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1. Introduction

Ferroelectricity and ferromagnetism are collective phenomena, involving the mutual
interaction of large numbers of particles. In order to be ferroelectric with a switchable
spontaneous electric polarization, the material must have a non-centrosymmetric ar-
rangement of the constituent ions and their corresponding electrons, resulting from a
balance between short-range and long-range Coulomb interactions. Whereas ferromagnets
must have a net angular momentum arising from the alignment of spins of the electrons
driven by the quantum-mechanical exchange interaction pointing out the differences in
underlying fundamental physics. Beside the quite distinct microscopic properties due to
the arrangement of charge for ferroelectrics and electronic spin for ferromagnets, many
similarities arise in their behavior. Both classes of materials exhibit hysteresis loops under
the application of an external electric or magnetic field. The spontaneous magnetization,
as well as the spontaneous polarization decrease with increasing temperature and exhibit
a phase transition to a paraelectric or paramagnetic state. Materials with a simultaneous
presence of these two primary ferroic properties in the same phase in the sense of Gibbs’
phase rule are called multiferroic [1]. Both, ferroelectricity and magnetism, tend to be
mutually exclusive and interact weakly with each other when they coexist. More recently,
the discovery of a novel class of multiferroics [2], where ferroelectricity is caused by a
particular type of magnetic ordering has provided a new and fascinating area to search
for magneto-electric materials and appropriate theoretical models.

The description of ferroelectric, magnetic and mutually coupled systems by many-body
models and their quantum or classical statistical analysis are aimed at the understanding
of macroscopic properties such as the temperature dependent order parameter and
the underlying microscopic excitations. In combination, modern tools of statistical
mechanics as the thermodynamic Green’s function method enable the study of such
complex interacting systems of solid state physics. The analytical properties of the
Green’s function in the complex energy plane account for physical effects characteristic for
interacting systems and give access to both static and dynamic properties of condensed
matter. This covers the above mentioned macroscopic as well as microscopic quantities,
where the Green’s function contains all information of the system. Thus, the powerful
and unifying formalism found its application in many fields such as magnetism [3],
ferroelectrics [4] and multiferroics [5], very recently.
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1. Introduction

The following chapter (Chapter 2) of this thesis, pertains to a rather general introduction
to ferroelectric, magnetic and multiferroic systems and the method of double-time retarded
Green’s functions, which is applied to several systems discussed in this thesis. Hence, an
introduction of this powerful technique is essential to follow the analytical calculations
throughout the thesis. Afterwards a many-body Hamiltonian, the Ising model in a
transverse field and preliminary investigations of ferroelectric bulk materials in the
framework of Green’s functions are presented as a basis for the subsequent chapters.

At its discovery, ferroelectricity has been almost attributed as a vagary of nature. The
complex structure of the first material (Rochelle salt) [6], that was said to be ferroelectric,
hindered to understand the basic mechanisms behind. Hence, ferroelectrics were more of
academic interest, of little application and theoretical relevance. The recognition of the
relationship between lattice dynamics and ferroelectricity [7], as well as the modeling of
ferroelectric phase transitions have intensified the investigations of ferroelectrics.

Stimulated by the progress of a multiscale approach in magnetic materials the dynamics
of the Ising model in a transverse field as a basic model for ferroelectric order-disorder
phase transitions is reformulated in Chapter 3 in terms of a mesoscopic model and inherent
microscopic parameters. The dynamics is governed by a reversible propagating part.
Additionally, the life-time of the excitation energy is discussed, where the form of the
damping terms is derived under the condition of breaking the time reversal symmetry due
to dissipation. The temperature dependence of the excitation energy and its life-time are
observed and the model is extended by including an additive noise term, which modifies
the excitation spectrum.

The general focus in the field of ferroelectrics changed further, when thin film ferro-
electrics were developed and applied in different devices. In confined structures, such as
ferroelectric nanoparticles, the interactions are modified with respect to the bulk and it
is commonly believed that ferroelectricity is altered and eventually totally suppressed
when the system reaches a critical size. Since that time there is a renewed effort in the
fabrication, application and theoretical understanding of ferroelectric materials scaled
down up to nanometers. The broad variety of experimental activities in the field of
ferroelectric nanostructures is accomplished by numerous theoretical studies, which cover
the topic on different levels and scales. Chapter 4 of this thesis is devoted to the quantum
statistical modeling of the collective behavior in ferroelectric thin films and nanoparticles
on the basis of the Ising model in a transverse field. The approach covers the entire regime
from the phase transition between the paraelectric and the ferroelectric phase up to the
low temperature properties. The Hamiltonian is likewise the starting point to include
further degrees of freedom such as impurities and doping. Based on this Hamiltonian,
the influence of defects on damping effects in ferroelectric thin films is investigated. The
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associated collective phenomena determine the macroscopic behavior of the system. In
particular, the size dependence of the polarization, the hysteresis and the dynamics in
spherical ferroelectric nanoparticles are discussed. These quantities are also regarded in
the presence of defects. The lack of translational invariance in nanoparticles raises the
discussion of excitations in real space instead of reciprocal space.

The considerable effort in understanding complex magnetic structures and the ex-
perimental detection of complicated magnetic patterns such as in a Mn monolayer on
W(110) surfaces [8] and the recently observed asymmetric spin-wave dispersion rela-
tion on Fe(110) [9] have initiated the theoretical investigation of non-collinear magnetic
structures by an extended Heisenberg model in Chapter 5. The aim of the chapter is
to elucidate the relationship between the spin-wave excitation energy and the magnetic
alignment of the spins. The progress can be reached by applying a representation of the
underlying spin-operators with an arbitrary quantization axis [10]. This approach enables
the inclusion of a broad class of spin spiral structures. The Hamiltonian consists of an
isotropic Heisenberg coupling, an anisotropic interaction and the Dzyaloshinskii-Moriya
interaction (DMI). The spin-wave energy is calculated by the temperature dependent
retarded Green’s function matrix.

The study of the broad diversity of spin arrangements is strongly raised by the search for
new types of order in magneto-electric multiferroics, where both magnetic and ferroelectric
order can coexist [11, 12]. Due to a symmetry allowed magneto-electric coupling such
multiferroics exhibit the control of magnetic properties by electric fields and, vice versa, a
ferroelectric order by magnetic fields. Multiferroics with well separated phase transition
temperatures of the underlying ferroelectric and magnetic subsystem are investigated in
Chapter 6. Representative examples offering such a behavior are the transition metal
perovskite BiFeO3 and hexagonal RMnO3 compounds [13, 14]. Different origins are
accounted to ferroelectricity and magnetism in these materials. Therefore, the approach
within this chapter is based on a coupled model of the Ising model in a transverse field
and an extended Heisenberg model with Dzyaloshinskii-Moriya interaction. The coupling
is chosen as biquadratic in terms of the polarization and the magnetic moments. Ordering
mechanisms such as the ordering of lone pairs of two outer electrons are characteristic for
the occurrence of polarization in this class of materials. Furthermore, it seems reasonable
that the coupling between the ferroelectric and the magnetic subsystem is assumed to be
weak.
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2. Basics

2.1. Ferroelectrics

Dielectric materials are grouped according to the reaction of the polar constituents on an
external electric field. This electric field induces a displacement of electrons and ions with
respect to the field free position. In case of induced polarization the center of charges
coincide, whereas an external electric field shifts of the center of charge and induces a
polarization. Contrary, permanent dipoles are aligned along the field lines in case of the
orientation polarization. As an important subgroup of dielectric materials ferroelectrics
are insulating polar substances of either solid (crystalline or polymeric) or liquid crystals
with the appearance of multi-stable degenerated states with a spontaneous macroscopic
polarization Pr below a critical temperature Tc. The switching between these states
by an electric field, is the characteristic property of ferroelectricity. A comprehensive
background of ferroelectric materials can be found in various textbooks [15–19]. The
access to the polarized states by the application and variation of an external electric
field E reveals a hysteresis curve (Fig. 2.1). In particular, the intrinsic polarization Pr is
reversible through the application of an E-field. The coercive field Ec denotes the critical
electric field, required to reduce the polarization to zero after the polarization of the
sample has been driven to saturation.

!

"#

!$

"

Fig. 2.1.: Schematic hystereses curve of the electric field dependent polarization.

The occurrence of the spontaneous polarization is related to lattice distortions in
case of ferroelectric crystals with a polar space group. Many polar crystals with non-
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2. Basics

centrosymmetric arrangement of the constituent ions and their corresponding electrons
are not ferroelectric, since they can not be switched by external electric fields.

Ferroelectric transitions belong to the wide class of structural phase transitions. Above
the phase transition temperature Tc the system is paraelectric (non-polar) and with
decreasing temperature it undergoes a first or a second-order phase transition (Fig. 2.2).
In case of a first-order transition the polarization, as the order parameter of the system,
exhibits a discontinuous change from one to another structural phase. The second-order
transition is characterized by a continuous change of the polarization. Both transitions
are illustrated for barium titanate (BTO) in Fig. 2.2(a). Most ferroelectric materials
reveal a first-order transition near to a second-order one which is characterized by a small
jump in the polarization, as well as a drastic increase of the corresponding dielectric
permittivity ε(T ) (Fig. 2.2(b)). These transitions are often masked by intrinsic fields,
depolarization effects and defects.

(a) (b)

Fig. 2.2.: Temperature dependence of polarization (a) and dielectric constant (b) of BTO;
adapted from [20]

The main process in phase transitions in ferroelectrics consists of the reordering of
polar groups, usually a few atoms in the unit cell. The positions of all others remain
unchanged. Hence, the rest of the crystal lattice is treated as heat bath. Examples
are the displacements of the Ti ions with respect to the oxygen octahedra in BTO, the
rotations of the oxygen octahedra in strontium titanate (STO) or the rearrangement of
the protons in the O H O hydrogen bonds in hydrogen bonded ferroelectrics such as
potassium dihydrogen phosphate (KDP).

Usually a distinction into displacive and order-disorder ferroelectrics is made. Both
labels refer to limiting cases, but are still convenient. This classification is based on a
more microscopic picture, than on the previous macroscopic characterization. The search
for a microscopical approach can be traced back to the calculations made by Cochran [7]
and Anderson [21]. A phase transition in ferroelectrics arises from an instability of a low
frequency mode. The schematic drawing in Fig. 2.3 illustrates the factors which influence
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2.1. Ferroelectrics

Fig. 2.3.: Simple model for the basic mechanisms of displacive and order-disorder ferroelectrics,
adapted from [22, 23].

the nature of the transition. Each atom in the one dimensional model interacts with
neighboring atoms by a harmonic force constant J and is influenced by a double-well
potential of depth V0. The two limiting cases can be distinguished referring to the
domination of the depth of the potential well or the harmonic force.

The order parameter dynamics of the displacive ferroelectrics (V0 � J) are assigned
to a phonon-dominated process, which is related to the shift of some atoms or atomic
groups within an elementary cell of the corresponding material, see Fig. 2.4. A typical
example is lead titanate (PTO) with a crystal structure of perovskite type. Ions are
mutually shifted compared to the non-polar, centrosymmetric prototype phase below
the phase transition temperature. As a result, the centers of the positive and negative
charges are separated and give rise to electric dipole moments. Its average is related
to the macroscopic polarization. This polar phase is stabilized by an energy-lowering
chemical-bond formation, which is referred as second order Jahn-Teller [24] or pseudo
Jahn-Teller effect [25]. Through the Lyddane-Sachs-Teller relation, the divergence of the
dielectric susceptibility is connected to the vanishing frequency of a polar phonon.

Fig. 2.4.: Ordering sequence in the displacive limit (V0 � J).

Order-disorder ferroelectrics (V0 � J) exhibit excitations in form of pseudo-spin waves,
whereas the order parameter dynamics of displacive ferroelectrics are phonon-like. The
harmonic contribution to the potential is negative. The potential V (Q) itself is strongly
anharmonic with a maximum at Q = 0 making this position unstable (Fig. 2.5). Hence,
order-disorder ferroelectrics are characterized by the presence of ions moving in a multiple
well. It is the stabilizing effect of the cooperative electrostatic field set up by the ions when
displaced into wells all in the same direction, which is responsible for the ferroelectric
transition. In these compounds the probability of occupation of each side of the well,
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2. Basics

which is equal in the paraelectric state, would become different in the ferroelectric state, as
suggested by Slater [26]. Hence, these excitations cannot be described simply as phonons.
As the forces are not harmonic the study of the vibration modes turns out to become a
more difficult problem. However, this is remarkably simplified in the case of a double-well
potential when the separation of the levels inside the well is so large that practically
only the ground state doublet can be occupied. If the wells are sufficiently steep, the

Fig. 2.5.: Ordering sequence in the order-disorder limit (V0 � J).

motion within a given well can be neglected. The ground state in each double-well is
degenerated. Higher vibrational states are usually neglected, as the frequency separation
between the ground state and the higher vibrational states is much larger than the
splitting of the ground state doublet caused by the tunneling through the potential
barrier. The prototype of that class is KDP. Each proton in a hydrogen bond can
adopt two positions within a double-well potential, which is created by the other ions.
Protons are uniformly distributed above the phase transition temperature. In contrast,
in the low temperature phase the protons favor a certain position within the double-well,
whose structure is evaluated convincingly by ab-initio studies [27, 28] and is supported by
neutron diffraction experiments [29]. The averaged number of protons within that well
is assumed to be a measure of the spontaneous polarization. Recently, the coupling of
the position of the protons to the polarization of the PO4 groups [30, 31] was shown. In
terms of a generalization, one can think of whole groups of atoms or molecules which
offer flip-dynamics between two or more equilibrium positions. Lattice distortions should
be included in a more refined approach within this class.

However, the ions or protons in the double-well can move from one side to another
by tunnel effect [32]. The quantum mechanical tunneling of the proton through the
potential barrier between the two wells lifts the degeneracy and significantly influences
the dynamics of such systems. Classical theories are therefore unable to explain the
isotopic effects observed in KDP and isomorphous ferro- and antiferroelectric compounds
with short hydrogen bonds. Through deuteration the Curie point is raised, the increase
of the spontaneous polarization with falling temperature becomes much sharper and the
value of spontaneous polarization at absolute zero is nearly doubled. Instead of one there
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2.1. Ferroelectrics

are two bands in the infrared as well as in the Raman spectrum. Moreover, a square well
model does not explain the appearance of two OH stretching bands instead of one.

The underlying model is the Ising model in a transverse field (TIM), see Section
2.5. This model is a promising candidate to figure out ferroelectric properties from a
microscopic point of view and to apply all the well known quantum statistical techniques
used for magnetic materials. Similarly as the magnetic properties are determined by
the excitation energy of the spin waves, the macroscopic ferroelectric properties can be
derived from the pseudo-spin wave modes in order-disorder ferroelectrics.

Both limiting (displacive/order-disorder) cases are characterized by the occurrence
of a soft mode behavior. A low lying elementary excitation with energy ω(�q, T ) exists,
which depends on the wave vector �q and the temperature T . This mode becomes soft at
a particular wave vector �qc when the temperature is reaching the critical one:

lim
T→Tc

ω(�qc, T ) = 0 . (2.1)

This critical wave vector for the ferrodistorsive (including ferroelectric) phase transitions
is located in the center of the Brillouin zone �qc = 0. Antiferrodistorsive systems exhibit a
critical wave vector at the boundary of the Brillouin zone �qc = π/a. In ferroelectrics of
displacive type such an unstable mode is realized by one normal lattice vibration mode.
The nuclei move in slightly anharmonic potentials. In this approach the frequency of
the relevant soft phonon decreases on reaching the critical temperature. The restoring
force for the mode displacements tends to zero until the phonon has condensed out at
the stability limit. The static atomic displacements ongoing from the paraelectric to the
ferroelectric phase thus represent the frozen-in mode displacements of the unstable phonon.
The order parameter of such a transition is the static component of the eigenvector of the
unstable phonon. As the ferroelectric state is characterized by a macroscopic spontaneous
polarization, the soft phonon must be both polar and of long wavelength. In order-disorder
ferroelectrics the soft collective excitations are rather unstable pseudo-spin waves, than
phonons. In terms of limiting cases, all ferroelectric materials, exhibit both kinds of
behavior with a material dependent ratio.
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2. Basics

2.2. Non-collinear magnetism

Solids are grouped into weak magnetic (paramagnetic, diamagnetic) and strong magnetic
(ferromagnetic, antiferromagnetic and ferrimagnetic) materials with respect to their
magnetic properties. A characteristic feature of strong magnetic materials is the magnetic
order occurring under certain circumstances, which leads to a macroscopic magnetic
moment. This moment is of the order of NµB with N atoms and the Bohr magneton
µB. Typical materials are transition metals with ferromagnetic ordering (iron, cobalt)
and transition metal oxides with antiferromagnetic ordering (iron oxide). Ferrimagnetic
ordering occurs in complex salts of the transition elements (MnO, Fe2O3). Magnetism in
solids is originated through electrons of not fully occupied inner shells of atoms, such as
iron (3d-shell) or rare earths (4f-shell). The magnetic properties depend on the density
distribution of the electrons in unoccupied inner shells and the density of conduction
electrons in the crystal lattice. The magnetic moment of a sample results from the
magnetic spin moment of the electrons and their orbital angular momentum.

Fig. 2.6.: Types of magnetic ordering a) ferromagnetic b) antiferromagnetic c) screw/ antiferro-
magnetic spiral d) cycloidal spiral structure e) longitudinal conical/ ferromagnetic
spiral f) transverse conical spiral. The propagation direction is indicated by the wave
vector Q.

The observed macroscopic magnetic moment is a result of the alignment of the spins
by an interaction between the electrons. In the absence of a magnetic field, ferromagnets
possess a non-zero spontaneous magnetization (magnetic moment per volume) below
a critical temperature. A ferromagnetic order established by magnetostatic dipole
interaction would be destroyed by temperatures of the order of one Kelvin. Hence, the
stabilization of the parallel orientation of neighboring moments has a quantum-mechanical
origin. The spontaneous magnetization is created and stabilized by strong interactions
known as exchange interaction [33, 34].
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2.2. Non-collinear magnetism

This exchange coupling can be motivated by electrostatic arguments. The Pauli
exclusion principle forbids the double occupancy of a quantum state by fermions with the
same quantum numbers, which results an antiparallel alignment of two electrons in the
same orbital. The electrostatic Coulomb repulsion between electrons is spin independent
but larger for two electrons in the same quantum state, than in two different orbitals.
Hence, the parallel alignment is favored by coulomb interaction, which competes the
antiparallel occupancies of one-electron orbitals.

The theory of localized moments successfully explains many properties of ferromagnetic
materials. Here, local magnetic moments exist for the ions at each lattice site in the
solid at all temperatures. The corresponding magnetic models enable the understanding
of magnetic ordering and have influence to other branches of science, such as quantum
mechanics and statistical mechanics. Furthermore, they provide a basis and motivation
for several magnetic structures, such as ferromagnetic alignment, cycloids or helical spin
structures. Detailed information about magnetism and other theories, such as the band
theory, where up- and down-spin bands are unequally occupied by electrons in the low
temperature phase, leading to a net magnetic moment, can be found in the literature [10,
35–38].

Mapping electronic quantities such as hopping and Coulomb interaction, onto spin
variables yields the Heisenberg Hamiltonian. This model possesses a spontaneous magneti-
zation, which can be reoriented by an external magnetic field. This switching is associated
with a hysteresis of the magnetization. The moments align to a ferromagnetic state
below the phase transition temperature. The competition between interatomic exchange
and thermal disorder decreases the magnetic polarization with increasing temperature.
At a well-defined Curie temperature Tc the spontaneous magnetization vanishes with
a second-order phase transition to an unpolarized state. Above the Curie temperature
the magnetic moments are thermally disordered and there is no net magnetization. The
symmetry of the high temperature phase becomes broken when an ordered state arises.
Here, the ferromagnetic ordering breaks the time reversal symmetry (t → −t), because
the magnetization changes sign under time reversal. The Hamiltonian for a magnetic
system consists of three parts:

H = H1 +H2 +H3 (2.2)

H1 = −1

2

�

ij

Jij �Si
�Sj − gµB

�

i

�
�Hi + �HA

�
�Si , (2.3)

H2 = −1

2

�

ij

J̃ijS
τ
i
Sτ
j
−

�

i

Ki(�Si)
2 , (2.4)
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2. Basics

H3 = −1

2

�

ij

�Dij(�Si × �Sj) . (2.5)

The first term H1 describes the interaction between the magnetic moments at different
lattice sites and is invariant under time reversal. In case of a two electron system, the
exchange constant J is defined as half of the energy difference between antiparallel and
parallel states. A parallel alignment is favored in case of a positive interaction (Jij > 0).
Otherwise (Jij < 0), an antiparallel alignment leading to an antiferromagnetic spin
ordering is preferred. The corresponding spontaneous breaking of the symmetry by
the ordered state gives rise to Goldstone excitations. They have zero energy and their
wavelength diverges. These excitations try to recover the lost symmetry of the system.
The magnon with zero wave vector corresponds to the rotation of all spins in the system
and costs no energy. The Zeeman term describes the coupling of an external magnetic
field �H to the magnetic moments. The summation includes all atomic spins and the local
magnetic field acts on the i-th spin.

Real magnets exhibit no full rotational invariance in spin space. The coupling of
magnetism onto the crystal lattice results in a magneto-crystalline anisotropy, which is
originated by electrostatic crystal-field interaction and relativistic spin-orbit coupling.
Here the magnetic properties depend on the orientation within the crystal. The degener-
ated order of the spins is partially lifted by spin-orbit-coupling and results in preferred
directions within the crystal. Thus, the spontaneous magnetization tends to lie along
certain crystallographic axes (easy-axis).

Several kinds of anisotropies H2, determined by the symmetry group of the magnetic
lattice, are known, such as uniaxial, cubic, single-ion or pair anisotropy. A further
approximation to uniaxial anisotropy is frequently considered in terms of an effective
anisotropy field �HA. This ansatz is applied in particular for uniaxial antiferromagnets.

Beside single-site uniaxial anisotropies, the exchange interaction could contain an
antisymmetric term H3. Symmetry considerations in magnetic crystals with low symmetry
[39] and a microscopic mechanism [40] leads to the so called DMI. Owing to spin-orbit
interaction an indirect coupling between spins arises. The Hamiltonian is no longer
rotational invariant with an unidirectional anisotropy, which depends on the direction of
the spins.

Jij = Jji , �Dij = − �Dji (2.6)

Here, �Dij is the Dzyaloshinskii-Moriya (DM) vector in spin space. The interaction tries to
force spins at different sites to be at right angle in a plane perpendicular to the DM vector.
So, the spins cant or rotate by a small angle. Collinear uniaxial ferro- or antiferromagnetic
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2.2. Non-collinear magnetism

structures become unstable. Instead, directional non-collinear magnetic structures of
specific chirality or a small ferromagnetic component of the moments perpendicular to
the antiferromagnetic spin orientation (weak ferromagnetism) arise. In spin- 12 systems
the DMI seems to be the relativistic leading-order anisotropy term [41] with the role of an
effective two-ion easy-plane anisotropy [42] with the easy-plane normal to the vector �Dij .

Fig. 2.7.: Illustration of helical spin order. (A) Helical spin order with the helical axis along
the x axis in an orthogonal xyz system. Spins are all parallel at a yz plane, and their
direction rotates by a constant angle from one plane to a neighboring plane along
the helical axis. (B) Magnetization distribution projected on the xy plane for this
helical spin order, which changes as a sinusoidal wave. (C) A color representation of
magnetization distribution [projected onto the (001) plane] obtained by the transport
of intensity equation (TIE) analysis method; the direction and amplitude of the
magnetization are represented by changes in color and brightness with respect to the
color wheel; all adapted from [43].

Anisotropies and relativistic spin-orbit interactions couple spins to the lattice, which
gives rise to complex magnetic structures (Fig. 2.7). Such spiral or screw spin structures
gave been found in rare-earth metals, as well as members of the metal silicide family, such
as Fe1−xCoxSi. The components of the spins vary periodically along one crystallographic
axis.

In these compounds it is appropriate to change to a representation in terms of creation
and annihilation operators of the second quantization, such as Pauli-operators b , b†, which
are defined by their commutator relations:

�
bi, b

†

j

�
- =

�
1− 2b†

i
bi
�

� �� �
2σi

δi,j ,
�
bi, bj

�
- =

�
b†
i
, b†

j

�
- = 0 , (bi)

2 = (b†
i
)2 = 0 . (2.7)

An additional transformation [10] of the spin operators into an eigen-representation of the
quantization axis γ

f
= (γx

f
, γy

f
, γz

f
) is adequate. Here, the axis is not fixed and can locally

point to an certain direction characterized by the real unit vector γ
f
. The corresponding
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transformation of the spin operators for spin-12 particles with σf = 1
2 − b†

f
bf reads:

(Sf )
α = γα

f
σf + Aα

f
bf + (A∗

f
)αb†

f
. (2.8)

The quantization axis has to be chosen in an adequate form, regarding the investigated
system. The components of the prefactors Aα

f
and (A∗

f
)α, preserving the commutator

relations, are defined as:

Ax

f
= −

�
eiϕf

1 + γz

f

4
− e−iϕf

1− γz

f

4

�
= −1

2
{γz cosϕf + i sinϕf} , (2.9a)

Ay

f
= i

�
eiϕf

1 + γz

f

4
+ e−iϕf

1− γz

f

4

�
= −1

2
{γz sinϕf − i cosϕf} , (2.9b)

Az

f
=

1

2

�
1− (γz)2 with tanϕf =

γy

f

γx

f

. (2.9c)

The length of the quantization axis in the x− y plane is defined as ρ =
�
1− (γz)2.

Furthermore, the helical structure can be modified by applying an external field. The
angle of the cone is modified until a complete ferromagnetic is achieved at a certain critical
field Hc. One theory for magnetic spin spiral structures [44–49] is based on the change
of sign and strength of the exchange integral for nearest J1 and next-nearest neighbors
J2. The minimum of the energy of the ground state corresponds to the maximum of the
exchange interaction J(Q)

E = −NS2J(Q) = −NS2(2J1 cos(aQ) + 2J2 cos 2aQ) . (2.10)

The system will show ferromagnetic or antiferromagnetic ordering, if J(Q) is maximum at
Q = 0 or π. In case of a minimum of the ground state energy for 0 ≤ Q ≤ π the magnetic
ordering is of a spiral type with a spiral wave vector being incommensurate with the
underlying lattice. Here adjacent spins are rotated by a constant angle. The propagation
direction is perpendicular to the plane where the spins are rotating in the proper screw
structure. If the plane contains the axis of propagation, the structure is called cycloidal.
Anisotropies or applied fields can stabilize both (screw/cycloidal) magnetic structures.
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2.3. Multiferroic bulk systems

The combination of electricity and magnetism was discovered by Maxwell in the 19th
century. In solids both effects seem to be mutually exclusive due to their different origin,
see Section 2.1 and Section 2.2. The real starting point is a short remark by Landau
and Lifshitz in 1959. Short time later, the linear magneto-electric effect was theoretically
predicted [39, 50] and experimentally observed [51] in Cr2O3. The new idea was, not only
to have across-coupling of responses, but also systems with two types of ordering, that
coexist in the same phase. Magnetism exhibits a spontaneous ordering of spin and orbital
magnetic moments whereas ferroelectricity shows a spontaneous ordering of electric dipole
moments, even without an external electric or magnetic field. These materials are called
multiferroics [1].

Fig. 2.8.: Schematic grouping of magnetic, ferroelectric and multiferroic systems.

The microscopic origin of magnetism is the presence of localized electrons in partially
filled d or f shells. The exchange interaction between the localized moments leads to
magnetic ordering, whereas for ferroelectricity the electric charge of electrons and ions
and the accompanied relative collective shift of positive and negative ions are responsible.
Due to several microscopic sources for ferroelectricity one expects different types of
multiferroics. The great enhancement of multiferroic properties in bismuth ferrite (BFO)
thin films [52] and the discovery of a new class of multiferroics, where magnetism causes
ferroelectricity [2, 53] revived the studies and are reviewed in several papers on the topic
of multiferroics [11–14, 54–57].

For the description of multiferroics and the magneto-electric coupling the free energy
F is expanded in terms of the electric field E and the magnetic field H:

F (E,H) =F0 + PiEi +MiHi +
1

2
εijEiEj +

1

2
µijHiHj

+ αijEiHj +
1

2
βijkEiHjHk +

1

2
γijkHiEjEk + . . .

(2.11)
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with the dielectric permittivity εij and the magnetic permeability µij . The linear magneto-
electric susceptibility tensor αij, which corresponds to the induction of polarization by
a magnetic field or of magnetization by an electric field, is designated to the linear
magneto-electric (ME) effect. Therefore, a linear ME effect requires breaking of inversion
and time reversal symmetry. Higher order ME effects, βijk and γijk are the bilinear ME
susceptibility tensors. The corresponding polarization Pi and the magnetization Mi are
obtained by minimizing the free energy.

In general, there are two groups of multiferroics. Type-I multiferroics own different
sources for ferroelectricity and magnetism. They appear largely independent with a
small coupling between them. Here, ferroelectricity appears up to higher temperatures
than magnetism and the polarization is relatively large. In the second group, type-II
multiferroics, the magnetic ordering causes ferroelectricity with a polarization smaller
compared to type-I multiferroics.

2.3.1. Type-I multiferroics

One of the most studied multiferroics is BFO [58, 59], where ferroelectricity is due to
lone pairs. It shows a long range modulated antiferromagnetic spin configuration and
ferroelectricity at room temperature. Bismuth ferrite belongs to type-I multiferroics,
where a large separation between the magnetic [60] (TN = 640K) and the ferroelectric
transition [61] (Tc = 1100K) is observed. The ferroelectricity reduces the symmetry
from cubic to a rhombohedral distorted perovskite structure with space group R3c
[62, 63]. Cations are displaced along the [111] direction relative to the anions and the
oxygen octahedra rotate with alternating sense around the [111] axis. The polarization
pointing in [111] direction of the perovskite structure has eight possible orientations
along the four cube diagonals. The Bi3+ ion plays the major role for ferroelectricity.
Here stereochemically active lone pairs, or dangling bonds, are formed by two outer
6s electrons, which do not participate in the chemical bonds and move away from the
centrosymmetric positions in their oxygen surrounding. They possess a high polarizability
and order with a certain orbital mixture of p orbitals in one direction. These lone pairs
cause a displacement of the bismuth and oxygen ions along the [111] direction [64].

The domains can be switched of the direction by 180◦, 109◦, 71◦. The switching of
109◦ and 71◦ changes the rhombohedral axis. This leads to a change of the ferroelastic
domain state. The iron (Fe) moments show an antiferromagnetic ordering between
adjacent planes of G-type, i.e an antiparallel alignment relative to each other in all three
directions and are ferromagnetically aligned in the (111) pseudo-cubic planes. In bulk
the antiferromagnetic vector follows a long wavelength spiral with an incommensurate
wavelength [65]. This leads to a cancelation of the macroscopic magnetization and inhibits
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the linear ME effect. A suppression of the spin spiral can be achieved by doping [66], the
application of high magnetic fields [67] or in case of reduced dimensionality, e.g. thin
films [68].

Ferroelectricity due to charge ordering [12] is in particular observed in transition metals
with ions of different valencies. The localization of charge carriers at low temperatures
forms periodic superstructures. A non-symmetric ordering can induce ferroelectricity.
In particular, in case of an inequivalence of sites and bonds after charge ordering. This
can originate from the existence of ions with different charge and the dimerization or
inequivalent bonds due to the structure of the material and a site-centered charge on top.

Geometric ferroelectricity can be found in hexagonal manganites RMnO3 (R=Ho-
Lu,Y) [69] showing a lattice transition with an enlarged unit cell, where a non-linear
coupling to a non-polar lattice distortion induces an electric dipole moment. The origin
of ferroelectricity is the tilting of the rigid MnO5 block in YMnO3, which provides a
closer packing. Subsequently, the oxygen ions move closer to the yttrium ions.

2.3.2. Type-II multiferroics

In magnetic multiferroics ferroelectricity exists only in a particular magnetically ordered
state. Complex magnetic structures and phase diagrams are observed in frustrated
magnets. The spiral magnetic ordering breaks inversion symmetry, being a necessary
condition for the existence of electric polarization. Competing interactions between the
spins preclude a simple magnetic ordering, so that a sequence of magnetic transitions can
be found. In TbMnO3 the magnetic ordering appears at TN1 = 41K with a sinusoidal
spin-density wave. All spins are pointing in one direction but the size of the local moments
varies periodically in space. This lead to a sort of antiferromagnetic phase with zero
total moment. The change to another spin structure occurs around TN2 = 28K, where
spins form a cycloid. Only in the low temperature phase a non-zero electric polarization
appears. Symmetry considerations to the polarization and the magnetization, the two
order parameters, with respect to an inversion of all coordinates �r → −�r and time reversal
t → −t yield the allowed form of the magnetically induced electric polarization �P , if the
magnetic ordering �M is inhomogeneous:

�P ∝
�
( �M · ∂) �M − �M(∂ · �M)

�
. (2.12)

The spatial variation of magnetization is induced by competing interactions, which often
leads to an incommensurate magnetic state. A microscopic [5] and a phenomenological
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approach [70] showed, that a cycloidal spiral generates a polarization in the form:

�P ∝ �rij × [�Si × �Sj] ∝ [ �Q× �e ] . (2.13)

Here �rij is connecting neighboring spins, the wave vector �Q describes the spiral and �e is
the spin rotation axis. The microscopic mechanism for induced ferroelectricity in spiral
magnets involves the inverse effect of the DMI, presented in Section 2.2,

λ
�

l

(�ul × �e)(�Sl × �Sl+1) (2.14)

which favors non-collinear spin ordering. The strength of the relativistic correction to the
usual superexchange is proportional to the spin-orbit coupling constant. Here a lattice
relaxation occurs in a magnetic ordered state, which is named as inverse DM-effect. An
illustrative example is the mediation of the exchange between spins often by oxygen ions,
to form bonds between pairs of transition metals. The DM vector �D is proportional to
�u×�e, where �u is the shift from the connecting vector between magnetic ions. In the spiral
state, the vector product has the same sign for all pairs of neighboring spins. Hence, all
oxygen ions are pushed in the same direction and induce an electric polarization.

Another approach describes type-II multiferroics with collinear magnetic structures such
as Ising chain magnets (Ca3CoMn2O6) [71] or the high temperature ferroelectric phase
of rare earth metal oxids (RMn2O5) [72, 73], where no spin-orbit interaction is involved.
Magnetic moments are aligned along a particular axis and the polarization is a consequence
of exchange striction. A simple example is the frustrated spin chain with a competition
between ferromagnetic nearest-neighbor interaction and antiferromagnetic next-nearest-
neighbor interaction. Exchange striction associated with symmetric superexchange leads
to a bond stretching and shortening between different spin alignments. Thus, the possible
alternation of charges of magnetic ions along the chain breaks the inversion symmetry
and induces a polarization.
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2.4. The Green’s function method

In many-particle physics, especially solid state physics, Green’s functions are connected
to a variety of measurable quantities, such as thermodynamic expectation values �A�,
�B� or correlation functions of the type �AB� of the observables A,B. One of the main
advantages of the Green’s functions method is the ability to calculate these observables
in a certain approximation without knowledge of the wave functions [74]. Equilibrium
quantities such as thermodynamic potentials (internal energy), particle densities, magne-
tization, polarization and the energy of the elementary excitations are determined by the
corresponding Green’s functions. Response functions such as the electric and magnetic
susceptibility, electric conductivity, transition probabilities and cross sections are directly
related to the Green’s functions. The evolution in time of the quantum mechanical
operators can be reduced to a set of coupled equations — the equations of motion —
of complex functions with the help of Green’s functions. Several possible definitions of
Green’s functions and more detailed derivations are given in the literature [10, 36, 75–80].

The connection between Green’s functions and the reaction of a physical system to
an external perturbation is given in a quite general formalism, known as linear response
theory or Kubo formula [81]. The response of measurable quantities on an external
perturbation can be related directly to the Green’s functions with a physical meaning or
as an auxiliary quantity for the calculation of relevant correlation functions.

The investigated system is described by the Hamilton operator of the following form:

H = H0 +Wt (2.15)

An interacting particle system without an external field is described by H0. An external
time dependent perturbation has the form:

Wt = −
�

j

AjFj(t) with lim
t→−∞

Wt = 0 . (2.16)

The scalar time dependent field F (t), a c-number, couples to the observable represented
by a set of operators Aj of the quantum mechanical system. The external perturbation is
switched off for t → −∞. Hence the system is in the thermodynamic equilibrium at this
time and can be described by the statistical operator

lim
t→−∞

ρt = ρ0 =
e−βH0

Tr(e−βH0)
=

1

Ξ0
e−β(H0−µN) with β =

1

kbT
. (2.17)

The averaging is carried out in the grand canonical ensemble with the chemical potential
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µ and the operator of the total number of particles N . In the unpertubated case, the time
evolution is described by the time independent Hamilton operator H0. The observable is
not explicitly time dependent and the associated thermodynamic expectation value �A�
is a measurable quantity. In a pure ensemble it reads:

�A� = Tr(ρA) = (Ψ, AΨ) =

� �
dxdx�Ψ∗AΨ with ρ(x, x�) = Ψ(x)Ψ∗(x�) . (2.18)

The system is described by one wave function Ψ. The statistical operator ρ of a set of
variables x is also called density matrix or density operator.
In case that the wave functions Ψ1,Ψ2, . . . are realized with the probability w1, w2, . . .

the ensemble is mixed. The positive probabilities have to fulfill
�
i

wi = 1 and

�A� = Tr(ρA) =
1

Ξ
Tr(e−βHA) =

�

i

wi(Ψi, AΨi) =
�

i

wi

� �
dxdx�Ψ∗

i
AΨi . (2.19)

The statistical operator is modified and the time evolution is determined by the time
dependence of the wave functions.

ρ(x, x�, t) =
�

i

wiΨi(x, t)Ψ
∗
i
(x�, t) (2.20)

The doubled probability character of quantum statistics is evident. First the quantum
mechanical average given in Eq. (2.19) and second the consideration of a statistical
ensemble.

In the presence of the external perturbation Wt a measure of the response of the
system to the perturbation is the change ∆At = �A�

t
− �A�0. The observables has to be

calculated with the trace of the statistical operator ρt and Ai.

�Ai�t = Tr(ρtAi) (2.21)

For the calculation of the density matrix ρt it is appropriate to switch to the Dirac picture
with

ρt(t) = e
iH0t
� ρte

− iH0t
� . (2.22)

The lower index denotes the explicit time dependence caused by the field and the argument
the dynamic time dependence. Within the Dirac pictures, the equation of motion of the
statistical operator is solely determined by the perturbation. The integration with the
initial condition limt→−∞ ρt(t) = ρ0 could be solved iteratively. While the perturbation of
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the system is assumed to be small the consideration of the first order ρ(0)t = ρ is sufficient
and is termed as linear response. The invariance of a product of operators for cyclic
permutation of the operators yields the time dependence of the averaged value

�Ai�t = �Ai�0 +
1

i�

t�

−∞

��
Ai,Wt�(t

�)
�
-

�
dt

�

= �Ai�0 −
�

j

∞�

−∞

��Ai(t); Aj(t
�)��Fj(t

�)dt
�
.

(2.23)

Here a completely general formulation of the physics of the measurement of the quantity
�Ai�t, e.g. a transport coefficient, is given. This is often referred to as the Kubo
formula and is the analog in non-equilibrium statistical mechanics of the Gibbs formula
in equilibrium statistical mechanics. In this way, the calculation of a non-equilibrium
quantity is reduced to the mathematical problem of evaluating a response function.
The function defined in Eq. (2.23) is called two-time retarded Green’s function. This
expression was introduced in the field of quantum statistics [75]. The term "retarded"
points out only perturbations at times t� < t contribute to the mean values of Ai due
to the nature of the Θ-function. This Green’s function contains only quantities of the
unperturbated system and defines the generalized susceptibility.

��Ai(t); Aj(t
�)�� = − i

�Θ(t− t�)
�
Ai(t), Aj(t

�)
�
- = −χij (2.24)

Both depend only on the difference between time t and t� due to the invariance of the
trace with cyclic permutation.

2.4.1. Equation-of-motion method

The time dependence of the retarded Green’s function arising in the Kubo theory enables
to write down differential equations, which are fulfilled by this function. Aside the
retarded Green’s function, the advanced and the causal one arise. They have different
boundary conditions. It is necessary to introduce these functions due to their important
properties in the complex plane. The fundamental spectral theorem will justify the
introduction of these three types of Green’s functions. The retarded Green’s functions

G(r)
AB

(t− t�) =: ��A(t);B(t�)�� =: − i

�Θ(t− t�)
�
[A(t), B(t�)]η

�
, (2.25)
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the advanced Green’s functions

G(a)
AB

(t− t�) =: ��A(t); B(t�)��a =: +
i

�Θ(t� − t)
�
[A(t), B(t�)]η

�
, (2.26)

and the causal one

G(c)
AB

(t− t�) =: ��A(t); B(t�)��c =: − i

�

�
Tη [A(t), B(t�)]η

�
. (2.27)

The temperature dependence enters through the thermal averaging (Eq. (2.19)) and the
time dependence of the operators A(t) and B(t�) is given in the Heisenberg picture.

A(t) = e
i
�H0tAe−

i
�H0t (2.28)

The dedicated equation of motion reads:

i� ∂

∂t
A(t) =

�
A(t),H0

�
-

(2.29)

The choice of commutator or anticommutator within the Green’s functions is based on
the convenience of the regarded system.

[A,B]η = AB − ηBA (2.30)

The expectation value is defined with the grand canonical ensemble H = H − µN , see
Eq. (2.19). A further important quantity is the spectral density.

SAB(t, t
�) =

1

2π

�
[A(t), B(t�)]η

�
(2.31)

The Hamilton operator H is not explicitly time dependent. Hence, the correlation
functions �A(t)B(t�)� as well as the Green’s functions and the spectral density are
homogeneous in time

�A(t)B(t�)� = �A(t− t�)B(0)� . (2.32)

The Green’s functions are determined by their equation of motion.

i� ∂

∂t
G(α)

AB
(t− t�) = δ(t− t�)

�
[A(t), B(t�)]η

�
+ ��

�
A(t),H

�
-; B(t�)��(α) (2.33)
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The difference originates from the boundary conditions. The energy representation by
Fourier transformation is carried out by:

G(α)
AB

(ω) =

� ∞

−∞
e+iω(t−t

�)G(α)
AB

(t− t�)d(t− t�) (2.34)

G(α)
AB

(t− t�) =
1

2π

� ∞

−∞
e−iω(t−t

�)G(α)
AB

(ω)dω (2.35)

Using this transformation, Eq. (2.33) is an exact equation of motion in an algebraic form.

�ωG(α)
AB

(ω) =
�
[A,B]η

�
+
���

A,H
�
-; B

��(α)
ω

(2.36)

The higher Green’s function on the right hand side satisfies its own equation of motion
still including a higher Green’s function. This results in an infinite hierarchy of equations
and has to be decoupled physically meaningful. Through the appropriate decoupling the
Green’s functions of higher order are approximated by a linear combination of Green’s
function of lower order and the system of equations is closed.

2.4.2. The spectral theorem and spectral representation

Green’s functions and thermodynamic correlations, such as �A(t)B(t�)�, are related by
the spectral theorem. The whole macroscopic thermodynamics can be determined using
adequate defined Green’s functions and spectral densities by this fundamental theorem:

�B(t�)A(t)� = 1

2π

� ∞

−∞
e−iω(t−t

�)JBA(ω)dω (2.37)

= lim
δ→0+

i�
2π

� ∞

−∞
e−iω(t−t

�)G(ω + iδ)−G(ω − iδ)
eβ�ω − η

dω +
1 + η

4π� CBA . (2.38)

The relation of the spectral representation of the spectral density function and
the Green’s function is shown by considering correlation functions �A(t)B(t�)� and
�B(t�)A(t)�.

Starting with the eigenstates |En� with eigenenergies En, which form a complete and
orthonormal system

H |En� = En |En� with �En|Em� = δn,m and
�

n

|En� �En| = 1 , (2.39)

23



2. Basics

the expectation value �A(t)B(t�)� can be rewritten in the following form:

�A(t)B(t�)� = 1

Ξ
Tr(e−βHA(t)B(t�)) (2.40)

=
1

Ξ

�

n

�En| e
−βHA(t)B(t�) |En� (2.41)

=
1

Ξ

�

n,m

�En|B |Em� �Em|A |En� e−βEneβ(En−Em)e−
i
� (En−Em)(t−t

�) (2.42)

In the same way �B(t�)A(t)� is

�B(t�)A(t)� = 1

Ξ
Tr(e−βHB(t�)A(t)) (2.43)

=
1

Ξ

�

n,m

�En|B |Em� �Em|A |En� e−βEne−
i
� (En−Em)(t−t

�) (2.44)

The Fourier transformation of both correlation functions reads:

�A(t)B(t�)� = 1

2π

� ∞

−∞
JBA(ω)e

�βωe−iω(t−t
�)dω (2.45)

�B(t�)A(t)� = 1

2π

� ∞

−∞
JBA(ω)e

−iω(t−t
�)dω (2.46)

Here, the spectral density function JBA(ω) in spectral representation [78] is associated
with the time correlation function �A(t)B(t�)�.

JBA(ω) =
2π�
Ξ

�

n,m

�En|B |Em� �Em|A |En� e−βEnδ(En − Em − �ω) (2.47)

An important relation between the two spectral functions is JBA(ω) = e−�βωJAB(−ω).

In a next step the commutator and anticommutator are calculated.

��
A(t− t�), B

�
-

�
=

1

Ξ

�

n,m

�En|B |Em� �Em|A |En� (e−βEm − e−βEn)e−
i
� (En−Em)(t−t

�)

(2.48)

=
1

2π

� ∞

−∞
e−iω(t−t

�)J
�

BA
(ω)(e�βω − 1)dω (2.49)

�
[A(t− t�), B]+

�
=

1

2π

� ∞

−∞
e−iω(t−t

�)JBA(ω)(e
�βω + 1)dω (2.50)

In J
�
BA

the condition En �= Em is made. Now it is possible to express the Green’s
functions in the Lehmann representation. With the help of the Fourier transformation of
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the Heavyside function,

−i
� ∞

−∞
ei(ω−ω̄)(t−t

�)Θ(t− t�)d(t− t�) = lim
δ→0+

1

ω − ω̄ + iδ
, (2.51)

the spectral representation for the retarded and the advanced Green’s function reads:

G(r)
AB

= lim
δ→0+

1

2π�

� ∞

−∞
Jη
BA

(ω̄)
e�βω̄ − η

ω − ω̄ + iδ
dω̄ (2.52)

G(a)
AB

= lim
δ→0+

1

2π�

� ∞

−∞
Jη
BA

(ω̄)
e�βω̄ − η

ω − ω̄ − iδ
dω̄ (2.53)

with

Jη
BA

(ω) =

�
J

�
BA

(ω) for η = +1

JBA(ω) for η = −1 .
(2.54)

Due to the opposite sign in the denominator of the integral, the retarded and advanced
functions have poles in the lower and upper half-planes, respectively. Hence they can be
analytically continued in different complex half-planes. Via the spectral density function,
the Green’s functions have simple poles at the excitation energies of the interacting
system. The variable ω can be seen as complex. Hence, there is a united expression. For
Im ω > 0 it is the retarded Green’s function, for Im ω < 0 it is the advanced one.

GAB(ω) = ��A; B�� = 1

2π�

� ∞

−∞
Jη
BA

(ω̄)
e�βω̄ − η

ω − ω̄
dω̄ =

�
G(r)

AB
(ω) for Imω > 0

G(a)
AB

(ω) for Imω < 0

(2.55)

With the Dirac identity, the difference between the retarded and advanced Green’s
function yields an expression for the spectral function.

JBA(ω) = lim
δ→0+

i�G(ω + iδ)−G(ω − iδ)
eβ�ω − η

+
1

2
(1 + η)CBAδ(�ω) (2.56)

with

CBA = lim
ω→0

π�2ω��A; B��η=−1 (2.57)

With this expression the fundamental spectral theorem Eq. (2.38) allows to calculate
correlation functions with the help of the Green’s functions.
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2.5. Microscopical description of ferroelectric materials - The
Ising model in a transverse field

Many-particle approaches using quantum statistics cover the entire regime from the phase
transition between the paraelectric and the ferroelectric phase up to the low temperature
properties. The starting point is an appropriate Hamilton operator which includes the
relevant degrees of freedom. Based on this Hamiltonian the elementary excitations and
their damping can be calculated. These collective phenomena determine the macroscopic
behavior of the system such as the order-parameter, the susceptibility, the dielectric
function and other quantities.

Originally the Ising model in a transverse field had been proposed by Blinc and Žekš
[19, 82] and de Gennes [83] for the description of ferroelectrics of the KDP-type. In
this hydrogen bonded ferroelectrics a transverse field represents the proton tunneling
between the two equilibrium positions of the protons within the O H O bonds. The
approximative applicability of the TIM to ferroelectrics of perovskite structure such as
BTO [84, 85] has been demonstrated. Following the rules of the order-disorder model,
the paraelectric phase in BTO is associated with the position of the Ti ions. Instead of
occupying the body center positions as in an ideal cubic perovskite structure, the Ti ions
are randomly displaced off the center of symmetry along the cube diagonals [86], due to
a pseudo Jahn-Teller effect [87]. This causes the appearance of the disordered phase.

Therefore the TIM seems to be a rather universal model which allows a microscopical
description of ferroelectrics including thin films and nanoparticles, at least approximatively
for a broad class of ferroelectric materials. A further application of the Ising model in
a transverse field in solid state physics is a magnetic system with a singlet crystal field
ground state [88], where the tunneling field plays the role of the crystal field.

The TIM assumes the existence of polar groups with two alignments, such as a proton
in one minimum of a double-well potential. The tunneling between these two states lifts
the degeneracy and the dynamics of the systems is significantly influenced (Fig. 2.9). The
corresponding operators of such a two-level particle system can be expressed in terms
of spin-12 Pauli matrices. Advantages are the analogy to magnetic systems, which are
well advanced and the avoidance of the complicated mathematics for anharmonic phonon
treatment.

The ordering of functional groups is assigned to the two eigenvalues of the z-component
of a spin operator. The description in terms of spins is given in a form analogous to
permanent dipole behavior and is called pseudo-spin description. Mapping the relevant
mechanism onto a virtual spin operator is one of the key ideas for this model. Both
eigenvalues of Sz = ±1/2 represent the two allowed positions. In so far the spin components
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2.5. The Ising model in a transverse field

Fig. 2.9.: Energy of the ground state A and first excited state B in the double-well potential.
The ground state is split by the tunneling effect.

play the role of ’dipolar’ coordinates. The entire system is arranged on a lattice, so the
two possible orientations of the microscopic coordinate dipole moment operator Sz

i
are

used as the dynamical variable. The crystals energy is determined by the method of
distribution of particles over equilibrium positions. There is only one disordered particle
in each unit cell of the crystal and the disorder is characteristic for the motion along a
single direction.

In real space the Hamilton operator of the Ising model in a transverse field [19, 82, 83,
89]:

H = −1

2

�

ij

JijS
z

i
Sz

j
− 2Ω

�

i

Sx

i
− 2µE

�

i

Sz

i
, (2.58)

consists of an Ising-like coupling, which is influenced by a tunneling term. The z-
component of a spin-12 operator Sz

i
at a certain lattice site i interact via the interaction

parameter Jij ≡ J(ri − rj), which describes the coupling of two pseudo-spins, equivalent
to the interaction of functional groups at different sites. In other words two particles, each
in a strong anharmonic double-well potentials, are coupled by the strength Jij . It has to
be noted that the interaction strength depends on the distance between the pseudo-spins.
Consequently the interaction strength is determined by the lattice parameters, the lattice
symmetry and the number of nearest neighbors. The sum is performed over all lattice
points of the regarded system. As pointed out by [19] one should take into account a
tunneling between the two positions signalized by the eigenvalues of Sz. The tunneling
frequency between the two wells is Ω. The x-component of the spin operator Sx — the
tunneling operator — symbolizes the operation of a proton jump into the other well
of the bond. The tunneling proton has a split ground state with a separation of 2Ω
and higher levels are ignored, if the wells are not too deep. Corresponding excitations
across 2Ω are wave vector independent only, if there is no proton-proton interaction. The
tunneling through the potential barrier influences the form of the potential relief and the
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mass of the particles. This effect competes with the process of random jumps associated
with thermal fluctuations of the energy. The tunneling implies an overlap of the wave
functions of the right- and left-hand states and a change in the probability of the particle
being at one of the positions. The external electric field E influences the system by a
linear coupling to the dipole moment. The expectation value �Sz� measures the difference
between the occupation of the left and right equilibrium site and the difference in the
occupation between the symmetric and antisymmetric energy state is given by �Sx�.

The determination of the interaction energy and the strength of the tunneling integral
are beyond the scope of the presented theory. Hence, these energies have to be included
from experimental results or ab-initio calculations [90].

The Hamiltonian in Eq. (2.58) describes systems undergoing a second-order phase
transition. Taking into account four-spin interactions, it can be applied to first-order
phase transitions [91, 92]. For Jij < 0 the maximum of Jq occurs at a non-zero point in
the Brillouin zone, for example at the zone boundary. The mode gets soft for a finite q0

and the order parameter is not macroscopic. The frozen-in normal coordinate of the soft
mode has a periodicity of q0. The low temperature phase is antiferroelectric, the unit
cell is doubled and the order parameter is the sublattice polarization.
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2.6. Microscopical description of ferroelectric bulk materials

2.6. Microscopical description of ferroelectric bulk materials

The TIM had been extensively studied with different methods [93–95]. Properties of
the Hamiltonian have only been obtained exactly in the one dimensional case [96–98],
otherwise various approximations must be made. This system shows a phase transition,
somewhat different from the pure Ising case [94]. The molecular field treatment gives
a straightforward account of the transitions with explicit expressions for Tc, �Sz� and
�Sx� as a function of J and Ω [83]. Starting from (2.58) one finds immediately that the
ordered phase is characterized by �Sx� �= 0 and �Sz� �= 0, whereas in the disordered phase
one finds �Sz� = 0. The ordering arises because of the interactions J , and is impeded by
the transverse field Ω. The molecular field forms a vector �heff

i
= (2Ω, 0,

�
j

Jij
�
Sz

j

�
) in

pseudo-spin space pointing along a general direction in the x− z plane.

|heff
| =

J(0)

2
tanh(

β|heff |

2
) , �Sx� = 2Ω

J(0)
for T < Tc

�Sx� =1

2
tanh(

β2Ω

2
) for T > Tc

(2.59)

Thus as Ω increases from zero, Tc decreases from its value in the Ising model and reaches
zero at a critical value Ωc. For Ω > Ωc no transition occurs. Thus a ferroelectric transition
occurs only when the electrostatic interactions are not too small in comparison with the
zero-level splitting.

Fig. 2.10.: Qualitative temperature dependence of the pseudo-spin components �Sz� (solid) and
�Sx� (dashed); adapted from [17].

Spin wave like excitations are found by random phase approximation (RPA) [99]
both above and below Tc. The transverse Ising susceptibility has been studied in [100].
A Green’s function technique [101, 102] offers a finite excitation energy and a phase
transition.

In a more refined study, the TIM had been successfully adopted for ferroelectric
bulk material using special decoupling procedures for the Green’s function [103–107].
This second-order decoupling allows also to calculate the damping of the transverse and
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longitudinal excitations [108]. Within this approach a new coordinate system is introduced
by rotating the original one by the angle θ in the x− z plane [103]. This rotation angle is
determined by the requirement

�
Sx

��
= 0 in the new coordinate system. Instead of Sx

� ,
Sy

� and Sz
� a new set including Pauli operators b and b† is used in the rotated system.

The quasi particle number is not conserved in the unrotated system, so the creation
or annihilation of a pseudo-spin wave is allowed resulting in non-zero averaged values
of �b� and

�
b†
�
. These expressions are omitted by the rotation of the spin operators

equivalent to the form presented in Section 2.2. The quantization axis is rotated by a
site independent angle in the x− z plane

�γf =
�
sin θ, 0, cos θ

�
, with �Af =

1

2

�
cos θ,−i,− sin θ

�
. (2.60)

The corresponding transformation of the spin operators for spin-12 particles with σf =
1
2 − b†

f
bf = 1

2 − ρf reads:

Sx

f
=

1

2

�
(1− 2ρf ) sin θ + (b+

f
+ bf ) cos θ

�
, (2.61)

Sy

f
=

i
2

�
(b+

f
− bf )

�
, (2.62)

Sz

f
=

1

2

�
(1− 2ρf ) cos θ − (b+

f
+ bf ) sin θ

�
. (2.63)

The rotated and Fourier transformed Hamiltonian, due to the translational invariance
of the bulk material, reads:

H =E0 +H0 +H1 (2.64)

E0 =− ΩN sin θ − N

8
cos2 θJ0 − µNE cos θ (2.65)

H0 =+
√
N(2Ω sin θ +

1

2
J0 cos

2 θ + 2µE cos θ)ρ0 −
1

4
sin2 θ

�

q

Jqb
†

qbq (2.66)

H1 =
√
N(−Ω cos θ +

1

4
J0 sin θ cos θ + µE sin θ)(b†0 + b0)−

1

2
cos2 θ

�

q

Jqρqρ−q (2.67)

− 1

8
sin2 θ

�

q

Jq(b
†

qb
†

−q + bqb−q)−
1

2
sin θ cos θ

�

q

(b†q + b−q)ρq

with

ρk =
1√
N

�

q

b†qbk+q . (2.68)
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The time dependence is described in the Heisenberg picture. The evolution in time
depends on the system described by the equation of motion. The Fourier transformed
commutator relations read

�
bk, b

†

q

�
- = δk,q −

2√
N
ρk−q,

�
bk, ρq

�
- =

1√
N
bk+q,

�
b†k, ρq

�
- = − 1√

N
b†k−q . (2.69)

The definition of the Fourier transformation is given in Section A.

2.6.1. Calculation of the Green’s function - The equation of motion

The retarded Green’s function in matrix form is defined as:

Gk(t) = −iΘ(t)
��

Bk(t), B
†

k

�
-

�
=




��bk(t); b†k�� ��bk(t); b−k�� ��bk(t); ρ−k��
��b†−k(t); b

†

k�� ��b†−k(t); b−k�� ��b†−k(t); ρ−k��
��ρk(t); b†k�� ��ρk(t); b−k�� ��ρk(t); ρ−k��





(2.70)
The two operators are formal defined as:

Bk(t) = (bk(t), b
†

−k(t), ρk(t))
T , B†

k = (b†k, b−k, ρ−k) . (2.71)

Following the method of the equation of motion of the Green’s functions, see Section
2.4.1, the resulting infinite system of Green’s functions can not be solved exactly. Hence,
a scheme to decouple and close these equation has to be used. The quality of the results
depends on the quality of the approximations. Corresponding unphysical properties are
due to the chosen decoupling. Aside mean-field approximation (MFA), where fluctuations
are completely ignored, there are several other decoupling methods, such as RPA/ Hartree-
Fock-approximation and more refined decoupling schemes [3, 109–111]. The Hamiltonian
of the observed system H = H0+H1 consists of the non-interacting H0 and the interacting
part H1. The dynamics of the operator is determined by

i
∂

∂t
bk =

�
bk, H0

�
- +

�
bk, H1

�
- = ωkbk + jbk (2.72)

In comparison to the Bloch picture [112], where the interactions of the collective modes
(e.g. magnons) are completely ignored in the dispersion relation, the applied Pauli
operators have more complicated kinematic properties than second quantized operators
of Bose or Fermi type. Excitations in solids have a certain energy, which is accessible by
first-order decoupling methods within the Green’s function technique. The life-time of
these excitations is unlimited without a damping. The determination of the damping is
carried out by a second-order decoupling [113]. The method of the equation of motion
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(Section 2.4.1) for the Green’s function has the following form:

i
∂

∂t
Gk(t) = δ(t)

��
bk, b

†

k

�
-

�
+
�
ωk +Rk(t)

�
Gk(t) (2.73)

with

ωk =

���
bk, H0

�
-, b

†

k

�
-

�

��
bk, b

†

k

�
-

� , Rk(t) =

��
jbk(t), b

†

k

�
-

�

��
bk(t), b

†

k

�
-

� (2.74)

A formal integration of the equation of motion of the Green’s function yields:

Gk(t) = −iΘ(t)
��

bk, b
†

k

�
-

�
exp {−iEk(t)t} (2.75)

with the corresponding complex energy

Ek(t) =

���
bk, H

�
-, b

†

k

�
-

�

��
bk, b

†

k

�
-

� − i
t

t�

0

τ





��
jbk(t), jb†k

(τ)
�
-

�

��
bk(t), b

†

k(τ)
�
-

�



 dτ (2.76)

Here, the first term determines the energy of the excitations and the second term the
associated damping, which is connected to the life-time of the modes within the crystal.

Within the generalized Hartree-Fock approximation the rotation angle θ is determined
by the condition

��
bk, H

�
-

�
= 0. This ensures a minimization of the free energy [103,

114] for the field free case

1. cos θ = 0, θ =
π

2
, if T ≥ Tc ,

2. sin θ =
4Ω

�σ� J0
=

�σ�
c

�σ� , if T ≤ Tc . (2.77)

Here, the pseudo-spins precess around a mean field. There are three excitations, two
transverse ε1,2(k) and one longitudinal ε3(k). The longitudinal mode describes the motion
in the direction of the molecular field. The two other modes describe the precession of
the pseudo-spins around the molecular field.

The pseudo-spin wave energies in this approximation without an external electric field
in the paraelectric phase (T > Tc) read

ε1,2 = ±2Ω

�

1−
�

�σ�
�σ�

c

�
Jk
J0

, (2.78)

ε3 = 0 (2.79)
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2.6. Microscopical description of ferroelectric bulk materials

Fig. 2.11.: Precession of the pseudo-spin around the mean field.

and for temperatures below the critical temperature (T < Tc):

ε1,2 = ±

�
(ε11k )2 − (ε12k )2 = ±

�σ� J0
2

�

1−
�
�σ�

c

�σ�

�2 Jk
J0

, (2.80)

ε3 = 0 . (2.81)

with �σ�
c
= 4Ω

J0
. The full energies can be found in [103]. Pseudo-spin waves represent

a propagating mode even in the paraelectric phase. Above the critical temperature
the pseudo-spins precess around the molecular field directed along Sx. At very high
temperatures the pseudo-spins behave like free particles. Approaching Tc the energy is
reduced due to interaction between the pseudo-spins. At the critical temperature the
excitation energy vanishes for k = 0. In the ferroelectric phase the interaction between
the pseudo-spins results in a propagating mode, the soft mode of the pseudo-spin wave.
The relative polarization �σ� is larger than the critical one �σ�

c
. Here the molecular field

points along a general direction in the x− z plane, i.e. it is no longer perpendicular to
�Sz�. Both mean values �Sz� and �Sx� are different from zero, hence longitudinal as well
as the transverse modes contribute to the polarization fluctuations. The spin wave mode
is critical only for k → 0, thus the phase transition is connected to a condensation of the
quasi spin wave. For Jij > 0 the mode becomes soft at the Brillouin zone center (k = 0).
The order parameter, the homogeneous spontaneous polarization represents the frozen-in
soft normal mode coordinate.

Below Tc a soft pseudo-spin wave condenses. In contrast to magnons, pseudo-spin
waves exhibit a propagating mode in the ferroelectric and the paraelectric phase. In
ferromagnets magnons only exist in the low temperature phase. These pseudo-spin waves
become soft for k = 0 in the vicinity of the critical temperature T → Tc. The longitudinal
mode with the energy ε3 = 0 in both phases corresponds to a relaxation of the pseudo-spin
components parallel to the mean field. The relative polarization in the direction of the
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mean field is determined by:

�σ� =
�

1

N

�

k

(
ε11k (�σ�)
εk(�σ�)

coth
εk(�σ�)
2T

�−1

(2.82)

with

ε11k = 2Ω sin θ +
1

2
�σ� J0 cos2 θ −

1

4
sin2 θJk �σ� −

1

N �σ�
�

q

�
cos2 θJk−q −

1

2
sin2 θJq

�
n̄q

(2.83)

In case of damping, resulting from the scattering of quasi particles, the energy becomes
complex and belongs to a damped motion of the pseudo-spins around the mean field. The
transverse damping of pseudo-spin waves is very small at low temperatures. For moderate
tunneling fields Ω the soft mode is underdamped almost in the whole temperature region
[103]. Only in the vicinity of the critical point the damping increases strongly. Hence,
the soft mode becomes overdamped approaching Tc. In the subsequent calculations
approximations to the dynamics of the operators as bk(t) ≈ bke−iεkt and the commutator
relation

�
bk, b

†

k�

�
- = �σ� δk,k� are made. The transverse damping is given by:

γ11
k =

π

2N2

�

pq

[Vq,k−q + Vp+q−k,p+q]
2 �n̄p

�
�σ�+ n̄p+q + n̄k−q

�
− n̄p+qn̄k−q

�
∗

∗ δ (εp+q + εk−q − εp − εk)

(2.84)

The relaxational motion of the pseudo-spins along the mean field is determined by the
longitudinal damping. For long wavelengths the damping γ33

k decreases in the ordered
phase and is equal to zero in the high temperature phase. The longitudinal damping
reads:

γ33
k =

π

8N2
sin2 θ cos2 θ

�

pq

[Jk−q + Jq−p]
2
�

�
n̄p

�
�σ�+ n̄p+k−q + n̄q

�
− n̄

p+k−q
n̄
q

�
δ (εq + εp+k−q − εp − εk)

+
�
n̄p+k−q

�
�σ�+ n̄p + n̄q

�
− n̄pn̄q

�
δ (εp + εq − εp+k−q − εk)

+
�
n̄q

�
�σ�+ n̄p+k−q + n̄p

�
− n̄pn̄p+k−q

�
δ (εp + εp+k−q − εq − εk)

�

+
π

16N
sin4 θ

�

q

�
[Jq + Jk−q]

2 ���σ�+ n̄q + n̄k−q

��
δ (εq + εk−q − εk)

+ [Jq − Jk−q]
2 ��n̄q − n̄k−q

��
[δ (εk−q − εq − εk)− δ (εq − εk−q − εk)]

�

(2.85)
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with the abbreviations

Vq,k−q = cos2 θJq −
1

2
sin2 θJk−q

n̄q =
�
b†b

�
q
=

1

2
�σ�

�
ε11q
εq

coth
βεq
2

− 1

� (2.86)

Here only contributions from spin wave scattering are considered, while terms responsible
for the decay of one pseudo-spin wave into two or more and the inverse process are
neglected.
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3. Multiscale approach to ferroelectric bulk materials

3.1. Soft mode within the classical approach

Despite the great progress in explaining ferroelectric properties based on the microscopic
model in Eq. (2.58), the system is studied in this chapter by using classical spin vectors
as in the corresponding magnetic case [115]. The TIM is analyzed in its classical version
capturing all the inherent quantum properties of the spin operators. Additionally, damping
effects are investigated. Such an interest is also stimulated by the recent progress in
studying ferromagnets, where the classical magnetic moments are assumed to obey
the Landau-Lifshitz equation [115] and damping effects are included by the so called
Gilbert-damping, see [116].

The results presented in this section are published in [117] The spin operators obey
the equation of motion

i�∂S
α
r

∂t
= [H, Sα

r
] . (3.1)

Using the Hamiltonian Eq. (2.58) and Eq. (3.1) one gets

∂Sx

r

∂t
= −

�

j(r)

JrjS
z

j
Sy

r
(3.2)

∂Sy

r

∂t
= −ΩSz

r
+

�

j(r)

JrjS
z

j
Sx

r
(3.3)

∂Sz

r

∂t
= +ΩSy

r
. (3.4)

The effective field is defined by
hα
r
= − δH

δSα
r

. (3.5)

The change-over to the classical limit �Sr → �Sr �S(S + 1) is carried out by � → 0 and
S → ∞. The discrete equation of motion for the corresponding vector field �Sr(t) reads

∂�Sr

∂t
= �hr × �Sr with �hr = (Ω, 0,

�

j(r)

JrjS
z

j
) . (3.6)

Within the classical limit the spin vector has a spatially fixed length �S 2 reflecting the
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conservation of the spin-operator �S 2 by [H, �S 2] = 0. In general the length can be
a function of the temperature. Further the equation of motion can be written in a
continuous description which should be adequate especially nearby to the phase transition
in the form

∂�S(�x, t)

∂t
= �h(�x, t)× �S(�x, t) . (3.7)

The effective field is also expressed in a continuous approximation as

�h (�x, t) = (Ω, 0, JκSz(�x, t) ) , with κ = a2∇2 + z (3.8)

where J is the coupling strength between the z nearest neighbors and a is the lattice
spacing in a simple cubic lattice. This relation follows from

�

j(r)

JrjS
z

j
≡

�

j(r)

Jrj(S
z

j
− Sz

j
+ Sz

j
) � J(a2∇2 + z)Sz(�x) . (3.9)

Due to the TIM, Eq. (2.58), the effective field �h is an anisotropic one, while in the
Heisenberg model the effective field is isotropic [116]. In order to solve the evolution
equation Eq. (3.7) the ansatz �S(�x, t) = �m(�x)+�ϕ(�x, t) is made, where �m(�x) = mx�ex+mz�ez

is a time-independent but temperature dependent vector in the x− z plane as suggested
by Eq. (2.58). In case that �m is spatial independent it describes the homogeneous
polarization. In first order the fluctuating field �ϕ obeys

�̇ϕ = �h1 × �m+ �h0 × �ϕ , (3.10)

with �h0 = (Ω, 0, Jzmz ), and �h1 = ( 0, 0, Jκϕz ). In deriving the last result the relation
�m× �h0 = 0 is used, which defines the direction of the homogeneous polarization. The
last relation gives rise to two solutions

mz(T ) �= 0 , mx =
Ω

Jz
if T < Tc

mz = 0 , mx(T ) �=
Ω

Jz
if T > Tc . (3.11)

In the low temperature regime the x-component of the polarization is temperature
independent. At Tc it results mx(Tc) = Ω/Jz. In the high temperature regime mx

decreases with increasing temperature. In terms of a multiscale approach the temperature
dependence of mx and mz is calculated using the microscopic model Eq. (2.58). In
mean-field approximation one gets mx(T ) = tanh Ω

T
. The results are shown in Fig. 3.1.

Notice that a finite phase temperature is only realized, if Ω < Jz.

38



3.1. Soft mode within the classical approach

0 50 100 150 200 250

Temperature T (K)

0.2

0.4

0.6

0.8

1.0

P
o
la

ri
za

tio
n

m
z

0.02

0.04

0.06

0.08

0.1

0.12

0.14

m
x

Fig. 3.1.: Temperature dependence of mz(T ) (solid line) and mx(T ) (dashed line) based on the
microscopic model with Ω = 10K, J = 25K.

The low temperature phase T < Tc is discussed in the following part. The fluctuating
field satisfies for finite mz �= 0 the coupled equations:

ϕ̇x(�q, t) = −Jzmzϕy(�q, t) , ϕ̇z(�q, t) = Ωϕy(�q, t) ,

ϕ̇y(�q, t) =Jzmzϕx(�q, t)− [Ω−mxJκ(�q) ]ϕz(�q, t) . (3.12)

Here the Fourier transformed κ(�q) = z− (a�q)2 is used, whereas the approach is only valid
in the long wavelength limit aq � 1. The set of Eq. (3.12) allows a non-trivial solution
ϕ ∝ exp[iε(�q)t], if the excitation energy εl(�q) obeys

εl(�q, T ) =
�

A2
l
+Bl�q 2 with Al(T ) = Jzmz, Bl =

a2Ω2

z
. (3.13)

The excitation energy below the critical temperature is dominated by the coupling J :

εl(�q) = Jz

�
m2

z
+m2

x

a2�q2

z
, (3.14)

and the dispersion relation Eq. (3.13) reveals the typical soft mode behavior

lim
T→Tc

ε(�q = 0) = 0 (3.15)

in accordance to the microscopic behavior [101, 102, 118]. In a scaling form the dispersion
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reads
εl(�q, ξc) = ξ−1

c
fl(qξc) , (3.16)

where ξc is the correlation length, fl(x) ∝
√
1 + x2 is the scaling function and the critical

exponents fulfill ν = β. The evolution equations for the fluctuating field can be solved
leading to

�ϕ(�q, t) = Rl(�q)

�
Jzmzeiπ/2

εl(�q)
, 1,

Ωe−iπ/2

εl(�q)

�
exp[iεl(�q)t] , (3.17)

where Rl(�q) is the amplitude of the excitation mode determined by the initial condition.
A phase shift appears between the different components. Making the same approach for
the high temperature phase with mz = 0, the dispersion relation offers the same structure
as below Tc however with different coefficients

εh(�q) =
�

A2
h
+Bh�q 2 (3.18)

A2
h
= Ω(Ω−mx(T )Jz), Bh = mx(T )Ja

2Ω .

Above the critical temperature, the excitation energy is dominated by the tunneling
energy Ω and reads:

εh(�q) = Ω

�
mx(T )

mx(Tc)

a2�q2

z
+

mx(Tc)−mx(T )

mx(Tc)
(3.19)

In the high temperature phase the relation mx(T )/mx(Tc) < 1 is fulfilled as one can
observe in Fig. 3.1. The fluctuation field �ϕ(�q) exhibits a similar form as for T < Tc,
but setting mz = 0 and replacing εl by εh. Thus the field �ϕ is continuous at the phase
transition. The dispersion relations, given by Eq. (3.18), shows likewise a soft-mode
behavior, because the critical temperature Tc is defined by mx(T = Tc) =

Ω
Jz

in accordance
with Eq. (3.11). In the vicinity of Tc it results

A2
h
= JzΩ[mx(Tc)−mx(T )] � −JzΩ

dmx(Tc)

dT
(T − Tc) . (3.20)

Combined with the mean-field result mx = tanh
�
Ω
T

�
, the mode at �q = 0 satisfies

εh(�q = 0) =

����JzΩ2

T 2
c

�
1−

�
Ω

zJ

�2
�
(T − Tc)

1/2 . (3.21)

This relation is only valid in case of Ω < Jz. In the opposite case there is no phase
transition at finite temperatures. Furthermore the stiffness constant Bh depends on the
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3.2. Damping effect

temperature via mx(T ) and remains finite at Tc with B(Tc) =
Ω2

a
2

z
.

3.2. Damping effect

The generalization the equation of motion Eq. (3.7) to include damping effects is given
in the following part. Microscopically there is a great diversity of the origin of damping
effects. An intrinsic reason for damping effects might be the mutual interaction between
the excitation modes for different wave-vectors, which has been demonstrated in Section
2.6. Likewise the damping effects of the excitation modes can be originated by a coupling
to phonons. Due to the interaction of the pseudo-spin excitations with the phonon
modes there results a damping of the excitation modes which was shown recently in
[119]. The intention of the present section is to discuss the general form of the evolution
equation Eq. (3.7) with an additional damping part. As mentioned above, this can be
achieved by taking into account the intrinsic interaction of the modes or by a coupling to
additional degrees of freedom such as defects or phonons. As the result Eq. (3.7) has to
be supplemented by a damping term �D resulting in

∂�S(�x, t)

∂t
= �h(�x, t)× �S(�x, t) + �D(�S) . (3.22)

The damping term �D has a pure dynamical origin, so that possible static parts in the
final equation, see Eq. (3.28), should be subtracted. Although due to the spin wave
damping the length of �S is not conserved one concludes that the non-trivial damping
part is oriented into the direction of the effective field �h. Obviously the damping fulfills
�D < 0, i.e.

∂�S2

∂t
= �D · �S < 0 . (3.23)

By the general concept of phase transitions [120] the following ansatz is made

Dα = −Λαβ(�S)hβ . (3.24)

In case of a positive definite matrix Λαβ, independent on �S, the last relation corresponds
to the conventional relaxation dynamics for a non-conserved quantity. To get higher
order terms one can expand the matrix Λαβ in powers of �S leading to

Λαβ = Λ(0)
αβ + Λ(1)

αβγSγ + Λ(2)
αβγδSγSδ +O(�S3) . (3.25)

The expansion parameters, denoted by Λ, will be determined in accordance with the
behavior under time reversal and the underlying Lie group properties of the spin vectors
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3. Multiscale approach to ferroelectric bulk materials

�S. Whereas the propagating part of the equation of motion, Eq. (3.7), is invariant under
the instantaneous change t → −t, �S → −�S and �h → −�h, the damping part �D should
break the time reversal invariance. Due to this requirement and the fact �D ∝ �h one gets

Λ(0)
αβ =

1

τ1
δαβ , (3.26)

where τ1 plays the role of a relaxation time. The breaking of time reversal symmetry is
only realized if the linear term in Eq. (3.25) disappears. The structure constants of the
symmetry group of �S are essentially given by the complete antisymmetric tensor εαβγ.
Furthermore, the damping should be pointed to the direction of the effective field and
consequently the vector �D is perpendicular to the propagating part �S × �h. Summarizing
these conditions the ansatz

Λ(1)
αβγ = b εαβγ ,

Λ(2)
αβγδ =

1

2τ2
[ εαβρ εργδ + εαγρ ερβδ + εαδρ ερβγ ] (3.27)

is made. The form of Λ(1)
αβγ with an arbitrary parameter b guarantees that a linear term

does not occur. In the conventional vector notation the complete equation of motion
reads now

∂�S

∂t
= �h× �S − 1

τ1
�h− 1

τ2
�S × (�S × �h) . (3.28)

Two damping terms arise with the prefactors τ1 and τ2. Although the determination of
both parameters is beyond the scope of the mesoscopic approach they should be of the
order of a microscopic flip process and become of the same order τ1 � τ2. They reflect the
influence of the interaction between the excitations or the coupling to other degrees of
freedom as discussed before. The last equation is similar to the Landau-Lifshitz equation
with Gilbert-damping. In contrast to the isotropic ferromagnetic case the effective field �h

is anisotropic and directed in the x− z -plane. As the consequence the dispersion relation
for the excitation energy, Eqs. (3.13, 3.18), are likewise different in comparison to the
magnetic case. While isotropic magnetic systems offers a gapless Goldstone mode here
due to the transverse field the dispersion relation becomes soft only for T → Tc.
Making the same procedure as before, the dispersion relation in the high temperature
phase is found in the form

ωh(�q) = εh(�q) + i
Γ1h(�q)

2τ1
+ i

Γ2h(�q)

2τ2
with

Γ1h(�q) = Jκ(�q), Γ2h(�q, T ) = mx(T ) [ 2Ω− Jκ(�q)mx(T ) ] . (3.29)
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3.2. Damping effect

The result is valid in the long wavelength limit and in first order in τ−1. The propagating
part εh(�q), written in Eq. (3.29), remains unchanged in first order in τ−1. Higher order
terms give rise to a slightly changed behavior. The appearance of the imaginary parts is
related to damping effects, and the fluctuating field offers a behavior such as

�ϕ(�q, t) = R(�q) exp

�
iε(�q)− Γ1(�q, T )

2τ1
− Γ2(�q, T )

2τ2

�
t . (3.30)

The inverse functions Γ−1 plays the role of the life-time of the excitation energy. In
the high temperature phase Γ1h is temperature independent however it is dominated by
the exchange coupling Γ1h � Jz. The damping function Γ2h offers a weak temperature
dependence and it is dominated by the tunneling energy Ω with Ω < Jz. One gets

Γ2h(�q, T = Tc) > Γ2h(�q = 0, T = Tc) =
Ω2

Jz
. (3.31)

The situation is drastically changed for T ≤ Tc. Likewise the dispersion relation ωl(�q, T )

offers a real and an imaginary part according to Eq. (3.29). The real part εl(�q, T )

remains unchanged in lowest order of τ−1 and is given by Eq. (3.13). It characterizes the
excitation energy. The finite life-time of the excitation is related to the temperature and
wave vector dependent damping terms.

Γ1l(�q, T ) = Jκ(�q)

�
1− A2

l

ε2
l
(�q)

�
≡ Jκ(�q)Bl

ε2
l
(�q)

q2,

Γ2l(�q, T ) =
ε2
l
(�q) + A2

l
+ Ω2

Jz
with κ(�q) = z − (a�q )2 . (3.32)

At the critical point the damping is continuous, i.e for instance Γ1l(�q, Tc) = Γ1h(�q, Tc ).
While the life-time in the high temperature phase is only weakly temperature dependent,
it depends on T in the low temperature regime via mz which disappears at Tc with a
critical exponent β ≤ 1/2. The temperature dependence of the excitation energy and the
relevant life-time (Γ2l)−1 of the soft mode at �q = 0 are depicted in Fig. 3.2 .

Whereas the excitation energy εl disappears for T → Tc at �q = 0, the inverse life-time
Γ2l increases strongly at the phase transition but remains fixed at Tc. Apparently one
finds

Γ−1
1l (�q, Tc) < Γ−1

1l (�q, T ) , (3.33)

i.e. the life of the excitation is shorter at the critical temperature as in the the low
temperature regime. When the system is approaching to the phase transition temperature,
the elementary excitation decays more rapidly for wave vector �q �= 0.
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3. Multiscale approach to ferroelectric bulk materials
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Fig. 3.2.: Excitation energy ε(�q = 0) (solid curve) and the life-time (Γ2l)−1 (dashed curve) at
�q = 0 as function of the temperature, Ω = 10K,J = 25K .

3.3. Stochastic equation

To refine the model further, all the residual degrees of freedom, not taken into account so
far, are included in a stochastic force �ξ(�x, t). Then Eq. (3.28) is supplemented by a noise
term [120] leading to the final form

∂�S

∂t
= �h× �S − 1

τ1
�h− 1

τ2
�S × (�S × �h) + �ξ(�x, t)

< ξα(�x, t)ξβ(�x
�, t�) > = 2T δαβδ(�x− �x�)δ(t− t�) (3.34)

Even such an additive noise term should influence the damping part apparently. Alterna-
tively one could also discuss a stochastic field which leads to a multiplicative noise. That
situation has been considered in [121] studying ferromagnetic resonance. The influence of
a rotating magnetic field is analyzed in [122]. In the framework of the TIM the situation
is more complicated and should be considered separately. Making the same ansatz as
before �S = �m+ �ϕ, Eq. (3.34) reads in the low temperature phase

∂ϕα(�q, t)

∂t
= Yαβ(�q)ϕβ(�q, t) + ξα(�q, t) (3.35)
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3.3. Stochastic equation

Here Y is a 3× 3 matrix

Yαβ =




−mzAl

τ2
−Al

mzBlq
2

Ωτ2

Al −Ω2+A
2
l

Jzτ2
−Blq

2

Ω
mzΩ
τ2

Ω −Jκ(�q)
τ1

− Blq
2

Jzτ2





where the coefficients Al and Bl are defined in Eq. (3.13). From here the Green’s function
is obtained via

Gαβ(t, t
�) =

�
δϕα(t)

δξβ(t�)

�
t > t� . (3.36)

After performing Fourier transformation the Green’s function is simply

G(�q,ω) = −[ iωI+Y(�q)]−1 .

As the result the Green’s function is written in lowest order in τ as

Gαβ =
gαβ(�q ,ω)

[ω + ωl(�q )][ω − ω∗
l
(�q )][iω − ωd(�q )]

with

ωl(�q) = εl(�q ) + i
Γ1l(�q )

2τ1
+ i

Γ2l(�q )

2τ2
; ωd(�q ) =

Γ1(�q )A2
l

τ1 [ε2l (�q )− A2
l
]
. (3.37)

The influence of the noise is twofold. Once the dispersion relation of the low temperature
phase, obtained already in Eqs. (3.13, 3.32), are reconfirmed as the complex poles ωl(�q)

and ω∗
l
(�q) of the Green’s function. Otherwise there appears an additional pure imaginary

pole ωd(�q). This mode is a dissipative one, which is originated by the stochastic force. In
lowest order in τ−1 the mode is only influence by τ1. The matrix elements are given by

g11 = −ω2 − iω

�
Ω+ ε2

l

Jzτ2
+

Jκ(�q)

τ1

�
+Blq

2 ,

g22 = ω2 − iω

�
ε2
l

Jzτ2
+

Jκ(�q)

τ1

�
, g33 = −ω2 − iω

2A2
l
+ Ω2

Jzτ2
+ A2

l
,

g12 = Al[iω − Jκ

τ1
] = −g21 , g23 =

iωBlq2

Ω
= −Blq2g32

Ω2
,

g13 =
Blq2

Ω

�
Al −

iωmz

τ2

�
=

Blq2g31
Ω2

. (3.38)

To illustrate the influence of the noise term the special case mz = 0 and the inclusion of
damping proportional to τ−1

1 in Eq. (3.28) is considered. The coupled set of equations
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3. Multiscale approach to ferroelectric bulk materials

for the time-dependent part �ϕ(�q, t) reads

ϕ̇x = ξx

ϕ̇y = (mxJκ(�q)− Ω)ϕz + ξy

ϕ̇z = Ωϕy −
1

τ1
Jκ(�q)ϕz + ξz (3.39)

The first equation can be immediately solved. It results

�ϕ2
x
(�x, t)� = ϕ2

x
(�x, 0) + 2Tt . (3.40)

Due to the stochastic force the x-component of the fluctuating field offers a diffusive
behavior. The remaining Green’s function is then a 2× 2 matrix

G(ω, �q) =
1

[ω − ω∗
h
(�q)][ω + ωh(�q)]

�
iω − Γ1(�q)

τ1
Ω−mxJκ(�q)

−Ω iω

�
(3.41)

The poles of this function are already given in Eq. (3.29). The Ising model in a transverse
field shows cross-correlation which is also visible in the correlation function defined by

Cαβ(�q,ω) =< ϕα(�q,ω)ϕ
†

β(�q,ω) > , (3.42)

The fluctuation-dissipation theorem is fulfilled

Cαβ(�q,ω) =
2T

ω
�Gαβ(�q,ω) . (3.43)

The correlation function follows

C =
2T

(ω2 − ε2
h
(�q))2 +

�
(Γ1h(�q))

τ1

�2



 ω2 − ε2
h
(�q) +

�
Γ1h(�q)

τ1

�2
−Γ1h(�q)

τ1
[Ω−mxJκ(�q)]

−Γ1h(�q)
τ1

Ω ω2 − ε2
h
(�q)





(3.44)
In the context presented here, the stochastic equations with an additive noise term
does not give more information as the conventional equations. The situation is different
for a multiplicative noise, where for instance the effective field �h is supplemented by a
stochastic force.
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4. Many-particle approach to ferroelectric

nanostructure

4.1. The model

The approach for the investigation of ferroelectric nanostructures is based on the TIM,
where the ordering of functional groups are assigned to the two eigenvalues of the z-
component of a spin operator (Section 2.5). Due to this inherent basic mechanism the
applicability of the model was extended to thin films, recently [4, 119, 123–131].

Occurring surface and size effects in ferroelectric nanoparticles and thin films modify
the interaction parameter between nearest neighbors for bulk and surface constituents.
In the same manner Ωb and Ωs represent transverse fields in the bulk and surface shell.
The Hamiltonian of the TIM including both, bulk and surface properties reads

H = −1

2

�

ij

JijS
z

i
Sz

j
− Ωb

�

iεb

Sx

i
− Ωs

�

iεs

Sx

i
− 2µE

�

i

Sz

i
, (4.1)

where Sx

i
and Sz

i
are components of spin-12 operators and the sums are performed over the

internal and surface lattice points, respectively. The interaction between the pseudo-spins
at the surface shell is denoted as Jij = Js, whereas the bulk interaction strength is Jb.

The influence of defects is considered by the approximation of a coupling parameter
Jd indicating the interaction of defect spins, which is different to the non-defect case Jb.
In the same manner Ωd represents the transverse fields within the defect shell or layer.
The variation of the interaction strength is reasonable because the interaction parameter
Jij ≡ J(ri − rj) depends on the distance between the spins. Consequently the interaction
strength should vary with the lattice symmetry and the number of nearest neighbors.

The three dimensional ferroelectric layer system (Fig. 4.1) on a simple cubic lattice
is composed of N layers in z-direction. The layers are numbered by n = 1, ...N , where
the layers n = 1 and n = N represent the two surfaces of the system with the modified
coupling parameters Js and Ωs. The bulk is established by the remaining (N − 2) layers.

Defects in the ferroelectric thin film are incorporated by defect layers with the interaction
energy Jd and the transverse field Ωd. The size of the defect is governed by the number
of defect layers within the film. As in the pure bulk case, a new coordinate system is
introduced by rotating the original one, used in Eq. (4.1), by the angle θ in the x− z plane.
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4. Many-particle approach to ferroelectric nanostructure

Fig. 4.1.: Scheme for a ferroelectric thin film with five layers. The middle one is defect.

The rotation angle θ is determined by the requirement �Sx
�� = 0 in the new coordinate

system. The conditions of the low and high temperature case are given in Section 2.6.
The considered spherical ferroelectric particles (Fig. 4.2) are characterized by fixing

the origin at a certain pseudo spin in the center of the particle. All the rest of them
within the particle are ordered in shells, which are numbered by n = 0, 1, ..., N . Here
n = 0 denotes the central pseudo-spin and n = N represents the surface of the system
with the modified parameters Js and Ωs.

Fig. 4.2.: Ferroelectric nanoparticles of different size, composed of shells. Each sphere represents
a pseudo-spin situated in the center, where (a) consists of one central spin plus N = 1
shell, (b) N = 2, (c)N = 3, (d) N = 4
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4.2. Green’s function approach to ferroelectric thin films

The Green’s function is defined following Section 2.4 with � = 1:

Gij(t) =� bi(t); b
†

j
(0) �≡ iΘ(t− t�)�[bi(t)b†j(0)− b†

j
(0)bi(t)]� . (4.2)

where b and b† are the Pauli operators in the rotated system. On introducing the
two-dimensional Fourier transform Gninj(k�,ω), one has the following form:

� bi; b
†

j
�ω=

�σ�
N �

�

k�

exp(ik�(ri − rj))Gninj(k�,ω), (4.3)

where N � is the number of sites in any of the lattice planes, ri and ni represent the position
vectors of site i and the layer index, respectively, k� = (kx, ky) is a two-dimensional wave
vector parallel to the surface. The summation is taken over the first Brillouin zone.

As a result the equation of motion for the Green’s function Eq. (4.3) of the ferroelectric
thin film for T ≤ Tc has the following matrix form:

H(ω)G(k�,ω) = R, (4.4)

where H can be expressed as:

H =





ω − V1 + iγ1 k1 0 0 0 0 . . .

k2 ω − V2 + iγ2 k2 0 0 0 . . .

0 k3 ω − V3 + iγ3 k3 0 0 . . .
...

...
...

...
...

... . . .
0 0 0 0 0 kN ω − VN + iγN





In order to obtain the solutions of the matrix Eq. (4.4), the two-dimensional column
matrices, Gm and Rm is introduced, where the elements are given by (Gn)m = Gmn and
(Rn)m = �σ�

n
δmn, so that Eq. (4.4) yields

H(ω)Gn = Rn. (4.5)

From Eq. (4.5), Gnn(ω) is obtained as:

Gnn(ω) =
|Hnn(ω)|

| H(ω) |
. (4.6)

The quantity |Hnn(ω)| is the determinant made by replacing the n-th column of the
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4. Many-particle approach to ferroelectric nanostructure

determinant |H(ω)| by Rn. The poles ωn of the Green‘s function Gnn(ω) can be calculated
by solving |H(ω)| = 0. The rotation angle θ is determined as in the bulk case Section 2.6.

The relative polarization of the n-th layer given by

�σn� =
��σn� Jn

2N

�

k�

1− 0.5 sin2 θnγ(k�)

ωn

coth
ωn

2T

�−1
. (4.7)

has to be solved numerically. Due to the assumption of symmetrical surfaces, there are
1
2N layer polarizations, which have to be solved self-consistently. The dependence of the
Curie temperature Tc on the film thickness N , was obtained by solving Eq. (4.7) as well.

The damping of the ferroelectric excitations reads

γn =
π

2N2

�

p�,q�

�
(V̄n(q�,k� − q�) + V̄n(k� − p� − q�,p� + q�))

2

∗[n̄n(p�)(�σn�+ n̄n(p� + q�) + n̄n(k� − q�))

−n̄n(p� + q�)n̄n(k� − q�)]

∗δ(εn(k� − q�) + εn(p� + q�)− εn(p�)− εn(k�))

+[(Jn−1γ(q�) cos
2 θn−1)

2 + (Jn−1γ(k� − p� − q�) cos
2 θn−1)

2]

∗[n̄n−1(p�)(σn−1 + n̄n−1(p� + q�) + n̄n−1(k� − q�))

−n̄n−1(p� + q�)n̄n−1(k� − q�)]

∗δ(εn−1(k� − q�) + εn−1(p� + q�)− εn−1(p�)− εn−1(k�))

+[(Jn+1γ(q�) cos
2 θn+1)

2 + (Jn+1γ(k� − p� − q�) cos
2 θn+1)

2]

∗[n̄n+1(p�)(σn+1 + n̄n+1(p� + q�) + n̄n+1(k� − q�))

−n̄n+1(p� + q�)n̄n+1(k� − q�)]

∗δ(εn+1(k� − q�) + εn+1(p� + q�)− εn+1(p�)− εn+1(k�))
�
,

The detailed expressions Vn and kn for n = 1, . . . , N can be found in Section A.
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4.3. Green’s function approach to ferroelectric nanoparticles

The Green’s function � bl(t); b†m(0) � contains all the information about the system.
Due to the lack of translational invariance the subsequent calculation has to be performed
in the real space. The average is defined in the conventional way, (Section 2.4)

�σl� =
Tr(σl exp(−βH))

Tr exp(−βH)
. (4.8)

The operators bl, b†m are the Pauli operators in the rotated system. The rotation of the
coordinate system is carried out following the transformation presented in Section 2.6.

Sx

l
=

1

2

��
1− 2b†

l
bl
�
sin θl +

�
b†
l
+ bl

�
cos θl

�
(4.9a)

Sy

l
=

i

2

�
b†
l
− bl

�
(4.9b)

Sz

l
=

1

2

��
1− 2b†

l
bl
�
cos θl −

�
b†
l
+ bl

�
sin θl

�
(4.9c)

In case of ferroelectric nanoparticles the rotation angle θl is site dependent due to the
loss of translational invariance.

H =− 2Ω
�

i

�
σi sin θi +

1

2

�
bi + b†

i

�
cos θi

�
− 2µE

�

i

�
σi cos θi −

1

2

�
bi + b†

i

�
sin θi

�

− 1

2

�

i,j

Jij
�
cos θi cos θjσiσj − cos θi sin θj

�
σib

†

j
+ σibj

�

+
1

4
sin θi sin θj

�
b†
i
+ bi

��
b†
j
+ bj

��

(4.10)

The Hamiltonian in the rotated coordinate system (4.10) is likewise the starting point to
include further degrees of freedom as impurities and doping. Using the method firstly
introduced in [113] and modifying it for calculations in real space the excitation energy,
occasionally denoted as pseudo-spin-wave energy is obtained. The dynamics of the
operator is given as:

�
bl, H

�
- =− 2Ω {−bl sin θl + σl cos θl}+ 2µE {bl cos θl + σl sin θl}

− 1

2

�

i

Jli
�
− 2 cos θi cos θlblσi + cos θl sin θi

�
blb

†

i
+ blbi

�

− 2 cos θi sin θlσlσi + sin θl sin θi
�
b†
i
σl + biσl

��
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The full equation of motion reads:

ω��bl; b†n��ω =
��

bl, b
†

n

�
η

�
+ ��

�
bl, H

�
-; b

†

n
��ω

=
��

bl, b
†

n

�
η

�
+ (2Ω sin θl + 2µE cos θl)��bl; b†n��ω − (2Ω cos θl − 2µE sin θl)��σl; b

†

n
��ω

− 1

2

�

i

Jil
�
− 2 cos θi cos θl��blσi; b

†

n
��ω + cos θl sin θi

�
��blb†i ; b†n��ω + ��blbi; b†n��ω

�

− 2 cos θi sin θl��σlσi; b
†

n
��ω + sin θl sin θi

�
��b†

i
σl; b

†

n
��ω + ��biσl; b

†

n
��ω

��

(4.11)

The rotation of the coordinate system under the condition �bl� =
�
b†
l

�
= 0 enables the

decoupling of the equation of motion of the Green’s function in generalized Hartree-Fock
approximation.

ωGlm = 2�σl�δlm +
�
2Ωl sin θl + 2µE cos θl +

�

j

Jlj cos θl cos θj�σj�

+
1

2

�

j

Jlj sin θl sin θj�blb†j�
�
Glm

− 1

2

�

j

Jlj
�
sin θl sin θj�σl�+ 2 cos θj cos θl�blb†j�

�
Gjm

(4.12)

and in RPA

�

i

��
ω − 2Ω sin θl − 2µE cos θl − cos θl

�

j

Jjl cos θj �σj�
�
δli +

1

4
sin θlJil sin θi

�
��bi; b†n��ω

= 2 �σl� δl,n .
(4.13)

Abnormal Green’s functions of the form ��b†
i
; b†

n
��ω are are not taken into account. The

coefficient matrix is symmetric with respect to the commutation of the lattice sites (l, i)

by the replacement of �σl� = 1
2 in the non-diagonal terms. This system of equations has

to be solved numerically and will be treated in matrix representation.

The given system of equations (Eq. (4.13)) can be written in compact matrix notation,
similar to [132],

(ωE − A)G = C , (4.14)

where the Green’s function matrix G has to be calculated. The matrix A contains the
coefficients obtained by the decoupling. The unity matrix is denoted as E. Hence, only
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4.3. Green’s function approach to ferroelectric nanoparticles

the diagonal elements depends on ω. The matrix C on the right hand site is contains
the associated inhomogeneities and is diagonal cij = ciδij . An orthogonal transformation
across the matrix UTU = 1 transforms the system into diagonal form and the formal
solution looks like:

UT (ωE − A)U� �� �
Ā

UTGU = UTCU ↔ Ḡ = Ā−1UTCU . (4.15)

The transformation matrix is defined as U = (u1, u2, . . . , un) and UT = (ũ1, ũ2, . . . , ũn)

with the eigenvectors ui of the matrix A as column vectors. The element ulk is the lth
component of the kth eigenvector. The matrix Ā is diagonal āij = āiδij. In component
notation the formal solution looks like

ḡij = ā−1
i

�

l

clũilulj =
1

λi

�

l

clũilulj with λi = ω − εi (4.16)

The elements of the desired matrix G contain the eigenvalues λi of matrix A. They are
identical to the diagonal elements of Ā. Furthermore, the inhomogeneity C and the
transformation matrix U are included. The poles εi of the Green’s function determine
the energy of the excitations.

The Green’s function matrix ��bl; b†n��ω and the correlation function
�
b†
n
bl
�

are connected
by the spectral theorem. The corresponding spectral function Ilk(ω) is determined by
the shift of the arguments of the Green’s function into the complex plane.

Ī
b
†

i bj
(ω) = lim

δ→0+

i

eβω − 1
[ḡij(ω + iδ)− ḡij(ω − iδ)] (4.17)

The special form of the eigenvalues λi enables the application of the Dirac formula. A
subsequent unitary transformation yields

I
b
†

l bk
=

2πck
eβω − 1

�

i

uliũikδ (ω − εi) . (4.18)

The correlation function
�
b†
l
bk
�

is connected to the spectral density function by the
spectral theorem (Section 2.4).

�
b†
l
bk
�
=

�
dω

2π
I
b
†

l bk
(ω)eiω(t−t

�) (4.19)
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for equal times (t = t�) and sites (l = k) yields the polarization

�σl� =
1

2

�
1 + 2

�

i

uliũil

eβεi − 1

�−1

(4.20)

The relation �σl� = 1
2 −

�
b†
l
bl
�

yields the desired polarization in the rotated coordinate
system. Appropriate numerical methods has to be applied to solve Eq. (4.20). A lattice
with N sites requires the same number of eigenvectors ul = (u1, u2, . . . , uN)l. The
eigenvalues εi (�σ1� , �σ2� , . . . , �σN�) depend in general on the polarization of the other
lattice sites with cl = 2 �σl�. The summation in Eq. (4.20) is carried out over the lth
component of all eigenvectors ui.

The rotation angle θl is given by

��
bl, H

�
-

�
= �σl�

�
2Ω cos θl − 2µE sin θl − sin θl

�

i

Jil cos θi �σi�
�
= 0 , (4.21)

which ensures the minimization of the free energy and leads to

tan θl =
2Ωl�

i
J̃il cos θi �σi�+ 2µE

. (4.22)

This relation is valid both above (θ = π/2) and below the phase transition temperature
Tc. Whereas in bulk material the energy can be represented in a closed form after Fourier
transformation, in spherical nanoparticles one has to solve the coupled set of Eq. (4.13).
For the calculation of the averaged polarization in the unrotated coordinate system the
substitution �σl� → �σl� cos θl has to be made.

The poles of the Green’s function give the transverse excitation energies. Within the
applied RPA the leading part of the transverse spin-wave energy εn, the soft-mode energy
of the n-th shell, is obtained from

εn = 2Ωn sin θn +
�

j

J̃nj cos θn cos θj�σj�+ 2µE cos θn , (4.23)

where average of the number of sites in any of the shells Nn is included in J̃ and all
quantities are defined in the rotated frame. The shell-resolved relative polarization �σn�
for the n-th shell in the rotated frame the polarization, taking only the diagonal term of
(4.13) into account, reads:

σn =
1

2
tanh

εn
2T

. (4.24)
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Here εn is the transverse excitation energy, i. e. the soft-mode energy of the n-th shell.
The interaction energy J̃ni is determined by the interaction within each shell and the
averaged number of nearest neighbors.

Using the same decoupling scheme as for bulk materials (Section 2.6.1) the damping of
the pseudo-spin wave is calculated as

γn =
π

4

�

j

J̃2
nj
(cos θn cos θj − 0.5 sin θn sin θj)

2n̄j(1− n̄j)δ(ωn − ωj + ωj − ωn) , (4.25)

where n̄n = �b†
n
bn� is the correlation function. It is calculated via the spectral theorem

and using the excitation energy in the RPA by Eq. (4.13).
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4.4. Numerical results and discussion

4.4.1. Size and doping effects on the damping in ferroelectric thin films

The influence of defects within ferroelectric thin films is investigated by numerical
calculations based on the theoretical results of Section 4.2 and is published in [130].
The following model parameters: Jb = 495K, Ωb = 20K are taken into account. The
temperature dependence of the damping γ = 1

N

�
n
γn is calculated for a simple cubic

thin film (k� = 0). Different values of the exchange interaction constants are considered.
The numerical results expose some interesting and novel characteristics in the damping
values in comparison to the case of FE thin films without defects.

Fig. 4.3.: Temperature dependence of the damping γ in cm−1 for a FE thin film with seven
layers and Jb = 495K, Ωb = 20K, Js = 900K Ωs = Ωb in presence of one defect layer.
Three different coupling strengths Jd are plotted. (1) Jd = 300K ; (2) 1000K ; (3)
495K

The temperature dependence of the damping of a seven layer thick ferroelectric film
is shown in Fig. 4.3. The film has a defect layer in the middle, as in Fig. 4.1. The
influence of this defect layer is compared to a defect free film (dashed line). Among
the perfect thin film two opposite cases are possible. The first case (solid line) regards
a weakening of the interaction energy in the defect layer compared to the bulk. The
second kind of thin films possesses the opposite interaction strength Jd. The modification
of the interaction strength J within the layers is originated by defects. Vacancies or
impurities have different radius and distances compared to the constituent ions. Thus the
interaction, denoted as Jd, changes to another value than the bulk interaction constant
Jb. In all cases the damping increases with rising temperature in presence of any kind of
defect. Experimentally an increase of the damping is observed in presence of defects. The
results could help to explain the observed experimental results of Raman scattering from
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Tab. 4.1.: Critical temperature for different defects

Jd [K] bulk 300 1000
Tc [K] 219.5 213.8 228.5

ferroelectric thin films. The line shapes of the film become broad as the temperatures
approaches Tc [133–135]. This is equivalent to a larger damping of the excitation within
the material shown in Fig. 4.3.

Another important quantity is the critical temperature of thin films. Different kinds
of defects have a remarkable influence on the phase transition temperature (Tab. 4.1).
The Curie temperatures are obtained from Eq. (4.7) by solving σ(Tc) = 0. The critical
temperature decreases in case of smaller Jd due to the smaller interaction between the
constituent ions in comparison to the bulk value without defects. The decrease in the
phase transition temperature by the substitution of impurities was found experimentally.
Strontium (Sr)-doping of Ba0.77Ca0.23TiO3 ceramics [136] causes a drastic decrease of the
Curie temperature, just such as Sr-doping of pure BTO ceramics, demonstrating a cell
volume effect. La-modified PTO obeys a significant lowering of Tc with an increase of La
content [137]. The transition temperature of undoped lead zirconate titanate (PZT) film
was found to be reduced with Nd-doping of sol-gel derived Pb1.05(Zr0.53Ti0.47)O3 thin films
[138]. The decrease of the critical temperature in thin ferroelectric films can be associated
with the substitution of La in bismuth layer-structured ferroelectrics (BLSF) [139]. The
La atoms substitute for Bi atoms in a perovskite-type unit only, and the substitution
causes less distortion of the structure, resulting in smaller spontaneous polarization and
lower ferroelectric Curie temperature. Electronic-structure calculations revealed that
covalent interaction, which originates from the strong hybridization between Ti 3d and O
2p orbitals, plays an important role in the structural distortion and ferroelectricity of the
materials. Barium strontium titanate (BST) ceramics doped with low Mg concentrations
[140] exhibit a shift of Curie point to lower temperatures. Mg mainly acts as an acceptor
dopant to replace Ti at the B site of ABO3 perovskite structures. In Ba1−xCaxTiO3 thin
films [141] a lower transition temperature was found with an increase in the values of Ca.
The anomalous phase transition decrease was ascribed to the occupancy of the Ca2+ in
the Ti4+ site.

The opposite behavior of Tc is found in films with enhanced Jd. Here the phase
transition occurs at larger values. Investigations for Sr-deficient and Bi-excess strontium
bismuth tantalate (SBT) [142, 143] show that excess-Bi is substituted at the perovskite
A site (Sr site) as trivalent ions. Here, ferroelectricity is attributed to the rotation and
tilting of TaO6 octahedra as well as the displacement of Ta ions in the octahedra. Hence
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the A-site ions located at the cavities between two TaO6 octahedra play a crucial role
in the ferroelectric properties. The charge neutrality in the crystal is satisfied through
the introduction of cation vacancies at the A-site. The substitution of Bi with the A-site
vacancies led to a marked increase in Curie temperature. The structure refinement
revealed that the rotation of TaO6 octahedra in the a-b plane accompanied with the
whole shift of the octahedra along the a-axis is largely enhanced by the Bi substitution
with A-site vacancies, which is responsible for the higher Tc. In a series of Bi-layered
compounds [144] the lattice mismatch between TaO2 and AO planes in the perovskite-
type unit of ATa2O7 increases and the structural distortion becomes more pronounced,
as the size of the A-site cation decreases from Ba2+ to Ca2+. This distortion leads
to the higher Curie temperature. The dielectric and ferroelectric properties of barium
strontium titanate (BST) Ba1−xSrxTiO3 and Ca-doped barium strontium titanate (BSCT)
Ba1−2xSrxCaxTiO3 ceramics have been investigated [145]. Introducing Ca2+ ions into
BST ceramics decreases obviously the dielectric constant maximum. The Tm of BST
ceramics shifts to higher temperature when Sr2+ ions are substituted with Ca2+ ions in
BST ceramics. The effects of Ca doping on the Curie temperature of Ba0.4Sr0.6−xCaxTiO3

has been studied [146]. Powder x-ray diffraction revealed a small amount of Ca ions
substituted for Ti ions. Correlated with the evolution of the lattice constant with x, Tc

increases linearly with increasing calcium concentrations. These variations have been
interpreted in terms of Ca-doping-induced A-site cation size variance, a substitution
of a small amount of Ca ions for Ti ions, and structural phase separation. Hence, the
critical temperatures of the FE phase transition are increased or decreased due to different
interactions in the defect layers.

Fig. 4.4.: Temperature dependence of the damping γ in cm−1 for Jb = 495K , Ωb = 20K,
Js = 300K , Ωs = Ωb, N = 7 in presence of a varying number of defect layers. (1)
J3 = J4 = J5 = Jd = 600K ; (2) J4 = Jd = 600K
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The damping is influenced by the number of inner defect layers. The variation of the
inverse life-time with the number of defect layers is depicted in Fig. 4.4. A thin film of
seven layers with three defect layers (solid line) (J3 = J4 = J5 = Jd = 600K) exhibits a
larger damping than a film with only one defect layer (dashed line) (J4 = Jd = 600K). The
line broadening in scattering experiments should be enlarged over the whole temperature
range. This is in agreement with the experimental data [147], where structural defects
can produce excessive line broadening.

Fig. 4.5.: Temperature dependence of the damping γ in cm−1 for Jb = 495K, Ωb = 20K,
Js = 300K, Ωs = Ωb and different film thickness. (1) N = 7; (2) N = 9

The size dependence of the ferroelectric thin film is given in Fig. 4.5. Two different film
sizes are compared. The middle layer is defect (Jd = 1000K). The damping increases for
higher temperatures in both cases, films with seven (solid line) and nine layers (dashed
line). The thinner film shows a higher damping for all temperatures. Hence the damping
increases with decreasing film thickness. The thinner the films the larger is the damping.
The enlarged damping of the excitation for thinner films is in agreement with previous
calculations without defects [123] and with the experimental data [133–135].
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4.4.2. Surface and size effects in spherical ferroelectric nanoparticles

4.4.2.1. Macroscopic properties without external electric fields

The existence of a surface in non-bulk systems, such as small particles, changes all
physical quantities. The number of nearest neighbors at the surface differs from the
inner part. Hence, the appearing strain in the surface of ferroelectric nanoparticles
results in a change of the interaction constant J at the surface in the framework of the
Ising model in a transverse field given in Chapter 4.1. These surface effects, represented
by a deviation of the interaction Js �= Jb, compared to the inner shells, influence all
relevant quantities based on the theoretical description of ferroelectric nanoparticles.
The analytical expressions in form of coupled equations (Eq. (4.13) and Eq. (4.20)) were
numerically solved for different sets of parameters, adequate for the modeled particles.
In particular, the behavior of spherical ferroelectric (FE) particles, whose cross section is
depicted in Fig. 4.6, is analyzed. It should be noted that the relevant parameter is the
ratio Ω/J, which is in general a small quantity. The results presented in this part of the
thesis are published in [148, 149]. Moreover the phase transition temperature is strongly

Fig. 4.6.: Schematic cross section of a ferroelectric nanoparticle with eight shells. The blue
color indicates the surface shell.

influenced by a variation of J . Thus different interaction strengths are considered while
the transverse field remains fixed. The required interaction parameter for the non-surface
and non-doped case were chosen due to former calculations for BTO systems [4]. The
interaction strength reads Jb = 150K, the tunneling integral is Ωb = 10K.

The size dependence of the polarization and the critical temperature of ferroelectric
nanoparticles are investigated. The size of the nanoparticles, composed of shells, is
controlled by the number of shells N . In the outermost shell – the surface shell – the
interaction strength is smaller compared to the inner shells. This seems to be appropriate
for BTO ferroelectric particles. The temperature dependence of the polarization of
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ferroelectric particles of different size is shown in Fig. 4.7(a). The polarization decreases
with increasing temperature for all particle sizes and vanishes continuously at a size
dependent critical temperature. The polarization at a certain temperature is enhanced
with increasing particle size. A doubling of the particle size for the smallest particles
shows the largest change in the polarization. For larger particles, after doubling the
particle size, a minor change is observed. The corresponding dependence of the critical
temperature on the particle size is shown in Fig. 4.7(b). The ferroelectric particles exhibit
a fast increase of the critical temperature Tc with an ascending number of shells. In the
limit of very large numbers N the critical temperature approaches a constant value.
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Fig. 4.7.: Temperature dependence of the polarization (a) and the critical temperature (b)
depending on the number of shells N . The interaction strengths are fixed to Jb = 150K
and Js = 50K.

The influence of the surface is dominant for small particles. The changed configuration
of the surface shows the largest effect for small particles. With increasing particle size,
the influence of the surface is reduced. Hence the polarization shows only small deviations
from the bulk value for larger particles. The increase of the critical temperature is
in qualitative agreement with the X-ray diffraction (XRD) analysis of small particles
composed of BTO [150] showing a smaller transition temperature with a decrease in the
particle size. Specific heat measurements and differential scanning calorimetry (DSC) on
PTO nanoparticles reveal, that the transition temperature decreases gradually with a
decrease of the particle size [151, 152].

The associated critical size effect is controversially discussed in the literature [153,
154]. The question arises, how physical properties such as the polarization or the critical
temperature are affected by the size of the system, especially in the nanometer scale and
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if there is a maximal size of a crystal at which ferroelectricity is impossible. The chosen
set of parameters does not lead to an indication for a pronounced critical size effect.

Tensile or compressive strain results in a reduced or enhanced interaction at the surface.
The effect of the surface interaction on the temperature dependent mean polarization is
shown in Fig. 4.8. Three particles with different surface configurations are considered.
The particles have the same size, i.e. the same number of shells N . The particle is build
up of four shells as in Fig. 4.2(d). Due to the different numbers of nearest neighbors or
by the resulting strain of small particles at the surface the interaction constant at the
surface Js is generally different compared to Jb in the bulk.
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Fig. 4.8.: Temperature dependence of the averaged polarization σ with Jb = 150K, N = 4
for different surface couplings: Js = Jb (solid curve); Js = 325K (dotted curve);
Js = 50K (dashed curve) .

The polarization for a higher (dotted line) as well as a lower (dashed line) interaction
in the surface shell is investigated. The variation of the coupling at the surface changes
the polarization. A lowered surface interaction strength (Js < Jb) leads to a reduced
polarization, which vanishes continuously at a lower critical temperature Tc. The opposite
case (Js > Jb) yields a larger dipole moment and consequently an enhanced phase
transition temperature Tc. The phase transition is a pronounced second-order one. The
observation reflects that both the bulk and the surface coupling contribute to the ordering
of the pseudo-spins. A reduced surface interaction could explain the decrease of the
polarization and the phase transition temperature in small particles of BTO [150, 155]
and PTO [151, 152]. The enhanced surface interaction is responsible for the increase of
the polarization and critical temperature in small KDP particles [156] and KNO3 thin
films [157].

62



4.4. Numerical results and discussion

The effect of the surface interaction on the polarization is investigated in more detail
by the shell-resolved polarization σn with a reduced surface interaction in Fig. 4.9(a).
The particle, see Fig. 4.6, is composed of eight shells (N = 8). The index n denotes the
considered shell of the particle, e.g. n = 8 represents the surface shell. The opposite case,
an enhanced interaction, is regarded in Fig. 4.9(b). A reduction or enhancement of the
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Fig. 4.9.: Temperature dependence of the shell resolved polarization σn for a particle with eight
shells. The surface energy is Js = 50K (a) and Js = 325K (b). The non-surface
interaction Jb = 150K is fixed.

local polarization σn depending on the shell within the particle is clearly visible. The
behavior is contrary for weaker or stronger surface couplings. The polarization is almost
not affected at very low temperatures. With increasing temperature the polarization
differs depending on the shell. Shells closer to the surface shell are more affected than
inner shells. This reflects the importance of the inclusion of surface effects.

4.4.2.2. Hysteresis effects

The inclusion of an electric field and the theoretical observation of the influence of the
surface configuration on the associated hysteresis loop is shown in Fig. 4.10. Three
different surface configurations (Js < Jb, Js > Jb and Js = Jb) are considered for a
particle with eight shells (N = 8) at room temperature (T = 300K). A reference curve
(solid line) is drawn for a particle without a change in the surface. The coercive field Ec

and the remanent polarization σr are sensitive to variations of the interaction parameter
at the surface. In case that a surface coupling is smaller than in the inner shells (dashed
line), both quantities are reduced. In the opposite case (dotted line) both, the coercive
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field and the remanent polarization increase. The lowering of the coercive field is related
to the reduction of the critical temperature (Fig. 4.8) caused by the changed surface
configuration. This was observed in small BTO- [155] and PTO particles [152]. The
opposite case agrees with observations made in small KDP- particles [156], where the
polarization and the critical temperature increase compared to the bulk material. The
hysteresis loops obtained with the microscopic model are in agreement with the results
based on a thermodynamic approach [158]. Here, surface effects are described by an
inhomogeneous Landau-Devonshire theory.
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Fig. 4.10.: Influence of the surface coupling strength Js on the hysteresis of a particle with
eight shells at fixed temperature T = 300K for Js = 150K (solid curve), Js = 350K
(dotted curve), Js = 50K (dashed curve); the insert offers the low field behavior.
The interaction of the inner shells reads Jb = 150K.

The temperature dependence of the hysteresis loop for a particle with eight shells is
shown in Fig. 4.11. At very low temperatures (solid line), the remanent polarization σr is
at its maximum value. The coercive field Ec is large compared to higher temperatures.
The hysteresis loop narrows with rising temperature (dotted line). Hence, the coercive field
Ec and the remanent polarization decrease with increasing temperature. At temperatures
above the phase transition temperature (dashed line) the particle shows no hysteresis.
Due to the increasing influence of temperature effects, e.g. fluctuations, the coercive field
and the remanent polarization are reduced. In the paraelectric phase the hysteresis loop
vanishes (dashed line), due to the loss of spontaneous ordering of the order parameter.

Fig. 4.12 reflects the size dependence of the remanent polarization (filled circles) and
the coercive field (filled squares) at room temperature. Both, the field Ec and the
polarization σr, increase with increasing size of the nanoparticles. The influence of
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Fig. 4.11.: Temperature dependence of the hysteresis with Js = 50K: T = 100K (solid curve),
T = 300K (dotted curve), T = 500K (dashed curve) . The particle consists of eight
shells (N = 8) and a non-surface interaction of Jb = 150K.

the surface diminishes for larger particles. Theoretical findings by a continuum phase
field model [159] and the experimental data from ultrathin ferroelectric films of BTO
[160] agree with the obtained results. Within this approach no rising coercive field with
decreasing particle size is observed, as reported in [161–163].

4.4.2.3. Microscopic properties

Apart from macroscopic quantities the Green’s function method yields microscopic
properties of the nanoparticles as the energy of the elementary excitations, compare
Eq. (4.13), Eq. (4.23), and its damping, see Eq. (4.25).

The dependence of the excitation energy on the temperature for ferroelectric nanopar-
ticles of different sizes is shown in Fig. 4.13(a) for a reduced surface interaction (Js < Jb).
For all particle sizes the excitation energy lowers with increasing temperatures and van-
ishes at the critical temperature. Larger particles have larger energies over the complete
temperature range. The gain of energy for particles upon the doubling of size is smaller,
if the particles become larger. The nanoparticle shows a typical soft-mode behavior as
already observed in the bulk material [103]. The excitation energy is shifted to smaller
values in comparison to the bulk material, when the number of shells decreases. Due to
higher order interactions between the constituents, the scattering at defects or by the
inclusion of phonon degrees of freedom, the elementary excitation can be damped. Such
a damping (Eq. (4.25)) results in a finite life-time of the excitations. The temperature
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Fig. 4.12.: Remanent polarization σr (circles) and coercive field Ec (squares) for different size
N at temperature T = 300K and couplings Jb = 150K, Js = 50K.

dependence of the damping of the pseudo-spin excitations for particles of different size is
given in Fig. 4.13(b). The damping increases for higher temperatures for all particles. At
low temperatures the damping is extremely small, thus the excitations are underdamped.
In approaching the critical temperature the damping increases strongly but remains finite.
Smaller particles exhibit larger damping of the excitations. The change in damping
is the largest for the smallest particles. The insert shows the overall development of
the damping. Very close to the critical point a sudden decrease was observed, which is
plotted in the insert only for the sake of completeness. Fluctuation effects, predominantly
occurring in the vicinity of the phase transition, are slightly suppressed through the
selected approximation. Hence, results near the critical temperature should be considered
as an extrapolation. A lower excitation energy for smaller particles implies a lowering of
the force constant, which was observed for PTO particles [135, 151, 164]. Consequently
this leads to the decrease of the phase transition temperature between the tetragonal
and the cubic phase.

The finite damping at the phase transition point is in contrast to the behavior of
bulk material, e.g. PTO [165], where the linewidth of the soft mode diverges at the
ferroelectric-to-paraelectric transition. The soft mode becomes overdamped close to the
phase transition. Such a behavior is in agreement with experimental data for PTO [135,
164], BTO [166] and SBT [167] particles. The enhanced damping in small nanoparticles
offers an explanation of the broadened peak, observed in the dielectric constant of PTO
particles [152] and (Ba,Sr)TiO3 thin films [168, 169]. A broadened dielectric anomaly

66



4.4. Numerical results and discussion

0 50 100 150 200 250 300 350 400 450

Temperature T(K)

100

200

300

400

500

600

700

800

900

E
xc

ita
tio

n
E

n
e

rg
y

(c
m

-1
)

N=1
N=2
N=4
N=8
N=16

(a)

150 200 250 300 350 400 450

Temperature T(K)

100

200

300

D
a

m
p

in
g

(c
m

-1
)

N=2
N=3
N=5
N=9
N=21

0 200 400

200

400

(b)

Fig. 4.13.: Temperature dependence of the excitation energy (a) and the related damping (b)
for for particles of different size N with Jb = 150K, Js = 50K.

leads also to a smearing out of the critical regime.
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4.4.3. Doping effects in spherical ferroelectric nanoparticles

4.4.3.1. Macroscopic properties without external electric fields

Experiments show a clear influence of impurities or defects on physical properties. Such
defects can be originated by localized vacancies or impurities, doping ions with smaller
radii and larger distances in-between in comparison to the host material, see also [159].
The variation of the coupling parameter can also originate from the appearance of local
strain. The simplest way to incorporate defect configurations into the model is to assume
a variation of the interaction strength J . Microscopically, the substitution of defects into
the material leads to a change of the coupling parameter. The defect coupling between
neighbors is altered J = Jd and in general different from the surface value Js as well as
the bulk one Jb. Furthermore, the defect can be situated at one or more shells within the
nanoparticle (Fig. 4.14). The corresponding transverse field in a defect shell Ωd should
also change. The investigations are focused on the quantity Ωd/Jd. Hence the quantity Ωd

is kept fixed and only the interaction within the defect layer is varied. The polarization,
excitation energy as well as its damping should depend on the defect concentration. The
presented results are published in [148, 170].

Fig. 4.14.: Schematic cross section of a defect ferroelectric nanoparticle with eight shells. The
blue color indicates the surface shell and the red color the five shells being defect.

The temperature dependence of the polarization of ferroelectric nanoparticles with
defects is shown in Fig. 4.15. The particle consists of eight shells with the first two shells
being defect. The polarization of the nanoparticle decreases with increasing temperature
and vanishes at Tc. Apparently the Curie temperature changes due to the presence of
defects. The temperature dependence deviates from the defect free case. The weakening
of the interaction parameter (Jd < Jb) by defects (dashed curve) reduces the spontaneous
polarization and the critical temperature compared to particles without defects (solid
curve) over almost the whole temperature range. Only at very low temperatures the
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Fig. 4.15.: Temperature dependence of the averaged polarization σ for a ferroelectric nanoparti-
cle with Jb = 150K, Js = 50K. From the total number of N = 8 shells the first two
shells are defect shells: Jd = Jb (solid curve); Jd = 225K (dotted curve); Jd = 25K
(dashed curve)

polarization is not affected. In case of a higher interaction (Jd > Jb) the polarization
(dotted curve) as well as the critical temperature are enlarged.

For a more detailed investigation of the influence of defects on the polarization and the
critical temperature, the concentration of defects of different type within the nanoparticle
is altered. The concentration of defects is included by the number of shells with a
modified interaction Jd. The dependence of the averaged polarization σ of spherical
nanoparticles on the number of defect shells nd at a fixed temperature (T = 300K)
is shown in Fig. 4.16(a). The particle consists of eight shells. Two different types of
defects within the nanoparticle are considered. A defect coupling smaller than the bulk
and surface couplings (squares) leads to a reduction of the polarization. Higher defect
strengths (diamonds) enlarge the polarization. A secondary effect can be observed by
considering the sequence of the defect shells. The full symbols correspond to the case,
when the defect configuration starts at the center and subsequently the next shells are
assumed to be defect configurations. The procedure is performed until the surface shell is
reached and becomes itself defect, too. The opposite realization is drawn as open symbols.
Here, firstly the configuration of the surface shell is a defect configuration and then
subsequently the other shells become defect until the center is reached. The two different
realizations are denoted as up- and down-process, respectively. The up-process represents
a filling procedure starting from the center of the nanoparticle and down-process for the
opposite direction. The interaction with the pseudo-spin in the center of the particle
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Fig. 4.16.: Dependence of the averaged polarization and the critical temperature on the number
of defect shells n = nd for a particle size N = 8. The interaction strength reads
Jb = 150K, Js = 50K and two different Jd-values: Jd = 25K (squares) and
Jd = 225K (diamonds) were chosen. The full symbols denote the up process, the
open symbols - the down process, see the text.

is indicated by nd = 1 in the up-process. In the down-process the first shell becoming
defect is the surface shell. Here, a larger influence on the polarization is observable.
Both processes have in common the increase or decrease of polarization with the growing
number of defect shells for the particular interaction strength. The slope is stronger for
the down-process than for the up-process. In case of a reduced interaction strength within
the defect shell, the polarization of the particle vanishes. This corresponds to a decrease
of the critical temperature, see also Fig. 4.16(b). Above a certain defect concentration,
corresponding to the number of defect shells, the particle becomes paraelectric at the
fixed temperature.

The influence of defects on the Curie temperature is shown in Fig. 4.16(b). A de-
fect coupling smaller than bulk and surface couplings (squares) decreases the critical
temperature, whereas higher defect strengths (diamonds) enlarge the phase transition
temperature. The critical temperature is also influenced, by the up- or down process,
which was particularly described for the dependence of the polarization on the kind of
defect in the nanoparticle. The full squares and diamonds correspond to the case, where
the sequence of defects starts at the center. Both defect growth directions show a increase
or decrease of Tc with the increasing number of defect shells for the particular interaction
strength. For the down-process the slope is stronger than for the up-process.

Both responses to the doping (Jd < Jb, Jd > Jb) were experimentally observed. For
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Sr-deficient and Bi-excess SBT the Bi substitution with A-site vacancies is responsible
for the enhanced polarization and Curie temperature [142, 171], governed by the bonding
characteristics with oxide ions. The influence of the orbital hybridization on Tc is very
large, and Bi substitution results in a higher transition temperature. A decrease in the
polarization and the Curie temperature was found in lanthanum-doped lead zirconate
titanate (PLZT) for the increase of Ba [172] and La concentrations [173]. This effect in
ABO3 structures is addressed to induced A-site vacancies, which weaken the coupling
between neighboring BO6 octahedral [137]. The Curie point shifts to lower temperatures
in barium zirconium titanate (BZT) nanoparticles [150].

4.4.3.2. Hysteresis effects

Several indications for a significant influence of doping effects on the hysteresis loop of
ferroelectric nanostructures are observed in experiments. The behavior of the remanent
polarization as well as the coercive field are influenced by the presence of defects.

This influence of defects on the hysteresis loop represented by two different coupling
strengths Jd is shown in Fig. 4.17. The first five inner shells of the nanoparticle consist of
defects. Here the number of ferroelectric constituents is large enough to give a significant
contribution to the polarization and consequently, also to the hysteresis loop. The area
of the hysteresis loop changes due to the presence of defects. In case of a reduced
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Fig. 4.17.: Influence of defects on the hysteresis for T = 300K, Jb = 150K, Js = 50K. The
first five of totally eight shells (N = 8) are defect: Jd = Jb (solid curve); Jd = 225K
(dotted curve); Jd = 25K (dashed curve).

interaction strength in the defect shells (dashed curve) the coercive field and the remanent
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4. Many-particle approach to ferroelectric nanostructure

polarization are reduced in comparison to the defect-free case (Jd = Jb). The reduction of
the interaction strength (Jd < Jb) and the accompanied decrease of the coercive field and
the remanent polarization in small ferroelectric particles by the substitution of doping ions
could explain the experimental observations of substituting La in PTO thin films [174]
and PZT [173, 175] nanopowders. The hysteresis loop for an enhanced coupling (Jd > Jb)
(dotted curve) exhibits an enhanced coercive field and remanent polarization compared
to the non-defect particles. A defect coupling stronger than the bulk coupling will be in
general realized, when the impurities have a larger radius compared to the constituent
ions. This can be originated by compressive stress. The corresponding quantities are
enhanced in comparison to the bulk value, which is clearly originated by an enhanced
Jd-coupling. The results are in accordance with the experimentally observed increase
of Ec and Pr in case of substituting ions such as Bi in SBT [142], or by increasing the
barium contents in PLZT ceramics [172].

The dependence of the coercive field on the defect concentration for two different kinds
of defects is shown in Fig. 4.18. The particle has a size of eight shells. The temperature
is fixed to room temperature (T = 300K). The amount of defects within the particle
is given by the number of shells nd, which are defect. The position of defects in the
nanoparticle is given by the growth direction of the defect, denoted as the up- and
down-process described before. In case of defects leading to a reduced coupling in the
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Fig. 4.18.: Dependence of the coercive field Ec on the number of defect shells nd for N = 8,
Jb = 150K, Js = 50K and different Jd-values: Jd = 25K (squares) and Jd = 225K,
(diamonds). The full symbols denote the up-process, the open symbols - the down-
process.

defect shells (squares), the coercive field is reduced with increasing number of defect
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shells. The position of the defects within the particle guides the slope of the reduction
of the coercive field. Defects located in the outer shells lead to a stronger decrease of
Ec. The coercive field equal to zero, if the number of defects in the particle becomes
large enough to reduce the phase transition temperature below room temperature. The
particle becomes paraelectric and the coercive field vanishes. The result is in reasonable
accordance to the experimental data [173, 174, 176]. A similar result is also obtained for
the remanent polarization Pr . An increase of the lanthanum content in PTO and PZT
ceramics decreases the coercive field Ec.

Particles including defects with an enhanced coupling (diamonds) have larger coercive
fields. With an increasing number of defect shells the coercive field Ec (respectively Pr)
increases. The open squares and diamonds represent the filling of the particles with
defect shells beginning from the surface shell (down-process), whereas the full symbols
correspond to the up-process. One observes that the increase or decrease of Ec is more
pronounced and stronger for the down-process. The enhanced coercive field is in a quite
good agreement with the experimental data, by the doping of SBT with calcium (Ca) or
neodymium (Nd), where oxide vacancies are produced by the substitution of Nd at the
B-site. [171, 177].

4.4.3.3. Microscopic properties

The underlying microscopic properties of the nanoparticles, such as the energy of the
elementary excitations (Eq. (4.23)) and its damping (Eq. (4.25)) are influenced by defects
as well. The temperature regime of the energy of the elementary excitations ε for different
numbers of defect shells nd, is shown in Fig. 4.19(a). All up to the nd-th shell are
defect. This is equivalent to the up-process, if different filling procedures are taken
into account. The bulk coupling is stronger than the defect and the surface coupling
(Jb > Js > Jd). Excitation energies depend on the number of defects nd and the
corresponding coupling Jd. An enhanced defect concentration reduces the energy of the
excitations in the present choice of parameters for all temperatures up to the critical
point. The corresponding behavior of the damping of excitations on the number of defect
shells is shown in Fig. 4.19(b). The damping increases with rising temperature. When
reaching the phase transition point the damping gets its maximum, but stays finite. The
damping is enhanced in comparison to the non-defect case. The complete development of
the damping is shown in the inset. The sudden drop of the damping at the critical point is
suppressed in Fig. 4.19(b). The behavior in the vicinity of the phase transition is beyond
the scope of the theory and has to be treated in the framework of a more refined theory
(e.g. renormalization group theory). An experimental evidence of the lowering of the soft
mode frequency for La-doped nanocrystalline PTO was given in [178]. Similar results are
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Fig. 4.19.: Temperature dependence of the (a) excitation energy and (b) damping for Jb > Js >

Jd with different defect shells Jb = 150K, Js = 50K, Jd = 25K, N = 8 .

found for Er-substituted PTO thin films [179]. The Raman peak width is broadened in
comparison to undoped specimen. This is in accordance with a larger damping of the
excited modes. The results reveal, that different mechanism such as surfaces, stress and
defects contribute additively to the damping coefficient. In so far the damping is always
enhanced in comparison to the bulk and to materials without defects.
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5. Many-particle approach to non-collinear magnetic

structures

5.1. The model and Green’s function

In this section it is demonstrated, that a many-particle approach can be applied to
non-collinear magnetic structures [180]. Therefore, an extended Heisenberg model is
chosen to represent the underlying magnetic system. The isotropic Heisenberg model
H1 describes the coupling of the spins in the magnetic system and drives the parallel or
anti-parallel alignment. The asymmetric DMI H2 favors a canting of the spins in the
plane perpendicular to the DM-vector D. Because of the asymmetric superexchange
interaction of the magnetic moments, the spins orient in a non-collinear fashion, which
can be the origin of a spiral spin structure of several types. The Hamiltonian reads:

H = H1 +H2 +H3 (5.1)

where the three part are defined by:

H1 = −1

2

�

ij

JijSiSj − gµBH
A
�

i

Si , (5.2a)

H2 = −1

2

�

ij

Dij(Si × Sj) (5.2b)

H3 = −1

2

�

ij

JA

ij
Sτ
i
Sτ
j
. (5.2c)

An anisotropy in a certain τ -direction is included by the third term H3. In the upcoming
calculations we will restricted ourself to τ = z. In H1 the summation is taken over all
nearest neighbors and Jij denotes the symmetric exchange interaction. The spin couples
also to an anisotropy field H

A. The relativistic spin-orbit interaction reflected in the
DMI H2 is determined by the antisymmetric coupling Dij.

For the description of magnetic systems with a spiral structure, some special cases had
been discussed in [181, 182], it is appropriate to transform the spin operators to the eigen
representation of the quantization axis introduced in Section 2.2. Here, the quantization
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axis, see Fig. 5.1, at site f of the lattice is given by the real unit vector

γ
f
= (γx

f
, γy

f
, γz

f
) = (ρ cosQrf , ρ sinQrf , γ

z

f
) . (5.3)

The spin-12 operators are transformed in terms of Pauli operators b† and b as described in
Section 2.2.

Fig. 5.1.: Quantization axis of transformed operators with ρ =
�
1− (γτ )2.

This realization guaranties the commutator relation of the spin operators and the
Hamiltonian is transformed into in the following compressed form, where only even terms
in the annihilation and creation operators have to be taken into account

H = −1

2

�

ij

{Xijσiσj + 2Sijbib
†

j
+Rijbibj + R̃ijb

†

i
b†
j
}− gµB

�

i

(HA)αγα
i
σi . (5.4)

The prefactors in the Hamiltonian represent the renormalized interaction between the spins
including the Heisenberg interaction and the asymmetric DMI. The Fourier transformed
prefactors are defined in the subsequent section. Notice that within this representation
the asymmetry is reflected by the relation Sij �= Sji.

The equation of motion of the Pauli operators (Section 2.2) on the basis of Eq. (5.4)
reads:

�
bl, H

�
- =

1

2

�

j

�
(Xlj +Xjl)σjbl + 2Zljblbj + 2Z̃ljblb

†

j
− 4Z̃jlσjσl − 4Sjlσlbj

− 2(R̃lj + R̃jl)σlb
†

j

�
+ (HA)α(blγ

α
l
− 2(A∗

l
)ασl)

(5.5)

The many-particle system described by Eq. (5.4) is investigated by the thermodynamic
Green’s function method as described in Section 2.4. The decoupling of the equations of
motion is done by RPA. After some algebra the excitation energy of spin waves can be
derived by the eigenvalues of the following matrix equation

�
ω − ε11q,Q ε12q,Q
−ε12q,Q ω + ε11−q,Q

�

� �� �
Λ

�
��b; b†��q ��b; b��q
��b†; b†��q ��b†; b��q

�
=

�
2 �σ� 0

0 −2 �σ�

�
,

(5.6)
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where the coefficients obtained from the decoupling reads:

ε11q,Q = �σ�
�
X0,Q − 2Sq,Q

�
+ gµB(H

A)αγα (5.7a)

ε12q,Q = 2 �σ�Rq,Q = �σ� ρ
2

2

�
Jq + JA

q − 1

2
Pq,Q

�
(5.7b)

with

Xq,Q =
�
Jq + JA

q

�
(γz)2 +

ρ2

2
Pq,Q (5.7c)

Sq,Q =
1

4

�
Jq + JA

q

�
ρ2 − 1

8

�
(γz)2 + 1

�
Pq,Q +

1

4
γzVq,Q . (5.7d)

The magnetization points in direction of the magnetic anisotropy. Spin waves of wave
vector q and the direction of the propagation of the incommensurate spin spiral with wave
vector Q are defined by the quantization axis γ. In case of τ = z, the spiral orientations
vary around the z direction. The deviation from the collinear state is characterized
by γτ < 1. In the parallel aligned state the condition reads γτ = 1. The cycloidal or
screw state corresponds to γτ = 0. The wave vector of the spin spiral is determined by
minimizing the free energy. The spin-wave dispersion relation of the low-lying states,
given by the poles of the Green’s function, reads

ε(±)
q,Q =uq,Q ± vq,Q

=
γτ �σ�

2
Vq,Q ±

�
1
2 [(γ

τ �σ�)2(Jq + JA
q − 1

2Pq,Q)− �σ�2 (Jq + JA
q − 1

2P0,Q)]∗
∗[P0,Q − Pq,Q]

(5.8)

with

γτ �σ� = gµBHA

1
2P0,Q − (J0 + JA

0 )
. (5.9)

The last equation determines the wave vector Q, which is chosen in such a way as to
minimize the free energy. The necessary condition of a minimum is

��
bl, H

�
-

�
= 0 = �σ� {Z̃0,Q �σ�+ gµBH

A
ρ

2
}

= �σ� ρ
�
γz �σ�

�
J0 + JA

0 − 1

2
P0,Q

�
+ gµBH

A

�
.

(5.10)

Generally speaking, the choice of Q must correspond to a minimum of the free energy (or
the energy of the ground state as the temperature goes to zero (T → 0). As is shown in
[114, 183], this choice coincides with the requirement that the non-diagonal mean values
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vanish �b� =
�
b†
�
= 0 which, in its turn, leads to an exact implicit equation for the wave

vector Q.

The dispersion relation of the magnetic system obtained in Eq. (5.8) consists of two
parts. The asymmetric first part, with the function

Vq,Q = −V−q,Q = Jq+Q − Jq−Q + i[Dτ
q+Q +Dτ

q−Q] , (5.11)

only contributes in case of a spin alignment with an additional component in the direction
of the DM-vector. This can be interpreted as a conical spin spiral. The second part is
symmetric with a renormalized interaction

Pq,Q = P−q,Q = Jq+Q + Jq−Q + i(Dτ
q−Q −Dτ

q+Q) (5.12)

and contributes also in case of a screw or cycloidal spin ordering. The positive branch of
the spin-wave dispersion relation is chosen because a negative excitation energy indicates
an instability of the system. In case of γτ �= 0 the dispersion relation becomes asymmetric
with respect to the wave vector q. The rotational sense (chirality) is defined by the
interplay between the different interactions of the magnetic system. This interplay results
in a wave vector Q which is related to a constant canting of spins between adjacent lattice
sites. The rotational sense depends on the sign of the DMI, allowing only one type of
chirality, which is in accordance with [8]. The asymmetry is characterized by

∆εq,Q = εq,Q − ε−q,Q = γτ �σ�Vq,Q = γτ �σ� {Jq+Q − Jq−Q + i[Dτ
q+Q +Dτ

q−Q]} .

(5.13)

Here both, the symmetric Jij and the antisymmetric interaction Dτ
ij

contribute to the
chirality-dependent asymmetry. In accordance with recent calculations [184] only the
components of the DM-vector parallel to the ground state magnetization γτ influence the
dispersion relation. In case of all moments are perpendicular to the anisotropy direction
(γτ = 0) the asymmetry vanishes.

Because the Green’s function, defined in Eq. (5.6), includes the statistical average we
find also the temperature dependence of the asymmetry via the temperature dependence
of the magnetization �σ�. The Green’s function matrix calculated form Eq. (5.6) is given
as:

Gq(ω) = 2 �σ�Λ−1

�
1 0

0 −1

�
=

2 �σ�
(ω − ε(+)

q,Q)(ω − ε(−)
q,Q)

�
ω + ε11−q,Q ε12q,Q

ε12q,Q −(ω − ε11q,Q)

�
,

(5.14)

78



5.1. The model and Green’s function

which leads to

G11
q (ω) = �σ�

�ε11q,Q + ε11−q,Q

2vq,Q

� 1

ω − ε(+)
q,Q

− 1

ω − ε(−)
q,Q

�
+
� 1

ω − ε(+)
q,Q

+
1

ω − ε(−)
q,Q

��
(5.15a)

G22
q (ω) = �σ�

�ε11q,Q + ε11−q,Q

2vq,Q

� 1

ω − ε(+)
q,Q

− 1

ω − ε(−)
q,Q

�
−
� 1

ω − ε(+)
q,Q

+
1

ω − ε(−)
q,Q

��
(5.15b)

G12
q (ω) =G21

q (ω) = �σ�
ε12q,Q
2vq,Q

� 1

ω − ε(+)
q,Q

− 1

ω − ε(−)
q,Q

�
(5.15c)

The correlation functions are connected to the Green’s function by the spectral theorem
(Section 2.4.2). Using this relation, the correlation functions are given as:

�
b†b

�
q,Q

= �σ�
�

1

2 sinh(β2 ε
(+)
q,Q) sinh(

β
2 ε

(−)
q,Q)

�
sinh βuq,Q −

ε11q,Q + ε11−q,Q

2vq,Q
sinh βvq,Q

�
− 1

�

(5.16)

�bb�q,Q = �σ�
ε12q,Q sinh βvq,Q

2vq,Q sinh(β2 ε
(+)
q,Q) sinh(

β
2 ε

(−)
q,Q)

(5.17)

The averaged magnetization �σ� = 1
2 −

1
N

�
q

�
b†b

�
q

is given by:

�σ� = 1

2

� 1

N

�

q

sinh βuq,Q − ε11q,Q+ε11−q,Q

2vq,Q
sinh βvq,Q

sinh(β2 ε
(+)
q,Q) sinh(

β
2 ε

(−)
q,Q)

�−1
(5.18)

The analytical results obtained for the magnetization and the wave vector Q have to be
calculated by adequate numerical methods.
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5.2. Numerical results and discussion

The influence of the chirality on the calculated spin-wave spectrum along qx is shown
in Fig. 5.2 for three different temperatures. The asymmetry of the dispersion relation
is magnified around aπ/2. Here the breaking of the degeneracy of the excitation energy
by the DM interaction is clearly visible in the lower two graphs. The excitation energy
is reduced in the negative wave vector branch, whereas it is enhanced in the positive
branch. The energy becomes soft at the Brillouin zone center. This is referred as the
Nambu-Goldstone mode [185], which corresponds to a rigid rotation of the whole spin
spiral [5, 186]. The excitation energy is shown for three different temperatures. At low
temperatures (solid line) the excitation energy is at its maximum. With increasing
temperature the energy reduces with a strong reduction close to the phase transition
temperature (dashed line).
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Fig. 5.2.: Asymmetric spin-wave dispersion relation for two different chirality (red/blue), at three
different temperatures T1 = 1K, T2 = 50K and T3 = 95K. The lower graphs show
the change in the excitation energy around aqx = π

2 , if the chirality is reversed. The
phase transition temperature is about Tc = 100K. The parameters read J = 100K,
J
A = 0.1K, |Dz| = 10K, HA = 0.0001K and γz = 0.6.
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5.2. Numerical results and discussion

The asymmetry of the spin-wave dispersion relation is depicted in Fig. 5.3. It shows
a distinct maximum at aqx = π/2, with the lattice constant a. A switching of the
magnetization is equivalent to a change of sign of γτ and changes the sign of the
asymmetry, as well, which is in agreement with recent experimental results [9].
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Fig. 5.3.: Asymmetry of energy as a function of wave vector for two different directions of
magnetization at three different temperatures (T1 < T2 < T3).

The deviations of the asymmetry in experiments to those of the model are assumed to
be related to the restriction to nearest neighbor interaction and a different coordination
number. With increasing temperature, the asymmetry is reduced as shown in Fig. 5.3 .
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6. Many-particle approach to multiferroic bulk

systems

6.1. The model and Green’s function

As demonstrated before, the Green’s function technique allows a broad variety of applica-
tions. In this section a new approach for the description of multiferroics is shown. The
model consists of two subsystems. The magnetic part is described by the Heisenberg
model and the Dzyaloshinskii-Moriya interaction (DMI), where the DMI is needed to
include spiral spin arrangements. Anisotropic relativistic interactions seems to be respon-
sible for magnetic cycloidal spirals [187]. The magnetic system is characterized by spin
operators S on a lattice. As mentioned in the introduction the ferroelectric behavior is
stimulated by charge ordering processes. A typical model to describe such a situation is
given by the Ising model in a transverse field (Section 2.5). Here we consider for simplicity
two different charge ordering positions denoted by a pseudospin P z = ±1/2. Since we
are interested in multiferroics of type-I, the coupling between the ferroelectric and the
magnetic subsystem is assumed to be weak. Due to [188], this type-I multiferroics allow
a biquadratic coupling in spin S and pseudo-spin operators P. The Hamiltonian reads:

H = Hm +Hf +Hc (6.1)

The three parts describe the magnetic subsystem Hm, the ferroelectric one Hf and the
symmetry allowed coupling Hc. They are defined by

Hm = −1

2

�

ij

JijSiSj −
1

2

�

ij

Dij(Si × Sj)−H

�

i

Si (6.2)

Hf = −1

2

�

kl

KklP
z

k
P z

l
− 2

�

i

Ωx

i
P x

i
− 2µEz

�

i

P z

i (6.3)

Hc = −1

2

�

ijkl

gijklSiSjP
z

k
P z

l
. (6.4)

Here the magnetic system is characterized by the symmetric isotropic exchange coupling
by Jij and the relativistic DMI by the antisymmetric coupling vector Dij between nearest

83



6. Many-particle approach to multiferroic bulk systems

neighbors. H denotes the external magnetic field. The ferroelectric system is identified by
the coupling Kij between adjacent double well potentials situated at lattice points i and
j, respectively. The parameter Ω stands for the tunnel frequency through the barrier and
E denotes an external electric field, see [82]. The general form of a biqudratic coupling
between both subsystems is introduced in Eq. (6.4). Since the investigated multiferroics
of type-I have well separated transition temperatures, the mutual influence of fluctuation
on the corresponding other subsystem can be assumed negligible. Hence the model can be
simplified in a dynamical mean-field approach leading to the effective coupling strengths:

Jij → J̃ij = Jij +
�

kl

gijkl �P z

k
P z

l
�

Kkl → K̃kl = Kkl +
�

ij

gijkl �SiSj�
(6.5)

in the magnetic and ferroelectric subsystem. The renormalized interactions are tempera-
ture dependent by the thermal average.

For the description of magnetic systems allowing spiral structure, some special cases had
been discussed in some former papers [181, 182]. More recently non-collinear arrangements
has been discussed on a mesoscopic level [70] or within microscopic models [5, 189]. In the
present approach, the spin operators of the magnetic system, as well as the pseudo-spin
operators of the ferroelectric system are transformed into the eigen representation of the
quantization axis, which was presented in Section 2.2. This real unit vector is denoted
as γm

i
= (γm,x

i
, γm,y

i
, γm,z

i
) for the magnetic system and γf

i
= (γf,x

i
, γf,y

i
, γf,z

i
) for the

ferroelectric system. The respective transformation of the spin-12 operators is defined in
terms of Pauli operators b†, b and a†, a for the magnetic system and the ferroelectric
system, respectively. Following [10] the most general form reads:

Sα
i
= γm,α

i
σm

i
+Bα

i
bi + (B∗

i
)αb†

i
, (6.6)

Pα
i
= γf,α

i
σf

i
+ Aα

i
ai + (A∗

i
)αa†

i
. (6.7)

The coefficients in Eqn. (6.6), (6.7) are chosen in such a manner, that the commutation
relations of spin operators are guaranteed. Using this realization [10] and considering the
symmetry of the magnetic and ferroelectric system the transformation reads:

γm

i
= (cosQri, sinQri, 0) with Bi =

1

2
(−i sinQri , i cosQri , 1) (6.8)

γf

i
=

�
sinϑ, 0, cosϑ

�
with Ai =

1

2

�
cosϑ,−i,− sinϑ

�
. (6.9)

Here, the quantization axis of the magnetic system varies periodically in the x− y plane
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in spin space, by a site dependent angle Qri, whereas in the ferroelectric system the
quantization axis is rotated by a site independent angle ϑ in the x − z plane in the
pseudo-spin space.

The Hamiltonian is transformed into in the following compressed form by using the
realization in Eqn. (6.8), (6.9). Here only even terms in the annihilation and creation
operators have to be taken into account. The magnetic part of the Hamiltonian is
expressed by

Hm =− 1

2

�

ij

{Xm

ij
σm

i
σm

j
+ 2Sm

ij
bib

†

j
+Rm

ij
bibj + R̃m

ij
b†
i
b†
j
} . (6.10a)

Using the same procedure the ferroelectric part reads:

Hf =− 1

2

�

ij

{Xf

ij
σp

i
σp

j
+ 2Sf

ij
aia

†

j
+Rf

ij
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j
}− 2

�

i

{Cα
i
γf,α
i

σp

i
} (6.10b)

with

Ci = (Ωx

i
, 0, µEz) . (6.10c)

In the subsequent section the Hamiltonian with the transformed operators and the
renormalized interaction due to the ME-coupling H = Hf +Hm is studied in terms of
Green’s functions which enable us to find out the excitation spectrum of the coupled
model. It has to be noted, that although the form of both parts of the Hamiltonian
looks similar, the coefficients X,S and R are quite different for the magnetic and the
ferroelectric subsystem.

The interacting many-particle systems described by Eqn. (6.10) are investigated by
the thermodynamic Green’s function method, which yields the dispersion relation of
the elementary excitations of the coupled model. The spectrum again determines the
thermodynamic behavior of the system, in particular, the polarization and the transverse
magnetization. In the present model, the Green’s functions are grouped as 2× 2 matrices
for the magnetic system G(m)

q (ω) and for the ferroelectric system G(f)
q (ω) as:

G(m)
q (ω) =

�
��b; b†��q ��b; b��q
��b†; b†��q ��b†; b��q

�
, G(f)

q (ω) =

�
��a; a†��q ��a; a��q
��a†; a†��q ��a†; a��q

�
. (6.11)

The Green’s function approach leads to a whole hierarchy of equations, which will
be decoupled in random phase approximation (RPA). After some algebra the Green’s
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functions obey the following equation
�
ω − ε(α),11q,Q ε(α),12q,Q

−ε(α),12q,Q ω + ε(α),11q,Q

�

� �� �
Λ(α)

G(α)
q (ω) =

�
2
�
σ(α)

�
0

0 −2
�
σ(α)

�
�

.
(6.12)

The index (α) = {(m), (f)} denotes the the magnetic and the ferroelectric subsystem,
respectively. Even though the structure of the system of Green’s functions of Eq. (6.12)
looks equal, the corresponding excitation energies given by the eigenvalues of Λ(α) and the
resulting polarization

�
σf

�
and the magnetization �σm� are quite different. The magnetic

subsystem is determined by:

ε(m),11
q,Q = �σm�

�
Xm

0,Q − 2Sm

q,Q

�
= −�σm� 1

2

�
P0,Q + J̃q −

1

2
Pq,Q

�
(6.13a)

ε(m),12
q,Q = 2 �σm�Rm

q,Q = �σm� 1
2

�
J̃q −

1

2
Pq,Q

�
(6.13b)

with a renormalized interaction

Pq,Q = P−q,Q = J̃q+Q + J̃q−Q + i(Dz

q−Q −Dz

q+Q) . (6.13c)

The ferroelectric subsystem obeys:

ε(f),11q =
�
σf

� �
Xf

0 − 2Sf

q

�
+ 2Cαγf,α =

�
σf

� �
K̃0 cos

2 ϑ− 1

2
K̃q sin

2 ϑ
�
+ 2Cαγf,α ,

ε(f),12q =2
�
σf

�
Rf

q =
1

2

�
σf

�
K̃q sin

2 ϑ

(6.14)

with

Xf

0 = K̃0 cos
2 ϑ, Sf

q =
1

4
K̃q sin

2 ϑ, Zf

q =
1

2
K̃q cosϑ sinϑ . (6.15)

The magnetization points in a direction in the x− y plane. Spin waves of wave vector q
and the direction of the propagation of the incommensurate spin spiral with wave vector
Q are defined by the quantization axis γm. In the present case the spiral orientation
varies around the z direction with a cycloidal or screw state (γz = 0). Both, the wave
vector of the spin spiral and the rotation angle in the ferroelectric system are determined
by minimizing the free energy. The spin-wave dispersion relation ε(m)

q,Q and the pseudo-
spin-wave dispersion relation ε(f)q of the low-lying states, both symmetric with respect to

86



6.1. The model and Green’s function

the wave vector q, are given by the poles of the Green’s functions as

ε(m)
q,Q = ±

�
1

2
�σm�2 [1

2
P0,Q − (J̃q)][P0,Q − Pq,Q] , (6.16)

ε(f)q = ±

��
�σf� K̃0 cos2 ϑ+ 2Cαγf,α

��
�σf� K̃0 cos2 ϑ+ 2Cαγf,α − �σf� K̃q sin

2 ϑ
�
,

(6.17)

with the renormalized interaction strengths of the ferroelectric K̃q and the magnetic
system J̃q:

J̃q =
�
J0 + g0,0 cos

2 ϑ
�
σf

�2�Jq
J0

,

K̃q =
�
K0 + gQ,0 �σm�2

�Kq

K0
.

(6.18)

Both quantities are temperature dependent by
�
σf

�
and �σm� and the form of the

renormalized interaction is due to the chosen decoupling of the biquadratic ME-coupling
term.

The wave-vector independent angle ϑ of the rotation in the x− z plane in pseudo-spin
space and the wave vector Q representing the pitch of the spin spiral structure are
determined by the minimization of the free energy by

��
bl, H

�
-

�
= 0 and

��
al, H

�
-

�
= 0 . (6.19)

In the field-free case the following conditions within the RPA are found:

tan(aQ) = −Dz

J̃
and tanϑ =

2Ωx

K̃0 �σf� cosϑ
. (6.20)

The rotational sense (chirality) is defined by the interplay between the different interactions
of the magnetic system, allowing only one type of chirality, which is in accordance with [8].
This results in a wave vector Q related to a constant canting of spins between adjacent
lattice sites. The associated pitch of the magnetic spiral becomes temperature dependent
due to the renormalized interaction strength J̃ given in Eq. (6.18). Originated by the
ME-coupling the rotation angle is influenced by the pitch of the spiral wave vector. Here
the mutual influence of the magnetic and the ferroelectric subsystems becomes evident.

The temperature dependence of the polarization and the transverse magnetization is
found because the Green’s functions, defined in Eq. (6.12), include the statistical average.
The particular Green’s function matrix for the magnetic system (α = m) and for the
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ferroelectric system (α = f) are given as:

G(α)
q (ω) = 2
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1 0

0 −1

�
=

2
�
σ(α)

�

(ω − ε(α)q,Q)(ω + ε(α)q,Q)

�
ω + ε(α),11q,Q ε(α),12q,Q

ε(α),12q,Q −(ω − ε(α),11q,Q )

�

(6.21)

which leads to
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Using the spectral theorem, the correlation functions n(m) =
�
b†b

�
and n(f) =

�
a†a

�

are determined as
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σ(α)
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coth(
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2
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The anormal averaged values are given by:

m(α)
q,Q =
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σ(α)

� ε(α),12q,Q
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coth(
β

2
ε(α)q,Q) . (6.24)

The correlation function is connected to the averaged magnetization and averaged polar-
ization by

�
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�
= 1
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coth(
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2
ε(α)q,Q)

��−1

(6.25)

The analytical results obtained in Eq. (6.25) are coupled equations which have to be
solved iteratively by adequate numerical methods.
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6.2. Numerical results and discussion

The analytical results obtained in the previous section are numerically solved for a certain
set of parameters. The interaction energy of the spins in the magnetic subsystem is
chosen as J = 100K. The parameters of the ferroelectric subsystem are the interaction
strength: K = 100K and the transverse field Ω = 10K. Due to the set of parameters the
system have distinct phase transition points. In the following the temperature dependence
of the magnetic and ferroelectric excitation energy, the polarization and the transverse
magnetization is studied for several sets of the ME-coupling strength g and the strength
of the DMI |Dz|.
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Fig. 6.1.: Temperature dependence of the polarization for different strength of the magneto-
electric coupling. The lower left graph (b) shows the increase of polarization for
different strengths of ME-coupling. The lower right graph (c) shows the additional
effect on the polarization for increase DMI. In graph (a) and (b) D

z = 1K.

The temperature dependence of the polarization for different ME-coupling strengths
is shown in Fig. 6.1. The strength of the DMI is fixed at Dz = 1K. The investigated
system is ferroelectric up to Tc = 145K and magnetic up to TN = 100K due to the set
of parameters. Hence, the magnetic transition occurs at a lower temperature than the
ferroelectric one. The polarization decreases with increasing temperature and vanishes
continuously at the ferroelectric phase transition temperature. In the multiferroic phase,
where the system is magnetic and ferroelectric, the polarization is enhanced. An increased
ME-coupling strength leads to an enhanced polarization with a more pronounced kink
around the magnetic phase transition. The inset shows a magnification of the temperature
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dependence of the polarization around the magnetic phase transition. Changes in the
polarization for three different ME-coupling strengths with respect to the non-coupled
case g = 0 in the multiferroic regime are shown in the lower left graph (b). This is in
accordance with the theoretical findings in [190]. The enhancement of the polarization
∆P (g) = P (g)− P (g = 0) is the largest one near to the magnetic phase transition. Here,
the interplay between the magnetic and ferroelectric system is visible. The ferroelectric
as well as the magnetic order (Fig. 6.6) are stabilized through the ME-coupling against
temperature effects. The change of the polarization for two different DMI-strengths
(Dz = 1K and Dz = 10K) is shown in the lower right graph (b). The enhanced strength
of the DMI leads to a further enhancement of the polarization, most pronounced in the
vicinity of the magnetic phase transition. Here the different effects of the DMI and the
ME-coupling can be seen. Whereas the ME-coupling leads to enhanced ferroelectric
properties in the whole multiferroic phase, the effect of the spiral structure driven by the
DMI is large only by approaching the magnetic phase transition temperature.
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Fig. 6.2.: Temperature dependence of the excitation energy (q = 0) for different strength
of magneto-electric coupling g. The lower left graph (b) shows the change of the
excitation energy compared to the non-coupled case g = 0. The lower right graph (c)
shows the additional effect on the energy for two different strengths of DM-interaction
D

z. In graph (a) and (b) the DMI strength is constant at D
z = 1K.

The influence of the ME-coupling, the DMI and competing temperature effects is more
dominant in the energy of the elementary excitations of the ferroelectric subsystem shown
in Fig. 6.2. Here, the excitation energy for zero wave vector is plotted for three different
ME-coupling strengths and the non-coupled case, as a reference curve. The strength
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of the DMI is fixed. The excitation energy decreases with increasing temperature and
vanishes continuously at the ferroelectric phase transition temperature. The coupling
of the ferroelectric modes to the spin order is discussed in [191]. A disconnection of the
mode from the magnetic sublattice was observed, if the cycloidal disappears at TN . In the
multiferroic phase, where the system is magnetic and ferroelectric, the excitation energy
is enhanced and the largest effect is observed for the largest ME-coupling strength. At
the magnetic transition a kink in the excitation energy is observed. This is in accordance
with experiments [192] and theoretical approaches [193].

Above TN the material is paramagnetic and ferroelectric. Here no influence of the
magnetic system can be observed. The largest gain in the energy of the excitations, with
respect to the non-coupled case (g = 0), occurs at the lowest temperatures shown in the
lower left graph (b) of Fig. 6.2. With increasing temperature the graphs narrow and
coincide at the magnetic phase transition. The comparison of the excitation energy for
two different strengths of the DMI by ∆ε = ε(g,Dz = 10K)− ε(g,Dz = 1K) is shown in
the lower right graph (c) of Fig. 6.2. In case of no effect of the DMI on the ferroelectric
excitation spectrum ∆ε would be zero. The DMI supports the enhanced ME-coupling and
yields a further enhancement of the excitation energy for almost the whole temperature
regime. The reduction of the excitation energy at low temperatures is discussed in the
next graph.

The effect of the strength of the DMI on the ferroelectric excitations is shown in Fig. 6.3.
The ME-coupling strength is fixed to g = 10K. The excitation energy reduces with
increasing temperature and vanishes continuously at the ferroelectric phase transition.
The influence of the DMI-strength close to the magnetic phase transition is magnified
in the inset. Here with increasing DMI-strength also the excitation energy is enhanced.
The opposite effect is observed at very low temperatures shown in the lower right graph
(c) of Fig. 6.3. The reduced excitation energies at low temperatures is magnified. This
can be understood by a weakening of the ME-coupling strength g(Q), which is maximum
for |Q| = 0. The enhanced DMI results in a larger pitch Q of the spin spiral. On one
hand, this additional ordering of the magnetic spins in a spiral structure, stabilizes the
magnetic ordering against temperature effects, see also Fig. 6.6, on the other hand, the
ME-coupling is reduced, if the spiral structure is more pronounced. This corresponds to
a larger value of |Q|.

With increasing temperature the stabilization of the magnetic phase, which corresponds
to a shift of the transition temperature to higher values, is more dominant than the reduc-
tion of the ME-coupling by a larger pitch of the spiral. In that sense, the renormalization
of the ferroelectric interaction K̃q by the temperature dependent transverse magnetization
becomes more and more pronounced in comparison to the reduction of the ME-coupling
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Fig. 6.3.: Temperature dependence of the excitation energy for different strengths of DMI. The
inset shows the change in the excitation energy around the magnetic phase transition.
The lower left graph (b) shows the change in energy with increasing strength of DMI.
The lower right graph (c) shows the low temperature behavior of the energy. The
ME-coupling reads g = 10K.

strength itself. Thus the largest enhancement of the excitation energy with respect to
the strength of the DMI is found in the vicinity of the magnetic transition, shown in
Fig. 6.6. As the macroscopic properties, such as the polarization are determined by their
microscopic excitations an equivalent behavior on a varied DMI-strength is observed for
the polarization.

The spin-wave dispersion relation of small wave vectors of the magnetic subsystem for
different strengths of the DMI is depicted in Fig. 6.4 for low temperatures (T = 1K).
The ME-coupling is set to g = 10K and the dispersion relation in the complete Brillouin
zone is plotted in the inset. The excitation energy increases with increasing strength
of the DMI. The effect is more pronounced at small wave vectors, as shown in the
lower left graph (b) of Fig. 6.4. The difference in the spin-wave spectra for two different
ME-coupling strengths is shown in the lower right graph (c). Here, the largest change is
observed for the the smallest DMI-strengths. This implies a reduction of the effect of the
ME-coupling on the spin-wave spectrum, if the DMI increases, and is supported by the
ME-coupling dependent dispersion relation in Fig. 6.5.

With increasing ME-coupling strength the excitation energy is enhanced most pro-
nounced at the Brillouin zone boundary. The change in energy around the zone center is
plotted in the graph (b) and (c) of Fig. 6.4 for two different DMI strengths, respectively.
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6.2. Numerical results and discussion
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Fig. 6.4.: Magnetic dispersion relation around q = 0 for different strength of DMI. The lower
left graph (b) shows the deviations in energy for different DMI. The lower right graph
(c) shows the change in energy for an enlarged ME-coupling. In graph (a) and (b)
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The mutual effect of the DMI and the ME-coupling is also visible in the spin-wave
dispersion relation. For small wave vectors, the excitation energy increases and the
graphs for different ME-coupling narrow, if the DMI strength is enhanced. This reflects
the reduction of the influence of the ME-coupling on the magnetic system, if the DMI
enhances. An experimental study on the magnon spectrum in hexagonal multiferroic
YMnO3 is carried out in [194].

The temperature dependence of the transverse magnetization is shown in Fig. 6.6. The
magnetization decreases with increasing temperature and vanishes continuously at the
magnetic phase transition. The effect of the ME-coupling is shown in graph (a). Here
the magnetization is enhanced and the phase transition temperature shifts to higher
values. A further stabilization of the magnetic phase is observed by the DMI in graph (b).
The magnetization increases with an enhanced DMI-coupling strength. The temperature
dependence of the pitch of the spiral for different ME-coupling strengths and one DMI is
shown in graph (c) and (d), respectively. The pitch of the spiral is determined by the
interaction within the investigated system and varies only in a small range, which was
reported by experiments [65]. The largest change in the pitch is observed in approaching
the magnetic phase transition. Here the polarization of the system reduces and varies the
spiral. An agreement with the temperature dependence of the sublattice magnetization
for BiFeO3 is found in [195].
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6. Many-particle approach to multiferroic bulk systems
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7. Summary and Outlook

The work comprises a many-body approach of magnetic, ferroelectric and multiferroic
materials. Whereas the main part of the work concerns quantum models, a classical
version of the Ising model in a transverse field has been studied, which offers several
applications especially the description of order-disorder ferroelectrics. The excitation
energy could be calculated above and below the phase transition temperature. Due
to the coupling of the system to a bath, the excitations exhibit a finite life-time. The
corresponding damping part of the evolution equation has been found under quite general
conditions, such as the behavior under time reversal and the structure constants of the
underlying Lie group of the spin vectors. The additional part is similar to the so called
Gilbert damping in ferromagnets. However, different to the isotropic ferromagnetic case
the model is anisotropic resulting in a totally different dynamics. As the consequence
the dispersion relation becomes a massive one. Under these conditions also the damping
offers another behavior as in magnets. In terms of a multiscale approach, the relevant
incoming static quantities such as the polarization are calculated using the microscopic
model on a mean-field level.

Ferroelectrics are widely used in many applications, which require sizes down to the
nanometer range. At a nanoscale ferroelectricity has emerged as a fertile ground for new
physical phenomena. Beside the challenge of the fabrication of structures in the nano
region there is an increasing interest in modeling ferroelectric nanostructures. The broad
variety of experimental facts about the characterization of ferroelectric nanostructures has
to be supplemented by theoretical studies. Because the behavior is obviously determined
by the microscopic interaction between the constituents, it seems natural to consider
models on that scale.

A microscopic model for the analytical investigation of such thin films and nanoparticles
was suggested. The model is an extension of the well established Ising model in a
transverse field, which describes quite generic the ordering of functional groups giving rise
to ferroelectricity. For this purpose, the Ising model in a transverse field was modified
to include effects of surfaces and defects. These properties are manifested within the
model by introducing different microscopic coupling parameters for the constituents of
the ferroelectric material.
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7. Summary and Outlook

Based on the modified transverse Ising model and a Green’s function technique, the
damping and the phase transition temperature for ferroelectric thin films with structural
defects were calculated for the first time. The dependence on temperature, film thickness
and interaction constants was discussed. As a result defect layers in ferroelectric thin
films can induce strong changes of the critical temperature of the ferroelectric phase
transition due to different interactions in the defect layers. The damping in thin films with
defects is always larger in comparison to the corresponding bulk values or to films without
defects. Hence, defects are important for the explanation of the large line broadening
effects observed experimentally in thin films.

Spherical ferroelectric nanoparticles composed of different shells were analyzed. This
number directly corresponds to the particle size. The small size of the materials requires
the inclusion of both, bulk and surface interaction. Furthermore, in case of the appearance
of defects, an additional coupling strength occurs. Due to the broken translational invari-
ance the Green’s function technique was formulated in real space. Taking into account
the microscopic parameters (direct coupling and transverse field), the equation of motion
method for the Green’s function yields the polarization of ferroelectric nanoparticles
in dependence of the temperature, the external electric field, possible inherent defect
configurations and the particle size. In addition, the temperature and size dependence of
the excitation energy and its damping were obtained. The dependence on the particle
size is also discussed. The results strongly indicate, that microscopic details of the inter-
action within the ferroelectric nanoparticles are essential for the macroscopic behavior of
quantities such as the hysteresis loop.

In particular, it has been demonstrated that the coercive field is very sensitive to
the interaction parameter between functional groups at the surface and between defect
shells. Furthermore, the remanent polarization and the Curie temperature change in
comparison to the defect-free case. This theoretical result is in accordance with the
experimental data offering an variation of the critical temperature, the coercive field
and the remanent polarization by the substitution with doping ions. Moreover, two
different filling procedures, namely beginning from the surface shell or starting from the
central group or/and the first shell were discussed. This asymmetry demonstrates the
importance of defect engineering in such materials. The excitation energy decreases and
the damping increases strongly with lowering the particle size. Furthermore, the damping
of the quasi-soft mode in nanoparticles is significantly larger than that in bulk crystals.
The results obtained are in agreement with the experimental data for BTO and PTO
small particles.

Magnetic systems of spin-12 with non-collinear spin structures were investigated in the
framework of the temperature dependent two-time retarded Green’s function technique.
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The inclusion of the asymmetric Dzyaloshinskii-Moriya interaction led to an asymmetric
spin-wave dispersion relation in case of conical spirals. The induced asymmetry in
the energy is governed by the symmetric Heisenberg exchange coupling, the anisotropy
and the antisymmetric DMI. The chirality is represented by the incommensurate wave
vector of the spin spiral. From a microscopic point of view the quantum DMI modifies
the spectrum of the excitation energy. Recent first principle calculations [184] yield
no prediction for the concrete realization of the spiral states favored by the DMI and
furthermore, the results are obtained for fixed temperatures.

It was therefore the aim to elucidate the relation between the spin-wave excitation
energy and the magnetic alignment of the spins. The progress has been reached by
applying a representation of the underlying spin operators with an arbitrary quantization
axis. This approach enables the inclusion of a broad class of spin spiral structures. The
Hamiltonian includes the isotropic Heisenberg coupling, an anisotropic interaction and
the DMI. The spin-wave energy was found by calculating the temperature dependent
retarded Green’s function matrix. Minimizing the ground state energy yields the direction
of the quantization axis. The method enables the inclusion of temperature effects. Here, a
reduction of the asymmetry has been observed for increasing temperature. A cycloidal or
screw alignment of spins would not lead to an asymmetric dispersion relation. Referring
to recent experimental results ruling out longitudinal conical spin spirals the magnetic
ordering in these systems has to be of transverse conical type. The asymmetry is calculated
for a cubic lattice with nearest neighbor interaction.

Since multiferroic systems are in the focus of recent attention, a systematic microscopic
theory of the magneto-electric effect at finite temperatures is presented. The ferroelectric
subsystem is described by an Ising model in a transverse field, the magnetic one is
characterized by the Heisenberg model with Dzyaloshinskii-Moriya interaction (DMI).
The symmetry allowed quartic coupling between both subsystems and the application
of a Green’s function technique in a dynamical mean field approximation exhibit the
calculation of the elementary excitations, which are mutually influenced by the respective
other subsystem. A kink in the temperature dependence of different static and dynamic
properties has been observed in the vicinity of the magnetic phase transition temperature.
The magnetic excitation is a Goldstone mode, while the ferroelectric dispersion relation
shows a soft mode-like behavior. The macroscopic polarization and the magnetization
were calculated in a broad temperature interval up to the corresponding, well separated,
phase transition temperatures (type-I multiferroics). Due to the DMI, the system offers
a spiral structure, which was incorporated into the model by using a transformation of
the underlying spin operators into a representation without fixed quantization axis. The
polarization increases at the magnetic phase transition temperature and is also enhanced
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7. Summary and Outlook

by increasing the ME coupling strength as well as the DMI. Likewise the variation
of the spin-wave dispersion relation with the ME coupling strength and the DMI was
demonstrated. As a consequence, the macroscopic magnetization oriented in the x− y

plane is enhanced with increasing coupling.
Future aspects are the inclusion of other degrees of freedom, such as phonons, to

the presented models. Furthermore, the many-particle approach to multiferroics could
be extended to multiferroic spinel oxides with conical magnetic structure. Here the
magnetization has both, a rotating and a uniform ferromagnetic part. In addition, the
magnetic part of the presented approach could be modified to an isotropic Heisenberg
model with magneto-strictive coupling of spins due to the competition between nearest
and next-nearest neighbor interaction. In this case no antisymmetric terms due to
relativistic effects are required.
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A. Appendix

Fourier transformation

bk =
1√
N

�

f

bfe
−ikf , b†k =
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b†fe
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N

�

f

e−ikf (A.1)

bf =
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k

bke
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b†
k
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f

eikf (A.2)

1

N

�

k

Jke
ikf = Jf ,

�

f

Jfe
−ifk = Jk (A.3)

Corresponding expression for thin films calculations

kn = Jb �σn� sin2 θn, n = 1, ..., N,

V1 = 2Ωs sin θ1 +
1

2
�σ1� Js cos2 θ1 −

�σ1� Js
4

sin2 θ1γ(k�) + Jb �σ2� cos2 θ2,

V2 = 2Ωb sin θ2 +
1

2
�σ2� Jb cos2 θ2 −

�σ2� Jb
4

sin2 θ2γ(k�) + Js �σ1� cos2 θ1 + Jb �σ3� cos2 θ3,

Vn = 2Ωn sin θn +
1

2
�σn� Jb cos2 θn −

�σn� Jn
4

sin2 θnγ(k�) + Jn−1σn−1 cos
2 θn−1

+ Jn+1σn+1 cos
2 θn+1,

VN = 2Ωs sin θN +
1

2
�σN� Js cos2 θN − �σN� Js

4
sin2 θNγ(k�) + JbσN−1 cos

2 θN−1,

V̄ (q�,k� − q�) = J(q�) cos
2 θ − 1

2
J(k� − q�) sin

2 θ,

γ(k�) =
1

2
(cos(kxa) + cos(kya)).

The notations J1 ≡ JN = Js, Jn = Jb and Ω1 = ΩN = Ωs, Ωn = Ωb for n = 2, 3, 4, ..., N −
1), J0 = JN+1 = 0. The quantity �σ� (T ) is the relative polarization in the direction of
the mean field.
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A. Appendix

Prefactors for non-collinear magnetic structures

This section refers to the calculation of the renormalized prefactors in case of spiral
magnetic structures. Here the most general case is assumed. The quantization axis is
set by γx, γy and γz. The corresponding transformation of the spin operators for spin-12
particles with σa

f
= 1

2 − a†
f
af reads:

(Sf )
α = γα

f
σf + Aα

f
bf + (A∗

f
)αb†

f
(A.4)

In case of another subsystem b the transformation reads:

(Sf )
α = �γα

f
σf +Bα

f
bf + (B∗

f
)αb†

f
(A.5)

The quantization axis is chosen is chosen as:

γz

l
= const. (A.6a)

γx

l
= ρ cos(ϕl + δ) = ρ[cos δ cosϕl − sin δ sinϕl] (A.6b)

γy

l
= ρ sin(ϕl + δ) = ρ[cos δ sinϕl + sin δ cosϕl] (A.6c)

�γz

l
= const. (A.6d)

�γx

l
= �ρ cos(ϕl) (A.6e)

�γy

l
= �ρ sin(ϕl) (A.6f)

The length of the quantization axis in the xy plane is defined as
�
1− (γz)2. The

prefactors Aα
f

and Bα
f

(with δ = 0) are defined as:

Ax

f
= −1

2
{cos δ[γz cosϕf + i sinϕf ]− sin δ[γz sinϕf − i cosϕf ]} (A.7a)

Ay

f
= −1

2
{cos δ[γz sinϕf − i cosϕf ] + sin δ[γz cosϕf + i sinϕf ]} (A.7b)

Az

f
=

ρ

2
(A.7c)

Bx

f
= −1

2
{�γz cosϕf + i sinϕf} (A.7d)

By

f
= −1

2
{�γz sinϕf − i cosϕf ]} (A.7e)

Bz

f
=

�ρ
2

(A.7f)

The phase shift between the two sublattices is δ. The scalar product of these γ, A and
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B factors at different sites is carried out in the next step.

(γα
l
�γα
g
) =γz �γz + ρ �ρ[cos δ cos(ϕl − ϕg)− sin δ sin(ϕl − ϕg)] (A.8)
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g
)α) =

1

4
{(γz �γz + 1)[cos δ cos(ϕl − ϕg) + sin δ sin(ϕl − ϕg)]

− i(γz + �γz)[sin δ cos(ϕl − ϕg)− cos δ sin(ϕl − ϕg)] + ρ �ρ}
(A.12)

γα
l
Bα

g
= −ρ

2

�
cos δ[ �γz cos(ϕl − ϕg)− i sin(ϕl − ϕg)]

− sin δ[ �γz sin(ϕl − ϕg) + i cos(ϕl − ϕg)]
�
+ γz

�ρ
2

(A.13)

γα
l
(B∗

g
)α = −ρ

2

�
cos δ[ �γz cos(ϕl − ϕg) + i sin(ϕl − ϕg)]

− sin δ[ �γz sin(ϕl − ϕg)− i cos(ϕl − ϕg)]
�
+ γz

�ρ
2

(A.14)

�γα
l
Aα

g
= −�ρ

2

�
cos δ[γz cos(ϕl − ϕg)− i sin(ϕl − ϕg)]

+ sin δ[γz sin(ϕl − ϕg) + i cos(ϕl − ϕg)]
�
+ �γz

ρ

2

(A.15)

�γα
l
(A∗

g
)α = −�ρ

2

�
cos δ[γz cos(ϕl − ϕg) + i sin(ϕl − ϕg)]

+ sin δ[γz sin(ϕl − ϕg)− i cos(ϕl − ϕg)]
�
+ �γz

ρ

2

(A.16)

The vector product εαµνγµ

l
�γν
g

reads:

z-component εzµνγµ

l
�γν
g
= εzµνγµ �γν(l − g) (A.17a)

= −ρ �ρ[sin δ cos(ϕl − ϕg) + cos δ sin(ϕl − ϕg)] (A.17b)

x-component εxµνγµ

l
�γν
g
= ρ �γz[cos δ sinϕl + sin δ cosϕl]− �ργz sinϕg (A.17c)

y-component εyµνγµ

l
�γν
g
= −ρ �γz[cos δ cosϕl − sin δ sinϕl] + �ργz cosϕg (A.17d)
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The vector product εαµνAµ

l
Bν

g
reads:

z-component εzµνAµ

l
Bν

g
=εzµνAµBν(l − g)

=
1

4
{(1− γz �γz)[sin δ cos(ϕl − ϕg) + cos δ sin(ϕl − ϕg)]

− i(γz − �γz)[cos δ cos(ϕl − ϕg)− sin δ sin(ϕl − ϕg)]}

(A.18)

x-component εxµνAµ

l
Bν

g
=

1

4
{− γz �ρ[cos δ sinϕl + sin δ cosϕl] + �γzρ sinϕg

+ i[ �ρ(cos δ cosϕl − sin δ sinϕl)− ρ cosϕg]}
(A.19)

y-component εyµνAµ

l
Bν

g
=

1

4
{γz �ρ[cos δ cosϕl − sin δ sinϕl]− �γzρ cosϕg

+ i[ �ρ(cos δ sinϕl + sin δ cosϕl)− ρ sinϕg]}
(A.20)

The vector product εαµνAµ

l
(B∗

g
)ν reads:

z-component εzµνAµ

l
(B∗

g
)ν = εzµνAµ(B∗)ν(l − g) =

1

4
{− (1 + γz �γz)[sin δ cos(ϕl − ϕg) + cos δ sin(ϕl − ϕg)]

+ i(γz + �γz)[cos δ cos(ϕl − ϕg)− sin δ sin(ϕl − ϕg)]}

(A.21)

x-component εxµνAµ

l
(B∗

g
)ν =− �ρ

4
{γz[cos δ sinϕl + sin δ cosϕl]− i[cos δ cosϕl − sin δ sinϕl]

+
ρ

4
( �γz sinϕg + i cosϕg)}

(A.22)

y-component εyµνAµ

l
(B∗

g
)ν =

�ρ
4
{γz[cos δ cosϕl − sin δ sinϕl] + i[cos δ sinϕl + sin δ cosϕl]

− ρ

4
( �γz cosϕg − i sinϕg)}

(A.23)

The vector product εαµνBµ

l
(A∗

g
)ν reads:

z-component εzµνBµ

l
(A∗

g
)ν = εzµνBµ(A∗)ν(l − g) =

1

4
{(1 + γz �γz)[sin δ cos(ϕl − ϕg)− cos δ sin(ϕl − ϕg)]

+ i(γz + �γz)[cos δ cos(ϕl − ϕg) + sin δ sin(ϕl − ϕg)]}

(A.24)
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The vector product εαµνγµ

l
Bν

g
reads:

z-component

εzµνγµ

l
Bν

g
=

ρ

2

�
cos δ[ �γz sin(ϕl − ϕg) + i cos(ϕl − ϕg)]

+ sin δ[ �γz cos(ϕl − ϕg)− i sin(ϕl − ϕg)]
�

(A.25)

The vector product εαµνγµ

l
(B∗

g
)ν reads:

z-component

εzµνγµ

l
(B∗

g
)ν =

ρ

2

�
cos δ[ �γz sin(ϕl − ϕg)− i cos(ϕl − ϕg)]

+ sin δ[ �γz cos(ϕl − ϕg) + i sin(ϕl − ϕg)]
�

(A.26)

The vector product εαµν �γµ

l
Aν

g
reads:

z-component

εzµν �γµ

l
Aν

g
=

�ρ
2

�
cos δ[γz sin(ϕl − ϕg) + i cos(ϕl − ϕg)]

− sin δ[γz cos(ϕl − ϕg)− i sin(ϕl − ϕg)]
�

(A.27)

The vector product εαµν �γµ

l
(A∗

g
)ν reads:

z-component

εzµν �γµ

l
(A∗

g
)ν =

�ρ
2

�
cos δ[γz sin(ϕl − ϕg)− i cos(ϕl − ϕg)]

− sin δ[γz cos(ϕl − ϕg) + i sin(ϕl − ϕg)]
�

(A.28)

With the help of the former expressions, the needed prefactors Xlj, Slj, Rlj and Zlj can
be calculated. The corresponding Fourier transformation reads:

X0(q,Q) = Jqγ
z �γz +

ρ �ρ
2
[eiδ(J(q −Q) + iDz(q −Q)) + e−iδ(J(q +Q)− iDz(q +Q))]

(A.29)
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Repeating the same calculations as before one gets:

S0(q,Q) =
1

4
Jqρ �ρ+

1

8
{(γz − 1)( �γz − 1)[J(q +Q)− iDz(q +Q))]e−iδ

+ (γz + 1)( �γz + 1)[J(q −Q) + iDz(q −Q))]eiδ
} (A.30)

T (q,Q) =
1

4
Jqρ �ρ+

1

8
{(γz − 1)( �γz − 1)[J(q +Q)− iDz(q +Q))]e+iδ

+ (γz + 1)( �γz + 1)[J(q −Q) + iDz(q −Q))]e−iδ
} (A.31)

R0(q,Q) =
1

4
Jqρ �ρ+

1

8
{(γz − 1)( �γz + 1)[J(q +Q)− iDz(q +Q))]e−iδ

+ (γz + 1)( �γz − 1)[J(q −Q) + iDz(q −Q))]eiδ
} (A.32)

R̃0(q,Q) =
1

4
Jqρ �ρ+

1

8
{(γz − 1)( �γz + 1)[J(q −Q) + iDz(q −Q))]e+iδ

+ (γz + 1)( �γz − 1)[J(q +Q)− iDz(q +Q))]e−iδ
} (A.33)

Z0(q,Q) =
γz �ρ
2

Jq −
ρ

4

�
( �γz − 1)eiδ[J(q −Q) + iDz(q −Q)]

+ ( �γz + 1)e−iδ[J(q +Q)− iDz(q +Q)]
�

(A.34)

Z̃0(q,Q) =
γz �ρ
2

Jq −
ρ

4

�
( �γz + 1)eiδ[J(q −Q) + iDz(q −Q)]

+ ( �γz − 1)e−iδ[J(q +Q)− iDz(q +Q)]
�

(A.35)

Y 0(q,Q) =
�γzρ

2
Jq −

�ρ
4

�
(γz − 1)e−iδ[J(q −Q) + iDz(q −Q)]

+ (γz + 1)e+iδ[J(q +Q)− iDz(q +Q)]
�

(A.36)

Ỹ 0(q,Q) =
�γzρ

2
Jq −

�ρ
4

�
(γz + 1)e−iδ[J(q −Q) + iDz(q −Q)]

+ (γz − 1)e+iδ[J(q +Q)− iDz(q +Q)]
�

(A.37)
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