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Chapter 1

Introduction

1.1 Motivation and aims of the Thesis

Transport processes are widely spread in everyday life and important for both

fundamental science and technology. They are responsible for a transfer of matter,

charge, energy etc. and therefore observable in a broad variety. In particular, a

transfer of regular particles or quasi particles is an essential process considered

in condensed matter physics.

Transport phenomena have attracted the attention of scientists a long time

ago. Indeed, every motion can be considered as a mass transfer. If we consider a

motion of a solid body as a whole, it is conventional to apply classical mechan-

ics. The motion of a liquid substance is a good example of transport processes.

Attempts to describe a torrent of water started the era of hydrodynamics. Nowa-

days this theory is highly developed, see (2; 3), and applied to so many industrial

problems that sometimes is even considered as a branch of engineering. In solids,

mass transfer is suppressed due to a very low value of a diffusion coefficient. In

other words, it is difficult to move a small part of a solid body through this body

without damaging it. But transport processes can be very strong in solids as well.

For example a transfer of heat. One should notice its mathematical similarity to

a mass transfer in fluids. Moreover, heat transfer was originally described by

the caloric theory which introduces a special liquid called caloric whose flow is

responsible for heat transfer. Only in the middle of the 19th century the caloric
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1.1 Motivation and aims of the Thesis

theory was superseded by thermodynamics. Another nontrivial example of trans-

port processes is momentum transfer in fluids, which is physically originated due

to viscosity.

Despite all examples of transport processes given above have a different origin

and are related to different physical properties, they are all described by similar

equations and show a similar behavior. This fact can be easily understood be-

cause in all examples the transmitted substance was considered as a fluid whose

flow ensures the transport. The motion of every single particle of this fluid is

irrelevant; only the motion of all particles as a whole is of interest. In this case

it is appropriate to apply a continuum description. Instead of considering in-

dividual particles, one introduces a spatiotemporal field C(~r, t) representing the

particle number concentration, that is a number of particles located in a small

volume Vr around the point ~r at the moment t. The number of particles in

this volume, Nr, should fulfill the relation 1 ≪ Nr ≪ N , where N is the total

number of particles in the system. Therefore, this approach is sometimes called

mesoscopic. The concentration C(~r, t) is the ratio Nr

Vr
, i.e. in SI units C(~r, t)

yields the number of particles per m3. Within the approach, the particles lose

their individuality; they are non-distinguishable. Thus, the case of a constant

density C(~r, t) can be realized either by fixed positions of all particles or by their

stochastic motion with different velocities in different directions. Both situation

are macroscopically equivalent. This fact represents one of the advantages of

a continuum model, namely the possibility to omit all microscopical details of

motion which are difficult to describe and which are usually irrelevant. As long

as particles move chaotically, there is no macroscopical mass transfer. On the

other hand, the system can be subjected to an external force which creates a

preferable direction of motion for particles and, as a consequence, a systematic

drift appears. This flux of particles is responsible for a transport and, of course,

leads to a change of the concentration C(~r, t).

If initially the concentration is not uniform, a particle flux will appear even

without the influence of the external force. To illustrate this, let us consider a

classical example of such a system: a pollutant in the air. At the initial moment

t = 0, at the origin of coordinates ~r = 0 an emission of a substance is initiated.

The aim is to find out how this spot will spread out in space and time, i.e. to find
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1.1 Motivation and aims of the Thesis

the concentration C(~r, t). The governing equations for this process are nowadays

very well known under the name of Fick’s laws of diffusion. They were formulated

by a German physiologist Adolf Eugen Fick in 1855, but much earlier a similar

mathematical treatment was done by a French mathematician and physicist Jean

Baptiste Joseph Fourier concerning the problem of heat transfer.

Fick’s first law states that the particle flux is proportional to the concentration

gradient,
~F (~r, t) = −D∇C(~r, t) , (1.1)

where the coefficient D is the diffusion coefficient measured in m2

s
. D is a specific

property of the substance and, in the simplest approximation, is supposed to be

independent of the concentration C(~r, t). The minus sign is a consequence of

the second law of thermodynamics and indicates that the flux is directed from

regions with higher concentration to regions with lower concentration, that is the

systems tends to a homogeneous state with higher entropy.

Fick’s second law provides the equation for the concentration. It follows from

Fick’s first law and the mass conservation law which states that the total number

of particles in the system is fixed. If there are no particle sources, it reads

Ċ(~r, t) = −div ~F (~r, t) , (1.2)

where the dot denotes a time derivative. The minus sign reflects the fact that

the particle concentration decreases whenever particles flow out of the volume.

Inserting Fick’s first law into Eq. 1.2 yields Fick’s second law,

Ċ(~r, t) = D△C(~r, t) . (1.3)

This is a second-order parabolic partial differential equation which is well known

as diffusion equation. All examples of transport properties shown above are

described by this equation. In case of heat transfer Eq. 1.3 was derived by Fourier

and describes a diffusion of quasi particles. Fourier’s law states that the heat flux

~q(~r, t) is proportional to the negative temperature gradient,

~q(~r, t) = −kT∇T (~r, t) , (1.4)
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1.1 Motivation and aims of the Thesis

where kT is the thermal conductivity. Combined with the energy conservation

law it gives the heat equation,

Ṫ (~r, t) = kT△T (~r, t) , (1.5)

This equation has the same form as the diffusion equation and is used in condensed

matter physics to describe heat transport.

Eq. 1.3 can be easily generalized to the multispecies case, i.e. where particles

of different kind are present. The mass conservation law is very general and valid

for each species. In this case, Fick’s first law reads

~Fi(~r, t) = −Di∇Ci(~r, t) , (1.6)

where the index i denotes the ith species. One can see that fluxes of different

species are independent from each other. This is realized in so called ideal solu-

tions, see (4). If the solution is not ideal, the flux is expressed by the chemical

potential of the correspondent species, µ̄i(~r, t),

~Fi(~r, t) = −DiCi(~r, t)

RT
∇µ̄i(~r, t) , (1.7)

where R is the gas constant and T is the temperature. Though, often the system

can be considered as an ideal mixture.

Coming back to the pollutant-in-the-air problem, Fick’s second law allows to

solve it. Performing Fourier transformation of the diffusion equation, Eq. 1.3,

from the ~r- to the ~k-representation we get

Ċ(~k, t) = −Dk2C(~k, t) . (1.8)

The solution of the last equation is

C(~k, t) = exp(−Dk2t) . (1.9)

Inverting Eq. 1.9 back into ~r-representation it results

C(~r, t) =
1

(4πDt)
3

2

exp

(

− r2

4Dt

)

. (1.10)

In the same manner one can find the Green’s function of the diffusion equation

which will be used later.
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Eq. 1.10 defines the concentration as a spherically symmetric function of co-

ordinates because it involves only r2. The problem becomes more complicated

when the system is subjected to an external field which breaks the rotational

symmetry. In the case of the pollutant-in-the-air problem, as a reasonable exper-

imental realization, the external field could be the gravity. This force can not be

screened and to some extend can be considered as a constant drifting force. In the

present work we will consider the external electric field which can be screened and

therefore definitively is a function of coordinate and time. Though, the transport

equations are still based on the diffusion equation.

Let us consider an initially homogeneous system containing only two species,

one of which is positively charged particles and another one is negatively charged

particles. At the initial moment the system is subjected to an external electric

field which causes a redistribution of the ions, and consequently changes the

electric field within the system because of screening. The particle flux consists of

a diffusive part and a contribution originated by the external field,

~F±(~r, t) = −D±∇C±(~r, t) ± µ±z±eC±(~r, t) ~E(~r, t) , (1.11)

where e is the elementary charge, z± are valences of the ions, and ~E(~r, t) is

the electric field strength. The second term defines the mobility of ions, µ±,

as the ratio of their terminal drift velocity to the applied force. It is supposed

that the mobility is related to the diffusion coefficient via the Einstein relation,

D± = µ±kBT , where kB is the Boltzmann constant. Sometimes, when one deals

with charged particles, the mobility is defined as a ratio of the particle terminal

drift velocity to the applied electric field. In this case Einstein’s relation reads

D = µkBT
ze

.

Equations for ~F+(~r, t) and ~F−(~r, t) are coupled by the electric field. Due to

screening, the electric field is not independent of the concentrations but related

to them via the Poisson equation,

∇ · ~E(~r, t) =
e

ǫ
(z+C+(~r, t) − z−C−(~r, t)) , (1.12)

where ǫ is the permittivity of the medium.

The problem is formulated quite generally without specifying the physical ori-

gin or particular properties of the considered system. Typically, this approach is
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applied to systems of two types. The first one is electrolytes which are substances

containing free mobile ions. From the definition one can see that systems of this

group cover a wide range of applications spreading from ion batteries to biological

systems such as diffusion through a membrane or a narrow ion channel. Another

type of systems is semiconductors where a role of ions is played by electrons and

holes. Despite electrolytes and semiconductors are physically different systems,

they are described by the same set of equations.

To obtain the transport equations let us insert fluxes from Eqs. 1.11 into Fick’s

first law, Eq. 1.7. This leads to

Ċ±(~r, t) = D±∆C±(~r, t) ∓ µ±z±e∇ ·
(

C±(~r, t) ~E(~r, t)
)

. (1.13)

The transport equations, Eqs. 1.13, combined with the Poisson equation, Eq. 1.12,

are called Poisson-Nernst-Planck (PNP) equations. They describe a diffusion of

charged particles in an external electric field and are of interest in this work.

Despite the PNP equations were formulated a long time ago, they are still widely

used in their original form. In some papers, see (5), possible modifications of

the PNP equations are considered in order to take into account additional re-

strictions which could be imposed by the experimental realization, such as for

example steric effects which can be essential at very high applied voltages. Nev-

ertheless, we will consider only the original PNP equations because they are able

to describe the main experimental realizations and to predict the main features

of the system behavior. In spite of their importance, the exact solution of the

PNP equation is still unknown. In general, there is a lack of analytical results

in this topic. This fact became a motivation for the present work. On the other

hand, one should not underestimate the progress achieved so far. Therefore,

before presenting the new results we will describe already known findings. As

every physical problem, the diffusion of charged particles in an external electric

field can be treated numerically, analytically, and mathematically in a sense that

mathematical properties of equations are of interest apart of a physical context.

Let us discuss all these possibilities separately.

The main progress has been probably achieved by numerical solutions because

using various computational schemes one can treat a great number of different sys-

tems with different geometries and with complicated boundary conditions which

6
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are difficult to take into account analytically. A lot of simulation procedures have

been developed, (6; 7), using different boundary conditions, (8), for different ge-

ometries, (9), et cetera. Much effort and different assumptions have been made

to speed up the calculations, (10). The steady state of the PNP equations has

been studied as well, (11). Because the present work is focused on an analytical

treatment, we only refer to the corresponding literature concerning the discussion

and explanation of the simulations.

Analytical solutions are much rarer than numerical ones and, if available, are

still restricted to very simple systems. First results were obtained by Gouy and

Chapman, (12), and Debye and Hueckel, (13; 14), at the beginning of the twen-

tieth century and became the classics of statistical physics. Those theories deal

with the steady state solutions to systems with different geometries. The Debye-

Hueckel theory treats the problem in the linear regime for a spherically symmetric

system, while the Gouy-Chapman theory provides an exact solution of the full

nonlinear problem for a semi-infinite plane system. Later another exact solution

for the system of similar simple geometry was found in (15). The common feature

of all these solutions is that they are expressed in terms of elementary functions

and related to systems with a very simple geometry and trivial boundary condi-

tions. The steady state solution of more complicated systems can be expressed

only via non-elementary functions and, therefore, is seldom analyzed. In some

cases one can consider a linear regime when deviations of the particle concen-

tration from a constant is small and the PNP equations can be simplified. But

even in the linear regime non-elementary functions have to be sometimes used as

demonstrated in (16), where the case of three different species is considered, and

the steady state solution is expressed via Bessel functions. As shown in (17), the

general steady state solution of the PNP equations is only expressed via Jacobi

elliptic functions. This makes the analysis of the general solution much more

complicated and explains a lack of exact results. One of the goals of the present

work is to close this gap. So far, the main efforts are directed to a development of

new numerical procedures giving more precise results and taking less calculation

costs. One should mention that the stationary PNP equations are equivalent to

the Poisson-Boltzmann equation which describes many other physical systems

and also should be analyzed analytically.

7



1.1 Motivation and aims of the Thesis

The dynamical problem seems to be even more complicated. Its general time-

dependent solution should be related to Jacobi elliptic functions because the sys-

tem is expected to tend to a steady state which is expressed via these functions.

From a theoretical point of view, the electric field and the particle concentrations

are of interest, although the direct measurement of these quantities is often quite

difficult to perform experimentally. For biological systems these profiles could be

of particular importance. In contrast, for electrolytes another quantity is of inter-

est, namely the external current. This current is generated in the external circuit

by a motion of ions in the space between the electrodes and can be extracted

from experimental data. Consequently, in order to compare theoretical results

with experimental data, one has to calculate the external current. This is an

advantage to a theoretical analysis, because, as we will see later, it is much easier

to find a reasonable approximate expression for the external current than for the

particle concentrations. Recently the problem in plane geometry was considered

very detailed in (18). According to the authors the behavior of the system can

be generally influenced by two parameters: the applied voltage v and the initial

concentration of particles η, which suggests a consideration of four limiting cases:

(i) the diffusion limited case where both v and η are small, (ii) the double layer

limited case where η is large and v is small, (iii) the geometry limited case where

η is small and v is large, (iv) the space charge limited case where both v and η

are large. Regimes where v is large are also called regimes without diffusion. In

each regime the PNP equations can be simplified drastically and therefore can be

solved. These results, as shown in (18), can be fit to experimental observations

and reveal main features of the system behavior. However, the applicability of the

regimes is not absolutely clear and can be questionable due to the unreliability

of assumptions these regimes are based on. To illustrate this point one should

notice that the applicability of regimes is restricted not only by values of v and

η but also by the moment of time. Non of the regimes can be valid in the long

time limit. Regimes without diffusion are not valid because the time derivative

of the concentration is small only whenever the diffusive and the electric field

parts in Eq. 1.13 nearly cancel each other, which means that the diffusive part

can not be neglected. Regimes with small v are considered to describe the lin-

ear regime, because a small value of the applied voltage requires automatically

8
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a small deviation of the concentration from its initial value η. The solution was

obtained by a formal separation of time and coordinate variables. But mathe-

matically these equations can not be solved by this method because the spatial

part of the solution coincides with the steady state solution, which in turn auto-

matically claims that all time derivatives are zero. Thereby, all regimes suggested

in (18) fail in the long-time limit. Nevertheless, this approach yields reasonable

predictions which can be fit to experimental results. Some papers are devoted

solely to the problem in the linear regime, which can serve as a starting point in

searching an approximate solution to the full nonlinear problem. However, even

in the linear regime the PNP equations have not been solved exactly. In (19)

the long-time limit was considered by a separation of variables. The coordinate

dependence of the concentration is different to the one presented in (18) because

the spatial part of the solution was not equal to the steady state. On the other

hand, this means that their long-time-limit solution does not tend to the steady

state solution. A similar contradiction was found in (20). The authors did not

separate variables but their solution does not tend to the steady state one as well.

In spite of this logical contradiction, both solutions presented in (19) and (20)

yield the correct time constant and can be fit to experimental results. All the

different solutions mentioned above are not applicable in the long-time regime.

They contain logical contradictions but provide more or less correct predictions

which are in agreement with experiment data. This paradox will be explained in

Chapter 4 together with presenting the solution free from such drawbacks.

The PNP equations are designed to describe a diffusion of charged particles

in an external electric field. Such processes are realized experimentally very

often and therefore should be investigated. On the other hand, there is a pure

mathematical interest in the PNP equations. They represent a set of nonlinear

coupled partial differential equations, which is worth to be analyzed. We will

not discuss all related details. A very comprehensive and profound discussion

is given in (21). Although the results obtained there can be hardly used to

explain experimental data, they are important for the entire concept of the PNP

approach. For example, it was shown that according to the PNP equations the

particle concentrations C±(~r, t) can never be negative. Mathematical analysis of

general properties of the PNP equations can be used to establish the borders of

9
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applicability of the approach. For instance, intuitively it is obvious that it is

restricted to not very high applied voltages. A high applied voltage should lead

to very steep concentration gradients which are beyond Fick’s law of diffusion.

In the view of the problems summarized above, the present work is aimed to

overcome the lack of analytical results by providing a self-consistent treatment

and noncontradictory analytical solution of the PNP equations. The dissertation

is organized as follows. In the next section of this chapter the system of interest

is described and the problem to solve is formulated. In Chapter 2 an overview

of different models and methods is presented. The common terminology is in-

troduced and the governing equations are derived and discussed. Although all

these results were obtained earlier, they reflect the general understanding of the

problem. Chapters 3 and 4 represent mainly new results. In Chapter 3 the gen-

eral steady state solution of the PNP is found. In contrast to other works, the

solution is analyzed directly in terms of Jacobi elliptic functions. A systematic

approach is proposed to find a reasonable approximate solution in terms of el-

ementary functions. It is shown that the approximation scheme is valid in a

wide range of parameters characterizing the system. Further, the solution of the

one-dimensional problem is extended into more general cases which were so far

realized only by means of numerical simulations. Finally in Chapter 4 the dy-

namical problem is investigated in the linear regime. A response to DC and AC

voltages is found. In contrast to other works, all boundary and initial conditions

are fulfilled. In the long-time limit the system reaches the steady state.

1.2 Systems studied

Let us consider a binary, symmetric, completely dissociated electrolyte enclosed

by two parallel planar electrodes located at x = ±L as sketched in Fig. 1.1. The

word binary means that there are only two types of charged particles: positive and

negative. All positive particles are identical to each other. The same is valid for

negative particles. The word symmetric indicates that the initial concentrations

and charges of these species are the same, η+ = η− = η and |z+| = |z−| = z.

The substance containing free ions is supposed to be a polymer. Such systems

are called polymer electrolytes. They should not be confused with so called

10
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polyelectrolytes. Polyelectrolytes are polymers whose repeating units have an

electrolyte group. These groups can dissociate making the polymer charged.

Thus, properties of polyelectrolytes are similar to those of both electrolytes and

polymers. Generally speaking, if in a polymer electrolyte all ions of the same kind

are fixed in space, the behavior is similar to that of a polyelectrolyte. In other

words, in polymer electrolyte there is the same number of positive and negative

particles which can move through an electrically neutral polymer matrix, whereas

in polyelectrolyte there are only positive or only negative ions which can move

through a charged media.

Figure 1.1: Sketch of the system

In the present work we consider mainly polymer electrolytes, thought in the

linear regime the treatment of polyelectrolytes is very similar. This will be demon-

strated in Chapter 4.

The system is kept on a constant temperature higher than the polymer glass

transition one, which allows a particle migration. Without the influence of exter-

nal forces the system is homogeneous; the particle concentrations do not depend

on coordinate and are equal to η. At the initial moment a voltage is applied

to the electrodes enforcing ions to move and therefore making the system in-

11
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1.2 Systems studied

homogeneous. As far as the system is not homogeneous, particle concentration

gradients appear and try to return the system into the homogeneous state. The

competition of these two processes defines the evolution of the system. As long

as diffusive and electric parts do not give the same contribution, the evolution

of the system takes place. The general theoretical task is to find the time and

spatial dependencies of the particle concentrations C±(~r, t) and the electric field
~E(~r, t) between the electrodes. Because the electrodes are supposed to be flat and

infinite, the system can be considered as one-dimensional, and hence a vector ~r

can be replaced by a coordinate x.

Ions move within the polymer matrix whose properties are supposed to be

time-independent. This also means, a change of the electric field and the ion

concentrations has no influence on the matrix and as well there are no chemical

reactions, like for example a charge absorption by the polymer. This allows the

consideration of the charge migration without specifying a particular chemical

structure of the matrix that of course is responsible for some physical properties

of the system, such as the dielectric constant or the diffusion coefficient. It is a

challenging task to predict them for a taken polymer matrix theoretically, but this

lies beyond the scope of our research. In the present work all physical parameters

of the system are supposed to be known. The particle diffusion constant D and

the mobility µ are related to each other via the Einstein relation, D = µkBT .

Moreover, it is supposed that dynamical properties of positive and negative par-

ticles are the same, D+ = D− = D and µ+ = µ− = µ, which is suggested by

experimental data, see for example (22) and citations therein. However, in some

cases concerning mainly semiconductors, this assumption could be inapplicable.

The system is locked between two metal electrodes which are supposed to

be ideal conductors. At their surfaces chemical reactions can take place. Since

the polymer is supposed to be chemically neutral, chemical reactions involve

only mobile ions. In other words, ions can appear or disappear at the surface

of electrodes but not in the bulk. Such processes are called Faradaic processes

because they lead to a Faradaic current. Consequently, an absence of Faradaic

current means that ions are locked between the electrodes and can not pass

through them. Since this work is focused on general properties, in particular

on understanding of the diffusion in an external field, further it is supposed that

12



1.2 Systems studied

Faradaic processes can be neglected. For a discussion of the treatment of systems

with Faradaic processes see (23; 24).

As it was stated above, the main theoretical goal is to find the spatiotempo-

ral concentration profiles C±(x, t) and the electric field distribution E(x, t). In

order to compare theoretical predictions with experimental data, one should cal-

culate the external current. When the voltage has been just applied, an excess

of electrons appears at the electrodes. As the electrodes are ideal conductors,

this process occurs infinitely fast and corresponds to an infinite current in the

external circuit. Then particles start to move inducing additional charge on the

electrodes and, consequently, causing the external current. This current can be

extracted from experimental data on dielectric spectroscopy and can be used to

compare experimental and theoretical results.

13



Chapter 2

Overview of models and methods

The system of interest was described in general in Section 1.2. The current

Chapter reveals the main properties of the system and the main approaches to

treat them. The conventional terminology is introduced and explained following

the historical development of the subject. Models presented here are the basics of

electrochemistry; their deep and complete discussion can be found in numerous

books and textbooks, e.g. see (1; 17; 25; 26).

2.1 Electrical circuit model

2.1.1 General idea

At the initial moment a dc voltage is applied, which creates a nonzero charge

density at the electrodes. As a response to the applied voltage, mobile charged

particles begin to move within the polymer matrix, and the charge excess ap-

pears near the electrode surface. Since Faradaic processes are neglected, ions can

not cross the electrodes, and the behavior of the electrode-solutions interface is

analogous to that of a capacitor. A capacitor consists of two parallel electrodes

and thus is the simplest electrical circuit element. This fact gave the name to

the model. The basic idea of replacing the actual system by an equivalent cir-

cuit belongs to Kohlrausch (27). The first mathematical theory of Kohlrausch’s

”polarization capacitance” was given by Warburg (28; 29).

14



2.1 Electrical circuit model

Let us for the beginning consider a conventional capacitor. When a potential

is applied across it, a charge qm will be accumulated at the electrode until it

satisfies the equation qm = c v, where c is the capacitance of the capacitor1, and

v is the applied voltage. If the electrode-solution interface is considered as a

capacitor, one of its electrodes is the electrolyte and the charge at this electrode,

qs, is accumulated due to a redistribution of ions in the solution. The charge on

another, real electrode comes from the battery. For a capacitor, at every moment

qm = −qs. In this simplified case, the electrode-solution interface consists of two

electrical layers. Such an interface coined the name the electrical double layer

introduced by Helmholtz. He considered only a very narrow layer close to the

electrode. Nowadays this layer is considered as a part of the double layer.

Despite, as it turned out, the double layer is not really double, this term is still

used for such interfaces. In fact, its solution part is thought to consist of several

layers, see Fig. 2.1. The first, closest to the electrode one is called the inner layer.

Sometimes it is also called the compact or Helmholtz or Stern layer. The name

compact layer was introduced by Stern in 1924 when he suggested decomposing

the double layer into a layer in Helmholtz sense described above, which explains

the second offered name, and diffuse or Gouy part which will be introduced later.

Because the idea to consider the inner layer as a separate part of the double

layer belongs to Stern, this layer bears sometimes his name. The inner layer

contains solvent molecules which are in contact with the electrode, that is they

are said to be specifically adsorbed. The average position of electrical centers of

specifically adsorbed ions is called the inner Helmholtz plane (IHP) and is located

at the distance x1, see Fig. 2.1, from the electrode. The corresponding charge

density provided by specifically adsorbed ions in this inner layer is denoted by σi.

According to the definition, σi = qi

S
, where S is the area of the electrode. Solvated

ions can not approach the electrode closer than to a distance x2. Centers of those

nearest ions are located on the outer Helmholtz plane (OHP). The interaction of

these ions involves only long-range electrostatic forces, so the ions are said to be

nonspecifically adsorbed. In contrast to specifically adsorbed ions, the interaction

of nonspecifically adsorbed ions is independent of their chemical properties. The

1Conventionally, the capital C is used to denote a capacitance but this letter was already

reserved for the concentration.
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2.1 Electrical circuit model

compact layer has a strong impact on the rates of electrode processes for instance

the electrode reaction kinetics. The nonspecifically adsorbed ions are distributed

in a three-dimensional region at the scale of the screening length, forming the

diffuse layer. This layer completes the double layer. Thus, the total excess charge

density in the solution part of the double layer, σs, is a sum of the excess charge

density in the diffuse layer, σd, and the charge density in the Stern layer, σi,

σs = σi + σd = −σm .

According to the definition, the boundary between the diffuse layer and the bulk

electrolyte is not well defined and they can be seeing as a single, continuous

region. This is definitely a drawback if this approach but already such a simple

model can provide reasonable, experimentally justified predictions. Though in

some cases, see for example (30), the fit of experimental data is not sufficiently

precise.

Figure 2.1: Model of the electrode-solution, double-layer region. (taken from (1))
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2.1 Electrical circuit model

Let us apply a step voltage to the system and calculate the external current

which, according to experimental data, is nearly exponential. Since the double

layer in the vicinity of each electrode was replaced with a capacitor, we have, as

schematically depicted in Fig. 2.2, two identical capacitors separated by a resistor.

At any time the sum of voltages across the resistor, VR, and the capacitors, 2Vc,

Figure 2.2: Schematic representation of the system within the electrical circuit

model

must be equal to the applied voltage V ,

V = VR + 2Vc = JR + 2
q

c
.

Using the definition of the current J = q̇, one finds

dq

dt
=

V

R
− 2q

Rc
.

For an initially uncharged capacitor it yields

q =
V c

2

[

1 − exp(
−2t

Rc
)

]

.

Taking a time derivative we finally get

J =
V

R
exp

(−2t

Rc

)

.

The current decays exponentially with time constant τ = Rc/2. For example, if

R = 1Ω and c = 20µF , τ = 10µsec, or double-layer charging is 95% complete in

30µsec.

The quantity τ depends on parameters introduced in the model: R and c.

To find values of these parameters, more sophisticated model of the double layer

should be considered.
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2.1 Electrical circuit model

2.1.2 Models for a double layer structure

In the previous section we introduced the double layer and described its general

properties. In this section we will discuss its structure in more detail. Since

the metallic electrode is a good conductor, the electrons will concentrate at its

surface, forming a very narrow layer. Helmholtz was the first one who supposed

that ions in the solution intend to form a layer of countercharges close to the

electrode as well. These two layers he united into a double layer and suggested

to consider them as a parallel-plate capacitor (31; 32). In this case, the charge

density σ and the voltage drop between the plates, v, are related via

σ =
ǫ

d
v ,

where ǫ is the permittivity of the medium 1, and d is the interplate distance. The

differential capacitance is

cd ≡ dσ

dvd
=

ǫ

d
. (2.1)

Eq. 2.1 reveals the drawback of the model. Unlike electrons at the electrode which

is supposed to be an ideal conductor, ions in the solution do not form a layer which

thickness can be neglected. For systems with lower initial concentration η, the

charge excess spreads wider into the bulk than for systems with higher η. Also

higher applied voltage means higher force acting on ions and dragging them closer

to the electrode. So, the thickness of the layer and, consequently, cd should depend

on both applied voltage and initial concentration, but, according to Eq. 2.1, cd is

independent of them. Therefore the model should take into account the structure

of the solution part of the double layer, which was not considered by Helmholtz.

Gouy and Chapman independently proposed the model based on the statistical

mechanical approach for it and introduced the diffuse layer.

Let us consider a solution of different types of ions which are in thermal equi-

librium. Thermal equilibrium claims that particles are Boltzmann distributed,

Ci(x) = ηi exp

(−zieφ(x)

kBT

)

. (2.2)

1In some treatments, the permittivity of the medium is denoted as ǫǫ0, where ǫ is the

dielectric constant of the medium, and ǫ0 is the permittivity of free space.
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2.1 Electrical circuit model

The subscript i denotes different ion species, ηi is the initial concentration of the

corresponding species, e is the elementary charge, zi is the ion valency, so zie is

the charge of the ion. The potential of electric field φ(x) is measured with respect

to the bulk solution. The charge density is

ρ(x) = e
∑

i

Ci(x)zi , (2.3)

where i runs over all ionic species. From electrostatics it is known that ρ(x) is

related to the potential by the Poisson equation,

ρ(x) = −ǫ
d2φ(x)

dx2
. (2.4)

Here and further we use the static Poisson equation because the velocity of

charge migration is low. A correspondent estimation will be presented at the

end of the next section. Combining Eqs. 2.2 and 2.4 together and taking into

account Eq. 2.3 we get the Poisson-Boltzmann equation describing the coordinate

dependence of the potential,

d2φ(x)

dx2
= −e

ǫ

∑

i

ηizi exp

(

−zieφ(x)

kBT

)

. (2.5)

To solve this equation, we use the identity

d2φ

dx2
=

1

2

d

dφ

(

dφ

dx

)2

, (2.6)

which turns the Poisson-Boltzmann equation into

d

(

dφ(x)

dx

)2

= −2e

ǫ

∑

i

ηizi exp

(

−zieφ(x)

kBT

)

dφ(x) . (2.7)

Integration gives

(

dφ(x)

dx

)2

=
2kBT

ǫ

∑

i

ηi exp

(

−zieφ(x)

kBT

)

+ constant . (2.8)

The integration constant can be found from the condition that far from the elec-

trode φ = 0 and dφ
dx

= 0. Thus,

(

dφ(x)

dx

)2

=
2kBT

ǫ

∑

i

ηi

[

exp

(−zieφ(x)

kBT

)

− 1

]

. (2.9)
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2.1 Electrical circuit model

For symmetrical electrolytes this expression can be simplified 1 to

dφ(x)

dx
= −

(

8kBTη

ǫ

)2

sinh

(

zeφ(x)

2kBT

)

. (2.10)

Eq. 2.10 can be integrated

∫ φ(s)

φ0

dφ

sinh(ezφ/2kBT )
= −

(

8kBTη

ǫ

)0.5 ∫ s

0

dx , (2.11)

where s is the distance from the electrode, and φ0 is the applied potential. Inte-

gration yields
tanh(zeφ(s)/4kBT )

tanh(zeφ0/4kBT )
= e−κs , (2.12)

or

φ(s) =
4kBT

ze
arctanh

(

tanh(zeφ0/4kBT ) e−κs
)

, (2.13)

where the Debye screening length λD is introduced according to

1

λD
≡ κ =

(

2ηz2e2

ǫkBT

)0.5

. (2.14)

Interesting to note that Debye was not the first one who derived this expres-

sion. His work dates back to 1923 and is a part of his seminar work with Hueckel,

(13; 14), on charge screening in bulk electrolytes. They were dealing with the

spherical screening cloud around an ion, and, due to the low potentials involved,

they linearized the transport equations, allowing them to handle general elec-

trolytes. But more than a decade earlier, considering the identical semi-infinite

problem of screening near a flat, blocking electrode, Gouy obtained the exact

solution of the full nonlinear equations for the equilibrium potential profile in

several cases of binary electrolytes, z+/z− = 1 and 2, see (33). Though his solu-

tion is not general and appropriate only for this particular case. It is difficult to

generalize it to other systems. A few years later, Chapman, (34), independently

derived Gouy’s solution for a univalent electrolyte, z+ = z− = 1. He also gave a

simple form for the charge voltage relation of the diffuse-layer capacitor, Eq. 2.17.

So that, λD is sometimes called the Gouy-Chapman length.

1Another way to solve this equation is to use a substitution y = exp(−αφ).
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2.1 Electrical circuit model

Eq. 2.12 describes the potential profile in the diffuse layer. At large ap-

plied potentials the diffuse layer is relatively compact and the potential decreases

rapidly with increasing distance from the electrode. At small φ0 the decline

of φ(x) is smoother and approaches an exponential form. As an estimation, if

(zeφ0/4kBT ) . 0.25 then tanh(zeφ(s)/4kBT ) ∼= (zeφ(s)/4kBT ) which leads to

φ(s) = φ0e
−κs . (2.15)

This relation is a good approximation for φ0 . 25/z mV at room temperature.

To find the charge density in the vicinity of the electrode one has to integrate the

Poisson equation, Eq. 2.4. This gives

σm = −σs = (8kBTǫη)0.5 sinh

(

zeφ0

2kBT

)

, (2.16)

and, consequently, the differential capacitance is

cd =
dσm

dφ0
= ǫκ cosh

(

zeφ0

2kBT

)

. (2.17)

This simple Gouy-Chapman theory is already able to predict general proper-

ties of the system qualitatively. However, real systems show different behavior at

high applied potentials and the actual capacitance is usually lower than the pre-

dicted one. Moreover, as one can see from Eq. 2.17, the differential capacitance

increases unlimited with increasing applied potential φ0. This could lead to the

breakdown of the theory because, as it was pointed out in the previous section,

at high applied potentials the double layer becomes narrower making the theory

more precise. But here we have an inverse effect. To avoid this problem, Stern

suggested a generalization of the theory, (35) see also (36). In the Gouy-Chapman

theory it is supposed that ions are infinitely small and can approach the electrode

infinitely close. In systems with low electrolyte concentration or at low applied

potentials the fraction of these ions is low and can be neglected. However, in

other cases the diffuse layer becomes more compact and influence of these ions

increases. Such ions are situated at the distances smaller than x2, see Fig. 2.1,

in the layer between the electrode and the outer Helmholtz plane (OHP). The

Poisson-Boltzmann equation can be applied at distance x > x2. Repeating the
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2.1 Electrical circuit model

steps described above we get the equation for the potential profile of a symmetric

electrolyte,
∫ φ(s)

φ2

dφ

sinh(ezφ/2kBT )
= −

(

8kBTη

ǫ

)0.5 ∫ s

x2

dx . (2.18)

Integration gives
tanh(zeφ(s)/4kBT )

tanh(zeφ2/4kBT )
= e−κ(s−x2) , (2.19)

where φ2 is the potential at x2 with respect to the bulk solution. The field

strength at x2 is given according to Eq. 2.10,

(

dφ(x)

dx

)

x=x2

= −
(

8kBTη

ǫ

)2

sinh

(

zeφ2

2kBT

)

. (2.20)

Since ions can not approach the electrode infinitely close forming the so called

compact layer, the charge density there is zero. From the Poisson equation,

Eq. 2.4, it follows that the potential profile is linear. The total potential drop

across the double layer is

φ0 = φ2 −
(

dφ(x)

dx

)

x=x2

x2 . (2.21)

Note that all of the charge on the solution side resides in the diffuse layer, and

its magnitude is related to φ2. Performing the same steps as earlier we find

σm = −σs = −ǫ

(

dφ(x)

dx

)

x=x2

= (8kBTǫη)0.5 sinh

(

zeφ2

2kBT

)

. (2.22)

Substitution of φ2 from Eq. 2.21 leads to

σm = (8kBTǫη)0.5 sinh

[

ze

2kBT

(

φ0 −
σmx2

ǫ

)]

. (2.23)

Differentiation of Eq. 2.23 reveals the expression for the differential capacitance,

cd =
dσm

dφ0

=
(2ǫz2e2η/kBT )0.5 cosh(zeφ2/2kBT )

1 + (x2/ǫ)(2ǫz2e2η/kBT )0.5 cosh(zeφ2/2kBT )
, (2.24)

or in a more convenient way,

1

cd

=
x2

ǫ
+

1

(ǫκ cosh(zeφ2/2kBT )
. (2.25)
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2.1 Electrical circuit model

From this equation it follows that the capacitance is made up of two components

that can be separated in the reciprocal, exactly as it should be for two capacitors

in series.
1

cd

=
1

cH

+
1

cD

. (2.26)

Here cH corresponds to the capacitance of the charge held at the OHP, cD is

Figure 2.3: Potential profile according to the Gouy-Chapman-Stern theory and

a view of the differential capacitance as a series of Helmholtz layer and diffuse

layer capacitances. (taken from (1))

the capacitance of the truly diffuse charge. cH is independent of the applied

potential. The capacitance cd shows a complex behavior. At low electrolyte

concentrations it is governed by the cD as in the Gouy-Chapman theory. At large
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2.2 Mesoscopic transport model

electrolyte concentrations or as well in dilute media but at large applied potential,

cD becomes large and gives no longer a contribution to cd which value gets closer

to cH . To illustrate the main features and the differences of the Gouy-Chapman

and Gouy-Chapman-Stern theories, let us consider Fig. 2.3.

The potential profile is calculated according to Eq. 2.19. Right next to the

electrode within the Stern layer the potential decreases linearly. Without Stern’s

modification, it would be an exponential decay passing into a decay within the

diffuse layer.

Despite the Gouy-Chapman-Stern theory presented here deals with the sim-

plest model of the compact layer, it is able to predict a behavior of real systems

in many cases. On the other hand, even the most sophisticated fits to experi-

mental data still suffer from ambiguities. One problem is the somewhat arbitrary

distinction between the diffuse layer and the bulk electrolyte, mentioned above.

Furthermore, some specific features of the system have not been included into

the model, such as, for example, differences in x2 for anions and cations. There is

also a pure physical restriction. Here the actual physical system was replaced by

a simplified model. But, as it was shown in (37), the non-uniform change of ionic

concentration can not be fully represented by homogeneous circuit elements.

2.2 Mesoscopic transport model

This approach is based on the mechanics of continua. Its advantage over the

electrical circuit approach is that no assumptions of the double layer structure,

even existence of the double layer itself, are necessary. Only general assumptions

of the mechanics of continua are used. This allows a very general mathematical

formulation of the problem and extension of results and developed methods to

other systems. However, the description of the electrode-solution interface is still

problematic due to interaction between ions and the material of the electrode and

the fact that ions can not come infinitely close to the electrode. These effects can

not be taken into account in the frame of the mechanics of continua. Therefore

the conception of the Stern layer could be sometimes involved.

According to the formalism of the mechanics of continua, (3), positive and

negative particles are considered as continuum fields with correspondent particles
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2.2 Mesoscopic transport model

concentration density. This makes it possible to use the standard statistical

treatment. Usually it is done within Euler formulation of mechanics of fluids,

(38).

To derive the main equations of this treatment, let us consider a small volume

A bounded by the imaginary surface Ω. And let us for the beginning suppose

that there is only one type of ions which concentration is denoted by C(~r, t). The

total number of particles in the volume is

y

A

C(~r, t)dA .

This is a time dependent function and changes by two processes. First of all,

particles can just flow away from the volume through its surface Ω. If particles

flux is denoted by ~F (~r, t), the number of flown particles is determined by a surface

integral of the normal component of the flux,

{

Ω

~F (~r, t) · ~n dΩ ,

where ~n is the outward pointing unit normal vector of the boundary. On the

other hand, particles can appear or disappear due to for example recombination

processes within the volume A. Corresponding change of their total number is

y

A

σ(~r, t)dA ,

where σ(~r, t) is a density of charge sources. Consequently, as a balance of those

three terms shown above one yields

y

A

Ċ(~r, t)dA = −
{

Ω

~F (~r, t) · ~n dΩ +
y

A

σ(~r, t)dA . (2.27)

Using the Gauss - Ostrogradsky theorem one can rewrite it as

y

A

{

Ċ(~r, t) + (∇ · ~F (r, t)) − σ(~r, t)
}

dA = 0 , (2.28)

where the operator nabla is introduced. Because the volume A is arbitrary it

follows

Ċ(~r, t) = −div(~F (~r, t)) + σ(~r, t) . (2.29)
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2.2 Mesoscopic transport model

The quantities ~F (~r, t) and σ(~r, r) depend on the system considered and can de-

scribe a wide range of processes. The flux ~F (~r, t) can be caused by the influence

of any external force or convective effects. Or it can be a consequence of being

in non-inertial frame when the system is, for instance, rotating. σ(~r, t) can orig-

inate from chemical reactions or describe an external source of ions. So that, it

is necessary to adopt Eq. 2.29 to the system of interest, deciding which effects

are to be neglected and which are to be taken into account. We will consider a

chemically stable case when there are no chemical reactions, that is there are no

sources of ions, which makes σ(~r, t) = 0 and turns Eq. 2.29 into

Ċ(~r, t) = −div(~F (~r, t)) (2.30)

representing a general form of the charge conservation law for closed system.

According to the first law of diffusion, the flux is proportional to the gradient

of the chemical potential,

~F (~r, t) = −
(

C(~r, t)D

RT

)

∇µ̄(~r, t) . (2.31)

One should distinguish µ̄ and µ. µ̄ means the chemical potential whereas µ

stands for the mobility. D is the diffusion coefficient, D > 0. The minus sign in

Eq. 2.31 arises because the direction of the flux opposes the direction of increasing

µ̄. If the system has been put out of the homogeneous state, it tends to return

back. If in addition to the gradient of µ̄ there are some other factors that can

influence the system, corresponding terms should be added to the flux. Since we

are interested in the system containing mobile charged particles subjected to the

external electric field, this additional term should describe the influence of the

electric field. In this case the flux reads

~F (~r, t) = −
(

C(~r, t)D

RT

)

∇µ̄(~r, t) − zeµC(~r, t)∇φ(~r, t) .

The second term represents the Coulomb interaction of ions. Supposing that

concentration gradients are not very high, i.e. low enough to allow a use of Ficks

first law, see Eq. 1.6 and its discussion, Eq. 2.31 yields

~F (~r, t) = −D∇C(~r, t) − zeµC(~r, t)∇φ(~r, t) . (2.32)
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2.2 Mesoscopic transport model

Inserting this into the mass conservation law, Eq. 2.30, we get the Nernst-Planck

equation,

Ċ(~r, t) = div (D∇C(~r, t) + zeµC(~r, t)∇φ(~r, t)) . (2.33)

If there are several species, this equation is valid for each of them. The concentra-

tion C(~r, t) should be replaced by Ci(~r, t), where i corresponds to various species.

In this case, Eq. 2.33 reads

Ċi(~r, t) = div (Di∇Ci(~r, t) + zieµiCi(~r, t)∇φ(~r, t)) . (2.34)

Eq. 2.33 contains two valuables, C(~r, t) and φ(~r, t), but this is only one equa-

tion. To close the system, the Poisson equation should be added

ρ(~r, t) = −ǫ
d2φ(~r, t)

dx2
, (2.35)

where ρ(~r, t) is a charge density, ρ(~r, t) ≡ −zeC(~r, t). Strictly speaking, one

should use the time-dependent Poisson equation,

ρ(~r, t) = −ǫ

(

d2φ(~r, t)

dx2
− d2φ(~r, t)

c2dt2

)

, (2.36)

but a velocity of the charge movement is not very high, so the last term can be

neglected. A corresponding estimation will be given at the end of this section.

Eqs. 2.33 and 2.35 represent the Poisson-Nernst-Planck equations abbreviated

further as PNP.

Let us now apply this approach to the system of interest described in Chapter

1.2. For this purpose we will rewrite Eqs. 2.34 for two species in one dimensional

case and formulate boundary and other conditions. As it was pointed out in

Section 1.2, the system consists of a thin film placed between two electrodes

which are supposed to be infinite. This provides a one-dimensional problem and

the vector ~r can be replaced by the coordinate across the film, x.

The one-dimensional PNP equations for binary, symmetric polymer electrolyte

read

Ċ±(x, t) =
(

DC ′
±(x, t) ± µzeC±(x, t)φ′(x, t)

)′
,

−ǫφ′′(x, t) = ze(C+(x, t) − C−(x, t)) ≡ ρ(x, t) . (2.37)
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2.2 Mesoscopic transport model

The first term on the right hand side of the first equation represents Fick’s law of

diffusion which limited applicability could be one of the reasons of the breakdown

of the PNP. This will be discussed in Chapter 3. The second term describes the

Coulomb interaction of ions. Without this term the resulting equations would

describe a pure diffusion. If φ± is the external potential imposed by the external

circuit on the electrodes, then

φ = φ± ∓ λSφ′ at x = ±L ,

where λS is an effective thickness for the Stern layer. As it was described in the

previous section, the compact layer is designed to account an interaction of ions

with electrodes. Since its treatment was already explained, we will not consider

any chemical effects. Instead of that we will concentrate on pure diffusion in the

external field. So, the boundary conditions are

φ+ − φ− = v ,

or, equivalently,
∫ L

−L

E(x, t) = v .

At the initial moment the system is supposed to be homogeneous. This is the

general formulation of the problem treated in two following chapters. In the

remaining part of this chapter we will describe main features of the system be-

havior.

For times t < 0, no voltage is applied, and the initial concentration is uniform,

C±(x, t ≤ 0) = η. For t > 0, a constant voltage v is applied between the

electrodes, and the evolution of the concentrations and the electric field is to be

found. As t → ∞, the bulk electric field at the midplane, x = 0, decays from

its initial value v/(2L) to almost zero due to screening by diffuse charge which

moves from one electrode to another.

If the applied potential is much smaller than the thermal voltage, v ≪
kBT/(ze), PNP equations can be linearized and turned into only one equation

for the charge density ρ(x, t),

ρ̇(x, t) ≈ D(ρ′′(x, t) − κ2ρ(x, t)) , (2.38)
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2.2 Mesoscopic transport model

where κ = λ−1
D is the inverse Debye screening length. This equation is called the

Debye-Falkenhagen equation (39). The linearization procedure and the physical

meaning of linear regime will be discussed in Chapter 4.

To solve Eq. 2.38 it is convenient to use Laplace transformation defined by

f̃(z) =

∫ ∞

0

dτe−zτf(τ) . (2.39)

As ρ(x, t ≤ 0) = 0, the Laplace transform of Eq. 2.38 is

ρ̃′′(x, z) = k2(z)ρ̃(x, z) , (2.40)

where

k2(z) =
z

D
+ κ2 . (2.41)

Due to symmetry properties of the PNP, which will be discussed in Chapter 4,

ρ(x, t) should be antisymmetric. The general antisymmetric solution to Eq. 2.40

is

ρ̃(x, z) = A(z) sinh(kx) , (2.42)

where the constant A(z) is determined by the constraint F̃±(x = ±L, z) = 0.

Taking into account the Poisson equation, Eq. 2.35, it yields for the potential

φ̃(x, z) = −A(z)
cosh(kL)

ǫk2

(

sinh(kx)

cosh(kL)
+

kzx

κ2D

)

, (2.43)

where

A(z) =
−k2ǫV z−1sech(kL)

tanh(kL) + kzL
κ2D

. (2.44)

It is problematic to invert these equations analytically but still some conclusions

can be drawn, (40). Let us focus on the Laplace transform of the charge density at

the anode, ρ(x = L, z). For times much longer than the Debye time τD = λ2
D/D,

we consider the limit, z ≪ κ2D, in which the Laplace transform takes the much

simpler asymptotic form,

ρ̃(x = L, z) ∼ ǫV κ2z−1

1 + τρz
, (2.45)

where

τρ =
L

κD

[

coth(κL) − (κL)−1
]

. (2.46)
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2.3 Comparison of approaches

Since the Laplace transform of 1− exp(−τ/τ0) is z−1/(1+ zτ0), this result clearly

shows that the buildup of the charge screening layer occurs exponentially with

the characteristic time given by Eq. 2.46, which is of order τc = L/κD if κL ≫ 1.

Coming back to the problem concerning the use of the static Poisson equation

instead of the dynamic one the knowledge of the time constant τc allows us to

justify this statement. To make a highly overrated estimation of the average

velocity of the charge, v̄, let us suppose that during the evolution it should cross

the whole system, from one electrode to other. In this case,

v̄ ∼= L

τc
=

D

λD
,

which gives a very low velocity for all real systems and justifies the use of the

static equation.

2.3 Comparison of approaches

The electrical circuit approach was one of the first approaches and brought a new

terminology which is still in common use. But it can not describe dynamical

properties precisely enough because when electrode-solution interface is replaced

by a capacitor, it is supposed that qm = −qs. For an ideal capacitor this equation

is correct, but a solution is not an ideal conductor. The changes of qs would always

lag that of qm. In this view, the transport approach is more preferable. It is not

based on any assumptions concerning the double layer structure. On the other

hand, in the steady state these both approaches lead to the same result. In this

section we will demonstrate that the steady state of the PNP equations, Eqs. 2.37,

is equivalent to the Poisson-Boltzmann equation, Eqs. 2.5.

To proof the equivalence in the general case, let us consider a three dimensional

system containing an arbitrary number of different ions. Ci(~r) is the concentration

of the ionic species i calculated at the point ~r. The steady state is characterized

by the claim that all time derivatives are zero. In this case the PNP equations

read

kBT∇lnCst
i (~r) + ezi∇φst(~r) = 0 , (2.47)

ǫ∇2φst(~r) +
∑

i

eziC
st
i (~r) = 0 . (2.48)

30



2.3 Comparison of approaches

The total number of particles is obtained by integrating the concentration over

the whole system,

Ni =

∫

V

Ci(~r)dV . (2.49)

Integration of Eq. 2.47 gives

Cst
i (~r) = Ai exp

(

−eziφ
st(~r)

kBT

)

, (2.50)

where the integration constant Ai is defined by

Ai =
Ni

∫

V
exp

(

−eziφst(~r)
kBT

)

dV
. (2.51)

Inserting this result into Eq. 2.48 we obtain the Poisson-Boltzmann equation,

ǫ∇2φst(~r) +
∑

i

eziAi exp

(

−eziφ
st(~r)

kBT

)

= 0 . (2.52)
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Chapter 3

Steady state solution of the PNP

3.1 Derivation of the steady state

To treat the system described in Section 1.2, we use a mesoscopic transport

model presented in Section 2.2. In the current chapter we consider the steady

state solution, whereas the dynamical problem will be discussed in Chapter 4.

Concentrations of positive and negative ions, C±(x, t), and a potential of the

electric field, φ(x, t), are governed by the Poisson-Nernst-Planck equations (PNP),

Ċ±(x, t) = −F ′
±(x, t) = D

(

C ′
±(x, t) ± ze

kBT
C±(x, t)φ′(x, t)

)′

,

−ǫφ′′(x, t) = ze (C+(x, t) − C−(x, t)) . (3.1)

The stationary state means that all time derivatives are set to zero. That implies

the fluxes F st
± (x) are constant. Since hereafter in this chapter only steady state

values are considered, the superscript st will be omitted to simplify the notation.

Because particle fluxes at electrodes turn to zero, F±(x = ±L, t) = 0, transport

equations read

C ′
±(x, t) ± ze

kBT
C±(x, t)φ′(x, t) = 0 . (3.2)

The steady state is independent of the diffusion coefficient or mobility, i.e. systems

with different D and µ tend to the same stationary state. Physically this means

that the steady state does not depend on dynamical properties of the system.

A difference of charge carrier concentrations, C+(x) − C−(x), with a help of
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3.1 Derivation of the steady state

the Poisson equation, can be expressed in terms of the electric field potential.

Subtraction of Eqs. 3.2 from each other gives

kBT
ǫ

ze
φ′′′(x) − zeφ′(x)C(x) = 0 , (3.3)

where C(x) = C+(x) + C−(x) is the total particle concentration. Summing

Eqs. 3.2 one gets an equation for C(x),

− C(x) +
ǫ

2kBT

(

∂φ(x)

∂x

)2

= r , (3.4)

where r is an integration constant. Both Eqs. 3.3 and 3.4 can be combined to a

single equation for the potential φ(x),

ǫ

ze

∂3φ

∂x3
− ze

kBT

dφ

dx

[

ǫ

2kBT

(

∂φ

∂x

)2

− r

]

= 0 . (3.5)

The ion concentrations C±(x) can be found according to

∂ ln C±(x)

∂x
= ∓ ze

kBT
φ′(x) . (3.6)

The solution of Eq. 3.5 is given in terms of Jacobi elliptic functions, see (41),

which are functions of two variables. Some of their properties are summarized in

Appendix A. The electric field distribution reads

E(x) = −φ′(x) = −2kBT

ze
q̃ k̃ sn(k̃x + x0, q̃) . (3.7)

Here sn stands for the Jacobi elliptic sine, x0 is an integration constant, q̃ and

k̃ are parameters to be found from the boundary conditions. Using Eq. 3.6, the

stationary concentration profile of the charge carriers can be written as

C±(x) = −ǫkBT

2z2e2
k̃2
[

dn(k̃x + x0, q̃) ± q̃ cn(k̃x + x0, q̃)
]2

. (3.8)

The quantities cn and dn are likewise Jacobi elliptic functions. Due to the sym-

metry property E(x) = E(−x), the integration constant x0 is equal to a quarter

of the period of the Jacobi sine. From here one concludes, x0 = K(q), where

K(q) is the complete elliptic integral of the first kind. Consequently, the steady

state solution for the electric field can be rewritten as

E(x) = −2kBT

ze
q̃ k̃ cd(k̃x, q̃) . (3.9)
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3.1 Derivation of the steady state

For the concentrations it reads

C±(x) = −λ2
D η k̃2(1 − q̃2)

[

1 ∓ q̃ sn(k̃x, q̃)
]2

dn2(k̃x, q̃)
. (3.10)

Here the Debye screening length introduced in Eq. 2.14 appears,

λD =

√

ǫkBT

2z2e2η
.

The parameters of the Jacobi functions, k̃ and q̃, are defined by the following

conditions:
∫ L

−L

C±(x) dx = 2Lη ,

∫ L

−L

E(x) dx = v . (3.11)

The first condition reflects the conservation of the total charge, where η is the

initial charge concentration. The second condition indicates that the potential

difference between the electrodes is simply the applied voltage v. Performing the

integration of the first equation in Eqs. 3.11 and taking into account the second

one we get

Ẽ(k̃L, q̃) − q̃2sn(k̃L, q̃)cd(k̃L, q̃) =
L

2λ2
Dk̃

[

1 + λ2
Dk̃2(1 − q̃2)

]

,

ln

(

1 + q̃ sn(k̃L, q̃)

1 − q̃ sn(k̃L, q̃)

)

=
vze

2kBT
. (3.12)

Here Ẽ(k̃L, q̃) stands for the incomplete elliptic integral of the second kind. Both

equations determine the parameters k̃ and q̃ in terms of the initial concentration

η and the applied voltage v. Eqs. 3.9 and 3.10 combined with Eqs. 3.12 provide

the exact solution of the stationary PNP.

To find the parameters q̃ and k̃, let us first consider the special case of v = 0.

This claims, C±(x) = η and E(x) = 0. The electric field is proportional to the

product of three quantities: k̃, q̃ and cd(k̃x, q̃), one of which must be zero in order

to ensure E(x) = 0 for every x. The requirement cd(k̃x, q̃)=0 gives a condition

for k̃ and q̃, leading to a periodic solution. k̃ = 0 claims that the concentration

is likewise equal to zero. So, the single unique non-trivial realization is given by

the condition q̃ = 0. According to Eq. 3.10 we get

C±(x) = −λ2
D η k̃2 = η . (3.13)
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3.1 Derivation of the steady state

Hence, the parameter k̃ reads

k̃ =
i

λD

.

Due to the relation sn(0, q̃) = 0, the mid-plane concentration is

C±(x = 0) = −λ2
D η k̃2(1 − q̃2) . (3.14)

At small applied voltage this concentration is a constant and, consequently, k̃

is a constant, too. In this case the function sn(k̃x, q̃) is pure imaginary which

enforce the parameter q̃ to be likewise imaginary in order to make q̃sn(k̃x, q̃)

real. In other words, if k̃ and q̃ exhibit only an imaginary part, the solution is

real, and the concentration of the particles is positive despite the minus sign in

front of Eq. 3.10. Instead of solving Eqs. 3.12 directly, one can use the following

procedure. The parameter q̃ is fixed, and then the another parameter k̃ is chosen

in such a manner that the charge conservation is fulfilled. Finally we calculate

the applied voltage which corresponds to these parameters. The results suggest

to introduce new parameters k and q according to k̃ = ik and q̃ = iq.

The representation in terms of Jacobi functions is not very practical because

they depend very sensitive on the parameters k̃ and q̃. For the analytical treat-

ment and the comparison with experiments it is also desirable to use merely

elementary functions. Now let us find an approximate but more transparent ver-

sion of the steady state solution, which is appropriate for most of the experimental

realizations for which the PNP equations seem to be applicable.

Despite q is small, the quality of an expansion with respect to q remains

questionable because the corresponding series converges very slow. On the other

hand, it is known that the charge excess is located very close to the electrodes,

which justifies a consideration of the concentration profile at the left and at the

right parts of the cell separately. At the mid-plane both the left-part and right-

part concentrations should coincide. The same is valid for the electric field. The

electric field is a symmetric function and the concentration of positive ions in

the left part of the cell is symmetric to the one of negative ions in the right

part, C+(x) = C−(−x). Let us consider for example the right half of the cell.

Introducing the distance from the electrode s = L − x as a new variable we find
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3.1 Derivation of the steady state

that according to Eqs. 3.9 and 3.10 the electric field is

E(s) = −2kBT

ze
q̃ k̃ cn(k̃L, q̃) ×

cn(k̃L, q̃)cn(k̃s, q̃) − sn(k̃L, q̃)sn(k̃s, q̃)dn(k̃L, q̃)dn(k̃s, q̃)

dn(k̃L, q̃)dn(k̃s, q̃) + q̃2sn(k̃L, q̃)sn(k̃s, q̃)cn(k̃L, q̃)cn(k̃s, q̃)
.

A similar expression can be derived for the concentration. Up to now the result

is still exact. Further we will omit a prefactor 1 − q̃2 in the expression for the

concentrations because, as it will be shown soon, 1− q̃2 ≃ 1. There are functions

of two different arguments: k̃L and k̃s. Every function of the argument k̃L should

be expressed by a new constant

γ ≡ q cn(k̃L, q̃), (3.15)

where the following identities were used: sn2(a, b) + cn2(a, b) = 1 and dn2(a, b) +

b2sn2(a, b) = 1. For a typical system kL ≫ 1 which makes cn(k̃L, q̃) ≫ 1. There-

fore, the unity in the first identity can be neglected. dn(k̃L, q̃) is of the order

of 1. From the second identity it follows that q ≪ 1. All functions with the

argument k̃s should be expanded with respect to q̃. Note that such an expansion

is not useful for cn(k̃L, q̃) because it gives a series of the powers of q cosh(kL),

but q cosh(kL) is of the order of the unity and, consequently, the series would

converge very slow. On the other hand, it is sufficiently to take into account only

the first term in the expansion of cn(k̃s, q̃) because L ≫ s. Mathematically, the

approximation is applicable as long as q cosh(ks̃) ≪ 1 where s̃ is the minimal

value of s for which the concentration can be considered as a constant. Obvi-

ously, s̃ should not exceed L, otherwise contributions from the left and the right

electrodes can not be separated. Finally we get

C±(s) = λ2
Dk2η

(

1 + γ2 sinh2(ks) ± γ(cosh(ks) − α sinh(ks))

α + γ2 sinh(ks) cosh(ks)

)2

,

E(s) =
2kBT

ze
kγ

cosh(ks) − α sinh(ks)

α + γ2 sinh(ks) cosh(ks)
. (3.16)

These equations correspond to Eqs. 3.9 and 3.10, and parameters k̃ and q̃ were

changed to more convenient for the approximate solution k and γ.
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3.1 Derivation of the steady state

The condition for the applied voltage, see Eqs. 3.11, reads

2

∫ L

0

E(s) · ds = v .

Because L ≫ λD, due to screening E(L) ≈ 0 and the upper limit of the integral

can be shifted to infinity. Performing the integration we get

v =
4kBT

ze
γ

∫ ∞

0

cosh(f) − α sinh(f)

α + γ2 sinh(f) cosh(f)
df (3.17)

=
2kBT

ze(2 − γ2)

{

(1 + α)2 ln

(

1 + γ + α

1 − γ + α

)

+ (1 − α)2 ln

(

1 + γ − α

γ − 1 + α

)}

.

For a convenient representation we introduced the parameter α according to α2 +

γ2 = 1. Inverting Eq. 3.17 with respect to γ one gets

γ =
exp( vze

2kBT
) − 1

exp( vze
2kBT

) + 1
. (3.18)

Note that γ is independent of specific properties of the system and depends only

on the ratio of the electric and thermal energy vze
kBT

. In a similar manner the

condition of total charge conservation can be treated. According to Eqs. 3.11 it

results

2Lη =

∫ L

−L

C+(x)dx = λ2k2η

{
∫ ∞

0

(C+(s) − 1)ds +

∫ ∞

0

(C−(s) − 1)ds + 2L

}

.

The first term on the right hand side represents the particle excess in the right

half of the cell; the second term on the right hand side represents the particle

excess in the left half of the cell. If no voltage is applied, i.e. γ = 0, the particle

distribution is homogeneous and these two terms equal zero. The third term

is the background, namely the concentration at the mid-plane. If v = 0, this

concentration is equal to η. Particle excess represented by two first terms, is

a deviation of the particle concentration from this background. Performing the

integration one gets the expression for the parameter k,

k =

√

1

λ2
D

+
(1 − α)2

α2L2
− (1 − α)

αL
. (3.19)

According to Eqs. 3.16 k defines the concentration far away from the electrode,

C±(s → ∞), which corresponds to the mid-plane concentration C±(x = 0). A
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3.2 Properties of the solution

detailed discussion is presented in the next section. At v = 0 k is equal to the

inverse Debye screening length. When v increases, k decreases and, consequently,

C±(x = 0) decreases as well.

Eqs. 3.16 together with the conditions Eqs. 3.17 and 3.19 provide the approx-

imate solution of the PNP equations applied to the system described in Section

1.2. The applicability of this solution depends on both the applied voltage v

and the initial concentration η. The dependence on η is performed indirectly by

the Debye screening length. The approximate solution is applicable as long as

q cosh(ks̃) ≪ 1. If λ−1
D L ≫ 1 and the applied voltage is not high, this inequality

is guaranteed. At higher v q increases and becomes of the order of 1. s̃ can

be replaced with its maximal reasonable value: L. It turns the estimation of

applicability into kL > R, where exp(−R) ≪ 1. Using Eq. 3.19 this leads to a

restriction for v expressed via α,

α >
2R

λ−2
D L2 − R2 + 2R

. (3.20)

If R = 5, exp(−R) is less than one percent of unity. The inequality λ−1
D L > R

means that contributions from the electrodes can be considered separately. The

estimation Eqs. 3.20 replaces this constraint with kL > R giving an additional

restriction for the applied voltage. With increasing v k decreases and finally can

become rather small making kL < R. Therefore, at very high applied voltages

the approximate solution is not applicable.

3.2 Properties of the solution

In the previous section we found the exact and approximate solutions of the

stationary PNP equations. The approximate solution is applicable for a wide

range of values of the applied voltage v and initial concentration η. Both solutions

are determined by two parameters only: the Debye screening length, λD, and

the size of the system, L. The dependence on the initial concentration can be

scaled off by measuring all concentrations in terms of it, C±(x) → C±(x)
η

. This

follows immediately from Eq. 3.19 and is in agreement with the first equation

of Eqs. 3.11. In a similar manner the dependence on the temperature and the
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3.2 Properties of the solution

valence of the ion can be eliminated. For this purpose, the applied voltage should

be measured in terms of the dimensionless thermal voltage, v → v ze
kBT

, see Eq. 3.9

and Eqs. 3.11. The influence of the applied voltage is expressed by the parameter

γ or, equivalently, α. According to Eq. 3.18, γ increases from 0 to 1 when the

applied voltage goes from 0 to infinity. α changes from 1 to 0, respectively. The

dielectric constant is also present in the PNP equations but does not appear in

the solution explicitly. It has an implicit influence via the Debye screening length.

At small applied voltage the charge profile is exponential as predicted by the

linear theory. According to Eq. 3.19, the increase of applied voltage causes an

increase of the screening length k−1. But also the spatial dependence of the

concentration changes, see Eqs. 3.16, which does not allow the charge excess

to spread into the bulk. The effective screening length decreases, whereas the

concentration gradient increases. The decrease of the screening length is more

pronounced at high applied voltage, since at small applied voltage, namely in

linear regime, the screening length does not change at all and is equal to the Debye

screening length. The enhancement of the concentration gradient is noticeable

already at lower v. This situation is illustrated in Fig. 3.1, where the nonlinear

solution is compared with the one of the linear theory predicting an exponential

decay. The nonlinear solution provides a much steeper gradient. Intuitively this

result can be easily understood by considering the PNP equations, Eqs. 3.2,

∣

∣

∣

∣

∂C±(x)

∂x

∣

∣

∣

∣

∼ E(x)C±(x)
v→0−→ E(x)η . (3.21)

In the linear regime the concentration on the right hand side can be replaced by

the initial one. In the nonlinear regime the concentration is generally significant

higher than η, and therefore the concentration gradient increases compared to

the linear regime.

Beyond the linear regime the whole nonlinear steady state of PNP equations

is equivalent to the Poisson-Boltzmann equation, as it was shown in Section 2.3,

which solution was found by Gouy and is presented in Section 2.1, see Eq. 2.12.

At small and middle applied voltages both solutions coincide perfectly. Gouy

derived his solution for a half-space. To apply it to a finite system one has to find

the solutions for the left and the right electrodes separately. At the mid-plane
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Figure 3.1: Normalized concentration C0 = C+(s)/η in the vicinity of the elec-

trode in the linear regime and according to the nonlinear theory. L = 5 · 10−5 m,

λ = 10−7 m and v = 0.15V . s is a distance from the electrode.

both solutions should coincide. This procedure is based on the same assumptions

that were made to derive the approximate solution. At higher voltages there is

a difference between our approximate solution and the Gouy-Chapman solution,

shown qualitatively in Fig. 3.2. According to Eq. 2.2, C±(s)
s→∞−→ η1, whereas, ac-

cording to Eqs. 3.16, C±(s)
s→∞−→ ηλ2

Dk2 meaning that the concentration changes in

the middle of the cell, far away from the electrode. This change is a consequence

of the charge conservation law and becomes noticeable when the particle concen-

tration becomes small in the vicinity of another electrode. Because Eq. 2.12 was

derived for a semi-infinite case, the concentrations far away from the electrode

remains constant. On the other hand, it is obvious that in finite systems at high

applied voltage the mid-plane concentration should decrease and finally lead to

a complete separation of charged particles. So, Gouy-Chapman theory can not

describe this effect whereas in our theory the mid-plane concentration decreases

1In Chapter 2 a distance form the electrode was denoted by x.

40

Chapter2/Chapter2Figs/EPS/p.eps


3.2 Properties of the solution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

-L 0 L

C0(x)

x

Figure 3.2: Coordinate dependence of the normalized concentration, C0(x) =

C+(x)/η, depicted qualitatively. The Gouy-Chapman solution (dotted line) and

our approximate solution (solid line).

automatically. The solution presented in the previous section is more general than

Eq. 2.12. The large the system is, the better the Gouy-Chapman theory should

work and the higher voltage has to be applied to create a noticeable difference

between the solutions. This voltage can be easily estimated. Let us assume that

the change of the mid-plane concentration is noticeable if C±(x = 0) = ςη, where

for instance ς = 0.98. C±(x = 0) is defined by the parameter k. The related value

of the parameter α and, consequently, the applied voltage follow from Eq. 3.19,

α =
2
√

ς

2
√

ς + (1 + ς)Lκ
.

The higher κL is, the smaller α corresponds the fixed ς. This result shows that

for many experimental systems the conventional Eq. 2.12 can be used instead

of Eq. 3.16. At lower voltage the size of the system is irrelevant and the pro-

files depend on the Debye screening length only. The Gouy-Chapman solution is

very similar to our approximate solution because they both are derived under the
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3.2 Properties of the solution

assumption that influences of the left and right electrodes can be separated. Alto-

gether we are dealing with three different solutions: the Gouy-Chapman solution

and our exact and approximate solutions. The mid-plane concentration according

to our solutions decreases with increasing applied voltage, whereas according to

the Gouy-Chapman solution it remains constant. On the other hand, by intro-

ducing a prefactor into the Gouy-Chapman solution one can match its mid-plane

concentration with the one predicted by our solutions. In this case, as long as

the approximate solution is applicable, all three solutions give the same results.

At very high applied voltage all solutions show different behavior. Though, the

Gouy-Chapman and our approximate solutions predict the same particle concen-

trations calculated at the electrodes, C±(x = ±L). Notice that the prefactor

incorporated into the Couy-Chapman solution is not a part of their theory and

was introduced to fit the mid-plane concentration. Also this prefactor ensures the

fulfillment of the charge conservation law. It can be easily seen by comparison of

the Gouy-Chapman solution with our solutions satisfying the charge conservation

law automatically. In general, the Poisson-Boltzmann equation is a second order

differential equation which solution can have only two arbitrary constants. In

the Gouy-Chapman solution these constants are already fixed, see its derivation

in Chapter 2, and there is no freedom or flexibility for matching the solution to

any boundary conditions or experimental constraints. As it was mentioned in

the introduction, the general solution can be expressed only via Jacobi elliptic

functions. A great advantage of our solution is that it can be easily and naturally

extended and applied to other cases and geometries. And even in the same flat

geometry but not in the case of symmetric electrolyte, i.e. η+ 6= η−, the appli-

cation of the Gouy-Chapman approach is problematic in a sense that the final

expressions for the potential and the concentrations can not be found explicitly,

but only with help of, for example, perturbation theory. Using our solution, the

final expressions can be found as easy as in the case of symmetric electrolyte.

This will be shown in Section 3.3.1.

As one can see from Eqs. 3.12 or Eq. 3.18, the dependence of the electric field

or the potential on the applied voltage becomes weaker for higher voltages. Inde-

pendently of the initial concentration, such a weak dependence is realized when
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3.2 Properties of the solution

approximately 99% of the total charge have been transmitted. In this case a com-

plete separation of the charged particles should be achieved, and consequently the

charge concentration changes slow. This effect can not be described by Eq. 2.12

because C(x = 0) 6= η. For higher voltages a further charge separation takes

place because of a decrease of the mid-plane concentration. Due to the charge

conservation law the charge profile has to change also near the electrodes. When

charge separation is achieved, the mid-plane concentration becomes almost zero

and does not have much influence on the one in the vicinity of the electrode. The

value of the applied voltage, necessary for a complete ion separation, depends

on the initial concentration. The higher the initial concentration is, the higher

voltage should be applied. For low concentrations as 1018m−3, this voltage is

about 1.5V , which is in agreement with the assumption made and experimen-

tally verified in (42). For higher initial concentration another restriction of the

PNP should appear. The effective screening length decreases when the initial

concentration increases. If the effective screening length is of the order of the ion

size, this continuum theory should fail. For a rough estimation let us suppose

that the PNP equations are valid as long as the screening length is higher than

the atomic length 10−10m. The initial concentration η = 1024m−3 is related to the

applied voltage v = 0.7V which is far from the value where complete charge sep-

aration is attained. For κ = 107m−1 and L = 5 · 10−5m−1 we get v = 1.1V . From

here we conclude that PNP equations are inapplicable to explain experiments at

very high voltages and high concentrations as observed in (22). In that regime

the PNP should be either modified or supplemented by a completely different

approach. It is obvious that at a very short atomic scale mean-field like models

based on classical laws are inappropriate. It is interesting to note that for high-

concentrated systems this short distance limit is achieved approximately at the

same applied voltage as the close-package limit is achieved. The corresponding

concentration is of the order 1028m−3. For such a high concentration Fick’s law is

not be valid. It should be modified in such a manner to make the concentration

gradients lower. Consequently, the effective screening length increases, so that a

classical theory could be reliable.
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3.3 Generalizations of the solution

3.3 Generalizations of the solution

In previous sections exact and approximate solutions of the stationary PNP equa-

tions were found in 1-D case for two types of ions. Consequently, there are at

least two possible generalizations: a multidimensional case, especially 3-D, and

the presence of more than two species. We are interested in the general solu-

tion which can be applied to a wide range of systems. Obviously, it will contain

unknown constants which should be found for every particular experimental re-

alization. In some cases this procedure can be tricky and difficult to perform

analytically. Our aim is to provide analytical expressions for the electric fiend

and particle concentrations. So far, many systems can be described only numeri-

cally and the main progress is related to a development of various computational

schemes, see (10; 11) and citations there. Our results are directed to fill the lack

of analytical results. Having the analytical expression one can find the unknown

constants numerically if it is not possible to do analytically, employing much less

of computational efforts. Building up an approximate solution is possible as well.

3.3.1 Multispecies case

Let us consider a one-dimensional flat system with i species which have the same

charge zie which can be though positive or negative, |zi| ≡ z. The electrolyte is

not necessary symmetric, that is ηi 6= ηk. The steady state of corresponding PNP

equations reads

C ′
i(x) − zie

kBT
Ci(x)E(x) = 0 ,

ǫE ′(x) = e
∑

i

Ci(x)zi . (3.22)

To solve them the similar procedure is used. Summing the transport equations

over i gives

C ′(x) − e

kBT
E(x)

∑

i

Ci(x)zi = 0 , (3.23)

where C(x) =
∑

i Ci(x). This equation is equivalent to Eq. 3.4. Multiplying the

transport equations with zi and then summing over i we get

ǫE ′′(x) +
z2e2

kBT
C(x)E(x) = 0 , (3.24)
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3.3 Generalizations of the solution

which is equivalent to Eq. 3.3. The electric field obeys the same equation, Eq. 3.5,

and the concentrations can be found from

∂ ln Ci(x)

∂x
=

zie

kBT
E(x) , (3.25)

which is equivalent to Eq. 3.6. Consequently, the solution of Eqs. 3.22 reads

E(x) = −2kBT

ze
q̃ k̃ sn(k̃x + x0, q̃) , (3.26)

Ci(x) = −Aik̃
2
[

dn(k̃x + x0, q̃) +
zi

z
q̃ cn(k̃x + x0, q̃)

]2

. (3.27)

The Poisson equation gives restrictions for Ai,

∑

i

Aizi = 0 , (3.28)

and
∑

i

Ai =
ǫkBT

z2e2
. (3.29)

If N is a number of present species, then there are N + 3 constants: Ai, k̃, q̃, x0.

There are also N + 3 conditions: Eqs. 3.28 and 3.29 from Poisson’s equation, the

boundary condition for the potential,
∫ L

−L

E(x)dx = v , (3.30)

and i conservation laws,
∫ L

−L

Ci(x)dx = 2ηiL . (3.31)

If all initial concentrations are equal, ηi = η, constants Ai can be evaluated,

Ai =
ǫkBT

2N±z2e2
, (3.32)

where N± is a total number of species having the same charge, positive or negative,

as the considered one.

Eqs. 3.26 and 3.27 show that the generalization on the multispecies case leads

to a redefinition of the constants but does not change an analytical dependence.

This result is valid in general multidimensional case. Therefore, the generalization

on the n-D case will be done in a simple flat geometry, for the sake of transparency

of the explanation.
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3.3.2 n-dimensional Boltzmann equation

As it was proven in Section 2.3, the stationary PNP equations are equivalent to

the Poisson-Boltzmann equation. In titles of some of the papers cited above, only

the Boltzmann equation is mentioned. Therefore we decided to do the same with

the title of this section. We will consider the general n-D case, though in the

literature the main attention is given to systems with 2-D geometry, namely to

conical pores. For a typical example see (6).

The generalization procedure is simple and dictated by the natural reasons.

In 1-D problem all quantities can only be scalars. In n-D case the concentration

remains a scalar, but the electric field should become a vector. A coordinate

x is replaced by a vector ~r. Arguments of all Jacobi functions representing the

solution, i.e. kx + x0 and q, should be scalars. That means q and x0 are scalars

and k is a vector. ~k · ~r is a scalar product. According to this, the generalization

reads
~E(~r) = −2kBT

ze
q ~k sn(~k · ~r + x0, q) , (3.33)

C±(~r) = λ2
Dη ~k2

[

dn(~k · ~r + x0, q) ± q cn(~k · ~r + x0, q)
]2

. (3.34)

The concentrations C±(~r) are scalars, and the electric field becomes a vector ~E(~r)

automatically. Eqs. 3.33 and 3.34 show that the generalization on the multidi-

mensional case leads to a replacement of the scalar k by a vector ~k but does not

change an analytical dependence.

46



Chapter 4

Solution of the PNP in the linear

regime

4.1 Treatment of the conventional problem

4.1.1 General properties of the linear regime

Whereas the previous chapter is devoted to the steady state solution of the

Poisson-Nernst-Planck equations, the present one is focused on the dynamical

problem. The global aim is the analysis of the full nonlinear equations, but to

start with, the linearized version of the PNP is considered. Even in the linear

regime there exists no analytical dynamical solution which does not have any

internal logical contradictions as it was discussed in the introduction. An ana-

lytical solution in the linear regime can be used as a starting point to treat the

nonlinear problem. It also offers some insight into the general understanding of

the spatiotemporal behavior and common properties of charge migration. For

many systems the linear regime approximation gives reasonable predictions. Es-

pecially it concerns biological systems where a high voltage is not applicable. In

polymer electrolytes low voltage experiments allow to avoid totally or at least to

minimize chemical reactions at the electrode surface, which are difficult to take

into account.

As long as we consider the linear regime, the meaning of this term should be

clarified. There are two different interpretation of the linear regime which should
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4.1 Treatment of the conventional problem

not be confused one with another. On the one hand, the PNP equations are

based on Fick’s law of diffusion which is valid only in the linear regime, i.e. in the

approximation of a linear gradient of the concentration. On the other hand, the

PNP equations are nonlinear and, as any nonlinear equation, can be linearized

and considered also in so called linear regime. These both interpretations of

linear regime have different borders of applicability and describe different physical

situations.

To be more specific let us consider the linearization procedure. Convention-

ally, the concentration is divided into two parts: a constant, namely the initial

concentration, and a deviation from this constant, i.e. C±(x, t) = η+δ±(x, t). The

linear regime is characterized by the assumption δ±(x, t) ≪ η which should be

valid for each coordinate x at every time t. Inserting this into the PNP equations,

Eqs. 2.37, we get

δ̇±(x, t) = D
(

δ′±(x, t) ± ze

kT
[η + δ±(x, t)] φ′(x, t)

)′
,

−ǫφ′′(x, t) = ze (δ+(x, t) − δ−(x, t)) . (4.1)

Neglecting δ±(x, t) with respect to η one gives

δ̇(x, t) = D
(

δ′′(x, t) ± ze

kT
ηφ′′(x, t)

)

,

−ǫφ′′(x, t) = ze (δ+(x, t) − δ−(x, t)) . (4.2)

This set of equations represents the PNP equations in the linear regime. The

equations are similar to those of the nonlinear problem, however in the second

term on the right-hand side of transport equations the concentration C±(x, t) is

replaced by the initial concentration η. This approximation allows a decoupling

of the transport equations from each other by introducing the charge density

ρ(x, t),

ρ(x, t) ≡ ze (C+(x, t) − C−(x, t)) . (4.3)

Equivalently it can be written as

ρ(x, t) = ze (δ+(x, t) − δ−(x, t)) . (4.4)

Subtracting the transport equations in Eqs. 4.2 from each other we get

ρ̇(x, t) = D
(

ρ′′(x, t) − κ2ρ(x, t)
)

, (4.5)
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4.1 Treatment of the conventional problem

where the inverse Debye screening length κ, see Eq. 2.14, appears automatically.

The last equation is called Debye-Falkenhagen equation and was derived in (39).

In comparison with the full PNP equations the linearized version offers a drastic

simplification: instead of a set of three coupled equations the problem is reduced

to a single equation. Simultaneously it also reveals one of the most difficult

points of the PNP approach. On the first sight, the linearized problem should

be solvable. Indeed, the Debye-Falkenhagen equation is found in many different

fields of physics and several solutions are known, for example

ρ(x, t) =
1√
Dt

exp

(

− x2

4Dt
− κ2t

)

,

or

ρ(x, t) =
x

(Dt)
3

2

exp

(

− x2

4Dt
− κ2t

)

.

However, all these solutions do not satisfy the boundary conditions and symme-

try properties imposed on the model. As it was pointed out in Section 2.2, the

standard treatment using Laplace transformation runs into the same problem. In

order to find an appropriate solution of the Debye-Falkenhagen equation compat-

ible with the specific boundary conditions, let us first consider general properties

of Eq. 4.5.

The subtraction of the full nonlinear transport equations from each other leads

to

ρ̇(x, t) = D

(

ρ′′(x, t) − z2e2

ǫkBT
(C+(x, t) + C−(x, t))ρ(x, t)

)

. (4.6)

A comparison of this equation with the linearized version, Eq. 4.5, shows that

the total concentration of particles is conserved in the linear regime,

C+(x, t) + C−(x, t) = 2η . (4.7)

Using the definition of the charge density, Eq. 4.3, one can express the concen-

trations C±(x, t) via ρ(x, t),

C±(x, t) = η ± ρ(x, t)

2ze
. (4.8)

Let us now consider the symmetry of the concentration fields. A parity

transformation of the PNP equations, Eqs. 4.2, reveals the identity C+(−x, t) =
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4.1 Treatment of the conventional problem

C−(x, t). This symmetry has a deep physical background and follows from the

symmetric behavior of positive and negative particles in an electric field because

a change of x to −x leads to a change of the sign ± to ∓ in the transport equa-

tions. Thus, a parity transformation is equivalent to a change of the particle

charge from positive to negative and vice versa. Consequently, the charge density

becomes antisymmetric,

ρ(x, t) = ze(C+(x, t) − C−(x, t)) = ze(C+(x, t) − C+(−x, t)) ,

ρ(−x, t) = ze(C+(−x, t) − C−(−x, t)) = ze(C+(−x, t) − C+(x, t)) . (4.9)

These symmetry properties are valid in the full nonlinear model. The linear

regime imposes one additional symmetry on the particle concentrations. Ac-

cording to Eqs. 4.8, deviations of the particle concentrations from a constant

are antisymmetric, C±(x, t) − η = C±(−x, t) + η. This condition claims that

the concentration at the midplane is constant, C±(x = 0, t) = η. To illustrate

qualitatively the difference between linear and nonlinear regimes let us consider

Fig. 4.1. The charge concentration C+(x, t) is shown at an arbitrary but fixed

moment of time. The dashed curve representing the behavior within the linear

regime is symmetric and at the point x = 0 the concentration coincides with the

initial concentration η. The bold curve representing the nonlinear regime is not

symmetric and the midplane concentration is smaller than η. In the first case

the charge conservation law is fulfilled automatically. In the second case the mid-

plane shift plays a roll and is related to the asymmetry of the curve due to the

particle conservation law. It would be misleading to argue that the linear regime

approximation is applicable when the midplane shift is zero or small. Strictly

speaking, as it will be shown later, the shift is never zero, and hence it is difficult

to define what exactly the word small means. To make the situation clear let us

fix the midplane shift and consider the concentration curve which can be divided

into three segments: an initial slope, then a constant part, and finally again a

slope. Only the first segment has a particle excess with respect to the initial con-

centration. The particle concentration on two other segments is smaller than η.

This deficiency in particles is compensated by the particle excess on the first part

of the curve. If the size of the system changes, for example increases, the size of

the second part increases as well and makes the corresponding charge deficiency
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4.1 Treatment of the conventional problem

larger. Obviously, such a situation can not be observed in the linear regime. Due

to the charge conservation law the missing particles should appear in the vicinity

of the electrode, namely on the first segment of the curve, and, consequently, in-

crease the asymmetry of the charge profile. Therefore, the nonlinearity depends

not only on the midplane shift but also on the size of the system. This fact offers a

better criterion for the applicability of the linear regime. As long as a symmetric

profile fulfills the conservation law, the linear regime approximation is valid. In

other words, the linear regime approximation is violated when the charge profile

loses the symmetry.

 0.5

 1

 1.5

 2

 2.5

-L 0 L

C0

x

nonlinear regime
linear regime

Figure 4.1: The difference between linear and nonlinear regimes, depicted qual-

itatively for the normalized concentration, C0(x, t) = C+(x, t)/η, at the fixed

time.

Now we are able to formulate the criterion of the validity of the linear approx-

imation in more mathematical terms. Simultaneously, we will demonstrate that

the conservation law of the total particle concentration, C+(x, t) + C−(x, t) =

constant, can be never fulfilled at every particular point in the frame of the

PNP equations, and consequently a shift of the midplane concentration is never
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4.1 Treatment of the conventional problem

equal to zero. The charge conservation law is valid only for the whole system,
∫ L

−L
(C+(x, t) + C−(x, t))dx = constant.

The linear approximation becomes inapplicable due to increasing deviations

of particle concentrations from η. Consequently, this is sufficient to consider the

maximal possible deviation which is realized in the steady state, see Eqs. 3.2,

∂Cst
+

∂x
+

ze

kT

∂φ

∂x
Cst

+ = 0 ,

∂Cst
−

∂x
− ze

kT

∂φ

∂x
Cst

− = 0 . (4.10)

These equation can be written as

∂ ln(Cst
+ )

∂x
= − ze

kT

∂φ

∂x
,

∂ ln(Cst
− )

∂x
= +

ze

kT

∂φ

∂x
. (4.11)

Summing up these equations and integrating them one gets

Cst
+ (x) Cst

− (x) = constant .

This is an exact result which is valid in the nonlinear regime. Let us write the

concentrations as C±(x, t) = η ± δ̃±(x, t), where δ̃±(x) are deviations from the

constant. A similar representation of C±(x, t) was introduces in the discussion of

the linearization procedure. Now the sign ± is used to guarantee that both δ̃±(x)

have the same sign at every point, i.e. δ̃+(x)

δ̃−(x)
≥ 0. Hence, the concentration in the

steady state obeys

Cst
+ (x) Cst

− (x) = η2 + η
[

δ̃st
+(x) − δ̃st

−(x)
]

− δ̃st
+(x) δ̃st

−(x) . (4.12)

Because Cst
+ (x) Cst

− (x) = 2η, it follows

η
[

δ̃st
+(x) − δ̃st

− (x)
]

− δ̃st
+(x) δ̃st

−(x) = 0 . (4.13)

In the linear regime according to Eq. 4.7

2η = Cst
+ (x) + Cst

− (x) = 2η +
[

δ̃st
+ (x) − δ̃st

−(x)
]

, (4.14)

and, consequently,

δ̃st
+(x) − δ̃st

−(x) = 0 . (4.15)
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The comparison of this result with Eq. 4.13 shows that either one can neglect the

quadratic correction δ̃+(x) δ̃−(x), which is the conventional criterion of the linear

regime, or the equality C+(x, t) + C−(x, t) = 2η is not valid.

In this context one should mention the restrictions imposed by the applica-

bility of Fick’s law. The PNP equations, likewise the diffusion equation, are

based on the assumption of small concentration gradients, i.e. the particle flux

is expanded with respect to ∇C and only the linear gradient term is kept. This

assumption leads to the well established diffusion equation. On the other hand,

smaller gradients mean smaller deviations from the homogenous state which is

similar to the linear regime of the PNP. But the linear regimes of the PNP equa-

tions and the use of Fick’s law are different problems. Usually the validity of

Fick’s law is assumed for the full nonlinear problem. As it was discussed at the

end of Chapter 3, at very high applied voltages Fick’s law have to break down,

but this happens already beyond the linear regime.

Before proceeding with the solution of the linearized PNP equations one fi-

nal remark should be made. In the introduction it was mentioned that in the

linear regime the treatment of polymer electrolytes is very similar to that of

polyelectrolytes. To demonstrate this analogy let us adopt the PNP equations

for polyelectrolites. According to a description given in Section 1.2, one species,

say C+(x, t), remains mobile. Another species is fixed in space, i.e. the relation

C−(x, t) = η is valid at each time. The linearized PNP equations, Eqs. 4.2, turn

into a set of two equations: the transport equation for C+(x, t) and the Poisson

equation,

Ċ+(x, t) = D

(

C ′
+(x, t) +

ze

kBT
ηφ′(x, t)

)′

,

−ǫφ′′(x, t) = ze (C+(x, t) − η) . (4.16)

Combining both equations together and introducing the charge density, ρ(x, t) =

ze (C+(x, t) − η), we find

Ċ+(x, t) = D

(

C ′′
+(x, t) − ze

ǫkBT
ηρ(x, t)

)

. (4.17)

Expressing C+(x, t) via ρ(x, t) we get the Debye-Falkenhagen equation,

ρ̇(x, t) = D

(

ρ′′(x, t) − z2e2

kBT
ηρ(x, t)

)

, (4.18)
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with the new, redefined screening length λp
D,

λp
D =

√
2λD . (4.19)

Eq. 4.19 shows that screening lengths for polymer electrolytes and polyelectrolytes

are proportional to each other. This redefinition of the screening length is the only

one difference between the treatments of polymer electrolytes and polyelectrolytes

in the linear regime.

4.1.2 Derivation of the solution

Having discussed the main properties of the linear regime let us return to the

solution of the linearized PNP equations. The charge density ρ(x, t) is of interest.

The particle concentrations and electric field can be found from Eqs. 4.8 and the

Poisson equation, respectively.

The charge density is governed by the Debye-Falkenhagen equation, Eq. 4.5.

This equation should be supplemented with boundary conditions which are im-

posed naturally by the experimental realization,

φ(x = −L, t) − φ(x = L, t) = v(t) . (4.20)

This condition reflects that the potential difference between electrodes is always

equal to the applied voltage. This poses a problem because the basic equation is

formulated for ρ(x, t), while but boundary conditions are formulated for another

function, namely for φ(x, t). To relate one function to another one can reformulate

the boundary conditions in a form of a constraint,

∫ L

−L

E(x, t) = v(t) . (4.21)

In this section only the case of a constant applied voltage will be considered, i.e.

v(t) = v. The integration of the Poisson equation gives

ǫE(x, t) =

∫

ρ(x, t) + f(t) , (4.22)

where f(t) is an arbitrary function of time. In this case the boundary conditions

can be fulfilled for every ρ(x, t) by an appropriate choice of the function f(t).
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Naturally, the charge density ρ(x, t) should still satisfy the symmetry properties

of the problem discussed in the previous section. Therefore, first we find the

solution to the problem with arbitrary boundary conditions but with appropriate

symmetry properties and then we choose the function f(t) in such a manner that

the boundary conditions are fulfilled.

There are a number of conventional methods to treat such a problem. Since

the Debye-Falkenhagen equation is linear, the use of Laplace transformation is

suggested. However, as pointed out in Section 2.2, it would be difficult to perform

the inverse transformation. So, let us follow another way and make a start from

the steady state solution, Eq. 3.9,

Est(x) = −2kBT

ze
q̃ k̃ cd(k̃x, q̃) . (4.23)

In the linear regime the solution can be simplified to

Est(x) =
2kBT

ze
q k cosh(kx) . (4.24)

The boundary conditions, Eq. 4.21, yield

q =
vze

4kBT

1

sinh(kL)
. (4.25)

Here q is a dimensionless parameter proportional to the dimensionless thermal

voltage vze
kBT

. From the Poisson equation it follows

ρst(x) =
2ǫkBT

ze
q k2 sinh(kx) . (4.26)

This expression can be derived in a different way without referring to the results

of Chapter 3. The steady state of Eq. 4.5 reads ρst′′(x) = κ2ρst(x). Its general

antisymmetric solution is ρst(x) = A sinh(κx), where A is an integration constant.

The first way of derivation, namely by using Eq. 4.26, stresses the consistency of

approaches and reveals a value of A. The second way shows that in the linear

regime k = κ. In Chapter 3 this equality was proved for zero applied voltage.

The steady state solution in the linear regime presented by Eq. 4.26 has two

constants: k and q, which should fulfill two conditions, namely the charge con-

servation law and the fact that the potential difference between the electrodes
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equals the applied voltage, Eq. 4.20. In the linear regime k = κ, where κ is a

property of the system and can not be changed, i.e. k is fixed. According to

the exact steady state solution the parameter k defines the midplane concentra-

tion. Since k is constant, the midplane concentration is constant as well, and,

consequently, the midplane shift, discussed in the previous section, is zero. This

also guarantees automatically the fulfillment of the charge conservation law. The

parameter q represents the influence of the applied voltage. To relate the steady

state solution to the dynamical problem we suggest a replacement of q by q h(x, t),

where h(x, t) is an unknown function of coordinate x and time t and fulfills the

constraints

h(x, t = 0) = 0 and h(x, t → ∞) = 1 . (4.27)

The first constraint follows immediately from the initial condition where the volt-

age is not applied yet and ρ(x, t = 0) = 0. The second one ensures that all

parameters reach their steady state values at t → ∞.

The charge density ρ(x, t) changes into

ρ(x, t) =
2ǫkT

ze
q κ2h(x, t) sinh(κx) . (4.28)

Inserting this result into Eq. 4.5 we find an equation for the unknown function

h(x, t),

sinh(κx)
∂h(x, t)

∂t
= D

(

sinh(κx)
∂2h(x, t)

∂x2
+ 2κ cosh(κx)

∂h(x, t)

∂x

)

. (4.29)

The last equation can be simplified by introducing a new function p(x, t) according

to

h(x, t) ≡ 1 − exp(−γt)p(x, t) . (4.30)

Eqs. 4.27 define the constraints for the function p(x, t): 1 = p(x, 0) ≥ p(x, t) ≥
p(x,∞). In terms of p(x, t) Eq. 4.29 reads

∂

∂t
(p(x, t) sinh(κx)) = D

∂2

∂x2
(p(x, t) sinh(κx)) , (4.31)

which defines γ = Dκ2. The last equation is nothing else but the conventional

diffusion equation for g(x, t) = sinh(κx)p(x, t),

ġ(x, t) = D g′′(x, t) , (4.32)
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4.1 Treatment of the conventional problem

with the initial condition g(x, t = 0) = sinh(κx). To solve this equation one can

use Green’s function approach. Because the boundary conditions are arbitrary,

one can use a conventional Green’s function for the diffusion equation,

G(x, ξ, t) =
1

2
√

πDt
exp

[

−(x − ξ)2

4Dt

]

. (4.33)

The solution of Eq. 4.32 reads

g(x, t) =

∫ L

−L

g(ξ, 0)G(x, ξ, t)dξ =

∫ L

−L

sinh(κξ)

2
√

πDt
exp

[

−(x − ξ)2

4Dt

]

dξ . (4.34)

Performing the integration and coming back to the charge density we find

ρ(x, t) = 2ǫkBT
ze

q κ2
(

sinh(κx) − 1
4
eκx
{

erf(−x+L−2κDt
2
√

Dt
) + erf(x+L+2κDt

2
√

Dt
)
}

+ 1
4
e−κx

{

erf(−x+L+2κDt
2
√

Dt
) + erf(x+L−2κDt

2
√

Dt
)
})

, (4.35)

where erf(x) is the error function. According to Eqs. 4.8 the particle concentra-

tions are

C±(x, t)

η
= 1 ± 2q

(

sinh(κx) − 1
4
eκx
{

erf(−x+L−2κDt
2
√

Dt
) + erf(x+L+2κDt

2
√

Dt
)
}

+ 1
4
e−κx

{

erf(−x+L+2κDt
2
√

Dt
) + erf(x+L−2κDt

2
√

Dt
)
})

. (4.36)

The expression tends to its steady state value

C±(x, t) = η(1 ± 2q sinh(κx)) ,

which coincide with the linearized version of the steady state obtained in Chapter

3, see Eq. 3.10. Integration of the Poisson equation reveals the electric field.

Because ρ(x, t) includes only the exponent and the error function, the integration

is easy to perform analytically. It results

E(x, t) = v
2

κ
sinh(κL)

[

cosh(κx) − 1
4
eκx
{

erf(−x+L−2κDt
2
√

Dt
) + erf(x+L+2κDt

2
√

Dt
)
}

−1
4
e−κx

{

erf(−x+L+2κDt
2
√

Dt
) + erf(x+L−2κDt

2
√

Dt
)
}

−e−κ
2

Dt

2
cosh(κL)

(

erf( x−L
2
√

Dt
) − erf( x+L

2
√

Dt
)
)

+ f(t)

]

. (4.37)
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Here the arbitrary function f(t) is added in order to satisfy the constraint Eq. 4.21.

The corresponding integration is very similar to the previous one.

∫ L

−L

E(x, t)dx =
ρ(x, t)

ǫκ2

∣

∣

∣

∣

L

−L

+ v
cosh(κL)

sinh(κL)

√
Dt√
π

e−κ2Dte−
L

2

Dt + 2Lf(t) . (4.38)

The function f(t) depends on ρ(x = L, t). This shows that despite the charge

density were found without taking into account the boundary conditions and

using the conventional Green’s function, in the finale result they are related.

The second term on the right hand site of Eq. 4.38 is very small due to the

facter
√

Dt exp(−L2

Dt
) and can be omitted. The first term reveals the expression for

f(t). To avoid lengthy formulas, the expression is presented under the assumption

exp(−κL) ≪ 1. This leads to

f(t) = − v

8L
erf(κ

√
Dt) . (4.39)

Eqs. 4.36 - 4.39 represent the complete solution of the linearized PNP equa-

tions.

Similar to Chapter 3 one can find an approximate but more transparent so-

lution which is valid for not too thin systems, Lκ > 5, which is often realized

experimentally. This constraint means that particles situated close to one of the

electrodes feel no influence from the other electrode. Because both the charge

concentrations and the electric field are expressed via the charge density, it is nec-

essary to find an approximate solution only for ρ(x, t). Let us consider Eq. 4.35.

The second term on the right hand side gives the main contribution in the vicinity

of the right electrode located at x = L due to the exponential prefactor, whereas

the third term contributes mainly close to the left electrode located at x = −L.

Let us consider the second term in more details,

1

4
eκx

{

erf(
−x + L − 2κDt

2
√

Dt
) + erf(

x + L + 2κDt

2
√

Dt
)

}

. (4.40)

Due to the properties of the error function, the expression in brackets changes in

the interval [−2, +2]. If x ≈ L, the second term in Eq. 4.40 is nearly unity at

every time. At the initial moment the argument of the error function is infinite,
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4.1 Treatment of the conventional problem

then it decreases and then it goes again to infinity. Setting its time derivative to

zero one can find its minimal value, AM ,

AM =
√

κL , (4.41)

which is achieved at the time t = L
κD

. erf(AM ) is close to unity if κL > 5,

erf(
√

5) ∼= 0.9984. Therefore the second term in Eq. 4.40 can be replaced with

unity at each time. Applying the same procedure to the other terms of Eq. 4.35

one can simplify it to

ρ(x, t) = ǫkBT
2ze

q κ2

(

eκx
{

1 − erf(−x+L−2κDt
2
√

Dt
)
}

− e−κx
{

1 − erf(x+L−2κDt
2
√

Dt
)
}

)

. (4.42)

The error function is not an elementary function, and it would be desirable

to simplify Eq. 4.42 further. However, an expansion in a series is not appropriate

because the argument of the error function depends not only on coordinate but

also on time and satisfies

−∞ <
L ∓ (x + 2κDt)√

4Dt
< +∞ .

Consequently, it is impossible to choose an appropriate expansion. At every

arbitrary but fixed spatial point at different times the argument of the error

function is different. It could be small or large as well. And at some moments it

can be moderate, which makes the expansion problematic.

4.1.3 Behavior of the solution

In the previous section the electric field and the particle concentrations were

obtained in the frame of the linearized PNP equations. Temporal and spatial

parts of the solution can not be separated from each other. A dependence on

the applied voltage is represented by the parameter q defined in Eq. 4.25. This

parameter appears in all expressions only as a prefactor. Because the Debye-

Falkenhagen equation is linear, it can be divided by q, which would erase the

dependence on the applied voltage. This means that ρ(x, t) and E(x, t) can be
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scaled. To do so, the electric field should be represented in terms of its initial

value, E → E(x,t)
E0

, where E0 = v
2L

. According to Eq. 4.36 the initial concentration

appears explicitly also as a prefactor, which suggests to measure a concentration

in terms of η, C±(x, t) → C±(x,t)
η

. In these reduced units the concentrations

and the electric field are independent of both the applied voltage v and the

initial concentration η. The initial concentration appears implicitly via the Debye

screening length λD which governs the evolution of the system. In Chapter 3 we

found that the steady state is characterized by two parameters only: L and λD. In

the dynamical case there are the same parameters supplemented by another one

which is responsible for dynamical properties. Obviously, the diffusion coefficient

must have an influence on the dynamics but its influence can also be scaled off.

The diffusivity D occurs only in a combination with the time as a product Dt.

Changing the diffusion coefficient from D1 to D2 means stretching of the time

scale by D2

D1
.

To illustrate the spatiotemporal dependence of the solution let us consider

the system with κL > 5. This eliminate the dependence on L if the coordinate

is defined as a distance from the nearest electrode. The similar procedure was

used in Chapter 3 concerning the applicability of the approximate solution. The

charge profile C+(x, t) is shown in Fig. 4.2. Directly after applying the voltage,

the concentration jumps up in a very narrow layer close to the electrode. Next,

the curve swells and the particle excess spreads into the bulk forming the diffuse

layer. At a finite time the coordinate dependence is not exponential and tends

to the exponential decay when time goes to infinity.

One can introduce a characteristic time τ as the time which is necessarily to

bring the system into the steady state. Due to its physical origin τ can be called

the charging time. To estimate τ let us consider the second term in Eq. 4.35. A

similar treatment of another term gives the same result. Because

lim
t→∞

eκx

{

erf(
−x + L − 2κDt

2
√

Dt
) + erf(

x + L + 2κDt

2
√

Dt
)

}

= 0 ,

and erf(3) ≈ 1, one finds for x = −L,

τ =

(

3

κ

)2
1

D
=

9λ2
D

D
. (4.43)
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Figure 4.2: Normalized concentration C0 = C+(s, t)/η near the electrode. κ =

1 · 107 m. s is the distance from the electrode.

The prefactor 32 can be slightly varied because it represents the accuracy of the

estimation. The quantity τ is the time scale for a diffusion across the Debye

screening length λD.

Obviously, τ should depend on the parameters of the system. Relying on the

dimension analysis, one can introduce three time scales: L2

D
, LλD

D
, and

λ2
D

D
. The

first and the third time scales consist of only one size-parameter. The second time

scale contains both size-parameters which makes it more reliable. In Section 2.2

exactly this time scale was obtained, see Eq. 2.46. Experimental results together

with numerical simulations, see for example (40), predict the same time scale as

well. Meanwhile, the solution presented above suggests the third time scale. This

fact poses a big problem of the applicability of the solution and also of the whole

PNP approach, which will be resolved in the next section.
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4.2 Reformulation of the PNP

4.2.1 General idea

Despite the mathematical treatment is correct, the solution to the PNP equa-

tions presented above provides the charging time different form the experimental

predictions. On the other hand, the PNP are based on very general assumptions

and it is highly unlikely that they are not able to describe experimental results

correctly. A possible explanation is that there is some additional constraint or

condition which was overlooked. The system is locked between two electrodes.

Because Faradaic processes are neglected, particles can not move through the

electrodes, which offers the missing constraint. The particle fluxes should tend to

zero at the electrodes, F±(x = ±L, t) = 0. This makes the problem much more

complicated not only due to an additional condition to take into account but also

because the problem involves a number of different functions. The fundamental

equation is formulated for the charge density ρ(x, t),

ρ̇(x, t) = D
(

ρ′′(x, t) − κ2ρ(x, t)
)

. (4.44)

The boundary conditions are formulated for another function, namely for the

potential φ(x, t),

φ(x = −L, t) − φ(x = L, t) = v(t) . (4.45)

The additional constraint is imposed on the third function: the particle fluxes

F±(x, t), and can not be fulfilled by the solution presented in the previous section,

F±(x = ±L, t) = 0 . (4.46)

So we have to deal with three different functions, which complicates the prob-

lem drastically. Both F±(x, t) and φ(x, t) are related to ρ(x, t) in a nontrivial

manner involving integration which would give an integro-differential equation as

a constraint. Obviously, it is very desirable to avoid this. The possible way is

to incorporate the constraint for the flux, Eq. 4.46, into the initial problem. In

other words, we are going to reformulate the governing equation in such a manner

that Eq. 4.46 is satisfied automatically. For this purpose one has to reformulate

Eq. 4.44.
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Let us consider the flux F±(x, t),

F±(x, t) = −DC ′
±(x, t) ∓ µzeηφ′(x, t) . (4.47)

Using Eq. 4.3 one can express C±(x, t) via ρ(x, t),

F±(x, t) = D

(

∓ 1

2ze
ρ′(x, t) ± ze

kBT
ηE(x, t)

)

. (4.48)

According to the Poisson equation E(x, t) and ρ(x, t) are related, see Eq. 4.22.

Introducing for simplicity of notation a new function y(x, t), y(x, t) =
∫

ρ(x, t)dx,

Eq. 4.22 reads

ǫE(x, t) = y(x, t) + f(t) . (4.49)

According to the definition the function y(x, t) is symmetric, y(x, t) = y(−x, t),

and satisfies the Debye-Falkenhagen equation,

ẏ(x, t) = D(y′′(x, t) − κ2y(x, t)) . (4.50)

Inserting y(x, t) from Eq. 4.49 into Eq. 4.48 we get

F±(x, t) = ∓ D

2ze
y′′(x, t) ± Dze

ǫkBT
η [y(x, t) + f(t)] , (4.51)

or using Eq. 4.50 it results

F±(x, t) = ∓ D

2ze

(

ẏ(x, t) − κ2f(t)
)

. (4.52)

In the previous section the function f(t) was considered as an arbitrary one,

see the discussion after Eq. 4.22. Now this function is fixed by the claim F±(x =

±L, t) = 0, which leads to

f(t) =
ẏ(x = ±L, t)

κ2
. (4.53)

Hence the problem reads

ẏ(x, t) = D(y′′(x, t) − κ2y(x, t)) , (4.54)

where the charge density and the electric field can be found according to

ρ(x, t) = y′(x, t) , (4.55)
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ǫE(x, t) = y(x, t) + κ−2ẏ(x = ±L, t) . (4.56)

From the last equation the boundary conditions are

∫ L

−L

y(x, t)dx + 2Lκ−2ẏ(x = ±L, t) =
v(t)

ǫ
. (4.57)

Now the constraint Eq. 4.46 is fulfilled automatically. Eq. 4.57 is still quite com-

plicated, and the problem can not be considered as much simplified. Therefore,

let us reformulate the problem in terms of the electric field. Inserting y(x, t) from

Eq. 4.56 into Eq. 4.50 we get

ǫĖ(x, t) − κ−2ÿ(x = ±L, t) = D(ǫE ′′(x, t) − ǫκ2E(x, t) + ẏ(x = ±L, t)) . (4.58)

Hereafter, for the sake of simplicity of notation the time will be redefined, t →
t
D

. Consequently, the time derivative changes its dimension, and the inverse

redefinition of the time in the final results, where the time derivatives were already

evaluated, could be not obvious. Therefore, in the finale results the diffusion

coefficient will be shown explicitly.

According to Eq. 4.56 Eq. 4.58 turns into

Ė(x, t) = E ′′(x, t) − κ2E(x, t) + Ė(x = ±L, t) , (4.59)

which is the governing equation of the reformulated problem. For x = ±L it

yields

E ′′(x = ±L, t) = κ2E(x = ±L, t) . (4.60)

Because E(x, t) is a symmetric function, one can consider the electric field only

at one point, for instance x = −L. Eq. 4.60 is valid at every time and can be

solved by a separation of variables, which leads to

E(x = −L, t) = Ẽ(t) exp(−κ(x + L)) . (4.61)

The notation used in the last two equations might be confusing because E(x =

±L, t) is not actually a function of coordinate. It should be understood in a sense

that the function is considered in a very small vicinity of the point x = ±L, which

extension, as it will be shown later, is not important. The choice of exp(−κ(x+L))

instead of hyperbolic sine or cosine will be likewise justified later.
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Eq. 4.61 explains the success of many approximate solutions mentioned in

the introduction in predicting the external current. In every approximation it

was supposed that variables can be somehow separated1. In the next section we

will see that the current is defined by Ė(x = ±L, t), that is by the electric field

calculated in the point where variables can be truly separated and assumptions

made in the cited papers are justified. However, variables can be separated only

at x = ±L. As it was also mentioned in the introduction, the PNP equations can

not be solved by a separation of variables. Indeed, if ρ(x, t) = T (t)X(x), from

the PNP it follows that

X(x) · Ṫ (t) = T (t) · (X ′′(x) − κ2X(x)) , (4.62)

so either X(x) is the steady state solution and T (t) ≡ 0 or at t → ∞ X(x) does

not tend to the steady state.

So far we have found the additional constraint and have reformulated the

problem in order to incorporate this constraint into the governing equation. It

has resulted into Eq. 4.59. Now we are going to apply this approach to two cases:

the application of DC- and AC voltages. It will be supposed that κL > 3 which

is usually the case and was already discussed above. The inequality is dictated

by the assumption exp(−2κL) ≪ 1 or 2 exp(κL) ≈ sinh(κL) ≈ cosh(κL). If

κL ≃ 1, the approach presented here is still valid and most of the calculations

could be performed but they would by more bulky and lengthy and therefore are

not shown.

4.2.2 Response to a DC voltage

At the initial moment a step voltage is applied, v(t) = v ·Θ(t), where Θ(t) is the

Heaviside function. The basic equation, Eq. 4.59, should be supplemented with

following conditions:
∫ L

−L

E(x, t)dx = v , (4.63)

E(x, t = 0) =
v

2L
, (4.64)

1In (20) it was not supposed throughout the paper but only to find the external current.
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E(x, t = ∞) =
v

2
κ

cosh(κx)

sinh(κL)
. (4.65)

Eq. 4.63 coincides with Eq. 4.21 and was already discussed. Eq. 4.64 follows

from Eq. 4.63 and the fact that at the initial moment the charge distribution is

homogeneous and the electric field is constant. Eq. 4.65 represents the steady

state solution, see Eq. 4.24 and Eq. 4.25.

Let us integrate Eq. 4.59 from −L to L. Using Eq. 4.63 one gets

0 =

∫ L

−L

E ′′(x, t)dx − κ2v + 2LĖ(x = −L, t) , (4.66)

or

− E ′(x = −L, t) + LĖ(x = −L, t) =
κ2v

2
. (4.67)

Inserting here Eq. 4.61 it yields

κ exp(−κ(x+L))Ẽ(x = −L, t)+L exp(−κ(x+L)) ˙̃E(x = −L, t) =
κ2v

2
, (4.68)

where exponents should be replaced with unity because the equation is valid only

at x = −L. This is a first-order differential equation which solution is well known,

E(x = −L, t) =
v

2
(κ − A exp(−αt)) , (4.69)

where α = κ
L
. The integration constant A can be found from the initial condition,

Eq. 4.64,

A = κ − L−1 . (4.70)

If in Eq. 4.61 we use not one exponent but a linear combination of those as

it should be done to find the general solution, i.e. Ẽ(t) exp(−κ(x + L)) +

Ẽ1(t) exp(κ(x + L)), after more expensive calculations we would anyway end up

with Eq. 4.69. In the discussion after Eq. 4.61 it was stated that the function

E(x = −L, t) should be considered in a small vicinity of the point x = −L, which

size is not important. This statement is justified by the fact that the final result,

Eq. 4.69, is formulated exclusively at the point x = −L and does not depend on

coordinate.

In a view of Eq. 4.69, the governing equation, Eq. 4.59, can be rewritten as

Ė(x, t) = E ′′(x, t) − κ2E(x, t) +
v

2
αA exp(−αt) . (4.71)
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Eq. 4.69 represents the condition Eq. 4.63. This clearly demonstrates one of

advantages of our treatment, namely that the quite complicated constraint given

by an integro-differential equation, Eq. 4.57, is reduced to a simple exponential

boundary condition, Eq. 4.69.

Before presenting the solution of the PNP equations, i.e. the expressions

for C±(x, t) and E(x, t), let us consider the derived equations in greater details

because they already offer some important results.

In Section 2.2, using Laplace transformation it was found that the buildup of

the charge screening layer occurs exponentially, see the discussion after Eq. 2.46.

This result is perfectly in agreement with Eq. 4.69.

As it was discussed earlier, one of the experimentally relevant quantities is

the external current. According to Ramo’s theorem

J(t) = ǫĖ(x = ±L, t) . (4.72)

For a derivation and discussion of Ramo’s theorem see Appendix B. Using

Eq. 4.69 one can find the external current,

J(t) = ǫα(κ − L−1) exp(−αt) . (4.73)

J(t = 0) coincides with the value found in (18). J(t) decays with the correct

character time τ = L
Dκ

. In other words, the reformulation of the governing

equation, performed in this section, has solved the problem posed at the end

of Section 4.1, concerning a disagreement of analytical results with experimental

data and numerical simulations.

Let us come back to the solution of the reformulated PNP equations, namely

to Eq. 4.59 and conditions Eqs. 4.64, 4.65 and 4.69. A new functions w(x, t) is

introduced according to

w(x, t) =
exp(−αt)

κL
+

cosh(κx)

cosh(κL)
− 2

κv
E(x, t) , (4.74)

and the problem is reformulated in terms of w(x, t). It results

ẇ(x, t) = w′′(x, t) − κ2w(x, t) , (4.75)

w(x, t = 0) =
cosh(κx)

cosh(κL)
, (4.76)
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w(x, t = ∞) = 0 , (4.77)

w(x = ±L, t) = exp(−αt) . (4.78)

Performing Laplace transformation we get

zw(x, z) − cosh(κx)

cosh(κL)
= w′′(x, z) − κ2w(x, z) , (4.79)

w(x = ±L, z) =
1

z + α
. (4.80)

The general symmetric solution to this set of equations reads

w(x, z) =
cosh(κx)

z cosh(κL)
− α

z(z + α)

cosh(
√

κ2 + zx)

cosh(
√

κ2 + zL)
. (4.81)

To invert this result one has to take the following integral

w(x, t) =
1

2πi

∫ a+i∞

a−i∞
exp(zt)w(x, z)dz , (4.82)

where the real number a is sufficiently large so that all poles of w(x, z) lie on the

left-hand side from the line along which the integral is taken. The integral will be

evaluated in the frame of theory of functions of a complex variable. Following the

conventional procedure we extend z onto the whole complex plane and choose

the contour of integration in a way to enclose all poles as shown in Fig. 4.3.

The integral over the whole contour is a sum of the integral over the arc ∂C,

which as usual tends to zero, and the integral along the vertical line, which we

are interested in. According to the Cauchy residue theorem the integral over

the whole contour γ is proportional to the sum of all residues lying within the

contour,
∮

γ

f(z)dz = 2πi
∞
∑

n=k

f(z, ak) , (4.83)

where f(z, ak) denotes a residue of f(z) calculated at the point z = ak. To find

the poles of w(x, z) one has to find zeros of the denominator of the right-hand

side of Eq. 4.81. Two poles are obvious: z = 0 and z = −α. Other zeros are

determined by the equation

cosh(
√

κ2 + zL) = 0 . (4.84)
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Hence, √
κ2 + zL = i

(π

2
+ πn

)

, (4.85)

where n is the integer running from −∞ to ∞. Solving this equation for z we get

zn = − 1

L2

(π

2
+ πn

)2

− κ2 + i0 , (4.86)

The poles are located on the negative part of the real axis as depicted in Fig. 4.3,

but now n should run from 0 to ∞, otherwise some poles would be counted twice.

Figure 4.3: Contour of integration

The function w(x, z) consists of two terms, see Eq. 4.81. Integration of the

first one gives

1

2πi

∫ a+i∞

a−i∞
exp(zt)

cosh(κx)

z cosh(κL)
dz =

cosh(κx)

cosh(κL)
Θ(t) . (4.87)

Further the Heaviside step function will be omitted because we consider only

t > 0. Integration of the second term reveals

cosh(κx)

cosh(κL)
− e−αDt cosh(

√
κ2 − αx)

cosh(
√

κ2 − αL)
+

πα

L2
e−κ2DtS(x, t) , (4.88)
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where

S(x, t) =

∞
∑

n=0

(−1)n exp

(

− π2

4L2
(1 + 2n)2Dt

)

cos
( π

2L
(1 + 2n)x

) 1 + 2n

zn(zn + α)
.

(4.89)

So, we have inverted the Laplace transform of w(x, t). Coming back to the electric

field we find

E(x, t) =
v

2
κ

{

cosh(κx)

cosh(κL)
− e−αDt

(

cosh(
√

κ2 − αx)

cosh(
√

κ2 − αL)
− 1

κL

)

+
πα

L2
e−κ2tS(x, t)

}

.

(4.90)

Using Eq. 4.8 and the Poisson equation we finally get

C±(x, t)

η
= 1 ± v

2
ze

kBT

(

sinh(κx)
cosh(κL)

− e−αDt sinh(
√

κ2−αx)

cosh(
√

κ2−αL)

√

1 − 1
κL

+ πα
κL2 e

−κ2DtS ′(x, t)

)

. (4.91)

Eqs. 4.90 and 4.91 present the solution of the PNP equations in the linear

regime when a DC voltage is applied.

The sum S(x, t) plays a role only on the short-time scale. It is a decreasing

function of time multiplied by e−κ2t, i.e. its contribution will disappear rapidly

with a character time τ = κ−2D−1. If the evolution on the short-time scale is of

interest, S(x, t) can be easily summed up numerically because it converges fast.

The symmetry properties described in Section 4.1.3 are still valid, so we do

not repeat them again. At the initial moment the charge concentrations and the

electric field are expressed by the nontrivial function S(x, t) which decays rapidly.

When S(x, t) becomes negligible, the concentration and the electric field profiles

are almost exponential. The higher κL is, the closer they are to an exponent.

4.2.3 Response to an AC voltage

In this section we will consider a response to an AC applied voltage, i.e. v(t) =

v cos(ωt). The case of a DC applied voltage discussed in the previous section

can be looked on as a limiting case of an AC voltage with ω → 0. Any other,

nonharmonic signal can be expanded into Fourie series and represented as a sum of
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harmonic signals. Because the governing equation, Eq. 4.59, is linear, a response

to nonharmonic signal is a sum of its Fourie harmonics.

The case of an AC applied voltage has been considered by many authors. In

my personal opinion, the best analytical investigation so far was performed more

than fifty years ago by Macdonald in (43). Though, since that time many other

papers have been published. For the state of the art see (8) and citations therein.

The analytical solution of the PNP equations has not been found yet.

To solve the problem the governing equation, Eq. 4.59, should be supple-

mented with a constraint given by the boundary condition,

∫ L

−L

E(x, t)dx = v cos(ωt) , (4.92)

and the initial condition

E(x, t = 0) =
v

2L
. (4.93)

Following the line proposed in Section 4.2.2, the electric field in the vicinity of

the left electrode satisfies

E(x = −L, t) = Ẽ(t) exp(−κ(x + L)) . (4.94)

Integrating Eq. 4.59 from −L to L and taking into account Eq. 4.92 one finds

− vω sin(ωt) =

∫ L

−L

E ′′(x, t)dx − κ2v cos(ωt) + 2LĖ(x = −L, t) , (4.95)

or

− vω sin(ωt) = −2E ′(x = −L, t) − κ2v cos(ωt) + 2LĖ(x = −L, t) . (4.96)

Using Eq. 4.94 we get

L ˙̃E(t) + κẼ(t) =
v

2

(

−ω sin(ωt) + κ2 cos(ωt)
)

. (4.97)

The solution of this linear differential equation of the first order is well known,

E(x = −L, t) = exp(−αt)

(

A +
v

2L

∫

eαt(−ω sin(ωt) + κ2 cos(ωt))dt

)

, (4.98)

71



4.2 Reformulation of the PNP

where A in an integration constant and α = κ
L
. Finally, we get

E(x = −L, t) =
v

2L(α2 + ω2)

{

ω sin(ωt)(κ2 − α) + cos(ωt)(ακ2 + ω2)
}

+ Ae−αt ,

(4.99)

where the constant A should be found from the initial condition, Eq. 4.93. The

case ω = 0 means that the applied voltage is constant, and the problem is equiva-

lent to the one considered earlier. Indeed, in this case Eq. 4.99 turns into Eq. 4.69.

We have already discussed the short-time behavior and usually an AC voltage

is applied over a long period of time, therefore we will consider the long-time

behavior, or so called stationary regime. It is not a steady state in a direct

sense because the steady state supposes that all time derivatives are zero. In

the long-time regime all initial conditions are irrelevant. According to Eq. 4.99

this regime begins after the time τ = L
κD

when A exp(−αt) → 0. The short-time

behavior can be still considered within the approach, and the equations can be

solved. However, we will omit the detailed calculations because they are bulky

and similar to those presented in the previous section. Furthermore, we are going

to demonstrate another approach for solving the PNP equations, which is not

applicable for the short-time regime.

From Eq. 4.99, using Ramo’s theorem one can find the external current. In

the stationary regime it reads

J(t) = J0 cos(ωt + ϕ0) , (4.100)

where

J0 =
vǫωD

2(κ2D2 + ω2L2)

√

κ6D2 +
ω4L2

D2
+ ω2κ2(κ2L2 + 1) , (4.101)

and

tan(ϕ0) =
κ3D2 + ω2L

Dωκ(κL− 1)
. (4.102)

Note that at ω → ∞ J0 → ∞ as well. This is a direct consequence of the fact

that the PNP equations neglect the inertia of particles, which poses an additional

restriction of the applicability. This can be seen from the expression for the flux,

Eq. 4.47. The flux and, consequently, the drift velocity are proportional to the
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applied force. In contrast, according to Newton’s second law the acceleration

should be proportional to the applied force.

Let us formulate the equations to solve.

Ė(x, t) = E ′′(x, t) − κ2E(x, t) + Ė(x = ±L, t) , (4.103)

with the boundary condition

E(x = ±L, t) =
v

2L(α2 + ω2)

{

ω sin(ωt)(κ2 − α) + cos(ωt)(ακ2 + ω2)
}

.

(4.104)

Similar to the previous section this boundary condition is represented by the

integral constraint, Eq. 4.92. Introducing a new function p(x, t) according to

E(x, t) = p(x, t) +
vω

2L(α2 + ω2)
[ω cos(ωt) − α sin(ωt)] , (4.105)

it gives

ṗ(x, t) = p′′(x, t) − κ2p(x, t) ,

p(x = ±L, t) =
vκ2

2L(α2 + ω2)
{ω sin(ωt) + α cos(ωt)} . (4.106)

Because the initial condition is not relevant, one can choose p(x, t = 0) = 0.

Performing Laplace transformation we get

zp(x, z) = p′′(x, z) − κ2p(x, z) ,

p(x = ±L, z) =
vκ2

2L(α2 + ω2)

{

αz + ω2

z2 + ω2

}

. (4.107)

The general solution of this equation is

p(x, z) =
vκ2

2L(α2 + ω2)

αz + ω2

z2 + ω2

cosh(
√

κ2 + zx)

cosh(
√

κ2 + zL)
. (4.108)

Basing on the results presented in Section 4.2.2 one can easily invert this expres-

sion. We would end up with a sum similar to Eq. 4.89, which decays fast. But we

will follow another way and will find the solution under the assumption κL > 5.

This assumption means that one can separately consider the influences of the left
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and the right electrodes. Consequently, the system can be divided into two parts,

any if which represents the influence of the corresponding electrode,

p(x, z) = pl(x, z) + pr(x, z) . (4.109)

Accordingly, Eq. 4.108 splits into two parts as well. The left one is

pl(x, z) =
vκ2

2L(α2 + ω2)

αz + ω2

z2 + ω2
exp(−

√
z + κ2(x + L)) , (4.110)

and the right one is similar to the left one but x is be replaced with −x,

pr(x, z) =
vκ2

2L(α2 + ω2)

αz + ω2

z2 + ω2
exp(

√
z + κ2(x − L)) . (4.111)

So we will solve Eq. 4.110 and then add a symmetric part, Eq. 4.111.

Inversion of Eq. 4.110 is simple. There are only two poles at z = ±iω which

give

pl(x, t) = vκ2

4Li(α2+ω2)

(

[ω + iα] exp(iωt −
√

κ2 + iω(x + L))

− [ω − iα] exp(−iωt −
√

κ2 − iω(x + L))
)

. (4.112)

Adding here a symmetric expression for pr(x, t) and coming back to the electric

field we get

E(x, t) = v
2L(α2+ω2)

(ω2 cos(ωt) − αω sin(ωt) (4.113)

−iκ2

2
eiωt(ω + iα)

[

exp(−
√

κ2 + iω(x + L)) + exp(
√

κ2 + iω(x − L))
]

+iκ2

2
e−iωt(ω − iα)

[

exp(−
√

κ2 − iω(x + L)) + exp(
√

κ2 − iω(x − L))
]

)

,

or

E(x, t) = v
2L(α2+ω2)

(ω2 cos(ωt) − αω sin(ωt)

+κ2e−γ(x+L) {α cos(δ(x + L) − ωt) − ω sin(δ(x + L) − ωt)}
+κ2eγ(x−L) {α cos(δ(x − L) + ωt) + ω sin(δ(x − L) + ωt)}

)

, (4.114)

where

γ =

√√
κ4 + ω2 + κ2

2
, δ =

√√
κ4 + ω2 − κ2

2
. (4.115)
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Redefining the time and inserting the diffusion coefficient D explicitly we end up

with

E(x, t) = vD
2(κ2D2+ω2L2)

(

ω2L
D

cos(ωt) − κω sin(ωt)

+κ2e−γ(x+L) {Dκ cos(δ(x + L) − ωt) − ωL sin(δ(x + L) − ωt)}
+κ2eγ(x−L) {Dκ cos(δ(x − L) + ωt) + ωL sin(δ(x − L) + ωt)}

)

, (4.116)

where

γ =

√√
D2κ4 + ω2 + Dκ2

2D
, δ =

√√
D2κ4 + ω2 − Dκ2

2D
. (4.117)
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Figure 4.4: Normalized concentration C0 = C+(s, t)/η calculated at different

moments. s is the distance from the electrode.

Consequently, the particle concentrations are

C±(x,t)
η

= 1 ∓ v ze
kBT

Dδ
2(κ2D2+ω2L2)

×
(

e−γ(x+L) {Dκ sin(δ(x + L) − ωt) + ωL cos(δ(x + L) − ωt)}
+eγ(x−L) {Dκ sin(δ(x − L) + ωt) − ωL cos(δ(x − L) + ωt)}

)

. (4.118)
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Eqs. 4.116, 4.118 and 4.117 present the solution of the linearized PNP equations

in the stationary regime when AC voltage is applied.

At low frequency of the applied voltage the particles move slowly and C±(x, t)

are monotonous functions. At higher frequency the change of the concentration

in the bulk lags that at the electrode and C±(x, t) are not monotonous as one

can see in Fig. 4.4. With increasing ω the magnitude of oscillations likewise the

deep of penetration of the perturbation into the bulk decreases. If ω → ∞,

C±(x, t) → η.
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Chapter 5

Conclusion and future

perspectives

The Poisson-Nernst-Planck equations describe a diffusion of charged particles

in the applied electric field. Due to a very general formulation of the problem

they can be employed to treat a wide range of experimental situations realized

in systems of different physical nature. The PNP equations were formulated

more than one century ago, but, despite the long history, their general solution is

still unknown and a lot of papers deal with this problem. The present Thesis is

devoted to the analysis of the PNP equations. The study can be roughly divided

into two parts: the treatment of the steady state of the full nonlinear problem

and the treatment of the dynamical problem in the linear regime.

In the stationary regime the PNP equations are equivalent to the Poisson-

Boltzmann equation. Therefore, all conclusions are applicable to this equation as

well. The exact nonlinear solution for a binary symmetric system was expressed

in terms of Jacobi elliptic functions. In contrast to other studies, we analyzed

the solution in its general, not simplified form. For the case of a finite plane

system the approximate solution was shown. If the size of the system is large, its

behavior is similar to that of an infinite plane system for which the PNP equations

were solved by Gouy and Chapman. By introducing a prefactor into the Gouy-

Chapman solution one can extend it onto a finite system. Such an extension is

adequate as long as the midplane concentration does not tend to zero. At very

high applied voltages the PNP equations should be inapplicable due to a violation

of Ficks law. Basing on the exact steady state solution an upper estimation of
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the applied voltage was found giving a limitation of the applicability of the PNP

approach. As the next step, the general solution of the stationary PNP equations

was found for the multispecies and multidimensional cases.

The dynamical problem was considered in the linear regime for two main

general cases: an DC- and AC applied voltage. In both cases for the first time, it

was found the analytical solution valid at every time and for every coordinate as

well for every initial concentration but under a single assumption that λD ≪ L.

Already at 5λD < L gives quite precise results. In contrast to other investigations,

we did not split the system into different regions where different, specific for each

particular region assumptions are valid. Our solution describes the system as a

whole. No preliminary assumptions of the double layer structure were done as

well.

The response to a DC applied voltage is described on the short-time scale by a

complicated function that decays rapidly with a character time τ = λ2
DD−1. For

t > τ , the spatial dependence of the particle concentrations and the electric field

is nearly exponential. The steady state is archived as well exponentially on the

time scale λDLD−1. These exponential time and coordinate dependencies explain

the correct prediction of the charging time made in frames of other approaches.

In contrast to these solutions, our solution does not contain logical contradictions

and satisfies all boundary and initial conditions.

The response to an AC voltage was considered in the stationary regime as the

more relevant experimental realization. Though the present approach is valid on

every time scale and can be applied for a description of the short-time behavior

as well. The corresponding procedure was described. Analytical expressions for

the particle concentrations and the electric field were found. At a high frequency

of the applied voltage a change of the concentration in the bulk lags that at the

electrode. The external current was also calculated. Basing on the frequency de-

pendence of the external current the border of applicability of the PNP approach

at very high frequencies of the applied voltage was pointed out. When inertia of

the particles become relevant, the PNP equations should be modified.

AC experiments at low applied voltages are used to find the mobility of ions

in electrolytes. For this purpose the dielectric spectroscopy is usually employed.

The analytical expression for the external current offers an alternative approach.
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Due to the presence of the electrolytic cell in the electrical circuit, the electric

current changes its magnitude and phase which can be measured. From these data

the mobility and the Debye screening length can be extracted. A development of

this new, alternative approach is a plan for the nearest future.

Other future perspectives concern the further theoretical study of the Poisson-

Nernst-Planck equations. In the present Thesis the new approach for solving the

PNP equations in the linear regime has been developed. This approach can be ap-

plied to the full nonlinear problem whose analytical solution is of a great interest.

In the linear regime there are some open questions as well. The PNP equations

describe not only electrolytes but also semiconductors. The assumption D+ = D−

is usually valid in electrolytes but can be inapplicable in semiconductors. Hence,

the case D+ 6= D− should be considered. Another possible generalization of the

results obtained in the Thesis is also dictated by an experimental realization.

One of the new ideas used in our approach is that the condition of disappear-

ance of the particle fluxes at the electrodes is incorporated into the governing

equation and, therefore, is fulfilled automatically. This condition means that

Faradaic processes are neglected. Though, for some systems such an assumption

is inapplicable. Therefore, the assumption F±(x = ±L, t) = 0 should be replaced

by F±(x = ±L, t) = a, where a is a function of time defined by the kinetics of

chemical processes at the electrodes.
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Appendix A

Jacobi elliptic functions

The Jacobi elliptic functions were introduced by Carl Gustav Jacob Jacobi at

1827 as the inverse of the elliptic integrals. Approximately at the same time

Niels Henrik Abel independently studied properties of these functions. Earlier

in 1799 Carl Friedrich Gauss gave some attention to one of them, namely to the

Jacobi elliptic sine. The Jacobi functions are the particular case of the elliptic

functions. From theoretical point of view it is easier and more conventional to

consider them as a ratio of so called theta functions. Moreover, some properties of

the Jacobi functions is tremendously difficult to prove without knowledge of the

theory of theta functions. For more details see (44). Because our aim is to give a

general impression of the Jacobi functions avoiding mathematical difficulties, we

will defined them another way. Let us consider the integral

t =

∫ u

0

dy
√

1 − y2
= arcsin(u) . (A.1)

This integral implicitly defines a function u(t),

u(t) = sin(t) . (A.2)

Strictly speaking, the integral A.1 is defined in the range π/2 < t < π/2 cor-

responding to the positive sign of
√

1 − y2. Inversion of the integral, that is a

step from Eq. A.1 to Eq. A.2, extends u(t) onto the total number axis, mak-

ing the function continuous and differentiable at each point. Consider now the
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generalization of the integral A.1,

t =

∫ u

0

dy
√

(1 − y2)(1 − q2y2)
. (A.3)

Inversion of this integral gives

u = sn(t, q) . (A.4)

The function sn(t, q) is called Jacobi elliptic sine. The parameter q is called

elliptic modulus or just modulus. In the literature some times one can find

another notation: sn(t, m). m is also called modulus, m ≡ q2. Sometimes instead

of q the letter k is used. Although, this parameter can be omitted in the notation

at all, sn(t). In addition to the Jacobi sine the following functions are introduced:

Jacobi elliptic cosine u = cn(t, q) as the inverse of the integral

t =

∫ u

0

dy
√

(1 − y2)(q′2 + q2y2)
, (A.5)

and delta amplitude u = dn(t, q) as the inverse of

t =

∫ u

0

dy
√

(1 − y2)(y2 − q′2)
, (A.6)

where the so called complementary modulus q′ =
√

1 − q2 is introduced. In

addition to those functions, Jacobi introduced the notation am(t) as the inverse

of

t =

∫ am(t)

0

dα
√

1 − q2 sin2(α)
. (A.7)

The function am(t), sometimes also denoted as ϕ(t), is called the amplitude.

Using am(t) one can relate Jacobi elliptic functions to trigonometric ones,

sn(t) = sin(am(t)) , cn(t) = cos(am(t)) , dn(t) = ∆(am(t)) ,

where

∆u =
√

1 − q2 sin2(u) ,

which explains the name of dn(t) as a function ∆ of the amplitude am(t).

sn(t), cn(t) and dn(t) have a letter n at the end of their names. To write a

ratio of any pair of Jacobi functions the following rule is used: the n is omitted
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and the name for the new function is formed from the letters left. To denote the

inverse function the letters should swap their places. For instance,

cn(t)

dn(t)
≡ cd(t) ,

1

sn(t)
≡ ns(t) .

This notation was introduced by James Glaisher in (45).

For all q < 1 the Jacobi elliptic functions are real and periodic. sn(t, q) and

cn(t, q) have a period 4K, dn(t, q) has a period 2K, where

K ≡ K(q) =

∫ 1

0

dy
√

(1 − y2)(1 − q2y2)
=

∫ π/2

0

dα
√

1 − q2 sin2(α)

is the complete elliptic integral of the first kind 1. If integration is taking not up

to 1 but up to an arbitrary number, this integral is called incomplete,

F (t, q) =

∫ t

0

dy
√

(1 − y2)(1 − q2y2)
.

There is also the incomplete integral of the second kind E(t, q),

E(t, q) =

∫ t

0

√

1 − q2 sin2(α)dα ,

and the corresponding complete integral E(q), E(q) ≡ E(π/2, q).

It is easy to find asymptotic periods of the elliptic integrals. At q → 0

K → π/2. At q → 1 K → ∞. Consequently, the asymptotic behavior of the

Jacobi functions is: at q → 0 the Jacobi functions are expressed via trigonometric

functions; at q → 1 the Jacobi functions are expressed via hyperbolic functions,

sn(t, 0) = sin(t) , sn(t, 1) = th(t) , (A.8)

cn(t, 0) = cos(t) , cn(t, 1) = sech(t) , (A.9)

dn(t, 0) = 1 , dn(t, 0) = sech(t) . (A.10)

1As every elliptic function the Jacobi functions have two periods: real and complex. Each

of them is expressed via K(q). For example, sn(t + 4K(q) + 2iK(q′), q) = sn(t, q).
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Likewise trigonometric and hyperbolic functions, the Jacobi elliptic functions

obey similar identities:

sn2(t, q) + cn2(t, q) = 1 , (A.11)

dn2(t, q) + q2sn2(t, q) = 1 . (A.12)

For 0 < q < 1, Jacobi functions change smoothly from one asymptotic case

to another. To visualize this let us consider Fig. A.1. When q = 0, the function

-1

-0.5

 0

 0.5
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 0  1  2  3  4  5  6  7  8  9

sn(t,q)

t

q=0.4
q=0.9

q=0.99

Figure A.1: Dependence of sn(t, q) on t shown at different q.

is a trigonometric sine. With increasing q the period increases as well tending to

infinity at q → 1. In this case, sn(t, q) approaches a hyperbolic tangent.
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Appendix B

Ramo’s theorem

Ramo’s theorem, or the Shockley-Ramo theorem, was derived by Shockley (46)

and Ramo (47) in the context of vacuum tube technique at the late thirties. For

a modern interpretation and general discussion see (48).

The Shockley-Ramo theorem is a consequence of Green’s reciprocal theorem

which follows immediate from Green’s second identity. Green’s reciprocity is a

static analogous of Lorentz’s reciprocity. Because velocities of charged particles

are low and magnetic properties are neglected, only the electrostatic case will be

discussed.

Let φ1(~r) denote the electric potential resulting from a total charge density

ρ1(~r), and φ2(~r) denotes the electric potential resulting from a total charge den-

sity ρ2(~r). If the charges are localized within the volume V , Green’s reciprocal

theorem states
∫

V

ρ1(~r)φ2(~r)dV =

∫

V

ρ2(~r)φ1(~r)dV . (B.1)

Consider a number of perfect conductors shown in Fig. B.1. φ∗
i is the potential

of the ith electrode which is supplied by an infinitely narrow wire. Within the

volume the charge is distributed with the charge density ρ(~r). The potential

at every arbitrary point of the volume beyond the conductors consist of two

contributions,

φ(~r) =
∑

i

φi(~r) + φρ(~r) , (B.2)
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where φi(~r) is the potential which would be created by the conductor i in ab-

sence of other conductors and charges in the medium, ρ(~r) = 0, and φρ(~r) is the

potential which would be created by the charge density ρ(~r) in the absence of all

conductors. According to Eq. B.1 the charge generated on the electrode i is

Qi =
∑

k

Cik(φ
∗
k − φ∗

i ) −
∫

V

ρ(~r)
φi(~r)

φ∗
i

dV , (B.3)

where Cik = Qk/φ
∗
i , and Qk is the charge on the electrode k if all other electrodes

and the medium are absent. In our system the first term in Eq. B.2 is irrelevant

Figure B.1: System with four electrodes

because this charge on the electrodes is fixed by the applied voltage. Its contri-

bution to the external current is the Dirac impulse which will be omitted. For a

symmetric system of two parallel flat electrodes we get

Q =
1

2L

∫ L

−L

ρ(x)xdx . (B.4)

If the charge density depends on time, the external current is a time derivative

of the charge generated on the electrodes,

J(t) ≡ Q̇(t) =
1

2L

∫ L

−L

ρ̇(x, t)xdx . (B.5)

Despite it is conventionally called the external current, strictly speaking it is a

current density, that is a current that would be measured if the electrodes had a
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unit area. Consequently, its dimension is ampere · meter−2. Taking ρ(x, t) from

the Poisson equation and integrating by parts Eq. B.5 one yields

J(t) = ǫĖ(x = ±L, t) − ǫ

2L
v̇(t) . (B.6)

If the applied voltage is constant, v(t) = v, then

J(t) = ǫĖ(x = ±L, t) . (B.7)

Using the definition of the flux and the PNP equations, Eq. B.7 can be written

as

J(t) =
ze

2L

∫ L

−L

(F+(x, t) − F−(x, t))dx , (B.8)

that is the flux of the charge inside the cell is related to that outside the cell. The

charge redistribution inside the cell is performed by the movement of ions, whereas

the charge flux outside the cell is made by electrons. At the initial moment

the ion concentrations and the electric field are constant, C±(x, t = 0) = η,

E(x, t = 0) = v
2L

, which makes the integration of Eq. B.8 trivial,

J(t = 0) =
vz2e2µη

L
=

v

2L
Dǫκ2 . (B.9)
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