fig. 2.4.
In practical applications, the usage of transition classes provides the opportunity to in-
tegrate additional information into the state-transition process. This has initially been
used by Knab et al. (2003) to improve the clustering of financial time-series data. In
computational biology, transition classes can be used to integrate chromosomal dis-
tances and orientations of adjacent genes on a chromosome (Seifert et al. (2009b)).

− +

a−−(1)
a−−(2)

a++(1)
a++(2)

a−+(1)

a−+(2)

a+−(1)

a+−(2)

π− π+

Figure 2.3: State-transition diagram for an inhomogeneous first-order MM with two states
S := {−, +} and two transition classes C := {1, 2}. The states are represented by labeled
circles. The initial state probability of each state i ∈ S is given by the corresponding arrow
labeled with πi. The transition probability of a transition from a current state i ∈ S to a next
state j ∈ S in transition class 1 is represented by the thin arrow labeled with aij(1), and that of
transition class 2 is represented by the thick arrow labeled with aij(2).
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Q1 Q2 Q3 Q4 Q5 Q6

Figure 2.4: A Markov chain ~Q := (Q1, . . . , Q6) of length 6 realized by the MM in Fig. 2.3 for
a given transition class sequence ~c = (1, 2, 2, 1, 2). Each data point modeled by the random
variable Qt+1 is assumed to be depending on its direct predecessor data point modeled by the
random variable Qt. Transitions between Qt and Qt+1 that are defined to be done via transition
class 1 are represented by thin links, and those that are defined to use the transition class 2
are represented by thick links.

2.2 Higher-Order Markov Models

The first-order MM only represents statistical dependencies between the next state
modeled by Qt+1 and its direct predecessor state modeled by Qt. Since several of
the most recent consecutive predecessor states might provide useful information for
the next state, the first-order Markov assumption in (2.2) could be too restrictive. To
overcome this, the L-th order Markov assumption defined by

P [Qt+1 |Qt, . . . , Q1 ] :=

{
P [Qt+1 | ~Q1...t ], 1 ≤ t < L

P [Qt+1 | ~Qt−L+1...t ], t ≥ L
(2.3)

is used to represent statistical dependencies between Qt+1 and its most recent pre-
decessors ~Qmax(1,t−L+1)...t := (Qmax(1,t−L+1), . . . , Qt). This assumption is modeled by a
higher-order MM of order L (Berchtold and Raftery (2002)). This MM has a mem-
ory to store the most recent predecessor states for modeling statistical dependencies
between these states and the next state. During the first time steps 1 ≤ t ≤ L, the
memory is filled up by adding the current state qt ∈ S modeled by Qt until the memory
represents the state context ~q1...L = (q1, . . . , qL). At each later time step t > L, the
memory changes to ~qt−L+1...t = (qt−L+1, . . . , qt) by deleting the oldest state qt−L and
by adding the new current state qt. In analogy to the first-order Markov assumption in
(2.2), the L-th order Markov assumption in (2.3) can be defined as being independent
of the time step t or as being time-dependent. This is considered subsequently for the
homogeneous higher-order MM for which transitions between states are independent
of the current time step, and for the inhomogeneous higher-order MM that realizes
time-dependent state-transitions.

11
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2.2.1 Homogeneous Higher-Order Markov Model

The homogeneous higher-order MM of order L has a memory to model the statistical
dependencies expressed by the L-th order Markov assumption in (2.3). To specify the
states stored in this memory, the definition of the set of state contexts

Sl := {(i1, . . . , il) : i1 ∈ S, . . . , il ∈ S}

of length l ∈ N is required. Each state context i = (i1, . . . , il) is contained in Sl. Based
on this, the transition matrix A of the homogeneous first-order MM is subsequently
extended to that of the homogeneous higher-order MM of order L.

• The transition matrix A = (aij) defines for each state context i = (i1, . . . , il) ∈ Sl

of length 1 ≤ l ≤ L and for each next state j ∈ S the transition probability

aij :=

{
P [Qt+1 = j | ~Q1...t = i ], 1 ≤ t < L

P [Qt+1 = j | ~Qt−L+1...t = i ], t ≥ L

for a transition from the current state il to the next state j at all time steps t with
respect to the predecessor states (i1, . . . , il−1) of the current state. Again, each
row i of A has to fulfill two stochastic constraints.

a) ∀j ∈ S : aij ∈ [0, 1]

b)
∑

j∈S aij = 1

The number of transition parameters increases from N2 for the first-order MM to∑L
l=1N

l+1 = N((1 − NL+1)/(1 − N) − 1) for the homogeneous MM of order L. In
contrast to this, the initial state distribution ~π defined for the first-order MM can be used
without any adaptations. For order L = 1, the homogeneous MM of order L represents
the homogeneous first-order MM as a special case. In analogy to the homogeneous
first-order MM, the likelihood of a state sequence ~q = (q1, . . . , qT ) is represented by

P [ ~Q = ~q |λ ] = P [Q1 = q1 |λ ] ·
L−1∏
t=1

P [Qt+1 = qt+1 | ~Q1...t = ~q1...t, λ ]

·
T−1∏
t=L

P [Qt+1 = qt+1 | ~Qt−L+1...t = ~qt−L+1...t, λ ]

= πq1 ·
L−1∏
t=1

a~q1...tqt+1 ·
T−1∏
t=L

a~qt−L+1...tqt+1

12
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under the homogeneous MM λ of order L. This formula results from the joint distri-
bution in (2.1) that is modified with respect to the L-th order Markov assumption in
(2.3). The statistical dependencies modeled by a homogeneous MM of order two are
exemplarily shown in Fig. 2.5. For further reading to homogeneous higher-order MMs
one can consider the review by Berchtold and Raftery (2002) or the textbook by Bishop
(2006). In computational biology, higher-order MMs are frequently used as background
models for the analysis of DNA sequences (Durbin et al. (1998)).

Q1 Q2 Q3 Q4
. . . QT

Figure 2.5: Markov chain ~Q := (Q1, . . . , QT ) represented by a MM of order two. Each data
point modeled by the random variable Qt+1 is assumed to be depending on its two direct pre-
decessor data points modeled by the random variables Qt and Qt−1. This assumption corre-
sponds to a graph with links between each Qt+1 and its two predecessors Qt and Qt−1.

2.2.2 Inhomogeneous Higher-Order Markov Model

The inhomogeneous MM of order L extends the homogeneous MM of order L by
realizing time-dependent state-transitions. Now, the transition from the current state
modeled by Qt to the next state modeled by Qt+1 under consideration of the most
recent predecessor states modeled by ~Qmax(1,t−L+1)...t is explicitly depending on the
time step t at which the transition is done. Like introduced for the inhomogeneous
first-order MM, the finite set of C of transition classes is used to reduce the number of
transition parameters. Based on this, a transition matrix Ac is defined for each transition
class c ∈ C in analogy to the transition matrix of the homogeneous higher-order MM.

• The transition matrix Ac = (aij(c)) defines for each state context i = (i1, . . . , il) ∈
Sl of length 1 ≤ l ≤ L and for each next state j ∈ S the transition probability

aij(c) :=

{
P [Qt+1 = j | ~Q1...t = i, c ], 1 ≤ t < L

P [Qt+1 = j | ~Qt−L+1...t = i, c ], t ≥ L

for a transition from the current state il to the next state j at time step t using
the transition class c with respect to the predecessor states (i1, . . . , il−1) of the
current state. Each row i of Ac has to fulfill two stochastic constraints.

a) ∀j ∈ S : aij(c) ∈ [0, 1]

13
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b)
∑

j∈S aij(c) = 1

Time-dependent transitions are again realized by the transition class sequence ~c =

(c1, . . . , cT−1). This sequence specifies which transition matrix Act has to be used for
the transition at a specific time step t. Under consideration of this, the likelihood of a
state sequence ~q = (q1, . . . , qT ) is given by

P [ ~Q = ~q |~c, λ ] = πq1 ·
L−1∏
t=1

a~q1...tqt+1(ct) ·
T−1∏
t=L

a~qt−L+1...tqt+1(ct)

under the inhomogeneous MM λ of order L with respect to ~c. This formula extends
the likelihood function given for the homogeneous MM of order L by integrating the
transition class sequence to enable time-dependent transitions. Since the inhomoge-
neous MM of order L uses C transition classes, the number of transition parameters
increases by a factor of C in comparison to the homogeneous MM of order L. The
inhomogeneous MM of order L with C transition classes reduces to the homogeneous
first-order MM for L = 1 and C = 1, simplifies to the homogeneous higher-order MM for
L > 1 and C = 1, and does represent the inhomogeneous first-order MM for L = 1 and
C > 1. Thus, the inhomogeneous higher-order MM introduced here provides a good
basis to extend the theory behind homogeneous first-order HMM in the three following
chapters.

14



3 Hidden Markov Models

The goal of this chapter is to develop the theory of the inhomogeneous Higher-order
Hidden Markov Model of order L with C transition classes (HHMM(L,C)) by extending
the standard theory of the homogeneous first-order Hidden Markov Model (HMM). The
basis of the homogeneous HMM is the homogeneous first-order MM that has been
introduced in the previous chapter. This MM is extended to the HMM by adding a
state-specific emission process that enables the processing of sequential data that is
typically referred to as emission sequence in the context of HMMs. In analogy to this,
the inhomogeneous HHMM(L,C) is based on the inhomogeneous higher-order MM.
Thus, the state-transition process of the HHMM(L,C) accounts for the predecessor
states by introducing a memory of size L, and additional knowledge is integrated into
this process by using C transition classes. These extensions require the adaptation
of the standard algorithms of the homogeneous HMM to algorithms for the inhomoge-
neous HHMM(L,C). For that reason, the Forward algorithm, the Backward algorithm,
the State-Posterior algorithm, the Viterbi algorithm, and the Baum-Welch algorithm are
extended. Good introductions to these standard algorithms of the homogeneous HMM
are given in the review by Rabiner (1989) and in the textbooks by Durbin et al. (1998)
and Bishop (2006). The extension of these standard algorithms are used to solve the
following four basic problems that frequently occur in HMM-based data analysis.

1. Likelihood Problem: How can one compute the likelihood of an emission se-
quence ~o(k) under an inhomogeneous HHMM(L,C) with respect to a given tran-
sition class sequence ~c(k)?

2. Optimal State Sequence Problem: How can one choose a state sequence ~q

that is optimal for a given emission sequence ~o(k) under an inhomogeneous
HHMM(L,C) with respect to a given transition class sequence ~c(k)?

3. Maximum Likelihood Problem: How can one adjust the parameters of an in-
homogeneous HHMM(L,C) to maximize the likelihood of emission sequences

15



3. Hidden Markov Models

~o(1), . . . , ~o(K) with respect to their transition class sequences ~c(1), . . . ,~c(K) un-
der this model?

4. Maximum A Posteriori Problem: How can one adjust the parameters of an inho-
mogeneous HHMM(L,C) to maximize the posterior of this model in considera-
tion of emission sequences ~o(1), . . . , ~o(K) and their transition class sequences
~c(1), . . . ,~c(K)?

Besides the extension of the standard algorithms and the development of solutions for
the four basic problems, the inhomogeneous HHMM(L,C) also provides the basics for
two specific model extensions, the parsimonious higher-order HMM and the HMM with
scaled transition matrices, which are introduced in the two following chapters. Addi-
tionally, the development of extended standard algorithms also establishes the basis
for the application of these models in different research fields. Most of the published
articles on HMMs belong to the field of speech recognition. Two of the best reviews
for getting an overview in this research field have been published by Rabiner (1989)
and by Ephraim and Merhav (2002). Again in the field of speech recognition, first ap-
plications of the homogeneous second-order HHMM(2) were published in a series of
articles by Kriouile et al. (1990), Mari and Haton (1994), Mari et al. (1996), and by Mari
et al. (1997). More recent publications in this field, like de Villiers and du Preez (2001)
and Lee and Lee (2006) also focus on the homogeneous HHMM(L). Other application
fields of the homogeneous HHMM(L) are image segmentation (Derrode et al. (2004);
Mari and Le Ber (2006); Benyoussef et al. (2008)), robotics (Aycard et al. (2004)), and
modeling of DNA sequences (Ching et al. (2003)). All these different application fields
define an excellent starting point to develop the theory behind the inhomogeneous
HHMM(L,C).

Goals of this Chapter

1. The extension of Markov Models to Hidden Markov Models is motivated briefly by
considering the basics of the homogeneous first-order HMM.

2. The definition of the inhomogeneous HHMM(L,C) is given.

3. The Forward algorithm and the Backward algorithm are extended to provide a
solution to the Likelihood Problem.

4. The State-Posterior algorithm and the Viterbi algorithm are extended to provide
two solutions of the Optimal State Sequence Problem.
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5. Based on the extension of the Baum-Welch algorithm a solution to the Maximum
Likelihood Problem is developed.

6. A prior for the HHMM(L,C) is introduced to enable the integration of prior knowl-
edge into the training of the model.

7. Under consideration of the prior, a Bayesian version of the Baum-Welch algorithm
is developed to provide a solution of the Maximum A Posteriori Problem.

3.1 Homogeneous First-Order Hidden Markov Models

The basis of modeling sequential data by an HMM with continuous emissions is given
by the joint density

P [ ~O, ~Q ] = P [Q1 ] ·
T−1∏
t=1

P [Qt+1 |Qt ] ·
T∏
t=1

P [Ot |Qt ] (3.1)

for a sequence of continuous random variables ~O := (O1, . . . , OT ) and a sequence of
discrete random variables ~Q := (Q1, . . . , QT ). In the following, each random variable Ot

is defined to model an emission over the set of real numbers R in dependency of the
random variable Qt that is defined to model a state by taking values in the finite set of
states S := {S1, . . . , SN}. The joint density in (3.1) is known as the state space model
that forms the basis of the HMM (Bishop (2006)). The statistical dependencies repre-
sented by this model are visualized in Fig. 3.1. Thus, the joint density in (3.1) extends
the state-transition process of the homogeneous first-order MM shown in Fig. 2.1 by
an additional stochastic emission process. For the HMM, this emission process is real-
ized by the time-independent emission density P [Ot |Qt ]. That means, the probability
density bi(o) := P [Ot = o |Qt = i ] of observing the emission o under state i is identical
for all time steps t. Subsequently, the focus is on HMMs with Gaussian emission den-
sities. For that reason, each state i ∈ S is characterized by its corresponding Gaussian
emission density

bi(o) :=
1√
2πσi

exp

(
−(o− µi)

2

2σ2
i

)
(3.2)

to represent the probability density of an emission o ∈ R under state i in consideration
of the state-specific mean µi ∈ R and the state-specific standard deviation σi ∈ R+.
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Due to the precense of the emission process, the state-transition process of the HMM
is hidden. That means, an emission ot modeled by Ot cannot be assigned uniquely to
a specific state qt modeled by Qt. Instead, the emission ot is assigned to each state qt
of the HMM according to the emission density bqt(ot) specified in (3.2). This property
is very useful for the analysis of an emission sequence ~o := (o1, . . . , oT ), because it
enables the assignment of a characteristic state qt to each individual emission ot for
interpreting the whole emission sequence under an HMM.
Since the homogeneous first-order HMM extends the homogeneous first-order MM by
the state-specific emission process in (3.2), the joint density in (3.1) for an emission
sequence ~o = (o1, . . . , oT ) and a state sequence ~q = (q1, . . . , qT ) is given by

P [ ~O = ~o, ~Q = ~q |λ ] = πq1 ·
T−1∏
t=1

aqtqt+1 ·
T∏
t=1

bqt(ot)

under the homogeneous first-order HMM λ. This joint density is generally referred to
as the complete-data likelihood since the specific hidden state sequence ~q that emits
the corresponding emission sequence ~o is assumed to be known. For a more detailed
introduction to homogeneous first-order HMMs, the review by Rabiner (1989) and the
textbooks by Durbin et al. (1998) and Bishop (2006) can be considered. Here, in this
thesis, the focus is on the extension of the homogeneous first-order HMM based on
the different MMs introduced in previous chapter.

Q1

O1

Q2

O2

Q3

O3

Q4

O4

. . .

. . .

QT

OT

Figure 3.1: State space model that underlies a homogeneous first-order HMM. The Markov
chain ~Q = (Q1, . . . , QT ) defined by the homogeneous first-order MM is the internal state-
transition system of the HMM. Each transition to a next state modeled by the random variable
Qt+1 is depending on the direct predecessor state modeled by the random variable Qt. The
Markov chain ~Q is hidden. Only the emission modeled by the random variable Ot that is made
in dependency of the corresponding state modeled by Qt is visible.
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3.2 Inhomogeneous Higher-Order Hidden Markov

Model

The internal system that realizes the state-transition process of the HHMM(L,C) is
the inhomogeneous higher-order MM specified in Sec. 2.2.2. This MM is extended
by an additional stochastic emission process like described in the previous section for
the homogeneous first-order HMM. Thus, the inhomogeneous HHMM(L,C) of order
L with C different transition classes is defined by λ = (~π,A,B) in consideration of the
following parameters.

1. The initial state distribution ~π := (πS1 , . . . , πSN
) defines for each state i ∈ S the

probability πi := P [Q1 = i ] of starting in this state at time step t = 1. Two
stochastic constraints must be fulfilled by ~π.

a) ∀i ∈ S : πi ∈ [0, 1]

b)
∑

i∈S πi = 1

2. The set A := {A1, . . . , AC} defines the C transition class specific transition matri-
ces. For each transition class c ∈ C, the transition matrix Ac = (aij(c)) defines for
each state context i = (i1, . . . , il) ∈ Sl of all lengths 1 ≤ l ≤ L and for each next
state j ∈ S the transition probability

aij(c) :=

{
P [Qt+1 = j | ~Q1...t = i, c ], 1 ≤ t < L

P [Qt+1 = j | ~Qt−L+1...t = i, c ], t ≥ L

for a transition from the current state il to the next state j at time step t using
the transition class c with respect to the memory (i1, . . . , il−1) of the current state.
Again, each row i of Ac has to fulfill two stochastic constraints.

a) ∀j ∈ S : aij(c) ∈ [0, 1]

b)
∑

j∈S aij(c) = 1

3. The matrix B := (µi , σi) defines the state-specific mean µi ∈ R and the state-
specific standard deviation σi ∈ R+ for the Gaussian emission density of each
state i ∈ S. The time-independent probability density bi(o) := P [Ot = o |Qt = i ]

for emitting an emission o ∈ R by the Gaussian emission density of state i is
defined in (3.2).

The HHMM(L,C) specified here represents a very general class of models. With re-
spect to the notation scheme in Tab. 3.1, the inhomogeneous HHMM(L,C) reduces
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to the homogeneous first-order HMM for L = 1 and C = 1, represents the inhomo-
geneous first-order HMM(C) for L = 1 and C > 1, and defines the homogeneous
higher-order HHMM(L) for L > 1 and C = 1. The HMM(C) has been introduced by
Knab et al. (2003) for the analysis of financial time-series data. The basis of this model
is an inhomogeneous first-order MM. The HHMM(L) is based on the homogeneous
higher-order MM.

Notation C L Hidden Markov Model

HMM 1 1 homogeneous first-order
HMM(C) > 1 1 inhomogeneous first-order
HHMM(L) 1 > 1 homogeneous higher-order
HHMM(L, C) > 1 > 1 inhomogeneous higher-order

Table 3.1: Basic notation scheme of Hidden Markov Models that can be represented by the
HHMM(L, C). The order is given by L and the number of transition classes is defined by C.

3.3 Solving the Likelihood Problem

One strategy to compute the likelihood P [~o(k) |~c(k), λ ] of an emission sequence
~o(k) = (o1(k), . . . , oTk

(k)) given a transition class sequence ~c(k) = (c1(k), . . . , cTk−1(k))

and an inhomogeneous HHMM(L,C) λ is to marginalize the complete-data likelihood
P [~o(k), ~q |~c(k), λ ] over each individual state sequence ~q ∈ STk . The fundamental draw-
back of this is the exponential increase of the number of possible state sequences
for increasing Tk that have to be considered separately. This increase is illustrated in
Fig. 3.2. To overcome this, the Forward algorithm and the Backward algorithm are in-
troduced to efficiently compute the likelihood by marginalization based on a dynamic
programming approach. Both algorithms are standard computational tools for the ho-
mogeneous HMM (Rabiner (1989); Durbin et al. (1998); Bishop (2006)). Here, both
algorithms are extended for the inhomogeneous HHMM(L,C). Based on that, the like-
lihood can be computed, and basics for solving the three other basic problems are
provided. Additionally, the Forward-Backward procedure for computing the likelihood is
deduced from both algorithms.
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SN

S2

S1

1 2 3 Tk

Figure 3.2: State sequence space representing each individual state sequence that models a
given emission sequence ~o(k) of length Tk. The number of possible state sequences grows
exponentially for increasing Tk with growth rate N given by the number of hidden states of the
underlying inhomogeneous HHMM(L, C).
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3.3.1 Forward Algorithm

The Forward-Algorithm is an efficient dynamic programming approach for computing
the likelihood in three steps. This algorithm is based on the definition of the Forward-
Variable

αkt (i) :=

{
P [~o1...t(k), ~Q1...t = i |~c1...t−1(k), λ ] , 1 ≤ t < L

P [~o1...t(k), ~Qt−L+1...t = i |~c1...t−1(k), λ ] , L ≤ t ≤ Tk
(3.3)

which represents, in consideration of time step t, the joint probability density of emitting
the partial emission sequence ~o1...t(k) and having the state context i ∈ Smin(t,L) given
the partial transition class sequence ~c1...t−1(k) and the inhomogeneous HHMM(L,C)

λ. The likelihood of an emission sequence ~o(k) of length Tk ≥ L is computed by the
following algorithm based on the iterative computation of the Forward-Variables.

• Initialization

∀i = (i1) ∈ S1: αk1(i) = πi1 · bi1(o1(k))

• Induction

∀1 ≤ t < L and ∀i = (i1, . . . , it+1) ∈ St+1 with j = (i1, . . . , it)

αkt+1(i) = αkt (j) · ajit+1(ct(k)) · bit+1(ot+1(k))

∀L ≤ t < Tk and ∀i = (i1, . . . , iL) ∈ SL with j(i0) = (i0, i1, . . . , iL−1)

αkt+1(i) =
∑
i0∈S

αkt (j(i0)) · aj(i0)iL(ct(k)) · biL(ot+1(k))

• Termination

P [~o(k) |~c(k), λ ] =
∑
i∈SL

αkTk
(i)

In the initialization step each state-specific Forward-Variable for state i1 ∈ S is com-
puted by multiplying the initial state probability πi1 with the corresponding emission den-
sity bi1(o1(k)) of the first emission o1(k) of ~o(k). The induction step first computes each
Forward-Variable αkt+1(i) for time step 1 ≤ t < L as the joint density of passing through
the states ~q1...t+1 = i ∈ St+1 for emitting the corresponding partial emission sequence
~o1...t+1(k) of ~o(k). Then, in the second part of the induction step, each Forward-Variable
αkt+1(i) for time step L ≤ t < Tk is computed as the joint density of the partial emission
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sequence ~o1...t+1(k) and the state context ~qt−L+2...t+1 = (i1, . . . , iL) ∈ SL by marginal-
izing over all N states qt−L+1 = i0 ∈ S that occurred L + 1 time steps before the cur-
rent state qt+1 = iL is reached for emitting the corresponding emission ot+1(k) of ~o(k).
The computational scheme that underlies this part of the induction step is illustrated
in Fig. 3.3. Finally, the termination step gives the desired likelihood of an emission
sequence ~o(k) under an inhomogeneous HHMM(L,C) λ with respect to the given tran-
sition class sequence ~c(k) by marginalizing over all terminal Forward-Variables αkTk

(i).
According to that, the Forward algorithm has a total run-time of O

(
(Tk − L)NL+1

)
. This

follows from the second part of the induction step that considers Tk − L time steps in
which the computation of one of the NL Forward-Variables for one time step requires
O(N) operations. Basic introductions to the Forward algorithm for a homogeneous
HMM are given by Rabiner (1989), Durbin et al. (1998), and Bishop (2006). An exten-
sion of the Forward algorithm to a homogeneous HHMM(L) is given by Ching et al.
(2003).
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t (j(i0))

i = (i1, . . . , iL)
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αk
t+1(i)

biL(ot+1(k))
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)iL

(ct(k
))

aj(S3)iL
(ct(k))

aj(S2)iL(ct(k))

aj(S1)iL (ct(k))

Figure 3.3: Computational scheme of the Forward-Variable αkt+1(i) of state context i =
(i1, . . . , iL) ∈ SL during the second part of the induction step. Each Forward-Variable αkt (j(i0))
of state context j(i0) = (i0, i1, . . . , iL−1) with i0 ∈ S is considered by transforming j(i0) to i.
This is done by the transition from the current state iL−1 to iL using the transition probability
aj(i0)iL(ct(k)). After this transition the emission ot+1(k) is made by state iL using its emission
density biL(ot+1(k)).
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3.3.2 Backward Algorithm

The Backward-Algorithm is another efficient dynamic programming approach for com-
puting the likelihood in three steps. The basis of this algorithm is the Backward-Variable

βkt (i) :=

{
P [~ot+1...Tk

(k) | ~Qt−L+1...t = i,~ct...Tk−1(k), λ ] , L ≤ t ≤ Tk

P [~ot+1...Tk
(k) | ~Q1...t = i,~ct...Tk−1(k), λ ] , 1 ≤ t < L

(3.4)

which defines, in consideration of time step t, the probability density of emitting the
partial emission sequence ~ot+1...Tk

(k) given the state context i ∈ Smin(t,L), the partial
transition class sequence ~ct...Tk−1(k), and the inhomogeneous HHMM(L,C) λ. The
likelihood of an emission sequence ~o(k) of length Tk ≥ L is computed by the following
algorithm based on the iterative computation of the Backward-Variables.

• Initialization

∀i ∈ SL: βkTk
(i) = 1

• Induction

∀Tk ≥ t > L and ∀i = (i1, . . . , iL) ∈ SL with j(iL+1) = (i2, . . . , iL, iL+1)

βkt−1(i) =
∑

iL+1∈S
βkt (j(iL+1)) · aiiL+1

(ct−1(k)) · biL+1
(ot(k))

∀L ≥ t > 1 and ∀i = (i1, . . . , it−1) ∈ St−1 with j(it) = (i1, . . . , it−1, it)

βkt−1(i) =
∑
it∈S

βkt (j(it)) · aiit(ct−1(k)) · bit(ot(k))

• Termination

P [~o(k) |~c(k), λ ] =
∑

i=(i1)∈S1

πi1 · bi1(o1(k)) · βk1 (i)

The initialization step sets all Backward-Variables βkTk
(i) to one to provide the basics for

the induction step. The first part of the induction step computes all Backward-Variables
βkt−1(i) of time steps Tk ≥ t > L for emitting the partial emission sequence ~ot...Tk

(k)

given the state context ~qt−L...t−1 = i ∈ SL with i = (i1, . . . , iL) and the partial transition
class sequence ~ct−1...Tk−1(k). All possible next states qt = iL+1 ∈ S have to be consid-
ered. First, this is done by the transition probability aiiL+1

(ct−1(k)), which accounts for
the transition from the current state qt−1 = iL to the next state qt = iL+1 in consideration
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of the memory ~qt−L...t−2 = (i1, . . . , iL−1) of the current state. Next, the emission ot(k)

done by the next state qt = iL+1 is integrated by biL+1
(ot(k)). The remaining partial emis-

sion sequence ~ot+1...Tk
(k) is already represented by the Backward-Variable βkt (j(iL+1)).

This first part of the induction step is illustrated in the computational scheme shown
in Fig. 3.4. The second part of the induction step differs from the first part only by
the length of the state contexts i that are considered for a transition from the current
state to a next state. The termination step computes the desired likelihood of an emis-
sion sequence ~o(k) under an inhomogeneous HHMM(L,C) λ with respect to the given
transition class sequence ~c(k). This is done by marginalizing over the product of initial
state probability πi1, emission density bi1(o1(k)), and Backward-Variable βk1 (i) for each
state context i = (i1) ∈ S1. The Backward algorithm has the same total run-time of
O
(
(Tk − L)NL+1

)
like the Forward algorithm. The run-time follows from the first part

of the induction step that considers Tk − L time steps in which the computation of one
of the NL Backward-Variables for one time step requires O(N) operations. Good in-
troductions to the Backward algorithm for a homogeneous HMM are given by Rabiner
(1989), Durbin et al. (1998), and Bishop (2006).
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Figure 3.4: Computational scheme of the Backward-Variable βkt−1(i) of state context i =
(i1, . . . , iL) ∈ SL during the first part of the induction step. Each Backward-Variable βkt (j(iL+1))
of state context j(iL+1) with iL+1 ∈ S is considered by transforming i to j(iL+1) via the transi-
tion from the current state iL to the next state iL+1 using the corresponding transition probability
aiiL+1(ct−1(k)). After this transition the emission ot(k) is made by the state iL+1 with respect to
its emission density biL+1(ot(k)).

25



3. Hidden Markov Models

3.3.3 Forward-Backward Procedure

The Forward-Backward procedure is an efficient way to compute the likelihood of
an emission sequence ~o(k) under an inhomogeneous HHMM(L,C) based on pre-
computed Forward-Variables (3.3) and Backward-Variables (3.4). The following deriva-
tion computes the likelihood with respect to a fixed time step L ≤ t ≤ Tk.

P [~o(k) |~c(k), λ ]

=
∑
i∈SL

P [~o(k), ~Qt−L+1...t = i |~c(k), λ ]

=
∑
i∈SL

P [~o1...t(k), ~Qt−L+1...t = i |~c1...t−1(k), λ ] · P [~ot+1...Tk
(k) | ~Qt−L+1...t = i,~ct...Tk−1(k), λ ]

=
∑
i∈SL

αkt (i) · βkt (i) (3.5)

The generalization to time steps 1 ≤ t < L is straightforward by summing over i ∈ St

instead of i ∈ SL and by changing ~Qt−L+1...t to ~Q1...t.

3.4 Solving the Optimal State Sequence Problem

The computation of an optimal state sequence ~q(k) = (q1(k), . . . , qTk
(k)) for an emis-

sion sequence ~o(k) = (o1(k), . . . , oTk
(k)) under an inhomogeneous HHMM(L,C) λ with

respect to a given transition class sequence ~c(k) = (c1(k), . . . , cTk−1(k)) requires the
definition of an optimality criterion. For that reason, the two most frequently used cri-
teria, the State Posterior Criterion and the Viterbi Criterion, for determining an optimal
state sequence under a homogeneous HMM are generalized for an inhomogeneous
HHMM(L,C).

3.4.1 State-Posterior Algorithm

The optimality criterion of the State-Posterior algorithm is to choose the most probable
state qt(k) ∈ S for each time step 1 ≤ t ≤ Tk with respect to the given emission
sequence ~o(k), the transition class sequence ~c(k), and the HHMM(L,C) λ. The State-
Posterior-Variable, also referred to as state-posterior, of state i ∈ S at a fixed time step
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L ≤ t ≤ Tk is defined by

γkt (i) : = P [Qt = i |~o(k),~c(k), λ ]

=

∑
j1∈S

· · ·
∑

jL−1∈S
αkt ((j1, . . . , jL−1, i)) · βkt ((j1, . . . , jL−1, i))∑

j∈SL

αkt (j) · βkt (j)
(3.6)

representing the probability of being in state i ∈ S at time step t given the emission se-
quence ~o(k), the corresponding transition class sequence ~c(k), and the HHMM(L,C)

λ. The State-Posterior-Variable γkt (i) is computed in terms of the Forward-Variable
(3.3) and the Backward Variable (3.4). The Forward-Variable accounts for emitting
the partial emission sequence ~o1...t(k) and reaching state i in time step t, while the
Backward-Variable accounts for the remaining partial emission sequence ~ot+1...Tk

(k)

that is emitted after leaving state i in time step t. The focus is turned on state i by
marginalizing over its memory ~qt−L+1...t−1 = (j1, . . . , jL−1) of predecessor states. The
denominator given in (3.5) is the normalization factor to ensure that the state-posterior
(3.6) represents a probability. The generalization to time steps 1 ≤ t < L is straightfor-
ward by marginalizing over the memory of size t− 1 instead of size L− 1 for computing
the numerator, and by changing the denominator to a sum over j ∈ St instead of j ∈ SL.
Based on that, the most probable state

qt(k) := argmax
i∈S

γkt (i)

is chosen for each time step 1 ≤ t ≤ Tk. The run-time of the State-Posterior algo-
rithm is O

(
(Tk − L)NL+1

)
. This follows from the computation of the Forward-Variables

(3.3) and the Backward-Variables (3.4). The run-time reduces to O
(
(Tk − L+ 1)NL

)
if the Forward-Variables and Backward-Variables have already been computed. The
State-Posterior algorithm is given by Rabiner (1989) and by Durbin et al. (1998) for a
homogeneous HMM.

3.4.2 Viterbi Algorithm

The Viterbi algorithm is an efficient dynamic programming approach for computing
the most probable state sequence ~q(k) that best explains the corresponding emis-
sion sequence ~o(k) given the transition class sequence ~c(k) and the inhomogeneous

27



3. Hidden Markov Models

HHMM(L,C) λ. The computation of the so-called Viterbi path ~q(k) is done in three
steps that require the definition of two variables. The first variable is the Viterbi-Variable

δkt (i) :=

 P [~o1...t(k), ~Q1...t = i |~c1...t−1(k), λ ] , 1 ≤ t ≤ L

max
w∈St−L

P [~o1...t(k), ~Q1...t−L = w, ~Qt−L+1...t = i |~c1...t−1(k), λ ] , L < t ≤ Tk

(3.7)

which represents, in consideration of time step t, the joint probability density of the
partial emission sequence ~o1...t(k) and their corresponding most probable partial state
sequence ~q1...t ending with the state context i ∈ Smin(t,L). The second variable for
time steps L < t ≤ Tk and each state context i = (i1, . . . , iL) ∈ SL with j(i0) =

(i0, i1, . . . , iL−1) is the Backtrack-Variable

Ψk
t (i) := argmax

i0∈S
δkt−1(j(i0)) · aj(i0)iL(ct−1(k)) · biL(ot(k)) (3.8)

which stores the most probable L-th predecessor state qt−L = i0 ∈ S of the current
state qt = iL ∈ S. That is, the Backtrack-Variable contains the predecessor state that
best explains the transition from state qt−1 = iL−1 to state qt = iL with respect to the
memory (i0, i1, . . . , iL−2) of state iL−1. Based on these two variables, the Viterbi path
~q(k) is computed by the following algorithm for an emission sequence ~o(k) of length
Tk ≥ L.

• Initialization

∀i = (i1) ∈ S1: δk1(i) = πi1 · bi1(o1(k))

• Induction

∀1 ≤ t < L and ∀i = (i1, . . . , it+1) ∈ St+1 with j = (i1, . . . , it)

δkt+1(i) = δkt (j) · ajit+1(ct(k)) · bit+1(ot+1(k))

∀L ≤ t < Tk and ∀i = (i1, . . . , iL) ∈ SL with j(i0) = (i0, i1, . . . , iL−1)

δkt+1(i) = max
i0∈S

δkt (j(i0)) · aj(i0)iL(ct(k)) · biL(ot+1(k))

Ψk
t+1(i) = argmax

i0∈S
δkt (j(i0)) · aj(i0)iL(ct(k)) · biL(ot+1(k))
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• Termination

1. Last L states

~qTk−L+1...Tk
(k) = argmax

i∈SL

δkTk
(i)

2. Predecessor state qTk−t(k) for all L ≤ t < Tk

qTk−t(k) = Ψk
Tk−t+L(~qTk−t+1...Tk−t+L(k))

The initialization step of the Viterbi algorithm is identical with the initialization step of the
Forward algorithm. The induction step of the Viterbi algorithm has two main differences
in comparison to the induction step of the Forward algorithm. First, the sum over all
states i0 ∈ S is replaced by a maximization over all states i0 ∈ S to turn the focus of the
Viterbi algorithm on one optimal state sequence. Second, the Backtrack-Variable is in-
troduced to enable the computation of the Viterbi path ~q(k) by a backtracking procedure
in the termination step. The computational scheme of the second part of the induction
step is shown in Fig. 3.5. The run-time of the Viterbi algorithm is O

(
(Tk − L)NL+1

)
.

This follows from the second part of the induction step that considers Tk − L time
steps in which the computation of one of the NL Viterbi-Variables and of one of the
NL Backtrack-Variables requires O(N) operations per time step. The Viterbi algorithm
was initially introduced by Viterbi (1967). More recent descriptions are given by Ra-
biner (1989), Durbin et al. (1998), and Bishop (2006) for a homogeneous HMM. The
extension of the Viterbi algorithm to a homogeneous HHMM(2) is given by He (1988),
and the extension to a homogeneous HHMM(L) is described by Ching et al. (2003).
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Figure 3.5: Computational scheme of the Viterbi-Variable δkt+1(i) and the Backtrack-Variable
Ψk
t+1(i) for state context i = (i1, . . . , iL) ∈ SL during the second part of the induction step.

Each Viterbi-Variable δkt (j(i0)) of state context j(i0) = (i0, . . . , iL−1) with i0 ∈ S is considered
by transforming j(i0) to i based on the transition from the current state iL−1 to the next state iL
using the corresponding transition probability aj(i0)iL(ct(k)). After this transition the emission
ot+1(k) is done by the state iL with respect to its emission density biL(ot+1(k)). In contrast to
the scheme shown for the Forward algorithm in Fig. 3.3, only the optimal link between one of
all δkt (j(i0)) and δkt+1(i) is further considered. For instance, here the link between δkt (j(S3))
and δkt+1(i) is assumed to be optimal. This leads to the storage of Ψk

t+1(i) = S3. This value is
required for in the backtracking step of the Viterbi algorithm if the Viterbi path goes through the
state context i at time step t + 1.
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3.5 Solving the Maximum Likelihood Problem

The process of adjusting the initial state probabilities, the transition probabilities, and
the emission parameters of an inhomogeneous HHMM(L,C) is called training. The
objective function for solving the Maximum Likelihood Problem is the likelihood

P [~o(1), . . . , ~o(K) |~c(1), . . . ,~c(K), λ ] =
K∏
k=1

P [~o(k) |~c(k), λ ] (3.9)

of K statistically independent emission sequences ~o(1), . . . , ~o(K) under an inho-
mogeneous HHMM(L,C) λ with respect to the given transition class sequences
~c(1), . . . ,~c(K). Due to the fact that the hidden state sequences must be considered
in the computation of the likelihood (3.9), no analytical way is known that directly de-
termines initial state probabilities, transition probabilities, and emission parameters of
the HHMM(L,C) λ for maximizing the likelihood. In this situation, the Baum-Welch al-
gorithm published in a series of articles (Baum and Eagen (1967); Baum et al. (1970);
Baum (1972)) is applied for maximizing the log-likelihood of (3.9) iteratively. The Baum-
Welch algorithm is a special case of Expectation Maximization algorithms (EM algo-
rithms) described by Dempster et al. (1977) that deal with hidden data to provide an
effective local optimization procedure. More recent introductions to the Baum-Welch
algorithm for a homogeneous HMM are given by Rabiner (1989), Durbin et al. (1998),
and Bishop (2006). The basis of the Baum-Welch algorithm is given by Baum’s auxil-
iary function

Q(λ |λ(h) ) :=
K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (P [~o(k), ~q |~c(k), λ ]) (3.10)

which is used to locally maximize the log-likelihood of (3.9) in consideration of the
current HHMM(L,C) λ(h) of iteration step h. The rest of this section focuses on the
extension of the Baum-Welch algorithm to the inhomogeneous HHMM(L,C).

3.5.1 Baum-Welch Algorithm

The Baum-Welch algorithm is an iterative training procedure to locally maximize the
log-likelihood of (3.9) by dealing with each hidden state sequence ~q = (q1, . . . , qTk

) that
is able to emit a given emission sequence ~o(k) = (o1(k), . . . , oTk

(k)). The contribution
of a state sequence ~q to the likelihood of the emission sequence ~o(k) is expressed by
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the complete-data likelihood

P [~o(k), ~q |~c(k), λ ] = πq1

L−1∏
t=1

a~q1...tqt+1(ct(k))

Tk−1∏
t=L

a~qt−L+1...tqt+1(ct(k))

Tk∏
t=1

bqt(ot(k)) (3.11)

under the inhomogeneous HHMM(L,C) λ with respect to the given transition class
sequence ~c(k). The relation P [~o(k), ~q |~c(k), λ ] = P [ ~q |~o(k),~c(k), λ ] · P [~o(k) |~c(k), λ ]

between the complete-data likelihood and the likelihood of emission sequence ~o(k) is
used to derive an alternative expression of the log-likelihood

log (P [~o(k) |~c(k), λ ]) = log (P [~o(k), ~q |~c(k), λ ])− log (P [ ~q |~o(k),~c(k), λ ]) (3.12)

of emission sequence ~o(k) under the HHMM(L,C) λ with respect to transition class
sequence ~c(k). In addition to this, the current HHMM(L,C) λ(h) of iteration step h with
known initial state probabilities, transition probabilities, and emission parameters is
used to deduce the iterative training procedure. Based on this, the log-likelihood (3.12)
is first multiplied with P [ ~q |~o(k),~c(k), λ(h) ] and then marginalized over all possible state
sequences ~q ∈ STk . This leads to an alternative expression of the log-likelihood

log(P [~o(k) |~c(k), λ ])

=
∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (P [~o(k), ~q |~c(k), λ ])

−
∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (P [ ~q |~o(k),~c(k), λ ]) (3.13)

under the next inhomogeneous HHMM(L,C) λ in terms of the current HHMM(L,C)

λ(h). The alternative expression of the log-likelihood given in (3.13) is used to rewrite
the logarithmic right-hand side of the likelihood given in (3.9). This leads to an alterna-
tive expression of the objective function for solving the Maximum Likelihood Problem.
This alternative expression of the objective function is the log-likelihood
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K∑
k=1

log(P [~o(k) |~c(k), λ ])

=
K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (P [~o(k), ~q |~c(k), λ ])

−
K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (P [ ~q |~o(k),~c(k), λ ])

= Q(λ |λ(h) )−
K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (P [ ~q |~o(k),~c(k), λ ]) (3.14)

under the next inhomogeneous HHMM(L,C) λ based on Baum’s auxiliary function
defined in (3.10) and the current inhomogeneous HHMM(L,C) λ(h) of iteration step h.
To locally improve the log-likelihood under the next inhomogeneous HHMM(L,C) λ in
comparison to the log-likelihood under the current inhomogeneous HHMM(L,C) λ(h),
the difference of both log-likelihoods

K∑
k=1

log(P [~o(k) |~c(k), λ ])−
K∑
k=1

log(P [~o(k) |~c(k), λ(h) ])

= Q(λ |λ(h) )−Q(λ(h) |λ(h) )

+
K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log

(
P [ ~q |~o(k),~c(k), λ(h) ]

P [ ~q |~o(k),~c(k), λ ]

)
(3.15)

must be positive. The last term on the right-hand side of (3.15) is a sum over rela-
tive entropies. The relative entropy is known to be always non-negative (Durbin et al.
(1998); Bishop (2006)). For that reason, this sum only accounts for an improvement
of the log-likelihood under the next inhomogeneous HHMM(L,C) λ with respect to the
current HHMM(L,C) λ(h). Thus, this sum can be neglected to simplify the computa-
tion of the parameters of the next inhomogeneous HHMM(L,C) λ. In addition to this,
Baum’s auxiliary function Q(λ(h) |λ(h) ) of the current inhomogeneous HHMM(L,C)

λ(h) is independent of the new initial state probabilities, transition probabilities, and
emission parameters of the next inhomogeneous HHMM(L,C) λ. That is, for the com-
putation of the parameters of the next inhomogeneous HHMM(L,C) λ only Baum’s
auxiliary function Q(λ |λ(h) ) on the right-hand side of (3.15) needs to be considered.

33



3. Hidden Markov Models

Based on this, the new parameters of the next inhomogeneous HHMM(L,C)

λ(h+ 1) = argmax
λ

Q(λ |λ(h) )

are computed by maximizing Baum’s auxiliary function (3.10) over all possible initial
state probabilities, transition probabilities, and emission parameters. Thus, iteratively
choosing the parameters of the next inhomogeneous HHMM(L,C) λ(h + 1) with re-
spect to the current inhomogeneous HHMM(L,C) λ(h) leads to a positive difference of
the log-likelihoods in (3.15) until a local maximum is reached. If a maximum is reached,
the parameters of the next inhomogeneous HHMM(L,C) λ(h+1) are identical to those
of the current inhomogeneous HHMM(L,C) λ(h). Thus, the log-likelihood does not
change anymore. The convergence of the Baum-Welch algorithm to a local optimum
of the likelihood has been proven in a series of articles (Baum and Eagen (1967); Baum
et al. (1970); Baum (1972)). The proof of the local convergence for the general con-
cept of EM algorithms, which includes the Baum-Welch algorithm as a special case,
has been given by Dempster et al. (1977). Subsequently, the focus is on separating
Baum’s auxiliary function Q(λ |λ(h) ) into three functions that enable the independent
estimation of initial state probabilities, transition probabilities, and emission parameters
of the next inhomogeneous HHMM(L,C) λ(h + 1) with respect to the current inhomo-
geneous HHMM(L,C) λ(h).

3.5.2 Separating Baum’s Auxiliary Function Into Parameter
Classes

The complete-data likelihood P [~o(k), ~q |~c(k), λ ] contained in Baum’s auxiliary function
Q(λ |λ(h) ) in (3.10) can be substituted by their expression given in (3.11) to obtain
independent functions for the parameters of the inhomogeneous HHMM(L,C) λ. This
leads to an alternative expression for Q(λ |λ(h) ) given by

Q(λ |λ(h) ) = Q1(~π |λ(h) ) +

(
L∑
t=1

Q t
2(A |λ(h) )

)
+Q3(B |λ(h) ) (3.16)

based on the separation into three independent functions for the parameters of the
next HHMM(L,C) λ. The function Q1(~π |λ(h) ) represents the initial state probabilities,
Q t

2(A |λ(h) ) the transition probabilities, and Q3(B |λ(h) ) represents the emission pa-
rameters. In the following, these three functions are investigated in detail to provide the

34



3. Hidden Markov Models

basics to solve the Maximum Likelihood Problem using the Baum-Welch algorithm.

Initial State Parameters

Baum’s auxiliary function for estimating the initial state probabilities πi of the next inho-
mogeneous HHMM(L,C) λ(h+ 1) is given by

Q1(~π |λ(h) ) :=
K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (πq1)

=
∑
i∈S

log (πi)
K∑
k=1

P [Q1 = i |~o(k),~c(k), λ(h) ]

=
∑
i∈S

Λπi

K∑
k=1

γk1 (i) (3.17)

based on expressing the sum over all state sequences ~q ∈ STk by two sums. The
first sum considers all initial states i ∈ S, and the second sum marginalizes over all
state sequences ~q ∈ STk with initial state q1 = i leading to P [Q1 = i |~o(k),~c(k), λ(h) ],
which represents the state posterior γk1 (i) defined in (3.6) under the current inhomo-
geneous HHMM(L,C) λ(h). Finally, the logarithmic initial state probability log (πi) is
parameterized by Λπi

:= log (πi) to provide the basics for the parameter estimation.

Transition Parameters

For the estimation of the transition parameters aij(c) of the next inhomogeneous
HHMM(L,C) λ(h+ 1) one has to account for the expected number of transitions under
the current inhomogeneous HHMM(L,C) λ(h). On that score, the Epsilon-Variable

εkt (i, j) :=

{
P [ ~Q1...t = i, Qt+1 = j |~o(k),~c(k), λ(h) ] , 1 ≤ t < L

P [ ~Qt−L+1...t = i, Qt+1 = j |~o(k),~c(k), λ(h) ] , L ≤ t < Tk
(3.18)

defines the probability of having the state context i ∈ Smin(t,L) with i = (i1, . . . , imin(t,L))

at time step t and being in the next state j ∈ S at time step t + 1 given the emission
sequence ~o(k), the transition class sequence ~c(k), and the current inhomogeneous
HHMM(L,C) λ(h). The Epsilon-Variable defined in (3.18) generalizes the definition of
the Epsilon-Variable given for a homogeneous HMM by Rabiner (1989). The compu-
tation of the Epsilon-Variable is done by utilizing the Forward-Variable (3.3) and the

35



3. Hidden Markov Models

Backward-Variable (3.4). The different Epsilon-Variables of a time step 1 ≤ t < L are
computed by

εkt (i, j) =
αkt (i) · aij(ct(k)) · bj(ot+1(k)) · βkt+1((i1, . . . , it, j))∑

v:=(v1,...,vt)∈St

∑
w∈S

αkt (v) · avw(ct(k)) · bw(ot+1(k)) · βkt+1((v1, . . . , vt, w))
(3.19)

taking into account the transition from the current state it to next state j in consideration
of the memory (i1, . . . , it−1) of the current state, and by integrating the emission ot+1(k)

done by the next state j. In addition to this, all different Epsilon-Variables of a time step
L ≤ t < Tk are computed similarly by

εkt (i, j) =
αkt (i) · aij(ct(k)) · bj(ot+1(k)) · βkt+1((i2, . . . , iL, j))∑

v:=(v1,...,vL)∈SL

∑
w∈S

αkt (v) · avw(ct(k)) · bw(ot+1(k)) · βkt+1((v2, . . . , vL, w))
(3.20)

using the full memory of size L. That is, the Backward-Variable of time step t+ 1 does
not account for the L-th predecessor state qt−L+1 = i1 or qt−L+1 = v1.
Based on the Epsilon-Variables (3.19) defined for the current inhomogeneous
HHMM(L,C) λ(h), Baum’s auxiliary function for estimating the transition probabilities
of the next inhomogeneous HHMM(L,C) λ(h+ 1) is given by

Q t
2(A |λ(h) ) :=

K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log
(
a~q1...tqt+1(ct(k))

)
=
∑
c∈C

∑
i∈St

∑
j∈S

log (aij(c))
K∑

k
ct(k)

=
=

1
c

P [ ~Q1...t = i, Qt+1 = j |~o(k),~c(k), λ(h) ]

=
∑
c∈C

∑
i∈St

∑
j∈S

Λaij(c)

K∑
k

ct(k)
=
=

1
c

εkt (i, j) (3.21)

for time steps 1 ≤ t < L. Here, the sum over all state sequences ~q ∈ STk is sub-
stituted by four sums. Three of these sums are shown explicitly and the fourth sum
can be substituted as explained subsequently. The first sum considers all transition
classes c ∈ C. The second sum considers all state contexts i ∈ St. The third sum
considers all next states j ∈ S. Now, a fourth sum is necessary to marginalize over
all state sequences ~q ∈ STk with fixed state context ~q1...t = i and fixed next state
qt+1 = j in consideration that the transition class c of the first sum is identical to the
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given transition class ct(k). This fourth sum can be simplified to its marginal distri-
bution P [ ~Q1...t = i, Qt+1 = j |~o(k),~c(k), λ(h) ], which represents the Epsilon-Variable
εkt (i, j) defined in (3.18). Finally, to provide the basics for the parameter estimation, the
logarithmic transition probability log (aij(c)) is parameterized by Λaij(c) := log (aij(c)).
In analogy to this, Baum’s auxiliary function to estimate the transition probabilities used
at time steps t ≥ L is defined by

QL
2 (A |λ(h) ) :=

K∑
k=1

Tk−1∑
t=L

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log
(
a~qt−L+1...tqt+1(ct(k))

)
=
∑
c∈C

∑
i∈SL

∑
j∈S

Λaij(c)

K∑
k=1

Tk−1∑
t

ct(k)
=
=
L
c

εkt (i, j) (3.22)

for the next inhomogeneous HHMM(L,C) λ(h+ 1) with respect to the Epsilon-Variable
εkt (i, j) defined in (3.20). The derivation is nearly identical to that of Q t

2(A |λ(h) ) given
in (3.21). The only difference results from an additional sum over all time steps L ≤
t < Tk.

Emission Parameters

Baum’s auxiliary function to estimate the emission parameters of the next inhomoge-
neous HHMM(L,C) λ(h+ 1) is given by

Q3(B |λ(h) ) :=
K∑
k=1

Tk∑
t=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (bqt(ot(k)))

=
∑
i∈S

K∑
k=1

Tk∑
t=1

log (bi(ot(k))) · P [Qt = i |~o(k),~c(k), λ(h) ]

=
∑
i∈S

K∑
k=1

Tk∑
t=1

log (bi(ot(k))) · γkt (i) (3.23)

including the substitution of the sum over all state sequences ~q ∈ STk by two sums. The
first sum runs over all current states i ∈ S. Now, a second sum is required to marginal-
ize over all state sequences ~q ∈ STk with fixed current state qt = i. The second sum
can be simplified to its marginal probability P [Qt = i |~o(k),~c(k), λ(h) ], which is ex-
actly the state posterior γkt (i) defined in (3.6) computed for the current inhomogeneous
HHMM(L,C) λ(h).
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3.5.3 Estimating HHMM Parameters

The estimation of the initial state probabilities π
(h+1)
i and the transition probabilities

aij(c)
(h+1) of the next inhomogeneous HHMM(L,C) λ(h+ 1) is done by using the stan-

dard Lagrange optimization technique described in the textbook by Bishop (2006). An
outline to the proofs that the obtained re-estimation formulas for π(h+1)

i and aij(c)
(h+1)

maximize their corresponding Baum’s auxiliary function is given by Durbin et al. (1998)
for a homogeneous HMM. The generalization of these proofs to an inhomogeneous
HHMM(L,C) is straightforward. For that reason, only the parameter estimation formu-
las are provided.

Initial State Parameters

To determine the initial state distribution ~π(h + 1) of the next inhomogeneous
HHMM(L,C) λ(h+1) one has to maximize Baum’s auxiliary function Q1(~π |λ(h) ) given
in (3.17) in subject to the constraint

∑
i∈S exp (Λπi

) = 1. This is done by using the aux-
iliary function Q1(~π |λ(h) ) − δ · ((∑i∈S exp (Λπi

)) − 1) with Lagrange multiplier δ. The
auxiliary function is differentiated with respect to Λπi

and δ. Both derivatives are set
equal to zero to compute the initial state probability. Under consideration of the relation
πi = exp(Λπi

), the initial state probability

π
(h+1)
i =

K∑
k=1

γk1 (i)

∑
v∈S

K∑
k=1

γk1 (v)

(3.24)

for state i ∈ S under the next inhomogeneous HHMM(L,C) λ(h+1) is obtained with re-
spect to all state posteriors γk1 (i) and γk1 (v) given in (3.6) for the current inhomogeneous
HHMM(L,C) λ(h).

Transition Parameters

The transition probability aij(c)(h+1) used at a fixed time step 1 ≤ t < L by the next inho-
mogeneous HHMM(L,C) λ(h+ 1) is determined by maximizing Baum’s auxiliary func-
tion Q t

2(A |λ(h) ) given in (3.21) in subject to the constraint
∑

j∈S exp(Λaij(c)) = 1. This
is done based on the auxiliary function Q t

2(A |λ(h) )−∑i∈St δi · ((
∑

j∈S exp(Λaij(c)))−1)

with Lagrange multiplier δi. The auxiliary function is differentiated with respect to
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Λaij(c) and δi. Both derivatives are set equal to zero to compute the transition prob-
ability. Based on the relation aij(c) = exp(Λaij(c)), one obtains for each state context
i = (i1, . . . , it) ∈ St and each next state j ∈ S the transition probability

aij(c)
(h+1) =

K∑
k

ct(k)
=
=

1
c

εkt (i, j)

∑
v∈S

K∑
k

ct(k)
=
=

1
c

εkt (i, v)

(3.25)

for a transition from the current state it to the next state j in transition class c ∈ C with
respect to the memory (i1, . . . , it−1) of the current state. The Epsilon-Variables εkt (i, j)
and εkt (i, v) given in (3.19) that are necessary for the estimation of this transition prob-
ability have to be computed under the current inhomogeneous HHMM(L,C) λ(h).
Similar to this, all transition probabilities for time steps t ≥ L are determined by
maximizing Baum’s auxiliary function QL

2 (A |λ(h) ) given in (3.22) in subject to the
constraint

∑
j∈S exp(Λaij(c)) = 1 using the auxiliary function QL

2 (A |λ(h) ) −∑i∈SL δi ·
((
∑

j∈S exp(Λaij(c))) − 1) with Lagrange multiplier δi. In analogy, one obtains for each
state context i = (i1, . . . , iL) ∈ SL and each next state j ∈ S the transition probability

aij(c)
(h+1) =

K∑
k=1

Tk−1∑
t

ct(k)
=
=
L
c

εkt (i, j)

∑
v∈S

K∑
k=1

Tk−1∑
t

ct(k)
=
=
L
c

εkt (i, v)

(3.26)

for a transition from the current state iL to the next state j in transition class c ∈ C in
consideration of the memory (i1, . . . , iL−1) of the current state. The Epsilon-Variables
εkt (i, j) and εkt (i, v) defined in (3.20) that are required for the computation of this transi-
tion probability are computed under the current inhomogeneous HHMM(L,C) λ(h).

Emission Parameters

Each state i ∈ S of the inhomogeneous HHMM(L,C) is characterized by a Gaussian
emission density bi(o) defined in (3.2) with a state-specific mean µi and a state-specific
standard deviation σi. To estimate the mean µ

(h+1)
i and the standard deviation σ

(h+1)
i
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for the next inhomogeneous HHMM(L,C) λ(h + 1) one has to maximize Q3(B |λ(h) )

given in (3.23). This is done by determining the critical points for which the derivatives
of Q3(B |λ(h) ) for the mean µi and the standard deviation σi are identical to zero. This
leads to the state-specific mean

µ
(h+1)
i =

K∑
k=1

Tk∑
t=1

ot(k) · γkt (i)
K∑
k=1

Tk∑
t=1

γkt (i)

(3.27)

and the state-specific standard deviation

σ
(h+1)
i =

√√√√√√√√√√
K∑
k=1

Tk∑
t=1

(
ot(k)− µ

(h+1)
i

)2

· γkt (i)
K∑
k=1

Tk∑
t=1

γkt (i)

(3.28)

of state i ∈ S for the next inhomogeneous HHMM(L,C) λ(h + 1). Both, the mean and
the standard deviation require the state posteriors γkt (i) given in (3.6) that have to be
computed under the current inhomogeneous HHMM(L,C) λ(h). For further details, the
introduction to the estimation of the mean and the standard deviation by Bilmes (1998)
can be considered.

3.5.4 Computational Scheme of the Baum-Welch Algorithm

The computational scheme of the Baum-Welch algorithm is specified subsequently
in terms of an initialization and an iteration step under consideration of the basics
obtained in the previous sections.

• Initialization: Choose initial state probabilities, transition probabilities, and emis-
sion parameters of the inhomogeneous HHMM(L,C) λ(1).

• Iteration: For iteration steps h = 1, 2, . . .

– Use the current inhomogeneous HHMM(L,C) λ(h) to compute all State-
Posterior-Variables γkt (i) given in (3.6) and all Epsilon-Variables εkt (i, j) given
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in (3.19) and (3.20) based on the given emission sequences ~o(1), . . . , ~o(K)

and their corresponding transition class sequences ~c(1), . . . ,~c(K).

– Compute the optimal parameters of the next inhomogeneous HHMM(L,C)

λ(h+ 1) based on the previous computations.

1. Compute the initial state probability π(h+1)
i given in (3.24) for each state

i ∈ S.

2. Compute the transition probability aij(c)(h+1) for each state context i ∈ St
of length 1 ≤ t < L and each next state j ∈ S using (3.25). In analogy,
use (3.26) to compute the transition probability for each state context
i ∈ SL of length L.

3. Compute the mean µ
(h+1)
i and the standard deviation σ

(h+1)
i for each

state i ∈ S as specified in (3.27) and (3.28).

– Stop if the log-likelihood under the next inhomogeneous HHMM(L,C) λ(h+

1) has increased less than a pre-defined threshold in comparison to the log-
likelihood under the current inhomogeneous HHMM(L,C) λ(h), otherwise
start the next iteration step with h := h+ 1.

3.6 Prior

In Bayesian statistics, the prior represents a statistical distribution over the parameters
of a model that allows to assign an a priori probability to each individual model; see
e.g. Durbin et al. (1998) or Bishop (2006). This provides the opportunity to integrate
biological prior knowledge into the estimation of the initial state probabilities, the tran-
sition probabilities, and the emission parameters of an inhomogeneous HHMM(L,C)

λ. The choice of specific prior distributions should also provide the basics for the ana-
lytical estimation of these parameters. This can be realized by the choice of conjugate
priors that greatly simplify the parameter estimation (Bishop (2006)). With the choice
of a conjugate prior for a model parameter, the posterior of this parameter has the
same functional form as the prior of this parameter. For the parameters of the inho-
mogeneous HHMM(L,C), the conjugate prior of the initial state distribution and of the
transition distribution of a fixed state i ∈ S with a fixed memory on its predecessor
states is a Dirichlet distribution (Durbin et al. (1998)). Regarding the state-specific
emission parameters, the conjugate prior for the mean of a Gaussian distribution is a
Gaussian distribution (Bishop (2006)), and the conjugate prior for the standard devia-
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tion of a Gaussian distribution is an Inverted-Gamma distribution (Evans et al. (2000)).
Based on this, the prior of the inhomogeneous HHMM(L,C) λ is defined by

P [λ ] := D1(~π |Θ1 ) ·
(

L∏
t=1

D t
2(A |Θ2 )

)
·D3(B |Θ3 ) (3.29)

as a product of independent priors D1(~π |Θ1 ), D t
2(A |Θ2 ), and D3(B |Θ3 ) for the ini-

tial state distribution, the transition probabilities, and the emission parameters. These
priors are specified subsequently.

3.6.1 Initial State Parameter Prior

The prior for the initial state distribution ~π with initial state probability πi = exp(Λπi
) for

each state i ∈ S is given by the transformed Dirichlet distribution

D1(~π |Θ1 ) := Z(Θ1)
∏
i∈S

exp(Λπi
· ϑi) (3.30)

based on the vector of parameters Θ1 := (ϑS1 , . . . , ϑSN
) with ϑi ∈ R+ for each state

i ∈ S, and the normalization constant Z(Θ1) := Γ(
∑

i∈S ϑi)/
∏

i∈S Γ(ϑi) with Gamma
function Γ(x) =

∫∞
0
ux−1 · exp(−u) du for all x ∈ R+. This transformed Dirichlet distribu-

tion is specified in a general form by MacKay (1998).

3.6.2 Transition Parameter Prior

The prior of the transition parameters of state context length t is the product of trans-
formed Dirichlet distributions

D t
2(A |Θ2 ) :=

∏
c∈C

∏
i∈St

Z(Θi
2(c))

∏
j∈S

exp(Λaij(c) · ϑij(c)) (3.31)

with respect to the relation aij(c) = exp(Λaij(c)) and in consideration of the matrices
of parameters Θ2 := (Θ2(1), . . . ,Θ2(C)). For each transition class c ∈ C a matrix
Θ2(c) := (Θi

2(c))i∈St is defined based on the vector Θi
2(c) := (ϑiS1(c), . . . , ϑiSN

(c)) with
ϑij(c) ∈ R+ to represent the prior knowledge for a transition from state context i to
next state j in consideration of transition class c. The normalization constant of each
Dirichlet distribution is defined by Z(Θi

2(c)) := Γ(
∑

j∈S ϑij(c))/
∏

j∈S Γ(ϑij(c)).
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3.6.3 Emission Parameter Prior

The prior of the state-specific emission parameters is the product of independent
Gaussian-Inverted-Gamma distributions

D3(B |Θ3 ) :=
∏
i∈S

N(µi | ηi, σi/√εi ) · IG(σi | ri, αi ) (3.32)

as defined by Evans et al. (2000). The parameters of the emission prior are defined
by the matrix Θ3 := ((ηi, εi, ri, αi))i∈S that contains the mean ηi ∈ R, the scale param-
eter εi ∈ R+, the shape parameter ri ∈ R+, and the scale parameter αi ∈ R+. The
Gaussian-Inverted-Gamma distribution of state i ∈ S consists of a Gaussian distribu-
tion

N(µi | ηi, σi/√εi ) :=

√
εi√

2πσi
· exp

(
−εi

2
·
(
µi − ηi
σi

)2
)

as prior for the state-specific mean µi with mean ηi and standard deviation σi/
√
εi, and

an Inverted-Gamma distribution

IG(σi | ri, αi ) :=
2αi

ri

Γ(ri)σi2ri+1
· exp

(
− αi
σi2

)
as prior of the state-specific standard deviation σi with shape parameter ri and scale
parameter αi. The Inverted-Gamma distribution as prior of the standard deviation σi

can be derived from the transformation of a Gamma distribution over a variable x with
respect to the relation x = 1/σ2

i using the general theory behind the changes of vari-
ables of probability densities briefly summarized in the textbook of Durbin et al. (1998).
The Gamma distribution itself represents the conjugate prior for the precision (inverse
variance) of a Gaussian density (Bishop (2006)).

3.7 Solving the Maximum A Posteriori Problem

The objective function for solving the Maximum A Posteriori Problem is the posterior
P [λ |~o(1), . . . , ~o(K),~c(1), . . . ,~c(K) ] of the inhomogeneous HHMM(L,C) λ given K sta-
tistically independent emission sequences ~o(1), . . . , ~o(K) and their corresponding tran-
sition class sequences ~c(1), . . . ,~c(K). Using the Bayes’ theorem and the stated inde-
pendence assumption for the emission sequences, the posterior can be transformed
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into

P [λ |~o(1), . . . , ~o(K),~c(1), . . . ,~c(K) ] =

P [λ ] ·
K∏
k=1

P [~o(k) |~c(k), λ ]

K∏
k=1

P [~o(k),~c(k) ]

(3.33)

a product of the prior P [λ ] and the likelihood
∏K

k=1 P [~o(k) |~c(k), λ ] divided by the nor-
malization constant

∏K
k=1 P [~o(k),~c(k) ]. The normalization constant is independent of

the specific parameters of the inhomogeneous HHMM(L,C) λ. Thus, neglecting this
normalization constant, the posterior is proportional to the product of the prior and
the likelihood. Again, like for the Maximum Likelihood Problem, no analytical solu-
tion is known that directly determines initial state probabilities, transition probabilities,
and emission parameters of the inhomogeneous HHMM(L,C) λ for maximizing (3.33).
However, in this situation one can make use of Baum’s auxiliary function Q(λ |λ(h) )

given in (3.10) as an alternative expression of the log-likelihood. This strategy leads to
a Bayesian version of the Baum-Welch algorithm for the iterative maximization of the
posterior.

3.7.1 Bayesian Baum-Welch Algorithm

The Bayesian version of the Baum-Welch algorithm is an iterative procedure to locally
maximize the posterior given in (3.33) by considering each hidden state sequence ~q

that is able to emit a given emission sequence ~o(k) in consideration of the correspond-
ing transition class sequence ~c(k). To derive this iterative training procedure the log-
posterior of (3.33) has to be considered. The log-posterior of the next inhomogeneous
HHMM(L,C) λ

log (P [λ |~o(1), . . . , ~o(K),~c(1), . . . ,~c(K) ]) = log (P [λ ]) +
K∑
k=1

log (P [~o(k) |~c(k), λ ])− Z

is expressed in terms of the log-prior, the log-likelihood, and the log-normalization con-
stant Z =

∑K
k=1 log (P [~o(k),~c(k) ]). By substituting the log-likelihood with their alterna-

tive expression given in (3.14), the log-posterior can be transformed to the alternative
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expression

log (P [λ |~o(1), . . . , ~o(K),~c(1), . . . ,~c(K) ])

= log (P [λ ])− Z +Q(λ |λ(h) )

−
K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log (P [ ~q |~o(k),~c(k), λ ])

which is depending on the current inhomogeneous HHMM(L,C) λ(h) of iteration step
h. To locally improve the log-posterior of the next inhomogeneous HHMM(L,C) λ with
respect to the log-posterior under the current inhomogeneous HHMM(L,C) λ(h), the
difference of both log-posteriors

log (P [λ |~o(1), . . . , ~o(K),~c(1), . . . ,~c(K) ])− log (P [λ(h) |~o(1), . . . , ~o(K),~c(1), . . . ,~c(K) ])

= log (P [λ ])− log (P [λ(h) ]) +Q(λ |λ(h) )−Q(λ(h) |λ(h) )

+
K∑
k=1

∑
~q∈STk

P [ ~q |~o(k),~c(k), λ(h) ] · log

(
P [ ~q |~o(k),~c(k), λ(h) ]

P [ ~q |~o(k),~c(k), λ ]

)
(3.34)

must be positive. Baum’s auxiliary function Q(λ(h) |λ(h) ) and the log-prior
log(P [λ(h) ]) are only depending on the current inhomogeneous HHMM(L,C) λ(h) of
iteration step h. Due to that, both terms are constants that do not influence the estima-
tion of the parameters of the next inhomogeneous HHMM(L,C) λ. The last term on the
right-hand side is again, as in the derivation of the Baum-Welch algorithm, the sum over
K relative entropies. The relative entropy is known to be always non-negative (Durbin
et al. (1998); Bishop (2006)). Thus, the sum over relative entropies only accounts for a
local improvement of the log-posterior under the next inhomogeneous HHMM(L,C) λ

with respect to the current inhomogeneous HHMM(L,C) λ(h). On that score, this sum
is neglected to simplify the estimation of the parameters of the next inhomogeneous
HHMM(L,C) λ. The parameters of the next inhomogeneous HHMM(L,C)

λ(h+ 1) = argmax
λ

(Q(λ |λ(h) ) + log(P [λ ]))

are computed by maximizing the sum of Baum’s auxiliary function (3.10) and the log-
prior of (3.29) over all possible initial state probabilities, transition probabilities, and
emission parameters. This maximization always leads to a positive difference of the
log-posteriors (3.34) until a maximum is reached. If a maximum is reached, then the
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parameters of the next inhomogeneous HHMM(L,C) λ(h + 1) are identical to those
of the current inhomogeneous HHMM(L,C) λ(h). Thus, the log-posterior does not
change anymore. The proof of the local convergence of the Bayesian Baum-Welch
algorithm is included in the general concept of EM algorithms introduced by Dempster
et al. (1977). Subsequent to this section, the focus is on estimating the initial state
probabilities, the transition probabilities, and the emission parameters of the next inho-
mogeneous HHMM(L,C) λ(h+ 1).

3.7.2 Estimating HHMM Parameters

The basis of the parameter estimation is the separation of Baum’s auxiliary function
Q(λ |λ(h) ). As shown in (3.16), Baum’s auxiliary function can be divided into inde-
pendent functions for each class of parameters of the inhomogeneous HHMM(L,C) λ.
That is, the initial state probabilities are represented by Q1(~π |λ(h) ) defined in (3.17),
two functions Q t

2(A |λ(h) ) are defined in (3.21) and (3.22) for the transition probabil-
ities, and the emission parameters are represented by Q3(B |λ(h) ) defined in (3.23).
Each of these functions is now combined with the corresponding prior distribution to
determine the parameters of the next inhomogeneous HHMM(L,C). In analogy to
the parameter estimation for the Baum-Welch algorithm, the standard Lagrange opti-
mization technique described in the textbook of Bishop (2006) is used to determine
the initial state probabilities and the transition probabilities of the next inhomogeneous
HHMM(L,C).

Initial State Parameters

To determine the initial state distribution ~π(h + 1) of the next inhomogeneous
HHMM(L,C) λ(h + 1) one has to maximize Baum’s auxiliary function Q1(~π |λ(h) )

given in (3.17) in combination with the prior D1(~π |Θ1 ) given in (3.30) in subject to
the constraint

∑
i∈S exp(Λπi

) = 1. For that reason, the auxiliary function Q1(~π |λ(h) ) +

log(D1(~π |Θ1 )) − δ · ((∑i∈S exp(Λπi
)) − 1) with Lagrange multiplier δ is defined. This

auxiliary function is differentiated with respect to Λπi
and δ. Both derivatives are set

equal to zero to compute the initial state probability. Using the relation πi = exp(Λπi
),
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the initial state probability

π
(h+1)
i =

(
K∑
k=1

γk1 (i)

)
+ ϑi(∑

v∈S

K∑
k=1

γk1 (v)

)
+

(∑
v∈S

ϑv

) (3.35)

is obtained for state i ∈ S of the next inhomogeneous HHMM(L,C) λ(h + 1). The
required state posteriors γk1 (i) and γk1 (v) given in (3.6) have to be computed under the
current inhomogeneous HHMM(L,C) λ(h). The initial state probability π(h+1)

i in (3.35)
obtained for the Bayesian Baum-Welch algorithm is extended to that given in (3.24) for
the Baum-Welch algorithm by additionally including the prior parameter ϑi to express
prior knowledge on the initial state probability.

Transition Parameters

The transition probability aij(c)
(h+1) used by the next inhomogeneous HHMM(L,C)

λ(h + 1) at a time step 1 ≤ t < L is estimated by maximizing Baum’s auxiliary
function Q t

2(A |λ(h) ) given in (3.21) in combination with the prior D t
2(A |Θ2 ) defined

in (3.31) in subject to the constraint
∑

j∈S exp(Λaij(c)) = 1. The auxiliary function
Q t

2(A |λ(h) ) + log(D t
2(A |Θ2 ))−∑i∈St δi · ((

∑
j∈S exp(Λaij(c)))− 1) with Lagrange mul-

tiplier δi provides the basics for this maximization. This function is differentiated with
respect to Λaij(c) and δi. Both derivatives are set equal to zero to compute the transi-
tion probability. Based on the relation aij(c) = exp(Λaij(c)), one obtains for each state
context i = (i1, . . . , it) ∈ St and each next state j ∈ S the transition probability

aij(c)
(h+1) =

 K∑
k

ct(k)
=
=

1
c

εkt (i, j)

+ ϑij(c)

∑
v∈S

K∑
k

ct(k)
=
=

1
c

εkt (i, v)

+

(∑
v∈S

ϑiv(c)

) (3.36)

for a transition from the current state it to the next state j in transition class c ∈ C
in consideration of the memory (i1, . . . , it−1) of the current state. All required Epsilon-
Variables εkt (i, j) and εkt (i, v) defined in (3.19) have to be computed under the current
inhomogeneous HHMM(L,C) λ(h). The transition probability aij(c)(h+1) in (3.36) ob-
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tained for the Bayesian Baum-Welch algorithm is extended to that given in (3.25) for the
Baum-Welch algorithm by additionally including the prior parameter ϑij(c) to express
prior knowledge for this transition probability.
Similar to this parameter estimation, all transition probabilities used by the inhomoge-
neous HHMM(L,C) at time steps t ≥ L are determined by maximizing Baum’s auxiliary
function QL

2 (A |λ(h) ) given in (3.22) in combination with the prior D L
2 (A |Θ2 ) defined

in (3.31) in subject to the constraint
∑

j∈S exp(Λaij(c)) = 1. This is done by using the aux-
iliary functionQL

2 (A |λ(h) )+log(D L
2 (A |Θ2 ))−∑i∈SL δi((

∑
j∈S exp(Λaij(c)))−1) with La-

grange multiplier δi. In analogy, one obtains for each state context i = (i1, . . . , iL) ∈ SL
and each next state j ∈ S the transition probability

aij(c)
(h+1) =

 K∑
k=1

Tk−1∑
t

ct(k)
=
=
L
c

εkt (i, j)

+ ϑij(c)

∑
v∈S

K∑
k=1

Tk−1∑
t

ct(k)
=
=
L
c

εkt (i, v)

+

(∑
v∈S

ϑiv(c)

) (3.37)

for a transition from the current state iL to the next state j in transition class c ∈ C in
consideration of the memory (i1, . . . , iL−1) of the current state. The required Epsilon-
Variables εkt (i, j) and εkt (i, v) defined in (3.20) have to be computed under the current
inhomogeneous HHMM(L,C) λ(h). Again, the transition probability aij(c)(h+1) in (3.37)
obtained for the Bayesian Baum-Welch algorithm is extended to that given in (3.26)
for the Baum-Welch algorithm by additionally including the prior parameter ϑij(c) to
express prior knowledge for this transition probability.

Emission Parameters

Each state i ∈ S of the inhomogeneous HHMM(L,C) has a state-specific Gaussian
emission density bi(o) defined in (3.2). Each Gaussian emission density is charac-
terized by the state-specific mean µi and by the state-specific standard deviation σi.
To estimate the mean µ

(h+1)
i and the standard deviation σ

(h+1)
i of the next inhomo-

geneous HHMM(L,C) λ(h + 1) one has to maximize the sum of Baum’s auxiliary
function Q3(B |λ(h) ) given in (3.23) in combination with the log-prior log(D3(B |Θ3 ))

defined in (3.32). This is done by computing the critical points of the derivatives of
Q3(B |λ(h) ) + log(D3(B |Θ3 )) with respect to the mean µi and the standard deviation
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σi. Based on this, the mean of state i ∈ S for the next inhomogeneous HHMM(L,C)

λ(h+ 1) is given by

µ
(h+1)
i =

(
K∑
k=1

Tk∑
t=1

ot(k) · γkt (i)
)

+ εiηi(
K∑
k=1

Tk∑
t=1

γkt (i)

)
+ εi

(3.38)

with respect to the state posterior γkt (i) given in (3.6) computed under the current inho-
mogeneous HHMM(L,C) λ(h). The mean µ(h+1)

i in (3.38) obtained in the context of the
Bayesian Baum-Welch algorithm is very similar to that given for the Baum-Welch algo-
rithm in (3.27). In comparison to (3.27), the scale parameter εi allows to quantify the
influence of the assumed a priori mean ηi on the mean µ

(h+1)
i in (3.38). The standard

deviation of state i ∈ S of the next inhomogeneous HHMM(L,C) λ(h + 1) is specified
by

σ
(h+1)
i =

√√√√√√√√√√

(
K∑
k=1

Tk∑
t=1

(
ot(k)− µ

(h+1)
i

)2

· γkt (i)
)

+ εi(µ
(h+1)
i − ηi)

2 + 2αi(
K∑
k=1

Tk∑
t=1

γkt (i)

)
+ 2ri + 2

(3.39)

under consideration of the state posterior γkt (i) in (3.6) that is computed under the
current inhomogeneous HHMM(L,C) λ(h). Again, the standard deviation σ

(h+1)
i in

(3.39) obtained for the Bayesian Baum-Welch algorithm is similar to that given for the
Baum-Welch algorithm in (3.28). In addition to (3.28), the quadratic difference of the
mean µ

(h+1)
i and the a priori mean ηi is quantified by the scale parameter εi, and the

scale parameter αi and the shape parameter ri allow to adjust σ(h+1)
i in (3.39). For

further reading to the Bayesian estimation of the emission parameters one can consider
the article by Lee et al. (1990) and the series of articles by Gauvain and Lee (1991),
Gauvain and Lee (1992), and by Gauvain and Lee (1994).
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3.7.3 Computational Scheme of the Bayesian Baum-Welch
Algorithm

In analogy to the Baum-Welch algorithm, the computational scheme of the Bayesian
Baum-Welch algorithm is specified in terms of an initialization and an iteration step.

• Initialization: Choose initial state probabilities, transition probabilities, and emis-
sion parameters of the inhomogeneous HHMM(L,C) λ(1).

• Iteration: For iteration steps h = 1, 2, . . .

– Use the current inhomogeneous HHMM(L,C) λ(h) to compute all State-
Posterior-Variables γkt (i) given in (3.6) and all Epsilon-Variables εkt (i, j) given
in (3.19) and (3.20) based on the given emission sequences ~o(1), . . . , ~o(K)

and their corresponding transition class sequences ~c(1), . . . ,~c(K).

– Compute the optimal parameters of the next inhomogeneous HHMM(L,C)

λ(h+ 1) based on the previous computations.

1. Compute the initial state probability π(h+1)
i given in (3.35) for each state

i ∈ S.

2. Compute the transition probability aij(c)(h+1) for each state context i ∈ St
of length 1 ≤ t < L and each next state j ∈ S using (3.36). In analogy,
use (3.37) to compute the transition probability for each state context
i ∈ SL of length L.

3. Compute the mean µ
(h+1)
i and the standard deviation σ

(h+1)
i for each

state i ∈ S as specified in (3.38) and (3.39).

– Stop if the log-posterior of the next inhomogeneous HHMM(L,C) λ(h + 1)

has increased less than a pre-defined threshold in comparison to the log-
posterior of the current inhomogeneous HHMM(L,C) λ(h), otherwise start
the next iteration step with h := h+ 1.
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4 Parsimonious Higher-Order Hidden
Markov Models

The inhomogeneous HHMM(L,C) is based on its internal inhomogeneous MM of or-
der L with C transition classes. The basic characteristic of this HHMM(L,C) is that
a transition from the current state to the next state is depending on the memory of
the L − 1 predecessor states of the current state. A drawback of the integration of
such a memory is the huge increase of the number of transition parameters of the
inhomogeneous HHMM(L,C) for an increasing order L. To overcome this, the initial
work on homogeneous parsimonious higher-order MMs by Bourguignon and Robelin
(2004) and further extensions by Gohr (2006) provide the basis for the development of
the inhomogeneous Parsimonious Higher-order Hidden Markov Model of order L with
C transition classes (PHHMM(L,C)). The general idea behind this PHHMM(L,C) is
to reduce the number of transition parameters by introducing equivalence classes of
transition parameters. That means, depending on the given data set, selected transi-
tion parameters which have been grouped together into one equivalence class have to
share common transition probabilities. This sharing of transition parameters reduces
the total number of free transition parameters. The equivalence classes of transition
parameters are computed efficiently by a dynamic programming algorithm described
by Bourguignon and Robelin (2004) and Gohr (2006). Here, it is referred to this algo-
rithm as the Parsimonious Cluster algorithm. This algorithm is adapted to the specific
requirements of the PHHMM(L,C) through the integration into the framework of the
Bayesian Baum-Welch algorithm.

Goals of this Chapter

1. Partitions of the set of hidden states S are introduced to provide the basics for
equivalence classes of transition parameters.

2. A tree-based representation of state contexts over S is described to represent the
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4. Parsimonious Higher-Order Hidden Markov Models

equivalence classes of transition parameters.

3. The definition of the inhomogeneous PHHMM(L,C) is given.

4. In the context of the Maximum A Posteriori Problem the Bayesian Baum-Welch
algorithm is extended to the inhomogeneous PHHMM(L,C) by integrating the
Parsimonious Cluster algorithm to determine the optimal equivalence classes of
transition parameters.

4.1 Partitions of the Set of Hidden States

The basic idea behind a partition is to group certain states of the set of hidden states S
into disjoint subsets of equivalent states. The partitions of S are used to define parsi-
monious representations of state contexts over S. These parsimonious representations
are considered in the next section. Here, the focus is to establish the theoretical basics
behind.

4.1.1 Computing the Partitions

First, the definition of a partition is required to compute all partitions of the set of hidden
states S. A partition ρ of the set of hidden states S is defined by the following four
properties.

1. The partition ρ is subset of the power set of S.

2. The partition ρ does not contain the empty set.

3. All elements of the partition ρ are mutually disjoint.

4. The union set of all elements of the partition ρ is identical to S.

These properties ensure that each state i ∈ S is represented by exactly one element
of a partition. Based on this definition, one can derive an algorithm that iteratively com-
putes the set of all partitions ∆(N ) for the set of N hidden states S := {S1, . . . , SN}.

• Initialization: The set of partitions of S = {S1} is ∆( 1 ) = { {{S1}} }.

• Iteration: For each iteration step n = 1, 2, . . . , N − 1 and its corresponding set of
partitions ∆(n ).
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1. Set ∆(n+ 1 ) := {}.
2. Add new partitions to ∆(n + 1 ) by extending ∆(n ) with the new state Sn+1

using the two following rules on each partition ρ = {ρ1, . . . , ρk} ∈ ∆(n ) of
any cardinality k ≥ 1.

– R1: Add {ρ1, . . . , ρk, {Sn+1}} to ∆(n+ 1 ).
– R2: Add {ρ1, . . . , ρh−1, ρh ∪{Sn+1}, ρh+1, . . . , ρk} to ∆(n+1 ) for each set
ρh ∈ ρ with index 1 ≤ h ≤ k.

This algorithm computes all partitions ∆(n+ 1 ) of the set S := {S1, . . . , Sn+1} of n+ 1

hidden states by extending each partition of ∆(n ) by the new state Sn+1. The exten-
sions are done with respect to the definition of the partition. That is, rule R1 extends
each partition ρ ∈ ∆(n ) by the new element {Sn+1}. This leads to a well-defined parti-
tion of n + 1 hidden states, because each state Si with 1 ≤ i ≤ n is already contained
in exactly one element of the considered partition ρ. The rule R2 adds all partitions
to ∆(n + 1 ) that result from the combination of the new state Sn+1 with each specific
element of a partition ρ ∈ ∆(n ).

4.1.2 Number of Partitions

The number of partitions in ∆(n ) for a set S := {S1, . . . , Sn} of n hidden states is given
by the Bell number

B[n ] :=
n∑
k=1

S[n, k ] (4.1)

like defined by Pitman (1997). The Bell number can be computed by summing over the
Stirling number of the second kind S[n, k ] := S[n− 1, k − 1 ] + k · S[n− 1, k ], which is
defined in Abramowitz and Stegun (1972). The Stirling number represents the number
of different ways to partition a set of n elements into exactly k non-empty subsets. The
computation of the Stirling number is done with respect to the initial value S[ 1, 1 ] = 1,
and in consideration of the constraints S[n, 0 ] = 0 for all n ∈ N, and S[n, k ] = 0 for
all k ∈ N greater than n ∈ N. The first term S[n − 1, k − 1 ] on the right-hand side of
S[n, k ] represents the number of partitions that are obtained by applying the rule R1
to each partition ρ ∈ ∆(n− 1 ) of cardinality k − 1, and the second term k · S[n− 1, k ]

counts the number of partitions that result from the application of rule R2 to all partitions
ρ ∈ ∆(n− 1 ) of cardinality k.
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4.1.3 Set of Partitions

The set of partitions of the set of N hidden states S contains Bell number B[N ] parti-
tions and is defined by

∆S := ∆(N ) (4.2)

for the inhomogeneous PHHMM(L,C). Subsequently, ∆S is used to define the tree-
based representation of state contexts over S.

4.2 Tree-based Representation of State Contexts

The basis of the inhomogeneous PHHMM(L,C) is its internal inhomogeneous higher-
order MM specified in Sec. 2.2.2. Here, a transition from the current state il ∈ S to a
next state j ∈ S is depending on the memory (i1, . . . , il−1) of the current state il. Each
individual state context (i1, . . . , il) ∈ Sl and its corresponding transition parameters can
be represented by a tree-based data structure using the set of partitions ∆S defined in
(4.2). To develop this data structure, the height of a tree is defined to be the number
of edges on the path from the root node to the deepest node in the tree. In analogy
to this, the depth of a node in a tree is defined to be the number of edges on the path
from the root node to the considered node. Based on this, the tree τl of height l that
stores all state contexts of length l has to fulfill the following properties.

1. The root node n in depth 0 is labeled by the set L[n] := {ε} containing the empty
word ε.

2. Each node v in depth dv ∈ {1, . . . , l} is linked to its parent node P [v] in depth
dv − 1, and each v is labeled by a non-empty subset L[v] of the set of hidden
states S.

3. The set of labels of all child nodes of each parent node defines a partition in the
set of partitions ∆S.

4. All leaf nodes are in depth l.

5. Each leaf v defines a set of equivalent state contexts ξ[ v, l ] := {(i1, i2, . . . , il) :

i1 ∈ L[v], i2 ∈ L[P [v]], . . . , ε ∈ L[n]} of length l. The state contexts of leaf v
represent all combinations of states that are obtained by traversing the path from
the leaf node v to the root node n.
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This tree ensures that each state of S is included exactly in one label of the child
nodes of each parent node. That is because the set of labels of all child nodes of a
parent node is defined to be a partition of S. This implicates that each state context
(i1, . . . , il) ∈ Sl is contained exactly in one of the sets of equivalent state contexts that
are represented by the leaf nodes of the tree. Based on this, each tree τl defines a set
of equivalence classes of state contexts

ξτl := {ξ[ v, l ] : v is a leaf node of the tree τl} (4.3)

that partitions all different state contexts (i1, . . . , il) ∈ Sl into sets of equivalent state
contexts. The number of different equivalence classes defines three types of trees.
The completely fused tree that represents all state contexts in one equivalence class,
the complete tree that represents each state context in a separate equivalence class,
and the parsimonious tree that groups individual state contexts together resulting in
less equivalence classes than in a complete tree. The complete tree is associated
with the transition parameters of the inhomogeneous HHMM(L,C), and the completely
fused or the parsimonious tree represent the transition parameters of the inhomoge-
neous PHHMM(L,C). Due to the fact that the state contexts in an equivalence class
of ξτl are defined to be equivalent, the individual transition parameters of these state
contexts are replaced by transition parameters that are shared by all state contexts of
this equivalence class.
To provide an overview, all different trees of height one and three selected parsimo-
nious trees of height two are shown in Fig. 4.1 with respect to the set of hidden
states S := {−,=,+}. Based on (4.1), S has five different partitions that are given
by ∆S = { {{−,=,+}}, {{−,=}, {+}}, {{−,+}, {=}}, {{−}, {=,+}}, {{−}, {+}, {=}} }
with respect to (4.2). Each of these different partitions is represented by an individual
tree of height one in Fig. 4.1. Each leaf node of such a tree defines an equivalence
class of state contexts. For instance, the completely fused tree of height one repre-
sents all state contexts i ∈ S1 of length one by the equivalence class {(−), (=), (+)},
while the first one of the three parsimonious trees represents these state contexts
by the two equivalence classes {(−), (=)} and {(+)}. Three different parsimonious
trees of height two are shown in the bottom part of Fig. 4.1. These trees are obtained
by extending the leaf nodes of the corresponding tree of height one with the particu-
lar partitions of S. For example, the first tree represents all state contexts i ∈ S2 of
length two by the two equivalence classes {(−,−), (−,=), (−,+)} and {(=,−), (=,=

), (=,+), (+,−), (+,=), (+,+)}, while the second tree has the two equivalence classes
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{(−,−), (−,+), (=,−), (=,+), (+,−), (+,+)} and {(−,=), (=,=), (+,=)} to represent
these state contexts. The three parsimonious trees of height two shown in Fig. 4.1
are selected from the 205 different trees of height two that can be constructed based
on the five partitions of S. How the number of different trees develops for increasing
tree height is shown exemplarily in Fig. 4.2 for S containing two and three states. The
huge increase of the number of different trees for an increasing tree height requires
an efficient strategy that is capable to evaluate these trees. This strategy is subse-
quently developed for the PHHMM(L,C) in the following sections by integrating the
Parsimonious Cluster algorithm developed by Bourguignon and Robelin (2004) and
Gohr (2006).

All different trees of height 1

Fused Tree Parsimonious Trees Complete Tree

Selected parsimonious trees of height 2

Figure 4.1: Overview of different types of trees of height one and two based on the set of
hidden states S := {−, =, +}. Each individual tree τ1 of height one that can be constructed
from the five partitions of S is shown in the top part. Three selected parsimonious trees τ2 of
height two out of the 205 different trees of height two that can be generated based on the five
partitions of S are shown in the bottom part. The increase of the number of trees in dependency
of the tree height is shown in Fig. 4.2.
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Figure 4.2: Overview of the number of different trees that exist for N = 2 or N = 3 hidden states
S := {S1, . . . , SN} for increasing tree height. The number of trees are shown in logarithmic
scale. Individual numbers are shown explicitly within the plot. The number of trees has been
computed in analogy to the computational scheme of the Parsimonious Cluster algorithm.

4.3 Inhomogeneous Parsimonious Higher-Order

Hidden Markov Model

The inhomogeneous PHHMM(L,C) of order L with C different transition classes is
defined by λ = (~π, T , A,B) with respect to its following parameters.

1. The initial state distribution ~π := (πS1 , . . . , πSN
) defines for each state i ∈ S the

probability πi := P [Q1 = i ] of starting in this state at time step t = 1. Two
stochastic constraints must be fulfilled by ~π.

a) ∀i ∈ S : πi ∈ [0, 1]

b)
∑

i∈S πi = 1

2. The set of tree structures T := {T1, . . . , TC} defines for each transition class
c ∈ C the trees Tc := (τ1(c), . . . , τL(c)). Each tree τl(c) represents the equivalence
classes ξτl(c) of state contexts of length l. The equivalence classes are defined in
(4.3) based on the tree-based representation of state contexts.

3. The set of transition matrices A := {A1, . . . , AC} defines for each transition class
c ∈ C the transition matrix Ac := (aij(c)) with respect to the given trees Tc. That

57



4. Parsimonious Higher-Order Hidden Markov Models

is, each Ac defines for each state context i = (i1, . . . , il) ∈ Sl of length 1 ≤ l ≤ L

and each next state j ∈ S the transition probability

aij(c) :=

{
P [Qt+1 = j | ~Q1...t = i, c ], 1 ≤ t < L

P [Qt+1 = j | ~Qt−L+1...t = i, c ], t ≥ L

for a transition from the current state il to the next state j at time step t using
transition class c with respect to the memory (i1, . . . , il−1) of the current state.
Additionally, all state contexts i that are contained in an equivalence class ξ ∈
ξτl(c) given by the tree τl(c) are defined to have the identical transition probabilities
aξj(ct). That is, all state contexts i ∈ ξ share their transition probabilities. Again,
the transition probabilities of each equivalence class ξ have to fulfill two stochastic
constraints.

a) ∀j ∈ S : aξj(c) ∈ [0, 1]

b)
∑

j∈S aξj(c) = 1

4. The matrix B := (µi , σi) defines the state-specific mean µi ∈ R and the state-
specific standard deviation σi ∈ R+ for the Gaussian emission density of each
state i ∈ S. The time-independent probability density bi(o) := P [Ot = o |Qt = i ]

for emitting an emission o ∈ R by the Gaussian emission density of state i is
defined in (3.2).

The inhomogeneous PHHMM(L,C) reduces to the homogeneous PHHMM(L) for
C = 1 transition class. With respect to the notation scheme in Tab. 3.1, the inho-
mogeneous PHHMM(L,C) with underlying complete trees represents the inhomoge-
neous HHMM(L,C). Thus, the inhomogeneous PHHMM(L,C) also includes the ho-
mogeneous HMM, the inhomogeneous HMM(C), and the homogeneous HHMM(L) as
special cases.

4.4 Solving the Maximum A Posteriori Problem

The Maximum A Posteriori Problem has been solved for the inhomogeneous
HHMM(L,C) based on the Bayesian Baum-Welch algorithm that iteratively optimizes
Baum’s auxiliary function Q(λ |λ(h) ) given in (3.10) in combination with the prior P [λ ]

specified in (3.29). For the inhomogeneous PHHMM(L,C) one has to adapt Baum’s
auxiliary function and the prior by taking into account that the set of transition matrices
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A is now depending on the set of tree structures T . For that reason, the two classes of
Baum’s auxiliary functions Q t

2(A |λ(h) ) for transition probabilities in (3.21) and (3.22)
have to be modified in consideration of the tree structures T . In addition to this, the
transition prior D t

2(A |Θ2 ) given in (3.31) has to be modified to represent the depen-
dencies introduced by the set of tree structures T . Finally, a prior for scoring all different
tree structures must be considered. Subsequently, the focus is on realizing these adap-
tations to establish the basics for the extension of the Bayesian Baum-Welch algorithm
by integrating the Parsimonious Cluster algorithm. Here, the Parsimonious Cluster al-
gorithm is the key component for the computation of the optimal transition parameters
of the PHHMM(L,C).

4.4.1 Tree-Based Baum’s Auxiliary Function for Transition
Parameters

For the transition matrix Ac all state contexts i ∈ St of length t are represented by the
corresponding tree τt(c). Each τt(c) represents a set of transition class specific equiv-
alence classes ξτt(c) of state contexts like generally defined in (4.3). All state contexts
i that are contained in an equivalence class ξ ∈ ξτt(c) are defined to have an identical
transition probability aξj(c) for each transition to a next state j ∈ S using the transition
class c ∈ C. These constraints must be integrated into Baum’s auxiliary function for
transition parameters of the HHMM(L,C) to obtain the corresponding functions for the
PHHMM(L,C). Thus, Baum’s auxiliary function Q t

2(A |λ(h) ) in (3.21) for transition pa-
rameters used by the inhomogeneous HHMM(L,C) at time steps 1 ≤ t < L is modified
to

Q t
2(A |λ(h) ) :=

∑
c∈C

∑
ξ∈ξτt(c)

∑
j∈S

Λaξj(c)

K∑
k

ct(k)
=
=

1
c

∑
i∈ξ

εkt (i, j) (4.4)

for estimating the corresponding transition probabilities of the next inhomogeneous
PHHMM(L,C) λ(h+1). Here, the sum over all individual state contexts i ∈ St in (3.21)
is replaced by the sum over all equivalence classes ξ ∈ ξτt(c) of state contexts repre-
sented by the corresponding tree τt(c). This leads to the substitution of the individual
logarithmic transition probability Λaij(c) := log (aij(c)) in (3.21) by the corresponding pa-
rameter Λaξj(c) := log (aξj(c)). Due to that, an additional sum over all state contexts
i ∈ ξ has to be included for adding up all individual Epsilon-Variables εkt (i, j) in (3.21).
In analogy, the same modifications are made for Baum’s auxiliary functionQL

2 (A |λ(h) )
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in (3.22) leading to

QL
2 (A |λ(h) ) :=

∑
c∈C

∑
ξ∈ξτL(c)

∑
j∈S

Λaξj(c)

K∑
k=1

Tk−1∑
t

ct(k)
=
=
L
c

∑
i∈ξ

εkt (i, j) (4.5)

for estimating the transition parameters of the next inhomogeneous PHHMM(L,C)

λ(h+ 1) used at all time steps t ≥ L.

4.4.2 Tree-Based Transition Prior

The prior of the transition parameters D t
2(A |Θ2 ) of the inhomogeneous HHMM(L,C)

is defined to be a product of independent Dirichlet distributions given in (3.31). This
prior needs to be adapted for the inhomogeneous PHHMM(L,C). This is done by
accounting for the given set of tree structures T . Each tree τL(c) in T defines a set of
equivalence classes ξτt(c) of state contexts for which all state contexts of an equivalence
class ξ ∈ ξτt(c) have identical transition probabilities aξj(c). This leads to the adapted
transition prior for state contexts of length 1 ≤ t ≤ L given by

D t
2(A | T ,Θ2 ) :=

∏
c∈C

∏
ξ∈ξτt(c)

Z(Θξ
2(c))

∏
j∈S

exp
(
Λaξj(c) · ϑξj(c)

)
(4.6)

in consideration of the set of tree structures T and the matrices Θ2 of transition
prior parameter ϑij(c) ∈ R+ defined for the transition prior in (3.31). The vector
Θξ

2(c) := (ϑξS1(c), . . . , ϑξSN
(c)) with ϑξj(c) :=

∑
i∈ξ ϑij(c) defines the transition prior

parameters for the state contexts of length t in the equivalence class ξ ∈ ξτt(c) of
the tree τt(c) of transition class c in T . The normalization constant Z(Θξ

2(c)) :=

Γ(
∑

j∈S ϑξj(c))/
∏

j∈S Γ(ϑξj(c)) is based on the Gamma function Γ(x) defined for the
transition prior in (3.31).

4.4.3 Tree Structure Prior

The tree structure prior must provide the opportunity to differentiate between different
realizations of tree structures in T . One way of doing this is to quantify the number
of equivalence classes that are defined by a tree. This is realized by using the tree
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structure prior

D t
4( T |ϕ ) ∝

∏
c∈C

∏
ξ∈ξτt(c)

ϕ (4.7)

for scoring each equivalence class ξ of the tree τt(c) in the set of tree structures T by
the same parameter ϕ ∈ R+. That is, for ϕ ∈ (0, 1) the value of the tree structure prior
increases if the total number of equivalence classes is decreased, and for ϕ > 1 the
value of the tree structure prior increases if the total number of equivalence classes is
increased. The value of the tree structure prior is independent of the total number of
equivalence classes for ϕ = 1.

4.4.4 Bayesian Baum-Welch Algorithm

The Bayesian version of the Baum-Welch algorithm represents an iterative training
procedure that locally maximizes the posterior of the inhomogeneous PHHMM(L,C)

based on the adapted Baum’s auxiliary function in combination with the adapted
prior. In analogy to the Bayesian Baum-Welch algorithm for the inhomogeneous
HHMM(L,C), the computational scheme of this algorithm is specified in detail for the
inhomogeneous PHHMM(L,C) in terms of an initialization and an iteration step.

• Initialization: Choose initial state probabilities, transition probabilities accord-
ing to complete trees, and emission parameters for the initial inhomogeneous
PHHMM(L,C) λ(1).

• Iteration: For iteration steps h = 1, 2, . . .

– Use the current inhomogeneous PHHMM(L,C) λ(h) to compute all State-
Posterior-Variables γkt (i) given in (3.6) and all Epsilon-Variables εkt (i, j) given
in (3.19) and (3.20) based on the given emission sequences ~o(1), . . . , ~o(K)

and their corresponding transition class sequences ~c(1), . . . ,~c(K).

– Compute the optimal parameters of the next inhomogeneous PHHMM(L,C)

λ(h+ 1) based on the previous computations.

1. Compute all initial state probabilities π(h+1)
i as shown in (3.35) to maxi-

mize Q1(~π |λ(h) ) + log(D1(~π |Θ1 )).

2. Compute the tree structures T h+1 and the corresponding transition
parameters aξj(c)

(h+1) used at time steps t ≥ 1 by maximizing
Q t

2(A |λ(h) ) + log(D t
2(A | T ,Θ2 )) + log(D t

4( T |ϕ )).
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3. Compute all state-specific means µ
(h+1)
i and standard deviations

σ
(h+1)
i as shown in (3.38) and (3.39) to maximize Q3(B |λ(h) ) +

log(D3(B |Θ3 )).

– Stop if the log-posterior under the next inhomogeneous PHHMM(L,C) λ(h+

1) has increased less than a pre-defined threshold in comparison to the log-
posterior under the current inhomogeneous PHHMM(L,C) λ(h), otherwise
start the next iteration step with h := h+ 1.

This computational scheme of the Bayesian Baum-Welch algorithm allows to solve
the Maximum A Posteriori Problem for the inhomogeneous PHHMM(L,C) by start-
ing with initial model parameters that are iteratively adapted until the posterior of this
PHHMM(L,C) reaches a local optimum. Regarding the iteration step, the initial state
probabilities and the state-specific emission parameters are computed as described for
the inhomogeneous HHMM(L,C). What remains is to find a solution for the computa-
tion of the tree structures and their corresponding transition probabilities. That is, the
tree structures in T h+1 and their corresponding transition parameters aξj(c)(h+1) have
to be determined by maximizing

Ft(A, T ) := Q t
2(A |λ(h) ) + log(D t

2(A | T ,Θ2 )) + log(D t
4( T |ϕ )) (4.8)

based on Baum’s auxiliary functions for transition parameters Q t
2(A |λ(h) ) given in

(4.4) for 1 ≤ t < L and given in (4.5) for t ≥ L in consideration of the transition
prior D t

2(A | T ,Θ2 ) in (4.6) and the tree structure prior D t
4( T |ϕ ) in (4.7). This is

done subsequently by introducing a scoring scheme for the different tree structures
that allows to compute the optimal set of tree structures and their corresponding optimal
transition probabilities.

4.4.5 Scoring Scheme for Tree Structures

The objective function Ft(A, T ) defined in (4.8) for the computation of the optimal
tree structures and their corresponding transition probabilities can be alternatively ex-
pressed by

Ft(A, T ) =
∑
c∈C

∑
ξ∈ξτt(c)

ft(~aξ(c) ) (4.9)

62



4. Parsimonious Higher-Order Hidden Markov Models

in terms of a score function ft(~aξ(c) ) that evaluates each equivalence class ξ of state
contexts of length t in transition class c based on the corresponding transition probabil-
ities ~aξ(c) := (aξS1(c), . . . , aξSN

(c)). By regrouping and conflating of the individual terms
in (4.8), the score function

ft(~aξ(c) ) := ht(~aξ(c) ) + log(ϕ) + log
(
Z(Θξ

2(c))
)

(4.10)

is obtained. This function consists of a function ht(~aξ(c) ), the value log(ϕ) for scoring
the equivalence class, and the value log(Z(Θξ

2(c))) of the normalization constant of the
transition prior. This score function can be used to determine the score of any given
equivalence class ξ. The score of each equivalence class ξ can be maximized by esti-
mating the corresponding transition probabilities ~aξ(c)(∗). For the transition parameters
that are used at a fixed time step 1 ≤ t < L, this is done by maximizing the function

ht(~aξ(c) ) :=
∑
j∈S

Λaξj(c)


 K∑

k
ct(k)

=
=

1
c

∑
i∈ξ

εkt (i, j)

+ ϑξj(c)

 (4.11)

based on all state contexts i of a length t that are contained in ξ. Here, the Epsilon-
Variable εkt (i, j) defined in (3.19) is computed under the current inhomogeneous
PHHMM(L,C) λ(h) in the iteration step of the Bayesian Baum-Welch algorithm, and
ϑξj(c) represents the transition prior constant for the corresponding transition. For time
steps t ≥ L, the function hL(~aξ(c) ) is defined by

hL(~aξ(c) ) :=
∑
j∈S

Λaξj(c)


 K∑

k=1

Tk−1∑
t

ct(k)
=
=
L
c

∑
i∈ξ

εkt (i, j)

+ ϑξj(c)

 (4.12)

in consideration of all state contexts i of length L represented by the equivalence class
ξ and the corresponding Epsilon-Variable εkt (i, j) defined in (3.20) computed under the
current inhomogeneous PHHMM(L,C) λ(h). Subsequently, the focus is on the general
estimation of transition probabilities for an equivalence class ξ to maximize ft(~aξ(c) ) in
(4.10). Then, the Parsimonious Cluster algorithm is considered to efficiently compute
the optimal tree structure involving the evaluation of all possible equivalence classes
and their corresponding optimal scores. Taking this together, this algorithm deter-
mines the optimal tree structures T h+1 and their corresponding transition parameters
aξj(c)

(h+1) to maximize Ft(A, T ) in (4.9) for each state context length 1 ≤ t ≤ L.
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4.4.6 Estimating Transition Parameters for an Equivalence Class

An equivalence class ξ of a tree τt(c) represents state contexts i ∈ St that are defined to
be equivalent by having an identical transition probability aξj(c) for a transition to each
state j ∈ S. The basis for the estimation of these transition probabilities is the function
ht(~aξ(c) ) defined in (4.11) for state contexts of length 1 ≤ t < L and given in (4.12)
for state contexts of length L. This function is maximized in subject to the constraint∑

j∈S exp(Λaξj(c)) = 1 using the auxiliary function ht(~aξ(c) ) − δ · ((∑j∈S exp(Λaξj(c)) −
1) with Lagrange multiplier δ. The auxiliary function is differentiated with respect to
Λaξj(c) and δ. Both derivatives are set equal to zero to compute the optimal transition
probabilities for the equivalence class ξ. For state contexts of a fixed length 1 ≤ t < L,
this leads for each state context i ∈ ξ to the optimal transition probability

aξj(c)
(∗) =

 K∑
k

ct(k)
=
=

1
c

∑
i∈ξ

εkt (i, j)

+ ϑξj(c)

∑
i∈ξ

∑
v∈S

K∑
k

ct(k)
=
=

1
c

εkt (i, v)

+

(∑
v∈S

ϑξv(c)

) (4.13)

used at the fixed time step t for a transition from the current state of each state context
i to the next state j ∈ S under consideration of the relation aξj(c) = exp(Λaξj(c)). In
analogy to this, each equivalence class ξ that represents state contexts of length L has
the corresponding optimal transition probability

aξj(c)
(∗) =

 K∑
k=1

Tk−1∑
t

ct(k)
=
=
L
c

∑
i∈ξ

εkt (i, j)

+ ϑξj(c)

∑
i∈ξ

∑
v∈S

K∑
k=1

Tk−1∑
t

ct(k)
=
=
L
c

εkt (i, v)

+

(∑
v∈S

ϑξv(c)

) (4.14)

for a transition from the current state of each state context i ∈ ξ to the next state j ∈ S
at time steps t ≥ L. In both cases, the Epsilon-Variables εkt (i, j) and εkt (i, v) given
in (3.19) and (3.20) are computed in the iteration step of the Bayesian Baum-Welch
algorithm using the current inhomogeneous PHHMM(L,C) λ(h).
The structures of the estimation formulas (4.13) and (4.14) follow those obtained in
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(3.36) and (3.37) for the inhomogeneous HHMM(L,C). The differences result form the
usage of the equivalence class ξ. That is, an additional sum over all state contexts
i ∈ ξ is used to represent all state context in ξ, and the parameters ϑξj(c) and ϑξv(c) of
the transition prior have been adapted as specified for (4.6). The transition parameters
obtained in (4.13) and (4.14) maximize the function ht(~aξ(c) ). This can be proven like
outlined by Durbin et al. (1998) for the transition parameters of a homogeneous HMM.
In addition to this, also the score function ft(~aξ(c) ) in (4.10) is maximized by these
transition probabilities, because for a given equivalence class ξ only the term ht(~aξ(c) )

is variable while the other two terms are constants. Subsequently, this score function is
used to determine the optimal tree structures, their corresponding optimal equivalence
classes of state contexts, and their corresponding optimal transition parameters for the
next inhomogeneous PHHMM(L,C) λ(h+ 1).

4.4.7 Basics for Determining Optimal Tree Structures and
Corresponding Transition Parameters

The tree τt(c) represents each state contexts i ∈ St of length t. The leaves of the tree
define as specified in (4.3) the set of equivalence classes ξτt(c) of these state contexts,
and all state contexts that are contained in an equivalence class ξ ∈ ξτt(c) are defined
to have the identical transition probability aξj(c) for each transition to a next state j ∈ S.
The optimal score of the tree τt(c) is given by the sum of the optimal scores of its
equivalence classes defined by

F ( τt(c) ) :=
∑

ξ∈ξτt(c)

ft(~aξ(c)
(∗) ) (4.15)

with respect to the optimal score ft(~aξ(c)
(∗) ) specified in (4.10) for each equivalence

class ξ ∈ ξτt(c). The optimal score ft(~aξ(c)
(∗) ) is computed using the corresponding

optimal transition probabilities ~aξ(c)(∗) := (aξS1(c)
(∗), . . . , aξSN

(c)(∗)) given in (4.13) for
1 ≤ t < L or given in (4.14) for t = L. Moreover, the optimal score function F ( τt(c) ) in
(4.15) is part of the global score function Ft(A, T ) in (4.9). Here, F ( τt(c) ) quantifies
the individual contribution of the tree τt(c) to the global score function. Thus, F ( τt(c) )

can be used to compute the optimal tree τt(c)(h+1) and its corresponding optimal tran-
sition parameters aξj(c)(h+1) for the next inhomogeneous PHHMM(L,C) λ(h + 1). For
that reason, an extended tree is specified subsequently. This extended tree allows the
efficient evaluation of all different tree structures of τt(c) with the Parsimonious Cluster
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algorithm by Gohr (2006).

4.4.8 Extended Tree

Each state context i ∈ St of length t must be contained in exactly one equivalence
class of state contexts of the tree τt(c). To enable the efficient evaluation of all different
equivalence classes of all state contexts of length t, the extended tree ψt of height t is
defined to have the following properties.

1. The root node n in depth 0 is labeled by the set L[n] := {ε} containing the empty
word ε.

2. Each node v in depth dv ∈ {1, . . . , t} is linked to its parent node P [v] in depth
dv − 1, and each v is labeled by a non-empty subset L[v] of the set of hidden
states S.

3. Each node v in depth dv ∈ {0, . . . , t − 1} has 2N − 1 child nodes with labels L[.]

that represent all non-empty elements of the power set of S.

4. All leaf nodes are in depth t.

5. Each leaf v represents a set of equivalent state contexts ξ[ v, t ] := {(i1, i2 . . . , it) :

i1 ∈ L[v], i2 ∈ L[P [v]], . . . , ε ∈ L[n]} of length t. The state contexts of leaf v define
all combinations of states that are obtained by traversing the path from the leaf
node v to the root node n.

The fact that the child nodes of each non-leaf node represent all different non-empty
subsets of the power set of S ensures that each of the different equivalence classes of
state contexts of length t is contained in the extended tree ψt. Based on this, the set of
all equivalence classes is defined by

ξψt := {ξ[ v, t ] : v is a leaf node of the extended tree ψt} (4.16)

in consideration of all equivalence classes given by the extended tree ψt. The differ-
ence between this extended tree and the tree τt(c) defined in Sec. 4.2 is that τt(c) rep-
resents all state contexts of length t by a specific set of disjoint equivalence classes,
while the extended tree ψt contains all different equivalence classes of these state
contexts. Subsequently, the Parsimonious Cluster algorithm by Gohr (2006) is applied
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to transform the extended tree ψt into the optimal tree τt(c)
(h+1) for the next inhomo-

geneous PHHMM(L,C) λ(h + 1) by selecting the optimal set of disjoint equivalence
classes from ξψt with respect to the tree score function F ( τt(c) ) in (4.15).

4.4.9 Parsimonious Cluster Algorithm

The goal of the Parsimonious Cluster algorithm is to partition all state contexts i ∈ St

of length t into an optimal set of disjoint equivalence classes. The general compu-
tational scheme of the Parsimonious Cluster algorithm has initially been proposed by
Bourguignon and Robelin (2004) for higher-order MMs. Further studies and extensions
of this computational scheme have been done by Gohr (2006). The basis behind the
Parsimonious Cluster algorithm is a dynamic programming approach which efficiently
computes the optimal set of disjoint equivalence classes. This is done by computing
the tree score function F ( τt(c) ) in (4.15) with the help of the extended tree ψt by suc-
cessively adding the scores of optimal disjoint equivalence classes of state contexts.
According to this, the Parsimonious Cluster algorithm is given by the following compu-
tational scheme.

• Initialization: For each leaf node v of the extended tree ψt in depth t consider the
corresponding equivalence class ξ of v.

1. Estimate the optimal transition probabilities aξj(c)(∗) for each next state j ∈ S,
and store them in leaf node v.

– Compute aξj(c)
(∗) by (4.13) if state context length 1 ≤ t < L, otherwise

use (4.14).

2. Compute the score of the equivalence class ft(~aξ(c)(∗) ) in (4.10) based on
the optimal transition probabilities aξj(c)(∗), and store this score in leaf node
v.

• Iteration: Climb up one level towards the root. Consider each node v of the
extended tree ψt in the current depth.

1. Determine all child nodes of the current node v.

2. Based on the labels of these child nodes, determine each combination of
child nodes whose labels represent a partion ρ in the set of partitions ∆S

(4.2) for the set of hidden states S.

3. Compute the score for each partition by adding the scores stored in the
corresponding child nodes.
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4. Determine the partition with the maximal score and store this score in the
current node v.

5. Delete all sub-trees under v that have a root node which is not required for
the partition with the maximal score.

6. Stop if the current node v is the root node of the extended tree ψt, otherwise
continue with the next iteration step.

The Parsimonious Cluster algorithm iterates bottom-up from the leaf nodes to the root
node of the extended tree ψt based on the initialization step and the iteration step.
The initialization step provides the basics for each equivalence class ξ of state contexts
of length t contained in the set of all equivalence classes ξψt defined in (4.16). For each
equivalence class ξ the optimal transition parameters aξj(c)(∗) and the maximal score
ft(~aξ(c)

(∗) ) are computed. The equivalence class scoring function ft(~aξ(c)(∗) ) in (4.10)
is the basic term of the tree score function F ( τt(c) ) in (4.15). The tree score function
itself is computed by the iteration steps towards the root of the extended tree.
The iteration step considers all nodes in the current depth. For each node v of these
nodes the corresponding child nodes are evaluated. That is, the algorithm determines
the child nodes of node v that define an optimal partition of the set of hidden states S
with maximal score. Each combination of child nodes which define a partition ρ ∈ ∆S

based on their labels is considered. The score of each partition is computed by adding
up the scores stored in the corresponding child nodes. The optimal partition of child
nodes with maximal score remains under the parent node v, and the maximal score is
stored in the parent node v. All sub-trees with root nodes not contained in the optimal
partition are removed from the extended tree ψt. After the deletion of these sub-trees,
the parent node v is the root node of an optimal sub-tree with maximal score. Each
child node of v has child nodes whose set of labels defines an optimal partition with the
highest score, because due to the previous iteration step each child node of v is itself
the root of an optimal sub-tree with maximal score. That is, the optimal sub-tree with
root node v is always constructed based on the optimal sub-trees of its child nodes.
The fact that only the child nodes of the corresponding optimal partition are left under v
ensures that each state i ∈ S is represented by exactly one label of these child nodes.
According to this, none of the state contexts of length t contained in ψt is lost by delet-
ing all sub-trees under v with root nodes identical to child nodes that do not belong to
the optimal partition.
The last iteration step considers only the root node of the tree ψt. All the 2N − 1

child nodes of the root node represent optimal sub-trees that have been successively
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computed in the previous iteration steps. After removing all sub-trees with root nodes
identical to child nodes that are not part of the optimal partition, the remaining extended
tree ψt has been transformed into the optimal tree τt(c)

(h+1). The corresponding opti-
mal transition probabilities aξj(c)(h+1) are stored in the leaf nodes of the transformed
extended tree ψt. Each leaf node of the transformed extended tree represents an
equivalence class of state contexts of length t. All equivalence classes are disjoint,
and all state contexts of length t are represented by ψt. The score contained in the root
node of ψt is the maximal score that can be obtained by a set of disjoint equivalence
classes under all different tree structures. This follows from the successive addition of
optimal scores of disjoint equivalence classes during all iteration steps. This has been
proven in a general form by Gohr (2006). That is, the obtained tree τt(c)(h+1) maximizes
the tree score function in (4.15) based on its optimal set of disjoint equivalence classes
and the corresponding optimal transition probabilities.
The global objective function Ft(A, T ) in (4.9) is maximized for each state context
length 1 ≤ t ≤ L by applying the Parsimonious Cluster algorithm to compute each
optimal tree τt(c)

(h+1) and its corresponding optimal transition probabilities aξj(c)(h+1).
The resulting optimal trees and their corresponding optimal transition probabilities are
assigned to the next inhomogeneous PHHMM(L,C) λ(h+1), which is computed in the
iteration step of the Bayesian Baum-Welch algorithm.

4.4.10 Computational Complexity of the Parsimonious Cluster
Algorithm

The computational complexity of the Parsimonious Cluster algorithm is analyzed for the
extended tree ψL of depth L. Based on this extended tree, the computation of the op-
timal tree τL(c)(h+1) and its corresponding optimal transition probabilities aξj(c)(h+1) for
the next inhomogeneous PHHMM(L,C) λ(h + 1) has the highest computational com-
plexity. This is because state contexts of the fixed maximal length L have to be con-
sidered. For the following analysis of the computational complexity, the PHHMM(L,C)

is assumed to have N states and the considered part of an emission sequence com-
prises T emissions.
In the initialization step, each leaf node of the extended tree ψL is evaluated by com-
puting the optimal transition probabilities aξj(c)(∗) and the optimal score fL(~aξ(c)

(∗) ) for
the equivalence class ξ of each leaf node. Since each non-leaf node of the extended
tree ψL has exactly 2N−1 child nodes, the initialization step has to operate on (2N−1)L
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leaf nodes. For each leaf node, the computation of the transition probability aξj(c)(∗) in
(4.14) for the equivalence class ξ of a leaf node involves at most NL different Epsilon-
Variables for each time step t of the T time steps. For each of the (2N−1)L equivalence
classes represented by the leaf nodes of the extended tree, N different transition prob-
abilities and the corresponding optimal score have to be computed. This leads to a
run-time of O

(
(2N − 1)L ·NL+1 · T) for the initialization step.

The iteration step is working on each non-leaf node of the extended tree ψL. The
total number of non-leaf nodes of this tree is ((2N − 1)L − 1)/((2N − 1) − 1). This
follows from the geometric series that develops by the common ratio of 2N − 1 child
nodes per non-leaf node. For each of these non-leaf nodes all different partitions of
the set of hidden states S must be considered to compute the optimal partition and
their corresponding optimal score. The number of different partitions is given by the
Bell number B[N ] defined in (4.1). The computation of the score of each partition
requires at most a sum over N scores stored in the child nodes of a non-leaf node.
In addition to this, at most 2N − 2 sub-trees of child nodes that are not part of the
optimal partition must be removed from each non-leaf node. This leads to a run-time
of O

(
((2N − 1)L − 1)/((2N − 1)− 1) · (B[N ] ·N + 2N − 2)

)
that is mainly influenced by

B[N ] which grows faster than 2N for N > 4.
In summary, the upper bound of the run-time of the Parsimonious Cluster algorithm is
given by the sum of the run-times of the initialization step and the iteration step.
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5 Hidden Markov Models with Scaled
Transition Matrices

The basis of the Hidden Markov Model with C Scaled transition matrices (SHMM(C))
is the standard homogeneous first-order HMM reviewed by Rabiner (1989). The
SHMM(C) extends this model by integrating additional information into the state-
transition process. Based on this, the homogeneous first-order MM that underlies
the HMM is substituted by a specific inhomogeneous first-order MM that represents
the state-transition process of the SHMM(C). The scaled transition matrices of the
SHMM(C) are specifically coupled to a basic transition matrix to realize increasing
self-transition probabilities for the states of the SHMM(C). This allows to model that
two successive emissions can have a basic probability or an increased probability to
be generated from the same state of the SHMM(C) in dependency of integrated ad-
ditional information for selecting one of the scaled transition matrices. The concept
underlying the SHMM(C) has initially been used by Seifert (2006) to analyze gene ex-
pression profiles of tumors in the context of distances between directly adjacent genes
on a chromosome. In Seifert (2006) only the Baum-Welch algorithm that does not al-
low to integrate biological prior knowledge into the training has been considered. Here,
the main focus of this chapter is on the extension of the SHMM(C) to enable the in-
tegration of biological prior knowledge into the training by the usage of the Bayesian
Baum-Welch algorithm.

Goals of this Chapter

1. The concept of scaled transition matrices underlying the SHMM(C) is introduced.

2. The definition of the SHMM(C) is given.

3. The Bayesian Baum-Welch algorithm for solving the Maximum A Posteriori Prob-
lem is adapted to the specific requirements of the SHMM(C).
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5.1 Scaling of Transition Matrices

The basis of transitions between the states of the standard homogeneous first-order
HMM is the stochastic transition matrix A := (aij). Each element aij defines the prob-
ability for a transition from a current state i ∈ S to a next state j ∈ S. In addition to
this, the self-transition probability aii of state i ∈ S characterizes the expected number
of successive time steps which the HMM stays in state i before it goes to an another
state j ∈ S \ {i}. This expected number of successive time steps is also referred to as
the state duration

di :=
1

1− aii
(5.1)

of state i, which is defined by the expectation value of the geometric distribution for
staying in state i. Now, the goal is to derive a transition matrix Ac := (aij(c)) for each
transition class c ∈ C by increasing the state duration di in (5.1) for each state i ∈ S

by a pre-defined scaling factor fc ≥ 1. In the first step, the state duration di of state
i ∈ S in transition matrix A is multiplied with the scaling factor fc leading to the state
duration d

(c)
i := fc · di of state i in transition matrix Ac. In analogy to (5.1), the state

duration of state i in Ac can also be expressed by d(c)
i = 1/(1− aii(c)) in consideration

of the self-transition probability aii(c) in Ac. Next, both expressions for d(c)
i are used to

compute aii(c) resulting in

aii(c) =
aii − 1 + fc

fc
(5.2)

which is depending on the self-transition probability aii of transition matrix A and the
pre-defined scaling factor fc. In the second step, the self-transition probability aii(c) of
state i ∈ S and all non-self-transition probabilities aij(c) to all states j ∈ S \ {i} must
fulfill the constraint

∑
j∈S aij(c) = 1. For that reason, all non-self-transition probabilities

aij in transition matrix A for state i and for all next states j ∈ S \ {i} are multiplied
by a common factor m(c)

i to obtain each corresponding non-self-transition probability
aij(c) := m

(c)
i ·aij in transition matrix Ac. Thus, the constraint

∑
j∈S aij(c) = 1 is rewritten

to aii(c) + m
(c)
i · ∑j∈S\{i} aij = 1, which is finally transformed to aii(c) + m

(c)
i · (1 −

aii) = 1 using the constraint
∑

j∈S\{i} aij = 1 − aii. Based on this, m(c)
i is computed by

substituting aii(c) with its expression in (5.2) resulting in the common factor m(c)
i = 1/fc.
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In consideration of this common factor, each non-self-transition probability

aij(c) =
aij
fc

(5.3)

for state i ∈ S and state j ∈ S \ {i} in transition matrix Ac is depending on its corre-
sponding entry aij in matrixA and the pre-defined scaling factor fc. Taking this together,
the transition matrix Ac with increased state durations in comparison to the basic matrix
A is defined by

Ac := (aij(c)) :=

{
aii−1+fc

fc
, i = j

aij

fc
, i 6= j

(5.4)

on the basis of the pre-defined scaling factor fc ≥ 1 and the given basic stochastic
transition matrix A.

5.2 Hidden Markov Model with Scaled Transition

Matrices

The SHMM(C) with C scaled transition matrices is defined by λ = (~π, ~f, A,B) based
on the following parameters.

1. The initial state distribution ~π := (πS1 , . . . , πSN
) defines for each state i ∈ S the

probability πi := P [Q1 = i ] of starting in this state at time step t = 1. Two
stochastic constraints must be fulfilled by ~π.

a) ∀i ∈ S : πi ∈ [0, 1]

b)
∑

i∈S πi = 1

2. The vector of scaling factors ~f := (f1, . . . , fC) with f1 := 1 and f1 < f2 < . . . < fC

to scale the state durations in the basic transition matrix A.

3. The basic transition matrix A := (aij) defines for each transition from state i ∈ S

to state j ∈ S the corresponding transition probability aij. Each row i ∈ S of A
must fulfill the following two stochastic constraints.

a) ∀j ∈ S : aij ∈ [0, 1]

b)
∑

j∈S aij = 1
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5. Hidden Markov Models with Scaled Transition Matrices

Based on this matrix A and the vector of scaling factors ~f , the definition in (5.4)
is used to obtain the C scaled transition matrices A1, . . . , AC . It follows that A1

is identical to the basic transition matrix A because of f1 := 1. Generally, the
transition matrix Ac := (aij(c)) defines the transition probability aij(c) := P [Qt+1 =

j |Qt = i, c ] for a transition from the current state i ∈ S to the next state j ∈ S in
consideration of the given transition class c at a specific time step t.

4. The matrix B := (µi , σi) defines the state-specific mean µi ∈ R and the state-
specific standard deviation σi ∈ R+ for the Gaussian emission density of each
state i ∈ S. The time-independent probability density bi(o) := P [Ot = o |Qt = i ]

for emitting an emission o ∈ R by the Gaussian emission density of state i is
defined in (3.2).

With respect to the notation scheme in Tab. 3.1, the SHMM(C) simplifies to the ho-
mogeneous HMM for C = 1 transition class. Due to the specific mapping in (5.4) for
obtaining the scaled transition matrices, the SHMM(C) can be considered as a special
case of the inhomogeneous HMM(C). The HMM(C) itself represents a special case
of the inhomogeneous HHMM(L,C) of order L = 1. Thus, the Forward algorithm and
the Backward algorithm, which both provide the basics for other computations, and the
Viterbi algorithm can be used for the SHMM(C) without any modifications.

5.3 Solving the Maximum A Posteriori Problem

The basis to solve the Maximum A Posteriori Problem for the SHMM(C) has already
been described in detail for the inhomogeneous HHMM(L,C) in Sec. 3.7.1. The
Bayesian Baum-Welch algorithm developed there to solve this problem only requires
the adaptation of the transition parameter estimation due to the specific modeling of
self-transition probabilities by the SHMM(C). For that reason, Baum’s auxiliary function
for transition parameters in (3.22) and the corresponding transition prior in (3.31) have
to be modified for the SHMM(C). The estimation of the start probabilities and of the
emission parameters does not need to be adapted. These estimations are done with
respect to the current SHMM(C) λ(h) of iteration step h as specified in the Bayesian
Baum-Welch algorithm in Sec. 3.7.3. Subsequently, the transition prior and Baum’s
auxiliary function for transition parameters are modified, and the non-self-transition
probabilities and the self-transition probabilities of the next SHMM(C) λ(h + 1) are
determined.
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5.3.1 Transition Prior

The transition prior D t
2(A |Θ2 ) defined in (3.31) for the transition parameters of the

inhomogeneous HHMM(L,C) is adapted to a product of transformed Dirichlet distribu-
tions

D2(A |Θ2 ) :=
∏
i∈S

Z(Θi
2)
∏
j∈S

exp
(
Λaij

· ϑij
)

(5.5)

to define the prior for the transition matrix A of the SHMM(C) with respect to the re-
lation aij := exp(Λaij

). Here, the matrix Θ2 := (ΘS1
2 , . . . ,Θ

SN
2 ) defines based on the

vector Θi
2 := (ϑiS1 , . . . , ϑiSN

) with ϑij ∈ R+ the prior knowledge for each transition from
state i ∈ S to state j ∈ S. Again, the corresponding normalization constant for each
Dirichlet distribution is defined by Z(Θi

2) := Γ(
∑

j∈S ϑij)/
∏

j∈S Γ(ϑij) in consideration
of the Gamma function Γ(x) =

∫∞
0
ux−1 · exp(−u) du for all x ∈ R+.

5.3.2 Baum’s auxiliary function for Transition Parameters

Baum’s auxiliary function QL
2 (A |λ(h) ) defined in (3.22) for the transition parameters

of the inhomogeneous HHMM(L,C) provides the basics to derive this function for the
specific transition probabilities of the SHMM(C). In analogy, Baum’s auxiliary function
to estimate the transition probabilities of the next SHMM(C) λ(h+1) is initially given by

Q2(A |λ(h) ) :=
∑
c∈C

∑
i∈S

∑
j∈S

log (aij(c))
K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, j)

in consideration of the Epsilon-Variables εkt (i, j) in (3.20) computed under the current
SHMM(C) λ(h). In order to account for the scaled self-transition probability aii(c) in
(5.2) and to account for the non-self-transition probability aij(c) in (5.3), Baum’s auxil-
iary function for transition parameters is splitted into two terms represented by

Q2(A |λ(h) ) =
∑
c∈C

∑
i∈S

log

(
exp(Λaii

)− 1 + fc
fc

) K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, i)

+
∑
c∈C

∑
i∈S

∑
j∈S\{i}

log

(
exp(Λaij

)

fc

) K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, j) (5.6)
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under additional consideration of the parameterization aii := exp(Λaii
) and aij :=

exp(Λaij
). The first term represents the self-transition probabilities and the second

term considers the corresponding non-self-transition probabilities. Based on that, both
types of transition probabilities of the next SHMM(C) are determined subsequently.

5.3.3 Estimation of Transition Parameters

In analogy to the transition parameter estimation for the Bayesian Baum-Welch algo-
rithm of the inhomogeneous HHMM(L,C), the standard Lagrange optimization tech-
nique (e.g. Bishop (2006)) is used to provide the basics for the transition parameter
estimation of the SHMM(C). Besides this, the application of a numerical optimization
method like Newton’s method is necessary to compute the transition probabilities of the
SHMM(C). The basis of the transition parameter estimation is given by the auxiliary
function

H(A |λ(h) ) := Q2(A |λ(h) ) + log(D2(A |Θ2 ))−
∑
i∈S

δi

((∑
j∈S

exp(Λaij
)

)
− 1

)
(5.7)

in consideration of Baum’s auxiliary function for transition parameters Q2(A |λ(h) ) in
(5.6), the transition prior D2(A |Θ2 ) in (5.5), and the constraint

∑
j∈S exp(Λaij

) = 1

in combination with the Lagrange multiplier δi. That is, H(A |λ(h) ) is specified in
analogy to the auxiliary function used for the transition parameter estimation of the
inhomogeneous HHMM(L,C). Subsequently, the focus is on the computation of the
non-self-transition probabilities of the next SHMM(C) λ(h + 1). Based on this, the
basics for the computation of the self-transition probabilities by Newton’s method are
provided.

Non-Self-Transition Probabilities

To compute the basic non-self-transition probability a(h+1)
ij for a transition from a fixed

current state i ∈ S to a next state j ∈ S \ {i} under the next SHMM(C) λ(h + 1) the
auxiliary function H(A |λ(h) ) in (5.7) has to be maximized. That is, H(A |λ(h) ) is first
differentiated with respect to Λaij

and with respect to the Lagrange multiplier δi. Next,
the resulting derivatives are set equal to zero to obtain the non-self-transition proba-
bility a(h+1)

ij based on the relation aij = exp(Λaij
). Here, this basic non-self-transition
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probability for a transition from state i to state j 6= i is given by

a
(h+1)
ij =

1

δi


∑

c∈C

K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, j)

+ ϑij

 (5.8)

in dependency of the corresponding Lagrange multiplier

δi =
1

1− a
(h+1)
ii

 ∑
j∈S\{i}

∑
c∈C

K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, j)

+ ϑij

 (5.9)

to ensure the constraint
∑

j∈S aij = aii +
∑

j∈S\{i} aij = 1 in (5.7). In both cases, the
Epsilon-Variables εkt (i, j) defined in (3.20) are computed under the current SHMM(C)

λ(h), and ϑij is specified by the transition prior in (5.5). In addition to this, the non-self-
transition probability a(h+1)

ij is depending on the corresponding self-transition probability
a

(h+1)
ii due to the expression of the Lagrange multiplier in (5.9). Using the formula (5.3)

based on the expressions for a(h+1)
ij in (5.8) and δi in (5.9), the corresponding scaled

non-self-transition probability

aij(c)
(h+1) =

(1− a
(h+1)
ii ) ·


∑

c∈C

K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, j)

+ ϑij


fc ·

 ∑
j∈S\{i}

∑
c∈C

K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, j)

+ ϑij


(5.10)

for transition class c ∈ C is obtained. Subsequent to this, the basics to compute the
corresponding self-transition probability a(h+1)

ii are given.

Self-Transition Probabilities

The first step to determine the basic self-transition probability a(h+1)
ii of state i ∈ S under

the next SHMM(C) λ(h+ 1) is to differentiate the auxiliary function H(A |λ(h) ) in (5.7)
with respect to Λaii

. Next, the resulting derivation is set to zero to derive the optimal
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a
(h+1)
ii based on the relation aii = exp(Λaii

). This leads to the following equation∑
c∈C

1

a
(h+1)
ii − 1 + fc

K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, i)

+
ϑii

a
(h+1)
ii

= δi

for which the right-hand side is defined by the specific expression of the Lagrange
multiplier δi of state i in (5.9). This equation is multiplied by 1 − a

(h+1)
ii and then the

resulting term (1 − a
(h+1)
ii )/(a

(h+1)
ii − 1 + fc) on the left-hand side is substituted by its

equivalent expression fc/(a
(h+1)
ii − 1 + fc) − 1. Finally, the Lagrange multiplier δi is

substituted by its corresponding expression in (5.9) and the missing term for a sum
over j ∈ S instead of a sum over j ∈ S \ {i} is added from the left-hand side to the
right-hand side. This leads to the final equation L( a

(h+1)
ii ) = Ri in which the left-hand

side is given by the function

L( a
(h+1)
ii ) :=

∑
c∈C

fc

a
(h+1)
ii − 1 + fc

K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, i)

+
ϑii

a
(h+1)
ii

depending on the value of a(h+1)
ii for the next SHMM(C) λ(h + 1). The corresponding

right-hand side

Ri :=
∑
j∈S


∑

c∈C

K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, j)

+ ϑij


is a constant. For both terms, the Epsilon-Variables εkt (i, j) defined in (3.20) are com-
puted under the current SHMM(C) λ(h) and each ϑij ∈ R+ is specified for the transition
prior in (5.5).
In the general case of C scaled transition matrices, the final equation L( a

(h+1)
ii ) = Ri

cannot be solved analytically. However, the following characteristics of L( a
(h+1)
ii ) and

Ri allow to solve L( a
(h+1)
ii ) = Ri numerically.

1. L( a
(h+1)
ii ) is strictly monotonic decreasing for increasing values of a(h+1)

ii in the
interval (0, 1) based on the fact that L( a

(h+1)
ii ) is a sum of hyperbolas.

2. The lower limit of L( a
(h+1)
ii ) is

∑
c∈C

K∑
k=1

Tk−1∑
t

ct(k)
=
=

1
c

εkt (i, i) + ϑii for a(h+1)
ii = 1.
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3. L( a
(h+1)
ii ) grows against infinity if a(h+1)

ii is decreased towards zero.

4. Ri is always greater than the lower limit of L( a
(h+1)
ii ) due to the fact that the lower

limit of L( a
(h+1)
ii ) is already included in Ri for j = i in combination with the fact

that all Epsilon-Variables εkt (i, j) are greater than zero.

That means, it is always possible to find exactly one a
(h+1)
ii ∈ (0, 1) that solves the

equation L( a
(h+1)
ii ) = Ri. A good strategy to compute this a(h+1)

ii is to apply Newton’s
method. That is, based on an initial choice of a(h+1)

ii [0] ∈ (0, 1) improved values are
computed iteratively by

a
(h+1)
ii [u+ 1] := a

(h+1)
ii [u]− L( a

(h+1)
ii [u] )−Ri

L′(a(h+1)
ii [u])

in consideration of the function L′( a(h+1)
ii ) which is the derivative of L( a

(h+1)
ii ) − Ri

with respect to a
(h+1)
ii . The final a(h+1)

ii obtained through the application of Newton’s
method is the desired self-transition probability of state i ∈ S of the next SHMM(C)

λ(h+1). This a(h+1)
ii is used to compute each non-self-transition probability aij(c)(h+1) in

(5.10). Additionally, a(h+1)
ii is used to compute the corresponding scaled self-transition

probability aii(c)
(h+1) in (5.2) for each transition class c ∈ C. In summary, all these

computations and the resulting estimation of the self-transition probability aii(c)
(h+1)

and of the non-self-transition probability aij(c)(h+1) are done in the iteration step of the
Bayesian Baum-Welch algorithm in Sec. 3.7.3 with respect to the current SHMM(C)

λ(h).
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6 Analysis of Breast Cancer Gene
Expression Data

Chromosomal mutations like amplifications and deletions of DNA segments are one of
the key genetic mechanisms that lead to changes of gene expression levels in tumors.
Different studies have shown that between 40% and 60% of the genes in highly am-
plified regions tend to be over-expressed (Hyman et al. (2002); Pollack et al. (2002);
Heidenblad et al. (2005)). In addition to this, also long-range epigenetic changes of
DNA methylations or histone modifications are known to bias expression levels in chro-
mosomal regions (Frigola et al. (2006); Stransky et al. (2006)). Due to such mutations
gene expression levels of adjacent genes in close chromosomal proximity tend to be
higher correlated than those of adjacent genes in greater distance.
In recent years different approaches have been proposed to analyze gene expres-
sion data in the context of chromosomal locations. The Human Transcriptome Map
by Caron et al. (2001) was the first large-scale approach to study genome-wide hu-
man gene expression profiles in their chromosomal context. The mapping of gene
expression data to corresponding chromosomal locations revealed a higher order or-
ganization of the human genome in which highly expressed genes tend to be localized
in clusters. In addition to this, methods like CGMA (Comparative Genomic Microarray
Analysis) by Crawley and Furge (2002), MACAT (Microarray Chromosome Analysis
Tool) by Toedling et al. (2004), or LAP (Locally Adaptive statistical Procedure) by Cal-
legaro et al. (2006) have been developed to improve the analysis of gene expression
data in the context of chromosomal locations. However, a common characteristic of
all these methods is the comparison of two defined samples, e.g. tumor tissue against
healthy tissue, based on specific test statistics coupled with permutation tests to identify
differentially expressed chromosomal regions. Thus, these methods cannot be applied
to data sets for which two defined samples do not exist. This includes the breast cancer
data set by Pollack et al. (2002) which is based on two-color microarrays to measure
the relative difference of gene expression levels in two samples.
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Here, the goal is to develop methods for analyzing data sets like that of Pollack et al.
(2002) by HMM-based approaches that integrate chromosomal locations or chromoso-
mal distances of genes. Motivated through the histogram of log-ratios and the quantile-
quantile plot in Fig. 6.1, a three-state HMM is introduced for the analysis of breast
cancer gene expression data in the context of chromosomal locations of genes. This
model is extended to a SHMM(2) with two scaled transition matrices that integrates
chromosomal distances of directly adjacent genes on a chromosome. This extension
is motivated by the trend shown in Fig. 6.2 for the breast cancer gene expression data
set by Pollack et al. (2002). That is, adjacent genes in close chromosomal proxim-
ity tend to have higher correlated expression levels than adjacent genes in greater
distance. Based on these two models, the effect of integrating biological prior knowl-
edge into the training of the HMM and the SHMM(2) is investigated by comparing the
Bayesian Baum-Welch algorithm against the standard Baum-Welch algorithm. Beyond
that, the HMM and the SHMM(2) are compared to related methods that have been
developed for the analysis of array comparative genomic hybridization (Array-CGH) ex-
periments. The technique that underlies these experiments is reviewed in a general
form by Pollack et al. (1999) and Pinkel and Albertson (2005). All methods comprising
the HMM, the SHMM(2) and those of the Array-CGH field are initially applied to the
breast cancer gene expression data set by Pollack et al. (2002). The best perform-
ing methods are further validated by predicting the direct effects of amplifications and
deletions on the gene expression levels in breast cancer. Genes frequently predicted
as under-expressed or over-expressed are checked for their occurrence in two inde-
pendent public databases, the Genetic Association Database (Becker et al. (2004))
and the Breast Cancer Database (Telikicherla et al. (2008)). These databases col-
lect genes that are known to play a role in different types of breast cancer. Those
genes that are not contained in both databases are further investigated for their role
in breast cancer by additional literature searches. Besides this, the influence of inte-
grating chromosomal locations and chromosomal distances of genes on the prediction
of under-expressed and over-expressed genes is investigated in more detail by the
comparison to a mixture model that does not integrate these additional information.

Goals of this Chapter

1. The HMM and the SHMM(2) used for the analysis of breast cancer gene expres-
sion data are developed.
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2. Related methods from the field of Array-CGH data analysis that are tested on the
breast cancer gene expression data set are summarized.

3. The effect of using the Baum-Welch algorithm or the Bayesian Baum-Welch al-
gorithm for the training of the HMM and the SHMM(2) is investigated for the
prediction of differentially expressed genes in breast cancer.

4. All methods including the HMM, the SHMM(2), and the related methods from
the field of Array-CGH data analysis are analyzed to find out which methods are
appropriate for the analysis of breast cancer gene expression data.

5. The effect of modeling chromosomal distances of genes on the self-transition
probabilities of the SHMM(2) is analyzed.

6. The HMM, the SHMM(2), and GLAD are validated by predicting the direct effects
of amplifications and deletions on the gene expression levels in breast cancer.

7. The influence of modeling chromosomal locations and distances of genes on
the prediction of under-expressed and over-expressed genes in breast cancer is
investigated.

8. Genes frequently predicted as over-expressed or under-expressed are further
investigated using independent public databases. Genes not included in these
databases are further investigated by additional literature searches.

6.1 Breast Cancer Gene Expression Data Set

The breast cancer gene expression data set created by Pollack et al. (2002) is used to
predict genes that are differentially expressed in breast cancer in comparison to a pool
of reference cell lines (Perou et al. (2000)). This data set contains gene expression
levels for 4 breast cancer cell lines and 37 tumors across 6,095 genes of the 23 human
chromosomes. The Tk gene expression levels of a chromosome k that have been
measured for a cell line or a tumor are represented by an emission sequence ~o(k) =

(o1(k), . . . , oTk
(k)). Here, ot(k) is defined to be the log-ratio of the gene expression

level of gene t on chromosome k in tumor in relation to the gene expression level of
this gene in the pool of reference cell lines. All log-ratios in an emission sequence are
sorted from the p-arm to the q-arm of the chromosome based on the chromosomal
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Figure 6.1: Overview of the breast cancer gene expression data set by Pollack et al. (2002)
showing the histogram of log-ratios and the quantile-quantile plot. The histogram of log-ratios
represents the 6,095 genes that have been measured for each of the 4 breast cancer cell
lines and for each of the 37 tumors. The log-ratio of a gene represents the ratio between the
expression level of this gene in tumor compared to the expression level of this gene in reference
cell lines. Genes with unchanged expression levels in tumor have log-ratios about zero, and
differentially expressed genes are expected to have log-ratios much less (under-expressed) or
much greater (over-expressed) than zero. The quantile-quantile plot characterizes the quantiles
of the data set with respect to the quantiles obtained for the Gaussian density with mean 0.01
and standard deviation 0.7 estimated from the data set. Log-ratios with values much different
from zero are represented clearly more frequently in the data set in comparison to the estimated
Gaussian density.

locations of the corresponding genes provided by Pollack et al. (2002). An overview to
the breast cancer gene expression data set is shown in Fig. 6.1.

6.2 Methods for Breast Cancer Gene Expression Data

Analysis

6.2.1 Hidden Markov Model approach

Model: An HMM with three states S := {−,=,+} and state-specific Gaussian emis-
sion densities is used to identify differentially expressed genes in breast cancer. The
HMM of order L = 1 with one transition class C = 1 is a special case of the
HHMM(L,C) defined in Sec. 3.2. The state ’=’ represents genes with unchanged
expression levels between tumor and the pool of reference cell lines characterized
in Fig. 6.1 by log-ratios with values about zero. Differentially expressed genes are
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Figure 6.2: Connection between distances of directly adjacent genes on chromosomes and
correlation of their log-ratios for the breast cancer gene expression data set by Pollack et al.
(2002). Adjacent genes on each chromosome have been grouped initially into distance classes
between 100 kb and to 2000 kb in steps of 100 kb. Pearson correlations for the log-ratios of
all pairs of adjacent genes in one distance class have been computed for the original breast
cancer gene expression data and for 100 random permutations of log-ratios per chromosome
of the original data set.

modeled by the two states ’−’ and ’+’. Here, state ’−’ represents under-expressed
genes in tumor that are characterized by log-ratios less than zero, and state ’+’ models
over-expressed genes in tumor with log-ratios greater than zero. The HMM models
dependencies between measurements of directly adjacent genes on a chromosome
based on its underlying first-order Markov chain. The chromosomal distance between
directly adjacent genes cannot be integrated into the HMM. Thus, the trend shown in
Fig. 6.2 indicating that the positive correlation of log-ratios of two adjacent genes tends
to decrease with increasing chromosomal distance of genes cannot be modeled by the
HMM. Yet, the HMM is an important reference for the comparison to the SHMM(2) that
integrates chromosomal distances of genes.

Prior: A good biological characterization of each state can be achieved by including
prior knowledge into the training of the model. The histogram of log-ratios and the
quantile-quantile plot in Fig. 6.1 show that it can be expected that under-expressed
genes in tumor have log-ratios less than zero, genes with unchanged expression lev-
els between tumor and the reference cell lines have log-ratios about zero, and over-
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expressed genes in tumor have log-ratios greater than zero. For that reason, the
means of the Gaussian distributions of the emission prior are set to η− = −2, η= = 0,
and η+ = 2 to distinguish differentially expressed genes from unchanged expressed
genes in tumor. Additionally, it is expected that differentially expressed genes have log-
ratios much less or much greater than zero. Based on that, less flexibility is allowed
for the training of the emission parameters of the states ’−’ and ’+’ by using the scale
parameters ε− = ε+ = 15, 000, and more flexibility is given to the state ’=’ by using
ε= = 1, 000. To enhance the separation between putative under-expressed, unchanged
expressed, and over-expressed genes in tumor, the values of ri = 10 and αi = 10−4 are
used for each state i ∈ S to obtain proper standard deviations. Finally, the same start
prior parameter ϑi = 3 is assigned to each state i ∈ S for its initial state probability,
and the transition prior parameter ϑij(1) = 1 is used for the corresponding transition
probabilities.

Initialization: The initial HMM must be able to differentiate between differentially ex-
pressed genes and genes with unchanged expression levels in tumor. Again, the his-
togram of log-ratios and the quantile-quantile plot in Fig. 6.1 help to choose initial model
parameters. First the initial state probabilities of the three states are chosen. The pro-
portion of under-expressed and the proportion of over-expressed genes is much less
than the proportion of unchanged expressed genes. Thus, the initial state distribution
is set to ~π = (0.1, 0.8, 0.1) using π− = π+ = 0.1 and π= = 0.8. Based on that, the initial
transition matrix A1 = (aij(1))i,j∈S is chosen to have the stationary distribution identical
to ~π by setting all diagonal elements to aii(1) = 1− s/πi and all non-diagonal elements
to aij(1) = s/(2πi) using s = 0.05 to control the state durations. In addition to this, all
three states are characterized by proper means and standard deviations to represent
the log-ratios. Here, the means µ− = −2, µ= = 0, and µ+ = 2 and the corresponding
standard deviations σ− = 0.3, σ= = 0.5, and σ+ = 0.3 are used.

Training: The initial HMM is trained with all emission sequences using the Bayesian
Baum-Welch algorithm developed in Sec. 3.7.1. In addition to this, the initial HMM is
also trained using the standard Baum-Welch algorithm given in Sec. 3.5 to compare the
models obtained by the two training algorithms. In both cases, the training is stopped
if the increase of the optimization function is less than 10−9 for two successive steps.

Detection of differentially expressed genes: For the initial comparison of the HMM
to other methods the Viterbi algorithm described in Sec. 3.4.2 is used to assign one of
the three state labels ’−’, ’=’, or ’+’ to each log-ratio in an emission sequence. The de-
tailed investigation of the prediction results of the HMM is done by computing a score
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that measures the potential of a gene to be under-expressed or over-expressed. That
is, the score 1−γkt (’=’) of gene t in emission sequence ~o(k) is computed with respect to
the probability that this gene is modeled by state ’=’ as unchanged expressed given by
the state-posterior γkt (’=’) in (3.6). Based on this score, genes can be ranked for com-
parisons to other methods. Each gene that is considered as differentially expressed
is labeled as under-expressed if it has a negative log-ratio, and otherwise this gene is
considered as over-expressed.

6.2.2 Hidden Markov Model with two scaled transition matrices

Model: A SHMM(2) with three states S := {−,=,+} and state-specific Gaussian
emission densities, as shown in Fig. 6.3, is used to predict differentially expressed
genes in breast cancer gene expression data by integrating chromosomal distances
between adjacent genes on chromosomes. Again, the state ’=’ represents genes
with unchanged expression levels between tumor and the reference cell lines, under-
expressed genes are modeled by state ’−’, and state ’+’ represents over-expressed
genes in tumor. Now, the trend that the positive correlation of log-ratios of two ad-
jacent genes decreases with increasing chromosomal distance of genes (Fig. 6.2) is
integrated into the SHMM(2). Thus, two adjacent genes with chromosomal distance
less or equal than a pre-defined distance threshold b ∈ N have a higher probability
to be represented by the same state of the SHMM(2) than two adjacent genes with
chromosomal distance greater than b. To model this, two scaled transition matrices A1

and A2 are used. These two transition matrices are computed like specified in Sec. 5.2
using the basic transition matrix A, the pre-defined scaling factor f1 := 1, and the user-
defined scaling factor f2 > f1 of the SHMM(2). Here, the basic transition matrix A is
initially set like the matrix A1 of the previously defined HMM. To define the correspond-
ing transition matrix for each pair of two adjacent genes t and t + 1 on a chromosome
k, the transition class

ct(k) :=

{
2, genes t and t+ 1 have distance dt ≤ b

1, otherwise

is assigned to each pair of adjacent genes in dependence of the chromosomal dis-
tance between both genes and the globally defined distance threshold b. Based on
that, the SHMM(2) transitions from the state of gene t to the state of gene t + 1 by
using the corresponding transition matrix Act(k). Adjacent gene pairs modeled by A2
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have a higher probability to be represented by the same state of the SHMM(2) than
gene pairs modeled by A1, because the self-transition probability of each state i ∈ S in
A2 is greater than in A1. In the following, gene pairs modeled by A2 are referred to as
near gene pairs and gene pairs modeled by A1 are referred to as far gene pairs.

−

=

+

−2 0 2

−4 −2 0 0 2 4

Figure 6.3: The basic three-state architecture of the SHMM(2) with two scaled transition
matrices that is used for the analysis of breast cancer gene expression data. The states
S := {−, =, +} are represented by labeled circles and corresponding state-specific Gaussian
emission densities. Chromosomal distances between adjacent genes on a chromosome are
integrated into the SHMM(2) by modeling adjacent genes in close chromosomal proximity and
adjacent genes in greater chromosomal distance. Thick arrows represent specific transitions
for adjacent genes in close chromosomal proximity and thin arrows represent those of adjacent
genes in greater chromosomal distance.

Prior: For the SHMM(2) the same prior settings are used as previously specified for
the HMM.

Initialization: The basic initialization of the SHMM(2) is done like previously described
for the HMM. In addition to this, the global distance threshold b and the scaling factor
f2 have to be specified. The relation between the distances of adjacent genes on a
chromosome and the correlations of their log-ratios shown in Fig. 6.2 can help to find
appropriate settings. Here, the log-ratios of adjacent genes in distances greater than
1000 kb showed generally only weak positive correlations that are comparable to those
obtained under permuted data. For that reason, the maximal distance threshold is set
to 1000 kb. The scaling factor f2 allows to adjust the probability that two directly ad-
jacent genes are represented by the same state of the SHMM(2). To high values of
f2 could lead to undesired predictions like pairs of over-expressed genes in which one
gene has a log-ratio slightly less than zero. For these reasons, each global distance
threshold b ∈ {10, 20, . . . , 1000} kb is tested in combination with each scaling factor
f2 ∈ {1.1, 1.2, . . . , 2.0}.
Training: Each initial SHMM(2) is trained with all emission sequences using the
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Bayesian Baum-Welch algorithm developed in Sec. 5.3. Again, for comparison rea-
sons, a selected initial SHMM(2) is also trained using the Baum-Welch algorithm de-
veloped for the SHMM(C) in Seifert (2006). The training is stopped if the improvement
of the optimization function is less than 10−9 for two successive training steps.

Detection of differentially expressed genes: Differentially expressed genes are de-
termined like previously described for the HMM.

6.2.3 Related approaches from the field of Array-CGH analysis

Closely related to the analysis of tumor expression data in the context of chromosomal
locations of genes is the analysis of array comparative genomic hybridization (Array-
CGH) data to identify deletions and amplifications of DNA segments in tumor DNA in
comparison to DNA from healthy tissue. Generally, the analysis of Array-CGH data is
done by considering log-ratios of measured intensities of tumor to reference in the con-
text of the chromosomal locations of the underlying probes along the chromosome (Lai
et al. (2005)). The goal is to identify chromosomal regions with log-ratios much greater
or much less than zero. Here, chromosomal regions with log-ratios much greater than
zero are associated with amplifications and those with log-ratios much less than zero
are expected to represent deletions. Unchanged chromosomal regions between tu-
mor and reference are expected to be characterized by log-ratios about zero. For the
application of Array-CGH analysis approaches to tumor expression data, chromoso-
mal regions with log-ratios greater than zero are expected to represent over-expressed
genes, while under-expressed genes are associated with log-ratios less than zero. This
indicates that it might be useful to test such approaches on tumor expression data. Vice
versa, the HMM developed here has already been demonstrated to work on Array-CGH
data (Seifert et al. (2009a)).
In recent years, several methods have been proposed for the analysis of Array-CGH
data, and two studies by Lai et al. (2005) and by Willenbrock and Fridlyand (2005) have
focused on their comparison to reveal general characteristics of the methods. In addi-
tion to this, the ADaCGH web-server has been developed by Diaz-Uriarte and Rueda
(2007) to ease the application of different Array-CGH analysis methods and to unify
their outputs. All methods listed in Tab. 6.1 except ChARM are available through the
ADaCGH web-server, and all these methods including ChARM are subsequently ap-
plied with their standard parameter settings to the breast cancer gene expression data
set to characterize their ability to identify differentially expressed genes. In analogy
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to the HMM or the SHMM(2), the output of all methods of the ADaCGH web-server
provides the basics to directly assign one of the three labels ’−’ (under-expressed), ’=’
(unchanged expressed), or ’+’ (over-expressed) to each gene in an experiment. For
ChARM each gene that has been reported as not significantly changed is labeled as
’=’, and each significantly changed gene is labeled either as ’−’ or ’+’ in dependency
of the sign of the corresponding log-ratio.
Based on Tab. 6.1, the two HMM-based methods FHMM and BioHMM are of special
interest. The FHMM analyzes the log-ratios in the context of chromosomal locations
by partitioning these log-ratios into states that represent the chromosomal aberrations.
The BioHMM extends this approach by additionally integrating the chromosomal dis-
tance of directly adjacent probes on chromosomes. However, both methods do not
integrate prior knowledge into the training. Additionally, also GLAD could be of spe-
cial interest, because as reported by Lai et al. (2005) also single probes have been
identified as changed by this approach. This behavior could be useful for the detec-
tion of under-expressed and over-expressed genes that are not included in a greater
chromosomal region of under-expressed or over-expressed genes.

Short Name Method Reference

ACE Analysis of Copy Errors Lingjaerde et al. (2005)
BioHMM inhomogeneous first-order HMM Marioni et al. (2006)
CBS Circular Binary Segmentation Olshen et al. (2004)
CGHseg CGH segmentation Picard et al. (2005)
ChARM Chromosomal Aberration Region Miner Myers et al. (2004)
GLAD Gain and Loss Analysis of DNA Hupé et al. (2004)
FHMM homogeneous first-order HMM Fridlyand et al. (2004)
Wavelet Haar wavelet and clustering Hsu et al. (2005)

Table 6.1: Methods of the Array-CGH data analysis field that are tested to predict differentially
expressed genes in the breast cancer data set. All methods except ChARM are provided by
the ADaCGH web-server (Diaz-Uriarte and Rueda (2007)).

6.3 Breast Cancer Gene Expression Data Analysis

6.3.1 Comparison of Baum-Welch and Bayesian Baum-Welch
training

The Baum-Welch algorithm trains the parameters of the HMM and the SHMM(2) with-
out including biological prior knowledge about the potential ranges of log-ratios that are
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expected to represent under-expressed, unchanged expressed, and over-expressed
genes in breast cancer. The Bayesian Baum-Welch algorithm integrates this knowl-
edge by the usage of the specified prior. The influence of both training algorithms on
the emission parameters of the trained HMM and of the trained SHMM(2) is shown in
Tab. 6.2 and visualized for the HMM in Fig. 6.4. The state-specific emission param-
eters that are obtained from the Baum-Welch algorithm for the states ’−’ and ’+’ are
clearly different from those that are obtained from the Bayesian Baum-Welch algorithm.
Here, the means of the states ’−’ and ’+’ obtained from the Baum-Welch algorithm are
close to zero, while the corresponding means obtained from the Bayesian Baum-Welch
algorithm have a much greater distance to zero. Based on the histogram of log-ratios
and the quantile-quantile plot in Fig. 6.1, under-expressed genes modeled by state ’−’
and over-expressed genes modeled by state ’+’ are expected to have log-ratios clearly
different from zero. Thus, the HMM and the SHMM(2) that have been trained by the
Baum-Welch algorithm have a much lower capability to distinguish under-expressed
genes or over-expressed genes from unchanged expressed genes in comparison to
the corresponding models obtained through the application of the Bayesian Baum-
Welch algorithm. This is even more reflected by the state-specific standard deviations.
Here, the ranges of log-ratios that are modeled by the states ’−’ and ’+’ clearly overlap
with each other for the emission parameters obtained from the Baum-Welch algorithm.
This undesired overlap can lead to contradicting predictions of under-expressed or
over-expressed genes, which are not reflected in the corresponding log-ratios of the
genes. The separation of under-expressed and over-expressed genes is much better
reflected in the emission parameters that are obtained from the Bayesian Baum-Welch
algorithm. For these reasons, the Bayesian Baum-Welch algorithm should be pre-
ferred for the training of the HMM and the SHMM(2). Consequently, only the models
that have been trained by the Bayesian Baum-Welch algorithm are considered in the
following sections.

6.3.2 Comparison of HMM, SHMM, and related approaches

All genes predicted as under-expressed or over-expressed by the HMM, the SHMM(2),
or by the related approaches in Tab. 6.1 characterize the potential of each of these
methods to identify differentially expressed genes in breast cancer. To analyze this
potential for each method, the percentage of predicted under-expressed and over-
expressed genes in relation to the total number of genes is considered. In addition
to this, the log-ratios of all genes predicted as under-expressed or predicted as over-
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Model Training µ− µ= µ+ σ− σ= σ+

HMM Baum-Welch -0.04 -0.07 0.23 1.37 0.48 0.60
SHMM(2) Baum-Welch -0.03 -0.07 0.23 1.37 0.48 0.60
HMM Bayesian Baum-Welch -1.94 -0.01 1.91 1.10 0.55 0.79
SHMM(2) Bayesian Baum-Welch -1.93 -0.01 1.90 1.13 0.55 0.82

Table 6.2: Overview of emission parameters of the HMM and the SHMM(2) obtained from
the Baum-Welch algorithm and the Bayesian Baum-Welch algorithm. For each state i ∈ S
the mean µi and standard deviation σi of the state-specific Gaussian emission density are
shown. The Gaussian emission densities of the HMM are additionally visualized in Fig. 6.4.
For the HMM and SHMM(2) with b = 100 kb and f2 = 1.8, the Baum-Welch algorithm fails
to characterize under-expressed genes represented by state ’−’ and over-expressed genes
modeled by state ’+’. Such genes are expected to have log-ratios much less or much greater
than zero (Fig. 6.1).

expressed are characterized separately by computing the mean, the median and the
standard deviation of log-ratios. Here, the percentage of predictions quantifies the pre-
diction behavior of each method, and this measure in combination with the mean, the
median, and the standard deviation of the log-ratios allows to analyze the ability to pre-
dict differentially expressed genes.
The results of this characterization are summarized in Tab. 6.3. Here, Wavelet, ACE,
BioHMM, and FHMM tend to make many more predictions of under-expressed and
over-expressed genes than all other methods. However, for these four methods, the
mean, the median, and the standard deviation of the corresponding log-ratios show
that a large proportion of predicted differentially expressed genes have log-ratios that
are close to zero. Additionally, even contradicting predictions have occurred. That is,
genes predicted as under-expressed can have log-ratios greater than zero, and vice
versa, genes predicted as over-expressed can have log-ratios less than zero. ChARM,
CGHseg, and CBS make much less predictions than the four previous methods, but
still the same problems occur. In consideration of the histogram of log-ratios and the
quantile-quantile plot shown in Fig. 6.1, differentially expressed genes are expected to
have log-ratios much less or much greater than zero. In addition to this, the lack of
scores for ranking the outputs of the methods of the ADaCGH web-server (Tab. 6.1)
makes it difficult to compare these methods. For all these reasons, Wavelet, ACE,
BioHMM, FHMM, ChARM, CGHseg, and CBS are not further considered to predict
differentially expressed genes in the breast cancer data set.
In contrast to this, GLAD, the HMM, and the SHMM(2) are the only approaches which
predict under-expressed and over-expressed genes in breast cancer like expected from
Fig. 6.1. This is reflected by their corresponding values given in Tab. 6.3 for the mean,
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Figure 6.4: Overview of the Gaussian emission densities of the HMM obtained by the appli-
cation of the Baum-Welch algorithm (left) and by the Bayesian Baum-Welch algorithm (right).
For each of the three states ’−’, ’=’, and ’+’ of the HMM the cumulative distribution function
(CDF) of the corresponding Gaussian emission density is shown. The Baum-Welch algorithm
clearly fails to characterize under-expressed genes modeled by state ’−’ and over-expressed
genes modeled by state ’+’. In contrast to this, the Gaussian emission densities obtained from
the Bayesian Baum-Welch algorithm are well separated and characterize under-expressed,
unchanged expressed, and over-expressed genes like expected from Fig. 6.1.

the median, and the standard deviation of the log-ratios for under-expressed and over-
expressed genes. That means, genes predicted as under-expressed and genes pre-
dicted as over-expressed are well separated from each other by their log-ratios. Thus,
only GLAD, the HMM, and the SHMM(2) are considered for further analyses.

6.3.3 Effect of chromosomal distances of genes on self-transition
probabilities of SHMMs

The log-ratios measured for two adjacent genes on a chromosome in the breast cancer
gene expression data set are clearly depending, like shown in Fig. 6.2, on the chromo-
somal distance of these genes. That is, log-ratios of adjacent genes in close chromo-
somal proximity tend to be higher correlated than those of genes in greater distance.
The SHMM(2) integrates this observation by using a global distance threshold b and a
scaling factor f2 to model that adjacent genes in close chromosomal proximity have a
higher probability to be represented by the same state of the SHMM(2) than adjacent
genes in greater distance. The global distance threshold b is used to assign each pair
of two directly adjacent genes on a chromosome either into the group of near gene
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Method ’−’ in % Mean Median Sd ’+’ in % Mean Median Sd

Wavelet 18.58 -0.09 -0.09 0.63 9.52 0.13 0.14 0.84
ACE 10.21 -0.56 -0.44 0.80 10.86 0.61 0.53 0.77
BioHMM 7.41 -0.30 -0.23 0.88 9.96 0.39 0.38 0.90
FHMM 6.37 -0.37 -0.27 0.75 5.42 0.62 0.49 0.92

ChARM 1.02 -0.30 -0.27 0.66 1.84 0.31 0.25 0.77
CGHseg 2.45 -0.11 -0.12 0.64 0.97 0.33 0.34 1.10
CBS 2.66 -0.19 -0.17 0.72 1.91 0.47 0.40 0.98

GLAD 1.54 -1.95 -1.74 1.00 1.77 1.85 1.75 0.76
HMM 1.44 -2.25 -2.05 0.90 2.16 1.97 1.86 0.65
SHMM(2) 1.44 -2.22 -2.05 0.95 2.18 1.93 1.85 0.68

Table 6.3: General characterization of genes predicted as under-expressed (’−’) and as
over-expressed (’+’) by the HMM, the SHMM(2), and the related approaches summarized
in Tab. 6.1. The percentages of genes predicted as ’−’ and ’+’, and the corresponding mean,
median, and standard deviation of the log-ratios are shown for each method. For the HMM and
the SHMM(2) with global distance threshold b = 100 kb and scaling factor f2 = 1.8 the Viterbi
algorithm has been used for the predictions.

pairs or into the group of far gene pairs. The scaling factor f2 allows to set the degree
to which two adjacent genes of the near gene pair group tend to be modeled by the
same state of the SHMM(2). To analyze the effect of modeling chromosomal distances
of adjacent genes by the SHMM(2), the influence of different parameter combinations
of b and f2 on the self-transition probabilities of the SHMM(2) in Fig. 6.3 is evaluated.
The potential that two genes of the near or of the far gene pair group are represented
by the same state of the model is directly characterized by the self-transition proba-
bility of this state. To investigate different combinations of b and f2 systematically, all
values of b from 10 kb up to 1000 kb in steps of 10 kb have been tested in combination
with each scaling factor f2 from 1.0 to 2.0 in steps of 0.1 by training the correspond-
ing SHMM(2) with the Bayesian Baum-Welch algorithm. The obtained behavior of the
self-transition probabilities is summarized in Fig. 6.5 for a representative selection of
models. Generally, two trends for each single selection can be clearly observed.

1. The self-transition probabilities for the groups of near and far gene pairs de-
creases for a fixed scaling factor f2 and an increasing distance threshold b

(Fig. 6.5a).

2. The self-transition probabilities for the group of far gene pairs decrease while
those for the group of near gene pairs increase for a fixed distance threshold b

and an increasing scaling factor f2 (Fig. 6.5b).

93



6. Analysis of Breast Cancer Gene Expression Data

The first trend reflects the observation shown in Fig. 6.2 that the correlation of the
log-ratios measured for adjacent gene pairs tends to decrease with increasing chro-
mosomal gene distance. Thus, for a fixed scaling factor it is more unlikely that two
adjacent genes are represented by the same state of the SHMM(2) for an increasing
distance threshold. The second trend shows that by increasing the scaling factor the
genes in the near gene pair group have a higher probability to be modeled by the same
state than genes in the far gene pair group. How these trends influence the ability of
the SHMM(2) to predict differentially expressed genes in breast cancer is investigated
in the following section.
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Figure 6.5: Behavior of the self-transition probability ’a−−’ of the state ’−’ of the SHMM(2) in
Fig. 6.3 for different combinations of the scaling factor f2 and the global distance threshold b.
Self-transition probabilities for the group of near gene pairs with genes in distance less or equal
than b are represented by dashed lines. For the group of far gene pairs with genes in distance
greater than b the corresponding self-transition probabilities are shown by solid lines. The value
of the self-transition probability of the state ’−’ of the HMM that does not model chromosomal
distances of genes is shown in the right figure for f2 = 1.

6.3.4 Validation of prediction results of HMM, SHMMs, and GLAD

Amplifications and deletions of DNA segments are known to have direct effects on the
expression levels of the affected genes in breast cancer (Hyman et al. (2002); Pol-
lack et al. (2002)). Generally, amplified genes tend to be highly expressed and deleted
genes are associated with lower expression levels in comparison to a normal reference
sample. For the breast cancer gene expression data set also amplifications and dele-
tions of genes have been measured by Pollack et al. (2002) for each cell line and each
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tumor using the Array-CGH approach. The direct effects of amplifications and deletions
on the corresponding gene expression levels are clearly shown in Fig. 6.6. Most of the
amplified genes are associated with gene expression log-ratios much greater than zero
as expected for over-expressed genes in Fig. 6.1. The direct effects of deletions on the
gene expression levels are also present for a greater fraction of deleted genes which
tend to be under-expressed based on their gene expression log-ratios that are much
less than zero. Due to the lack of information about differentially expressed genes and
the generally known diversity of gene expression profiles of individual breast tumors
(Perou et al. (2000)), the usage of information about individual deletions and amplifica-
tions of genes can be considered for the comparison of the HMM, the SHMM(2), and
GLAD. That means, these methods should be able to predict deleted genes as under-
expressed and amplified genes as over-expressed. This does of course not fully hold
for each gene in the breast cancer gene expression data set, because genes can be
under-expressed or over-expressed without any underlying deletion or amplification.
However, this strategy makes use of the only individual validation data that is available
for the breast cancer gene expression data set.
To validate the three methods, the breast cancer Array-CGH data set by Pollack et al.
(2002) has been used to label each gene in the 4 breast cancer cell lines and the 37
breast tumors of the corresponding breast cancer gene expression data set. In analogy
to Pollack et al. (2002), a gene has been labeled as deleted if its Array-CGH log-ratio
is less than -1.585, as amplified if its log-ratio is greater than 1.585, and otherwise
labeled as unchanged. In total, 228,677 genes have been labeled as unchanged. A
small fraction of 125 genes has been labeled as deleted and 228 genes have been
labeled as amplified. Together, deleted and amplified genes form the positive class
containing genes that should be predicted as under-expressed or as over-expressed
based on their characteristics of log-ratios shown in Fig. 6.6. The negative class con-
sists of the genes that have been labeled as unchanged. The majority of genes in this
class should be predicted as unchanged expressed, because like shown in Fig. 6.6
most of the corresponding log-ratios have values about zero. In addition to this, it is
also expected that a greater fraction of genes from the negative class is predicted as
under-expressed or over-expressed. This occurs due to the fact that deletions and am-
plifications of DNA segments are not the only causes that lead to differential expression
in breast cancer.
Initially, the performance of GLAD is investigated. Based on the initial study summa-
rized in Tab. 6.3, GLAD is able to predict over-expressed and under-expressed genes
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that have log-ratios as expected from Fig. 6.1, but GLAD does not provide scores to
rank the predictions. For that reason, the point measures of true positive rate (TPR) and
false positive rate (FPR) have been computed for the predictions obtained by GLAD for
the breast cancer gene expression data set. GLAD identifies 26.98% (TPR) of the
amplified genes as over-expressed and deleted genes as under-expressed at a FPR
of 3.39%. Next, to compare the predictions of the HMM and the SHMM(2) against
the predictions of GLAD, the TPRs of the HMM and the SHMM(2) have been evalu-
ated at the fixed FPR of 3.39% given by GLAD. An overview of the results is shown in
Fig. 6.7. At the level of 3.39% FPR the HMM predicts 37.68% of the amplified genes as
over-expressed and deleted genes as under-expressed. The best SHMM(2) models
predict 39.94% of these genes. This is clearly more than obtained by GLAD and the
HMM. The large fraction of SHMM(2) models that are better than the HMM is shown in
Fig. 6.7 colored in yellow, and the small proportion of models that have a smaller TPR
than the HMM is colored in blue.
In summary, the direct effects of amplifications and deletions of DNA segments on the
expression levels of the affected genes shown in Fig. 6.6 can be predicted best as
represented in Fig. 6.7 by the SHMM(2) in comparison to the HMM and GLAD. Subse-
quently, the influence of modeling chromosomal locations and distances of genes on
the prediction of under-expressed and over-expressed genes is investigated in more
detail.

6.3.5 Influence of modeling chromosomal locations and distances
of genes on the prediction results

For the breast cancer gene expression data set the gene expression levels of directly
adjacent genes on chromosomes are observed to be positively correlated as shown
in Fig. 6.2. Beyond that, it can be clearly seen that the gene expression levels of di-
rectly adjacent genes in close chromosomal proximity tend to be higher correlated than
those of adjacent genes in greater distance. Here, the goal is to investigate how the
modeling of these observations influences the prediction of under-expressed and over-
expressed genes in breast cancer.
The mixture model (e.g. Bilmes (1998)) consisting of three Gaussian densities for mod-
eling under-expressed, unchanged expressed, and over-expressed genes can be con-
sidered as basic model for analyzing the breast cancer data set. This model neither
integrates chromosomal locations nor chromosomal distances of genes into the pre-
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Figure 6.6: Overview of gene expression levels in the breast cancer gene expression data set
in the context of the underlying DNA status of the genes. Genes have been group into the
three categories deleted, unchanged, and amplified according to the Array-CGH data provided
by Pollack et al. (2002). In analogy to Pollack et al. (2002), a gene is labeled as deleted if
its Array-CGH log-ratio is less than -1.585, as amplified if its log-ratio is greater than 1.585,
and otherwise labeled as unchanged. For each category, the cumulative distribution function
is shown for the corresponding gene expression log-ratios of all genes in this category. Direct
effects of deletions and amplifications on the gene expression level are observed in comparison
to the unchanged category.

Prediction of Direct Effects: TPR at fixed FPR of 3.39%
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Figure 6.7: TPRs obtained for the HMM and the SHMM(2) for the prediction of the direct
effects of amplifications and deletions on the gene expression levels in the breast cancer data
set (Fig. 6.6) at the level of the FPR of 3.39% of GLAD. Most of the SHMM(2) models perform
better than the HMM. Both types of models are better than GLAD which has a TPR of 26.98%.
ROC curves of the HMM and of one of the best SHMM(2) models are shown in Fig. 6.8.
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diction of under-expressed or over-expressed genes. In contrast to this, the HMM
considers chromosomal locations of genes by modeling dependencies between di-
rectly adjacent genes on a chromosome, and the SHMM(2) additionally integrates the
chromosomal distance of directly adjacent genes. To compare these three models, a
mixture model with the same initial and prior settings like specified for the HMM and
the SHMM(2) has additionally been trained on the breast cancer data set. The result-
ing mixture model represents under-expressed genes by a Gaussian density with mean
-1.96 and standard deviation 1.04, unchanged expressed genes are characterized by a
Gaussian density with mean 0.01 and standard deviation 0.56, and a Gaussian density
with mean 1.95 and standard deviation 0.73 models the over-expressed genes. Like
motivated in Fig. 6.1, most of the genes are expected to be unchanged expressed. This
is reflected in the mixture model by a mixture weight of 0.96 for the Gaussian density
that models unchanged expressed genes, while under-expressed and over-expressed
genes are represented by weighting the corresponding Gaussian density by 0.02. The
parameters obtained for the Gaussian densities of the mixture model are very similar to
those obtained for the HMM and the SHMM(2) shown in Tab. 6.2. This is not surprising
since the HMM and the SHMM(2) are specific extensions of the mixture model.
In analogy to the previous section, the validation data shown in Fig. 6.6 is used for the
comparison of GLAD, the mixture model, the HMM, and the SHMM(2). The receiver
operating characteristic (ROC) curves obtained for the mixture model, the HMM, and
one of the best SHMM(2) models in Fig. 6.7 are shown in Fig. 6.8 including the point
measures of TPR and FPR obtained for GLAD. All three models are much better than
GLAD that analyzes the log-ratios in the contexts of chromosomal locations of genes.
In addition to this, one clearly observes that the modeling of chromosomal locations
of genes by the HMM leads to an improved prediction of under-expressed and over-
expressed genes in comparison to the mixture model that ignores these information.
This prediction performance is further improved by the SHMM(2) that additionally inte-
grates distances of directly adjacent genes on chromosomes. Thus, the direct effects
of amplifications and deletions on the gene expression levels shown in Fig. 6.6 are
predicted best by modeling chromosomal distances of genes by the SHMM(2).

6.3.6 Hotspots of under-expression and over-expression

Individual breast tumors are known to have very diverse gene expression profiles
(Perou et al. (2000)). Publicly available databases like the Genetic Association
Database (GAD) by Becker et al. (2004) or the Breast Cancer Database (BCD) by
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Figure 6.8: Important parts of the ROC curves of the mixture model, the HMM, and the
SHMM(2) for the prediction of amplified genes as over-expressed and of deleted genes as
under-expressed in the breast cancer gene expression data set. The point measures of TPR
and FPR obtained for GLAD are represented by the blue dot. The SHMM(2) is among the best
models in Fig. 6.7.

Telikicherla et al. (2008) collect genes that have been identified to play a role in breast
cancer. The GAD contains 67 genes and the BCD has 1361 genes that have also been
measured in the breast cancer gene expression data set by Pollack et al. (2002). The
overlap of these genes in both databases comprises 47 genes. However, the individu-
ality of breast tumors does not allow to use the genes contained in these databases as
candidate genes of under-expression or over-expression for each individual gene ex-
pression profile in the breast cancer gene expression data set. Anyhow, genes that are
frequently predicted as under-expressed or over-expressed in the breast cancer data
set can be compared to these two databases for identifying those candidate genes that
are not contained in both databases. These candidate genes can be further investi-
gated for their role in breast cancer by additional literature studies.
To investigate this, the SHMM(2) with scaling factor f2 = 1.9 and distance threshold
b = 350 kb is used to predict under-expressed and over-expressed genes in the breast
cancer gene expression data set at the level of the FPR of GLAD. This SHMM(2) has
been shown in Fig. 6.7 and Fig. 6.8 to be a useful tool for the prediction of direct effects
of amplifications and deletions on the gene expression levels in breast cancer. Based
on that, each gene which has been predicted at least 7 times as under-expressed (or
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as over-expressed) by this SHMM(2) in the 41 breast cancer expression profiles has
been further analyzed. In total, 49 genes that fulfill this criterion have been identified,
and 33 of these genes are already contained in the GAD or in the BCD. The remain-
ing 16 genes given in Tab. 6.4 have been further investigated by additional litrature
searches, whereas 13 of these genes could be directly associated with breast cancer.
Of the three remaining genes, AA088457 and CBX2 have been found to play a role in
other types of cancer, and CYP4X1 has been observed as over-expressed in breast
cancer in its NCBI Unigene EST profile.
In summary, this analysis shows that the SHMM(2) also identifies genes known to play
a role in breast cancer that are currently not included in the two public databases GAD
and BCD. This provides further support that the SHMM(2) can be used for the predic-
tion of differentially expressed genes in breast cancer. In addition to this, the SHMM(2)

might also be applied to the analysis of other tumor data sets.

Gene Annotation Prediction Literature Search

AA088457 tumor specific mitosis dependent + Xu et al. (2007)
ADH2 alcohol dehydrogenase subunit beta + Perou et al. (2000)
CBX2 cell division cycle associated + Raaphorst (2005)
CEACAM5 carcinoembryonic antigen −/+ Blumenthal et al. (2007)
COL11A1 collagen, alpha 1 − Halsted et al. (2008)
CYP4X1 cytochrome P450 family −/+ NCBI UniGene EST profile
CYP4Z1 cytochrome P450 family −/+ Rieger et al. (2004)
DLX4 distal-less homeobox 4 + Tomida et al. (2007)
H11 cell proliferation and apoptosis + Depre et al. (2002)
HE4 protease inhibitor −/+ Galgano et al. (2006)
HLA-DQA2 major histocompatibility complex − Maiorana et al. (1995)
IGL@ immunoglobulin lambda locus − Yu et al. (2004)
MGB1 mammaglobin − Sasaki et al. (2007)
MLN64 metastatic lymph node protein + Kauraniemi et al. (2001)
SCYB14 chemokine in breast and kidney − Ma et al. (2007)
UGT2B7 catechol estrogen specific − Gestl et al. (2002)

Table 6.4: Genes predicted at least seven times as under-expressed ’−’, over-expressed ’+’,
or both ’−/+’ by the SHMM(2) with scaling factor f2 = 1.9 and distance threshold b = 350 kb in
the breast cancer gene expression data set. None of these genes is contained in the GAD or in
the BCD. The GeneCards database (http://www.genecards.org) has been used to annotate the
genes. All genes except AA088457, CBX2, and CYP4X1 are directly associated with breast
cancer based on the specified literature. The genes AA088457 and CBX2 have support from
other types of cancer, and CYP4X1 has been observed as over-expressed in breast cancer
based on its NCBI UniGene EST profile (http://www.ncbi.nlm.nih.gov).
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7 Analysis of Promoter Array
ChIP-chip Data

In recent years array-based analysis of chromatin immunoprecipitation (ChIP-chip)
data has become a powerful technique to identify DNA target regions of individual
transcription factors. ChIP-chip has firstly been applied to yeast by Ren et al. (2000)
and Iyer et al. (2001) based on promoter arrays. With the availability of sequenced
genomes, ChIP-chip is predominantly based on tiling arrays that represent a genome
by DNA probes at high resolution (Johnson et al. (2008)). The analysis of ChIP-chip
data is challenging, because of the huge data sets containing thousands of hybridiza-
tion signals. Most available methods focus on the analysis of tiling array ChIP-chip
data to predict chromosomal target regions of DNA-binding proteins like transcription
factors or histones. Examples include a moving average method by Keles et al. (2004),
an HMM approach by Li et al. (2005), TileMap by Ji and Wong (2005) using moving
averages or an HMM to account for information about adjacent probes, or PMT by
Chung et al. (2007) that integrates a physical model to correct for probe-specific be-
havior. More recently, a new HMM approach has been developed by Humburg et al.
(2008), outperforming TileMap in the context of the prediction of histone modifications
from tiling array ChIP-chip data. Also ChIPmix (Martin-Magniette et al. (2008)) that
utilizes a linear regression mixture model is appropriate for this analysis.
In this chapter, the focus is on the development of HMM-based methods for the anal-
ysis of promoter array ChIP-chip data. Promoters are functional parts of the DNA
that are typically located upstream in close chromosomal proximity of genes (Davidson
(2001)). Specific DNA sequences within promoters are recognized by transcription
factors to regulate the expression of genes (Davidson (2001); Latchman (2004)). Pro-
moters of genes can be represented on a promoter array to identify target genes of a
specific transcription factor in a ChIP-chip experiment. Two directly adjacent genes on
a chromosome can be located in head-head, tail-tail, tail-head, or head-tail orientation
to each other. This is illustrated in the upper part of Fig. 7.1. The head-head orientation
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is of special interest because a promoter array can represent both genes separately by
their corresponding promoter fragments. This can lead to overlapping promoter frag-
ments if both genes are in close chromosomal distance to each other. Thus, also in
dependence of the length of the DNA segments that are hybridized to the promoter
array, it is expected that the measurements for gene pairs in head-head orientation are
more similar to each other than the measurements of gene pairs in other orientations.
This trend is clearly observed for the promoter array ChIP-chip data of the seed-specific
transcription factor ABI3 of the model plant Arabidopsis thaliana (Fig. 7.1) and for the
ChIP-chip data of the cell cycle specific transcription factors ACE2, SWI5, and FKH2 of
the yeast Saccharomyces cerevisiae (Tab. 7.1). Motivated by this observation, these
promoter array ChIP-chip data sets are analyzed in the context of chromosomal loca-
tions of genes by an HMM following the two-state architecture proposed by Li et al.
(2005) for the analysis of ChIP-chip tiling array data. In addition to this, the HMM is ex-
tended to a SHMM(2) with two scaled transition matrices that specifically models gene
pairs in head-head orientation. Both approaches are compared to the standard log-
fold change analysis to investigate whether the integration of chromosomal locations
and information about gene pair orientations helps to improve the prediction of tran-
scription factor target genes. Predicted target genes are validated using literature and
database searches, publicly available gene expression data, and independent wet-lab
experiments.

Goals of this Chapter

1. The promoter array ChIP-chip data sets of S. cerevisiae and A. thaliana are in-
troduced.

2. The standard log-fold change analysis, the HMM, and the SHMM(2) for the anal-
ysis of promoter array ChIP-chip data are described.

3. These three approaches are initially tested on the ChIP-chip data of S. cerevisiae
and comprehensively studied on the data set of A. thaliana.
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Figure 7.1: Pearson correlations of promoter array ChIP-chip measurements of the transcrip-
tion factor ABI3 in the context of the four gene pair orientations head-head, tail-tail, tail-head,
and head-tail of two directly adjacent genes on DNA in distances of 3 kb up to 10 kb in steps of
250 bp. Genes are represented by triangles, and the orientation of the tip of a triangle defines
the reading direction of a gene. The promoter fragment of a gene in the ABI3 data set is always
located in 3’ direction of the gene. The ChIP-chip measurement of a gene is the log2-ratio of
immunoprecipitated DNA for ABI3 to input control DNA that is measured for the corresponding
promoter of the gene. The intergenic region between two genes in head-head orientation is
represented by two promoter fragments, one for each gene. Depending on the distance be-
tween these two genes the extracted DNA segments in the immunoprecipitated sample and
in the input DNA sample can bind to both promoter fragments of these two head-head genes
leading to significantly higher correlations for genes in head-head orientation in comparison to
all other gene pair orientations.

TF head-head tail-tail tail-head head-tail

ACE2 0.76 0.37 0.13 0.26
SWI5 0.80 0.26 0.12 0.20
FKH2 0.89 0.29 0.27 0.22

Table 7.1: Pearson correlations of promoter array ChIP-chip measurements of the transcription
factors ACE2, SWI5, and FKH2 for the four gene pair orientations head-head, tail-tail, tail-head,
and head-tail based on all pairs of two directly adjacent genes in the data set by Lee et al.
(2002). The correlations of ChIP-chip measurements of gene pairs in head-head orientation
are clearly higher than in the three other categories.
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7.1 Promoter Array Data Sets

7.1.1 Yeast Data Set

Publicly available promoter array ChIP-chip data from Lee et al. (2002) provides the
basics to identify common target genes of the cell cycle specific transcription factors
ACE2 and SWI5, and ACE2 and FKH2. First, all ChIP-chip measurements have been
mapped to their corresponding positions in the genome of S. cerevisiae using the Sac-
charomyces Genome Database by Cherry et al. (1997). Then, the log-ratio ot(k) of
immunoprecipitated DNA to input DNA has been computed for each gene t on chro-
mosome k based on its corresponding ratio which has been measured in the ChIP-chip
experiment for the promoter of each gene. Here, for each of the three considered tran-
scription factors one emission sequence ~o(k) = (o1(k), . . . , oTk

(k)) is obtained for the
k-th chromosome of the in total sixteen chromosomes of S. cerevisiae. The log-ratios
in ~o(k) are systematically ordered from the left arm to the right arm of chromosome k.

7.1.2 Arabidopsis Data Set

Promoter array ChIP-chip data of the seed-specific transcription factor ABI3 has been
generated at the IPK Gatersleben during the project Arabido-Seed (2004-2009) based
on seeds of A. thaliana accession Columbia (Col). This inhouse data set provides
the opportunity to identify target genes of ABI3 for gaining more detailed insights into
seed development based on 11,904 promoters of genes represented on a promoter
array. Each ABI3 ChIP-chip experiment comprises two sub-experiments on separate
promoter arrays. In the first sub-experiment, enriched DNA fragments bound by ABI3
have been measured. The second sub-experiment has been used to measure ge-
nomic input DNA of the corresponding A. thaliana seeds to obtain reference measure-
ments for differentiating between DNA fragments specifically bound by ABI3 and un-
specific bindings. Subsequently, five ABI3 experiments involving three biological repli-
cates whereas two of them have additionally been repeated in a technical replicate
are considered. To normalize these five experiments, the sub-experiments of each ex-
periment have firstly been treated separately by shifting the median of the measured
log2-intensities to zero to correct for differences in the absolute signal intensities. In
the final normalization step, quantile normalization by Bolstad et al. (2003) has been
applied to the five sub-experiments that measure the DNA segments bound by ABI3
and to the five corresponding reference experiments. Next, the log-ratio ot(k) of DNA
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bound by ABI3 in relation to genomic input DNA has been computed for each gene t on
chromosome k for each of the five experiments using the normalized log2-intensities
of the corresponding promoter. Finally, the TAIR7 genome annotation has been used
to map all log-ratios of an experiment to their positions in the genome of A. thaliana.
This leads for each experiment to one emission sequence ~o(k) = (o1(k), . . . , oTk

(k)) for
each chromosome of the five chromosomes of A. thaliana.

7.2 Methods for Promoter Array Data Analysis

7.2.1 Standard Log-Fold-Change analysis

The log-ratio of immunoprecipitated DNA to input DNA measured for a promoter char-
acterizes the potential of the corresponding gene to be a target gene of the analyzed
transcription factor. Thus, it is expected that putative target genes have log-ratios that
are much greater than zero. To identify putative target genes, the standard log-fold-
change analysis (LFC) is used. LFC initially sorts all genes of an experiment in de-
creasing order of their corresponding log-ratios to represent putative target genes at the
top of the resulting list. Then, the sorted lists of all experiments are used to determine
the intersection of top candidates of each of these lists. All genes in the intersection
are interpreted as putative target genes of the analyzed transcription factor.

7.2.2 Basic first-order Hidden Markov Model

Model: A first-order HMM with two states S := {−,+} characterized by state-specific
Gaussian emission densities is used to analyze the ChIP-chip promoter array data.
This HMM is a special case of the HHMM(L,C) defined in Sec. 3.2 by setting the
order to L = 1 and by using C = 1 transition class. The MM that underlies this HMM is
shown in Fig. 2.2. The state ’−’ of the HMM models putative non-target genes of the
analyzed transcription factor, and putative target genes are represented by state ’+’.

Initialization: In general, the initial HMM should distinguish putative target genes of
the analyzed transcription factor from non-target genes with respect to their log-ratios
in the emission sequences. Here, a histogram of log-ratios helps to find good initial
HMM parameters. The choice of initial parameters addresses the presumptions that
the proportion of non-target genes is much greater than that of target genes, and that
the number of successive non-target genes is also much greater than the number of
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successive target genes. To integrate these presumptions, the start probabilities are
set to π− = 0.9 and π+ = 0.1, and the initial transition matrix A1 is chosen to have the
equilibrium distribution ~π = (0.9, 0.1) by setting aii(1) = 1− s/πi and aij(1) = 1− aii(1)

for each i ∈ S and each j ∈ S with j 6= i based on s = 0.05. This leads to an initial
state duration of eighteen for state ’−’, which is nine times greater than that of state
’+’. Finally, the states are characterized by specific means µ− = 0 and µ+ = 2, and by
proper standard deviations σ− = 1 and σ+ = 0.5.

Training: The initial HMM is trained with all emission sequences using the Bayesian
Baum-Welch algorithm developed in Sec. 3.7.1. Biological prior knowledge is included
into the training based on the prior specified in Sec. 3.6. That is, ϑi = 2 is used for
all i ∈ S as parameter of the start prior, ϑij(1) = 1 is used for all i ∈ S and for all
j ∈ S as parameter of the transition prior, and the parameters of the emission prior
are set to η− = 0, η+ = 2, ε− = ε+ = 103, r− = 1, r+ = 100, and α− = α+ = 10−4.
The choice of this prior ensures a good characterization of both states to distinguish
putative target genes from non-target genes. The training is stopped if the increase of
the log-posterior of two successive iterations is less than 10−9.

Target gene detection: The state ’+’ of the trained HMM models the potential of
genes to be targets of the analyzed transcription factor. Hence, each gene t on each
chromosome k in an experiment is considered by computing the state-posterior γkt (’+’)
defined in (3.6) to obtain the probability that the underlying gene is a putative target
gene. Then, each experiment is analyzed separately by creating a sorted list containing
all genes of the experiment in decreasing order of their state-posteriors. Finally, all
experiments are used to determine the intersection of the top candidate genes of each
sorted list. In analogy to the LFC approach, all genes in the intersection are interpreted
as putative target genes of the analyzed transcription factor.

7.2.3 Hidden Markov Model with two scaled transition matrices

Model: A SHMM(2) with two states S := {−,+} characterized by state-specific Gaus-
sian emission densities is used to analyze ChIP-chip data in the context of gene pair
orientations on chromosomes. The two-state architecture of the SHMM(2) is shown in
Fig. 7.2. The SHMM(2) is defined in a general form in Sec. 5.2, and the underlying
inhomogeneous MM with two states and two transition classes is shown in Fig. 2.3. As
motivated through Fig. 7.1 and Tab. 7.1, two directly adjacent genes on a chromosome
that are located in head-head orientation to each other tend to have log-ratios that are
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highly positively correlated, whereas log-ratios of other gene pairs tend to be uncorre-
lated or only weakly positively correlated. This observation is integrated into the data
analysis by assuming that it is more likely for two genes in head-head orientation to be
represented by the same state of the SHMM(2) than for other gene pair orientations.
Two scaled transition matrices A1 and A2 are used to model this. Both transition ma-
trices are computed on the basis of the basic transition matrix A, which is identical to
the previously defined A1 of the HMM, the pre-defined scaling factor f1 := 1, and the
user-defined scaling factor f2 > f1. To specify the corresponding transition matrix for
each gene pair, each pair of successive genes t and t + 1 on each chromosome k is
assigned to its corresponding transition class

ct(k) :=

{
2, genes t and t+ 1 are in head-head and dt ≤ b

1, otherwise

in dependence of the category of the considered gene pair, the chromosomal distance
dt of both genes, and the globally defined distance threshold b ∈ N. That is, a transition
from the state of gene t to the state of gene t + 1 is done by using the corresponding
transition matrix Act(k). The self-transition probability of each state i ∈ S increases
strictly from transition class A1 to A2. Thus, its more likely for a head-head gene pair
modeled by A2 that both genes are represented by the same state of the SHMM(2)

than for other gene pairs modeled by A1.

− +
−3 0 3 0 2 4

Figure 7.2: The basic two-state architecture of the SHMM(2) that is used to analyze promoter
array ChIP-chip data with respect to the gene pair orientations on a chromosome. The states
S := {−, +} are represented by labeled circles and corresponding state-specific Gaussian
emission densities. Non-target genes of a transcription factor are modeled by state ’−’ and
target genes are represented by state ’+’. Thick arrows represent transitions for genes in
head-head orientation and thin arrows those of genes in other orientations. The gene pair
orientations are illustrated in Fig. 7.1.

Initialization: The basic initialization of the SHMM(2) is identical to those of the HMM.
In addition, the distance threshold b for the selection of the transition classes must be
defined, and a scaling factor f2 has to be chosen to specify the degree of differentiation
between head-head orientations modeled by A2 and all other orientations modeled by
A1. Since both values are data set dependent they are specified in the corresponding
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analyses sections.

Training: The SHMM(2) is trained using the Bayesian Baum-Welch algorithm devel-
oped in Sec. 5.3 with prior parameters identical to those defined for the HMM.

Target gene detection: Putative target genes are determined in analogy to the HMM
approach.

7.3 Identification of Common Target Genes of Yeast

Cell Cycle Regulators

Common putative target genes of the S. cerevisiae cell cycle regulators ACE2 and
SWI5, and ACE2 and FKH2 are determined based on the predictions of the LFC, the
HMM, and the SHMM(2). The transcription factors ACE2 and SWI5 are known to
regulate common target genes expressed at the boundary of the M/G1 phase of the
cell cycle (Mc Bride et al. (1999); Lee et al. (2002)), and the transcription factors ACE2
and FKH2 control the regulation of a common set of genes in the G1 phase of the
cell cycle (Lee et al. (2002)). Here, the prediction results of the three methods are
compared against each other using the Saccharomyces Genome Database (Cherry
et al. (1997)) to analyze whether the putative target genes are known to play a role in
the regulation of the cell cycle.

7.3.1 Prediction of putative common target genes

The LFC method is used to predict putative common target genes of ACE2 and SWI5
at the level of the top 75 candidate genes of each transcription factor, and for ACE2 and
FKH2 the top 130 candidate genes of each transcription factor are used. The specified
numbers of top candidates ensure that each candidate gene of a transcription factor
has a log-ratio greater than one. The application of the HMM and the SHMM(2) is
motivated by Tab. 7.1. Here, positive correlations between the measured log-ratios of
genes in head-head, tail-tail, tail-head, and head-tail orientation have been observed
for all transcription factors. This motivates the usage of the HMM to model dependen-
cies between directly adjacent log-ratios on a chromosome. Additionally, the correla-
tions in the head-head category are much greater than the correlations observed for
the other categories. Based on this, the SHMM(2) is applied to specifically model the
gene pairs in head-head orientation. Here, the global distance threshold b required for
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the specification of the transition classes is set to infinity, because almost all genes in
head-head orientation have distances less than 2 kb in combination with the fact that
the correlations of the log-ratios of these genes are very high for all three transcription
factors. In addition to this, the SHMM(2) has been tested by using the scaling factor
f2 = 2.0, f2 = 4.0, and f2 = 6.0. Like specified for LFC, the same numbers of top can-
didates are considered by the HMM and by the SHMM(2) to predict common target
genes of the transcription factors. The SHMM(2) with scaling factor f2 = 2.0 has pre-
dicted one putative common target gene less for ACE2 and SWI5 than the SHMM(2)

with f2 = 4.0. Besides this, the prediction results have been identical for f2 = 4.0 and
f2 = 6.0. For ACE2 and FKH2, each SHMM(2) has identified the same putative com-
mon target genes. Due to that, the focus is subsequently on the SHMM(2) with scaling
factor f2 = 4.0. The results for the comparison of the LFC, the HMM, and the SHMM(2)

are shown in Fig. 7.3. In both cases, all common target genes predicted by the LFC
and the HMM have also been predicted by the SHMM(2). Moreover, the SHMM(2)

has predicted two putative target genes that have not been identified by the LFC and
the HMM. Subsequently, the putative target genes are further investigated based on
literature searches.

ACE2 ∩ SWI5 ACE2 ∩ FKH2
LFC HMM

SHMM(2)

1

0

1

0

0

0

18

LFC HMM

SHMM(2)

1

0

3

0

0

0

16

Figure 7.3: Venn diagrams for comparing the prediction of common target genes of the S. cere-
visiae cell cycle transcription factors ACE2 and SWI5, and ACE2 and FKH2 by the three meth-
ods LFC, HMM, and the SHMM(2) with scaling factor f2 = 4.0 that specifically models the
head-head orientation of adjacent gene pairs. In both cases, the SHMM(2) is the most general
model that predicted the greatest number of putative common target genes including all target
genes predicted by the LFC and the HMM.

7.3.2 Validation of putative common target genes

The Saccharomyces Genome Database (Cherry et al. (1997)) is used to investigate
whether the putative common target genes that have only been predicted by the
SHMM(2), or together by the HMM and the SHMM(2) are involved in the regulation
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of the yeast cell cycle. Regarding the common target genes of ACE2 and SWI5, the
gene YJL160C has only been predicted by the SHMM(2). This gene is a member of
the PIR family of cell wall proteins with functions in sporulation, and its gene expres-
sion level is weakly cell cycle regulated peaking in the M phase of the cell cycle (Jung
and Levin (1999); Giaver et al. (2002); Enyenihi and Saunders (2003); de Lichtenberg
et al. (2005)). Currently, no function is known for the gene YBR157C predicted by the
SHMM(2) and the HMM. Considering the common target genes of ACE2 and FKH2,
the gene YER127W has only been predicted by the SHMM(2). This gene encodes a
protein which is essential for the maturation of the 18S rRNA. The repression of the
gene expression of this gene leads to an abnormal progression of the G1 phase of the
cell cycle (Yu et al. (2006)). The genes YER126C, YFL021W, and YFL022C have been
identified as putative common target genes of ACE2 and FKH2 by the HMM and by
the SHMM(2). The protein of gene YER126C is part of the 66S pre-ribosomal parti-
cles and contributes to the processing of the 27S pre-rRNA. The over-expression of this
gene leads to a decrease in the vegetative growth of the yeast (Horsey et al. (2004)),
which has consequences for the G1 phase of the cell cycle where the cell grows. The
gene YFL021W encodes a transcription factor that activates genes involved in nitrogen
catabolite repression. The gene YFL022C encodes the alpha subunit of the cytoplas-
mic phenylalanyl-tRNA synthetase. The over-expression of this gene is known to lead
to a delay or an arrest of the G2 or M phase of the cell cycle (Niu et al. (2008)).
In summary, for both pairs of transcription factors all putative target genes predicted
by the LFC and the HMM are included in the predictions of the SHMM(2). In compar-
ison to the HMM, the specific modeling of gene pairs in head-head orientation by the
SHMM(2) has led to the prediction of two additional cell cycle regulated target genes.
The greatest number of putative common target genes that are involved in the regu-
lation of the yeast cell cycle has been identified by the SHMM(2). Subsequently, the
three methods are comprehensively evaluated on the ABI3 promoter array ChIP-chip
data set.

7.4 Identification of Arabidopsis ABI3 Target Genes

The transcription factor ABI3 is one of the fundamental regulators of seed development
involved in the control of chlorophyll degradation, storage product accumulation, and
desiccation tolerance (Suzuki et al. (2003); Mönke et al. (2004); Vicente-Carbajosa and
Carbonero (2005); To et al. (2006)). The inhouse promoter array ChIP-chip data set of
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ABI3 allows to study the target gene prediction behavior of the LFC, the HMM, and the
SHMM(2) coupeled with validation based on publicly available expression data from
Genevestigator (Zimmermann et al. (2004); Hruz et al. (2008)), and transient assays
(Reidt et al. (2000)), which have been performed in wet-lab experiments during the
project Arabido-Seed (2004-2009) to test whether a promoter of a putative target gene
is regulated by ABI3.

7.4.1 Systematic analysis of differences between HMM and SHMM

The HMM approach allows to analyze ChIP-chip data in the context of chromosomal
locations of genes. The application of the SHMM(2) extends this analysis by specifi-
cally modeling genes in head-head orientation. Here, it is investigated how the trained
SHMM(2) behaves in comparison to the trained HMM. Motivated through Fig. 7.1, the
global distance threshold b for the specification of the transition classes of the SHMM(2)

is set to 9 kb, because in greater chromosomal distance the correlations of log-ratios
of head-head gene pairs do not significantly differ from other gene pairs. In addition to
this, each SHMM(2) with a scaling factor f2 in the interval 1.1 to 10 in steps of 0.1 is
studied. The State-Posterior algorithm developed in Sec. 3.4.1 is used to compare the
resulting most probable state sequence of the HMM against the corresponding most
probable state sequence of each SHMM(2). Here, the scaling factor f2 allows to di-
rectly influence the prediction behavior for head-head gene pairs. That is, the greater
f2 the more likely it is that both genes of such head-head pairs are either predicted as
’++’ or as ’−−’, and the closer f2 is set to one the more similar the prediction behavior
of the SHMM(2) gets to that of the HMM. The results are summarized in Fig. 7.4. As
expected, the number of head-head gene pairs for which both genes of such a pair
have identical predictions increases for increasing scaling factor f2. Consequently, a
decrease of the number of head-head gene pairs for which both genes of such a pair
have different predictions is observed. Obviously, each change of a head-head gene
pair leads either to a change of the upstream, downstream, or both of these gene
pairs. Here, the number of non-head-head gene pairs that are predicted as ’++’ de-
creases only slightly for the SHMM(2) with increasing scaling factor f2 in comparison to
the HMM. Substantially more decrease is observed for the number of non-head-head
gene pairs that are predicted as ’−−’ for increasing scaling factor f2. Consequently,
the number of non-head-head gene pairs for which both genes of such a pair have
different predictions increases with increasing scaling factor f2. In summary, this study
points out that the prediction results of the SHMM(2) can differ from that of the HMM
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in dependence of the value of the scaling factor f2. Thus, the SHMM(2) can be seen
as the more general approach.
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Figure 7.4: Differences of predictions of the SHMM(2) with scaling factor f2 in the interval
from 1.1 to 10 in steps of 0.1 in relation to the HMM. The HMM is encoded by the orange shade
with value zero. The considered prediction categories of gene pairs are ’++’, ’−−’, ’+−’, and
’−+’ based on the underlying two-state architecture shown in Fig. 7.2. For f2 > 4 nearly no
changes in the prediction behavior are observed.

7.4.2 Comparison of ABI3 target gene predictions of LFC, HMM,
and SHMM

Here, the focus is on the comparison of putative ABI3 target genes predicted by the
LFC, the HMM, and the SHMM(2). The LFC method only considers the measured log-
ratios of genes for the prediction of putative target genes. In contrast to this, the HMM
also considers the chromosomal locations of genes, and the SHMM(2) extends this
by considering gene pair orientations. That is, the goal is to find out how these three
methods behave on the ABI3 data set. For that reason, the threshold for the maximal
number of candidates in a top list is set to 200, because the mean log-ratio of 1.06 at
this level is already relatively small, and beyond, at a top list of 300 no new putative
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ABI3 target genes have been predicted by the three methods. Moreover, the trained
SHMM(2) with scaling factor f2 = 4 is used in all further analyses, because this model
is quite different from the standard HMM (Fig. 7.4), and additionally, the comparison
of this model to the SHMM(2) with higher scaling factors f2 = 6 or f2 = 10 yielded
identical target genes. For each method, the top 50, 100, 150, and 200 candidates
of each of the five experiments are used to determine putative ABI3 target genes. In
addition to this, Venn diagrams are used to directly compare the candidate genes of
these four top lists for all three methods. The results are shown in Fig. 7.5a. Here, the
SHMM(2) predicted the greatest number of putative ABI3 target genes, whereas the
LFC method identified the smallest number. Comparing the Venn diagrams of the top
100 list to the top 200 list, all candidates that are predicted by the LFC method are also
completely identified by the HMM and the SHMM(2). In addition to this, the candidates
additionally predicted by the HMM in the transition of the top 150 list to the top 200 list
have been completely identified by the SHMM(2).
Next, it is investigated whether the putative ABI3 target genes that have only been pre-
dicted by the SHMM(2) at the level of the top 200 candidates are the consequence of
the specific modeling of head-head orientations. For that purpose, also a SHMM(2)

that specifically models tail-tail orientations is trained using the identical initial settings
as for the normal SHMM(2). Fig. 7.5b shows that the SHMM(2) that specifically mod-
els tail-tail orientations has a prediction behavior that is nearly identical to that of the
standard HMM with perfect agreement at the level of the top 50 and 150 candidates,
and one additional putative target gene at the level of the top 200 candidates. This
coincides with the observation shown in Fig. 7.1 that the measured log-ratios of gene
pairs in tail-tail orientation tend to be uncorrelated. Due to that, the specific modeling of
tail-tail orientations has nearly no effect on the prediction of putative ABI3 target genes.
Fig. 7.5c shows that the prediction results of the SHMM(2) that specifically models tail-
tail orientations are completely included in the set of predicted putative ABI3 target
genes of the SHMM(2) that specifically models head-head orientations. This indicates
that the gain of additional putative ABI3 target genes is based on the specific modeling
of head-head orientations. Taking together, the SHMM(2) approach that models head-
head orientations tends to be more general in the prediction of putative ABI3 target
genes than the LFC, the HMM, and the SHMM(2) modeling tail-tail orientations.
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Figure 7.5: Venn diagrams for comparing the number of putative ABI3 target genes predicted
by the LFC, the HMM, the SHMM(2) with scaling factor f2 = 4.0 that specifically models head-
head orientations of genes, and the corresponding SHMM(2)_TailTail with f2 = 4.0 that specif-
ically models the tail-tail orientation of genes for validating the SHMM(2). a) Comparison of
the number of putative ABI3 target genes predicted by the LFC, the HMM, and the SHMM(2).
The SHMM(2) is the most general model that predicted the greatest number of putative target
genes including all genes found by the LFC and the HMM at the level of the top 150 and top
200 candidates. b) Comparison of putative ABI3 target genes predicted by the LFC, the HMM,
and the SHMM(2)_TailTail. The SHMM(2)_TailTail does predictions nearly identical to the HMM
with perfect agreement at the level of the top 50 and top 150 candidates. The total number of
predicted putative ABI3 target genes is less than in Fig. 7.5a. c) Comparison of putative ABI3
target genes predicted by the LFC, the SHMM(2)_TailTail, and the SHMM(2). The SHMM(2)
is the most general model that predicted the greatest number of putative ABI3 target genes
including all genes predicted by the LFC and the SHMM(2)_TailTail. This emphasizes that the
gain of additional putative ABI3 target genes is based on the specific modeling of head-head
orientations by the SHMM(2).

7.4.3 Biological validation of putative ABI3 target genes

Here it is investigated how putative target genes might be regulated by ABI3. For that
purpose, Genevestigator (Zimmermann et al. (2004); Hruz et al. (2008)) is used as in-
dependent source of A. thaliana gene expression data to analyze the predicted putative
target genes. In Genevestigator, ABI3 is mainly expressed within the categories inflo-
rescence, silique, and seed. Based on that, the gene expression level of each putative
target gene is quantified by dividing the sum of its gene expression levels within these
three categories by the sum of gene expression levels in all categories. This provides
a quantitative measure subsequently referred to as Genevestigator score for analyzing
how a putative ABI3 target gene follows the expression profile of ABI3. Additionally,
transient assays have been performed in wet-lab experiments at the IPK Gatersleben
to test whether the promoters of putative ABI3 target genes in fusion with the glu-
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curonidase (GUS) reporter gene react on ABI3. The results are shown in Tab. 7.2
using anonymized gene identifiers because the work on a biological manuscript is
still in progress. Based on the Genevestigator score, 16 of 22 putative target genes
show significantly high scores at the level of the 95%-quantile 0.15 computed using
the Genevestigator scores of 1,000 randomly selected genes. The promoters of these
16 genes have been tested in transient assays, and 15 of these promoters can acti-
vate the GUS expression through ABI3. The promoter of gene T21 shows nearly a
two-fold repression of the GUS expression, which is not reflected by its Genevestigator
score. Interestingly, the genes T21 and T22 are in head-head orientation to each other,
and thus they have the potential to share a common promoter region. Based on the
results of the transient assays, the first gene might be repressed while the second is
activated. Hence, it seems that activation and repression signals can be transmitted
by ABI3 to these two target genes in head-head orientation via a common promoter
region. Additionally, 3 of these 15 target genes activated by ABI3 and the one with a
nearly two-fold repression have only been predicted by the SHMM(2). In contrast to
these 16 target genes, the 6 remaining putative target genes do not significantly differ
in their Genevestigator scores at the level of the 5%-95%-quantile range [ 0.02, 0.15 ]
based on the distribution of the Genevestigator scores for the 1,000 randomly selected
genes. Interestingly, 5 of these 6 putative target genes are in head-head orientation
to one of the previous target genes activated by ABI3. Next, the question if these 6
putative ABI3 target genes are also under control of ABI3 is addressed. To analyze
this, the promoters of 4 of these 6 putative target genes have been tested in transient
assays. The promoters of the genes T2 and T11 show a low activation of the GUS
expression, the promoter of gene T13 shows a two-fold repression of the GUS expres-
sion, and the promoter of gene T9 does not seem to react on ABI3. In addition to this,
gene T13 is in head-head orientation with gene T23 that is not represented by its own
promoter fragment on the promoter arrays. The Genevestigator score of T23 is signif-
icantly higher than those of the 1,000 random genes at the level of the 95%-quantile,
and the promoter of this gene shows activation of the GUS expression in a transient
assay. Hence, this gene pair seems to behave like the gene pair T21 and T22.
In summary, independent gene expression profiles from Genevestigator give first hints
which genes might be activated by ABI3. Additionally, transient assays help to validate
these results if the underlying test system is capable of simulating the natural situation
in seeds. In total, 20% of the target genes with high Genevestigator scores and ac-
tivation by ABI3 could be predicted only through the application of the SHMM(2) and
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ID LFC HMM SHMM GV TA

T1 1 1 1 0.94 5
T2 1 1 1 0.11 2.5
T3 1 1 1 0.86 12
T6 1 1 1 0.72 15
T7 1 1 1 0.90 7
T12 1 1 1 0.74 24
T13 1 1 1 0.09 0.4
T14 1 1 1 0.93 8
T16 1 1 1 0.95 27
T17 1 1 1 0.98 27
T19 1 1 1 0.98 27

ID LFC HMM SHMM GV TA

T20 1 1 1 0.57 8
T22 1 1 1 0.81 30
T11 0 1 1 0.09 2
T15 0 1 1 0.10 -
T18 0 1 1 0.98 27
T4 0 0 1 0.03 -
T5 0 0 1 0.39 3
T8 0 0 1 0.46 12
T9 0 0 1 0.07 1

T10 0 0 1 0.95 6
T21 0 0 1 0.20 0.6

Table 7.2: Overview of ABI3 target genes predicted by the LFC, the HMM, and the SHMM(2)
with scaling factor f2 = 4.0 at the level of the top 200 candidates in Fig. 7.5a. The ID column
contains anonymized target gene identifiers because a biological manuscript discussing indi-
vidual target genes is still in preparation. The numbers ’1’ and ’0’ in the method columns LFC,
HMM, and SHMM(2) specify whether a gene is predicted (’1’) or missed (’0’). GV (Genevesti-
gator score) quantifies the gene expression of a target gene within the categories inflorescence,
silique, and seed in relation to the gene expression levels in all categories. TA (Transient assay)
contains the measured fold-change of the GUS gene expression for a target gene promoter un-
der ABI3 expression in relation to this target gene promoter lacking the expression of ABI3.

would have been missed using the LFC or the HMM. Thus, the integration of addi-
tional information about gene pair orientations into the analysis of ABI3 promoter array
ChIP-chip data by the SHMM(2) has led to improved predictions of target genes. Also
with respect to the results obtained for the promoter array ChIP-chip of the yeast, the
SHMM(2) is a useful tool for the detection of target genes that could be considered for
the analysis of other data sets.

116



8 Analysis of Arabidopsis Array-CGH
Data

The method of array-based comparative genomic hybridization (Array-CGH) has been
widely applied to detect sequence polymorphisms like deletions or amplifications of
DNA segments between two genomes (Pinkel and Albertson (2005)). Currently, most
of the Array-CGH studies have their focus in cancer research (Beroukhim et al. (2010)).
Regarding the field of plant research, studies like those by Borevitz et al. (2003), Mar-
tienssen et al. (2005), or Fan et al. (2007) have been done for the model plant Ara-
bidopsis thaliana. In this chapter, an Array-CGH data set of A. thaliana comparing the
genomes of the two accessions C24 and Columbia (Col) is analyzed. This data set
is part of the experiments done by Banaei (2009) at the IPK Gatersleben utilizing a
whole-genome tiling array that represents the reference genome of Col that has been
sequenced by The Arabidopsis Initiative (2000). The whole-genome tiling array is a
high-density DNA microarray that contains thousands of genomic regions (tiles) of Col
for investigating their behavior in other accessions like C24. This tiling array enables
the identification of sequence polymorphisms in C24 relative to the genome sequence
of Col. With respect to the reference genome of Col, detectable sequence polymor-
phisms comprise genomic regions that are deleted or highly polymorphic in C24 and
genomic regions that are amplified in C24. Generally, an Array-CGH data set created
on a tiling array does not allow to distinguish between deleted or highly polymorphic
genomic regions. Both types of these sequence polymorphisms are associated with
reduced signal intensities. In the context of C24, deleted genomic regions are less
frequently present in the genome of C24 in comparison to their occurrence in Col.
For highly polymorphic genomic regions in C24, the tiles representing these genomic
regions in Col are affected in C24 by single nucleotide polymorphisms or small inser-
tions and deletions. Thus, deleted or highly polymorphic regions in C24 are expected
to have lower hybridization signals than in Col. In contrast to this, genomic regions
that are amplified in C24 are more frequently present in the genome of C24 in com-
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parison to Col leading to higher hybridization signals for C24 than for Col. To provide
an overview, the measurements of the Array-CGH data set comparing the genomes
of C24 and Col and the dependencies of these measurements in the context of the
underlying chromosomal locations are shown in Fig. 8.1. Based on the histogram of
measured log-ratios (Fig. 8.1 left), the majority of the genomic regions of C24 and
Col is expected to be unchanged. In addition to this, a large proportion of tiles tends
to be deleted or highly polymorphic in C24, whereas only a small fraction of tiles is
expected to represent genomic regions that are amplified in C24. The general goal
is to identify these sequence polymorphisms in the context of their chromosomal lo-
cations. Higher-order dependencies between measured log-ratios of adjacent tiles in
close chromosomal proximity are clearly observed for the Array-CGH data set (Fig. 8.1
right). The observation of these dependencies motivates the usage of the higher-order
HMM (HHMM(L)) and the parsimonious higher-order HMM (PHHMM(L)). Both mod-
els integrate these dependencies into the prediction of sequence polymorphisms of
the Array-CGH data set. To investigate whether the modeling of higher-order depen-
dencies improves the prediction of sequence polymorphisms, the HHMM(L) and the
PHHMM(L) are compared to the standard first-order HMM that only considers depen-
dencies between two directly adjacent tiles on a chromosome. Besides this, further
comparisons are made against frequently used methods for the analysis of Array-CGH
data summarized in Tab. 6.1 provided by the ADaCGH web-server (Diaz-Uriarte and
Rueda (2007)). All these models are compared based on deleted or highly polymorphic
genomic regions that have been identified in the genome of C24 with respect to Col
using two independent resequencing technologies. In the frame of a cooperation at the
IPK Gatersleben, deleted or highly polymorphic genomic regions determined by SOLiD
resequencing (Applied Biosystems (2009)) of C24 are considered for the validation of
the models. Additionally, publicly available deleted or highly polymorphic regions in
C24 identified in Affymetrix resequencing data for C24 by Clark et al. (2007) are con-
sidered too. Thus, these two validation data sets provide the opportunity to investigate
which model is appropriate for the analysis of the Array-CGH data set. Moreover, it is
also analyzed what is functionally behind the genomic regions in which the genomes
of C24 and Col differ.

Goals of this Chapter

1. More details to the Array-CGH data set for comparing the genomes of the acces-
sions C24 and Col are given.

118



8. Analysis of Arabidopsis Array-CGH Data

2. HMM-based approaches for the analysis of the Array-CGH data set are devel-
oped and related methods are briefly summarized.

3. The potential of the HHMM(L) for modeling the higher-order dependencies of
log-ratios in the Array-CGH data set is investigated.

4. The SOLiD and Affymetrix resequencing data sets for the validation of the pre-
dictions on the Array-CGH data set are introduced.

5. The performances of the HMM, the HHMM(L), and the PHHMM(L) on the Array-
CGH data set are evaluated and compared to related methods.

6. Selected tree structures that underlie the PHHMM(L) are investigated and the
predictions are analyzed in the context of the genome annotation.
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Figure 8.1: Overview of the Array-CGH data set by Banaei (2009) comparing the genomes of
C24 and Col. Left: Histogram of log-ratios for the 364,339 measured tiles (genomic regions).
The log-ratio of a tile represents the ratio between the DNA fragments of C24 compared to
the DNA fragments of Col hybridized to this tile on the DNA microarray. Most parts of the
genomes of C24 and Col tend to be unchanged with log-ratios of about zero. Deleted or highly
polymorphic genomic regions in C24 have log-ratios much less than zero, and amplified regions
in C24 tend to have log-ratios much greater than zero. Right: Higher-order dependencies
between log-ratios measured for adjacent tiles in close chromosomal proximity characterized by
partial autocorrelations (Gottman (1981)). The weighted mean partial autocorrelation function
(PACF) of the log-ratios of the five chromosomes in the Array-CGH data set is shown for an
increasing lag of tiles. The PACF of a chromosome is weighted by its proportion of log-ratios
in relation to the total number of log-ratios in the Array-CGH data set. Positive higher-order
partial autocorrelations are clearly present in the data set. These dependencies are lost if the
log-ratios of a chromosome are randomly permuted.
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8. Analysis of Arabidopsis Array-CGH Data

8.1 Arabidopsis Array-CGH Data Set

The Array-CGH data set has been provided by Banaei (2009) within a cooperation at
the IPK Gatersleben. The comparison of the genomes of the A. thaliana accessions
C24 and Col has been done based on DNA extracted from leaf tissue using the Array-
CGH technology reviewed by Pinkel and Albertson (2005). The obtained DNA of each
accession has been sheared into smaller DNA segments of lengths between about 300
bp up to 900 bp. The resulting DNA segments have been labeled by a specific fluo-
rescent dye for each accession. The obtained labeled single-stranded DNA segments
of both accessions have then been hybridized simultaneously in a competitive style to
a NimbleGen tiling array that represents the reference genome of accession Col. The
reference genome of Col has been sequenced by The Arabidopsis Initiative (2000).
The size of this genome comprises about 119 Mb (TAIR8). The tiling array represents
the genome of Col by 364,339 single-stranded DNA fragments (tiles) of sizes about
60 bp. The tiles are distributed nearly equidistantly over the five chromosomes with a
mean distance of 350 bp for two adjacent tiles on a chromosome. The measurement
obtained for each tile t of chromosome k on the tiling array is the normalized log-ratio
ot(k) := log2(I

k
t (C24)/Ikt (Col)) of the fluorescent intensity Ikt (C24) measured for C24

in relation to the fluorescent intensity Ikt (Col) measured for Col. All Tk log-ratios of a
chromosome k are represented in increasing order of their chromosomal locations by
the emission sequence ~o(k) = (o1(k), . . . , oTk

(k)). In total, five emission sequences
that represent the five chromosomes of A. thaliana are obtained from the tiling array.
An overview of the log-ratios in the Array-CGH data set is given by the histogram in
Fig. 8.1. The asymmetry of this histogram might be caused due to the design of the
tiling array that only represents DNA segments of the reference genome of Col mean-
ing that DNA segments that only exist in C24 but not in Col cannot be quantified by this
approach.

8.2 Methods for Array-CGH Data Analysis

8.2.1 Hidden Markov Model approaches

Models: A basic three-state architecture shown in Fig. 8.2 with states S := {−,=,+}
and state-specific Gaussian emission densities is used to identify sequence polymor-
phisms in C24 in comparison to Col. With respect to the log-ratios shown in Fig. 8.1,
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non-polymorphic regions with log-ratios about zero are modeled by the state ’=’. The
state ’−’ models deleted or highly polymorphic genomic regions in C24 represented by
log-ratios much less than zero, and amplifications in C24 with log-ratios much greater
than zero are modeled by the state ’+’. The three-state architecture in Fig. 8.2 repre-
sents the basis of the HHMM(L) and the PHHMM(L). Generally, the usage of these
models is motivated through the observation of higher-order dependencies of log-ratios
on a chromosome. As indicated by highly positive partial autocorrelations in Fig. 8.1,
these dependencies are clearly present in the Array-CGH data set. The HHMM(L) and
the PHHMM(L) are applied to this data set by considering each order L in the range of
one up to five. Like specified in Tab. 3.1, the HMM is as a special case of the HHMM(L)

of order L = 1. Models with additional transition classes like the HHMM(L,C) or the
PHHMM(L,C) are not considered, because the tiles measured in the Array-CGH data
set are distributed nearly equidistantly along the chromosomes. Thus, the most gen-
eral model applied here is the PHHMM(L) that includes the HMM and HHMM(L) as
special cases.

−

=

+

−2 0 2

−5 −3 −1 −1.0 1.5 4.0

Figure 8.2: The basic three-state architecture of the HMM, the HHMM(L), and the PHHMM(L)
used for the analysis of Array-CGH data. The states S := {−, =, +} are represented by labeled
circles and corresponding state-specific Gaussian emission densities. Arrows represent the
possible state transitions.

Prior: The prior defined in (3.29) provides the basics for each model to distinguish
between polymorphic and non-polymorphic regions with respect to the given log-ratios
in the Array-CGH data set. A histogram of log-ratios like shown in Fig. 8.1 helps to
characterize the states of each model by proper prior parameters. Based on this, the
means of the Gaussian emission densities of the emission prior defined in (3.32) are
set to η− = −3, η= = 0, and η+ = 1.5. Motivated through the observation that most
log-ratios are distributed around zero and that the distribution of the log-ratios has a
larger left tail than a right one, the scale parameters ε− = ε= = 1 and ε+ = 5, 000 are
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used to provide more flexibility for the training of the means of the states ’−’ and ’=’
than for the mean of the state ’+’. The shape parameter ri and the scale parameter αi
of the emission prior of each state i ∈ S are set in dependence of the number of log-
ratios T = 364, 339 in the Array-CGH data set and their standard deviation s = 0.668 to
ri = T/2 and αi = T · s2/2. The parameter ϑi of the prior of the initial state distribution
defined in (3.30) is set to ϑi = 3L for each state i ∈ S. For the transition prior given
in (3.31), the parameter ϑij(1) = 3L−t is used for each state context i ∈ St of length
1 ≤ t ≤ L and each next state j ∈ S. Finally, the parameter ϕ of the tree structure prior
(4.7) must be specified for the PHHMM(L) to enable the parsimonious representation
of the transition parameters. The values of ϕ are generally depending on the size of the
data set. All initial models have completely fused trees for log(ϕ) = −30, 000. The range
of log(ϕ) from −23, 000 up to 0 has been considered to obtain parsimonious trees. This
range is considered in steps of 1, 000 for −23, 000 to −1, 000, in steps of 100 for −1, 000

to −100, and finally from −100 up to 0 in steps of 10. Complete trees that underlie the
HMM and the HHMM(L) are obtained for each initial model by log(ϕ) = 10 at latest.

Initialization: Each initial model in Fig. 8.2 should be able to distinguish between non-
polymorphic regions modeled by the state ’=’ and polymorphic regions represented
by the states ’−’ and ’+’. For that reason, the initial means of the Gaussian emission
densities are set to µ− = −3, µ= = 0, and µ+ = 1.5 with respect to the initial overview
of the Array-CGH data set shown in Fig. 8.1. The corresponding initial standard de-
viation σi of each state i ∈ S is set to the standard deviation of the log-ratios in the
Array-CGH data set given by 0.668. The parameters of the initial state distribution and
the transition parameters of each model are sampled from the corresponding start and
transition prior.

Training: For the training of each PHHMM(L) in combination with each of the previ-
ously specified values of log(ϕ) twenty different initial models are considered for each
combination. Each PHHMM(L) of order L ranged from one up to five is trained using
the Bayesian Baum-Welch algorithm developed in Sec. 4.4. This training algorithm
includes the biological prior knowledge specified by the prior. The training of each
PHHMM(L) is stopped if the improvement of the log-posterior of two successive iter-
ation steps is less than 10−9. The HMM and the HHMM(L) are obtained as special
cases of the PHHMM(L) with complete tree structures.

Detection of deleted or highly polymorphic genomic regions: Putatively deleted
or highly polymorphic genomic regions in C24 are expected to have negative log-ratios
in the Array-CGH data set (Fig. 8.1). To quantify the potential that a tile represents

122



8. Analysis of Arabidopsis Array-CGH Data

these sequence polymorphisms, a score is computed for each tile under the HMM, the
HHMM(L), or the PHHMM(L). The score of a tile t on chromosome k is computed
via the state-posterior γkt (’−’) given in (3.6). The state-posterior quantifies the proba-
bility of a tile to be represented by the state ’−’ modeling deleted or highly polymorphic
regions. Based on this score, all tiles in the Array-CGH data set are ranked accord-
ing to their potential to represent a deleted or highly polymorphic genomic region. The
ranked tiles can be associated via their genomic locations to deleted or highly polymor-
phic regions known from independent validation experiments. This allows to compare
the prediction behavior of different models for fixed false positive rates.

8.2.2 Related approaches for the analysis of Array-CGH data

The analysis of the Array-CGH data set shown in Fig. 8.1 by publicly available methods
provides the opportunity for the comparison to the HMM-approaches. The standard
method for the analysis of the Array-CGH data set measured on a NimbleGen tiling
array is the segMNT algorithm by Roche NimbleGen, Inc. (2008). Additionally, the
ADaCGH web-server by Diaz-Uriarte and Rueda (2007) provides different methods
from the field of cancer research that can be tested on the Array-CGH data set. A
summary of methods of the ADaCGH web-server is given in Tab. 6.1. The segMNT
algorithm and all methods provided by the ADaCGH web-server are used to predict
deleted or highly polymorphic genomic regions in C24. The obtained prediction results
are compared to the developed HMM-approaches.

8.3 Arabidopsis Array-CGH Data Analysis

8.3.1 Analysis of dependencies between log-ratios

The log-ratios measured for the tiles along a chromosome in the Array-CGH data set
represent a spatial sequence of data in the genomic context. The linear dependency
of two log-ratios in a lag of l tiles with removed linear dependency of all log-ratios
between these two log-ratios is quantified by the value of the partial autocorrelation
function (PACF) at lag l. The PACF at lag l can be computed like described in the text-
book of Gottman (1981) through the estimation of an autoregressive model of order l.
An autoregressive model of order l estimated from a sequence of data represents all
values of the PACF of this sequence up to lag l, and for greater lags the PACF is zero.
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The PACF is specifically useful in time series analysis for determining the order of an
autoregressive model (Gottman (1981)).
Here, it is investigated how the PACF of the Array-CGH data set can be modeled by the
HHMM(L) of order L ranged from zero up to five. Each trained HHMM(L) has been
used to sample 100 emission sequences with 10,000 log-ratios. Based on this, the
PACF has been computed for the sampled emission sequences of each HHMM(L).
The results are shown in Fig. 8.3. As expected from theory, the mixture model of
Gaussian emission densities (e.g. Bilmes (1998)) represented by the HHMM(0) does
not model dependencies between two log-ratios in any lags. The modeling of depen-
dencies by the standard first-order HHMM(1) clearly improves the representation of
the PACF of the Array-CGH data set. This behavior is further improved by the usage
of the HHMM(2) for lags greater than one. The best models are the HHMM(3), the
HHMM(4), and the HHMM(5) that better model the PACF of the Array-CGH data set
than the HHMM(2) for lags greater than two. However, especially for lag one all these
models clearly underestimate the PACF of the Array-CGH data set. One reason for this
is the difference between the hybridization of DNA segments to create the log-ratios
measured for the Array-CGH data set and the sampling of log-ratios from state-specific
Gaussian emission densities. The DNA segments hybridized to the tiles have lengths
up to 900 bp. Thus, log-ratios measured for directly adjacent tiles on a chromosome
with distance about 350 bp are expected to be more similar to each other than log-
ratios that are sampled from a state-specific Gaussian emission density that has to
cover a larger range of log-ratios. The PACF of the Array-CGH data set could of cause
be modeled perfectly by an autoregressive model, but this model class does not allow
to predict deleted or highly polymorphic genomic regions as well as amplified genomic
regions. However, this prediction can be done directly using HMM-based approaches.

8.3.2 SOLiD and Affymetrix resequencing data for validating the
Array-CGH data set

Two large-scale resequencing data sets by SOLiD and Affymetrix provide the opportu-
nity to validate deleted or highly polymorphic regions in C24 that have been predicted in
the Array-CGH data set. SOLiD is one of the next-generation sequencing technologies
(Shendure et al. (2005); Mardis (2008); Applied Biosystems (2009)) that has been used
to resequence the genome of C24 (Prof. Dr. T. Altmann, IPK Gatersleben, unpublished

124



8. Analysis of Arabidopsis Array-CGH Data

●

●

●

●

●
●

●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●

1 2 3 4 5 6 8 10 13 20 30 507
lag

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
A

C
F

Original Data
HHMM(0)
HHMM(1)
HHMM(2)
HHMM(3)
HHMM(4)
HHMM(5)

● ●
●

●
● ● ● ●

●
●

●
● ● ●

● ●
● ● ●

● ● ● ●
● ●

● ●

● ●
● ●

● ●
●

●
●

●

●
●

●

●
● ● ●

● ●
● ●

●
●

●

●

●

●

●

● ●
● ● ●

● ●
●

●

●

●
● ●

●

●
●

● ●
● ● ● ●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

● ● ●
●

● ● ● ●
● ● ●

●

●
● ● ●

●

●
● ●

● ●
●

● ●
●

● ●
●

●
● ● ●

● ●

●

●

●

●

●

●

●

● ●
● ●

●
● ●

●

●

●

●
● ● ●

●
●

● ● ● ●
● ● ●

● ●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

● ● ● ●

●

●

●

●

●

●

●

●

● ●

●
● ●

●

●
● ●

●

●
●

●
● ●

●

●
● ● ● ● ●

●
● ●

● ●
●

●

●

● ● ● ● ●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
● ●

● ●

● ● ● ● ● ●
●

●
●

● ●
● ●

●
●

●

●
● ●

● ●
●

● ●
● ●

●
●

●
●

● ●

●
● ●

● ●
●

Figure 8.3: Overview of the partial autocorrelation function (PACF) obtained for the Array-CGH
data set and for data sampled from the trained HHMM(L). Here, the value of the PACF at
lag l is defined to be a weighted mean specified by the sum over each individual PACF of a
chromosome at lag l weighted by its proportions of log-ratios in relation to the total number
of log-ratios in the Array-CGH data set. The PACF of the log-ratios measured for the five
chromosomes in the data set is shown in orange. The PACF shown for each HHMM(L) is
computed based on 100 artificial chromosomes with 10,000 log-ratios sampled from this model.
The HHMM(0) is a mixture model of Gaussian densities that does not model dependencies
between adjacent log-ratios on a chromosome. The HHMM(1) is the standard first-order HMM.
To ease the comparison, the lag-axis is plotted in logarithmic scale, and the PACFs computed
for the HHMM(L) are plotted slightly shifted for of each lag.
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data). Affymetrix resequencing is based on high-density oligonucleotide arrays and
has been applied by Clark et al. (2007) to resequence twenty accessions of A. thaliana
including C24. Subsequently, the results obtained by SOLiD and Affymetrix are used
to create two independent validation data sets for the Array-CGH-based genome com-
parison of C24 to Col.

SOLiD resequencing data of C24

The genome of C24 is represented in the SOLiD data set by reads of length 35 bp. All
these reads have been mapped back to the TAIR8 reference genome sequence of Col
using the standard software of Applied Biosystems (2009). This software considers a
genomic region of 35 bp in Col as covered by a SOLiD read of C24 if the read of C24
and the genomic region of Col do not differ in more than 3 bp. Genomic regions of Col
that have not been covered by reads of C24 are strong candidates of deleted or highly
polymorphic regions for C24 in comparison to Col. These candidate regions have been
mapped to the 364,339 tiles of 60 bp length that represent the genome of Col in the
Array-CGH data set. Each tile that has been covered to a certain percentage by such
a candidate region is labeled as being putatively deleted or highly polymorphic. In the
following, a stringent and a less stringent coverage are considered for the validation of
the Array-CGH data. A stringent coverage of at least 75% (at least 45 of 60 bp of a
tile) results in 38,567 tiles labeled as deleted or highly polymorphic and 325,772 non-
labeled tiles. Subsequently, this labeled Array-CGH data set is denoted as the SOLiD
75% validation data set. For a less stringent coverage of at least 40% (at least 24 of
60 bp of a tile), 50,397 tiles have been labeled as deleted or highly polymorphic and
313,942 tiles remain non-labeled. This data set is denoted as the SOLiD 40% validation
data set. As indicated in Fig. 8.4, a large proportion of tiles labeled as deleted or highly
polymorphic is associated with log-ratios much less than zero in the Array-CGH data
set. Thus, a large proportion of these tiles should also be predicted as deleted or
polymorphic in the Array-CGH data set.

Affymetrix resequencing data of C24

The Affymetrix resequencing data of C24 created by Clark et al. (2007) has been fur-
ther analyzed by Zeller et al. (2008) resulting in deleted or highly polymorphic candidate
regions in C24 in comparison to the TAIR8 reference genome sequence of Col. These
candidate regions have been used to identify all tiles in the Array-CGH data set that
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are covered by at least 45 bp (75% coverage) or by at least 24 bp (40% coverage).
Under the 364,339 tiles in the Array-CGH data set, 11,025 tiles have been labeled as
deleted or highly polymorphic and 353,314 tiles remain non-labeled for a coverage of
75%. Subsequently, it is referred to this data set as the Affymetrix 75% validation data.
In analogy, the Affymetrix 40% validation data set is specified by 24,231 tiles that have
been labeled as deleted or highly polymorphic and 340,108 non-labeled tiles at a less
stringent coverage of 40%. Fig. 8.4 shows that the Affymetrix resequencing data pro-
vides the opportunity to validate deleted or highly polymorphic genomic regions of the
Array-CGH data set. Most of the labeled tiles have log-ratios much less than zero as
expected from Fig. 8.1 for putatively deleted or highly polymorphic regions in C24.

Notes on SOLiD and Affymetrix data sets

The reference genome of accession Col has about 119 Mb. About 16.6 Mb of this ref-
erence genome have not been covered by reads of C24 using the SOLiD resequencing
technology. Considering the results obtained for the Affymetrix resequencing technol-
ogy, about 7.9 Mb in C24 are deleted or highly polymorphic in comparison to Col. That
means, the SOLiD technology has provided more than twice the number of putatively
deleted or polymorphic DNA bases than Affymetrix. On the one hand, the high number
of deleted or polymorphic DNA bases identified by SOLiD could be biased through the
short read length of 35 bp, sequencing errors or highly polymorphic reads that could
not be mapped back to the reference genome of Col. On the other hand, the number
of deleted or polymorphic DNA bases provided by Zeller et al. (2008) for the Affymetrix
resequencing data set of C24 might be to small, because their method performed bet-
ter for coding sequences that have a higher GC content and sequence complexity than
non-coding sequences. The differences of both resequencing technologies can also
be clearly seen in Fig. 8.4 for the mapping of putatively deleted or highly polymorphic
regions to the corresponding tiles in the Array-CGH data set. Here, a certain propor-
tion of putatively deleted or highly polymorphic regions of the SOLiD validation data is
associated with log-ratios about zero in the Array-CGH data set. Thus, based on the
Array-CGH data set, one would expect that the underlying genomic regions are not
deleted or highly polymorphic between C24 or Col. Reasons for these differences can
be limitations in the mapping of reads due to the short read length, sequencing errors
or highly polymorphic reads occurring in SOLiD data sets like described by Ondov et al.
(2008). Thus, one cannot expect to predict many of these putatively deleted or highly
polymorphic regions with log-ratios about zero in the Array-CGH data set. Anyhow,
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both the SOLiD and the Affymetrix resequencing data sets provide the opportunity to
independently validate predictions of deleted or highly polymorphic genomic regions in
the Array-CGH data set.
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Figure 8.4: Overview of the measured log-ratios of tiles in the Array-CGH data set that have
been identified as deleted or highly polymorphic by SOLiD or Affymetrix resequencing. A tile
that is covered to at least 75% or 40% by a deleted or highly polymorphic region of a rese-
quencing experiment is labeled as deleted or highly polymorphic in the Array-CGH data set.
The cumulative distribution of all log-ratios of the Array-CGH data set is shown in black, that
for log-ratios of tiles that have been labeled as deleted or highly polymorphic by SOLiD are
shown in green, and that for log-ratios of tiles labeled as deleted or highly polymorphic by
Affymetrix are shown in blue. Putatively deleted or highly polymorphic regions given by SOLiD
or Affymetrix are clearly associated with negative log-ratios measured in Array-CGH. The re-
sulting cumulative distributions for the two independent resequencing technologies SOLiD and
Affymetrix are clearly different.

8.3.3 Performance of HHMMs on the Array-CGH data set

Putatively deleted or highly polymorphic genomic regions of C24 in the Array-CGH
data set are modeled by the state ’−’ of the three-state architecture of the HMM and
the HHMM(L) shown in Fig. 8.2. The potential that a tile in the Array-CGH data set
represents such a sequence polymorphism is quantified by the probability that this
tile is modeled by state ’−’. Based on that, all tiles in the Array-CGH data set have
been ranked by decreasing values of the corresponding probabilities. The tiles in the
resulting ranking list that represent putatively deleted or highly polymorphic regions
in C24 are known from the SOLiD and the Affymetrix resequencing data. This al-
lows to compare the HMM and the HHMM(L) based on the true positive rate (TPR)
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of predicted deleted or highly polymorphic regions reached for a fixed false positive
rate (FPR). The mean TPRs obtained for the twenty different initializations of the HMM
and the HHMM(L) for a fixed FPR of 1% are shown in Fig. 8.5 separately for the
SOLiD and the Affymetrix resequencing validation data. For the stringent SOLiD 75%
validation data, the standard first-order HMM performs better than the higher-order
HHMM(L) that shows a decreasing mean TPR for increasing order L. This behav-
ior has changed completely for the less stringent SOLiD 40% validation data. Tiles
that are not labeled as deleted or highly polymorphic in the stringent SOLiD 75% val-
idation data set are indeed covered by a deleted or highly polymorphic region in the
less stringent SOLiD 40% validation data set. These deleted or highly polymorphic
regions are also present in the measured log-ratios of the corresponding tiles in the
Array-CGH data set. The higher-order HHMM(L) is better able to recognize these
effects on the log-ratios than the standard first-order HMM. In more detail, the best
model for the SOLiD 40% validation data set is the fourth-order HHMM(4), and the
fifth-order HHMM(5) is on the level of the third-order HHMM(3) and the second-order
HHMM(2). All these higher-order HHMM(L) perform clearly better than the standard
first-order HMM. Considering the Affymetrix resequencing data mapped to the Array-
CGH data set, for both, the Affymetrix 75% and the Affymetrix 40% validation data
sets, the higher-order HHMM(L) performs clearly better than the standard first-order
HMM. For the Affymetrix 75% validation data set, the fourth-order HHMM(4) is the best
model, and the fifth-order HHMM(5) is clearly below the second-order HHMM(2). The
best model on the less stringent Affymetrix 40% validation data set is the fifth-order
HHMM(5) that is slightly better than the fourth-order HHMM(4). Generally, the us-
age of the HHMM(L) shows a clear improvement of the prediction of deleted or highly
polymorphic regions in C24 in comparison to the standard first-order HMM except for
the stringent SOLiD 75% validation data. Subsequently, it is investigated whether this
improvement can be further increased by using the PHHMM(L).

8.3.4 Performance of PHHMMs on the Array-CGH data set

The PHHMM(L) provides the opportunity to reduce the model complexity of the
HHMM(L) and this might effect the prediction of deleted or highly polymorphic re-
gions in C24 for the Array-CGH data set. The complexity of a model is given by the
number of leaves in its corresponding tree that represents the transition parameters for
state contexts i ∈ SL of length L. The model complexity of each PHHMM(L) of initial
order L is controlled via the value ϕ of the tree structure prior. For the prediction of
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Figure 8.5: Overview of the mean TPRs obtained at a fixed FPR of 1% for the twenty different
initializations of the HMM and the HHMM(L) of order L = 2 up to L = 5 on the Array-CGH
data set under consideration of the SOLiD and the Affymetrix resequencing validation data.
The top graphics represent the results obtained for the stringent coverage of 75% and the
bottom graphics show the results obtained for the less stringent coverage of 40%. The obtained
standard deviations of the TPRs were smaller than the size of the shown points.
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deleted or highly polymorphic regions, the ranking list of the tiles has been created for
each PHHMM(L) as described for the HHMM(L) in the previous section. To investi-
gate how the PHHMM(L) behaves in comparison to the results of the HMM and the
HHMM(L) shown in Fig. 8.5, the mean TPRs have been determined separately at the
same level of 1% FPR for the SOLiD and the Affymetrix validation data. All PHHMM(L)

with model complexity of 1 had have mean TPRs much less than those obtained for
the HMM in Fig. 8.5. Thus, these models are not further considered. The results of all
other PHHMM(L) are shown in Fig. 8.6. For both, the SOLiD and the Affymetrix vali-
dation data, the mean TPR at a fixed FPR of 1% is improved in almost all cases by the
application of a PHHMM(L) in comparison to the results obtained for the HHMM(L)

shown in Fig. 8.5. The best models for the SOLiD 75% validation data have a model
complexity of two leaves, which is one leaf less than represented by the complete tree
in Fig. 4.1 that is underlying the first-order HMM. Thus, for this validation data set highly
parsimonious models like the PHHMM(1) with a model complexity of two leaves per-
form best. However, like motivated in the previous section, the SOLiD 75% validation
data set tends to be too stringent. This is clearly indicated by the results obtained for
the less stringent SOLiD 40% validation data, for which the higher-order PHHMM(L)

performs better than the first-order PHHMM(1). The best models for the SOLiD 40%
validation data set are among the PHHMM(4) and the PHHMM(5) with a model com-
plexity of more than 27 leaves. Considering the Affymetrix validation data, the mean
TPR at a fixed FPR of 1% is clearly improved by the PHHMM(L) in comparison to the
corresponding HHMM(L) for the stringent Affymetrix 75% validation data. The best
models of the PHHMM(2) up to the PHHMM(5) have a mean model complexity in the
range of about 3 up to 9 leaves. In this range, the best mean TPRs are obtained for
the PHHMM(4) and the PHHMM(5). For the less stringent Affymetrix 40% validation
data set, the best models among the PHHMM(2), the PHHMM(3), and the PHHMM(5)

obtain mean TPRs comparable to that obtained for the corresponding HHMM(L) by
having a much lower model complexity. Only the PHHMM(4) represents models that
are clearly better than the corresponding HHMM(4). In summary, this study has shown
that the application of the PHHMM(L) at a typical FPR of 1% leads in most cases to an
improved prediction of deleted or highly polymorphic genomic regions in C24 in com-
parison to the corresponding HHMM(L). Subsequently, selected tree structures of the
PHHMM(2) are investigated.
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Figure 8.6: Overview of the mean TPRs obtained at a fixed FPR of 1% for the different initial-
izations of each PHHMM(L) with initial order L on the Array-CGH data set under consideration
of the SOLiD and the Affymetrix validation data. The mean number of leaves quantifies the
complexity of each model for its twenty different initializations. The top graphics represent the
results obtained for the stringent coverage of 75%, and the bottom graphics that for the less
stringent coverage of 40%. For each PHHMM(L) the corresponding HHMM(L) with the high-
est model complexity of 3L leaves is the rightmost point of the corresponding points shown for
this PHHMM(L). The mean TPRs of the HHMM(L) at a fixed FPR of 1% are also separately
shown in Fig. 8.5.
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8.3.5 Selected tree structures of PHHMMs

The tree structure obtained for a PHHMM(L) represents the equivalence classes of
state contexts i ∈ SL of length L for transitions from the current state of the state con-
text i to a next state j ∈ S. The HHMM(L) with a complete tree, which contains each
state context in a single equivalence class, is a special case of the PHHMM(L). Some
selected trees that can underlie the PHHMM(1) and the PHHMM(2) are illustrated in
Fig. 4.1. The model complexity of the HHMM(L) is reduced by the PHHMM(L) based
on a parsimonious representation of the state contexts. For the Array-CGH data set, an
overview of selected tree structures obtained for the PHHMM(2) of initial order two is
shown in Fig. 8.7. The HHMM(2) is represented by the complete tree with nine leaves.
The fusion of nodes in this tree to the parsimonious tree with five leaves results in a
specific PHHMM(2). For this model a transition from the state ’+’ is independent from
the previous state. That means, the state ’+’ does no longer represent second-order
transition probabilities like in the HHMM(2), instead it represents first-order transition
probabilities like an HMM. Additionally, for a transition from the state ’−’ there is no
longer a separate treatment of its previous states ’+’ and ’−’. In analogy, state ’=’ does
no longer differentiate between its previous states ’=’ or ’+’. All these fusions of nodes
in the complete tree structure of the HHMM(2) have led to a parsimonious represen-
tation that reaches the same TPR like the HHMM(2) on the SOLiD and the Affymetrix
validation data at a fixed level of 1% FPR (TPRs: SOLiD 75%: 33.34%, SOLiD 40%:
32.62%, Affymetrix 75%: 64.14%, and Affymetrix 40%: 48.71%). An improved TPR of
64.56% on the Affymetrix 75% validation data set is reached by the PHHMM(2) repre-
sented by the parsimonious tree with three leaves shown in Fig. 8.7. For this model a
transition from the state ’−’ is no longer depending on its previous state, and the states
’=’ and ’+’ of this PHHMM(2) share the same transition probabilities. However, in com-
parison to the HHMM(2) this PHHMM(2) has slightly reduced TPRs on the three other
validation data sets (TPRs: SOLiD 75%: 33.31%, SOLiD 40%: 32.48%, and Affymetrix
40%: 48.58%). Subsequently, the performance of the PHHMM(L) is compared to that
of the HHMM(L) for a higher FPR.

8.3.6 Comparison of PHHMMs and HHMMs at a higher FPR

The PHHMM(L) has initially been compared in Fig. 8.6 to the HHMM(L) based on the
mean TPR that has been reached for a fixed FPR of 1%. The choice of a fixed FPR
allows to control the number of tiles that are wrongly predicted as deleted or highly poly-
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HHMM(2) PHHMM(2)
Complete Tree Parsimonious Tree Best Tree

Figure 8.7: Overview of selected tree structures obtained for the PHHMM(2) of initial order
two on the Array-CGH data set. The trees represent the equivalence classes of state con-
texts i ∈ S2 of length 2 for the transition parameters. Specific fusions of nodes in the trees
are colored. The HHMM(2) and the PHHMM(2) with the parsimonious tree reach both the
identical performance for the SOLiD and the Affymetrix validation data sets. The PHHMM(2)
with the shown best tree reaches the highest TPR on the Affymetrix 75% validation data set in
comparison to the HHMM(2).

morphic in the Array-CGH data set under consideration of validation data. In this sec-
tion, it is investigated how the HHMM(L) and the PHHMM(L) behave at a higher FPR
of 2.5%. The results are shown in Fig. 8.8. Generally, the higher-order PHHMM(L) per-
forms clearly better on all SOLiD and Affymetrix validation data sets than the first-order
PHHMM(1). For the SOLiD 75% validation data, the third-order PHHMM(3) and the
fifth-order PHHMM(5) reach a higher mean TPR than the corresponding HHMM(L).
In addition to this, in contrast to the results obtained for this validation data at a FPR
of 1% (Fig. 8.6), the higher-order PHHMM(L) predicts deleted or highly polymorphic
regions clearly better than the first-order PHHMM(1) at the higher FPR of 2.5%. That
means, the additional tiles that are predicted by the higher-order PHHMM(L) at the
FPR of 2.5% are more frequently associated with a deleted or highly polymorphic re-
gion present in the SOLiD data in comparison to the additional tiles predicted by the
PHHMM(1). For the SOLiD 40%, the Affymetrix 75%, and the Affymetrix 40% valida-
tion data, the best PHHMM(L) models reach a mean TPR that is comparable to that
obtained by the corresponding HHMM(L). The advantage of the PHHMM(L) is that it
requires a much lower model complexity to obtain this performance. That means, such
a PHHMM(L) represents a smaller number of independent transition parameters than
the corresponding HHMM(L). The best models for the SOLiD 40% and the Affymetrix
40% validation data are represented by the fifth-order PHHMM(5) within the model
complexity between 27 and 81 leaves. Interestingly, only for the SOLiD 40% validation
data the mean TPR of the PHHMM(L) increases with the order of L. For the SOLiD
75% and the Affymetrix 40% validation data, the third-order PHHMM(3) performs better
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than the fourth-order PHHMM(4), and both models reach nearly the same mean TPR
for the SOLiD 40% validation data. In contrast to this, the PHHMM(4) performs best
on the Affymetrix 75% validation data. To better characterize this model, a selected
tree structure obtained among the best PHHMM(4) models is shown in Fig. 8.9. The
corresponding PHHMM(4) still represents some specific fourth-order transition prob-
abilities for the states ’−’ and ’=’, whereas those of state ’+’ are completely reduced
to second-order transition probabilities. The TPR of 83.22% obtained for this model at
2.5% FPR is slightly better than that of the corresponding HHMM(4).
In summary, at a higher FPR of 2.5% more complex models are required to reach the
best performance. Generally, the third-order PHHMM(3), the fourth-order PHHMM(4),
and the fifth-order PHHMM(5) showed the best performance among all validation data
sets. The mean model complexity of these best models is more shifted into the range
of 9 to 81 leaves in comparison to the range of 3 to 9 leaves at a FPR of 1% in Fig. 8.6.
Thus, more complex models should be preferred at this higher level of FPR. Generally,
at a higher level of FPR the prediction of deleted and highly polymorphic genomic re-
gions present in validation data becomes more and more difficult, because more and
more log-ratios measured for the tiles that are predicted as deleted or highly poly-
morphic in the Array-CGH data set are closer to log-ratios measured for tiles that
are considered as unchanged between C24 and Col based on the validation data
(Fig. 8.4). These difficulties tend to be managed best by a more complex higher-order
PHHMM(L). Subsequently, this model is compared to other methods for analyzing
Array-CGH data.

8.3.7 Comparison of PHHMMs to other methods

The PHHMM(L) has initially been shown in Fig. 8.6 and Fig. 8.8 to have a good perfor-
mance to predict deleted or highly polymorphic regions in the genome of C24. Here, it
is investigated how this model behaves in comparison to other methods for analyzing
Array-CGH data. The standard method for the analysis of the Array-CGH data set is
the segMNT algorithm by Roche NimbleGen, Inc. (2008). For that reason, the pre-
dictions made by Roche NimbleGen with segMNT have been included. In addition to
this, all methods summarized in Tab. 6.1 provided through the ADaCGH web-server
by Diaz-Uriarte and Rueda (2007) have been tested on the Array-CGH data set. From
these seven methods only ACE, CBS, FHMM, and GLAD could work with the huge
number of measurements contained in the Array-CGH data set. The visual inspection
of the prediction results has shown that only FHMM and GLAD are usable for the com-

135



8. Analysis of Arabidopsis Array-CGH Data

SOLiD 75% at FPR 2.5% Affymetrix 75% at FPR 2.5%

●●●
●●●
●●●
●●●●
●

●

●

●

●
●

●
●

●

●●
●

●●●●
●●● ● ● ●

● ●

●●
●●●●●●
●●●●●

●

●

●
●

●
●
●●

●
●●●●●●●●●

● ●
●

● ●

●●
●●●
●●●●●●
●●

●

●
●

● ●
●

●●●

●●

●●●●
●●●● ●● ●

●

●
●
●
●●●●●●
●●●
●

●

●

●
● ●

●

●
●● ●●●●●●●●●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

2 9 27 81 2433
Mean Number of Leaves

42.15

42.40

42.65

M
ea

n 
T

P
R

PHHMM(1)
PHHMM(2)
PHHMM(3)
PHHMM(4)
PHHMM(5) ●●●●●●●●●●●●●

●

●

●

●
●

●
●
●

●

●
●●

●
●
●
●●●● ● ●

● ● ●

●●●●●●●●●●●●●

●

●

●
●

●
●●

●

●

●
●

●●
●●●

●●
● ● ● ● ●

●●●●●●●●●●●●
●

●

●
●

●

●●

●●●

●●

●●●●●●●● ●● ● ●

●●●●●●●●●●
●●●

●

●

●
●

●●

●●
●

●●●●●●●●●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

2 9 27 81 2433
Mean Number of Leaves

81.60

82.45

83.30

M
ea

n 
T

P
R

PHHMM(1)
PHHMM(2)
PHHMM(3)
PHHMM(4)
PHHMM(5)

SOLiD 40% at FPR 2.5% Affymetrix 40% at FPR 2.5%

●●●●●●●●
●●●●●●

●

●

●

●
●

●
●
●

●●

●
●●

●●
●●●

● ●

●
●

●

●●●●●●●●●●●●●

●

●

●

●

●

●●
●

●

●●
●●●●●

●●● ●
●

● ●

●●●●
●●●●●●●●
●

●

●

●

●

●

●
●●

●

●●

●●●
●●●●●

●● ● ●

●●●●●●●●●
●●●
●

●

●

●●

●
●

●●
●

●

●●●●●●●●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

2 9 27 81 2433
Mean Number of Leaves

40.3

40.7

41.1

M
ea

n 
T

P
R

PHHMM(1)
PHHMM(2)
PHHMM(3)
PHHMM(4)
PHHMM(5) ●●●●●●●●

●●●●
●●

●
●

●

●●

●
●

●

●●

●

●●
●
●

●●●
●

● ●
● ●

●●●●●●●●
●●●●
●

●●

●

●

●

●
●
●

●

●
●

●●
●●●●●● ●

●
● ●

●●●●●●●●
●●●●
● ●

●

●

●

●

●
●
●●

●●

●●●
●●●●● ●● ● ●

●●●
●●●●●●●
●●
● ●

●

●●

●

●

●●

●

●

●●●●●●●●●●● ● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●

2 9 27 81 2433
Mean Number of Leaves

64.2

65.0

65.8

M
ea

n 
T

P
R

PHHMM(1)
PHHMM(2)
PHHMM(3)
PHHMM(4)
PHHMM(5)

Figure 8.8: Overview of the mean TPRs obtained at a fixed FPR of 2.5% for the different ini-
tializations of the PHHMM(L) with initial order L on the Array-CGH data set with respect to the
SOLiD and the Affymetrix validation data. The top graphics represent the results obtained for
the stringent coverage of 75%, and the bottom graphics that for the less stringent coverage of
40%. The mean number of leaves quantifies the complexity of each model for its different initial-
izations. For each PHHMM(L) the corresponding HHMM(L) with the highest model complexity
of 3L leaves is the rightmost point of the corresponding points shown for this PHHMM(L). The
rightmost point of the PHHMM(1) is the HMM. The results obtained at a fixed FPR of 1% are
shown in Fig. 8.6.
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PHHMM(4): Parsimonious Tree

Figure 8.9: A selected tree structure among the best PHHMM(4) on the Affymetrix 75% vali-
dation data set shown in Fig. 8.8 at the level of 2.5% FPR. The underlying PHHMM(4) has a
model complexity of 14 leaves, which is much less than those of the corresponding HHMM(4)
that has a complete tree with 81 leaves. The fusions of nodes are highlighted by different
colors like shown in Fig. 8.7 for the PHHMM(2). The states ’−’ and ’=’ still represent some of
their transition probabilities as fourth-order transition probabilities, whereas for the state ’+’ only
second-order transition probabilities remain. This PHHMM(4) reaches a slightly better TPR of
83.22% at 2.5% FPR than the HHMM(4).

parison. That means, only the predictions done by FHMM, GLAD, and segMNT could
be evaluated under consideration of the SOLiD and the Affymetrix validation data sets
illustrated in Fig. 8.4. All these three methods just assign one of the three states ’−’,
’=’, and ’+’ as label to each tile without providing a score to rank the tiles. Thus,
only the point measures of TPR and FPR could be computed for each method. To
compare the PHHMM(L) against these three methods, receiver operating character-
istic (ROC) curves have been computed for the SOLiD and the Affymetrix validation
data sets. For both SOLiD validation data sets a selected PHHMM(5) among the best
models in Fig. 8.8 has been used. In analogy, for both Affymetrix validation data sets
the PHHMM(4) with its underlying tree structure shown in Fig. 8.9 has been consid-
ered. The ROC curves including the point measures of FHMM, GLAD, and segMNT
are shown in Fig. 8.10. For both types of validation data, the corresponding higher-
order PHHMM(L) performs slightly better than GLAD. The high FPR obtained for the
predictions of GLAD can be considered as a drawback for the analysis of Array-CGH
data for which the majority of tiles is expected to be non-polymorphic. The compar-
ison of the PHHMM(4) and the PHHMM(5) to FHMM and segMNT shows that the
FHMM and segMNT are clearly outperformed for both types of validation data sets.
The PHHMM(4) and the PHHMM(5) reach much higher TPRs at the levels of FPRs
obtained for FHMM and segMNT. Generally, an additional advantage of the PHHMM(L)
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in comparison to GLAD, FHMM, and segMNT is that the PHHMM(L) provides scores
to rank the tiles in Array-CGH data sets. This allows to assess the performance at each
user-specified level of the FPR.
Another observation that follows from the results shown in Fig. 8.10 is that the ROC
curves for SOLiD and Affymetrix validation data have clearly different shapes. This is
already indicated in Fig. 8.4 that illustrates the Array-CGH data in the context of these
validation data sets. Generally, higher TPRs have been obtained at fixed FPRs for the
Affymetrix validation data in comparison to the SOLiD validation data. This might be
caused due to the fact that the Affymetrix resequencing experiment is also based on a
DNA microarray like the Array-CGH data set itself. On the other hand, the SOLiD rese-
quencing experiment has provided much more putatively deleted or highly polymorphic
genomic regions than the Affymetrix resequencing experiment. A certain proportion of
these sequence polymorphisms does not seem to be present in the Array-CGH data
set. This is indicated in Fig. 8.4 by log-ratios of about zero for tiles that are assumed to
represent a deleted or highly polymorphic region under consideration of the SOLiD val-
idation data. For that reason, the performance on the Array-CGH data set with respect
to the SOLiD validation data is expected to be worse than that for Affymetrix validation
data. However, under all methods considered here the PHHMM(L) performs best on
the Array-CGH data set.

8.3.8 Analysis of PHHMM predictions in the context of the genome
annotation

The availability of the TAIR8 genome annotation of the reference genome of Col pro-
vides the opportunity to investigate what is functionally behind the genomic regions
where the genomes of C24 and Col differ. For that reason, the PHHMM(4) with the
underlying parsimonious tree structure shown in Fig. 8.9 is used to predict deleted or
highly polymorphic genomic regions as well as amplified genomic regions in the Array-
CGH data set. Each tile in this data set has been labeled as either deleted or highly
polymorphic, unchanged, or amplified by applying the State-Posterior algorithm spec-
ified in Sec. 3.4.1 with respect to the underlying three-state architecture in Fig. 8.2 of
the PHHMM(4). The genomic regions represented by all 17,306 tiles that have been
predicted as deleted or highly polymorphic and of all 859 tiles that have been predicted
as amplified have been analyzed separately in the context of their TAIR8 annotations.
The obtained categorization of these tiles is shown in Fig. 8.11. By definition, the cate-
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SOLiD Affymetrix

Figure 8.10: ROC curves of the PHHMM(4) and the PHHMM(5) for predicted deleted or highly
polymorphic genomic regions in the Array-CGH data set under consideration of the SOLiD and
the Affymetrix validation data. The point measures obtained for segMNT, FHMM, and GLAD are
included to enable the comparison. The selected PHHMM(5) and the selected PHHMM(4) are
among the best models shown in Fig. 8.8. The parsimonious tree structure of the PHHMM(4)
is explicitly shown in Fig. 8.9. The ROC curves for the SOLiD and the Affymetrix validation data
have clearly different shapes.

gories are not completely disjoint meaning that each tile can have annotations in more
than one category. This is especially the case for tiles that are located within a gene.
However, one can clearly see the trend that a large proportion of the deleted or highly
polymorphic regions and of the amplified regions are caused by transposable elements.
This makes sense because these mobile genomic elements might have become active
from time to time in the evolution of C24 and Col. Additionally, this coincides with the
observation that transposable elements are overrepresented among deleted or highly
polymorphic regions identified by Clark et al. (2007) for 20 accessions of A. thaliana.
On the other hand, genes and all the categories that characterize the genes more
specifically are less affected by sequence polymorphisms. Also this observation is
meaningful, because if too many functional important genes would have been affected
then C24 might not have been able to survive. Both observations are statistically sig-
nificant in comparison to random choices of tiles highlighted by grey dashed bars in
Fig. 8.11. In addition to this, all genes affected by sequence polymorphisms have func-
tionally been categorized using the FunCat tool by Ruepp et al. (2004). The 39 genes
affected by amplifications do not show a statistically significant enrichment of any func-
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tional category. In contrast to this, among the 1,675 genes affected by deleted or highly
polymorphic regions four statistically significant overrepresented functional clusters of
genes with p-values less than 5·10−6 have been found. The first cluster comprises 104
genes involved in ATP binding, the second cluster contains 109 genes with functions in
cellular communication and signal transduction, the third cluster represents 127 genes
that play a role in cell rescue, defense and virulence, and the fourth cluster contains 5
genes related to bacterial outer membrane. These findings emphasize the importance
of accurate methods required by biologists for identifying sequence polymorphisms in
Array-CGH data. In this chapter, the application of the PHHMM(L) has shown that this
model is appropriate for this task.
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Figure 8.11: Overview of the TAIR8 genome annotations for the 17,306 tiles predicted as
deleted or highly polymorphic in C24 and the 859 tiles predicted as amplified in C24 by the
PHHMM(4) in the Array-CGH data set using the State-Posterior algorithm. Colored bars show
the counts in each category for the predictions of the PHHMM(4). Grey dashed bars represent
the mean values of counts for sampling 500 times the 17,306 tiles (or the 859 tiles) from the
total number of tiles in the Array-CGH data set. All counts in the different categories obtained
for the predictions of the PHHMM(4), except ’pseudogene’ for tiles predicted as amplified, differ
significantly from the random counts with p-values less than 0.01.
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The focus of this thesis has been put on extended HMMs and their application to re-
cent biological high-throughput data sets generated with DNA microarrays. In the the-
oretical part, the algorithmic basics of standard first-order HMMs have been extended
comprehensively to higher-order HMMs. Based on this sound grounding, two exten-
sions of HMMs have been realized, the parsimonious higher-order HMM and the HMM
with scaled transition matrices. For all these models, the integration of biological prior
knowledge into the training of the model parameters has been established by the ex-
tension of the standard Baum-Welch algorithm to the Bayesian Baum-Welch algorithm.
The usage of these information clearly improves the convergence to biologically mean-
ingful model parameters. This has been demonstrated for the direct comparison of both
training algorithms on the breast cancer gene expression data. Additionally, genomic
features like distances between adjacent genes on a chromosome or gene pair orien-
tations on DNA have been modeled by the usage of different transition classes. The
integration of such features has led to an improved detection of differentially expressed
genes in breast cancer gene expression data. Besides this, also a better identifica-
tion of transcription factor target genes from ChIP-chip data has been reached. The
general ability to model higher-order dependencies between adjacent measurements
in the chromosomal context has been established by the development of higher-order
HMMs. Since the number of transition parameters increases exponentially with in-
creasing model order, the Parsimonious Cluster algorithm has been integrated into the
Bayesian Baum-Welch algorithm of the higher-order HMM to reduce the number of
independent transition parameters based on their requirement for learning the charac-
teristics of a data set. This has led to the novel model class of parsimonious higher-
order HMMs that includes the higher-order HMMs and the standard first-order HMMs
as special cases. The modeling of higher-order dependencies by parsimonious higher-
order HMMs has been demonstrated to improve the prediction of sequence polymor-
phisms in Array-CGH data. Parsimonious higher-order HMMs have specificly shown
a better performance than higher-order HMMs under restrictive conditions of typically
considered small false positive rates. Under less restrictive conditions, parsimonious
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higher-order HMMs have required substantially less transition parameters to reach a
performance comparable to that of higher-order HMMs. Generally, the application of
higher-order HMMs and parsimonious higher-order HMMs to the analysis of Array-
CGH data has shown a clear improvement in comparison to routinely used first-order
HMMs.
Considering the analysis of breast cancer gene expression data, the modeling of chro-
mosomal locations and chromosomal distances of adjacent genes on DNA has led to
an improved prediction of under-expressed and over-expressed genes in tumor. Based
on a mixture model that ignores these additional information by modeling all gene ex-
pression levels as independent of each other, the prediction of differentially expressed
genes in tumor has been much worse in comparison to the standard first-order HMM.
The first-order HMM represents a natural extension of the mixture model for modeling
dependencies between directly adjacent gene expression levels in the chromosomal
context of the underlying genes on DNA. The usage of this HMM is motivated by the
observation of highly positive correlations between gene expression levels in the breast
cancer data set that are present due to the occurrence of amplifications and deletions of
DNA segments in individual tumors. In addition to this, the tendency that two adjacent
genes in close chromosomal proximity tend to have higher correlated gene expression
levels than two adjacent genes in greater distance has clearly been observed for this
data set. Based on that, the first-order HMM with scaled transition matrices has been
applied to model this observation using a basic transition matrix for adjacent genes in
greater chromosomal distance and another one for adjacent genes in close chromoso-
mal proximity. The transition matrix for adjacent genes in close chromosomal proximity
is computed with respect to the basic transition matrix by increasing the self-transition
probabilities using a pre-defined scaling factor. Generally, the separation of adjacent
genes on a chromosome into groups of genes in greater distance and genes in close
chromosomal proximity, as well as the choice of a good scaling factor is depending
on the data set. Since ad hoc settings are difficult, different combinations of distance
thresholds and scaling factors have been tested to find biologically meaningful HMM
parameters for the analysis of the breast cancer data set. This has led to the identifi-
cation of parameter combinations for HMMs with scaled transition matrices that clearly
improve the prediction of under-expressed and over-expressed genes in tumor in com-
parison to the standard first-order HMM that only considers chromosomal locations of
genes as additional information. Thus, the prediction of differentially expressed genes
in tumor has been improved stepwise by the integration of additional genomic features.
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That is, the mixture model that does not include additional features has been outper-
formed by the standard first-order HMM that analyzes gene expression data in the
context of chromosomal locations. This HMM is outperformed by the HMM with scaled
transition matrices that additionally models chromosomal distances of genes. Genes
frequently predicted as differentially expressed that have been validated independently
based on data base and literature studies support these findings. Future studies could
comprise gene expression data of other types of tumors; ideally data sets for which
the expression status of each gene is known from independent validation experiments
or annotations from domain experts. The availability of these information was limited
for the considered breast cancer data set. However, such an ideal data set could be
used to determine the distance threshold and the scaling factor of the HMM with scaled
transition matrices based on a cross-validation or independent training and test data.
The resulting best performing models could then be applied to follow up experiments
generated on the same DNA microarray platform. Besides this, one could also fur-
ther investigate the dependencies between chromosomal distances of adjacent genes
and their expression levels to integrate these dependencies by a mathematical function
into the self-transition probabilities of the HMM. Through the availability of high-density
DNA microarrays, good potential is seen for the usage of higher-order HMMs and the
development of parsimonious higher-order HMMs with scaled transition matrices for
analyzing recent tumor expression studies.
Regarding the analysis of promoter array ChIP-chip data of the yeast S. cerevisiae
and the model plant A. thaliana, the integration of chromosomal locations and chromo-
somal orientations of genes has improved the prediction of transcription factor target
genes. The routinely used log-fold change approach that does not integrate these
additional genomic features has clearly been outperformed by the standard first-order
HMM and the HMM with scaled transition matrices that both make use of additional
features. The standard first-order HMM for analyzing ChIP-chip measurements in the
context of chromosomal locations of genes has been motivated through the observa-
tion of positive correlations of adjacent measurements on chromosomes. Specifically,
resulting from the design of the promoter arrays, the ChIP-chip measurements of adja-
cent genes in head-head orientation have been observed to have much higher positive
correlations than measurements of other gene pair orientations. This observation has
been modeled by the usage of the HMM with scaled transition matrices that distin-
guishes between measurements of adjacent genes in head-head orientation and mea-
surements of adjacent genes in other orientations. The specific modeling of head-head
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orientations has led to a better prediction of common target genes of cell cycle specific
transcription factors of the yeast S. cerevisiae. Moreover, a better identification of tar-
get genes of the seed-specific transcription factor ABI3 of the model plant A. thaliana
has been reached. Generally, all predicted target genes have been validated indepen-
dently based on literature and data base searches, publicly available gene expression
profiles, or additional wet-lab experiments. Besides this, the same biologically moti-
vated prior settings have been used for the promoter array ChIP-chip data of the two
species. These settings have shown a good performance on these data sets indicating
that end users can be supported by basic prior settings. Again, similar to the analysis
of the breast cancer gene expression data, the integration of additional genomic fea-
tures has led to improved models for analyzing promoter array ChIP-chip data. Initially,
this has been realized by modeling dependencies between adjacent measurements on
chromosomes using the first-order HMM. This model has been further extended by dis-
tinguishing between measurements of gene pairs in head-head orientation and other
orientations using the HMM with scaled transition matrices. Future studies could con-
sider the analysis of genome-wide ChIP-chip data sets based on recent high-density
DNA microarrays based on higher-order HMMs and higher-order parsimonious HMMs.
Since the basis of integrating additional genomic features has been established in this
thesis, also the development of parsimonious higher-order HMMs with scaled transition
matrices distinguishing between promoter and non-promoter regions on chromosomes
is worth to be investigated.
Considering the analysis of the Array-CGH data set for comparing the genomes of
the two accessions C24 and Columbia (Col) of A. thaliana, the application of higher-
order HMMs and parsimonious higher-order HMMs has led to improved predictions
of sequence polymorphisms in comparison to the standard first-order HMM. In con-
trast to the first-order HMM that only realizes dependencies between direct adjacent
measurements on a chromosome, the higher-order HMMs extend this by modeling de-
pendencies between a measurement and its most recent predecessors. The modeling
of higher-order dependencies has been motivated by the observation of positive partial
autocorrelations for the measurements along the chromosomes in the Array-CGH data
set. These dependencies are present due to the fact that DNA fragments that have
been extracted from an accession typically bind to several chromosomal neighboring
tiles that are represented on the DNA microarray. For higher-order HMMs trained on
the Array-CGH data set, models of order three up to five have shown the best perfor-
mance for emulating these partial autocorrelations. Besides this, these models have
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also reached a good performance for the prediction of sequence polymorphisms in the
Array-CGH data set with respect to sequence polymorphisms known from independent
validation experiments. This indicates that such an initial study could also be consid-
ered for other Array-CGH data sets to determine a range of model orders that might
lead to promising analysis results, but there is no direct assurance that this selection
of higher-order HMMs leads to improved prediction results. In addition to this, most
attention has been given to the ability of predicting sequence polymorphisms by par-
simonious higher-order HMMs. These models reduce the large number of transition
parameters of higher-order HMMs in a data-dependent manner by making use of the
Parsimonious Cluster algorithm. This has enabled the modeling of sparsely higher-
order dependencies between measurements in their chromosomal context. Especially
at a low level of false positive predictions, the application of parsimonious higher-order
HMMs to the Array-CGH data set has led to improved predictions of sequence poly-
morphisms in comparison to corresponding higher-order HMMs. In this context, less
complex models with a clearly reduced number of independent transition parameters
should be preferred. The generality of this finding still needs to be investigated in fur-
ther studies with other data sets. At a greater level of false positive predictions, parsi-
monious higher-order HMMs have performed comparable or slightly better than higher-
order HMMs. The best performing parsimonious higher-order HMMs have been more
complex than those at a smaller level of false positive predictions. Yet, these models
have clearly been less complex than corresponding higher-order HMMs. Generally,
the validation of all these models is limited due to the diversity that has been observed
for the two independent sets of sequence polymorphisms identified using the SOLiD
next generation and the Affymetrix microarray-based resequencing technologies. Am-
plifications of DNA segments that are clearly present in the Array-CGH data set could
not be validated so far. The rapid progress in the development of the next genera-
tion sequencing technologies might contribute to the establishment of better validation
data for improved model validation. The comparison of results from different platforms
(NimbleGen Array-CGH, SOLiD and Affymetrix resequencing) that has been started in
this thesis is currently of great general interest for future studies in biology. This also
includes the development of appropriate methods for analyzing the data of different
platforms. In the context of Array-CGH data, the studies addressed in this thesis have
shown that HMMs reach a better performance in comparison to other widely used ap-
proaches. Additionally, another advantage of HMMs is the ability to provide scores
for ranking the predictions. This generally allows to assess the performance at differ-
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ent levels of false positive predictions specified by the end-user. Among the HMMs
considered for the analysis of Array-CGH data, the higher-order HMMs and the parsi-
monious higher-order HMMs have increased computational and memory complexities
in comparison to standard first-order HMMs. For a standard first-order HMM with N

states, the two basic algorithms, the Forward and the Backward algorithm, have both a
computational and memory complexity of O (T ·N2) for a sequence of measurements
of length T . This complexity is increased to O

(
T ·NL+1

)
for a higher-order HMM of

order L > 1. The increase in complexity is also transferred to the other algorithms of
higher-order HMMs extended in this thesis. For the parsimonious higher-order HMMs
that have been developed based on the algorithmic basics of higher-order HMMs, the
computational and memory complexity of the Bayesian Baum-Welch algorithm is addi-
tionally increased due to the integration of the Parsimonious Cluster algorithm. For the
analysis of the Array-CGH data set, a biologically motivated three-state architecture
has been proposed and models of orders up to five have been considered. The train-
ing of a parsimonious higher-order HMM of order five has required about one day on a
standard computer (3 GHz, 4 GB memory) in comparison to about fifteen minutes for a
standard first-order HMM. As indicated by the great computational complexity, studies
with HMMs of a much greater model order or with a much greater number of states
are expected to be very time-consuming or even not feasible. However, the application
of parsimonious higher-order HMMs has clearly improved the prediction of sequence
polymorphisms between the two accessions C24 and Col in comparison to a standard
first-order HMM. Thus, one should generally consider to pay the price of the greater
computational complexity to obtain good predictions for further biological analyses.
Such analyses also include the question what is functionally behind these genomic
regions in which the genomes of C24 and Col differ. In the context of the genome an-
notation of Col, this has led to the identification that sequence polymorphisms between
C24 and Col are mainly present due to the activity of transposons that are known as
mobile genomic elements. Genes and their regulatory regions have been identified
to be less affected by sequence polymorphisms. This makes sense because if too
many important genes would have been affected then C24 might not have been able
to survive. Future studies could investigate the activity of different transposon families
and the gene expression behavior of genes affected by sequence polymorphisms. Be-
sides this, a detailed characterization of functionally uncharacterized genomic regions
affected by sequence polymorphisms should be addressed.
In summary, extended HMMs have been studied extensively in this thesis. The algo-
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rithmic basics of higher-order HMMs that include standard first-order HMMs as special
cases have been developed in great detail. Within the scope of these basics, the inte-
gration of biological prior knowledge has been established on the basis of the Bayesian
Baum-Welch algorithm. Models that have been trained using this algorithm have clearly
made better predictions than models that have been trained using the standard Baum-
Welch algorithm without making use of biological prior knowledge. Thus, the Bayesian
Baum-Welch algorithm should be preferred for adapting HMMs to DNA microarray
data. In addition to this finding, also the integration of additional genomic features
has improved the analysis of DNA microarray data. The HMM with scaled transition
matrices has specifically been developed to model distances between adjacent genes
or to distinguish between orientations of adjacent genes on chromosomes. The appli-
cation of this model to recent tumor gene expression and ChIP-chip data of different
organisms including human, yeast and a model plant has led to improved predictions
and demonstrates the broad usability of this concept. For the analysis of Array-CGH
data, the first known application of higher-order HMMs has been established. More-
over, to reduce the complexity of higher-order HMMs the model class of parsimonious
higher-order HMMs has been developed including the higher-order HMMs as special
cases. The higher-order HMMs and especially the parsimonious higher-order HMMs
have clearly improved the prediction of sequence polymorphisms in comparison to the
standard first-order HMM. This indicates that parsimonious higher-order HMMs are
appropriate for analyzing Array-CGH data. Another challenging point in this thesis has
been the validation of the prediction results. Rarely, large-scale validation data sets
are available for specific DNA microarray experiments. For that reason, different inde-
pendent approaches including literature and data base searches, comparisons to other
prediction results, or additional wet-lab experiments have been considered to evaluate
the models. Generally, these different validation sources have been used successfully
to identify well-suited extended HMMs for the analysis of recent DNA microarray data
sets. According to these findings, this thesis has contributed to the investigation of
extensions of HMMs for a broad range of applications in computational biology.

147



Bibliography

Abramowitz, M. and Stegun, I. A., editors (1972). Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, volume 9. Dover Publications, Inc.

Ajmera, J. et al. (2002). Robust HMM-Based Speech/Music Segmentation. Proc. of
ICASSP, IEEE.

Applied Biosystems (2009). SOLiD: See website of Applied Biosystems for a complete
description of the platform. http://www3.appliedbiosystems.com.

Arabido-Seed (2009). A trilateral project between France, Spain, and Ger-
many studying seed development of Arabidopsis thaliana from 2004 to 2009.
http://arabidoseed.ipk-gatersleben.de.

Aycard, O., Mari, J.-F., and Washington, R. (2004). Learning to automatically detect
features for mobile robots using second-order Hidden Markov Models. Int. J. Adv.
Robotic Sy., 1(4):231–245.

Banaei, A. M. (2009). Dynamics of chromatin modifications and other nuclear features
in response to intraspecific hybridization in Arabidopsis thaliana. PhD Thesis, Martin
Luther University Halle-Wittenberg.

Baum, L. E. (1972). An inequality and associated maximization technique in statistical
estimation for probabilistic functions of Markov processes. Inequalities, 3:1–8.

Baum, L. E. and Eagen, J. A. (1967). An inequality with applications to statistical
estimation for probabilistic functions of Markov processes and to model for ecology.
Bull. Amer. Math. Soc., 73:360–363.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occuring in the statistical analysis of probabilistic functions of Markov chains. Ann.
Math. Statists., 41:164–171.

Becker, K. G., Barnes, K. C., Bright, T. J., and Wang, G. A. (2004). The Genetic
Association Database. Nature Genetics, 36:431–432.

Benyoussef, L., Carincotte, C., and Derrode, S. (2008). Extension of Higher-Order
HMC Modeling with Applications to Image Segmentation. Digital Signal Processing,
18(5):849–860.

148



Bibliography

Berchtold, A. and Raftery, A. E. (2002). The Mixture Transition Distribution Model
for High-Order Markov Chains and Non-Gaussian Time Series. Statistical Science,
17:328–356.

Beroukhim, R. et al. (2010). The landscape of somatic copy-number alteration across
human cancers. Nature, 463:899–905.

Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its applications to param-
eter estimation for Gaussian mixture and Hidden Markov Models. Technical Report
ICSI-TR 97-021.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. In Jordan, M. and
Kleinberg, J. and Schölkopf, editors, Information Science and Statistics, Springer.

Blumenthal, R. et al. (2007). Expression patterns of CEACAM5 and CEACAM6 in
primary and metastatic tumors. BMC Cancer, 7.

Bolstad, B. M., Irizarry, R. A., Astrand, M., and Speed, T. P. (2003). A comparison of
normalization methods for high density oligonucleotide array data based on variance
and bias. Bioinformatics, 19(2):185–193.

Borevitz, J. O. et al. (2003). Large-scale identification of single-feature polymorphisms
in complex genomes. Genome Research, 13:513–523.

Bourguignon, P.-Y. and Robelin, D. (2004). Modèles de Markov parcimonieux. Actes
de JOBIM, Montréal, Canada.

Bystroff, C. et al. (2000). HMMSTR: a Hidden Markov Model for Local Sequence-
Structure Correlation in Proteins. J. Mol. Biol., 301:173–190.

Callegaro, A., Basso, D., et al. (2006). A locally adaptive statistical procedure (lap) to
identify differentially expressed chromosomal regions. Bioinformatics, 22(21):2658–
2666.

Campoux, A. C. et al. (1999). Hidden Markov model approach for identifying the mod-
ular framework of the protein backbone. Protein Engineering, 12:1063–1073.

Caron, H. et al. (2001). The Human Transcriptome Map: Clustering of Highly Ex-
pressed Genes in Chromosomal Domains. Science, 291:1289–1292.

Cherry, C. (2001). A General Survey of Hidden Markov Models in Bioinformatics.
http://web.cs.ualberta.ca/ colinc/projects/606project.ps.

Cherry, J. M., Ball, C., Weng, S., Juvik, S., Schmidt, R., Adler, C., Dunn, B., Dweight,
S., Riles, L., Mortimer, R. K., and Botstein, D. (1997). Genetic and physical maps of
Saccharomyces cerevisiae. Nature, 387(6632 Suppl):67–73.

Ching, W. K., Fung, E. S., and Ng, M. K. (2003). Higher-Order Hidden Markov Models
with Applications to DNA Sequences. IDEAL, LNCS 2690, pages 535–539.

149



Bibliography

Chung, H.-R. et al. (2007). A physical model for tiling array analysis. Bioinformatics,
23 ISMB/ECCB:i80–i86.

Churchill, G. A. (1989). Stochastic models for heterogeneous DNA sequences. Bull.
Math. Biol., 51:79–94.

Clark, R. M. et al. (2007). Common Sequence Polymorphisms Shaping Genetic Diver-
sity in Arabidopsis thaliana. Science, 317:338–342.

Crawley, J. J. and Furge, K. A. (2002). Identification of frequent cytogenetic aberra-
tions in hepatocellular carcinoma using gene-expression microarray data. Genome
Biology, 3(12).

Davidson, E. H. (2001). Genomic Regulatory Systems. Academic Press.

de Fonzo, V. et al. (2007). Hidden Markov Models in Bioinformatics. Current Bioinfor-
matics, 2:49–61.

de Lichtenberg, U. et al. (2005). New weakly expressed cell cycle-regulated genes in
yeast. Yeast, 22(15):1191–1201.

de Villiers, E. and du Preez, J. (2001). The advantage of using higher order HMM’s
for segmenting acoustic files. Proc. of the 12th Symp. PRASA, Franschhoek, South
Africa, pages 120–122.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society B,
39:1–38.

Depre, C. et al. (2002). H11 kinase is a novel mediator of myocardial hypertrophy in
vivo. Circulation Research, 91:1007–1014.

Derrode, S., Carincotte, C., and Bourennane, S. (2004). Unsupervised image seg-
mentation based on high-order hidden Markov chains. Proc. of the International
Conference on Acoustics, Speech, and Signal Processing, Montréal, Canada, pages
769–772.

Diaz-Uriarte, R. and Rueda, O. M. (2007). ADaCGH: A Parallelized Web-Based Appli-
cation and R Package for the Analysis of aCGH Data. PLoS ONE, 2(8):e737.

Duggan, D. J. et al. (1999). Expression profiling using cDNA microarrays. Nature
Genetics, 21:10–14.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological sequence analysis
- Probabilistic models of proteins and nucleic acids. Cambridge University Press.

Eddy, S. R. (1998). Profile hidden Markov models. Bioinformatics, 14:755–763.

150



Bibliography

Ekins, R. and Chu, F. W. (1999). Microarrays: their origins and applications. Trends
Biotechnol, 17:217–218.

Enyenihi, A. H. and Saunders, W. S. (2003). Large-scale functional genomic analysis
of sporulation and meiosis in Saccharomyces cerevisiae. Genetics, 163(1):47–54.

Ephraim, Y. and Merhav, N. (2002). Hidden Markov Processes. IEEE Trans. Inform.
Theory, 48(6):1518–1569.

Evans, M., Hastings, N., and Peacock, B. (2000). Statistical Distributions, 3rd Edition.
Wiley Series in Probability and Statistics. John Wiley & Sons, Inc.

Fan, C., Vibranovski, M. D., Chen, Y., and Long, M. (2007). A microarray based ge-
nomic hybridization method for identification of new genes in plants: Case analyses
of arabidopsis and oryza. J Integr Plant Biol, 49:915–926.

Fridlyand, J., Snijders, A. M., Pinkel, D., Albertson, D. G., and Jain, A. N. (2004).
Hidden Markov models approach to the analysis of array CGH data. J. Multivariate
Anal., 90:132–153.

Frigola, J. et al. (2006). Epigenetic remodeling in colorectal cancer results in coordinate
gene suppression across an entire chromosome band. Nature Genetics, 38:540–
549.

Galgano, M. T. et al. (2006). Comprehensive analysis of HE4 expression in normal and
malignant human tissues. Mod Pathol, 19:847–853.

Gauvain, J.-L. and Lee, C.-H. (1991). Bayesian Learning of Gaussian Mixture Densities
for Hidden Markov Models. Proc. of the workshop on Speech and Natural Language,
Pacific Grove, USA, pages 272–277.

Gauvain, J.-L. and Lee, C.-H. (1992). Bayesian Learning for Hidden Markov Model with
Gaussian Mixture State Observation Densities. Speech Communication, 11:205–
213.

Gauvain, J.-L. and Lee, C.-H. (1994). Maximum a posteriori estimation for multivariate
Gaussian mixture observations of Markov chains. IEEE Trans. on Speech and Audio
Processing, 2:291–298.

Gestl, S. A. et al. (2002). Expression of UGT2B7, a UDP-Glucuronosyltransferase
implicated in the metabolism of 4-hydroxyestone and all-trans retinoic acid, in nor-
mal human breast parenchyma and in invasive and in situ breast cancers. AJP,
160:1467–1479.

Giaver, G. et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome.
Nature, 418(6869):387–391.

151



Bibliography

Gohr, A. (2006). The Idea of Parsimony in Tree Based Statistical Models - Parsi-
monious Markov Models and Parsimonious Bayesian Networks with Applications to
Classification of DNA Functional Sites. Diploma Thesis, Martin Luther University
Halle-Wittenberg.

Gottman, J. M. (1981). Time-Series Analysis. Cambridge University Press.

Halsted, K. C. et al. (2008). Colagen alpha1 (X1) in normal and malignant breast tissue.
Mod Pathol, 21:1246–1254.

He, Y. (1988). Extended Viterbi algorithm for second-order hidden Markov process.
Proc. of the IEEE 9th International Conference on Pattern Recognition, Rome, Italy,
pages 718–720.

Heidenblad, M. et al. (2005). Microarray analyses reveal strong influence of DNA copy
number alterations on the transcriptional patterns in pancreatic cancer: implications
for the interpretation of genomic amplifications. Oncogene, 24:1794–1801.

Hoheisel, J. D. (2006). Microarrays technology: beyond transcript profiling and geno-
type analysis. Nature Reviews Genetics, 7:200–210.

Horsey, E. L., Jakovljevic, J., Miles, T. D., Harnpicharnchai, P., and Wollford, J. L.
(2004). Role of the yeast Rrp1 protein in the dynamics of pre-ribosome maturation.
RNA, 10(5):813–827.

Hruz, T., Laute, O., Szabo, G., Wessendrop, F., Bleuer, S., Oertle, L., Widmayer, P.,
Gruissem, W., and Zimmermann, P. (2008). Genevestigator V3: A Reference Ex-
pression Database for the Meta-Analysis of Transcriptomes. Advances in Bioinfor-
matics. Article ID 420747, 5 pages.

Hsu, L., Self, S. G., Grove, D., Randolph, T., Wang, K., Delrow, J. J., Loo, L., and
Porter, P. (2005). Denoising array-based comparative genomic hybridization data
using wavelets. Biostatistics, 6(2):211–226.

Humburg, P. et al. (2008). Parameter estimation for robust HMM analysis of ChIP-chip
data. BMC Bioinformatics, 9(2).

Hupé, P., Stransky, N., Thiery, J.-P., Radvanyi, F., and Barillot, E. (2004). Analysis of
array CGH data: from signal ratio to gain and loss of DNA regions. Bioinformatics,
20(18):3413–3422.

Hyman, E., Kauraniemi, P., et al. (2002). Impact of DNA Amplification on Gene Ex-
pression Patterns in Breast Cancer. Cancer Research, 62:6240–6245.

Iyer, V. R., Horak, C. E., Scafe, C. S., Botsein, D., Snyder, M., and Brown, P. O. (2001).
Genomic binding sites of the yeast cell-cycle transcription factors SFB and MBF.
Nature, 409:533–538.

152



Bibliography

Jelinek, F. (1998). Statistical Methods for Speech Recognition. The MIT Press.

Ji, H. and Wong, W. H. (2005). TileMap: create chromosomal map of tiling array
hybridizations. Bioinformatics, 21:3629–3636.

Johnson, D. S. et al. (2008). Systematic evaluation of variability in ChIP-chip experi-
ments using pre-defined DNA targets. Genome Res, 18:393–403.

Juang, B. H. and Rabiner, L. R. (1991). Hidden Markov Models for Speech Recognition.
Technometrics, 33:251–272.

Jung, U. S. and Levin, D. E. (1999). Genome-wide analysis of gene expression regu-
lated by the yeast cell wall integrity signalling pathway. Mol Microbiol, 34(5):1049–
1057.

Kauraniemi, P., Bärlund, M., Monni, O., and Kallioniemi, A. (2001). New Amplified
and Highly Expressed Genes Discovered in the erbb2 Amplicon in Breast Cancer by
cDNA Microarrays. Cancer Research, 61:8235–8239.

Keles, S., van der Laan, M. J., Dudoit, S., and Cawley, S. E. (2004). Multiple testing
methods for ChIP-chip high density oligonucleotide array data. Working Paper Series
147. U.C. Berkeley Division of Biostatistics, University of California, Berkeley, CA.

Knab, B., Schliep, A., Steckemetz, B., and Wichern, B. (2003). Model-based clustering
with Hidden Markov Models and its application to financial time-series data. In M.
Schader, W. Gaul, and M. Vichi, editors, Between Data Science and Applied Data
Analysis, Springer, pages 561–569.

Kriouile, A., Mari, J.-F., and Haton, J.-P. (1990). Some improvements in speech recog-
nition based on HMM. Proc. of the IEEE International Conference on Acoustics,
Albuquerque, USA, pages 545–548.

Krogh, A. (1994). Hidden Markov Models in Computational Biology: Applications to
Protein Modeling. J. Mol. Biol., 235:1501–1531.

Krogh, A. (1997). Two methods for improving performance of an HMM and their appli-
cation to gene finding. Proc. of 5-th ISMB, AAAI Press, pages 179–186.

Kulp, D. et al. (1996). A generalized hidden Markov model for the recognition of human
genes in DNA. Proc. of 4-th ISMB, AAAI Press, pages 134–141.

Lai, W. R., Johnson, M. D., Kucherlapati, R., and Park, P. J. (2005). Comparative
analysis of algorithms for identifying amplifications and deletions in array CGH data.
Bioinformatics, 21(19):3763–3770.

Lander, E. S. et al. (1987). Construction of multilocus genetic linkage maps in human.
PNAS, 84:2363–2367.

153



Bibliography

Latchman, D. S. (2004). Eukaryotic Transcription Factors. Elsevier Academic Press,
4th edition.

Lee, C.-H., Lin, C.-H., and Juang, B.-H. (1990). A study on speaker adaptation of con-
tinuous density HMM parameters. Proc. of the International Conference on Acous-
tics, Speech, and Signal Processing, Albuquerque, USA, 1:145–148.

Lee, L.-M. and Lee, J.-C. (2006). A Study on High-Order Hidden Markov Models and
Applications to Speech Recognition. IEA/AIE, Annecy , France, pages 682–690.

Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., et al. (2002). Transcripitonal Regula-
tory Networks in Saccaromyces cerevisiae. Science, 298:799–804.

Li, J. and Gray, R. M. (2000). Image Segmentation and Compression Using Hidden
Markov Models. Kluwer Academic Publishers.

Li, W., Meyer, C. A., and Liu, X. S. (2005). A hidden Markov model for analyzing
ChIP-chip experiments on genome tiling arrays and its application to p53 binding
sequences. Bioinformatics, 21:i274–i282.

Lingjaerde, O. C., Baumbusch, L. O., Liestol, K., Glad, I. G., and Borresen-Dale, A.-L.
(2005). CGH-Explorer: a program for analysis of array-CGH data. Bioinformatics,
21(6):821–822.

Lipshutz, R. J. et al. (1999). High density synthetic oligonucleotide arrays. Nature
Genetics, 21:20–24.

Ma, Y. et al. (2007). Population-base molecular prognosis of breast cancer by tran-
scriptional profiling. Clin Cancer Research, 13:2014–2022.

Mac Donald, I. L. and Zucchini, W. (1997). Hidden Markov and Other Models for
Discrete-valued Time Series. Chapman & Hall.

MacKay, D. J. C. (1998). Choice of Basis for Laplace Approximation. Machine Learning,
33:77–86.

Maiorana, A. et al. (1995). Expression of MHC class i and class ii antigens in primary
breast carcinomas and synchronous nodal metastases. Clin Exp Meta, 13:43–48.

Mantripragada, K. K., Buckley, P. G., de Stahl, T. D., and Dumanski, J. P. (2004). Ge-
nomic microarrays in the spotlight. Trends Genet, 20:87–94.

Mardis, E. R. (2008). Next-Generation DNA Sequencing Methods. Annu. Rev. Ge-
nomics Hum. Genet., 9:387–402.

Mari, J.-F., Fohr, D., and Junqua, J. C. (1996). A second-order HMM for high-
performance word and phoneme-based continuous speech recognition. IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, Atlanta, USA,
pages 435–438.

154



Bibliography

Mari, J.-F., Halton, J.-P., and Kriouile, A. (1997). Automatic word recognition based on
second-order hidden Markov models. IEEE Trans. on Speech and Audio Processing,
5:22–25.

Mari, J.-F. and Haton, J.-P. (1994). Automatic word recognition based on second-
order hidden Markov models. Proc. of the 3rd International Conference on Spoken
Language Processing, Yokohama, Japan, pages 247–250.

Mari, J.-F. and Le Ber, F. (2006). Temporal and spatial data mining with second-order
hidden markov models. Soft Comput, 10:406–414.

Marioni, J. C., Thorne, N. P., and Tavaré, S. (2006). BioHMM: a heterogeneous hidden
Markov model for segmenting array CGH data. Bioinformatics, 22(9):1144–1146.

Martienssen, R. A., Doerge, R. W., and Colot, V. (2005). Epigenomic mapping in
Arabidopsis using tiling microarrays. Chromosome Researcch, 13:299–308.

Martin-Magniette, M.-L. et al. (2008). ChIPmix: Mixture model of regressions for two-
color ChIP-chip analysis. Bioinformatics, 24 ECCB:i181–i186.

Mc Bride, H. J., Yu, Y., and Stillman, D. J. (1999). Distinct regions of the Swi5 and
Ace2 transcription factors are required for specific gene activation. J Biol Chem,
274(30):21029–21036.

Mönke, G., Altschmied, L., Tewes, A., Reidt, W., Mock, H. P., Bäumlein, H., and Conrad,
U. (2004). Seed-specific transcription factors ABI3 and FUS3: molecular interaction
with DNA. Planta, 219(1):158–166.

Myers, C. L., Dunham, M. J., Kung, S. Y., and Troyanskaya, O. G. (2004). Accurate
detection of aneuploidies in array CGH and gene expression microarray data. Bioin-
formatics, 20(18):3533–3543.

Niu, W., Li, Z., Zhan, W., R., I. V., and Marcotte, E. M. (2008). Mechanisms of cell
cycle control revealed by a systematic and quantitative overexpression screen in S.
cerevisiae. PLoS Genet, 4(7):e1000120.

Olshen, A. B., Venkatraman, E. S., Lucito, R., and Wigler, M. (2004). Circular binary
segmentation for the analysis of array-based DNA copy number data. Biostatistics,
5(4):557–572.

Ondov, B. D., Varadarajan, A., Passalacqua, K. D., and Bergman, N. H. (2008). Efficient
mapping of Applied Biosystems SOLiD sequence data to a reference genome for
functional genomic applications. Bioinformatics, 24:2776–2777.

Perou, C. M. et al. (2000). Molecular portraits of human breast tumours. Nature,
406:747–752.

Piatetsky-Shapiro, G. and Tamayo, P. (2003). Microarray Data Mining: Facing the
Challenges. SIGKDD Explorations, 5:1–5.

155



Bibliography

Picard, F., Robin, S., Lavielle, M., Vaisse, C., and Daudin, J.-J. (2005). A statistical
approach for array CGH data analysis. BMC Bioinformatics, 6(27).

Pinkel, D. and Albertson, D. G. (2005). Array comparative genomic hybridization and
its applications in cancer. Nature Genetics, 37:S11–S13.

Pitman, J. (1997). Some Probabilistic Aspects of Set Partitions. Amer Math Monthly,
104:201–209.

Pollack, J. R. et al. (1999). Genome-wide analysis of DNA copy-number changes using
cDNA microarrays. Nature Genetics, 23:41–46.

Pollack, J. R., Sorlie, T., Perou, C. M., Rees, C. A., Jeffrey, S. S., Lonning, P. E., Tib-
shirani, R., Botsein, D., Borresen-Dale, A.-L., and Brown, P. O. (2002). Microarray
analysis reveals a major direct role of DNA copy number alteration in the transcrip-
tional program of human breast tumors. PNAS, 99(20):12963–12968.

Raaphorst, F. M. (2005). Deregulated expression of Polycomb-group oncogenes in
human malignant lymphomas and epithelial tumors. Human Molecular Genetics,
14:R93–R100.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications
in Speech Recognition. Proc. IEEE, 77:257–286.

Reidt, W., Wohlfarth, T., Ellerström, M., Czihai, A., Tewes, A., Rask, L., and Bäumlein,
H. (2000). Gene regulation during late embryogenesis: the RY motif of maturation-
specific gene promoters is a direct target of the FUS3 gene product. Plant Journal,
21(5):401–408.

Ren, B., Robert, F., Wyrick, J. J., Aparicio, O., Jennings, E. G., Simon, I., Zeitlinger,
J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T. L., Wilson, C. J., Bell, S. P., and
Young, R. A. (2000). Genome-Wide Location and Function of DNA Binding Proteins.
Science, 290(5500):2306–2309.

Rieger, M. A., Ebner, R., Bell, D. R., Kiessling, A., Rohayem, J., Schmitz, M., Temme,
A., Rieber, E. P., and Weigle, B. (2004). Identification of a Novel Mammary-Restricted
Cytochrome P450, CYP4Z1, with Overexpression in Breast Carcinoma. Cancer Re-
search, 64:2357–2364.

Roche NimbleGen, Inc. (2008). A Performance Comparison of Two CGH Segmenta-
tion Analysis Algorithms: DNACopy and segMNT. http://www.nimblegen.com.

Rueda, O. M. and Diaz-Uriarte, R. (2007). Flexible and Accurate Detection of Genomic
Copy-Number Changes from aCGH. PLoS Comput Biol, 3(6):e122.

Ruepp, A. et al. (2004). The FunCat, a functional annotation scheme for systematic
classification of proteins form whole genomes. Nucleic Acids Research, 32:5539–
5545.

156



Bibliography

Sasaki, E. et al. (2007). MGB1: Breast-specific expression of MGB1/mammaglobin:
an examination of 480 tumors from various organs and clinicopathological analysis
of MGB1-positive breast cancers. Mod Pathol, 20:208–214.

Schliep, A. et al. (2003). Using hidden Markov models to analyze expression time
course data. Bioinformatics, 19:i255–i263.

Schliep, A. et al. (2004). Robust inference of groups in gene expression time-courses
using mixtures of HMMs. Bioinformatics, 20:i283–i289.

Schuller, B. et al. (2003). Hidden Markov Model-Based Speech Emotion Recognition.
Proc. of ICASSP, IEEE.

Schulze, A. et al. (2001). Navigating gene expression using microarrays - a technology
review. Nature Cell Biology, 3:190–195.

Seifert, M. (2006). Analysing microarray data using homogeneous and inhomogeneous
Hidden Markov Models. Diploma Thesis, Martin Luther University Halle-Wittenberg.

Seifert, M., Banaei, A., Keilwagen, J., Mette, M. F., Houben, A., Roudier, F., Colot,
V., Grosse, I., and Strickert, M. (2009a). Array-based genome comparison of Ara-
bidopsis ecotypes using Hidden Markov Models. Proc. of the Biosignals 2009, ISBN
978-989-8111-65-4, Porto, Portugal, pages 3–11.

Seifert, M., Keilwagen, J., Strickert, M., and Grosse, I. (2009b). Utilizing gene pair
orientations for HMM-based analysis of ChIP-chip data. Bioinformatics, 25:2118–
2125.

Shendure, J. et al. (2005). Accurate multiplex polony sequencing of an evolved bacte-
rial genome. Science, 309:1728–1732.

Shiu, S.-H. and Borevitz, J. O. (2008). The next generation of microarray research:
applications in evolutionary and ecological genomics. Heredity, 100:141–149.

Stransky, N. et al. (2006). Regional copy number-independent deregulation of tran-
scription in cancer. Nature Genetics, 38:1386–1396.

Suzuki, M., Ketterling, G. M., Li, Q., and McCarty, D. R. (2003). Viviparous Alters
Global Gene Expression Patterns through Regulation of Abscisic Acid Signaling.
Plant Physiology, 132:1664–1677.

Telikicherla, D., Kandasamy, K., Goel, R., Ahmed, M., Mathivanan, S., Somanathan,
D. S., Subbannayya, Y., Selvan, L. D. S., Ranganathan, P., and Pandey, A. (2008). A
resource of molecular alterations in breast cancer. In Proc. of the Human Genome
Meeting, Hyderabad, India.

The Arabidopsis Initiative (2000). Analysis of the genome sequence of the flowering
plant Arabidopsis thaliana. Nature, 408:796–815.

157



Bibliography

To, A., Valon, C., Savino, G., Guilleminot, J., Devic, M., Giraudat, J., and Parcy, F.
(2006). A Network of Local and Redundant Gene Regulation Governs Arabidopsis
Seed Maturation. Plant Cell, 18:1642–1651.

Toedling, J., Schmeier, S., et al. (2004). MACAT - microarray chromosome analysis
tool. Bioinformatics, 21(9):2112–2113.

Tomida, S. et al. (2007). Identification of a metastasis signature and the DLX4 home-
obox protein as a regulator of metastasis by combined transcriptome approach.
Oncogene, 26:4600–4608.

Vicente-Carbajosa, J. and Carbonero, P. (2005). Seed maturation: developing an in-
trusive phase to accomplish a quiescent state. Int. J. Dev. Biol., 49:645–651.

Viterbi, A. J. (1967). Error bounds for convolutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Trans. Inform. Theory, 19:260–269.

Willenbrock, H. and Fridlyand, J. (2005). A comparison study: applying segmentation
to array CGH data for downstream analyses. Bioinformatics, 21(22):4084–4091.

Xu, X. et al. (2007). Identification and characterization of a novel p42.3 gene as
tumor-specific and mitosis phase-dependent expression in gastric cancer. Onco-
gene, 26:7371–7379.

Yu, K. et al. (2004). Conservation of breast cancer molecular subtypes and transcrip-
tional patterns of tumor progression across distinct ethnic populations. Clinical Can-
cer Research, 10:5508–5517.

Yu, L. et al. (2006). A survey of essential gene function in the yeast cell division. Mol
Biol Cell, 17(11):4736–4747.

Yuan, M. and Kendziorski, C. (2006). Hidden Markov Models for Microarray Time
Course Data in Multiple Biological Conditions. J Amer Statistical Assoc, 101:1323–
1332.

Zeller, G., Clark, R. M., Schneeberger, K., Bohlen, A., Weigel, D., and Rätsch, G.
(2008). Detecting polymorphic regions in Arabidopsis thaliana with resequencing
microarrays. Genome Research, 18:918–929.

Zimmermann, P., Hirsch-Hoffmann, M., Hennig, L., and Gruissem, W. (2004). GEN-
EVESTIGATOR. Arabidopsis Microarray Database and Analysis Toolbox. Plant
Physiol, 136:2621–2632.

158







Lebenslauf

Persönliche Angaben
Name Michael Seifert

Akad. Grad Diplom-Bioinformatiker

Wohnsitz Hans-Stubbe-Str. 28, 06466 Gatersleben,
Deutschland

Email seifert@ipk-gatersleben.de

Geburtsdatum 22.10.1981

Geburtsort Annaberg-Buchholz

Nationalität deutsch

Ausbildung
Seit 06/2006 Doktorand am Leibniz Institut für Pflanzengenetik und Kul-

turpflanzenforschung (IPK) Gatersleben unter Betreuung von
Prof. Dr. Ivo Große und Dr. Marc Strickert

10/2001 - 05/2006 Studium der Bioinformatik an der Martin-Luther-Universität
Halle-Wittenberg

06/2000 Abitur, Landkreisgymnasium Annaberg, Außenstelle Oberwie-
senthal

Forschungs- und Berufserfahrung
Seit 10/2007 IPK Gatersleben, Wissenschaftlicher Mitarbeiter in der Daten-

inspektionsgruppe unter Leitung von Dr. Marc Strickert (bis
01/2010) und seit 02/2010 unter Dr. Swetlana Friedel

06/2006 - 09/2007 IPK Gatersleben, Wissenschaftlicher Mitarbeiter in der Plant
Data Warehouse Gruppe unter Leitung von Dr. Ivo Große

09/2004 - 10/2004 BASF Ludwigshafen, Bioinformatikpraktikant

Gatersleben, ................................................

i



Publikationen

Veröffentlichungen in Fachzeitschriften oder Konferenzbänden

• M. Seifert, J. Keilwagen, M. Strickert, and I. Grosse (2009): Utilizing gene pair
orientations for HMM-based analysis of promoter array ChIP-chip data, Bioinfor-
matics 25(16), pp. 2118-2125.

• M. Seifert, A. Banaei, J. Keilwagen, M.F. Mette, A. Houben, F. Roudier, V. Colot,
I. Grosse, and M. Strickert (2009): Array-based genome comparison of Arabi-
dopsis ecotypes using Hidden Markov Models, In Proceedings of the Second
International Conference on Bio-inspired Systems and Signal Processing, Porto,
Portugal, pp. 3-11.

• M. Seifert, J. Keilwagen, M. Strickert, and I. Grosse (2008): Utilizing promoter
pair orientations for HMM-based analysis of promoter array ChIP-chip data, In
Proceedings of the German Conference on Bioinformatics 2008, Dresden, Ger-
many, pp. 116-127.

In Vorbereitung

• M. Seifert, A. Gohr, M. Strickert, and I. Grosse: Parsimonious Higher-Order Hid-
den Markov Models for Enhanced Comparative Genomics, in preparation.

• M. Seifert, M. Strickert, A. Schliep, and I. Grosse: Utilizing gene distances for the
analysis of breast cancer tumor expression profiles by extended Hidden Markov
Models, in preparation.

• A. M. Banaei Moghaddam, F. Roudier, M. Seifert, C. Bérard, M.-L. M. Magni-
ette, R. K. Ashtiyani, A. Houben, V. Colot, and M. F. Mette: Stability of histone
modifications in response to intraspecific hybridization in Arabidopsis thaliana, in
preparation.

• G. Mönke, U. Hähnel, M. Seifert, J. Keilwagen, P. Viehöver, A. Junker, A. Te-
wes, M. Mohr, I. Grosse, B. Weisshaar, U. Conrad, H. Bäumlein, and L. Alt-
schmied: Genome-wide ChIP-chip-based prediction of ABI3 regulated ge-
nes in Arabidopsis thaliana, in preparation.

• A. Junker, G. Mönke, T. Rutten, J. Keilwagen, M. Seifert, T. M. Nguyen Thi, J.-
P. Renou, P. Viehöver, U. Hähnel, L. Altschmied, U. Conrad, B. Weiss-
haar, and H. Bäumlein: A threepartite signaling network mediates elongation-
related functions of LEAFY COTYLEDON1 during embryo development of Arabi-
dopsis thaliana, in preparation.

ii



Vorträge auf Konferenzen oder in Kolloquien

• M. Seifert (2009): HMM-based detection of polymorphic regions in genomes of
Arabidopsis ecotypes, Colloquium Informatica, Johann Bernoulli Institute for Ma-
thematics and Computer Science, University of Groningen, The Netherlands, In-
vited by Prof. M. Biehl.

• M. Seifert (2009): Array-based genome comparison of Arabidopsis ecotypes
using Hidden Markov Models, Second International Conference on Bio-inspired
Systems and Signal Processing, Porto, Portugal.

• M. Seifert (2008): Utilizing promoter pair orientations for HMM-based analysis of
promoter array ChIP-chip data, German Conference on Bioinformatics, Dresden,
Germany.

• M. Seifert (2007): Genome-wide detection of ABI3 target genes in Arabidopsis
thaliana from ChIP-chip data using Hidden Markov Models, Plant Science Stu-
dent Conference, Halle, Germany.

• M. Seifert (2006): Linking chromosomal distances of genes to microarray profiles
- a novel strategy to analyze the effects of chromosomal imbalances on gene
expression levels, Data Warehouse Technologies in Bioinformatics, Lutherstadt
Wittenberg, Germany.

DAAD Antrag

• M. Seifert and V. Colot (2010): Exploring the activity and epigenetic control of
newly inserted transposable elements in Arabidopsis thaliana, 2011-2012, ac-
cepted.

iii



Danksagung

Zuallererst möchte ich mich bei meinen beiden Betreuern, Prof. Dr. Ivo Große und
Dr. Marc Strickert, für ihren Einsatz und ihre Unterstützung bedanken. Ivo hat mir im
Anschluß an mein Bioinformatik-Studium die Gelegenheit gegeben, am IPK Gaters-
leben in seiner Arbeitsgruppe Plant Data Warehouse, mit der Entwicklung von Hid-
den Markov Modellen höherer Ordnung zu beginnen. Nach dem Ende des Plant Data
Warehouse Projektes hat mir Marc die Möglichkeit gegeben, die begonnen Entwicklun-
gen in seiner Arbeitsgruppe Dateninspektion fortzusetzen. Anregende Diskussionen
mit Ivo und Marc in Halle haben mir stets aufs Neue geholfen, mich auf wesentliche
Punkte dieser Arbeit zu konzentrieren. Dankbar bin ich beiden auch für die Möglichkeit,
dass ich erzielte Ergebnisse auf nationalen und internationalen Konferenzen vorstellen
konnte.

Meine Faszination für Hidden Makov Modelle ist maßgeblich durch meine Diplomar-
beit entstanden. Unter Betreuung von Prof. Dr. Alexander Schliep und Prof. Dr. Stefan
Posch hatte ich die Möglichkeit, Grundlagen für Hidden Markov Modelle mit skalierten
Transitionsmatrizen zu legen und vertiefende Einblicke in algorithmische Grundlagen
zu gewinnen.

Parsimonische Hidden Markov Modelle höherer Ordnung konnte ich nur entwickeln,
weil André Gohr in seiner Diplomarbeit die Grundlagen für parsimonische Markov Mo-
delle gelegt hat und Ivo uns beide zusammengebracht hat. Ich danke André Gohr für
hilfreiche Diskussionen zur Verknüpfung des Parsimonischen Cluster Algorithmus mit
Hidden Markov Modellen höherer Ordnung und die Bereitstellung seiner Implementie-
rung des Parsimonischen Cluster Algorithmus im Rahmen des Jstacs Framework.

Ein Großteil meiner Studien zu aktuellen biologischen Fragestellungen wäre ohne mei-
ne biologischen Kooperationspartner am IPK Gatersleben nicht möglich gewesen. Ge-
spräche mit meinen Kooperationspartnern haben mir geholfen, ein besseres Verständ-
nis für deren biologische Fragestellungen zu entwickeln und zu deren Beantwortung
beizutragen.

Ich danke den Mitarbeitern des Arabido-Seed Projektes (Dr. Gudrun Mönke, Dr. Urs
Hähnel, Dr. Helmut Bäumlein, Dr. Lothar Altschmied, Dr. Udo Conrad, Prof. Dr. Ivo
Große, Michaela Mohr, Jens Keilwagen) für die Bereitstellung der ABI3 ChIP-chip Da-
ten, für die Bereitstellung der Validierungsdaten auf Basis von Transienten Assays und
für anregende Diskussionen.

iv



Ich danke Dr. Ali Banaei für die Bereitstellung der Array-CGH Daten zur vergleichen-
den Genomanalyse der Akzessionen C24 und Columbia der Modellpflanze Arabio-
dopsis thaliana. Anregende Diskussionen mit Dr. Ali Banaei, Dr. Andreas Houben und
Dr. Michael Florian Mette am IPK Gatersleben, und gemeinsame Diskussionen mit
Dr. François Roudier und Dr. Vincent Colot am CNRS Paris, haben mir geholfen, mei-
ne Modelle zu verbessern.

Ich danke Prof. Dr. Thomas Altmann für die Bereitstellung der SOLiD Resequenzie-
rungsdaten der Akzession C24 zur Validierung meiner Modelle zur Analyse von Array-
CGH Daten.

Diese Arbeit hätte ich nicht ohne die finanzielle Unterstützung des BMBF (0312706A,
Bioinformatik Centrum Gatersleben-Halle) und des Kultusministerium des Landes
Sachsen-Anhalt (XP3624HP/0606T, Arbeitsgruppe Dateninspektion) anfertigen kön-
nen.

Ich danke Prof. Dr. Ivo Große, Dr. Marc Strickert, Dr. Swetlana Friedel und Ulrike Sei-
fert für Kommentare zu den einzelnen Kapiteln.

Nicht zuletzt möchte ich mich bei meiner Familie für den Rückhalt bedanken, der mich
immer wieder angetrieben hat, diese Arbeit zu schreiben. Besonderer Dank geht dabei
an meine Frau Ulrike. Du hast die unterschiedlichen Phasen in der Entstehung dieser
Arbeit erlebt und für Ausgleich in vielen stressigen Situationen gesorgt.

v



Erklärungen

Gemäß der Promotionsordnung vom 03.02.2004 veröffentlicht im Amtsblatt der Martin-
Luther-Universität Halle-Wittenberg 14. Jahrgang, Nr. 5 vom 9. November 2004, S. 8.

Selbständigkeitserklärung (entsp. Promotionsordnung §5, Absatz 2b)

Hiermit erkläre ich, dass ich diese Arbeit selbständig und ohne fremde Hilfe verfasst ha-
be. Andere als die von mir angegebenen Quellen und Hilfsmittel habe ich nicht benutzt
und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen habe ich
als solche kenntlich gemacht.

Frühere Bewerbungen um einen Doktorgrad (§5, Absatz 2c)

Hiermit erkläre ich, dass ich mich bisher um keinen weiteren Doktorgrad beworben
habe.

Frühere Promotionsversuche (§5, Absatz 2d)

Hiermit erkläre ich, dass ich bisher keine vergeblichen Promotionsversuche unternom-
men habe.

Gatersleben, ................................................

vi


	Introduction
	Markov Models
	First-Order Markov Models
	Homogeneous First-Order Markov Model
	Inhomogeneous First-Order Markov Model

	Higher-Order Markov Models
	Homogeneous Higher-Order Markov Model
	Inhomogeneous Higher-Order Markov Model


	Hidden Markov Models
	Homogeneous First-Order Hidden Markov Models
	Inhomogeneous Higher-Order Hidden Markov Model
	Solving the Likelihood Problem
	Forward Algorithm
	Backward Algorithm
	Forward-Backward Procedure

	Solving the Optimal State Sequence Problem
	State-Posterior Algorithm
	Viterbi Algorithm

	Solving the Maximum Likelihood Problem
	Baum-Welch Algorithm
	Separating Baum's Auxiliary Function Into Parameter Classes
	Estimating HHMM Parameters
	Computational Scheme of the Baum-Welch Algorithm

	Prior
	Initial State Parameter Prior
	Transition Parameter Prior
	Emission Parameter Prior

	Solving the Maximum A Posteriori Problem
	Bayesian Baum-Welch Algorithm
	Estimating HHMM Parameters
	Computational Scheme of the Bayesian Baum-Welch Algorithm


	Parsimonious Higher-Order Hidden Markov Models
	Partitions of the Set of Hidden States
	Computing the Partitions
	Number of Partitions
	Set of Partitions

	Tree-based Representation of State Contexts
	Inhomogeneous Parsimonious Higher-Order Hidden Markov Model
	Solving the Maximum A Posteriori Problem
	Tree-Based Baum's Auxiliary Function for Transition Parameters
	Tree-Based Transition Prior
	Tree Structure Prior
	Bayesian Baum-Welch Algorithm
	Scoring Scheme for Tree Structures
	Estimating Transition Parameters for an Equivalence Class
	Basics for Determining Optimal Tree Structures and Corresponding Transition Parameters
	Extended Tree
	Parsimonious Cluster Algorithm
	Computational Complexity of the Parsimonious Cluster Algorithm


	Hidden Markov Models with Scaled Transition Matrices
	Scaling of Transition Matrices
	Hidden Markov Model with Scaled Transition Matrices
	Solving the Maximum A Posteriori Problem
	Transition Prior
	Baum's auxiliary function for Transition Parameters
	Estimation of Transition Parameters


	Analysis of Breast Cancer Gene Expression Data
	Breast Cancer Gene Expression Data Set
	Methods for Breast Cancer Gene Expression Data Analysis
	Hidden Markov Model approach
	Hidden Markov Model with two scaled transition matrices
	Related approaches from the field of Array-CGH analysis

	Breast Cancer Gene Expression Data Analysis
	Comparison of Baum-Welch and Bayesian Baum-Welch training
	Comparison of HMM, SHMM, and related approaches
	Effect of chromosomal distances of genes on self-transition probabilities of SHMMs
	Validation of prediction results of HMM, SHMMs, and GLAD
	Influence of modeling chromosomal locations and distances of genes on the prediction results
	Hotspots of under-expression and over-expression


	Analysis of Promoter Array ChIP-chip Data
	Promoter Array Data Sets
	Yeast Data Set
	Arabidopsis Data Set

	Methods for Promoter Array Data Analysis
	Standard Log-Fold-Change analysis
	Basic first-order Hidden Markov Model
	Hidden Markov Model with two scaled transition matrices

	Identification of Common Target Genes of Yeast Cell Cycle Regulators
	Prediction of putative common target genes
	Validation of putative common target genes

	Identification of Arabidopsis ABI3 Target Genes
	Systematic analysis of differences between HMM and SHMM
	Comparison of ABI3 target gene predictions of LFC, HMM, and SHMM
	Biological validation of putative ABI3 target genes


	Analysis of Arabidopsis Array-CGH Data
	Arabidopsis Array-CGH Data Set
	Methods for Array-CGH Data Analysis
	Hidden Markov Model approaches
	Related approaches for the analysis of Array-CGH data

	Arabidopsis Array-CGH Data Analysis
	Analysis of dependencies between log-ratios
	SOLiD and Affymetrix resequencing data for validating the Array-CGH data set
	Performance of HHMMs on the Array-CGH data set
	Performance of PHHMMs on the Array-CGH data set
	Selected tree structures of PHHMMs
	Comparison of PHHMMs and HHMMs at a higher FPR
	Comparison of PHHMMs to other methods
	Analysis of PHHMM predictions in the context of the genome annotation


	Conclusions
	Bibliography
	Lebenslauf
	Publikationen
	Danksagung
	Erklärungen

