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Abstract In the emerging field of spin electronics, a new generation of devices utilizes
the Rashba effect which is present in systems with inversion asymmetry. The present
work reports on selected ab initio investigations of the Rashba effect in surfaces. The
main aims of this work are to gain a comprehensive understanding of the ‘common
Rashba systems’ and to explore the new features of ‘more complicated Rashba systems’.

To achieve the first goal we studied the Rashba parameters and Rashba characteristics
of the ordered surface alloy Sb/Ag(111) as well as of disordered binary surface alloys,
i. e. BixSb1−x/Ag(111) and PbxSb1−x/Ag(111), and disordered ternary surface alloys,
i. e. BixPbySb1−x−y/Ag(111). The results of our investigation in conjuction with those
previously carried out make a systematic study of this unique class of Rashba systems
possible.

In this work, ‘more complicated Rashba systems’ include the system of Bi/Cu(111)
with an unconventional spin topology, the system of Bi/BaTiO3 with a ferroelectric
material as the substrate, the trilayer system of BiAg/Ag/Si in which quantum well
states and surface states interact, and the (0001) surface of gadolinium as a strongly
correlated magnetic material. The features of these systems are captured either by our
full-relativistic code or by model calculations. A good knowledge of the influential pa-
rameters in the common Rashba systems, i. e. the first goal, is essential to understanding
the behavior of the more complicated systems.

The first part of the thesis consists of four short chapters describing the basics of the
surface states and the Rashba effect, the importance of the self-interaction correction,
and the methods used for our calculations. The second part consists of a short review of
the results and includes six selected papers.
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Chapter 1

Introduction

The spin-orbit interaction, that is the coupling of the orbital angular momentum and
the spin of an electron, manifests itself in the electronic structure of solids in various
ways. For example, it results in the magnetocrystalline anisotropy in magnetic samples
and is the origin of the magnetic dichroism in x-ray absorption. Other examples are the
Dresselhaus effect and the Rashba effect in systems with broken inversion symmetry.

In nonmagnetic materials with inversion symmetry, Kramers’ degeneracy implies non
spin-polarized electronic states. Spin-orbit interaction shows up as Dresselhaus effect if
the inversion symmetry of a bulk solid is broken [1]. At an interface, e.g. in a semiconduc-
tor heterostructure, inversion symmetry is broken in a natural way. The band-bending
present in semiconductors heterostructures can be viewed as a potential gradient per-
pendicular to the interface plane. The spin-orbit coupling, that is – in a nonrelativistic
formulation – proportional to the gradient of the potential, results in Rashba spin-orbit
coupling and consequently in polarized electronic states in a two-dimensional electron
gas (2DEG) confined to the band-bending region. The Rashba effect lifts Kramers’
degeneracy and can be probed by de-Haas-van-Alphen oscillations [2].

The standard model for the Rashba effect relies on an isotropic two-dimensional
electron gas (see section 2.2). The potential gradient corresponds to an effective magnetic
field in the rest frame of the electron and leads to a Zeeman splitting. Consequently, the
splitting is proportional to the electron velocity. The Rashba effect shows up in a unique
spin topology of the electronic states.

At metal surfaces, effects similar to those in semiconductor 2DEGs are observed.
Here, the 2DEG is replaced by surface states (introduced in chapter 2.1). The potential
gradient is given by the image-potential barrier. This Rashba effect has been intensively
studied for the surface states of Au(111) [3], giving a paradigm of Rashba-split surface
states [4–6]. Bi grown on Ag(111) results in an ordered superstructure. The surface state
within the Bi-Ag top layer shows an unmatched Rashba splitting [5]: The experimental
Rashba parameter of 3.05 eVÅ, that is 9 times larger than in Au(111), is explained by
an in-plane potential gradient which is intrinsic to the (111) surfaces of cubic solids [7].

The present work reports on selected ab initio investigations of the Rashba effect
in surfaces. For the ordered surface alloy Sb/Ag(111), which shows a small spin split-
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Introduction

ting, the atomic contribution to the Rashba spin-orbit coupling is studied in paper
I. Knowing the properties of three ordered surface alloys, (Bi, Pb, and Sb)/Ag(111),
the challenge is how to tune these properties. In paper II we examine the possibility
to independently tune the Rashba characteristics in disordered ternary surface alloys
BixPbySb1−x−y/Ag(111). Surface alloying is not the only way to modify the Rashba
characteristics. The control of the Rashba characteristics is the topic of paper IV and
paper V. Paper IV proposes a ferroelectric controlling of the Rashba spin-orbit cou-
pling which may be utilized in future spin-electronic devices. The electronic structure at
the Fermi level of the trilayer system BiAg/Ag/Si is studied in paper V.

Not all Rashba systems follow the standard Rashba model. Bi/Cu(111) is an example
and is studied in paper III. Hybridization that is the reason of the unconventional spin
topology in Bi/Cu(111) is a fundamental effect and our findings are relevant for spin
electronics in general.

The magnetic system gadolinium requires a treatment which is beyond the conven-
tional local spin-density approximation, due to the strong electronic correlation. A self-
interaction correction method, which is one of the remedies to the self-interaction error,
is applied to study strongly correlated gadolinium. Paper VI studies the Rashba-like
behavior of the surface states of Gd(0001) as well as the magnetic properties of bulk Gd.
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Chapter 2

The Rashba splitting of surface
states

2.1 Surface states

In an infinite crystal the problem of band structure calculations, in the framework of
density functional theory, is based on the motion of an electron in an effective periodic
potential. This assumption for the boundary condition obscures some features of interest
associated with a finite crystal, e.g. the surface of a crystal. In a finite crystal there is
no restriction for wavevectors to be real, consequently k may assume complex values.
The corresponding energies lie inside the region that is forbidden for real k. The wave-
functions describing these levels, the surface states, are damped in the direction of the
vacuum. Surface states are also damped inside the crystal but in an oscillatory way.

Surface states were first studied by Tamm in a semi-finite crystal using a direct-
matching approach [8]. The calculations were carried out in a one dimensional system
with terminated Kronig-Penney (KP) potential [9]. Tamm’s pioneering work was fol-
lowed by a number of publications. Maue used a nearly-free-electron approach and
connects the existence condition of a surface state with the form of the crystal potential
and the surface position. Shockley [10] considered the formation of surface states as the
function of the lattice constant. He defined Tamm-Goodwin surface states and Maue-
Shockley surface states. The latter occur for a periodic potential without edge effects
in the end cell while the former appear when the end cell is distorted. Zak’s work [11]
connects the appearance of surface states to the symmetry of the unperturbed energy
bands.

Another way of looking at surface states is to view these states as an electron trapped
between the surface of the crystal and the surface barrier potential. Suppose an electron
outside the crystal travels to and away from the surface. If the wave ψ− carries unit flux
towards the crystal a portion of the wave will be reflected

ψ+ = rCe
iφCψ−, (2.1)

where ψ+ carries flux away from the crystal towards the surface barrier. In its turn ψ+
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will impinge on the surface barrier and be reflected back towards the crystal

ψ− = rBe
iφBrCe

iφCψ−, (2.2)

where rB and rC are the real part of the reflection coefficients and φB and φC are the
phase changes occurring upon reflection. Summing up all the repeated scatterings gives
the total amplitude of ψ− which is proportional to

[1− rBrC exp i(φB + φC)]−1. (2.3)

A pole in (2.3) denotes a bound state. Thus the conditions of appearing surface states
are

rBrC = 1 (2.4)

and
φBφC = 2πn. (2.5)

Since rB ≤ 1 and rC ≤ 1, (2.4) gives that both are unity. This means that there are no
propagating state within the crystal and no possibility of flux escaping from the crystal
into vacuum.

Image states can be classified into two categories [12]: (i) crystal-induced states that
originate from rapid variation of the phase changes occurring upon reflection from the
crystal surface, and (ii) image-induced states that appear due to rapid variation of the
phase changes occurring upon reflection from the barrier potential.

2.2 Rashba effect

Spin-orbit coupling (SOC) is a relativistic effect. In the rest frame of an electron moving
in an electric field, the electron experiences a magnetic field. The Zeeman interaction

Hzee = 2µ0µB H · s (2.6)

aligns the electron spin s parallel to the magnetic field H and consequently makes a
direction of spin more favorable than another one. This results in a splitting in energy.
The importance of the spin-orbit interaction, although its magnitude is small, is that
it breaks the symmetry of the Schrödinger equation. The spin-orbit interaction can be
included in the Schrödinger equation by adding the Pauli Hamiltonian

HSOC = α L · S. (2.7)

For a spherical potential V (r), L and S are orbital and spin momentum, and the spin-
orbit parameter α can be written as

α =
~

2m2c2

1

r

dV (r)

dr
. (2.8)
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Rashba effect

In order to treat magnetic systems in a non-perturbative way, one starts with the
Dirac equation

H = α · pc+ βmc2 + V, (2.9)

where α and β are Dirac matrices [13].
If a Hamiltonian is invariant under time reversal, e.g. the above Dirac Hamiltonian,

it follows that E(k, ↑) = E(−k, ↓). If a crystal has a center of inversion, it implies that
E(k, ↑) = E(−k, ↑). Combining these relations yields Kramers’ degeneracy, E(k, ↑) =
E(k, ↓), which states in a crystal with the center of inversion the electronic states are
not spin-polarized.

Spin degeneracy is a result of both time-reversal and inversion symmetry. At a
surface, breaking of the inversion symmetry results, via the spin-orbit coupling, to a
splitting in the dispersion relation. In a two-dimensional free-electron gas the potential
in z direction confines electrons to the surface. Thus, the spin-orbit Hamiltonian can be
written as

HSOC = γR(σx∂y − σy∂x), (2.10)

where γR is the Rashba parameter which is proportional to the gradient of the potential
V in z direction. Inserting the free-electron eigenfunctions in the Hamiltonian which
includes the Rashba term (2.10) yields a splitting in the free electron eigenvalues,

E± =
~2k2

2m?
± γR|k‖|. (2.11)

The eigenfunctions are fully spin-polarized

P±(k‖) =
1

|k‖|



±ky
∓kx

0


 , (2.12)

The spins of the electronic states are in the xy plane, align in opposite directions, and
are perpendicular to the wave vector k‖.

The nearly free electron (NFE) model is able to describe the nature of the splitting
but it cannot give a correct quantitative result. The experimental splitting, e.g. in
Au(111) [3], is much larger than what is estimated by a NFE model. This small splitting
is an artifact of the model; the core region of the ionic potential, where the gradient of
the potential is large, is neglected.

It has been shown, in the framework of the tight-binding model, that γ is linearly
dependent on (i) the atomic spin-orbit splitting and (ii) the surface potential. A large
atomic spin-orbit interaction (SOI) and a large gradient of the surface potential result in
a large splitting of the surface state dispersion [14]. Adsorption of oxygen, for example,
enhances the spin splitting due to increasing of the surface-potential gradient [15].

A potential gradient within the plane leads to another contribution to the spin-orbit
interaction [7]. The interplay of both contributions, in-plane and out-of-plane gradient
potential, manifests itself as an enhanced splitting in the anisotropic confinement plane
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The Rashba splitting of surface states

Figure 2.1: Schematic spin structure of Rashba-split and exchange-split surface states at
a non-magnetic surface (top) and at a magnetic surface (bottom). The left panels show
systems with inversion symmetry while the right panels show systems without inversion
symmetry. The Rashba spin-orbit coupling in a ferromagnetic two-dimensional electron
with in-plane magnetization M removes the inversion symmetry of the spin-split band
structure, E(+k‖) 6= E(−k‖) for k‖ ⊥M (bottom right).

and a nonzero spin polarization in z direction. First-principles calculations predicts a
nonzero but small Pz for L-gap surface states in Au(111) [6] and a sizeable Pz for surface
alloys, e.g. (

√
3×
√

3)-R30◦Bi/Ag(111) [5].
At a magnetic surface, e.g. Gd(0001), spin degeneracy is lifted by the exchange

interaction and spins are align along the quantization axis. The effect of the spin-orbit
interaction is mainly a modification of the energy dispersion. Figure 5.4 depicts the spin
structure of Rashba split surface states at a non-magnetic and at a magnetic surface.

? ? ?
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Chapter 3

Self-interaction correction

3.1 Density-functional theory

An exact description of the many-body problem requires the solution of the Schrödinger
equation with 3N coupled spatial degrees of freedom. For macroscopic systems the
number of electrons is quite large and the solution to the N -electron problem has to be
approximated.

The original density-functional theory (DFT) is the Thomas-Fermi (TF) method
which – although is not accurate enough for present-day calculations – illustrates the
way DFT works. In TF theory the total-energy functional consists of the kinetic-energy
functional (an explicit function of the density of a non-interacting electron system), the
external energy functional, the local exchange term (after Dirac) and the classical Hartree
energy functional. The attraction of the method is evident by the fact that the equation
for the density is quite simpler than that for the many-body wavefunction [16].

The electron density of a many-body system, ρ(r), determines the number of electrons
N and the external potential Vext(r). The Hohenberg and Kohn (HK) [17] theorems state
that for any system of interacting particles in an external potential Vext(r), the latter is
determined uniquely, except for a constant, by ρ(r). Furthermore the theorems introduce
the variational principle for the energy: The universal functional of the energy in terms
of density can be defined such as the exact ground-state energy of the system is the
global minimum value of this functional.

The HK theorems provide no guidance to construct the functionals. It was the
ansatz made by Kohn and Sham (KS) [18] that makes DFT the most widely method for
electronic structure calculations. The KS ansatz assumes that the ground-state electron
density of the interacting system is equal to that of some chosen non-interacting reference
system. The ground-state wavefunction of the non-interacting system can be expressed
by a Slater determinant of N one-particle solutions, φi(r), with lowest energy. The
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Self-interaction correction

corresponding electron density and the kinetic energy can be written as 1

ρs(r) =
N∑

i

φ∗i (r)φi(r) (3.1)

and

Ts = −
N∑

i

〈φi | ∇2 | φi〉, (3.2)

respectively. The kinetic energy of the non-interaction system is not the exact kinetic
energy of the system of interest, T [ρ]. The KS idea is to set up a problem in such a
way that Ts[ρ] is its kinetic energy component. The KS energy functional can then be
written as

EKS[ρ] = Ts[ρ] + EH [ρ] + Eext[ρ] + Exc[ρ]. (3.3)

The exchange-correlation energy Exc[ρ] contains the difference between the kinetic energy
of interacting and non-interacting system, and the nonclassical part of the electron-
electron interaction

Exc[ρ] ≡ T [ρ]− Ts[ρ] + Vee[ρ]− EH [ρ], (3.4)

where Vee[ρ] and EH [ρ] indicate electron-electron energy functional and Hartree term,
respectively.

3.2 Local (spin) density approximation

The choice of the approximation for the exchange-correlation potential is crucial. Solids
can often be described as being close to the limit of the homogeneous electron gas. In
this limit the effects of exchange and correlation are local in character and the local
density approximation (LDA) [18] is a suitable approximation.

In LDA the exchange-correlation energy per particle of a homogenous electron gas is
used to make the exchange-correlation potential

ELDA
xc [ρ] =

∫
drρ(r)εhomxc (ρ(r)), (3.5)

V LDA
xc (r) = εxc(ρ(r)) + ρ(r)

δεxc(ρ(r))

δρ(r)
. (3.6)

The second term in the last equation is called response potential [19] and is due to the
change in the exchange-correlation hole density.

The local spin density (LSD) approximation is the spin-polarized extension of LDA.
The LSD exchange-correlation potential is expressed as

V LSD
xc,σ (r) =

δ

δρσ
(ρ(r)εxc(ρ↑, ρ↓)). (3.7)

1In the following we use Rydberg atomic units, ~ = 1 and 2m = 1.
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Local self-interaction correction

3.3 Local self-interaction correction

Although the LDA electronic structure cannot claim quantitative accuracy for the deter-
mination of the electronic structure, LDA generally provides a qualitative understanding.
The success of LDA, which is impressive despite its crude presumption, must be largely
due to a cancellation of errors [16]. Despite of the LDA’s success, there are serious short-
comings: The properties of 3d metal oxides are described badly, the band gap of semicon-
ductors are underestimated, in f -systems the density of states is in strong disagreement
with experiment, in some cases LDA gives qualitatively wrong results for Mott-Hubard
insulators, to name a few. Some of the discrepancies are due to the restriction of DFT to
describe the ground-state properties. But some failures can be attributed to the partial
cancellation of the spurious self-interaction of an electron with itself, which is present in
the KS effective potential. This kind of systematic error can be corrected by removing
the self-interaction from the total energy functional. Perdew and Zunger [20], who first
addressed this problem in the context of DFT, proposed a self-interaction version of Exc,

ESIC
xc [ρασ] = ELSD

xc [ρ↑, ρ↓]−
occ∑

ασ

(EH [ρασ] + ELSD
xc [ρασ, 0]), (3.8)

where ασ is a combined index labeling the orbital and spin, respectively. The SI correc-
tion potential becomes

V SIC
ασ (r) =

δELSD
xc [ρ↑, ρ↓]

δρσ
− VH [ρασ](r)− V LSD

xc,σ [ρασ](r). (3.9)

The special feature of the SIC is the dependence of the potential on the individual
orbital densities which makes the orbitals to be non-orthogonal. The orthonormal KS
orbitals are replaced by orbitals which minimize the self-interaction corrected energy
functional. Varying (3.8) with respect to the orbital spin densities with the constraint
that SIC orbitals form a set of orthonormal functions leads to the SIC eigenvalue equa-
tions

(HLDA + V SIC
α ) | φα〉 =

∑

α
′

λαα′ | φα′ 〉 (3.10)

with the localization condition

〈φα | V SIC
α − V SIC

β | φβ〉 = 0. (3.11)

The localization condition ensures the stability of the SIC energy functional with respect
to infinitesimal unitarian mixing of the orbitals [21].

Self-interaction is significant for localized states and it tends to zero for extended
states since in the latter case the Coulomb interaction of an electron with itself is of
order 1/N . For more itinerant systems SIC does not give localized solutions, and it then
reduces to the LDA. Accordingly, the application to semiconductors, e.g. Si, does not
increase the fundamental LDA gap [22]. The self interaction correction has been applied
to d-and f -electron systems in different methods [23–26].
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Self-interaction correction

A simplified version of SIC approximation based on multiple scattering theory im-
plements the SI correction locally [26]. All one-particle properties including the charge
density can be calculated from the single-particle Green’s function,

ρσ = − 1

π

∫ EF

EB

dE =GLL,σ(r, r;E), (3.12)

where ρσ is the total valence charge density per spin σ. EB and EF denote the bottom of
valence band and the Fermi energy, respectively. From this density the effective potential
is calculated for the next iteration of the self-consistency cycle.

Within KKR method the degree of localization is determined by the Wigner delay
time, that is the energy derivative of the single-site phase shift [27]

τW =
dδl(E)

dE
, (3.13)

which for localized valence states is large. For a localized state, in a spherically symmetric
potential, characterized by quantum number n, angular momentum L and spin σ the
charge density is

ρSICnLσ = − 1

π

∫ E2

E1

dE =GLL,σ(r, r;E). (3.14)

Here, E1 and E2 lie slightly below and above the energy of the state nLσ. The charge
density is used to construct the effective self-interaction free potential for site i as

V LSD−SIC
eff,iLσ = V LSD

eff,σ(r) + V SIC (3.15)

and
V SIC = −VH [ρSICiLσ ](r)− V LSD

xc [ρSICiLσ , 0](r). (3.16)

For each self-interaction corrected channel, labeled by L̃σ̃, the L̃ element of the t-
matrix calculated from the LSD potential is replaced by the one obtained from the
SI-corrected potential,

t̃iLσ = tiLσ(1− δL,L̃δσ,σ̃) + ti,LSD−SIC
L̃σ

δL,L̃δσ,σ̃. (3.17)

The new t-matrix t̃ is used to calculate the SI-corrected scattering path operator.
In the local self-interaction correction (LSIC) method the localization condition (3.11)

is not applied and the energy minimization of the total energy determines the best
configuration. The total energies are invariant under a rotation of the coordinate system
owing to symmetry adapted spherical harmonics.

3.4 Transition state approximation

In the calculation of ground-state properties, e. g. magnetic ordering and local magnetic
moments, the SI correction is applied with full strength. For excited states, it appears
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Transition state approximation

that the binding energies of the SI-corrected localized levels are significantly too large
when compared to those determined from spectroscopical data, i. e. from photoemission
intensities. This ‘overcorrection’ of the SIC is attributed to the orbital relaxation.

The density-functional theory of Hohenberg, Kohn, and Sham applies only if the oc-
cupation number of the orbitals are either zero or one. If the occupancy of one of the
single-particle states has been changed, one has to generalize the theory by including
the occupation number, as was done by Janak [28]. According to Janak’s theorem, the
derivative of the total energy with respect to the orbital occupation equals the eigenen-
ergy of the corresponding orbital,

∂E

∂fα
=
〈
ψα|HLSD|ψα

〉
= εα, (3.18)

where HLSD is the LSD Hamiltonian and fα is the occupation number of the orbital ψα,
and

occ∑

α

fα = N. (3.19)

The removal energy can be calculated by removing an electron from an occupied
state,

∆Erelaxed = −
∫ 1

0

dfαεα(fα). (3.20)

To evaluate the above integrals the eigenvalues of relaxed orbitals must be calculated.
Several ways to calculate the removal energy have been proposed [29] but they lead
to unphysical effects [30]. In Slater’s transition state approximation (STSA) [31] one
calculates εα(fα) only at the midpoint rather than calculating function inside the integral
for all values between 0 and 1.

I start from the Taylor expansion of the eigenvalue as a function of the occupation
number in the neighborhood of Fα,

εα(fα) = ε(Fα) + (fα − Fα)

(
∂ε

∂fα

)

fα=Fα

. (3.21)

The restriction to the first order is justified if the eigenvalue depends almost linearly on
its occupation number [32, 33]. Inserting (3.21) into (3.20) and integration from fα = 1
to fα = 1− p gives

E(fα = 1− p)− E(fα = 1) = −pεα(Fα) +

[
p2

2
− p(1− Fα)

](
∂εα
∂fα

)

fα=Fα

. (3.22)

To have a method similar to Koopmans’ theorem one would need the eigenvalues at
full occupancy. For Fα = 1 and p = 1,

∆Erelaxed = −εα(1) +
1

2

(
∂εα
∂fα

)

fα=1

. (3.23)
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Self-interaction correction

The first term is the energy of the fully occupied orbital α. The second term accounts for
the orbitals relaxation. This term includes a ‘non-Koopmans’-like correction (relaxation
of the localized state) and the relaxation energy (relaxation of the other orbitals). In
many applications to localized states, the orbitals relaxation is significant. To achieve
an accurate electron removal energy, the second term of (3.23) has to be included in the
energy calculation. Using the Hellmann-Feynman theorem [16], the second term on the
right-hand side of (3.23) can be written as

∂εα
∂fα

=

〈
ψα

∣∣∣∣
∂HLSD

∂fα

∣∣∣∣ψα
〉
. (3.24)

If the relaxation of other orbitals is neglected (in analogy to Koopmans’ theorem), then
(3.24) reduces to

∂εα
∂fα

=

〈
ψα

∣∣∣∣uα + ρα
∂εxc

∂ρ

∣∣∣∣ψα
〉
, (3.25)

where uα is the Coulomb potential associated with orbital α. For fα = 1, the first
term is the self-Coulomb interaction of an electron. The second term is the change of
the exchange-correlation energy (to first order in the occupation number) of the system
due to the removing one electron from the orbital α. (3.25) can be interpreted as the
self-interaction of an orbital whose occupation number is reduced. Adding this positive
term to the energy of the orbital α increases the removal energy calculated within LSD.
Thus, the removal energy of a localized orbital with corrected potential Vα becomes

∆Eunrelaxed = −
〈
ψα
∣∣HLSD

∣∣ψα
〉
− 1

2

〈
ψα|V SIC

α |ψα
〉
. (3.26)

This is the unrelaxed removal energy when an electron is removed from orbital α. The
removal energy is larger than its experimental counterpart because the relaxation of
other orbitals is neglected.

As is apparent from (3.26), the removal energy of the orbital α is calculated with
half strength of the SIC potential associated with this orbital. By this method, i. e. by
calculating the LSD and the SIC ground-state potentials, one obtains removal energies
with good accuracy [25, 30]. Following previous works we call this approach transition-
state approximation (TSA).

? ? ?
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Chapter 4

A brief review of methods

4.1 Multiple scattering theory

Multiple scattering theory (MST) is a technique which can be used to solve a linear
partial differential equation, e.g. the Schrödinger equation

[−∇2 + V (r)]ψ(r) = Eψ(r)1, (4.1)

over a region which is divided into nonoverlapping subregions, e.g. individual potentials
Vi such that the domains of these potentials are disjoint,

V (r) =
N∑

i=1

Vi(ri) , ri = r−Ri , DVi ∩DVj =

{
∅ i 6= j
DVi i = j

.

The main task of MST is to obtain the properties of a system of scatterers by solving
the single-particle Schrödinger equation (4.1) for each scatterer. For a spherically sym-
metric potential, e.g. a muffin-tin potential [34], the solution of the Schrödinger equation
(4.1) is considerably simplified. In spherical coordinates, the Hamiltonian can be written
as

H = − 1

r2

∂

∂r
(r2 ∂

∂r
) +

L2

r2
+ V (r), (4.2)

where L is the angular momentum operator and

L2 = −
[

1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

sin θ

∂2

∂φ2

]
. (4.3)

H, L2, and Lz have common eigenfunctions and the solutions of the Schrödinger equation
(4.1) can be written in the form

ψ(r) =
∑

lm

clmRl(r)Ylm(r̂), r̂ =
r

| r | , (4.4)

1In the following we use Rydberg atomic units, ~ = 1 and 2m = 1.
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A brief review of methods

where clm are expansion coefficients. The spherical harmonics Ylm(r̂) are the eigenfunc-
tions of L2 and Lz such that

L2Ylm(r̂) = l(l + 1)Ylm(r̂) (4.5)

and

LzYlm(r̂) = mYlm(r̂). (4.6)

Here l and m are orbital angular momentum and azimuthal quantum numbers, respec-
tively. The radial amplitudes Rl(r) satisfy the radial Schrödinger equation

[
1

2

(
− 1

r2

d

dr
(r2 d

dr
) +

l(l + 1)

r2

)
+ V (r)− k2

]
Rl(k, r) = 0 (4.7)

and can be characterized as ‘regular solutions’ which vanish at the origin and ‘irregular
solutions’ which diverge at the origin.

For the case in which the potential V (r) vanishes, the ‘general solutions’ contain
regular solutions, which are finite in the limit r → 0 and can be written in terms of
spherical Bessel function jl, and irregular solutions, which diverge for r → 0 and can
be written in terms of spherical Neumann functions nl. For large r, the centrifugal
term l(l+ 1)/r2 vanishes and solutions behave asymptotically as plane waves. By linear
combination of regular and irregular solutions, the required asymptotical behavior can
be obtained (in terms of spherical Hankel functions h±l ).

For a nonvanishing potential it is convenient to match the solutions inside the sphere
to those outside the sphere. The phase shifts δl can be calculated by matching the
general solutions for outside the range of the potential (or V = 0) with the regular radial
amplitudes Rl at the muffin-tin boundary

tan δl(E) =
Ll(E, r)jl(kr)− j ′

l(kr)

Ll(E, r)nl(kr)− n′
l(kr)

, (4.8)

where Ll is the logarithmic derivative of the radial amplitudes Rl at the sphere boundary.

The phase shifts play an important role in single-site scattering. The derivative of
the phase shift with respect to the energy is proportional to the Wigner delay time [27],
the time by which the scattered wave is delayed with respect to the incident wave.
Having the obtained phase shift, one can calculate the single-site ‘transition matrix’, or
t-matrix, [35,36]

tl(E) = −k−1 sin δl(E) exp (iδl(E)) . (4.9)

The t-matrix is a central quantity in MST. All the building blocks of MST, such as
scattering path operator, structure constant, and scattering solutions, are achieved from
t-matrices.

14



Multiple scattering theory

4.1.1 The Green’s function in MST

Any representation of a resolvent is called a Green’s function. The resolvent of a time-
independent, linear, hermitian differential operator H (Hamiltonian) is defined formally
by

G(z) = (zI −H)−1, (4.10)

where z is a complex variable with Re{z} ≡ E and Im{z} ≡ s.
The Green’s function of a perturbed system can be written as a series that corrects

the Green’s function of the unperturbed system. This can be done by the Dyson equation
which connects a non-interacting system with Hamiltonian H0 to an interacting system
with Hamiltonian H = H0 + V . If G0(z) and G(z) are the resolvent of H0 and H, G(z)
can be expressed in terms of G0(z) and V

G(z) = G0(z)[1 + V G(z)]. (4.11)

By defining the T -operator as

T (z) = V (z) + V (z)G(z)V (z), (4.12)

G(z) can be written as

G(z) = G0(z) +G0(z)T (z)G0(z). (4.13)

For an ensemble of N scatterers, the effective potential V can be seen as the sum
of individual effective potentials which their domains being disjoint in space. The T -
operator (4.12) can be written in terms of scattering path operators [37]

T =
∑

nm

τnm, (4.14)

where

τnm = tnδnm + tnG0

∑

k 6=n
τ km. (4.15)

The t-matrix tn and the Green’s function G0 describe the scattering from the potential
on the scattering centers n and the free propagation between the scattering centers,
respectively.

The Green’s function G(r, r
′
;E) when r and r

′
are near some site n can be expressed

as

G = Gn +GnTnnG
n, (4.16)

where the single-site Green’s function

Gn = G0 +G0t
nG0 (4.17)
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A brief review of methods

describes the propagation of an electron in the field of the potential of the site n and

Tnn =
∑

i 6=n

∑

j 6=n
τ ij (4.18)

sums all scattering events which neither begin nor end on the site n. Inserting (4.17)
and (4.18) into (4.16) leads to the expression

G(rn + Rn, r
′
n + Rn;E) =

∑

LL′

Zn
L(rn;E) τnn

LL′ Zn
L′ (r

′
n;E)

−
∑

L

Zn
L(r<;E) J̃nL(r>;E). (4.19)

The elements of τnn
LL′ are obtained from

τnm
LL′ =

(
[tn
LL′ ]−1δnm −Gnm

0,LL′

)−1

, (4.20)

where Gnm
0,LL

′ indicates the structure constant [38]. The scattering solutions Z and J̃ are

the solutions of the Schrödinger equation for a enteral field at site n. The main properties
Z and J̃ are listed in Table 4.1.1.

If r and r
′

refer to different origins, i. e. r = rn + Rn and r
′
= rm + Rm, the Green’s

function can be expressed as [39]

G(rn + Rn, rm + Rm;E) =
∑

LL′

Zn
L(rn;E) τnm

LL′ (E) Zm
L′ (rm;E). (4.21)

In principle all one-particle properties, such as charge and magnetization density, can
be directly obtained from G. The expectation value of a one-particle operator A can be
expressed as

Aab = ∓ 1

π

∫ Eb

Ea

dE Tr
[
=(A G±(r, r;E))

]
. (4.22)

where G±(r, r
′
;E) are side limits of the Green’s function G.

If the Hamiltonian is translational invariant, a lattice Fourier transformation of
τnm
LL′ (E) can be formed. The equation of motion for the scattering path operator in

momentum space is then

τnm
LL′ (k, E) =

[
(tn
LL′ (E))−1δnm −Gnm

0,LL′ (k, E)
]−1

. (4.23)

This is the KKR equation which is in particular important since it allows to obtain
the electronic structure. It implies that whenever the KKR determinant vanishes the
corresponding scattering path operator has a singularity [35,36,38].
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Layer KKR

4.2 Layer KKR

For a system with reduced symmetry the three dimensional wave vector k is not a
good quantum number. Therefore the 3D Fourier transform of the equation of motion
cannot be applied anymore. In layer KKR a solid is partitioned into layers of atoms
and these layers are divided into three regions: an interface region and two bulk regions
on both sides of the interface region. The main task of layer KKR is to determine the
scattering properties of the whole solid. This is achieved by constructive calculation of
the scattering properties of a single site (an atom for example), a single layer, stacks
of layers and eventually the entire solid. In this method a mixed basis set of partial
waves, like in the conventional KKR method, and plane waves, between layers of atoms,
are used. Theories of low-energy electron diffraction and photoemission also use these
approach.

The central equation of layer KKR is (4.19) which can be written as

G(ri, r
′
j;E) =

∑

LL′

JαL(r;E) Γα
LL′ JαL′ (r

′
;E) (4.24)

−
∑

L

JαL(r<;E) Hα
L(r>;E).

The main properties of H and J are listed in Table 4.1.1. The scattering paths ΓLL′ are
separated into interlayer and intralayer scattering events and can be expressed as

ΓLL′ =

[
(tα)−1

[
1

Ω

∫

Ω

dk2 τααi (k)− tα
]

(tα)−1

]

LL′
. (4.25)

Boundary condition determines ΓLL′ : The Bloch condition parallel to the layers deter-
mines the interalayer scattering path, and correct reflection at both sides of the interface
layer determines the interlayer scattering path. The elements needed to calculate Γ are
as following [40]:
(i) the scattering from an isolated atom, tα, cf. (4.9),
(ii) the scattering within an isolated layer which is 2D Fourier transform of (4.20),

Ti(k, E) = (t−1(E)− g(k, E))−1, (4.26)

Table 4.1: Properties of scattering solutions

Function Behavior for r → 0 Asymptotic for r →∞
| Z〉 regular | j〉t−1+ | h〉
| J̃〉 irregular | j〉
| J〉 regular | j〉+ |h〉t
| H〉 irregular | h〉
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A brief review of methods

where g is the 2D Bloch Green’s function,
(iii) the scattering path operator which sums all scattering paths which end with a
scattering event within layer i,

[τααi (k)]LL′ =
[
Ti(k) Reff

i Ti(k) + Ti(k)
]α
LL′ , (4.27)

where effective reflection, Reff
i describes the back scattering by all layers excluding layer

i.

4.3 Coherent potential approximation

In a disordered system the configurationally averaged matrix elements of a hermitian
operator can be calculated in a simple way by calculating the configurationally averaged
Green’s function, 〈G+(r, r

′
;E)〉. The configuration average of the Green’s function can

be written as [38]

〈G(z)〉 = 〈 1

z −H 〉 =
1

z −H0 − Σ(z)
, (4.28)

where H = H0 + V and Σ(z) being the (translationally invariant) electron self-energy
operator. H can be written as

H = H0 +W (z)︸ ︷︷ ︸
H′ (z)

+V −W (z)︸ ︷︷ ︸
V ′ (z)

, (4.29)

where W is the superposition of (translationally invariant) energy-dependent site quan-
tities Wi. The resolvent G(z) and the self-energy Σ(z) can be written in terms of
G

′
= [z−H ′

]−1 (which is translationally invariant and no longer configuration dependent)

〈G(z)〉 = [1 +G
′〈T (z)〉]G′

(z), (4.30)

Σ(z) = W (z) + 〈T (z)〉[1 +G
′
(z)〈T (z)〉]−1, (4.31)

(4.32)

where T (z) denotes the perturbation caused by V
′
(z),

T (z) = V
′
(z) + V

′
(z)G

′
(z)V

′
(z). (4.33)

For a chosen medium W (z) the configurational averaged Green’s function G(z;W (z))
equals the transactionally invariant Green’s function G

′
(z;W (z)) if and only if 〈T (z)〉 =

0. This is the so-called coherent potential approximation (CPA) condition. It states that
the configurational averaged Green’s function can be replaced by that of an effective
medium W (z) if on the average there is no additional scattering due to W (z). Since
V

′
(z) is a superposition of site dependent quantities, a multiple scattering expansion can

be applied.
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Coherent potential approximation

4.3.1 Single-site KKR-CPA

The total T -operator can be written in terms of single-site T -operators

T (z) =
∑

i

Qi(z), (4.34)

Qi(z) = ti(z) + ti(z)G
′
(z)
∑

j 6=i
Qj(z). (4.35)

The average of T -matrix, 〈T (z)〉, is therefore given by

〈T (z)〉 =
∑

i

〈Qi(z)〉. (4.36)

Keeping only the single-site quantities (omitting thus fluctuation terms) leads to the
single-site approximation for the configuration average

〈Qi(z)〉 = 〈ti(z)〉[1 +G
′
(z)
∑

j 6=i
〈Qi(z)〉]. (4.37)

Within the single-site approximation for a given periodic complex function W (z) the
CPA condition is reduced to 〈ti(z;W (z))〉 = 0.

Suppose a medium consists of a system with a coherent t-matrix tc on each site. The
additional scattering that occurs when an impurity atoms with t-matrix tA is introduced
into the lattice (at the origin) can be calculated as

τ 00
α = D00

α τ
00
c , (4.38)

where
D00
A (E) = [1− τ 00

c (E)(t−1
c (E))− t−1

A (E)]−1, (4.39)

and

τ 00
c (E) =

1

ΩBZ

∫
dk[t−1

c (E)−G(k, (E))]−1. (4.40)

The CPA condition for obtaining the coherent medium implies that the additional
scattering due to replacing tc at the origin by tA should vanish. Therefore for an alloy
with n components with concentrations cα, the CPA condition is given by

∑

α=A,B,...

cατ
00
α = τ 00

c (4.41)

or ∑

α=A,B,...

cαD
00
α = 1. (4.42)

In KKR-CPA calculations the single-site t-matrix for the coherent lattice is only a
guess, therefore the KKR-CPA equations have to be solved self-consistently.
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Site-diagonal properties. After solving the KKR-CPA equations the electronic struc-
ture of a site occupied by a particular type of atom can be calculated from the Green’s
function generated from the scattering path operator calculated for that type of atom.
The density of states can be calculated as

ρ(E) =
1

ΩBZ

∫
dk AB(k, E), (4.43)

where AB is the Bloch spectral function, which is the trace over the imaginary part of
the k−projection of the Green’s function,

AB(k, E) = − 1

π
=[TrG+(k, E)]. (4.44)

For real energies the second term of (4.21) is real and the density of states of a disordered
system reads

ρi(E) = − 1

π

∑

α=A,B,...

cα=[Tr[Dii
α(E)τ iic (E)F iα,iα(E)]], (4.45)

F iα,iα

LL′ =

∫
dr Zi

L(ri;E)Zi
L

′ (ri;E), (4.46)

where the indices iα mean that site i is occupied by α.

Non-site-diagonal properties. In a binary alloy sites i and j may be occupied by
species A or B. Then the average for a non-site diagonal Green’s function can be written
in terms of non-site-diagonal scattering path operator, 〈τ ij(E)〉iα,jβ = Dii

ατ
ij
c D

jj
β . After

some mathematics the Bloch spectral function can be written as [36]

AB(k, E) = − 1

π

( ∑

α=A,B

cα=[Tr(Dii
α(E)τ iic (E)F iα,iα(E))]

+
∑

α,β=A,B

cαcβ =[Tr(Dii
α(E)τ(k, E)Dii

β (E)F iα,iβ(E))]
)

(4.47)

where τ(k, E) = τc(k, E)− τ iic (E) and τc(k, E) = [t−1
c (E)−G(k, E)]−1

? ? ?
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Chapter 5

Selected results

This chapter is devoted to the selected results. The first part of this chapter gives a
summary of the selected publications which are categorized in two groups. The second
part of this chapter consists of six selected papers.

5.1 Systematic study

Model calculations determine the influential parameters in the Rashba systems as atomic
spin-orbit splitting, in-plane potential gradient, and out-of-plane potential gradient [7,
14]. Experimental results add another parameter to the abovementioned: the relaxation
of the atoms of the surface layer which determines the contribution of different p orbitals
[4].

In paper I, the atomic contribution to the Rashba spin-orbit splitting is examined.
The structural parameters of Sb/Ag(111) are very close to those of the Bi/Ag(111) and
Pb/Ag(111) systems, see figure 5.1. The Sb adatoms replace every third Ag atom in
the topmost layer to form a surface alloy with a

√
3×
√

3−R30◦ surface geometry with
nominal SbAg2 stoichiometry.

Figure 5.2 shows the ARPES intensity maps and the calculated spectral densities
for the SbAg2 alloy along the high-symmetry directions of the two-dimensional Brillouin
zone. By analogy with the isostructural PbAg2 and BiAg2 alloys, we attribute the lower
band to states of mainly spz. The upper band has mainly pxpy character. The spin
polarization of these surface states is mainly in plane and normal to the wave vector.
The dispersion of the calculated bands follows nicely the experimental data.

Interestingly, the outcome of the KKR calculations in terms of orbital hybridization
indicates a similar admixture of pxpy character in the spz bands for both the Sb/Ag and
the Bi/Ag systems. This is a key point as it shows that the sensitivity to the in-plane
gradient should be about the same in both systems. Therefore, the smaller splitting
in Sb/Ag(111) compared to Bi/Ag(111) is mainly due to the smaller atomic spin-orbit
interaction.

The main achievement of paper I is the following scenario: for a sizable splitting,
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Figure 5.1: Side view of the
√

3 ×
√

3 − R30◦ structure of ordered surface alloys on
Ag(111). Sb (Bi or Pb) atoms are shown in blue, illustrating the outward relaxation of
Sb in the surface layer. Ag atoms of the first, second and third layer are shown in gray,
green and red, respectively.

Figure 5.2: (a): ARPES intensity maps of the SbAg2 surface alloy, measured around
the Γ̄ point along the Γ̄ − K̄ direction of the two-dimensional Brillouin zone. (b): The
calculated total spectral density along the Γ̄− K̄ direction.
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a strong atomic contribution is inevitable. An additional mechanism here, the in-plane
gradient can increase the splitting, as seen for Bi/Ag(111) and Pb/Ag(111). However,
such mechanism can only ‘trigger’ the effect. Without a strong atomic contribution, the
splitting is small, as proven in the present work on Sb/Ag(111). On the other hand, the
band splitting is not simply proportional to the relevant atomic spin-orbit parameter.

The main goal of paper II is to examine the possibility of tuning the Rashba char-
acteristics of the surface alloys on Ag(111). In paper II, we complete the picture of the
disordered binary alloys by investigating the BixSb1−x/Ag(111) and PbxSb1−x/Ag(111)
systems. Then we extend our calculations to ternary alloys and show the possibility of
independently tuning of the Rashba characteristics. Part of our results is supported by
recent experimental findings.

The ordered surface alloys Bi/Ag(111), Pb/Ag(111), and Sb/Ag(111), which have
been investigated by first-principles calculations and in experiments, differ with respect
to their Rashba characteristics kR, ER, and E0 (cf. figure 5.3). The challenge is how to
tune these properties. One possible way is to mix these three systems to achieve a surface
alloy with desirable properties. The idea of paper II is as follows. Bi/Ag(111) has a
large splitting and occupied spz surface states, while Pb/Ag(111) has a large splitting
and unoccupied spz surface states. In a disordered binary alloy BixPb1−x/Ag(111) the
Fermi energy can be tuned by the concentration x, while keeping a large spin splitting. In
contrast, Sb/Ag(111) has occupied surface states with almost the same binding energy as
those in Bi/Ag(111) but a minor splitting. This allows to tune mainly the spin splitting
but keeping the Fermi energy in BixSb1−x/Ag(111). Thus, by an appropriate choice of
concentrations x and y in a ternary alloy BixPbySb1−x−y/Ag(111) we expect to tune the
Fermi energy and the splitting independently.

In paper II, first we consider the properties of the disordered binary alloys. The
following paragraphs mention the main results.

In the disordered binary alloy BixPb1−x/Ag(111) the ratio of the Rashba energy ER

and the Fermi energy EF can be chosen within a wide range, in dependence on the Bi
concentration x [41]. Pb has one valence electron less than Bi, which explains the sizable
shift of the surface states to higher energies (cf. the panels on the right-hand side of
figure 5.4). Although the relaxation is of the same order, the splitting is smaller for Pb.

Recently, the surface states of the disordered binary alloys BixSb1−x/Ag(111) were
mapped out by angle-resolved photoelectron spectroscopy. The momentum offset kR

evolves continuously with increasing Bi concentration x. The splitting decreases sizably
for x < 0.50 [42]. In theory, the outward relaxation of Bi is larger than for Sb (15 % and
9.6 %, respectively). Consequently the charge which is removed from the Sb muffin-tin
sphere (0.94 %) is smaller than that of Bi (0.99 %). Since Bi and Sb are iso-electronic,
with valence-shell configuration 5p3 and 6p3, E0 remains almost unaffected by x, as can
be seen in the bottom row of figure 5.4. The spin splitting for Sb is much less than for
Bi, in agreement with the atomic spin-orbit parameter (0.4 eV and 1.25 eV).

To complete the picture of the binary alloys we turn to PbySb1−y/Ag(111), for which
experimental results are not available. As the Pb concentration increases, E0 shifts
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Figure 5.3: Schematic dispersion of Rashba-split surface states in a surface alloy, with
negative effective mass m?. E0, kR, and ER denote the crossing point of the bands
at k‖ = 0, the splitting, and the Rashba energy, respectively. The spin orientation is
indicated by the bands’ colors (blue, red). The grey areas highlight the regions I (dark
grey) and II (light grey).

down from EF + 0.6 eV to EF − 0.4 eV, implying that the surface states become com-
pletely filled at about y = 0.3 (cf. the panels on the left-hand side of figure 5.4). As for
BixSb1−x/Ag(111), the spin splitting increases with y.

Our investigation of the disordered binary surface alloys, given in the first part of
paper II, suggests three underlying mechanisms which influence the splitting of the
surface states.

A first mechanism is relaxation. The outward relaxations of Sb, Pb, and Bi are
in accord with their atomic radii; the larger the atomic radius, the larger the outward
relaxation. The relaxation is accompanied by a charge transfer from the atomic sphere
to the surrounding: the larger the relaxation, the larger the charge transfer [43]. This
mechanism determines the energy position of the degenerate point E0 and, consequently,
the Fermi energy or band-filling of the surface states (2DEG).

A second mechanism is the atomic spin-orbit parameter. Bi and Pb are heavy ele-
ments with large SO parameter (1.25 eV for Bi and 0.91 eV for Pb [44]), in contrast to
the lighter element Sb (0.4 eV [44]). The Rashba splitting depends both on the atomic
SO-coupling strength and the potential gradient [14]. Since the latter should not differ
considerably among the considered systems, the spin splitting is mainly determined by
the atomic SO coupling.

A third mechanism is electron doping or band filling. Pb has one electron less than Bi
(ZPb = 82, ZBi = 83). Within a rigid-band model, the surface states in Pb/Ag(111) are
shifted to higher energies, as compared to those in Bi/Ag(111). This picture is confirmed
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Figure 5.4: Surface states of disordered ternary alloys BixPbySb1−x−y/Ag(111) along Γ̄–
K̄ of the two-dimensional Brillouin zone. The spectral density at a heavy-element site
BixPbySb1−x−y is depicted as linear gray scale, with dark gray corresponding to high
spectral weight.
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Figure 5.5: Spin splitting in disordered ternary alloys BixPbySb1−x−y/Ag(111). The
surface-state displacement kR (in reciprocal space) is depicted as color scale as a function
of Bi concentration x, Pb concentration y, and Sb concentration z = 1 − x − y. The
color bar on the right is in units of Å−1.

by experiments and first-principles calculations [41].

Having established the ingredients which are necessary for independently tuning the
Fermi energy and the spin splitting in the surface alloys, we now mix them to disordered
ternary alloys BixPbySb1−x−y/Ag(111).

In figure 5.4 the surface-state dispersions of ternary alloys BixPbySb1−x−y/Ag(111)
are shown. The Rashba characteristic of the ternary alloys follow the general trends of
the binary alloys which have been discussed before. In the ternary alloys with larger
outward relaxation (i. e. the Bi- and Pb-rich compounds), the degenerate point E0 shifts
toward higher energies (main mechanism: relaxation). The larger the concentration of
heavy elements Bi and Pb as compared to the Sb concentration, the larger the splitting
kR (main mechanism: atomic spin-orbit parameter). The degenerate point E0 shifts
upward with increasing Pb concentration (main mechanism: band filling).

The shift kR of the surface states in reciprocal space versus concentrations x and
y is shown in figure 5.5. As expected, the smallest splitting (dark blue) shows up for
Sb/Ag(111) (z = 1− x− y = 1), while the largest (dark red) corresponds to Bi/Ag(111)
(x = 1). For Pb/Ag(111), kR is of intermediate order (green/yellow). Surprisingly, the
splitting is not monotonic, as one might have expected in a rigid-band picture. For
example, kR shows a local minimum at (x, y, z) ≈ (0.4, 0.4, 0.2).

As kR, the Rashba energy ER depends monotonously in a large range of concentrations
(not shown here). Sizable Rashba energies are found mainly for Bi-rich alloys, say for
x > 0.5. This implies that for accessing region I (cf. figure 5.3), Bi-rich surface alloys are
inevitable. The energy E0 of the degeneracy point depends almost linearly on the heavy
elements’ concentrations x and y (not shown here). For equal Bi and Sb concentrations
(x = z) it is nearly constant; upon adding Pb, E0 shifts up. For systems with about
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40 % of Pb concentration, E0 is very close to the Fermi level EF, so that the latter lies
in region I.

In summary, in paper II we investigate three underlying mechanism that can control
the Rashba characteristics of the surface alloys on Ag(111). It is also shown that in
disordered ternary surface alloys BixPbySb1−x−y/Ag(111), the Fermi energy and the
Rashba splitting can be independently tuned by choosing the concentrations x and y of
Bi and Pb, respectively.

In ‘systematic study’ section, the ordered surface alloys Sb/Ag(111) and disordered
binary and ternary surface alloys on Ag(111) are studied. The main achievement of this
section are as follows. (i) We examine the atomic spin-orbit contribution to the Rashba
splitting. (ii) Our ab initio investigation in conjuction with those previously carried out
confirm the outcomes of the model calculations. (iii) We examine three mechanisms that
can tune the Rashba characteristics in the Rashba systems. (iv) We show the possibility
of tuning independently the Fermi energy and the spin splitting in Rashba systems.

5.2 More complicated systems

Here, ‘more complicated systems’ include Bi/Cu(111) with an unconventional spin topol-
ogy (paper III), the system of Bi/BaTiO3 with a ferroelectric material as the substrate
(paper IV), the trilayer system of Bi/Ag/Si in which quantum well states and surface
states interact (paper V), and the (0001) surface of gadolinium as a strongly correlated
magnetic material (paper VI). The features of these systems are captured either by
first-principles calculations or by model calculations.

The first studied system is Bi/Cu(111) for which experimental data are available.
Bi/Cu(111) has a similar structure to Bi/Ag(111) but due to the much smaller lattice
constant of Cu as compared to Ag, the Bi atoms are more relaxed outward (by 38 % of
the bulk interlayer distance of Cu) than in Bi/Ag(111).

The spin-averaged spectral density of a Bi site shows the split spz and pxpy surface
states. The spz bands cross at EF + 0.1 eV; their Rashba splitting is ∆k = 0.10 Bohr−1

(Bi/Ag(111): ∆k = 0.14 Bohr−1) . The pxpy bands cross at EF + 1.4 eV (experiment:
EF = 1.38± 0.05 eV ), with ∆k = 0.08 Bohr−1 (experiment: ∆k = 0.12± 0.02 Bohr−1) .
The theoretical results thus are consistent with the experimental findings.

What makes the Bi/Cu(111) system special is not the occupied but the unoccupied
surface states that show a spin topology which cannot be explained by the standard
Rashba model. For the spz branch we find the expected conventional spin topology (line
a in figure 5.6) which is imposed by the Rashba model. In contrast, the pxpy branch
shows a red-red-blue-blue coding at, say, EF + 1.0 eV (line b in figure 5.6); thus, the
spins of these surface states have identical rotation direction.

Deviations from a smooth dispersion, as seen at the kink in figure 5.6 (at (E,k) ≈
(EF+0.6 eV,±0.12 Bohr−1)), indicate hybridization of electronic states. A group-theoretical
analysis shows that wavefunctions can be represented either as [45]

| ψ〉 =| spz ↑〉+ | px ↑〉+ | py ↓〉 (5.1)
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or as
| ψ〉 =| spz ↓〉+ | px ↓〉+ | py ↑〉 (5.2)

The spinors |↑〉 and |↓〉 are quantized with respect to the y axis. Both the outer spz band
and the inner pxpy state belong to the representation of equation (5.1) and hence are
allowed to hybridize. Thus, if the usually dominating | py ↓〉 component of the inner pxpy
state is surpassed by the| px ↑〉 component, the spin polarization of this state changes
sign. At the kink, where the inner pxpy band and outer spz band approach, both the
| spz ↑〉 and the | py ↓〉 orbitals show a significant spectral density. The inner spz and
the outer pxpy states belong to the representation of equation (5.2) and hybridize as well
but less due to their larger (E,k) ‘distance’. This group-theoretical explanation is fully
supported by spin- and orbital-resolved spectral densities.

In summary, there is more to the spin-resolved electronic structure of surface states
in surface alloys than first imagined. The basic properties are still described by the
Rashba model but important details such as size of the splitting—influenced by the in-
plane potential gradient—and the spin structure—altered significantly by hybridization
of surface states, as reported here—should be considered when proposing new spin-
electronics devices.

The main achievements of paper III are: (i) Adding another piece of data to our
knowledge about Rashba systems by studying a new Rashba system with a structure
similar to Bi/Ag(111). Comparing the systems of Bi on the Ag(111) and Cu(111) sur-
face shows the important role of the substrate. The 4p atomic spin-orbit parameter of Cu

Figure 5.6: Spin-resolved electronic structure of Bi/Cu(111) as obtained by first-
principles calculations. The difference n(E,k)|↑−n(E,k)|↓ of the spin-projected spectral
densities for a Bi site is depicted as color scale (red= negative, white= zero, and blue=
positive). The spin projection is in-plane and perpendicular to the wave vector. Horizon-
tal lines are guides to the conventional (line a) and unconventional (line b) spin topology
of the spz and the pxpy states, respectively.
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(0.03 eV) is about one-fourth of the 5p atomic spin-orbit parameter of Ag (0.11 eV) [43].
Consequently the size of the spin splitting is smaller in surface alloys on Cu(111) than
surface alloys on Ag(111). (ii) Studying a system with the ‘Unconventional spin topol-
ogy’. The spin topology is attributed to the hybridization of occupied and unoccupied
states. Since hybridization is a general mechanism, the effect seen in Bi/Cu(111) is prob-
able for similar systems: The unoccupied states in the Bi/Ag(111) system also show a
hybridization with the occupied states.

The Rashba systems studied so far show very different Rashba characteristics. Sev-
eral ways of controlling the Rashba characteristics are discussed in the selected results.
In paper IV we propose a new route for manipulating the Rashba splitting of electronic
states in an adsorbed layer: While keeping a Bi adlayer, we use a ferroelectric, here
BaTiO3(001), in place of a metallic or semiconducting substrate. The reversal of the in-
trinsic electric polarization P in the perovskite by an external electric field is equivalent
to reversing the mutual displacements of Ti and O atoms in [001] direction. Conse-
quently, the charge density at the Bi/BaTiO3 interface is changed, leading eventually to
a modification of the Rashba splitting of the surface states in the Bi adlayer.

Rashba/ferroelectric systems have a number of advantages. First, because the electric
polarization P is changed by an electric pulse in contrast to a steady electric field, the
Rashba splitting would remain switched permanently. This feature makes such a system
suitable for information storage devices. Second, the deposition of adatoms could alter
the surface electronic structure significantly and switching of the splitting may be difficult
or even impossible. Thus, Bi/BaTiO3 and similar systems lend themselves support for
a new class of materials for spin electronics devices.

A total-energy analysis shows that for both P↑ and P↓, the polarization at the topmost
TiO2 layer is negative (i. e. zTi < zO). However, the relaxations of these atoms differ:
zTi − zO = −0.13 Å for P↑ and −0.18 Å for P↓.

The Bi adlayer gives rise to occupied 6p electronic states in the fundamental band
gap of the surface BaTiO3 stack. These are mostly confined to the Bi layer but show also
considerable spectral weight in the adjacent layer, making them subject to switching of
P . The dispersions of the Bi surface states show the typical signatures of the Rashba
splitting: kR and the Rashba energy ER which are indicated in figure 5.7 (a).

The switching of the electric polarization P affects indeed the Rashba splitting kR,
thereby confirming the above motivation. The strength of this spin-electric coupling is
quantified by the relative change in kR; for Γ̄ − M̄ it is about 4.5 % whereas for Γ̄ − X̄
it is about 5.5 %. These numbers are qualitatively explained on one hand by the weak
polarization dependence of the surface geometry and on the other hand by the strong
localization of the Bi 6p states to the adlayer. Both a larger relaxation and a stronger
hybridization of the Bi states with those of the substrate could enhance the effect.

In summary, our theoretical investigation in paper IV provides a proof of concept
for spin-electric coupling in an adlayer of a heavy p metal on a ferroelectric substrate.
Switching of the intrinsic electric polarization P in the ferroelectric [here: BaTiO3] af-
fects the strength of the Rashba splitting in the adlayer [here: Bi]. This work predicts a
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moderate spin-electric coupling but a large absolute Rashba-type spin splitting. Never-
theless, it is conceivable to increase the effect by larger atomic displacements in particular
at the ferroelectric/adlayer interface. Our findings may pave a route for spin-electronic
devices.

In paper V, we introduce another way for controlling the electronic structure at the
Fermi level. We investigate the trilayer system of Bi/Ag/Si(111) in which the electronic
structure at the Fermi energy is tailored by tuning the thickness of the buffer layer.

Experiments on thin layers of bismuth on silicon have shown the spin-orbit splitting
of the surface states but failed to highlight any splitting of the Bi bulk electronic states
[46]. It was also shown for this system that the hybridization between bulk and surface
states removes the spin-orbit splitting of the surface states. To combine the giant spin

Figure 5.7: Surface states in Bi/BaTiO3(001) for P↑. (a) Spin-integrated Bloch spectral
density for Bi imaged as gray scale (white 0, black 400 states/Hartree) along M̄−Γ̄−X̄ of
the two-dimensional Brillouin zone. The Rashba splitting kR and the Rashba energy ER
are indicated. The inset shows a quarter of the Brillouin zone. (b) Spin-resolved density
for Bi depicted as color scale. Blue (red) indicates a positive (negative) difference n↑−n↓,
with the spin projection normal to k‖.
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splitting of the Bi/Ag(111) surface alloy with the established electronics material silicon,
we investigated a trilayer system composed of a BiAg surface alloy, a thin Ag film and a
Si substrate.

For the systems with Si substrate, focusing here on exemplary results for d = 10
[figure 5.8 (b)] and 19 [figure 5.8(c)], quantum well states (QWSs) show up as parabolas
centered at Γ̄. The most striking difference to Bi/Ag(111) [figure 5.8 (a)] are spin-
dependent band gaps at (E, k‖) points at which the QWSs would cross the Bi bands.
With increasing thickness of the Ag buffer, the number QWSs increases and the widths
of the gaps decrease. We now address, in particular, the electronic structure at the
Fermi level. For d = 10 ML [figure 5.8 (e)], highly spin-polarized states show up at
k = kF = 0.22 Å, with a spin polarization of about 33 %. On the contrary, a complete
gap appears for d = 19 ML, figure 5.8 (f). These findings imply that the spin-dependent
electronic structure at the Fermi level — and thus the transport properties — can be
drastically modified by the Ag film thickness.

In summary, findings of paper V suggest that it is indeed possible to match systems
with large spin-orbit splitting [here: Bi/Ag/(111)] with a semiconductor substrate. Fur-
thermore, interfacial properties can be custom tailored, in the present case by a single
parameter, namely, the Ag buffer layer thickness.

The main goal of Paper VI is to study the surface states of a magnetic surface. What
makes the study of Gd(0001) interesting is the electron correlation. Conventional LSDA
calculations predict almost all the properties of the Gd bulk and surface incorrectly. In
the framework of DFT, the remedy of this problem is an exchange-correlation energy
functional which treats the electron correlation in an improved way. We choose the local
version of the self-interaction correction method which is described in chapter 2.

Applying SIC to calculate the ground state properties of Gd, e. g. magnetic ordering
and local magnetic moments, is very successful. For excited states, it appears that the
binding energies of the SI-corrected localized levels are significantly too large when com-
pared to those determined from spectroscopical data, i. e. from photoemission intensities.
This ‘overcorrection’ of the SIC is attributed to the orbital relaxation. SIC calculations
are ground state calculations and one cannot expect accurate results for excited states.
In our calculations we used the transition state approximation (TSA), that is an average
of two ground state potentials (LSD and SIC potentials), to obtain a better agreement
with experiments that are associated with the excited states.

The occupied surface states of Gd(0001) are mostly dz2-majority states which hy-
bridize with the 4f -majority states. Consequently, the treatment of the electronic cor-
relation within the 4f states has an effect on both binding energy and dispersion of the
surface states. The d-f hybridization of the surface state can be quantified by the ratio
of the d- and f - contributions to its spectral density N at k‖ = 0. In agreement with
the increased local magnetic moment at the surface (8.0µB for SIC and 7.3µB for LSD),
the d-f hybridization of the surface state is larger for SIC (d/f = 7 ) than for LSD
(d/f = 50 ).

The majority surface-state dispersion of Gd(0001) is shown in figure 5.9. For the LSD
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approximation, the binding energy of 0.22 eV at k‖ = 0 (Γ̄) deviates sizably from the
experimental result (0.16 eV, dots). More striking is, however, the positive dispersion at
small wave vectors which does not match the negative dispersion in experiment. Appli-
cation of the SIC leaves the binding energy almost unchanged (0.23 eV) but results in
a strongly negative dispersion which also does not fit to experiment. The surface-state
dispersion calculated by TSA shows a plateau at small k‖, and the binding energy of
0.18 eV almost hits that of the experiment.

Another feature of figure 5.9 is the displacement of energy dispersion curves in the
regions with positive and negative k. At a magnetic surface, spin degeneracy is lifted
by the exchange interaction and majority spins are align along the quantization axis.
The effect of the Rashba spin-orbit interaction is mainly a modification of the energy
dispersion, i. e. moving the dispersion relations with respect to each other.

In summary, paper VI shows that the self-interaction correction to the local spin-

Figure 5.8: Effect of QWSs on the spin-split electronic structure of the Bi/Ag surface
alloy, as obtained from first-principles electronic-structure calculations. (a)-(c): The
spectral density at the Bi site is displayed as gray scale (with white indicating vanishing
spectral weight) for Bi/Ag(111) (a) and Bi/Ag/Si(111) for Ag buffer thicknesses d = 10
(b) and d = 19 (c). (d)-(f): The spin polarization of the electronic states is visualized by
∆N(E,k‖), i. e. the difference of the spin-up and the spin-down spectral density. Red
and blue indicate positive and negative values, respectively, where white is for zero ∆N .
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Figure 5.9: Effect of electronic correlations on the dz2-majority surface state of Gd(0001).
The spectral densities calculated within the local spin-density (LSD) approximation,
the transition-state approximation (TSA), and the self-interaction correction (SIC) are
shown along the M̄ − Γ̄− M̄ line of the surface Brillouin zone. Experimental data (dots)
are reproduced from [15]. The Rashba effect shows up as asymmetry of the dispersion
(E(k) 6= E(−k)). The in-plane magnetization is perpendicular to k‖, k‖ along M̄−Γ̄−M̄ .

density approximation improves considerably the description of ground-state properties
of correlated systems. Its flavor for excited states, i. e. the transition-state approximation,
is capable to describe correctly spectroscopic data.

The main achievement of Paper VI is the successfull deal with a complex interplay
of electronic correlations, surface relaxation, and spin-orbit coupling on the magnetic
ordering, the Curie temperature and the surface-state dispersion. A key issue in our
calculations is these do not rely on any adjustable parameter which is related to electronic
correlations.
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5.3 Summary

To summarize this chapter, we investigate several different Rashba systems. I categorize
the Rashba systems to two groups; the ‘common Rashba systems’ and ‘more complicated
Rashba systems’.

Studying the common surface alloys Rashba systems leads to a systematic study of
this unique class of Rashba systems. The outcomes of the model calculations, which are
taken as simple as possible to be solveable, are confirmed by our ab initio calculations.
Thus the first part of this study provide a comprehensive understanding of surface Rashba
systems.

More complicated systems are the systems that show a peculiar behavior. A good
knowledge of the influential parameters in the common Rashba systems is essential to
understanding the behavior of the more complicated systems.

Among the more complicated systems, Bi/Cu(111) has a twofold role. On one hand
the studying of the occupied states of Bi completes our knowledge about the common
Rashba systems. On the other hand the unoccupied states of Bi show a unconventional
spin topology which is considered as a peculiar behavior of the system.

Among the studied systems, three of them could find applications in new spintronic
devices. The common feature of these systems is to have tunable Rashba characteristics.
Rashba characteristics kR and ER can be independently tuned by choosing the concen-
trations of Bi and Pb in disordered ternary surface alloys BixPbySb1−x−y/Ag(111). In
the trilayer system of Bi/Ag/Si(111), the band gap structure at the Fermi level can be
tailored by the Ag layer thickness. A ferroelectric control of Rashba spin-orbit coupling
is proposed in the system of Bi/BaTiO3.

The study of the Rashba-like splitting of the surface states of a correlated magnetic
surface has several advantages. It gives support for the experimental findings. It also
could be a test for the method developed for our calculations. Treating a correlated
system requires a method beyond the commonly used LSDA. In our calculations we used
a simplified version of SIC. The transition state approximation considerably improves
the description of excited states in systems with electronic correlations.

5.4 Selected results

The remain of this chapter is devoted to the selected publications. The previously briefly
presented results could be found in the extended form in the publications.
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We have studied the electronic structure of the Ag�111���3��3�R30°-Sb surface alloy by angle-resolved
photoemission. We find two hybrid surface bands, similar to the isostructural Ag�111�-Bi interface. The spin-
orbit coupling induced spin splitting in momentum space, however, is strongly reduced from the Bi case.
First-principles and model band calculations correctly reproduce this difference. The present results illustrate
the complex interplay of atomic and structural contributions at the origin of the large spin separation in these
systems.

DOI: 10.1103/PhysRevB.79.075424 PACS number�s�: 73.20.At, 79.60.�i, 71.70.Ej

I. INTRODUCTION

The normal spin degeneracy of the electronic states of
nonmagnetic solids is lifted by the spin-orbit �SO� interac-
tion in systems that present a structural inversion asymmetry
�SIA�. This effect, first discussed for nearly free electrons
�NFEs� by Rashba and Bychkov �RB�,1 has been extensively
studied in semiconductor heterostructures,2 with the prospect
of future applications where spins could be manipulated by
an electric field. It has been shown by angle-resolved photo-
electron spectroscopy �ARPES� that an even larger effect
occurs at the Au�111� surface.3–5 SO-split bands have later
been observed at surfaces and interfaces of p,6–8

transition,9–12 and rare-earth13 metals, in disordered Au/Ag
alloys14 and in Au quantum wires.15 Recently, large SO split-
tings have been measured by ARPES in single-layer ordered
metallic alloys formed by high-Z metals �Bi and Pb� at the
Ag�111� surface.16–18 In Bi/Ag�111�, in particular, the wave-
vector separation �2·k0; see below� was found to be 1 order
of magnitude larger than in Au�111�, and much larger than
typical values found in semiconductor heterostructures. It
would be desirable to clarify the origin of such unexpectedly
large values, both for fundamental reasons and because k0 is
an important figure of merit for possible applications.

The RB model considers two-dimensional �2D� free elec-
trons subject to a surface electrostatic potential Vs whose
gradient, the surface electric field, is assumed to be oriented

along the surface normal ez
�. The electron spin couples to the

magnetic field appearing in the rest frame of the electron.
The free-electron parabola is replaced by a more complex
but still isotropic dispersion E��k�= �2k2

2m ��Rk, where the �
subscript refers to the two spin states, and the quantization

axis is perpendicular to ez
� and to k�. The Rashba parameter

�R, which is proportional to �Vs, indicates the strength of the
coupling. A cut along a generic direction within the plane

then yields two parabolic branches shifted away from �̄ by

k0=
�Rm

�2 . This picture is qualitatively consistent with the main
experimental features, but quantitatively inaccurate, since
typical values of �Vs yield band splittings orders of magni-
tude too small. Modern first-principles calculations16,19

achieve impressive quantitative agreement with the experi-
mental data, but provide only limited insight of the physical
origin of the splitting.

Since the electric field probed by the electron is strongest
near the ion cores, a realistic description of the phenomenon
should include atomic aspects. This was first accomplished
in a tight-binding model, where the SO splitting depends on
the product of the surface-potential gradient times the atomic
SO parameter.20 For clean metal surfaces the splitting de-
pends not only on the atomic number Z, but also on the
orbital character of the surface-state wave function, e.g., on
the relative sizes of the p and s components in an sp surface
state. It has been proposed that the asymmetry of the wave
function near the position of the nuclei resulting from mixing
different l states might be the single most important factor
leading to a SO splitting.21 On the other hand, the direct or
indirect role of the surface potential is illustrated by the ob-
served dependence on the Miller indices of the surface,6 and
also on the presence of adsorbates.22

For surface alloys such as Bi/Ag�111� and Pb/Ag�111�,
the strength of the atomic SO interaction of both the sub-
strate and the overlayer is clearly important, but is not the
only relevant parameter. For instance, the SO coupling
induced spin splitting measured for the Bi/Ag�111� alloy
�k0=0.13 Å−1� is larger than for both the Ag�111� and
Bi�111� surfaces. It is also four times larger than for the
Pb/Ag�111� alloy �k0=0.03 Å−1�,18 even if the 6p atomic SO
parameter �6p increases by only 37% between Pb �0.91 eV�
and Bi �1.25 eV�.23 The inhomogeneous charge distribution
within the alloy yields an in-plane component of the surface-
potential gradient which, in the presence of an in-plane SIA,
also contributes to the SO splitting. The results of a NFE
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model including the SO interaction indeed suggest that this
term is crucial to achieve very large values of k0.24 More-
over, spin-resolved ARPES measurements on Bi/Ag�111�
and Pb/Ag�111� have detected a substantial out-of-plane
component of the spin polarization, a telltale consequence of
the in-plane gradient.25 Surface corrugation, or equivalently
the relaxation of the adsorbate layer, is another key param-
eter that controls the hybridization with the substrate, and
therefore the orbital composition of the surface states.16,19

Finally, the electronic states of the alloys are more localized
than the noble-metal surface states. As a result, they probe
the surface-potential gradient more effectively, and the asym-
metry of their wave functions is enhanced with respect to the
clean metal counterparts.

Only a few combinations of p-metal adsorbates and
noble-metal substrates have been studied so far. More experi-
mental information is necessary to develop a comprehensive
model of SO splitting in these systems. As a step in this
direction we present here ARPES data and band-structure
calculations for the Sb/Ag�111� surface alloy. The structural
parameters of this interface are very close to those of the
well-characterized Bi/Ag and Pb/Ag systems. The Sb ada-
toms replace every third Ag atom in the topmost layer to
form a surface alloy with a ��3��3�R30° surface super-
structure with nominal SbAg2 stoichiometry, similar to the
substitutional PbAg2 and BiAg2 surface alloys formed by Pb
and Bi at the Ag�111� surface. The alloy layer exhibits a
preferential hcp stacking relative to the substrate, although
an fcc stacking is also possible.26–28 Sb and Bi have the same
s2p3 electronic configuration, but the atomic SO interaction
in the Sb 5p valence states is considerably weaker ��5p�Sb�
=0.4 eV�.23 Therefore Sb/Ag�111� provides an almost ideal
opportunity to assess the role of atomic contributions to the
SO splitting.

II. METHODS

The SbAg2 surface alloy was prepared by evaporation of
1/3 of a monolayer of Sb on the hot Ag�111� substrate
�T�400 K�, followed by an annealing at T�600 K. The
crystalline order was checked by low-energy electron diffrac-
tion �LEED�. ARPES measurements were performed in
Würzburg and Stuttgart, utilizing He I �h	=21.2 eV� radia-
tion from a high-brightness monochromatized helium lamp,
and at the Synchrotron Radiation Center in Madison, Wis-
consin. Hemispherical electrostatic analyzers were used to
measure ARPES intensity maps over acceptance angles of
�13° and �7° in the nondispersive direction. The energy
resolution was better than 10 meV, and the angular resolution
was 0.3°, corresponding to a wave-vector uncertainty of
�0.01 Å−1.

For the first-principles calculations we followed the mul-
ticode approach which already proved to be effective in re-
producing the band structure of the Pb/Ag�111� and Bi/
Ag�111� surface alloys.16,18 The geometric structure of the
surface has been obtained by the Vienna Ab Initio Simulation
Package �VASP�. The surface electronic structure has been
computed by our relativistic layer Korringa-Kohn-Rostoker
�KKR� code,29 using the optimized geometry as input. Since

first-principles calculations do not allow to distinguish per se
the various contributions �atomic, perpendicular SIA, and in-
plane SIA� to the RB splitting, we calculated the surface
band structure also within an NFE model. In the latter, the
mechanisms involved in the formation of the SO split-band
structure are parametrized, thus allowing their interplay to be
investigated on a semiquantitative level.

III. RESULTS AND DISCUSSION

Figure 1 shows two ARPES intensity maps for the SbAg2

alloy, measured around �̄, the center of the hexagonal sur-

face Brillouin zone �BZ�, along the �K �K̄= �0.84 Å−1 ,0��
and �M �M̄ = �0,0.72 Å−1�� high-symmetry directions. They

show two spectral features dispersing downward from �̄,
with an asymmetric intensity distribution that is due to
ARPES transition matrix elements and to the geometry of the
experiment. Although we will refer hereafter to each of these
features as a “band”, both of them exhibit some internal
structure, as discussed below. The lower-band maximum is at
a binding energy of 0.27 eV and the dispersion is well
approximated by a parabolic fit, with effective mass
m�=−0.15�0.01me, where me is the bare electron mass. The

upper band forms a hole pocket at �̄. It crosses the Fermi
level at kF��K�=0.15 Å−1 and kF��M�=0.17 Å−1. In this
case a parabolic fit would yield ambiguous results because of
this slight anisotropy and of the underlying internal structure.

The bands of Fig. 1 appear after the surface alloy is
formed. They replace the Ag�111� Shockley state with mini-
mum at �0.06 eV on the clean surface, and reflect the hy-
bridization between the adsorbate and the substrate states. By
analogy with the isostructural PbAg2 and BiAg2 alloys,16,17

we attribute the lower band to states of mainly Sbspz and
Ags characters. The upper band has mainly pxy character.
These assignments are confirmed by our first-principles cal-
culations. However, while in the Bi and Pb alloys each band

FIG. 1. �Color online� ARPES intensity maps �h	=21.2 eV� of

the SbAg2 surface alloy, measured at T=100 K around �̄ along �a�
the �K and �b� the �M directions of the surface BZ.
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exhibits a clear SO splitting, the effect is considerably
smaller here. The two split components are only resolved in
the upper band for k�0.2 Å−1, near the edges of the inten-
sity maps. Their different slopes suggest that they cross at
about 0.3 eV binding energy and partially overlap up to the
Fermi level. Such crossing is at variance with the Bi/Ag and
Pb/Ag cases, where the SO-split bands are mainly shifted in

k and only cross at the high-symmetry points �̄ and M̄. The
lower band does not exhibit a visible splitting, but its trace is
broader than the experimental wave-vector uncertainty, sug-
gesting also in this case an underlying structure. The wave-
vector broadening can be observed all the way to the band
maximum, where the width in the energy direction is small,
which again points to the presence of two underlying com-
ponents.

These qualitative conclusions are confirmed by momen-
tum distribution curves �MDCs� extracted from the intensity
map of Fig. 1�a� in correspondence of the horizontal lines at
E=0.05 eV and E=0.55 eV �Fig. 2�. At 0.05 eV the line
cuts only the upper band, and the corresponding MDC ex-

hibits two sharp peaks on opposite sides of �̄ with nearly
Lorentzian line shapes. The MDC at 0.55 eV, which cuts
both bands, shows broader line shapes for both bands, and
partially resolved split components in the upper band at k
= �0.25 Å−1. Remarkably, the intensity at the k�0 crossing
of the lower band �at k�0.08 Å−1� is totally suppressed.

To get more insight into the cause of the small splitting
and of the peculiar crossing in the band structure of Sb/
Ag�111�, we performed first-principles calculations using the
KKR method. The surface relaxation is a crucial parameter,
as it influences both the size of in-plane and perpendicular
potential gradient, and the amount of hybridization between
spz and pxy orbitals. The atomic positions as computed using
the VASP yielded an outward relaxation of the Sb atoms of
about 10%, close to the value of 15% found for Bi in Bi/
Ag�111� and consistent with the slightly smaller size of the
atomic radius of the Sb atom �2.9 Å �Sb� vs 3.1 Å �Bi��.
The value of 10% is somewhat larger than the 2–3 % esti-
mated from independent experiments.27,28 On Bi/Ag�111� no
experimental structural data are available. However, the

buckling values produced by our simulations seem to indi-
cate that we deal with two very similar interfaces.30

The spectral densities as given by the KKR method are
shown in Fig. 3 for the same maps of Fig. 1. The spin polar-
ization of these surface states is mainly in plane and normal
to the wave vector. Thus, for the wave vector along the x axis
�y axis� the spin is oriented in the y direction �x direction�,
but with opposite orientation for the spin-split pairs of states.
In the calculations we have decomposed the spectral density
at a Bi site with respect to the spin components along these
directions, thus obtaining the spin-resolved spectral densities
N↑ and N↓. The total spectral density N= �N↑+N↓� is shown
in the left panels of the figure. The corresponding in-plane
spin polarization P
= ��N↑−N↓� / �N↑+N↓�� �
=x ,y for k
=ky,x� is shown in the right panels. The dispersion of the
calculated bands follows nicely the experimental data. The
spin splitting, evident in the right panels, is barely visible in
the total density maps. The maximum energy separation
��100 meV� would be detectable with our energy reso-
lution, but the ARPES linewidth in these surface alloys is
dominated by surface disorder, which explains why the ex-
periment cannot access this detail. The calculation also re-
produces the anomalous crossing in the upper �mainly pxy�
band set. It occurs in the vicinity of the Fermi level, in the
region showing vanishing spin polarization, i.e., at �E ,kx�

FIG. 2. �Color online� MDCs extracted from the ARPES map of
Fig. 1�a�, in correspondence of the horizontal lines at E=0.05 eV
�top, red or dark gray line� and E=0.55 eV �bottom, blue or light
gray line�.

FIG. 3. �Color online� Left: the calculated total spectral density
N= �N↑+N↓�, for the �K �top� and �M �bottom� directions. Right:
the in-plane spin polarization P
 �
=x ,y for k=ky,x�, depicted with
positive and negative values represented by blue and red, respec-
tively. White is for zero polarization.
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= �0.2 eV,0.18 Å−1� and �E ,ky�= �−0.4 eV,0.28 Å−1�. A
third set of bands at higher energies, dispersing upward in
the �K direction, is ascribable to pxy �mj =3 /2� states.

Interestingly, the outcome of the KKR calculations in
terms of orbital hybridization indicates a similar ��25%�
admixture of pxy character in the spz bands for both the
Sb/Ag and the Bi/Ag systems. This is a key point as it shows
that the “sensitivity” to the in-plane gradient should be about
the same in both systems and cannot explain the difference in
the size of the splitting. Therefore, the smaller splitting in
Sb/Ag�111� compared to that in Bi/Ag�111� is mainly due to
the smaller atomic SO interaction. In other words, a strong
in-plane gradient is not effective in generating a strong SO
splitting of the interface bands unless supported by a signifi-
cant atomic contribution from the adsorbate. This consider-
ation is not influenced by the top layer stacking since the
calculations show no sizable difference between the faulted
and the nonfaulted surface reconstructions.

The individual contributions to the SO splitting cannot be
clearly separated, in particular in a first-principles computer
code. However, in model calculations that capture the essen-
tial ingredients they can be switched on and off individually,
and their mutual interplay on the splitting can be analyzed.
An NFE model has been recently developed to treat the pres-
ence of SIAs in a 2D electron gas.24 It qualitatively illus-
trates the different contributions from an in-plane and a per-
pendicular potential gradient to the spin splitting. If we
calculate the band dispersion for an in-plane gradient only,

we can reproduce the band crossing away from the �̄ point.
The result is displayed in Fig. 4 for the �K direction. As the
perpendicular gradient is set to zero in this case, there is no

momentum offset of the band maximum away from the �̄
point. This can be attributed to the fact that the in-plane
gradient results in higher-order contributions than the per-
pendicular gradient, which shows a linear contribution. Only
the combination of the in-plane and the perpendicular gradi-
ents will result in a strong enhancement of the spin splitting
according to the NFE model. For the present case of Sb/
Ag�111� we qualitatively conclude that we have a strong in-

plane contribution of the potential gradient, but since the
atomic SO interaction in Sb is much weaker than in Bi, a
strong enhancement of the spin splitting cannot be expected.
Notice that in a freestanding surface alloy, the in-plane in-
version symmetry is conserved, and the SIA comes into play
only when considering the interaction with the underlying
substrate layers.

From the experimental and theoretical results we can then
identify three ingredients to the spin-orbit splitting of the
surface states: �i� the atomic contribution, due to the strong
Coulomb potential of the nuclei, �ii� the perpendicular poten-
tial gradient, due to the surface-potential barrier, and �iii� the
in-plane potential gradient, due to the surface geometry. The
last one can be viewed as a crystal-field effect of the subsur-
face layers on the topmost layer. Both the perpendicular and
the in-plane gradients break the symmetry of a freestanding
Sb/Ag surface layer �which does not show Rashba splitting�.
The strongest contribution is the atomic one. The other two
are orders of magnitude less than the atomic contribution and
approximately of the same strength. This hierarchy suggests
the following scenario: for a sizable splitting, a strong atomic
contribution is inevitable, as can be seen from the surface-
state splitting in the series Cu�111�-Ag�111�-Au�111�. An ad-
ditional mechanism �here, the in-plane gradient� can increase
the splitting, as seen for Bi/Ag�111� and Pb/Ag�111�. How-
ever, such mechanism can only “trigger” the effect. Without
a strong atomic contribution, the splitting is small, as proven
in the present work on Sb/Ag�111�.

While the SbAg2 bands are approximately free-electron-
like near the center of the BZ, the dispersion is strongly
affected by the lattice potential at larger k values. This aspect
is not included in the simple RB model of the SO splitting,
and adds interesting structure to the in-plane spin
polarization.16 The departure from an isotropic dispersion is
illustrated by the calculated band structure of Fig. 3. Hints of
an anisotropy are visible already in the maps of Fig. 1: �i� the
Fermi wave vectors of the upper band are different in the two
directions, and �ii� the upper and lower bands get closer in
energy along �K but not along �M. The anisotropy is espe-
cially evident in the constant-energy contours of Fig. 5, ob-
tained by cutting the experimental band structure at four
binding energies between the Fermi level and 2.1 eV. At EF

�Fig. 5�a�� the map shows a hexagonal contour centered at �̄
from the upper �pxy� band. A second smaller contour, from
the lower band, is present in the E=0.4 eV map �Fig. 5�b��,
but only part of it is visible due to the strong intensity modu-
lation already evident in Fig. 1. Both contours grow in size at
larger binding energies. In panel �c� the lower-band contour
is also hexagonal, but rotated by 30° with respect to the
upper-band contour, which is distorted into a flowerlike
shape. Since the highest spin polarization is predicted at the
corners of the hexagons,16,24 the angular mismatch of the
constant-energy contours yields a similar offset in the spin
polarization of the two bands. The larger and weaker hexago-
nal shape, visible in panels �a�–�d� of Fig. 5 and schemati-
cally reproduced in Fig. 5�e�, is formed from arcs due to the
backfolding of the NFE bulk Ag sp conduction band at the
BZ boundaries of the surface alloy. These arcs cross the con-
tours of the alloy bands without being distorted. Therefore

FIG. 4. �Color online� Split bands obtained from an NFE model
including the SO interaction.
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the backfolding of the Ag bulk band is simply a final-state
effect, namely, the diffraction of the outgoing photoelectrons
by the ordered overlayer.

It is interesting to compare the hexagonal contours of Fig.
5 with the circular Fermi surfaces of the Shockley states of
the clean �111� surfaces of Cu, Ag, or Au. The larger size of
the alloy Fermi surface relative to the BZ cannot entirely
explain the difference. In particular, for the Au�111� surface
the ratio �kF /�M� is only 30% smaller than the correspond-
ing ratio for the SbAg2 alloy. The Shockley states of clean
noble metals with their weak lattice potential show free-
electron-like behavior and thus a circular Fermi surface. The
stronger effect of the lattice in the alloy is the result of the
more anisotropic ionic charge distribution within the surface
plane, where each Sb atom “sees” six Ag nearest neighbors
and six Sb next-nearest neighbors with an inequivalent ionic
potential. This anisotropy, only partially screened by the va-
lence electrons, is indeed at the origin of the in-plane gradi-
ent, which contributes to the SO splitting.

IV. CONCLUSIONS

In summary, we have studied the electronic structure of
the SbAg2 surface alloy. We found obvious similarities with
the bands of the isostructural BiAg2 and PbAg2 alloys, but a
much smaller SO splitting and a non-rigid band shift in wave

vector even for k values close to �̄. The experimental data
are well reproduced by first-principles relativistic calcula-
tions. These results indicate that large in-plane potential gra-
dient, which plays a crucial role in the BiAg2 surface alloy, is
ineffective in producing a large SO splitting unless supported
by a strong atomic SO interaction of one of the alloy con-
stituents. On the other hand, the band splitting is not simply
proportional to the relevant atomic SO parameter. More data
on other surface alloys, grown on different substrates, are
necessary to further clarify the interplay of atomic and struc-
tural parameters.

ACKNOWLEDGMENTS

M.G. kindly acknowledges clarifying discussions with G.
Bihlmayer. This work was supported by the Swiss National
Science Foundation and by the MaNEP NCCR. The Syn-
chrotron Radiation Center is funded by the National Science
Foundation under Award No. DMR-0537588. A.B. thanks
the Alexander von Humboldt Foundation for financial sup-
port.

1 Y. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 �1984�.
2 R. Winkler, Spin-orbit Coupling Effects in Two-dimensional

Electron and Hole Systems �Springer, New York, 2003�.
3 S. LaShell, B. A. McDougall, and E. Jensen, Phys. Rev. Lett. 77,

3419 �1996�.
4 G. Nicolay, F. Reinert, S. Hüfner, and P. Blaha, Phys. Rev. B 65,

033407 �2001�.
5 M. Hoesch, M. Muntwiler, V. N. Petrov, M. Hengsberger, L.

Patthey, M. Shi, M. Falub, T. Greber, and J. Osterwalder, Phys.
Rev. B 69, 241401�R� �2004�.

6 Y. M. Koroteev, G. Bihlmayer, J. E. Gayone, E. V. Chulkov, S.
Blügel, P. M. Echenique, and P. Hofmann, Phys. Rev. Lett. 93,

046403 �2004�.
7 K. Sugawara, T. Sato, S. Souma, T. Takahashi, M. Arai, and T.

Sasaki, Phys. Rev. Lett. 96, 046411 �2006�.
8 T. Hirahara, T. Nagao, I. Matsuda, G. Bihlmayer, E. V. Chulkov,

Y. M. Koroteev, P. M. Echenique, M. Saito, and S. Hasegawa,
Phys. Rev. Lett. 97, 146803 �2006�.

9 E. Rotenberg, J. W. Chung, and S. D. Kevan, Phys. Rev. Lett.
82, 4066 �1999�.

10 M. Hochstrasser, J. G. Tobin, E. Rotenberg, and S. D. Kevan,
Phys. Rev. Lett. 89, 216802 �2002�.

11 A. M. Shikin, A. Varykhalov, G. V. Prudnikova, D. Usachev, V.
K. Adamchuk, Y. Yamada, J. Riley, and O. Rader, Phys. Rev.

FIG. 5. �Color online� Constant-energy contours obtained at �a�
the Fermi level and at �b� 0.4, �c� 1.3, and �d� 2.1 eV binding
energies. The dashed hexagons are guides to the eye. Panel �e�,
which reproduces the data of panel �c�, shows the surface BZ and
the backfolded contours of the bulk Ag sp conduction band.

ASSESSING THE ATOMIC CONTRIBUTION TO THE… PHYSICAL REVIEW B 79, 075424 �2009�

075424-5



Lett. 100, 057601 �2008�.
12 Y. S. Dedkov, M. Fonin, U. Rüdiger, and C. Laubschat, Phys.

Rev. Lett. 100, 107602 �2008�.
13 O. Krupin, G. Bihlmayer, K. Starke, S. Gorovikov, J. E. Prieto,

K. Döbrich, S. Blügel, and G. Kaindl, Phys. Rev. B 71,
201403�R� �2005�.

14 H. Cercellier, C. Didiot, Y. Fagot-Revurat, B. Kierren, L.
Moreau, D. Malterre, and F. Reinert, Phys. Rev. B 73, 195413
�2006�.

15 I. Barke, F. Zheng, T. K. Rügheimer, and F. J. Himpsel, Phys.
Rev. Lett. 97, 226405 �2006�.

16 C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D.
Pacilé, P. Bruno, K. Kern, and M. Grioni, Phys. Rev. Lett. 98,
186807 �2007�.

17 D. Pacilé, C. R. Ast, M. Papagno, C. Da Silva, L. Moreschini, M.
Falub, A. P. Seitsonen, and M. Grioni, Phys. Rev. B 73, 245429
�2006�.

18 C. R. Ast et al., Phys. Rev. B 77, 081407�R� �2008�.
19 G. Bihlmayer, S. Blügel, and E. V. Chulkov, Phys. Rev. B 75,

195414 �2007�.
20 L. Petersen and P. Hedegåard, Surf. Sci. 459, 49 �2000�.
21 G. Bihlmayer, Y. M. Koroteev, P. M. Echenique, E. V. Chulkov,

and S. Blügel, Surf. Sci. 600, 3888 �2006�.

22 F. Forster, S. Hüfner, and F. Reinert, J. Phys. Chem. B 108,
14692 �2004�.

23 K. Wittel and R. Manne, Theor. Chim. Acta 33, 347 �1974�.
24 J. Premper, M. Trautmann, J. Henk, and P. Bruno, Phys. Rev. B

76, 073310 �2007�.
25 F. Meier, H. Dil, J. Lobo-Checa, L. Patthey, and J. Osterwalder,

Phys. Rev. B 77, 165431 �2008�.
26 S. A. de Vries, W. J. Huisman, P. Goedtkindt, M. J. Zwanenburg,

S. L. Bennett, I. K. Robinson, and E. Vlieg, Surf. Sci. 414, 159
�1998�.

27 E. A. Soares, C. Bittencourt, V. B. Nascimento, V. E. de Car-
valho, C. M. C. de Castilho, C. F. McConville, A. V. de Car-
valho, and D. P. Woodruff, Phys. Rev. B 61, 13983 �2000�.

28 P. D. Quinn, D. Brown, D. P. Woodruff, P. Bailey, and T. C. Q.
Noakes, Surf. Sci. 511, 43 �2002�.

29 J. Henk, in Handbook of Thin Film Materials, edited by H. S.
Nalwa �Academic, San Diego, 2001�, Vol. 2, Chap. 10, p. 479.

30 Other calculations give a much higher value �0.85 Å� for the Bi
relaxation in Bi/Ag�111� �Ref. 19�. Nevertheless, the same ref-
erence gives a Pb relaxation in Pb/Ag�111� consistently higher
than that observed experimentally �J. Dalmas, H. Oughaddou, C.
Leandri, J. M. Gay, G. Le Gay, G. Treglia, B. Aufray, O. Bunk,
and R. L. Johnson, Phys. Rev. B 72, 155424 �2005��.

MORESCHINI et al. PHYSICAL REVIEW B 79, 075424 �2009�

075424-6



Paper II

Tuning independently the Fermi energy and spin splitting in
Rashba systems: Ternary surface alloys on Ag(111)
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Abstract. By detailed first-principles calculations we show that the Fermi energy
and the Rashba splitting in disordered ternary surface alloys BixPbySb1−x−y/Ag(111)
can be independently tuned by choosing the concentrations x and y of Bi and Pb,
respectively. The findings are explained by three fundamental mechanisms, namely
the relaxation of the adatoms, the strength of the atomic spin-orbit coupling, and
band filling. By mapping the Rashba characteristics, i. e. the splitting kR and the
Rashba energy ER, and the Fermi energy of the surface states in the complete range of
concentrations, we find that these quantities depend monotonically on x and y, with
a very few exceptions. Our results suggest to investigate experimentally effects which
rely on the Rashba spin-orbit coupling in dependence on spin-orbit splitting and band
filling.
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1. Introduction

In the emerging field of spin electronics, proposed device applications often utilize the

Rashba effect [1] in a two-dimensional electron gas (2DEG). A prominent example is the

spin field-effect transistor [2] in which the spin-orbit (SO) interaction in the 2DEG is

controlled via a gate voltage [3, 4]. Other examples are a high critical superconducting

temperature which shows up in materials with a sizable spin-orbit interaction [5] and

the spin Hall effect [6–9].

The Rashba effect relies on breaking the inversion symmetry of the system and,

consequently, shows up in semiconductor heterostructures and at surfaces. The breaking

of the inversion symmetry results—via the spin-orbit coupling—in a splitting in the

dispersion relation of electronic states which are confined to the interface [1]. In a

simple model for a two-dimensional electron gas, a potential in z direction confines

the electrons to the xy plane. The Hamiltonian of the spin-orbit coupling can thus be

written as

Ĥso = γR(σx∂y − σy∂x), (1)

where the strength of the SO interaction is quantified by the Rashba parameter γR.

Employing a plane-wave ansatz yields the dispersion relation

E±(~k‖) = E0 +
~2k2

‖
2m⋆

± γR|~k‖|, (2)

where m⋆ is the effective electron mass. The split electronic states are labeled by +

and −; their spins lie within the xy plane, are aligned in opposite directions, and are

perpendicular to the wave vector ~k‖.

In a real system, the Rashba parameter γR comprises effectively two contributions

[10]. The ‘atomic’ contribution is due to the strong potential of the ions (atomic

spin-orbit coupling). The ‘confinement’ contribution is due to the structural inversion

asymmetry which can be viewed as the gradient of the confinement potential in z

direction. The larger this gradient and the atomic spin-orbit parameter, the larger

γR and the splitting

kR =
|m⋆| γR

~2
, (3)

which is defined as the shift of the band extremum off the Brillouin zone center (~k‖ = 0).

Another quantification of the splitting is the Rashba energy

ER = −~2k2
R

2m⋆
= −m⋆γ2

R

2~2
, (4)

that is the energy of the band extremum with respect to the energy E0 for which the

bands cross at ~k‖ = 0.

The above dispersion relation suggests to distinguish two energy ranges. Region I

is defined as the energy range between E0 and the band extrema (E ∈ [E0 − ER, E0]

for positive m⋆ or E ∈ [E0, E0 + ER] for negative m⋆) [11]. Region II comprises the

other range of band energies (E > E0 for positive m⋆ or E < E0 for negative m⋆). The
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density of states in region I is singular at the band extrema and decreases towards E0

while in region II it is constant.

In view of designing device applications and investigating fundamental effects, it is

desirable to tune both the strength γR of the Rashba spin-orbit coupling and the Fermi

energy EF of the 2DEG. In a semiconductor heterostructure, this can be achieved by an

external gate voltage and by doping of the semiconductor host materials. At a surface,

these quantities can be affected by adsorption of adatoms [12,13], by surface alloying [11],

and by changing the thickness of buffer layers (e. g. in Bi/(Ag)n/Si(111) [14]). Recently,

a ferroelectric control has been proposed [15].

Surface states in surface alloys show an unmatched Rashba splitting [16], as

has been investigated in detail by scanning tunneling microscopy as well as by spin-

and angle-resolved photoelectron spectroscopy. They are convenient systems for

testing fundamental Rashba-based effects. The ordered surface alloys Bi/Ag(111),

Pb/Ag(111), and Sb/Ag(111) have been investigated by first-principles calculations

and in experiments [16–18]. These three systems differ with respect to their Rashba

characteristics kR and ER, and by E0. The challenge we are dealing with is how to tune

these properties independently.

The basic idea is as follows. Bi/Ag(111) has a large splitting and occupied spz

surface states, while Pb/Ag(111) has a large splitting and unoccupied spz surface states.

In a disordered binary alloy BixPb1−x/Ag(111) the Fermi energy can be tuned by the

concentration x, while keeping a large spin splitting. In contrast, Sb/Ag(111) has

occupied surface states with almost the same binding energy as those in Bi/Ag(111)

but a minor splitting. This allows to tune mainly the spin splitting but keeping the

Fermi energy in BixSb1−x/Ag(111). Thus, by an appropriate choice of concentrations

x and y in a ternary alloy BixPbySb1−x−y/Ag(111) we expect to tune the Fermi energy

and the splitting independently. In particular, one could access the region I between E0

and the band maxima which is important for high-temperature superconductivity [5].

We report on a first-principles investigation of disordered surface alloys

BixPbySb1−x−y/Ag(111), performed along the successful line of our previous works on

both ordered and disordered alloys [11, 16, 18]. Since all ordered and disordered binary

alloys show a
√

3×
√

3R30◦ surface reconstruction, we assume this geometry also for the

ternary alloys. The resulting substitutional disorder is described within the coherent

potential approximation.

The paper is organized as follows. Our computational approach is sketched in

section 2. The results are discussed in section 3, for binary alloys in section 3.4 and for

ternary alloys in section 3.5. We give conclusions in section 4.

2. Computational aspects

We rely on our successful multi-code approach, based on the local density approximation

to density functional theory. Because this is described in detail elsewhere [15], we

deliberately sketch it in this paper.
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The surface relaxations of ordered surface alloys were determined using the Vienna

Ab-initio Simulation Package (VASP) [19], well-known for providing precise total

energies and forces. The relaxed structural parameters serve as input for first-principles

multiple-scattering calculations. Our Korringa-Kohn-Rostoker (KKR) method already

proved successful for relativistic electronic-structure computations of Rashba systems

[14, 20].

The central quantity in multiple-scattering theory is the Green function [21]

G(~rn, ~r′m; E,~k) =
∑

ΛΛ′

Zn
Λ(~rn; E)τnm

ΛΛ′(E,~k)Zm
Λ′(~r′m; E)⋆

− δnm
∑

Λ

Zn
Λ(~r<; E)Jn

Λ(~r>; E)⋆, (5)

where Z and J are regular and irregular scattering solutions of sites n and m at energy

E and wavevector ~k, respectively. ~rn is taken with respect to the position ~Rn of site

n (~rn = ~r − ~Rn). r< (r>) is the lesser (larger) of rn and r′n. Λ = (κ, µ) comprises

the relativistic spin-angular-momentum quantum numbers [21]. The scattering-path

operator τ is obtained in standard KKR from the so-called KKR equation [21], or in

layer-KKR from the Dyson equation for the Green function [22].

The local electronic structure is analyzed in terms of the spectral density

Nn(E;~k) = −1

π
ℑTr G(~rn, ~rn; E,~k). (6)

By taking appropriate decompositions of the trace, the spectral density provides

information on spin polarization and orbital composition of the electronic states.

Substitutional ternary alloys BixPbySb1−x−y/Ag(111) are described within the

coherent potential approximation (KKR-CPA), in which short-range order is neglected.

From the agreement of the theoretical data with their experimental counterparts for

the binary alloys BixPb1−x/Ag(111) [11], we conclude that short-range order is of minor

importance in these systems. Hence, we applied the KKR-CPA also for the ternary

alloys.

The effect of the disorder can be understood as a self-energy [23]. As a consequence,

the spectral density of the disordered alloys becomes blurred (or smeared out) as

compared to that of the ordered alloys.

3. Results and discussion

3.1. Geometry

Relaxations have been determined by VASP for the ordered alloys, with
√

3×
√

3R30◦

reconstruction and face-centered-cubic (fcc) stacking (VASP cannot treat substitutional

disorder within the CPA). It turns out that the relaxations of Sb, Bi, and Pb are in

accord with their atomic radii. To be more precise, the outward relaxations are 9.6,

15, and 18 percent of the Ag(111) bulk interlayer spacing (2.33 Å), respectively, with

respect to the positions of the Ag atoms in the topmost layer. Being negligibly small,

in-plane displacements of Ag atoms are not considered.
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Since all ordered and disordered binary alloys show a
√

3 ×
√

3R30◦ surface

reconstruction, we assume this geometry also for the ternary alloys. The relaxations

of the disordered surface alloys were linearly interpolated, in dependence on the

concentrations of the constituting elements Bi, Pb, and Sb. This assumption is within

the spirit of the CPA; being a mean-field theory, a disordered system is described by an

effective medium. Likewise the relaxation should be taken as a concentration-weighted

average. We are aware, however, that in real samples, the relaxations of the constituting

individual atoms could differ, as might be checked by scanning tunneling microscopy.

3.2. Mechanisms which influence the Rashba-split surface states

Before presenting details of our calculations, a brief discussion of the general trends and

mechanisms is in order. For tuning the Fermi energy and spin splitting independently,

the underlying mechanisms should be independent as well.

A first mechanism is relaxation. The outward relaxations of Sb, Pb, and Bi are

in accord with their atomic radii; the larger the atomic radius, the larger the outward

relaxation. The relaxation is accompanied by a charge transfer from the atomic sphere

to the surrounding: the larger the relaxation, the larger the charge transfer [24]. This

mechanism determines the energy position of the degenerate point E0—cf. (2)—and,

consequently, the Fermi energy or band-filling of the surface states (2DEG).

A second mechanism is the atomic spin-orbit parameter. Bi and Pb are heavy

elements with large SO parameter (1.25 eV for Bi and 0.91 eV for Pb [25]), in contrast

to the lighter element Sb (0.4 eV [25]). The Rashba splitting depends both on the atomic

SO-coupling strength and the potential gradient [10]. Since the latter should not differ

considerably among the considered systems, the spin splitting is mainly determined by

the atomic SO coupling. We expect that with increasing Sb content, the spin splitting

decreases.

A third mechanism is electron doping or band filling. Pb has one electron less than

Bi (ZPb = 82, ZBi = 83). Within a rigid-band model, the surface states in Pb/Ag(111)

are shifted to higher energies, as compared to those in Bi/Ag(111). This picture is

confirmed by experiments and first-principles calculations [11].

3.3. Ordered surface alloys

The ordered surface alloys Bi/Ag(111), Pb/Ag(111), and Sb/Ag(111) have been studied

previously in detail [16–18]. They show two sets of surface states; a first set is unoccupied

and consists mainly of pxpy orbitals (for Bi/Cu(111), see [26]). In this paper, we focus

on the other set which is either completely or partially occupied and consists of spz

orbitals. The effective mass m⋆ of both sets is negative, implying a negative dispersion.

Sb/Ag(111). We address briefly the abovementioned relaxation mechanism by

considering two cases for Sb/Ag(111): (i) an Sb relaxation as calculated by VASP
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(9.6 %) and (ii) an artificial relaxation of 25 %. The charge transfer from the Sb muffin-

tin spheres to the surrounding is increased for the larger relaxation (2.05 % as compared

to 0.94 %, with respect to the nominal valence charge; cf. [24]). Consequently, the surface

states are shifted towards higher energies by 0.16 eV, as obtained from the degeneracy

point E0. Further, the spin splitting kR becomes increased as well (0.03 Å−1 as compared

to 0.02 Å−1). This corroborates that the relaxation mainly affects the crossing point E0

(or Fermi energy) rather than the spin splitting.

3.4. Disordered binary alloys

BixPb1−x/Ag(111). In the disordered binary alloy BixPb1−x/Ag(111), which has been

studied previously [11], the ratio of the Rashba energy ER and the Fermi energy EF can

be chosen within a wide range, in dependence on the Bi concentration x. For both Bi

and Pb, 0.99 % of the atomic charge atom is removed from the muffin-tin sphere, which

is in agreement with the close outward relaxation of Bi and Pb (15 % and 18 %). As

noted before, Pb has one valence electron less than Bi, which explains the sizable shift

of the surface states to higher energies (band-filling mechanism; cf. the panels on the

right-hand side of figure 1). Although the relaxation is of the same order, the splitting

is smaller for Pb (topmost panel in figure 1). This can be attributed to the smaller

atomic spin-orbit parameter of Pb (0.91 eV for Pb and 1.25 eV for Bi [25]).

BixSb1−x/Ag(111). Recently, the surface states of the disordered binary alloys

BixSb1−x/Ag(111) were mapped out by angle-resolved photoelectron spectroscopy. The

momentum offset kR evolves continuously with increasing Bi concentration x. The

splitting decreases sizably for x < 0.50 [27].

In theory, the outward relaxation of Bi is larger than for Sb (15 % and 9.6 %,

respectively). Consequently the charge which is removed from the Sb sphere (0.94 %) is

smaller than that of Bi (0.99 %). Since Bi and Sb are iso-electronic, with valence-shell

configuration 5p3 and 6p3, E0 remains almost unaffected by x, as can be seen in the

bottom row of figure 1. The spin splitting for Sb is much less than for Bi, in agreement

with the atomic spin-orbit parameter (0.4 eV and 1.25 eV). In accord with experimental

results, the Rashba splitting kR evolves with Bi concentration x.

To elucidate further the effect of the relaxation, we calculated the splitting

of Bi0.6Sb0.4/Ag(111) for two relaxations. The interpolated relaxation for

Bi0.6Sb0.4/Ag(111) is 12.8 % (shown at (x, y, z) = (0.6, 0.4, 0.0) in figure 1), for the

artificial relaxed system the outward relaxation is taken as 19 % (not shown here). The

charge transfer for the two systems is very close, and the difference in the splitting is

negligibly small. Hence, the splitting is negligibly sensitive to the relaxation, as was

already established for Sb/Ag(111).

PbySb1−y/Ag(111). To complete the picture of the binary alloys we turn to

PbySb1−y/Ag(111), for which experimental results are not available. The trends which
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Figure 1. Surface states of disordered ternary alloys BixPbySb1−x−y/Ag(111) along
Γ̄–K̄ of the two-dimensional Brillouin zone. The spectral density at a heavy-element
site BixPbySb1−x−y is depicted as linear gray scale, with dark gray corresponding to
high spectral weight; cf. (6).
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have been discussed before are as well found in these alloys (cf. the panels on the

left-hand side of figure 1). As the Pb concentration increases, E0 shifts down from

EF + 0.6 eV to EF − 0.4 eV, implying that the surface states become completely filled

at about y = 0.3. As for BixSb1−x/Ag(111), the spin splitting increases with y.

3.5. Disordered ternary alloys BixPbySb1−x−y/Ag(111)

Having established the ingredients which are necessary for independently tuning

the Fermi energy and the spin splitting in the surface alloys—by investigating the

disordered binary surface alloys—we now mix them to disordered ternary alloys

BixPbySb1−x−y/Ag(111). By choosing appropriate concentrations x and y, the

degeneracy point E0 and the Rashba splitting are tuned. Note that the splitting kR

and the Rashba energy ER are not fully independent; both can be expressed (in a free-

electron model) in terms of the effective electron mass and the Rashba parameter [cf.

(3) and (4)].

In figure 1 the surface-state dispersions of ternary alloys BixPbySb1−x−y/Ag(111)

are shown. The concentrations x and y have been varied in steps of 0.2. A common

feature of the spectral density of the binary and ternary alloys is a finite lifetime of the

spectral density, which is the consequence of the substitutional disorder.

The Rashba characteristic of the ternary alloys follow the general trends of the

binary alloys which have been discussed before. In the ternary alloys with larger outward

relaxation (i. e. the Bi- and Pb-rich compounds), the degenerate point E0 shifts toward

higher energies (main mechanism: relaxation). The larger the concentration of heavy

elements Bi and Pb as compared to the Sb concentration, the larger the splitting kR

(main mechanism: atomic spin-orbit parameter). The degenerate point E0 shifts upward

with increasing Pb concentration (main mechanism: band filling).

The shift kR of the surface states in reciprocal space versus concentrations x and y

is shown in figure 2 (top). As expected, the smallest splitting (dark blue) shows up for

Sb/Ag(111) (z = 1−x−y = 1), while the largest (dark red) corresponds to Bi/Ag(111)

(x = 1). For Pb/Ag(111), kR is of intermediate order (green/yellow). Surprisingly, the

splitting is not monotonic, as one might have expected in a rigid-band picture. For

example, kR shows a local minimum at (x, y, z) ≈ (0.4, 0.4, 0.2).

As kR, the Rashba energy ER depends monotonously in a large range of

concentrations (bottom in figure 2). Sizable Rashba energies are found mainly for Bi-

rich alloys, say for x > 0.5. This implies that for accessing region I, Bi-rich surface

alloys are inevitable. For smaller x (blue areas in the bottom panel of figure 2), the

energy range of region I could be too small to be employed in experiments.

The energy E0 of the degeneracy point depends almost linearly on the heavy

elements’ concentrations x and y (figure 3). For equal Bi and Sb concentrations (x = z)

it is nearly constant; upon adding Pb, E0 shifts up. For systems with about 40 % of Pb

concentration, E0 is very close to the Fermi level EF, so that the latter lies in region

I [24].
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In summary, the above results support that both Fermi energy and spin splitting in

the surface states can be tuned independently, as is readily apparent from the different

shapes in figure 2 and figure 3. A very interesting region in the ternary plots is around

(x, y, z) ≈ (0.6, 0.3, 0.1), where the degenerate point E0 and the Fermi energy EF

coincide. Keeping the Sb concentration constant and changing the Pb concentration

of about 10 % is accompanied by transition between region I and region II, while kR

and ER are almost constant. It is also possible to tune ER and kR while keeping the

position of degenerate point constant. The changes of kR and ER are not independent

but kR depends more sensitive on the concentrations than ER.

4. Conclusions

Disordered ternary surface alloys BixPbySb1−x−y/Ag(111) allow to fabricate a two-

dimensional electron gas with specific Rashba spin-orbit splitting and Fermi energy
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Figure 2. Spin splitting in disordered ternary alloys BixPbySb1−x−y/Ag(111). Top:
The surface-state displacement kR (in reciprocal space) is depicted as color scale as a
function of Bi concentration x, Pb concentration y, and Sb concentration z = 1−x−y.
The color bar on the right is in units of Å−1. Bottom: Same as in the top but for the
Rashba energy ER. The color bar is in eV.



Ternary surface alloys 10

Bi

 

1

0.2

y

0.4

0.8

0.6

0.8

0.6
x

Pb

0.4

0.2

0.4

0.2

z

0.6

0.8

0

 
Sb

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 3. Surface-state energy in disordered ternary alloys BixPbySb1−x−y/Ag(111).
The degeneracy energy E0 of the surface state, with respect to the Fermi level EF, is
depicted as color scale as a function of Bi concentration x, Pb concentration y, and Sb
concentration z = 1− x− y. The color bar on the right is in eV. At negative energies,
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which can be investigated by surface-scientific methods (scanning tunneling probes and

especially photoelectron spectroscopy). In particular, the important transition from

energy region I (that is, the Fermi energy EF lies above the degeneracy point E0) to

region II (EF below E0) can be studied for different strengths of the Rashba spin-orbit

coupling. Thus, the present study may stimulate further experiments on Rashba systems

and their unique properties.
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A. Ernst, S. Ostanin, F. Reinert, and M. Grioni. Assessing the atomic contribution to the
rashba spin-orbit splitting in surface alloys: Sb/ag(111). Phys. Rev. B, 79:075424, 2009.

[19] G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations
using a plane-wave basis set. Phys. Rev. B, 54:11 169, 1996.

[20] J. Henk, A. Ernst, and P. Bruno. Spin polarization of the L-gap surface states on Au(111): A
first-principles investigation. Surf. Sci., 566–568:482, 2004.

[21] J. Zabloudil, R. Hammerling, L. Szunyogh, and P. Weinberger, editors. Electron Scattering in
Solid Matter. Springer, Berlin, 2005.

[22] J. Henk. Theory of low-energy diffraction and photoelectron spectroscopy from ultra-thin films.
In H. S. Nalwa, editor, Handbook of Thin Film Materials, volume 2, chapter 10, page 479.
Academic Press, San Diego, 2001.

[23] P. Weinberger. Electron Scattering Theory of Ordered and Disordered Matter. Clarendon Press,
Oxford, 1990.

[24] L. Moreschini, A. Bendounan, H. Bentmann, M. Assig, K. Kern, F. Reinert J. Henk, C. R. Ast,
and M. Grioni. Influence of the substrate on the spin-orbit splitting in surface alloys on (111)
noble-metal surfaces. Phys. Rev. B, 80:035438, 2009.

[25] K. Wittel and R. Manne. Accurate calculation of ground-state energies in an analytic Lanczos
expansion. Theor. chim. Acta., 33:347, 1974.

[26] H. Mirhosseini, J. Henk, A. Ernst, S. Ostanin, C.-T. Chiang, P. Yu, A. Winkelmann, and
J. Kirschner. Unconventional spin topology in surface alloys with rashba-type spin splitting.
Phys. Rev. B, 79(24):245428, Jun 2009.

[27] C. R. Ast, H. J. Dil, I. Gierz, and F. Meier. private communication.





Paper III

Unconventional spin topology in surface alloys with Rashba-type
spin splitting

57





Unconventional spin topology in surface alloys with Rashba-type spin splitting

H. Mirhosseini, J. Henk,* A. Ernst, S. Ostanin, C.-T. Chiang, P. Yu, A. Winkelmann, and J. Kirschner
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Saale), Germany

�Received 4 May 2009; published 24 June 2009�

The spins of a pair of spin-orbit split surface states at a metal surface are usually antiparallelly aligned, in
accord with the Rashba model for a two-dimensional electron gas. By first-principles calculations and two-
photon photoemission experiments we provide evidence that in the surface alloy Bi/Cu�111� the spins of an
unoccupied pair of surface states are parallelly aligned. This unconventional spin polarization, which is not
consistent with that imposed by the Rashba model, is explained by hybridization of surface states with different
orbital character and is attributed to the spin-orbit interaction. Since hybridization is a fundamental effect our
findings are relevant for spin electronics in general.

DOI: 10.1103/PhysRevB.79.245428 PACS number�s�: 73.20.At, 71.70.Ej, 79.60.Dp

I. INTRODUCTION

In the emerging field of spin electronics, proposals for
device applications often utilize the Rashba effect in a two-
dimensional electron gas �2DEG�,1 thereby relying on the
spin topology of the 2DEG’s electronic states �e.g., Refs.
2–6�. The structural inversion asymmetry, that is, the asym-
metric confinement of the 2DEG, leads via spin-orbit �SO�
interaction to a splitting in the dispersion relation of the free
electrons,

���k� = �0 +
�2k2

2m� � ��k�, k = �kx,ky� , �1�

where m� is the effective mass. The Rashba parameter �
comprises the strength of the atomic SO interaction and of
the gradient of the confining potential in the z direction.7,8

The splitting, quantified by the displacement �k
=2��m�� /�2 of the band extrema in reciprocal space, shows
up as two concentric circles in the momentum distribution.
The spins of the two electronic states at energy � are �i�
oppositely aligned, are �ii� lying within the xy plane, and are
�iii� normal to the wave vector k.9 The spin polarization can
therefore be written as P��k�= � �ky ,−kx ,0� / �k�, implying
also �P�=100% �Fig. 1�a��.10

The above paradigmatic spin topology is found to a large
extent in semiconductor heterojunctions11 and in surface
states at �111� surfaces of noble metals, in particular in
Au�111�.12,13 The surface states in surface alloys such as Bi/
Ag�111� �Refs. 14–16� or Pb/Ag�111� �Refs. 16–18� show an
unmatched spin splitting �large Rashba parameter ��, which
is caused by an additional in-plane gradient of the
potential;19 the spz surface states in these alloys show the
conventional topology of the Rashba model as well but with
minor deviations �e.g., a nonzero but small Pz due to the
in-plane gradient�.

From the experimental and theoretical findings available
so far one is lead to conclude that the spin topology imposed
by the Rashba model shows up in a large number of systems,
if not in all systems. In this paper, we show by first-
principles calculations and two-photon photoemission
�2PPE� experiments for the surface alloy Bi/Cu�111� that this
topology cannot be taken for granted. Instead of the conven-

tional topology with oppositely rotating spins �Fig. 1�a��, we
find momentum distributions with identical spin-rotation di-
rections �Fig. 1�b��. The origin of this effect is explained by
the hybridization of surface states with different orbital char-
acter mediated by the spin-orbit interaction.

Our findings differ qualitatively from those in conven-
tional Rashba systems. The momentum distribution of the
latter comprises spin topologies with identical rotation direc-
tion as well but these are restricted to the low-density
regime6 �or region I in Ref. 20�, i.e., to energies between �0
and the band extrema. This regime extents over 0.015 eV for
the spz surface states in Bi/Cu�111�.21 But we find such to-
pology in a 0.7 eV wide window in the high-density regime
of the pxpy surface states. Note that the present findings are
similar to those for topological metals and insulators.22,23

Previous studies of the Rashba effect at metal surfaces
focused on occupied surface states since these can be ac-
cessed by angle-resolved photoelectron spectroscopy
�ARPES�.24 These states are mainly of spz orbital character
and thus agree with those of a 2DEG �see Ref. 10 for
Au�111��. As a consequence, their spin topology is consistent
with that of the Rashba model �Fig. 1�a��.

In the Bi/Ag�111� and Pb/Ag�111� surface alloys, the ada-
toms induce also spz states but with larger splitting �as com-
pared to Au�111�� and negative dispersion �effective mass
m��0�.16 Further, there are indications for another mainly

FIG. 1. �Color online� Spin topologies in a spin-orbit split
2DEG �schematic�: �a� Conventional Rashba-type and �b� uncon-
ventional spin topology in the momentum distribution. The spin
polarization of the “inner” and the “outer” state is represented by
arrows.
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unoccupied set of bands. Since these bands cross at energies
�0 above the Fermi energy EF, their splitting �k could only
be extrapolated from their occupied “tails.” First-principles
calculations show that these states are of pxpy orbital charac-
ter �i.e., oriented within the surface plane�. Their occupied
tails display the same spin topology as the spz states �Fig.
1�a��.

In the present work we focus on Bi/Cu�111� which shows
a �3��3-R30° surface geometry,25 such as Bi/Ag�111� and
Pb/Ag�111�. Consequently, the surface electronic structure of
Bi/Cu�111� consists also of two sets of Rashba-split surface
states, namely, the spz and the pxpy branch. As found by
ARPES and scanning tunneling microscopy experiments,21,26

the partially occupied spz branch extends to about EF
+0.23 eV and shows a Rashba splitting of �k
�0.035 Bohr−1.

II. EXPERIMENTAL FINDINGS

In contrast to ARPES which maps the occupied states, we
can additionally access the unoccupied states by angle-
dependent 2PPE. Experimental details are as described in
Ref. 27. The single-photon energy used in the 2PPE mea-
surements was 3.1 eV, using off-normal-incident p-polarized
light. Bi was deposited by thermal evaporation on the
Cu�111� substrate kept at 500 K. The formation of the �3
��3-R30° structure was checked by low-energy electron
diffraction.

Angle-dependent 2PPE spectra were measured by rotating
the sample around the axis perpendicular to the optical plane.
The sample was oriented so that k� was measured in the

plane containing the �111� and �112̄� directions. The resulting
experimental 2PPE intensity map is shown in Fig. 2. After
the deposition of Bi, a reduction in the work function from
about 4.9 eV for clean Cu�111� to below 4.4 eV is observed,
as judged from the low-energy cutoff of the 2PPE spectrum
at k� =0 in Fig. 2. This makes possible the observation of
additional unoccupied intermediate states in the energy re-
gion below 1.8 eV which cannot be excited above the work
function on clean Cu�111� using 3.1 eV photons.

In the lower half of Fig. 2, at about 4.5 eV final-state
energy, a pair of split bands is clearly visible. These bands
belong to unoccupied states located one photon energy �3.1
eV� below the final-state energy; as will become clear from
the comparison with theory, these bands originate from the

pxpy surface states. They cross at �̄ at about EF
+ �1.38�0.05� eV, and their maxima are shifted symmetri-

cally from �̄ by about �0.06�0.01� Bohr−1 ��k
��0.12�0.02� Bohr−1� �Fig. 3�.

In addition to the unoccupied states, the 2PPE experiment
measures also the occupied states of spz character �see Fig.
4�, which are excited by two photons to final-state energies
near 6.2 eV in the upper half of Fig. 2. We note that a slightly
increased intensity is also observed in the region extending
to about 0.5 eV above the crossing point of the unoccupied
split bands in Fig. 2. While no clearly dispersing bands can
be observed experimentally, this intensity is consistent with
the theoretical bands in Fig. 4 above 1.5 eV; their weak ex-

perimental intensity correlates with a comparably small the-
oretical spectral density.

The 2PPE intensity depends strongly on the emission
angle, as can be seen by the pronounced intensity maximum
at about 4.5 eV final-state energy and +5° emission angle
�red spot in Fig. 2; note the comparably small intensity at
−5°�. Such features also appear also in the conventional
�one-photon� photoemission from these surface alloys and
can be explained by the transition matrix elements.

III. THEORETICAL FINDINGS

To elucidate the dispersion and especially the spin topol-
ogy of the unoccupied bands we performed first-principles
electronic-structure calculations, in close analogy to our pre-
vious investigations on surface alloys �e.g., Ref. 16�. The
interatomic distances at the surface are obtained from total-
energy minimization using the Vienna Ab initio Simulation
Package.28 Due to the much smaller lattice constant of Cu as
compared to Ag �dCu-Cu=4.83 Bohr and dAg-Ag=5.40 Bohr�,
the Bi atoms are more relaxed outward �by 38% of the bulk
interlayer distance of Cu, d�=3.94 Bohr� than in Bi/
Ag�111�. The optimum surface geometry serves as input for
Korringa-Kohn-Rostoker �KKR� calculations. The electronic
structure is analyzed in detail by means of the spectral den-
sity n�E ,k�, which is computed from the Green’s function in
the relativistic layer-KKR method. n�E ,k� is resolved with
respect to site, spin, and angular momentum.

The spin-averaged spectral density of a Bi site shows the
split spz and pxpy surface states �Fig. 4�. Each branch com-
prises an “inner” band �with smaller �k�� and an “outer” band
�with larger �k��. The spz bands cross at EF+0.1 eV; their
Rashba splitting is �k=0.10 Bohr−1 �Bi/Ag�111�: �k
=0.14 Bohr−1�. The pxpy bands cross at EF+1.4 eV �experi-
ment: EF+ �1.38�0.05� eV�, with �k=0.08 Bohr−1 �experi-
ment: �k= �0.12�0.02� Bohr−1�. The theoretical results are
thus consistent with the experimental findings and identify
the split bands in experiment �Fig. 3� with the pxpy surface
states. The spectral density becomes blurred in regions in
which the surface states hybridize with Cu-bulk states. The
dispersion of the two branches follows closely that imposed
by the Rashba model �Eq. �1� with negative effective mass
m��. An exception, however, might be a “kink” in the inner
pxpy band at �E ,k���EF+0.6 eV, �0.12 Bohr−1� �marked
in Fig. 4�.

The spin topology of the surface states is visualized by the
difference n�E ,k� �↑−n�E ,k� �↓ of the spectral densities,
where ↑ and ↓ indicate the projection of the in-plane spin-
polarization component normal to k �Fig. 5; this P compo-
nent is prescribed by the Rashba model and is by far domi-
nating�. For the spz branch we find the expected conventional
spin topology which is imposed by the Rashba model; the
opposite spin-rotation direction of the two bands shows up at

energies below the crossing at �̄ as a red-blue-red-blue color
coding with increasing wave number �line a in Fig. 5; cf. Fig.
1�a��. In contrast, the pxpy branch shows a red-red-blue-blue
coding at, say, EF+1.0 eV �line b in Fig. 5�; thus these sur-
face states have identical rotation direction �cf. Fig. 1�b��.
This finding is not consistent with the Rashba model: It
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appears that the spin polarization of the inner pxpy state is
reversed in comparison to that of the inner spz state. It is
important to note that at energies below the kink the spin
polarization of this band has changed sign, e.g., at EF
+0.2 eV, and the conventional spin topology is restored; in
other �E ,k� regions its absolute value is as large as 90%.

Deviations from a smooth dispersion, as seen at the kink
�Fig. 4�, indicate hybridization of electronic states. A group-
theoretical analysis shows that wave functions can be repre-
sented either as29,30
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FIG. 2. �Color� Two-photon photoemission from Bi/Cu�111�.
The intensity for given final-state energy and emission angle is
shown as color scale. The unoccupied pxpy surface states appear at
about 4.5 eV. To guide the eye, orange lines highlight the dispersion
of the electronic states.

FIG. 3. Rashba splitting �k in the unoccupied pxpy surface
states of Bi/Cu�111�, as obtained from two-photon photoemission
experiments �Fig. 2�.

FIG. 4. Surface electronic structure of Bi/Cu�111� as obtained
from first-principles calculations. The spectral density n�E ,k� for a
Bi site is depicted as gray scale �white=zero�. The spz and the pxpy

surface-state branches are indicated.

FIG. 5. �Color� Spin-resolved electronic structure of Bi/Cu�111�
as obtained by first-principles calculations. The difference
n�E ,k� �↑−n�E ,k� �↓ of the spin-projected spectral densities for a Bi
site is depicted as color scale �red=negative, white=zero, and
blue=positive�. The spin projection is in-plane and perpendicular to
the wave vector. Horizontal lines are guides to the conventional
�line a� and unconventional �line b� spin topology of the spz and the
pxpy states, respectively.

FIG. 6. �Color� Hybridization of surface states in Bi/Cu�111�.
The orbital- and spin-resolved spectral densities at a Bi site are
depicted as color scales. The top �bottom� panels comprise contri-
butions according to Eq. �2� �Eq. �3��. All data share the same color
scale, with white=zero and dark red �dark blue�=maximum spec-
tral density �70 states/Hartree�. The left panels display the total
spectral density for comparison �in gray scale; cf. Fig. 4�.
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�		 = �spz↑	 + �px↑	 + �py↓	 �2�

or as

�		 = �spz↓	 + �px↓	 + �py↑	 . �3�

The spinors �↑ 	 and �↓ 	 are quantized with respect to the y
axis. Both the outer spz band and the inner pxpy state belong
to the representation of Eq. �2� and hence are allowed to
hybridize. Thus, if the usually dominating �py↓	 component
of the inner pxpy state is surpassed by the �px↑	 component,
the spin polarization of this state changes sign. That this is
indeed the case is seen by the �px↑	 contribution to n�E ,k�,
which increases with energy �top row in Fig. 6�. At the kink,
where the inner pxpy band and outer spz band approach, both
the �spz↑	 and the �py↓	 orbitals show a significant spectral
density; the kink shape is thus attributed to the hybridization
of these two bands. The inner spz and the outer pxpy states
belong to the representation of Eq. �3� and hybridize as well
but less due to their larger �E ,k� “distance” �bottom row in
Fig. 6�.

Note that hybridization of orbitals with opposite spin is
brought about only by SO coupling.31 Further, the effect is
not described by first-order perturbation theory in the SO
interaction because this order would produce the spin split-
ting but not the hybridization.

The Dresselhaus effect could in principle produce a de-
viation from the Rashba-type spin topology.32 A closer analy-
sis, however, shows that it vanishes in the present case.
Therefore, hybridization as a result of the spin-orbit interac-
tion remains as the sole reason for the unconventional spin
topology in Bi/Cu�111�.

An important ingredient for the unmatched splitting found
in these surface alloys is the in-plane gradient of the
potential.15,19 As the gradient perpendicular to the surface
�along z� produces the in-plane spin polarization �Px and Py�,

the in-plane gradient gives rise to a nonzero Pz. A pxpy sur-
face state is expectedly more susceptible to the in-plane gra-
dient than a spz surface state. Consequently, its Pz should be
larger. Indeed, Pz of the pxpy states is negligibly for small �k�
but reaches 20% in absolute value for larger wave vectors
��k�
0.15 Bohr−1�. In contrast, the spz states have no sig-
nificant Pz.

The demonstrated mechanism for changing the spin topol-
ogy of the surface states in surface alloys is also present in
Bi/Ag�111�, as we have investigated theoretically as well �re-
sults not shown here�. In comparison with Bi/Cu�111�, the
effect is less pronounced because hybridization of the spz
and pxpy branches is decreased by the smaller outward relax-
ation of Bi.18 Another aspect is that the surface states hybrid-
ize with Ag bulk states in a large �E ,k� region due to pro-
jected bulk-band structure of Ag. As a consequence, they
show no clear kink.

IV. CONCLUDING REMARKS

In summary, there is more to the spin-resolved electronic
structure of surface states in surface alloys than first imag-
ined. Although the basic properties are described by the stan-
dard Rashba model, additional effects �e.g., hybridization
and the in-plane potential gradient� can change important
features of the electronic states and their spin topology. In
turn, there is the possibility to exploit these mechanisms in
new spintronics devices and in new effects �e.g., Refs. 6 and
23�.

Since hybridization is a general mechanism, the present
effect can be important also in other systems, possibly at
other high-symmetry points in the two-dimensional Brillouin
zone or at other energies. It is therefore desirable to carry out
spin-resolving experiments on the spin-orbit splitting of sur-
face states.
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As demonstrated conceptually by first-principles calculations, the Rashba spin splitting in the 6p states of a
Bi adlayer on BaTiO3�001� can be manipulated by the electric polarization in the ferroelectric substrate.
Although this spin-electric effect is moderate, with a relative change in the splitting of about 5%, the absolute
splitting of about 0.24 Å−1 is unmatched. Further, the occupied 6p surface states display an anisotropic
dispersion and deviate significantly from the free-electron model of the Rashba effect. Our findings may pave
a route for spin-electronic devices.
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I. INTRODUCTION

A key issue in spin electronics1 is the manipulation of the
electrons’ spins by an electric field. This goal can be
achieved for example by the magnetoelectric coupling in a
multiferroic2–4 or by the tunable strength of the Rashba spin-
orbit coupling in a two-dimensional electron gas at a semi-
conductor interface.5–8

In an isotropic two-dimensional electron gas, the Rashba
effect lifts Kramers’ degeneracy.9 As a consequence, the dis-
persion relations of the free electrons which are confined to
the xy plane become split,

E��k�� =
�2k�

2

2m� � �R�k�� + E0, k� = �kx,ky� . �1�

Here, the electronic states are labeled by + and −, and m� is
the effective electron mass. The Rashba parameter �R which
quantifies the spin-orbit coupling strength comprises effec-
tively two contributions:10 The “atomic” contribution is due
to the strong potential of the ions and the “confinement”
contribution is due to the gradient of the confinement poten-
tial in z direction.

Surface states which are subject to the Rashba spin-orbit
coupling have gained considerable attention in the last
years.11,12 A particularly large Rashba splitting
kR= �m���R /�2, which is defined as the mutual shift of the
split bands, is observed for adlayers of heavy elements with
p valence shell on noble metal and semiconductor surfaces,
e. g., Bi/Ag�111� �Ref. 13� and Bi/Si�111�.14 With regard to
the abovementioned contributions, the strength of the Rashba
spin-orbit coupling in an adlayer can be manipulated by al-
loying, for example of Pb and Bi �atomic contribution�,15 or
by changing the charge density in the surface region by ada-
toms �confinement contribution; e. g., Refs. 16 and 17�.

In this Brief Report, we propose a third route for manipu-
lating the Rashba splitting of electronic states in an adsorbed
layer: While keeping a Bi adlayer, we use a ferroelectric,
here BaTiO3�001�, in place of a metallic or semiconducting
substrate. The idea is to �ferro�electrically control the Rashba
splitting as follows. The reversal of the intrinsic electric po-
larization P in the perovskite by an external electric field is
equivalent to reversing the mutual displacements of Ti and O

atoms in �001� direction. Consequently, the charge density at
the Bi /BaTiO3 interface is changed, leading eventually to a
modification of the Rashba splitting of the surface states in
the Bi adlayer. This scenario of a “spin-electric coupling” is
similar to the magnetoelectric coupling in a two-phase mul-
tiferroic, say in Fe /BaTiO3.18–20

Rashba/ferroelectric systems have a number of advan-
tages. First, because the electric polarization P is changed by
an electric pulse �in contrast to a steady electric field�,8 the
Rashba splitting would remain switched permanently. This
feature makes such a system suitable for information storage
devices.21 Second, the deposition of adatoms could alter the
surface electronic structure significantly22 and switching of
the splitting may be difficult or even impossible.23 Thus,
Bi /BaTiO3 and similar systems lend themselves support for
a new class of materials for spin electronics devices.

In this Brief Report, we demonstrate conceptually the pro-
posed mechanism for a complete monolayer of Bi on
BaTiO3�001�. Using ab initio methods of computational ma-
terial science, we focus on �i� the strength of the Rashba
splitting in the 6p surface states of Bi, �ii� the effect of
switching the electric polarization in the ferroelectric sub-
strate on the Rashba splitting of the Bi surface states, and
�iii� their dispersion and spin polarization as compared to the
free-electron model of the Rashba effect.

II. COMPUTATIONAL ASPECTS

We follow the first-principles approach which has proved
successful in earlier studies of two-phase multiferroics20 and
of Rashba systems.14,15,24

We consider a BaTiO3�001� substrate with TiO2 termina-
tion; the deposited Bi atoms form a complete �1�1� mono-
layer. The geometric structures have been obtained by the
Vienna ab initio simulation package �VASP�.25 The adatoms
have initially been placed at different positions and are sub-
sequently relaxed to their equilibrium positions.

The structural data serve as input for the relativistic cal-
culations which aim at the Rashba splitting and rely on our
multiple-scattering theoretical codes for semi-infinite sys-
tems �Korringa-Kohn-Rostoker �KKR� and layer-KKR meth-
ods; e. g., Ref. 26�. A detailed analysis of the electronic
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structure is obtained from the Bloch spectral density

nls�E,k�� = −
1

�
Im Tr G+�rls,rls;E,k�� , �2�

which is determined from the site-diagonal Green function
G+�rls ,rls ;E ,k��. The trace involves integration over the
muffin-tin sphere of site s in the two-dimensional unit cell of
layer l, with rls being associated with this sphere.26 nls�E ,k��
can be resolved further with respect to orbital composition
and spin orientation.

We have checked that basic quantities are consistently
reproduced by the VASP and the KKR codes. These also
agree nicely with those obtained by our additional FLAPW
calculations.27

III. SURFACE GEOMETRY

In the following, we consider two major configurations
which are distinguished by their intrinsic electric polarization
P in the bulk of the BaTiO3 substrate. In accordance with the
mutual displacement of the Ti and O atoms, P is along the
�001� direction which is taken as z direction. For P pointing

toward −z, referred to as P↓, the z coordinates of Ti and O
sites in the same layer obey zTi�zO �zTi−zO=−0.09 Å�. The
opposite case is referred to as P↑, with zTi�zO.

A total-energy analysis shows that Bi forms a 1�1 ad-
layer, with Bi on top of the Ba atoms of the subsurface BaO
layer �Fig. 1 for P↑; all results for P↓ agree qualitatively with
those for P↑ and are therefore not shown�. Their distance in z
direction to the surface Ti sites is 2.11 Å for P↑, which is

FIG. 1. �Color� Geometry of Bi /BaTiO3�001�. �a� Perspective
top and �b� side views of the Bi-covered BaTiO3�001� surface for
electric polarization P↑. Spheres represent Bi �violet�, Ba �green�, Ti
�blue�, and O �red� sites. A two-dimensional unit cell is displayed in
�a� as transparent square. Three BaTiO3 stacks which each compris-
ing a BaO and a TiO2 layer are depicted in �b�.
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FIG. 2. �Color online� Surface electronic structure of
Bi /BaTiO3�001� for P↑. Bloch spectral densities �“SD”� n�E ,k�� are
shown for the Bi adlayer �line� and for the adjacent BaTiO3 stack

�filled� at �̄ �k� =0�. The underlying rectangle marks the fundamen-
tal band gap; the conduction band minimum is taken as energy zero.
The Bi 6p surface states are indicated by an arrow.

FIG. 3. �Color� Surface states in Bi /BaTiO3�001� for P↑. �a�
Spin-integrated Bloch spectral density for Bi imaged as gray scale

�white 0, black 400 states/Hartree� along M− �̄−X of the two-
dimensional Brillouin zone. The Rashba splitting kR and the Rashba
energy ER are indicated. The inset shows a quarter of the Brillouin
zone. �b� Spin-resolved density for Bi depicted as color scale. Blue
�red� indicates a positive �negative� difference n↑−n↓, with the spin
projection normal to k� and with extrema of �150 states /Hartree.
Energy scale as in Fig. 2.

FIG. 4. �Color� Spin topology of the surface states in
Bi /BaTiO3�001� for P↑. �a� Radial and �b� tangential spin polariza-
tion components are visualized as the difference n↑−n↓ of Bloch
spectral densities at Bi in the entire two-dimensional Brillouin zone.
The energy is −1.30 eV �energy scale as in Fig. 2�. Dark blue and
red indicate +150 and −150 states /Hartree, respectively. Arrows in
�b� give a visual impression of the total spin polarization.
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equivalent to 52.9% of the bulk Ba-Ba z distance �3.99 Å�.
For P↓ we find a z distance of 2.16 Å �54.0%�.

It turns out that for both P↑ and P↓, the polarization at the
topmost TiO2 layer is negative �i. e., zTi�zO�.28 However,
the relaxations of these atoms differ: zTi−zO=−0.13 Å for
P↑ and −0.18 Å for P↓. In summary, the surface geometry
depends slightly on the orientation of the bulk electric polar-
ization.

IV. RASHBA SPLITTING IN THE Bi SURFACE STATES

The Bi adlayer gives rise to occupied 6p electronic states
in the fundamental band gap of the surface BaTiO3 stack. At

�̄ these show up at energies E0=−0.82 eV for P↑ �arrow in
Fig. 2� and at −0.84 eV for P↓, respectively. These are
mostly confined to the Bi layer but show also considerable
spectral weight in the adjacent layer, making them subject to
switching of P.

The dispersions of the Bi surface states show the typical
signatures of the Rashba splitting: kR and the Rashba energy
ER which are indicated in Fig. 3�a�. Since the dispersion is
anisotropic, the characteristics of the Rashba splitting are
anisotropic as well �Table I�. Although the origin of this an-
isotropy are higher-order terms in k�,29 we quantify the effect
by means of an anisotropic effective mass and Rashba pa-
rameter.

The switching of the electric polarization P affects indeed
the Rashba splitting kR �Table I�, thereby confirming the
above motivation. The strength of this spin-electric coupling

is quantified by the relative change in kR; for �̄−M it is

about 4.5% whereas for �̄−X it is about 5.5%. These num-
bers are qualitatively explained on one hand by the weak
polarization dependence of the surface geometry and on the
other hand by the strong localization of the Bi 6p states to
the adlayer. Both a larger relaxation and a stronger hybrid-
ization of the Bi states with those of the substrate could
enhance the effect. We would to like to stress that the relative
change in the surface magnetization of a single Fe layer on
BaTiO3�001� is 2.8%;20 this shows that the spin-electric cou-
pling is at least as large as the magnetoelectric coupling.

The average splitting kR of about 0.24 Å−1 is sizably
larger than the unmatched 0.13 Å−1 reported for
Bi/Ag�111�.13 However, ER is with about 0.170 eV less than
in Bi/Ag�111� �0.200 eV�. Consequently, the effective
masses m�=−�2kR

2 / �2ER� of Bi /BaTiO3 are larger �in abso-
lute value� than in Bi/Ag�111� �−0.32me�. Because the

Rashba parameter of the free-electron model depends on m�,
the numerical values for �R=2�ER� /kR in Bi /BaTiO3 are con-
siderable less than that in Bi/Ag�111� �3.08 eV Å�, although
the splitting in reciprocal space is about as twice as large.

We note that relevant for applications is not the strength
�R of the Rashba spin-orbit coupling but the actual splitting
kR. A large splitting in reciprocal space is equivalent to a
small wavelength in direct space. As a consequence, the spa-
tial range in which the electronic wave functions of the split
states can effectively interfere in a spin electronics device is
small as well. This feature is favorable since it allows re-
duced device dimensions.

V. MOMENTUM DISTRIBUTIONS AND SPIN TOPOLOGY
OF THE Bi SURFACE STATES

Momentum distributions which display the Bloch spectral
density versus k� at fixed energy E �Fig. 4� deviate signifi-
cantly from the circular momentum distributions of the free-
electron model, in accordance with the dispersion relations
�Fig. 3�. The anisotropy shows up in particular for the outer
band �with larger �k��� which reflects the 4mm symmetry of
the surface.

Another signature of the Rashba effect—besides kR and
ER—is the spin polarization S� of the split electronic states.
For free electrons, S� lies within the confinement plane, is
tangential to the circular momentum distribution and is com-
plete ��S��=100%�. For Bi /BaTiO3 we find in-plane S� but
also distinct deviations from the free-electron model, as is
exemplified at E=−1.30 eV �Fig. 4�. The inner state, with
small �k��, compares well with the free-electron model; con-
fer the almost circular momentum distribution with small
radial component �a� and constant tangential component �b�.
The outer state, with larger �k��, shows a large tangential

component, in particular along �̄−M, but significantly less

along �̄−X. This together with the shape of its sizable radial
component implies that its spin follows the curvature of its
noncircular momentum distribution �arrows in Fig. 4�b��.

VI. CONCLUDING REMARKS

Our theoretical investigation provides a proof of concept
for spin-electric coupling in an adlayer of a heavy p metal on

TABLE I. Rashba effect in Bi /BaTiO3. The splitting kR, the Rashba energy ER, the effective mass m� �in
units of the electron mass me�, and the Rashba parameter �R for both bulk electric polarization P↑ and P↓ are

given for the �̄−M and the �̄−X direction of the two-dimensional Brillouin zone �inset in Fig. 3�a��.

�̄−M �̄−X

kR

�Å−1�
ER

�eV�
m�

�me�
�R

�eV Å�
kR

�Å−1�
ER

�eV�
m�

�me�
�R

�eV Å�

P↑ 0.22 0.16 −1.14 1.45 0.25 0.18 −1.36 1.42

P↓ 0.23 0.16 −1.22 1.39 0.27 0.18 −1.48 1.36
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a ferroelectric substrate: Switching of the intrinsic electric
polarization P in the ferroelectric �here: BaTiO3� affects the
strength of the Rashba splitting in the adlayer �here: Bi�.

The present work predicts a moderate spin-electric cou-
pling but a large absolute Rashba-type spin splitting. Never-
theless, it is conceivable to increase the effect by larger
atomic displacements in particular at the ferroelectric/adlayer
interface. A possible candidate might be PbTiO3 which
shows larger displacements and electric polarizations than
BaTiO3.28

We encourage to search for improved Rashba-split/
ferroelectric systems in both theory and experiment. The ul-
timate spin-electric coupling would be a change in sign of
the Rashba parameter �R—and hence of the spin polarization
S—upon reversal of P.

We appreciate very much fruitful discussions with M.
Fechner and Chr. R. Ast. This work is supported by the
Sonderforschungsbereich 762 “Functionality of Oxide Inter-
faces.”

*Corresponding author; henk@mpi-halle.de
1 I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323

�2004�.
2 W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature �London�

442, 759 �2006�.
3 S.-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 �2007�.
4 H. Béa, M. Gajek, M. Bibes, and A. Barthélémy, J. Phys.: Con-

dens. Matter 20, 434221 �2008�.
5 Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 �1984�.
6 S. Datta and B. Das, Appl. Phys. Lett. 56, 665 �1990�.
7 N. Samarth, in Solid State Physics Vol. 58, edited by H. Ehren-

reich and F. Spaepen �Elsevier, Amsterdam, 2004�, p. 1.
8 H. C. Koo, J. H. Kwon, J. Eom, J. Chang, S. H. Han, and M.

Johnson, Science 325, 1515 �2009�.
9 R. Winkler, Spin-Orbit Coupling Effects in Two-Dimensional

Electron and Hole Systems �Springer, Berlin, 2003�.
10 L. Petersen and P. Hedegård, Surf. Sci. 459, 49 �2000�.
11 F. Reinert, J. Phys. Condens. Matter 15, S693 �2003�.
12 J. H. Dil, J. Phys. Condens. Matter 21, 403001 �2009�.
13 C. R. Ast, J. Henk, A. Ernst, L. Moreschini, M. C. Falub, D.

Pacilé, P. Bruno, K. Kern, and M. Grioni, Phys. Rev. Lett. 98,
186807 �2007�.

14 I. Gierz, T. Suzuki, E. Frantzeskakis, S. Pons, S. Ostanin, A.
Ernst, J. Henk, M. Grioni, K. Kern, and C. R. Ast, Phys. Rev.
Lett. 103, 046803 �2009�.

15 C. R. Ast, D. Pacilé, L. Moreschini, M. C. Falub, M. Papagno, K.
Kern, M. Grioni, J. Henk, A. Ernst, S. Ostanin, and P. Bruno,
Phys. Rev. B 77, 081407�R� �2008�.

16 L. Moreschini, A. Bendounan, C. R. Ast, F. Reinert, M. Falub,

and M. Grioni, Phys. Rev. B 77, 115407 �2008�.
17 H. Bentmann, F. Forster, G. Bihlmayer, E. V. Chulkov, L. Mo-

reschini, M. Grioni, and F. Reinert, Europhys. Lett. 87, 37003
�2009�.

18 C.-G. Duan, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett.
97, 047201 �2006�.

19 J. P. Velev, C.-G. Duan, K. D. Belashchenko, S. S. Jaswal, and E.
Y. Tsymbal, J. Appl. Phys. 103, 07A701 �2008�.

20 M. Fechner, I. V. Maznichenko, S. Ostanin, A. Ernst, J. Henk, P.
Bruno, and I. Mertig, Phys. Rev. B 78, 212406 �2008�.

21 C. Jia and J. Berakdar, Appl. Phys. Lett. 95, 012105 �2009�.
22 O. Krupin, G. Bihlmayer, K. Starke, S. Gorovikov, J. E. Prieto,

K. Döbrich, S. Blügel, and G. Kaindl, Phys. Rev. B 71,
201403�R� �2005�.

23 S. Prakash, M. B. Karacor, and S. Banerjee, Surf. Sci. Rep. 64,
233 �2009�.

24 H. Mirhosseini, J. Henk, A. Ernst, S. Ostanin, C.-T. Chiang, P.
Yu, A. Winkelmann, and J. Kirschner, Phys. Rev. B 79, 245428
�2009�.

25 G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 �1999�.
26 Electron Scattering in Solid Matter, edited by J. Zabloudil, R.

Hammerling, L. Szunyogh, and P. Weinberger �Springer, Berlin,
2005�.

27 Forschungszentrum Jülich, Institut für Festkörperforschung, In-
stitute Quantum Theory of Materials, D-52425 Jülich, Germany.

28 M. Fechner, S. Ostanin, and I. Mertig, Phys. Rev. B 77, 094112
�2008�.

29 T. Oguchi and T. Shishidou, J. Phys.: Condens. Matter 21,
092001 �2009�.

BRIEF REPORTS PHYSICAL REVIEW B 81, 073406 �2010�

073406-4



Paper V

Tunable Spin Gaps in a Quantum-Confined Geometry

71





Tunable Spin Gaps in a Quantum-Confined Geometry
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We have studied the interplay of a giant spin-orbit splitting and of quantum confinement in artificial Bi-

Ag-Si trilayer structures. Angle-resolved photoelectron spectroscopy reveals the formation of a complex

spin-dependent gap structure, which can be tuned by varying the thickness of the Ag buffer layer. This

provides a means to tailor the electronic structure at the Fermi energy, with potential applications for

silicon-compatible spintronic devices.

DOI: 10.1103/PhysRevLett.101.196805 PACS numbers: 73.20.At, 73.21.Fg, 79.60.Jv, 79.60.Bm

In nonmagnetic centrosymmetric bulk solids like sili-
con, electronic states of opposite spin have the same en-
ergy. A surface or an interface breaks the translational
invariance of a three-dimensional crystal. Thus, as pre-
dicted by Bychkov and Rashba [1], the spin-orbit (SO)
interaction can lead to spin-split electronic states in two-
dimensional electron gases (2DEG), in asymmetric quan-
tum wells [2], at a surface or at an interface [3,4]. The size
of the splitting is related to the strength of the atomic SO
coupling (i.e., to the gradient of the atomic potential [5])
and to the potential gradient perpendicular to the confine-
ment [6]. An unexpectedly large splitting was recently
reported for a Bi-Ag surface alloy grown on a Ag(111)
single crystal [7]. It is attributed to an additional in-plane
gradient of the surface potential, hence being a direct
consequence of the chemical alloy configuration [7,8].

The spin-orbit interaction could be used to control via a
gate voltage the dynamics of spins injected into a semi-
conductor [2,9–11]. Moreover, the spin Hall effect—also
induced by the SO interaction—could find applications in
new spintronic devices [12,13] which rely neither on mag-
netic materials nor on optical pumping. Interfaces between
silicon and materials exhibiting large spin-orbit splitting
are therefore expected to open novel vista for spintronics.
The challenge is to control the electronic states and spin
polarization at the Fermi level which determine the elec-
tron and spin transport through interfaces [14,15] and
nanostructures. Among the heavy metals which exhibit
strong spin-orbit interactions, bismuth may be favored for
environmental considerations. Experiments on thin layers
of bismuth on silicon have evidenced a SO splitting in the
Bi surface states, but not of their bulk counterparts [16,17].
Moreover, it was observed that the splitting is removed by
the hybridization between surface and bulk states.

In this Letter we explore a different approach. We fab-
ricated trilayer systems composed of a Bi-Ag surface alloy
[7], a thin Ag buffer layer of variable thickness d, and a Si

(111) substrate [Fig. 1(a)]. Along the z direction, the
vacuum=BiAg=Ag=Si related potential is asymmetric and
SO splitting of delocalized electronic states is expected.
The good interfacial adhesion of the silver film makes the
system stable at room temperature (RT) and results in a
sharp interface. We investigated the complex interface by
angle-resolved photoelectron spectroscopy (ARPES), sup-
ported by first-principles electronic-structure calculations.
We find that the SO splitting is large. We also find that, due

FIG. 1 (color online). (a) Schematic view of a trilayer sample.
The
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R30� Bi-Ag alloy is grown on a Ag buffer—whose
thickness can be varied—deposited on a silicon substrate.
(b) First Brillouin zones of the surface structures. The symmetry
lines �� �K �M and �� �K0 �M0 refer to Si(111) and to the alloy,
respectively. (c) ARPES intensity of the surface states of a Bi-
Ag alloy grown on a thick Ag layer deposited on Si(111) along
�� �K0 �M0. This system is similar to the alloy grown on a Ag(111)
single crystal. Dashed lines indicate the branches of opposite
spins of the spz surface state. Arrows point out bands of pxpy

symmetry. Close to �� all bands exhibit a rotational symmetry
around the surface normal.
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to quantum confinement in the buffer layer, the electronic
structure exhibits patches of highly spin-polarized spectral
density. The spin-dependent density of states close to the
Fermi energy can be tuned by the thickness of the Ag
buffer.

The experiments were performed with a multicham-
ber setup under an ultrahigh vacuum. During prepara-
tion, Si(111) (highly phosphorus doped, resistivity
0:009–0:011 � � cm) was flashed at 1200 �C by direct
current injection. After the flashes, the substrate was
cooled slowly in order to obtain a sharp 7� 7 signature
in low-energy electron diffraction (LEED). The Ag films
were deposited with a homemade Knudsen cell while the
sample was kept at 80 K and then annealed at 400 K. The
quality of the silver thin film was checked by LEED. Ag

grows in the [111] direction [18]. The
ffiffiffi

3
p � ffiffiffi

3
p

R30� Bi-
Ag surface alloy was obtained by depositing 1=3 ML of Bi
with an EFM3 Omicron source on the sample at RT
followed by a soft annealing. Angle-resolved photoemis-
sion spectroscopy (ARPES) spectra were acquired at RT
and 55 K with a PHOIBOS 150 Specs analyzer. We used a
monochromatized and partially polarized GammaData
VUV 5000 high brightness source of 21.2 eV photons.

The first-principles electronic-structure calculations are
based on the local spin-density approximation to density
functional theory, as implemented in relativistic multiple-
scattering theory (Korringa-Kohn-Rostoker and layer-
Korringa-Kohn-Rostoker methods; for details, see
Refs. [7,19]). Spin-orbit coupling is taken into account
by solving the Dirac equation. The computer codes used
consider the boundary conditions present in experiment,
that is the semi-infinite substrate, a buffer of finite thick-
ness, the surface, and the semi-infinite vacuum. The po-
tentials of all sites (atoms) are computed self-consistently,
except for the Si substrate which is mimicked by spherical
repulsive potentials of 1 Hartree height. This so-called
hard-sphere substrate follows the face-centered cubic
structure of the Ag buffer. The electronic structure is
addressed in terms of the spectral density which is obtained
from the imaginary part of the Green function of the entire
system. The latter can be resolved with respect to wave
vector, site, spin, and angular momentum, thus allowing a
detailed analysis of the local electronic structure.

The surface electronic properties of the alloy grown on
top of a thick Ag film (d ¼ 80 monolayers (ML)), as
obtained by ARPES [Fig. 1(c)], agree with those of the
alloy grown on a Ag(111) single crystal [7]. The spin-split
bands which belong to electronic states with spz character

cross at �� (in-plane wave vector kk ¼ 0). They are well

described by parabolas (effective mass m� ¼ �0:35me)

which are offset by �k ¼ �0:13 �A�1. This shift in wave
vector is a signature of the aforementioned Rashba effect.
Two sets of side bands stem from electronic states of
mainly pxpy character which are also spin polarized but

less split [7,8,20]. The pxpy bands cross the Fermi level at

kinnerF � �0:09 �A�1 and kouterF � �0:21 �A�1. Electronic-

structure calculations [7] show that the Bi-Ag surface
states are much more strongly localized in the top layer
than the Ag(111) or Au(111) Shockley surface states.
Thus, the spin-split bands and the giant SO splitting are
not directly affected by the Ag=Si interface for Ag film
thickness larger than a few monolayers. This implies that
prior results for BiAg=Agð111Þ [7] can be transferred to
silicon technology [i.e., to BiAg=Ag=Sið111Þ] at RT.
A new and interesting situation arises for thinner Ag

buffer layers, where d is of the order of the attenuation
length of the electronic states. The Ag sp states are con-
fined to the Ag film by the potential barrier (image-
potential barrier) on the vacuum side (surface) and by the
fundamental band gap of Si on the substrate side. This
confinement leads to quantized wave vectors along z and to
discrete energy levels [21]. These so-called quantum well
states (QWS’s) play a central role in transport properties
[22] and in the coupling of magnetic layers in superlattices
[23–25]. Ag=Sið111Þ QWS’s, in particular, have been ex-
tensively studied by ARPES [18,26,27]. For Ag(111) films,
their in-plane dispersion consists of a set of parabolic

bands centered at ��, with energies determined by the film
thickness [Fig. 2(a); d ¼ 17 ML]. The electronic fringe
structure with a negative parabolic dispersion appears due
to the accumulation of QWS’s near the k-dependent va-
lence band edge of Si. This is an indirect manifestation of
the heavily doped n-type character of the Si(111) sub-
strates used here [18]. The narrow line shapes of the energy

FIG. 2 (color online). (a) Raw ARPES data along �� �K at 55 K.
QWS’s in a 17 ML bare Ag buffer deposited on Si(111). These
parabolic states are numbered � ¼ 1 . . . n. Kinks in the disper-
sion (arrow) are due to the hybridization of the QWS with the p
bands of silicon. SS stands for the Shockley surface state of Ag
(111). (b) EDC extracted from Fig. 2(a) at ��, i.e., k ¼ 0:0 �A�1.
The 1st and 2nd QWS signatures and the SS are indicated.
(c) MDC extracted from Fig. 2(a) at �300 meV shows the
successive branches of the QWS. (d) Raw ARPES intensity
along �� �M0 at 55 K of the Bi-Ag alloy grown on 17 ML of Ag.
(e) EDC extracted from Fig. 2(d) for k ¼ 0:20 �A�1 and k ¼
0:25 �A�1. Arrows indicate gaps of 100–200 meV in the disper-
sion of the pxpy bands.
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distribution curves [EDC’s; Fig. 2(b)] and momentum
distribution curves [MDC’s; Fig. 2(c)], and the observation
of the electronic fringes reflect the uniformity of the Ag
buffers and the high resolution of the experiment.

We now consider the interaction of the spin-split alloy
surface states and the QWS’s in a BiAg=Ag=Si trilayer,
focusing first on a 17 ML thick Ag buffer [Fig. 2(d); i.e.,
the sample of Fig. 2(a) covered by the Bi-Ag alloy). The
Ag Shockley surface state disappears and the resulting
surface electronic structure agrees in general with that of
the system without Si substrate [BiAg=Agð111Þ; no
QWS’s] but shows intensity modulations in both the spz

and pxpy bands. The energy distribution curves, extracted

from the raw data, clearly evidence band gaps [Fig. 2(e)].
The remaining signature of the Ag QWS’s (at large k

values) and the gaps in Bi-Ag surface states are clearly
seen even at RT in the second derivative of the ARPES
intensities (d2IðE;kkÞ=dE2) for samples with selected Ag

film thicknesses (d ¼ 19, 16, and 10 ML) in Fig. 3. The
parabolic in plane dispersion of the QWS’s (circles in
Fig. 3) is obtained from MDC’s of Ag=Sið111Þ with the
corresponding Ag thicknesses [as presented in Fig. 2(c)].
Agreement between the parabolic fits (uncovered Ag buf-
fer) and the QWS’s of the alloyed sample is obtained after
shifting rigidly the parabolas by 50–150 meV to lower
binding energies. These shifts can be attributed to the
different reflection properties of the bare Ag surface and

of the Bi-Ag surface alloy [28]. However, the effective
masses of the QWS’s may also change. Therefore, these
fits are to be considered as guides to the eye. Band gaps are
found at the intersection of the QWS parabola with both
branches of the surface-alloy bands regardless of their
symmetry or spin, providing strong evidence of their hy-
bridization. The hybridization is spin selective [29,30];
thus, we can consider in a first approximation that the
QWS are spin-degenerate or their spin-splitting is small.
For thinner Ag buffers [10 ML; Fig. 3(c)], the number of
QWS’s is reduced. As a result, the number of band gaps is
also decreased but their widths are larger, in particular, for
the pxpy states.

To further corroborate the above interpretation of the
band gaps, first-principles electronic-structure calculations
for BiAg=Agð111Þ reported in [7,19] were extended. Since
the Ag=Sið111Þ interface is incommensurate [18], we are
forced to approximate the Si substrate. Therefore, the
confinement of the Ag QWS’s by the Si(111) substrate is
mimicked by replacing Ag bulk layers by repulsive poten-
tials. The latter provide the complete reflection of the Ag
states at the Ag=Sið111Þ interface. Note that by this means
details of the Ag=Si interface are roughly approximated
and the binding energies of the theoretical quantum well
states may differ from experiment. However, the essential
features are well captured, as will be clear from the agree-
ment of experiment and theory discussed below. The sys-
tems investigated comprise the Bi-Ag surface alloy, Ag
layers, and the substrate built from hard spheres [HS; i.e.
BiAg=Agd�1=HSð111Þ]. The theoretical analysis focuses
on the wave vector and spin-resolved spectral density
NðE;kk;�Þ at a Bi site (� ¼" or # is the spin quantum

number). Spin dependent band gaps are visualized by
displaying �NðE;kkÞ ¼ NðE;kk; "Þ � NðE;kk; #Þ.
For BiAg=Agð111Þ, the Bi surface states hybridize with

Ag bulk states, resulting in a rather blurred spectral density
[Fig. 4(a); compare Fig. 1(c) for the experiment]. For the
systems with Si substrate, focusing here on exemplary
results for d ¼ 10 [Fig. 4(b)] and 19 [Fig. 4(c)], quantum

well states show up as parabolas centered at ��. The most
striking difference to BiAg=Agð111Þ are, however, spin-
dependent band gaps at (E, kk) points at which the QWS’s

would cross the Bi bands. With increasing thickness
of the Ag buffer, the number of gaps (or QWS’s) increases
and the width of the gaps decreases. The spectral densities
of the Bi states are slightly less blurred than for
BiAg=Agð111Þ because hybridization with Ag states oc-
curs only at the band gaps, due to quantization. Eventually,
we find a shift of the QWS’s energies upon covering the Ag
buffer with the Bi-Ag alloy, as observed by the experiment.
We now focus on the agreement of the experimental

findings and the present theoretical approach. Apart from
the similar trends concerning the number and the width of
the gaps with varying the buffer layer thickness, theory
predicts the experimentally observed strong spectral
weight of the remaining ungapped parts of the alloy states.

FIG. 3 (color online). (a),(b), and (c) second derivative of the
ARPES intensity along �� �M0 for three alloy-covered samples at
RT with different Ag film thicknesses, respectively, 19, 16, and
10 ML. Circles correspond to MDC fits of the QWS observed on
the bare Ag thin films of the corresponding thicknesses shifted
by 50–150 meVupwards in order to match the remaining parts of
the QWS at large k values after Bi deposition (e.g., red arrows).
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Moreover, it points towards the association of the un-
gapped parts of the sidebands both with the pxpy bands

and the continuation of the spz band at large wave vectors.
The finite experimental resolution prevents us from iden-
tifying each single contribution. Nevertheless, both in the
experimental (Fig. 3) and the theoretical data [Figs. 4(e)
and 4(f)], the overall shape of each ungapped structure of
the sidebands exhibits a continuously changing curvature
from positive to negative with decreasing d.

By contrast with what has been observed in Bi thin lay-
ers on silicon [16,17], the theoretical results of Figs. 4(e)
and 4(f) clearly show that the Ag quantum well states are

spin-polarized due to the Rashba effect. Close to ��, the
branches of opposite spins of the QWS follow a parabolic
dispersion and their momentum separation decreases with
the Ag thickness. This feature is evident in the figures
which show the spin polarization of the electron states.
We now address, in particular, the electronic structure at
the Fermi level. For d ¼ 10 ML [Fig. 4(e)], highly spin-

polarized states show up at kk ¼ kF ¼ 0:22 �A�1, with a

spin polarization of about 33%. On the contrary, a com-
plete gap appears for d ¼ 19 ML [Fig. 4(f)]. These find-
ings imply that the spin-dependent electronic structure at

the Fermi level—and thus the transport properties—can be
drastically modified by the Ag film thickness.
Our findings for BiAg=Ag=Sið111Þ trilayers suggest that

it is indeed possible to match systems with large spin-orbit
splitting [here: BiAg=Agð111Þ] with a semiconductor sub-
strate. Furthermore, interfacial properties can be custom
tailored, in the present case by a single parameter, namely,
the Ag buffer layer thickness. In this respect, multilayer
systems which comprise semiconducting Si layers and
Rashba-split subsystems (like BiAg=Ag) may be very
useful in the development of new spintronics devices.
Tuning the band-gap structure at the Fermi level could
also be achieved by chemical means, as was demonstrated
for BixPb1�xAg2 mixed alloys grown on Ag(111) [19].
Peculiar transport properties and spin Hall effects can be
anticipated based on this interface, namely, in nanostruc-
tured systems or (Bi-Ag-Si) superlattices.
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FIG. 4. Effect of QWS’s on the spin-split electronic structure
of the Bi=Ag surface alloy, as obtained from first-principles
electronic-structure calculations. (a)–(c): The spectral density
at the Bi site is displayed as gray scale (with white indicating
vanishing spectral weight) for BiAg=Agð111Þ (a) and BiAg=
Ag=Sið111Þ for Ag buffer thicknesses d ¼ 10 (b) and d ¼ 19 (c).
The wave vector is chosen as in the experiment (Fig. 3). (d)–(f):
The spin polarization of the electronic states is visualized by
�NðE;kkÞ, i.e., the difference of the spin-up and the spin-down

spectral density. White and black indicate positive and negative
values, respectively, where gray is for zero �N.
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Abstract
We report on detailed first-principles calculations which focus on the magnetic and structural
properties of the (0001) surface of gadolinium. The electronic correlation within the localized
4f states is treated within the self-interaction correction (SIC), thus going beyond the local
spin-density approximation. The ferromagnetic ground state is predicted correctly if the SIC is
applied; the effect of surface relaxations on Heisenberg exchange parameters and on the Curie
temperature are addressed by Monte Carlo calculations. The SIC also has a profound effect on
the dispersion of the d surface states, due to hybridization of the 4f states with the 5d valence
states. The best agreement with photoemission experiments is obtained within the transition
state approximation, which takes into account the orbital relaxation. The Rashba spin–orbit
coupling in the d surface states is fully captured by our relativistic multiple scattering approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Density functional theory (DFT) is the most widely used
method for electronic structure calculations. Despite the
success of the local spin-density approximation (LSD) to DFT,
there are serious shortcomings: the properties of 3d metal
oxides are described badly, the band gaps of semiconductors
are underestimated, in f -systems the density of states is in
strong disagreement with experiment, in some cases the LSD
gives qualitatively wrong results for Mott–Hubbard insulators,
to name a few. Some of the discrepancies are due to the
restriction of DFT to describe the ground state properties, but
some failures can be attributed to the partial cancellation of
the spurious self-interaction of an electron with itself, which
is present in the Kohn–Sham (KS) effective potential. This
kind of systematic error can be corrected by removing the self-
interaction from the total energy functional [1]. Application of
the self-interaction correction (SIC) to transition metal oxides
(TMOs) [2] and wide-gap semiconductors [3], for example,
shows promising results. Another method to study TMOs
and semiconductors is LDA + U [4], which adds an on-site
Coulomb interaction to the LSDA functional [5]. LDA+U was
used to study other systems with localized electrons such as

gadolinium [6]. However, in this method the on-site Coulomb
interaction U is an adjustable parameter and is chosen to
optimize agreement with experiment.

Gd is a prototype for investigation of the electron
correlation. Correct treatment of the strongly localized
4f states changes the ground state magnetic ordering from
antiferromagnetic to ferromagnetic. Other properties of Gd
also improve when the electron correlation is taken into
account. The surface states of Gd(0001), which are mostly
dz2 majority states, hybridize with the localized 4f majority
states. As we will see later the SIC of the localized states has a
significant effect on the surface states and is essential. So far,
to our knowledge, all studies on Gd bulk and Gd(0001) have
been done by means of LDA + U or a 4f-core model [6–8]. In
this paper we report the results of an ab initio investigation of
the SIC in the bulk and on the (0001) surface of Gd.

Applying the SIC to calculate the ground state properties
of Gd, e.g. magnetic ordering and local magnetic moments,
is very successful. For excited states, it appears that the
binding energies of the SI-corrected localized levels are
significantly too large when compared to those determined
from spectroscopical data, i.e. from photoemission intensities.
This ‘overcorrection’ of the SIC is attributed to the orbital
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relaxation. SIC calculations are ground state calculations and
one cannot expect accurate results for excited states. In our
calculations we used the transition state approximation (TSA),
that is an average of two ground state potentials (LSD and SIC
potentials), to obtain a better agreement with experiments that
are associated with the excited states.

The paper is organized as follows: in section 2 local SIC
and TSA are explained in detail. Section 3 is devoted to the
calculated magnetic properties of Gd bulk and Gd(0001). The
surface states and the effect of the Rashba splitting on the
surface states are also studied. The paper ends with a summary
in section 4.

2. Computational aspects

First-principles calculations were performed within the
framework of multiple scattering theory, using scalar-
relativistic and relativistic Korringa–Kohn–Rostoker (KKR)
computer codes. The self-consistent KKR scheme allows us
to treat semi-infinite systems. Consequently, the entire system
comprises the Gd bulk, the surface region (six Gd layers and
four vacuum layers), and the vacuum region. The image
potential barrier is mimicked by so-called empty spheres.

Spin–orbit coupling is included by solving the Dirac
equation in our relativistic layer KKR code. The layer- and
wavevector-resolved spectral density

Nal (E, �k‖) = − 1
π

Im Tr G+
al,al(E, �k‖) (1)

provides detailed information on the electronic structure. Here,
G+(E, �k‖) is the side limit of the site-diagonal Green function
at energy E and in-plane wavevector �k‖. The trace is over the
muffin-tin sphere of site a in layer l. The spectral density can
be decomposed with respect to spin and angular momentum, to
give access to the relevant properties.

All calculations are performed with the experimental
structural parameters of a = 6.866 bohr and c/a = 1.59 [9].
The interlayer distance at the surface is reduced with respect
to the bulk, as has been determined experimentally [10]. A
surface relaxation of 4% contraction is taken into account.

2.1. Self-interaction correction

The self-interaction correction, which is implemented accord-
ing to [11] in terms of local orbital- and spin-dependent
potentials, is applied to the electronic states of Gd. Based
on this method, the degree of localization is determined by
the energy derivative of the single-site phase shift, that is the
Wigner delay time [12]. For a localized state, characterized by
the main quantum number n, angular momentum L = (l,m),
and spin σ , the charge density is

n(n)SIC
Lσ (�r) = − 1

π

∫ E2

E1

Im GLσ,Lσ (�r , �r; ε) dε, (2)

where E1 and E2 lie slightly below and above the energy of
the state (nLσ). This charge density is used to construct the
effective self-interaction potential,

V (n)LSD−SIC
eff,Lσ (�r) = V LSD

eff,σ (�r)+ V SIC(�r), (3)

where

V SIC(�r) = −VH[n(n)SIC
Lσ ](�r)− V LSD

xc [n(n)SIC
Lσ , 0](�r). (4)

Hence, the Hartree (H) and the exchange–correlation (xc)
potential of the localized state are explicitly subtracted from
the effective potential. Note that this correction vanishes for
delocalized states.

For each SI-corrected channel (nL̃ σ̃ ), indicated by a
tilde, the (L̃σ̃ ) element of the single-site scattering matrix
t (n), calculated within the local spin-density approximation, is
replaced by that obtained from the SI-corrected potential,

t̃ (n)Lσ = t (n)Lσ (1 − δLσ,L̃ σ̃ )+ t (n)LSD−SIC
L̃σ

δLσ,L̃ σ̃ . (5)

The resulting scattering matrix t̃ (n) is then used to calculate
the SI-corrected scattering-path operator which enters the KKR
Green function [13]. The self-interaction is thus corrected
self-consistently, without any adjustable parameter. Further,
the set of SI-corrected channels is determined by total energy
minimization. For Gd it turns out that all 4f majority states
have to be corrected.

At present, there is no relativistic version of the SIC.
To investigate the effect of the SIC on effects which are
mediated by the spin–orbit coupling—in particular the Rashba
effect in the majority surface state—we thus proceed as
follows. We employ a scaling transformation of the (radial)
Dirac equation which allows us to switch between the fully
relativistic (including spin–orbit coupling) and the scalar-
relativistic description (excluding spin–orbit coupling) [14].
This transformation is applied only to the SI-corrected
4f majority levels, thus keeping the relativistic description for
all other electronic states, in particular for the d surface states.
By this means we rely on the non-relativistic SIC but in a
relativistic framework.

2.2. Transition state approximation

In the calculation of the ground state properties, e.g. magnetic
ordering and local magnetic moments, the SI correction is
applied with full strength. For excited states, it appears that
the binding energies of the SI-corrected localized levels are
significantly too large when compared to those determined
from spectroscopical data, i.e. from photoemission intensities.
This ‘overcorrection’ of the SIC is attributed to the orbital
relaxation.

The density functional theory of Hohenberg, Kohn, and
Sham applies only if the occupation numbers of the orbitals
are either zero or one. If the occupancy of one of the single-
particle states has been changed, one has to generalize the
theory by including the occupation number, as was done by
Janak [15]. According to Janak’s theorem, the derivative of the
total energy E with respect to the orbital occupation is equal to
the eigenenergy εα of the corresponding orbital,

∂E
∂ fα

= 〈ψα|H LSD|ψα〉 = εα, (6)
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where H LSD is the LSD Hamiltonian and fα is the occupation
number of the orbital ψα . The relaxation energy 	Erelaxed is
calculated by removing an electron from an occupied state,

	Erelaxed = −
∫ 1

0
εα( fα) d fα. (7)

The total energy E includes the relaxation of all orbitals due to
the change of the occupation number. Several ways to calculate
the removal energy have been proposed [16] but they lead to
unphysical effects [17].

We start from the Taylor expansion of the eigenvalue as a
function of the occupation number in the neighborhood of Fα ,

εα( fα) ≈ ε(Fα)+ ( fα − Fα)
(
∂ε

∂ fα

)
fα=Fα

. (8)

The restriction to the first order is justified if the eigenvalue
depends almost linearly on its occupation number [18, 19].
Inserting (8) into (7) and integrating from fα = 1 to 1 − p
gives

E( fα = 1 − p)− E( fα = 1) = −pεα(Fα)

+
[

p2

2
− p(1 − Fα)

](
∂εα

∂ fα

)
fα=Fα

. (9)

To have a method similar to Koopmans’ theorem one would
need the eigenvalues at full occupancy. For Fα = 1 and p = 1,

	Erelaxed = −εα(1)+ 1
2

(
∂εα

∂ fα

)
fα=1

. (10)

The first term is the energy of the fully occupied orbital α.
The second term accounts for the orbital’s relaxation. This
term includes a ‘non-Koopmans’-like correction (relaxation of
the localized state) and the relaxation energy (relaxation of
the other orbitals). In many applications to localized states,
the relaxation is significant. To achieve an accurate electron
removal energy, this term has to be included in the energy
calculation. Using the Hellmann–Feynman theorem [20], the
second term on the right-hand side of (10) can be written as

∂εα

∂ fα
= 〈ψα|∂H LSD

∂ fα
|ψα〉. (11)

If the relaxation of other orbitals is neglected (in analogy to
Koopmans’ theorem), then (11) reduces to

∂εα

∂ fα
= 〈ψα |uα + ρα

∂εxc

∂ρ
|ψα〉, (12)

where uα is the Coulomb potential associated with orbital α
and εxc is the exchange–correlation energy per particle. For
fα = 1, the first term is the self-Coulomb interaction of an
electron. The second term is the change of the exchange–
correlation energy (to first order in the occupation number)
of the system due to removing one electron from the orbital
α. Equation (12) can be interpreted as the self-interaction
of an orbital whose occupation number is reduced. Adding
this positive term to the energy of the orbital α increases
the removal energy calculated within the LSD. Thus, the

removal energy of a localized orbital with corrected potential
Vα becomes

	Eunrelaxed = −〈ψα |H LSD|ψα〉 − 1
2 〈ψα |V SIC

α |ψα〉. (13)

This is the unrelaxed removal energy when an electron is
removed from orbital α. The removal energy is larger than
its experimental counterpart because the relaxation of other
orbitals is neglected.

As is apparent from (13), the removal energy of the
orbital α is calculated with half strength of the SIC potential
associated with this orbital. By this method, i.e. by calculating
the LSD and the SIC ground state potentials, one obtains
removal energies with good accuracy [3, 17]. Following
previous works we call this approach the transition state
approximation (TSA).

2.3. Exchange parameters and Curie temperature

The self-interaction correction also affects the exchange
interaction among the Gd sites. To address this issue,
we calculated the Curie temperature of both the bulk
and the surface. The Curie temperature is calculated
within the Heisenberg model by Monte Carlo simulations
(MCSs). The exchange parameters Ji j are calculated by
means of the Liechtenstein formula [21]. The critical
temperature is determined accurately by the fourth-order
Binder cumulant [22].

3. Results and discussion

3.1. Magnetic structure

The total energy minimization implies that all 4f majority states
have to be SI corrected. As a result, their binding energies
increase sizably from about 5.0 eV for LSD to about 17.0 eV
for SIC (figure 1). Consequently, these states become more
localized.

The magnetic ground state is changed from antiferromag-
netic ordering, as obtained within the LSD approximation,
to ferromagnetic ordering upon application of the SIC. The
LDA + U method also predicts the magnetic ordering
ground state and the magnetic moment correctly but relies on
adjustable parameters. In LDA + U calculations the change
of magnetic ordering was attributed to the removal of the
4f minority states from the Fermi level to larger energies [6, 7].
A small shift of the minority states is found in our calculations
as well; it is a result of the charge redistribution.

For the ferromagnetic ground state, Heisenberg exchange
parameters Ji j were computed for Gd bulk (figure 2). For
the first three nearest neighbors the coupling is ferromagnetic
(Ji j > 0); the exchange parameters for larger distances change
sign and oscillate (inset of figure 2). However, the exchange
parameters decrease (in absolute value) rapidly with distance;
for example, Ji j of the sixth shell is about 5% of that of the first
shell.

To address the effect of the surface relaxation on the
exchange parameters, a calculation was performed for two
slabs with 12-layer thickness, one unrelaxed, the other with 4%

3
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Figure 1. Effect of self-interaction correction on the binding energy
of 4f majority states in bulk Gd(0001). The spin-resolved spectral
density is calculated within the local spin-density (LSD)
approximation and within the self-interaction correction (SIC) at
�k‖ = 0.

Figure 2. Heisenberg exchange parameters Ji j of Gd bulk (top). To
emphasize the oscillations of the Ji j , we show Ji jr 3

i j in the inset (ri j
distance of sites i and j ).

surface contraction (figure 3). The relaxation has a profound
effect on the surface Ji j ; more precisely, this Ji j is increased
by about 50%. Thus, we expect a sizable effect on the Curie
temperature for the slabs. Please note that in any case the
magnetic coupling of the surface layer with the sub-surface
layer is ferromagnetic.

We applied MCSs for three 12-layer slabs: (i) with Ji j

taken from the bulk calculation (‘bulk’), (ii) with Ji j for
the unrelaxed surface (‘unrelaxed’), and (iii) with Ji j for the
relaxed surface (‘relaxed’). In accordance with the increasing
exchange parameters, in particular those of the first shells, TC

increases as well: from 320 to 330 K for ‘bulk’ via 330–340 K

Figure 3. Effect of the surface relaxation on the Heisenberg
exchange parameters. The bars represent Ji j of the first shell with
sites located in adjacent layers (black with 4% surface contraction;
gray without surface relaxation).

for ‘unrelaxed’ up to 380–400 K for ‘relaxed’. To be more
precise, the exchange parameter of the first shell is 4.13 meV
for ‘bulk’, 4.37 meV for ‘unrelaxed’, and 6.00 meV for
‘relaxed’. Consequently, TC for the ‘bulk’ case matches best
the experimental bulk value of 293 K [23]. We also performed
MCSs for ‘bulk’ systems with a significantly increased size;
in all cases TC was within the range reported above. Please
note that slabs are free-standing Gd layers with two surfaces.
Therefore it is not possible to compare our results directly with
experiments [24].

The findings reported in the preceding evidence the
importance of the self-interaction correction for the magnetic
ordering in systems with correlated electrons. Second, they
show the importance of the surface relaxation to the critical
temperature. The increased Heisenberg exchange parameters
at the surface result in an enhanced TC as compared to the
unrelaxed system.

3.2. Surface state dispersion and Rashba spin–orbit coupling

So far, all calculated properties, such as magnetic ordering
and geometrical constants, were associated with the ground
state. To take into account the relaxation of electrons due to
an excitation we applied the transition state approximation.

In figure 4 the spectral density of the 4f majority states
in Gd(0001) calculated within the LSD, SIC, and TSA is
shown. Compared with experimental values (gray bar), the
LSD predicts too low a binding energy, while the SIC produces
too high a binding energy (cf. the ‘overcorrection’ in figure 1).
Applying the TSA, the binding energy increases to 10.5 eV,
which is in reasonable agreement with the experimental value
(8.0–8.5 eV).

The occupied surface states of Gd(0001) are mostly
dz2 majority states which hybridize with the 4f majority
states. Consequently, the treatment of the electronic correlation
within the 4f states has an effect on both binding energy
and dispersion of the surface states. The d–f hybridization
of the surface state can be quantified by the ratio of the
d and f contributions to its spectral density N at �k‖ = 0.
The d–f hybridization of the surface state is larger for SIC
(d/f = 7) than for LSD (d/f = 50), which is at first glance
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Figure 4. Effect of the electronic correlation on the binding energy
of 4f majority states in the surface layer of Gd(0001). The spectral
density at �k‖ = 0 is calculated within the local spin-density
approximation (LSD), the self-interaction correction (SIC), and the
transition state approximation (TSA). The range of experimental
binding energies [6] is marked by the gray bar (of arbitrary height).

counterintuitive. A closer inspection of the spectral density
shows that the d contribution to the majority surface state
does not change upon application of TSA or SIC. However,
spectral weight of f majority character is transferred from
the unoccupied to the occupied states and is mixed into the
d majority surface state for TSA and SIC. This ‘band-filling’
effect manifests itself in the decreasing d/f ratios and in the
increased magnetic moments for TSA and SIC (8.0 μB), as
compared to LSD (8.0 μB).

The majority surface state dispersion of Gd(0001) is
shown in figure 5. For the LSD approximation, the binding
energy of 0.22 eV at �k‖ = 0 (�̄) deviates sizably from the
experimental result (0.16 eV, dots). More striking, however, is
the positive dispersion at small wavevectors, which does not
match the negative dispersion in experiment. Application of
the SIC leaves the binding energy almost unchanged (0.23 eV)
but results in a strongly negative dispersion, which also does
not fit to experiment. The surface state dispersion calculated
by the TSA shows a plateau at small k‖, and the binding energy
of 0.18 eV almost hits that of the experiment.

In a non-magnetic crystal with inversion symmetry the
electronic states are not spin polarized, due to Kramers’
degeneracy. The spin degeneracy is the result of both time-
reversal and inversion symmetry. At surfaces the inversion
asymmetry results, via the spin–orbit coupling (SOC), in a
splitting in the dispersion relation. At a magnetic surface, spin
degeneracy is lifted by the exchange interaction and majority
spins are aligned along the quantization axis. The effect of
the spin–orbit interaction is mainly modification of the energy
dispersion, i.e. moving the dispersion relations with respect to
each other. Figure 6 depicts the spin structure of split surface
states at a non-magnetic and a magnetic surface.

Figure 5. Effect of electronic correlations on the dz2 majority surface
state of Gd(0001). The spectral densities calculated within the local
spin-density (LSD) approximation, the transition state approximation
(TSA), and the self-interaction correction (SIC) are shown along the
M̄–�̄–M̄ line of the surface Brillouin zone. Experimental data (dots)
are reproduced from [8].

The spin–orbit interaction and magnetism are taken into
account on equal footing in our relativistic layer KKR code.
For clarity, we reproduce the TSA data from figure 5 and add
eye-guiding horizontal lines in figure 7. As a consequence
of the Rashba SOC, the surface state dispersion, as obtained
from the spectral density at the surface, becomes asymmetric
in the direction normal to the in-plane magnetization. As
in experiment, the maximum of the dispersion is shifted off
the Brillouin center to positive �k‖. We note in passing that
magnetization reversal ( �M → − �M) mirrors the dispersion,
that is E(�k‖, �M) = E(−�k‖,− �M). Further, the dispersion
maximum of the associated d minority state (not shown here)
is shifted oppositely to that of the majority surface state.

From figure 7 one might conclude that the Rashba effect
is overestimated in theory. One possible reason could be
too large an asymmetry of the surface state confinement,
which essentially determines the size of the Rashba effect.
Although we cannot rule out this explanation, there may be
a few other explanations for this mismatch between theory
and experiment. (i) The TSA is a first-order perturbation to
SIC and LSD; it does not rely on an adjustable parameter.
Thus, the curvature of the surface states could perhaps be better
described within LDA + U but at the cost of the adjustable
parameter U (which is fitted to experimental data). (ii) The
effective mass of surface states is sometimes overestimated
in KKR, in which the vacuum region is described by so-
called empty muffin-tin spheres on the parent lattice (here
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Figure 6. The schematic spin structure of Rashba-split and exchange-split surface states at a non-magnetic surface (top) and at a magnetic
surface (bottom). The left panels show systems with inversion symmetry while the right panels show systems without inversion symmetry.
The Rashba spin–orbit coupling in a ferromagnetic two-dimensional electron with in-plane magnetization �M removes the inversion symmetry
of the spin-split band structure, E(+�k‖) �= E(−�k‖) for �k‖ ⊥ �M .

Figure 7. The d majority surface states of Gd(0001) calculated
within TSA. The Rashba effect shows up as asymmetry of the
dispersion (E(�k) �= E(−�k)). The in-plane magnetization is
perpendicular to �k‖, �k‖ along M̄–�̄–M̄ . Experimental data (dots) are
reproduced from [8].

hcp(0001)). This effect showed up for example in the free-
electron-like surface state on Au(111); see [25]. (iii) The
experimental dispersion was obtained from the peak positions
in angle-resolved photoemission spectra. The maxima are
typically rather broad for ferromagnetic systems (about 0.2–
0.3 eV FWHM in figure 1(a) of [8]) and, thus, introduce some
uncertainty in the detailed dispersion.

Summarizing this section, we conclude that the TSA
considerably improves the description of excited states in

systems with electronic correlations, as compared to the LSD
approximation and the SIC. Although the agreement with
spectroscopical data, e.g. photoemission, is not as good as in
LDA + U , we would like to add in favor of the TSA that it
does not rely on any adjustable parameters, like the Hubbard
parameters U and J in LDA + U approaches [5]. The latter
are typically chosen to reproduce experiments.

The hybridization of the 4f majority states (which are
treated by SIC) with the d majority surface state has a profound
effect on both the binding energy and the dispersion of the
latter. On top of the TSA treatment, we have shown that even
the Rashba spin–orbit coupling in the surface states is captured
correctly. As a result, we conclude that an advanced treatment
of the electronic correlation in the localized spin-polarized
states is not only important for the magnetic structure but also
improves the properties of the valence states.

4. Concluding remarks

The present first-principles study on Gd(0001) shows that
the self-interaction correction to the local spin-density
approximation improves considerably the description of
ground state properties of correlated systems. Its flavor for
excited states, i.e. the transition state approximation, is able
to describe correctly spectroscopic data. In summary, we
have dealt successfully with a complex interplay of electronic
correlations, surface relaxation, and spin–orbit coupling on the
magnetic ordering, the Curie temperature, and the surface state
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dispersion. A key issue in our multiple scattering theoretical
calculations is that these do not rely on any adjustable
parameter which is related to electronic correlations.

The combination of ab initio calculations beyond LSDA
and Monte Carlo calculations makes it possible to extend the
Curie temperature calculation to more realistic systems, e.g. to
Gd(0001)/W(110). This system shows in particular a thickness
dependence of the Curie temperature [24].
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