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ABSTRACT

The present work encompasses theoretical studies of single- andatticlgpexcitations of
strongly correlated systems using the Hubbard model. For single and isatnapband sys-
tem, the particle-particle spectral function is investigated within the framewidHed®ynamical
Mean Field Theory (DMFT), the ladder approximation and the first or@etupbation theory.
The results are analyzed and compared for a system in the vicinity of therivétd insula-
tor transition (MIT). Under certain conditions specified in this work, thedated two-particle
spectral function is then related to the photocurrent of (one-photete@rons) experiment. The
discussion is then extended to account for spatial fluctuations. To thishentivo dimensional
Hubbard model is modified such that it incorporates nonlocal spin fluchgtithe extended Dy-
namical Mean Field Theory (EDMFT) is then employed to calculate the spireptibiity, the
single-particle spectral function, the optical conductivity and the twdigbarspectral function.
It is shown that the inclusion of the spin fluctuations assists the formationeoidpgap in the
single-particle spectral function. Similarly, the particle-particle sector steweduction of the
spectral weight as the spin exchange interaction increases. The igteetleeen the bandwidth
anisotropy and the strong correlation in the multiorbital system is discussegitbe anisotropic
two-band Hubbard Hamiltonian. At first, the transport properties and thepawticle spectral
function of the total band at the verge of MIT are calculated within DMFTe Trifluence of
the spatial fluctuation is then addressed by means of EDMFT in the modifiedameHubbard
model that incorporates the spin-spin interaction. It is shown that the Isfhatiaation does not
change the physics of the orbitally dependent Mott transition.



ZUSAMMENFASSUNG

Diese Arbeit umfasst die theoretische Untersuchungen der ein- uridiedehen Anregungen
in stark korrelierten Systems im Rahmen des Hubbard Modells. Mittels dendyclae Mean-
Field-Theorie (DMFT), der Leiter-Bherung und der Erste-Ordnungiierung wird die Spek-
tralfunktion des Einband- und isotrope Zweiband-Hubbard-Modellsrsuntéit. Die Ergebnisse
werden in einem System in deéNe des MotUbergangs verglichen und analysiert. Die berech-
nete Spektralfunktion wird unter bestimmten Bedingungen mit Photostrom isleph(@ton, 2
Elektronen) Experiments gekoppelt. Die Diskussion wird dann erweitertdiem@aumliche
Fluktuation zu baicksichtigen. Hierbei wird das zweidimensionale Hubbard Modell mit Spin-
fluktuation zusammen mit der erweiterte dynamische Mean-Field-Theorie EHDBIhgewen-
det, um die Einteilchen-Spektralfunktion, die optische I&iigkeit, und die Zweiteilchen -
Spektralfunktion zu berechnen. Es wird gezeigt, dass die Spinschwgek die Entstehung
einer Pseudo-licke in der Eintelchen-Spektralfunktion untétgen. Inahnlicher weise, mit
der steigenden Spin-Wechselwirkung verringert sich das Spektriglys der Zwei-teilchen-
Anregung. Das Zusammenspiel zwischen der Bandbreite-Anisotropielemdtark Korrela-
tionen ist im Rahmen des Zweiband-Hubbard-Modells diskutiert. In diegesidtht werden
die Transporteigenschaften sowie die Zweiteilchen-SpektralfunkticchddMFT ermittelt. Die
Wirkung der Spinfluktuation in diesem Modefidst sich anhand der EDMFT feststellen. Es zeigt
sich, dass dieaumliche Schwankungen nicht die Physik des orbitakalging MottUbergangs
andern
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CHAPTER 1

Introduction

The fundamental objective of a theory of the solid state is to deduce théustrand properties
of systems with large degrees of freedom. In practice, however, musds on the most rele-
vant energy scales that contribute to the macroscopic characteristics ®fdtem. This notion
is embodied in the Born-Oppenheimer approximation that decouples adidlpatieanuclear
from the electronic degrees of freedom. It is the latter that governsugspmperties of solids
involving thermodynamic, electrical and magnetic response. While the prdidsnbeen sub-
stantially simplified, the Hamiltonian of the system remains intractable due to the &adhth
system remains N-body problem consisting of kinetic and electronic intemactiNeglecting
all interactions is the crudest approximation in which electrons are endsageander freely
through the volume of solid. This is the well-known Sommerfeld’s theory whiohke inter-
estingly well in describing qualitatively or even quantitatively the physicapprties of systems
like alkali or earth-alkali metals. This simplest model however fails to givesgrijgion why
some of the solids have metallic, insulating or semiconducting character. Yhe tkee question
is to account for the periodic lattice in the independent electron picture Wdads to the concept
of band theory and the new important property so-called band gap.

Electron-electron interaction is, however, an essential factor for #listie description of
solids. In this connection, one of the most successful concept is thptemological theory
of Landau or usually noted as Fermi liquid which was developed originallyntierstand the
properties of low temperature liquid Bleln his theory, the interaction of electrons is assumed
to be adiabatically turned on. The non-interacting ground states thus s\&itveothly to the
interacting one and there is one to one correspondence between tipakiade of the original
system and the “dressed” or the quasipatrticle of the interacting systemnolioa of quasi-
particles is of paramount importance from which an insight to the low-erexgiations (close
to Fermi level) of the system may be gained. The concept of Fermi liquidrgignbolds in a
wide range of solids ranging from the simple metals to the transition metal systbm&andau
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theory however breaks down when the electrons are strongly codelate

Attempts to solve for the full electronic Hamiltonian is pursued in various wayslyE
works initiated by Hartree and Fock (HF) remains in the spirit of the indegrarelectron picture
with the total wavefunction of the electrons is written in the form of a single Steterminant.
Following the argument of variational principles, one is then left with sintdeteon equations
with the interaction of the electrons being expressed in the form of artigffigmtential interac-
tion. The Hartree-Fock equations are then solved in a self consistentWiaile the approach
generally works for various systems, it is a well known problem that Hif@pmation overes-
timates band gap value than what is obtained in the experiments. This is mainlychade of
the total wavefunction that neglects the electronic correlation. An innevataa that incorpo-
rates the correlation yet still maintains the one-particle picture is pioneeredtgnberg, Kohn
and Sham employing the relation of the density and the energy and avoidingdhs wave-
functions. The actual implementation of DFT is manifested in the local densitpspmation
(LDA) which turns out to be useful for ground state calculations of & ragye of compounds.

In the last few years, many new materials have been discovered thait exildle range
of fascinating phenomena such as high-temperature supercondudtedtyy fermion system,
non Fermi liquid behavior and metal insulator transition. A fundamental cteistic of such
a system is that the dynamics of the electrons are strongly influenced by thalr@oulomb
repulsions. Although technological applications of this material is interestingdif, the most
challenging issue is to elucidate the underlying physics. Rapid developfrexperimental tools
with high resolution and sensitivity such as angular resolved photoemissRIRES), neutron
scattering, scanning tunneling microscope (STM) has made possible unatecmeasurements
of the electronic and magnetic structure. The theoretical description okflegimental data on
the other hand is far from being complete. One of the reasons is the laokibltable approxi-
mations. While DFT-LDA and similar approaches have been very usefulrtval the electronic
structure of weakly correlated systems, they fail in general in descrihngystem with strong
electronic correlations. This suggests that these phenomena are tiie sEsooperative many
body interactions which can not be captured within a single-particle picture.

The Mott metal-insulator transition is a well-known phenomenon in which the fertur
tion theory breaks down as the energy scale of electron-electron imber@nd the kinetic
energy are comparable. In this respect, the behavior of electrons igxiscted to deviate
from the canonical Fermi-liquid picture. The underlying concept of thgirof Mott insula-
tor is, therefore, different from the one that is driven by the elecikponinteraction described
above. The archetypal examples of Mott systems are the transition-matalsuch as high-.
cuprates, Y03, NiS,_,.Se,. The recently discovered ruthenates oxidg G&r,.RuQ, that dis-
plays a wealth of phase-diagram involving superconductivity and magnéts also attracted
considerable interests owing to a new class of Mott transition. The devetarfithe dynamical
mean field theory (DMFT) is an important step toward a thorough undeiatanfithe role of
correlations in general and the metal-insulator transition in particular.
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The present work is aimed at studying the dynamic properties of singlemangarticle
excitation in the vicinity of Mott metal-insulator transition. The structure of thisknisras
follows: The next chapter contains an introduction to the Hubbard modekitarrelation to
the metal-insulator transition. This is followed by a brief discussion of the finiteoégature
Green’s function derived within functional integrals. The formulation & tlynamical mean
field theory (DMFT) in the Hubbard model is described which is then follolmwethe extended
version of the method/extended dynamical mean field theory (EDMFT) thattporates spatial
fluctuations. The Quantum Monte Carlo (QMC) as a method of the solution of Dihd
EDMFT equations is then sketched. Subsequently, the maximum entropy nusibtb extract
the dynamic properties of DMFT-QMC quantities will be outlined.

Formulation of the two-particle excitation is given in the third chapter. It is stasi¢h
the derivation of the optical conductivity in the paramagnetic and antifeigostec phase within
the limit of infinite dimension. The intent of the subsequent section is the formulatiparticle-
particle excitations within the ladder approximation (LA) in the single and orbitabederate
cases. This chapter is then completed with the discussion of experimentabieehas well as
the derivation of the photocurrent of the particle-particle spectroscopy

The results of particle-particle excitations in the single and isotropic two-bttnbard
model are given in the fourth chapter. There are two main points of discudsrst, the behavior
of the particle-particle excitations at the verge of the metal insulator transitBmtond, the
accuracy of the results of three different methods DMFT+QMC, DMFA-#Ind the first order
approximation. The last section of the chapter discusses the metal insudatgititm in the two
dimensional Hubbard model at and off half-filling. In this case, the exemdMFT together
with the modified QMC is employed to calculate various quantities involving the spayticle
spectral function, the spin susceptibility, the optical conductivity, the masareeements and the
scattering rate. At the center of the investigations is the influence of theldpatiaation on the
phase diagram of 2D Hubbard model and also on the two-particle prapdrtithe last part, the
spectra of pair excitation of 2D Hubbard model are also presented.

The fifth chapter is devoted to the study metal insulator transition in the anigotvep-
band system which is an idealized picture of the strontium ruthenates cochp®he chapter
starts with a brief discussion of the electronic properties of the ruthenasesl lon the results of
the experiments and first principles calculation. It is then directly followethbypresentation
of the results of DMFT for the single- and the two-particle excitations in tharpagnetic and
antiferromagnetic phase. The last part of the chapter discusses tlema#laf spatial fluctuations
in the paramagnetic phase. To that end, EDMFT is employed in the modified tvwebFhéobard
model that incorporates the intersite spin fluctuations. Single- and twoipagtieen’s function
are then calculated within quantum monte carlo that incorporates fermionoaod begrees of
freedom. At last, Chapter 6 concludes this work and discusses posdibisiens.



CHAPTER 2

Models for Correlated Systems and Methods of Solution

This chapter is intended to introduce the model and the methodology that wisidektirough-
out the thesis. The first section discusses the model under investigatiah#{s extension to
incorporate the orbital degrees of freedom. A related issue disculssethdhis section is the
correlation- driven metal insulator transition (MIT). Since DMFT is formutiaégthin Green'’s
function formalism and also for completeness reason, brief descripti@nesfn’s function and
related topics are presented in Sec. 2.2. The DMFT method is dicussed & %ethe presenta-
tion is started from the notion of the infinite coordination limit and ensued byisteuderivation
of the DMFT self-consistency equations. In the subsequent sectiosintjle-site formulation of
DMFT is extended to incorporate the influence of spatial contribution. Thhadeof choice in
this respect is the extended dynamical mean field theory (EDMFT) that $pkespin interac-
tions into account. In addition to that, various proposals that also includeldhatiaations will
be briefly discussed. The single-site problem of DMFT and EDMFT egusatiowever remains
a difficult task. Often, one has to rely on numerical methods that can bie@jppa wide range
of parameter. In the present work, Hirsch-Fye quantum monte carlcQQMI be employed
to solve the single-site or the impurity Hamiltonian of DMFT and EDMFT and to caleutese
imaginary-time single- and two-particle Green’s function. The last secti@ustes the analyt-
ical continuation method which is aimed at transforming the imaginary time quantityaato r
frequency.

2.1 Models and Related Phenomena

The simplest model that incorporate the basic ingredients of the electnatatimms is the Hub-
bard model. In the standard notation, the Hamiltonian reads

H=-— Ztijczo,cjo' +U Z NN - (21)

ijo i
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wheret;; andU correspond to the hopping matrix and Coulomb interaction respectively. This
Hamiltonian describes the hopping of electrons and holes in a narrow bitmal density-density
interaction. In deriving this Hamiltonian, Hubbard assumed the ideal cas@iochwnly one
band lies at the Fermi energyx() while other bands are energetically far above or belpvand

thus can be neglected][ To further simplify the Hamiltonian, he considered only the maximal
term of the matrix elements of Coulomb interaction namely intra-atomic contributiohss T

is supported by the fact that the onsite Coulomb interactioBdeélectrons system, is on the
order of 20eV which is much larger than that long range Coulomb interacatibith varies from
0.025eV to 3eV.

The Hubbard model has a rich phase diagram which can be realizedyiggréhe hop-
ping terms which determines the bandwidih and the Coulomb interactioti. The model is
thus considered to capture the essential physics of the various intriguer@ipiena such as
magnetism, metal insulator transition, superconductivity. A thorough utaheliang of the un-
derlying physics of the model is however far from complete. This is parkdage to the lack of
analytical solutions and thus one relies mainly on the approximation which sometiseesot
controllable. To date, the only analytical solution available is for one dimeaktase which
was obtained by Lieb and Wiz employing the Bethe ansatz . In contrast, analytical solutions
for higher dimensional system are scarcely available. The model howande treated analyti-
cally in two extreme limits. The limit of/=0 or non-interacting system, a0 or atomic limit.
The former case corresponds to the systems of a free electron gasiswvighunderstood using
a theory such as that proposed by Sommerfeld. The atomic case on thbarbatescribes the
system of electrons that are localized in solid since the coupling betweerssatesent.

The Hamiltonian of the Hubbard model was independently proposed by &tbers:
Gutzwiller [3], Kanamori f]] and Hubbard ]. Initially it was intended to investigate the possi-
bility of ferromagnetism in transition metals. Hubbard soon realized that thelroodiel be also
used to study the correlation-driven metal insulator transition which wasopeal by Mott. The
importance of correlation in the context of metal insulator transition has lee¢ined long before
the Hubbard model was introduced. This issue was brought into attentioriyriyade-Boer
and Verway §] after studying NiO. They pointed out that the insulating phase of NiO cooid n
be described within the standard band theory which predicts a metallic phasder to address
this problem, Peierlsd] proposed that the insulating state is induced by strong Coulomb repul-
sion that controls the dynamics of the electrons. Subsequently Mott mdosmple picture to
describe the MIT. He argued that a crystalline array of one electron atithng lattice constant
a at zero temperature should show a sharp transition from a metal to an ingddb® distance
between atoms was varied, [8]. The microscopic description of this system was provided by
Hubbard by introducing the simplified Hamiltonian &f band system as described above. By
means of Green’s function method, he showed the existence of MIT, thagkthe splitting of
the original density of states into two sub-bands, upper and lower bands.

In a realistic system, Mott transition can be realized by varying the bandwsdtvel as
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the chemical filling §]. In the first route, the bandwidth is controlled by modifying the lattice
parameters or the chemical composition while maintaining the original crystatwteu It is
important to note that the on-site interactibnremains unchanged during the above process.
Experimentally this method is realized by applying a hydrostatic pressurebstitsing ele-
ments with different ionic radius and the same valence. Typical example-®¢ RNiOs, R
being Pr or Nd, layered ruthenates-CaSr,RuQ,, two dimensional organic sak—(BEDT-
TTF)>,Cu[N(CN)]CI[10]. In the second route, the electron filling is changed typically by substi-
tuting certain elements of the original compound with the one that has diffeaksmtce. Example

for this method are La ., Sr,CuQy, La; _,Sr,MO3, M being a transition metal. Tuning the prop-
erties of materials by varying the pressure is generally preferable th@ngdoThe latter leads

to some complications due to possible disorder in the structure and for ceatan should be
avoided. Besides the two routes mentioned above, one could also useidmaétysas a control
parameter. This is motivated by the fact that electronic structure is also nabbifiowering

the dimensionality. Realistic application of this method is however more difficult thetrthe
two routes described above. Note that the temperature is not considehésiriespect as a con-
trol parameter, and this distinguishes the Mott transition from that that isrdlkly temperature.

In fact, this metal insulator transition should also occur at zero temperatdrtharefore is an
example of quantum phase transition.

Application of the single band Hubbard model to describe MIT in the transitimesal
oxides is realized in several systems. The most prominent examples aatesuguperconductor
and vanadium sesquioxide,®@3 which shall be briefly discussed below for illustrative purposes.
In both cases, it is implicitly assumed that orbital degeneracy is lifted by storsgal fields
effects and thus the relevant low-energy excitation is described by diagie near the Fermi
energy. As is already pointed out above,O4 is the example of bandwidth-controlled metal
insulator transition. One thus obtains MIT by varying the pressure or aggihg the chemical
composition. The complete phase diagram has been obtained experimentadiyarlth70s by
Mc whan et.al [ 1, 17] and it is reproduced in Fig.1 As is clearly seen, vanadium sesquioxide
has a rich phase diagram as a function of the temperature and the ptéspurg which involves
antiferromagnetic insulating (AFI), paramagnetic metal (PM) and parartiagnsulator (PI).
By varying pressure, one observes the metal insulator transitions thetaspanied by the
transition from AFM to PM in the low temperature and PI to PM at high temperatdies is
the classic example of the Mott transition discussed above. The metal-ingdeisition in the
vanadium sesquioxide is also accompanied by a structural distortion namedymrionoclinic
in AFI to corundrum structure in the PM and PI. Theoretical descriptiothisf system was
firstly proposed by Castellani.et.al] that pointed out that only doubly degenerafeorbital is
relevant. Based on this observation the physics #D/is believed to be captured by the single
band Hubbard model at half-filling.

A satisfactory theoretical description of the metal insulator transition within trebird
model is, however, not a trivial task and has been a long standing problais is in part due to
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Figure 2.1: Pressure-Temperature phase diagram of the vanadium sestpi, O3. The picture is taken
from Ref [11].

the nature of the transition which occurs in the intermediate to strong couptimgeefU. In
the past, various methods have been introduced to tackle this problem. [titiersof Hubbard
model mentioned in the previous paragraph distinguishes metal and insullaéisg pnly by the
presence of a gap in the spectra. In this picture, the original band is gplitwo bands (lower
and upper band) for strong coupling and merges agalii decreases. This approach however
fails to provide a coherent state that epitomizes the Fermi liquid properties.

Brinkman and Rice 14] used a different scenario which they describe as the strongly
renormalized Fermi liquid with a reduced low energy scale. In their approlaey employed the

b 16]

Gutzwiller correlated wavefunction §

W) =g"12) =[] (1~ (1 —g)Di)|®) (2:2)

Q

where|®) is the single-particle uncorrelated-state typically represented by Slatemiledet,
D = >, D; = >, nin, is the operator of double occupancies at the same sitgy andhe
variational parameter that determine the number of double occupanciessysteen. Foy = 1
one deals with the uncorrelated state while jox 1 corresponds to the system with reduced
double occupancies. Early work of Gutzwiller provided the explicit esgimn of the ground
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state energy obtained from the expectation values of the Hubbard Hamiltonian

_ (Ygl|H[Yg)
E="alve) - 23)

This energy depends both grand on the variational parameters which is then determined by a
minimization of the ground state energy. The final expression of the grstaitel energy is then
written as

E:q(q—l-q)—l-Ud, (2.4)

whered = D/N, N is the number of the lattice sites and= 8d(1 — 2d) corresponds to the
discontinuities in the single-particle occupation. Finally by minimizing the energynegpect
to d one obtains

dzi(l—g>, (2.5)
2
g=1- (5) , (2.6)
2
%Z—‘GT—FEH (1_(i> , (2.7)

whereU. = 8le; + €)|. Based on this result, Brinkman and Rice derived a relation for the

-1
guasiparticle renormalizatiodi = (1 — 8%—55") ) , the effective mas%* andq read
€p

-1
LU DS (1 - (U>2> . (2.8)
m Uc

Straightforward calculations then give the spin susceptibility

2
Xs_l x 1—<gc> . (2.9)

From the above equations, it can be seen that vthapproache#’., both the spin susceptibility
and the effective mass diverge whereas the quasiparticle renormalizati@mishes. While
it successfully explains the effects of correlations on the quasiparticle, plee approximation
does not account for the formation of Hubbard bands which starts &yskem approaches the
insulating phase.

A significant development on this subject has been the introduction of thellgensional
limit [ 17]. This approach treats both the quasiparticle and Hubbard bands ahfeqgting and
thus is able to describe the continues transition from the weak to the stroptingprtegime.
More interestingly is that the Mott transition in the three dimensional limit can beettegithin
a local approximation. The complicated many body methods is thus simplified inaswely
that one has to deal with the dynamics fluctuation on certain site while spatialdtion can be
ignored. Further discussion on this method will be provided in the next sectio
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Other approaches based on single-particle description such as Lhadjgriails to de-
scribe the Mott metal insulator transition. Extensions of this approach bypocating additional
correction to the correlation as manifested in the LDA+U and LDA+SIC (s@fattion correc-
tion) leads to a more reasonable prediction in the insulating phase. A uniedpt®n of the
correlated metal-insulator transition however can not be provided by #pgseaches.

A realistic description of most of the materials requires the inclusion of orb#gieks
of freedom. Various physical properties of strongly correlated matggajsmagnetism, charge
transfer metal insulator, orbital ordering, are the results of the intergl#yecspin, the orbital,
and also lattice effects. Numerous recent studies have also shownhtediguhat the orbital
degrees of freedom are of primary importance for understanding teenaf Mott MIT. The
inclusion of orbital degeneracy leads to a complex many body Hamiltonian giecieiterac-
tions terms neglected in the single band Hubbard model are now taken inideration. The
multiband Hubbard model is written as

H = — Z tijaczagcjaa +U Z Nt Mia| + Z (U, - 600“])”2'040”1'60’

ijao ia ia<fBoo’
_J/ Z (Cjaaciafacjﬁfociﬁa + C;'raacjafociBUci/B—U) (210)
ta<fo

wheret;;, describes hopping of an electron from sités j, U andU’ represent intra- and inter-
orbital Coulomb repulsion respectively ards the exchange interaction. The last two terms in
the Hamiltonian above, correspond to the spin flip and the pair-hopping espectively with
couplingJ’. In the above equation indexand$ stand for orbital number.

A rigorous analytical solution of this Hamiltonian for all regime of parametersas{
tically impossible. However, the behavior of the metal insulator transition thzgrdks on the
number of orbital degeneracy can be analytically solved using the ext&hdewiller wavefunc-
tion for multiband system. It is shown §] that the critical couplind/. depends on the number
of the orbital degeneracy,,, or explicitly Uc ~ 4(N,, + 1)W, whereW is the bandwidth. It is
important to note however that this exact relation is obtained by considemigghe local and
the interorbital interaction.

2.2 Formalism of Finite Temperature Green’s Function
Then particle Green’s function is defined as’]

g™, el ahTh) = ((TrCay (11), - Ca, (7a) Ly (), -, CL (7))
(2.11)
where¢ = —1 for fermion, 7’; is the time ordering operator in the imaginary time andr),
C’ll(r) are the imaginary time Heisenberg operator with quantum numlegplicitly expressed
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as

Cl(r) = e H-R)¢f o=r(H-pN), 2.12)
Co(r) = eT(Hf”N)caefT(ﬁf“N).
In the above expressionﬁ{ denotes the Hamiltonian of the electron generally expressét -as
Ho[caca] + V[Cac ..cycsl. pandN =y checo are the chemical potential and the number
operator respectively. The grand partition function for this generalili@nian usually expressed

asZ = Tre~("—#N) can be also written in terms of functional integrals by using the Grassmann
variablestl, (1), éq(7) as follows

7 — / DleteeIo 4 Eath(r)@r—m)éa(r)+Holeh(r) o (MI+VIELMEL ()01 (Mes(M] (2 13)

It is straightforward to obtain the expression of th@articles Green'’s function in terms of the
functional integral formulation

G (armi, s cntiad st = ¢ [ DIEtE [er K i T b0t L )
s (11) -+ G (T)ély (71) ., (Tg)} (2.14)
= " (Can(n) oy (r)el, () ol (7)) (225)
In the absence of interactiofs = 0, the single-particle Green’s function is written as
Go(aimi|agme) = /D ¢|éa, (T1)é ( 9)e =I5 L b @rtea—p)ea(r) (2.16)

= (8 +€q — )1

whereZ, = [ D[é¢tdle =y 470 h(7)(@r+ea—)2a(7) is the partition function of the non-interacting
system and,, is the eigenenergy of the kinetic operatds = >, eacgca. The momentum-
dependent Green'’s function in the imaginary time and the Matsubara fregaee related via
Fourier transform

Gk, 7) = ;Zg(k, iy )e T (2.17)

B .
G(k,iw,) = /dTg(k,T)eM"T.

0

Thus the non-interacting Green’s function of gl expressed in terms of the momentum and
the Matsubara frequency reads

Go Lk, iwy) = iwy, + p — e(k), (2.18)

wheree(k) is the momentum representation of eigen energyigfor the dispersion. In the
interacting system, the full Green’s function as well as the energy caundhgated by means of

10
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perturbation expansion . The partition function of Egl@ is expressed in the power series as
follows
Zz (-

7o !
ZO " n.

B
/ dri ...dr, <V(@a(ﬁ)T...57(71))...V(ea(Tn)T...@(Tn)w. (2.19)
0

By means of Wick’s theorem, one could evaluate the thermal averagesmbithects:t andé in
the partition function above and derive systematic rules to construct tmafégydiagrams to all
orders. Summation of the so-called irreducible diagrams to all orders pothe exact relation
between non-interacting and interacting Green'’s function. Alternatitieity,exact relation can
be also derived within the functional integral formalism and will be used indédion. One
starts with the generating function for the imaginary time Green’s function

= ;/D[éTé] exp (— /06 dTZ [@L(T)(a — 1)Ca(T) + H[éTaéa]

[0}

+ [1a(7)ea(r) + EL()ma(r)]] ) (2.20)

8
= <eXp (—/0 dr Y [a(T)éa(r) +@L(T)77a(7)]> >

[0}

which follows from the expression of the partition function of 2gl@ with additional source
termsn, 7. This source terms can be imagined to play the role of a probe that is usetlact ex
the Green’s function. Thus by taking the functional derivative with eespo the source terms
one obtains the-particle imaginary time Green’s function (explicit expression can be seen in
ref [19). It is important to notice that the generating functiodaldoes not ensure that all
diagrams of Green’s function are connected. The connected Gremigson (cumulant) can

be generated using the so-called linked cluster theorem that corineftg(z), n(x)) and the
sum of all connected diagrams. Assignifigi(x),n(x)) as the generating functional of the
connected diagrams, teparticle imaginary-time Green’s functic#i” is expressed in the form

of a functional derivative with respect to the sourges), 7(x)

Y
67(@1) - - on(wa)on(@l) . on(@h) | o
In the above expression, the variableeplaces{r, o} and7(z) is understood ag, (7). Us-

ing the above formula, it is then straightforward to obtain the connected spagliele Green’s
function

C"(x1, .|, 2l) ="

rrn

(2.21)

G(a1]ah) = G (z1|2]) = €' (21, 7)) = —(e(a1)e! (z1)). (2.22)

Similarly, the evaluation of the two-particle Green’s function gives

X(‘rlva‘x/hw/Q) g (x1,$2’$1,$2)

[G(x1|21)G (w2]ah) + G(a1|2h)G(2|a))] — €2 (21, 22]2), 25)(2.23)

11
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In order to generate all connected diagrams that also one-particleditésllone usually gener-
ate the vertex functions. In doing so, it is convenient first to perfornLdggendre transform to
obtain a new functiondl (effective action) as a function of the souregs). This is written as
follows

(6, 6] = =m0 — >_nw)n(y) +0(y)e(y), (2.24)

wherezy => . foﬁ andy is a composite variable similarly as defined aboverfol he vertex
function to all orders can be generated by defining

Jgmtn o
TYmdb.n (l‘l,...,ivn|$/,...,$;) = — F[¢(JI)¢(JZ‘)]

$ne ! 5p(x1) ... 00(xn)00(x) . .. 6¢(x)) -
(2.25)
It is straightforward to show the relation between the vertex function andititgge-particle

Green'’s function

o ) _¢ < ety - (ee) >‘1 (2.26)

Vob Vs {eteh)y (&'e)) - '

where the diagonal parts of the matrix on the right hand side are the ursglalparticle Green’s
function while the off diagonals are usually noted as anomalous Grearcida which is par-
ticularly useful for the systems with symmetry breaking. By assuming that tterayis not
in the broken symmetry phase, the relation between the vertex and the $iwection in the
interacting and the non-interacting case may be written as follows

[yw(x,m’)}il = G(z|2'), (2.27)
ey = Golale). (228)

The difference between the vertex function in the interacting and the nomdtitey case is
denoted by the new functional(z|z’), noted as self energy

Y5 =10, % (2.29)

Transforming into the momentum-frequency representation, one obtairentileaf expression
of the Dyson equation

Gk iw,) = Gy'l(k,iw,) — X(k,iwy), (2.30)
= iwp + p—e(k) — 2(k,iwy). (2.31)

One of the most important experimental observable which can be directigiatsd with
the knowledge of single-particle Green’s function is the spectral funclin w). It can be
derived by first writing the Green’s function as follows

Glatld't)y =0t — )G~ (at|dt)) + 0(t' — t)G=(at|d't)) (2.32)

12
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where the real time has been used following the change of the variables it. The explicit
expression of the greatér and the lessef <~ Green'’s function read

iG7 (adlalt) = LTy[e—(B-il—tD(H-uN) ¢

! e i(t—t) (H—pN) C;,] (2.33)
iG<(at|at)) = —%ﬂ[e‘(ﬁ“”‘t'”w‘“mleei(t_t/)(H_“N)Ca]'

By inserting a complete set of states, B3 together with EqZ.33 can be casted into

ig(atla/t') = "L S on) e H1N G (1) ) ] (1) )
_Wz_t) ; (n| e PH=NCE () [m) (m| Ca(t) |n) . (2.34)

Fourier transforming into frequency and momentum domain leads to
2 eﬁ(e’m*'u’N’m) + efﬁ(enfy’Nn)

w— (én — €m — p) + i

Gk,w) = 2 3" 1{n|Co(0)|m)| (2.35)

The spectral function is finally obtained by taking the imaginary part of 2285

Ak, w) = %eﬁﬂ > Hn|Co (k) |m)|* [eﬁ@m*ﬂNm) + e Plen=tNn) | 50 — € + € + p).

(2.36)
The spectral equation corresponds to the probability of the single-pagticiation and satisfies
the sum rule expressed as

/OO 0 p ) = 1. (2.37)

27
—0o0
The two-particle vertex function,; , ; can be derived in the similar manner as described
above for single particle. In terms of the vertex function, the two-particke@s function of
Eq.(2.23 is finally written as

X(@1, w2l ay) = G(21|21)G (2275) + G(a1]a5)G (2]2))
+ Y Gl@]ws)G(walwa) vyg (s, alah, 71

/ !
T3,T4,T3,Ty

G (a]a))G (2} |25) (2.38)
or in the momentum space
X(k1, ka|ks, k) = G(k1)G(K2)(Oky oy Ok ks — Ok oy Oz ks )
A0k ko ks 12 G (F1)G (k2)T (K1, ko, k3, ka)G (k3)G (ka) (2.39)

wherek = (k,iw,). The four-point verteX” (momentum representation of vertex function
Yog.2 ¢) contains all possible two-particle scattering. In general this four-p@iriex consists of
particle-hole and particle-particle channel, which can be treated sdgarélte choice of the
diagram in the particle-hole or the particle-particle channel depends qmdahkm at hand.

13
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2.2.1 Single-Particle Photoemission

One of the most powerful spectroscopic techniques that provides detait@mation on the
electronic properties of solid is the single-particle photoemissionq1, 22]. At the heart of
this experimental technique is the photoelectric effect which was firstlyrebddy Hertz and
Hallwachs P3, 24] and later theoretically explained by Albert Einstein in his seminal work on
the theory of light quanta’[]. In the experiment (see Fig2), a beam of monochromatized
radiation from gas-discharge lamp or synchrotron beamline with knowrggr® incident on
the surface of the sample. The energy of the photon is transferred toaswlits absorbed by
an electron with the binding enerdy’ | which stimulates the excitation of electron from its
initial state. The electron escapes from the solid whenever its energyi@entfto surmount the
potential barriers at surface. The escaping photoelectron with weliedkeéinergy and direction

is detected by electron analyzer. The relation of all energies involved ipriigss comprises of
the kinetic energy of emitted electrdt),;,,, the work function of the soli@ , the binding energy
|Ep| and the photon energycan then be expressed using the conservation of energy as follows

Eyip = hw — ¢ — |EB]. (2.40)

In the angle resolved technique, by measuring the kinetic energy of thegdactron for a given
emission angle, one also measures the wave vector or the mom#&htanp /7 of the emitted
electron using the relatioK = \/2mF}y;,/h. In this case the momentum conservation must
be also fulfilled writingK + K,, = K’, whereK,,, is the momentum of the photoi and

K’ are the momentum of the electron before and after the absorption of thenptRitece the
momentum of the photom)(05§1) is negligible with respect to the electron momentuml(.&?l)
thenK = K'. The parallel part of electron momentuky = K, + K, and perpendicular
K, = K, components are obtained in terms of the pofarahd azimuthal) emission angles
defined as follows

K, = %\/ 2m Ejy, sin(0) cos(o), (2.41)
K, = %\/ 2m By, sin(0) sin(¢), (2.42)
K, = %\/ 2m Eyip cos(9). (2.43)

In the actual experiments, the photon energy used to bombard the material hes range

of ultraviolet or x-ray energy which is suitable for investigating the valdvered and the core-
level states in the solid. ARUPS/ARPES (Angle-resolved ultraviolet phattvelespectroscopy/
Angle-resolved photoemission spectroscopy) is the common name of the ghujteemission

operated in the ultraviolet energy scale while XPS (x-ray photoemissiarirepeopy) is op-

erated in higher energy. In this context, the source of the photon esadyas synchrotron
provides more advantages as one can choose a wide range of esaitgibke for studying both
the valence and the core states of solids.
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Figure 2.2: Left panel:Geometry of single photoemission in which thdssion direction of the excited
electron (photoelectron) is specified by polar and azimuhgles. Right panel shows the
energetic of the photoemission process (from referendg. [

The last decade has witnessed tremendous progress in the angledgdubtoemission
spectroscopy due to the increase of the resolution of the spectra, thws &lstudy various
complex systems such as cuprates, ruthenates, manganites. Todaygphations with low
initial energyhrv <100eV, one has 2-meV in the energy resolution and ih2he angular reso-
lution. The simplest way to show why the use of low energy leads to the ircofaomentum
resolution, is by using the relation of the momentum resolufid and finite acceptance length
of the electron analyzehkd written as follows

Ak ~ 4/ Qm:;’“” cos(6).A6. (2.44)

It is obvious from the above equation that higher momentum resolution cabthaed when
using low photon energy (low kinetic energy) but large polar afigldhe main shortcoming
of using low energy is the extreme surface sensitivity implying that the cotitibto the total
photoemission intensity mainly originates from the topmost layer. This is true iicylarly for
systems with high structural anisotropy. In order to overcome this proldeecélly in the case
of bulk system, one has to perform ARPES on the atomically clean and welleatédystem or
flat and clean surface which has to be prepared immediately prior thergnein an ultrahigh
vacuum conditions= 5x10~!! torr.

Formal description of the photoemission relies on Fermi’s golden rule aslaoépertur-
bation theory in the first order. The transition probability; for an optical excitation between
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N-electron ground stat&¥ and one possible final staté#’ is written as follows
27
wyi = S| (U [ANY) PO(BF — BY — hw), (2.45)

where BN and EJ{V are the energies of the initial and the final state of Melectron system
respectively. Microscopically, the interaction between light and matter is dimh@n the Hamil-
tonian particularly in the coupling between the vector potential of the electnoatiadield A (r)
and the momentum of the electron in the system. In the minimal coupling, Hamilton@ds rea

2 2
p € e 2
H = — — |—(A(r). A A 2.4
= Hy+ A. (2.47)

The coupling of the photon and the electron in the solid (third and fourth ternsgjuation
(2.46)) can be further simplified by noting that the quadratic term is relevant @nliight with
high intensity. In addition to that by using the Coulomb gadgeé\(r) = 0 as well as the
commutator relatiofip, A| = —ihV.A(r) the light-matter interaction reduces to
A=—"A(r)p. (2.48)

mc

In the well-known dipole approximatiom (r) = Age’®* ~ Ag the coupling Hamiltonian is
expressed ad = —-= Aq.p. Excitation of a single electron by photon leaves the system with
N — 1 particles in the excited states. A detailed description of how the ejected eleatten
acts with the rest of the system left behind is however a complex prochessdFcalled sudden
approximation offers a drastic simplification to this problem by assuming that teeation
between the photoelectron and the rest of the system is negligible. This te the fact that
electron is instantaneously removed and the potential effective of thersghiEnges discontin-
uously at that instant. Based on this consideration the relation of the statkeeaadergy before

and after the emission of the electron is expressed as follows

vy = AghuiTh (2.49)
Ef = B = Eun, (2.50)
EY = EY'-Ej, (2.51)

where A is the operator that antisymmetrizes tNeelectron wave function\lij_1 is the final
state for (V-1)-electrons systemj‘; is the wave function of the photoelectron with the momen-
tumk, E}§ is the binding energy of photoelectron with kinetic enefgy,, and momentunik.

The sudden approximation described above is basically one part of tteephission
process introduced in the 1960s by Berglund and Spicgrfr angle resolved photoemission.
In their model, the complex process of electron ejection by the photon isvadédiinto three
independent steps consisting (i) excitation of the electron in the bulk solidcétjering of the
electron during travel to the surface and (iii) the escape of the photamieictrm the solid. The
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total photoemission intensity is then obtained by the product of these thrggeimdknt parts.
Nevertheless, the contribution of the second step due to the inelastic piwcssially neglected
or subtracted. Following the expression of Ej40), the initial state can be expressed as

U = AgruN ! (2.52)
the matrix elements of transition probability;; is then written as

(w]afwl) = (g a

¢§‘> QN ‘Iffv‘1>, (2.53)

where M, = <¢1]§’ A |¢¥) is the dipole matrix element of single electron and the last part
denotes the overlap integral. The measured photocurrent as a funttigy,cat momentunk
is finally written as

J(k, Erin) = > wyi (2.54)
i
2
-y ‘M}; > lewi? 8(Egin + EN ' = EN — hw), (2.55)
Iz "

where|c,;|* = <\I/%—1| \IIZN*1> denotes the probability to remove electron from sitghich
leaves the system in the excited state Recalling the result obtained in the previous section
particularly in the equatior?(36) one observes the relation of the imaginary part of the Green'’s
function and the photocurrent of ARPES.

2.3 Dynamical Mean Field Theory

At the heart of the mean field like approach lies the idea of reducing the critygdémany body
problems into a more manageable two-body problems consists of singteasitethe effective
field that represents all sites except the selectedosit€he classic example of the use of this
method is the mean field approximation of Ising model where one obtains a sdlutigponta-
neous magnetization. In this classical system, the influence from the sdimguenvironments
of the chosen spity, is replaced by the effective magnetic field namely, that contains the
average of spin fluctuatioft;) and the coupling between the field and site

The extended version of mean field approach into quantum systems is rteghifesly-
namical mean field theory (DMFT) which is originated from the study of Huthraodel in
the infinite dimensional limit. By employing Gutzwiller-type variational method anduplea-
tion theory, Metzner and Vollhardi ] pointed out that in the infinite coordination limit, spatial
fluctuations are completely suppressed and thus the self energy beceales lo

Y(k,iw,) = X(iwy) (2.56)

It is important to note however, that a proper scaling of hopping amplitudesifirtiit of infinite
coordination is necessary to ensure a finite kinetic energy. This candtydeen for example
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from the dispersion relation of hypercubic lattice that include only nearsghbor reads
d
e(k) =—2t ) cosk, (2.57)
7j=1

wheret and d correspond to hopping amplitude and dimensionality respectively. Density of
states (DOS) is then obtained from the relation

D(e) = % > 6(e— e(k)) (2.58)
k

which then gives

1 €2
D(e) = e exp (_M> (2.59)

Thus it is clear that finite DOS will only be obtained after scaling the hoppindiardp reads

t*
t= = (2.60)

Substituting the above rescaled-hopping amplitude ta2Esf) gives DOS that free from dimen-
sionality parameter reads

D(€) = —— exp (-2) (2.61)

wheret* is fixed to unity. In contrast, since Coulomb interaction purely local, it remams u
changed even in the high dimensional limit and thus does not need a rescaling

Another significant finding in the limit of infinite dimensions is the result of datien
energy ofd = 3 which quantitatively close to that id = co. As a consequence, results of
infinite dimensions remain relevant in the realistic case and can be applietlydinetbe three
dimensional system.

2.3.1 Self Consistency Equations - Impurity Hamiltonian

The successful practical implementation of the lafgkémit is based on the mapping of the
original lattice problem onto the corresponding impurity Hamiltonian 28]. In order to show
this, one can start by rewriting the action in Ei(3 using Hubbard model as follows

5= ’ -y (ot [ 37 = ] o)) = E el rrcsatr) +

ijo

U Z nip(T)nqy (7) (2.62)

Following the classical mean field analogy, all fermions are traced oupefaresiteo, thus the
final effective action that describes the interaction between the therckitee and the average
field is written as follows

B B P
S = /0 d7'1/0 dry zU:CZU(Tl)gO_l(Tl — T2)Coo (T2) + U/o drnet(T)ne (1) (2.63)
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whereg is the inverse temperature agg!(m — 7») play role of the Weiss effective field. The
relation between the original lattice and the Weiss field is then expressed viar yson
equation reads

Gy L iwn) = Z(iwn) + G (iwy,). (2.64)

In terms of free density of states (DOH)¢), the self consistency condition of DMFT can be
straightforwardly written as follows

o Do)
G(iwy) = /dez_wn T (2.65)

Expression in Eq4.63-Eq.(2.65 thus close self consistent relation of DMFT.
It is straightforward to show that the Hamiltonian representation of efiecution in
Eq.(2.63 is the Anderson Hamiltonian readsq

H = Z ekczgckg +V Z[c}iacog + czackg] —€q Z Moo + Unprng) .- (2.66)
ko ko o

This Hamiltonian describes the impurity on sitevith Coulomb interactiort/ that is embedded
in the conduction band representedday Solving this Hamiltonian thus equivalent to solving
the single site action of Hubbard model expressed above.

Extending the DMFT self consistency into the antiferromagnetic phase aonieestraight-
forwardly [2€]. In order to take account of two sub latticdsand B in the Neel state, the kinetic
part of Hubbard Hamiltonian may be written as follows

H= Z e(k) [chachU + cEkUcAko} + Z oh |:er4kUCAkU — cEkUchg (2.67)
ok ok
whereh stands for external magnetic field, and momentum summation runs over ak ke
in the magnetic Brillouin zone. Following EQ.6), the Green'’s function are then obtained by

inverting matrix
CAc _E(k)>
2.68
<—e<k> 5o (2.69)
where(, = iw, + p — ch — X4, and(p, = iw, + 4 + och — X p,. The self consistency
equation in the antiferromagnetic phase then explicitly reads

G (it0n) = Cao / dgg) (2.69)

—e2

with o = A, Banda = B, A.

The details about lattice structure in the DMFT calculation enters from derfsitiates
D(e). In three dimensional system, it has been previously shown that DO$nkesdBaussian
like distribution in the infinite dimensional limit. The Gaussian DOS/ir+ co however does
not have real band edges and thus becomes unphysical. This isroeghbgaeplacing Gaussian
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Figure 2.3: Bethe lattice with coordination number= 4

DOS with that Bethe lattice which is not regular lattice but form a treelike straé(aee Fig2.3)
The density of states of Bethe lattice is written as

D(e) = 2 /(T = (/1) (2.70)

it

wheret is the kinetic energy parameter.

2.4 Extended Dynamical Mean Field Theory

While some strongly correlated phenomena can be described within singlegitexanation
with local self energy, the approach becomes unsuitable in the system witbysrced non-local
fluctuation. This is due to fact that DMFT treats all non-local correlatianisealevel of Hartree
approximation. As will be shown in Chapter 4, the interplay of local andInoal interactions
is also essential in Mott transition. The changes in the low-energy of tw@ieainfluence the
character of single-particle excitation.

Over the past few years, a number of proposals have been putrébtevancorporate the
spatial fluctuation in DMFT. They are different in the way the non-locaittlation effects are
included in the DMFT. In the cluster generalization of DMFT, the momentum riigrecy of
self energy is introduced by mapping a lattice into a number of sites that araddetban the
bath together with self consistency relation. The choice of cluster is, lewyweet unique and
two different approaches are usually applied namely cluster dynamical ie&happroximation
(CDMFT) and dynamical cluster approximation (DCA)L[ 37].

In contrast with quantum cluster approach, there are several ajpyg®#hat retains sin-
gle site nature of DMFT but modifies self energy or even Hamiltonian in ordarclade the
non-local effects. DMFTXy proposed by Kuchinskii.et.aBp, 34] introduces the non-locality
directly in the self energy. In their approach the interacting Green'stifumavithin local self

'Further discussions se&(].
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energy is expressed as follows

1
iwn + 1 — e(k) — B(iw,) — X(k, iwy,)
whereXy (iw, ) is the non-local contribution of self energy due to either interaction of electr
with collective modes, order parameter fluctuations or other non-locatilsotion. Although
there are two self energy in the above equation, they emphasize that therdasible counting
problem to appear as the local contributiondfk, iw,,) will eventually vanish in the limit of
infinite dimensionality and thus is not taken into account in the standard DM#momentum
dependent self energy is chosen in such a way it contains the effestaibéring of electrons
from short-range spin density wave (SDW) or charge density wavé\(Cictuations. Explic-
itly this is written as

G(k,iw,) =

(2.71)

S(k, iwn) = Snet (K, iwn) (2.72)

where

, s(n)
(I, dwn) iwn + p— X(iwy) — en(k) + invpk — Xy 41 (iwn, k) ( )

A characterizes the energy scalex ¢! is the inverse correlation length of the short-range
SDW (CDW) fluctuationsg,, (k) = e(k+q) andv,, = [vig, |+ |14, | for oddn while e, (k) =
e(k) andv, = 1| + |v;| for evenn. Finally s(n) represents a combinatorial factor of diagrams
that corresponds to the type of fluctuation. Solving the recursion proioiéhe non-local self
energy is thus additional effort in the calculation which can be done relatigst. The rest of
the computational scheme follows that of DMFT as outlined in the previous eectio
Dynamical vertex approximation (DA) [35] restores the non-locality of DMFT in the

same spirit with DMFTEy. In this case, th&-dependent self energy is obtained from the
knowledge of the two-particle vertex function where the relation betwedndpgantities is ex-
pressed by the Schwinger-Dyson equation as follows

Yk, iw,) = Ug — Z Fﬁ‘jlil,’gymg(k'—i—q, iV +v)G(K i +iv)G(k+q, iw +iv) (2.74)

kq,iv’iv

The reducible verticeﬁffli?:”“, in principle, can be obtained through the self-consistent so-
lution of the parquet equations. However, in the specific case such aféoe of param-
agnon fluctuations, one restricts to the ladder subset of the parquearigg In this respect,
the momentum-dependent vertex is written as follows
it = 5 (e — pisa) s pisgee o (e _ris) - (279)
where the first two terms describes the longitudinal and transverse parameespectively and
the last terms subtracts the double-counted local contribution. SubstitutiBg.@f 75 into
Eq.@2.74) finally gives the momentum-dependent self energy reads
1 o o
S(k, iwn) = Ug +5TU Y xolas iv,iv)) <3P§;gv v piwiviv
v'vq

n i‘:‘ﬁ)yc,iy . rgﬁf(b)yc’zy) g(k +q, iw + “/) (276)
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with xo(q, iv, ') = =T >, G(k,i')G(k+q, iv+iv') is momentum dependent particle-hole
quantity andg (k, iwy, )is thek-dependent Green’s function with DMFT self energy. The main
issue in the practical implementation of this scheme is the evaluation of the fourveoiax
function FZE’S:}”OC that requires local susceptibility”” " 2with three Matsubara frequencies.
This quantity is usually calculated directly within the DMFT loops which accortintpe orig-
inal work of Ref.[35] can be done straightforwardly within the exact diagonalization scheme.
Once this is obtained, the fully irreducible vertex function can then be detednift last, one
obtains the momentum-dependent self energyoABollowing the lines described above.

The alternative route to incorporate the effects of non-local correlatibMFT is offered
by Extended Dynamical Mean Field Theory (EDMFT). In contrast with theva-presented
approach, the feedback of spatial fluctuations in EDMFT are directly dieclun the local self

energy B6, 37, 38, 39, 4(]. This is done by extending the Hubbard model with additional intersite
terms such as spin-spin interactions. Hubbard mad2id) {s then written as
H = Z tijc;‘rgcjo' + UZTZ”TZ@L + Z IijSi-Sj, (277)
ij i ij

where the last term describes spin exchange interaction with coupligllowing the argument

of infinite coordination limit, the hopping term); has to be scaled so as to retain finite kinetic en-
ergy. This can then be written s — ¢/+/d . The same also applies to intersite interactifps
where, after scaling givek; — I/+/d. As is outlined above, the most significant consequences
of infinite dimensional approximation is the locality of self energy. In the EDMIfiE thus has
the momentum-independent self enebijk, iw,) ~ X(iwy,) in the single-particle as well as in
the two-particldI(q, iw,,) ~ II(iw,, ). Self consistency equations of EDMFT, can be derived in
a manner similar to that described for DMFT. Within the path integral formalismeffleetive
action of the single site problem can thus be written as follows

B B B
Seff = —/ dT1/ dTgcgg(Tl)go_l(Tl — TQ)C[)O—(TQ) +/ UHOT(T)HN(T)
0 0 0

B B
—;/0 dT1/0 dTQSo(7'1>X0(7'1—7'2)80(7'2). (278)

The impurity site of EDMFT is now coupled not only with the fermionic bath thatsesented
by the Weiss field but also with bosonic bath that is dictated by the two-partitdegfimntity
Xo(T1 —72). Itis clear that in the absence of the latter term one again obtains the stand&T
equation. The intersite fluctuations is thus manifested in the coupling betwesrsfin and
bosonic bath. For the purpose of numerical solution, the last term of ardiobe decoupled by
means of Hubbard Stratonovich transformation

B B B
Seff = —/ dTl/ dTQCEU(Tl)gal(Tl — TQ)COU(TQ) —|—/ U?”L()T(T)n0¢(7')
0 0 0

B B B
—;/0 dT1/O dT2¢0(71)X51(T1—Tz)¢0(72)+/ d7¢o(7)So,

0

2. vv'w ) v v vw v’
Xs(c),loc - XOw,locavv’ + XOw,locFS(é),lOCXOw,loc
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2 Models for Correlated Systems and Methods of Solution

whereg¢y(7) stands for bosonic field. Further details about the implementation of the numer-
ical solution of single site action consisting of fermion and boson degrefreeddom will be
described in the subsequent section. Dyson equations of EDMFT fgesind two particles can

be expressed as

G iwn) = Gy Hiwy) — Z(iwn), (2.79)
X H(iwm) = T (iwm) = Xo(iwm), (2.80)
wherew,, = (2n+1)x /5 andw,, = 2mn/( are Matsubara frequencies for fermions and bosons

respectively. In terms of the non-interacting DOS of the single parfite and the two particles
p1(e€), the self consistency condition can be written as follows

. _ D(e)

Gliwy) = /deiwn T TR (2.81)
. _ pi(e)

i) = [ deeflO (2.82)

Eq.2.78 to Eq.@R.82 represent a closed set of self-consistent equations of EDMF Teffdwtive
action of Eq.2.78 can be also expressed in terms of the impurity Hamiltonian as

H = Z €kCLUCI<:a +V Z(czgdg + df,cko) — png + Ungyngy + quhg.hq
ko ko q
+1) " S4.(h, +hy) (2.83)
q

whereng = > dZd(, andS,; = % Y ool dLTUU/dU/ is the single-particle occupation and the spin
operator respectivelyy, = (hq1, hq2, hg3) stands for the vector-bosonic bath with commutation
relation [hg, h(ﬂ = 0gq'00p’-

2.5 Quantum Monte Carlo

One of the main difficult issues in the dynamical mean field theory is the solutitreampu-

rity Hamiltonian or equivalently the single site action. There are two broad @agsgof im-
purity solver namely perturbative and non-perturbative based agppeeaThe former approach
treats the Coulomb interactidn or the hybridization coupling perturbatively and considers up to
second- or even higher-order contributions. The latter treats the impuaityiltdnian in a differ-
ent manner namely by performing numerically exact calculation. Examplestoirpative solver
are lterated Perturbation Theory (IPT)[ 42, 43], Non Crossing Approximation (NCAJ{] and
Fluctuation Local EXchange (FLEX)F]. The exact Diagonalization'[], the Quantum Monte
Carlo (QMC)[17, 48, 49, the Density Matrix Renormalization Group (DMRG]], the numeri-

cal renormalization grougb[l] represent the other one. The main advantage of perturbative tech-
nigues is that most of the integral equations involved in the calculation cash®=isvith much
less numerical effort. Thus, in the computationally demanding task e.g multiorgytstism or
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2 Models for Correlated Systems and Methods of Solution

cluster extension DMFT, this approach provides more numerical adwarBagh IPT and FLEX
are perturbative expansion in the Coulomb interaction. The self enertpedbrmer contains
second-order Feynman diagram contributions, while the latter consisiféepédt contributions
from the spin and the pair fluctuation. IPT captures both metallic and insulagigns in the
half-filled single band Hubbard model but gives unphysical results iarditings. There has
been a proposal to overcome this problem by introducing an ansatz feelfhenergy that in-
terpolates between the weak and the strong couplings. The results within thisdhiewve been
shown to be in a good agreement with that exact diagonalization method fenediffnumber of
fillings [52). FLEX on the other hand is known to give reasonable results only in thrifiguid
regime for the single and the multiorbital system. In contrast to the above megwtigbative
approach within NCA is based on the hybridization expansion. It is appi¢althe weak and
the strong coupling but breaks down at low temperatures.In order to adldhia problem, an
extended version of this approach that includes vertex correctiondeasduggested.

The non-perturbative approach provides numerically exact calculatidrapplicable in
a wide range of parameters. Its main drawback is the computational costs livhits the
temperature, bath size and time slices. One of the most powerful methods isatitargumonte
carlo (QMC) based on the algorithm of Hirsch and Fy&] This approach offers an accurate
solution of the single- and the two-particle Green’s function in a wide rafgeupling and is
also applicable even at low temperatures. Note however that lowering therzomg amounts
to an increase in the time slices and thus also to more computational effort. dieoshings of
the method are the unpredictable sign problem away from half-filling andleertemperature
and the fact that the output Green’s function in terms of the imaginary timeérexy. The
latter becomes problematic in the case of calculating the dynamical propertig® esgectral
function. In this respect, one requires additional methods that are leaplatvansforming the
data of the imaginary time/frequency into that in real frequency. The mostiyised approach
is maximum entropy method which will be also discussed in the next section.nfReaenew
QMC algorithm has been developed which is based on the idea of contitiovmislices and
thus it is free from Trotter errorssp, 54]. It is shown that this method known as continuous
time quantum monte carlo (CTQMC) in combination with DMFT captures the metal osula
transition and also gives reasonable results at low temperature. Andtlaertage is that it allows
one to consider the multiband problems with off-diagonal exchange. Theothethhowever,
plagued by negative sign problems which occur with the same probability ae rate of the
Hirsch-Fye method. The universal impurity solver that works efficientl¢ at the same time
produce accurate results in all regimes of parameters is not availabkesanpr

All results of DMFT or EDMFT for the Hubbard model in the presented sonkere
obtained with quantum monte carlo method that follows Hirsch and #yjealgorithm. In this
section we will outline the derivation of QMC equations for single band c&s&ension into
orbitally degenerate case and fermion-boson systems will be discussetzatis.

The first step of the algorithm is to discretize the imaginary time iNtdime slices
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2 Models for Correlated Systems and Methods of Solution

it = 1,2... N of sizeAr = % This is followed by Trotter decomposition that decouples
the interacting and non-interacting part of the Hamiltonian as

Z ="Tr l_N[ e AT(Ho+tH1) oy l_N[ e ATHog—ATHL (2.84)
n=1 n=1
The quadratic term in the Hamiltonian can be decoupled by using discreteaktliBtratonovich
transformation at the expense of introducing auxiliary field, Ising like éemtaking values-1.
One then obtains
AS(ng—ny)

eATUnT’ntL:% ZS::tle (285)

wherecosh(\) = eA7U/2 - Substituting equation2(85 into the partition function in equation
(2.89) gives

1
S1,.,Sn=%1
where
ZsélT,...,SN = H Tr {e_ATHOeV”(Sl)e_ATHOeVG(SQ) . .e_ATHoeVG(SN)} (2.87)

o=%1

It is important to note here that the size of the conduction bath orbitals areemachifrom
m =1,..., N, and impurity orbital corresponds ta = 1. Explicit expressions of the diagonal
matrix V7 (.S) of the sizeN;, x N, reads

S0 ... 0
0 10..0

VI(s) = 0 010.0 (2.88)
0 .01

The partition function Z.84) can be written in the form of a determinant matrix following the
identity Tr | e~ 2 ¢ [AZJ+BzJ+Cu]CJ] = det[1 + e~ (4*+B+C)], Thus the partition function reads

787 sy = det[0g, ], (2.89)
— det[l + B°(Sx)B’(Sx_1) ... B(S1)7], (2.90)

where B7(S) = e~27HoeV7(5) Using a simple algebra, matrig, ¢ whichis N x N
matrix of N, x N, is explicitly written as

1 0 . . 0  BI(S)
—B7(Sy) 1 o .. 0
0 —B°(Sy) 1 . . 0
%S = . 0  —B°(S) . . . (2.91)
0
0 . . 0-B°(Sy) 1
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2 Models for Correlated Systems and Methods of Solution

An important identity in the quantum monte carlo algorithm is that the métfix o is related
to the Green’s function by

g.%lt...,SN = [Ogl,...,sN]il’ (292)
The relation between the Green’s function with two different Ising spirfigaration
Si,...,Sy and Sy, ..., S is related to the Dyson like equation. To show this formula, one
considers the following equation
O=e"0. (2.93)
Using Eq.2.92, one then obtains
Gg=0"" (2.94)
-1
= |0+ 0-0 (2.95)
N——
e—V_e—V/
=7 -7 -V (2.96)
The last equation is derived by making use of the idenﬁ% = % — A(A’iB). Substituting

g = ge", leads to the expected Dyson equation

g =g+(@g-1E"" -1y, (2.97)

whereg = géwaN andg’ = g?{v“_’%. The above Dyson equation holds even after integrating

out the conduction bath and considering only the impurity site. Based on thé\attion one
can then express e8.07) for impurity problem as follows

G =G+ (G-1)(E"Y -1, (2.98)

with G = G@;WSN is now a matrix of the sizé&V x V.

The most efficient way to sum large number of possible configurationasiekpressed in
the partition function of Eq4.89) is achieved by means of monte carlo procedure. In this respect,
one of the most important issue to be considered is the dynamics of monte cénmdménich
generally can be chosen arbitrarily as long as it satisfies the detailed déalamdition explicitly

written as follows
P(s—=s) [l,detO(o)y

P(s'—s) JI,detO(o)s"
The heat bath and the Metropolis algorithm satisfy the above condition, iithgn Metropolis,
the acceptance probability at theth imaginary time slice reads

(2.99)

~y det [G]
R = 1;[ 3t (0] (2.100)
=14 (1= Gopp) [TV = 1]. (2.101)
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If the move is accepted then the new impurity Green’s function is upgradeg the relation

AV(Goi,n - 5i,n)G0n,j
14+ (1= Gonn)AV

G/ == Gg'z’] +

O"L,]

(2.102)

whereAV =¢V7-V7 — 1.

For an orbitally degenerate modéelj 48], the formula described above has to be slightly
modified. In this case, the total number of auxiliary fields depends on the etuaflorbital
degeneracy. The relation between matdiy, and Green'’s function is again written &%, =
O,,;}. Straightforwardly, the Dyson formula for degenerate system canjressed as

G =GCm+ (G — DV V" - DG (2.103)

The indexm takes account for orbital and spin degrees of freedom. The Boltznaimaf
Eq.2.100 now also depends on the number of orbitals

— ) — det |1 — (G — D)(eV™ V™ — )] (2.104)

When the move is accepted, the updated Green’s function in the multibandarabe again
expressed in the manner similar to that described above for single band.

In the fermion-boson system, one can again perform the somewhat simparagtele-
scribed above. In this respect, the partition function with the Hamiltonian o2Eydr equiva-
lently the action of EqZ.79 can be evaluated straightforwardly by performing a Gaussian inte-
gration of the Grassmann variables which leads to final expression as$qii6, 57]

o B
ZS17 SSN3P1,e ¢N:det[051,---,51\7;(251,---@1\1]6 : (2.109)

whereB(é,,) = S| duiXo, i, dun is the bosonic contribution with, ., being the bosonic field

andyovin = Xov(7: — 71) IS the propagator expressed in Eg80) . In the above equation, index
a(v) stands for the degrees of freedom of fermions(bosons). Followingahe expression
given above, the probability to obtain the new sigf, ¢7,,) from the initial stat€.S,,, ¢,,) reads

_ pq det Goe 2B
H det G’ —ATB(¢un)

(2.106)

In the implementation of the algorithm, the changes of bosonic field at eacletilisct time
slices is performed by using the relatiofy, = ¢/,, + rd, wherer is a random number between

—1 and1, and/ is the given amplitude so as to obtain the desired acceptance. For the dccepte
move due to spin flip, the Green’s function is again updated via2B9. Similarly when the
boson is changed atth time slices then the Green’s function is updated via Dyson equation that
is similar to the one in Eq2(1039. In this case, howeveAV incorporates the bosonic field.
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2.6 Maximum Entropy

The Hirsch-Fye QMC method generates the Green'’s function define@ dm#ginary time= (1)
or equivalently on Matsubara frequency poiGt§w,, ). The relation between the imaginary-time
Green’s function and real-frequency quantity such as the spectretidn A(w) is expressed as

G(r) = /dwK(T,w)A(w), (2.107)

where the kernek (,w) for (+) fermion and(—) boson reads

e~ Tw

K(T,CU) = m

(2.108)

It is easy to realize that the solution df(w) from this kind of integral can obtained by
performing direct inversion method. This approach however becomésepnatic in this respect
and could lead to unphysical results. The primary reason is that thel kert@mes insensitive
for large frequencies and thus there are many possible valugg.fthat correspond to the same
data of imaginary time. In addition, the problem is also exacerbated by thth&ad@MC data
are also noisy and incomplete particularly for the case of two particle Graerction. The most
widely used approach for solving the inverse problems as in th@ B§. is the Bayesian-based
maximum entropy methodf]. Within Bayesian statistical inference, one defines the posterior
probability or probability of the solutiomd(w) given the dataG(7) and the prior information
aboutA. The maximum entropy provides a way to determine the most probable solutidn of
based on this set of data. It can be shown that the posterior probabgith&#orm

exp(aS — x*/2)

P(A|G,m,a) = 7.7, ,

(2.109)

where Z; and Z;, are normalization factors that are independentdof « is a regularization
parameter and is the Shannon-Jaynes entropy

S = zwj [A(w) —m(w) — A(w)ln <A(‘”)>] . (2.110)

m(w)
This entropy is measured according to the default meadeb) that contains prior information
aboutA. The other quantity in the exponential of E3j109, x? denotes the least square dif-
ference between the datawith standard errors(7) and the constructed dajadw K (1) A(w)
obtained using the trial input of. Explicitly this is written as

2 Z [G(T) — [ dwK (1,w)A(w) . (2.111)

. o(7)

In the absence of data, the solutiondthat maximizes the posterior probability is therefore the
one that maximizes the entroy Similarly, for fixeda the most probable solution of is the
one that maximize§ = a.S — x?/2 namely by solvingv@Q = 0 with respect taAd. The most
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common way to solve this equation is by employing the Newton-Raphson methae.tBasize

of the search space is typically very large, the most efficient way to estthecsearch dimension
is by employing the algorithm of Bryarbf]. In this scheme, the reduced space is equal to
the largest possible number of eigenvaludbbtained from the singular value decomposition
(SVD). Practical application of this algorithm and additional issues sudheshoice of the
regularization parameter and the modeln(w) can be found in the review of Reff]. The
dynamic of the single and the two particle Green’s function presented in thisisobtained
with maximum entropy method based on the Bryan algorithm.
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CHAPTER 3

Two-Particle Excitation

3.1 Introduction

The knowledge of the single-particle spectrum is the key to understanddaperpes of solid. In
order to understand the transport properties e.g. the optical contyctie dielectric function,
the thermoelectrics one should go beyond single-particle quantities. In téfaneen’s function,
one resorts to highan-point Green’s functions namely, the two-particle Green’s function. It
may be classified in general into those associated with the particle-hole apartioée-particle
channels. Different techniques are appropriate to access eaclsefdannels.

Perhaps, the most studied one of them is the particle-hole channel teie\anumber
of material properties such as the optical response, the dielectric and gmeticasusceptibil-
ity. With the rapid development of experimental tools one can now probeaetyithe trans-
port properties. Several techniques for this purpose have beenyadpdoch as the optical
spectroscopy, the inelastic neutron scattering (INS), the raman spegypthe electron energy
loss spectroscopy (EELS). The patrticle-particle or hole-hole chahaeésbeen much discussed
in connection with the Auger electron spectroscopy (AES) and the appsapotential spec-
troscopy (APS). The recently introduced two-patrticle technique soecdiable photoemission
(DPE) or(~, 2¢) is expected to provide a new direction in the study of particle-particle excitation

3.2 Optical Conductivity

The frequency-dependent optical conductivity is an important préteeatronic degrees of
freedom that yields various quantities such as the electronic band gafiering processes, ef-
fective carriersj(]. This quantity has become increasingly important during the last decade in
particularly for strongly correlated systems that show unusual optieabhcteristics. In order to
measure the optical response as a function of frequency, there eeddifferent approaches that
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3 Two-Particle Excitation

are commonly used. In the first method, a sample is exposed to monochrord&itora The
amplitude and the phase of response are measured at single frequehiais might be the re-
sistance and the capacitance, the complex reflection coefficient, or the almglitup and phase
shift upon transmission. The problems of relating the dielectric function ooplieal conduc-
tivity with the measured quantity boils down to solving the Maxwell equations. rigxg two
approaches use, instead of monochromatic radiation, an excitation with defieikd time or
spectral dependence and therefore are capable of determiningpgbase®ver a wide frequency
range. The radiation wavelength used in the experiments for almost adlisastatively large in
comparison with any length scale in solids. In this way, the momentum depenitiahe optical
conductivity can be set ag— 0. In addition to that the magnitude of the perturbing field has to
be small enough such that the signal is linearly proportional to the exteentairbation.

The microscopic description of the optical excitation in solids has been forrdubgte
Kubo [61]. In what follows we shall first derive the expression for optical awactivity in the
continuum case and then discuss the formulation in the lattice system. The apticiictiv-
ity oas(q,w) determines the induced curreht(q,w) upon an applied transversal electric field
Ey(q,w) (Ohm’s law)

Ja(qaw) = O-ab(qaw)Eb(q,w)' (31)

Expressed in terms of field operators, the Hamiltonian reads

. 2
H= /d?’r;n [(v - fA) w(r)] + Hi. (3.2)

wherey(r) is the electron field operator; is the mass of the electron and tHg,; designates all
possible interactions in the solid. In the Coulomb gauge, the relation of eleetdafid vector
potential is given byA(r,t) = w The total current # (r) in the presence of the vector
potential A can be straightforwardly obtained by taking the derivative of the Hamiltowiém

respect toA which then leads to

—tie e?
S (1) = o [T () Vib(r) = (Vo' (r)e(r) — — ApT(r)y(r). (3.3)

mc

The next step is to take the average of the total currgiit) which is equivalent to the current
of Eq.@3.2). In doing so, we recall that in the perturbation theory, the ensemblageeaf any
operatorO in the presence of the vector potential can be expressed as

t

(O(w,1)) = Oulr.t) ~i [ at([Ou(r.0). Halt)]). (3.4)

— 00

whereOy(r, t) is the operator in the Heisenberg picture and heis the part of Hamiltonian
that contains the vector potentidl in linear order. The average sign in the right hand side
corresponds to the average of the interacting but unperturbed systeombination of EqJ3.3)
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3 Two-Particle Excitation

and Eq.8.4) gives
30 = (7 (00) = — AGet) (e, )
/ dt’ /d3' Jo(r, ), jo(x',t). A, ¢)]),  (3.5)

where j, corresponds to the current operator #ar= 0. Fourier transforming into the mo-
mentum space and comparing with ) yields the well-known Kubo formula for the optical
conductivity in the continuum

L ) o &
rlaw) =+ [ ate O a i) + P, 36)
This formula consists of the paramagnetic and the diamagnetic terms wherentiee idenoted
by the current-current correlation function that contains many bodyactiens. The optical
conductivity is obtained by solving the two-particle correlation function wiseh be done most
conveniently in the Matsubara formalism

B .
HGquuwn>——j€ dren™ (T, ju(@,7) (1, 0)) (3.7)

wherew,, are bosonic Matsubara frequencies.

In the case of a lattice system e.g. the Hubbard model oR2Hg,(one can also derive a
Kubo formula similar to the one in equatiod.) [67]. By adopting the so calleBeierls ansatz,
the vector potential\ enters the Hamiltonian by performing a substitut&(}m cIeiefA-d“. It
can be shown that the interaction term of the Hubbard model consisting detisty-density
interaction is gauge invariant. On the other hand the kinetic energy nowit®rke vector
potential thus suggesting that the optical processes arise from the eldwtanove from one
site to another. Substituting the creation/annihilation operator Rdir|s ansatz into Eq.Q.1)
and expanding up to second orderArnleads to

€2
H:%—ZFA<MA>2A%mm® (3.8)

rr

whereH,, stands for the kinetic energy part of the Hamiltonian Ed)( ej,(r) is theax compo-
nent of paramagnetic current density

=it Z e Criae — r+wcm (3.9)
or in the momentum space
jl@) =) v(k)ch(k — q)es(k+q) (3.10)
ko

wherev(k) = Ve(k). The last term of Eq3.8) K, (r) is the kinetic part expressed as

K,(r) = —tz CIgCrJr:w + CI—i—xUCI“U' (3.11)

o
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The total current density is then obtained by evaluating the first dervatigquationd.11) with
respect taA
Fa(r,t) =ejp(r) + 2K, (r)A,(r,t). (3.12)

Following the same steps as in the continuum case and transforming into the monakembain
one obtains the current density for the lattice system that consists of thkedismagnetic and
paramagnetic terms

Jo(q,w) = € [(Ky) + Maw(q, w)] Ag(q, ). (3.13)

Comparing with Eq3.1) one finds the optical conductivity that consists of a paramagnetic term
or the two-particle correlation function which can be evaluated in the Matadbemalism fol-
lowing Eq.B.7). Explicitly, the current-current correlation function is then obtaineduiysstut-

ing Eq.B.10 into Eq.@.7) as follows

I (iwy) = /0 ’ dretm™ S "N " v(k)v(K) <Tch,(k, 7)o (K, T)cg,(k')ca,(k')> (3.14)
oo’ Kk’

where the momentum dependenrge the above equation has been discarded following the ar-

gument mentioned before. The evaluation of the two-particle propagatdoeaone via the

diagrammatic expansion. In this respect one has to deal with an expressitar to the one

in Eq.@2.39 in the particle-hole sector. The limit of infinite dimension offers a great simadific

tion in that only the first order survives while higher order vertex adias vanish due to the

different parity p3]. This simplification leads to the expression of the optical conductivity that

consists of the bubble diagram only

o i) :5 S V2 K)Gy (K, )G (K, i + i) (3.15)

k,o,ivy,
whereG (k, iv,) is the full single-particle Green’s function with the DMFT self energy. Bglev
uating the Matsubara summation which is ensued by an analytical continuatiom foéquency
one arrives at the expression of the optical conductivity in the infinitedioation limit [64]

fw) = flv+w)

W

o1 (w) = %o / depole) / dvAle, v)Ale, v+ w) (3.16)

where A(e, v) is the single-particle spectral functiofi(v) is the Fermi function an is the
constant that incorporates various factors including the constantgtissummation of spin and

pole) = Y v (k)3(e — e(k)) (3.17)
k

is the factor of the lattice structure. It is important to note that the above equatanly the
real part of the total optical conductivity expressed&s) = o1 (w) + ioz(w). Once one of this
guantity is known, the other part can be calculated via the Kramers-Krelaitian

o1 (w) = 2 / YW, (3.18)

T )V —W
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The optical constant obeys various sum rules. The most frequentlyisisiee the well-known
f-sum rule that relates the integrated optical spectra and the number ofgzantiads

m™ne

00 wg 2
dw=-L = 3.19
| =2 = 2, (3.19)

wherew, stands for plasma frequenay,is the carrier density andh, denotes the free electron
mass. Within thel — oo approximation, the sum rules takes the form

/0 " ov(w)dw = % <g8 > , (3.20)

wherep/(e) = %po(e) and D(e) is the non-interacting DOS. In practice however, one relies
mostly on the frequency-dependent spectral weight expressetagsfo

Q
K(Q):/O o1(w)dw. (3.21)

For a detailed discussion on the optical conductivity in the single band Hdlmbadel within
DMFT, we refer to Ref.3(.

Derivation of the optical conductivity in the antiferromagnetically orderease basically
follows the same lines as in the paramagnetic phase. However in the prasenboe has to
deal with the kinetic energy that consists of two different species ofabpesa’(a) andbf (b)
that correspond to the creation (annihilation) operators in the sublatticed Baespectively
[61, 65]. Rewriting the kinetic energy of EQ(67) in terms ofa, b and hopping amplitudeone
obtains

H =ty (al,bjo +b,ai0) (3.22)
ijo

or in the momentum phase
0 e(k)
— T
H = kE Ul (k) <€(k) 0 >\Ila(k), (3.23)

with \Iff,(k) and¥, (k) are the spinors
Ul (k) = (af(k), 0 (K)), (3.24)
Vo (k) = (as(k), b (k)).

Similar as before, the current operator is related to the group veloctd the density which in
this context is replaced by spinor. This is written as follows

. t 0 v(k)
J E\Mk) <V(k) 0 )%(k» (3.25)

Following the line as described before in the paramagnetic phase, thatecureent correlation
function reads

LI
(iwp) = /0 dré“nm 3N v(k)v(K) <TT [ag(k,T)bo.(k,T)+bj,(k,r)aa(k,¢)

o,0’ kk’

[ag,(k’)bgl (K) + b, (K )ag (k’)} > : (3.26)
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3 Two-Particle Excitation

By using the approximation in the limit of infinite dimensions, one deals again withaiirs
der contributions. After some straightforward algebra and FourierfoEmsig into frequency
domain, the correlation function in terms of the single-particle Green’s fumotiads

> VAK) (G (K, v + iwm)GEP (K, i) + G (K, ivn)GEP (K, v, + iw)

k,ivp o,
FGAB (K, vy + iwm)GAP (k, ivy) + GEA(K, vy + iwn)GEA (K, ivy)] , (3.27)
where
ng(kyiVn) - QUCO-/C_O-E(k)z’ (328)
BBy, - _ Co
G o) = o
ABv i\ _ aBAm i N e(k)?
ga (k7“jn) - ga (k7 7’VTL) - COCU’ _ 6(k)27
A/B A/B

are the single-particle Green’s function in the sub latlcend B, (5 '~ (iv,) = iv, +u— X" .

In the Neel state, the relatiafy’ = g‘fi = (, holds. The real part of optical conductivity in
the antiferromagnetic phase is obtained by performing the analytical cotitinud imaginary
frequency and then taking the imaginary part of Green’s function whanthsl&o

o1(w) = Z/depo(e) duf(y) —fwtw) [Ay(€,v) Ay (€, v + w)

W

+B,(e,v)By(e,v + w)], (3.29)

wherepy(¢) is the same as that E§.(7), A and B describe the single-particle spectral function
defined by

Ag(e,v) = —2ImGA (e, v + i6), (3.30)
Vs

B, (e,v) = —lImeB(e, v+ id)].
Vs

The generalization of the above formula to the multiband case can be doightéoravardly.
One has to deal only with the summation over all orbitals which in the case of DddRies
from the diagonal terms only.

3.3 Electron Pair Excitation

The particle-particle Green’s function is readily calculated within the seiisbency loop of
DMFT-QMC. The nature of the approximation however only allows for eatihg the local two-
particle Green’s function or the so-called onsterave pair function. Thus, for other pairing
symmetries such at-wave, extended-wave andp-wave pairing which are the central quanti-
ties in the context of higA-. cuprates, one should go beyond the DMFT method. The extended
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3 Two-Particle Excitation

DMFT method that incorporates the non-local interaction via additional terthg iHamiltonian
but at the same time maintains the single site approximation does not providevamyaages in
this respect. Nevertheless, the pair Green’s function derived fronmiiisod already incorpo-
rates the influence of the non-local fluctuation that enters from the giagtesle self energy and
thus its structure should give more information than those obtained by therdamwal DMFT
method. In the single site approximation, one then evaluates the local twag@nteen’s func-
tion expressed as

Xpp(7) = <TTA*(T)A(0)>, (3.31)

whereA = cyc;. Since the particle-particle Green’s function is obtained in terms of the imagi-
nary time or Matsubara frequencies, one should rely on the maximum entrofpyain the real
frequency spectra.

Performing the calculation for single and two particles simultaneously within time sa
approximation as described above is certainly of an advantage. Thgeshamthe two-particle
Green’s function lead to the renormalization of single-particle quantity anel weécsa. It is
instructive however to pursue other scheme that might be useful aghrbark of the result of
the DMFT+QMC method. The widely used approach to construct the paptiticle Green's
function is the ladder approximation. As will be further elaborated in the segtion, this
scheme has been applied in the study of the two-particle spectroscopy eamtiih various
approximations for the single-particle Green’s function. The presettioseis thus intended
to obtain the exact expression for the two-particle Green'’s function whithbe derived in a
manner similar to that described in Réf[ 67]. Note however that some modifications have
been made in order to fit the approximation of the local self energy of DNSEarting with the
full expression of the two-particle Green’s function in the Matsubareesgmtation one has

Xpp (9, iwm) =/<Trc o(k,7)co(a = k,7)ch (@ = p,0)cl, (p, 0)), (3.32)

with [ is short-hand notation for >, foﬁ dre™m™ andw,, is a bosonic Matsubara frequency.
This equation is a general expression of the local equation expres&e81in The evaluation of
the two-particle propagator may be performed with the aid of the perturbatmansion using
the standard diagrammatic theory by selecting the diagrams appropriate fpbrysieal problem
at hand. For the Hubbard model with the short-range interaction, onetséte ladder-type
diagrams. Summation of ladder diagrams in the particle-particle channel taaibkagrields

pr(q, iwm = 6 Z g “/n)g(q k, iwy,, — @Vn) (k q, Zwm) (3.33)

kiv,

SinceU is static and independent of the wave vector, the vertex funtticads

Ik, q,iwn) =1-— Z G(p,ivy,)G(q — P, iwy — i, )D(p, q,iv,). (3.34)

pw’
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3 Two-Particle Excitation

The right hand side of this relation is independenkof hus one obtains

X(q> Zwm)

Xpp(Q iwm) = 77— Ux(q, i)’ (3.35)
where
. 1 : . .
x(q, iwp) = 3 Z G(k,ivn)G(q — Kk, iw, — ivy,) (3.36)
k,ivy,

is the two-particle Green’s function expressed in terms of the full singtéefmaGreen’s function.
Performing standard analytical continuation and evaluating the imaginargfiihe two-particle
Green'’s function one arrives at the expression of the two-particletrspéunction

P(w) = Im[xpp(w)]. (3.37)

In order to evaluate the above equation, it is sufficient to calculate the immagoagt of the
two-particle propagatoy(w), and analytically continue it to real frequencies. This yields

Xi(w) = 6o /_OO dv /_OO deD(e) [A(e,v)A(—€,w —v) X
(1= f) = flw=-v)], (3.38)

wherey;(w) stands for the imaginary part af(w), D(e) is free density of statesd (e, w) is
the single-particle spectral function with the DMFT self energy @jds a constant. The real
part of the two-particle Green'’s function is obtained via the Kramers-igroslation expressed
in Eg.(3.18 which follows from the causality condition. It can be shown that the twiigla
spectral function obeys the sum rule

/_OO P(w)dw = (nyny) . (3.39)

In addition, we note also a useful auxiliary quantity that is related to the pddaiiddle occupancy
reads

Q
Kp(Q):/O dwP(w). (3.40)

In the case of the degenerate Hubbard model that neglects Hundingpuigs straight-
forward to extend the above formulation. In terms of a composite orbital sgexin = («, o)
one writes )

X (9, iwm)

o (o Gm) = & . 3.41
Yo (@) = T 0 (g ) 340

The two-particle propagatqra’o‘/(q, iwn,) reads in this casesp, 67]

/ 1 ’
Xa,oz (q7 ’me) = —B Z gCV(l{7 ’l:Vn)ga (q — k, Z(;Jm — ’I,Vn) (342)

k,ivn,

Straightforwardly, the sum rule in the degenerate case is expressaltbas

/ h P(w)dw =" (nanas). (3.43)

—o0
aa’
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3 Two-Particle Excitation

3.3.1 Survey on Experimental and Theoretical Study of Two-Part icle
Excitation.

The most notable examples of two-particle spectroscopy are the Augdrdalé&pectroscopy
(AES) and the Appearance Potential Spectroscopy (APS), intendewhe the occupied and
unoccupied states respectivelig[. What lies at the heart of AES and APS techniques is the
Auger process characterized by the emission of the Auger electrone Bxtreriment, the high
energy photon beam, sufficient to create the vacancy in the approgretesthe atom, bom-
bards the sample material and ejects the single electron. The electron in thieeeitélls the
shell vacancy with a simultaneous emission of an X-ray quantum or the eje€aomuger elec-
tron. The important difference between these cases is the final state syfstieen. The former
is marked by a single vacancy in the outer shell which, in contrast to Augeegs consisting
of two vacancies. The kinetic energy of the Auger electron ejected frenatibm in the solid
is typically 25-3000eV which corresponds to the low effective samplinghdepeaning that the
initial state of the Auger electron relatively close to the surface. Thus, tlyerspectroscopy is
a surface sensitive method and appropriate for investigating the chenfitiey surface sample.

The technique is also used to investigate the electronic structure of soligswas initi-
ated by Lander{(], who pointed out that the valence-band Auger spectra is the self kaioro
of the single electron valence bands. In some cases, the concept effthers/olution worked
relatively well. However, it was later shown by Poweill] that the core-valence-valence (CVV)
line shape of Ag could not be obtained from the self convolution of themedwstates. Further
studies on transition metal elements (Cu,Zn,Ga,Ge,As and Se) also showeadatisaigt with
the concept of Lander}]. Since then the ability of the AES/APS to reproduce the single-particle
properties, i.e DOS has been seriously questioned. The need to undetstaissue becomes
important particularly for correlated systems since it might provide additiof@mation to the
single-particle properties. To address this problem, Sawaizifyahd Cini[7Z] took the first step
to study the behavior of the Auger spectra in the narrow band materials isgtimarmetal. In
the framework of the Hubbard model, they calculated the two-particle Gré&amction by means
of the ladder approach. This was then combined with the single-particlegpeabtained from
the T-matrix approximation. They pointed out that in the strong coupling interacégimre,
the spectra show a strong atomic peak while in the weak coupling the spexteapacted to
have a broad band feature that resembles the result of the self cormoB#eed on this study,
AES/APS spectra were suggested to be able to give insights into the impoofacmeelation
effects.

Theoretical studies on this subject were extended by several auttiodifferent levels of
approximations for the single-particle states as well as the two-particle staggdia et al. [4]
calculated the single-patrticle properties by employing a second-orddor@binteraction per-
turbation with an additional "local approximation” to simplify the calculation. The-particle
propagator on the other hand was calculated within ladder approachalCmed Kudrnovsky
[75, 76] employed the self consistefit-Matrix approximation for the single-particle level in
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3 Two-Particle Excitation

combination with the ladder approximation for the two-particle propagatorsérias of works,
Nolting and coworkerst6, 77, 68] utilized a simplified single-particle DOS namely B-Steeple
DOS which mimics the satellite or the band like behavior. He coined the téimest andindi-
rect interaction to distinguish the influence of correlation on the single- and on thgarticle
level. The former indicates the interaction between two excited electron @, lnahile the latter
is subsumed in the single-particle self energy that renormalizes the inter&geg’s function.
Despite being extensively studied for 30 years or so, there is no geoasensus on what the
actual advantages of AES and APS in elucidating the electronic structacdias.

Other experimental techniques of interests in the context of two-particléydte) and
(e,2e) that allow to directly map the energy and the momentum of the electronkds [S@,

, 80]. These relatively new technique in the solid state physics were originaligiajeed to
investigate the electronic structure of atoms and molecules. In the experithergsimary elec-
tron with an energy scale approximately 10-50 keV impinges onto the tandatsw@and knocks
out a pair of electrons that subsequently emerge on the opposite sidesoffhee that does not
contain the incident beam. The excited electrons with the energy (momeftum) (ki, k)
are counted only if they are detected coincidently. This ensures thatleothoas originate from
the same scattering event. Thus the electron with the binding enesggd momentunk can be
obtained by means of the energy and the momentum conservatith, a§,[87)

w = Eo — E1 — EQ, (344)
k =k; +ky — kg (345)

whereEjy, kg, are the well-defined energy and momentum of the incident electron. Within this
high energy (e,2e) experiments, it has been demonstrated that the ndgatsot@current is re-
lated to the single-particle spectral functiGis]84]

1 k1ko

J: (277') TO ee

Ak, w), (3.46)
wheref.. = (j—g) is the Mott scattering cross-section that includes the effects of exclemge
tween colliding electrons and(k, w) is the single-particle spectral function. Early (e,2e) spec-
trometer has an energy resolution within the range of 90-150 eV, thusgnatefor studying
any valence bands of solid. It took almost two decades to reduce tHatiesaown to~ 6eV
where some of the valence band structure of amorphorous carbonlmudolved. Develop-
ment of the experimental setup by the addition of an electron monochroria}drds improved
the resolution of energy as well as of the momentum to 0.9-1.5eV and 0.1pactigsly. To
date, this high energy spectroscopy has been applied to variety of solidahatg. Al, Cu and
also vanadium sesquixoide {85) in the metallic phase. For the vanadium compound the ex-
perimental spectra are in a good agreement with that obtained from baotustrcalculations
using FP-LMTO (Full Potential Linear Muffin-Tin Orbital3f]. The new (e,2e) experimental
set-up uses low energy-incident electrerB00eV and it is operated in reflection modd[. In
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3 Two-Particle Excitation

.

Figure 3.1: A schematics of the one-photon, two-electran2€) experiment. Upon the absorption of a
VUV photon with an energy two electrons are excited into the vacuum and simultangousl|
detected at the energies, c; and the momentk,, ks.

this case, one does not require very thin sampJEQOA as usually needed in the high energy
experiment.

The other type of coincidence spectroscopyqis2¢) which is schematically shown in
Fig.3.1 These experiments are conducted in the regime where the radiation fielddesezibed
classically and the time-dependent perturbation theory in the light-matter itiverand the
dipole approximations are well justified (low photon density and low photaquisacy= 50
eV). In terms of the energy of the two emitted electrepnande,, the energy conservation law is

hv —w =-¢1+ e+ 2¢ (3.47)

where¢ is the work functionw the initial (correlated) two-particle energy. Application of this
technique to study the pair of electrons of the valence bands was fiosted by Herrmann et al.
[8€] for clean Ni(001) and Cu(001) crystals. In the spirit of the singldipi@rphotoemission as
described by Caroliq9], the photocurrent of double photoemission (DPE)~r2¢) is written
as 0, 97]

J / de (W) |8 A() A(E —w — A} w®) (3.48)

where\\I/(Q)> stands for the correlated two-particle stateés+= E; + E- is the kinetic energy of
the outgoing electron pair with the momentum as defined abovedésdis the single-particle
spectral function. The essential point is that the operaigrfor the photon-charge coupling
is of a single-particle nature, i.eAy Zf\il A(r;).p; where A is the vector potential and
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3 Two-Particle Excitation

pi is the momentum operator of the partigle This meansA y cannot induce direct many-
particle processes in absence of inter-particle correlations that hefpainang the particles the
energy transferred by the photon to one-particle which then results in nitittipaexcitations.
A mathematical elaboration on this point is given #?]Jand also confirmed below.

The formula of Eq.8.48 has been employed in numerous theoretical studies of weakly
correlated system such as simple metats 1, 90]. Density functional theory (DFT) generates
the initial state of the single-particle with the appropriate energies. The auth&ef. P1] first
calculated the single-particle states via LKKR (layer Korringa-Kohn Rasjakethod. These
calculated states are then coupled by electronic interagtianform the statéw(?)). The theory
reproduced fairly well some of the observed experimental trends, egnsity reduces as the
mutual angles of the two excited electrons incre@sg.[A detailed comparison however has not
been successfully achieved partly due to the problem of the experimesadution. Applications
of DPE to strongly correlated system constitute a challenging task. In thi@psesection, it has
been shown that the two-particle Green'’s function is intimately related to tHaeloacupancy
in the system. In the presence of correlation, electrons tend to be asfafrapgm each other as
is possible which therefore reduces the probability of the formation ofdestate. An example
of this has been described in Chapter 2 in the context of the metal insulateitiba (or see
Eq..9). Itis thus expected that the fluctuation of the double occupancy in g#terayowing to
the strong electronic correlation is also reflected in the two-particle spectra.

To show the relation between the two-particle Green’s function and the @iroémt of
(v, 2¢), we write the two-particle photocurrenf), summed over the non-resolved initial and
final states: andm, as follows pP5, 91]

J = 2N e ) (B (N, = 2)] Aol Eu(N)* 8 (E = [Ein(Ny = 2) = En(N,)])

N, mn

(7)) _ ’
= D3 Y I Mo B (N) [P B (N, — 2))

Ny mnm/m/’

<Em”(Nv - 2)‘P2|En(Nv)>5(E - [Em(Nv - 2) - En(Nv)]) (349)

whereAy =5 (Epy (Ny — 2)| A.(P1+P2) | Em(Ny — 2)) P>. Here the short-hand notation

My, stands for the matrix elements. The photon energy is denoté&d-byiv, andg is the inverse
temperature. Furthermorey = 4m2a/v, anda is the fine structure constanB, = ¢
stands for the (hole-hole) two-particle operator acting on the state Mjtparticles with the
energyE,, (N, ). Z is the partition function. Under certain conditions specified below (the sudde
approximation and for high photoelectron energies), the variation of thexnedéments, when
photon energy is varied as to scan the electronic states of the sample, is smooth in comparison
to the change of the matrix elements Bf. Furthermore, the diagonal elements/df,; are
dominant (see below for a justification), i.84;; =~ M. In this situation Eq3.49 simplifies to

41



3 Two-Particle Excitation

(p is the density operator).

J = S S N My (B (N P BN = 2)) (B (Ny = D) Po| En(V,)

N, mn
5(E - [Em(Nv - 2) - En(Nv)])
_ aoM? —BEn(Ny) iHt pt —iHt _ iBt
=5 %/dte (En(N) et Pe™ Tt Py(t = 0)|E,(Ny))e
_ ooM? ¥ _ iEt
= 2= / dt tr (pP2 () Py(t = 0)) e
M? .
= ao% / dt < P} (t)Py(t = 0) > P, (3.50)

On the other hand, from the spectral decomposition of the two-particlen&farction P6] one
infers for the two-particle spectral densi(w) the relation

P() = 0 30 30 N (B, (N, — 2) By B () (35

N, mn

(1—e)o(w — By, — Ep).

Comparing this equation with equatio®.$0 we conclude that under the assumptidp;, ~ M
the photon-frequency dependence of the two-particle photocurrgmbrtional to the two-
particle spectral density, i.e.

—C _p). (3.52)

The Matrix Elements

In the next few sections, we inspect the validity range of the approximagiég) that enabled us
to assume for the matrix elememitt,; ~ M. In the experiments, (see Fgl), the photoelectron
momentak; andk, are chosen to be large such that the escape time is shorter than the lifetime
of the hole states. To describe the photoemission dynamics, one concettisatfore on the
degrees of freedom of the photo-emitted electrons (which amounts to ttiersagproximation).
The matrix elements, e.g\,,,,../, reduce in the sudden approximation to two particle transition
matrix elements\/;;. The high energy final state (with energiese,, see Eq3.47) can be
written as a direct product of two Bloch states} characterized by the wave vectdrsandks,
i.e.

Wi, ko (T1,T2) = i, (r1)x, (T2)- (3.53)

Intersite Ground State Correlation

Correlation effects enter in the initial two-particle states. In the absenqarefiependent scat-
tering (as is the case here) it is advantageous to couple the spins of thétiméatates to singlet
(zero total spin) and triplet (total spin one) statég|[ In the paramagnetic phase and if the two
electrons are not localized on the same sites (they are mainly aiuaddR ; with i # j) the
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initial state is a statistical mixture of singlet and triplet states. The radial pathcs be written
1
as

Wy(ry,r2) = [p1(r1 — Ry)pa(ra — Ry) £ p1(r2 — Ry)pa(r1 — Ry)] x(Ir2 — r1 + R; — Rj)
= U O(Jry —r; + R; — Ryl (3.54)

The "plus” ("minus” sign) stands for the singlet (triplet) channel. Note #@iate the transi-
tion operatorA, is symmetric with respect to exchange of particles, there is no need to anti-
symmetrize the final stat8(63. In eq.B.54 the functionsy, (r1 — R;) and 1 (r2 — R;)

are single-particle Wannier orbitals localized at the sigsand R ;, respectively. N; is the
number of sites ang(|r; — r1 + R; — R;|) is a (dynamical) correlation factor assumed to be
dependent on the relative distance between the electrons. Th@ﬂﬁ)adontains correlation ef-
fects due to exchange only. Due to the localization of the Wannier statescdatioel ionic sites
x(lr2 —r1 + R; — Ry|) is expected to decay with increasing, (for i # j). In a lattice peri-
odic problem one expresses the Wannier functions as the Fourierainansf the Bloch states,
ie. o(r — Ry) = 3 Y577 hq(r)e~" 4R (1.BZ stands for the first Brillouin zone). With this
relation and exploiting the orthogonality of the Bloch states one obtains upaigtgforward
calculations the following expression for the matrix elements

Miy = (Vs|A - (P1+ P2)[Wi)

%

1.BZ
1 . .
ﬁ { Z exp(—qu . Rl‘ —11q2 - Rj)Mc(ﬁ?kl 5q2,k2 +1+ 2} X(’Rz - R]D
" laiqe
+/d37"1d37“2 Wi ko (115 r2) U0 A - (b1 + P2)x(|r2 — r1 + R; — Rj)).
(3.55)

In this equationMél?k1 is the matrix element for the conventional single photoemission from the

Bloch state)q, , i.e. Mfﬁ?kl = (Yk,|A-D1|1hq, ). In deriving the first term of3.55 it is assumed
thatx(|rz —r1 + R; — R;|) varies smoothly withry 5, i.e. x(|r2 —r1 + R; — Rj|) = x(|R; —
R;|) for i # j. For 3D periodic structure the first two terms of Ey59 vanish (momentum
and energy conservation laws cannot be satisfied simultaneously)e Haedransition matrix
element is determined by the third term 8f§5), more precisely by the gradient of the correlation
factory. If this gradient is smooth on the scale of the variationigf y, and/or¥”) then the
matrix element vanishes all together sinigg ., and\I/fuo) are orthogonal. Explicitly in this case

one finds

1.BZ
1 : .
My =~ Y {exp(—iqq - Ri — iq - Rj)0qy ky0q ke, 1 ¢ 2}
! q192
A - (p1 +P2)x(|r2 —r1 + R; — Rj|) . (3.56)

ro=0=r;

1This form of the wave function is not the most general one. For a dismuof the terms omitted due to this
(ladder-type) approximation see, for example, Re&l.[
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From this expression it can be concluded that the matrix elements diminishcieadéng corre-
lation x, in fact fori # j this contribution to the pair emission is expected to be marginal due to
screening.

On-site Ground State Correlation

The major contribution to the matrix element is expected to stem from the onsite enissio
R;. In the context of Hubbard model, one assumes that the two electrons statecontact
potential of strengty when they are on the same site. In this way, the wavefunction reads

Wy(ri,r2) = [p1(r1 — Ri)pa(ra — Ri) + 1(r2 — Ri)pa(r1 — Ri)] x(|r2 — 1))
= TOx(rz — 1), (3.57)
@59 describes the on-site two electron states that include exchange correlajob/sing only
¥ yields zero matrix elements as shown above. To obtain an expression foortieéation
factor x(|r2 — r1]) (that tends to 1 fof/ — 0), it is convenient to switch to relativR_ and
center of mass coordinat®s, . It can be argued that(|r2 — r1|) is determined by the integral
(Lippmann-Schwinger) equatiory{ is determined by asymptotic conditiong}R_) = xo +

U [dR_g"(R_,R_)§®)(R_)x(R.), whereg" is the retarded Green’s function in the relative
coordinate. For3.57) one finds

_ _ _ U
Uy (r,r2) = O (r1,10) [1 4+ TUg"(r1 —12,0)], U=

TTro0 (3.58)

The key point inferred from this relation is that the two-particle transition angdiincreases as
U increasestif&o) does not contribute to the matrix elements) and it vanishes fer 0.

To summarize this section we can say for fixed momédntgk, of the photoelectrons and a
givenU, the frequency dependence of the two-particle emissi@n), is related to the frequency
dependence of the spectral functibiw). For a givenw, the matrix elements vary withi; they
contribute aJ2 dependence td(w).
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CHAPTER 4

Single and Isotropic Two-Band Hubbard model

4.1 One Band Hubbard Model

In this chapter we discuss the results of the single- and the two-particleafaaction of the
single band Hubbard model. Our aim is to show the behavior of two-partieletrsp function
in the vicinity of Mott transition. In doing so, we employ three approximations mamMFT-
QMC and DMFT+ Ladder Approximation (LA) and first order approximatioks is already
pointed out in the previous chapter, the first approach calculates thie-sargl two-particle
within the same loop of DMFT. The other two methods on the other hand combimnestiiés of
the single-particle DMFT and additional approximation for two-particle Gsdenction. In this
section, we therefore also compare the accuracy of the two-particlexapgtion that employs
accurate single-particle spectral function. In what follows the predemtgults for the single
band Hubbard model are obtained at temperdfi/id = 0.05 and time intervalAr < 0.5. The
unit energy isW = 1 and semicircular density of states is employed in the DMFT-QMC self
consistency.

At half-filling (left panel of Figure4.l) the quasiparticle peak at the Fermi energy is
the dominant feature of the single-particle spectra in the weak coupling dtiteraignifying
a metallic behavior; the carriers are itinerant and a Fermi liquid picture i-oppate. With
an increasing strength of electronic correlations, localization sets in aeroegpby a gradual
disappearance of the quasiparticle weight and the formation of a psgudé&dectron transfer
between the two bands may occur, albeit its probability is smaller than that indtieyps case.
As the coupling strength further increases, the gap fully develops indicatinnsulating state.
The role of the double occupancy we inspect by studying the quantjty,) calculated in the
DMFT-QMC loop. Evolving from the weakly interacting (metallic) case to thersihp inter-
action (insulating) phase the double occupancy is redacgdior more energy is required to
overcome the stronger repulsion whenever forming the double occupation
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Figure 4.1: The results of the DMFT-QMC for the frequency dependencehefdingle-particle spec-
tral function A(w) for the single-band Hubbard model at half-filling for varsointeraction
strengthU (left panel) and for various electron occupancy/ai?V = 3 (right panel).

The influence of dopant concentration on the MIT is demonstrated by gltrinsulating
phase as depicted in right panel of Figdté Contrasting with the results at half-filling with an
interaction strengtl/ /W = 3, one observes the existence of a pseudogap in the spectra. The
hole doping stimulates the formation of quasi-particle peak so that the systéns attaetallic
character. This is because the doping enhances the number of holbsmhims increases the
itineracy in such a way that electron can hop effectively from one site totties.

Having commented on the generic single-particle properties of the singteHbalobard
model for Mott systems, we turn now to the discussion of the particle-parpeletml function.

For smallU/WW one obtains an intense peak that lies closetdl” = 0. The origin of such
features can be inferred from the structure of the single-particle sppéatiction as in this case

P is expected to be well modeled by a convolution of two single-particle spdaimations.
Small increase o/ /W leads to the reduction of spectral weight and the shift of peak into higher
energy (far fromw/W = 0). The latter is attributed to the difference of the Hubbard peaks in
the single-particle spectral function. As the interaction strength incretieespectral weight
decreases significantly signaling a reduction of double occupation. fgusnant is supported
by the results of the integrated spectra depicted in the inset ef.Eidn addition to the reduction

of the spectral weight, one also observes the formation of a gap in the Engyeregime (near to
the zero frequency) for strong interaction. This two-particle gap rekenthe one that appears
in the single-particle spectra (cf. Figudel) which is the usual indicator for an insulating state.

As is already pointed out above, the reappearance of the low ena@yarce as a func-
tion of the doping in the single-particle spectral function is a signal for thelliocatharacter. The
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Figure 4.2: Two-particle spectral function as function of the correthttwo-particle initial energy for
various interaction strengths. Calculations are performithin the self consistency scheme
of DMFT-QMC method. The large scale figure is shown in ing8t (Inset @) shows the
integrated spectra using equati@y0.

same pattern is also observed here in the two-particle spectral functioe thiesstrongest peak
occurs in the lowest electron occupancy and decreases as the Mtattimggphase is approached.
Thus the two-particle spectra highlight the contribution of holes to the dousigoancy proba-
bility, which is supported by the results for the integrated spectra (seedhB&.4.3).

To inspect the role of the ladder diagram summation (i.e. E&8jf( with results in the
right panel of Fig4.4), we compare with the results of the first-order approximation (shown in left
panel of Fig4.4) using (.39 (i.e. with the convolution of the single-particle spectra). The results
of the first order approximation show a smooth, broad Gaussian-likerésiatthe spectra for all
interaction strengths. This is due to the self-convolution that tends to washeoaharacter of
the original function. The presence of a gap in the two-particle specthdidtigs the difference
between the weak and the strong coupling interactions in agreement withethieys result of
DMFT-QMC and with the same energetic origin as discussed above. Thabtinét energetic
shift is reproduced by this simple scheme is the result of using an accimgle particle spectral
function. Another point is the evolution of the two-particle spectra from tealkathrough the
strong coupling limit and the associated behavior of the spectral weighte Isctieme used in
Fig.4.4, the weight seems to be comparable for all values of the interaction strengist for
U/W = 2 which originates from the low shoulder in the spectra in Figu&The reduction of
the spectral weight is related to the probability of the double occupaneythen conceivable
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Figure 4.3: Particle-particle spectral function of the single-bandblard model away from half-filling for
U/W =3,T/W = 0.05 and various occupation numbets The inset shows the integrated
spectra according to equatioB.40).

to infer that this scheme violates the sum rule for the two-particle spectrafidan(which is
dictated by the double occupancy, see equat®hB9. This is endorsed by the results for the
integrated spectra shown in the inset of figdré The shift to higher frequencies is due to the
presence of the gap. No clear suppression is observed as in FHgBeexl4.4.

Having obtained the imaginary part of the first order approximation we atspe influ-
ence of the ladder diagram summation on the two-particle spectra. The esytesented in the
right panel of Figd.4. In contrast with previous results obtained in the first order approximation
the spectra delivered by DMFT-LA are non-uniform with smooth broadufiee and a satellite
peak. For the weak interaction strength, the two-particle spectra hanggndeon the Coulomb
interaction strength. As before no clear reduction of the spectral wisighiserved. Interesting
features in the DMFT-LA scheme emerge at higher interaction strengthsh fWwbm the point
of view of the single-particle spectra, is already the regime of the insulatingephinstead of
suppressing the spectral weight, the increase of the coupling interarBogth results in a nar-
row satellite peak. The integrated spectra depicted in the inset df.#{gght panel) shed some
light on this result. The integrated spectra within the ladder approximationieatsbppression
of the weight for higher frequencies in contrast to the results of thedidstr approximation. We
remark that in the ladder approximation the suppression of the integratetiesigenot related to
a diminishing of the weight of the two-particle spectral function but is astegtiaith the width
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Figure 4.4: The frequency dependence of the two-particle spectratimmat half-filling, calculated with
the first order perturbation (left panel) and with the fullidier approximation (right panel).
Various curves correspond to different interaction sttesg The insets show the integrated
spectra. Same notation and parameters as id Rig.

of the spectra that become narrow as the interaction increases.

The two-particle spectral function away from half-filling is depicted in &igfor various
occupancies and fdi /W = 3; calculations are performed within the first-order approximation
and within the ladder approximation. No gap formation in the two-particle sptttes place.
This is consistent with the behavior of the single-particle spectral functiomhich the hole
doping of the insulating phase stimulates the formation of quasiparticles. Irrsherier ap-
proximation, one obtains the usual broad Gaussian-type structure dosmhes more dominant as
the dopant concentration increases. A somewhat similar situation is alswvedb$er the results
of DMFT-LA. In the latter, however, one observes an intense lowggneeak close to half-filling
which decreases as the doping increases. The results from bothaelpphos in contrast with
that of DMFT+QMC where the largest spectral weight is obtained for Haing concentration.
These results therefore do not reflect the fact that the addition of glégeals to the increase of
double occupancy in the system. The same is also indicated by the sum ruld pidtie inset
of 4.5. Here one observes that the spectral weight becomes minimum for the maximhugrof
doping which thus violates the two-particle sum rule for the system close tothagition. A
similar finding has been observed in referentd {vhere the bare ladder approximation (BLA)
has been utilized. In Ref9f], the decrease of the electron occupancy also increases the peaks
in the spectra, which is assumed to be a violation of the two-particle sum ruleheOother
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Figure 4.5: The same as in Fig.4, however the results are for two-particle spectra of the doped case
for various electron occupaneyat an interaction strengtti/W = 3. The left panel depicts
the results of the first-order approximation whereas in thlet panel the predictions of the
ladder approximations are plotted.

hand, by using the time-dependent Gutzwiller approximation the opposite sitaatars: The
two-particle spectral weight diminishes as the Mott insulating phase is ag@dawhich is in
line with what we obtained above within the DMFT-QMC.

4.2 Isotropic Two-Band Hubbard model

As is already pointed out, the single band Hubbard model upon which the aliecussion is
based, is useful for systems with only a single band being close to the Faeengiye To inspect
the role of the orbital degrees of freedom, which is known to be importanhéproperties of
strongly correlated systems, a multi-orbital model is needed. It is the aim afgbi®n to study
the influence of the orbital degeneracy on the single and the two-partietérap The results
for the single-particle spectral function within the two band Hubbard modepeesented in
Figure4.6. The results are similar to those obtained within the single band Hubbard nebddel (
Fig.4.2). The metallic phase shows an intense quasiparticle peak that diminishexasgpling
interaction becomes stronger. The formation of the gap for a high interattemgth shows the
existence of an insulating phase in this degenerate system. As mentioneel lagf@ssential
point that distinguishes the Mott transition in the single from the degenerateibthe value of
the critical coupling necessary to obtain a dip in the spectral function. Evemrbitally resolved
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Figure 4.6: The DMFT-QMC results for the frequency dependence of thgistparticle spectral function
A(w) of the two-band, isotropic Hubbard model at half-filling.r\das curves corresponds to
different interaction strengthiig/1. The insets show the orbitally resolved spectral functions
for the first (upper inset) and second bands (lower inset).

spectral function depicted in the embedded figures, one also learnatidb@&nd undergoes the
same transition from the metallic to the insulating phase. For anisotropic bandseickthband
undergoes an independent metal-insulator transition, a behavior cairtbe arbital-selective
Mott-transition (OSMT) and will be further elaborated in the next chapter.

The results of DMFT-QMC calculation for the two-particle spectral funcéimnillustrated
in Figure4.7that contains the two spectral functions of the total band (left panel) a@dband
(right panel). From Figt.7 we see that a small increase of the Coulomb interaction in the weak
coupling regime hardly affects the overall spectral weight. Further &simg the interaction
strength leads however to the reduction of the spectra as well as to afshét@dominant peak
to higher energies.

The two-particle spectral function of the total bands from the first cigproximation and
the ladder approximation is depicted in left and right panel of Bi§sespectively. As expected,
the former approach delivers the broad Gaussian feature which isseqoence of the self-
convolution. As the interaction increases the spectral weight is shiftediehémergies and the
low energy gap becomes evident. In contrast, the results of ladderaapp{see right panel of
Fig.4.8) show an enhancement of the spectral intensity as the interaction ircréssspite the
fact that a higher coupling is necessary for the formation of the gap ehavior of the spectral
function of the total bands for the two band Hubbard model mimics that of tigtedirand case
(see Figd.4)

For the case of interband spectra, the two-particle spectra obtained by ofdhe first or-
der approximation as well as by the ladder approximation are shown in tlentefight panel of
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Figure 4.7: The two-particle spectral function of the degenerate Hubbzodel at half-filling as a func-
tion of Coulomb interactiorl//W. The calculations are performed by the DMFT-QMC
method including total bands (left panel) and inter-banghfrpanel). The insets show the
integrated spectra.

Fig.4.9respectively. The behavior of the two-particle spectra in the single baibtbdtd model
obtained within the same scheme (see &R).(e.g. the gap existence, absence of the spectral
weight reduction) is also observed in the present case. In the metallihoasver there are
new features predicted by both approximations namely a double peak strtitél disappears
in the insulating phase. Other notable features such as the increase @igie &s the coupling
strength increases are present in the results of both methods. Thetedegpactra of the degen-
erate model indicates a violation of the sum rule for the two-particle spectrathythe first order
approximation and the ladder approximation. From the three scheme: QMEFDiMst order
and ladder approximations, the DMFT-QMC method provides the more rdasgom@dictions
which practically always obey the sum rule as a constraint on the two-paspectral function.
This is because, both the single and the two-particle propagators ar&atedioon an equal foot-
ing in the self consistency DMFT. An accurate single-particle approaamvitrmulating the
two-particle propagator, does not however guarantee the fulfilmeneafum rules. The use of
an accurate approach in the single-particle spectra captures hovegtiaept features such as
the gap opening in the insulating state which is also observed in the result BTHENC.

To connect the results of the two-particle spectra of the Hubbard maskefgs example
Fig.4.2) to the €, 2¢) signal it is decisive to recall the statements of Bal{) and Eq3.59. The
correlated two-patrticle initial energy that appears in 84.[) and which is scanned in Fig2,
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Figure 4.8: The same as in Figl(7) for the total bands. The left panel shows the results of tisedirder
approximation and in the right panel those of the ladder@apration.
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is in the uncorrelated case merely the sum of two single-particle energi@scor = w1 + wo

), i.e. in the metallic uncorrelated case we expect some spectral weighdased 0 in Fig.4.2

For a finiteU/W, i.e. for a correlated system one thus requires more energy to comp#resate
repulsion of the Coulomb interaction. This is the reason for the shift of theptwticle peak

in Fig.4.2with increasingl. The same can be observed in the single-particle spectral function
where the distance between Hubbard band approximately in ordéyiéf. The tendency of
larger spectral density with decreasitigs not reflected in they(,2e) signalJ. In fact, the oppo-
site will occur. The reason for this is that according to B&p® and Eq.8.58 J is proportional

to the product of the matrix elements and the spectral function. On the othdrtha matrix
elements decrease with (cf. Eq.3.58), and in fact vanishes fd/ — 0 counteracting against
the trend withU of the spectral functio (cf. Fig.4.2). We stress however, that the results of
the two-particle spectral function depicted above are still relevant toythge) measurements in
that, for a giverl/, the matrix elements are hardly dependent.on

4.3 Two-Dimensional Hubbard Model

Immediately after the discovery of high-temperature superconductivitydmn8rz and Miller

in 1986[L00, Anderson suggested (1] that the two-dimensional (2D) Hubbard model holds the
key to explaining this phenomenon. The band structure calculation oftesprampoundl[0Z]
indeed showed that the quasi two-dimensional layer £ a pronounced contribution near
the Fermi energy. Following Anderson’s proposal, a great theoreditait has been devoted
to studying the physics of 2D Hubbard model. Despite years of efforte tiseno conclusive
evidence for the existence of superconductivity. In this connectionwitdely believed that the
understanding of the normal state properties may provide important cluesgapkrconducting
mechanism. This is motivated by the fact that cuprates exhibit a number wisdmas properties
which is somewhat difficult to understand within the framework of the Fermiditheory. One
of the most controversial issues is perhaps the origin of the pseudoghp single-particle
excitation which is a generic feature of the hole- and electron-dopedThigistems.

Various approaches have been implemented to investigate the electronfarstiofcthe
2D Hubbard model. The results of numerical simulations within the finite size lattiaetqm
monte carlo (QMC) have indicated that the groundstate of the model at lhal-is antiferro-
magnetic insulator. When the system is doped away from half-filling, it besonegallic and
then superconducting. The relationship between the metal-insulator trar(8itiéhand anti-
ferromagnetism (AFM), however, remains less understood. In additiomas shown by several
authors that the suitable scenario of pseudogap formation is the one tbellydlelated to the
short-ranged AFM fluctuations. D3 104]. In view of MIT, there are two limiting cases that
have to be considered. In the weak couplibg £< W), spin-density-wave instability occurs
due to the presence of van Hove singularity and perfect nesting of tha Berface. The MIT
in this picture is due to the doubling of the unit cell generated by magneticingdefhe sec-
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ond opinion was suggested by Anderson that assumed large Coulomsigel (compared
to the bandwidth/). In this strong coupling approach, the Mott gap is present fot/ai: 0
as in one-dimensional systems. The antiferromagnetic order in the low tdomgeisathus the
consequence of the MIT.

In the previous section, it has been shown that the metal-insulator transittoa figh di-
mensional limit can be tackled efficiently by means of DMFT. Based on theepbiof local self
energy, the lattice problem is mapped onto the corresponding impurity Hamiltesttaaddi-
tional self consistency relations. The locality of the self energy howeaasibes one of the main
drawbacks of DMFT. The approximation is thus inappropriate when dewlditigvarious prob-
lems in which the contribution of spatial fluctuation is important e.g. spin densigsyadwave
pairing, stripes, momentum-selective Mott transition. Investigations of jpggyodformation that
is related to the spin fluctuation and also metal insulator transition in 2D Hubbatel rslmould
also go beyond the local approximation. In addition, it is well-known that toeiracy of the
mean field approximation such as DMFT declines in the lower dimensionality. dicome this
problem, itis thus necessary to restore the spatial dependance of teeesgly in the DMFT. As
is already pointed out in Chapter 2, the way non-local contributions areght back into DMFT
is not unique and one can thus start from different level of approximatiS8ome examples are
Cluster DMFT, DMFT+, dynamical vertex approximation {[&), Extended Dynamical Mean
Field Theory (EDMFT).

In this section, we discuss the paramagnetic metal insulator transition in tharveo-d
sional Hubbard model. The main purpose is to study the role of spatial fticcisat the verge
of the metal insulator transition at and off half-filling. To that end, we empIBWET where
spatial correlation is incorporated via spin-spin correlation term in the aabHamiltonian as
expressed in the EQ(77). The information of lattice is obtained from the two-dimensional
density of states which can be analytically derived from the dispersiogeegpressed as

e(k) = —2t cos(kx) — 2t cos(ky) + 4t cos(kx) cos(ky), (4.1)

with ¢, ¢’ correspond to the nearest and the next-nearest neighbor hoppititudmpespectively.
In the results presented below, only nearest neighbor will be condidditeus one deals with
symmetric density of states with the van Hove singularity at the center of the Barcffective
action of EDMFT as expressed in the EfJ{9 together with the self consistency relation of
electrons and bosons is finally solved by employing the extended versi@QWaf method that
incorporates the electron-boson degrees of freedom. In the calcylatset the bandwidth
W = 2, the temperaturé@’ /W = 0.1, the Coulomb interactioty/W = 1 and the increment of
time slices ag\ < 0.24.

At first, let us discuss the evolution of dynamical spin susceptibility for difievalues of
the spin coupling/ /W as illustrated in the left panel of Fig1lQ We note here that since the
presented results are obtained in the paramagnetic phase and also inetheeadifsa magnetic
field then the relation of longitudingl, and transversal spin susceptibility. expressed ag; =
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Figure 4.10: The left panel shows the imaginary part of dynamical spircepsbility x”(w) of the two-
dimensional Hubbard model at half-filling for various cangll/W atU/W = 1. The
right panel illustrates the results for various occupatiamber atf /W = 0.2.

2y, holds[L05. Within our calculational scheme, we have checked that the above relation

well fulfilled. The dynamical spin susceptibility is composed of broad singk pethe absence
of intersite interaction and the low frequencies are lineav.ininclusion of spin interactions
slightly changes the high energy part of the susceptibility which is accongpbyithe gradual
increase of the low-energy spectra. Note that the former is located attbead~ ¢2/U. When

spin coupling is increased, the primary low-energy peak becomes stmrgeconcomitantly
suppresses the high energy spectral weight. In order to fully unddrst@se behavior, it is
interesting to have a look into the standard phenomenological descriptitims gihin excitation

provided by the random phase approximation (RPA) where the spinislity y(k,w) is
expressed as

Xo(q,w)
1—Ixo(q,w)’ (4.2)

Herexo(k,w) is the non-interacting susceptibility reads

x(q,w) =

Z ek +q)) — f(e(k))

wtek)—ek+q)’

(4.3)

and [ is the coupling interaction. In the absence of interactions, the particle-hopagator

can be analytically evaluated. It is also known that in the limitvof> 0 the imaginary part
of susceptibility is proportional tw. The increase of coupling, particularly toward the Stoner
instability criteria leads to the enhancement at the low energy peak knowtyuasiparamagnon.
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The adjustment of the low-energy susceptibility is simultaneously followed bgttheges in the
effective massn* and equivalently in the single-particle self energy. Generally, this emagiat
can be taken as the signal for the formation of the local moment in the systenedAwith this
knowledge, the increase of low-energy susceptibility in&t0as a function of intersite spin
coupling is thus a clear signature of the formation of local moment and theiiitgtabmetallic
phase.

The influence of dopant concentration on the spin suseptibility is depicteceinght
panel of Figd.10Q It is calculated with the same parameters described above bLtidr= 0.2.

In general, the spectra are characterized by “peak-dip-hump” steuictuall band occupancies.
These results indicate that the high energy peak at half-fillind foF = 0.2 is physical. As the
system is doped, there is a decrease of low energy spectral weight ishieadily observed in
the low doping concentration, e.g.= 0.98 and this is followed by the increase of high energy
part. We interpret the high energy hump as the excitation from low energpgstaother excited
states. The changes of spectral weight further evident as the dopacéntration increases.
Finally at the highest doping, one observes a broad response whichaalsists of small peak
at low energy part, an artefact from the half-filled case. In contribttivat of half-filling, the
overall behavior of the dynamical spin susceptibility in the present caseafbe described
within RPA theory in particularly at high energies. Nevertheless, the adjastwhéhe lineshape
of the susceptibility marks the influence of the doping and thus electronielation and more
importantly this changes will be reflected in the single-particle level. In this, casesxpect
the reduction of effective mass as well as the changes of the self etmsvgyd metallic like
behavior. In addition, the presence of the dip in the spin excitation is alsdeyest since it
might contribute to the additional behavior in the single-particle spectra.

Results of single-particle spectral function for different valueg/é¥ are illustrated in the
left panel of Figd.11 In the absence of intersite spin interactions but for small coupling values,
the spectra consist of a single peak resonance signifying the metallicctdraoh the system.
This quasiparticle peak is the smoothed van-Hove singularity due to the ioflwémany body
interactions. At small intersite couplinyW = 0.15, one observes a reduction of the spectral
weight atw = 0 which can be attributed to the small increase of the low-energy spin excitation
spectrum. As the interaction further increases, the quasiparticle peakiiécsigtly suppressed
and the formation of the lower and the upper Hubbard bands becomes learels the higher
coupling valuel /W = 0.25, one can see the formation of a dip at the Fermi level, indicating
that the system at the verge of metal insulator transition. In this regime, the ianagiart of
self energy diverges and as is already pointed out above, one asovelthe formation of local
moment. On the basis of this result, one may conclude that the low energycentnamt of the
spin susceptibility, has its manifestation at the single particle level namely théngpeindip
or the collapse of quasiparticle peak. This also provides an important hirth#ira is strong
instability of metallic phase in two dimensional Hubbard system when the spatialdtion is
considered.
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Figure 4.11: The spectral function of the single-band two-dimensionabbard model fol//W = 1
T/W = 0.1 and at momentum vectdt = (7, 7). The results of the left panel are for
various values of /TV at half-filling whereas the right panel are for different tditlings.

The results of single-particle spectral function further suggest thamétal insulator tran-
sition is possible even in the weak coupling interactidbn< W meaning also that the gap is
always present for alll > 0. Since the calculation are performed in the paramagnetic phase,
the strong coupling approach by Anderson is thus more relevant to exp&imechanism of
MIT in the 2D Hubbard model. It is interesting to note here that the formatiosefigpogap has
also been observed within the DMFX# scheme §3, 34]. They pointed out that, in comparison
to the charge density fluctuation, the spin fluctuation induce stronger instabititye metallic
phase that finally leads to the formation of gap at the single particle spedieasame is also
shown by cluster extension of DMFT, where in this respect the decofalse spectral weight at
the Fermi energy heavily depends on the cluster sizes. It is shown thatdanto obtain the full
gap opening at the single particle spectral function, it is necessary sidesriarge cluster size
[106. The study of the influence of spatial fluctuation in the three dimensionbbkia model
has been recently reported in the ref][that employs the DA method. They pointed out that
the short-range antiferromagnetic fluctuation could also influence the stalbility quasiparticle
peak.

Let us now consider the hole doped case. The spectra are depictedrighthpanel of
Fig4.11 The model parameters are still the same as above but in this case the ggingczu
fixed asI/W = 0.2. Itis clearly seen that doping has a strong influences on the low energy
part of the spectra. The resonance close)td/ = 0 emerges again as a function of doping,
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signal of the increase of the itinerant character. Along with this, the speotw consists of the
pseudogap for all band filling that lies close to the peak at Fermi enelhgyefihancement of the
quasiparticle peak is clearly a manifestation of the diminishing of the low-erserggeptibility.
In addition, the pseudogap that persists to the overdoped case candideced as a counterpart
of the low-energy gap in the spin susceptibility. In order to fully understaedhature of the
low energy peak as well as the pseudogap it is necessary to inspect tliedmggart of the self
energy. This to ensure that such behavior does not originate fromutherical continuation of
the imaginary quantities. In this respect, we obtain that the low-energy ptre celf energy
extrapolates to the finite valuenX(i07) = I' # 0 thus suggests that there is a finite lifetime
at the Fermi level meaning that the well defined Fermi liquid state is absent. iNVieinther
investigate this fact and elaborate the discussion during the presentatiom gftical spectra,
presented in the next section.

4.3.1 Optical Conductivity and Pair Excitation Within The 2D H ubbard
model

As is already pointed out earlier, the electromagnetic response of thensgsteides a clear
signature of electronic correlations. The effects are usually manifestad shift or in the van-
ishing of the Drude weight and also in the formation of the optical gap in théwmiivity spectra.
This for example is observed in the metallic phase of the vanadium oxiglesf\Mhat shows a
Drude weight and an additional incoherent peak at the higher freguéscelectronic correla-
tion increases, the gap appears in the low energy mimics that observed pettmkfunction
[28, 107]. In this section, we will discuss the evolution of the optical conductivitycsaeof the
2D Hubbard model as a function of the non-local spin fluctuation and tharda@oncentration.
Atfirst, let us observe the influence of the non-local spin fluctuation agtiiéited in the left panel
of Fig4.12 In the weak coupling/W < 0.15, the spectra show a pronounced peak at 0
which can be attributed to the quasiparticle peak in the single-particle spadttaws signify-
ing the metallic character. A small increase of the coupling apparently infigemay the low
energy part and it is reflected in a small shift of the peak. A somewhat sip@levior has been
observed in the spectral function where the quasiparticle resonanobyislightly reduced. In
the strong coupling regime, there is a drop of the spectral weight whithefudecreases as the
coupling increases. The reduction of the low energy peak together witledlogustment of the
spectral weight as the correlation increases is related to the changeofeatie energy of charge
carriers. This quantity can be calculated from B@() and is illustrated in the left panel inset of
Fig4.12 In the weak coupling regiméy (2) rapidly increases as a function Qfto maximum
value and again the spectral weight is independerdt/&F. As anticipated, the spectral weight
decreases and becomes linearly dependefdiorthe higher coupling regime which is a restate-
ment of the spectral weight suppression in the optical conductivity. Té@slg suggest that the
presence of non-local fluctuation responsible to the reduction of théikiereergy of electron
carrier.
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Figure 4.12: The frequency-dependent optical conductivity of the timehsional Hubbard model cal-
culated by using the spectral function of EDMFT-QMC. In tké& panel, we illustrate the
optical spectra at half-filling for various values bf\W. The filling dependence of optical
conductivity at/ /W = 0.20 is depicted in the right panel. The insets show the intedrate
spectra according to EQ.1).

The right panel of Figt.12shows the optical conductivity for different band fillings which
was calculated fof /W = 0.2 andU/W = 1. The increase of the low energy peak is visible
even for the low doping concentrationn = 1 — ¢). In the high doping regime, the low energy
spectra become enhanced and the high energy part displays the tigopbeg aboutw ~ 2
indicating the doping independence of the optical spectra. The incréapedaral weight thus
indicates that the system again attain its metallic character. The same behaisorrisflacted
by the kinetic energy as demonstrated in the right panel inset ¢f.ER).In general, the decay of
the high energy optical spectra does not sigw? behavior as usual for standard metals. This
suggests that the necessary condition for the Fermi liquid behavior kasvimated. In order
to elucidate this behavior, let us investigate the scattering rate and the massemients which
can be derived from the generalized Drude mo¢ié] gxpressed as

2
owy=2__ 1 (4.4)

dr L _ 4, m*(w)
7(w) mo

It follows from this equation that the frequency-dependent scatte% and the mass en-
hancementg% are associated with the real and the imaginary part of the optical conitjuctiv
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Figure 4.13: The frequency-dependent scattering rate(w) and the effective masSL in the doped
two-dimensional Hubbard model féf/W = 1,I/W = 0.2, T/W = 0. 1 and for various
band fillings.

o(w) = o1(w) + ioa(w) respectively. Explicitly, they are written as follows

1 w? 1
7(w) - ﬁRe <J(w)> ’ (4.5)
and ) )
m*(w wy 1 1
) Gy, <a (w)) | (4.6)

It can be seen from Fig.13that the scattering rate is most pronounced in the regime close
to half-filling. When the system is doped, the spectral weightdf(w) decreases. The quadratic
dependency on the frequency apparently is not observed in the t¢attulpectra. Instead, it
exhibits the linear dependency with the suppression between1 to w = 2. This is taken
as the indication for the deviation of the Fermi liquid character and thus inrdaxith the
observation in the optical conductivity and also in the self energy. The emsmncement with
the doping variations is shown in the lower panel of &if§3 In general, one observes a sharp
drop in the low energy which is followed by the linear increase at highenggrpgart. A careful
examination shows that the low-energy spectral weight increases agstkensapproaches the
half filling condition. At half-filling as well as for low doping concentratioﬂé;% collapses at
low energies indicating the breakdown of the generalized Drude model.
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Figure 4.14: The two-particle spectral function of the two-dimensiddabbard model fot//IV = 1 and
at temperatur&’ /W = 0.1. Various curves in the left panel correspond to differeteriac-
tion strengths /W. The right panel shows the dependency on the electron oncigsaat
I/W = 0.2. The insets illustrate the integrated spectra accordiritnt.40.

Next, we investigate the two-particle spectral function of the 2D-Hubbardietrat half-
filling as depicted in the left panel of F§g14 The particle-particle spectra exhibit a single broad
peak that varies according to the spin exchange coupling. As expdlestedjost pronounced
intensity occurs in the absence of spatial fluctuation. When the non-ldegation is weak the
spectral weight decreases gradually but the position of peak remathanged. On the other
hand, for higher coupling values there is a decrease of the spectgitwénich is accompanied
by a shift of peak to higher energies (away from zero). Thus one@gg@ gap opening at low
energies (near to zero) if the coupling is further increased. Followingahee argument in the
single and doubly degenerate band discussed in the previous sectipmrbenced intensity in
the absence of the spin fluctuations in this respect can thus be attributedhighhmrobability
to obtain two electrons. The increase of electronic correlation genergtéoebpronounced
spatial fluctuation amounts to reduce the formation of the electron pair whicléested in
the two-particle spectra as small spectral weight or the formation of gapdik@v energies.
This behavior is clearly comparable to the destruction of the quasiparticléntneithe single-
particle spectral function (to easily understand this relation, see for d&ahw results of the
first order perturbation theory in the left panel of Big). In addition to this, the high intensity
clearly marks the high mobility of electrons in the system while the reduction ctrsppeveight
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accompanied by the shift to higher energy corresponds to the incresmlisation character.
This can be also seen from the integrated spectra depicted in the left fnSigt414 which
shows a decrease of the spectral weight/d§” increases.

The influence of the hole doping in the two-particle spectra is depicted in thepamel
of Fig. 4.14 As expected, the location of peak is roughly the same for all doping vdlhe.
effect of doping is clearly manifested in the enhancement of the speaighiwvhich becomes
pronounced as the dopant concentration increases. This behayimsssithat the system attains
its metallic character and thus reduces the influences of the spin fluctuatias.isTrther
emphasized by the integrated spectra in the right inset ofl Higwhere the spectral weight also
increases as a function of doping.

As an interesting question one might ask in this context is about identifyingrédsemnce
of the pseudogap in the two-particle spectra as a function of the coupliafiesrthe system
is doped. From the results presented above, it is clear that the pseunfoi@ single particle
spectral function does not find its counterparts in the two particle spatitea at half-filling or
for the hole-doped case. The reason for this absence can be eatghgstoaond by recalling the
fact obtained within the first order approximation as well as the laddeoappation described
in the previous section. It is shown that both methods deliver smooth lingrapercall coupling
values as a result of the convolution procedure that washed out ardlydipgain the single-
particle spectra. The same thus applies in this case and therefore bagad fimdings, the
metallic phase with a single peak mainly at weak couplings /W < 0.15 can be only
distinguished with the one with the pseudogap at stronger interaction stigngtiserving the
position of the peak as well as the intensity. The peak of the former at Hiaid-lies relatively
close to the low energy regime, while the latter is shifted to higher energiese Imolb doped
case, on the other hand one obtains an increase of spectral weigliiratian of the dopant
concentration without changes of position.

The relation of the calculated two-particle spectra with the2¢é) experiments can be
again determined within the same formalism described before, namely by agsiin@imatrix
elements to be independentwf It is easy to conceive that the calculated results remain relevant
to the experiments at a fixéd and for the experimental situation discussed in Chapter 3.
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CHAPTER D

Metal-Insulator Transitions for The Anisotropic Two-Band Model

5.1 Introduction

In recent years a great deal of effort has been devoted to uaddrthe underlying physical
mechanisms behind many intriguing properties of the single layered ruthé@atesSr, RuO,
(CSRO). The interests in this material has been initiated by the discoverycohuentional
superconductivity in SRuQy by Maeno and his collaborators(d. Sr,RuQy is the n=1 mem-
ber of the Ruddlesden-Popper series of the layered perovskite whisbsisuctural with the
high temperature superconductor compoungl L.8a,CuQ,. As depicted in Figh.1, both com-
pounds are highly two-dimensional (2D) systems with @@@d RuQ layers for cuprate and
ruthenates respectively. Due to their close structural similarity, it wasrgiynéelieved that
by understanding the physics of ruthenates in the normal as well as ingaeeenducting state
might give insights into the nature of the high-cuprates. Nevertheless, it was soon realized
that SpRuQ, and cuprates show substantial differences in terms of the groundseatithition
temperature, the structural distortion, and also the role of the orbital@egfédreedom.

The electronic structure calculation within the local density approximation {(yédicts
SKrRuUQy, to be metallic. This is inferred from the projected DOS as well as from the leddcl
band structure of Fi§.2 [109, ] ]. This result was obtained from LDA calculation in
combination with linearized muffin-tin orbitals (LMTO) method. The partial densftgtates
shows the contribution from the in-plane @-and Ru-4 at the Fermi energy. The states of
apical O-2 as well as Sr-4d on the other hand lie below or above the Fermi level. The projected
DOS further indicates that the contribution of finite DOS at the Fermi energsigsally from
24 Ru orbitalszy, yz andzz that hybridizes with the in-plane or apical @-2The nature of the
hybridization between each of, orbitals and 2 orbitals is however different. They-orbital
m-hybridizes with 2 orbitals of all 4 in-plane O-neighbors which is opposed to the degenerate
xz,(yz) orbitals thatr-hybridize only with 2 O neighbors along the x(y) axis. As a consequence
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SrsRuQy La; ,Ba CuOy

Figure 5.1: The layered perovskite ruthenatés .

the bandwidth of degenerate orbitals is smaller than that ofrtherbital (see lower right of
Fig.5.2). The existence of degenerate orbitals close to the Fermi energy anacthbdt they
have anistropic bandwidth makes the CSRO an interesting multiorbital systensystésn thus
allows for investigating the interplay of orbital degrees of freedom aneldxtronic correlation
which is generally believe to be responsible for various intriguing propertie

The band structure of RuO, within LDA can be described with three nonhybridizing
tight binding bands as follows

e(k) = —eg — 2t, cos(ky) — 2t, cos(ky) + 4t' cos(ky) cos(ky) (5.1)

where €,t,,ty,t") being (0.50,0.44,0.44,-0.14), (0.24,0.31,0.045,0.01), (0.24,0.045,0.081,0.0
eV forxy, xy andyz respectively. The result of the Fermi surface from band structucelegion
consists of a hole cylinder at the zone center and two electron cylinderalwitist square cross-
sections centered at tiigpoint. The experimental results on the Fermi surface #R860, from
de-Haas van Alphen effect fully corroborate the shape of the calcufseni surface.

The complete replacement of’Srby smaller C&"-ion leads to an antiferromagnetic in-
sulator atl’y = 110K. The SpRuQy is thus considered being in the proximity to Mott insulator.
Since Ca and Sr are isoelectronic, this transition should not be attributed ¢hahges in the
total carrier concentration but rather to the increase of the effectietr@hecorrelation strength
relative to the bandwidth. The small Ca ion induces a non uniform strudigtrtion of the
lattice parameter. The RyQotates and tilts in such a way that the Ru-Ru separation contracts
while keeping the distance between Ru and O. This distortion also bends-BeRRubond an-
gle away from 180 and as a result decreases the bandwidth gbrbitals. The CSRO system
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Figure 5.2: From left to right: Upper row shows the partial LDA DOS for,BuQO, and Orbitally pro-
jected LDA Ru-4d DOS. Lower row, the phase diagram of &laRuQ, and the calculated
band structure along high symmetry directions in the enwaiiggdow -3 to 1 eV. In the phase
diagram P stands for paramagnetic, CAF for canted antifeaigmetic, M for magnetic, SC for
superconducting phase, -M for metallic phase and -I forlatgiyg phase. The metal/nonmetal
transition temperature is denoted By, andTcar is the CAF transition temperature .
These pictures are taken from Refif, 117.

is thus an example of the bandwidth driven system which in contrast to ddpiven highT,
cuprates.

The calculated band structure of fBuQO, (CRO) by means of the local spin density ap-
proximation (LSDA) [L14] is illustrated in the left panel of Fig3. While LSDA correctly pre-
dicts the existence of AFM ordering and the competition between FM and ARbsstethePbca
phase, it is generally fail to describe the insulating phase. This failuredniritse importance of
correlation in describing the physics of this system. The inclusion of eléctcorrelation in the
first principle calculations leads to a correct description of the bandtsteuof CRO. The right
panel of Fidp.3 shows the result of LSDA+UI[LJ with the gap opening at the Fermi energy in
the AFM phase.

The region between the two end member of G&r,RuQ, is characterized by several
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Energy (eV)

Figure 5.3: The band structure of GRuUO, calculated by means of LDA (left panel) and LDA+U (right
panel). From Refl13.

phases (see the phase diagram in the lower left panel d.Big117. At low temperatures
with rich Ca concentratiof0.09 < z < 0.2), the system remains in the antiferromagnetic Mott
insulator and changes to paramagnetic metal at elevated temperature. Astdm s doped
with Sr concentration§0.2 < = < 0.5), the system becomes metallic at all temperatures with
antiferromagnetic correlation at low temperature. Further increasing ri&eotration(0.5 <

x < 2), brings the system into paramagnetic metal.

In order to understand the physics of ruthenates particularly the origiveasfch phase di-
agram, itis thus essential to realize how the system evolves from the insutativegallic phase.
Extensive investigations have shown that the transition from insulating to meth#ise in this
system is of a novel type owing to the new class of Mott transition. This is diretfact that the
interplay between the electron correlation and the orbital degrees dbfregives rise to the co-
existence of localized and itinerant character. This issue was broutletfiarefront by Nakatsuiji
and Maeno who showed the evidence for a two-step metal insulator trarjsitign.17]. Anisi-
mov and coworkers subsequentiyl[] performed theoretical study of €a,Sr,RuQ, using a
simplified two band system representing wide bapdand narrow bandz, yz. Their calcula-
tion neglected the details of structural distortion upon Ca doping. In ordezdbthe correlation
properly, they employed LDA+DMFT in combination with non crossing appnation (NCA)
as the impurity solver. Fdy = 1.5¢V they found that while the subban@sz, yz) open a dip in
the spectra, the other subbafd)) still exhibits a strong quasiparticle peak suggesting that the
former is more correlated than the latter. This result, however, was quedtignLiebsch 117]
who argued that two bands with only small bandwidth differences alwagergo a common
metal to insulator transition. His calculation was based on DMFT+quantum marite(QMC)
on two-band Hubbard model with tight binding lattice is replaced by Bethe Dd8der to clar-
ify this discrepancies, Koget al [115, ] performed the calculation using the same scheme
as described by Liebsch. Instead of using QMC, they employed the @eatinalization thus
allowing for the inclusion of the full Hund’s coupling which was not consédkin the earlier
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works. Their results suggested the possibility of two step transition whichreeagent with the
results of Anisimov. The subsequent works by several authors furthefy this issue and also
support the possibility of an orbital dependent Mott transition(] 121, i , 124). These
works also emphasize that the simplified two band Hubbard model that imatep@nly Hund’s
coupling is sufficient to generate the orbitally dependent MIT. The MITctvits a result of the
interplay between the bandwidth anisotropy and the correlation is then kaestital-selective
Mott transition (OSMT).

The experimental evidence for OSMT is, however, remain inconcludBased on the
results of the transport properties of G&rp sRuO; on ab plane and-—axis, Jinet al. [125
pointed out that the strong antiferromagnetic correlation develops alomrg-thieection suggest-
ing a strong correlation inz andyz bands. Their results thus support that of original work of
Maeno. In contrast, based on ARPES measurement Waiid ¢t al. showed that the topology
of the Fermi surface aof = 0.5 remains nearly the same as thatrof 2. The main difference
was observed only fary band that changes from an electron like inFnO, to a hole like in
Ca 5Sr.5sRuQ,. The results of the optical analysis{/] corroborate with that of ARPES. They
emphasized that they band is more correlated than that andyz bands.

The recently published work of Neupaeeal. [128 claimed to observe the orbital-
selective Mott transition in the GaSr 2sRuO, based on the results of ARPES. Their results
also suggested that electrons in the wide band experience strong thonefar this band be-
comes insulating when narrow band remains metallic. This conclusion is drasedon the
fact that the Fermi surface of they band is absence after the doping. They further argued that
the bandwidth difference does not play an essential role in the OSMTisT$ipported from the
results of slave boson mean field theory in the three-band Hubbard madédamdwidth ratio
(W) 1:1:1 and 1:1:1.5 and two electrons per unit cell. It is found that the reduetiquasiparti-
cle weight as a function of charge transfer in the isotropic and non-gotbandwidth is hardly
different. Based on their results, they concluded that the OSMT is dbyehe interplay of the
interorbital carrier transfer, the superlattice potential and the orbitabdegf freedom.

In order to understand the physics of OSMT, we therefore discuss ioitajser the metal
insulator transition in the two-band Hubbard model with a bandwidth anisothoplge first part
of this chapter, DMFT method will be employed to study the single-particle excitatidhe
paramagnetic and antiferromagnetic phase. This will be followed by thétsesithe optical
conductivity and the particle-particle excitation spectra. The secondopdhnis chapter will
again discuss the same paramagnetic phase of the Hubbard model. Theotenestigation
in this case is the influence of spin fluctuation in the anisotropic two-bandnsySte this end,
EDMFT is employed to calculate the single-particle spectra, the spin susceptibiitpptical
conductivity and the particle-particle spectra.
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Figure 5.4: Upper panel: Orbitally resolved single-particle spectral functiontbé anisotropic Hubbard
model for various values of onsite Coulomb interactiof &tV = 0.05. Lower panel: same
as in the upper panel but for various temperature values@md/fiV = 2. The left (right)
panel corresponds to the narrow (wide) band.

5.2 DMFT Results

5.2.1 Single-Particle Properties of Paramagnetic Phase

Here we discuss the single-particle spectral function of the anisotropib&nwd Hubbard model
in the absence of a spontaneous symmetry breaking or without a spin pttarizTo that end,
we employ the model of EQ(10 by considering the Ising like interactions and neglecting pair
and exchange processes. In order to keep the model rotationally myahe relationU' =
U’ + 2J, is employed [J] and thus by choosing = U/4, one can easily determine the values
of interband interactio/’. The semicircular density of states is employed as a non-interacting
DOS in the self consistency loop, and the bandwidth ratio of naffgwand wide bandVs is
set asiW, = 2W; = 2W with W = 1 The calculation is performed at finite temperatures and
the time slices of QMC is set @t < 0.5 . Unless otherwise stated, all DMFT results presented
in this section as well as the following sections are obtained within the same nmubeith the
same parameters as specified above.

For an overview of the orbital selective mott transition, we first discussitigde-particle
spectral function at half-filling, as illustrated in Figd. When the interactions is wedk/TV < 2,
both bands clearly show the quasiparticle peak indicating the metallic beh&worall increase
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Figure 5.5: The left panel illustrates the total spectral function & é&misotropic two-band Hubbard model
at half-filling for differentU/W whenT /W = 0.05. The right panel shows the results for
different values of temperature &/W = 2.

of the interaction significantly changes the metallic character of the narrod/Wwhich in con-
trast with the other one. While the latter still exhibits a resonance at0, the former is now
already in the pseudogap state. By further increasing the interactiofirgpupoth bands un-
dergo independent transitions from the metallic into the insulating phase, i.eatfoev band is
followed by the other one. The narrow band has a larger gap than thdoeudifor all calculated
Coulomb interaction values. This is a signature that the narrow band is monglstcorrelated
than the wide band. It is noteworthy to mention here that the underlying ghgktbe metallic
phase of both bands is also governed by two different mechanismstréhg guasiparticle peak
in the narrow band is a clear indication of the Fermi liquid behavior. In thie tasimaginary
part of the self energy (not shown) can be approximatelhas(iw) ~ —I'(wy + ...). In con-
trast, the self energy of the wide band shows appreciable deviation$-&omi liquid namely the
imaginary part has a finite value @at= 0 and therefore the peak is not due to the quasiparticles
but rather finite-lifetime excitation]’2, , 123. As the temperature is lowered, the pseudogap
state in the spectra of the narrow band evolves continuously into quadgatétes. In this case
the imaginary part of the self energy can be again expressed in the Fariaitignner indicating
a well-defined Fermi liquid state. The spectra of the wide band on the othdrdwmnot show
notable changes for all calculated temperature. The results of selfyealsogsuggest a deviation
from the Fermi liquid behavior.

The next figure (see Fig.5) is the results of the total spectra calculated as a function of the
Coulomb interaction (left panel) and the temperature (right panel). SificBagfonal terms are
not considered in the calculation, these results are obtained from the sumwfati@ diagonal
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Figure 5.6: The upper-left and the upper-right panels are the orbitafolved single-particle spectral
function of the doped anisotropic Hubbard model in the naramd the wide band. The
spectra is obtained fdy/W = 2.5 andT' /W = 0.05. Within the same parameters value, the
lower left panel displays the total spectral function fotehdoping case while the lower right
panel illustrates the results for electron doping.

terms, i.e. narrow and broad band. The behavior of the narrow bamgstrinfluences the
total spectra in the metallic phase. The same case also occurs as the terafsriatwered.
However, the strong insulating character from the narrow band is fietted in the insulating
phase of the total spectra for it is washed out by that of the wide bartdisinase, the imaginary
part of a narrow band has been modified by that of wide band with a wgalkcharacter. It is
also important to mention that, while the qualitative behavior of the spectra is cabipavith
those of a two-band isotropic system, the present results have smaller adtigding. This
stems from the fact that the inclusion of Hund’s coupling favors the insglatirase as the spin
fluctuation increases in the system. This issue will be further elaboratedmextieection when
considering the influence of non-local fluctuations.

The effect of doping in the anisotropic bandwidth systems is demonstratéegl$ndThe
narrow band is apparently insensitive to a low doping concentration anéimns in the gapped-
phase (see left panel of Fig6), both for the hole and electron doped case. In contrast, the gap
of the wide band is reduced to a pseudogap. As the dopant conceninatieases: the narrow
band shows a resonance at low energies and it becomes more preddane = 1.70 . The
wide band on the other hand remains in the pseudogap state. As in the hdl&difle, the non

1In the present case only the results of the hole doping are presentée lsaime also occurs for the electron doped
case.
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fermi liquid behavior is robust in the wide band for both types of doping.

The total spectra of the hole and electron doped are displayed in the langlrqf Fig5.6.
Similar as in the half-filled case, the pronounced metallic phase at high dopimagingy due to
the strong peak resonance of the narrow band. The pseudogaprstageather hand is clearly
related to the presence of the small spectral weight in the wide band. fEsests are, in general,
in a good agreement with the recently published works by R&f][

5.2.2 Optical Conductivity and Particle-Particle Spectra

We now describe the optical conductivity of the anisotropic two-band systeich is obtained
following Eq.3.16). Although it is possible to obtain the orbitally-resolved conductivity we will
however only present the total conductivity considering that the optsdtsoscopy is not or-
bitally resolved. The results of such calculations are depicted i Fig-or weak couplings, the
conductivity shows a strong Drude peak for low energies which is the hddlofahe metallic
character. As the energy increases, the spectral weight decagly rapggesting that the low-
energy excitations in the metallic phase of this system follows the standard ligricibehavior
As the coupling increases, the Drude weight is diminished indicating a ssgdpineof the itiner-
ant character of the electrons. This is particularly so for the couplingsati < U/W <2.5,
and it is usually considered as bad metal system. A further increase ofotlilerb interac-
tion, leads to the formation of an optical gap at low energies indicating thay#tens is in the
insulating phase.

The redistribution of the optical spectral weight as the correlation inesgaslearly cor-
responds to the dynamics of the electron carriers. This can be investigaiedpecting the
kinetic energy or the integrated spectra as depicted in the inset & Fidor weak couplings,
the spectra rapidly increase froim = 0 to maximum value. This suggests that the electron
is effectively accelerated at all frequencies range. As interactioeases, the overall spectral
weight is suppressed which corresponds to the reduction of the kinetigyenf the electron
carriers. When the system in the insulating phase, the integrated speatedéertte presence of
an optical gap. In this case the acceleration of the electrons requiresy leiglrgy. Thus, it is
now clear that the loss of electronic coherence can be attributed to thg stippression of the
kinetic energy

The influence of temperature on the optical conductivity is presented inghepanel
of Fig.5.7, with the interaction parameter is set@gW = 2. The most important effects of
lowering the temperature is the rapid enhancement of the peaki&t = 0. This indicates
that the system gains its metallic character. In this respect, the resistivityuset#oh of the
temperaturey(T) = 1/0(w = 0) (not shown) hag™ dependence which is characteristic of the
Fermi liquid. It is also interesting to note that the thermodynamic instability ocaulgsfor
the low-energy part of the spectra while the high energy part is urtaffdor all the calculated
temperature values. Following the previously mentioned argument, the emhantof metallic
character corresponds to the increase of kinetic energy. This is imhsedved in the integrated
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Figure 5.7: The left panel shows the optical conductivity (w) of the anisotropic two-band Hubbard
model at half-filling for various values of the Coulomb irgetionU /W whenT /W = 0.05.
The temperature-dependent optical conductivity/gtV = 2 is demonstrated in the right
panel. The insets show the frequency-dependent spectigthtv€(2) as a function of).

spectra displayed in the inset of Fgl. Here the spectral weight is shifted to higher energies as
the temperature is lowered.

As is already pointed out, mass enhancement and scattering rate carubedidatectly
from the optical conductivity data. This is done following the lines describ&hapter 4, where
both quantities are derived from the extended Drude model. The resusli€lofcalculations are
presented in Fig.8 which displays the scattering rate (upper plane) and the mass enhancement
(lower plane). It is clear from the figure that the system at the vergeeofrthtal insulator
transition bears the highest scattering rate. When the temperature is lothereds a reduction
at low energies which can be approximateday w? dependence. The quadratic dependence
of the spectra is another indication that at low temperatures the low excitatidrecdescribed
within the Fermi liquid theory.

The enhancement of the mass at lower temperatures is also describedwiibhetythe
extended Drude model. The influence of temperatures is clearly identified ahergies where
the effective mass decreases as a function of temperature. The higigiesrspectra on the
other hand shows hardly any difference. This is clearly a reminiscdthbe bigh energy optical
spectra and which emphasizes the previous finding that only the low epargys strongly
influenced by temperatures. The extended Drude model however fakstoile the effective
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Figure 5.8: The scattering rate (upper panel) and the mass enhancelmwat panel) as a function of
w/W of the anisotropic two-band Hubbard model at half-filling &/77 = 2 and different
temperature values.

mass at relatively high temperatuf¢ W = 0.03 and7'/W = 0.05. This can be understood
using the fact that in this regime there is a pronounced suppression & Rreight that makes
them deviate from the Fermi liquid behavior. This also further explain theitsalidnge of the
extended Drude model.

Having obtained the optical conductivity spectra, one can also deducpdotra of the
Electron Energy Loss Spectroscopy (EELS) which is nothing but thesavef the imaginary

part of the dielectric function
1

wheree(w) is the dielectric function in the optical limit|(— 0)

4mio(w) .

ew) =1+ (5.3)

w

The results of such calculation at half-filling for variollgW andT'/W are illustrated in the
Fig.5.9, where upper and lower panel demonstrate the results for differereés/afU /W and

for various temperatur@€/W. The present results are composed of single peak which is associ-
ated with the interband transition, namely the transition from the lower band tau#stparticle
resonance. The metallic phase at weak coupling values and at the low &umesiis character-
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Figure 5.9: The spectra of the Electron Energy Loss Spectroscopy (EBEL8)e anisotropic two-band
Hubbard model at half-filling, calculated according to BR). The results in the upper panel
are for various values of Coulomb interaction whEfi¥" = 0.05 while the lower panel are
for various temperature values@ W = 2.

ized by a broad band with pronounced intensity. As the coupling increastble changes in
the spectra is the weight suppression as well as the shift to the highgiesndn the insulating
phase, the EELS intensity shows again a gap at low energies which is &quarhof the low-
energy gap of the optical conductivity (see Bid). We note here that the gap is a restatement of
the vanishing of the imaginary part of the dielectric function at low-enengy $hown). When
the temperature is lowered &t/ = 2, one observes an increase of EELS spectral intensity
which is comparable with the low-energy enhancement in the optical conityuclihe changes

of intensity and its relation to the kinetic energy of electron can be again stoderusing the
argument mentioned above.

The influence of the hole and the electron doping in the optical conductivignson-
strated in Figh.10 As expected, the low-energy weight increases as the number of hdles in
system increases and it is accompanied by the shift of the high energy {pelawer energies.
The number of the dopants used in the present calculation is, howeveufficient to generate a
strong Drude peak in the metallic state. Similarly to the hole doped case, as tinereteamber
in the system increases, the low-energy part rises gradually. In adtititvis, one observes
the shift in the upper energy and also the isosbestic poiat @ 2.8. The above results thus
suggest that the system remains close to the bad metallic phase which is clegfsiad by a
pronounced scattering rate (not shown) obtained from the extendeteDnodel. The effective

75



5 Metal-Insulator Transitions for The Anisotropic Two-Band Model

— ’/'_
£ s
[/
B [
./ i
C / —
) . A &, ./' 7
) | I . \ I I ]
=)
: - n=1. - n=2.
0.05- ,~ n=1.80 . n=2.20
- — n=1.90 = —. n=2.10
| | | | | | | |
% 2 4 0 2 4
wWwW WwW

Figure 5.10: Optical conductivity of the anisotropic two-band Hubbarddual in the hole- (left panel)
and electron-doped (right panel) whEilW = 2.5 andT /W = 0.05. The insets show the
optical integral.

mass on the other hand can not be described within this model. In this case tfiesiraart of
the conductivity obtain negative values at low energies.

We now turn to the dynamical pair-correlatiétiw) at half-filling as depicted in Fi§.11
The general features of the spectra remain the same as before namajlegsik like struc-
ture with the intensity varies according to the coupling interaction. In the weagling, the
spectra are composed of pronounced peak that decreases as tionér/1V increases. This
adjustments can be associated with that of the single-particle spectra, naenagiiiotion of the
guasiparticle weight and the shift of the Hubbard band. In the stronglioguregime , the low-
energy part of the two-particle excitations are depleted and transfertdgher energies and it
is accompanied by a suppression of the spectral weight. The shift ok#ietp higher energies
result in gap formation which can be attributed to the distance of Hubbawksharihe single-
particle spectra. This low-energy gap is a signature of the insulating ftuese¢he perspective
of two particles. The changes of spectral behavior as the interacticeases are closely related
to the variation of the double occupancy in the system, which in the case efieiede orbital
corresponds to the contribution of the interband and the intra-band (iseeute of Eq.8.52).
In this case, the double occupan@y;n|) of total band (not shown) decreases as the interac-
tion increases which is in a good agreement with the integrated spectra depitie inset of
Fig.5.11 The same trends are observed for intraband. The double occuipaheyinterband on
the other hand fluctuates for all coupling interactions. In addition, we ddserge that the dou-
ble occupancy in the narrow band is quantitatively smaller thus in line with thestoetad the
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Figure 5.11: The pair excitation of the anisotropic two-band Hubbardeysat half-filling within DMFT-
QMC for T'/W = 0.05 and various values of onsite Coulomb interaction. The ifllsest
trates the integrated spectra as a functiof of

single-particle spectral function described above. As a comparisonptedhere that the double
occupancy in the isotropic two-band Hubbard model fluctuates fdv Al although the total
double occupancy eventually decreases as the coupling increagedis€trepancy of the fluctu-
ation of double occupancy in these two systems is believed to be linked to th@agtbetween
orbital degrees of freedom and strong correlation. In the isotropiesyshe effect of bandwidth
is relatively small and thus the site occupation is strongly dictatdd/3¥. In contrast the inter-
play of the bandwidth anisotropy and the strong interaction ( that leads tdftbedt effective
interaction on each bands ) dominantly influences the electrons in the imdadb#s interesting
to note that the overall behavior of the particle-particle spectra at halfgfitias its counterpart
in the particle-hole excitation as obtained by the imaginary part of the invetseutic function
(see Figh.9). The main difference is the shift of the peak of EELS which is less pnocedithan
that for the particle-particle case.

The influence of the hole and the electron doping in the two-particle spéatretion is
demonstrated in Fi§.12 As expected, the peak is located at the ordel/ ofV and its weight
slightly changes as the dopant concentration increases. The loweditintsnobserved for
systems with occupancy close to half-filling. Upon doping, the spectra opasicles build up
and becomes maximal in the overdoped case signaling the increase of doalency in the
system. This is supported by the integrated spectra as depicted in the inegHdf2for the
hole as well as for the electron doped case.
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Figure 5.12: The same as in Fi§.11 with the same notation. Here however the two-particle spect
are calculated for hole- (left panel) and electron-dopégh({rpanel) forT/W = 0.05 ,
U/W = 2.5. The insets show the result of the integrated spectra.

5.2.3 Antiferromagnetic Phase

While the coexistence of the itinerant and the localized character is possthke praramagnetic
phase of the anisotropic two-band system, the possibility of OSMT remaitsaunic the anti-
ferromagnetic phase. We, therefore allow for the antiferromagneticiogdi| our calculations
and investigate the magnetic properties as well as the possibility of selectitérdsition. To
this end, the same model specified above is employed together with the DMFTdeétas
modified to accommodate the Neel ordering. The left panel of Figurgshows the staggered
magnetizationn, = (n.+ — nqoy) Of the narrow {n;) and wide bands.) as a function of
temperature for two values of the Coulomb interaction. The magnetization oathennband

is clearly more pronounced for all values@fWW. As the temperature increases, the magneti-
zation of each band gets smaller and eventually becomes approximatehasmurad the critical
temperature. This then suggests that each band undergoes a transitamtifetvomagnetically
ordered phase at the same critical temperature. From the figure onebalwes the increase
of the magnetization as a function &f/ W. Thus, in the strong coupling regime in which the
magnetization has fully developed, the anisotropic two-band system casdeapped onto
the Heisenberg model. By performing the same calculation for differenesadéi/ /17 and

T /W we then construct th€ — U phase diagram as depicted in the right panel offFi The
diamond shape scattered in the figure indicates the location where the calchkat@actually
been performed. Based on this points, the shaded area is then comustouatake a clear sep-
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Figure 5.13: Left panels illustrate the staggered magnetization as a function of temperatufg/W
in the anisotropic two-band Hubbard model at half-filling., denotes the magnetization
for narrow band while the other for broad band. The right pdisplays thel’ — U phase
diagram consisting of antiferromagnetic (AFM) and paransig phase (PM). The points
denote the parameter values where the calculations were don

aration between the antiferromagnetic and the paramagnetic phase. Gleagdi-filling, the
antiferromagnetically ordered state exists at low temperatures which ocaufa smalll /.
The line in the phase diagram indicates that both bands undergo a comnsitidnaio the an-
tiferromagnetic phase as the coupling is increased. The same is alsoembasra function of
temperature. This suggests that the bandwidth anisotropy does not playirdetermining the
nature of magnetic phase transition in the two-band system.

To make definitive statement on the nature of Mott transition in this phase, itiadtige
to calculate the single particle excitations which we illustrate in Figutd. The figures show
orbital- and spin-resolved spectral function in the particle-hole symmelcyleted for various
values of the Coulomb interactiondf W = 0.05. The upper left and lower left panels illustrate
the results of the spin-up and the spin-down respectively and the sanie tisaight panel for
a wide band. The most notable feature of the spectra in the weak coupling= 1.75 is the
appearance of the pseudogap at the Fermi energy. In addition, taeedde between the total
densities of the spin-up and spin-down is also clearly apparent. As thadtitaer increases, the
spectra exhibit an antiferromagnetic gapuat 0. Its width becomes larger as a function of the
coupling interaction. The appearance of the gap in the spectra is relatezltartishing of the
imaginary part of the single-particle self energy particularlyfor+ 0. Based on the phase dia-
gram, we expect that the transition from the pseudogap to the gappesiqutass continuously.
The presence of the pseudogap in the weak coupling with finite magnetizalioatathat mag-
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Figure 5.14: The spin-resolved single particle spectral function of tiadf-filled anisotropic Hubbard
model in the antiferromagnetically ordered phase for wegigalues of onsite Coulomb in-
teraction and fof /W = 0.05. The left panels up (down) display the spectra of narrow band
for spin up (spin down) while the right panels show the spectithe wide band.

netic ordering is developed earlier than the metal insulator transition. Thissopatticularly
for 1.5 < U/W < 1.75 where the single particle spectra (not shown) also show a pseudogap
with non-negligible magnetization. This is in accord with the proposal of Slaggrdiscribes
the metal insulator transition as a consequence of the broken magnetic symmedddition
to the above points, we also observe that the qualitative behavior of tbeaspé both bands
remains the same for higher couplings. This stems from the fact that the imagarabecomes
very large and thus completely smear out the structure of the spectra. hegdhise, one also
observes the saturation of magnetization (cf. left panel obFig).

The results of the single particle spectral function and the phase diagrserilted above
has clearly indicated the absence of a selective Mott transition in the aotifegnetic phase.
It is however interesting to discuss some evidences that can be usedtifyittenrole of the
bandwidth anisotropy. This can be seen for example in the staggered timatoe as well
as from the single particle spectra. The spectra for the narrow baedsas Figh.14 show
a satellite peak for all calculated/W which can be attributed to the pronounced magnetic
ordering for each sub lattice. In contrast, the wide band shows a “bagitistikucture and its
intensity is also suppressed compared to the other band. This differecm®pmarable with the
one in staggered magnetization where the narrow band also shows avirgethan the broad
band for all calculated//W. This observation implies that the effective Coulomb interaction
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Figure 5.15: The upper(lower) left panel corresponds to the spin-up (Japectral function of the nar-
row band forU/W = 2, T/W = 0.05 and for different band fillings. The right panels show
the results of the wide band.

is different in both bands and it is related to the presence of a bandwittbtianpy. Recently,
the authors of Refl[3(] have investigated the magnetization of the anisotropic two-band system
at and off half-filling. They employed DMFT combined with continuous time quimmonte
carlo (CTQMC) as impurity solver. They pointed out that the magnetizationeofh#inrow band
is always larger than that the other one which is in line with the above presmgelts. Based
on this data they argued that the bandwidth anisotropy does not inductvseMott transition
as in the paramagnetic phase.

The influence dopant concentration in the antiferromagnetic phase is ilegsineEig5.15
The results are obtained féf/1/ = 2 within the same temperature as specified above. The an-
tiferromagnetic gap reduces to pseudogap as the hole concentraticesegrdé-or low doping,
both bands undergo a simultaneous transition from the gapped phase setitogap state in-
dicating the absence of the orbital-selective Mott transition. For higher gpthe spin down
channel increases rapidly showing the quasiparticle-like peak. Theuppim the other hand
exhibits a weak resonance. We note here that the magnetization (not)shlswmecreases as
the doping increases. Within the same temperature as employed here biffiefentinterac-
tion parameters, Rei.p(] indicates the presence of an orbital-selective Mott transition by hole
doping at the chemical potentig) iy, ~ 0.67.

In the next figure, we discuss the evolution of the spectral functionrthdenfluence of
the external magnetic field = 0.1. The results are obtained within the same parameter values
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Figure 5.16: The same as in Fi§.14 however in this case with finite external figld= 0.1.

specified above. Clearly, the presence of the external magnetic fieldesdine formation of
magnetic ordering. This is also manifested in the values of staggered mataet(rat shown)
which in general become larger than those in the absence of a magneticlfiedddition to
that, the system becomes insulating as indicated by the single particle excitatiopesed of
antiferromagnetic gap for all calculatéd/1¥. The increase of the coupling generally does not
induce any qualitative changes in the spectra which can be understtmdrig the argument
pointed above. The most interesting behavior is that the spectral weigin ofarrow and the
wide band remains different signaling that the pertinent feature of thewaand the wide band
remains unchanged.

Optical Conductivity and Particle-Particle Spectra

We now discuss the optical conductivity of the antiferromagnetic phasal&filling which

is depicted in Figh.17. These spectra are obtained by evaluating E89 together with the
single particle spectral function of Fig15 In the weak coupling, there is a finite conductivity
atw/W = 0 which can be associated with the pseudogap in the single particle spectra and
signal of the metallic character. As interaction increases, the Drude weagighes and the
conductivity is shifted to higher energies. Simultaneously, the low-enengyeghibits an optical

gap which becomes larger as a function of couplings. This clearly inditiaétshe system
becomes insulating. This low-energy gap is also demonstrated by the kinetgyeat strong
coupling as depicted in the inset of Fgl7 and it is accompanied by the decrease of spectral
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Figure 5.17: Optical conductivity for the antiferromagnetically orddrphase of the half-filled anisotropic
Hubbard model. The left panel shows the results for varimlses of onsite Coulomb
interaction afl’/W = 0.05 while the right panel for different band occupation&/aiv = 2.
The insets show the integrated spedtié?) as a function of).

weight. ForU > W, following Ref.[55], it can be shown that the behavior ©fo(w) could be
described by a Lorentzian function@sr(w) o 1/((w — wp) + %) wherewg = Um, andy is a
guantity that is introduced to take care the finite imaginary part of the sindlielpagelf energy.
By takingm, = 1 it can be easily shown that the sharp resonance occursat/. We mention
here that the peak of the optical conductivity lies approximately in the ofd&y @/ is a signal
of the conductivity of Mott insulating type.

Away from half-filling, the optical gap becomes narrow and the Drude teiges grad-
ually as the dopant concentration increases, signaling that the systeattdiasd a metallic
character. In the highly doped case, the spectra do not indicate aumeeth Drude peak as
usually observed for a good metal. This stems from the fact that eachalsamell as spin in the
single particle spectra (&.15 exhibits a different behavior, i.e. the low-energy peak, pseudogap.
Although direct comparison to the experimental results of the optical comdyof antiferro-
magnetic ruthenates gRUQ; is relatively difficult, the present results however have given an
insights to the nature of Mott transition in the antiferromagnetic phase of amisotwo-band
system. The correlation is apparently important to generate the insulating ahasisotropic
orbitally-degenerate system as is also indicated by the LSDA results. Thplaytef orbital
and the strong coupling at antiferromagnetic phase, however, doggloce the OSMT both at
half-filling and hole/electron doped case.
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5.3 The Influence of Spin Fluctuation

5.3.1 Extended Two-Band Hubbard Model

In the previous chapter, it has been shown that EDMFT offers a systewsy to incorporate
the non-local contributions by considering the spin fluctuations in the HdbHamiltonian.
The application of the method to the two-dimensional Hubbard model pointndotexesting
relationship between the spatial fluctuation and the formation of pseudogf@simgle-particle
spectral function. The results suggest that the mechanism of MIT in thismyis related to the
strong electronic correlation and thus rule out the weak coupling pictucalliteg the facts that
the ruthenates compound is composed of two dimensional ruthenates|&D one expects
that the spatial fluctuations also contribute to the electronic properties ofytens. In order
to elucidate this issue, we revisit in this section the anisotropic two-band Hiibi@del in the
paramagnetic phase within the framework of EDMFT. Similar to what have fresiously done
in the single band Hubbard model, the non-local contributions are incgzbin the intersite
spin interaction. The Hamiltonian of the two band-Hubbard model with spin fitictus reads

joo 1o’
+ D (U = o )nitenize + Y LijaSia-Sja (5.4)
ioco’ ija

The notation in the above Hamiltonian follows that described inE4§J. The last term is the
intersite spin interaction with exchange couplifg,. that takes account the non-local fluctua-
tions. The single site action of Hamiltoniah.4) is then solved by means of QMC that incorpo-
rates the boson degrees of freedom. Unless otherwise stated, the fgasaohealculation are as
follows: bandwidthW = 1, T/W = 0.1, andU/W = 1.5. In what follows we will discuss the
characteristic of the dynamical spin susceptibility, the single-particle spéatretion, optical
conductivity and the pair spectral function.

5.3.2 Magnetic Susceptibility

In order to easily distinguish the influence of each interaction parameter imalgaetic spin
susceptibility of the anisotropic Hubbard model, we first describe irbFigthe results obtained

in the absence of intersite spin coupling with various values of the Hund{sliog .J/1¥ and the
Coulomb interactior//WW. The other parameters is determined in such a way that the system
remains rotationally invariant. The magnetic susceptibility{w) for U/W = 1 but in the
absence of Hund’s coupling shows a broad responses. As expihet@eak is located at/ W ~

1. In the finite Hund’s coupling value, one can see the formation of peakidikrire at low
energies and a simultaneous suppression at the higher energy pantth&i@oulomb interaction

and the Hund’s coupling increase the peak at the low energy part i®figtthanced and there

is a suppression at higher energy. The most pronounced enharicdrm energy is observed
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Figure 5.18: The left panel shows the dynamical spin susceptibilitfw) of the anisotropic two-band
Hubbard model at half-filling for different interactionebgthd/ /W, Hund’s coupling’ /W
and at temperatur€/W = 0.1. The right panel displays the results for Hund’s coupling
J/W = 0 and for various values of intersite interactibfiV.

for U/W = 1.5 andJ/W = 0.5. We argue in this case that the overall behavior of spectra can
be described within RPA theory. The enhancement of the low energythaalcorresponds to
the fact that the Stoner instability criteria is approached. This result stgytpat the presence of
Hund’s coupling increases the spin fluctuations in the system.

The right panel of Fich.18illustrate the results of the magnetic susceptibility in the ab-
sence of Hund’s coupling but for different value of the intersite spirraugon//W. As ex-
pected, the spin susceptibility shows a broad response in the weak cougglimge. The gradual
enhancement of the low energy peak is observed when the intersite fitteiaconsidered. The
characteristics of the spin susceptibility in the present case is clearly cabig#p the previous
one which is composed of single peak like. This results also indicate that tluisiorc of the
intersite spin interactions leads to a more pronounced spin fluctuations vitdogly effects the
low energy regime.

Having considered the influence of the Hund’s coupling and the nomdpoainteractions
separately, let us now discuss the magnetic susceptibility in the case wheaeaalieters in the
Hamiltonian of 6.4) are considered. In this respect, the model parameter&/ & = 1.5,
Hund’s couplingJ/W=0.5. The results of the calculations are depicted in the left panel of
Fig.5.19 The general feature of spin spectra in the present results is agairacastewith the
two previous case described above. The low energy part is gradudineed as spin coupling
I/W increases signaling a pronounced fluctuation and consequently thecedreffective mass.
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Figure 5.19: The same as Fif.18 with the same notation. The present case is, however, aotdor
U/W=1.5,J/W=0.5, and for various values of intersite interactipfiV’ (left panel). The
right panel depicts the results for various electron ocoofes at/ /W = 0.35.

When the system is doped, the intensity of low energy spectral weighigpdecreases.
This is shown in the right panel of Fig19 In this case, the parameters are sdt/fé1” = 1.5,
J/W = 0.5 andI/W = 0.5. From this behavior one thus learns that the doping suppresses the
fluctuation in the system and will be also reflected in the changes of thdieffegass or the
imaginary part of the self energy. We note here, in contrast with the siagié-two dimensional
case described in the previous chapter, there is no additional featumveemergy dip in the
spin susceptibility. The whole feature is thus expected to be captured bykapproximation.

5.3.3 Single-Particle Spectral Function

The effect of low-energy enhancement in the spin susceptibility at théespagticle level will
be investigated in this section based on the results of the single-particleasfienttion. At
first, let us consider the role of Hund’s coupling as illustrated in the lefelsaof Fig5.20with
upper and lower panels referring to a narrow and a broad bandcteshe The solid line in the
figure is the non-interacting density of states derived from the tight birlglamgls. The narrow
band is characterized by two van Hove singularity at the upper and the ksmi level while
in between it shows a parabolic like behavior that mimics the one dimensional Ti@Svide
band consists of a single van-Hove singularity that lies close to the Fermgyer@early these
bands are asymmetric with respect to the Fermi level and according to theréfddts, the
occupancy ratio of the narrowz,yz and the wideyz bands are 8/3 and 4/3 respectivelyi {].
By considering only the Coulomb interaction, the spectral weight of botkddrcreases and
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Figure 5.20: The left panel shows the single-particle spectral functibthe half-filled anisotropic Hub-
bard model folU/W = 1.5, and for various values of Hund’s coupling V. Note that the
solid curve is non-interacting density of statégi” = 0 derived from tight binding bands.
Right panels: same as in the left panel but in the absence oé’slcoupling and various
value of spin interactiod /W. The upper panels illustrate the spectra of the narrow band
while the lower panels show the results of wide band.

also broadens. The narrow band is composed of a single peak-likeustrudile the broad band
shows a dip at lower energies. When Hund’s coupling is consideredetileip the spectra of
both bands is suppressed. EHfW = 0.5, the narrow band shows one-dimensional like DOS
that is renormalized by the interaction. The other band on the other hasthtsoof three peak
structure with shoulders at lower and higher energies. The reductitre afpectral weight in
the single-particle spectra is clearly related to the increase of the lowyesgirgsusceptibility,
described in Fi.18

A close inspection to the imaginary part of the self energy (not showegtethat the low
energy part of both bands for weak coupliigl’ < 0.2 can be extrapolated to zero meaning
that there exists a well-defined Fermi liquid state. When the Hund’s couplfnglier increased
up toJ/W = 0.5 the imaginary part of self energy becomes finite, thus indicating a finite life
time. This behavior is in contrary to previous DMFT results that use Bethe, DD8&re the
violation of the Fermi liquid behavior only occurs in the broad band. It atsdflicts with the
suggestion of LDA results that claim the Fermi liquid characteristic to hold gvére presence
of interactions. The presence of non Fermi liquid character in this two bgsteém is clearly
corresponds to the Hund'’s coupling which tends to increase the spin fioctwdich eventually
favors the gapped phase. Due to the presence of pronounced siggnlthe DOS, it is difficult
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Figure 5.21: Orbitally-resolved spectral function of the half-filledisotropic Hubbard model at momen-

tum vectork=(3, ), for U/W=1.5,.J/W=0.5,T/W = 0.1 and for various values of non-
local interaction/ /W, The upper-left panel shows the single-particle spectnattion for
wide band whereas the lower-left panel for the narrow bartte fight panel displays the

results of the total spectral function.

to go beyond the interaction values specified above since the increase ioftd¢haction only
amounts to a broadening of the spectra.

Let us now consider the case without incorporating the Hund’s couplimdob various
values of the non-local interactions as depicted in the right panel of &ga0 In this case,
one observes three peaks for both bandg/& = 0.3, much the same as in the single band
Hubbard model (see figué.1). As the coupling increases the quasiparticle of narrow band
collapses and the spectrum shows a gap. In contrast, the other baw&l alesonance albeit
its weight is also reduced. In the highest calculated couglifigr > 0.5, both bands enter the
gapped phase with the largest gap width is obtained for the narrow bduil siggest that the
narrow band is more correlated than the wide band and more importantlyriéoraof intersite
interaction also drives the two step transition. The suppression of theapeeight as well as
the gap opening should be again understood as the result of the poedapin fluctuation in the
system which is also manifested in the low-energy part of the spin susceptibédityFigs.19.
Another important point that can be drawn from this results is that thewdramd with lower
dimensionality is strongly influenced by the non-local fluctuation.

In the next figure (see Fig.21) we illustrate the results of the spectral function for differ-
ent values of the intersite interaction. The interaction parameters arel§8tte1.5,.J/17=0.5.
Asis clearly seen, even for small values of the intersite interactid¥i, the spectra exhibit a gap
like structure which is more pronounced for the narrow band. As the ttteraincreases, both
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bands undergo consecutive transitions to the gapped-phase. Inathg stuplingl /W > 0.55

the gap widths of both bands become approximately the same which can lvsstaaddoy argu-

ing that the difference of the bandwidth is smeared by strong electronmiglabons. The results

of Fig.5.20and Fig5.21thus generally suggest that localized and itinerant character alsorappea
even in the presence of the spatial fluctuations. The inclusion of intersitenggractions clearly
enhances the effective Coulomb interactions and the system favors titeiimg state. From the
total spectral function (right panel of Fig21) one observes the similar trends as observed before
in the DMFT. The contribution of the narrow band is significant in the wealptiog case while

the other band for stronger coupling.

Very recently, two different groups have also addressed the sanme distussed here.
The authors of Refl[31] describe OSMT as a single correlated band that is coupled with fully
localized orbital. Their Hamiltonian is closely related to the Kondo lattice modelpgtioat the
onsite Coulomb interaction is also considered. In order to observe the nmaatkdtor transition
in the weakly correlated band, they employed determinant quantum montéReC) [137]
which is modified to include the effects of the fluctuating local spin degreé®eflom of the
localized bands. Their calculation is performed on a lattice of size 8x8 sitedhwittiensity is
fixed equal to one. They showed that OSMT is possible in their simplified nsitd the single-
particle spectral function of the itinerant band evolves from the metallic inrial £oupling
value to the insulating phase for larger values. They pointed out thatrsidaring non-local
fluctuations, there is a significant formation of the intersite magnetic corregatidris however
does not influence the nature of the Mott transition in the itinerant band asdthiey argue
that the physics of OSMT remains the same even if the spatial fluctuations isakésointo
consideration.

Within the same model as described before for DMFT, the authors of1IRéf.lso in-
vestigated the influence of spatial fluctuation in OSMT. They employed thedftdte art dy-
namical cluster approximation with small cluster si2és= 2 and N¢ = 4 combined with the
continuous time quantum monte carlo method as an impurity solver. The calculat®pgr-
formed in the half-filling with various values of the Coulomb interactions and teatpes. In
the N. = 2 their results indicate that both bands undergo a simultaneous transition sénee th
is a pronounced antiferromagnetic fluctuations within this cluster size.Mzoe 4 that also
incorporates next nearest-neighbor, they finally observe the OSMEisttbng onsite interac-
tion values. They further indicated that the weakly correlated case hal-defined Fermi state
which is in contrast with intermediate coupling where the Fermi liquid theorykisrdawn. In
general, the results of DCA and DQMC suggest the existence of the OSh\h gpatial fluc-
tuations are considered and in a good agreement with the results preisetitisdsection. The
presence of the pseudogap in the small weak coupling iglu#é thus in the context of DCA
can be associated with the smaller cluster size. It is however difficult teiassthe number of
clusters and the values of couplifiglV employed in the present case. Based on the single band
cases, the large number of cluster is required to open full gap for fixethition parameters.
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Figure 5.22: The same as in Fif.21, however the spectra in the present case are obtained bhingahge
electron occupancy at coupling strength/ @iV = 0.35.

The two band system with the cluster size is more than 8 clearly demands adanpatational
efforts. In this regard EDMFT method offers a technical advantage trittbapatial fluctuations
are incorporated within a single site scheme and thus the effects of a lagjerdize can be
investigated by choosing a large intersite coupling.

Having discussed the behavior of the system at half-filling, in what follweglescribe
the system in the hole doped case as presented ib.E®y. These results were obtained for
I/W = 0.35, U/W = 1.5. The increase of the hole doping concentration leads to a decrease
of the gap in the spectra. The gap of both bands reduces to the pspuddoga= 1.90 with
the wide band being more sensitive to the presence of doping. A furthease of the doping
leads to the formation of metallic peak at low energies together with an additiseadipgap for
higher energies. To make sure that such a behavior is not from anbbgiginuation, we have
compared the self energy (not shown) of both bands. It turned outhbaself energy of the
narrow band is always smaller than for the other one, meaning that tredat@mm in the narrow
band is more pronounced. The imaginary part of the self energy als@iadia deviation from
the standard Fermi liquid and hence the resonance is not due to a gtielsipaak but rather to
the short-lived excitations. The changes of gap into pseudogap assibk gpresence of peak
can be again understood as a direct consequence of the reducti@nloivtenergy peak in the
spin susceptibility (cf. Ficp.19).
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Figure 5.23: The frequency-dependent optical conductivity of the anigic Hubbard model for
U/W=1.5,J/W=0.5,1/W = 0.35, T/W = 0.1 and for different band fillings:.. The
inset shows the optical integral.

5.3.4 Optical Conductivity and Particle-Particle Spectral Function

The frequency-dependent optical conductivity in the EDMFT can laduated essentially in a
similar manner as in the DMFT. This again follows the observation that the momeémdemen-
dent self energy is retained as a consequence of the vanishing of-biglee vertex contribu-
tions. The effect of nonlocality thus enters from the single-particle spegice (see E§.16) the
self energy has incorporated the feedback of the spin fluctuationse bréisent case, the lattice
structure is obtained from the tight binding DOS as expressed . Ed/Ne now describe the
evolution of the conductivity in the hole doped case illustrated ing=&3 Close to half-filling,
suppression of the spectral weight at low as well as at high energigislene When the system
is doped, the peak at/W = 0 shifts to higher energies and the spectra show Drude like peak
in the high-doped regime signaling the metallic character. The presencéeaddying clearly
increases the mobility of electron carriers. This is clearly manifested in thedtéebgspectra as
depicted in the inset of Fi§.23 While the spectral weight is suppressed near half-fillikigs?)
of the metallic phase rapidly increases as a functiof afidicating an increase of the kinetic
energy of the carriers. It is remarkable however that the decay obiiductivity does not show
standard power law namety(w) = w2 [60]. Deviation from this condition is a clear indication
that the systems is from non Fermi liquid type.

We further investigate the scattering rates (w) and the mass enhancement/my, as
demonstrated in Fi§.24 The scattering close to the Mott insulating phase is well pronounced.
Forn = 1.97, one observes a broad hump at low energies which is followed by aesgipn
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Figure 5.24:The frequency dependence of the scattering rate (uppee)ptard the mass enhancement

(lower panel) of the anisotropic two-band Hubbard modele Shectra are calculated by
using the same parameters as in Fig3

at high energies. This corresponds to the suppression of conduavity< w < 4 as well
as the interband peak at higher energies. In contrast, the scatterinig thte highly doped
case is characterized by a linear dependence @miniscent to what occurs in heavy fermion
compounds 134 which signals the violation of the standard Fermi liquid behavior. When the
system is further doped, the spectral weight shifts to lower energies stllilemaintaining the
overall behavior. The lower panel of Fig24 illustrates the effective mass as a function of
doping. While the spectra show monotonous behavior at high frequetheiesis a clear peak
shift as a function of the doping at the low energy scale. The decréaftective mass as the
doping increases is a restatement of the enhancement of the low spegigiat of conductivity
and also the kinetic energy.

The influence of the spatial fluctuations onto the two-particle excitation is ilbestria
the left panel of Figh.25 A broad response is observed for all values of the spin-exchange
couplingl /W. As anticipated, the intensity of the spectra diminishes as a function of the spin
coupling and the position of the peak remains unchanged. At the largeshraction values,
the total spectral weight is significantly suppressed. In addition, thergap #ormation at low
energies (near to zero) fdr/W > 0.55 which is comparable with that of the single-particle
spectral function. Following the argument pointed out before, the sgpjum of the spectral
weight together with low energy gap is again a clear indication of the non methHiacter.
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Figure 5.25: The EDMFT-QMC results for the two-particle spectral funatof the anisotropic two-band
Hubbard model at half-filling fot//W = 1.5, J/W = 0.5 and forT/W = 0.1. The left
and the right panels correspond to the two-particle spémtraarious values of /T and for
different band occupation respectively. The insets shaudisults of integrated spectra as
function of ().

The reduction of spectral weight is also indicated by the integrated sp#ogstaated in the
inset of Fig5.25 These results therefore suggest that the interplay of the Coulomb inerac
the Hund’s coupling and the intersite spin interaction favors the insulatingwtatd in line
with the discussion based on the single-particle excitations and the opticdliactoity. As
the system is doped away from half-filling (see the right panel obE), the spectral weight
quickly increases and becomes maximal for a value ef 1.80. The same behavior can be also
observed in the integrated spectra as depicted in the inset of the riglt jpethe the low energy
part, one observes that the spectra are characterized by lineaddepgror all band fillings.
We point out here, that the pseudogap or small dip at single-particlerapeclearly missing in
the local particle-particle spectral function.
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CHAPTER O

Summary and Outlook

The correlation-induced metal-insulator transition (MIT) constitutes oneeainibist challenging
problems in the solid state physics. After more than six decades of endethvmterest in the
subject is unabated. The introduction of the dynamical mean field theoryF{DMas led to a
significant progress in the understanding some important aspects ofatblerpr The novelty

of this approach lies on its ability to simplify the complexity of certain problems into e&emor
manageable one and yet to capture the essence of the original probleaddition, it allows

to obtain the dynamic of the physical quantity that can be directly related to fferimental
results. Study of the metal-insulator transition within DMFT is usually done byoexy the
single particle properties that are experimentally investigated via singletpgrtiotoemission.
Details of transport properties are then investigated from the two partieletitpisuch as the
optical conductivity. While this procedure is relatively established for tréigde-hole sector, the
particle-particle properties are on the other hand relatively less expldied is mainly due to
the lack of experimental technigues that are capable of measuring théegppditicle excitations.
With the recent rapid progress in designing the experimental setup, it igossible to excite
simultaneously two electrons (hole) and to measure their energies and mompptiations

of this method known agy, 2¢), in the context of metal-insulator transition is expected to yield
more insights into the mechanism of Mott transition.

In order to investigate the particle-particle excitations, there are three maesrihat have
been implemented in this work. The first and the second route, the firstaydeoximation and
the ladder approximation, calculate the two particles from the knowledge sirigée-particle
spectral function which in this case is delivered by DMFT. In the implementgtiey are closely
related to the procedure for calculating the optical conductivity. In the dpptoach, the two-
particle quantities are directly evaluated within the loop of DMFT and quantumterarlo
(QMC). Due to the structure of the DMFT approximation, that only allows &dcwating the
local quantities, all procedures thus provide the local pair correlatidrese schemes are applied
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to the single- and isotropic two-band Hubbard model at half-filling and in the-tioped case.
The behavior of the two particles is then analyzed at the verge of metaltmstidansition.
Since the integrated spectra of the two particle quantity corresponds thiedmeupancy in the
system, the accuracy of the approach is determined based on the fulfillhtieistrelation. From
the results of DMFT-QMC, one obtains a good agreement between thestgegpectra and the
two-particle sum rule. The transition from metal to insulating phase is markéuelyeduction
of the spectral weight as well as the shift of the spectral peak to higleegenBased on this
observation, it is argued that the two-particle spectral function proddsgsar signature of the
correlated metal-insulator transition. In contrast to the above self-comsisi@-particle spectra,
the results from the first order and the ladder approximation tend to devaatetfie sum rule
constraint. This suggests the importance of self consistency in the calcudationtwo-particle
quantity. The relation between the calculated spectra and the measuréidyqoawo-particle
spectroscopy has been made straightforwardly. Under certain comliienintensity of{, 2¢)
is proportional to the two-particle spectral function.

DMFT becomes unreliable in various cases where the effects of the nahelarrelation
becomes non negligible. In addition, the accuracy of the mean-field likeosippeation is also
known to deteriorate for low-dimensional system. Various methods have ibteduced to
improve this approximation, and some of them have been briefly discusseis itnélis. In
the present work, the extended dynamical mean field theory (EDMFT) isogatpto study
the role of the non-local contributions in the metal-insulator transition. Within thighode
the spatial fluctuation enters via non-local term in the Hubbard model e.gsppirer charge
interaction. Following DMFT, the central approximation is the locality of the sedfrgy which
in this respect, applies not only to the single-particle self energy but alscetowihparticle.
This method is then employed to calculate the single- and the two-particle comélatitiion of
the two-dimensional Hubbard model The single-particle spectrum shoag fognation as the
intersite spin coupling increases. This indicates that the paramagnetic metatansransition
in the 2D Hubbard model is the consequence of the interplay between th€tmdamb and the
spin fluctuations. It also suggests that the gap can be realized at any finitentd interactions,
which is in accord with Anderson’s proposal. The study of the system imdfedoped case
reveals the existence of the pseudogap for all band fillings. Inspedttbe behavior of the self
energy as well as the transport properties in this regime indicates the viatanonical Fermi
liquid behavior. The different nature of metallic and insulating phase aaaagt from half-filling
is also investigated from the two-particle spectral function. In generatethdts resemble those
obtained in the high-dimensional Hubbard model with the metallic phase is téiazad by the
peak intensity and the insulating phase is marked by the gap at low enerdiegps&udogap
observed in the single-particle spectra is, however, not reflected in thpdvticle spectra.

A new class of metal-insulator transition has recently observed in the ruédseoam-
pounds that are isostructural with the higlheuprates. In this system, various components such
as the orbital degrees of freedom, the local interaction, the anisotropéwidth and the ex-
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change interaction are strongly involved in determining the nature of the Maél4nsulator
transition. In this work, this phenomena is studied within the two band HubbadeInttvat in-
corporate the Hund’s exchange coupling. Results of the single-pantietgral function in the
paramagnetic phase show a good agreement with previously publishks. Wtre interplay of
the anisotropic bandwidth and the local correlation leads to the orbital-sel@dttt transition
(OSMT). The calculated optical conductivity and the EELS spectra indi¢hteclear signal of
Fermi liquid behavior. Within DMFT+QMC, the two-particle spectral functidriaial band is
also presented. The general feature mimics that the single-band Hubbdel. The increase
of coupling leads to the suppression of spectral weight which comelsptm the reduction of
double occupancy.

In contrast to paramagnetic case, the metal-insulator transition in the antitegnetic
phase of the anisotropic two band Hubbard model occurs simultaneoudigtfobands. They
are distinguished however by the magnetization values and intensities ofetieaswhich are
found to be stronger in the narrow band. As the system is doped, ak leant/e simultaneously
to metallic phase signaling the absence of OSMT. The behavior of the opbicdlctivity in
this phase resembles that single particle case namely it consists of singlteakre and with
low-energy gap signaling the insulating character. The influence of thi@gakfuctuations in
the orbitally selective Mott transition has been also addressed in this waricbgporating the
intersite spin-spin interaction in the two band Hubbard model. The lattice steustobtained
from the two dimensional tight binding DOS that is derived from the LDA itssThe interplay
of strong interaction and the spatial fluctuation clearly indicates the possitsieerece of the
itinerant and localized character. The same is also observed for thdgzadle and the patrticle-
particle sectors.

A natural extension of the present work would be to calculate the momentpendent
single- and two-patrticle spectral functions. This would be extremely Lisefavestigate vari-
ous phenomena such as the momentum dependence MIT, kink in the disparergy and the
non-local pairing which can not be investigated within DMFT as well as EDM¥nother pos-
sible extension is also to investigate the nature of the two-particle excitationsnmateetically
ordered phase.
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