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vorgelegt von
Berlinson Dominikus Napitu

Gutachter:
Prof. Dr. Jamal Berakdar, Martin-Luther Universität Halle-Wittenberg
Prof. Dr. Steffen Trimper, Martin-Luther Universität Halle-Wittenberg
Prof. Dr. Michael Potthoff, Universität Hamburg
Halle-Saale, den 12. Juli 2010: Tag der Disputation

HALLE-SAALE
2010



ABSTRACT

The present work encompasses theoretical studies of single- and two-particle excitations of
strongly correlated systems using the Hubbard model. For single and isotropic two-band sys-
tem, the particle-particle spectral function is investigated within the framework of the Dynamical
Mean Field Theory (DMFT), the ladder approximation and the first order perturbation theory.
The results are analyzed and compared for a system in the vicinity of the Mottmetal insula-
tor transition (MIT). Under certain conditions specified in this work, the calculated two-particle
spectral function is then related to the photocurrent of (one-photon, 2-electrons) experiment. The
discussion is then extended to account for spatial fluctuations. To this end, the two dimensional
Hubbard model is modified such that it incorporates nonlocal spin fluctuations. The extended Dy-
namical Mean Field Theory (EDMFT) is then employed to calculate the spin susceptibility, the
single-particle spectral function, the optical conductivity and the two-particle spectral function.
It is shown that the inclusion of the spin fluctuations assists the formation of pseudogap in the
single-particle spectral function. Similarly, the particle-particle sector shows a reduction of the
spectral weight as the spin exchange interaction increases. The interplay between the bandwidth
anisotropy and the strong correlation in the multiorbital system is discussed using the anisotropic
two-band Hubbard Hamiltonian. At first, the transport properties and the two-particle spectral
function of the total band at the verge of MIT are calculated within DMFT. The influence of
the spatial fluctuation is then addressed by means of EDMFT in the modified two-band Hubbard
model that incorporates the spin-spin interaction. It is shown that the spatial fluctuation does not
change the physics of the orbitally dependent Mott transition.



ZUSAMMENFASSUNG

Diese Arbeit umfasst die theoretische Untersuchungen der ein- und zwei-Teilchen Anregungen
in stark korrelierten Systems im Rahmen des Hubbard Modells. Mittels der dynamische Mean-
Field-Theorie (DMFT), der Leiter-N̈aherung und der Erste-Ordnung-Näherung wird die Spek-
tralfunktion des Einband- und isotrope Zweiband-Hubbard-Modells untersucht. Die Ergebnisse
werden in einem System in der Nähe des MotẗUbergangs verglichen und analysiert. Die berech-
nete Spektralfunktion wird unter bestimmten Bedingungen mit Photostrom des (ein-photon, 2
Elektronen) Experiments gekoppelt. Die Diskussion wird dann erweitert, umdie r̈aumliche
Fluktuation zu ber̈ucksichtigen. Hierbei wird das zweidimensionale Hubbard Modell mit Spin-
fluktuation zusammen mit der erweiterte dynamische Mean-Field-Theorie (EDMFT) angewen-
det, um die Einteilchen-Spektralfunktion, die optische Leitfähigkeit, und die Zweiteilchen -
Spektralfunktion zu berechnen. Es wird gezeigt, dass die Spinschwankungen die Entstehung
einer Pseudo-L̈ucke in der Eintelchen-Spektralfunktion unterstützen. Inähnlicher weise, mit
der steigenden Spin-Wechselwirkung verringert sich das Spektralgewichts der Zwei-teilchen-
Anregung. Das Zusammenspiel zwischen der Bandbreite-Anisotropie undder stark Korrela-
tionen ist im Rahmen des Zweiband-Hubbard-Modells diskutiert. In dieser Hinsicht werden
die Transporteigenschaften sowie die Zweiteilchen-Spektralfunktion durch DMFT ermittelt. Die
Wirkung der Spinfluktuation in diesem Modell lässt sich anhand der EDMFT feststellen. Es zeigt
sich, dass die räumliche Schwankungen nicht die Physik des orbital-abhänging MottÜbergangs
ändern
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CHAPTER 1

Introduction

The fundamental objective of a theory of the solid state is to deduce the structure and properties

of systems with large degrees of freedom. In practice, however, one focuses on the most rele-

vant energy scales that contribute to the macroscopic characteristics of the system. This notion

is embodied in the Born-Oppenheimer approximation that decouples adiabatically the nuclear

from the electronic degrees of freedom. It is the latter that governs various properties of solids

involving thermodynamic, electrical and magnetic response. While the problemhas been sub-

stantially simplified, the Hamiltonian of the system remains intractable due to the fact that the

system remains N-body problem consisting of kinetic and electronic interactions. Neglecting

all interactions is the crudest approximation in which electrons are envisaged to wander freely

through the volume of solid. This is the well-known Sommerfeld’s theory which works inter-

estingly well in describing qualitatively or even quantitatively the physical properties of systems

like alkali or earth-alkali metals. This simplest model however fails to give a description why

some of the solids have metallic, insulating or semiconducting character. The key to the question

is to account for the periodic lattice in the independent electron picture whichleads to the concept

of band theory and the new important property so-called band gap.

Electron-electron interaction is, however, an essential factor for the realistic description of

solids. In this connection, one of the most successful concept is the phenomenological theory

of Landau or usually noted as Fermi liquid which was developed originally to understand the

properties of low temperature liquid He3. In his theory, the interaction of electrons is assumed

to be adiabatically turned on. The non-interacting ground states thus evolves smoothly to the

interacting one and there is one to one correspondence between the bareparticle of the original

system and the “dressed” or the quasiparticle of the interacting system. Thenotion of quasi-

particles is of paramount importance from which an insight to the low-energyexcitations (close

to Fermi level) of the system may be gained. The concept of Fermi liquid generally holds in a

wide range of solids ranging from the simple metals to the transition metal systems. The Landau
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1 Introduction

theory however breaks down when the electrons are strongly correlated.

Attempts to solve for the full electronic Hamiltonian is pursued in various ways. Early

works initiated by Hartree and Fock (HF) remains in the spirit of the independent electron picture

with the total wavefunction of the electrons is written in the form of a single Slaterdeterminant.

Following the argument of variational principles, one is then left with single-electron equations

with the interaction of the electrons being expressed in the form of an effective potential interac-

tion. The Hartree-Fock equations are then solved in a self consistent way. While the approach

generally works for various systems, it is a well known problem that HF approximation overes-

timates band gap value than what is obtained in the experiments. This is mainly due tochoice of

the total wavefunction that neglects the electronic correlation. An innovative idea that incorpo-

rates the correlation yet still maintains the one-particle picture is pioneered byHohenberg, Kohn

and Sham employing the relation of the density and the energy and avoiding theuse of wave-

functions. The actual implementation of DFT is manifested in the local density approximation

(LDA) which turns out to be useful for ground state calculations of a vast range of compounds.

In the last few years, many new materials have been discovered that exhibit a wide range

of fascinating phenomena such as high-temperature superconductivity,heavy fermion system,

non Fermi liquid behavior and metal insulator transition. A fundamental characteristic of such

a system is that the dynamics of the electrons are strongly influenced by the mutual Coulomb

repulsions. Although technological applications of this material is interesting by itself, the most

challenging issue is to elucidate the underlying physics. Rapid development of experimental tools

with high resolution and sensitivity such as angular resolved photoemission (ARPES), neutron

scattering, scanning tunneling microscope (STM) has made possible an accurate measurements

of the electronic and magnetic structure. The theoretical description of the experimental data on

the other hand is far from being complete. One of the reasons is the lack of controllable approxi-

mations. While DFT-LDA and similar approaches have been very useful to unravel the electronic

structure of weakly correlated systems, they fail in general in describingthe system with strong

electronic correlations. This suggests that these phenomena are the results of cooperative many

body interactions which can not be captured within a single-particle picture.

The Mott metal-insulator transition is a well-known phenomenon in which the perturba-

tion theory breaks down as the energy scale of electron-electron interactions and the kinetic

energy are comparable. In this respect, the behavior of electrons is alsoexpected to deviate

from the canonical Fermi-liquid picture. The underlying concept of the origin of Mott insula-

tor is, therefore, different from the one that is driven by the electron-ion interaction described

above. The archetypal examples of Mott systems are the transition-metal oxide such as high-Tc

cuprates, V2O3, NiS2−xSex. The recently discovered ruthenates oxide Ca2−xSrxRuO4 that dis-

plays a wealth of phase-diagram involving superconductivity and magnetism has also attracted

considerable interests owing to a new class of Mott transition. The development of the dynamical

mean field theory (DMFT) is an important step toward a thorough understanding of the role of

correlations in general and the metal-insulator transition in particular.
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1 Introduction

The present work is aimed at studying the dynamic properties of single- andtwo-particle

excitation in the vicinity of Mott metal-insulator transition. The structure of this work is as

follows: The next chapter contains an introduction to the Hubbard model and its relation to

the metal-insulator transition. This is followed by a brief discussion of the finite temperature

Green’s function derived within functional integrals. The formulation of the dynamical mean

field theory (DMFT) in the Hubbard model is described which is then followedby the extended

version of the method/extended dynamical mean field theory (EDMFT) that incorporates spatial

fluctuations. The Quantum Monte Carlo (QMC) as a method of the solution of DMFT and

EDMFT equations is then sketched. Subsequently, the maximum entropy methodused to extract

the dynamic properties of DMFT-QMC quantities will be outlined.

Formulation of the two-particle excitation is given in the third chapter. It is started with

the derivation of the optical conductivity in the paramagnetic and antiferromagnetic phase within

the limit of infinite dimension. The intent of the subsequent section is the formulation of particle-

particle excitations within the ladder approximation (LA) in the single and orbitally degenerate

cases. This chapter is then completed with the discussion of experimental techniques as well as

the derivation of the photocurrent of the particle-particle spectroscopy.

The results of particle-particle excitations in the single and isotropic two-bandHubbard

model are given in the fourth chapter. There are two main points of discussion. First, the behavior

of the particle-particle excitations at the verge of the metal insulator transition.Second, the

accuracy of the results of three different methods DMFT+QMC, DMFT+LA and the first order

approximation. The last section of the chapter discusses the metal insulator transition in the two

dimensional Hubbard model at and off half-filling. In this case, the extended DMFT together

with the modified QMC is employed to calculate various quantities involving the single-particle

spectral function, the spin susceptibility, the optical conductivity, the mass enhancements and the

scattering rate. At the center of the investigations is the influence of the spatial fluctuation on the

phase diagram of 2D Hubbard model and also on the two-particle properties. In the last part, the

spectra of pair excitation of 2D Hubbard model are also presented.

The fifth chapter is devoted to the study metal insulator transition in the anisotropic two-

band system which is an idealized picture of the strontium ruthenates compound. The chapter

starts with a brief discussion of the electronic properties of the ruthenates based on the results of

the experiments and first principles calculation. It is then directly followed bythe presentation

of the results of DMFT for the single- and the two-particle excitations in the paramagnetic and

antiferromagnetic phase. The last part of the chapter discusses the influence of spatial fluctuations

in the paramagnetic phase. To that end, EDMFT is employed in the modified two-band Hubbard

model that incorporates the intersite spin fluctuations. Single- and two-particle Green’s function

are then calculated within quantum monte carlo that incorporates fermion and boson degrees of

freedom. At last, Chapter 6 concludes this work and discusses possible extensions.
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CHAPTER 2

Models for Correlated Systems and Methods of Solution

This chapter is intended to introduce the model and the methodology that will be used through-

out the thesis. The first section discusses the model under investigations,and its extension to

incorporate the orbital degrees of freedom. A related issue discussed also in this section is the

correlation- driven metal insulator transition (MIT). Since DMFT is formulated within Green’s

function formalism and also for completeness reason, brief description ofGreen’s function and

related topics are presented in Sec. 2.2. The DMFT method is dicussed in Sec. 2.3. The presenta-

tion is started from the notion of the infinite coordination limit and ensued by heuristic derivation

of the DMFT self-consistency equations. In the subsequent section, thesingle-site formulation of

DMFT is extended to incorporate the influence of spatial contribution. The method of choice in

this respect is the extended dynamical mean field theory (EDMFT) that takesspin-spin interac-

tions into account. In addition to that, various proposals that also include spatial fluctuations will

be briefly discussed. The single-site problem of DMFT and EDMFT equations however remains

a difficult task. Often, one has to rely on numerical methods that can be applied in a wide range

of parameter. In the present work, Hirsch-Fye quantum monte carlo (QMC) will be employed

to solve the single-site or the impurity Hamiltonian of DMFT and EDMFT and to calculate the

imaginary-time single- and two-particle Green’s function. The last section discusses the analyt-

ical continuation method which is aimed at transforming the imaginary time quantity into real

frequency.

2.1 Models and Related Phenomena

The simplest model that incorporate the basic ingredients of the electron correlations is the Hub-

bard model. In the standard notation, the Hamiltonian reads

H = −
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓. (2.1)

4



2 Models for Correlated Systems and Methods of Solution

wheretij andU correspond to the hopping matrix and Coulomb interaction respectively. This

Hamiltonian describes the hopping of electrons and holes in a narrow band with a density-density

interaction. In deriving this Hamiltonian, Hubbard assumed the ideal case in which only one

band lies at the Fermi energy (ǫF ) while other bands are energetically far above or belowǫF and

thus can be neglected [1]. To further simplify the Hamiltonian, he considered only the maximal

term of the matrix elements of Coulomb interaction namely intra-atomic contributions. This

is supported by the fact that the onsite Coulomb interaction of3d-electrons system, is on the

order of 20eV which is much larger than that long range Coulomb interactionswhich varies from

0.025eV to 3eV.

The Hubbard model has a rich phase diagram which can be realized by varying the hop-

ping terms which determines the bandwidthW and the Coulomb interactionU . The model is

thus considered to capture the essential physics of the various intriguing phenomena such as

magnetism, metal insulator transition, superconductivity. A thorough understanding of the un-

derlying physics of the model is however far from complete. This is perhaps due to the lack of

analytical solutions and thus one relies mainly on the approximation which sometimesalso not

controllable. To date, the only analytical solution available is for one dimensional case which

was obtained by Lieb and Wu [2] employing the Bethe ansatz . In contrast, analytical solutions

for higher dimensional system are scarcely available. The model however can be treated analyti-

cally in two extreme limits. The limit ofU=0 or non-interacting system, andt=0 or atomic limit.

The former case corresponds to the systems of a free electron gas whichis well understood using

a theory such as that proposed by Sommerfeld. The atomic case on the otherhand describes the

system of electrons that are localized in solid since the coupling between sitesis absent.

The Hamiltonian of the Hubbard model was independently proposed by threeauthors:

Gutzwiller [3], Kanamori [4] and Hubbard [1]. Initially it was intended to investigate the possi-

bility of ferromagnetism in transition metals. Hubbard soon realized that the model could be also

used to study the correlation-driven metal insulator transition which was proposed by Mott. The

importance of correlation in the context of metal insulator transition has been realized long before

the Hubbard model was introduced. This issue was brought into attention initially by de-Boer

and Verway [5] after studying NiO. They pointed out that the insulating phase of NiO could not

be described within the standard band theory which predicts a metallic phase.In order to address

this problem, Peierls [6] proposed that the insulating state is induced by strong Coulomb repul-

sion that controls the dynamics of the electrons. Subsequently Mott proposed a simple picture to

describe the MIT. He argued that a crystalline array of one electron atomswith a lattice constant

a at zero temperature should show a sharp transition from a metal to an insulator as the distance

between atoms was varied [7, 8]. The microscopic description of this system was provided by

Hubbard by introducing the simplified Hamiltonian ofd− band system as described above. By

means of Green’s function method, he showed the existence of MIT, marked by the splitting of

the original density of states into two sub-bands, upper and lower bands.

In a realistic system, Mott transition can be realized by varying the bandwidth as well as

5



2 Models for Correlated Systems and Methods of Solution

the chemical filling [9]. In the first route, the bandwidth is controlled by modifying the lattice

parameters or the chemical composition while maintaining the original crystal structure. It is

important to note that the on-site interactionU remains unchanged during the above process.

Experimentally this method is realized by applying a hydrostatic pressure or substituting ele-

ments with different ionic radius and the same valence. Typical example are V2O3, RNiO3, R

being Pr or Nd, layered ruthenates Ca2−xSrxRuO4, two dimensional organic saltκ−(BEDT-

TTF)2Cu[N(CN)2]Cl[10]. In the second route, the electron filling is changed typically by substi-

tuting certain elements of the original compound with the one that has differentvalence. Example

for this method are La2−xSrxCuO4, La1−xSrxMO3, M being a transition metal. Tuning the prop-

erties of materials by varying the pressure is generally preferable than doping. The latter leads

to some complications due to possible disorder in the structure and for certain cases should be

avoided. Besides the two routes mentioned above, one could also use dimensionality as a control

parameter. This is motivated by the fact that electronic structure is also modified by lowering

the dimensionality. Realistic application of this method is however more difficult thanthat the

two routes described above. Note that the temperature is not considered inthis respect as a con-

trol parameter, and this distinguishes the Mott transition from that that is driven by temperature.

In fact, this metal insulator transition should also occur at zero temperature and therefore is an

example of quantum phase transition.

Application of the single band Hubbard model to describe MIT in the transitional metal

oxides is realized in several systems. The most prominent examples are cuprates superconductor

and vanadium sesquioxide V2O3 which shall be briefly discussed below for illustrative purposes.

In both cases, it is implicitly assumed that orbital degeneracy is lifted by strongcrystal fields

effects and thus the relevant low-energy excitation is described by singleband near the Fermi

energy. As is already pointed out above, V2O3 is the example of bandwidth-controlled metal

insulator transition. One thus obtains MIT by varying the pressure or by changing the chemical

composition. The complete phase diagram has been obtained experimentally in the early 70s by

Mc whan et.al [11, 12] and it is reproduced in Fig.2.1. As is clearly seen, vanadium sesquioxide

has a rich phase diagram as a function of the temperature and the pressure/doping which involves

antiferromagnetic insulating (AFI), paramagnetic metal (PM) and paramagnetic insulator (PI).

By varying pressure, one observes the metal insulator transitions that is accompanied by the

transition from AFM to PM in the low temperature and PI to PM at high temperatures. This is

the classic example of the Mott transition discussed above. The metal-insulatortransition in the

vanadium sesquioxide is also accompanied by a structural distortion namely from monoclinic

in AFI to corundrum structure in the PM and PI. Theoretical description ofthis system was

firstly proposed by Castellani.et.al [13] that pointed out that only doubly degenerateeπg orbital is

relevant. Based on this observation the physics of V2O3 is believed to be captured by the single

band Hubbard model at half-filling.

A satisfactory theoretical description of the metal insulator transition within the Hubbard

model is, however, not a trivial task and has been a long standing problem. This is in part due to

6



2 Models for Correlated Systems and Methods of Solution

Figure 2.1: Pressure-Temperature phase diagram of the vanadium sesquioxide V2O3. The picture is taken
from Ref [11].

the nature of the transition which occurs in the intermediate to strong coupling regime ofU . In

the past, various methods have been introduced to tackle this problem. The solution of Hubbard

model mentioned in the previous paragraph distinguishes metal and insulating phase only by the

presence of a gap in the spectra. In this picture, the original band is split into two bands (lower

and upper band) for strong coupling and merges again asU decreases. This approach however

fails to provide a coherent state that epitomizes the Fermi liquid properties.

Brinkman and Rice [14] used a different scenario which they describe as the strongly

renormalized Fermi liquid with a reduced low energy scale. In their approach, they employed the

Gutzwiller correlated wavefunction [15, 16]

|ΨG〉 = gD|Φ〉 =
∏

i

(1− (1− g)Di) |Φ〉 (2.2)

where|Φ〉 is the single-particle uncorrelated-state typically represented by Slater determinant,

D =
∑

iDi =
∑

i ni↑ni↓ is the operator of double occupancies at the same site andg is the

variational parameter that determine the number of double occupancies in thesystem. Forg = 1

one deals with the uncorrelated state while forg < 1 corresponds to the system with reduced

double occupancies. Early work of Gutzwiller provided the explicit expression of the ground

7



2 Models for Correlated Systems and Methods of Solution

state energy obtained from the expectation values of the Hubbard Hamiltonian

E =
〈ΨG|H|ΨG〉
〈ΨG|ΨG〉

. (2.3)

This energy depends both ong and on the variational parameters which is then determined by a

minimization of the ground state energy. The final expression of the groundstate energy is then

written as

E = q (ǫ↑ + ǫ↓) + Ud, (2.4)

whered ≡ D/N , N is the number of the lattice sites andq = 8d(1 − 2d) corresponds to the

discontinuities in the single-particle occupation. Finally by minimizing the energy withrespect

to d one obtains

d =
1

4

(
1− U

Uc

)
, (2.5)

q = 1−
(
U

Uc

)2

, (2.6)

E

N
= −|ǫ↑ + ǫ↓|

(
1− U

Uc

)2

, (2.7)

whereUc = 8|ǫ↑ + ǫ↓|. Based on this result, Brinkman and Rice derived a relation for the

quasiparticle renormalizationZ =

(
1− ∂Σ(ω)

∂ω

∣∣∣
ǫF

)−1

, the effective massm
∗

m andq read

m∗

m
= Z−1 = q−1 =

(
1−

(
U

Uc

)2
)−1

. (2.8)

Straightforward calculations then give the spin susceptibility

χ−1
s ∝ 1−

(
U

Uc

)2

. (2.9)

From the above equations, it can be seen that whenU approachesUc, both the spin susceptibility

and the effective mass diverge whereas the quasiparticle renormalizationZ vanishes. While

it successfully explains the effects of correlations on the quasiparticle peak, the approximation

does not account for the formation of Hubbard bands which starts as thesystem approaches the

insulating phase.

A significant development on this subject has been the introduction of the high dimensional

limit [ 17]. This approach treats both the quasiparticle and Hubbard bands on equal footing and

thus is able to describe the continues transition from the weak to the strong coupling regime.

More interestingly is that the Mott transition in the three dimensional limit can be treated within

a local approximation. The complicated many body methods is thus simplified in sucha way

that one has to deal with the dynamics fluctuation on certain site while spatial fluctuation can be

ignored. Further discussion on this method will be provided in the next section.

8



2 Models for Correlated Systems and Methods of Solution

Other approaches based on single-particle description such as LDA generally fails to de-

scribe the Mott metal insulator transition. Extensions of this approach by incorporating additional

correction to the correlation as manifested in the LDA+U and LDA+SIC (self interaction correc-

tion) leads to a more reasonable prediction in the insulating phase. A unified description of the

correlated metal-insulator transition however can not be provided by theseapproaches.

A realistic description of most of the materials requires the inclusion of orbital degrees

of freedom. Various physical properties of strongly correlated materials, e.g magnetism, charge

transfer metal insulator, orbital ordering, are the results of the interplay of the spin, the orbital,

and also lattice effects. Numerous recent studies have also shown undoubtedly that the orbital

degrees of freedom are of primary importance for understanding the nature of Mott MIT. The

inclusion of orbital degeneracy leads to a complex many body Hamiltonian sincethe interac-

tions terms neglected in the single band Hubbard model are now taken into consideration. The

multiband Hubbard model is written as

H = −
∑

ijασ

tijαc
†
iασcjασ + U

∑

iα

niα↑niα↓ +
∑

iα<βσσ′

(U ′ − δσσ′J)niασniβσ′

−J ′
∑

iα<βσ

(
c†iασciα−σc

†
iβ−σciβσ + c†iασc

†
iα−σciβσciβ−σ

)
(2.10)

wheretijα describes hopping of an electron from sitesi to j,U andU ′ represent intra- and inter-

orbital Coulomb repulsion respectively andJ is the exchange interaction. The last two terms in

the Hamiltonian above, correspond to the spin flip and the pair-hopping term respectively with

couplingJ ′. In the above equation indexα andβ stand for orbital number.

A rigorous analytical solution of this Hamiltonian for all regime of parameters is prac-

tically impossible. However, the behavior of the metal insulator transition that depends on the

number of orbital degeneracy can be analytically solved using the extended Gutzwiller wavefunc-

tion for multiband system. It is shown [18] that the critical couplingUc depends on the number

of the orbital degeneracyNα, or explicitlyUc ≈ 4(Nα + 1)W , whereW is the bandwidth. It is

important to note however that this exact relation is obtained by considering only the local and

the interorbital interaction.

2.2 Formalism of Finite Temperature Green’s Function

Then particle Green’s function is defined as [19]

Gn(α1τ1, . . . , αnτn|α′
1τ

′
1, . . . , α

′
nτ

′
n) = ζn〈TτCα1(τ1), . . . , Cαn(τn)C

†
α′
n
(τ ′n), . . . , C

†
α′
1
(τ ′1)〉
(2.11)

whereζ = −1 for fermion,Tτ is the time ordering operator in the imaginary time andCα(τ),

C†
α(τ) are the imaginary time Heisenberg operator with quantum numberα explicitly expressed

9
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as

C†
α(τ) = eτ(Ĥ−µN̂)c†αe

−τ(Ĥ−µN̂), (2.12)

Cα(τ) = eτ(Ĥ−µN̂)cαe
−τ(Ĥ−µN̂).

In the above expression,H denotes the Hamiltonian of the electron generally expressed asH =

H0[c
†
αcα] + V [c†αc

†
β . . . cγcδ]. µ andN =

∑
α c

†
αcα are the chemical potential and the number

operator respectively. The grand partition function for this general Hamiltonian usually expressed

asZ = Tre−(H−µN) can be also written in terms of functional integrals by using the Grassmann

variableŝc†α(τ), ĉα(τ) as follows

Z =

∫
D[ĉ†ĉ]e−

∫ β
0 dτ

∑
α ĉ†α(τ)(∂τ−µ)ĉα(τ)+H0[ĉ

†
α(τ),ĉα(τ)]+V [ĉ†α(τ)ĉ

†
β
(τ)...ĉγ(τ)ĉδ(τ)] (2.13)

It is straightforward to obtain the expression of then particles Green’s function in terms of the

functional integral formulation

Gn(α1τ1, . . . , αnτn|α′
1τ

′
1, . . . , α

′
nτ

′
n) = ζn

1

Z

∫
D[ĉ†ĉ]

[
e−

∫ β
0 dτ

∑
α ĉ†α(τ)(∂τ−µ)ĉ(τ)+H[ĉ†α(τ)ĉα(τ)]

ĉα1(τ1) . . . ĉαn(τn)ĉ
†
α′
1
(τ ′1) . . . ĉ

†
α′
n
(τ ′n)

]
(2.14)

= ζn
〈
ĉα1(τ1) . . . ĉαn(τn)ĉ

†
α′
1
(τ ′1) . . . ĉ

†
α′
n
(τ ′n)

〉
. (2.15)

In the absence of interactionsV = 0, the single-particle Green’s function is written as

G0(α1τ1|α2τ2) = − 1

Z0

∫
D[ĉ†ĉ]ĉα1(τ1)ĉ

†
α2
(τ2)e

−
∫ β
0

∑
α ĉ†α(τ)(∂τ+ǫα−µ)ĉα(τ) (2.16)

= −(∂τ + ǫα − µ)−1

whereZ0 =
∫
D[ĉ†ĉ]e−

∫ β
0 dτ

∑
α ĉ†α(τ)(∂τ+ǫα−µ)ĉα(τ) is the partition function of the non-interacting

system andǫα is the eigenenergy of the kinetic operatorH0 =
∑

α ǫαc
†
αcα. The momentum-

dependent Green’s function in the imaginary time and the Matsubara frequency are related via

Fourier transform

G(k, τ) =
1

β

∑

n

G(k, iωn)e
−iωnτ (2.17)

G(k, iωn) =

∫ β

0
dτG(k, τ)eiωnτ .

Thus the non-interacting Green’s function of Eq.(2.16) expressed in terms of the momentum and

the Matsubara frequency reads

G−1
0 (k, iωn) = iωn + µ− ǫ(k), (2.18)

whereǫ(k) is the momentum representation of eigen energy ofH0 or the dispersion. In the

interacting system, the full Green’s function as well as the energy can be evaluated by means of

10
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perturbation expansion . The partition function of Eq.(2.13) is expressed in the power series as

follows

Z

Z0
=

∞∑

n

(−1)n

n!

∫ β

0
dτ1 . . . dτn

〈
V (ĉα(τ1)

† . . . ĉγ(τ1)) . . . V (ĉα(τn)
† . . . ĉγ(τn))

〉
. (2.19)

By means of Wick’s theorem, one could evaluate the thermal averages of theproductŝc† andĉ in

the partition function above and derive systematic rules to construct the Feynman diagrams to all

orders. Summation of the so-called irreducible diagrams to all orders provides the exact relation

between non-interacting and interacting Green’s function. Alternatively,this exact relation can

be also derived within the functional integral formalism and will be used in thissection. One

starts with the generating function for the imaginary time Green’s function

Z[ηη] =
1

Z

∫
D[ĉ†ĉ] exp

(
−
∫ β

0
dτ
∑

α

[
ĉ†α(τ)(∂ − µ)ĉα(τ) +H[ĉ†αĉα]

+ [ηα(τ)ĉα(τ) + ĉ†α(τ)ηα(τ)]
])
, (2.20)

=

〈
exp

(
−
∫ β

0
dτ
∑

α

[ηα(τ)ĉα(τ) + ĉ†α(τ)ηα(τ)]

)〉
,

which follows from the expression of the partition function of Eq.(2.13) with additional source

termsη, η. This source terms can be imagined to play the role of a probe that is used to extract

the Green’s function. Thus by taking the functional derivative with respect to the source terms

one obtains then-particle imaginary time Green’s function (explicit expression can be seen in

ref [19]). It is important to notice that the generating functionalZ does not ensure that all

diagrams of Green’s function are connected. The connected Green’sfunction (cumulant) can

be generated using the so-called linked cluster theorem that connectslnZ(η(x), η(x)) and the

sum of all connected diagrams. AssigningΩ(η(x), η(x)) as the generating functional of the

connected diagrams, then-particle imaginary-time Green’s functionC n is expressed in the form

of a functional derivative with respect to the sourcesη(x), η(x)

C n(x1, . . . , xn|x′1, . . . , x′n) = ζn
δ2nΩ

δη(x1) . . . δη(xn)δη(x′n) . . . δη(x
′
1)

∣∣∣∣
η,η=0

. (2.21)

In the above expression, the variablex replaces{τ, α} andη(x) is understood asηα(τ). Us-

ing the above formula, it is then straightforward to obtain the connected single-particle Green’s

function

G(x1|x′1) ≡ G1(x1|x′1) = C 1(x1, x
′
1) = −〈ĉ(x1)ĉ†(x1′)〉. (2.22)

Similarly, the evaluation of the two-particle Green’s function gives

χ(x1, x2|x′1, x′2) ≡ G2(x1, x2|x′1, x′2) =[
G(x1|x′1)G(x2|x′2) + G(x1|x′2)G(x2|x′1)

]
− C 2(x1, x2|x′1, x′2).(2.23)

11
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In order to generate all connected diagrams that also one-particle irreducible, one usually gener-

ate the vertex functions. In doing so, it is convenient first to perform theLegendre transform to

obtain a new functionalΓ (effective action) as a function of the sourcesφ, φ. This is written as

follows

Γ[φ, φ] = −Ω[η, η]−
∑

y

η(y)η(y) + η(y)φ(y), (2.24)

where
∑

y =
∑

α

∫ β
0 andy is a composite variable similarly as defined above forx. The vertex

function to all orders can be generated by defining

γmφ,nφ(x1, . . . , xn|x′1, . . . , x′n) =
δm+n

δφ(x1) . . . δφ(xn)δφ(x′n) . . . δφ(x
′
1)
Γ[φ(x)φ(x)]

∣∣∣∣
η,η=0

.

(2.25)

It is straightforward to show the relation between the vertex function and thesingle-particle

Green’s function (
γφφ γφφ
γφφ γφφ

)
= ζ

(
〈ĉĉ†〉 〈ĉĉ〉
〈ĉ†ĉ†〉 〈ĉ†ĉ〉

)−1

, (2.26)

where the diagonal parts of the matrix on the right hand side are the usual single-particle Green’s

function while the off diagonals are usually noted as anomalous Green’s function which is par-

ticularly useful for the systems with symmetry breaking. By assuming that the system is not

in the broken symmetry phase, the relation between the vertex and the Green’s function in the

interacting and the non-interacting case may be written as follows

[
γφφ(x, x

′)
]−1

= G(x|x′), (2.27)
[
γo
φφ
(x, x′)

]−1
= Go(x|x′). (2.28)

The difference between the vertex function in the interacting and the non interacting case is

denoted by the new functionalΣ(x|x′), noted as self energy

γφφ ≡ γ0
φφ

− Σ. (2.29)

Transforming into the momentum-frequency representation, one obtains the familiar expression

of the Dyson equation

G−1(k, iωn) = G−1
0 (k, iωn)− Σ(k, iωn), (2.30)

= iωn + µ− ǫ(k)− Σ(k, iωn). (2.31)

One of the most important experimental observable which can be directly associated with

the knowledge of single-particle Green’s function is the spectral functionA(k, ω). It can be

derived by first writing the Green’s function as follows

G(αt|α′t′) = θ(t− t′)G>(αt|α′t′) + θ(t′ − t)G<(αt|α′t′) (2.32)

12
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where the real timet has been used following the change of the variablesτ = it. The explicit

expression of the greaterG> and the lesserG< Green’s function read

iG>(αt|α′t′) =
1

Z
Tr[e−(β−i(t−t ′))(H−µN )

Cαe
−i(t−t ′)(H−µN )

C
†
α′ ] (2.33)

iG<(αt|α′t′) = − 1

Z
Tr[e−(β+i(t−t ′))(H−µN )

C
†
α′e

i(t−t ′)(H−µN )
Cα].

By inserting a complete set of states, Eq.(2.32) together with Eq.(2.33) can be casted into

iG(αt|α′t′) =
θ(t− t′)

Z

∑

m,n

〈m| e−β(H−µN)Cα(t) |n〉 〈n|C†
α′(t

′) |m〉

−θ(t
′ − t)

Z

∑

m,n

〈n| e−β(H−µN)C†
α′(t

′) |m〉 〈m|Cα(t) |n〉 . (2.34)

Fourier transforming into frequency and momentum domain leads to

G(k, ω) = 1

Z

∑

m,n

|〈n |Cσ(k)|m〉|2 e
β(ǫm−µNm) + e−β(ǫn−µNn)

ω − (ǫn − ǫm − µ) + iδ
. (2.35)

The spectral function is finally obtained by taking the imaginary part of Eq.(2.35)

A(k, ω) =
2π

Z
eβΩ

∑

m,n

|〈n|Cσ(k)|m〉|2
[
eβ(ǫm−µNm) + e−β(ǫn−µNn)

]
δ(ω − ǫn + ǫm + µ).

(2.36)

The spectral equation corresponds to the probability of the single-particleexcitation and satisfies

the sum rule expressed as ∫ ∞

−∞

dω

2π
A(k, ω) = 1. (2.37)

The two-particle vertex functionγ2φ,2φ can be derived in the similar manner as described

above for single particle. In terms of the vertex function, the two-particle Green’s function of

Eq.(2.23) is finally written as

χ(x1, x2|x′1x′2) = G(x1|x′1)G(x2|x′2) + G(x1|x′2)G(x2|x′1)
+

∑

x3,x4,x′
3,x

′
4

G(x1|x3)G(x2|x4)γ2φ,2φ(x3, x4|x′3, x′4)

G(x′3|x′1)G(x′4|x′2) (2.38)

or in the momentum space

χ(k1, k2|k3, k4) = G(k1)G(k2)(δk1,k3δk2,k4 − δk1,k4δk2,k3)

+δk1+k2,k3+k4G(k1)G(k2)Γ(k1, k2, k3, k4)G(k3)G(k4) (2.39)

wherek = (k, iωn). The four-point vertexΓ (momentum representation of vertex function

γ2φ,2φ) contains all possible two-particle scattering. In general this four-pointvertex consists of

particle-hole and particle-particle channel, which can be treated separately. The choice of the

diagram in the particle-hole or the particle-particle channel depends on theproblem at hand.
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2.2.1 Single-Particle Photoemission

One of the most powerful spectroscopic techniques that provides detailed information on the

electronic properties of solid is the single-particle photoemission [20, 21, 22]. At the heart of

this experimental technique is the photoelectric effect which was firstly observed by Hertz and

Hallwachs [23, 24] and later theoretically explained by Albert Einstein in his seminal work on

the theory of light quanta [25]. In the experiment (see Fig.2.2), a beam of monochromatized

radiation from gas-discharge lamp or synchrotron beamline with known energy is incident on

the surface of the sample. The energy of the photon is transferred to solidand is absorbed by

an electron with the binding energy|EB| which stimulates the excitation of electron from its

initial state. The electron escapes from the solid whenever its energy is sufficient to surmount the

potential barriers at surface. The escaping photoelectron with well-defined energy and direction

is detected by electron analyzer. The relation of all energies involved in thisprocess comprises of

the kinetic energy of emitted electronEkin, the work function of the solidφ , the binding energy

|EB| and the photon energyν can then be expressed using the conservation of energy as follows

Ekin = ~ν − φ− |EB|. (2.40)

In the angle resolved technique, by measuring the kinetic energy of the photoelectron for a given

emission angle, one also measures the wave vector or the momentumK = p/~ of the emitted

electron using the relationK =
√
2mEkin/~. In this case the momentum conservation must

be also fulfilled writingK + Kph = K′, whereKph is the momentum of the photon,K and

K′ are the momentum of the electron before and after the absorption of the photon. Since the

momentum of the photon (0.05Å) is negligible with respect to the electron momentum (≈ 1.6Å)

thenK = K′. The parallel part of electron momentumK‖ = Kx + Ky and perpendicular

K⊥ = Kz components are obtained in terms of the polar (θ) and azimuthal (φ) emission angles

defined as follows

Kx =
1

~

√
2mEkin sin(θ) cos(φ), (2.41)

Ky =
1

~

√
2mEkin sin(θ) sin(φ), (2.42)

Kz =
1

~

√
2mEkin cos(φ). (2.43)

In the actual experiments, the photon energy used to bombard the material liesin the range

of ultraviolet or x-ray energy which is suitable for investigating the valenceband and the core-

level states in the solid. ARUPS/ARPES (Angle-resolved ultraviolet photoelectron spectroscopy/

Angle-resolved photoemission spectroscopy) is the common name of the singlephotoemission

operated in the ultraviolet energy scale while XPS (x-ray photoemission spectroscopy) is op-

erated in higher energy. In this context, the source of the photon energysuch as synchrotron

provides more advantages as one can choose a wide range of energiessuitable for studying both

the valence and the core states of solids.
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Figure 2.2: Left panel:Geometry of single photoemission in which the emission direction of the excited
electron (photoelectron) is specified by polar and azimuthal angles. Right panel shows the
energetic of the photoemission process (from reference [21]).

The last decade has witnessed tremendous progress in the angle-resolved photoemission

spectroscopy due to the increase of the resolution of the spectra, thus allows to study various

complex systems such as cuprates, ruthenates, manganites. Today by using photons with low

initial energyhν <100eV, one has 2-meV in the energy resolution and 0.2o in the angular reso-

lution. The simplest way to show why the use of low energy leads to the increase of momentum

resolution, is by using the relation of the momentum resolution∆k‖ and finite acceptance length

of the electron analyzer∆θ written as follows

∆k ≈
√

2mEkin

~2
. cos(θ).∆θ. (2.44)

It is obvious from the above equation that higher momentum resolution can beobtained when

using low photon energy (low kinetic energy) but large polar angleθ. The main shortcoming

of using low energy is the extreme surface sensitivity implying that the contribution to the total

photoemission intensity mainly originates from the topmost layer. This is true in particularly for

systems with high structural anisotropy. In order to overcome this problem especially in the case

of bulk system, one has to perform ARPES on the atomically clean and well ordered system or

flat and clean surface which has to be prepared immediately prior the experiment in an ultrahigh

vacuum conditions≈ 5x10−11 torr.

Formal description of the photoemission relies on Fermi’s golden rule as a result of pertur-

bation theory in the first order. The transition probabilitywfi for an optical excitation between
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N -electron ground stateΨN
i and one possible final statesΨN

f is written as follows

wfi =
2π

~
|
〈
ΨN

f |∆|ΨN
i

〉
|2δ(EN

f − EN
i − ~ν), (2.45)

whereEN
i andEN

f are the energies of the initial and the final state of theN -electron system

respectively. Microscopically, the interaction between light and matter is embodied in the Hamil-

tonian particularly in the coupling between the vector potential of the electromagnetic fieldA(r)

and the momentum of the electron in the system. In the minimal coupling, Hamiltonian reads

H =
p2

2m
+ V −

[ e

2mc
(A(r).p+ p.A(r))

]
+

e2

2mc2
|A(r)|2, (2.46)

= H0 +∆. (2.47)

The coupling of the photon and the electron in the solid (third and fourth terms inequation

(2.46)) can be further simplified by noting that the quadratic term is relevant only for light with

high intensity. In addition to that by using the Coulomb gauge∇.A(r) = 0 as well as the

commutator relation[p,A] = −i~∇.A(r) the light-matter interaction reduces to

∆ = − e

mc
A(r).p. (2.48)

In the well-known dipole approximation,A(r) = A0e
ik.r ≈ A0 the coupling Hamiltonian is

expressed as∆ = − e
mcA0.p. Excitation of a single electron by photon leaves the system with

N − 1 particles in the excited states. A detailed description of how the ejected electrons inter-

acts with the rest of the system left behind is however a complex process. The so-called sudden

approximation offers a drastic simplification to this problem by assuming that the interaction

between the photoelectron and the rest of the system is negligible. This is dueto the fact that

electron is instantaneously removed and the potential effective of the system changes discontin-

uously at that instant. Based on this consideration the relation of the state andthe energy before

and after the emission of the electron is expressed as follows

ΨN
f = AφkfΨN−1

f , (2.49)

EN
f = EN−1

f − Ekin, (2.50)

EN
i = EN−1

i − Ek
B, (2.51)

whereA is the operator that antisymmetrizes theN -electron wave function,ΨN−1
f is the final

state for (N -1)-electrons system,φkf is the wave function of the photoelectron with the momen-

tumk,Ek
B is the binding energy of photoelectron with kinetic energyEkin and momentumk.

The sudden approximation described above is basically one part of the photoemission

process introduced in the 1960s by Berglund and Spicer [26] for angle resolved photoemission.

In their model, the complex process of electron ejection by the photon is subdivided into three

independent steps consisting (i) excitation of the electron in the bulk solid, (ii)scattering of the

electron during travel to the surface and (iii) the escape of the photoelectron from the solid. The
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total photoemission intensity is then obtained by the product of these three independent parts.

Nevertheless, the contribution of the second step due to the inelastic process is usually neglected

or subtracted. Following the expression of Eq.(2.49), the initial state can be expressed as

ΨN
i = Aφki ΨN−1

i , (2.52)

the matrix elements of transition probabilitywfi is then written as

〈
ΨN

f

∣∣∆
∣∣ΨN

i

〉
=
〈
φkf

∣∣∣∆
∣∣∣φki
〉 〈

ΨN−1
m

∣∣ ΨN−1
i

〉
, (2.53)

whereMk
fi =

〈
φkf

∣∣∣∆
∣∣φki
〉

is the dipole matrix element of single electron and the last part

denotes the overlap integral. The measured photocurrent as a function of Ekin at momentumk

is finally written as

J(k, Ekin) =
∑

fi

wfi (2.54)

=
∑

fi

∣∣∣Mk
fi

∣∣∣
2∑

n

|cni|2 δ(Ekin + EN−1
n − EN

i − ~ν), (2.55)

where|cni|2 =
〈
ΨN−1

m

∣∣ ΨN−1
i

〉
denotes the probability to remove electron from sitei which

leaves the system in the excited statem. Recalling the result obtained in the previous section

particularly in the equation (2.36) one observes the relation of the imaginary part of the Green’s

function and the photocurrent of ARPES.

2.3 Dynamical Mean Field Theory

At the heart of the mean field like approach lies the idea of reducing the complexity of many body

problems into a more manageable two-body problems consists of single siteo and the effective

field that represents all sites except the selected siteo. The classic example of the use of this

method is the mean field approximation of Ising model where one obtains a solutionfor sponta-

neous magnetization. In this classical system, the influence from the surrounding environments

of the chosen spinSo is replaced by the effective magnetic field namelyheff that contains the

average of spin fluctuation〈Si〉 and the coupling between the field and siteo.

The extended version of mean field approach into quantum systems is manifested in dy-

namical mean field theory (DMFT) which is originated from the study of Hubbard model in

the infinite dimensional limit. By employing Gutzwiller-type variational method and perturba-

tion theory, Metzner and Vollhardt [17] pointed out that in the infinite coordination limit, spatial

fluctuations are completely suppressed and thus the self energy becomes local.

Σ(k, iωn) = Σ(iωn) (2.56)

It is important to note however, that a proper scaling of hopping amplitude in the limit of infinite

coordination is necessary to ensure a finite kinetic energy. This can be clearly seen for example
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from the dispersion relation of hypercubic lattice that include only nearestneighbor reads

ǫ(k) = −2t
d∑

j=1

cos kj (2.57)

wheret andd correspond to hopping amplitude and dimensionality respectively. Density of

states (DOS) is then obtained from the relation

D(ǫ) =
1

N

∑

k

δ(ǫ− ǫ(k)) (2.58)

which then gives

D(ǫ) =
1

2t
√
πd

exp

(
− ǫ2

2t
√
d

)
(2.59)

Thus it is clear that finite DOS will only be obtained after scaling the hopping amplitude reads

t =
t∗√
2d

(2.60)

Substituting the above rescaled-hopping amplitude to Eq.(2.59) gives DOS that free from dimen-

sionality parameter reads

D(ǫ) =
1√
2π

exp

(
− ǫ2√

2

)
(2.61)

wheret∗ is fixed to unity. In contrast, since Coulomb interaction purely local, it remains un-

changed even in the high dimensional limit and thus does not need a rescaling.

Another significant finding in the limit of infinite dimensions is the result of correlation

energy ofd = 3 which quantitatively close to that ind = ∞. As a consequence, results of

infinite dimensions remain relevant in the realistic case and can be applied directly in the three

dimensional system.

2.3.1 Self Consistency Equations - Impurity Hamiltonian

The successful practical implementation of the larged limit is based on the mapping of the

original lattice problem onto the corresponding impurity Hamiltonian [27, 28]. In order to show

this, one can start by rewriting the action in Eq.(2.13) using Hubbard model as follows

S =

∫ β

0
dτ
∑

iσ

(
c†iσ(τ)

[
∂

∂τ
− µ

]
ciσ(τ)

)
−
∑

ijσ

tijc
†
iσ(τ)cjσ(τ) +

U
∑

i

ni↑(τ)ni↓(τ) (2.62)

Following the classical mean field analogy, all fermions are traced out except for siteo, thus the

final effective action that describes the interaction between the the chosen siteo and the average

field is written as follows

S = −
∫ β

0
dτ1

∫ β

0
dτ2
∑

σ

c†oσ(τ1)G−1
o (τ1 − τ2)coσ(τ2) + U

∫ β

0
dτno↑(τ)no↓(τ) (2.63)
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whereβ is the inverse temperature andG−1
o (τ1 − τ2) play role of the Weiss effective field. The

relation between the original lattice and the Weiss field is then expressed via DMFT Dyson

equation reads

G−1
0 (iωn) = Σ(iωn) + G−1(iωn). (2.64)

In terms of free density of states (DOS)D(ǫ), the self consistency condition of DMFT can be

straightforwardly written as follows

G(iωn) =

∫
dǫ

D(ǫ)

iωn − ǫ+ µ− Σ(iωn)
. (2.65)

Expression in Eq.(2.63)-Eq.(2.65) thus close self consistent relation of DMFT.

It is straightforward to show that the Hamiltonian representation of effective action in

Eq.(2.63) is the Anderson Hamiltonian reads [29]

H =
∑

kσ

ǫkc
†
kσckσ + V

∑

kσ

[c†kσcoσ + c†oσckσ]− ǫd
∑

σ

noσ + Uno↑no↓. (2.66)

This Hamiltonian describes the impurity on siteo with Coulomb interactionU that is embedded

in the conduction band represented byǫk. Solving this Hamiltonian thus equivalent to solving

the single site action of Hubbard model expressed above.

Extending the DMFT self consistency into the antiferromagnetic phase can bedone straight-

forwardly [28]. In order to take account of two sub latticesA andB in the Neel state, the kinetic

part of Hubbard Hamiltonian may be written as follows

H =
∑

σk

ǫ(k)
[
c†AkσcBkσ + c†BkσcAkσ

]
+
∑

σk

σh
[
c†AkσcAkσ − c†BkσcBkσ

]
(2.67)

whereh stands for external magnetic field, and momentum summation runs over all values ofk

in the magnetic Brillouin zone. Following Eq.(2.26), the Green’s function are then obtained by

inverting matrix (
ζAσ −ǫ(k)

−ǫ(k) ζBσ

)
(2.68)

whereζAσ = iωn + µ − σh − ΣAσ andζBσ = iωn + µ + σh − ΣBσ. The self consistency

equation in the antiferromagnetic phase then explicitly reads

Gασ(iωn) = ζασ

∫
dǫ

D(ǫ)

ζAσζBσ − ǫ2
(2.69)

with α = A,B andα = B,A.

The details about lattice structure in the DMFT calculation enters from density of states

D(ǫ). In three dimensional system, it has been previously shown that DOS becomes Gaussian

like distribution in the infinite dimensional limit. The Gaussian DOS ind → ∞ however does

not have real band edges and thus becomes unphysical. This is overcome by replacing Gaussian
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Figure 2.3: Bethe lattice with coordination numberz = 4

DOS with that Bethe lattice which is not regular lattice but form a treelike structure1(see Fig.2.3)

The density of states of Bethe lattice is written as

D(ǫ) =
2

πt

√
(1− (ǫ/t)2) (2.70)

wheret is the kinetic energy parameter.

2.4 Extended Dynamical Mean Field Theory

While some strongly correlated phenomena can be described within single site approximation

with local self energy, the approach becomes unsuitable in the system with pronounced non-local

fluctuation. This is due to fact that DMFT treats all non-local correlations at the level of Hartree

approximation. As will be shown in Chapter 4, the interplay of local and non-local interactions

is also essential in Mott transition. The changes in the low-energy of two-particle influence the

character of single-particle excitation.

Over the past few years, a number of proposals have been put forward to incorporate the

spatial fluctuation in DMFT. They are different in the way the non-local fluctuation effects are

included in the DMFT. In the cluster generalization of DMFT, the momentum dependency of

self energy is introduced by mapping a lattice into a number of sites that are embedded in the

bath together with self consistency relation. The choice of cluster is, however, not unique and

two different approaches are usually applied namely cluster dynamical mean field approximation

(CDMFT) and dynamical cluster approximation (DCA) [31, 32].

In contrast with quantum cluster approach, there are several approaches that retains sin-

gle site nature of DMFT but modifies self energy or even Hamiltonian in order toinclude the

non-local effects. DMFT+Σk proposed by Kuchinskii.et.al [33, 34] introduces the non-locality

directly in the self energy. In their approach the interacting Green’s function within local self

1Further discussions see [30].
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energy is expressed as follows

G(k, iωn) =
1

iωn + µ− ǫ(k)− Σ(iωn)− Σ(k, iωn)
(2.71)

whereΣk(iωn) is the non-local contribution of self energy due to either interaction of electron

with collective modes, order parameter fluctuations or other non-local contribution. Although

there are two self energy in the above equation, they emphasize that there isno double counting

problem to appear as the local contribution ofΣ(k, iωn) will eventually vanish in the limit of

infinite dimensionality and thus is not taken into account in the standard DMFT. The momentum

dependent self energy is chosen in such a way it contains the effects ofscattering of electrons

from short-range spin density wave (SDW) or charge density wave (CDW) fluctuations. Explic-

itly this is written as

Σ(k, iωn) = Σn=1(k, iωn) (2.72)

where

Σn(k, iωn) = ∆
s(n)

iωn + µ− Σ(iωn)− ǫn(k) + inνnκ− Σn+1(iωn,k)
(2.73)

∆ characterizes the energy scale,κ = ξ−1 is the inverse correlation length of the short-range

SDW (CDW) fluctuations,ǫn(k) = ǫ(k+q) andνn = |νxk+q|+ |νyk+q| for oddn while ǫn(k) =

ǫ(k) andνn = |νxk|+ |νyk| for evenn. Finally s(n) represents a combinatorial factor of diagrams

that corresponds to the type of fluctuation. Solving the recursion problemin the non-local self

energy is thus additional effort in the calculation which can be done relatively fast. The rest of

the computational scheme follows that of DMFT as outlined in the previous section.

Dynamical vertex approximation (DΓA) [35] restores the non-locality of DMFT in the

same spirit with DMFT+Σk. In this case, thek-dependent self energy is obtained from the

knowledge of the two-particle vertex function where the relation between both quantities is ex-

pressed by the Schwinger-Dyson equation as follows

Σ(k, iωn) = U
n

2
−
∑

kq,iν′iν

Γiωiν′iν↑↓
k,k′q

G(k′+q, iν ′+ν)G(k′, iν ′+iν ′)G(k+q, iω′+iν) (2.74)

The reducible verticesΓiωiν′iν↑↓
k,k′q

, in principle, can be obtained through the self-consistent so-

lution of the parquet equations. However, in the specific case such as theeffect of param-

agnon fluctuations, one restricts to the ladder subset of the parquet diagrams. In this respect,

the momentum-dependent vertex is written as follows

Γiωiν′iν↑↓
k,k′q

=
1

2

(
Γiωiν′iν
s,q − Γiωiν′iν

c,q

)
+ Γiω,iω+iν,iν′−iν

s,k′−k
− 1

2

(
Γiωiν′iν
s,loc − Γiωiν′iν

c,loc

)
(2.75)

where the first two terms describes the longitudinal and transverse paramagnon respectively and

the last terms subtracts the double-counted local contribution. Substitution ofEq.(2.75) into

Eq.(2.74) finally gives the momentum-dependent self energy reads

Σ(k, iωn) = U
n

2
+

1

2
TU

∑

ν′νq

χ0(q, iν, iν
′)
(
3Γiωiν′iν

s,q − Γiωiν′iν
c,q

+Γiωiν′iν
s,loc − Γiωiν′iν

c,loc

)
G(k+ q, iω + iν) (2.76)
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with χ0(q, iν, iν
′) = −T∑k G(k, iν ′)G(k+q, iν+ iν ′) is momentum dependent particle-hole

quantity andG(k, iωn)is thek-dependent Green’s function with DMFT self energy. The main

issue in the practical implementation of this scheme is the evaluation of the four-point vertex

functionΓv′,v,ω
s(c),loc that requires local susceptibilityχvv′,ωσσ′

loc
2with three Matsubara frequencies.

This quantity is usually calculated directly within the DMFT loops which accordingto the orig-

inal work of Ref.[35] can be done straightforwardly within the exact diagonalization scheme.

Once this is obtained, the fully irreducible vertex function can then be determined. At last, one

obtains the momentum-dependent self energy of DΓA following the lines described above.

The alternative route to incorporate the effects of non-local correlationin DMFT is offered

by Extended Dynamical Mean Field Theory (EDMFT). In contrast with the above-presented

approach, the feedback of spatial fluctuations in EDMFT are directly included in the local self

energy [36, 37, 38, 39, 40]. This is done by extending the Hubbard model with additional intersite

terms such as spin-spin interactions. Hubbard model (2.1) is then written as

H =
∑

ij

tijc
†
iσcjσ + U

∑

i

ni↑ni↓ +
∑

ij

IijSi.Sj , (2.77)

where the last term describes spin exchange interaction with couplingI. Following the argument

of infinite coordination limit, the hopping termtij has to be scaled so as to retain finite kinetic en-

ergy. This can then be written astij → t/
√
d . The same also applies to intersite interactionsIij

where, after scaling givesIij → I/
√
d. As is outlined above, the most significant consequences

of infinite dimensional approximation is the locality of self energy. In the EDMFT, one thus has

the momentum-independent self energyΣ(k, iωn) ≈ Σ(iωn) in the single-particle as well as in

the two-particleΠ(q, iωm) ≈ Π(iωm). Self consistency equations of EDMFT, can be derived in

a manner similar to that described for DMFT. Within the path integral formalism, theeffective

action of the single site problem can thus be written as follows

Seff = −
∫ β

0
dτ1

∫ β

0
dτ2c

†
0σ(τ1)G−1

0 (τ1 − τ2)c0σ(τ2) +

∫ β

0
Un0↑(τ)n0↓(τ)

−1

2

∫ β

0
dτ1

∫ β

0
dτ2S0(τ1)χ0(τ1 − τ2)S0(τ2). (2.78)

The impurity site of EDMFT is now coupled not only with the fermionic bath that is represented

by the Weiss field but also with bosonic bath that is dictated by the two-particle field quantity

χ0(τ1−τ2). It is clear that in the absence of the latter term one again obtains the standard DMFT

equation. The intersite fluctuations is thus manifested in the coupling between local spin and

bosonic bath. For the purpose of numerical solution, the last term of actioncan be decoupled by

means of Hubbard Stratonovich transformation

Seff = −
∫ β

0
dτ1

∫ β

0
dτ2c

†
0σ(τ1)G−1

0 (τ1 − τ2)c0σ(τ2) +

∫ β

0
Un0↑(τ)n0↓(τ)

−1

2

∫ β

0
dτ1

∫ β

0
dτ2φ0(τ1)χ

−1
0 (τ1 − τ2)φ0(τ2) +

∫ β

0
dτφ0(τ)S0,

2χvv′ω
s(c),loc = χv

0ω,locδvv′ + χv
0ω,locΓ

v′,v,ω

s(c),locχ
v′

0ω,loc
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whereφ0(τ) stands for bosonic field. Further details about the implementation of the numer-

ical solution of single site action consisting of fermion and boson degrees offreedom will be

described in the subsequent section. Dyson equations of EDMFT for single and two particles can

be expressed as

G−1(iωn) = G−1
0 (iωn)− Σ(iωn), (2.79)

χ−1(iωm) = Π−1(iωm)− χ0(iωm), (2.80)

whereωn = (2n+1)π/β andωm = 2mπ/β are Matsubara frequencies for fermions and bosons

respectively. In terms of the non-interacting DOS of the single particleD(ǫ) and the two particles

ρI(ǫ), the self consistency condition can be written as follows

G(iωn) =

∫
dǫ

D(ǫ)

iωn − ǫ+ µ− Σ(iωn)
, (2.81)

χ(iωm) =

∫
dǫ

ρI(ǫ)

Π−1(iωm) + ǫ
. (2.82)

Eq.(2.78) to Eq.(2.82) represent a closed set of self-consistent equations of EDMFT. Theeffective

action of Eq.(2.78) can be also expressed in terms of the impurity Hamiltonian as

H =
∑

kσ

ǫkc
†
kσckσ + V

∑

kσ

(c†kσdσ + d†σckσ)− µnd + Und↑nd↓ +
∑

q

ωqh
†
q.hq

+I
∑

q

Sd.(h
†
−q + hq) (2.83)

wherend =
∑

σ d
†
σdσ andSd = 1

2

∑
σσ′ d

†
στσσ′dσ′ is the single-particle occupation and the spin

operator respectively,hq = (hq1, hq2, hq3) stands for the vector-bosonic bath with commutation

relation
[
hαq , h

β
q′

]
= δqq′δαβ′ .

2.5 Quantum Monte Carlo

One of the main difficult issues in the dynamical mean field theory is the solution ofthe impu-

rity Hamiltonian or equivalently the single site action. There are two broad categories of im-

purity solver namely perturbative and non-perturbative based approaches. The former approach

treats the Coulomb interactionU or the hybridization coupling perturbatively and considers up to

second- or even higher-order contributions. The latter treats the impurity Hamiltonian in a differ-

ent manner namely by performing numerically exact calculation. Examples of perturbative solver

are Iterated Perturbation Theory (IPT) [41, 42, 43], Non Crossing Approximation (NCA)[44] and

Fluctuation Local EXchange (FLEX)[45]. The exact Diagonalization [46], the Quantum Monte

Carlo (QMC)[47, 48, 49], the Density Matrix Renormalization Group (DMRG)[50], the numeri-

cal renormalization group [51] represent the other one. The main advantage of perturbative tech-

niques is that most of the integral equations involved in the calculation can be solved with much

less numerical effort. Thus, in the computationally demanding task e.g multiorbitalssystem or
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cluster extension DMFT, this approach provides more numerical advantage. Both IPT and FLEX

are perturbative expansion in the Coulomb interaction. The self energy ofthe former contains

second-order Feynman diagram contributions, while the latter consists of different contributions

from the spin and the pair fluctuation. IPT captures both metallic and insulating regions in the

half-filled single band Hubbard model but gives unphysical results in other fillings. There has

been a proposal to overcome this problem by introducing an ansatz for theself energy that in-

terpolates between the weak and the strong couplings. The results within this method have been

shown to be in a good agreement with that exact diagonalization method for different number of

fillings [52]. FLEX on the other hand is known to give reasonable results only in the Fermi liquid

regime for the single and the multiorbital system. In contrast to the above methods, perturbative

approach within NCA is based on the hybridization expansion. It is applicable in the weak and

the strong coupling but breaks down at low temperatures.In order to alleviate this problem, an

extended version of this approach that includes vertex correction has been suggested.

The non-perturbative approach provides numerically exact calculationand applicable in

a wide range of parameters. Its main drawback is the computational costs which limits the

temperature, bath size and time slices. One of the most powerful methods is the quantum monte

carlo (QMC) based on the algorithm of Hirsch and Fye[47]. This approach offers an accurate

solution of the single- and the two-particle Green’s function in a wide range of coupling and is

also applicable even at low temperatures. Note however that lowering the temperature amounts

to an increase in the time slices and thus also to more computational effort. The shortcomings of

the method are the unpredictable sign problem away from half-filling and very low temperature

and the fact that the output Green’s function in terms of the imaginary time/frequency. The

latter becomes problematic in the case of calculating the dynamical properties e.gthe spectral

function. In this respect, one requires additional methods that are capable of transforming the

data of the imaginary time/frequency into that in real frequency. The most widely used approach

is maximum entropy method which will be also discussed in the next section. Recently a new

QMC algorithm has been developed which is based on the idea of continuoustime slices and

thus it is free from Trotter errors [53, 54]. It is shown that this method known as continuous

time quantum monte carlo (CTQMC) in combination with DMFT captures the metal insulator

transition and also gives reasonable results at low temperature. Another advantage is that it allows

one to consider the multiband problems with off-diagonal exchange. The method is, however,

plagued by negative sign problems which occur with the same probability as in the case of the

Hirsch-Fye method. The universal impurity solver that works efficiently and at the same time

produce accurate results in all regimes of parameters is not available at present.

All results of DMFT or EDMFT for the Hubbard model in the presented works were

obtained with quantum monte carlo method that follows Hirsch and Fye [47] algorithm. In this

section we will outline the derivation of QMC equations for single band case.Extension into

orbitally degenerate case and fermion-boson systems will be discussed afterwards.

The first step of the algorithm is to discretize the imaginary time intoN time slices
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τi, i = 1, 2 . . . N of size∆τ = β
N . This is followed by Trotter decomposition that decouples

the interacting and non-interacting part of the Hamiltonian as

Z = Tr
N∏

n=1

e−∆τ(H0+H1) ≈ Tr
N∏

n=1

e−∆τH0e−∆τH1 . (2.84)

The quadratic term in the Hamiltonian can be decoupled by using discrete Hubbard-Stratonovich

transformation at the expense of introducing auxiliary field, Ising like variables taking values±1.

One then obtains

e∆τUn↑n↓=
1
2

∑
S=±1 e

λS(n↑−n↓)

(2.85)

wherecosh(λ) ≡ e∆τU/2. Substituting equation (2.85) into the partition function in equation

(2.84) gives

Z∆τ =
1

2N

∑

S1,...,SN=±1

Z∆τ
S1,...,SN

(2.86)

where

Z∆τ
S1,...,SN

=
∏

σ=±1

Tr
[
e−∆τH0eV

σ(S1)e−∆τH0eV
σ(S2) . . . e−∆τH0eV

σ(SN)
]

(2.87)

It is important to note here that the size of the conduction bath orbitals are numbered from

m = 1, . . . , Nb and impurity orbital corresponds tom = 1. Explicit expressions of the diagonal

matrixV σ(S) of the sizeNb ×Nb reads

V σ(S) =




eλσS 0 . . . 0
0 1 0 . . 0
0 0 1 0 . 0
. . . . . .
0 . . . 0 1



. (2.88)

The partition function (2.84) can be written in the form of a determinant matrix following the

identityTr
[
e
−

∑
ij c

†
i
[Aij+Bij+Cij ]cj

]
≡ det[1 + e−(A+B+C )]. Thus the partition function reads

Z∆τ
S1,...,SN

= det[Oσ
S1,...,SN

], (2.89)

= det[1 +Bσ(SN )Bσ(SN−1) . . . B(S1)
σ], (2.90)

whereBσ(S) ≡ e−∆τH0eV
σ(S). Using a simple algebra, matrixOσ

S1,...,SN
which isN × N

matrix ofNb ×Nb is explicitly written as

Oσ
S1,...,SN

=




1 0 . . 0 Bσ(S1)
−Bσ(S2) 1 0 . . 0

0 −Bσ(S3) 1 . . 0
. 0 −Bσ(S4) . . .
. . 0 . . .
. . . . . .
0 . . 0 −Bσ(SN ) 1




. (2.91)
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An important identity in the quantum monte carlo algorithm is that the matrixOσ
S1,...,SN

is related

to the Green’s function by

g∆τ
S1,...,SN

= [Oσ
S1,...,SN

]−1. (2.92)

The relation between the Green’s function with two different Ising spin configuration

S1, . . . , SN andS′
1, . . . , S

′
N is related to the Dyson like equation. To show this formula, one

considers the following equation

Õ = e−VO. (2.93)

Using Eq.(2.92), one then obtains

g̃ ≡ Õ−1 (2.94)

=


Õ′ + Õ − Õ′

︸ ︷︷ ︸
e−V −e−V ′




−1

(2.95)

= g̃′ − g̃′(e−V − e−V ′

)g̃. (2.96)

The last equation is derived by making use of the identity1A+B = 1
A − B

A(A+B) . Substituting

g̃ = geV , leads to the expected Dyson equation

g′ = g + (g − 1)(eV
′−V − 1)g′, (2.97)

whereg ≡ g∆τ
S1,...,SN

andg′ ≡ g∆τ
S′
1,...,S

′
N

. The above Dyson equation holds even after integrating

out the conduction bath and considering only the impurity site. Based on this observation one

can then express eq.(2.97) for impurity problem as follows

G′ = G+ (G− 1)(eV
′−V − 1)G′, (2.98)

with G ≡ G∆τ
S1,...,SN

is now a matrix of the sizeN ×N .

The most efficient way to sum large number of possible configuration suchas expressed in

the partition function of Eq.(2.89) is achieved by means of monte carlo procedure. In this respect,

one of the most important issue to be considered is the dynamics of monte carlo method which

generally can be chosen arbitrarily as long as it satisfies the detailed balance condition explicitly

written as follows
P (s→ s′)

P (s′ → s)
=

∏
σ detO(σ)s′∏
σ detO(σ)s

. (2.99)

The heat bath and the Metropolis algorithm satisfy the above condition. Thus, within Metropolis,

the acceptance probability at then-th imaginary time slice reads

R =
∏

σ

det [Gσ]

det [G′
σ]

(2.100)

= 1 + (1−Gσn,n) [e
V ′
l −Vl − 1]. (2.101)
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If the move is accepted then the new impurity Green’s function is upgraded using the relation

G′
σi,j = Gσi,j +

∆V (Gσi,n − δi,n)Gσn,j

1 + (1−Gσn,n)∆V
, (2.102)

where∆V = eV
′σ−V σ − 1.

For an orbitally degenerate model [55, 48], the formula described above has to be slightly

modified. In this case, the total number of auxiliary fields depends on the number of orbital

degeneracy. The relation between matrixOm and Green’s function is again written asGm =

O−1
m . Straightforwardly, the Dyson formula for degenerate system can be expressed as

G′
m = Gm + (Gm − I)(e(V

m)′−V m − I)G′
m. (2.103)

The indexm takes account for orbital and spin degrees of freedom. The Boltzmann ratio of

Eq.(2.100) now also depends on the number of orbitals

R =
∏

m

det(Gm)

det(G′
m)

= det
[
I − (Gm − I)(e(V

m)′−V m − I)
]
. (2.104)

When the move is accepted, the updated Green’s function in the multiband case can be again

expressed in the manner similar to that described above for single band.

In the fermion-boson system, one can again perform the somewhat similar steps as de-

scribed above. In this respect, the partition function with the Hamiltonian of Eq.(2.4) or equiva-

lently the action of Eq.(2.79) can be evaluated straightforwardly by performing a Gaussian inte-

gration of the Grassmann variables which leads to final expression as follows [56, 57]

Z∆τ
S1,...,SN ;φ1,...,φN

= det[Oσ
S1,...,SN ;φ1,...,φN

]eB. (2.105)

whereB(φνn) =
∑N

i=1 φνiχ
−1
0νinφνn is the bosonic contribution withφνn being the bosonic field

andχ0νin = χ0ν(τi − τl) is the propagator expressed in Eq.(2.80) . In the above equation, index

α(ν) stands for the degrees of freedom of fermions(bosons). Following thesame expression

given above, the probability to obtain the new state(S′
n, φ′n) from the initial state(Sn, φn) reads

R =
∏

α

detGαe
−∆τB(φ′

νn)

detG′
αe

−∆τB(φνn)
. (2.106)

In the implementation of the algorithm, the changes of bosonic field at each discretized time

slices is performed by using the relationφ′νn = φ′νn + rδ, wherer is a random number between

−1 and1, andδ is the given amplitude so as to obtain the desired acceptance. For the accepted

move due to spin flip, the Green’s function is again updated via Eq.(2.102). Similarly when the

boson is changed atnth time slices then the Green’s function is updated via Dyson equation that

is similar to the one in Eq.(2.102). In this case, however,∆V incorporates the bosonic field.
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2.6 Maximum Entropy

The Hirsch-Fye QMC method generates the Green’s function defined on the imaginary timeG(τ)

or equivalently on Matsubara frequency pointsG(iωn). The relation between the imaginary-time

Green’s function and real-frequency quantity such as the spectral functionA(ω) is expressed as

G(τ) =

∫
dωK(τ, ω)A(ω), (2.107)

where the kernelK(τ, ω) for (+) fermion and(−) boson reads

K(τ, ω) =
e−τω

1± e−βω
. (2.108)

It is easy to realize that the solution ofA(ω) from this kind of integral can obtained by

performing direct inversion method. This approach however becomes problematic in this respect

and could lead to unphysical results. The primary reason is that the kernel becomes insensitive

for large frequencies and thus there are many possible values ofA(ω) that correspond to the same

data of imaginary time. In addition, the problem is also exacerbated by the factthat QMC data

are also noisy and incomplete particularly for the case of two particle Green’s function. The most

widely used approach for solving the inverse problems as in the Eq.(2.107) is the Bayesian-based

maximum entropy method [58]. Within Bayesian statistical inference, one defines the posterior

probability or probability of the solutionA(ω) given the dataG(τ) and the prior information

aboutA. The maximum entropy provides a way to determine the most probable solution ofA

based on this set of data. It can be shown that the posterior probability has the form

P (A|G,m,α) = exp(αS − χ2/2)

ZsZL
, (2.109)

whereZs andZL are normalization factors that are independent ofA. α is a regularization

parameter andS is the Shannon-Jaynes entropy

S =
∑

ω

[
A(ω)−m(ω)−A(ω)ln

(
A(ω)

m(ω)

)]
. (2.110)

This entropy is measured according to the default modelm(ω) that contains prior information

aboutA. The other quantity in the exponential of Eq.(2.109), χ2 denotes the least square dif-

ference between the dataG with standard errorsσ(τ) and the constructed data
∫
dωK(τ)A(ω)

obtained using the trial input ofA. Explicitly this is written as

χ2 =
∑

τ

[
G(τ)−

∫
dωK(τ, ω)A(ω)

σ(τ)

]
. (2.111)

In the absence of data, the solution ofA that maximizes the posterior probability is therefore the

one that maximizes the entropyS. Similarly, for fixedα the most probable solution ofA is the

one that maximizesQ = αS − χ2/2 namely by solving∇Q = 0 with respect toA. The most
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2 Models for Correlated Systems and Methods of Solution

common way to solve this equation is by employing the Newton-Raphson method. Since the size

of the search space is typically very large, the most efficient way to reduce the search dimension

is by employing the algorithm of Bryan [59]. In this scheme, the reduced space is equal to

the largest possible number of eigenvalue ofK obtained from the singular value decomposition

(SVD). Practical application of this algorithm and additional issues such asthe choice of the

regularization parameterα and the modelm(ω) can be found in the review of Ref.[58]. The

dynamic of the single and the two particle Green’s function presented in this work is obtained

with maximum entropy method based on the Bryan algorithm.
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CHAPTER 3

Two-Particle Excitation

3.1 Introduction

The knowledge of the single-particle spectrum is the key to understand the properties of solid. In

order to understand the transport properties e.g. the optical conductivity, the dielectric function,

the thermoelectrics one should go beyond single-particle quantities. In terms of Green’s function,

one resorts to highern-point Green’s functions namely, the two-particle Green’s function. It

may be classified in general into those associated with the particle-hole and theparticle-particle

channels. Different techniques are appropriate to access each of these channels.

Perhaps, the most studied one of them is the particle-hole channel relevant to a number

of material properties such as the optical response, the dielectric and the magnetic susceptibil-

ity. With the rapid development of experimental tools one can now probe accurately the trans-

port properties. Several techniques for this purpose have been employed such as the optical

spectroscopy, the inelastic neutron scattering (INS), the raman spectroscopy, the electron energy

loss spectroscopy (EELS). The particle-particle or hole-hole channelshave been much discussed

in connection with the Auger electron spectroscopy (AES) and the appearance potential spec-

troscopy (APS). The recently introduced two-particle technique so-called double photoemission

(DPE) or(γ, 2e) is expected to provide a new direction in the study of particle-particle excitation

3.2 Optical Conductivity

The frequency-dependent optical conductivity is an important probe of electronic degrees of

freedom that yields various quantities such as the electronic band gaps, scattering processes, ef-

fective carriers[60]. This quantity has become increasingly important during the last decade in

particularly for strongly correlated systems that show unusual optical characteristics. In order to

measure the optical response as a function of frequency, there are three different approaches that
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3 Two-Particle Excitation

are commonly used. In the first method, a sample is exposed to monochromatic radiation. The

amplitude and the phase of response are measured at single frequencyω. This might be the re-

sistance and the capacitance, the complex reflection coefficient, or the amplitude drop and phase

shift upon transmission. The problems of relating the dielectric function or theoptical conduc-

tivity with the measured quantity boils down to solving the Maxwell equations. Thenext two

approaches use, instead of monochromatic radiation, an excitation with a well-defined time or

spectral dependence and therefore are capable of determining the response over a wide frequency

range. The radiation wavelength used in the experiments for almost all cases is relatively large in

comparison with any length scale in solids. In this way, the momentum dependence in the optical

conductivity can be set asq → 0. In addition to that the magnitude of the perturbing field has to

be small enough such that the signal is linearly proportional to the externalperturbation.

The microscopic description of the optical excitation in solids has been formulated by

Kubo [61]. In what follows we shall first derive the expression for optical conductivity in the

continuum case and then discuss the formulation in the lattice system. The opticalconductiv-

ity σab(q, ω) determines the induced currentJa(q, ω) upon an applied transversal electric field

Eb(q, ω) (Ohm’s law)

Ja(q, ω) = σab(q, ω)Eb(q, ω). (3.1)

Expressed in terms of field operators, the Hamiltonian reads

H =

∫
d3r

1

2m

[(
∇− ie

c
A

)
ψ(r)

]2
+Hint. (3.2)

whereψ(r) is the electron field operator,m is the mass of the electron and theHint designates all

possible interactions in the solid. In the Coulomb gauge, the relation of electric field and vector

potential is given byA(r, t) = E(r,t)c
iω . The total currentJ (r) in the presence of the vector

potentialA can be straightforwardly obtained by taking the derivative of the Hamiltonianwith

respect toA which then leads to

J (r) =
−ie
2m

[ψ†(r)∇ψ(r)− (∇ψ†(r))ψ(r)− e2

mc
Aψ†(r)ψ(r). (3.3)

The next step is to take the average of the total currentJ (r) which is equivalent to the current

of Eq.(3.1). In doing so, we recall that in the perturbation theory, the ensemble average of any

operatorO in the presence of the vector potential can be expressed as

〈O(r, t)〉 = 〈OH(r, t)〉 − i

∫ t

−∞
dt′
〈[
OH(r, t), HA(t

′)
]〉
, (3.4)

whereOH(r, t) is the operator in the Heisenberg picture and theHA is the part of Hamiltonian

that contains the vector potentialA in linear order. The average sign in the right hand side

corresponds to the average of the interacting but unperturbed system. Acombination of Eq.(3.3)
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3 Two-Particle Excitation

and Eq.(3.4) gives

J(r, t) ≡ 〈J (r, t)〉 = − e2

mc
A(r, t)

〈
ψ†(r, t)ψ(r, t)

〉

+
i

c

∫ t

−∞
dt′
∫
d3r′

〈[
j0(r, t), j0(r

′, t′).A(r′, t′)
]〉
, (3.5)

wherej0 corresponds to the current operator forA = 0. Fourier transforming into the mo-

mentum space and comparing with (3.1) yields the well-known Kubo formula for the optical

conductivity in the continuum

σab(q, ω) =
1

ω

∫ t

−∞
dt′eiω(t−t′)〈[ja(q, t), jb(q, t′)]〉+

ine2

mω
δab. (3.6)

This formula consists of the paramagnetic and the diamagnetic terms where the former is denoted

by the current-current correlation function that contains many body interactions. The optical

conductivity is obtained by solving the two-particle correlation function whichcan be done most

conveniently in the Matsubara formalism

Πab(q, iωm) =

∫ β

0
dτeiωmτ 〈Tτ ja(q, τ)jb(q, 0)〉 (3.7)

whereωm are bosonic Matsubara frequencies.

In the case of a lattice system e.g. the Hubbard model of Eq.(2.1), one can also derive a

Kubo formula similar to the one in equation (3.6) [62]. By adopting the so calledPeierls ansatz,

the vector potentialA enters the Hamiltonian by performing a substitutionc†i → c†ie
ie

∫
A.dr. It

can be shown that the interaction term of the Hubbard model consisting of thedensity-density

interaction is gauge invariant. On the other hand the kinetic energy now contains the vector

potential thus suggesting that the optical processes arise from the electron that move from one

site to another. Substituting the creation/annihilation operator withPeierls ansatz into Eq.(2.1)

and expanding up to second order inA leads to

H = H0 −
∑

rx

[
eAx(r, t)jx(r)−

e2

2
A2

x(r, t)Kx(r)

]
(3.8)

whereH0 stands for the kinetic energy part of the Hamiltonian Eq.(2.1), ejx(r) is thex compo-

nent of paramagnetic current density

jx(r) = it
∑

σ

c†rσcr+xσ − c†r+xσcrσ (3.9)

or in the momentum space

j(q) =
∑

kσ

v(k)c†σ(k− q)cσ(k+ q) (3.10)

wherev(k) = ∇ǫ(k). The last term of Eq.(3.8) Kx(r) is the kinetic part expressed as

Kx(r) = −t
∑

σ

c†rσcr+xσ + c†r+xσcrσ. (3.11)
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3 Two-Particle Excitation

The total current density is then obtained by evaluating the first derivative of equation (3.11) with

respect toA

Jx(r, t) = ejx(r) + e2Kx(r)Ax(r, t). (3.12)

Following the same steps as in the continuum case and transforming into the momentum domain

one obtains the current density for the lattice system that consists of the usual diamagnetic and

paramagnetic terms

Jx(q, ω) = e2 [〈Kx〉+Πxx(q, ω)]Ax(q, ω). (3.13)

Comparing with Eq.(3.1) one finds the optical conductivity that consists of a paramagnetic term

or the two-particle correlation function which can be evaluated in the Matsubara formalism fol-

lowing Eq.(3.7). Explicitly, the current-current correlation function is then obtained by substitut-

ing Eq.(3.10) into Eq.(3.7) as follows

Π(iωm) =

∫ β

0
dτeiωmτ

∑

σσ′

∑

kk′

v(k)v(k′)
〈
Tτ c

†
σ(k, τ)cσ(k, τ)c

†
σ′(k

′)cσ′(k′)
〉

(3.14)

where the momentum dependenceq in the above equation has been discarded following the ar-

gument mentioned before. The evaluation of the two-particle propagator can be done via the

diagrammatic expansion. In this respect one has to deal with an expressionsimilar to the one

in Eq.(2.39) in the particle-hole sector. The limit of infinite dimension offers a great simplifica-

tion in that only the first order survives while higher order vertex corrections vanish due to the

different parity [63]. This simplification leads to the expression of the optical conductivity that

consists of the bubble diagram only

σ(iωm) =
1

ω

∑

k,σ,iνn

v2(k)Gσ(k, iνn)Gσ(k, iνn + iωm) (3.15)

whereG(k, iνn) is the full single-particle Green’s function with the DMFT self energy. By eval-

uating the Matsubara summation which is ensued by an analytical continuation ofthe frequency

one arrives at the expression of the optical conductivity in the infinite coordination limit [64]

σ1(ω) = C0

∫
dǫρ0(ǫ)

∫
dνA(ǫ, ν)A(ǫ, ν + ω)

f(ν)− f(ν + ω)

ω
(3.16)

whereA(ǫ, ν) is the single-particle spectral function,f(ν) is the Fermi function andC0 is the

constant that incorporates various factors including the constants fromthe summation of spin and

ρ0(ǫ) =
∑

k

v2(k)δ(ǫ− ǫ(k)) (3.17)

is the factor of the lattice structure. It is important to note that the above equation is only the

real part of the total optical conductivity expressed asσ(ω) = σ1(ω) + iσ2(ω). Once one of this

quantity is known, the other part can be calculated via the Kramers-Kronig relation

σ1(ω) =
1

π

∫ ∞

−∞

σ2(ν)

ν − ω
dν. (3.18)
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3 Two-Particle Excitation

The optical constant obeys various sum rules. The most frequently used is the the well-known

f -sum rule that relates the integrated optical spectra and the number of particles reads
∫ ∞

0
σ1(ω)dω =

ω2
p

8
=
πne2

2m0
, (3.19)

whereωp stands for plasma frequency,n is the carrier density andm0 denotes the free electron

mass. Within thed→ ∞ approximation, the sum rules takes the form
∫ ∞

0
σ1(ω)dω = C0

〈
ρ′(ǫ)

D(ǫ)

〉
, (3.20)

whereρ′(ǫ) = d
dǫρ0(ǫ) andD(ǫ) is the non-interacting DOS. In practice however, one relies

mostly on the frequency-dependent spectral weight expressed as follows

K(Ω) =

∫ Ω

0
σ1(ω)dω. (3.21)

For a detailed discussion on the optical conductivity in the single band Hubbard model within

DMFT, we refer to Ref.[30].

Derivation of the optical conductivity in the antiferromagnetically ordered phase basically

follows the same lines as in the paramagnetic phase. However in the present case, one has to

deal with the kinetic energy that consists of two different species of operatorsa†(a) andb†(b)

that correspond to the creation (annihilation) operators in the sublattice A and B respectively

[61, 65]. Rewriting the kinetic energy of Eq.(2.67) in terms ofa, b and hopping amplitudet one

obtains

H = −t
∑

ijσ

(
a†iσbjσ + b†jσaiσ

)
(3.22)

or in the momentum phase

H =
∑

kσ

Ψ†
σ(k)

(
0 ǫ(k)
ǫ(k) 0

)
Ψσ(k), (3.23)

with Ψ†
σ(k) andΨσ(k) are the spinors

Ψ†
σ(k) = (a†σ(k), b

†
σ(k)), (3.24)

Ψσ(k) = (aσ(k), bσ(k)).

Similar as before, the current operator is related to the group velocityv and the density which in

this context is replaced by spinor. This is written as follows

j = e
∑

kσ

Ψ†
σ(k)

(
0 v(k)

v(k) 0

)
Ψσ(k). (3.25)

Following the line as described before in the paramagnetic phase, the current-current correlation

function reads

Π(iωm) =

∫ β

0
dτeiωmτ

∑

σ,σ′

∑

kk′

v(k)v(k′)
〈
Tτ

[
a†σ(k, τ)bσ(k, τ) + b†σ(k, τ)aσ(k, τ)

]

[
a†σ′(k

′)bσ′(k′) + b†σ′(k
′)aσ′(k′)

]〉
. (3.26)
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3 Two-Particle Excitation

By using the approximation in the limit of infinite dimensions, one deals again with first or-

der contributions. After some straightforward algebra and Fourier transforming into frequency

domain, the correlation function in terms of the single-particle Green’s function reads

∑

k,iνnσ,

v2(k)
[
GAA
σ (k, iνn + iωm)GBB

σ (k, iνn) + GAA
σ (k, iνn)GBB

σ (k, iνn + iωm)

+GAB
σ (k, iνn + iωm)GAB

σ (k, iνn) + GBA
σ (k, iνn + iωm)GBA

σ (k, iνn)
]
, (3.27)

where

GAA
σ (k, iνn) =

ζ ′σ
ζσζσ′ − ǫ(k)2

, (3.28)

GBB
σ (k, iνn) =

ζσ
ζσζσ′ − ǫ(k)2

,

GAB
σ (k, iνn) = GBA

σ (k, iνn) =
ǫ(k)2

ζσζσ′ − ǫ(k)2
,

are the single-particle Green’s function in the sub latticeA andB, ζA/B
σ (iνn) = iνn+µ−Σ

A/B
σ .

In the Neel state, the relationζAσ = ζBσ′ = ζσ holds. The real part of optical conductivity in

the antiferromagnetic phase is obtained by performing the analytical continuation of imaginary

frequency and then taking the imaginary part of Green’s function which leads to

σ1(ω) =
∑

σ

∫
dǫρ0(ǫ)

∫
dν
f(ν)− f(ν + ω)

ω
[Aσ(ǫ, ν)Aσ′(ǫ, ν + ω)

+Bσ(ǫ, ν)Bσ(ǫ, ν + ω)] , (3.29)

whereρ0(ǫ) is the same as that Eq.(3.17),A andB describe the single-particle spectral function

defined by

Aσ(ǫ, ν) = − 1

π
ImGAA

σ (ǫ, ν + iδ), (3.30)

Bσ(ǫ, ν) = − 1

π
ImGAB

σ (ǫ, ν + iδ)].

The generalization of the above formula to the multiband case can be done straightforwardly.

One has to deal only with the summation over all orbitals which in the case of DMFTcomes

from the diagonal terms only.

3.3 Electron Pair Excitation

The particle-particle Green’s function is readily calculated within the self-consistency loop of

DMFT-QMC. The nature of the approximation however only allows for evaluating the local two-

particle Green’s function or the so-called onsites-wave pair function. Thus, for other pairing

symmetries such asd-wave, extendeds-wave andp-wave pairing which are the central quanti-

ties in the context of high-Tc cuprates, one should go beyond the DMFT method. The extended
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3 Two-Particle Excitation

DMFT method that incorporates the non-local interaction via additional terms inthe Hamiltonian

but at the same time maintains the single site approximation does not provide any advantages in

this respect. Nevertheless, the pair Green’s function derived from thismethod already incorpo-

rates the influence of the non-local fluctuation that enters from the single-particle self energy and

thus its structure should give more information than those obtained by the conventional DMFT

method. In the single site approximation, one then evaluates the local two-particle Green’s func-

tion expressed as

χpp(τ) =
〈
Tτ∆

†(τ)∆(0)
〉
, (3.31)

where∆ = c↑c↓. Since the particle-particle Green’s function is obtained in terms of the imagi-

nary time or Matsubara frequencies, one should rely on the maximum entropyto obtain the real

frequency spectra.

Performing the calculation for single and two particles simultaneously within the same

approximation as described above is certainly of an advantage. The changes in the two-particle

Green’s function lead to the renormalization of single-particle quantity and vice versa. It is

instructive however to pursue other scheme that might be useful as a benchmark of the result of

the DMFT+QMC method. The widely used approach to construct the particle-particle Green’s

function is the ladder approximation. As will be further elaborated in the nextsection, this

scheme has been applied in the study of the two-particle spectroscopy combined with various

approximations for the single-particle Green’s function. The present section is thus intended

to obtain the exact expression for the two-particle Green’s function whichwill be derived in a

manner similar to that described in Ref.[66, 67]. Note however that some modifications have

been made in order to fit the approximation of the local self energy of DMFT.Starting with the

full expression of the two-particle Green’s function in the Matsubara representation one has

χpp(q, iωm) =

∫
〈Tτ c−σ(k, τ)cσ(q− k, τ)c†σ(q− p, 0)c†−σ(p, 0)〉, (3.32)

with
∫

is short-hand notation for−∑k,σ

∫ β
0 dτe

iωmτ andωm is a bosonic Matsubara frequency.

This equation is a general expression of the local equation expressed in(3.31). The evaluation of

the two-particle propagator may be performed with the aid of the perturbation expansion using

the standard diagrammatic theory by selecting the diagrams appropriate for thephysical problem

at hand. For the Hubbard model with the short-range interaction, one selects the ladder-type

diagrams. Summation of ladder diagrams in the particle-particle channel to all orders yields

χpp(q, iωm) = − 1

β

∑

kiνn

G(k, iνn)G(q− k, iωm − iνn)Γ(k,q, iωm). (3.33)

SinceU is static and independent of the wave vector, the vertex functionΓ reads

Γ(k,q, iωm) = 1− U

β

∑

piν′n

G(p, iν ′n)G(q− p, iωm − iν ′n)Γ(p,q, iν
′
n). (3.34)
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3 Two-Particle Excitation

The right hand side of this relation is independent ofk. Thus one obtains

χpp(q, iωm) =
χ(q, iωm)

1− Uχ(q, iωm)
, (3.35)

where

χ(q, iωm) = − 1

β

∑

k,iνn

G(k, iνn)G(q− k, iωm − iνn) (3.36)

is the two-particle Green’s function expressed in terms of the full single-particle Green’s function.

Performing standard analytical continuation and evaluating the imaginary part of the two-particle

Green’s function one arrives at the expression of the two-particle spectral function

P (ω) = Im[χpp(ω)]. (3.37)

In order to evaluate the above equation, it is sufficient to calculate the imaginary part of the

two-particle propagatorχ(ω), and analytically continue it to real frequencies. This yields

χi(ω) = C0

∫ ∞

−∞
dν

∫ ∞

−∞
dǫD(ǫ)

[
A(ǫ, ν)A(−ǫ, ω − ν)×

(1− f(ν)− f(ω − ν)
]
, (3.38)

whereχi(ω) stands for the imaginary part ofχ(ω), D(ǫ) is free density of states,A(ǫ, ω) is

the single-particle spectral function with the DMFT self energy andC0 is a constant. The real

part of the two-particle Green’s function is obtained via the Kramers-Kronig relation expressed

in Eq.(3.18) which follows from the causality condition. It can be shown that the two-particle

spectral function obeys the sum rule
∫ ∞

−∞
P (ω)dω = 〈n↑n↓〉 . (3.39)

In addition, we note also a useful auxiliary quantity that is related to the partialdouble occupancy

reads

Kp(Ω) =

∫ Ω

0
dωP (ω). (3.40)

In the case of the degenerate Hubbard model that neglects Hund’s coupling, it is straight-

forward to extend the above formulation. In terms of a composite orbital spin indexα = (α, σ)

one writes

χα,α′

pp (q, iωm) =
χα,α′

(q, iωm)

1− Uχα,α′(q, iωm)
. (3.41)

The two-particle propagatorχα,α′
(q, iωm) reads in this case [68, 67]

χα,α′

(q, iωm) = − 1

β

∑

k,iνn

Gα(k, iνn)Gα′

(q− k, iωm − iνn). (3.42)

Straightforwardly, the sum rule in the degenerate case is expressed as follows
∫ ∞

−∞
P (ω)dω =

∑

αα′

〈nαnα′〉 . (3.43)
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3 Two-Particle Excitation

3.3.1 Survey on Experimental and Theoretical Study of Two-Part icle
Excitation.

The most notable examples of two-particle spectroscopy are the Auger Electron Spectroscopy

(AES) and the Appearance Potential Spectroscopy (APS), intended to probe the occupied and

unoccupied states respectively [69]. What lies at the heart of AES and APS techniques is the

Auger process characterized by the emission of the Auger electron. In the experiment, the high

energy photon beam, sufficient to create the vacancy in the appropriate shell of the atom, bom-

bards the sample material and ejects the single electron. The electron in the outer level fills the

shell vacancy with a simultaneous emission of an X-ray quantum or the ejectionof an Auger elec-

tron. The important difference between these cases is the final state of thesystem. The former

is marked by a single vacancy in the outer shell which, in contrast to Auger process consisting

of two vacancies. The kinetic energy of the Auger electron ejected from the atom in the solid

is typically 25-3000eV which corresponds to the low effective sampling depth, meaning that the

initial state of the Auger electron relatively close to the surface. Thus, the Auger spectroscopy is

a surface sensitive method and appropriate for investigating the chemistry of the surface sample.

The technique is also used to investigate the electronic structure of solids. This was initi-

ated by Lander [70], who pointed out that the valence-band Auger spectra is the self convolution

of the single electron valence bands. In some cases, the concept of the self-convolution worked

relatively well. However, it was later shown by Powell [71] that the core-valence-valence (CVV)

line shape of Ag could not be obtained from the self convolution of the occupied states. Further

studies on transition metal elements (Cu,Zn,Ga,Ge,As and Se) also showed disagreement with

the concept of Lander[72]. Since then the ability of the AES/APS to reproduce the single-particle

properties, i.e DOS has been seriously questioned. The need to understand this issue becomes

important particularly for correlated systems since it might provide additionalinformation to the

single-particle properties. To address this problem, Sawatzky [73] and Cini[72] took the first step

to study the behavior of the Auger spectra in the narrow band materials i.e transition metal. In

the framework of the Hubbard model, they calculated the two-particle Green’s function by means

of the ladder approach. This was then combined with the single-particle spectrum obtained from

the T -matrix approximation. They pointed out that in the strong coupling interaction regime,

the spectra show a strong atomic peak while in the weak coupling the spectra are expected to

have a broad band feature that resembles the result of the self convolution. Based on this study,

AES/APS spectra were suggested to be able to give insights into the importanceof correlation

effects.

Theoretical studies on this subject were extended by several authors with different levels of

approximations for the single-particle states as well as the two-particle states.Treglia et al. [74]

calculated the single-particle properties by employing a second-order Coulomb interaction per-

turbation with an additional ”local approximation” to simplify the calculation. The two-particle

propagator on the other hand was calculated within ladder approach. Drchal and Kudrnovsky

[75, 76] employed the self consistentT -Matrix approximation for the single-particle level in
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combination with the ladder approximation for the two-particle propagator. In aseries of works,

Nolting and coworkers [66, 77, 68] utilized a simplified single-particle DOS namely B-Steeple

DOS which mimics the satellite or the band like behavior. He coined the termsdirect andindi-

rect interaction to distinguish the influence of correlation on the single- and on the two-particle

level. The former indicates the interaction between two excited electron or holes, while the latter

is subsumed in the single-particle self energy that renormalizes the interactingGreen’s function.

Despite being extensively studied for 30 years or so, there is no general consensus on what the

actual advantages of AES and APS in elucidating the electronic structure ofsolids.

Other experimental techniques of interests in the context of two-particle are(γ,2e) and

(e,2e) that allow to directly map the energy and the momentum of the electrons in solids [78,

79, 80]. These relatively new technique in the solid state physics were originally developed to

investigate the electronic structure of atoms and molecules. In the experiments,the primary elec-

tron with an energy scale approximately 10-50 keV impinges onto the target surface and knocks

out a pair of electrons that subsequently emerge on the opposite side of thesurface that does not

contain the incident beam. The excited electrons with the energy (momentum)E1, E2(k1,k2)

are counted only if they are detected coincidently. This ensures that both electrons originate from

the same scattering event. Thus the electron with the binding energyω and momentumk can be

obtained by means of the energy and the momentum conservation as [81, 78, 82]

ω = E0 − E1 − E2, (3.44)

k = k1 + k2 − k0 (3.45)

whereE0, k0, are the well-defined energy and momentum of the incident electron. Within this

high energy (e,2e) experiments, it has been demonstrated that the measured photocurrent is re-

lated to the single-particle spectral function [83, 84]

J = (2π)4
k1k2
k0

feeA(k, ω), (3.46)

wherefee =
(
dσ
dΩ

)
is the Mott scattering cross-section that includes the effects of exchangebe-

tween colliding electrons and A(k, ω) is the single-particle spectral function. Early (e,2e) spec-

trometer has an energy resolution within the range of 90-150 eV, thus inadequate for studying

any valence bands of solid. It took almost two decades to reduce the resolution down to≈ 6eV

where some of the valence band structure of amorphorous carbon couldbe resolved. Develop-

ment of the experimental setup by the addition of an electron monochromator [85] has improved

the resolution of energy as well as of the momentum to 0.9-1.5eV and 0.1a.u respectively. To

date, this high energy spectroscopy has been applied to variety of solid material e.g. Al, Cu and

also vanadium sesquixoide (V2O3) in the metallic phase. For the vanadium compound the ex-

perimental spectra are in a good agreement with that obtained from band structure calculations

using FP-LMTO (Full Potential Linear Muffin-Tin Orbital) [86]. The new (e,2e) experimental

set-up uses low energy-incident electron≈ 300eV and it is operated in reflection mode[87]. In
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3 Two-Particle Excitation

Figure 3.1: A schematics of the one-photon, two-electron (γ,2e) experiment. Upon the absorption of a
VUV photon with an energyν two electrons are excited into the vacuum and simultaneously
detected at the energiesε1, ε2 and the momentak1,k2.

this case, one does not require very thin samples≈200Å as usually needed in the high energy

experiment.

The other type of coincidence spectroscopy is (γ, 2e) which is schematically shown in

Fig.3.1. These experiments are conducted in the regime where the radiation field is well described

classically and the time-dependent perturbation theory in the light-matter interaction and the

dipole approximations are well justified (low photon density and low photon frequency≈ 50

eV). In terms of the energy of the two emitted electronsε1 andε2, the energy conservation law is

~ν − ω = ε1 + ε2 + 2φ (3.47)

whereφ is the work function,ω the initial (correlated) two-particle energy. Application of this

technique to study the pair of electrons of the valence bands was first reported by Herrmann et al.

[88] for clean Ni(001) and Cu(001) crystals. In the spirit of the single-particle photoemission as

described by Caroli [89], the photocurrent of double photoemission (DPE) or (γ, 2e) is written

as [90, 91]

J ∝
∫
dǫ
〈
Ψ(2)

∣∣∣∆2A(ǫ)A(E − ω − ǫ)∆†
2

∣∣∣Ψ(2)
〉

(3.48)

where
∣∣Ψ(2)

〉
stands for the correlated two-particle states,E = E1 + E2 is the kinetic energy of

the outgoing electron pair with the momentum as defined above andA(ǫ) is the single-particle

spectral function. The essential point is that the operator∆N for the photon-charge coupling

is of a single-particle nature, i.e.∆N ∝ ∑N
i=1A(ri).p̂i whereA is the vector potential and
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3 Two-Particle Excitation

p̂i is the momentum operator of the particlei. This means∆N cannot induce direct many-

particle processes in absence of inter-particle correlations that help share among the particles the

energy transferred by the photon to one-particle which then results in multiparticle excitations.

A mathematical elaboration on this point is given in [92] and also confirmed below.

The formula of Eq.(3.48) has been employed in numerous theoretical studies of weakly

correlated system such as simple metals [93, 91, 90]. Density functional theory (DFT) generates

the initial state of the single-particle with the appropriate energies. The authors of Ref. [91] first

calculated the single-particle states via LKKR (layer Korringa-Kohn Rostoker) method. These

calculated states are then coupled by electronic interactionV to form the state
∣∣Ψ(2)

〉
. The theory

reproduced fairly well some of the observed experimental trends, e.g. intensity reduces as the

mutual angles of the two excited electrons increase [94] . A detailed comparison however has not

been successfully achieved partly due to the problem of the experimental resolution. Applications

of DPE to strongly correlated system constitute a challenging task. In the previous section, it has

been shown that the two-particle Green’s function is intimately related to the double occupancy

in the system. In the presence of correlation, electrons tend to be as far apart from each other as

is possible which therefore reduces the probability of the formation of bound state. An example

of this has been described in Chapter 2 in the context of the metal insulator transition (or see

Eq.(2.5)). It is thus expected that the fluctuation of the double occupancy in the system owing to

the strong electronic correlation is also reflected in the two-particle spectra.

To show the relation between the two-particle Green’s function and the photocurrent of

(γ, 2e), we write the two-particle photocurrent (J), summed over the non-resolved initial and

final statesn andm, as follows [95, 91]

J =
α0

Z

∑

Nv

∑

mn

e−βEn(Nv) |〈Em(Nv − 2)|∆2|En(Nv)〉|2 δ (E − [Em(Nv − 2)− En(Nv)])

=
α0

Z

∑

Nv

∑

mn,m′m′′

e−βEn(Nv)M †
mm′Mmm′′〈En(Nv)|P †

2 |Em′(Nv − 2)〉

〈Em′′(Nv − 2)|P2|En(Nv)〉δ(E − [Em(Nv − 2)− En(Nv)]). (3.49)

where∆2 =
∑

mm′ 〈Em′(Nv − 2)|A.(p̂1+p̂2) |Em(Nv − 2)〉P2. Here the short-hand notation

Mkl stands for the matrix elements. The photon energy is denoted byE = ~ν, andβ is the inverse

temperature. Furthermore,α0 = 4π2α/ν, andα is the fine structure constant,P2 = cmcm′

stands for the (hole-hole) two-particle operator acting on the state withNv particles with the

energyEn(Nv). Z is the partition function. Under certain conditions specified below (the sudden

approximation and for high photoelectron energies), the variation of the matrix elements, when

photon energyν is varied as to scan the electronic states of the sample, is smooth in comparison

to the change of the matrix elements ofP2. Furthermore, the diagonal elements ofMkl are

dominant (see below for a justification), i.e.Mkl ≈ M . In this situation Eq.(3.49) simplifies to
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3 Two-Particle Excitation

(ρ is the density operator).

J =
α0

Z

∑

Nv

∑

mn

e−βEn(Nv)|Mmm|2〈En(Nv)|P †
2 |Em(Nv − 2)〉〈Em(Nv − 2)|P2|En(Nv)〉

δ(E − [Em(Nv − 2)− En(Nv)])

=
α0M

2

2πZ

∑

Nvn

∫
dte−βEn(Nv)〈En(Nv)|eiHtP †

2 e
−iHt P2(t = 0)|En(Nv)〉eiEt

=
α0M

2

2πZ

∫
dt tr

(
ρP †

2 (t)P2(t = 0)
)
eiEt

=
α0M

2

2π

∫
dt≪ P †

2 (t)P2(t = 0) ≫ eiEt. (3.50)

On the other hand, from the spectral decomposition of the two-particle Greens function [96] one

infers for the two-particle spectral densityP (ω) the relation

P (ω) =
α0

Z

∑

Nv

∑

mn

e−βEn(Nv)|〈Em(Nv − 2)|P2|En(Nv)〉|2 (3.51)

(1− e−βν)δ(ω − Em − En).

Comparing this equation with equation (3.50) we conclude that under the assumptionMkl ≈M

the photon-frequency dependence of the two-particle photocurrent isproportional to the two-

particle spectral density, i.e.

J(ω) ∝ eβω

eβω − 1
P (ω). (3.52)

The Matrix Elements

In the next few sections, we inspect the validity range of the approximation (3.52) that enabled us

to assume for the matrix elementsMkl ≈M . In the experiments, (see Fig.3.1), the photoelectron

momentak1 andk2 are chosen to be large such that the escape time is shorter than the lifetime

of the hole states. To describe the photoemission dynamics, one concentrates therefore on the

degrees of freedom of the photo-emitted electrons (which amounts to the sudden approximation).

The matrix elements, e.g.Mmm′ , reduce in the sudden approximation to two particle transition

matrix elementsMif . The high energy final state (with energiesε1, ε2, see Eq.(3.47)) can be

written as a direct product of two Bloch states (ψk) characterized by the wave vectorsk1 andk2,

i.e.

Ψk1,k2(r1, r2) = ψk1(r1)ψk2(r2). (3.53)

Intersite Ground State Correlation

Correlation effects enter in the initial two-particle states. In the absence of spin-dependent scat-

tering (as is the case here) it is advantageous to couple the spins of the two initial states to singlet

(zero total spin) and triplet (total spin one) states [97]. In the paramagnetic phase and if the two

electrons are not localized on the same sites (they are mainly aroundRi andRj with i 6= j) the

42



3 Two-Particle Excitation

initial state is a statistical mixture of singlet and triplet states. The radial part can thus be written

as1

Ψω(r1, r2) = [ϕ1(r1 −Ri)ϕ2(r2 −Rj)± ϕ1(r2 −Ri)ϕ2(r1 −Rj)]χ(|r2 − r1 +Ri −Rj |)
= Ψ(0)

ω χ(|r2 − r1 +Ri −Rj |. (3.54)

The ”plus” (”minus” sign) stands for the singlet (triplet) channel. Note thatsince the transi-

tion operator∆2 is symmetric with respect to exchange of particles, there is no need to anti-

symmetrize the final state (3.53). In eq.(3.54) the functionsϕ1(r1 − Ri) andϕ1(r2 − Rj)

are single-particle Wannier orbitals localized at the sitesRi andRj , respectively.Ni is the

number of sites andχ(|r2 − r1 + Ri − Rj |) is a (dynamical) correlation factor assumed to be

dependent on the relative distance between the electrons. The partΨ
(0)
ω contains correlation ef-

fects due to exchange only. Due to the localization of the Wannier states around the ionic sites

χ(|r2 − r1 +Ri −Rj |) is expected to decay with increasingr1/2 (for i 6= j). In a lattice peri-

odic problem one expresses the Wannier functions as the Fourier transform of the Bloch states,

i.e. ϕ(r −Ri) =
1
Ni

∑1.BZ
q ψq(r)e

−iq·Ri (1.BZ stands for the first Brillouin zone). With this

relation and exploiting the orthogonality of the Bloch states one obtains upon straightforward

calculations the following expression for the matrix elements

Mif = 〈Ψf |A · (p̂1 + p̂2)|Ψi〉

≈ 1

Ni

{
1.BZ∑

q1q2

exp(−iq1 ·Ri − iq2 ·Rj)M
(1)
q1,k1

δq2,k2 ± 1 ↔ 2

}
χ(|Ri −Rj |)

+

∫
d3r1d

3r2 Ψ
∗
k1,k2

(r1, r2)Ψ
(0)
ω A · (p̂1 + p̂2)χ(|r2 − r1 +Ri −Rj |).

(3.55)

In this equationM (1)
q1,k1

is the matrix element for the conventional single photoemission from the

Bloch stateψq1 , i.e.M (1)
q1,k1

= 〈ψk1 |A ·p̂1|ψq1〉. In deriving the first term of (3.55) it is assumed

thatχ(|r2 − r1 +Ri −Rj |) varies smoothly withr1/2, i.e.χ(|r2 − r1 +Ri −Rj |) ≈ χ(|Ri −
Rj |) for i 6= j. For 3D periodic structure the first two terms of Eq.(3.55) vanish (momentum

and energy conservation laws cannot be satisfied simultaneously). Hence, the transition matrix

element is determined by the third term of (3.55), more precisely by the gradient of the correlation

factorχ. If this gradient is smooth on the scale of the variation ofΨk1,k2 and/orΨ(0)
ω then the

matrix element vanishes all together sinceΨk1,k2 andΨ(0)
ω are orthogonal. Explicitly in this case

one finds

Mif ≈ 1

Ni

1.BZ∑

q1q2

{exp(−iq1 ·Ri − iq2 ·Rj)δq2,k2δq1,k1 ± 1 ↔ 2}

A · (p̂1 + p̂2)χ(|r2 − r1 +Ri −Rj |)
∣∣∣
r2=0=r1

. (3.56)

1This form of the wave function is not the most general one. For a discussion of the terms omitted due to this
(ladder-type) approximation see, for example, Ref.[98].
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3 Two-Particle Excitation

From this expression it can be concluded that the matrix elements diminish for decreasing corre-

lationχ, in fact for i 6= j this contribution to the pair emission is expected to be marginal due to

screening.

On-site Ground State Correlation

The major contribution to the matrix element is expected to stem from the onsite emissionRi =

Rj . In the context of Hubbard model, one assumes that the two electrons scatter via a contact

potential of strengthU when they are on the same site. In this way, the wavefunction reads

Ψ̄ω(r1, r2) = [ϕ1(r1 −Ri)ϕ2(r2 −Ri) + ϕ1(r2 −Ri)ϕ2(r1 −Ri)] χ̄(|r2 − r1|)
= Ψ̄(0)

ω χ̄(|r2 − r1|). (3.57)

Ψ̄
(0)
ω describes the on-site two electron states that include exchange correlationonly. Using only

Ψ̄
(0)
ω yields zero matrix elements as shown above. To obtain an expression for thecorrelation

factor χ̄(|r2 − r1|) (that tends to 1 forU → 0), it is convenient to switch to relativeR− and

center of mass coordinatesR+. It can be argued that̄χ(|r2 − r1|) is determined by the integral

(Lippmann-Schwinger) equation (χ0 is determined by asymptotic conditions)χ̄(R−) = χ0 +

U
∫
d3R′

−g
r(R−,R

′
−)δ

(3)(R′
−)χ̄(R

′
−), wheregr is the retarded Green’s function in the relative

coordinate. For (3.57) one finds

Ψ̄ω(r1, r2) = Ψ̄(0)
ω (r1, r2)

[
1 + Ūgr(r1 − r2, 0)

]
, Ū =

U

1− Ugr(0, 0)
. (3.58)

The key point inferred from this relation is that the two-particle transition amplitude increases as

Ū increases (̄Ψ(0)
ω does not contribute to the matrix elements) and it vanishes forU → 0.

To summarize this section we can say for fixed momentak1,k2 of the photoelectrons and a

givenU , the frequency dependence of the two-particle emission,J(ω), is related to the frequency

dependence of the spectral functionP (ω). For a givenω, the matrix elements vary withU ; they

contribute aŪ2 dependence toJ(ω).
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CHAPTER 4

Single and Isotropic Two-Band Hubbard model

4.1 One Band Hubbard Model

In this chapter we discuss the results of the single- and the two-particle spectral function of the

single band Hubbard model. Our aim is to show the behavior of two-particle spectral function

in the vicinity of Mott transition. In doing so, we employ three approximations namely DMFT-

QMC and DMFT+ Ladder Approximation (LA) and first order approximation. As is already

pointed out in the previous chapter, the first approach calculates the single- and two-particle

within the same loop of DMFT. The other two methods on the other hand combine theresults of

the single-particle DMFT and additional approximation for two-particle Green’s function. In this

section, we therefore also compare the accuracy of the two-particle approximation that employs

accurate single-particle spectral function. In what follows the presented results for the single

band Hubbard model are obtained at temperatureT/W = 0.05 and time interval∆τ < 0.5. The

unit energy isW = 1 and semicircular density of states is employed in the DMFT-QMC self

consistency.

At half-filling (left panel of Figure4.1) the quasiparticle peak at the Fermi energy is

the dominant feature of the single-particle spectra in the weak coupling interaction signifying

a metallic behavior; the carriers are itinerant and a Fermi liquid picture is appropriate. With

an increasing strength of electronic correlations, localization sets in accompanied by a gradual

disappearance of the quasiparticle weight and the formation of a pseudogap. Electron transfer

between the two bands may occur, albeit its probability is smaller than that in the previous case.

As the coupling strength further increases, the gap fully develops indicating an insulating state.

The role of the double occupancy we inspect by studying the quantity〈n↑n↓〉 calculated in the

DMFT-QMC loop. Evolving from the weakly interacting (metallic) case to the strongly inter-

action (insulating) phase the double occupancy is reduced[28], for more energy is required to

overcome the stronger repulsion whenever forming the double occupation.
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Figure 4.1: The results of the DMFT-QMC for the frequency dependence of the single-particle spec-
tral functionA(ω) for the single-band Hubbard model at half-filling for various interaction
strengthU (left panel) and for various electron occupancy atU/W = 3 (right panel).

The influence of dopant concentration on the MIT is demonstrated by doping the insulating

phase as depicted in right panel of Figure4.1. Contrasting with the results at half-filling with an

interaction strengthU/W = 3, one observes the existence of a pseudogap in the spectra. The

hole doping stimulates the formation of quasi-particle peak so that the system attains a metallic

character. This is because the doping enhances the number of holes which in turns increases the

itineracy in such a way that electron can hop effectively from one site to theother.

Having commented on the generic single-particle properties of the single-band Hubbard

model for Mott systems, we turn now to the discussion of the particle-particle spectral function.

For smallU/W one obtains an intense peak that lies close toω/W = 0. The origin of such

features can be inferred from the structure of the single-particle spectral function as in this case

P is expected to be well modeled by a convolution of two single-particle spectralfunctions.

Small increase ofU/W leads to the reduction of spectral weight and the shift of peak into higher

energy (far fromω/W = 0). The latter is attributed to the difference of the Hubbard peaks in

the single-particle spectral function. As the interaction strength increases, the spectral weight

decreases significantly signaling a reduction of double occupation. This argument is supported

by the results of the integrated spectra depicted in the inset of Fig.4.2. In addition to the reduction

of the spectral weight, one also observes the formation of a gap in the low energy regime (near to

the zero frequency) for strong interaction. This two-particle gap resembles the one that appears

in the single-particle spectra (cf. Figure.4.1) which is the usual indicator for an insulating state.

As is already pointed out above, the reappearance of the low energy resonance as a func-

tion of the doping in the single-particle spectral function is a signal for the metallic character. The
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Figure 4.2: Two-particle spectral function as function of the correlated, two-particle initial energyν for
various interaction strengths. Calculations are performed within the self consistency scheme
of DMFT-QMC method. The large scale figure is shown in inset (b). Inset (a) shows the
integrated spectra using equation (3.40).

same pattern is also observed here in the two-particle spectral function where the strongest peak

occurs in the lowest electron occupancy and decreases as the Mott insulating phase is approached.

Thus the two-particle spectra highlight the contribution of holes to the double occupancy proba-

bility, which is supported by the results for the integrated spectra (see insetof Fig.4.3).

To inspect the role of the ladder diagram summation (i.e. Eq.(3.37) with results in the

right panel of Fig.4.4), we compare with the results of the first-order approximation (shown in left

panel of Fig.4.4) using (3.38) (i.e. with the convolution of the single-particle spectra). The results

of the first order approximation show a smooth, broad Gaussian-like feature in the spectra for all

interaction strengths. This is due to the self-convolution that tends to wash out the character of

the original function. The presence of a gap in the two-particle spectra highlights the difference

between the weak and the strong coupling interactions in agreement with the previous result of

DMFT-QMC and with the same energetic origin as discussed above. That thiscorrect energetic

shift is reproduced by this simple scheme is the result of using an accurate single-particle spectral

function. Another point is the evolution of the two-particle spectra from the weak through the

strong coupling limit and the associated behavior of the spectral weight. In the scheme used in

Fig.4.4, the weight seems to be comparable for all values of the interaction strengthsexcept for

U/W = 2 which originates from the low shoulder in the spectra in Figure.4.2The reduction of

the spectral weight is related to the probability of the double occupancy. Itis then conceivable
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Figure 4.3: Particle-particle spectral function of the single-band Hubbard model away from half-filling for
U/W = 3, T/W = 0.05 and various occupation numbersn . The inset shows the integrated
spectra according to equation (3.40).

to infer that this scheme violates the sum rule for the two-particle spectral function (which is

dictated by the double occupancy, see equation (3.39). This is endorsed by the results for the

integrated spectra shown in the inset of figure4.4. The shift to higher frequencies is due to the

presence of the gap. No clear suppression is observed as in Figures4.3and4.4.

Having obtained the imaginary part of the first order approximation we inspect the influ-

ence of the ladder diagram summation on the two-particle spectra. The resultsare presented in the

right panel of Fig.4.4. In contrast with previous results obtained in the first order approximation,

the spectra delivered by DMFT-LA are non-uniform with smooth broad feature and a satellite

peak. For the weak interaction strength, the two-particle spectra hardly depend on the Coulomb

interaction strength. As before no clear reduction of the spectral weightis observed. Interesting

features in the DMFT-LA scheme emerge at higher interaction strengths, which from the point

of view of the single-particle spectra, is already the regime of the insulating phase. Instead of

suppressing the spectral weight, the increase of the coupling interaction strength results in a nar-

row satellite peak. The integrated spectra depicted in the inset of Fig.4.4(right panel) shed some

light on this result. The integrated spectra within the ladder approximation exhibit a suppression

of the weight for higher frequencies in contrast to the results of the first-order approximation. We

remark that in the ladder approximation the suppression of the integrated spectra is not related to

a diminishing of the weight of the two-particle spectral function but is associated with the width
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Figure 4.4: The frequency dependence of the two-particle spectral function at half-filling, calculated with

the first order perturbation (left panel) and with the full ladder approximation (right panel).
Various curves correspond to different interaction strengths. The insets show the integrated
spectra. Same notation and parameters as in Fig.4.2.

of the spectra that become narrow as the interaction increases.

The two-particle spectral function away from half-filling is depicted in Fig.4.5for various

occupancies and forU/W = 3; calculations are performed within the first-order approximation

and within the ladder approximation. No gap formation in the two-particle spectratakes place.

This is consistent with the behavior of the single-particle spectral function for which the hole

doping of the insulating phase stimulates the formation of quasiparticles. In the first-order ap-

proximation, one obtains the usual broad Gaussian-type structure that becomes more dominant as

the dopant concentration increases. A somewhat similar situation is also observed for the results

of DMFT-LA. In the latter, however, one observes an intense low-energy peak close to half-filling

which decreases as the doping increases. The results from both approach thus in contrast with

that of DMFT+QMC where the largest spectral weight is obtained for highdoping concentration.

These results therefore do not reflect the fact that the addition of doping leads to the increase of

double occupancy in the system. The same is also indicated by the sum rule plotted in the inset

of 4.5. Here one observes that the spectral weight becomes minimum for the maximumvalue of

doping which thus violates the two-particle sum rule for the system close to Motttransition. A

similar finding has been observed in reference [99] where the bare ladder approximation (BLA)

has been utilized. In Ref. [99], the decrease of the electron occupancy also increases the peaks

in the spectra, which is assumed to be a violation of the two-particle sum rule. Onthe other
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Figure 4.5: The same as in Fig.4.4, however the results are for two-particle spectra of the hole doped case

for various electron occupancyn at an interaction strengthU/W = 3. The left panel depicts
the results of the first-order approximation whereas in the right panel the predictions of the
ladder approximations are plotted.

hand, by using the time-dependent Gutzwiller approximation the opposite situationoccurs: The

two-particle spectral weight diminishes as the Mott insulating phase is approached, which is in

line with what we obtained above within the DMFT-QMC.

4.2 Isotropic Two-Band Hubbard model

As is already pointed out, the single band Hubbard model upon which the above discussion is

based, is useful for systems with only a single band being close to the Fermi energy. To inspect

the role of the orbital degrees of freedom, which is known to be important for the properties of

strongly correlated systems, a multi-orbital model is needed. It is the aim of thissection to study

the influence of the orbital degeneracy on the single and the two-particle spectra. The results

for the single-particle spectral function within the two band Hubbard model are presented in

Figure4.6. The results are similar to those obtained within the single band Hubbard model (cf.

Fig.4.2). The metallic phase shows an intense quasiparticle peak that diminishes as thecoupling

interaction becomes stronger. The formation of the gap for a high interactionstrength shows the

existence of an insulating phase in this degenerate system. As mentioned before, an essential

point that distinguishes the Mott transition in the single from the degenerate band is the value of

the critical coupling necessary to obtain a dip in the spectral function. Fromthe orbitally resolved
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Figure 4.6: The DMFT-QMC results for the frequency dependence of the single-particle spectral function
A(ω) of the two-band, isotropic Hubbard model at half-filling. Various curves corresponds to
different interaction strengthsU/W . The insets show the orbitally resolved spectral functions
for the first (upper inset) and second bands (lower inset).

spectral function depicted in the embedded figures, one also learns that each band undergoes the

same transition from the metallic to the insulating phase. For anisotropic bandwidtheach band

undergoes an independent metal-insulator transition, a behavior coined as the orbital-selective

Mott-transition (OSMT) and will be further elaborated in the next chapter.

The results of DMFT-QMC calculation for the two-particle spectral functionare illustrated

in Figure4.7that contains the two spectral functions of the total band (left panel) and inter-band

(right panel). From Fig.4.7we see that a small increase of the Coulomb interaction in the weak

coupling regime hardly affects the overall spectral weight. Further increasing the interaction

strength leads however to the reduction of the spectra as well as to a shift of the dominant peak

to higher energies.

The two-particle spectral function of the total bands from the first orderapproximation and

the ladder approximation is depicted in left and right panel of Figs.4.8respectively. As expected,

the former approach delivers the broad Gaussian feature which is a consequence of the self-

convolution. As the interaction increases the spectral weight is shifted to higher energies and the

low energy gap becomes evident. In contrast, the results of ladder approach (see right panel of

Fig.4.8) show an enhancement of the spectral intensity as the interaction increases. Despite the

fact that a higher coupling is necessary for the formation of the gap, the behavior of the spectral

function of the total bands for the two band Hubbard model mimics that of the single band case

(see Fig.4.4)

For the case of interband spectra, the two-particle spectra obtained by means of the first or-

der approximation as well as by the ladder approximation are shown in the leftand right panel of
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Figure 4.7: The two-particle spectral function of the degenerate Hubbard model at half-filling as a func-

tion of Coulomb interactionU/W . The calculations are performed by the DMFT-QMC
method including total bands (left panel) and inter-band (right panel). The insets show the
integrated spectra.

Fig.4.9 respectively. The behavior of the two-particle spectra in the single band Hubbard model

obtained within the same scheme (see Fig.4.2) (e.g. the gap existence, absence of the spectral

weight reduction) is also observed in the present case. In the metallic casehowever there are

new features predicted by both approximations namely a double peak structure that disappears

in the insulating phase. Other notable features such as the increase of the weight as the coupling

strength increases are present in the results of both methods. The integrated spectra of the degen-

erate model indicates a violation of the sum rule for the two-particle spectra byboth the first order

approximation and the ladder approximation. From the three scheme: QMC-DMFT, first order

and ladder approximations, the DMFT-QMC method provides the more reasonable predictions

which practically always obey the sum rule as a constraint on the two-particle spectral function.

This is because, both the single and the two-particle propagators are calculated on an equal foot-

ing in the self consistency DMFT. An accurate single-particle approach when formulating the

two-particle propagator, does not however guarantee the fulfillment of the sum rules. The use of

an accurate approach in the single-particle spectra captures however pertinent features such as

the gap opening in the insulating state which is also observed in the result of DMFT-QMC.

To connect the results of the two-particle spectra of the Hubbard model (see for example

Fig.4.2) to the (γ, 2e) signal it is decisive to recall the statements of Eq.(3.47) and Eq.3.58). The

correlated two-particle initial energy that appears in Eq.(3.47) and which is scanned in Fig.4.2,
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approximation and in the right panel those of the ladder approximation.
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is in the uncorrelated case merely the sum of two single-particle energiesωi (ωuncor = ω1 + ω2

), i.e. in the metallic uncorrelated case we expect some spectral weight aroundω = 0 in Fig.4.2.

For a finiteU/W , i.e. for a correlated system one thus requires more energy to compensatethe

repulsion of the Coulomb interaction. This is the reason for the shift of the two-particle peak

in Fig.4.2 with increasingU . The same can be observed in the single-particle spectral function

where the distance between Hubbard band approximately in order ofU/W . The tendency of

larger spectral density with decreasingU is not reflected in the (γ,2e) signalJ . In fact, the oppo-

site will occur. The reason for this is that according to Eq.(3.52) and Eq.(3.58) J is proportional

to the product of the matrix elements and the spectral function. On the other hand the matrix

elements decrease withU (cf. Eq.(3.58)), and in fact vanishes forU → 0 counteracting against

the trend withU of the spectral functionP (cf. Fig.4.2). We stress however, that the results of

the two-particle spectral function depicted above are still relevant to the(γ, 2e) measurements in

that, for a givenU , the matrix elements are hardly dependent onω.

4.3 Two-Dimensional Hubbard Model

Immediately after the discovery of high-temperature superconductivity by Bednorz and M̈uller

in 1986[100], Anderson suggested [101] that the two-dimensional (2D) Hubbard model holds the

key to explaining this phenomenon. The band structure calculation of cuprates compound [102]

indeed showed that the quasi two-dimensional layer CuO2 has a pronounced contribution near

the Fermi energy. Following Anderson’s proposal, a great theoreticaleffort has been devoted

to studying the physics of 2D Hubbard model. Despite years of effort, there is no conclusive

evidence for the existence of superconductivity. In this connection, it iswidely believed that the

understanding of the normal state properties may provide important clues to the superconducting

mechanism. This is motivated by the fact that cuprates exhibit a number of anomalous properties

which is somewhat difficult to understand within the framework of the Fermi-liquid theory. One

of the most controversial issues is perhaps the origin of the pseudogap inthe single-particle

excitation which is a generic feature of the hole- and electron-doped high-Tc systems.

Various approaches have been implemented to investigate the electronic structure of the

2D Hubbard model. The results of numerical simulations within the finite size lattice quantum

monte carlo (QMC) have indicated that the groundstate of the model at half-filling is antiferro-

magnetic insulator. When the system is doped away from half-filling, it becomes metallic and

then superconducting. The relationship between the metal-insulator transition(MIT) and anti-

ferromagnetism (AFM), however, remains less understood. In addition,it was shown by several

authors that the suitable scenario of pseudogap formation is the one that closely related to the

short-ranged AFM fluctuations [103, 104]. In view of MIT, there are two limiting cases that

have to be considered. In the weak coupling (U << W ), spin-density-wave instability occurs

due to the presence of van Hove singularity and perfect nesting of the Fermi surface. The MIT

in this picture is due to the doubling of the unit cell generated by magnetic ordering. The sec-
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ond opinion was suggested by Anderson that assumed large Coulomb repulsion U (compared

to the bandwidthW ). In this strong coupling approach, the Mott gap is present for allU > 0

as in one-dimensional systems. The antiferromagnetic order in the low temperature is thus the

consequence of the MIT.

In the previous section, it has been shown that the metal-insulator transition inthe high di-

mensional limit can be tackled efficiently by means of DMFT. Based on the concept of local self

energy, the lattice problem is mapped onto the corresponding impurity Hamiltonianwith addi-

tional self consistency relations. The locality of the self energy however becomes one of the main

drawbacks of DMFT. The approximation is thus inappropriate when dealingwith various prob-

lems in which the contribution of spatial fluctuation is important e.g. spin density waves,d-wave

pairing, stripes, momentum-selective Mott transition. Investigations of pseudogap formation that

is related to the spin fluctuation and also metal insulator transition in 2D Hubbard model should

also go beyond the local approximation. In addition, it is well-known that the accuracy of the

mean field approximation such as DMFT declines in the lower dimensionality. To overcome this

problem, it is thus necessary to restore the spatial dependance of the selfenergy in the DMFT. As

is already pointed out in Chapter 2, the way non-local contributions are brought back into DMFT

is not unique and one can thus start from different level of approximations. Some examples are

Cluster DMFT, DMFT+Σk, dynamical vertex approximation (DΓA), Extended Dynamical Mean

Field Theory (EDMFT).

In this section, we discuss the paramagnetic metal insulator transition in the two-dimen-

sional Hubbard model. The main purpose is to study the role of spatial fluctuations at the verge

of the metal insulator transition at and off half-filling. To that end, we employ EDMFT where

spatial correlation is incorporated via spin-spin correlation term in the Hubbard Hamiltonian as

expressed in the Eq.(2.77). The information of lattice is obtained from the two-dimensional

density of states which can be analytically derived from the dispersion energy expressed as

ǫ(k) = −2t cos(kx)− 2t cos(ky) + 4t′ cos(kx) cos(ky), (4.1)

with t, t′ correspond to the nearest and the next-nearest neighbor hopping amplitude respectively.

In the results presented below, only nearest neighbor will be considered. Thus one deals with

symmetric density of states with the van Hove singularity at the center of the band. The effective

action of EDMFT as expressed in the Eq.(2.79) together with the self consistency relation of

electrons and bosons is finally solved by employing the extended version ofQMC method that

incorporates the electron-boson degrees of freedom. In the calculation, we set the bandwidth

W = 2, the temperatureT/W = 0.1, the Coulomb interactionU/W = 1 and the increment of

time slices as∆ < 0.24.

At first, let us discuss the evolution of dynamical spin susceptibility for different values of

the spin couplingI/W as illustrated in the left panel of Fig.4.10. We note here that since the

presented results are obtained in the paramagnetic phase and also in the absence of a magnetic

field then the relation of longitudinalχz and transversal spin susceptibilityχ± expressed asχ± =
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Figure 4.10:The left panel shows the imaginary part of dynamical spin susceptibility χ′′(ω) of the two-
dimensional Hubbard model at half-filling for various coupling I/W at U/W = 1. The
right panel illustrates the results for various occupationnumber atI/W = 0.2.

2χz holds[105]. Within our calculational scheme, we have checked that the above relationis

well fulfilled. The dynamical spin susceptibility is composed of broad single peak in the absence

of intersite interaction and the low frequencies are linear inω. Inclusion of spin interactions

slightly changes the high energy part of the susceptibility which is accompanied by the gradual

increase of the low-energy spectra. Note that the former is located at the order of≈ t2/U . When

spin coupling is increased, the primary low-energy peak becomes sharper and concomitantly

suppresses the high energy spectral weight. In order to fully understand these behavior, it is

interesting to have a look into the standard phenomenological descriptions ofthe spin excitation

provided by the random phase approximation (RPA) where the spin susceptibility χ(k, ω) is

expressed as

χ(q, ω) =
χ0(q, ω)

1− Iχ0(q, ω)
. (4.2)

Hereχ0(k, ω) is the non-interacting susceptibility reads

χ0(q, ω) =
∑

k

f(ǫ(k+ q))− f(ǫ(k))

ω + ǫ(k)− ǫ(k+ q)
, (4.3)

and I is the coupling interaction. In the absence of interactions, the particle-hole propagator

can be analytically evaluated. It is also known that in the limit ofω → 0 the imaginary part

of susceptibility is proportional toω. The increase of couplingI, particularly toward the Stoner

instability criteria leads to the enhancement at the low energy peak known usually as paramagnon.
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The adjustment of the low-energy susceptibility is simultaneously followed by thechanges in the

effective massm∗ and equivalently in the single-particle self energy. Generally, this enhancement

can be taken as the signal for the formation of the local moment in the system. Armed with this

knowledge, the increase of low-energy susceptibility in Fig.4.10as a function of intersite spin

coupling is thus a clear signature of the formation of local moment and the instability of metallic

phase.

The influence of dopant concentration on the spin suseptibility is depicted in the right

panel of Fig.4.10. It is calculated with the same parameters described above but forI/W = 0.2.

In general, the spectra are characterized by “peak-dip-hump” structure for all band occupancies.

These results indicate that the high energy peak at half-filling forI/W = 0.2 is physical. As the

system is doped, there is a decrease of low energy spectral weight which is readily observed in

the low doping concentration, e.g.n = 0.98 and this is followed by the increase of high energy

part. We interpret the high energy hump as the excitation from low energy states to other excited

states. The changes of spectral weight further evident as the dopantconcentration increases.

Finally at the highest doping, one observes a broad response which also consists of small peak

at low energy part, an artefact from the half-filled case. In contrast with that of half-filling, the

overall behavior of the dynamical spin susceptibility in the present case can not be described

within RPA theory in particularly at high energies. Nevertheless, the adjustment of the lineshape

of the susceptibility marks the influence of the doping and thus electronic correlation and more

importantly this changes will be reflected in the single-particle level. In this case, we expect

the reduction of effective mass as well as the changes of the self energytoward metallic like

behavior. In addition, the presence of the dip in the spin excitation is also of interest since it

might contribute to the additional behavior in the single-particle spectra.

Results of single-particle spectral function for different values ofI/W are illustrated in the

left panel of Fig.4.11. In the absence of intersite spin interactions but for small coupling values,

the spectra consist of a single peak resonance signifying the metallic character of the system.

This quasiparticle peak is the smoothed van-Hove singularity due to the influence of many body

interactions. At small intersite couplingI/W = 0.15, one observes a reduction of the spectral

weight atω = 0 which can be attributed to the small increase of the low-energy spin excitation

spectrum. As the interaction further increases, the quasiparticle peak is significantly suppressed

and the formation of the lower and the upper Hubbard bands becomes more clear. In the higher

coupling valueI/W = 0.25, one can see the formation of a dip at the Fermi level, indicating

that the system at the verge of metal insulator transition. In this regime, the imaginary part of

self energy diverges and as is already pointed out above, one also observe the formation of local

moment. On the basis of this result, one may conclude that the low energy enhancement of the

spin susceptibility, has its manifestation at the single particle level namely the opening of dip

or the collapse of quasiparticle peak. This also provides an important hint that there is strong

instability of metallic phase in two dimensional Hubbard system when the spatial fluctuation is

considered.
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Figure 4.11:The spectral function of the single-band two-dimensional Hubbard model forU/W = 1
T/W = 0.1 and at momentum vectork = (π

2
, π
2

). The results of the left panel are for
various values ofI/W at half-filling whereas the right panel are for different band fillings.

The results of single-particle spectral function further suggest that themetal insulator tran-

sition is possible even in the weak coupling interactionU < W meaning also that the gap is

always present for allU > 0. Since the calculation are performed in the paramagnetic phase,

the strong coupling approach by Anderson is thus more relevant to explainthe mechanism of

MIT in the 2D Hubbard model. It is interesting to note here that the formation of pseudogap has

also been observed within the DMFT+Σk scheme [33, 34]. They pointed out that, in comparison

to the charge density fluctuation, the spin fluctuation induce stronger instabilityin the metallic

phase that finally leads to the formation of gap at the single particle spectra. The same is also

shown by cluster extension of DMFT, where in this respect the decreaseof the spectral weight at

the Fermi energy heavily depends on the cluster sizes. It is shown that in order to obtain the full

gap opening at the single particle spectral function, it is necessary to consider large cluster size

[106]. The study of the influence of spatial fluctuation in the three dimensional Hubbard model

has been recently reported in the ref.[35] that employs the DΓA method. They pointed out that

the short-range antiferromagnetic fluctuation could also influence the stabilityof the quasiparticle

peak.

Let us now consider the hole doped case. The spectra are depicted in theright panel of

Fig.4.11. The model parameters are still the same as above but in this case the spin coupling is

fixed asI/W = 0.2. It is clearly seen that doping has a strong influences on the low energy

part of the spectra. The resonance close toω/W = 0 emerges again as a function of doping,
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signal of the increase of the itinerant character. Along with this, the spectra now consists of the

pseudogap for all band filling that lies close to the peak at Fermi energy. The enhancement of the

quasiparticle peak is clearly a manifestation of the diminishing of the low-energysusceptibility.

In addition, the pseudogap that persists to the overdoped case can be considered as a counterpart

of the low-energy gap in the spin susceptibility. In order to fully understandthe nature of the

low energy peak as well as the pseudogap it is necessary to inspect the imaginary part of the self

energy. This to ensure that such behavior does not originate from the numerical continuation of

the imaginary quantities. In this respect, we obtain that the low-energy part of the self energy

extrapolates to the finite valueImΣ(i0+) = Γ 6= 0 thus suggests that there is a finite lifetime

at the Fermi level meaning that the well defined Fermi liquid state is absent. We will further

investigate this fact and elaborate the discussion during the presentation ofthe optical spectra,

presented in the next section.

4.3.1 Optical Conductivity and Pair Excitation Within The 2D H ubbard
model

As is already pointed out earlier, the electromagnetic response of the system provides a clear

signature of electronic correlations. The effects are usually manifested inthe shift or in the van-

ishing of the Drude weight and also in the formation of the optical gap in the conductivity spectra.

This for example is observed in the metallic phase of the vanadium oxide (V2O3) that shows a

Drude weight and an additional incoherent peak at the higher frequency. As electronic correla-

tion increases, the gap appears in the low energy mimics that observed in the spectral function

[28, 107]. In this section, we will discuss the evolution of the optical conductivity spectra of the

2D Hubbard model as a function of the non-local spin fluctuation and the dopant concentration.

At first, let us observe the influence of the non-local spin fluctuation as illustrated in the left panel

of Fig.4.12. In the weak couplingI/W ≤ 0.15, the spectra show a pronounced peak atω = 0

which can be attributed to the quasiparticle peak in the single-particle spectra and thus signify-

ing the metallic character. A small increase of the coupling apparently influences only the low

energy part and it is reflected in a small shift of the peak. A somewhat similarbehavior has been

observed in the spectral function where the quasiparticle resonance is only slightly reduced. In

the strong coupling regime, there is a drop of the spectral weight which further decreases as the

coupling increases. The reduction of the low energy peak together with thereadjustment of the

spectral weight as the correlation increases is related to the change of thekinetic energy of charge

carriers. This quantity can be calculated from Eq.(3.21) and is illustrated in the left panel inset of

Fig.4.12. In the weak coupling regime,K(Ω) rapidly increases as a function ofΩ to maximum

value and again the spectral weight is independent ofI/W . As anticipated, the spectral weight

decreases and becomes linearly dependent onΩ in the higher coupling regime which is a restate-

ment of the spectral weight suppression in the optical conductivity. This clearly suggest that the

presence of non-local fluctuation responsible to the reduction of the kinetic energy of electron

carrier.
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Figure 4.12:The frequency-dependent optical conductivity of the two-dimensional Hubbard model cal-
culated by using the spectral function of EDMFT-QMC. In the left panel, we illustrate the
optical spectra at half-filling for various values ofI/W . The filling dependence of optical
conductivity atI/W = 0.20 is depicted in the right panel. The insets show the integrated
spectra according to Eq.(3.21).

The right panel of Fig.4.12shows the optical conductivity for different band fillings which

was calculated forI/W = 0.2 andU/W = 1. The increase of the low energy peak is visible

even for the low doping concentrationδ (n = 1− δ). In the high doping regime, the low energy

spectra become enhanced and the high energy part displays the isosbestic point aboutω ≈ 2

indicating the doping independence of the optical spectra. The increase of spectral weight thus

indicates that the system again attain its metallic character. The same behavior is also reflected

by the kinetic energy as demonstrated in the right panel inset of Fig.4.12. In general, the decay of

the high energy optical spectra does not show1/ω2 behavior as usual for standard metals. This

suggests that the necessary condition for the Fermi liquid behavior has been violated. In order

to elucidate this behavior, let us investigate the scattering rate and the mass enhancements which

can be derived from the generalized Drude model [60] expressed as

σ(ω) =
ω2
p

4π

1
1

τ(ω) − iωm∗(ω)
m0

. (4.4)

It follows from this equation that the frequency-dependent scattering rate 1
τ(ω) and the mass en-

hancementsm
∗(ω)
m0

are associated with the real and the imaginary part of the optical conductivity
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Figure 4.13:The frequency-dependent scattering rate1/τ(ω) and the effective massm
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in the doped
two-dimensional Hubbard model forU/W = 1, I/W = 0.2, T/W = 0.1 and for various
band fillings.

σ(ω) = σ1(ω) + iσ2(ω) respectively. Explicitly, they are written as follows

1

τ(ω)
=
ω2
p

4π
Re

(
1

σ(ω)

)
, (4.5)

and
m∗(ω)

m0
= −

ω2
p

4π

1

ω
Im

(
1

σ(ω)

)
. (4.6)

It can be seen from Fig.4.13that the scattering rate is most pronounced in the regime close

to half-filling. When the system is doped, the spectral weight ofτ−1(ω) decreases. The quadratic

dependency on the frequency apparently is not observed in the calculated spectra. Instead, it

exhibits the linear dependency with the suppression betweenω = 1 to ω = 2. This is taken

as the indication for the deviation of the Fermi liquid character and thus in accord with the

observation in the optical conductivity and also in the self energy. The massenhancement with

the doping variations is shown in the lower panel of Fig.4.13. In general, one observes a sharp

drop in the low energy which is followed by the linear increase at higher energy part. A careful

examination shows that the low-energy spectral weight increases as the system approaches the

half filling condition. At half-filling as well as for low doping concentrations,m∗(ω)
m0

collapses at

low energies indicating the breakdown of the generalized Drude model.
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Figure 4.14:The two-particle spectral function of the two-dimensionalHubbard model forU/W = 1 and
at temperatureT/W = 0.1. Various curves in the left panel correspond to different interac-
tion strengthsI/W . The right panel shows the dependency on the electron occupancies at
I/W = 0.2. The insets illustrate the integrated spectra according toEq.(3.40).

Next, we investigate the two-particle spectral function of the 2D-Hubbard model at half-

filling as depicted in the left panel of Fig.4.14. The particle-particle spectra exhibit a single broad

peak that varies according to the spin exchange coupling. As expected,the most pronounced

intensity occurs in the absence of spatial fluctuation. When the non-local interaction is weak the

spectral weight decreases gradually but the position of peak remains unchanged. On the other

hand, for higher coupling values there is a decrease of the spectral weight which is accompanied

by a shift of peak to higher energies (away from zero). Thus one expects a gap opening at low

energies (near to zero) if the coupling is further increased. Following thesame argument in the

single and doubly degenerate band discussed in the previous section, thepronounced intensity in

the absence of the spin fluctuations in this respect can thus be attributed to thehigh probability

to obtain two electrons. The increase of electronic correlation generated by the pronounced

spatial fluctuation amounts to reduce the formation of the electron pair which is reflected in

the two-particle spectra as small spectral weight or the formation of gap-likeat low energies.

This behavior is clearly comparable to the destruction of the quasiparticle weight in the single-

particle spectral function (to easily understand this relation, see for example the results of the

first order perturbation theory in the left panel of Fig.4.4). In addition to this, the high intensity

clearly marks the high mobility of electrons in the system while the reduction of spectral weight
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accompanied by the shift to higher energy corresponds to the increase of localisation character.

This can be also seen from the integrated spectra depicted in the left inset of Fig.4.14 which

shows a decrease of the spectral weight asI/W increases.

The influence of the hole doping in the two-particle spectra is depicted in the right panel

of Fig. 4.14. As expected, the location of peak is roughly the same for all doping value.The

effect of doping is clearly manifested in the enhancement of the spectral weight which becomes

pronounced as the dopant concentration increases. This behavior suggests that the system attains

its metallic character and thus reduces the influences of the spin fluctuation. This is further

emphasized by the integrated spectra in the right inset of Fig.4.14where the spectral weight also

increases as a function of doping.

As an interesting question one might ask in this context is about identifying the presence

of the pseudogap in the two-particle spectra as a function of the coupling orafter the system

is doped. From the results presented above, it is clear that the pseudogap of the single particle

spectral function does not find its counterparts in the two particle spectra either at half-filling or

for the hole-doped case. The reason for this absence can be easily understood by recalling the

fact obtained within the first order approximation as well as the ladder approximation described

in the previous section. It is shown that both methods deliver smooth line spectra for all coupling

values as a result of the convolution procedure that washed out any small dips in the single-

particle spectra. The same thus applies in this case and therefore based onthis findings, the

metallic phase with a single peak mainly at weak coupling,0 ≤ I/W ≤ 0.15 can be only

distinguished with the one with the pseudogap at stronger interaction strengthby observing the

position of the peak as well as the intensity. The peak of the former at half-filling lies relatively

close to the low energy regime, while the latter is shifted to higher energies. In the hole doped

case, on the other hand one obtains an increase of spectral weight as afunction of the dopant

concentration without changes of position.

The relation of the calculated two-particle spectra with the (γ, 2e) experiments can be

again determined within the same formalism described before, namely by assuming the matrix

elements to be independent ofω. It is easy to conceive that the calculated results remain relevant

to the experiments at a fixedU and for the experimental situation discussed in Chapter 3.
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CHAPTER 5

Metal-Insulator Transitions for The Anisotropic Two-Band Model

5.1 Introduction

In recent years a great deal of effort has been devoted to understand the underlying physical

mechanisms behind many intriguing properties of the single layered ruthenatesCa2−xSrxRuO4

(CSRO). The interests in this material has been initiated by the discovery of unconventional

superconductivity in Sr2RuO4 by Maeno and his collaborators [108]. Sr2RuO4 is the n=1 mem-

ber of the Ruddlesden-Popper series of the layered perovskite which isisostructural with the

high temperature superconductor compound La2−xBaxCuO4. As depicted in Fig.5.1, both com-

pounds are highly two-dimensional (2D) systems with CuO2 and RuO2 layers for cuprate and

ruthenates respectively. Due to their close structural similarity, it was generally believed that

by understanding the physics of ruthenates in the normal as well as in the superconducting state

might give insights into the nature of the high-Tc cuprates. Nevertheless, it was soon realized

that Sr2RuO4 and cuprates show substantial differences in terms of the groundstate, the transition

temperature, the structural distortion, and also the role of the orbital degrees of freedom.

The electronic structure calculation within the local density approximation (LDA) predicts

Sr2RuO4 to be metallic. This is inferred from the projected DOS as well as from the calculated

band structure of Fig.5.2 [109, 110, 111]. This result was obtained from LDA calculation in

combination with linearized muffin-tin orbitals (LMTO) method. The partial densityof states

shows the contribution from the in-plane O-2p and Ru-4d at the Fermi energy. The states of

apical O-2p as well as Sr−4d on the other hand lie below or above the Fermi level. The projected

DOS further indicates that the contribution of finite DOS at the Fermi energy isoriginally from

t2g Ru orbitals,xy, yz andxz that hybridizes with the in-plane or apical O-2p . The nature of the

hybridization between each oft2g orbitals and 2p orbitals is however different. Thexy-orbital

π-hybridizes with 2p orbitals of all 4 in-plane O-neighbors which is opposed to the degenerate

xz,(yz) orbitals thatπ-hybridize only with 2 O neighbors along the x(y) axis. As a consequence,
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Figure 5.1: The layered perovskite ruthenates [108].

the bandwidth of degenerate orbitals is smaller than that of thexy orbital (see lower right of

Fig.5.2). The existence of degenerate orbitals close to the Fermi energy and the fact that they

have anistropic bandwidth makes the CSRO an interesting multiorbital system. Thissystem thus

allows for investigating the interplay of orbital degrees of freedom and theelectronic correlation

which is generally believe to be responsible for various intriguing properties.

The band structure of Sr2RuO4 within LDA can be described with three nonhybridizing

tight binding bands as follows

ǫ(k) = −ǫ0 − 2tx cos(kx)− 2ty cos(ky) + 4t′ cos(kx) cos(ky) (5.1)

where (ǫ0,tx,ty,t′) being (0.50,0.44,0.44,-0.14), (0.24,0.31,0.045,0.01), (0.24,0.045,0.031,0.01)

eV forxy, xy andyz respectively. The result of the Fermi surface from band structure calculation

consists of a hole cylinder at the zone center and two electron cylinders withalmost square cross-

sections centered at theΓ point. The experimental results on the Fermi surface in Sr2RuO4 from

de-Haas van Alphen effect fully corroborate the shape of the calculated Fermi surface.

The complete replacement of Sr2+ by smaller Ca2+-ion leads to an antiferromagnetic in-

sulator atTN = 110K. The Sr2RuO4 is thus considered being in the proximity to Mott insulator.

Since Ca and Sr are isoelectronic, this transition should not be attributed to thechanges in the

total carrier concentration but rather to the increase of the effective electron correlation strength

relative to the bandwidth. The small Ca ion induces a non uniform structuraldistortion of the

lattice parameter. The RuO6 rotates and tilts in such a way that the Ru-Ru separation contracts

while keeping the distance between Ru and O. This distortion also bends the Ru-O-Ru bond an-

gle away from 180o and as a result decreases the bandwidth oft2g-orbitals. The CSRO system
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Figure 5.2: From left to right: Upper row shows the partial LDA DOS for Sr2RuO4 and Orbitally pro-
jected LDA Ru-4d DOS. Lower row, the phase diagram of Ca2SrxRuO4 and the calculated
band structure along high symmetry directions in the energywindow -3 to 1 eV. In the phase
diagram P stands for paramagnetic, CAF for canted antiferromagnetic, M for magnetic, SC for
superconducting phase, -M for metallic phase and -I for insulating phase. The metal/nonmetal
transition temperature is denoted byTM/NM andTCAF is the CAF transition temperature .
These pictures are taken from Ref.[111, 112].

is thus an example of the bandwidth driven system which in contrast to dopingdriven high-Tc

cuprates.

The calculated band structure of Ca2RuO4 (CRO) by means of the local spin density ap-

proximation (LSDA) [114] is illustrated in the left panel of Fig5.3. While LSDA correctly pre-

dicts the existence of AFM ordering and the competition between FM and AFM states in thePbca

phase, it is generally fail to describe the insulating phase. This failure hintson the importance of

correlation in describing the physics of this system. The inclusion of electronic correlation in the

first principle calculations leads to a correct description of the band structure of CRO. The right

panel of Fig5.3shows the result of LSDA+U [113] with the gap opening at the Fermi energy in

the AFM phase.

The region between the two end member of Ca2−xSrxRuO4 is characterized by several
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Figure 5.3: The band structure of Ca2RuO4 calculated by means of LDA (left panel) and LDA+U (right
panel). From Ref.[113].

phases (see the phase diagram in the lower left panel of Fig.5.2) [112]. At low temperatures

with rich Ca concentration(0.09 < x ≤ 0.2), the system remains in the antiferromagnetic Mott

insulator and changes to paramagnetic metal at elevated temperature. As the system is doped

with Sr concentrations(0.2 < x < 0.5), the system becomes metallic at all temperatures with

antiferromagnetic correlation at low temperature. Further increasing Sr concentration(0.5 <

x < 2), brings the system into paramagnetic metal.

In order to understand the physics of ruthenates particularly the origin ofthe rich phase di-

agram, it is thus essential to realize how the system evolves from the insulatingto metallic phase.

Extensive investigations have shown that the transition from insulating to metallicphase in this

system is of a novel type owing to the new class of Mott transition. This is due tothe fact that the

interplay between the electron correlation and the orbital degrees of freedom gives rise to the co-

existence of localized and itinerant character. This issue was brought tothe forefront by Nakatsuji

and Maeno who showed the evidence for a two-step metal insulator transition[115, 112]. Anisi-

mov and coworkers subsequently [116] performed theoretical study of Ca2−xSrxRuO4 using a

simplified two band system representing wide bandxy and narrow bandxz, yz. Their calcula-

tion neglected the details of structural distortion upon Ca doping. In order totreat the correlation

properly, they employed LDA+DMFT in combination with non crossing approximation (NCA)

as the impurity solver. ForU = 1.5eV they found that while the subbands(xz, yz) open a dip in

the spectra, the other subband(xy) still exhibits a strong quasiparticle peak suggesting that the

former is more correlated than the latter. This result, however, was questioned by Liebsch [117]

who argued that two bands with only small bandwidth differences always undergo a common

metal to insulator transition. His calculation was based on DMFT+quantum monte carlo (QMC)

on two-band Hubbard model with tight binding lattice is replaced by Bethe DOS.In order to clar-

ify this discrepancies, Kogaet al [118, 119] performed the calculation using the same scheme

as described by Liebsch. Instead of using QMC, they employed the exactdiagonalization thus

allowing for the inclusion of the full Hund’s coupling which was not considered in the earlier
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works. Their results suggested the possibility of two step transition which in agreement with the

results of Anisimov. The subsequent works by several authors further clarify this issue and also

support the possibility of an orbital dependent Mott transition [120, 121, 122, 123, 124]. These

works also emphasize that the simplified two band Hubbard model that incorporates only Hund’s

coupling is sufficient to generate the orbitally dependent MIT. The MIT which is a result of the

interplay between the bandwidth anisotropy and the correlation is then knownas orbital-selective

Mott transition (OSMT).

The experimental evidence for OSMT is, however, remain inconclusive.Based on the

results of the transport properties of Ca1.7Sr0.3RuO4 on ab plane andc−axis, Jinet al. [125]

pointed out that the strong antiferromagnetic correlation develops along thec−direction suggest-

ing a strong correlation inxz andyz bands. Their results thus support that of original work of

Maeno. In contrast, based on ARPES measurement Wang [126] et al. showed that the topology

of the Fermi surface ofx = 0.5 remains nearly the same as that ofx = 2. The main difference

was observed only forxy band that changes from an electron like in Sr2RuO4 to a hole like in

Ca1.5Sr0.5RuO4. The results of the optical analysis [127] corroborate with that of ARPES. They

emphasized that thexy band is more correlated than thatxz andyz bands.

The recently published work of Neupaneet al. [128] claimed to observe the orbital-

selective Mott transition in the Ca1.8Sr0.2RuO4 based on the results of ARPES. Their results

also suggested that electrons in the wide band experience strong correlations for this band be-

comes insulating when narrow band remains metallic. This conclusion is drawn based on the

fact that the Fermi surface of thexy band is absence after the doping. They further argued that

the bandwidth difference does not play an essential role in the OSMT. Thisis supported from the

results of slave boson mean field theory in the three-band Hubbard model with bandwidth ratio

(W ) 1:1:1 and 1:1:1.5 and two electrons per unit cell. It is found that the reduction of quasiparti-

cle weight as a function of charge transfer in the isotropic and non-isotropic bandwidth is hardly

different. Based on their results, they concluded that the OSMT is drivenby the interplay of the

interorbital carrier transfer, the superlattice potential and the orbital degrees of freedom.

In order to understand the physics of OSMT, we therefore discuss in thischapter the metal

insulator transition in the two-band Hubbard model with a bandwidth anisotropy. In the first part

of this chapter, DMFT method will be employed to study the single-particle excitation in the

paramagnetic and antiferromagnetic phase. This will be followed by the results of the optical

conductivity and the particle-particle excitation spectra. The second partof this chapter will

again discuss the same paramagnetic phase of the Hubbard model. The center of investigation

in this case is the influence of spin fluctuation in the anisotropic two-band system. To this end,

EDMFT is employed to calculate the single-particle spectra, the spin susceptibility, the optical

conductivity and the particle-particle spectra.
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Figure 5.4: Upper panel: Orbitally resolved single-particle spectral function ofthe anisotropic Hubbard
model for various values of onsite Coulomb interaction atT/W = 0.05. Lower panel: same
as in the upper panel but for various temperature values and for U/W = 2. The left (right)
panel corresponds to the narrow (wide) band.

5.2 DMFT Results

5.2.1 Single-Particle Properties of Paramagnetic Phase

Here we discuss the single-particle spectral function of the anisotropic two-band Hubbard model

in the absence of a spontaneous symmetry breaking or without a spin polarization. To that end,

we employ the model of Eq.(2.10) by considering the Ising like interactions and neglecting pair

and exchange processes. In order to keep the model rotationally invariant, the relationU =

U ′ + 2J , is employed [13] and thus by choosingJ = U/4, one can easily determine the values

of interband interactionU ′. The semicircular density of states is employed as a non-interacting

DOS in the self consistency loop, and the bandwidth ratio of narrowW1 and wide bandW2 is

set asW2 = 2W1 = 2W with W = 1 The calculation is performed at finite temperatures and

the time slices of QMC is set as∆τ ≤ 0.5 . Unless otherwise stated, all DMFT results presented

in this section as well as the following sections are obtained within the same model and with the

same parameters as specified above.

For an overview of the orbital selective mott transition, we first discuss thesingle-particle

spectral function at half-filling, as illustrated in Fig.5.4. When the interactions is weakU/W < 2,

both bands clearly show the quasiparticle peak indicating the metallic behavior.A small increase
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Figure 5.5: The left panel illustrates the total spectral function of the anisotropic two-band Hubbard model
at half-filling for differentU/W whenT/W = 0.05. The right panel shows the results for
different values of temperature atU/W = 2.

of the interaction significantly changes the metallic character of the narrow band which in con-

trast with the other one. While the latter still exhibits a resonance atω = 0, the former is now

already in the pseudogap state. By further increasing the interaction coupling, both bands un-

dergo independent transitions from the metallic into the insulating phase, i.e. thenarrow band is

followed by the other one. The narrow band has a larger gap than the wideband for all calculated

Coulomb interaction values. This is a signature that the narrow band is more strongly correlated

than the wide band. It is noteworthy to mention here that the underlying physics of the metallic

phase of both bands is also governed by two different mechanisms. The strong quasiparticle peak

in the narrow band is a clear indication of the Fermi liquid behavior. In this case the imaginary

part of the self energy (not shown) can be approximated asImΣ(iω) ≈ −Γ(ωn + . . .). In con-

trast, the self energy of the wide band shows appreciable deviations fromFermi liquid namely the

imaginary part has a finite value atω = 0 and therefore the peak is not due to the quasiparticles

but rather finite-lifetime excitation[122, 118, 123]. As the temperature is lowered, the pseudogap

state in the spectra of the narrow band evolves continuously into quasiparticle states. In this case

the imaginary part of the self energy can be again expressed in the Fermi liquid manner indicating

a well-defined Fermi liquid state. The spectra of the wide band on the other hand do not show

notable changes for all calculated temperature. The results of self energy also suggest a deviation

from the Fermi liquid behavior.

The next figure (see Fig.5.5) is the results of the total spectra calculated as a function of the

Coulomb interaction (left panel) and the temperature (right panel). Since off-diagonal terms are

not considered in the calculation, these results are obtained from the summation of the diagonal
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Figure 5.6: The upper-left and the upper-right panels are the orbitallyresolved single-particle spectral
function of the doped anisotropic Hubbard model in the narrow and the wide band. The
spectra is obtained forU/W = 2.5 andT/W = 0.05. Within the same parameters value, the
lower left panel displays the total spectral function for hole doping case while the lower right
panel illustrates the results for electron doping.

terms, i.e. narrow and broad band. The behavior of the narrow band strongly influences the

total spectra in the metallic phase. The same case also occurs as the temperature is lowered.

However, the strong insulating character from the narrow band is not reflected in the insulating

phase of the total spectra for it is washed out by that of the wide band. Inthis case, the imaginary

part of a narrow band has been modified by that of wide band with a weak1/ω character. It is

also important to mention that, while the qualitative behavior of the spectra is comparable with

those of a two-band isotropic system, the present results have smaller critical coupling. This

stems from the fact that the inclusion of Hund’s coupling favors the insulating phase as the spin

fluctuation increases in the system. This issue will be further elaborated in thenext section when

considering the influence of non-local fluctuations.

The effect of doping in the anisotropic bandwidth systems is demonstrated in Fig.5.6. The

narrow band is apparently insensitive to a low doping concentration as it remains in the gapped-

phase (see left panel of Fig.5.6), both for the hole and electron doped case. In contrast, the gap

of the wide band is reduced to a pseudogap. As the dopant concentrationincreases,1 the narrow

band shows a resonance at low energies and it becomes more pronounced forn = 1.70 . The

wide band on the other hand remains in the pseudogap state. As in the half-filled case, the non

1In the present case only the results of the hole doping are presented butthe same also occurs for the electron doped
case.
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fermi liquid behavior is robust in the wide band for both types of doping.

The total spectra of the hole and electron doped are displayed in the lower panel of Fig.5.6.

Similar as in the half-filled case, the pronounced metallic phase at high doping ismainly due to

the strong peak resonance of the narrow band. The pseudogap state on the other hand is clearly

related to the presence of the small spectral weight in the wide band. Theseresults are, in general,

in a good agreement with the recently published works by Ref.[129].

5.2.2 Optical Conductivity and Particle-Particle Spectra

We now describe the optical conductivity of the anisotropic two-band system which is obtained

following Eq.(3.16). Although it is possible to obtain the orbitally-resolved conductivity we will

however only present the total conductivity considering that the optical spectroscopy is not or-

bitally resolved. The results of such calculations are depicted in Fig.5.7. For weak couplings, the

conductivity shows a strong Drude peak for low energies which is the hallmark of the metallic

character. As the energy increases, the spectral weight decays rapidly, suggesting that the low-

energy excitations in the metallic phase of this system follows the standard Fermiliquid behavior

As the coupling increases, the Drude weight is diminished indicating a suppression of the itiner-

ant character of the electrons. This is particularly so for the coupling values of 2≤ U/W ≤2.5,

and it is usually considered as bad metal system. A further increase of the Coulomb interac-

tion, leads to the formation of an optical gap at low energies indicating that the system is in the

insulating phase.

The redistribution of the optical spectral weight as the correlation increases is clearly cor-

responds to the dynamics of the electron carriers. This can be investigatedby inspecting the

kinetic energy or the integrated spectra as depicted in the inset of Fig.5.7. For weak couplings,

the spectra rapidly increase fromω = 0 to maximum value. This suggests that the electron

is effectively accelerated at all frequencies range. As interaction increases, the overall spectral

weight is suppressed which corresponds to the reduction of the kinetic energy of the electron

carriers. When the system in the insulating phase, the integrated spectra indicate the presence of

an optical gap. In this case the acceleration of the electrons requires higher energy. Thus, it is

now clear that the loss of electronic coherence can be attributed to the strong suppression of the

kinetic energy

The influence of temperature on the optical conductivity is presented in the right panel

of Fig.5.7, with the interaction parameter is set asU/W = 2. The most important effects of

lowering the temperature is the rapid enhancement of the peak atω/W = 0. This indicates

that the system gains its metallic character. In this respect, the resistivity as a function of the

temperatureρ(T ) = 1/σ(ω = 0) (not shown) hasT 2 dependence which is characteristic of the

Fermi liquid. It is also interesting to note that the thermodynamic instability occurs only for

the low-energy part of the spectra while the high energy part is unaffected for all the calculated

temperature values. Following the previously mentioned argument, the enhancement of metallic

character corresponds to the increase of kinetic energy. This is indeedobserved in the integrated
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Figure 5.7: The left panel shows the optical conductivityσ1(ω) of the anisotropic two-band Hubbard
model at half-filling for various values of the Coulomb interactionU/W whenT/W = 0.05.
The temperature-dependent optical conductivity atU/W = 2 is demonstrated in the right
panel. The insets show the frequency-dependent spectral weightK(Ω) as a function ofΩ.

spectra displayed in the inset of Fig.5.7. Here the spectral weight is shifted to higher energies as

the temperature is lowered.

As is already pointed out, mass enhancement and scattering rate can be deduced directly

from the optical conductivity data. This is done following the lines describedin Chapter 4, where

both quantities are derived from the extended Drude model. The results ofsuch calculations are

presented in Fig.5.8 which displays the scattering rate (upper plane) and the mass enhancement

(lower plane). It is clear from the figure that the system at the verge of the metal insulator

transition bears the highest scattering rate. When the temperature is lowered, there is a reduction

at low energies which can be approximated bya + ω2 dependence. The quadratic dependence

of the spectra is another indication that at low temperatures the low excitation can be described

within the Fermi liquid theory.

The enhancement of the mass at lower temperatures is also described nicelywithin the

extended Drude model. The influence of temperatures is clearly identified atlow energies where

the effective mass decreases as a function of temperature. The higher energies spectra on the

other hand shows hardly any difference. This is clearly a reminiscence of the high energy optical

spectra and which emphasizes the previous finding that only the low energypart is strongly

influenced by temperatures. The extended Drude model however fails to describe the effective
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Figure 5.8: The scattering rate (upper panel) and the mass enhancement (lower panel) as a function of
ω/W of the anisotropic two-band Hubbard model at half-filling for U/W = 2 and different
temperature values.

mass at relatively high temperatureT/W = 0.03 andT/W = 0.05. This can be understood

using the fact that in this regime there is a pronounced suppression of Drude weight that makes

them deviate from the Fermi liquid behavior. This also further explain the validity range of the

extended Drude model.

Having obtained the optical conductivity spectra, one can also deduce thespectra of the

Electron Energy Loss Spectroscopy (EELS) which is nothing but the inverse of the imaginary

part of the dielectric function

Iǫ(ω) = −Im
1

ǫ(ω)
(5.2)

whereǫ(ω) is the dielectric function in the optical limit (q → 0)

ǫ(ω) = 1 +
4πiσ(ω)

ω
. (5.3)

The results of such calculation at half-filling for variousU/W andT/W are illustrated in the

Fig.5.9, where upper and lower panel demonstrate the results for different values ofU/W and

for various temperatureT/W . The present results are composed of single peak which is associ-

ated with the interband transition, namely the transition from the lower band to the quasiparticle

resonance. The metallic phase at weak coupling values and at the low temperatures is character-
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Figure 5.9: The spectra of the Electron Energy Loss Spectroscopy (EELS)of the anisotropic two-band
Hubbard model at half-filling, calculated according to Eq.(5.2). The results in the upper panel
are for various values of Coulomb interaction whenT/W = 0.05 while the lower panel are
for various temperature values atU/W = 2.

ized by a broad band with pronounced intensity. As the coupling increases, notable changes in

the spectra is the weight suppression as well as the shift to the higher energies. In the insulating

phase, the EELS intensity shows again a gap at low energies which is a counterpart of the low-

energy gap of the optical conductivity (see Fig.5.7). We note here that the gap is a restatement of

the vanishing of the imaginary part of the dielectric function at low-energy (not shown). When

the temperature is lowered atU/W = 2, one observes an increase of EELS spectral intensity

which is comparable with the low-energy enhancement in the optical conductivity. The changes

of intensity and its relation to the kinetic energy of electron can be again understood using the

argument mentioned above.

The influence of the hole and the electron doping in the optical conductivity isdemon-

strated in Fig.5.10. As expected, the low-energy weight increases as the number of holes inthe

system increases and it is accompanied by the shift of the high energy peaks to lower energies.

The number of the dopants used in the present calculation is, however, not sufficient to generate a

strong Drude peak in the metallic state. Similarly to the hole doped case, as the electron number

in the system increases, the low-energy part rises gradually. In additionto this, one observes

the shift in the upper energy and also the isosbestic point atω ≈ 2.8. The above results thus

suggest that the system remains close to the bad metallic phase which is clearly manifested by a

pronounced scattering rate (not shown) obtained from the extended Drude model. The effective
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Figure 5.10:Optical conductivity of the anisotropic two-band Hubbard model in the hole- (left panel)
and electron-doped (right panel) whenU/W = 2.5 andT/W = 0.05. The insets show the
optical integral.

mass on the other hand can not be described within this model. In this case the imaginary part of

the conductivity obtain negative values at low energies.

We now turn to the dynamical pair-correlationP (ω) at half-filling as depicted in Fig.5.11.

The general features of the spectra remain the same as before namely a single peak like struc-

ture with the intensity varies according to the coupling interaction. In the weak coupling, the

spectra are composed of pronounced peak that decreases as the interactionU/W increases. This

adjustments can be associated with that of the single-particle spectra, namely the reduction of the

quasiparticle weight and the shift of the Hubbard band. In the strong coupling regime , the low-

energy part of the two-particle excitations are depleted and transferredto higher energies and it

is accompanied by a suppression of the spectral weight. The shift of the peak to higher energies

result in gap formation which can be attributed to the distance of Hubbard bands in the single-

particle spectra. This low-energy gap is a signature of the insulating phasefrom the perspective

of two particles. The changes of spectral behavior as the interaction increases are closely related

to the variation of the double occupancy in the system, which in the case of degenerate orbital

corresponds to the contribution of the interband and the intra-band ( see sum rule of Eq.(3.52)).

In this case, the double occupancy〈n↑n↓〉 of total band (not shown) decreases as the interac-

tion increases which is in a good agreement with the integrated spectra depicted in the inset of

Fig.5.11. The same trends are observed for intraband. The double occupancyin the interband on

the other hand fluctuates for all coupling interactions. In addition, we also observe that the dou-

ble occupancy in the narrow band is quantitatively smaller thus in line with the behavior of the
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Figure 5.11:The pair excitation of the anisotropic two-band Hubbard system at half-filling within DMFT-
QMC for T/W = 0.05 and various values of onsite Coulomb interaction. The insetillus-
trates the integrated spectra as a function ofΩ.

single-particle spectral function described above. As a comparison, wenote here that the double

occupancy in the isotropic two-band Hubbard model fluctuates for allU/W although the total

double occupancy eventually decreases as the coupling increases. The discrepancy of the fluctu-

ation of double occupancy in these two systems is believed to be linked to the interplay between

orbital degrees of freedom and strong correlation. In the isotropic system, the effect of bandwidth

is relatively small and thus the site occupation is strongly dictated byU/W . In contrast the inter-

play of the bandwidth anisotropy and the strong interaction ( that leads to the different effective

interaction on each bands ) dominantly influences the electrons in the intra-band. It is interesting

to note that the overall behavior of the particle-particle spectra at half-filling has its counterpart

in the particle-hole excitation as obtained by the imaginary part of the inverse dielectric function

(see Fig.5.9). The main difference is the shift of the peak of EELS which is less pronounced than

that for the particle-particle case.

The influence of the hole and the electron doping in the two-particle spectralfunction is

demonstrated in Fig.5.12. As expected, the peak is located at the order ofU/W and its weight

slightly changes as the dopant concentration increases. The lowest intensity is observed for

systems with occupancy close to half-filling. Upon doping, the spectra of twoparticles build up

and becomes maximal in the overdoped case signaling the increase of doubleoccupancy in the

system. This is supported by the integrated spectra as depicted in the insets ofFig.5.12for the

hole as well as for the electron doped case.
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5.2.3 Antiferromagnetic Phase

While the coexistence of the itinerant and the localized character is possible inthe paramagnetic

phase of the anisotropic two-band system, the possibility of OSMT remains unclear in the anti-

ferromagnetic phase. We, therefore allow for the antiferromagnetic ordering in our calculations

and investigate the magnetic properties as well as the possibility of selective Mott transition. To

this end, the same model specified above is employed together with the DMFT method that is

modified to accommodate the Neel ordering. The left panel of Figure.5.13shows the staggered

magnetizationmα = 〈nα↑ − nα↓〉 of the narrow (m1) and wide band (m2) as a function of

temperature for two values of the Coulomb interaction. The magnetization of the narrow band

is clearly more pronounced for all values ofU/W . As the temperature increases, the magneti-

zation of each band gets smaller and eventually becomes approximately equalaround the critical

temperature. This then suggests that each band undergoes a transition intoantiferromagnetically

ordered phase at the same critical temperature. From the figure one also observes the increase

of the magnetization as a function ofU/W . Thus, in the strong coupling regime in which the

magnetization has fully developed, the anisotropic two-band system can be also mapped onto

the Heisenberg model. By performing the same calculation for different values ofU/W and

T/W we then construct theT −U phase diagram as depicted in the right panel of Fig.5.13. The

diamond shape scattered in the figure indicates the location where the calculation have actually

been performed. Based on this points, the shaded area is then constructed to make a clear sep-
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Figure 5.13:Left panels illustrate the staggered magnetizationmα as a function of temperatureT/W
in the anisotropic two-band Hubbard model at half-filling.m1 denotes the magnetization
for narrow band while the other for broad band. The right panel displays theT − U phase
diagram consisting of antiferromagnetic (AFM) and paramagnetic phase (PM). The points
denote the parameter values where the calculations were done.

aration between the antiferromagnetic and the paramagnetic phase. Clearly,at half-filling, the

antiferromagnetically ordered state exists at low temperatures which occur even for smallU/W .

The line in the phase diagram indicates that both bands undergo a common transition to the an-

tiferromagnetic phase as the coupling is increased. The same is also observed as a function of

temperature. This suggests that the bandwidth anisotropy does not play a role in determining the

nature of magnetic phase transition in the two-band system.

To make definitive statement on the nature of Mott transition in this phase, it is instructive

to calculate the single particle excitations which we illustrate in Figure5.14. The figures show

orbital- and spin-resolved spectral function in the particle-hole symmetry calculated for various

values of the Coulomb interaction atT/W = 0.05. The upper left and lower left panels illustrate

the results of the spin-up and the spin-down respectively and the same alsoin the right panel for

a wide band. The most notable feature of the spectra in the weak couplingU/W = 1.75 is the

appearance of the pseudogap at the Fermi energy. In addition, the difference between the total

densities of the spin-up and spin-down is also clearly apparent. As the interaction increases, the

spectra exhibit an antiferromagnetic gap atω = 0. Its width becomes larger as a function of the

coupling interaction. The appearance of the gap in the spectra is related to the vanishing of the

imaginary part of the single-particle self energy particularly forω → 0. Based on the phase dia-

gram, we expect that the transition from the pseudogap to the gapped phase occurs continuously.

The presence of the pseudogap in the weak coupling with finite magnetization indicate that mag-
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Figure 5.14:The spin-resolved single particle spectral function of thehalf-filled anisotropic Hubbard
model in the antiferromagnetically ordered phase for various values of onsite Coulomb in-
teraction and forT/W = 0.05. The left panels up (down) display the spectra of narrow band
for spin up (spin down) while the right panels show the spectra of the wide band.

netic ordering is developed earlier than the metal insulator transition. This occurs particularly

for 1.5 ≤ U/W ≤ 1.75 where the single particle spectra (not shown) also show a pseudogap

with non-negligible magnetization. This is in accord with the proposal of Slater that describes

the metal insulator transition as a consequence of the broken magnetic symmetry. In addition

to the above points, we also observe that the qualitative behavior of the spectra of both bands

remains the same for higher couplings. This stems from the fact that the imaginary part becomes

very large and thus completely smear out the structure of the spectra. In thisregime, one also

observes the saturation of magnetization (cf. left panel of Fig.5.13).

The results of the single particle spectral function and the phase diagram described above

has clearly indicated the absence of a selective Mott transition in the antiferromagnetic phase.

It is however interesting to discuss some evidences that can be used to identify the role of the

bandwidth anisotropy. This can be seen for example in the staggered magnetization as well

as from the single particle spectra. The spectra for the narrow band case (see Fig.5.14) show

a satellite peak for all calculatedU/W which can be attributed to the pronounced magnetic

ordering for each sub lattice. In contrast, the wide band shows a “band like” structure and its

intensity is also suppressed compared to the other band. This difference iscomparable with the

one in staggered magnetization where the narrow band also shows a largervalue than the broad

band for all calculatedU/W . This observation implies that the effective Coulomb interaction
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Figure 5.15:The upper(lower) left panel corresponds to the spin-up (down) spectral function of the nar-
row band forU/W = 2, T/W = 0.05 and for different band fillings. The right panels show
the results of the wide band.

is different in both bands and it is related to the presence of a bandwidth anisotropy. Recently,

the authors of Ref.[130] have investigated the magnetization of the anisotropic two-band system

at and off half-filling. They employed DMFT combined with continuous time quantum monte

carlo (CTQMC) as impurity solver. They pointed out that the magnetization of the narrow band

is always larger than that the other one which is in line with the above presented results. Based

on this data they argued that the bandwidth anisotropy does not induce selective Mott transition

as in the paramagnetic phase.

The influence dopant concentration in the antiferromagnetic phase is illustrated in Fig.5.15.

The results are obtained forU/W = 2 within the same temperature as specified above. The an-

tiferromagnetic gap reduces to pseudogap as the hole concentration increases. For low doping,

both bands undergo a simultaneous transition from the gapped phase to the pseudogap state in-

dicating the absence of the orbital-selective Mott transition. For higher doping, the spin down

channel increases rapidly showing the quasiparticle-like peak. The spinup on the other hand

exhibits a weak resonance. We note here that the magnetization (not shown) also decreases as

the doping increases. Within the same temperature as employed here but for different interac-

tion parameters, Ref.[130] indicates the presence of an orbital-selective Mott transition by hole

doping at the chemical potentialµ/µh ≈ 0.67.

In the next figure, we discuss the evolution of the spectral function under the influence of

the external magnetic fieldh = 0.1. The results are obtained within the same parameter values

81



5 Metal-Insulator Transitions for The Anisotropic Two-Band Model

0

0,5

1

A
 (

ω
)

-4 -2 0 2 4

ω/W

0

0,5

1

A
 (

ω
)

U/W=2.0
U/W=2.25
U/W=2.5

-4 -2 0 2 4

ω/W

U/W=1.75
U/W=2.0
U/W=2.25
U/W=2.5

Figure 5.16:The same as in Fig.5.14, however in this case with finite external fieldh = 0.1.

specified above. Clearly, the presence of the external magnetic field induces the formation of

magnetic ordering. This is also manifested in the values of staggered magnetization (not shown)

which in general become larger than those in the absence of a magnetic field.In addition to

that, the system becomes insulating as indicated by the single particle excitations composed of

antiferromagnetic gap for all calculatedU/W . The increase of the coupling generally does not

induce any qualitative changes in the spectra which can be understood following the argument

pointed above. The most interesting behavior is that the spectral weight ofthe narrow and the

wide band remains different signaling that the pertinent feature of the narrow and the wide band

remains unchanged.

Optical Conductivity and Particle-Particle Spectra

We now discuss the optical conductivity of the antiferromagnetic phase at half filling which

is depicted in Fig.5.17. These spectra are obtained by evaluating Eq.(3.29) together with the

single particle spectral function of Fig.5.15. In the weak coupling, there is a finite conductivity

at ω/W = 0 which can be associated with the pseudogap in the single particle spectra and

signal of the metallic character. As interaction increases, the Drude weightvanishes and the

conductivity is shifted to higher energies. Simultaneously, the low-energy part exhibits an optical

gap which becomes larger as a function of couplings. This clearly indicatesthat the system

becomes insulating. This low-energy gap is also demonstrated by the kinetic energy at strong

coupling as depicted in the inset of Fig.5.17and it is accompanied by the decrease of spectral
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Figure 5.17:Optical conductivity for the antiferromagnetically ordered phase of the half-filled anisotropic
Hubbard model. The left panel shows the results for various values of onsite Coulomb
interaction atT/W = 0.05 while the right panel for different band occupations atU/W = 2.
The insets show the integrated spectraK(Ω) as a function ofΩ.

weight. ForU > W , following Ref.[65], it can be shown that the behavior ofω.σ(ω) could be

described by a Lorentzian function asω.σ(ω) ∝ 1/((ω−ω0)+ γ2) whereω0 = Ums andγ is a

quantity that is introduced to take care the finite imaginary part of the single particle self energy.

By takingms = 1 it can be easily shown that the sharp resonance occurs atω ≈ U . We mention

here that the peak of the optical conductivity lies approximately in the order of U/W is a signal

of the conductivity of Mott insulating type.

Away from half-filling, the optical gap becomes narrow and the Drude weight rises grad-

ually as the dopant concentration increases, signaling that the system hasattained a metallic

character. In the highly doped case, the spectra do not indicate a pronounced Drude peak as

usually observed for a good metal. This stems from the fact that each bandas well as spin in the

single particle spectra (cf.5.15) exhibits a different behavior, i.e. the low-energy peak, pseudogap.

Although direct comparison to the experimental results of the optical conductivity of antiferro-

magnetic ruthenates Ca2RuO4 is relatively difficult, the present results however have given an

insights to the nature of Mott transition in the antiferromagnetic phase of anisotropic two-band

system. The correlation is apparently important to generate the insulating phase at anisotropic

orbitally-degenerate system as is also indicated by the LSDA results. The interplay of orbital

and the strong coupling at antiferromagnetic phase, however, does notinduce the OSMT both at

half-filling and hole/electron doped case.
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5.3 The Influence of Spin Fluctuation

5.3.1 Extended Two-Band Hubbard Model

In the previous chapter, it has been shown that EDMFT offers a systematic way to incorporate

the non-local contributions by considering the spin fluctuations in the Hubbard Hamiltonian.

The application of the method to the two-dimensional Hubbard model points out an interesting

relationship between the spatial fluctuation and the formation of pseudogap inthe single-particle

spectral function. The results suggest that the mechanism of MIT in this system is related to the

strong electronic correlation and thus rule out the weak coupling picture. Recalling the facts that

the ruthenates compound is composed of two dimensional ruthenates RuO2 layer, one expects

that the spatial fluctuations also contribute to the electronic properties of this system. In order

to elucidate this issue, we revisit in this section the anisotropic two-band Hubbard model in the

paramagnetic phase within the framework of EDMFT. Similar to what have beenpreviously done

in the single band Hubbard model, the non-local contributions are incorporated in the intersite

spin interaction. The Hamiltonian of the two band-Hubbard model with spin fluctuations reads

H = −
∑

ijασ

tijαc
†
iασciασ + U

∑

iα

niα↑niα↓

+
∑

iσσ′

(U ′ − δσσ′J)ni1σni2σ′ +
∑

ijα

IijαSiα.Sjα (5.4)

The notation in the above Hamiltonian follows that described in Eq.(2.10). The last term is the

intersite spin interaction with exchange couplingIijα. that takes account the non-local fluctua-

tions. The single site action of Hamiltonian (5.4) is then solved by means of QMC that incorpo-

rates the boson degrees of freedom. Unless otherwise stated, the parameters of calculation are as

follows: bandwidthW = 1, T/W = 0.1, andU/W = 1.5. In what follows we will discuss the

characteristic of the dynamical spin susceptibility, the single-particle spectral function, optical

conductivity and the pair spectral function.

5.3.2 Magnetic Susceptibility

In order to easily distinguish the influence of each interaction parameter in themagnetic spin

susceptibility of the anisotropic Hubbard model, we first describe in Fig.5.18the results obtained

in the absence of intersite spin coupling with various values of the Hund’s couplingJ/W and the

Coulomb interactionU/W . The other parameters is determined in such a way that the system

remains rotationally invariant. The magnetic susceptibilityχ′′(ω) for U/W = 1 but in the

absence of Hund’s coupling shows a broad responses. As expected, the peak is located atω/W ≈
1. In the finite Hund’s coupling value, one can see the formation of peak-likefeature at low

energies and a simultaneous suppression at the higher energy part. When the Coulomb interaction

and the Hund’s coupling increase the peak at the low energy part is further enhanced and there

is a suppression at higher energy. The most pronounced enhancement at low energy is observed
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Figure 5.18:The left panel shows the dynamical spin susceptibilityχ′′(ω) of the anisotropic two-band
Hubbard model at half-filling for different interaction strengthsU/W , Hund’s couplingJ/W
and at temperatureT/W = 0.1. The right panel displays the results for Hund’s coupling
J/W = 0 and for various values of intersite interactionI/W .

for U/W = 1.5 andJ/W = 0.5. We argue in this case that the overall behavior of spectra can

be described within RPA theory. The enhancement of the low energy peakthus corresponds to

the fact that the Stoner instability criteria is approached. This result suggests that the presence of

Hund’s coupling increases the spin fluctuations in the system.

The right panel of Fig.5.18 illustrate the results of the magnetic susceptibility in the ab-

sence of Hund’s coupling but for different value of the intersite spin interactionI/W . As ex-

pected, the spin susceptibility shows a broad response in the weak couplingregime. The gradual

enhancement of the low energy peak is observed when the intersite interaction is considered. The

characteristics of the spin susceptibility in the present case is clearly comparable to the previous

one which is composed of single peak like. This results also indicate that the inclusion of the

intersite spin interactions leads to a more pronounced spin fluctuations which strongly effects the

low energy regime.

Having considered the influence of the Hund’s coupling and the non-local spin interactions

separately, let us now discuss the magnetic susceptibility in the case where allparameters in the

Hamiltonian of (5.4) are considered. In this respect, the model parameters areU/W = 1.5,

Hund’s couplingJ/W=0.5. The results of the calculations are depicted in the left panel of

Fig.5.19. The general feature of spin spectra in the present results is again comparable with the

two previous case described above. The low energy part is gradually enhanced as spin coupling

I/W increases signaling a pronounced fluctuation and consequently the enhanced effective mass.
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Figure 5.19:The same as Fig.5.18 with the same notation. The present case is, however, obtained for
U/W=1.5,J/W=0.5, and for various values of intersite interactionI/W (left panel). The
right panel depicts the results for various electron occupancies atI/W = 0.35.

When the system is doped, the intensity of low energy spectral weight gradually decreases.

This is shown in the right panel of Fig.5.19. In this case, the parameters are set toU/W = 1.5,

J/W = 0.5 andI/W = 0.5. From this behavior one thus learns that the doping suppresses the

fluctuation in the system and will be also reflected in the changes of the effective mass or the

imaginary part of the self energy. We note here, in contrast with the single band-two dimensional

case described in the previous chapter, there is no additional feature e.glow-energy dip in the

spin susceptibility. The whole feature is thus expected to be captured by the RPA approximation.

5.3.3 Single-Particle Spectral Function

The effect of low-energy enhancement in the spin susceptibility at the single-particle level will

be investigated in this section based on the results of the single-particle spectral function. At

first, let us consider the role of Hund’s coupling as illustrated in the left panels of Fig.5.20with

upper and lower panels referring to a narrow and a broad band respectively. The solid line in the

figure is the non-interacting density of states derived from the tight bindingbands. The narrow

band is characterized by two van Hove singularity at the upper and the lower Fermi level while

in between it shows a parabolic like behavior that mimics the one dimensional DOS. The wide

band consists of a single van-Hove singularity that lies close to the Fermi energy. Clearly these

bands are asymmetric with respect to the Fermi level and according to the LDAresults, the

occupancy ratio of the narrowxz,yz and the wideyz bands are 8/3 and 4/3 respectively [116].

By considering only the Coulomb interaction, the spectral weight of both bands decreases and
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Figure 5.20:The left panel shows the single-particle spectral functionof the half-filled anisotropic Hub-
bard model forU/W = 1.5, and for various values of Hund’s couplingJ/W . Note that the
solid curve is non-interacting density of statesU/W = 0 derived from tight binding bands.
Right panels: same as in the left panel but in the absence of Hund’s coupling and various
value of spin interactionI/W . The upper panels illustrate the spectra of the narrow band
while the lower panels show the results of wide band.

also broadens. The narrow band is composed of a single peak-like structure while the broad band

shows a dip at lower energies. When Hund’s coupling is considered the peak in the spectra of

both bands is suppressed. ForJ/W = 0.5, the narrow band shows one-dimensional like DOS

that is renormalized by the interaction. The other band on the other hand consists of three peak

structure with shoulders at lower and higher energies. The reduction ofthe spectral weight in

the single-particle spectra is clearly related to the increase of the low-energy spin susceptibility,

described in Fig.5.18.

A close inspection to the imaginary part of the self energy (not shown) reveals that the low

energy part of both bands for weak couplingJ/W ≤ 0.2 can be extrapolated to zero meaning

that there exists a well-defined Fermi liquid state. When the Hund’s coupling isfurther increased

up toJ/W = 0.5 the imaginary part of self energy becomes finite, thus indicating a finite life

time. This behavior is in contrary to previous DMFT results that use Bethe DOS, where the

violation of the Fermi liquid behavior only occurs in the broad band. It also conflicts with the

suggestion of LDA results that claim the Fermi liquid characteristic to hold evenin the presence

of interactions. The presence of non Fermi liquid character in this two bandsystem is clearly

corresponds to the Hund’s coupling which tends to increase the spin fluctuation which eventually

favors the gapped phase. Due to the presence of pronounced singularity in the DOS, it is difficult
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Figure 5.21:Orbitally-resolved spectral function of the half-filled anisotropic Hubbard model at momen-
tum vectork=(π

2
, π
2

), for U/W=1.5,J/W=0.5,T/W = 0.1 and for various values of non-
local interactionI/W , The upper-left panel shows the single-particle spectral function for
wide band whereas the lower-left panel for the narrow band. The right panel displays the
results of the total spectral function.

to go beyond the interaction values specified above since the increase of the interaction only

amounts to a broadening of the spectra.

Let us now consider the case without incorporating the Hund’s coupling but for various

values of the non-local interactions as depicted in the right panel of Figure 5.20. In this case,

one observes three peaks for both bands atI/W = 0.3, much the same as in the single band

Hubbard model (see figure4.1). As the coupling increases the quasiparticle of narrow band

collapses and the spectrum shows a gap. In contrast, the other band shows a resonance albeit

its weight is also reduced. In the highest calculated couplingI/W > 0.5, both bands enter the

gapped phase with the largest gap width is obtained for the narrow band. This suggest that the

narrow band is more correlated than the wide band and more importantly, the variation of intersite

interaction also drives the two step transition. The suppression of the spectral weight as well as

the gap opening should be again understood as the result of the pronounced spin fluctuation in the

system which is also manifested in the low-energy part of the spin susceptibility(see Fig.5.18).

Another important point that can be drawn from this results is that the narrow band with lower

dimensionality is strongly influenced by the non-local fluctuation.

In the next figure (see Fig.5.21) we illustrate the results of the spectral function for differ-

ent values of the intersite interaction. The interaction parameters are set toU/W=1.5,J/W=0.5.

As is clearly seen, even for small values of the intersite interactionI/W , the spectra exhibit a gap

like structure which is more pronounced for the narrow band. As the interaction increases, both
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bands undergo consecutive transitions to the gapped-phase. In the strong couplingI/W ≥ 0.55

the gap widths of both bands become approximately the same which can be understood by argu-

ing that the difference of the bandwidth is smeared by strong electronic correlations. The results

of Fig.5.20and Fig.5.21thus generally suggest that localized and itinerant character also appear

even in the presence of the spatial fluctuations. The inclusion of intersite spin interactions clearly

enhances the effective Coulomb interactions and the system favors the insulating state. From the

total spectral function (right panel of Fig.5.21) one observes the similar trends as observed before

in the DMFT. The contribution of the narrow band is significant in the weak coupling case while

the other band for stronger coupling.

Very recently, two different groups have also addressed the same issue discussed here.

The authors of Ref.[131] describe OSMT as a single correlated band that is coupled with fully

localized orbital. Their Hamiltonian is closely related to the Kondo lattice model except that the

onsite Coulomb interaction is also considered. In order to observe the metal insulator transition

in the weakly correlated band, they employed determinant quantum monte carlo(DQMC) [132]

which is modified to include the effects of the fluctuating local spin degrees offreedom of the

localized bands. Their calculation is performed on a lattice of size 8x8 sites withthe density is

fixed equal to one. They showed that OSMT is possible in their simplified modelsince the single-

particle spectral function of the itinerant band evolves from the metallic in the small coupling

value to the insulating phase for larger values. They pointed out that by considering non-local

fluctuations, there is a significant formation of the intersite magnetic correlations. This however

does not influence the nature of the Mott transition in the itinerant band and thus they argue

that the physics of OSMT remains the same even if the spatial fluctuations is alsotaken into

consideration.

Within the same model as described before for DMFT, the authors of Ref.[133] also in-

vestigated the influence of spatial fluctuation in OSMT. They employed the state-of-the art dy-

namical cluster approximation with small cluster sizesNc = 2 andNc = 4 combined with the

continuous time quantum monte carlo method as an impurity solver. The calculationsare per-

formed in the half-filling with various values of the Coulomb interactions and temperatures. In

theNc = 2 their results indicate that both bands undergo a simultaneous transition since there

is a pronounced antiferromagnetic fluctuations within this cluster size. ForNc = 4 that also

incorporates next nearest-neighbor, they finally observe the OSMT in the strong onsite interac-

tion values. They further indicated that the weakly correlated case has a well-defined Fermi state

which is in contrast with intermediate coupling where the Fermi liquid theory breaks down. In

general, the results of DCA and DQMC suggest the existence of the OSMT when spatial fluc-

tuations are considered and in a good agreement with the results presentedin this section. The

presence of the pseudogap in the small weak coupling valueI/W thus in the context of DCA

can be associated with the smaller cluster size. It is however difficult to associate the number of

clusters and the values of couplingI/W employed in the present case. Based on the single band

cases, the large number of cluster is required to open full gap for fixed interaction parameters.
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Figure 5.22:The same as in Fig.5.21, however the spectra in the present case are obtained by varying the
electron occupancy at coupling strength ofI/W = 0.35.

The two band system with the cluster size is more than 8 clearly demands a large computational

efforts. In this regard EDMFT method offers a technical advantage in that the spatial fluctuations

are incorporated within a single site scheme and thus the effects of a large cluster size can be

investigated by choosing a large intersite coupling.

Having discussed the behavior of the system at half-filling, in what followswe describe

the system in the hole doped case as presented in Fig.5.22. These results were obtained for

I/W = 0.35, U/W = 1.5. The increase of the hole doping concentration leads to a decrease

of the gap in the spectra. The gap of both bands reduces to the pseudogap for n = 1.90 with

the wide band being more sensitive to the presence of doping. A further increase of the doping

leads to the formation of metallic peak at low energies together with an additional pseudogap for

higher energies. To make sure that such a behavior is not from analytical continuation, we have

compared the self energy (not shown) of both bands. It turned out that the self energy of the

narrow band is always smaller than for the other one, meaning that the correlation in the narrow

band is more pronounced. The imaginary part of the self energy also indicates a deviation from

the standard Fermi liquid and hence the resonance is not due to a quasiparticle peak but rather to

the short-lived excitations. The changes of gap into pseudogap as well as the presence of peak

can be again understood as a direct consequence of the reduction of the low energy peak in the

spin susceptibility (cf. Fig.5.19).
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Figure 5.23:The frequency-dependent optical conductivity of the anisotropic Hubbard model for
U/W=1.5, J/W=0.5, I/W = 0.35, T/W = 0.1 and for different band fillingsn. The
inset shows the optical integral.

5.3.4 Optical Conductivity and Particle-Particle Spectral Function

The frequency-dependent optical conductivity in the EDMFT can be evaluated essentially in a

similar manner as in the DMFT. This again follows the observation that the momentumindepen-

dent self energy is retained as a consequence of the vanishing of higher-order vertex contribu-

tions. The effect of nonlocality thus enters from the single-particle spectra since (see Eq.3.16) the

self energy has incorporated the feedback of the spin fluctuations. In the present case, the lattice

structure is obtained from the tight binding DOS as expressed in Eq.5.1. We now describe the

evolution of the conductivity in the hole doped case illustrated in Fig.5.23. Close to half-filling,

suppression of the spectral weight at low as well as at high energies is evident. When the system

is doped, the peak atω/W = 0 shifts to higher energies and the spectra show Drude like peak

in the high-doped regime signaling the metallic character. The presence of hole doping clearly

increases the mobility of electron carriers. This is clearly manifested in the integrated spectra as

depicted in the inset of Fig.5.23. While the spectral weight is suppressed near half-filling,K(Ω)

of the metallic phase rapidly increases as a function ofΩ indicating an increase of the kinetic

energy of the carriers. It is remarkable however that the decay of the conductivity does not show

standard power law namelyσ(ω) = ω−2 [60]. Deviation from this condition is a clear indication

that the systems is from non Fermi liquid type.

We further investigate the scattering ratesτ−1(ω) and the mass enhancementm∗/m0, as

demonstrated in Fig.5.24. The scattering close to the Mott insulating phase is well pronounced.

For n = 1.97, one observes a broad hump at low energies which is followed by a suppression
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Figure 5.24:The frequency dependence of the scattering rate (upper plane) and the mass enhancement
(lower panel) of the anisotropic two-band Hubbard model. The spectra are calculated by
using the same parameters as in Fig.5.23.

at high energies. This corresponds to the suppression of conductivityat 1 ≤ ω ≤ 4 as well

as the interband peak at higher energies. In contrast, the scattering ratein the highly doped

case is characterized by a linear dependence ofω reminiscent to what occurs in heavy fermion

compounds [134] which signals the violation of the standard Fermi liquid behavior. When the

system is further doped, the spectral weight shifts to lower energies whilestill maintaining the

overall behavior. The lower panel of Fig.5.24 illustrates the effective mass as a function of

doping. While the spectra show monotonous behavior at high frequenciesthere is a clear peak

shift as a function of the doping at the low energy scale. The decrease of effective mass as the

doping increases is a restatement of the enhancement of the low spectral weight of conductivity

and also the kinetic energy.

The influence of the spatial fluctuations onto the two-particle excitation is illustrated in

the left panel of Fig.5.25. A broad response is observed for all values of the spin-exchange

couplingI/W . As anticipated, the intensity of the spectra diminishes as a function of the spin

coupling and the position of the peak remains unchanged. At the largest spin interaction values,

the total spectral weight is significantly suppressed. In addition, there is agap formation at low

energies (near to zero) forI/W ≥ 0.55 which is comparable with that of the single-particle

spectral function. Following the argument pointed out before, the suppression of the spectral

weight together with low energy gap is again a clear indication of the non metallic character.
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Figure 5.25:The EDMFT-QMC results for the two-particle spectral function of the anisotropic two-band
Hubbard model at half-filling forU/W = 1.5, J/W = 0.5 and forT/W = 0.1. The left
and the right panels correspond to the two-particle spectrafor various values ofI/W and for
different band occupation respectively. The insets show the results of integrated spectra as
function ofΩ.

The reduction of spectral weight is also indicated by the integrated spectraillustrated in the

inset of Fig.5.25. These results therefore suggest that the interplay of the Coulomb interaction,

the Hund’s coupling and the intersite spin interaction favors the insulating statewhich in line

with the discussion based on the single-particle excitations and the optical conductivity. As

the system is doped away from half-filling (see the right panel of Fig.5.25), the spectral weight

quickly increases and becomes maximal for a value ofn = 1.80. The same behavior can be also

observed in the integrated spectra as depicted in the inset of the right panel. In the the low energy

part, one observes that the spectra are characterized by linear dependency for all band fillings.

We point out here, that the pseudogap or small dip at single-particle spectra is clearly missing in

the local particle-particle spectral function.
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CHAPTER 6

Summary and Outlook

The correlation-induced metal-insulator transition (MIT) constitutes one of the most challenging

problems in the solid state physics. After more than six decades of endeavors, the interest in the

subject is unabated. The introduction of the dynamical mean field theory (DMFT) has led to a

significant progress in the understanding some important aspects of the problem. The novelty

of this approach lies on its ability to simplify the complexity of certain problems into a more

manageable one and yet to capture the essence of the original problems. In addition, it allows

to obtain the dynamic of the physical quantity that can be directly related to the experimental

results. Study of the metal-insulator transition within DMFT is usually done by exploring the

single particle properties that are experimentally investigated via single-particle photoemission.

Details of transport properties are then investigated from the two particle quantity such as the

optical conductivity. While this procedure is relatively established for the particle-hole sector, the

particle-particle properties are on the other hand relatively less explored. This is mainly due to

the lack of experimental techniques that are capable of measuring the particle-particle excitations.

With the recent rapid progress in designing the experimental setup, it is nowpossible to excite

simultaneously two electrons (hole) and to measure their energies and momenta.Applications

of this method known as(γ, 2e), in the context of metal-insulator transition is expected to yield

more insights into the mechanism of Mott transition.

In order to investigate the particle-particle excitations, there are three main routes that have

been implemented in this work. The first and the second route, the first order approximation and

the ladder approximation, calculate the two particles from the knowledge of thesingle-particle

spectral function which in this case is delivered by DMFT. In the implementation, they are closely

related to the procedure for calculating the optical conductivity. In the thirdapproach, the two-

particle quantities are directly evaluated within the loop of DMFT and quantum monte carlo

(QMC). Due to the structure of the DMFT approximation, that only allows for calculating the

local quantities, all procedures thus provide the local pair correlations.These schemes are applied
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to the single- and isotropic two-band Hubbard model at half-filling and in the hole-doped case.

The behavior of the two particles is then analyzed at the verge of metal-insulator transition.

Since the integrated spectra of the two particle quantity corresponds the double occupancy in the

system, the accuracy of the approach is determined based on the fulfillment of this relation. From

the results of DMFT-QMC, one obtains a good agreement between the integrated spectra and the

two-particle sum rule. The transition from metal to insulating phase is marked bythe reduction

of the spectral weight as well as the shift of the spectral peak to higher energy. Based on this

observation, it is argued that the two-particle spectral function providesa clear signature of the

correlated metal-insulator transition. In contrast to the above self-consistent two-particle spectra,

the results from the first order and the ladder approximation tend to deviate from the sum rule

constraint. This suggests the importance of self consistency in the calculationof the two-particle

quantity. The relation between the calculated spectra and the measured quantity in two-particle

spectroscopy has been made straightforwardly. Under certain conditions, the intensity of (γ, 2e)

is proportional to the two-particle spectral function.

DMFT becomes unreliable in various cases where the effects of the non-local correlation

becomes non negligible. In addition, the accuracy of the mean-field like approximation is also

known to deteriorate for low-dimensional system. Various methods have been introduced to

improve this approximation, and some of them have been briefly discussed in this thesis. In

the present work, the extended dynamical mean field theory (EDMFT) is employed to study

the role of the non-local contributions in the metal-insulator transition. Within this method,

the spatial fluctuation enters via non-local term in the Hubbard model e.g spin-spin or charge

interaction. Following DMFT, the central approximation is the locality of the self energy which

in this respect, applies not only to the single-particle self energy but also to the two-particle.

This method is then employed to calculate the single- and the two-particle correlation function of

the two-dimensional Hubbard model The single-particle spectrum shows a gap formation as the

intersite spin coupling increases. This indicates that the paramagnetic metal-insulator transition

in the 2D Hubbard model is the consequence of the interplay between the local Coulomb and the

spin fluctuations. It also suggests that the gap can be realized at any finite Coulomb interactions,

which is in accord with Anderson’s proposal. The study of the system in thehole-doped case

reveals the existence of the pseudogap for all band fillings. Inspection of the behavior of the self

energy as well as the transport properties in this regime indicates the violationof canonical Fermi

liquid behavior. The different nature of metallic and insulating phase at andaway from half-filling

is also investigated from the two-particle spectral function. In general, theresults resemble those

obtained in the high-dimensional Hubbard model with the metallic phase is characterized by the

peak intensity and the insulating phase is marked by the gap at low energies. The pseudogap

observed in the single-particle spectra is, however, not reflected in the two-particle spectra.

A new class of metal-insulator transition has recently observed in the ruthenates com-

pounds that are isostructural with the high-Tc cuprates. In this system, various components such

as the orbital degrees of freedom, the local interaction, the anisotropic bandwidth and the ex-
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change interaction are strongly involved in determining the nature of the Mott metal-insulator

transition. In this work, this phenomena is studied within the two band Hubbard model that in-

corporate the Hund’s exchange coupling. Results of the single-particle spectral function in the

paramagnetic phase show a good agreement with previously published works. The interplay of

the anisotropic bandwidth and the local correlation leads to the orbital-selective Mott transition

(OSMT). The calculated optical conductivity and the EELS spectra indicates the clear signal of

Fermi liquid behavior. Within DMFT+QMC, the two-particle spectral function of total band is

also presented. The general feature mimics that the single-band Hubbardmodel. The increase

of coupling leads to the suppression of spectral weight which corresponds to the reduction of

double occupancy.

In contrast to paramagnetic case, the metal-insulator transition in the antiferromagnetic

phase of the anisotropic two band Hubbard model occurs simultaneously for both bands. They

are distinguished however by the magnetization values and intensities of the spectra which are

found to be stronger in the narrow band. As the system is doped, all bands evolve simultaneously

to metallic phase signaling the absence of OSMT. The behavior of the optical conductivity in

this phase resembles that single particle case namely it consists of single peakstructure and with

low-energy gap signaling the insulating character. The influence of the spatial fluctuations in

the orbitally selective Mott transition has been also addressed in this work byincorporating the

intersite spin-spin interaction in the two band Hubbard model. The lattice structure is obtained

from the two dimensional tight binding DOS that is derived from the LDA results. The interplay

of strong interaction and the spatial fluctuation clearly indicates the possible existence of the

itinerant and localized character. The same is also observed for the particle-hole and the particle-

particle sectors.

A natural extension of the present work would be to calculate the momentum-dependent

single- and two-particle spectral functions. This would be extremely useful to investigate vari-

ous phenomena such as the momentum dependence MIT, kink in the dispersion energy and the

non-local pairing which can not be investigated within DMFT as well as EDMFT. Another pos-

sible extension is also to investigate the nature of the two-particle excitations in themagnetically

ordered phase.
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[20] S. Hüfner. Photoelectron Spectroscopy. Springer Verlag, Berlin, 1995.
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