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Abstract
Accelerated degradation tests are intensively used in engineering applications to provide
an accurate estimation of lifetime properties of highly reliable products within a relatively
short testing time. In this regard, the corresponding data from particular accelerated
tests at high levels of stress (e.g., temperature, voltage, or vibration) are extrapolated,
through a physically reasonable statistical model, to obtain estimates of lifetime quantiles
at normal use conditions of these models. In this thesis we investigate the problem of
obtaining optimal designs for accelerated degradation tests under different degradation
path models.

After the first two introductory chapters we characterize in the third chapter an
analytical approach for obtaining optimal designs for repeated measures accelerated
degradation tests with multiple stress variables when the observational times are either
fixed in advance or are also to be optimized. Subsequently, we consider the particular
case when the degradation path is assumed to follow a linear mixed effects model which
is quite common in settings when repeated measures are made.

In the fourth chapter we extend the degradation model of chapter 3 in order to
present optimal experimental designs for accelerated degradation tests with repeated
measures and competing failure modes that correspond to multiple response components.
The corresponding marginal degradation paths are expressed using linear mixed effects
models.

The gamma process is a natural model for describing the degradation increments of
the degradation path which exhibit a strictly increasing degradation pattern. In chapter
5, we derive first an optimal design for repeated measures accelerated degradation
testings with a single failure mode that corresponds to a single response component.
The univariate degradation process is expressed using a gamma model in terms of a
generalized linear model to facilitate the derivation of an optimal design. Subsequently,
we extend the univariate model and characterize optimal designs for accelerated degrada-
tion tests with bivariate degradation processes with independent marginal components.
The first bivariate model includes two independent gamma processes as marginal degra-
dation models. The second bivariate models is expressed by a gamma process along
with a linear mixed effects model.

Finally, in chapter 6 we extend the approach presented in chapter 5 to develop optimal
designs for accelerated degradation testing with multiple stress variables and multiple
components. The marginal degradation paths are assumed to follow gamma process
models, and copula-based dependence between marginal components are considered.
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Zusammenfassung
Beschleunigte Degradationstests werden intensiv in technischen Anwendungen

genutzt, um eine genaue Abschätzung der Lebensdauereigenschaften von hochzuverlässi-
gen Produkten innerhalb eines relativ kurzen Testzeitraums zu erhalten. Dabei werden
die entsprechenden Daten aus beschleunigten Tests bei hohen Belastungen (z. B. Tem-
peratur, Spannung oder Vibration) durch ein physikalisch sinnvolles statistisches Modell
extrapoliert, um Schätzungen der Lebensdauerquantile unter normalen Einsatzbedin-
gungen zu erhalten. In dieser Arbeit untersuchen wir das Problem, optimale Designs
für beschleunigte Degradationstests unter verschiedenen Degradationspfadmodellen zu
erhalten.

Nach den ersten beiden einführenden Kapiteln beschreiben wir im dritten Kapitel
einen analytischen Ansatz zur Gewinnung optimaler Designs für beschleunigte Degra-
dationstests mit wiederholten Messungen und mehreren Belastungsvariablen, wenn
die Beobachtungszeiten entweder im Voraus festgelegt sind oder ebenfalls optimiert
werden sollen. Im Folgenden betrachten wir den besonderen Fall, dass der Degradation-
spfad einem linearen Mixed-Effects-Modell folgt, was in Einstellungen mit wiederholten
Messungen recht häufig angenommen werden kann.

Im vierten Kapitel erweitern wir das Degradationsmodell aus Kapitel 3, um optimale
Versuchspläne für beschleunigte Degradationstests mit wiederholten Messungen und
konkurrierenden Schadensarten zu präsentieren, die mehreren Wirkungskomponenten
entsprechen. Die entsprechenden marginalen Degradationspfade werden mit Hilfe
linearer Mixed-Effects-Modelle dargestellt.

Der Gamma-Prozess ist ein natürliches Modell zur Schätzung der Degradationsinkre-
mente über den Degradationspfad, die ein streng monoton zunehmendes Degradations-
muster aufweisen. In Kapitel 5 leiten wir zunächst ein optimales Design für beschleunigte
Degradationstests mit wiederholten Messungen mit einem einzigen Fehlermodus her,
der einer einzigen Wirkungskomponente entspricht. Der univariate Degradationsprozess
wird durch ein Gamma-Modell beschrieben, wobei ein verallgemeinert lineares Modell
eingeführt wird, um die Herleitung eines optimalen Designs zu erleichtern. Im Fol-
genden erweitern wir das univariate Modell und charakterisieren optimale Designs
für beschleunigte Degradationstests mit bivariaten Degradationsprozessen mit unab-
hängigen Randkomponenten. Das erste bivariate Modell beinhaltet zwei unabhängige
Gamma-Prozesse als marginale Degradationsmodelle. Das zweite bivariate Modell
wird durch einen Gamma-Prozess zusammen durch ein lineares Mixed-Effects Modell
dargestellt.

Schließlich erweitern wir in Kapitel 6 den in Kapitel 5 vorgestellten Ansatz, um
optimale Designs für beschleunigte Degradationstests mit mehreren Stressvariablen
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und mehreren Komponenten zu entwickeln. Es wird angenommen, dass die marginalen
Degradationspfade Gamma-Prozessmodellen folgen, und es wird eine Copula-basierte
Abhängigkeit zwischen den marginalen Komponenten zu Grunde gelegt.
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Chapter 1

Overview

1.1 Introduction

Reliability testing is a common scientific approach to gain knowledge about the ability of
the target system of maintaining the pre-designed performance level for a certain period
of time. Nowadays, rapid advances in technology, development of highly sophisticated
products, intense world-wide competition and increasing customer expectations force
manufacturers to produce highly reliable products. (Kahneman and Tversky, 1986)
state that the customers’ experience of a product is greatly affected by its ability to
function normally over time, and they are willing to pay more for the products which
have demonstrated higher reliability. Accordingly, producers need to test the product
reliability carefully before introducing it into the market, which is called reliability
testing and analysis. Previously, reliability is defined as the probability that a system
operates its intended function under certain conditions for a certain period of time.
Consequently, reliability analysis depends on the data which are collected from a sample
of testing units that belongs to a particular process or population under identical
conditions. The normal life test is a straight-forward analysis method that holds the
experiment in the designed usage condition, and collects the samples’ life time to fit
a life time distribution from the testing sample. However, considering this kind of
experimental testing to estimate the failure-time distribution or long-term performance
of high-reliable systems is particularly difficult and time consuming.

In many industrial fields, the need for highly reliable components and materials
are commonly required for long-lasting performance. In particular, the extremely high
reliability is essential in aerospace and aviation industries and also strongly required
in automobile industry, semiconductor industry, electronic industry and many other
fields. However, most of the highly reliable products are designed to operate without
failure for years or even tens of years. Thus, few units will fail or degrade in a normal
life test of practical length under normal use conditions. In addition, manufacturers
cannot afford years of reliability tests before releasing a product into market. Hence, a
more time-affordable reliability test plan is highly required. Accelerated testing which
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Chapter 1. Overview

consists of a high stress level (e.g., temperature, voltage, or vibration) that significantly
shortens product life or accelerates the degradation process of the product is developed.
One can then statistically fit an acceleration model and data from particular tests at
high levels of stress are utilized to obtain estimates of lifetime quantiles at normal stress
levels.

Accelerated life test (ALT) model is an example of these acceleration models which
consists of a theoretical life distribution (such as Weibull, Log-normal and Exponential
distribution). The parameters of these distributions are either functions of accelerating
stress variables or unknown coefficients to be estimated from the experimental data.
However, because of the high-reliable property of products, it is difficult to obtain enough
failure time data during the pre-designed time period to satisfy the requirement of ALT.
Additionally, many testing units hove to be subjected to a monotone degradation process
over the testing period before they fail. Thus, little to no test failure data are available.
To solve this problem, it is therefore necessary to increase the sampling capacity and
extend the testing interval. When a certain stress level (such as temperature, humidity,
voltage, or vibration), of the product is increased, the degradation process will be
accelerated (Whitmore and Schenkelberg, 1997). Therefore, researchers have proposed
the approach of utilizing product performance degradation data to assess the product’s
reliability.

This method of using stress that exceeds the normal use levels to accelerate the
performance degradation of a product, collect degradation data, and conduct a reliability
assessment under a normal stress level is called accelerated degradation test (ADT)
see (Meeker, Escobar, and Lu, 1998). ADT is introduced in order to give estimations
in relatively short periods of time about the life time and reliability of the system
under study. ADT overcomes defects in those products for which ALT only records
the failure time and neglects the specific process of the product failure or performance
changes. Meanwhile, this method also makes up for a lack of ALT failure test data,
thus greatly improving the assessment efficiency (Pang et al., 2020). It has value as
an important engineering application for a fast and accurate completion of product
reliability assessment, development, and approval (Hong and Ye, 2017). In ADT, the
test units are exposed to higher stress levels for degradation than the normal use
conditions in order to obtain degradation data in a considerably shorter testing time
than ALT. Consequently, these data are extrapolated, through a physically reasonable
statistical model, to obtain estimates of lifetime quantiles at normal use conditions.

1.1.1 Review of accelerated degradation testing

ADTs mainly depend on applying higher stress level during the testing process, expecting
to hasten the degradation of a product and recognize the product failure time sooner
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Chapter 1. Overview

than under normal use conditions. Since the product life in regular condition is too long
to observe, this information can then be extrapolated to estimate the life time properties
of the product during the use conditions. This process is called accelerated modeling,
which usually includes statistically fitting the degradation data, and extrapolating
the fitted model to normal stress level (Zhang, 2013). The method of reliability and
statistical analysis and experimental design has a long history, and is still rapidly
developing. In general, the majority of these approaches are intended for interpolation,
i.e. the estimation is intended to be within the response range. However, ADTs are
different in the sense that they are utilized to estimate outside the range of stress
variables range, which may result in many different problems and make the estimation
method more complicated. Therefore, ADT has become a mainstream technique over
the years and is now a research hotspot in the field of reliability , (Nelson, 2009) provided
a detailed summary that discuss the purpose, statistical methodologies and validation of
the accelerated testing. He presented many statistical models in details and defined the
concept of ADT. (Limon, Yadav, and Liao, 2017) introduced a comprehensive review
of critical methods for statistical inference and the optimal design of ADT plans. In
another study, (Deng et al., 2007) made a simple comparison between ADT and ALT,
and reviewed the application of ADT on the basis of the related background, a data
processing method, a degradation model, and design and optimization. The authors
also stated some fundamental problems that need to be resolved in the application of
ADT, as well as its application prospects. (Nelson, 2005) provided a large number of
references on statistical plans for ADT, which will support practitioners to choose a
testing plan and will motivate researchers to introduce new plans and software.

1.1.2 Fundamentals of ADT and reliability analysis

To overcome the problems of a traditional reliability assessment method during the
1970s, (Gertsbackh, 1969) was the first to use performance degradation data to assess
the reliability of a product, which opened up a new way to study the remaining useful
life (RUL) prediction of high reliability long-lifetime products. (Shiomi and Yanagisawa,
1979) and (Carey and Tortorella, 1988) were among the first to consider accelerated
degradation models based on their practical work with actual industrial problems.
(Nelson, 1990) is the first researcher to present applications and statistical models for
ADTs with an application of the Arrhenius relationship which is commonly utilized to
standardize stress variables and provide a life-stress relationship model based on the
Arrhenius equation. The use of the acceleration model depends usually on the type
of stress; e.g., the Arrhenius and Eyring models are suitable for a temperature stress
variable, the inverse power model is commonly used with nonthermal stresses. Later on,
studies for the relationship between failure time and life testing stress level have been
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Chapter 1. Overview

discussed in some literatures; e.g., see (Nelson, 1990) and (Zhao and Elsayed, 2005).
Further, (Meeker, Escobar, and Lu, 1998) discuss the reliability analysis and inference
based on the estimation of failure time from observed degradation data. However, the
main disadvantage of this method is underestimating the variance of the ADT process by
ignoring the error in the degradation curve fitting process. Consequently, the efficiency
of this method strongly depends on the selection of the degradation regression model.
Later, (Boulanger and Escobar, 1994) address the problem of optimizing both the stress
levels as well as the sample size for each stress level under a previously determined
termination time. ADT is an extension of ALT in which the life estimates of the testing
unit is not simply measured by failure time, but utilizes a degradation level instead. This
model is generally applicable when the system under study has measurable degradation
attributes. In such experimental models, the experimenters consistently observe the
degradation level for each testing unit until it reaches a predetermined failure threshold.
Another significant advantage of ADT compared with ALT is the ability of dealing with
censoring data. In ADT model, even if a test unit is censored, it can still provide much
information because we have the trend of its degradation and the information loss is
less, see (Zhang, 2013). Following are the primary assumptions when conducting ADTs
models:
1. Degradation is not reversible.
2. A model applies to a single or multiple degradation process, mechanism, or failure
mode.
3. The nature of the failure at accelerated stress levels is the same as at the design or
use stress levels.

Accelerated degradation data mainly have three main elements, namely, the test time,
performance degradation and accelerated stress level (Pang et al., 2020). The reliability
assessment based on accelerated degradation data mainly considers two aspects involving
reliability modeling and a statistical analysis. The aim is to extrapolate the reliability of
the product under the normal use conditions through the known accelerated degradation
path and the failure time threshold. Firstly, based on an analysis of the product failure
mechanism, the statistical degradation model is derived, and the parameters of the
degradation model related to the acceleration stress are determined (i.e. the parameter
values change with the change in the stress level), and an acceleration model of the
relevant parameters is established. Subsequently, using the accelerated degradation
data to identify whether the failure mechanism is consistent, the parameters of the
model are estimated by subtracting the invalid data. Finally, the reliability assessment
results of the product under the working conditions are extrapolated by combining
them with the failure threshold of the performance degradation parameter.

Considering the technique of accelerating stress applied, ADT is categorized into
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constant-stress, step-stress, progressive-stress and cyclic-stress approaches (Nelson,
2009). Constant-stress ADT (CSADT) has become the most widely used ADT method
due to its ease of stress application, the availability of existing theoretical models, and
convenient calculations. For example, (Liu et al., 2017) apply the Bayesian model
averaging (BMA) method to CSADT to address the issue of model uncertainty. The
CSADT method usually requires a longer testing interval at low stress levels to observe
a system degradation. Thus, to handle this issue, step-stress ADT (SSADT) results in
a quicker degradation than CSADT (Shen et al., 2017). With SSADT, the testing units
is subject to a constant stress for a specific period of time, and the stress then increases
to a higher level or decreases to a lower level until the test reaches the termination
time or the number of failed units reaches a predetermined level. The difficulty of
applying a parameter estimation and reliability extrapolation under normal operating
conditions, as well as the possibility of introducing new fault modes, are the drawbacks
of SSADT, see (Pang et al., 2020). Progressive-stress ADT (PSADT) is another type
of ADT, in which the testing units are subjected to a continually increasing stress over
the testing interval (Peng and Tseng, 2010). Finally, considering products which are
subjected to cyclic stress during normal use conditions, the cyclic-stress ADT, is the
most appropriate method, see (Luo et al., 2017). In this type of accelerated testing, the
testing units undergo more intense repetitive cyclic stress, such as sinusoidal voltage or
fatigue stress, for further details see (Nelson, 2009).

The selection of accelerating stress variables generally depends on the failure mode
of the system under study as well as the primary stresses that generate the failure. For
instance, mechanical systems usually fail through wear or corrosion, thereby accelerating
the occurrence of faults from vibration, see (Pang et al., 2020). Further, random impacts
and humidity are other types of stresses applied to various mechanical components,
such as springs, shafts and bearings. For electronic systems, electrical current, voltage,
humidity, temperature and vibration are common accelerating stress variables. In
general, electrical current (Wang and Chu, 2012) and UV radiation (Wen et al., 2018)
are among the most utilized accelerating stress variables. According to the actual
use conditions and the failure mode of the testing unit, a combination of these stress
variables may also be applied. In fact, the number of stress variables applied in ADT is
another primary issue to be considered. The single-stress ADT is the most common and
favorable method due to its analytical simplicity. However, in order to provide a more
realistic simulation of the normal operating conditions and enhance the testing efficiency,
single-stress ADT has been developed into multi-stress ADT, see (Sun et al., 2018) and
(Tsai et al., 2015). Nevertheless, the multi-stress ADT method also has some obstacles,
such as interaction effects between stress variables and the implementation of higher
complexity. Meanwhile, with enhancing the data acquisition and analysis techniques of
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Chapter 1. Overview

the degradation process as well as the failure mode analysis capabilities, the test objects
have been extended from single component-level systems, e.g. semiconductors (Ye, Hu,
and Yu, 2019), to multiple-level systems, e.g. electrical connectors (Ye et al., 2014).

1.2 Description of the thesis

The problem of characterizing optimal designs for accelerated degradation testing has
attracted increasing attention in the last few decades. This problem is mainly concerned
with deriving some experimental design for obtaining some reliability estimates with
minimum variance.

In this work we are aiming to derive analytical as well as algorithm-based optimal
designs for accelerated degradation tests under several degradation models. For these
models, we are dealing with regression functions that corresponds to Gamma process
(GP) models which are intensively used for the analysis of reliability tests as well as
general mixed models including linear mixed effects models (LMEM). Under different
testing settings and assumptions throughout, we will consider regression models with
multiple accelerating stress variables, multiple response components and multiple
measurement times.

In particular, after introducing some overview and preliminaries in chapter 2, the
third chapter develops locally c-optimal designs for accelerated degradation testing with
multiple stress variables and multiple observation times. In accordance with (Shat and
Schwabe, 2021), we handle in this chapter the particular case when the degradation path
follows a linear mixed effects model which is a common approach when longitudinal
data are considered.

On the basis of the univariate model introduced in chapter 3, the degradation model
of the fourth chapter, as introduced in (Shat, 2021), is an extension to a multivariate
degradation model for deriving c-optimal designs for accelerated degradation testing
with multiple response components. Similar to chapter 3, the corresponding marginal
degradation paths are again expressed by linear mixed effects models with repeated
measures.

Based on (Shat and Schwabe, 2019), we introduce at the beginning of chapter 5 a c-
optimal design for Gamma-based accelerated degradation testings with a single response
component. Subsequently, we introduce an extension of the univariate model in order
to develop optimal designs for bivariate degradation models with independent marginal
components. We consider first a bivariate model that includes two independent gamma
processes as marginal degradation models. On the other hand the second bivariate
models is expressed using a gamma process along with a linear mixed effects model.
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Chapter 1. Overview

Subsequently, on the basis of (Shat and Gaffke, 2021), the work in chapter 6 extends
the model presented in chapter 5 in order to characterize c- and D-optimal experimental
designs for multivariate degradation models with dependent components. The marginal
degradation paths are assumed to follow Gamma process models where Gaussian- as
well as Frank-copula functions are introduced to characterize the dependence between
marginal components.

Finally, concluding remarks as well as some outlook for future research are introduced
in chapter 7.

It should be noted that notation throughout this work, except for some minor
notational differences in chapter 6, has been unified in comparison to the corresponding
articles mentioned for each chapter.
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Chapter 2

Basic concepts

2.1 Statistical modelling of degradation process

In this section, we review the different statistical modeling methods of the system
degradation process based on the following three types: failure lifetime, degradation
distribution, and stochastic process. Under different accelerating stress levels, the failure
lifetime follows the same distribution with different distribution parameters. These
parameters are usually functions related to the stress level (Pang et al., 2020). By setting
up an acceleration model for these parameters, the distribution parameters of the failure
lifetime of the products under normal use conditions can be extrapolated, and thus an
design of experiments and reliability analysis of the products can be carried out. In
general, the method of fitting the degradation path can be divided into two types which
are linear/nonlinear (Lu and Meeker, 1993) and exponential (Wang and Chu, 2012), and
the other is the use of a neural network (Gebraeel and Lawley, 2008), time series (Wang
et al., 2013), and other intelligent algorithms. Considering the first type of modelling,
(Lu and Meeker, 1993) constructed a description method of the degradation path for a
nonlinear comprehensive effect model, and utilized the Monte Carlo (MC) simulation
method to obtain the failure lifetime data to assess the reliability of the system under
study. (Wang and Chu, 2012) introduced an exponential function to fit the degradation
path of a light emitting diode (LED) and performed an average lifetime assessment. On
the other hand, (Gebraeel and Lawley, 2008) conducted reliability assessment based
on a neural network, and constructed a degradation model based on the relationship
between the bearing vibration signal and its life as a way to predict the bearing lifetime.
Additionally, (Wang et al., 2013) utilized a time series regression analysis method,
combined with a neural network in order to conduct reliability assessment for the
contact resistance of aerospace electromagnetic relays. (Wu et al., 2009) utilized a least
squares support vector machine to model the degradation path of CNC machine tools.
The vector machine is trained through historical degradation data and the parameter
values are estimated based on the real-time degradation data.
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Due to the performance difference between different testing units, the degradation
level of different units depends on the stress level applied as well as the observational
time points where the parameters of the degradation level distribution are functions
of the accelerating stress level and observation times. Hence, obtaining the parameter
values of the degradation level distribution leads to constructing the relationship between
the distribution parameters and time or stress which can be further used in the design
of experiments and reliability analysis. For example, (Sun et al., 2004) introduced a
Gauss-Poisson joint distribution for high-energy selfhealing metal film pulse capacitors
to express the distribution of their degradation process. (Jiang and Jardine, 2008)
investigated the degradation process of different degradation levels following different
distribution. The inverse Weibull distribution was utilized to describe the degradation
of the initial level, and a Weibull distribution was used to describe the subsequent
degradation levels.

Utilizing stochastic processes to describe the degradation path of testing units during
ADTs has significant advantages due to the stochastic performance of testing units
as well as the uncertainty in their degradation behaviour. Stochastic processes, such
as the Wiener process, inverse Gaussian (IG) process and Gamma process (GP) are
intensively utilized in systems degradation modeling.

The Wiener process has historically been the most commonly used model (Pang
et al., 2020). The Wiener process {Zt, t ≥ 0} can be represented as Zt = λt+ σB(t),
where λ denotes a certain drift parameter, σ > 0 refers to the diffusion coefficient.
Further, B(t) is the standard Brownian motion and Zt is commonly utilized to indicate
the system.

The Wiener process has independent and normally distributed increments. Hence,
for k observational time points t1 < ... < tk the degradation increments Yj = Ztj −Ztj−1

are independent and Yj ∼ N(λ∆j, σ
2∆j), j = 1, ..., k, where ∆j = tj − tj−1 and t0 = 0.

Further, the failure time T can be expressed with the first passage time of {Zt} exceeding
a predetermined threshold ϑ as follows

T = inf{t ≥ 0 : Zt ≥ ϑ}. (2.1)

(Li, Pan, and Chen, 2014) proposed a reliability assessment model for the momentum
wheel based on the Wiener process where the expectation maximization (EM) algorithm
is utilized to calculate the corresponding reliability. (Jin, Matthews, and Zhou, 2013)
expressed the degradation process of spacecraft battery packs using the Wiener process
with random parameters. Further, (Zhai et al., 2018) provided a random-effect Wiener
process model based on the accelerated failure time principle, and applied an inverse
Gaussian distribution to express the unit-specific heterogeneity along the degradation
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trajectories.
Despite the fact that the Wiener and Gamma processes have been commonly

utilized in degradation modelling, IG is an efficient degradation modelling method
with monotone performance paths. For instance, (Ye and Chen, 2014) stated that the
IG process has several superb properties compared with the Gamma process when
covariates and random effects are considered. The IG process Zt, t ≥ 0, has independent
degradation increments and Zt − Zs ∼ IG(µh(s, t), λh2(s, t)) for all 0 ≤ s < t, where
h(s, t) = Λ(t) − Λ(s), and Λ is a given increasing function on [0,∞). Furthermore,
IG(a, b), a, b > 0 is an IG distribution with the following density function

f(y; a, b) =
√

b

2πy3 exp
− b(y − a)2

2ya2

, y > 0. (2.2)

(Peng, 2015) introduce accelerated degradation modeling using the IG process under
the assumption that the mean parameter is related to the accelerating stress variable(s),
whereas the scale parameter is independent of these variables. (Ye et al., 2014) proposed
an ADT scheme with the IG process under the existence of random effects. The authors
proved that the considered model parameters have a relatively high robustness. (Duan
and Wang, 2018) derived an optimal design of the SSADT given that the degradation
process of the system is modelled with the IG process where both the mean and the
scale parameters are functions of the accelerating stress variables.

GP is a statistical model describing the natural degradation trajectory in which
the degradation is considered to occur gradually over time in a series of tiny positive
increments. (Abdel-Hameed, 1975) stated that the Gamma process {Zt, t ≥ 0} has the
following three characteristics:

1. Z0 = 0, the process has independent increments, and for all 0 ≤ s < t the
increment Zt − Zs has a Gamma distribution Ga(γ(t− s), ν) with a given shape
rate γ > 0 and a given scale parameter ν > 0.

2. The increments for any set of disjoint time intervals are independent random
variables having the distributions described in (1).

3. The density function of the degradation increments Yj, where ∆j = tj − tj−1, is
defined as

f(yj) =
y
γ∆j−1
j exp

(
−yj
ν

)
Γ
(
γ∆j

)
νγ∆j

. (2.3)

(Tsai, Tseng, and Balakrishnan, 2012) discussed the problem of optimal design for degra-
dation tests based on a Gamma degradation process with random effects. The authors
considered several decision variables such as the sample size, inspection frequency, and
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measurement numbers in order to find the c-optimal decision variables. (Duan and
Wang, 2019) addressed the optimal design problems for constant-stress accelerated
degradation test constant stress ADT based on Gamma processes with fixed effect and
random effect. (Pan and Balakrishnan*, 2010) considered the modeling method of
the Wiener and Gamma degradation processes in multiple-steps ADT and applied the
Bayesian Markov chain Monte Carlo (MCMC) method to conduct a reliability analysis.

An Acceleration model indicates the functional relationships between the reliability
characteristics of the system under study, such as quantiles of failure time distribution
and failure rates, and the corresponding accelerating stress variable(s), say x, of that
system. The acceleration model is regarded as the basis for the extrapolation, and
can be used to derive the reliability features under normal use conditions. This
has a direct impact on the accuracy of the extrapolation results, which are the key
to ADT technology (Pang et al., 2020). Furthermore, acceleration models can be
utilized in certain engineering applications to standardize an applied stress variable
resulting a standardized stress variables that is incorporated in the design stage of
ADTs. Acceleration models can be divided into three categories, namely an empirical
acceleration model, a physical acceleration model and a statistical acceleration model,
see (Nelson, 2009).

The empirical acceleration model is mainly utilized in engineering applications
to express a life-stress relationship through long-term observations of the system
performance. The inverse power law is the most typically utilized empirical acceleration
model. (Srivastava and Gupta, 2017) used the inverse power law model to establish the
stress-life relationship of solar lighting equipment, and optimized the test plan using
D-optimal criteria to find the best stress level and the best stress rate change point,
which efficiently assess the system reliability. (Azrulhisham, Mohamad, and Hamid,
2013) derived a parametric model of a carbon steel stub axle using an inverse power
law model where the fatigue lifetime distribution.

A physical acceleration model was suggested to express the system failure driven by
physical changes. The Arrhenius model is a typical example of physical acceleration
models. This model describes the relationship between system lifetime characteristics
and temperature stress. Based on the Wiener process, (Guan, Tang, and Xu, 2016) and
(Lim et al., 2019) discussed the reliability assessment of CSADT and two-phase partial
ADT, respectively, where the Arrhenius model is applied in both tests to express the
relationship between the drift parameter and the temperature. Further, (Wang, Wang,
and Duan, 2016) proposed an optimal optimal of SSADT based on the IG degradation
process and assumed that the relationship between the link function of the stress level
and the mean IG distribution follows the Arrhenius acceleration model.
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Statistical acceleration models are based on statistical analysis methods, which are
often used to interpret data that are difficult to be analyzed using physical methods.
Accelerated degradation data are processed using correlation methods applying mathe-
matical statistics and stochastic processes. Statistical acceleration models can usually
be divided into parametric and nonparametric models. The most typically utilized
parametric model is the accelerated failure time model, see (Elsayed, 2012), which
assumes that the explanatory variables have multiplier effects on the failure time of the
system. The nonparametric model is a model with no distribution assumptions and the
number and characteristics of its parameters are flexible and need not to be specified
in advance. The proportional hazard model, which is introduced by (Cox, 1972), is
the most widely used nonparametric model. This model assumes that the explanatory
variables have multiplier effects on the baseline hazard rate function of the products. In
other words at any time t(> 0) the hazard function of a subject with a certain vector of
covariates values is proportional to the hazard function of another subject and therefore
their hazard ratio is constant over time.

2.2 Copula-based reliability assessment

The majority of related work on degradation-based reliability assessment and experi-
mental design either assumes response components are mutually independent or they
are dependent with a certain multivariate distribution. (Pan and Balakrishnan, 2011),
for instance, introduced a bivariate degradation model based on a Birnbaum Saunders
distribution with Gamma processes as marginals. (Si et al., 2018) proposed a multi-
variate general degradation path model considering dynamic measurements. However,
(Fang, Pan, and Hong, 2020) stated that assigning a multivariate joint distribution to
marginals may not be a suitable solution, as it is not an easy task to obtain a suitable
joint distribution in most cases especially when the marginal processes correspond to
distinct distributions. Hence, a more flexible multivariate model is required. Recently,
the modeling of multiple degradation processes via a copula function has gained a
noticeable interest due to the flexibility of copula functions. Copula is a tool to couple
correlated marginal distributions to produce a new joint distribution. It is able to handle
major multivariate modeling difficulties including the existence of dependence between
marginal response components and the lack of closed-form multivariate distribution.
For example, (Peng et al., 2016a) introduced a bivariate modeling structure based on an
IG process via the Gaussian copula and applied it on a degradation dataset from heavy
machine tools. (Wang et al., 2015a) proposed a multivariate-modeling structure based
on Gamma process via Frank copula. (Peng et al., 2016b) adopted the Wiener process
and the IG process to propose a bivariate degradation model with both monotonic
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and nonmonotonic paths. Further, (Pan et al., 2013) utilized the Frank copula with
marginal paths that correspond to Wiener processes in terms of the same dataset used
in (Pan and Balakrishnan, 2011).

A copula is the function that connects the joint distribution function with individual
marginal distribution functions. As described in (Sklar, 1959), a copula function is
defined as C(u1, ..., un) : [0, 1]n → [0, 1], which is the joint distribution function of n
standard uniformly distributed random variables U1, ..., Un, i.e. C(u1, ..., un) = P(U1 ≤
u1, ..., Un ≤ un) for all (u1, ..., un) ∈ [0, 1]n. (Sklar, 1959), expressed the connection
between a copula and a general multivariate distribution with the following theorem.

Sklar’s Theorem : let Y = (Y1, ..., Yn)T be a random vector with continuous
marginal distribution functions u1, ..., un where ui = Fi(yi), i = 1, ..., n. Hence, there
exists a copula function C such that

FY(y1, ..., yn) = P(Y1 ≤ y1, ..., Yn ≤ yn)

= C(F1(y1), ..., Fn(yn)), for all (y1, ..., yn) ∈ Rn.
(2.4)

and C(u1, ..., un) = FY(y1, ..., yn). Consequently, the joint density function is given by

fy(y1, ..., yn) = c(F1(y1), ..., Fn(yn))
n∏
i=1

fi(yi) (2.5)

where fi(yi) is the ith marginal density function and c(u1, ..., un) = ∂nC(u1,...,un)
∂u1,...,∂un

is the
copula density function. A large number of copula functions exist in the literature which
include different dependence relationships between the marginal distribution functions,
see, for example, (Nelsen, 2007). Among all available copulas, there is a popular family
of copulas called the Archimedean family. This family admits explicit formulas and
they allow modeling variable dependence through a dependence parameter. In this
section, we consider the following, when n = 2, three commonly-used copulas in the
Archimedean family.

1. The Clayton Copula (see (Clayton, 1978)) is given by

Cκ(u1, u2) = (u−κ1 + u−κ2 − 1)−1/κ, κ ∈ [−1,∞)\{0}. (2.6)

As the dependence parameter κ approaches 0, the Clayton Copula approaches
the product copula C(u1, u2) = u1 u2 and corresponds to independence. On the
other hand, as κ approaches ∞, the Copula approaches the Fréchet-Hoeffding
upper bound, i.e. min{u1, u2}, which is an upper bound on all Copula functions.
In the bivariate case, the upper bound represents perfect positive dependence
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between variates (similarly for the lower bound, i.e. max{u1 + u2 − 1, 0}, and
perfect negative dependence).

2. The Frank Copula (see (Frank, 1979)) is given by

Cκ(u1, u2) = − 1
κ

log
1 +

(
e−κu1 − 1

)(
e−κu2 − 1

)
e−κ − 1

 (2.7)

where κ ∈ (−∞,∞)\{0} is the fixed copula dependence parameter. This Copula
allows for negative dependence, and the dependence is symmetric in both tails.
Further, both Fréchet-Hoeffding bounds are attained through an appropriate
choice of κ.

3. The Gumbel Copula (see (Gumbel, 1960)) is given by

Cκ(u1, u2) = e

(
−((− log(u1))κ+(− log(u2))κ)

1
κ
)
, 1 ≤ κ <∞. (2.8)

As the dependence parameter κ approaches 1 and ∞, the Copula approaches
independence and the Fréchet-Hoeffding upper bound, respectively. However,
there are no values for κ such that the Copula approaches the Fréchet-Hoeffding
lower bound. This Copula does not allow negative dependence, and exhibits
strong right tail dependence.

In addition to Archimedean copulas, the Gaussian copula is an important parametric
copula which is constructed form the multivariate normal distribution and does not
admit an explicit formula when compared to the Archimedean copulas. The bivariate
Gaussian copula is defined as

C(u1, u2) = F0,Σ
(
Φ−1(u1),Φ−1(u2)

)
(2.9)

where Φ(.) denotes the standard univariate normal distribution function, and F0,Σ is
the distribution function of the bivariate normal distribution with expectation 0 and
covariance matrix

Σ =
1 ρ

ρ 1

 , −1 < ρ < 1.

2.3 Review of optimal experimental design

The main aim of this section is to provide a general introduction of several primary
topics on optimality theory of experimental designs, in particular the classical optimality
criteria and an associated General Equivalence Theorem. For a more detailed summary
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of these concepts see, for example, (Silvey, 1980) and (Atkinson, Donev, and Tobias,
2007). For the rest of this research we consider experiments where one is interested in
estimating the unknown model parameters. Thus, we are dealing with an estimation
problem and optimal planning of such experiments is concerned with obtaining the
optimal experimental levels and the number of testing units to be assigned to each level
so that the parameters are estimated with high precision.

2.3.1 Exact and approximate experimental designs

Before discussing experimental designs we should introduce first x as experimental
setting which has an influence on the observations y and can be adjusted by the
experimenter. Experimental designs can be classified into two primary types, exact
design and approximate design. Denote m ∈ N as the number of mutually distinct
support points x1, ...,xm, which is defined over the corresponding design region X , an
exact design ξ

E
is expressed as

ξ
E

=
 x1 ... xm
n1 ... nm

 (2.10)

where ni > 0, i = 1, ..,m is the integer number of testing units to be assigned to the
ith experimental level and n is the total number of testing units, i.e. ∑m

i=1 ni = n.
Finding optimal exact designs is, in general, a difficult task of discrete optimization.
To circumvent this problem we follow the approach of approximate designs propagated
by (Kiefer, 1959) in which the requirement of integer numbers ni of testing units at
a stress level xi is relaxed. Then continuous methods of convex optimization can be
employed (see e. g. (Silvey, 1980)) and efficient exact designs can be derived by rounding
the optimal numbers to nearest integers. This approach is, in particular, of use when
the number n of units is sufficiently large. Moreover, the frequencies ni will be replaced
by proportions wi = ni/n, because the total number n of units does not play a role
in the optimization. Thus an approximate design ξ is defined by a finite number of
settings xi, i = 1, ...,m, from an experimental region X with corresponding weights
wi ≥ 0 satisfying ∑m

i=1wi = 1 and is denoted by

ξ =
 x1 ... xm
w1 ... wm

 . (2.11)

In order to avoid the discrete optimization which is necessary to obtain exact designs,
approximate designs will be considered in this research.
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2.3.2 Optimality criteria

The optimality criterion, which indicates the purpose of the experiment to be conducted,
has the primary role in selecting an optimal experimental design. Considering an
approximate design ξ, this is equivalent to maximising the Fisher information matrix.
The Fisher information matrix is defined as the covariance matrix (matrix of second
moments) of the score function which is defined as the vector of first derivatives of the
overall log likelihood function `(θ) with respect to the components of the parameter
vector θ where expectation is with respect to the response vector, say Y = (Y1, ..., Yn)T .
Moreover, under certain regularity conditions, this is equal to minus the expectations
of the second derivatives of the score function. Furthermore, to understand how
expectations are taken, it would be preferable to indicate the dependence of the likelihood
function on the independent random variables Y1, ..., Yn, i.e. `(θ, Y1, ..., Yn). Under the
settings of an exact design with experimental settings (x1, ...,xn) the corresponding
information matrix is defined as

Mθ(x1, ...,xn) = E
− ∂2`(θ, Y1, ..., Yn)

∂θ∂θT

. (2.12)

Further, it should be noted that the asymptotic covariance matrix of the maximum
likelihood estimator is proportional to the inverse of the information matrix. Finding
optimal exact designs is, in general, a difficult task of discrete optimization. To handle
this issue we follow the approach of approximate designs as introduced earlier. Hence,
the per unit, i.e. standardized, information matrix considering the parameter vector θ
and in terms of the approximate design ξ is defined as

Mθ(ξ) =
m∑
i=1

ωiMθ(xi) (2.13)

where Mθ(x) is the elementary information matrix which puts unit mass at the stress
level combination x. Based on the combination of the model parameters we are interested
in as well as the statistical properties to be achieved through the optimality criterion,
a statistically meaningful function of the information matrix has to be defined. This
function, which is called the objective function Φ(Mθ(ξ)), maps the information matrix
to the real line. Consequently, the purpose is then to minimize the objective function
according to ξ in order to derive the corresponding optimal design. The optimal designs
that correspond to nonlinear models depend on the values of the parameters which
complicates the definition of an optimality criterion. A simple approach to handle this
issue is to maximize Φ(Mθ(ξ)) with θ fixed at a prior guess θ̂ which leads to locally
optimal designs, see (Chernoff, 1953). Optimality criteria are often symbolized by an
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alphabetical letter and hence are sometimes called alphabetical optimality criteria, see
(Atkinson, Donev, and Tobias, 2007). The most common optimality criteria are listed
below under the assumption of a q-dimensional parameter vector θ and, hence, a q × q
information matrix Mθ(ξ).

Definition 2.3.1. (D-optimality criterion.) An approximate design ξ∗ is called D-
optimal if it maximizes the determinant of Mθ(ξ) or, equivalently,

− log(det (Mθ(ξ∗))) = min
ξ

[− log(det(Mθ(ξ)))].

Definition 2.3.2. A linear criterion Φ is defined as follows

Φ(Mθ(ξ)) = tr[L Mθ(ξ)−1]

where L is a q × q positive semi definite matrix.

The following A-optimality criterion is an example of linear criteria.

Definition 2.3.3. (A-optimality criterion.) An approximate design ξ∗ is called A-
optimal if it minimizes the trace of the variance covariance matrix, i.e.

tr(Mθ(ξ∗)−1) = min
ξ

[tr(Mθ(ξ)−1)].

Definition 2.3.4. (c-optimality criterion.) An approximate design ξ∗ is called c-optimal
if it minimizes the variance of the estimator of a predetermined linear combination cTθ
of model parameters, i.e.

cTMθ(ξ∗)−1c = min
ξ

[cTMθ(ξ)−1c].

Hence, c-optimal criterion is an appropriate criterion when the aim is to estimate some
function m(θ) of the model parameters with minimum variance. By the delta-method,
the minimum asymptotic variance of m(θ̂) is expressed as follows

minAVar(m(θ̂)) = cTMθ(ξ∗)−1c (2.14)

where m(θ) is assumed to be differentiable in a neighborhood of θ and c = ∂m(θ)
∂θ

. The
optimality criterion expressed in equation (2.14) is extensively used to obtain optimal
experimental designs for ADTs. In this regard, m(θ) is derived as some quantile of
the failure time distribution at the normal use conditions of the system under study.
Consequently, this optimality criterion, which is a special case of the c-optimal criterion,
will be utilized throughout this work to derive optimal experimental designs under
various system conditions.
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2.3.3 The general equivalence theorem

In terms of approximate designs, the general equivalence theorem is a very useful tool
for validating the global optimality of suggested optimal designs. let Ψ(ξ, ξx) be the
directional derivative at the approximate design ξ in the direction of ξx given by

Ψ(ξ, ξx) = lim
α→0+

1
α

[Φ{(1− α)Mθ(ξ) + αMθ(ξx)} − Φ{(Mθ(ξ)}]

where ξx is the design which puts unit mass at the setting x. (Atkinson, Donev, and
Tobias, 2007) state that for a given design ξ∗, the general equivalence theorem ensures,
under the assumption that Φ is a convex function (on the set of all positive defi

nite matrices), that the following three statements are equivalent.

1. the design ξ∗ minimizes Φ(Mθ(ξ)).

2. The design ξ∗ maximizes the minimum over X of Ψ(ξ, ξx).

3. The minimum over X of Ψ(ξ∗, ξx) is equal to zero.

(Silvey, 1980) states that Caratheodory’s theorem can be used to obtain an upper
bound for the number of support points of an optimal design on the basis of the additive
nature of Mθ(ξ). There exists an optimal design such that the number of support
points is bounded by q(q+ 1)/2 points where q is the dimension of the parameter vector
θ. Furthermore, an optimal design which has exactly q support points is said to be
minimally supported.

2.3.4 The multiplicative algorithm

Optimal designs do not usually come in closed form (Yu, 2010). Several early research
articles as (Wu and Wynn, 1978), and later contributions as (Dette, Pepelyshev, and
Zhigljavsky, 2008) proposed novel procedures for numerical computation of optimal
experimental designs. Following is the general formula of the multiplicative algorithm
as introduced by (Silvey, Titterington, and Torsney, 1978) which is determined through
a power parameter δ ∈ (0, 1] and a finite design region X = {x1, ...,xm}.

1. Set δ ∈ (0, 1] and ξ(0) ∈ Ω, with weights w(0)
i > 0, where Ω = {ξ : wi ≥

0,∑m
i=1wi = 1}.

2. For q = 0, 1, ..., compute

w
(q+1)
i = w

(q)
i

dδi (ξ(q))∑m
j=1w

(q)
j dδj(ξ(q))

, i = 1, ....,m, (2.15)
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where for a convex, decreasing, and differentiable optimality criterion Φ the
quantities di(ξ) read as

di(ξ) = −tr
(

Φ′
(
Mθ(ξ)

)
Mθ(ξxi)

)
, Φ′(M) ≡ ∂Φ(M)

∂M
.

3. Iterate until convergence.

For a heuristic explanation, observe that equation (2.15) is equivalent to

w
(q+1)
i ∝ w

(q)
i

∂Φ
(
Mθ(ξ)

)
∂wi

|ξ=ξ(q)

δ, i = 1, ...,m. (2.16)

The value of the derivative
∂Φ
(

Mθ(ξ)
)

∂wi
corresponds to the amount of gain in information,

as obtained by Φ(.), by a slight increase in ωi, the weight on the ith design point. Hence,
equation (2.16) is considered as adjusting ξ so that relatively more weight is placed
on design points whose increased weight may result in a larger gain in information in
Φ(.). If the optimality criterion is decreasing and convex, then a convenient convergence
criterion, based on the general equivalence theorem, see (Kiefer and Wolfowitz, 1960), is

max
1≤i≤m

di(ξ(q)) ≤ (1 + ε)
m∑
i=1

widi(ξ(q)) (2.17)

where ε is a small positive constant.
c-optimality criterion will be utilized throughout this work to obtain algorithm-based

optimal designs, we consider the work of (Yu, 2010) to write the updating rule of the
multiplicative algorithm when the power parameter δ = 1 as follows

w
(q+1)
i = w

(q)
i

cTMθ(ξ(q))−1Mθ(ξxi)Mθ(ξ(q))−1c
cTMθ(ξ(q))−1c

. (2.18)

As noted by (Yu, 2010), the choice δ = 1 may result in an oscillating behavior in the
sense that ξ(q) alternates between two points at which the optimality criterion Φ(.)
takes the same value. Hence, following (Torsney, 1983), a practical recommendation
of δ = 1/2 is considered throughout this work. It should be noted that all numerical
computations throughout this work were made by using the R programming language(R
Core Team, 2020).
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Chapter 3

Optimal Designs Based on Linear
Mixed Effects Models

3.1 Introduction

In this chapter, we consider repeated measures Accelerated Degradation Testing with
multiple stress variables, where the degradation paths are assumed to follow a linear
mixed effects model which is quite common in settings when repeated measures are
made. We derive optimal experimental designs for minimizing the asymptotic variance
for estimating the median failure time under normal use conditions when the time
points for measurements are either fixed in advance or are also to be optimized.

A vast amount of literature is devoted to the analysis of Accelerated Degradation
Testing, see, for example, (Limon, Yadav, and Liao, 2017) for prominent methods for
statistical inference and optimal design of accelerated testing plans. (Li and Kececioglu,
2006) presented an analytical method for the optimum planning of Accelerated Degra-
dation Testing with an application to the reliability of Light-Emitting Diodes. There
the author states that the variability of the measured units have a substantial impact
on the accuracy of estimation. Therefore these random effects should be encountered in
the choice of the experimental settings for the Accelerated Degradation Testing. The
general theory of optimal design of experiments is well developed in the mathematical
context of approximate designs which allow for analytical solutions (see e. g. (Silvey,
1980) or (Atkinson, Donev, and Tobias, 2007)). In the presence of random effects,
(Entholzner et al., 2005) showed that for single samples the optimal designs for fixed
effects models retain their optimality for linear optimality criteria. (Debusho and
Haines, 2008) show that this also holds for D-optimality in linear models when only
the intercept is random. However, in a multi-sample situation (Schmelter, 2007) and
(Schwabe and Schmelter, 2008) exhibited that the variability of the intercept has a
non-negligible influence on the D-optimal design. In the case of random slope effects
this dependence already occurs in single samples as outlines by (Schmelter, Benda, and
Schwabe, 2007). (Dette, Pepelyshev, and Holland-Letz, 2010) considered the problem
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of constructing D-optimal designs for linear and nonlinear random effect models with
applications in population pharmacokinetics. These authors present a new approach
to determine efficient designs for nonlinear least squares estimation which addresses
the problem of additional correlation between observations within units. Based on
geometrical arguments, (Graßhoff et al., 2012) derived D-optimal designs for random
coefficient regression models when only one observation is available per unit, a situation
which occurs in destructive testing.

The present approach is based on the discussion paper by (Weaver and Meeker, 2013)
in which two case studies are introduced for optimal planning of repeated measures
Accelerated Degradation Testing. There the authors consider the influence of a single
stress variable and use a criterion based on a large-sample approximation of the precision
for estimating a quantile of the failure-time distribution under normal use conditions.
We will adopt this approach, generalize the results presented there to more general
models, and extend the design optimization also to generate optimal time plans.

The present chapter is organized as follows. Section 3.2 starts with a motivation
example based on a case study in (Weaver and Meeker, 2013). In Sections 3.3, 3.4 and
3.5 we state the general model formulation, specify the maximum-likelihood estimation
and exhibit the corresponding information matrix. Basic concepts of optimal design
theory in the present context are collected in Section 3.6 while Section 3.7 is devoted
to the idea of soft failure due to degradation, where we derive the design optimality
criterion for estimating a quantile of the failure time distribution under normal use
conditions. In Section 3.8 optimal designs are characterized when the time plan for
repeated measurements at the testing units is fixed in advance. In Section 3.9 also the
measurement times are optimized under the constraint that measurements are taken
according to the same time plan for all units, and in Section 3.10 optimal measurement
times are determined in the setting of destructive testing. The chapter closes with a
short discussion in Section 3.11. Throughout the chapter the theoretical concepts are
illustrated by two accompanying running examples. Some technical result is deferred to
an Appendix. Finally, it should be mentioned that the content of the current chapter is
strongly related to the work of (Shat and Schwabe, 2021)

3.2 Introductory example

Before formulating our general degradation model in Section 3.3, we start in this section
for motivation with the description of a simple introductory example based on (Weaver
and Meeker, 2013).

Example 1. The model proposed in (Weaver and Meeker, 2013) is a linear mixed effect
model with a single stress variable x. In this model there are n testing units for which
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degradation yij is observed at k time points tj, j = 1, ..., k. The (standardized) stress
variable x can be chosen by the experimenter from the design region X = [0, 1].

On the unit level the response yij for the degradation of testing unit i at time tj is
represented by

yij = βi,1 + β2xi + βi,3tj + β4xitj + εij, (3.1)

where the intercept βi,1 is the mean degradation of unit i at time t = 0 under the stress
level x = 0, β2 is the common (not unit specific) mean increase in degradation depending
on the stress variable x, βi,3 is the mean increase in degradation of unit i over time
t when the stress level is set to x = 0, and β4 is the interaction effect between time
and stress. The measurement errors εij are assumed to be realizations of normally
distributed error variables with mean zero and error variance σ2

ε .
On the whole experiment level the unit specific parameters (βi,1, βi,3)T of the units are

assumed to be realizations from a bivariate normal distribution with mean (β1, β3)T and

a variance covariance matrix Σ =
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

. All random effect parameters and

measurement errors are assumed to be independent both within as well as between units.
Under well controlled measuring testing conditions, the variability of the response is
completely described by both the unit to unit variability Σ and the within unit variability
of the measurement errors.

To illustrate the situation some virtual degradation paths yij, j = 1, ..., k, are
depicted in Figure 3.1 for three different values of the stress variable x. There are
three units shown at each value of the stress level (n = 9) and k = 11 equally spaced
measurement times tj. The roughness of the paths is due to the measurement errors εij
The corresponding underlying mean degradation paths µi(xi, t) = βi,1+β2xi+βi,3t+β4xit,
corrected for the measurement errors, are shown in Figure 3.2. These mean degradation
paths are represented by straight lines over time, where both the intercept and the slope
may vary across units around an aggregate value determined by the value xi of the
stress variable. For the analysis of degradation under normal use it is assumed that
the model equation 3.1 is also valid at the normal use condition xu, where typically
xu < 0 on the standardized scale, i. e. µu(xu, t) = βu,1 + β2xu + βu,3t+ β4xut describes
the mean degradation of a future unit u at normal use condition xu and time t, and
the unit specific parameters (βu,1, βu,3)T are bivariate normal with mean (β1, β3)T and
variance covariance matrix Σ.

The degradation is assumed to undergo soft failure, i. e. the unit u will be considered
to fail due to degradation when its mean degradation exceeds a predetermined threshold
y0. The corresponding time tu, for which µu(xu, tu) = y0, will be called the failure time
of unit u under normal use condition due to degradation. These failure times vary
across different unit because of the unit specific parameters βu,1 and βu,3.
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Figure 3.1: Observed degradation paths
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Figure 3.2: Mean degradation paths

23



Chapter 3. Optimal Designs Based on Linear Mixed Effects Models

Table 3.1: Nominal values for Example 1

β1 β2 β3 β4 σ1 σ2 ρ σε xu y0
1 x t xt

2.397 1.629 1.018 0.0696 0.114 0.105 −0.143 0.048 −0.056 3.912

In Figure 3.1 and Figure 3.2 the predetermined failure threshold y0 = 50 is indicated
by a horizontal line. As typical for degradation studies failure does not occur during the
time of experiment even for the highest stress level.

(Weaver and Meeker, 2013) derived locally c-optimal designs for certain characteris-
tics of the mean degradation curves (for future units) under normal use condition xu.
The optimal design is always supported on the extremal points of the design region X
and the optimal weights depend on the nominal values of the model parameters. In
Table 3.1 we reproduce the nominal values of Example 7.2 by (Weaver and Meeker,
2013) on scar width growth after standardization for further use.

In the following section we extend the work of (Weaver and Meeker, 2013) by
considering a general mixed effects model with multiple stress variables x given that
the general model can be applied to linear mixed effect models, linear additive models
or exponential models. Further, this generalization allows for degradation models with
and without interactions between the multiple design variables x.

3.3 Formulation of the model

In this section, we give a general formulation of a mixed effects regression model
incorporating a product-type structure with complete interactions between the stress
and the time variable. This general formulation can cover the situation described in
the introductory Example 1 of the previous section, but may readily be extended to
more than one stress variable and to more complex marginal models for both the stress
variables and the time variable, as indicated later. To become more specific we assume
that there are n testing units i = 1, ..., n, for which degradation yij is to be measured
at k subsequent time points tj, j = 1, ..., k, t1 < ... < tk. Each unit i is observed under
a value xi of the stress variable(s), which is kept fixed for each unit throughout the
degradation process, but may differ from unit to unit. The number k of measurements
and the time points are the same for all units. The measurements yij are regarded as
realizations of random variables Yij which are described by a hierarchical model.

For each unit i the observation Yij at time point tj is given by

Yij = µi(xi, tj) + εij, (3.2)
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where µi(x, t) is the mean degradation of unit i at time t, when stress x is applied
to unit i, and εij is the associated measurement error at time point tj. The mean
degradation µi(x, t) is assumed to be given by a linear model equation in the stress
variable x and time t,

µi(x, t) =
p∑
r=1

βi,rfr(x, t) = f(x, t)Tβi (3.3)

where f(x, t) = (f1(x, t), ..., fp(x, t))T is a p-dimensional vector of known regression
functions fq(x, t) in both the stress variable(s) x and the time t, βi = (βi,1, ..., βi,p)T is
a p-dimensional vector of unit specific parameters βi,q. Hence, the response is given by

Yij = f(xi, tj)Tβi + εij. (3.4)

The measurement error εij is assumed to be normally distributed with zero mean
and some potentially time dependent error variance σ2

ε,j (εij ∼ N(0, σ2
ε,j)). Moreover,

the error terms may be correlated within a unit over time. So, in general the vector
εi = (εi1, ..., εik)T of errors associated with the k observations within one unit i is
k-dimensional multivariate normally distributed with zero mean and positive definite
variance covariance matrix Σε (εi ∼ N(0,Σε)).

Example (Example 1 cont.). In the introductory model

Yij = βi,1 + β2xi + βi,3tj + β4xitj + εij

of Section 3.2 there is only one stress variable x = x, the vector of regression functions
is given by f(x, t) = (1, x, t, xt)T , and the unit specific vector of parameters is βi =
(βi,1, β2, βi,3, β4)T (p = 4). The error terms are assumed to be homoscedastic and
independent, i. e. Σε = σ2

εIk, where Ik denotes the k × k identity matrix.

For the regression functions f(x, t) we suppose a product-type structure with com-
plete interactions between the stress variable x and the time t, i. e. there are marginal
regression functions f1(x) = (f11(x), ..., f1p1(x))T and f2(t) = (f21(t), ..., f2p2(t))T of
dimension p1 and p2 which only depend on the stress variable x and the time t, respec-
tively, and the vector f(x, t) = f1(x)⊗ f2(t) of regression functions factorizes into its
marginal counterparts (p = p1p2). Here “⊗” denotes the Kronecker product of matrices
or vectors. Then the observation Yij can be written as

Yij =
p1∑
r=1

p2∑
s=1

βi,rsf1r(xi)f2s(tj) + εij = (f1(x)⊗ f2(t))Tβi + εij, (3.5)
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where for notational convenience the entries of the vector βi = (βi,11, ..., βi,1p2 , ..., βi,p1p2)
of parameters are relabeled lexicographically according to their associated marginal
regression functions (q = (r − 1)p2 + s, r = 1, ..., p1, s = 1, ..., p2).

Example (Example 1 cont.). In the introductory model of Section 3.2 the rearranged
vector of regression functions f(x, t) = (1, t, x, xt)T = ((1, x)⊗ (1, t))T factorizes into
the vector f1(x) = (1, x)T of a simple linear regression in the stress variable x (p1 = 2)
and the vector f2(t) = (1, t)T of a simple linear regression in time t (p2 = 2). The unit
specific vector of parameters βi is relabeled by βi,11 = βi,1, βi,12 = βi,3, β21 = β2, and
β22 = β4, where for β21 and β22 the index i of the unit is suppressed as these parameters
do not depend on the unit. Thus the model equation can be rewritten as

Yij = βi,11 + βi,12tj + β21xi + β22xitj + εij = ((1, xi)⊗ (1, tj))Tβi + εij.

Moreover, as in the introductory example, we will assume throughout that the
marginal regression function f1(x) = (f11(x), ..., f1p1(x))T of the stress variable x
contains a constant term, f11(x) ≡ 1 say, which is a common assumption in the majority
of situations, and that only the leading p2 parameters βi,11, ..., βi,1p2 of βi associated
with this constant term are unit specific. All other parameters in βi are assumed to
take the same value βrs, r = 2, ..., p1, s = 1, ..., p2, for all individuals i = 1, ..., n. Hence,
for unit i the model (3.5) can be rewritten as

Yij = (f1(xi)⊗ f2(tj))T β + f2(tj)Tγi + εij, (3.6)

where β = (β11, ..., βp1p2)T is the vector of fixed effect (aggregate) parameters (averaged
over the units) associated with the constant term in the regression functions of the
stress variable x and γi = (γi1, ..., γip2)T is the p2-dimensional vector of unit specific
deviations γis = βi,1s − β1s, s = 1, ..., p2, from the corresponding aggregate parameters.

On the aggregate level it is assumed that the units are representatives of a larger
entity. The deviations of the units from the aggregate value are then modeled as
random effects, i. e. they are p2-dimensional multivariate normal with zero mean and
variance-covariance matrix Σγ (γi ∼ N(0,Σγ)). All vectors γi of random effects and
all vectors εi of random errors are assumed to be independent.

Example (Example 1 cont.). In the introductory model of Section 3.2 the two-dimensional
vector of deviations associated with the regression functions f1(x, t) = 1 and f2(x, t) = t

is γi = (βi,11 − β11, βi,12 − β12)T with general 2× 2 variance-covariance matrix Σγ = Σ.
This leads to the mixed effects model equation in standard notation

Yij = β11 +β12tj+β21xi+β22xitj+γi1 +γi2tj+εij = ((1, xi)⊗(1, tj))Tβ+(1, tj)Tγi+εij.
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In vector notation the k-dimensional vector Yi = (Yi1, ..., Yik)T of observations for
unit i can be expressed as

Yi = (f1(xi)T ⊗ F2)β + F2 γi + εi,

where F2 = (f2(t1), ..., f2(tk))T is the k×p2 marginal design matrix for the time variable.
Then Yi is k-dimensional multivariate normally distributed with mean (f1(xi)T ⊗F2)β
and variance covariance matrix V = F2ΣγFT

2 + Σε. The variance covariance matrix V
is not affected by the choice of the stress level xi and, hence, equal for all units i.

Example (Example 1 cont.). In the introductory model of Section 3.2 the marginal
design matrix

F2 =
 1 ... 1
t1 ... tk

T

is the common design matrix for simple linear regression over time. The variance
covariance matrix V = F2ΣFT

2 + σ2
εIk has diagonal entries vjj = Var(Yij) = σ2

1 +
2ρσ1σ2tj +σ2

2t
2
j +σ2

ε and off-diagonal entries vjj′ = cov(Yij, Yij′) = σ2
1 + ρσ1σ2(tj + tj′) +

σ2
2tjtj′.

In total, for the observations of all n units the stacked nk-dimensional response
vector Y = (YT

1 , ...,YT
n )T can be represented in matrix notation as

Y = (F1 ⊗ F2)β + (In ⊗ F2)γ + ε, (3.7)

where F1 = (f1(x1), ..., f1(xn))T is the n × p1 marginal design matrix for the stress
variables across units, γ = (γT1 , ...,γTn )T is the np2-dimensional stacked parameter
vector of random effects and ε = (εT1 , ..., εTn )T is the nk-dimensional stacked vector of
random errors. Such a model equation is sometimes called the “marginal model” for
the response Y, but should not be confused with models marginalized for the covariates
x and t, respectively (see the decomposition at the end of Section 3.5). Note that
the vectors γ ∼ N(0, In ⊗Σγ) of all random effects and the vector ε ∼ N(0, In ⊗Σε)
are multivariate normal. Hence, the vector Y of all observations is nk-dimensional
multivariate normal, Y ∼ N(0, In ⊗V).

Example (Example 1 cont.). In the introductory model of Section 3.2 the marginal
design matrix

F1 =
 1 ... 1
x1 ... xn

T

is the common design matrix for simple linear regression on the stress variable x.
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For the analysis of degradation under normal use we further assume that the general
model 3.6 is also valid at the normal use condition xu, where typically xu 6∈ X , i. e.

µ(xu, t) = (f1(xu)⊗ f2(t))Tβ + f2(t)Tγu (3.8)

describes the mean degradation of a future unit u at normal use condition xu and time
t, and the random effects γu are p2-dimensional multivariate normal with mean zero
and variance covariance matrix Σγ.

In the following we will consider thoroughly a more complex example, where two
stress variables are involved.

Example 2. In this example the degradation is influenced by two standardized accel-
erating stress variables x1 and x2 which act linearly on the response with a potential
interaction effect associated with x1x2. The two stress variables x1 and x2 can be chosen
independently from marginal design regions X1 = X2 = [0, 1], respectively. Also the
time is assumed to act linearly on the degradation and all interactions between stress
variables and time are present as in Example 1.

If, for testing unit i, the stress variables are set to xi1 and xi2 the response yij at
time tj is given by

yij = βi,1 + β2xi1 + β3xi2 + β4xi1xi2 + βi,5tj + β6xi1tj + β7xi2tj + β8xi1xi2tj + εij, (3.9)

where the intercept βi,1 is the mean degradation of unit i at time t = 0 under the
stress levels x1 = 0 and x2 = 0, β2 is the common (not unit specific) mean increase in
degradation depending on the stress variable x1 when x2 = 0, β3 is the common mean
increase in degradation depending on the stress variable x2 when x1 = 0, and β4 is the
interaction effect between the two stress variables. Accordingly βi,5 is the mean increase
in degradation of unit i over time t when the stress levels are set to x1 = 0 and x2 = 0,
β6 is the interaction effect between time and the stress variable x1 when x2 = 0, β7

is the interaction effect between time and the stress variable x2 when x1 = 0, and β8

is the second-order interaction effect between time and the two stress variables. Also
here only the parameters βi,1 and βi,5 associated with the constant term in the stress
variables may vary across units. On the aggregate level these two unit parameters are
again assumed to be normally distributed with means E(βi,1) = β1 and E(βi,5) = β5 and

variance covariance matrix Σ =
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

.
After rearranging terms and relabeling the parameters the model can be rewritten as

Yij = (f11(xi1)⊗ f12(xi2)⊗ f2(tj))Tβ + f2(tj)Tγi + εij, (3.10)
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where f11(x1) = (1, x1)T , f12(x2) = (1, x2)T and f2(t) = (1, t)T are the marginal re-
gression functions for the stress variables x1, x2 and the time variable t, respectively,
β = (β111, β112, β121, β122, β211, β212,

β221, β222)T = (β1, β5, β3, β7, β2, β6, β4, β8)T is the rearranged vector of aggregate pa-
rameters, and γi = (γi1, γi2)T = (βi,1 − β1, βi,5 − β5)T is the vector of parameters for
the deviations of unit i from the aggregate values. These deviations constitute again
random effects with zero mean and variance covariance matrix Σ. With x = (x1, x2),
X = X1 × X2 = [0, 1]2, f1(x) = (f11(x1)T , f12(x2)T )T , p1 = 4, p2 = 2, and p = 8
model 3.10 fits into the framework of the general product-type model 3.5.

Later we will also consider shortly a model in two stress variables without interaction
terms between the stress variables.

3.4 Estimation of the model parameters

Under the distributional assumptions of normality for both the random effects and the
measurement errors the model parameters may be estimated by means of the maximum
likelihood method. Denote by θ = (βT , ςT )T the vector of all model parameters, where
ς collects all variance covariance parameters from Σγ and Σε For the general model (3.7)
the log-likelihood is given by

`(θ; y) = −nk
2 log(2π)− n

2 log(det(V))− 1
2(y−(F1⊗F2)β)T (In⊗V)−1(y−(F1⊗F2)β),

(3.11)
where the variance covariance matrix V = V(ς) of measurements per unit depends only
on ς. The maximum likelihood estimator of β can be calculated as

β̂ = ((F1 ⊗ F2)T (In ⊗ V̂)−1(F1 ⊗ F2))−1(F1 ⊗ F2)T (In ⊗ V̂)−1Y

= ((FT
1 F1)−1FT

1 )⊗ ((FT
2 V̂−1F2)−1FT

2 V̂−1)Y, (3.12)

if both F1 and F2 are of full column rank p1 and p2, respectively, and V̂ = V(ς̂),
where ς̂ is the maximum likelihood estimator of ς. When V is known, at least up
to a multiplicative constant V = σ2V0, then β̂ is the best liner unbiased (general
least squares) estimator β̂GLS = ((FT

1 F1)−1FT
1 ) ⊗ ((FT

2 V−1
0 F2)−1FT

2 V−1
0 )Y of β. In

particular, when the measurement errors are uncorrelated and homoscedastic, i. e.
Σε = σ2

εIk, then this estimator reduces to the ordinary least squares estimator β̂OLS =
((FT

1 F1)−1FT
1 ) ⊗ ((FT

2 F2)−1FT
2 )Y because VF2 = F2(ΣγFT

2 F2 + σ2
εIp2) by a result of

(Zyskind, 1967). Hence, in the case of uncorrelated homoscedastic measurement errors
the maximum likelihood estimator of the location parameters β does neither depend
on the variance covariance parameters nor on their estimates.
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In general, the quality of the estimator β̂ can be measured in terms of its variance
covariance matrix which is given by

Cov(β̂) = (FT
1 F1)−1 ⊗ (FT

2 V−1F2)−1. (3.13)

By using the structure V = F2ΣγFT
2 + Σε the last term can be calculated as

(FT
2 V−1F2)−1 = (FT

2 Σ−1
ε F2)−1 + Σγ (3.14)

in terms of the variance covariance matrices Σγ and Σε of the random effects and the
measurement errors, respectively.

3.5 Information

In general, the Fisher information matrix is defined as the variance covariance matrix
of the score function U which itself is defined as the vector of first derivatives of the log
likelihood with respect to the components of the parameter vector θ. More precisely,
let U = ( ∂

∂θ1
`(θ; y), ..., ∂

∂θq
`(θ; y))T , where q is the dimension of θ. Then for the full

parameter vector θ the Fisher information matrix is defined as Mθ = Cov(U), where
the expectation is taken with respect to the distribution of Y. The Fisher information
can also be computed as the expectations of the second derivatives of the score function
U , i. e. Mθ = −E

(
∂2

∂θ∂θT
`(θ; y)

)
. Under common regularity conditions the maximum

likelihood estimator θ̂ of θ is consistent and asymptotically normal with asymptotic
variance covariance matrix equal to the inverse M−1

θ of the Fisher information matrix
Mθ.

To specify the Fisher information matrix further, denote by Mβ = −E
(

∂2

∂β∂βT
`(θ; y)

)
,

Mς = −E
(

∂2

∂ς∂ςT
`(θ; y)

)
, Mβς = −E

(
∂2

∂β∂ςT
`(θ; y)

)
and Mςβ = MT

βς the blocks of the
Fisher information matrix corresponding to the second derivatives with respect to β
and ς and the mixed derivatives, respectively. The mixed blocks can be seen to be zero
and the Fisher information matrix is block diagonal,

Mθ =
 Mβ 0

0 Mς

 . (3.15)

Moreover, the block Mβ associated with the aggregate location parameters β can be
determined as

Mβ = (FT
1 F1)⊗ (FT

2 V−1F2) (3.16)

which turns out to be the inverse of the variance covariance matrix for the estimator β̂
of β, when V is known. Actually, because the Fisher information matrix for θ is block
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diagonal, the inverse M−1
β = (FT

1 F1)−1 ⊗ (FT
2 V−1F2)−1 of the block associated with β

is the corresponding block of the inverse of Mθ and is, hence, the asymptotic variance
covariance matrix of β̂.

Accordingly the asymptotic variance covariance matrix for estimating the variance
parameters ς is the inverse of the block Mς . In the following we will call Mβ and Mς

the information matrices for β and ς, respectively, for short. The particular form of Mς

will be not of interest here. However, as the information matrix Mς for the variance
parameters ς is given by

Mς = n

2

(
∂2 log(det(V))

∂ς∂ςT
+ tr

(
V
∂2V−1

∂ς∂ςT

))
.

It is important to note that Mς does not depend on the settings x1, ...,xn of the
stress variable in contrast to the information matrix Mβ of the aggregate location
parameters β. For the general product-type model (3.7) the information matrix Mβ

for the aggregate parameters β factorizes according to

Mβ = M1 ⊗M2 (3.17)

into the information matrix M1 = FT
1 F1 in the marginal model

Y
(1)
i = f1(xi)Tβ(1) + ε

(1)
i , (3.18)

i = 1, ..., n, in the stress variable x with standardized uncorrelated homoscedastic error
terms, σ2

ε(1) = 1, and the information matrix M2 = FT
2 V−1F2 in the mixed effects

marginal model
Y

(2)
j = f2(tj)Tβ(2) + f2(tj)Tγ(2) + ε

(2)
j , (3.19)

j = 1, ..., k, in the time variable t with variance covariance matrices Σγ and Σε for the
random effects γ(2) and measurement errors ε(2) = (ε(2)

1 , ..., ε
(2)
k )T , respectively. Then

the information matrix Mθ in the full model depends on the settings x1, ...,xn of the
stress variable only through the information matrix M1 in the first marginal model.

3.6 Design

The quality of the estimates will be measured in terms of the information matrix
and, hence, depends on both the settings of the stress variable and the time points of
measurements. When these variables are under the control of the experimenter, then
their choice will be called the design of the experiment. Here we assume that the time
plan t = (t1, ..., tk)T for the time points of measurements within units is fixed in advance
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and is not under disposition of the experimenter. Then only the settings x1, ...,xn of
the stress variable x can be adjusted to the units i = 1, ..., n. Their choice (x1, ...,xn) is
then called an “exact” design, and their influence on the performance of the experiment
is indicated by adding them as an argument to the information matrices, Mθ(x1, ...,xn),
Mβ(x1, ...,xn), and M1(x1, ...,xn), where appropriate. Remind that both Mς and M2

do not depend on the design for the stress variable.
As M1(x1, ...,xn) = ∑n

i=1 f1(xi)f1(xi)T it can easily be seen that the information
matrices do not depend on the order of the setting but only on their mutually dis-
tinct settings, x1, ...,xm say, and their corresponding frequencies n1, ..., nm, such that∑m
i=1 ni = n, i. e. M1 = ∑m

i=1 nif1(xi)f1(xi)T . Finding optimal exact designs is, in gen-
eral, a difficult task of discrete optimization. To circumvent this problem we follow the
approach of approximate designs ξ as introduced in Subsection 2.3.1.The corresponding
standardized, per unit information matrices are accordingly defined as

M1(ξ) =
m∑
i=1

wif1(xi)f1(xi)T (3.20)

for the marginal model on itself or by plugging (3.20) in into the standardized, per unit
information matrix

Mβ(ξ) = M1(ξ)⊗M2 (3.21)

for the aggregate parameters β, where again M2 = FT
2 V−1F2, and

Mθ(ξ) =
 M1(ξ)⊗M2 0

0 M̃ς

 (3.22)

or the full parameter vector θ, where now M̃ς = 1
n
Mς is the standardized, per unit

information for the variance parameters ς. If all nwi are integer, then these standardized
versions coincide with the information matrices of the corresponding exact design up to
the normalizing factor 1/n and are , hence, an adequate generalization.

In order to optimize information matrices, some optimality criterion has to be
employed which is a real valued function of the information matrix and reflects the
main interest in the experiment.

3.7 Optimality criterion based on the failure time
under normal use condition

As in (Weaver and Meeker, 2013) we are interested in some characteristics of the failure
time distribution of soft failure due to degradation (see the introductory example in
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Section 3.2). Therefore it is assumed that the model equation (3.8) µu(t) = µ(xu, t) =
(f1(xu)⊗ f2(t))Tβ + f2(t)Tγu for the mean degradation paths is also valid under normal
use condition xu, where µu denotes the degradation path under normal use condition
for short. We further denote by µ(t) = E(µu(t)) = (f1(xu) ⊗ f2(t))Tβ the aggregate
degradation path under normal use condition and by δ = δ(β) = (δ1(β), ..., δp2(β))T

the vector of its coefficients δs = δs(β) = ∑p1
r=1 f1r(xu)βrs, s = 1, ...., p2, in the regression

functions f2s in t, i. e. µ(t) = f2(t)Tδ = ∑p2
s=1 δsf2s(t).

For the following it is assumed that the mean degradation paths are strictly increasing
over time. Then a soft failure due to degradation is defined as the exceedance of the
degradation over a failure threshold y0. This definition is based on the mean degradation
path and not on a “real” path subject to measurement errors. The failure time T under
normal use condition is then defined as the first time t the mean degradation path µu(t)
reaches or exceeds the threshold y0, i. e. T = min{t ≥ 0; µu(t) ≥ y0}. As random effects
γu are involved in the mean degradation path, the failure time T is random. Actually,
T may become infinite, if the mean degradation path does not reach the threshold, or
may degenerate to T = 0, if the degradation already exceeds the threshold at time
t = 0, because of unfortunate values of the random effects γu, but this will happen only
with low probability and will not affect the further argumentation.

In order to describe certain characteristics of the distribution of the failure time, we
will determine the distribution function FT (t) = P(T ≤ t). First note that T ≤ t if and
only if µu(t) ≥ y0. Hence

FT (t) = P(µu(t) ≥ y0)

= P(µ(t) + f2(t)Tγu ≥ y0)

= P(−f2(t)Tγu ≤ µ(t)− y0)

= Φ(h(t)), (3.23)

where
h(t) = µ(t)− y0

σu(t)
, (3.24)

σ2
u(t) = f2(t)TΣγf2(t) is the variance of the mean degradation path µu(t) at time t,

and Φ denotes the distribution function of the standard normal distribution. Here
it is tacitly assumed that the variance σ2

u(t) of the mean degradation path is greater
than zero for every t ≥ 0. This condition is satisfied, in particular, when the variance
covariance matrix Σγ of the random effects is positive definite.

We will be interested in quantiles tα of the failure time distribution, i. e. P(T ≤
tα) = α. For each α the quantile tα gives the time up to which under normal use
conditions (at least) α · 100 percent of the units fail and (at least) (1− α) · 100 percent
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of the units persist. The quantiles tα are increasing in α. Note that this standard
definition of quantiles is in contrast to the“upper” quantiles (t1−α) used in (Weaver and
Meeker, 2013) where percentages of failures and persistence are reversed. Of particular
importance is the median t0.5 up to which under normal use conditions half of the units
fails and half of the units persist (α = 0.5). Other characteristics of interest may be the
five or ten percent quantiles t0.05 and t0.1 which give the times up to which 95 or 90 %
percent of the units persist, respectively. By (3.24) these quantiles can be determined
as the solutions of the equation

h(tα) = zα, (3.25)

where zα = Φ−1(α) is the α-quantile of the standard normal distribution. For the
median (α = 1/2) we have z0.5 = 0 and, hence the median failure time t0.5 is the
solution of µ(t) = y0, i. e. the aggregate degradation path reaches the threshold at time
t0.5. Note that the function h represents the failure time distribution function FT on a
normal Q-Q-plot scale.

In the particular case of straight lines for the mean degradation paths, i. e. f2(t) =
(1, t)T as considered in Examples 1 and 2, the function h(t) specifies to

h(t) = δ2t+ δ1 − y0√
σ2

1 + 2ρσ1σ2t+ σ2
2t

2
, (3.26)

where δ1 = ∑p1
r=1 f1r(xu)βr1 and δ2 = ∑p1

r=1 f1r(xu)βr2 are the intercept and the slope of
the aggregate degradation path µ(t) = δ1 + δ2t under normal use condition, respectively.
The median failure time is then given by t0.5 = (y0 − δ1)/δ2 which provides a proper
solution t0.5 > 0 under the natural assumptions that the aggregate degradation path is
increasing, δ2 > 0, and that the aggregate degradation at the beginning of the testing
at time t = 0 is less than the threshold of soft failure, δ1 < y0.

Example (Example 1 cont.). In the introductory example the aggregate degradation
path µ(t) = δ1 + δ2t has intercept δ1 = β1 + β2xu and slope δ2 = β3 + β4xu. Hence,
the median failure time is given by t0.5 = (y0 − β1 − β2xu)/(β3 + β4xu). If we use
the standardized nominal values of Table 3.1 for Example 7.2 by (Weaver and Meeker,
2013), the aggregate degradation path becomes µ(t) = 2.306 + 1.014t under normal
use condition, and the median failure time is t0.5 = 1.583. Note that, as typical for
degradation experiments, the median failure time is larger than the maximal experimental
time tmax = 1.

Under the additional assumption that the correlation of the random effects is non-
negative for the intercept and the slope of the mean degradation path, ρ ≥ 0, the
function h(t) can be seen to be strictly increasing, h′(t) > 0, in t > 0. This also remains
true for small to moderate negative correlations. However, the range of h(t) is bounded
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and does not cover the whole real line such that not all quantiles are non-degenerate.
For small α the α-quantile to be positive requires zα > h(0) = −(y0 − δ1)/σ1, i. e. the
variance σ2

1 of the intercept of the mean degradation path has to be sufficiently small
compared to the distance from its mean δ1 to the threshold y0. In particular, in the
case of the 5 %-quantile σ1 < 0.608(y0 − δ1) is needed for t0.05 > 0. For large α the
α-quantile is finite if zα < limt→∞ h(t) = δ2/σ2, i. e. the variance σ2

2 of the slope of the
mean degradation path has to be sufficiently small compared to its mean δ2. Note that
Φ(h(0)) = 1− Φ((y0 − δ1)/σ1) is the probability that under normal use condition the
mean degradation path exceeds the threshold y0 already at the initial time t = 0. Note
also that formally 1 − Φ(limt→∞ h(t)) = Φ(−δ2/σ2) is the probability that the mean
degradation path has a negative slope which may be interpreted as the probability that
soft failure due to degradation will not occur at all under normal use condition. When
the α-quantile is non-degenerate (0 < tα <∞), then tα is a solution of the quadratic
equation

(δ2t+ δ1 − y0)2 = z2
α(σ2

1 + 2ρσ1σ2t+ σ2
2t

2),

as indicated by (Weaver and Meeker, 2013) for the situation of Example 1. In the
special case of only a random intercept in the random effects, i. e. σ2

2 = 0, all α-quantiles
tα finitely exist for α ≥ Φ(−(y0 − δ1)/σ1) and can be determined as the solution of a
linear equation to tα = (y0 − δ1 + zασ1)/δ2.

Example (Example 1 cont.). For the introductory example the function h(t) is plotted
in Figure 3.4 under the standardized nominal values of (Weaver and Meeker, 2013)
given in Table 3.1. The defining function h(t) is seen to be strictly increasing although
the correlation is moderately negative (ρ = −0.143). Thus the distribution function
FT (t) = Φ(h(t)) is well-defined, and it is represented in Figure 3.3. In both plots the
median failure time t0.5 = 1.583 is indicated by a dashed vertical line. Moreover, as
h(0) = −14.03 and limt→∞ h(t) = 9.67, the range of h covers all reasonable quantiles.

It has to be noted that in the case of the standardized nominal values of Table 3.1
for high stress levels (xh = 1) the mean degradation path µi exceeds the threshold
y0 for soft failure due to degradation with high probability (P(µi(1, 0) ≥ y0) > 1/2)
already at the initial experimental time tmin = 0. Hence, care has to be taken that
the model equation for the mean degradation paths is also valid beyond the threshold,
i. e. in the case that soft failure has already occurred. To avoid this complication we
consider in Example 2 nominal values which guarantee that soft failure occurs during
the experiment only with negligible probability.

Example (Example 2 cont.). For the model with two interacting stress variables
x1 and x2 we consider the virtual nominal values for the parameters, normal use
conditions and threshold given in Table 3.2. The aggregate degradation path µ(t) is
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Figure 3.3: Failure time distribution FT for Example 1
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Figure 3.4: Defining function h for Example 1

Table 3.2: Nominal values for Example 2

β1 β2 β3 β4 β5 β6 β7 β8 σγ σε xu1 xu2 y0
fj(x, t) 1 x1 x2 x1x2 t x1t x2t x1x2t

4.0 1.5 0.75 1.8 0.5 0.25 0.25 4.03 0.7 0.85 −0.5 −0.4 14.39
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Figure 3.5: Failure time distribution FT for Example 2
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Figure 3.6: Defining function h for Example 2

a straight line with intercept δ1 = β1 + β2xu1 + β3xu2 + β4xu1xu2 = 3.31 and slope
δ2 = β5 + β6xu1 + β7xu2 + β8xu1xu2 = 1.08, i. e. µ(t) = 3.31 + 1.08t under normal use
condition. With a threshold of y0 = 14.39 for soft failure the median failure time results
in t0.5 = (y0−δ1)/δ2 = 10.25 which is substantially larger than the maximal experimental
time tmax = 1. For the characterization of other quantiles the function h(t) is plotted
in Figure 3.6 together with the corresponding distribution function FT (t) = Φ(h(t))
in Figure 3.5. The median failure time t0.5 = 10.25 is indicated in both plots by a
dashed vertical line. As ρ = 0 the function h(t) is strictly increasing and ranges from
h(0) = −15.83 to hmax = limt→∞ h(t) = 1.54. Thus, quantiles tα are non-degenerate
as long as α ≤ αmax, where αmax = Φ(hmax) = 0.939, and (1 − αmax) · 100 = 6.1
percent of the mean degradation paths do not lead to a soft failure. Both αmax and hmax

are indicated in the respective plots by a dashed horizontal line. Note that for the
nominal values of Table 3.2 the mean degradation µ(x, t) under experimental conditions
attains its maximum 13.08 for the maximal stress levels (x1 = x2 = 1) and maximal
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experimental time (t = 1), and, hence, the mean degradation paths do not exceed the
threshold for all experimental settings.

In any case the quantile tα = tα(θ) is a function of both the aggregate location
parameters β and the variance parameters ς, in general. Hence, the maximum likelihood
estimator of the quantile tα is given by t̂α = tα(θ̂) in terms of the maximum likelihood
estimator θ̂ of θ. The task of designing the experiment will now be to provide an as
precise estimate of the α-quantile as possible.

By the delta-method t̂α is seen to be asymptotically normal with asymptotic variance

aVar(t̂α) = cTM−1
θ c, (3.27)

where c = ∂
∂θ
tα is the gradient vector of partial derivatives of tα with respect to the

components of the parameter vector θ. The asymptotic variance depends on the
design of the experiment through the information matrix Mθ and will be chosen as the
optimality criterion for the design.

The gradient c can be seen to be equal to

c = −c0
(
∂
∂θ
µ(t)|t=tα − zα ∂

∂θ
σu(t)|t=tα

)
, (3.28)

in view of (3.24) and (3.25) by the implicit function theorem (see e. g. (Krantz and
Parks, 2012)), where c0 = 1/(µ′(tα)− zασ′u(tα)) is the inverse of the derivative of the
defining function h with respect to t.

As the aggregate mean degradation µ(t) only depends on the aggregate location
parameters β and the variance σ2

u(t) only depends on the variance parameters ς the
gradient simplifies to c = −c0(cTβ , cTς )T , where

cβ = ∂
∂β
µ(t)|t=tα = f(xu, tα)

is the gradient of µ(t) with respect to β and

cς = −zα ∂
∂ς
σu(t)|t=tα

is −zα times the gradient of σu(t) with respect to ς. The particular shape of cς does not
play a role here, in general. But note that cς = 0 in the case of the median (α = 0.5).

By the block diagonal form (3.15) of the information matrix the asymptotic variance
(3.27) of t̂α becomes

aVar(t̂α) = c2
0

(
cTβM−1

β cβ + cTς M−1
ς cς

)
(3.29)
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which simplifies to
aVar(t̂0.5) = c2

0cTβM−1
β cβ (3.30)

in the case of the median.
For the product-type model (3.7) the expression related to the aggregate parameters

β further decomposes,

cTβM−1
β cβ = f1(xu)TM−1

1 f1(xu) · f2(tα)TM−1
2 f2(tα), (3.31)

as cβ = f1(xu)⊗ f2(tα) factorizes.

3.8 Optimal designs in the case of predetermined
measurement times

From (3.29) and (3.31) it can be seen that for obtaining a minimal asymptotic variance
for t̂α only f1(xu)TM−1

1 f1(xu) has to be minimized, because all other terms do not depend
on the experimental settings x1, ...,xn of the stress variable, when the measurement times
t1, ..., tk are predetermined. The optimality criterion of minimization of the asymptotic
variance of t̂α thus reduces to a c-criterion cT1 M1(ξ)−1c1 for extrapolation of the marginal
response at normal use condition xu in the first marginal model (3.18), c1 = f1(xu),
which is a well-known problem from the literature (see (Kiefer and Wolfowitz, 1964)).
It is remarkable that this criterion and, hence, the corresponding optimal design is the
same whatever the value of α is, as long as there is a proper solution 0 < tα <∞ for
the α-quantile of the failure time.

Proposition 3.8.1. If the design ξ∗ is c-optimal for extrapolation of the mean response
at the normal use condition in the marginal model (3.18) for the stress variable, then ξ∗

minimizes the asymptotic variance for the estimator t̂α of the α-quantile of the failure
time for every α when 0 < tα <∞ (for predetermined measurement times t1, ..., tk).

Although the normal use condition is typically outside the experimental region,
the above proposition also would hold for interpolation, i. e. xu ∈ X . The result of
Proposition 3.8.1 is next used to derive optimal designs for the situation in Examples 1
and 2.

Example (Example 1 cont.). In the introductory model of Section 3.2 the marginal
model for the stress variable x is given by a simple linear regression, f1(x) = (1, x)T .
In this marginal model the c-optimal design ξ∗ for extrapolation of the mean response
µ(1)(xu) = β

(1)
1 + β

(1)
2 xu under normal use condition xu < 0 assigns weight w∗ =

|xu|/(1+2|xu|) to the highest stress level xh = 1 and weight 1−w∗ = (1+|xu|)/(1+2|xu|)
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to the lowest stress level xl = 0 on the standardized scale X = [0, 1] (see (Kiefer and
Wolfowitz, 1964)). Note that larger weight 1 − w∗ > w∗ is assigned to the lowest
stress level xl = 0 which is closer to xu < 0 than xh = 1 and that the weight 1 − w∗

at xl decreases from 1 to 1/2, when the distance between the normal use condition
and the experimental region gets larger, i. e. xu decreases. For the standardized value
xu = −0.056 of the normal use condition from Table 3.1 the optimal weights for
extrapolation at xu = −0.056 are w∗ = 0.05 at xh = 1 and 1− w∗ = 0.95 at xl = 0, and
the optimal design is

ξ∗ =
 0 1

0.95 0.05

 .
Further examples for extrapolation at xu = −0.4, −0.5, and −1 give optimal weights
w∗ = 0.22, 0.25, and 0.33 at xh = 1, and 1 − w∗ = 0.78, 0.75, and 0.67 at xl = 0,
respectively.

By Proposition 3.8.1 the design ξ∗ is also optimal for minimization of the asymptotic
variance for estimating the α-quantile tα of the failure time for soft failure due to
degradation under normal use condition xu, when 0 < tα < ∞ and the measurement
times t1, ..., tk are predetermined (see (Schwabe, Prus, and Graßhoff, 2014) for estimation
of the median, α = 0.5). In particular, for the standardized value xu = −0.056 of the
normal use condition from Table 3.1 the optimal design for estimating any α-quantile
tα assigns weight 0.95 to xl = 0 and weight 0.05 to xh = 1, as found numerically by
(Weaver and Meeker, 2013) in the case of the median t0.5.

The so obtained designs for one stress variable can now be used to construct c-optimal
designs in the presence of two stress variables with interactions.

Example (Example 2 cont.). In the model with two interacting stress variables x1 and
x2 the marginal model for the combined stress variable x = (x1, x2) is given itself by a
product-type structure, f1(x) = f11(x1)⊗ f12(x2), where both components x1 and x2 are
specified by f1v(xv) = (1, xv)T as simple linear regressions in their corresponding marginal
models Y (1v)

i = β
(1v)
1 + β

(1v)
2 xv + ε

(1v)
i , v = 1, 2, with standardized homoscedastic and

uncorrelated error terms. Moreover, the experimental region X = [0, 1]2 for the combined
stress variable x is the Cartesian product of the marginal experimental regions X1 =
X2 = [0, 1] for the components x1 and x2, respectively. The vector c for extrapolation of
the mean response cTβ(1) = µ(1)(xu) = β

(1)
1 +β(1)

2 xu1 +β(1)
3 xu2 +β(1)

4 xu1xu2 under normal
use condition xu = (xu1, xu2), xu1, xu2 < 0, is given by f1(xu) = f11(xu1)⊗ f12(xu2) and,
hence, also factorizes as c = c1 ⊗ c2, where cv = f1v(xuv). In this setting the c-optimal
design ξ∗ for extrapolation at xu can be obtained as the product ξ∗ = ξ∗1 ⊗ ξ∗2 of the
c-optimal designs ξ∗v for extrapolation at xuv in the marginal models (see Theorem 4.4
in (Schwabe, 1996a)).
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The marginal c-optimal designs ξ∗v can be derived as in Example 1. They assign
weight w∗v = |xuv|/(1 + 2|xuv|) to xv = 1 and weight 1− w∗v = (1 + |xuv|)/(1 + 2|xuv) to
xv = 0. Hence, the c-optimal design ξ∗ = ξ∗1 ⊗ ξ∗2 for extrapolation at xu is given by

ξ∗ =
 (0, 0) (0, 1) (1, 0) (1, 1)

(1− w∗1)(1− w∗2) (1− w∗1)w∗2 w∗1(1− w∗2) w∗1w
∗
2

 .
Then, by Proposition 3.8.1, the design ξ∗ is also optimal for minimization of the

asymptotic variance for estimating the α-quantile tα of the failure time for soft failure due
to degradation, when 0 < tα <∞ and the measurement times t1, ..., tk are predetermined.
For example, when the normal use conditions are xu1 = −0.5 for the first component
and xu2 = −0.4 for the second component as specified in Table 3.2, then by the results in
Example 1 the optimal marginal weights are w∗1 = 0.25 and w∗2 = 0.22, and the optimal
design ξ∗ = ξ∗1 ⊗ ξ∗2 is given by

ξ∗ =
 (0, 0) (0, 1) (1, 0) (1, 1)

0.58 0.17 0.19 0.06

 .
The c-optimal extrapolation designs can be obtained in both Examples 1 and 2

by Elfving’s theorem ((Elfving, 1952)) which provides a geometrical construction of a
c-optimal design (see (Schwabe, 1996a), Theorem 2.13). To give a rough idea of this
construction one has to consider the Elfving set which is the convex hull

E = conv({f(x); x ∈ X} ∪ {−f(x); x ∈ X})

of the union of the so-called induced design region {f(x); x ∈ X} and its image
{−f(x); x ∈ X} under reflection at the origin 0 in Rp. Here x and f denote variables
and regression functions associated with a generic model Yi = f(xi)Tβ+εi. In Example 1
we have x = x, f(x) = (1, x)T and X = [0, 1], and the Elfving set E is given as a
parallelogram in R2 with one edge from (1, 0)T to (1, 1)T representing the induced
design region and the opposite edge from (−1, 0)T to (−1,−1)T representing its image
under reflection. For another illustration of an Elfving set see Figure 3.7 in Section 3.10,
where an optimal design is sought for the time variable t.

The c-optimal design for estimating cTβ can then be constructed as follows: Deter-
mine the intersection point of the ray λc, λ > 0, with the boundary of the Elfving set,
λcc say. This point can be represented as a convex combination of (extremal) points
±f(xi) of the induced design region and its reflection,

λcc =
m∑
i=1

wizif(xi),
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where zi = 1, when the (extremal) point f(xi) is from the induced design region, and
zi = −1, when the point −f(xi) is from the reflection, and the weights wi of the convex
combination satisfy wi > 0 and ∑m

i=1wi = 1. Then Elfving’s theorem states that the
design ξ∗ which assigns weights wi to the settings xi is c-optimal (for c). Moreover, this
construction also provides the value of the c-criterion, cTM(ξ∗)−1c = 1/λ2

c .
In Example 1 the ray λ(1, xu)T intersects the boundary of the Elfving set E at the

connecting line from (1, 0)T = f(0) to (−1,−1)T = −f(1) at λc(1, xu)T = w1(−1,−1)T +
w2(1, 0)T with λc = 1/(1 − 2xu), w1 = −xu/(1 − 2xu) > 0 and w2 = 1 − w1 =
(1− xu)/(1− 2xu) > 0. Hence, the optimality of the given design follows.

We will use Elfving’s theorem next to characterize optimal designs for the situation
with two non-interacting stress variables.

Example 3. In the case of two non-interacting stress variables x1 and x2 we consider
the model equation

yij = βi,1 + β2xi1 + β3xi2 + βi,4tj + β5xi1tj + β6xi2tj + εij (3.32)

for the combined stress variable x = (x1, x2) and the time variable t. This model contains
all terms of the full interaction model 4.23) with the exception of the terms x1x2 and
x1x2t related to potential interactions between the stress variables. The interpretation
of all other terms in (3.32) is the same as in Example 2. Model (3.32) is constructed
from the marginal model

Y
(1)
i = β

(1)
1 + β

(1)
2 xi1 + β

(1)
3 xi2 + ε

(1)
i

which is additive in the effects of the stress variables x1 and x2, i. e. f1(x) = (1, x1, x2)T .
For this marginal model of multiple regression, the Elfving set is an oblique prism

with quadratic base with vertices (1, 0, 0)T , (1, 0, 1)T , (1, 1, 0)T , (1, 1, 1)T and quadratic
top with vertices (−1, 0, 0)T , (−1, 0,−1)T , (−1,−1, 0)T , (−1,−1,−1)T . To find the
c-optimal extrapolation design at the normal use condition xu = (xu1, xu2) by Elfving’s
theorem we have to determine the intersection point of the ray λ(1, xu1, xu2)T with
the surface of the Elfving set. For xu1 < xu2 < 0 the ray intersects the surface at
the quadrangular face of the prism spanned by (1, 0, 0)T , (1, 0, 1)T , (−1,−1, 0)T , and
(−1,−1,−1)T when λc = 1/(1 + 2|xu1|). The representation of the intersection point
λc(1, xu1, xu2)T by the vertices of the quadrangle is not unique. There are two c-optimal
designs

ξ∗0 =
 (0, 0) (0, 1) (1, 1)

(1 + |xu2|)λc (|xu1| − |xu2|)λc |xu1|λc


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and

ξ∗1 =
 (0, 0) (1, 0) (1, 1)

(1 + |xu1|)λc (|xu1| − |xu2|)λc |xu2|λc


which are supported on three vertices. As a consequence, also for all coefficients a,
0 < a < 1, the convex combination

ξ∗
a = (1− a)ξ∗

0 + aξ∗
1 =(

(0, 0) (0, 1) (1, 0) (1, 1)
(1 + a|xu1|+ (1− a)|xu2|)λc (1− a)(|xu1| − |xu2|)λc a(|xu1| − |xu2|)λc ((1− a)|xu1|+ a|xu2|)λc

)

supported on all four vertices is c-optimal for extrapolation at xu, 0 < tα <∞. Then,
by Proposition 3.8.1, the designs ξ∗a are also optimal for minimization of the asymptotic
variance for estimating the α-quantile tα of the failure time for soft failure due to
degradation, when 0 < tα <∞ and the measurement times t1, ..., tk are predetermined,
0 ≤ α ≤ 1. For example, when the normal use conditions are xu1 = −0.5 for the first
component and xu2 = −0.4 for the second component as in Example 2, then the optimal
design ξ∗a is given by

ξ∗a =
 (0, 0) (0, 1) (1, 0) (1, 1)

0.70 + 0.05a 0.05− 0.05a 0.05a 0.25− 0.05a


with the special cases

ξ∗0 =
 (0, 0) (0, 1) (1, 1)

0.70 0.05 0.25

 and ξ∗1 =
 (0, 0) (1, 0) (1, 1)

0.75 0.05 0.20


supported on three vertices.

Note that there are also other designs which are c-optimal for extrapolation at xu,
but which are not solely supported on the vertices. For example, for xu1 < xu2 < 0
the two-point design which assigns weight w = |xu1|/(1 + 2|xu1|) to (0, 0) and weight
1−w = (1+|xu1|)/(1+2|xu1|) to (1, xu2/xu1) is c-optimal by Elfving’s theorem. However,
these designs can be used for estimating tα by means of maximum-likelihood only when
the resulting information matrix is non-singular, i. e. when the design has, at least, three
distinct support points.

For xu2 < xu1 < 0 optimal designs can be obtained from the above case by inter-
changing the roles of the two components x1 and x2.

In the case xu1 = xu2 < 0 there is only one c-optimal design for extrapolation. This
design is supported on two vertices and assigns weight w = |xu1|/(1 + 2|xu1|) to (0, 0)
and weight 1−w = (1 + |xu1|)/(1 + 2|xu1|) to (1, 1). As the resulting information matrix
is singular, this design cannot be used for estimating the α-quantile tα of the failure
time for soft failure due to degradation. Hence, no suitable optimal design exists in this
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case, but the c-optimal design may serve as a benchmark for judging the quality of a
competing design in terms of efficiency.

To quantify the quality of a standard design ξ0 for estimating the quantile tα of the
mean failure time under normal use condition we make use of the efficiency

effaVar(ξ0) = aVar(t̂α; ξ∗)
aVar(t̂α; ξ0)

, (3.33)

where aVar(t̂α; ξ) = cTMθ(ξ)−1c denotes the standardized asymptotic variance for
estimating tα by equation (3.22) when design ξ is used, and ξ∗ is the corresponding
optimal design. The efficiency gives the proportion of units to be used under the
optimal design ξ∗ which provides (asymptotically) the same accuracy (in terms of the
asymptotic variance) compared to the standard design ξ0. For example, if the efficiency
is 0.5 twice the number of units have to be used under ξ0 than under the optimal design
ξ∗ to get the same accuracy. Note that both the asymptotic variance and the efficiency
may also depend on the parameter vector θ, at least, through tα and are, hence, local
quantities (at θ) without explicitly stated in the notation.

In the case of estimating the median t0.5 the standardized asymptotic variance
factorizes as

aVar(t̂0.5; ξ) = 1
n
c2

0f1(xu)TM1(ξ)−1f1(xu) · f2(tα)TM−1
2 f2(tα) (3.34)

by equations (3.30) and (3.31) for the general product-type model (3.7). Thus the
efficiency defined in (3.33) reduces to the c-efficiency

effc(ξ0) = f1(xu)TM1(ξ∗)−1f1(xu)
f1(xu)TM1(ξ0)−1f1(xu)

for extrapolation at the normal use condition xu in the first marginal model with
uncorrelated homoscedastic errors and does not depend on θ.

Example (Example 1 cont.). In the introductory model of Section 3.2 the c-criterion
for extrapolation at xu is defined by Φc(ξ) = f1(xu)TM1(ξ)−1f1(xu). For xu < 0 it
attains its minimal value value Φc(ξ∗) = (1 + 2|xu|)2 for the optimal design ξ∗ which
assigns weight w∗ = |xu|/(1 + 2|xu|) to xh = 1 and weight 1−w∗ = (1 + |xu|)/(1 + 2|xu|)
to xl = 0. Common alternatives would be uniform designs ξ̄m which assign equal
weights w = 1/m to m experimental settings on an equidistant grid {x1, ..., xm} =
{0, 1/(m − 1), ..., 1} of the experimental region X = [0, 1]. For these designs the c-
criterion for extrapolation at xu < 0 can be calculated as Φc(ξ̄m) = 1 + am(1 + 2|xu|)2,
where am = 3(m− 1)/(m + 1). Their c-efficiency for extrapolation at xu and, hence,
their efficiency for estimating the median failure time under normal use condition xu is
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Table 3.3: Efficiency of uniform designs ξ̄m for various normal use
conditions xu in Example 1

m xu
0 −0.056 −0.400 −0.500 −1.000 −∞

2 0.50 0.55 0.76 0.80 0.90 1.00
3 0.40 0.43 0.55 0.57 0.62 0.67
4 0.36 0.38 0.47 0.49 0.52 0.56
5 0.33 0.36 0.43 0.44 0.47 0.50
∞ 0.25 0.26 0.30 0.31 0.32 0.33

equal to effc(ξ̄m) = Φc(ξ∗)/Φc(ξ̄m) = (1− 1/(1 + am(1 + 2|xu|)2))/am which increases
from 1/(1 + am) = (m + 1)/(4m− 2) for xu close to the lowest stress level xl = 0 to
1/am = (m+ 1)/(3m− 3) when xu tends to minus infinity. Moreover, for fixed xu, the
efficiency decreases when m increases, i. e. when the grid becomes more dense. For
selected values of the normal use condition xu and numbers m of grid points numerical
values of the efficiency are reported in Table 3.3 Note that in Table 3.3 the row m =∞
corresponds to a continuous uniform design as an approximation to large numbers m of
grid points, while the columns xu = 0 and xu = −∞ give approximations for normal
use conditions xu close to the lowest experimental stress level or far away, respectively.

For the particular case m = 2, where the design ξ̄2 assigns equal weights w = 1−w =
1/2 to both the highest and the lowest stress level xh = 1 and xl = 0, we have a2 = 1
and, hence, Φc(ξ0) = 1 + (1 + 2|xu|)2 for the c-criterion. The c-efficiency of ξ̄2 for
extrapolation at xu and, thus, its efficiency for estimating the median failure time under
normal use condition xu is equal to effc(ξ̄2) = 1− 1/(1 + (1 + 2|xu|)2) which ranges from
1/2 for xu close to the lowest stress level xl = 0 to 1 when xu tends to minus infinity.

For the nominal value xu = −0.056 of the normal use condition in Table 3.1 the
efficiency of the equidistant grid designs ξ̄m is reported in the third column of Table 3.3.
In particular, for the uniform design ξ̄2 on the endpoints of the experimental region this
efficiency is 0.55 which means that effc(ξ̄2)−1 − 1 = 1/(1 + 2|xu|)2 = 81 % more units
would have to be used for design ξ̄2 to obtain the same quality for estimating the median
failure time than for the optimal design ξ∗.

The efficiencies in the case of one stress variable can be used to compute the efficiency
in the presence of two stress variables with interactions.

Example (Example 2 cont.). In the model with two interacting stress variables x1 and
x2 the c-criterion Φc(ξ) = f1(xu)TM1(ξ)−1f1(xu) for extrapolation at xu = (xu1, xu2) fac-
torizes into its counterparts in the marginal models, Φc(ξ) = f11(xu1)TM11(ξ1)−1f11(xu1)·
f12(xu2)TM12(ξ2)−1f12(xu2). Because also the c-optimal design ξ∗ = ξ∗1 ⊗ ξ∗2 has product-
type structure, the c-efficiency for extrapolation at xu and, hence, the efficiency for
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estimating the median failure time factorizes, effc(ξ1 ⊗ ξ2) = effc1(ξ1) · effc2(ξ2), where
effcv(ξv) is the corresponding efficiency in the vth marginal model, v = 1, 2.

The design ξ̄ which assigns equal weights 1/4 to the four vertices (0, 0), (0, 1),
(1, 0), and (1, 1) of the experimental region serves as a natural standard design. This
design can be seen to be the product ξ̄ = ξ̄2 ⊗ ξ̄2 of marginal designs ξ̄2 which assign
equal weights 1/2 to the lowest and highest stress level xvland xvh in the marginal
models, v = 1, 2. Hence, from Example 1 we get the efficiency of ξ̄ as effc(ξ̄) =
((1 + 2|xu1|)(1 + 2|xu2|))2/((1 + (1 + 2|xu1|)2)(1 + (1 + 2|xu2|)2)) which ranges from 1/4
for xu close to the combination (x1l, x2l) of lowest stress levels x1l = 0 and x2l = 0 to 1
when both normal use conditions xu1 and xu2 tend to minus infinity.

For example, when the normal use conditions are xu1 = −0.5 for the first component
and xu2 = −0.4 for the second component as specified in Table 3.2, then according to
Table 3.3 the efficiency effcv(ξ̄2) of ξ̄2 is 0.80 and 0.76 in the respective marginal models,
v = 1, 2. By the above considerations the efficiency of ξ̄ is effc(ξ̄) = 0.80 · 0.76 = 0.61.
This means that effc(ξ̄)−1 − 1 = 0.39/0.61 = 64 % more units have to be used for design
ξ̄ to obtain the same quality for estimating the median failure time than for the optimal
design ξ∗. Hence, the optimal design ξ∗ performs much better than the standard design
ξ̄ in this situation.

Even more prominent results can be obtained for the marginal model without
interactions between the stress variables.

Example (Example 3 cont.). In the model with two non-interacting stress variables x1

and x2 the value of the c-criterion for the locally c-optimal design ξ∗ for extrapolation
at xu = (xu1, xu2), xu1 < xu2 < 0, is given by Φc(ξ∗) = 1/λ2

c = (1 + 2|xu1|)2 as seen
before. The uniform design ξ̄ which assigns equal weights 1/4 to the four vertices
(0, 0), (0, 1), (1, 0), and (1, 1) of the experimental region has a value of Φc(ξ̄) = 1 +
(1 + 2|xu1|)2 + (1 + 2|xu2|)2. Hence, the uniform design ξ̄ has efficiency effc(ξ̄) =
((1 + 2|xu1|)2/(1 + (1 + 2|xu1|)2 + (1 + 2|xu2|)2) which ranges from 1/3 for xu close to
the combination (x1l, x2l) of lowest stress levels x1l = 0 and x2l = 0 to 1 when the lower
normal use condition xu1 tends to minus infinity while xu2 remains fixed. Moreover, the
efficiency approaches 1/2 when xu2 ≈ xu1 and both normal use conditions tend to minus
infinity simultaneously.

For example, when the normal use conditions are xu1 = −0.5 for the first component
and xu2 = −0.4 for the second component as specified in Table 3.2, then the values
of the c-criterion are Φc(ξ∗) = 4.00 for the optimal design ξ∗ and Φc(ξ̄) = 8.24 for
the uniform design ξ̄, respectively. Hence, the efficiency of the uniform design ξ̄ is
effc(ξ̄) = 4.00/8.24 = 0.49. This means that more than twice as many units have to
be used for design ξ̄ to obtain the same quality for estimating the median failure time
than for the optimal design ξ∗. This highlights that the optimal design ξ∗ performs
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substantially better than the standard design ξ̄ in the current model of two non-interacting
stress variables.

The above efficiency calculations are all related to estimating the median failure
time for soft failure due to degradation under normal use conditions xu. For estimating
any other quantile tα of the failure time distribution, the efficiency of a design ξ can be
written as

effaVar(ξ) = effc(ξ) + (1− effc(ξ))cTς M̃−1
ς cς/aVar(t̂α; ξ) (3.35)

by equations (3.29) and (3.22). This efficiency depends on the variance parameters, but
it is bounded from below by the c-efficiency effc(ξ) of ξ for extrapolation at xu. Hence,
designs with a high efficiency for estimating the median failure time are also suitable
for estimating any other reasonable quantile tα, 0 < tα <∞.

3.9 Optimization of the time plan

In Section 3.8, we considered the situation when there is a fixed time plan t = (t1, ..., tk)T ,
and only the stress variables x ∈ X are to be optimized across units. In contrast to
that we consider now the situation when also the settings t1, ..., tk for the standardized
time variable t ∈ [0, 1] may be optimized within units. As in Section 3.3 we still assume
that the same time plan t = (t1, ..., tk)T is used for all units.

Similar to the case of fixed time points t1, ..., tk, the standardized asymptotic variance
is given by

aVar(t̂α; ξ, t1, ..., tk) =c2
0(f1(xu)TM1(ξ)−1f1(xu) · f2(tα)TM2(t1, ..., tk)−1f2(tα)

+ cTς M̃ς(t1, ..., tk)−1cς)
(3.36)

by equations (3.29) and (3.31). But here the dependence of the asymptotic variance
on the settings t1, ..., tk for the time variable is explicitly stated which comes through
the information matrix M2(t1, ..., tk) in the second marginal model as well as the
standardized information matrix M̃ς(t1, ..., tk) for the variance parameters.

As has been seen in Section 3.8 the optimization with respect to the stress variables
xu can be done independently of the second marginal model and the settings t1, ..., tk
of the time variable. The reverse does not hold true for the time points t1, ..., tk, in
general, by the extra dependence of the asymptotic variance on the information matrix
M̃ς(t1, ..., tk) for the variance parameters.

To circumvent this problem we restrict to the case of estimating the median failure
time t0.5. There the second term on the right hand side of equation (3.36) vanishes and
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the standardized asymptotic variance simplifies to

aVar(t̂0.5; ξ, t1, ..., tk) = c2
0f1(xu)TM1(ξ)−1f1(xu) · f2(t0.5)TM2(t1, ..., tk)−1f2(t0.5) .

(3.37)
Hence, for the median failure time also the optimization of the measurement times
t1, .., tk can be performed independently of the marginal model of the stress variables
and their settings. Then, only the marginal c-criterion f2(t0.5)TM2(t1, ..., tk)−1f2(t0.5)
has to be minimized.

Remember that the marginal information matrix M2(t1, ..., tk) is given by M2(t1, ..., tk) =
F2(t1, ..., tk)TV(t1, ..., tk)−1F2(t1, ..., tk) in the second marginal model for the time vari-
able t, where the variance covariance matrix V(t1, ..., tk) of the vector Yi of measure-
ments for each unit i is given by V(t1, ..., tk) = F2(t1, ..., tk)ΣγF2(t1, ..., tk)T + Σε and
Σγ and Σε are the variance covariance matrices for the random effects γ and for the
measurement errors ε, respectively.

(Schmelter, 2007) proposed a representation of the inverse of the information
matrix in random effects models in the case of uncorrelated homoscedastic errors
(Σε = σ2

εIk). This can be readily extended to a general, non-singular variance covariance
structure Σε for the measurement errors ε (see Appendix A.1). From this we obtain
for the marginal information matrix M2(t1, ..., tk) that its inverse can be decomposed
to M2(t1, ..., tk)−1 = F2(t1, ..., tk)TΣ−1

ε F2(t1, ..., tk) + Σγ.
As a consequence, the marginal c-criterion f2(t0.5)TM2(t1, ..., tk)−1f2(t0.5) can be

split up into

f2(t0.5)TM2(t1, ..., tk)−1f2(t0.5) = f2(t0.5)TM(0)
2 (t1, ..., tk)−1f2(t0.5) + f2(t0.5)TΣγf2(t0.5),

where M(0)
2 (t1, ..., tk) = F2(t1, ..., tk)TΣ−1

ε F2(t1, ..., tk) is the information matrix in the
marginal fixed effect model

Y
(2,0)
j = f2(tj)Tβ(2) + ε

(2)
j , (3.38)

j = 1, ..., k, in the time variable t with variance covariance matrix Σε for the vector
ε(2) = (ε(2)

1 , ..., ε
(2)
k )T of error terms. Hence, as for any linear criterion, the optimization

of the asymptotic variance (3.37) of the median failure time t0.5 with respect to the time
plan t1, ..., tk does not depend on the variance covariance matrix Σγ of the random effects.
For optimization only the term f2(t0.5)TM(0)

2 (t1, ..., tk)−1f2(t0.5) has to be minimized
which is the c-criterion for extrapolation of the mean response at t0.5 in the marginal
fixed effect model in t with Cov(ε(2)) = Σε. This leads to the following result which is
similar to Proposition 3.8.1 for optimization with respect to the stress variable x.

48



Chapter 3. Optimal Designs Based on Linear Mixed Effects Models

Proposition 3.9.1. If the time plan t∗1, ..., t∗k is c-optimal for extrapolation of the mean
response at t0.5 in the marginal fixed effect model (3.38) with covariance Σε for the time
variable t, then t∗1, ..., t∗k minimize the asymptotic variance for the estimator t̂0.5 of the
median failure time t0.5 under normal use condition.

Note that in degradation experiments the median failure time t0.5 under normal
use condition is typically much larger than the time horizon of the experiment, i. e.
t0.5 > 1 on the standardized time scale. However, the above proposition also holds for
interpolation, t0.5 ∈ [0, 1].

The optimal time plan depends on the location parameters β through t0.5, but
also on the variance covariance structure Σε of the measurement errors within units,
and are, hence, local. In Examples 1 and 2 we assumed uncorrelated homoscedastic
measurement errors, Σε = σ2

εIk. In that case, the c-criterion for extrapolation can be
reduced to f2(t0.5)T (F2(t1, ..., tk)TF2(t1, ..., tk))−1f2(t0.5), and the optimization does not
depend on the error variance σ2

ε .
If the number k of measurement times t1, ..., tk is large, one might be tempted

to use the concept of approximate designs also here. In that case, the approximate
design τ will be defined by mutually distinct time points t1, ..., t` from the standardized
experimental time interval T = [0, 1] with corresponding proportions π1, ..., π` > 0
satisfying ∑`

j=1 πj = 1 with the interpretation that (approximately) πjk measurements
are performed at time point tj, j = 1, ..., `, for each unit. In the situation of a linear
time trend, f2(t) = (1, t)T , as in Examples 1 and 2, this leads to essentially the same
extrapolation problem as for the stress variable in Example 1. The c-optimal design for
extrapolation at t0.5 > 1 is concentrated on the ` = 2 endpoints t1 = 0 and t2 = 1 of
the standardized experimental time interval T = [0, 1] with corresponding proportions
π1 = t0.5−1

2t0.5−1 and π2 = t0.5
2t0.5−1 (see (Schwabe, 1996a), Example 2.1). Similarly, as for

extrapolation of the stress variable in Example 1, the proportion π2 at the endpoint
t2 = 1 in the direction of the extrapolation time t0.5 decreases from 1, when t0.5 is close
to 1, to 0.5, when the distance gets large (t0.5 →∞).

However, from a practical point of view, it does not seem meaningful to have
replications, i. e. to have more than one measurement at a time at the same unit.
Moreover, even if this would be possible, these measurements would be expected to be
strongly correlated with a correlation beyond that caused by the random effects. To
avoid these technical and modeling problem additional constraints have to be imposed
on the time plan to guarantee independence of the measurement errors. For instance, the
different measurement times t1, ..., tk have to be at least some sufficiently large ∆t > 0
apart, or more specifically, they are restricted to a grid on the standardized experimental
time interval with grid size ∆t. Nevertheless approximate design theory can be used to
determine optimal time plans. To do so the standardized experimental time interval
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is discretized to a sufficiently coarse grid, T = {j∆t; j = 0, 1, ..., J}, where ∆t = 1/J ,
i. e. T = {0,∆t, 2∆t, ..., 1}. Additionally constraints are imposed on the proportions
πj that none of these proportions is larger than 1/k, i. e. the number of measurements
at a time is bounded by one and, hence, there are at least k different time points.
Optimal approximate time plans can then be obtained under these constraints by using
standard algorithms for design optimization. Actually, the so obtained proportions
may be smaller than one for some of the time points. But a theoretical result based
on an equivalence theorem under constraints (convex optimization with Kuhn-Tucker
conditions) guarantees that this only occurs for a small number of time points: (Sahm
and Schwabe, 2001) proved for the D-optimality criterion that the experimental region
splits up in subregions where the weight of the optimal design attains the upper bound
1/k and where it is 0. Only at the boundary of these subregions weights different from
0 and 1/k may occur. In particular, for straight line regression on [0, 1], the subregions
with maximal weight 1/k are adjacent to the endpoints 0 and 1 of the interval while in
the interior the optimal design has zero weight. This result carries over directly to other
criteria like the c-criterion under appropriate conditions which are met in the present
case of extrapolation. From this approach efficient exact designs can be obtained by
adjusting the weights to the admissible values 0 and 1/k under the constraint of total
weight 1.

Example (Example 2 cont.). In the setup of Example 2 we deal with straight line
regression

Y
(2,0)
j = β

(2)
1 + β

(2)
2 tj + ε

(2)
j

for the fixed effects marginal model in the time variable t. The measurement errors ε(2)
j

are supposed to be uncorrelated and homoscedastic (Σε = σ2
εIk). We are searching for

a locally c-optimal design τ ∗ for extrapolation at the median failure time t0.5 which is
equal to 10.25 under the nominal values of Table 3.2. As constraints for the design we
assume that k = 6 observation can be taken on a grid with increment ∆t = 0.05 of the
standardized experimental time interval [0, 1], i. e. J = 20 and T = {0, 0.05, 0.10, ..., 1}.

By the multiplicative algorithm (see e.g. (Silvey, Titterington, and Torsney, 1978) )
adapted to the present constraint situation the following numerical solution is obtained
for the locally c-optimal design

τ ∗ =
 0.00 0.05 0.10 0.85 0.90 0.95 1.00

0.166 0.166 0.130 0.040 0.166 0.166 0.166

 .

The optimal approximate design τ ∗ is supported on seven time points t∗1, ..., t∗7 which
are concentrated to the ends of the standardized experimental time interval [0, 1] with
maximal admitted weight 1/k for all but the two boundary points t∗3 = 0.10 and t∗4 = 0.85
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separating grid points t∗1 = 0.00, t∗2 = 0.05, t∗5 = 0.90, t∗6 = 0.95, and t∗7 = 1.00 with
full weight 1/k from those with zero weight. This shape of the optimal design is in
accordance with the findings of (Sahm and Schwabe, 2001) in the case of D-optimality.
In view of Proposition 3.9.1 the design τ ∗ is also optimal for the estimation of the
median failure time.

For practical use, the optimal approximate design τ ∗ may be adjusted to

τ0 =
 0.00 0.05 0.10 0.90 0.95 1.00

0.166 0.166 0.166 0.166 0.166 0.166


which is supported on exactly k = 6 time points by transferring the weight from the
boundary point t∗4 = 0.85 with the lower weight to the boundary point t∗3 = 0.10 with
the higher weight (see (Dorfleitner and Klein, 1999)). As a consequence all weights in
the adjusted design τ0 are equal to 1/6. Then the design τ0 can be realized as an exact
design by taking one measurement at each of the six time points 0.00, 0.05, 0.10, 0.90,
0.95, and 1.00. To quantify what might have got lost, the quality of the adjusted design
τ0 may be measured in terms of the local c-efficiency

effc(τ0) = f2(t0.5)TM2(τ ∗)−1f2(t0.5)
f2(t0.5)TM2(τ0)−1f2(t0.5) = 464.42

469.91 = 98.70%

for extrapolation at t0.5 in the marginal mixed effects model and, hence, for estimation
of the median failure time. This indicates that the adjusted design τ0 is highly efficient
and can be recommended as the time plan for conducting an accelerated degradation
testing experiment.

Note that by Proposition 3.9.1 the optimal design τ ∗ does not depend on the variance
covariance structure Σγ of the random effects, but the efficiency of the adjusted design
τ0 may be affected by the random effects. Nevertheless, similar to equation (3.35), also
here the c-efficiency for extrapolation at t0.5 provides a lower bound for the efficiency
in estimating the median failure time. The assumption Σε = σ2

εIk of uncorrelated
measurement errors could be replaced by equal correlations ρε between all measurements,
i. e. Σε is compound symmetric with all diagonal entries equal to σ2

ε and all off-diagonal
entries equal to ρεσ2

ε . For estimating the variance covariance parameters an additional
identifiability condition would be required in this case to distinguish the correlation
ρε of the measurement errors from the variance σ2

1 of the random intercept. Then
estimation of the location parameters β is not affected, and the design τ ∗ retains its
optimality.

For further approaches allowing for correlations depending on the distance of the
measurement times, e. g. when measurements follow a random process, we refer to
(Näther, 1985) and (Müller, 2007) for optimization of the measurement times.
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3.10 Experimental design with a cross-sectional time
plan

In contrast to the previous sections we will allow here for time plans ti1, ..., tik differing
across units,

Yij = (f1(xi)⊗ f2(tij))Tβ + f2(tij)Tγi + εij , (3.39)

j = 1, ..., k, i = 1, ..., n, where all other expressions have the same meaning as in the
general model equation 3.6. Differing time plans are, for example, required when the
number k of time points is less than the number p2 of parameters in the marginal model
for the degradation paths. In particular, in the case of destructive testing only k = 1
measurement will be available per unit,

Yi = (f1(xi)⊗ f2(ti))Tβ + f2(ti)Tγi + εi , (3.40)

i = 1, ..., n. We will restrict to the case of k = 1 measurements per unit in the remainder
of this section. In that case all measurements Yi are assumed to be independent. Denote
by

σ2(t) = f2(t)TΣγf2(t) + σ2
ε > 0

the variance function for measurements at time t, i. e. Var(Yi) = σ2(ti). As discussed at
the end of the previous section also here an identifiability condition has to be imposed
on the variance parameters ς to distinguish between the variance σ2

ε of the measurement
error and the variance σ2

1 of the random intercept, see (Graßhoff et al., 2012) who
derived D-optimal designs.

Under the assumption of normally distributed random effects and measurement
errors the information matrix Mβ for the location parameter β can be written as

Mβ =
n∑
i=1

(f1(xi)f1(xi)T )⊗
(

1
σ2(ti)f2(ti)f2(ti)T

)

according to the product-type structure of the model (3.40). For estimating the
median failure time t0.5 the asymptotic variance is given by aVar(t̂0.5) = c2

0cTM−1
β c as in

Section 3.7. Hence, we are searching for a c-optimal design, where the vector c factorizes
according to c = c1 ⊗ c2 into components c1 = f1(xu) and c2 = f2(t0.5) associated
with the marginal models for the stress and the time variables, see (3.31). Moreover,
we suppose, as before, that the experimental settings xi for the stress variable and ti
for the time of measurement may be chosen independently from their standardized
experimental regions X and T , respectively, i. e. (xi, ti) ∈ X × T .

Also here we make use of the concept of approximate designs denoted by ζ which
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are specified by m mutually distinct combinations (xi, ti) ∈ X × T with corresponding
weights ηi > 0, i = 1, ..., ν, ∑ν

i=1 ηi = 1. Accordingly the corresponding normalized
information matrix is defined as

M(ζ) =
ν∑
i=1

ηi(f1(xi)f1(xi)T )⊗ (f̃2(ti)f̃2(ti)T ) ,

where f̃2(t) = f2(t)/σ(t) is the weighted version of the marginal regression function for
the time variable (standardized by the standard deviation for measurement at time t).
Then a c-optimal design for c = c1 ⊗ c2 can be obtained as the product-type design
generated from c-optimal designs for cv in the associated marginal models.

To be more specific, let

ξ =
 x1 ... xm
w1 ... wm

 and τ =
 t1 ... t`

π1 ... π`


be approximate designs in the marginal models for the stress variables and the time,
respectively. Then the product-type design ζ = ξ ⊗ τ is supported on the ν = m`

mutually distinct combinations (xi, tj) with corresponding weights ηij = wiπ`, i =
1, ...,m, j = 1, ..., `, and its standardized information matrix

M(ξ ⊗ τ) = M1(ξ)⊗ M̃2(τ)

factorizes into the standardized information matrix M1(ξ) = ∑m
i=1wif1(xi)f1(xi)T of ξ

in the marginal model for the stress variables and the standardized information matrix
M̃2(τ) = ∑k

j=1 πj f̃2(tj)f̃2(tj)T of τ in the weighted marginal model

Y
(2)
j = f̃2(tj)Tβ(2) + ε(2) (3.41)

for the time variable. Then also the c-criterion

cTM(ξ ⊗ τ)−1c = cT1 M1(ξ)−1c1 · cT2 M̃2(τ)−1c2

for c = c1 ⊗ c2 factorizes into the c-criteria for c1 and c2 in the corresponding marginal
models. This expression is minimized if ζ∗ is the product ζ∗ = ξ∗ ⊗ τ ∗ of the c-optimal
marginal designs ξ∗ and τ ∗ for c1 and c2 in their marginal models, respectively. The
design ζ∗ = ξ∗ ⊗ τ ∗ is not only c-optimal for c = c1 ⊗ c2 in the class of product-type
designs ξ ⊗ τ , but also compared to all designs ζ on Z (see (Schwabe, 1996b), Theorem
4.4) which establishes the following result.

Theorem 3.10.1. If ξ∗ is c-optimal for extrapolation at normal use condition xu in
the marginal model for the stress variables x and τ ∗ is c-optimal for extrapolation at
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Figure 3.7: Elfving set for t in Example 1: Induced design region
(right solid line), negative image (left solid line), boundary (dashed
lines), c2 = (1, t0.5)T (arrow) and corresponding ray (dotted line)

the median failure time t0.5 in the weighted marginal model (3.41) for the time variable
t, then the design ζ∗ = ξ∗ ⊗ τ ∗ is optimal for estimating the median failure time t0.5 in
the combined model (3.40).

Note that for the second marginal model we utilize that f̃2(t0.5) and c2 = f2(t0.5)
only differ by the factor 1/σ(t0.5) > 0 which does not affect c-optimality.

The c-optimal designs ξ∗ for extrapolation at xu are the same as obtained in
Section 3.8, and the c-optimal designs for extrapolation at t0.5 can be obtained similarly
by Elfving’s theorem applied to the weighted regression functions f̃2(t) = f2(t)/σ(t).

Example (Example 1 cont.). In the introductory model of Section 3.2 we have straight
line regression in both the stress variable x and the time variable t with an interaction
term xt. For the stress variable, the c-optimal marginal design ξ∗ for extrapolation
at xu < 0 assigns weight w∗ = |xu|/(1 + 2|xu|) to xh = 1 and weight 1 − w∗ =
(1 + |xu|)/(1 + 2|xu|) to xl = 0, see Section 3.8. For the time variable t, the c-
optimal marginal design τ ∗ for extrapolation at t0.5 > 1 can be similarly obtained by
Elfving’s theorem applied to the vector of weighted regression functions f̃2(t). The
shape of the Elfving set is exhibited in Figure 3.7. Note that the induced design region
{f̃2(t); t ∈ [0, 1]} and its negative image constitute non-overlapping arc segments of the

ellipse defined by zTΣz = 1, z ∈ R2, centered at (0, 0)T , where Σ = Σγ +
 σ2

ε 0
0 0


is the variance covariance matrix of the random effects augmented by the variance
of the measurement error. The ray λf2(t0.5) intersects the boundary of the Elfving
set at the line segment connecting f̃2(1) = (1, 1)T/σ(1) and −f̃2(0) = (1, 0)T/σ(0)
when t0.5 > 1. Hence, the c-optimal design τ ∗ is supported by the endpoints of the
standardized experimental time interval T = [0, 1], and the optimal weights can be
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calculated by Elfving’s theorem to π∗ = t0.5σ(1)/(t0.5σ(1) + (t0.5 − 1)σ(0)) at tmax = 1
and 1− π∗ = (t0.5 − 1)σ(0)/(t0.5σ(1) + (t0.5 − 1)σ(0)) at tmin = 0.

By Theorem 3.10.1, the design

ζ∗ = ξ∗ ⊗ τ ∗ =
 (xl, tmin) (xl, tmax) (xh, tmin) (xh, tmax)

(1− w∗)(1− π∗) (1− w∗)π∗ w∗(1− π∗) w∗π∗


is optimal for estimating the median failure time t0.5. Under the nominal values of
Table 3.1 the optimal weights are w∗ = 0.05 for extrapolation at xu = −0.056 in the
marginal model for the stress variable, see Section 3.8, and π∗ = 0.77 for extrapolation
at t0.5 = 1.583 in the weighted marginal model for the time variable. Hence, the optimal
design for estimating the median failure time is given by

ζ∗ =
 (0, 0) (0, 1) (1, 0) (1, 1)

0.22 0.73 0.01 0.04

 .

According to this design 73 % of the units should be exposed to the lowest stress level
xl = 0 and measured at the maximum allowed time tmax = 1 while only 1 % of the units
should be exposed to the highest stress level xh = 1 and measured at the initial time
tmin = 0. Accordingly 22 % should be exposed to low stress and measured initially, and
4 % should be measured at the end of the experimental time interval under high exposure.

A similar results can be obtained for the situation of Example 2.

Example (Example 2 cont.). In the model with two interacting stress variables (Ex-
ample 2) the c-optimal marginal design ξ∗ for extrapolation at xu = (xu1, xu2)T is the
same as in Section 3.8, ξ∗ = ξ∗1 ⊗ ξ∗2. For the time variable t, the c-optimal marginal
design τ ∗ for extrapolation at t0.5 > 1 is obtained as in Example 1: τ ∗ assigns weights
π∗ = t0.5σ(1)/(t0.5σ(1) + (t0.5 − 1)σ(0)) to tmax = 1 and 1 − π∗ to tmin = 0. By
Theorem 3.10.1, the optimal design for estimation of the median failure time is then
ζ∗ = ξ∗1 ⊗ ξ∗2 ⊗ τ ∗.

Under the nominal values of Table 3.2 the optimal weights are w∗1 = 0.25 and
w∗2 = 0.22 for extrapolation at xu1 = −0.5 and xu2 = −0.4 in the marginal models of the
stress variables, respectively, see Section 3.8. For the time variable the optimal weight
results in π∗ = 0.57 for extrapolation at t0.5 = 10.25 in the weighted marginal model.
Hence, the optimal design for estimating the median failure time is given by

ξ∗1⊗ξ∗2⊗τ ∗ =
 (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

0.25 0.33 0.07 0.10 0.09 0.11 0.02 0.03

 .
The locally optimal designs for estimating the median failure time are influenced

by both the location and the variance parameters β and ς. Therefore we make a
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Figure 3.8: Optimal weights π∗ in dependence on t0.5 for Example 1

sensitivity analysis, how the optimal designs change with the parameters and how
well they perform under parameter misspecification. For this we note first that the
optimal marginal design ξ∗ for extrapolation at xu is globally optimal and does not
depend on the parameters. Moreover, in the case of straight line degradation paths
as in Examples 1 and 2 only the weight π∗ = t0.5σ(1)/(t0.5σ(1) + (t0.5 − 1)σ(0)) of the
optimal marginal design τ ∗ depends on the location parameters β through t0.5 and on
the variance parameters ς through the ratio σ(1)/σ(0) of the standard deviations at the
endpoints of the experimental time region. Note that the c-efficiency for extrapolation
at t0.5 in the weighted marginal model for t coincides with the efficiency for estimating
the median failure time when the optimal design ξ∗ is used for the stress variables.

Example (Example 1 cont.). For the introductory model with one stress variable
(Example 1), the optimal weight π∗ = t0.5σ(1)/(t0.5σ(1) + (t0.5 − 1)σ(0)) is plotted in
Figure 3.8 as a function of t0.5 while the ratio σ(1)/σ(0) is held fixed to 1.22 induced by
the nominal values in Table 3.1, and in Figure 3.9 as a function of the ratio σ(1)/σ(0)
while t0.5 is held fixed to the nominal value 1.583.

When t0.5 increases, the optimal weight π∗ decreases from 1 for t0.5 close to the
maximal experimental time tmax = 1 to σ(1)/(σ(1) + σ(0)) = 0.55 for t0.5 →∞. On the
other hand the optimal weight π∗ increases in the ratio σ(1)/σ(0) of standard deviations
from 0 for the ratio close to 0 to 1 when the ratio tends to infinity. The limits for π∗

are indicated in Figure 3.8 and Figure 3.9 by horizontal dashed lines while the nominal
values for t0.5 and σ(1)/σ(0) are indicated by vertical dotted lines, respectively.

To assess the influence of the variation of the optimal weights we consider the
efficiency of a locally optimal design when the underlying parameters are misspecified.
Define by

effaVar(ζ;θ) = aVarθ(t̂0.5; ζ)
aVarθ(t̂0.5; ζ∗θ)
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Figure 3.9: Optimal weights π∗ in dependence on σ(1)/σ(0) for
Example 1

the asymptotic efficiency of the design ζ for estimating t0.5, where aVarθ(t̂0.5; ζ) denotes
the asymptotic variance of t̂0.5, when ζ is used and when θ is the true vector of
underlying parameters, and by ζ∗θ the locally optimal design at θ. Similar to the
situation of marginal models in Example 2 (see Section 3.8), the asymptotic efficiency

effaVar(ξ ⊗ τ ;θ) = effc1(ξ) · effc2(τ ;θ) ,

factorizes for product-type designs ζ = ξ ⊗ τ into the marginal efficiency effc1(ξ) of ξ
for extrapolation at xu in the marginal model for the stress variable and the marginal
efficiency effc2(τ ;θ) of τ for extrapolation at t0.5 in the weighted marginal model for
the time variable. Remember that, for the stress variable, the marginal information
matrix M1(ξ) and, hence, the marginal efficiency effc1(ξ) does not depend on θ. Thus,
also the c-optimal marginal design ξ∗ does not rely on the parameters and can be used
throughout in the comparison. The asymptotic efficiency of a product-type design
ζ = ξ∗ ⊗ τ with optimal marginal ξ∗ reduces to the c-efficiency of the second marginal
τ ,

effaVar(ξ∗ ⊗ τ ;θ) = effc2(τ ;θ) = c2(θ)TM2(τ ;θ)c2(θ)
c2(θ)TM2(τ ∗θ ;θ)c2(θ) ,

where c2(θ) = f2(t0.5) and τ ∗θ is the locally c-optimal design at θ for extrapolation at
t0.5 in the weighted marginal model for the time variable. The c-vector c2(θ) = f2(t0.5)
depends on the location parameters β merely through t0.5, but not on ς. In contrast to
that, the information matrices M2(τ ;θ) are only affected by the variance parameters ς,
but not by β. For straight line regression in the time variable (cf. Examples 1 and 2),
only the ratio σ(1)/σ(0) of the standard deviations for measurements at the endpoints of
the experimental time interval has an effect on the information matrix M2(τ ;θ), when
the design τ is supported by these endpoints, as is the case for the locally c-optimal
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Figure 3.10: Efficiency of xi∗ ⊗ τ∗ (solid line), ξ∗ ⊗ τ̄2 (dashed line)
and ξ∗⊗ τ̄6 (dashed and dotted line) in dependence on t0.5 for Example 1
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Figure 3.11: Efficiency of xi∗ ⊗ τ∗ (solid line), ξ∗ ⊗ τ̄2 (dashed line)
and ξ∗ ⊗ τ̄6 (dashed and dotted line) in dependence on σ(1)/σ(0) for
Example 1

design τ ∗θ .

Example (Example 1 cont.). For the setting of the introductory model with one stress
variable (Example 1), we examine the efficiency of the design ζ∗ = ξ∗⊗τ ∗ which is locally
optimal for estimation of the median failure time under the nominal values of Table 3.1
when the nominal parameters are misspecified. In Figure 3.10 and Figure 3.11we plot
the efficiency of the locally optimal design xi∗ ⊗ τ ∗ at the nominal values (solid line)
together with the efficiency of the designs xi∗ ⊗ τ̄2 (dashed line) and xi∗ ⊗ τ̄6 (dashed
and dotted line) for which the marginal design τ̄k is uniform on k equally spaced time
points, i. e. τ̄2 assigns weight 1/2 to the endpoints 0 and 1 of the time interval, and τ6

assigns weight 1/6 to the time points 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 (cf. the definition
of ξ̄m in Section 3.8).
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In Figure 3.10 the efficiency is displayed in dependence on the true value of the
median failure time t0.5 while the ratio σ(1)/σ(0) of standard deviations is held fixed to
the nominal value 1.22. In Figure 3.11 the efficiency is shown in dependence on the
true value of the ratio σ(1)/σ(0) of standard deviations while the median failure time
t0.5 is held fixed to 1.583 derived from the nominal values. Also here the nominal values
for t0.5 and σ(1)/σ(0) are indicated by vertical dotted lines in the corresponding panel,
respectively.

The efficiency seems to be more sensitive with respect to deviations in the ratio than
in the median failure time t0.5. However, commonly neither small values of t0.5 nor
small values of σ(1)/σ(0) seem to be reasonable. In particular, we may expect that the
variance σ(1)2 at the end of the experimental time interval is larger than the variance
σ(0)2 at the initial time, i. e. σ(1)/σ(0) ≥ 1. This is satisfied when ρ ≥ −σ1/(2σ2).
In total, the design ξ∗ ⊗ τ ∗ which is locally optimal for the nominal values seems to
perform quite well over a wide range of parameters while the design ξ∗ ⊗ τ̄2 with the
same number of units at the endpoints of the intervals is only preferable for larger values
of the median failure time t0.5. The design ξ∗ ⊗ τ̄6 with six equally spaced time points
performs substantially worse throughout for reasonable parameter values. It has to be
noted in this context that the efficiency of τ̄6 depends on the variance parameters ς
not only through the ratio σ(1)/σ(0) because measurements are also to be taken in the
interior of the interval. The current plot has been generated by fixing σ2

2 = σ2
1 + σ2

ε and
letting ρ vary. However, other choices of the variance parameters do not change much
in the performance of the design.

Similar results can be obtained for the settings of Example 2.

3.11 Concluding remarks

During the design stage of highly reliable systems it is extremely important to assess
the reliability related properties of the product. One method to handle this issue is
to conduct accelerated degradation testing. Accelerated degradation tests have the
advantage to provide an estimation of lifetime and reliability of the system under study in
a relatively short period of time. To account for variability between units in accelerated
degradation tests, it is assumed that the degradation function can be described by
a mixed-effects linear model. This also leads to a non-degenerate distribution of the
failure time, due to soft failure by exceedance of the expected (conditionally per unit)
degradation path over a threshold, under normal use conditions. Therefore it is desirable
to estimate certain quantiles of this failure time distribution as a characteristic of the
reliability of the product. In this context we discussed the existence of non-degenerate
solutions for the quantiles. The purpose of optimal experimental design is then to find
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the best settings for the stress variable and/or the time variable to obtain most accurate
estimates for these quantities.

In the present model for accelerated degradation testing, it is further assumed that
stress remains constant within each testing unit during the whole period of experimental
measurements but may vary between units. Hence, in the corresponding experiment
a cross-sectional design between units has to be chosen for the stress variable while
for repeated measurements the time variable varies according to a longitudinal design
within units.

In the present chapter we assumed a model with complete interactions between the
time and the stress variables and random effects only associated with time but not
with stress. Then the cross-sectional design for the stress variables and the longitudinal
design for the time variable can be optimized independently, and the resulting common
optimal design can be generated as the cross-product of the optimal marginal designs
for stress and time, respectively. In particular, the same time plan for measurements
can be used for all units in the test. Moreover, the marginal optimal design for the
stress variables can be chosen independently of any model parameters. Optimal time
plans may depend on the aggregate location parameters via the median failure time, but
do not depend on which quantile of the failure distribution is to be estimated. These
results were extended to a model of destructive testing in which also the time variable
has to be chosen cross-sectionally. There the optimal choice of measurement times
may also be affected by the variance covariance parameters of the random effects. In
both cases (longitudinal and cross-sectional time settings) the efficiency of the designs
considered factorizes which facilitates to assess their performance when the nominal
values for these parameters are misspecified at the design stage.

Finding optimal designs may become more complicated when the above assumptions
are not met. In particular, the designs for stress and time variables may no longer
be optimized independently if there are only additive effects in the model (lacking
interaction terms xt, cf. Example 3 for a similar situation in the marginal stress model)
or when also the stress variables are accompanied by random effects. The impact of
these deviations from the model assumptions on optimal designs are object of further
research as well as the construction of designs which are robust against misspecification
of the nominal parameters, such as maximin efficient or weighted (“Bayesian”) optimal
designs. Of further interest would be to consider optimality criteria accounting for
simultaneous estimation of various characteristics of the failure time distribution.
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Chapter 4

Extensions to Multivariate Linear
Mixed Effects Models

4.1 Introduction

In this chapter we propose optimal experimental designs for repeated measures Acceler-
ated Degradation Testing with competing failure modes that correspond to multiple
response components. The observation time points are assumed to be fixed and known
in advance. The marginal degradation paths are expressed using linear mixed effects
models. The optimal design is obtained by minimizing the asymptotic variance of the
estimator of some quantile of the failure time distribution at the normal use conditions.
Numerical examples are introduced to ensure the robustness of the proposed optimal
designs and compare their efficiency with standard experimental designs.

The degradation process in complicated systems may occur due to multiple operating
components, where theses components may be independent or have a certain level
of interaction. Hence, Accelerated Degradation Testing in the presence of competing
failure modes is an important reliability area to be addressed. Hence, the study of
the statistical inference of Accelerated Degradation Testing with competing failures
is of great significance and have been considered by many authors. For instance,
(Haghighi, 2014) presented a step-stress test in the presence of competing risks and
using degradation measurements where the underlying degradation process is represented
with a concave degradation model under the assumption that the intensity functions
corresponding to competing risks depend only on the level of degradation. In order
to obtain the maximum likelihood estimates of intensity functions at normal use
conditions, the author extrapolates the information from step-stress test at high level
of stress through a tempered failure rate model. For linear models with nuisance
parameters, (Filipiak, Markiewicz, and Szczepańska, 2009) gave relationships between
Kiefer optimality of designs in univariate models and in their multivariate extensions with
known and partially known dispersion matrices. With an application in plastic substrate
active matrix light-emitting diodes, (Haghighi and Bae, 2015) proposed a modeling
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approach to simultaneously analyze linear degradation data and traumatic failures
with competing risks in a step stress Accelerated Degradation Testing experiment. In
their research, the authors investigate the convergence criteria with a power law failure
rate under step-stress Accelerated Degradation Testings. (Wang et al., 2015b) utilized
Monte Carlo simulation to derive a cost-constrained optimal design for a constant
stress accelerated degradation test with multiple stresses and multiple degradation
measures. The authors assume that the degradation measures follow multivariate normal
distribution with an application in a pilot-operated safety valve. Furthermore, the
theory of optimal designs of experiments for multivariate models is well developed in the
mathematical context of approximate designs. For instance, (Mukhopadhyay and Khuri,
2008) discussed response surface designs for multivariate generalized linear models
(GLMs) considering a special case of the bivariate binary distribution. (Markiewicz
and Szczepańska, 2007) discussed the optimality of an experimental design under
multivariate linear models with a known or unknown dispersion matrix. The authors
utilize Kiefer optimality to derive optimal designs for these linear models. (Dror and
Steinberg, 2006) proposed a simple heuristic for constructing robust experimental
designs for multivariate generalized linear models. The authors incorporate a method
of clustering a set of local experimental designs to derive local D-optimal designs.
(Schwabe, 1996a) treated in his monograph the theory of optimal designs for multi-
factor models and provides an excellent review on the optimal design theory, i.e. the
optimality criteria and the general equivalence theorems, up to that time. Considering
random intercept models, (Schmelter and Schwabe, 2008) derived D-optimal designs
for single and multiple treatments situations. The authors show that in a multi-sample
situation the variability of the intercept has substantial influence on the choice of the
optimal design.

The rest of this chapter is organized as follows. In Section 4.2, we formulate a
multivariate degradation path on the basis of marginal linear mixed effects models
(LMEMs). Section 4.3 is devoted to characterize the possibly estimated parameter
vector, the resulting information matrix, and the proposed approximate design for the
optimization. The considered optimality criterion for deriving c-optimal design based
on the failure time distribution is introduced in Section 4.4. Section 4.5 addresses two
numerical examples under two different testing conditions where the robustness of the
proposed optimal designs along with their efficiency were investigated in comparison
to some standard experimental design. Finally, we summarize with some concluding
remarks in Section 4.6.
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4.2 Model description

In this section, we introduce a formulation of a mixed effects degradation model with r
response components where each of these components is observed under a value x of the
experimental stress variable(s). The stress variable(s) is defined over the design region
X and kept fixed for each unit throughout the degradation process, but may differ from
unit to unit. The observed degradation data for this model are approximately fitted
by a multivariate LMEM. The number k of measurements and the time points are the
same for all units i = 1, ..., n. The measurements yijl, which are realizations of random
variables Yijl at response component l, are described by a hierarchical model. For each
unit i the observation Yijl for response component l at time point tj is given by

Yijl = µil(xi, tj) + εijl, (4.1)

where µil(x, t) is the mean degradation of unit i at response component l and time t,
when stress x is applied to unit i, and εijl is the associated measurement error at time
point tj. The measurement error εijl is assumed to be independent from x and t, and
normally distributed with zero mean and error variance σ2

ε > 0 (εijl ∼ N(0, σ2
ε)). The

mean degradation µil(x, t) is assumed to be given by a linear model equation in the
stress variable x and time t,

µil(xi, tj) =
pl∑
s=1

βilsfls(xi, tj) = fl(xi, tj)Tβil (4.2)

where f l(x, t) = (fl1(x, t), ..., flpl(x, t))T is the pl-dimensional vector of regression func-
tions fls(x, t) in both the stress variable(s) x and the time t considering the lth response
component and denote by βil = (βil1, ..., βilpl)T the pl-dimensional vector of unit specific
parameters βils, s = 1, ..., pl, at response component l. Moreover, we assume throughout
this work that the regression functions fl(x, t), l = 1, ..., r, include a constant term,
fl1(x, t) ≡ 1 say. Denote by gl(t) the ql-dimensional random effect regression function
which only depends on the time t. Hence, for unit i the model (4.1) can be rewritten as

Yijl = fl(xi, tj)Tβl + gl(tj)Tγil + εijl, (4.3)

where γil = (γil1, ..., γilql)T is the ql-dimensional vector of unit specific deviations
γils = βils − βls, s = 1, ..., ql, from the corresponding aggregate parameters such that
fls(x, t) = gls(t) for all s = 1, ..., ql. Hence, γil has ql-dimensional multivariate normal
distribution with zero mean and variance-covariance matrix Σγl (γil ∼ N(0,Σγl)) where
Σγ

l
is the corresponding ql × ql positive definite variance covariance matrix. Denote

by t = (t1, ..., tk)T the k-dimensional time points of measurements within units which
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is fixed in advance and is not under disposition of the experimenter. Further, denote
by F

l
(xi, t) =

(
f
l
(xi, t1), ..., fl(xi, tk)

)T
the k × pl fixed effect design matrix for the

marginal response component l of unit i. In vector notation the k-dimensional vector
Yil = (Yi1l, ..., Yikl)T can be represented as

Yil = F
l
(xi, t)βl + Gl(t)γil + εil (4.4)

where Gl(t) = (gl(t1), ...,gl(tk))T is the k × ql random effects design matrix. The
k-dimensional vector εil is normally distributed as εil ∼ N(0k, σ2

εIk), and Ik refers to
the k-dimensional identity matrix. Hence, the k-dimensional vector of observations
Yil has a multivariate normal distributions as Yil ∼ N(F

l
(xi, t)βl,Vl) where Vl =

Gl(t)ΣγlGl(t)T + σ2
εIk. Let F(xi, t) = diag

(
F
l
(x

i
, t)
)
l=1,...,r

be the kr × p fixed effect
design matrix, and let β = (βT1 , ...,βTr )T be the p-dimensional overall vector of fixed
effects parameters for r response components where p = ∑r

l=1 pl . Further, the random
effects γil of the components Yil are assumed to be independent within units which
implies independence of the components Yil themselves within units. Hence, the per
unit random effects parameter vector γi = (γTi1, ...,γTir)T is normally distributed with a
zero mean and a covariance matrix Σγ = diag

(
Σγl

)
l=1,...,r

where q = ∑r
l=1 ql. Denote

εi = (εTi1, ..., εTir)T as the cumulative vector of random errors which is considered to be
normally distributed with mean zero and variance covariance matrix σ2

εIkr. Hence, the
stacked kr-dimensional response vector Yi = (YT

i1, ...,YT
ir)T is given by

Yi = F(xi, t)β + Gγi + εi (4.5)

where G = diag(Gl(t))l=1,...,r is the kr× q block diagonal random effects design matrix.
Then Yi is kr-dimensional multivariate normally distributed with mean F(xi, t)β and
variance covariance matrix V = GΣγGT + σ2

εIkr. Further, GΣγGT = diag(GlΣγlGT
l )

and, hence, V = diag(Vl), which illustrates the independence of Yil within units. It
can be noted that the variance covariance matrix V is not affected by the choice of the
stress level xi and, hence, equal for all units i. For the observations of all n units the
stacked nkr-dimensional response vector Y = (YT

1 , ...,YT
n )T can be expressed as

Y = Fβ + (In ⊗G)γ + ε, (4.6)

where F = (F(x1, t)T , ...,F(xn, t)T )T is the nkr×p design matrix for the stress variables
across units, γ = (γT1 , ...,γTn )T is the nq-dimensional stacked parameter vector of random
effects. The vector ε = (εT1 , ..., εTn )T is the nkr-dimensional stacked vector of random
errors which is normally distributed with mean zero and variance covariance matrix
σ2
εInkr (ε ∼ N(0, σ2

εInkr) and the vector γ ∼ N(0, In ⊗ Σγ) of all random effects is
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multivariate normal. In total, the vector Y of all observations is nkr-dimensional
multivariate normal, Y ∼ N(Fβ, In ⊗V).

4.3 Estimation, information and design

Under the distributional assumptions of normality for both the random effects and the
measurement errors the model parameters may be estimated by means of the maximum
likelihood method. Denote by θ = (βT , ςT )T the vector of all model parameters where
ς indicates the variance covariance parameter vector. The log-likelihood for the current
model is given by

`(θ; y) = −nkr
2 log(2π)− n

2 log(det(V))− 1
2(y− Fβ)T (In ⊗V)−1(y− Fβ), (4.7)

where the variance covariance matrix V = V(ς) of measurements per unit depends only
on ς. The maximum likelihood estimator of β can be calculated as

β̂ = (FT (In ⊗ V̂)−1F)−1FT (In ⊗ V̂)−1Y (4.8)

if F is of full column rank p, and V̂ = V(ς̂), where ς̂ is the maximum likelihood
estimator of ς. We note further that β̂ can be represented by

β̂ =
(

n∑
i=1

F(xi, t)T V̂−1F(xi, t)
)−1 n∑

i=1
F(xi, t)T V̂−1Yi (4.9)

Based on the definition of the Fisher information matrix in Subsection 3.5 denote by
Mβ = −E

(
∂2

∂β∂βT
`(θ; Y)

)
, Mς = −E

(
∂2

∂ς∂ςT
`(θ; Y)

)
, Mβς = −E

(
∂2

∂β∂ςT
`(θ; Y)

)
and

Mςβ = MT
βς the blocks of the Fisher information matrix corresponding to the second

derivatives with respect to β and ς and the mixed derivatives, respectively. The mixed
blocks can be seen to be zero due to the independence property that arises for the
normal distribution, and the Fisher information matrix is block diagonal,

Mθ =
 Mβ 0

0 Mς

 . (4.10)

Moreover, the block Mβ associated with the aggregate location parameters β turns out
to be the inverse of the variance covariance matrix for the estimator β̂ of β, when V is
known. Actually, because the Fisher information matrix for θ is block diagonal, the
inverse M−1

β of the block associated with β is the corresponding block of the inverse
of Mθ and is, hence, the asymptotic variance covariance matrix of β̂. Accordingly
the asymptotic variance covariance matrix for estimating the variance parameters ς
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is the inverse of the block Mς . In the following we will refer to Mβ and Mς as the
information matrices for β and ς, respectively, for short. The particular form of Mς

will be not of interest here. It is important to note that Mς does not depend on the
settings x1, ...,xn of the stress variable in contrast to the information matrix Mβ of the
aggregate location parameters β.

As mentioned earlier the time points of measurements within units is fixed in advance
and is not considered for optimization process. Then only the settings x1, ...,xn of the
stress variable x can be adjusted to the units i = 1, ..., n.

Mβ(x1, ...,xn) =
n∑
i=1

F(xi, t)TV−1F(xi, t). (4.11)

By the independence of the components the information matrix Mβ decomposes into
its marginal counterparts Mβ = diag(Mβl) where Mβl = ∑n

i=1 Fl(xi, t)TV−1
l Fl(xi, t).

In general, β can be estimated by MLE or, more usually, by restricted maximum
likelihood (Debusho and Haines, 2008). In addition, the variance covariance matrix of
the estimator β̂ of the location parameters β can be asymptotically approximated by the
inverse of the information matrix Mβ(x1, ...,xn). In accordance with the experimental
design introduced in Subsection 3.6 we follow again the approach of approximate designs
ξ as explained in Subsection 2.3.1 in which the requirement of integer numbers ni of
testing units at a stress level xi is relaxed. The corresponding standardized, per unit
information matrices are accordingly defined as

Mβ(ξ) =
m∑
i=1

wiF(xi, t)TV−1F(xi, t) (4.12)

for the aggregate parameters β. By the independence of the components Mβ(ξ) decom-
poses accordingly Mβ(ξ) = diag(Mβl(ξ)) where Mβl(ξ) = ∑m

i=1wiFl(xi, t)TV−1
l Fl(xi, t).

For the full parameter vector θ the information matrix Mθ(ξ) is expressed as

Mθ(ξ) =
 Mβ(ξ) 0

0 M̃ς

 (4.13)

where now M̃ς = 1
n
Mς is the standardized, per unit information for the variance

parameters ς. In order to optimize information matrices, we define in Subsection 4.4
the intended optimality criterion as a real valued function of the information matrix.
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4.4 Optimal design based on failure times

In accordance with the work of (Weaver and Meeker, 2013) we consider some character-
istics of the failure time distribution of soft failure due to degradation. For the analysis
of degradation under normal use we further assume that the general model 4.3 is also
valid at the normal use condition xu, where typically xu 6∈ X , i. e.

µul(t) = µl(xu, t) = fl(xu, t)Tβl + gl(t)Tγul (4.14)

describes the mean degradation of a future unit u at normal use condition xu, time t
and response component l where µul denotes the degradation path under normal use
condition for short. The random effects parameter vector γul is normally distributed
with mean zero and variance Σγl . Further, denote µl(t) = E(µul(t)) = fl(xu, t)Tβl as
the aggregate degradation path under normal use condition for response component
l. For the following it is assumed that the r mean degradation paths are strictly
increasing over time. Then a soft failure at component l due to degradation is defined
as the exceedance of the degradation over a failure threshold yl0. This definition is
based on the mean degradation path and not on a “real” path subject to measurement
errors. The marginal failure time Tl under normal use condition is then defined as
the first time t the mean degradation path µul(t) reaches or exceeds the threshold
yl0, i. e. Tl = min{t ≥ 0; µul(t) ≥ yl0}. As the random effect γul is involved in the
mean degradation path, the marginal failure time Tl is random. Actually, Tl may
become infinite, if the l-th mean degradation path does not reach the threshold, or may
degenerate to Tl = 0, if the degradation already exceeds the threshold at time t = 0,
because of unfortunate values of the random effects vector γul, but this will happen
only with low probability and will not affect the further argumentation. In order to
describe certain characteristics of the distribution of the failure time, we will determine
first the marginal distribution function FTl(t) = P(Tl ≤ t). First note that Tl ≤ t if and
only if µul(t) ≥ yl0. Hence

FTl(t) = P(µul(t) ≥ yl0)

= P(µl(t) + γul ≥ yl0)

= P(−γul ≤ µl(t)− yl0)

= Φ(hl(t)), (4.15)

where
hl(t) = µl(t)− yl0

σul(t)
, (4.16)
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σ2
ul(t) = gl(t)TΣγlgl(t) is the variance of the mean degradation path µul(t) at time t.

In the particular case of straight lines for the mean degradation paths, i.e. gl(t) =

(1, t)T , l = 1, .., r, the variance covariance matrix is given by Σγl =
 σ2

l1 ρlσl1σl2

ρlσl1σl2 σ2
l2

,
and, hence, the function hl(t) specifies to

hl(t) = µl(t)− yl0√
σ2
l1 + 2ρlσl1σl2t+ σ2

l2t
2
, (4.17)

The joint failure time T is defined consequently as a function, say ψ, of the marginal
failure times, T = ψ(T1, ..., Tr). For instance, a failure for an s-out-of-r system occurs
if, at least, s of its r components exceed their corresponding failure thresholds. Hence,
for the special case 1-out-of-r system, the joint failure time T might be defined as
T = min(T1, ..., Tr) so that a failure of the system occurs if, at least, one of its
components fail . Quantiles tα of the joint failure time distribution, i. e. P(T ≤ tα) = α,
are considered for further calculations. For each α the quantile tα indicates the time up
to which under normal use conditions (at least) α · 100 percent of the units fail and
(at least) (1− α) · 100 percent of the units survive. The quantiles tα are increasing in
α. Further, the current standard definition of quantiles is in contrast to the“upper”
quantiles (t1−α) used in (Weaver and Meeker, 2013) where percentages of failures and
persistence are reversed. Of particular interest is the median t0.5 up to which under
normal use conditions half of the units fails and half of the units persist (α = 0.5).
The quantile tα = tα(θ) is a function of both the aggregate location parameters β and
the variance parameters ς. Hence, the maximum likelihood estimator of the quantile
tα is given by t̂α = tα(θ̂) in terms of the maximum likelihood estimator θ̂ of θ. The
task of designing the experiment will now be to provide an as precise estimate of the
α-quantile as possible. By the delta-method t̂α is seen to be asymptotically normal
with asymptotic variance

aVar(t̂α) = cTM−1
θ c, (4.18)

where c = ∂
∂θ
tα is the gradient vector of partial derivatives of tα with respect to the

components of the parameter vector θ. The asymptotic variance depends on the
design of the experiment through the information matrix Mθ and will be chosen as the
optimality criterion for the design.

As the marginal aggregate mean degradation µl(t) only depend on the aggregate
location parameters β, and σ corresponds to the variance parameter in ς the gradient
simplifies to c = (cTβ , cTς )T , where

cβ = ∂
∂β
tα(θ)
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is the gradient of tα with respect to β and

cς = ∂
∂ς
tα(θ)

is the gradient of tα with respect to ς where the particular shape of cς does not play
a role here, in general. Due to the block diagonal form of the information matrix in
equation (4.10) the asymptotic variance (4.18) of t̂α specifies to

aVar(t̂α) = cTβM−1
β cβ + cTς M−1

ς cς (4.19)

where the second term in the right hand side is an additive constant and does not
depend on ξ.
Due to the complexity of deriving an explicit formula of tα, the following equality is
ensured by the implicit function theorem, see (Krantz and Parks, 2012)

∂tα
∂θ

=
∂FT (tα)

∂tα

−1
∂FT (tα)
∂θ

. (4.20)

such that ∂FT (tα)
∂tα

is a scaling constant that is irrelevant to the design. The gradient
vector cβ can be replaced by cβ = ∂

∂β
FT (tα) such that cβ decomposes into marginal

components cβ = (cT1 , ..., cTr )T where cl = ∂FT (tα)/∂βl. Because the components are
assumed to be independent within units, the information matrix Mβ(ξ) is block diagonal
with diagonal entries Mβ1(ξ), ...,Mβr(ξ) as noted in the previous section. Accordingly,
based on the optimality criterion defined in equation (4.19), the gradient vector depends
only on the parameter vector β and the locally c-optimal design ξ∗ can be defined by

ξ∗ = argmin
ξ

(
r∑
l=1

cTl M−1
βl

(ξ)cl
)
. (4.21)

In order to assess the influence of the variation of the optimal weights we consider the
efficiency of the resulting optimal design optimal design ξ∗ when the underlying nominal
values are varied. where the asymptotic efficiency of the design ξ for estimating tα is
defined by

effaVar(ξ) =
cTς M̃−1

ς cς +∑r
l=1 cTl M−1

βl
(ξ∗)cl

cTς M̃−1
ς cς +∑r

l=1 cTl M−1
βl

(ξ)cl
. (4.22)

If Σγ1 = ... = Σγr , g1 = ... = gr = g, and f1 = ... = fr = f such that f has
product type structure f(x, t) = f (1)(x)⊗ g(t), then the terms in the criterion (4.21)
factorize, ∑r

l=1 c̃lf (1)(xu)TM(1)(ξ)−1f (1)(xu) where M(1)(ξ) = ∑m
i=1wif (1)(xi)f (1)(xi)T is

the (fixed effect) information matrix in the first marginal model related to the stress
variable and c̃l = c2

l g(tα)TM(2)(t)g(tα). Hence, under this assumption, if ξ is optimal
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for extrapolation at xu in the first marginal model, it is also optimal for estimating tα
in the system. Actually, this holds not only for series systems but also for s-out-of-r
systems in which case the constants cl are more complicated (see below in Subsection
4.5).

4.5 Numerical Examples

In this section we present two examples of optimal designs of accelerated degradation
testing. We consider first an example for a series system in accordance with the work
of (Shat and Schwabe, 2021) with full interaction between stress and time variables.
We propose further another example for an s-out-of-r system with partial interaction of
explanatory variables with the time variable.

Example 4. We derive in this example a locally c-optimal design for the degradation
model in Section 4.2 under the standardized time plan t = (0, 0.5, 1) which is identical
for all testing units. The degradation is influenced by two standardized accelerating
stress variables x1 and x2 which are defined over the design region X = [0, 1]2 and act
linearly on the response with a potential interaction effect associated with x1x2. As
in the univariate situation described in Chapter 3, for each testing unit i, the stress
variables are set to xi = (xi1, xi2), and for each component l the response yilj at time tj
is given by

yijl =βil1 + βl2xi1 + βl3xi2 + βl4xi1xi2 + βil5tj + βl6xi1tj + βl7xi2tj + βl8xi1xi2tj + εijl,

=fl(xi, tj)Tβil + εijl

(4.23)

where the vector of regression functions fl(x, t) = f(x, t) = (1, x1, x2, x1x2, t, x1t, x2t, x1x2t)T

is the same for all components l and βil = (βil1, βl2, βl3, βl4, βil5, βl6, βl7, βl8)T . Conse-
quently, it should be further noted that here g1 = ... = gr = g where g(t) = (1, t)T . As
noted in Section 4.4 the model equation (4.2) for the mean degradation paths is also
assumed to be valid under normal use condition xu = (xu1, xu2). Hence, the aggregate
degradation path under normal use conditions is given by

µl(t) = fl(xu, t)Tβl = δl1 + δl2t (4.24)

where δl1 = βl1 + βl2xu1 + βl3xu2 + βl4xu1xu2 and δl2 = βl5 + βl6xu1 + βl7xu2 + βl8xu1xu2

are the intercept and the slope of the aggregate degradation path µl(t) under normal use
conditions, respectively. For the particular case of a series system with two response
components, i.e. r = 2, the joint failure time distribution function can be expressed as
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Figure 4.1: Distribution function FT (t) (solid line) at the bivariate
linear model with random intercept in Example 4, dashed line: FT1(t),
dotted line: FT2(t)

FT (t) = P
(

min(T1, T2) 6 t
)

= 1−
(

1− Φ
(
δ11 + δ12t− y10

σ1(t)

))
×
(

1− Φ
(
δ21 + δ22t− y20

σ2(t)

))
.

(4.25)
where σ2

l (t) = V ar(µul(t)) = gl(t)TΣγlgl(t) is the variance function of the mean
degradation path of component l. For illustration, the distribution function FT (t) is
plotted in Figure 4.1 under the nominal values given in Table 4.1, the normal use
conditions xu1 = −0.40 and xu2 = −0.20, and the failure thresholds y10 = 5.4 and
y20 = 5.8. The median failure time t0.5 = 5.2 is indicated in Figure 4.1 by a dashed
vertical line. Consequently, in view of (4.20) and (4.25) the gradient vector of the
parameter vector β can be expressed as cβ = (c1f(xu, tα)T , c2f(xu, tα)T )T where the
constants c1 and c2 are given by

c1 = φ

 δ11 + δ12tα − y10√
σ2

11 + 2ρ1σ11σ12t+ σ2
12t

2

1− Φ
 δ21 + δ22tα − y20√

σ2
21 + 2ρ2σ21σ22t+ σ2

22t
2

 ,
c2 = φ

 δ21 + δ22tα − y20√
σ2

21 + 2ρ2σ21σ22t+ σ2
22t

2

1− Φ
 δ11 + δ12tα − y10√

σ2
11 + 2ρ1σ11σ12t+ σ2

12t
2

 .
It can be concluded that the optimal design for each of the two univariate components

is also optimal for the joint bivariate model under the condition of i.i.d response
components. Further, it should be noted that the resulting design remains optimal with
regard to the aggregate (fixed) effects parameter vector. Consequently, the problem has
been reduced now to finding an optimal design for any of the univariate models with
two explanatory variables. As depicted in Chapter 3 the degradation model in equation
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Table 4.1: Nominal values of the bivariate linear model in Example 4.

β11 β12 β13 β14 β15 β16 β17 β18
2.30 1.60 1.30 0.02 0.70 0.07 0.08 0.03
β21 β22 β23 β24 β25 β26 β27 β28
2.17 1.10 0.84 0.01 0.80 0.03 0.02 0.02

σ2
11 = σ2

21 σ2
12 = σ2

22 σ2
ε ρ1 = ρ2 t0.5

0.36 0.10 0.10 0.00 5.2

(4.23) after rearranging terms can be rewritten as a Kronecker product model

Yijl = (f1(xi1)⊗ f2(xi2)⊗ g(tj))Tβl + g(tj)Tγil + εijl, (4.26)

where f1(x1) = (1, x1)T , f2(x2) = (1, x2)T and g(t) = (1, t)T are the marginal regression
functions for the stress variables x1, x2 and the time variable t, respectively. In the model
with two interacting stress variables x1 and x2 the marginal model for the combined stress
variable x = (x1, x2) is given itself by a product-type structure given both components
x1 and x2 are specified as simple linear regressions in their corresponding marginal
models. Moreover, the experimental region X = [0, 1]2 for the combined stress variable
x is the Cartesian product of the marginal experimental regions X1 = X2 = [0, 1]
for the components x1 and x2, respectively. In this setting the c-optimal design ξ∗ for
extrapolation at xu can be obtained as the product ξ∗ = ξ∗1⊗ξ∗2 of the c-optimal designs ξ∗v
for extrapolation at xuv, v = 1, 2, in the marginal models (see Theorem 4.4 in (Schwabe,
1996a)).

As specified in (Shat and Schwabe, 2021) the marginal c-optimal designs ξ∗v assign
weight w∗v = |xuv|/(1 + 2|xuv|) to xv = 1 and weight 1−w∗v = (1 + |xuv|)/(1 + 2|xuv|) to
xv = 0. Hence, the c-optimal design ξ∗ = ξ∗1 ⊗ ξ∗2 for extrapolation at xu is given by

ξ∗ =
 (0, 0) (0, 1) (1, 0) (1, 1)

(1− w∗1)(1− w∗2) (1− w∗1)w∗2 w∗1(1− w∗2) w∗1w
∗
2

 .
Accordingly, the design ξ∗ is also optimal for minimization of the asymptotic variance

for estimating the α-quantile tα of the failure time for soft failure due to degradation,
when 0 < tα < ∞. For instance, under the normal use conditions xu1 = −0.40 and
xu2 = −0.20 the optimal marginal weights are w∗1 = 0.222 and w∗2 = 0.143, and the
optimal design ξ∗ = ξ∗1 ⊗ ξ∗2 is given by

ξ∗ =
 (0, 0) (0, 1) (1, 0) (1, 1)

0.67 0.11 0.19 0.03

 (4.27)
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Figure 4.2: Optimal weights in dependence on xu1 in Example 4, solid
line: w∗1, dotted line: w∗2, long-dashed line: w∗3, dashed line: w∗4

−5 −4 −3 −2 −1 0

0.2

0.4

0.6

0.8

1.0

xu1

ef
f a

V
ar

Figure 4.3: Efficiency of ξ∗ (solid line) and ξ̄ (dashed line) in
dependence on xu1 in Example 4

where the indices of the optimal support points in ξ∗ correspond to the design variables x1

and x2, respectively. Sensitivity analysis proved that ξ∗ is robust against misspecification
of the parameter vector β. To exhibit the dependence on the normal use condition,
the optimal weights w∗1, ..., w∗4 are plotted in Figure 4.2 as a function of xu1 where all
parameters are held fixed to their nominal values in Table 4.1. It should be noted that
similar results are obtained with regard to xu2, and omitted for brevity. As depicted in
Figure 4.2 the optimal weights w∗3 and w∗4 which correspond to the maximum testing
setting of the first design variable, i.e. x1max = 1, degenerate to zero when the normal
use condition approaches the lower bound of X1, i.e. xu1 → 0. For the setting of
the present model with two stress variables, we examine the efficiency of the design ξ∗

which is locally optimal for estimation of the median failure time under the nominal
values of Table 4.1 when the nominal value of xu1 is changed. In Figure 4.3 we plot the
efficiency of the locally optimal design ξ∗ at the nominal values (solid line) together with
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the efficiency of the design ξ̄ (dashed line) which assigns equal weights 1/4 to the four
vertices (0, 0), (0, 1), (1, 0), and (1, 1) where the design ξ̄ is a standard experimental
designs for comparison. In Figure 4.3 the efficiency is illustrated in dependence on the
nominal value of xu1 while all remaining parameters and constants are held fixed to
their nominal value in Table 4.1. The nominal value for xu1 is indicated by vertical
dotted lines in the corresponding figures. In total, the design ξ∗ which is locally optimal
for the nominal values seems to perform quite well and is preferred over ξ̄ throughout.

Example 5. In this example we consider the model in Subsection 4.2 for an s-out-of-r
system to attain a locally c-optimal design. The resulting optimal design is attained
in regards to the time plan t = (0, 0.5, 1)T which is unified for all testing units. We
assume here, again, that each of the marginal degradation paths is influenced by two
standardized accelerating stress variables x1 and x2 which are defined over the design
region X = [0, 1]2. For some testing unit i, the stress variables are set to xi1 and xi2
the response yijl of the response component l at time tj is given by

yijl =βil1 + βl2xi1 + βl3xi2 + βil4tj + βl5xi2tj + εijl,

=fl(xi, tj)βil + εijl
(4.28)

where fl(x, t) = f(x, t) = (1, x1, x2, t, x2t)T , βil = (βil1, βl2, βl3, βil4, βl5)T , and gl = g =
(1, t)T .

On the basis of the marginal distribution functions FTl(t) defined in (4.14), the
model is extended in terms of the general model (4.15) under normal use conditions.
In accordance with Example 4, we consider further an s-out-of-r system with statis-
tically independent response components with equal regression functions and iden-
tical covariances. In accordance with the work of (Kouckỳ, 2003), we denote by
FD(t) = P(Tl ≤ t ∀l ∈ D) = ∏

l∈D FTl(t) the probability of joint failure of the compo-
nents D ⊆ {1, ..., r}. Consequently, the joint failure time distribution function for a
s-out-of-r system is expressed as,

FT (t) =
s−1∑
l=0

(−1)l
(
l + r − s

l

) ∑
D;|D|=l+1+r−s

∏
d∈D

FTd(t). (4.29)

The aggregate degradation path under normal use condition for response component
l is given by

µl(t) = fl(xu, t)Tβl = δl1 + δl2t (4.30)

where δl1 = βl1 + βl2xu1 + βl3xu2 and δl2 = βl4 + βl5xu2 are the intercept and the slope of
the aggregate degradation path µl(t) under normal use condition, respectively. Based on
equation (4.29) the joint failure time distribution for the particular case of a 2-out-of-3
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Figure 4.4: Distribution function FT (t) (solid line) for the model in
Example 5, dotted line:FT1(t), dotted-dashed line:FT2(t), dashed
line:FT3(t)
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Figure 4.5: Dependence of FT1(tα) (dotted line), FT2(tα)
(dotted-dashed line) and FT3(tα) (dashed line) on β11 for the model in
Example 5

can be expressed as

FT (t) =FT1(t)FT2(t) + FT1(t)FT3(t) + FT2(t)FT3(t)− 2FT1(t)FT2(t)FT3(t). (4.31)

For further calculation we assume that ρl = 0, σl1 = σ1, σl2 = σ2, l = 1, 2, 3, and, hence,
the variance covariance matrix Σγ turns to a block diagonal matrix with diagonal blocks

Σγ0 =
 σ2

1 0
0 σ2

2

.
The distribution function FT (t) is plotted in Figure 4.4 under the nominal values

given in Table 4.2 and the median failure time t0.5 = 2.43 is indicated by a dashed
vertical line. The normal use conditions correspond to xu1 = −0.50 and xu2 = −0.40,
and the failure thresholds y10 = 7.5, y20 = 5.2 and y30 = 4.25. In view of (4.20)
and (4.31) the gradient vector of the parameter vector β can be expressed as cβ =
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Table 4.2: Nominal values of the multivariate linear model with
random effect.

β11 β12 β13 β14 β15 σ2
ε

3.80 0.52 0.72 2.00 0.67 0.15
β21 β22 β23 β24 β25 σ2

1
2.20 0.44 0.64 1.50 0.63 0.40
β31 β32 β33 β34 β35 σ2

2
1.33 0.30 0.92 1.91 0.80 0.32

(c1f(xu, tα)T , c2f(xu, tα)T , c3f(xu, tα)T )T where the constants cl, l = 1, ..., r for a general
s-out-of-r system are given by

σl(tα)−1φ((δl1 + δl2tα − yl0)/σl(t))
s−1∑
m=0

(−1)m
(
m+ r − s

m

) ∑
D;|D|=m+r−s;l 6∈D

∏
d∈D

FTd(tα)

(4.32)
and, hence, constants c1, c2 and c3 for the current 2-out-of-3 system are expressed

as

c1 = σ1(tα)−1φ

δ11 + δ12tα − y10√
σ2

1 + σ2
2t

2
α

 (FT2(tα) + FT3(tα)− 2FT2(tα)FT3(tα)) ,

c2 = σ2(tα)−1φ

δ21 + δ22tα − y20√
σ2

1 + σ2
2t

2
α

 (FT1(tα) + FT3(tα)− 2FT1(tα)FT3(tα)) ,

c3 = σ3(tα)−1φ

δ31 + δ32tα − y30√
σ2

1 + σ2
2t

2
α

 (FT1(tα) + FT2(tα)− 2FT1(tα)FT2(tα)) .

As mentioned earlier in this example the marginal response components are indepen-
dent with equal regression functions and identical covariances. Hence, in accordance
with Example 4, the optimization is reduced to finding an optimal design of the first
response component under the nominal values in Table 4.2. It should be further noted
that the resulting locally c-optimal design will be optimal for any s-out-of-r system
under the assumption of independent marginal response components with equal re-
gression functions and identical covariances. In other words, under the assumptions
fl = f , gl = g, Σγl = Σγ0 the c-optimal design for extrapolation at (xu, tα) in the
LMEM with fixed time plan t is optimal for estimating tα. In contrast to Example 4,
it should be mentioned that the optimal design for the current experimental settings
depends on the given time plan t as well as the nominal values of β, through the value
of tα, due to the particular form of the gradient cβ as well as the degradation path in

76



Chapter 4. Extensions to Multivariate Linear Mixed Effects Models

equation (4.28). In particular, the optimal design may also vary with α in contrast
to the situation in Example 4. In order to derive a locally c-optimal design ξ∗ that
minimizes the asymptotic variance of t̂0.5, the multiplicative algorithm with a grid of
marginal 0.05 increments over the standardized design region X = [0, 1]2 is used. The
resulting optimal design is given by

ξ∗ =
 (0, 0) (0, 1) (1, 0) (1, 1)

0.60 0.03 0.13 0.24

 (4.33)

where the general equivalence theorem is applied to prove the optimality of the numerically
obtained design. The locally optimal designs for estimating the median failure time are
influenced by the parameter vector β as well as the normal use conditions xu. For brevity,
we consider β11 and xu1 for further analysis procedures. Sensitivity analysis procedures
are conducted to demonstrate how the optimal designs change with the parameters and
how well they perform under variations of the nominal values. The optimal weights
w∗1, ..., w

∗
4 are depicted in Figure 4.6 as a function of β11 where the variations of t0.5

have been generated by letting β11 vary over the range −2 to 5 and fixing all remaining
parameters to their nominal values in Table 4.2. The analysis indicated that the optimal
weights in (4.33) slightly change under variations of β11. On the other hand the optimal
weights w∗1, ..., w∗4 are plotted in Figure 4.7 as a function of xu1, while all remaining
parameters are held fixed to their nominal values in Table 4.2. The results exhibit
that the optimal weights are more sensitive to variations of xu1 when compared to the
misspecifications of β11. Further, Figure 4.5 illustrates the dominance of the marginal
failure components where the marginal distribution functions FT1(tα), FT2(tα), and
FT3(tα) are shown in dependence on β11. Figure 4.5 depicts that the first component
dominates for large values of its intercept β11 while the second and third components
dominate for small values of β11.

For the present setting of the mixed effects model with two stress variables we examine
further, based on equation (4.22), the efficiency of the design ξ∗ which is locally optimal
for estimation of the median failure time under the nominal values of Table 4.2 when
the nominal values are misspecified. In Figure 4.8 and Figure 4.9 the efficiencies of
ξ∗ along with the efficiency of ξ̄ are displayed in dependence on the true value of β11

and the normal use condition xu1, respectively. The results indicate that ξ∗ performs
generally well under misspecifications of β11 and xu1 with more robustness with regard
to variations of β11. In total, the optimal design ξ∗ is quite preferable over the standard
design ξ̄ throughout.
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Figure 4.6: Optimal weights in dependence on β11 for the model in
Example 5, solid line: w∗1, dotted line: w∗2, dotted-dashed line: w∗3,
dashed line: w∗4
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Figure 4.7: Optimal weights in dependence on xu1 for the model in
Example 5, solid line: w∗1, dotted line: w∗2, dotted-dashed line: w∗3,
dashed line: w∗4
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Figure 4.8: Efficiency of ξ∗ (solid line) and ξ̄ (dashed line) in
dependence on t0.5 for the model in Example 5
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Figure 4.9: Efficiency of ξ∗ (solid line) and ξ̄ (dashed line) in
dependence on xu1 for the model in Example 5

4.6 Conclusion

Designing highly reliable systems needs a sufficient assessment of the reliability related
characteristics. A common approach to handle this issue is to conduct accelerated
degradation testing which provides an estimation of lifetime and reliability of the system
under study in a relatively short testing time. To account for variability between units
in accelerated degradation tests, we assume int this work that the marginal degradation
functions can be described by a mixed-effects linear model. This also leads to a non-
degenerate distribution of the failure time, due to soft failure by exceedance of the
expected (conditionally per unit) degradation path over a threshold, under normal use
conditions. Therefore we are aiming to estimate certain quantiles of the joint failure
time distribution as a property of the reliability of the product. In this regard we
considered the availability of non-degenerate solutions for the quantiles. The purpose
of optimal experimental design is then to find the best settings for the stress variables
to obtain most accurate estimates for these quantities.

For the existing degradation models in this chapter it is further assumed that stress
remains constant within each testing unit during the whole period of experimental
measurements but may vary between units. Hence, in the corresponding experiment a
cross-sectional design between units has to be specified for the stress variable while for
repeated measures.

In the present chapter we presented optimal designs for accelerated degradation
testing under bivariate LMEMs with full as well as partial interactions between the
time and stress variables.

For all models the efficiency of the corresponding optimal design is considered to
assess its performance when nominal values are varied at the design stage.
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Chapter 5

Optimal Designs in Accelerated
Degradation Testing for Various
Degradation Models

5.1 Introduction

We characterize in this chapter optimal designs for accelerated degradation tests with
various bivariate degradation models. The first bivariate model includes two gamma
processes as marginal degradation models. The second bivariate models is expressed by
a gamma process along with a LMEM. We derive optimal designs for minimizing the
asymptotic variance for estimating some quantile of the failure time distribution at the
normal use conditions. Sensitivity analysis is conducted to study the behavior of the
resulting optimal designs under misspecifications of adopted nominal values. Considering
Gamma process models, (Pan and Sun, 2014) introduced reliability model of the
degradation products with two performance characteristics based on a Gamma process.
In order to predict the lifetime of the population from Accelerated Degradation Testing,
(Wang, Xu, and Mi, 2015) considered Gamma process with a time transformation and
random effects. They present a deducing method for determining the relationships
between the shape and scale parameters of Gamma process and accelerated stresses.
(Lim, 2015) developed statistical methods for optimal designing Accelerated Degradation
Testing plans under the total experimental cost constraint and assuming that the
degradation characteristic follows a Gamma process model. Accelerated Degradation
Testing with the presence of Competing failure modes is an important reliability
area to be addressed. Therefore, the study of the statistical inference of Accelerated
Degradation Testing with competing failures is of great significance. (Haghighi and Bae,
2015) introduced a modeling approach to simultaneously analyze linear degradation
data and traumatic failures with competing risks in an SSADT experiment. Moreover,
methodology for ALT planning when there are two or more independent failure modes
was discussed by (Pascual, 2007). The author assumed that the failure modes have
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respective latent failure times, and the minimum of these times corresponds to the
product lifetime. Considering accelerated destructive degradation tests (ADDT), (Shi
and Meeker, 2014) proposed methods to find unconstrained and constrained optimum
test plans for competing risk applications under a V -optimality criterion that aim to
minimize the large-sample approximate variance of a failure-time distribution quantile
at use conditions. The authors consider linearly degraded response models with an
application for an adhesive bond. In regards to nonparameteric methods of evaluation,
(Balakrishnan and Qin, 2019) introduced some approximation techniques of the first
passage time distribution of the degradation processes incorporating random effects if
the process type is unknown. The authors approximate the density function of some
stochastic degradation processes by inverting the empirical Laplace transform using
the empirical saddlepoint method. (Palayangoda, Ng, and Butler, 2020) extended the
work of (Balakrishnan and Qin, 2019) and proposed some improved approximation
techniques where numerical examples and Monte Carlo simulation studies are used
to illustrate the advantages of the proposed techniques. The rest of this chapter is
organized as follows. Section 5.2 is devoted to develop optimal experimental designs for
a univariate gamma model. In Section 5.3 we introduce an optimal design considering
a bivariate Gamma process where the corresponding failure modes do not interact. In
Section 5.4, we characterize a c-optimal design for an ADT with a bivariate degradation
model with repeated measures given that one of the marginal response components
follows a Gamma process model where the other follows a LMEM. The paper closes
with a short discussion in Section 5.5. It should be noted that the content of the current
chapter is directly related to the paper of (Shat and Schwabe, 2019).

5.2 Accelerated degradation testing based on a gamma
process

The gamma process is a natural stochastic model for degradation processes in which
degradation is assumed to occur gradually over time in a sequence of independent
increments. In this section, we assume that the testing unit has a single dependent
failure mode where the degradation path is characterized by a Gamma process model
in terms of a standardized time variable t. In addition, it is assumed that there is
a single stress variable and its (standardized) stress level x can be chosen by the
experimenter from the experimental region X = [0, 1]. The subsequent subsections
clarify the approximation of the Gamma model with a generalized linear model approach.
Further, we explain the derivation of the corresponding information matrix in order to
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obtain an algorithm based optimal experimental design with respect to the asymptotic
variance of a quantile of the failure time distribution.

5.2.1 Model formulation

A gamma process Zt is a stochastic process with independent gamma distributed
increments. The process can be parameterized by the rate γ and a scale parameter ν.
If the process is observed at k subsequent time points tj , 0 < t1 < ... < tk, then the jth
degradation increment Yj = Ztj −Ztj−1 is Gamma distributed with shape γ∆j and scale
ν, where ∆j = tj − tj−1 is the length of the jth time interval and Zt0 = 0 at t0 = 0.

We assume that the stress variable x only affects the rate γ = γ(x) of the Gamma
process and, hence, the shape parameters γ(x)∆j of the increments while the scale
parameter ν is fixed and known. We further assume that the rate γ(x) is given by a
linear trend in the stress variable with a logarithmic link,

γ(x) = eβ0+β1x, (5.1)

where the intercept β0 and the slope β1 are to be estimated. When a unit is tested
under stress level x during a time interval of length ∆, the degradation increment Y
has density

fY (y) = yγ(x)∆−1e−y/ν

Γ(γ(x)∆)νγ(x)∆ , (5.2)

where Γ(α) =
∫∞
0 zα−1e−zdz is the Gamma function. The mean of the increment is

given by
µ(x) = E(Y ) = γ(x)∆ν = eβ0+β1x∆ν. (5.3)

Thus the mean µ(x) is linked to the linear predictor β0 +β1x by a scaled log link. Hence,
the model assumptions fit into the concept of generalized linear models.

To be more specific, in accelerated degradation testing n distinct testing units are
tested at potentially different stress settings xi which are held fixed over time for each
unit i = 1, ..., n. Measurements are made at predetermined time points t1, ..., tk which
are identical for all units. The degradation increments Yij when testing unit i during
the jth time interval of length ∆j = tj − tj−1 are independent Gamma distributed with
shape γ(xi)∆j and scale ν.
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5.2.2 Estimation and information

Denote by β = (β0, β1)T the vector of unknown parameters. By (5.2) the log-likelihood
of a single degradation increment Y is given by

`(β; y) = (eβ0+β1x∆− 1) log(y)− y/ν − log
(
Γ(eβ0+β1x∆)

)
− eβ0+β1x∆ log(ν) (5.4)

when the stress level x is applied and the increment is measured over a time interval
of length ∆. The elemental Fisher information matrix Mβ(x,∆) related to a single
increment can be calculated as minus the matrix of expected second order derivatives
of the log-likelihood,

Mβ(x,∆) = q(β0 + β1x+ log(∆))
 1 x

x x2

 , (5.5)

where q is defined by q(z) = e2zψ1(ez) and ψ1(α) = d2 ln (Γ(α)) /dα2 is the trigamma
function.

Because the increments Yi1, ..., Yik measured at times t1, ..., tk are statistically inde-
pendent within a unit i, the log-likelihood `(β; yi1, ..., yik) = ∑k

j=1 `(β; yij) of a unit i is
the sum of the log-likelihoods for the single observations Yij . Thus also the information
matrix Mβ(xi) of a unit is the sum of the information of the single increments,

Mβ(xi) =
k∑
j=1

Mβ(xi,∆j) = λ(β0 + β1xi)
 1 xi

xi x2
i

 , (5.6)

where the “intensity” λ(z) = ∑k
j=1 q

(
z + log(∆j)

)
accounts for the contribution of the

non-linearity at z = β0 + β1xi to the information.
Furthermore, because measurements are statistically independent between units,

both the log-likelihood `(β; y11, ..., ynk) = ∑n
i=1 `(β; yi1, ..., yik) and the information

Mβ(x1, ..., xn) =
n∑
i=1

Mβ(xi) (5.7)

for the whole experiment summarize the log-likelihood and the information of the units.
This information matrix Mβ(x1, ..., xn) provides a measure for the performance of the
experiment as its inverse is proportional to the asymptotic variance covariance matrix
for the maximum likelihood estimator of β.

In an accelerated degradation experiment the stress variable x is under control of
the experimenter. For each unit i, the setting xi of the stress variable adjusted to i may
be chosen from an experimental region X . The collection x1, ..., xn of these settings is
called the design of the experiment. An optimal design then aims at minimizing an
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optimality criterion which is a function of the information matrix. As explained earlier,
finding optimal designs x1, ..., xn is, in general, a difficult task of discrete optimization.
Hence, we consider for further calculations the approach of approximate designs ξ as
introduced in Subsection 2.3.1. Accordingly, the corresponding standardized, per unit
information matrix is defined as

Mβ(ξ) =
m∑
i=1

wiMβ(xi) (5.8)

so that “exact” designs x1, ..., xn are properly embedded by Mβ(ξ) = (1/n)Mβ(x1, ..., xn).
As the information matrix depends on the parameter vector β only through the linear
predictor β0 + β1x, a canonical transformation can be employed which simultaneously
maps experimental settings x to z = β0 + β1x and the parameters β0 and β1 to the
standardized value β0 = 0 and β1 = 1 for analytical solutions, see (Ford, Torsney, and
Wu, 1992). When all time intervals have the same length ∆j = ∆, j = 1, ..., k, the
influence of the repeated measurements reduces to λ(z) = k q

(
z + exp(∆)

)
for the

intensity and, hence, to a multiplicative factor k in the information matrix. Thus,
for common design criteria, the number k of measurements is immaterial for design
optimization.

5.2.3 Optimality criterion based on the failure time distribu-
tion

In degradation testing we are interested in characteristics of the failure time distribution
of soft failure due to degradation under normal use condition xu. It is supposed that
the gamma process Zu,t describing the degradation under normal use condition has the
rate γ(xu) = exp(β0 + β1xu) as in equation (5.1) and scale ν. Typically the normal
use condition xu is not contained in the experimental region X , xu < 0. Further it is
natural to assume that the degradation paths are strictly increasing over time. Then a
soft failure due to degradation is defined as exceedance of the degradation path over
a failure threshold z0. The failure time T under normal use condition is defined as
the first time t the degradation path Zu,t reaches or exceeds the threshold z0, i. e.,
T = inf{t ≥ 0; Zu,t ≥ z0}. In order to derive certain characteristics of the distribution
of the failure time, we determine its distribution function FT (t) = P(T ≤ t). For this
note that T ≤ t if and only if Zu,t ≥ z0. The degradation Zu,t at time t is gamma
distributed with shape γ(xu)t and scale ν). Hence, the distribution function of the
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failure time T can be expressed as

FT (t) = P(Zu,t ≥ z0)

= 1
Γ(γ(xu)t)

∫ ∞
z0

(z/ν)γ(xu)t−1e−z/νν−1dz

= Q(γ(xu)t, z0/ν)

(5.9)

whereQ(s, z) = Γ(s, z)/Γ(s) is the regularized gamma function and Γ(s, z) =
∫∞
z xs−1e−xdx

the incomplete gamma function.
We will be interested in some quantile tα of the failure time distribution. In the

case of a continuous distribution function FT (t), the α-quantile tα satisfies FT (tα) = α,
i. e., it represents the time up to which under normal use conditions α · 100 percent of
the units fail and (1− α) · 100 percent of the units persist. The distribution function
and, hence, the quantile tα = tα(β) depends on the parameter vector β in which the
quantile tα is a decreasing functions of the linear predictor β0 + β1xu.

With this functional relationship the maximum likelihood estimator for the quantile
tα is given by t̂α = tα(β̂), where β̂ is the maximum likelihood estimator of β. The
performance of these estimators is measured by their asymptotic variance aVar(t̂α), and
design optimization will be conducted with respect to the minimum asymptotic variance
criterion, i. e. an optimal design minimizes aVar(t̂α). This criterion is commonly used in
planning degradation tests when experimenters are interested in accurately estimating
reliability properties of a system over its life cycle.

If the distribution function FT (t) is strictly increasing with continuous density
fT (t) = F ′T (t), the asymptotic variance can be derived by the delta method from the
information matrix in Section 5.2.2 as

aVar(t̂α) = cTMβ(ξ)−1c, (5.10)

where c = ∂tα(β)/∂β is the vector of partial derivatives of tα = F−1
T (α) with respect

to the components of the parameter vector β evaluated at the true values of β. Let
g(s) = Q(s, z0/ν) be the regularized Gamma function with the second argument fixed
to z0/ν, then tα = g−1(α)/γ(xu) by (5.9) and the vector c of partial derivatives can
be written as c = −tα(1, xu)T , where the minus sign and the scaling factor tα do not
affect the optimization problem. Hence, the minimum asymptotic variance criterion is
equivalent to a c-criterion with c = (1, xu)T , i. e., extrapolation of the linear component
β0 + β1xu at the normal use condition xu, and standard optimization methods for
c-criteria can be employed. In particular, the design optimization does not depend on
which quantile tα is to be estimated, and the obtained design is simultaneously optimal
for all α.
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Because the information matrix Mβ(ξ) depends on the parameter vector β, this
affects the design optimization. Hence, nominal values have to be assumed for these
parameters, and locally optimal designs can be obtained for those nominal values.
Numerical calculations indicate that the locally optimal designs ξ∗ are supported on the
endpoints of the design region X , i. e., they are of the form ξ∗ = ξw∗ , where ξw denotes
a design with weight w1 = w on x1 = 0 and weight w2 = 1− w on x2 = 1. Under this
premise the optimal weight w∗ can be determined analytically by Elfving’s theorem
(Elfving, 1952),

w∗ =
(1 + |xu|)

√
λ(β0 + β1)

(1 + |xu|)
√
λ(β0 + β1) + |xu|

√
λ(β0)

(5.11)

for (standardized) normal use condition xu < 0. This optimal weight w∗ is a decreas-
ing function in the distance |xu| between the normal use condition and the lowest
stress level x1 = 0, and it decrease from w∗ = 1 when formally letting xu = 0 to√
λ(β0 + β1)/(

√
λ(β0 + β1) +

√
λ(β0)) for xu → −∞, where this lower bound is larger

than 0.5 since β1 > 0 and the intensity λ(z) is an increasing function in z.
Concerning the parameters β0 and β1 the optimal weight w∗ is increasing in the

slope parameter β1 while it does not seem to be sensitive with respect to the intercept
parameter β0 as will be illustrated in Figure 5.3 and Figure 5.4 below for some nominal
values. Therefore it is of interest to check how a misspecification of the nominal values
for β may affect the performance of a locally optimal design ξ∗ = ξw∗ . To measure the
performance we make use of the concept of efficiency

effaVar(ξ;β) =
aVarβ(t̂α; ξ∗β)
aVarβ(t̂α; ξ)

(5.12)

of a design ξ with respect to the asymptotic variance for estimating tα when β is the
true value of the parameter, where aVarβ(t̂α; ξ) denotes the asymptotic variance of
t̂α at β, when the design ξ is used, and ξ∗β is the locally optimal design at β. This
efficiency attains a value between 0 and 1. It can be interpreted as the proportion of
units needed, when the locally optimal design ξ∗β is used, to obtain the same precision
in the asymptotic variance as for the design ξ under consideration. Thus high values of
the efficiency are advantageous for a design to be used.

5.2.4 Numerical example

In this example we consider an accelerated degradation experiment as described in
Subsection 5.2.1 with standardized normal use condition xu = −0.4, underlying gamma
process with scale parameter ν = 1 and degradation threshold z0 = 5.16. We will be
interested in estimating the median t0.5 of the failure time T due to degradation. The
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Figure 5.1: Optimal weight w∗ in dependence on the normal use
condition xu for the univariate Gamma process in the example of
Subsection 5.2.4

standardized observation times are tj = 0.25, 0.5, 0.75 and 1, i. e., there are k = 4
degradation increments measured on time intervals of constant length ∆ = 0.25. With
respect to the location parameters we assume the nominal values β0 = 0.23 for the
intercept and β1 = 0.53 for the slope. For these parameter values, the distribution
function FT (t) of the failure time T is exhibited in Figure 5.7 below as FT1 . The
corresponding median failure time t0.5 = 5.39 for which FT (t0.5) = 1/2 is indicated in
Figure 5.7 by a dashed vertical line.

To find the optimal design ξ∗ for estimating the median failure time tα, we apply
the multiplicative algorithm following (Torsney and Martín-Martín, 2009) for the
standardized stress parameter x on a grid with increments of size 0.01 on the design
region X = [0, 1]. The optimal design ξ∗ is found to be of the form ξw with optimal
weight w∗ = 0.79 at the lowest stress level (x = 0) and weight 1 − w∗ = 0.21 at the
highest stress level (x = 1) in the experiment.

For illustrative purposes, the optimal weight w∗ is plotted in Figure 5.1 as a function
of the normal use condition xu when the nominal values of the other parameters are
held fixed.

For the normal use condition xu close to the lowest value x = 0 of the design region,
the optimal weight w∗ approaches 1, and w∗ decreases to 0.516 when xu is far away from
the design region (xu → −∞). The nominal value xu = −0.4 and the corresponding
optimal weight w∗ = 0.79 are indicated in Figure 5.1 by a vertical and a horizontal
dashed line, respectively. To imagine the gain in applying the optimal design ξ∗, we
exhibit the efficiency (5.12) of commonly used standard designs ξ̄2 and ξ̄3 in Figure 5.2,
when the nominal values for the other parameters are held fixed. In this comparison
the designs ξ̄m are uniform on m equidistant stress values x1, ..., xm covering the whole
range of the design region 0 ≤ x ≤ 1. In particular, ξ̄2 is of the form ξw with w = 1/2,
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Figure 5.2: Efficiency of ξ̄2 (dashed line) and ξ̄3 (dashed-dotted line)
in dependence on the normal use condition xu in the example of
Subsection 5.2.4

and ξ̄3 assigns weight 1/3 to each of the endpoints (x = 0) and (x = 1) and to the
midpoint (x = 0.5) of the design region.

The nominal value xu = −0.4 of the normal use condition is indicated in Figure 5.2
by a vertical dotted line. The uniform two-point design ξ̄2 shows a high efficiency at
values xu which are sufficiently far from the standardized design region. This is in
accordance with the similarity of the weights in ξ̄2 and in the optimal design ξ∗ for such
values. For xu close to the lowest experimental stress level x = 0 the efficiency of ξ̄2 drops
to 50 %. The uniform three-point design ξ̄3 shows a much lower efficiency throughout.
At the nominal value xu = −0.4 the efficiency of the uniform two- and three-point
designs ξ̄2 and ξ̄3 is effaVar(ξ̄2;β) = 75 % and effaVar(ξ̄3;β) = 55 %, respectively. That
means that for the optimal design ξ∗ only 75 percent of units are required compared to
the design ξ̄2 and 55 percent of units compared to the design ξ̄3 to achieve the same
accuracy for estimating the median failure time.

To assess the sensitivity of the locally optimal design ξ∗ = ξw∗ we plot the optimal
weights w∗ in dependence on the intercept and slope parameters β0 and β1 in Figure 5.3
and Figure 5.4, respectively, while the other nominal values are held fixed. As mentioned
earlier, the

Finally, to judge the performance of the locally optimal design ξ∗ = ξ∗β at the
proposed nominal values β0 = 0.23 and β1 = 0.53 of the location parameters under
misspecifications, we show the efficiency in dependence on the intercept and slope
parameters β0 and β1 in Figure 5.5 and Figure 5.6, respectively, while the other
parameters are held fixed to their nominal values. Figure 5.5 displays that the optimal
design ξ∗ maintain its efficiency under misspecifications of β0. In contrast, Figure 5.6
depicts that misspecifications of the slope β1 substantially affects the efficiency of the
design ξ∗ and more attention should be paid to a correct specification of the nominal
value for the slope parameter opposite to the intercept.
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Figure 5.3: Dependence of the optimal weight w∗ on β0 in the
example of Subsection 5.2.4
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Figure 5.4: Dependence of the optimal weight w∗ on β1 in the
example of Subsection 5.2.4
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Figure 5.5: Efficiency of ξ∗ in dependence on β0 in the example of
Subsection 5.2.4
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Figure 5.6: Efficiency of ξ∗ in dependence on β1 in the example of
Subsection 5.2.4

5.3 Bivariate accelerated degradation testing with
two gamma processes

We consider now the optimal design problem for a bivariate degradation process
incorporating serially two independent failure modes which means that a failure of the
system occurs when one of the two components fail.

5.3.1 Model formulation

We assume that degradation in the two components takes place according to independent
Gamma processes Z(1)

t and Z(2)
t , respectively, as described in Section 5.2, where for both

processes Z(l)
t the rate γl(x) = eβl0+βl1x depends on the same standardized accelerating

stress variable x ∈ X = [0, 1] via a linear trend βl0 + βl1x under the log link as in
(5.1). By assumption the degradation increments Yilj = Z

(l)
tj −Z

(l)
tj−1 of both components

during the jth time interval of length ∆j are all gamma distributed with shape γl(xi)∆j

and scale νl, l = 1, 2, and independent.
The failure times T1 and T2 of the components for soft failure due to degradation are

defined as in Subsection 5.2.3. The failure of the system occurs when either of the two
components fail, and the failure time T of the system is defined by T = min{T1, T2}.
Because of the independence of the underlying processes, the failure times T1 and T2 of
the components are independent.

5.3.2 Information

Denote by βl = (βl1, βl2)T the marginal parameter vector associated with the lth failure
mode. Because of the independence of the components the joint log-likelihood of β1 and
β2 is the sum `(β1,β2) = `(β1; y111, ..., yn1k) + `(β2; y121, ..., yn2k) of the log-likelihoods
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`(βl; y1l1, ..., ynlk) of the components given by 5.4. Hence, the maximum likelihood
estimators β̂l of βl in the whole system coincides with those in the marginal models
and the joint information matrix Mβ1,β2(x1, ..., xn) for all parameters is block diagonal,

Mβ1,β2(x1, ..., xn) =
 Mβ1(x1, ..., xn) 0

0 Mβ2(x1, ..., xn)

, where the diagonal blocks

Mβl are the marginal information matrices for the single failure modes as specified in
Subsection 5.2.2. Accordingly, for approximate designs ξ the standardized information
matrix

Mβ1,β2(ξ) =
 Mβ1(ξ) 0

0 Mβ2(ξ)

 . (5.13)

is also block diagonal with the marginal information matrices Mβl(ξ) on the diagonal.

5.3.3 Optimality criterion based on the failure time distribu-
tion

As in Section 5.2.3 we are interested in characteristics of the failure time distribution of
soft failure due to degradation under normal use condition xu. The marginal failure
times Tl under normal use condition are defined as the first time t the degradation path
Z

(l)
u,t reaches or exceeds the corresponding threshold zl0, i. e., Tl = inf{t ≥ 0; Z(l)

u,t ≥ zl0}.
A failure of the system occurs if one of the components fail. Hence, the failure time
T of the system is defined by T = min{T1, T2}. Because of the independence of the
components the survival function 1 − FT (t) = P(T1 > t, T2 > t) factorizes into the
marginal survival functions 1−FTl(t). Hence, the failure time distribution of the system
can be expressed as

FT (t) = 1− (1− FT1(t))(1− FT2(t)), (5.14)

where FTl(t) = Q(γl(xu)t, zl0/νl) by (5.9).
As in Subsection 5.2.3, we will consider quantiles tα of the failure time distribution.

Also here the distribution function FT and, hence, the quantile tα = tα(β1,β2) is a
function of the parameters and the maximum likelihood estimate t̂α = tα(β̂1, β̂2) of the
quantile tα is based on the maximum likelihood estimates β̂l of β for the components.

The task of designing the experiment is to provide an as precise estimate of the
α-quantile as possible, i. e., to minimize the asymptotic variance aVar(t̂α) of t̂α at the
normal use condition. As in Subsection 5.2.3 the asymptotic variance can be obtained
as aVar(t̂α) = cTMβ1,β2(ξ)−1c, where c = (cT1 , cT2 )T and cl = ∂tα(β1,β2)/∂βl is the
vector of partial derivatives of tα with respect to the parameter vector βl evaluated
at the true values of βl. Differently from the univariate case in Subsection 5.2.3 there
is no explicit formula for tα. Therefore, the gradient vectors cl will be derived by the
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implicit function theorem as

∂tα
∂βl

= − 1
fT (tα)

∂FT (tα)
∂βl

(5.15)

in terms of the failure time distribution FT (t), where fT (t) = ∂FT (t)/∂t is the density
of T . The common scaling factor c0 = −1/fT (tα) is irrelevant for the optimization
problem. Hence, the components of the c-criterion vector c = (cT1 , cT2 )T can be reduced
to cl = ∂FT (tα)/∂βl. Based on equation 5.14, the gradient vectors cl can be expressed
as cl = cl(1, xu)T similar to the univariate case, where the constant cl can be expressed
as, see (Tsai, Tseng, and Balakrishnan, 2012),

cl =κl
(
1− FTl′ (tα)

)( Γ(κl)
Γ(κl + 1)2 (zl0/νl)κl 2F2(κl, κl;κl + 1, κl + 1;−zl0/νl)

+ (Q(κl, zl0/νl)− 1) (log(zl0/νl)− ψ(κl)))
(5.16)

is a positive constant depending on β1 and β2, κl = γl(xu)tα is the shape parameter for
an increment of the lth marginal process during time tα, 2F2 denotes the generalized
hypergeometric function

2F2(κ, κ;κ+ 1, κ+ 1;−z) = 1 +
∞∑
k=1

(
κ

κ+ k

)2 (−z)k
k! ,

and l′ is the index of the respective other component, i. e., l′ = 2 if l = 1 and vice versa.
Since the information matrix in (5.13) is block-diagonal, the optimality criterion

aVar(t̂α) = c2
0(c2

1(1, xu)Mβ1(ξ)−1(1, xu)T + c2
2(1, xu)Mβ2(ξ)−1(1, xu)T ) (5.17)

is a weighted sum of the optimality criteria for the single components stated in Subsec-
tion 5.2.3 and constitutes, hence, a compound criterion.

In the special case that the nominal values are identical for both components, i. e.,
β1 = β2, the optimal design ξ∗ for a single component will also be optimal for the
bivariate failure process, independent of α. In general, however, the optimal design for
the bivariate failure process has to be a compromise of the marginal optimal designs for
the components.

5.3.4 Numerical example

In this example we consider an accelerated degradation experiment with two failure
components following two independent Gamma processes. The first process is specified
as in Subsection 5.2.4 with scale parameter ν1 = 1, degradation threshold z10 = 5.16
and nominal values β10 = 0.23 for the intercept and β11 = 0.53 for the slope. For
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Figure 5.7: Failure time distributions FT (t) (solid line), FT1(t)
(dashed line), and FT2(t) (dotted line) for the bivariate gamma process
in the example of Subsection 5.3.4

the second process we assume a scale parameter ν2 = 0.88, a degradation threshold
z20 = 4.60 and nominal values β20 = 0.31 for the intercept and β21 = 0.35 for the slope.
As in Subsection 5.2.4 the standardized normal use condition is xu = −0.40 and the
processes are measured at k = 4 standardized time points tj = 0.25, 0.5, 0.75 and 1
with time intervals of constant length ∆ = 0.25. Also here we will be interested in
estimating the median failure time t0.5.

The distribution function FT (t) of the combined failure time T given by (5.14) is
plotted in Figure 5.7 together with the distribution functions FT1(t) and FT2(t) of the
failure times T1 and T2 in the components.

The median failure time t0.5 = 3.93 satisfying FT (t0.5) = 1/2 is indicated there
together with the median failure times for the single components by dashed vertical
lines.

For estimating the median failure time, also here the optimal design is sought
numerically by means of the multiplicative algorithm on an equidistant grid of step size
0.01 on the design region. The locally optimal design obtained is of the form ξ∗ = ξw∗

assigning optimal weights w∗ = 0.78 to the lowest stress level x = 0 and 1− w∗ = 0.22
to the highest stress level x = 1 in the design region. This optimal weight is close to
the solution for the first component (see Subsection 5.2.4) and shows a similar behavior,
when the value ot the normal use condition is altered. Similar considerations hold for
the sensitivity with respect to misspecifications of the nominal values of the parameters.

93



Chapter 5. Optimal Designs in Accelerated Degradation Testing for Various
Degradation Models

5.4 Bivariate accelerated degradation testing with
a gamma process and a linear mixed model

In Section 5.3 we considered a degradation process with two response components where
each is modeled by a gamma model. In this section we consider a bivariate process
with two different degradation models. The first degradation mode is modeled by a
gamma process as in Section 5.2. As in Section 5.3 the degradation increments of this
component are denoted by Yi1j for unit i during a time intervals of length δj = tj − tj−1,
j = 1, ..., k. The second degradation mode is given by a linear model with random
intercept which will be described in the subsequent subsection and is a special case
of the model treated in (Shat and Schwabe, 2021). Both failure modes are influenced
by the same standardized accelerating stress variable x ∈ X = [0, 1]. Apart from that
the degradation modes are assumed to be independent and, hence, do not have an
interactive effect. As before, also here a failure of the system occurs when at least one
of the marginal degradation paths exceeds its corresponding failure threshold.

5.4.1 Model formulation of the second degradation compo-
nent: Linear mixed model

Here we consider a linear regression model, similar to the model presented by (Weaver
and Meeker, 2013), for a single stress variable x. Measurements Yi2j of the second
component at unit i are taken at the same time points t1, ..., tk as for the first component
and additionally at the beginning of the degradation experiment, t0 = 0, j = 0, ..., k.
These measurements are described by a hierarchical model. For each unit i the
observation Yi2j at time point tj is given by

Yi2j = µi(xi, tj) + εij, (5.18)

where µi(x, t) is the mean degradation path of the second marginal response of unit i at
time t, when stress x is applied to unit i, and εij is the associated measurement error
at time point tj. The mean degradation µi(x, t) is given by a linear model equation in
the stress variable x and in time t with stress-time interaction,

µi(x, t) = βi20 + β21x+ β22t+ β23xt (5.19)

where only the intercept is unit specific and the time and stress effects are the same for
all units. Hence, the response is given by

Yi2j = βi20 + β21xi + β22tj + β23xitj + εij. (5.20)
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The measurement error εij is assumed to be normally distributed with zero mean and a
time independent error variance σ2

ε > 0. Moreover, the error terms are assumed to be
independent within a unit over time.

On the aggregate level it is assumed that the units are representatives of a larger
entity. The unit specific intercept βi20 is modeled as a random effect, i. e., βi20 is
normally distributed with mean β20 and variance σ2

0 > 0. All measurement errors εij
and random effects βi20 are assumed to be independent. For transferring the results, it
is assumed that the model defined in equation (5.20) also holds for units under normal
use condition xu.

5.4.2 Information for the second degradation component: Lin-
ear mixed model

To derive the information matrix in the mixed effects model we first write the model in
vector notation. Denote by β2 = (β20, β21, β22, β23)T the vector of fixed effect (aggregate)
location parameters and by ς = (σ2

0, σ
2
ε)T the vector of variance parameters. The (k+1)-

dimensional vector of observations Yi2 = (Yi20, ..., Yi2k)T at unit i is multivariate
normal with expectation E(Yi2) = (D⊗ (1, xi))β2, where D =

(
(1, t0)T , ..., (1, tk)T

)T
is the “design” matrix for the time variable and “⊗” denotes the Kronecker product,
and compound symmetric covariance matrix Cov(Yi2) = V with diagonal entries
σ2

0 + σ2
ε and off-diagonals σ2

0. The elemental information matrix (per unit) Mβ2,ς(xi) = Mβ2(xi) 0
0 Mς

 of the linear mixed model component is block diagonal with the

elemental information matrices Mβ2(x) = DTV−1D ⊗

 1 x

x x2

 for the location

parameters and Mς for the variance parameters on the diagonal, where Mς does not
depend on the setting x of the stress variable.

Accordingly, also for an approximate design ξ, the standardized information matrix

Mβ2,ς(ξ) =
 DTV−1D⊗M(ξ) 0

0 Mς

 (5.21)

of the second component is block diagonal, where M(ξ) = ∑m
i=1wi

 1 xi

xi x2
i

is the

standardized information matrix of linear fixed effect regression model which does not
depend on the parameters. For further details of the linear mixed model see (Shat and
Schwabe, 2021).
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5.4.3 Failure time distribution for the second degradation com-
ponent: Linear mixed model

As mentioned in Subsection 5.2.3 we are interested in characteristics of the failure
time distribution of soft failure due to degradation. Therefore it is assumed that the
model equation µu(t) = βu20 + β21xu + β22t + β23xut is also valid under the normal
use condition, where µu denotes the mean degradation path for a unit “u” under the
normal use condition xu and βu20 is the random intercept of u. We further denote by
µ(t) = E(µu(t)) = β20 + β21xu + β22t + β23xut the aggregate degradation path under
normal use condition.

A soft failure due to degradation for the second response component is defined
as the exceedance of the degradation over a failure threshold y20. This definition
is based on the mean degradation path µu(t) and not on a “real” path subject to
measurement errors. The failure time T2 under normal use condition is then defined as
the first time t the mean degradation path µu(t) reaches or exceeds the threshold y20,
i. e. T2 = min{t ≥ 0; µu(t) ≥ y20}. Because the random intercept βu20 is involved in the
mean degradation path, the failure time T2 is random.

As in the previous sections, we will describe the characteristics of the failure time
T2 by its distribution function FT2(t). We note that T2 ≤ t if and only if µu(t) ≥ y20

and, hence, we can derive

FT2(t) = P(µu(t) ≥ y20) = Φ((µ(t)− y20)/σ0), (5.22)

where Φ denotes the distribution function of the standard normal distribution. For
later use we also state the gradient

∂FT2(t)/∂β2 = σ−1
0 ϕ ((µ(tα)− y20)/σ0) (1, t)T ⊗ (1, xu)T (5.23)

of FT2(t) with respect to the vector β2 of location parameters (cf. (Shat and Schwabe,
2021)), where ϕ denotes the density of the standard normal distribution.

5.4.4 Estimation and information in the combined model

The combined model parameters β1, β2 and ς can be estimated by means of the
maximum likelihood method. As stated in Subsection 5.3.3, in the combined model
the maximum likelihood estimates coincide with those for the single components
because of the independence between the failure modes. Accordingly, the combined
information matrix for all parameters is block diagonal with the information matrices
for the components on the diagonal. In view of (5.21) the information matrix of an
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approximate design ξ is given by

Mβ1,β2,ς(ξ) =


Mβ1(ξ) 0 0

0 Mβ2(ξ) 0
0 0 Mς(ξ)

 , (5.24)

where Mβ2(ξ) = DTV−1D⊗M(ξ) and Mβ1(ξ) as in Subsection 5.2.2.

5.4.5 Optimality criterion based on the joint failure time

The combined failure time T is defined as the minimum of the marginal failure times
T1 and T2 for the single components derived in Subsections 5.2.3 and 5.4.3. As in
Subsection 5.4.5, the survival function of the joint failure time T factorizes and, hence,
the distribution function FT (t) can be expressed as FT (t) = 1− (1−FT1(t))(1−FT2(t)).
The quantiles tα = tα(β1,β2, ς) are functions of both the location parameters β1 and
β2 as well as on the variance parameters ς, in general. Consequently, the maximum
likelihood estimate of a quantile tα is given by t̂α = tα(β̂1, β̂2, ς̂) in terms of the
maximum likelihood estimates β̂1, β̂2 and ς̂ of the parameters β1, β2 and ς in the
components. The asymptotic variance of t̂α can again be obtained by the delta method
and the implicit function theorem. By the block diagonal structure of the information
matrix and the decomposition of the distribution function of the failure time we get

aVar(t̂α) = fT (tα)−2
(
c2

1 (1, xu)Mβ1(ξ)−1(1, xu)T + c2
2 (1, xu)M(ξ)−1(1, xu)T + c2

ς

)
,

(5.25)
where fT (t) is the density of T , c1 is defined as in (5.16) with the distribution function
FT2(tα) = Φ((µ(tα)− y20)/σ0) of the linear mixed effect model inserted,

c2 = (1−Q (γ(xu)tα, z10/ν1))σ−1
0 ϕ ((µ(tα)− y20)/σ0)

(
(1, tα)

(
DTV−1D

)−1
(1, tα)T

)1/2

(5.26)
by (5.21) and (5.23), and c2

ς = cTς M−1
ς cς is a constant independent of ξ in which

cς = ∂FT2(tα)/∂ς is the gradient of FT2(tα) with respect to the vector ς of variance
parameters.

The criterion (5.25) is a weighted sum of the optimality criteria for the single
components and constitutes, hence, a compound criterion, where the weights depend on
both vectors β1 and β2 of location parameters as well as on the variance parameters ς
of the linear mixed model component, in general. Due to convexity the optimal weight
w∗ for the system lies in the range of the optimal weights w∗1 and w∗2 for the components,
min{w∗1, w∗2} ≤ w∗ ≤ max{w∗1, w∗2}.
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Figure 5.8: Failure time distributions FT (t) (solid line), FT1(t)
(dashed line), and FT2(t) (dotted line) for the bivariate model with a
gamma process (T1) and a linear mixed effect (T2) component for the
example of Subsection 5.4.6

5.4.6 Numerical example

In this example we consider an accelerated degradation experiment with two independent
failure components in which the first component follows a gamma process and the
second is described by a linear mixed model with random intercept as described in
Subsection 5.4.1. The gamma process is specified as in Subsections 5.2.4 and 5.3.4
with scale parameter ν1 = 1, degradation threshold z10 = 5.16 and nominal values
β10 = 0.23 for the intercept and β11 = 0.53 for the slope. For the linear model we assume
a degradation threshold y20 = 3.73 and nominal values β20 = 2.35 for the aggregate
intercept, β21 = 0.06 for the slope in the stress variable x, β22 = 0.28 for the slope in
time t, β23 = 0.04 for the stress-time interaction xt, σ0 = 0.08 for the standard deviation
of the random intercept, and σε = 0.09 for the standard deviation of measurement errors.
As before the standardized normal use condition is xu = −0.40 and both degradation
processes are measured at the k = 4 standardized time points tj = 0.25, 0.5, 0.75 and
1 with time intervals of constant length ∆ = 0.25. Additionally, the degradation of
the second component is measured initially at t0 = 0, i. e., at the beginning of the
experiment. Also in the present setting we will be interested in estimating the median
failure time t0.5. The distribution function FT (t) of the combined failure time T is
plotted in Figure 5.8 together with the distribution functions FT1(t) and FT2(t) of the
failure times T1 and T2 in the components. The median failure time t0.5 = 4.99 satisfying
FT (t0.5) = 1/2 is indicated there by a dashed vertical line.

For estimating the median failure time, also here the optimal design is sought
numerically by means of the multiplicative algorithm on an equidistant grid of step size
0.01 on the design region. As in the univariate case the algorithm indicates that the
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Figure 5.9: Dependence of t0.5 on β10 for the example in
Subsection 5.4.6

optimal design ξ∗ is of the form ξw. Under this premise the optimal value of w∗ can be
determined by a simple line search on a sufficiently dense grid. The resulting optimal
designs which assigns optimal weights w∗ = 0.78 to the lowest stress level x = 0 and
1− w∗ = 0.22 to the highest stress level x = 1 in the design region.

To assess the robustness of the locally optimal design we examine how the optimal
weight w∗ varies when the underlying parameter values are modified. Computations
indicate that the optimal weight does not change much in the nominal values of the
parameters β2 and ς for the linear mixed effects degradation model in the second
component. This property is in accordance with the fact that the design criterion
depends on the values of β2 and ς only through the weighting factors c2

1 and c2
2 while

the marginal information matrix M(ξ) does not. However, similar to the univariate
case, there may be moderate changes with respect to the parameters β1 of the gamma
degradation model in the first component. Additionally, the optimal weight w∗ may
switch between the marginal optimal weights w∗1 and w∗2 for the marginal failure models
depending on which of the marginal failure modes is dominant in the bivaraite system.

We will demonstrate this behavior in the case when the intercept β10 of the gamma
model component varies while all other parameters are fixed to their nominal values.
In Figure 5.9 we plot the median failure time t0.5 and the weighting coefficients c1 and
c2, respectively, in dependence on β10. For negative values of β10, the failure time T2

of the first component decreases and the failure of the bivariate system is dominated
by the second component. Then the median failure time t0.5 approaches its marginal
counterpart 5.32 in the second component. For increasing values of β10, the failure of
the first component becomes dominant and the median failure time t0.5 behaves as in
the marginal model for the first component. In particular, t0.5 is decreasing in β10 and
becomes smaller than 1 for β1 > 1.92. Hence, only values β10 ≤ 1.92 are reasonable to
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Figure 5.10: Dependence of the coefficients c1 (solid line) and c2
(dashed line, standardized) on β10 for the example in Subsection 5.4.6
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Figure 5.11: Dependence of w∗ on β10 for the example in
Subsection 5.4.6

be considered because otherwise no acceleration would be required to obtain failure due
to degradation under normal use conditions. The dominance of the failure components
is also reflected in Figure 5.10 where the weighting coefficients c1 and c2 are shown in
dependence on β10. There the second coefficient c2 is standardized by its maximum
for purposes of comparison. For negative values of β10, the coefficient c2 of the second
component dominates the asymptotic variance (5.25) while the dominance is is reversed
for β10 > 0.5.

This change in dominance has also an impact on the optimal weights w∗ as exhibited
in Figure 5.11.

For negative values of β10, the optimal weight w∗ coincides with its marginal
counterpart in the second component while, for β10 > 0.5, the optimal weight w∗ is as
in the univariate model for the first component (see Subsection 5.2.4). Caused by the
change in dominance, there is a small, but pronounced change in the optimal weight
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Figure 5.12: Efficiency of ξ∗ in dependence on β10 for the example in
Subsection 5.4.6

when β10 varies from 0.35 to 0.50. This shift is also visible in the efficiency of the
locally optimal design ξ∗ at the given nominal values when the intercept parameter β10

is misspecified, as shown in Figure 5.12. For values of β10 less than the nominal value
β10 = 0.23, the locally optimal design ξ∗ has an efficiency of nearly 1, up to β10 = 0.35.
Then there is a small, instantaneous decrease in efficiency to 0.999 for β10 between 0.35
and 0.50. For larger values of β10 the efficiency smoothly decreases as in the univariate
model for the first component (see Subsection 5.2.4). For the maximal value β10 = 1.92
the efficiency of ξ∗ is still remarkably high with a value of about 0.9936. In all of
Figures 5.9 to 5.12 the nominal value β10 = 0.23 is indicated by a dotted vertical line.

With respect to the slope parameter β20 ≤ 0 of the Gamma component, the failure
is dominated by the second component. Hence, neither the optimal weight is affected
by β20, nor the efficiency of the locally optimal design ξ∗ differs reasonably from 1. In
total, the locally optimal design ξ∗ at the given nominal values appears to be robust
against misspecifications of the parameters within a meaningful range.

5.5 Concluding remarks

The design stage of highly reliable systems requires a sophisticated assessment of the
reliability related properties of the product. One approach to handle this issue is
to conduct accelerated degradation testing. Accelerated degradation tests have the
advantage to provide an estimation of lifetime and reliability of the system under study
in a relatively short testing time. The majority of existing literature deals with this
issue by considering a single failure mode, which may not be sufficiently representative
in many cases.
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In this chapter, we propose optimal experimental designs for ADTs with a single
response components and extend it to the case of multiple response components with
repeated measures. Two bivariate degradation models are considered. The marginal
degradation functions are described by two Gamma process models in the first bivariate
model, and a Gamma process with a linear model with a random intercept in the second
one. In this context it is desirable to estimate certain quantiles of the joint failure time
distribution as a characteristic of the reliability of the product. The purpose of optimal
experimental design is to find the best settings for the stress variable to obtain most
accurate estimates for these quantities.

In the present model for accelerated degradation testing, it is assumed that stress
remains constant within each testing unit during the whole period of experimental
measurements but may vary between units. Hence, in the corresponding experiment a
cross-sectional design between units has to be chosen for the stress variable(s) while for
repeated measurements the time variable varies according to a longitudinal time plan
within units. In particular, the same time plan for measurements is used for all units in
the test. It is further assumed that the marginal response components are uncorrelated.

The multiplicative algorithm is utilized to obtain optimal experimental designs for
the single response case as well as the two bivariate degradation models. The sensitivity
analysis shows that the optimal designs of the univariate model as well as the bivariate
model with two marginal Gamma processes are robust against misspecifications of the
corresponding parameter vectors and depend mainly on the normal use condition of
the stress variable. For the bivariate model with two different marginal models the
sensitivity analysis establishes that the resulting optimal design is slightly dependent
on the nominal parameter values.

Although only Gamma processes and LMEM are considered as marginal degradation
models here, the underlying methods can be extended to other marginal failure modes.
Another object of interest would be to consider optimality criteria accounting for
simultaneous estimation of various characteristics of the failure time distribution.
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Chapter 6

Optimal Designs in Copula-based
Gamma Models

6.1 Introduction

Modern products usually have complex structure with multiple failure mechanisms as
well as multiple degradation measures. Thus, it is realistic to assume some kind of
dependence among different failure components. In the past decade, copula-based mod-
elling has become an efficient tool in many areas of applied statistics, see (AghaKouchak,
Bárdossy, and Habib, 2010). For instance, (Perrone and Müller, 2016) has provided
an equivalence theorem for binary bivariate copula models that allows applications
of efficient design algorithms and quick checks of whether a design is optimal or at
least efficient. The Archimedean, Clayton, Frank and Gumbel copulas are intensively
used to describe the dependence among different failure components when the marginal
degradation paths correspond to Levy stochastic processes, see (Mireh, Khodadadi, and
Haghighi, 2019). For example, (Zhou, Pan, and Sun, 2010) and (Guo and Li, 2017) fol-
lowed a similar approach through considering a system with multiple failure components
where the marginal degradation paths are governed by Gamma processes. They utilized
the Frank copula to describe the dependence of failure components. (Adegbola and
Yuan, 2019) proposed a multivariate Gamma process to model dependent deterioration
phenomena that collectively define the service life of infrastructure assets. (Liu et al.,
2014) developed a reliability model for systems with s-dependent degradation processes
using several Archimedean copulas. The marginal degradation processes were assumed
to be inverse Gaussian with a time scale transformation. Furthermore, the authors
incorporated a random drift to account for a possible heterogeneity in population. (Pan
et al., 2013) and (Pan, Balakrishnan*, and Sun, 2011) presented a bivariate stochastic
process where the dependence of the performance characteristics were described by
a Frank copula. In order to provide a more flexible dependence structure between
competing failure modes, (Wang and Pham, 2011) introduced time-varying copulas to
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develop an s-dependent competing risk model for systems subject to multiple degra-
dation processes and random shocks. With an application to toxicity trials, (Denman
et al., 2011) derived locally D-optimal designs for dependent bivariate binary data,
where several Archimedean copulas were utilized to describe the dependence among
the marginal regression models. Further, (Mireh, Khodadadi, and Haghighi, 2019)
proposed a simulation-based reliability analysis for systems with dependent Gamma
degradation processes and Weibull distributed hard failure times. The authors used the
Frank copula to represent the dependence between failure modes.

In this chapter, optimal experimental designs are derived for Accelerated Degradation
Testing with two response components. We consider the situations of independent
as well as dependent marginal responses where the observational times are assumed
to be fixed and known. The marginal degradation paths are assumed to follow a
Gamma process where copula functions are utilized to express the dependence between
marginal components. For the case of independent response components the optimal
design minimizes the asymptotic variance of an estimated quantile of the failure time
distribution at the normal use conditions. For the case of dependent response components
the D-criterion is adopted to derive D-optimal designs. Further, D- and c-optimal
designs are developed when the copula-based models are reduced to bivariate binary
outcomes.

The rest of the present chapter is organized as follows. In Section 6.2 we obtain an
optimal experimental design for a bivariate Gamma model with independent marginal
components. In Section 6.3 we develop D-optimal designs for bivariate Gamma models
with dependent responses based on the Frank copula function or the Gaussian copula
function, respectively. Section 6.4 introduces D- and c-optimal designs for Accelerated
Degradation Testing with dependent failure modes when the copula-based model is
reduced to bivariate binary outcomes.

6.2 Bivariate Gamma process with independent com-
ponents

6.2.1 Model construction

The Gamma process is a natural stochastic model for degradation processes in which
degradation occurs gradually over time in a sequence of independent increments. In
this section, we assume that the testing unit has two failure modes where the marginal
degradation paths are given by Gamma processes in terms of a standardized continuous
time variable t ≥ 0, and the two marginal Gamma processes are independent. It is
further assumed that each of the marginal (standardized) stress levels xl, l = 1, 2,
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is a scalar in the standardized interval [0, 1]. The joint stress variable x = (x1, x2)
can be chosen by the experimenter from the experimental region X = [0, 1]2. For
(locally) optimal design, the information matrix as a function of x (at given values of
the model parameters) is of basic interest and will be considered in Subsection 6.2.2.
Locally c-optimal designs will be presented in Subsection 6.2.3, where the particular
c-criterion expresses the asymptotic variance of an estimated quantile of the failure
time distribution.

A Gamma process Z(l)
t , t ≥ 0, considering the response component l = 1, 2 is a

stochastic process with independent and Gamma distributed increments. The marginal
univariate processes Z(l)

t , l = 1, 2, coincide with the univariate Gamma processes
explained in Subsection 5.2.1.

When an accelerated degradation test is run under a stress setting x = (x1, x2),
measurements of the bivariate degradation process at the prescribed time points tj,
j = 1, . . . , k, are made. So the increments yj = (yj1, yj2), j = 1, . . . , k, l = 1, 2, of the
bivariate degradation path are obtained, which follow the model of independent bivariate
random variables Yj = (Yj1, Yj2), j = 1, . . . , k, with Gamma distributed components
Yjl according to (5.2). Thus, under the stress setting x and given the incremental data
y = (y1, . . . ,yk), the log-likelihood of the parameter vector β =

(
βT1 ,β

T
2

)T
, where

βl = (β1l, β2l)T , l = 1, 2, is given by

`(β; x,y) =
k∑
j=1

2∑
l=1

log
(
fjl(yjl)

)
=

k∑
j=1

2∑
l=1

(
γl(xl) ∆j − 1

)
log(yjl)−

yjl
νl

− log
(
Γ(γl(xl) ∆j)

)
− γl(xl) ∆j log(νl),

(6.1)

where γl(xl) = exp(β1l + β2lxl), l = 1, 2. Usually, an accelerated degradation test
is conducted at n distinct testing units i = 1, . . . , n at stress settings x1, . . . ,xn,
respectively. Note that the stress settings xi, i = 1, . . . , n may not all be distinct. Under
the assumption of independence of the testing units, the joint log-likelihood equals the
sum of the log-likelihoods over the units,

`(β; x1, . . . ,xn,y1, . . . ,yn) =
n∑
i=1

`(β; xi,yi).

The collection x1, . . . ,xn constitutes the experimental design of the test. Since the
ordering of the design points xi (along with the response vector yi) is of no importance,
a design is usually described by the set of of distinct points x′1, . . . ,x′m among the
collection x1, . . . ,xn and the corresponding frequencies n1, . . . , nm of their occurrence
among x1, . . . ,xn. Hence, in what follows, we will employ the approximate design
explained in Subsection 2.3.1 for deriving optimal designs.
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6.2.2 Information matrix

By the log-likelihood `(β; x,y) from (6.1) the elemental Fisher information matrix of x
at β is given by either of following two representations,

Mβ(x) = E
([
∂`(β; x,Y )

∂β

] [
∂`(β; x,Y )

∂β

]T)
= −E

(
∂2`(β; x,Y )
∂β∂βT

)
. (6.2)

Using the latter representation, direct calculations yield, in view with equation (5.6)
and the presentation of the information matrix in Subsection 5.3.2, a block structure
because of the independence of the components as

Mβ(x) =
 Mβ1(x1) 0

0 Mβ2(x2)

 , (6.3)

where x = (x1, x2), βl = (β1l, β2l)T , l = 1, 2, and

Mβl(xl) = λl(xl,βl)
 1 xl

xl x2
l

 , l = 1, 2, (6.4)

with λl(xl,βl) = γ2
l (xl)

k∑
j=1

∆2
jψ1

(
γl(xl) ∆j

)
,

As usual in the approximate design theory, for any approximate design ξ the information
matrix of ξ at a parameter point β is given by

Mβ(ξ) =
m∑
i=1

wiMβ(xi).

By the block-diagonal structure of the elemental information matrices (6.3), the infor-
mation matrix of ξ is again block-diagonal where the blocks are given by the information
matrices of the marginal designs w.r.t. the marginal models,

Mβ(ξ) =
 Mβ1(ξ1) 0

0 Mβ2(ξ2)

 . (6.5)

where Mβl(ξl) =
m∑
i=1

wiMβl(xil), l = 1, 2. (6.6)

Recall that X = [ 0 , 1 ]2, hence xi = (xi1, xi2) with x1i, x2i ∈ [ 0 , 1 ], i = 1, . . . ,m. The
designs ξ1 and ξ2 on [ 0 , 1 ] are the marginal designs of ξ, which are defined as the
projections on the corresponding components (in a measure theoretic sense).
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6.2.3 Optimality criterion based on failure time distribution

In Accelerated Degradation Testing one considers some characteristics of the failure time
distribution due to degradation under normal use condition xu = (xu1, xu2). Note that
typically the normal use conditions xu1 and xu2 are outside the normalized interval [0, 1]
of the possible stress values x1 and x2 in Accelerated Degradation Testing. Usually, one
has xul < 0, l = 1, 2. It is assumed that the marginal Gamma process Z(l)

u,t describing
the degradation under normal use condition xul has the rate γl(xul) = exp(β1l + β2lxul)
and scale νl. A soft failure due to degradation is defined by exceedance of the marginal
degradation paths over some failure thresholds. The marginal failure time Tl under
normal use condition xul are defined as in Subsection 5.2.3.

As opposed to the approach in Subsection 5.3.3 we assume here a parallel system,
that is, the system fails as soon as both marginal components have failed. Denote by
T the joint failure time, T = max{T1, T2}. By independence of the components its
distribution function is given by

FT (t) = P(Z(1)
u,t ≥ z10, Z

(2)
u,t ≥ z20)

= Q(γ1(xu1)t, z10/ν1)Q(γ2(xu2)t, z20/ν2).
(6.7)

In accordance with 5.3.3, the performance of the maximum likelood estimator t̂α of the
failure time quantile tα is measured by its asymptotic variance aVar(t̂α), and design
optimization will be conducted with respect to minimizing aVar(t̂α). This c-criterion
is commonly used in planning degradation tests when experimenters are interested in
accurately estimating reliability properties of a system over its life cycle. However, it
should be noted that the asymptotic variance will depend on β, and thus, as a common
feature of non-linear models, one is concerned with local design optimality at some
given parameter point β. Under a design ξ the asymptotic variance of t̂α is given by

aVar(t̂α) = c(β)TMβ(ξ)−1c(β), (6.8)

where c(β) = ∂tα
∂β

. (6.9)

A criterion given by the r.h.s. of (6.8) is called a (local) c-criterion. Efficient algorithms
have been developed to compute a c-optimal design, see the numerical example in
Subsection 6.2.4 below. However, a more explicit formula of the coefficient vector
c(β) of the criterion has to be provided. Due to the implicit definition of tα as the
unique solution of FT (tα) = α, the following identity is ensured by the implicit function
theorem, see (Krantz and Parks, 2012)

∂tα
∂β

= ∂FT (tα)
∂β

/
fT (tα), where fT (tα) = ∂FT (t)

∂t

∣∣∣∣
t=tα

> 0. (6.10)
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From (6.7) one obtains, denoting Q1(s, z) = ∂Q(s,z)
∂s

as derived in (5.16),

∂FT (tα)
∂β11

= Q1
(
γ1(xu1)tα, z10/ν1

)
Q
(
γ2(xu2)tα, z20/ν2

)
γ1(xu1)tα,

∂FT (tα)
∂β21

= xu1
∂FT (tα)
∂β11

,

∂FT (tα)
∂β12

= Q
(
γ1(xu1)tα, z10/ν1

)
Q1
(
γ2(xu2)tα, z20/ν2

)
γ2(xu2)tα,

∂FT (tα)
∂β22

= xu2
∂FT (tα)
∂β21

.

Hence, the coefficient vector from (6.9) reads as

c(β) =
(
fT (tα)

)−1(
c1(β) (1 , xu1) , c2(β) (1 , xu2)

)T
, where (6.11)

cl(β) = ∂FT (tα)/∂β1l > 0, l = 1, 2.

Together with the block-diagonal structure (6.5) of the information matrices, the
c-criterion from (6.8) becomes

c(β)TMβ(ξ)−1c(β) =
(
fT (tα)

)−2 2∑
l=1

c2
l (1 , xul)Mβl(ξl)

−1 (1 , xul)T . (6.12)

It follows that a design ξ∗ is c-optimal w.r.t. the coefficient vector c(β), that is, ξ∗

minimizes (6.12) over all designs ξ on X = [ 0 , 1 ]2, if and only if its marginal designs ξ∗l ,
l = 1, 2, are c-optimal w.r.t. the coefficient vectors cl = (1 , xul)T , l = 1, 2, respectively,
that is ξ∗l minimizes (1 , xul)Mβl(ξl)−1 (1 , xul)T over all designs ξl on [0, 1], l = 1, 2.
In particular, c-optimality w.r.t. the coefficient vector c(β) does not depend on α. It
should be noted that, under the assumption of independent components, the result
can be readily extended to r > 2 components and to any s-out-of-r system, see (Shat
and Gaffke, 2021) for further details in this regard. Under the premise that the locally
optimal designs ξ∗l are supported on the endpoints of the design region [0, 1], i. e., they
are of the form ξ∗l = ξw∗

l
, where ξwl denotes a design with weight w1l = wl on x1l = 0

and weight w2l = 1−w1l on x2l = 1, (Shat and Schwabe, 2019) stated that the marginal
optimal weight w∗l can be determined analytically by Elfving’s theorem (Elfving, 1952),
as depicted in equation (5.11).

6.2.4 Numerical example

The distribution function FT (t) from (6.7) is plotted for illustration in Figure 6.1 under
the nominal values given in Table 6.1, the normal use conditions xu1 = −0.60 and
xu2 = −0.50, and the failure thresholds z10 = 4.6 and z20 = 6.25. The median t0.5 = 2.11
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Table 6.1: Nominal values of the Gamma model with independent
marginal components

β11 β12 ν1 β21 β22 ν2
1.80 1.60 1.24 2.80 3.13 1.17

is indicated by a dashed vertical line. Also, the distribution functions FTl(t) from (5.9)
are shown in the figure. We assume that units are observed according to a time plan with
k = 4 time points, and t1 = 0.02, t2 = 0.04, t3 = 0.06, t4 = 0.1. For computing optimal
marginal designs ξ∗l minimizing (1, xul)Mβl(ξl)−1(1, xul)T , l = 1, 2, with nominal values
of parameters and constants from Table 6.1, the multiplicative algorithm (Torsney and
Martín-Martín, 2009) was applied. The marginal design interval [ 0 , 1 ] was replaced
by an equidistant grid with increment equal to 0.05. The obtained optimal marginal
designs ξ∗1 and ξ∗2 are as follows,

ξ∗1 =
 0 1

0.79 0.21

 and ξ∗2 =
 0 1

0.91 0.09

 . (6.13)

So the locally c-optimal designs at β are given by those designs ξ∗ on X = [ 0 , 1 ]2

(actually on the product grid of the employed marginal grids) whose marginal designs
are equal to ξ∗1 and ξ∗2 from (6.13). One of them is the product design

ξ∗ = ξ∗1 ⊗ ξ∗2 =
 (0, 0) (0, 1) (1, 0) (1, 1)

0.72 0.07 0.19 0.02

 . (6.14)

Note that the locally c-optimal design is not unique: the set of all designs with marginal
designs given by (6.13) consists of all designs ξ∗ supported by the points (0, 0), (0, 1),
(1.0), and (1, 1) with weights

ξ∗(0, 0) = ω, ξ∗(0, 1) = 0.79−ω, ξ∗(1, 0) = 0.91−ω, ξ∗(1, 1) = ω−0.70,where 0.70 ≤ ω ≤ 0.79.

For 0.70 < ω < 0.79 the four weights of ξ∗ are positive and ξ∗ is actually a four-point
design. The particular value ω = 0.72 yields the above product design. The boundary
values ω = 0.70 and ω = 0.79 yield three-point designs supported by (0, 0), (0, 1), (1, 0)
and by (0, 0), (1, 0), (1, 1), respectively.

When the value of normal use conditions xul, l = 1, 2 are altered within some in
intervals of the negative half-line, while keeping all other parameters fixed to their
nominal values in Table 6.1, the optimal marginal designs ξ∗l , l = 1, 2, computed by
the algorithm are again supported by the boundary values 0 and 1. The optimal
weight ω1 = ξ∗1(0) as a function of xu1 is plotted in Figure 6.2, and the optimal weight
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Figure 6.1: Failure time distribution FT (t) at the bivariate Gamma
model for Example 6.2.4, dashed line: FT1(t), dotted line: FT2(t)
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Figure 6.2: Optimal weight in dependence on xu1 for Example 6.2.4

ω2 = ξ∗2(0) as a function of xu2 is plotted in Figure 6.3.
Finally, we examine the influence of varying normal use conditions on the efficiencies

of some particular marginal designs ξl, l = 1, 2. The efficiency of a marginal design ξl
at a normal use condition xul, where all other parameters are kept fixed according to
Table 6.1, is defined by

eff(ξl;βl, xul) = (1, xul) Mβl(ξ
(xul)
l )−1(1, xul)T

(1, xul)Mβl(ξl)−1(1, xul)T
,

where ξ(xul)
l denotes a locally optimal design at βl, that is, ξ

(xul)
l minimizes

(1, xul) Mβl(ξ̃l)
−1(1, xul)T
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Figure 6.3: Optimal weight in dependence on xu2 for Example 6.2.4
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Figure 6.4: Efficiency of ξ∗1 (solid line), ξ̄2 (dashed line) and ξ̄3
(dashed and dotted line) in dependence on xu1 for Example 6.2.4

over all marginal designs ξ̃l on [0, 1], and the present marginal efficiencies may serve
as lower bounds for the combined efficiency eff(ξ;β,xu) of the combined design ξ. In
Figure 6.4 and Figure 6.5 we plot, respectively, the efficiencies of the locally optimal
designs ξ∗1 and ξ∗2 from (6.13) (solid line), the efficiencies of the design ξ̄2 (dashed line)
which assigns equal weights 1/2 to the points 0 and 1, and the design ξ̄3 (dashed line)
which assigns equal weights 1/3 to the marginal stress levels 0, 0, 5 and 1. Note that the
latter designs ξ̄2 and ξ̄3 may serve as standard designs. The nominal values for xu1 and
xu2 from Table 6.1 are indicated in the figures by vertical dotted lines. The efficiencies
of the optimal designs ξ∗1 and ξ∗2 from (6.13) seem to perform quite well over the ranges
of xu1 and xu2, respectively. The design ξ̄2 is preferable for small values of xu1 while
the design ξ̄3 performs worse throughout for reasonable values of both xu1 and xu2.

111



Chapter 6. Optimal Designs in Copula-based Gamma Models

−5 −4 −3 −2 −1 0

0.4
0.5
0.6
0.7
0.8
0.9
1.0

xu2

ef
f a

V
ar

Figure 6.5: Efficiency of ξ∗2 (solid line), ξ̄2 (dashed line) and ξ̄3
(dashed and dotted line) in dependence on xu2 for Example 6.2.4

6.3 Bivariate Gamma model with dependent com-
ponents

Again, let the system under study have two failure modes corresponding to two degra-
dation components, but independence of the components will no longer be assumed.
How to model the case of dependent degradation components. One would like to have
as a model like the following. Each marginal degradation component should follow a
Gamma process Z(l)

t , l = 1, 2, as explained in Subsection 6.2.1. The joint degradation
path of both failure modes Zt =

(
Z

(1)
t , Z

(2)
t

)
should be a process with independent

increments, and the distribution function F (h)(y1, y2) of an increment Zt+h −Zt, t ≥ 0,
h > 0, should be given by a fixed copula C(r, s), 0 ≤ r, s ≤ 1, describing the dependence
structure between the marginal processes,

F (h)(y1, y2) = C
(
F

(h)
1 (y1), F (h)

2 (y2)
)
, y1, y2 > 0, (6.15)

where F (h)
l (yl), l = 1, 2, denotes the distribution function of the increment Z(l)

t+h − Z
(l)
t

of the marginal Gamma process. Note that (6.15) implies that the bivariate process has
stationary increments. The reason for using a copula is its ability to provide a flexible and
convenient method for combining marginal distributions in a multivariate distribution,
see (Pan, Balakrishnan*, and Sun, 2011), see also (Sklar, 1959) for Sklar’s Theorem.
Two particular copulas are the Frank copula and the Gaussian copula, employed in
recent work on degradation modelling, see the corresponding definitions in Subsection
6.3.1 below. However, a copula C(r, s) such that a bivariate process as described exists,
is unknown, unless the independence copula C(r, s) = rs which retrieves the case of
independent components. Note that, by the assumption of independent increments of
the bivariate process, the family of bivariate distributions Qh, h > 0, given by (6.15)
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must form a convolution semi-group which, however, is unknown and even not known
to exist (unless, of course, in case of the independence copula). As a way out, we do
no longer consider processes (marginal or bivariate processes), but restrict to a simple
model considering degradations and their increments only at k fixed time points.

6.3.1 A simple bivariate copula model

Let k ≥ 1 time points be given, 0 < t1 < · · · < tk. Denote ∆j = tj − tj−1, j = 1, . . . , k,
where t0 = 0. Consider the degradation Z(l)

j at time tj of the lth component and the
increments Yjl = Z

(l)
j − Z

(l)
j−1, j = 1, . . . , k, l = 1, 2, where Z(l)

0 = 0. For each l = 1, 2,
the increments Y1l, . . . , Ykl are independent and Gamma distributed with parameters as
in Section 6.2. In particular, the shape parameter of the Gamma distribution of Yjl is
given by γl(xl) ∆j, where x = (x1, x2) is a normalized bivariate stress variable chosen
from the experimental region [ 0 , 1 ]2, and

γl(xl) = exp
(
β1l + β2lxl

)
.

The bivariate increments Yj = (Yj1, Yj2) of the bivariate degradations Z =
(
Z

(1)
j , Z

(2)
j

)
,

j = 1, . . . , k, are assumed to be independent and follow a distribution according to
(6.15), that is, the distribution function of Yj is given by

Fj(y1, y2) = C
(
Fj1(y1), Fj2(y2)

)
, y1, y2 > 0, (6.16)

where C is a given copula and Fjl denotes the distribution function of the Gamma
distribution with shape parameter γ(xl) ∆j and scale νl. The copula is assumed to be
smooth (sufficiently often continuously differentiable), and thus it has a density

c(r, s) = ∂2C(r, s)
∂r∂s

, 0 < r, s < 1. (6.17)

Hence it follows that the bivariate increment Yj has a density

fj(y) = c
(
Fj1(y1), Fj2(y2)

)
fj1(y1) fj2(y2), y = (y1, y2) ∈ ( 0 , ∞)2, (6.18)

where fjl denotes the Gamma density with shape γ(xl) ∆j and scale νl.
By (6.18) and by independence of the increments, the log-likelihood for the parameter

vector β = (β11, β21, β12, β22)T given the values y1, . . . ,yk of the increments Y1, . . . ,Yk

and under the stress condition x = (x1, x2) ∈ [ 0 , 1 ]2, reads as

`
(
β;y1, . . . ,yk, x

)
=

k∑
j=1

[
log

(
c
(
Fj1(yj1), Fj2(yj2)

))
+

2∑
l=1

log
(
fjl(yjl)

)]
. (6.19)
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The following definitions present two particular copulas (in two dimensions) to be
considered in further applications: the Frank copula and the Gaussian copula.

Definition 6.3.1. The Frank copula, which is a very common Archimedean copula for
bivariate data, is utilized to describe the dependence relation between marginal failure
modes. The bivariate Frank copula is defined as

C(r, s) = − 1
κ

log
1 +

(
e−κr − 1

)(
e−κs − 1

)
e−κ − 1

 (6.20)

where κ ∈ (−∞,∞)\{0} is a fixed copula dependence parameter. The density from
(6.17) becomes

c
(
r, s
)

=
κ
(
1− e−κ

)
e−κ(r+s)(

1− e−κ −
(
1− e−κr

)(
1− e−κs

))2 (6.21)

Definition 6.3.2. The Gaussian copula employs a correlation parameter ρ defining a
positive definite correlation matrix

Σ =
1 ρ

ρ 1

 , −1 < ρ < 1.

Denote by Φ the standard normal distribution function, and denote by F0,Σ the distri-
bution function of the bivariate normal distribution with expectation 0 and covariance
matrix Σ, that is,

F0,Σ(a, b) = (2π)−1(det(Σ))−1/2
∫ a

−∞

∫ b

−∞
exp

(
− 1

2z
TΣ−1z

)
dz. (6.22)

Then, the Gaussian copula reads as

C(r, s) = F0,Σ
(
Φ−1(r),Φ−1(s)

)
, r, s ∈ (0, 1). (6.23)

Its density according to (6.17) is given by

c(r, s) =
(2π)−1(det(Σ))−1/2 exp

(
− 1

2

(
Φ−1(r),Φ−1(s)

)
Σ−1

(
Φ−1(r),Φ−1(s)

)T)
φ
(
Φ−1(r)

)
φ
(
Φ−1(s)

) ,

(6.24)
where φ denotes the standard normal density. The normal copula space provides a
flexible and convenient method for combining marginal distributions in a multivariate
distribution, see (Pan, Balakrishnan*, and Sun, 2011). Using the Gaussian copula in
our bivariate Gamma model, the resulting density (6.18) of a bivariate increment was
employed in (Adegbola and Yuan, 2019).
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6.3.2 Information matrix

From the log-likelihood (6.19) we calculate the elemental Fisher information matrix of
x at β,

Mβ(x) = −E
(
∂2`(β; Y1, . . . ,Yk, x)

∂β∂βT

)
, (6.25)

The symbol M(ind)
β (x) will be used for the elemental information matrix from the model

with independent components studied in Section 6.2. In fact, on the r.h.s. of (6.19),
the second term (double sum over j = 1, . . . , k and l = 1, 2) yields, after (twice) partial
differentiation, taking the expectation and putting a minus sign in front, the information
matrix from (6.3) since the expectation of that term depend only on the marginal
distributions of Yj , j = 1, . . . , k, which are the same Gamma distributions as introduced
in Section 6.2. It remains to calculate the matrix

E
(∂2 log c

(
Fj1(Yj1), Fj2(Yj2)

)
∂β ∂βT

)
. (6.26)

Here Fjl denotes the distribution function of the Gamma distribution with shape
γl(xl) ∆j and scale νl, fjl denotes its density, and γl(xl) = exp(β1l + β2lxl

)
. Formulas

for (6.26) are derived in A.2, which involve two-dimensional integrals. From this, the
information matrix (6.25) reads as

Mβ(x) = Hβ(x) + M(ind)
β (x), (6.27)

where Hβ(x) =
 H1(x,β) H12(x,β)

HT
12(x,β) H2(x,β)

 ,
Hl(x,β) = ϕl(x,β)

(
1, xl

)T(
1, xl

)
, l = 1, 2, (6.28)

H12(x,β) = ϕ12(x,β)
(
1, x1

)T(
1, x2

)
,

ϕl(x,β) = γ2
l (xl)

k∑
j=1

∫ ∞
0

∫ ∞
0

c2
l

(
Fj1(y1), Fj2(y2)

)
c
(
Fj1(y1), Fj2(y2)

) (∂Fjl(yl)
∂γl

)2
(6.29)

fj1(y1) fj2(y2) dy1 dy2, l = 1, 2,

and

ϕ12(x,β) =

γ1(x1) γ2(x2)
k∑
j=1

∫ ∞
0

∫ ∞
0

[c1
(
Fj1(y1), Fj2(y2)

)
c2
(
Fj1(y1), Fj2(y2)

)
c
(
Fj1(y1), Fj2(y2)

) ∂Fj1(y1)
∂γ1

∂Fj2(y2)
∂γ2

fj1(y1) fj2(y2)− c
(
(Fj1(y1), Fj2(y2)

) ∂fj1(y1)
∂γ1

∂fj2(y2)
∂γ2

]
dy1 dy2.
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such that c1(r, s) and c2(r, s) denote the first order partial derivatives of the copula
density c(r, s), that is,

c1(r, s) = ∂c(r, s)
∂r

and c2(r, s) = ∂c(r, s)
∂s

, 0 < r, s < 1.

Formulas for the partial derivatives ∂Fjl(y1)
/
∂γl and ∂fjl(y1)

/
∂γl are given in A.2.

Note that in case of equidistant time points t1, . . . , tk, that is, ∆j = ∆ for j = 1, . . . , k,
the distribution functions and densities Fjl and fjl, respectively, are independent of j,
and the above formulas simplify in that case.

As usual, if ξ is an (approximate) design on [ 0 , 1 ]2 with support points x1, . . . ,xm
and corresponding weights wi, i = 1, . . . ,m, the information matrix of ξ at a parameter
point β is given by

Mβ(ξ) =
m∑
i=1

wi Mβ(xi). (6.30)

In contrast to the settings of independent response components in Section 6.2, the
D-optimality criterion will be applied, instead of the c-criterion, for the current settings
of Copula-based bivariate degradation models. The main reason behind that is the
difficulty to define the continuous failure time variable T , and, hence, the quantile tα,
under the assumptions of dependent marginal failure modes based on Copula functions
with k fixed time points. Accordingly, we are adopting the D-criterion for the numerical
calculations in Example 6 and Example 7 where the general equivalence theorem is
utilized to validate the optimality of the numerically obtained designs.

6.3.3 Local D-optimality

For a given parameter point β, a design ξ∗ is called locallyD-optimal at β if ξ∗ maximizes
det

(
Mβ(ξ)

)
over all designs ξ. For numerical computation of a locally D-optimal design

we used the multiplicative algorithm, where the design region [ 0 , 1 ]2 is discretized by
a grid with 0.05 increments in both dimensions. The elemental information matrices
from (6.27) were computed by numerical integration in two dimensions. We employed
the Frank copula and the Gaussian copula from based on Definitions 6.3.1 and 6.3.2,
respectively.

Example 6. Let C(r, s) be the Frank copula from (6.20). Its density c(r, s) is given by
(6.21). By straightforward calculations, one obtains the first order partial derivatives
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Table 6.2: Nominal values of the bivariate Gamma model with Copula
function

β11 β12 ν1 β21 β22 ν2 κ ρ
0.30 0.90 1.17 0.80 0.10 1.15 −0.40 −0.10

c1(r, s) = ∂c(r, s)
/
∂r and c2(r, s) = ∂c(r, s)

/
∂s,

c1(r, s) =
κ2
(
1− e−κ

)
e−κ(r+s)

[
(1 + e−κr)(1− e−κs)− (1− e−κ)

]
[
1− e−κ −

(
1− e−κr

)(
1− e−κs

)]3 , c2(r, s) = c1(s, r).

(6.31)
Choosing k = 4 equidistant time points t1 = 0.05, t2 = 0.10, t3 = 0.15, t4 = 0.20,

and the nominal values of the parameter vector β in Table 6.2, numerical computations
with the multiplicative algorithm were done for a locally D-optimal design. The obtained
locally D-optimal design is a uniformly weighted 6-point design,

ξ∗
D

=
 (0, 0) (0, 1) (0.5, 0) (0.5, 1) (1, 0) (1, 1)

0.166 0.166 0.166 0.166 0.166 0.166

 (6.32)

Example 7. Let C(r, s) be the Gaussian copula from (6.23) with parameter value
ρ = −0.1. Its density is given by (6.24), and the first order partial derivatives of the
latter are given by

c1(r, s) = ρ

1− ρ2 c(r, s)
Φ−1(s)− ρΦ−1(r)

φ
(
Φ−1(r)

) , c2(r, s) = c1(s, r).

As is the preceeding example, we choose k = 4 equidistant time points t1 = 0.05,
t2 = 0.10, t3 = 0.15, t4 = 0.20, and the nominal values of the parameter vector β from
Table 6.2. The locally D-optimal design obtained with the multiplicative algorithm has
the same six support points as that for Example 6, with non-uniform weights, as

ξ∗
D

=
 (0, 0) (0, 1) (0.5, 0) (0.5, 1) (1, 0) (1, 1)

0.20 0.20 0.16 0.16 0.18 0.09

 (6.33)

Due to the difficulty of accurately deriving the information matrix 6.27 for the Copula-
based models 6.3.1 and 6.3.2 with multiple observations, we consider in Section 6.4
a simplified approach with binary outcomes which facilitates the derivations of the
corresponding information matrix and, hence, considerably reduce the calculations time.
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6.4 Copula-based gamma model with binary out-
comes

6.4.1 Model formulation

In this section, we consider the model from Section 6.3, but now the measurements of
bivariate degradations Zj = (Z(1)

j , Z
(2)
j ), j = 1, ..., k, are reduced to the information on

whether or not the marginal degradation paths have reached or exceeded given thresholds
z10 > 0 and z20 > 0, respectively, at each time tj, j = 1, ..., k. This information is
equivalently reflected by two discrete variables U and V with values in {1, ..., k, k + 1},
where U (resp. V ) gives the first time label j such that the marginal degradation Z(1)

j

(resp. Z(2)
j ) has reached or exceeded the threshold z01 (resp. z02), and the value k + 1

expresses that failure did not occur until time tk. That is, we define

U = min
{
j ∈ {1, ..., k} : Z(1)

j ≥ z10

}
,

V = min
{
j ∈ {1, ..., k} : Z(2)

j ≥ z20

}
,

where the minimum of the empty set is defined to be k+1. The joint distribution of U, V
is given by the probabilities Pu,v = Pr(U = u, V = v), u, v ∈ {1, ..., k, k + 1}. Below
we will see that their calculation involves multi-dimensional integrals over polyhedral
regions which are difficult to handle theoretically as well as numerically. A slight
simplification of the integration regions is gained by considering the probabilities

Qu,v = Pr(U ≤ u, V ≤ v) for 1 ≤ u, v ≤ k + 1.

Note that Qk+1,v = Pr(V ≤ v) and Qu,k+1 = Pr(U ≤ u), and especially Qk+1,k+1 = 1.
The probabilities Pu,v are obtained from the Qu,v by

Pu,v = Qu,v −Qu,v−1 −Qu−1,v +Qu−1,v−1 for 1 ≤ u, v ≤ k + 1 (6.34)

where Q0,0 = Q0,v = Qu,0 = 0 for 1 ≤ u, v ≤ k + 1. By the two equivalences, for any
u, v ∈ {1, ..., k},

U ≤ u ⇐⇒ Z(1)
u ≥ z10, V ≤ v ⇐⇒ Z(2)

v ≥ z20,

and writing the degradations as sums of increments, Z(1)
u = ∑u

j=1 Yj1 and Z(2)
v =∑v

j=1 Yj2, we get for all u, v ∈ {1, ..., k},
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Qu,v =
∫
Au,v

k∏
j=1

fj(yj) dy1 · · ·yk, (6.35)

where
Au,v =

{
(y1, ...,yk) ∈ (0,∞)2k :

u∑
j=1

yj1 ≥ z10,
v∑
j=1

yj2 ≥ z20

}
,

and fj denotes the density of the bivariate increment Yj = (Yj1, Yj2) from (6.18). For
u = k + 1 or v = k + 1, a calculation of Qk+1,v or Qu,k+1 involves only the marginal
degradations, which are Gamma distributed,

Qk+1,v = Pr
(
Z(2)
v ≥ z20

)
=

Γ
(
γ2(x2) tv, y2/ν2)
Γ
(
γ2(x2) tv

) , 1 ≤ v ≤ k,

Qu,k+1 =
Γ
(
γ1(x1) tu, y1/ν1)
Γ
(
γ1(x1) tu)

, 1 ≤ u ≤ k.

6.4.2 Information matrix

The log likelihood of the bivariate discrete variable (U, V ) is given by

`(β;u, v,x) = logPu,v(x,β) (6.36)

where now we observe the dependence of the probabilities Pu,v, 1 ≤ u, v ≤ k + 1, on
the design variable x = (x1, x2) and the parameter vector β = (β11, β12, β21, β22)T . The
elemental information matrix of x at a parameter point β is given by

Mβ(x) = E
∂`(β;U, V,x)

∂β

∂`(β;U, V,x)
∂β

T. (6.37)

We can decompose `, as a function of β, according to

β −→ γ = (γ1, γ2)T −→ P = (P1,1, ..., Pu,v, ..., Pk+1,k+1)T −→ `,

where the Pu,v, 1 ≤ u, v ≤ k + 1, have been arranged in lexicographic order, say, to
form the vector P . By the chain rule a factorization of the gradient ∂`(β;u, v,x)/∂β
results,

∂`(β;u, v,x)
∂β

= ABC,
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with matrices A, B and a column vector C,

A = A(x,β) = ∂γ

∂β
=


γ1 0
x1γ1 0

0 γ2

0 x2γ2

 ,

B = B(x,β) = ∂P

∂γ
=
∂Pu,v∂γ1

(1 ≤ u, v ≤ k + 1)
∂Pu,v
∂γ2

(1 ≤ u, v ≤ k + 1)

 ,
C = C(u, v) = ∂`

∂P (1≤u,v≤k+1)
=
( 1
Puv

)
1(u,v),

where 1(u,v) is the unit vector with entry ”1” at position (u, v). Note that the two rows
of B and the column vector C have components indexed by the pairs (u, v) arranged
in lexicographic order. It follows that

Mβ(x) = AB E(CCT )BTAT , (6.38)

and
E(CCT ) = diag

( 1
Pu,v

(1 ≤ u, v ≤ k + 1)
)
.

Again, for a design ξ with support points xi and weights wi, i = 1, . . . ,m, the information
matrix of ξ at β is given by

Mβ(ξ) =
m∑
i=1

wi Mβ(xi).

In order to obtain explicit formulas for the entries of B(x,β), that is, the partial deriva-
tives ∂Puv

/
∂γl, we consider the corresponding partial derivatives of the probabilities

Qu,v from (6.35). One gets

∂Qu,v

∂γl
=

∫
Au,v

∂

∂γl

k∏
j=1

fj(yj) dy1...dyk

=
∫
Au,v

k∑
i=1

[∏
j 6=i

fj(yj)
]
∂fi(yi)
∂γl

dy1...yk, (6.39)

and by (6.18),

∂fj(yj)
∂γ1

=
[
c1
(
Fj1(yj1), Fj2(yj2)

) ∂Fj1(yj1)
∂γ1

fj1(yj1) + c
(
Fj1(yj1), Fj2(yj2)

) ∂fj1(yj1)
∂γ1

]
fj2(yy2),

∂fj(yj)
∂γ2

=
[
c2
(
Fj1(yj1), Fj2(yj2)

) ∂Fj2(yj2)
∂γ2

fj2(yj2) + c
(
Fj1(yj1), Fj2(yj2)

) ∂fj2(yj2)
∂γ2

]
fj1(yj1).

(6.40)
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However, due to the 2k-dimensional integration in (6.39) the calculation of information
matrices is not tractable when k > 1. Therefore, we consider now the simple case k = 1
of a single measurement. Then, we have one bivariate increment Y = (Y1, Y2), and the
distribution function of Y is given by

C(F1(y1);F2(y2)), y1, y2 ∈ (0,∞).

The probabilities Pu,v, u, v ∈ {1, 2}, can be expressed by the latter joint distribution
function and the marginal distribution functions F1 and F2,

P2,2 = P
(
Y1 < z10, Y2 < z20

)
=C

(
F1(z10), F2(z20)

)
,

P1,2 = P
(
Y1 ≥ z10, Y2 < z20

)
=F2(z20)− C

(
F1(z10), F2(z20)

)
,

P2,1 = P
(
Y1 < z10, Y2 ≥ z20

)
=F1(z10)− C

(
F1(z10), F2(z20)

)
,

P1,1 = P
(
Y1 ≥ z10, Y2 ≥ z20

)
=1− F1(z10)− F2(z20) + C

(
F1(z10), F2(z20)

)
.

(6.41)

The partial derivatives ∂Pu,v/∂γl are easily obtained from the partial derivatives
∂Fl(zl0)/∂γl and the partial derivatives of the copula, C1(r, s) = ∂C(r, s)/∂r and
C2(r, s) = ∂C(r, s)/∂s, since by the chain rule

∂

∂γl
C
(
F1(z10), F2(z20)

)
= Cl

(
F1(z10), F2(z20)

) ∂Fl(zl0)
∂γl

, l = 1, 2. (6.42)

In particular, when C is the Frank copula with parameter κ, then by straightforward
calculation,

C1(r, s) = e−κr (e−κs − 1)
e−κ − 1 + (e−κr − 1) (e−κs − 1) and C2(r, s) = C1(s, r). (6.43)

When C is the Gaussian copula with correlation parameter ρ, then one obtains (see
A.2)

C1(r, s) = Φ
Φ−1(s)− ρΦ−1(r)√

1− ρ2

 and C2(r, s) = C1(s, r). (6.44)

6.4.3 Locally D- or c-optimal designs when k = 1

For our simple binary model (k = 1) employing the Frank copula or the Gaussian
copula, locally D- or c-optimal designs are presented in the example below. A locally
D-optimal design ξ∗D at a given parameter point β maximizes det

(
Mβ(ξ)

)
over all

designs ξ. A locally c-optimal design ξ∗c at β minimizes cTMβ(ξ)−1c over all designs
ξ, where c is a given nonzero column vector of dimension four. Here the coefficient
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vector c is chosen such that the c-criterion represents the asymptotic variance of the
maximum likelihood estimator P̂1,1 of the joint failure probability P1,1 = P1,1(xu,β) at
normal use conditions xu = (xu1, xu2). That is,

c = ∂P1,1(xu,β)
∂β

=
(
c1.(1, xu1) , c2.(1, xu2)

)T
,

where
cl = γl(xul) ∆∂P1,1

∂γl
, l = 1, 2.

The partial derivatives ∂P1,1/∂γl can be evaluated using formulas (6.41), (6.42), and
(A.13).

Example 8. For obtaining numerically optimal designs, the multiplicative algorithm
with an equidistant grid of 0.05 marginal increments over the standardized design region
X = [0, 1]2 is employed. The single point time plan is chosen as t1 = ∆ = 0.3. The
resulting optimal designs are derived in regard to the nominal values of parameters given
in Table 6.2, the normal use conditions xu1 = −0.40 and xu2 = −0.60, and the failure
thresholds z10 = 2.56 and z20 = 2.37.

The D-optimal designs computed by the algorithm are the following four-point designs,
which nearly coincide for the two copulas,

Frank copula: ξ∗
D

=
 (0, 0) (0, 1) (1, 0) (1, 1)

0.24 0.24 0.26 0.26

 ;

Gaussian copula: ξ∗
D

=
 (0, 0) (0, 1) (1, 0) (1, 1)

0.22 0.23 0.27 0.28

 .
The c-optimal designs from the algorithm are again four-point designs. Under the
condition of an equidistant grid of 0.5 marginal increments over the standardized design
region X = [0, 1]2 the multiplicative algorithm is employed and the resulting designs
coincide on the location of support points and nearly coincide on the optimal weights
with minor differences in the optimal weights of the two middle points,

Frank copula: ξ∗c =
 (0, 0) (0, 1) (0.5, 1) (1, 1)

0.07 0.19 0.47 0.27

 ;

Gaussian copula: ξ∗c =
 (0, 0) (0, 1) (0.5, 1) (1, 1)

0.11 0.22 0.39 0.28

 .
Further, the general equivalence theorem was used to prove the optimality of the resulting
designs over X . To evaluate the behaviour of the resulting optimal designs we consider
the variations of the optimal weights when the underlying nominal values are misspecified.
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Figure 6.6: Dependence of the optimal weights on xu1 for Example 8,
w∗1: solid line, w∗2: dotted line, w∗3: long dashed line, w∗4: dashed line

For brevity we consider the c-optimal design ξ∗c on the basis of the Gaussian copula
function under deviations of the normal use condition xu1, and the correlation parameter
ρ. The four optimal weights w∗1, w∗2, w∗3 and w∗4, which belong respectively to the stress
settings (0,0), (0,1), (0.5,1) and (1,1), are plotted in Figure 6.6 in dependence on
xu1 where all parameters are held fixed to their nominal values and in Figure 6.8 in
dependence on ρ where all parameters are held fixed to their nominal values. Figure 6.6
shows that the optimal weights of the middle points, i.e. w∗2 and w∗3, considerably vary
under changes of xu1 where the optimal weights of the extremal points, i.e. w∗1 and w∗4,
are nearly constant throughout. Figure 6.8 indicates that the resulting optimal design is
more robust against misspecification of the correlation parameter ρ. The nominal values
for xu1 and ρ are indicated by vertical dotted lines in the corresponding figure. Define by

eff(ξ;β) =
cTMβ(ξ∗c,β)−1c

cTMβ(ξ)−1c
,

the efficiency of a design ξ in regard to the asymptotic variance for estimating P1,1

when β is the true value of the parameter where cTMβ(ξ)−1c indicates the asymptotic
variance for estimating P1,1 when the design ξ is used and ξ∗c,β is the locally optimal
design at β. Figure 6.7 and Figure 6.9 show, respectively, the efficiencies in dependence
on xu1 and ρ together with the efficiency of the design ξ̄2 which assigns equal weights
1/4 to the same support points of ξ∗c , and the design ξ̄3 which assigns equal weights 1/4
to the vertices (0,0), (0,1), (1,0) and (1,1). Again, the nominal values for xu1 and ρ
are indicated by vertical dotted lines in the corresponding figure. In total, Figure 6.7
and Figure 6.9 indicate that the optimal design ξ∗

c
performs quite well over the range

of xu1 and ρ when compared to ξ̄2 and ξ̄3, which indicates that the optimal design is
robust against changes of the normal use conditions as well as the nominal values. The
existing results of the sensitivity analysis of ξ∗c,β on the basis of the Frank copula nearly
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Figure 6.7: Efficiency of ξ∗c (solid line), ξ̄2 (dashed line) and ξ̄3 (dotted
line) in dependence on xu1 for Example 8
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Figure 6.8: Dependence of the optimal weights on ρ for Example 8,
w∗1: solid line, w∗2: dotted line, w∗3: long dashed line, w∗4: dashed line
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Figure 6.9: Efficiency of ξ∗c,β (solid line), ξ̄2 (dashed line) and ξ̄3
(dotted line) in dependence on ρ for Example 8
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coincides with the obtained results in regard to the Gaussian copula, and, hence, the
latter results have been removed to avoid redundancy.

6.5 Concluding remarks

Reliability engineers are demanded to provide a sophisticated assessment of the reliability
related properties during the design stage of highly reliable systems. Accelerated
Degradation Testing is a common approach to handle this issue. This approach has the
advantage to give an estimation of lifetime and reliability characteristics of the system
under study in a relatively short testing time. In this chapter, we introduced optimal
experimental designs for accelerated degradation tests with two response components
and repeated measures with or without dependence between marginal components.
The marginal degradation paths are expressed using Gamma process models. In the
current models for Accelerated Degradation Testing, we assume that stress remains
constant within each unit during the whole test but may vary between units. Further,
the same time plan for measurements is used for all units in the test. In the case of
independent components, it is desirable to estimate certain quantiles of the joint failure
time distribution as a characteristic of the reliability of the product. Hence, the purpose
of optimal experimental design is to find the best settings for the stress variable to
obtain most accurate estimates of the quantiles. On the other hand, the Frank copula
as well as the Gaussian copula are separately adopted to represent the dependence
relation in bivariate Gamma models when dependence is assumed between response
components. The D-criterion is considered for locally optimal designs in both cases.
The resulting optimal designs coincide in terms of the optimal support points but differ
in their weights allocated to the points. We developed further D- and c-optimal designs
when the two Copula-based models are reduced to binary responses. A sensitivity
analysis showed that the resulting locally optimal designs are quite efficient against
deviations from the assumed nominal values.
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Conclusion and Outlook

Accelerated Degradation Testing is an effective approach to assess the reliability charac-
teristics of products with high reliability and long life. The optimal design of Accelerated
Degradation Testing can considerably shorten the test duration and improve the esti-
mation accuracy of lifetime properties. The main purpose of this thesis is to obtain
optimal designs for Accelerated Degradation Testing in the presence of various testing
conditions in regards to response components, explanatory variables and observation
times. LMEMs as well as Gamma process models, which are frequently introduced to
model the degradation process in Accelerated Degradation Testing, are considered in
this thesis to express the corresponding degradation paths. The minimum asymptotic
variance optimality criterion, which is close to the c-optimality criterion, is mainly
considered throughout this research to derive optimal designs.

For the case of modelling Accelerated Degradation Testing with LMEMs, analytical
as well as algorithm based c-optimal designs were presented for univariate and mul-
tivariate tests, respectively, under different testing conditions. Both the explanatory
(independent) variables as well as the time variable are separately considered for the
optimization process in the univariate case to analytically derive c-optimal designs.
Regarding the multivariate case, the marginal regression functions, which correspond to
LMEMs, are assumed to be dependent where the dependence between marginal models
is expressed using appropriate correlation matrices. Consequently, the multiplicative
algorithm is utilized to obtain locally c-optimal designs under various testing conditions.
A sensitivity analysis is conducted to study the quality of the resulting experimental
designs under various parameters specifications. The resulting optimal designs, which
are always supported on the vertices or portion of the vertices of the design region, are
relatively robust in terms of parameter variation.

Regarding the case of Accelerated Degradation Testing with a univariate Gamma
model, an approach was introduced based on a generalized linear model to derive a
c-optimal design in terms of a single explanatory variable. The model is extended to the
situation of bivariate Gamma process with a single independent variable. We proposed
further an optimal experimental design for an Accelerated Degradation Testing with
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multiple failure modes given that the marginal failure modes are independent and
uncorrelated. For this model, a Gamma process model and a LMEM are considered
as the marginal degradation models such that the multiplicative algorithm is utilized
to obtain an optimal experimental design. The sensitivity analysis showed that the
optimal design for the latter case strongly depends on the corresponding nominal values.

Considering Accelerated Degradation Testing with bivariate Gamma process models
and multiple stress variables, algorithm-based optimal designs were presented for the
cases of independent as well as dependent marginal response components. For the case
of dependent response components, a Frank copula function and a Gaussian copula
function are separately considered to express the dependence relation between marginal
response components from two different distributional perspectives. Subsequently, the c-
and D-optimality criteria are used to obtain optimal experimental designs. The results
show that for the case of independent response components the optimal design is totally
supported on the vertices of the marginal design regions where the optimal designs
regarding the two approaches of dependent response components are partially supported
on a portion of the vertices of the combined design region along with an additional inner
support point. Finally, the conducted sensitivity analysis indicates that the optimal
designs in regard to Gamma process-based Accelerated Degradation Testing are more
sensitive to inaccurate parameter specifications when compared to their counterparts of
Accelerated Degradation Testing with linear mixed effects degradation models.

In future research, we may investigate the extension of the proposed approach of
constant-stress Accelerated Degradation Testing to step-stress Accelerated Degradation
Testing and/or ramp-stress Accelerated Degradation Testing along with various stochas-
tic processes which correspond to monotonic degradation behaviour over testing time,
i.e. the IG process or Wiener process. A further extension of the existing research may
consider multivariate non linear mixed models with dependent components for modelling
the degradation path instead of multivariate LMEMs. This approach may allow to the
coverage of a wider class of complicated engineering systems with considerable efficiency.
In addition to the Frank- and Gaussian-copula functions, further Copula functions, i.e.
the Clayton- and Gumbel-copula functions, might be applied in order to investigate the
resulting experimental designs under various dependence models.

Furthermore, several other optimality criteria can be employed for deriving optimal
experimental designs for Accelerated Degradation Testing. For instance, A-criterion,
the integrated mean squared error (IMSE)-criterion, and a minimax criterion are highly
recommended for further research prospects under GP models as well as LMEMs.

Additionally, it may be of interest to incorporate cost constraints as well as design
bounds into the design process and, hence, let the optimal configuration of Accelerated
Degradation Testing be more accurate and realistic.
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Appendix A

Appendix: Some Technical Results

A.1 Extension of M−1 in Section 3.9

Lemma A.1.1. Let F be a k × p matrix of rank p, Σγ a non-negative definite p× p
matrix, Σε a positive definite k × k matrix, V = FΣγFT + Σε, and M = FTV−1F.
Then

M−1 = (FTΣ−1
ε F)−1 + Σγ. (A.1)

Proof. We prove the statement of the Lemma by showing that multiplication of M
with the right hand side C = (FTΣ−1

ε F)−1 + Σγ results in the k × k identity matrix
Ik. For this note first that after premultiplication with F the right hand side can be
expanded to

FC = ΣεΣ−1
ε F(FTΣ−1

ε F)−1 + FΣγ(FTΣ−1
ε F)(FTΣ−1

ε F)−1 = VΣ−1
ε F(FTΣ−1

ε F)−1.

Hence, by straightforward multiplication of M from the right by C

MC = FTV−1FC = FTΣ−1
ε F(FTΣ−1

ε F)−1 = Ik

which proofs the lemma.

A.2 Entries of the information matrix in Subsec-
tion 6.3.2

We derive formulas (6.25) by developing the double integral in (6.26). Since the
index j will be fixed in our derivations, we simply write Fl, fl, Yl instead of Fjl, fjl, Yjl,
respectively, l = 1, 2. Recall the partitioning of β as β =

(
βT1 ,β

T
2

)T
, where βl =(

β1l, β2l
)T

, l = 1, 2. By c1(r, s), c2(r, s), c11(r, s), c22(r, s), and c12(r, s) we denote the
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partial derivatives of c(r, s),

c1(r, s) = ∂c(r, s)
∂r

, c2(r, s) = ∂c(r, s)
∂s

,

c11(r, s) = ∂2c(r, s)
∂r2 , c22(r, s) = ∂2c(r, s)

∂s2 , c12(r, s) = ∂2c(r, s)
∂r ∂s

.

By straightforward calculation,

∂ log c
(
F1(y1), F2(y2)

)
∂βl

=
cl
(
F (y1), F2(y2)

)
c
(
F1(y1), F2(y2)

) ∂Fl(yl)
∂βl

, l = 1, 2;

∂2 log c
(
F1(y1), F2(y2)

)
∂βlβ

T
l

= (A.2)cll
(
F1(y1), F2(y2)

)
c
(
F1(y1), F2(y2)

) − c2
l

(
F1(y1), F2(y2)

)
c2
(
F1(y1), F2(y2)

)
 ∂Fl(yl)

∂βl

(
∂Fl(yl)
∂βl

)T

+
cl
(
F1(y1), F2(y2)

)
c
(
F1(y1), F2(y2)

) ∂2Fl(yl)
∂βl∂β

T
l

, ł = 1, 2; (A.3)

∂2 log c
(
F1(y1), F2(y2)

)
∂β1∂β

T
2

=
c12

(
F1(y1), F2(y2)

)
c
(
F1(y1), F2(y2)

)
−
c1
(
F1(y1), F2(y2)

)
c2
(
F1(y1), F2(y2)

)
c2
(
F1(y1), F2(y2)

)
 ∂F1(y1)

∂β1

(
∂F2(y2)
∂β2

)T
.(A.4)

We show that

E
cll

(
F1(Y1), F2(Y2)

)
c
(
F1(Y1), F2(Y2)

) ∂Fl(Yl)
∂βl

(
∂Fl(Yl)
∂βl

)T = 0, l = 1, 2. (A.5)

Using the joint density of Y = (Y1, Y2) from (6.18), the expectation on the l.h.s. of
(A.5) rewrites, when l = 1, as

∫ ∞
0

∫ ∞
0

c11
(
F1(y1), F2(y2)

) ∂F1(y1)
∂β1

(
∂F1(y1)
∂β1

)T
f1(y1) f2(y2) dy2dy2

=
∫ ∞

0

∂F1(y1)
∂β1

(
∂Fl(yl)
∂βl

)T
f1(y1)

{∫ ∞
0

c11
(
F1(y1), F2(y2)

)
f2(y2) dy2

}
dy1.
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For any fixed y1, the inner integral becomes, by substituting s = F2(y2) and interchanging
integral and derivatives,

∫ 1

0
c11
(
F1(y1), s

)
ds = ∂2

∂r2

∫ 1

0
c(r, s) ds

∣∣∣∣
r=F1(y1)

= 0,

where the last equation follows from
∫ 1

0 c(r, s) ds = 1 for all 0 < r < 1. Hence (A.5)
follows for l = 1, and the case l = 2 can be proved analoguously. Next we show that

E
cl

(
F1(Y1), F2(Y2)

)
c
(
F1(Y1), F2(Y2)

) ∂2Fl(Yl)
∂βl∂β

T
l

 = 0, l = 1, 2. (A.6)

Again using the density from (6.18) and restricting to l = 1 (the case l = 2 is analogous),
the expectation on the l.h.s. of (A.6) rewrites as

∫ ∞
0

∫ ∞
0

c1
(
F1(y1), F2(y2)

) ∂2F1(y1)
∂β1∂β

T
1
f1(y1) f2(y2) dy2dy1

=
∫ ∞

0

∂2F1(y1)
∂β1∂β

T
1
f1(y1)

{∫ ∞
0

c1
(
F1(y1), F2(y2)

)
f2(y2) dy2

}
dy1,

and for any fixed y1 the inner integral is equal to
∫ 1

0
c1
(
F1(y1), s

)
ds = ∂

∂r

∫ 1

0
c(r, s) ds

∣∣∣∣
r=F1(y1)

= 0.

From (A.5), (A.6), and (A.2) it follows that

E
∂2 log c

(
F1(Y1), F2(Y2)

)
∂βlβ

T
l

 = E
c2

l

(
F1(Y1), F2(Y2)

)
c2
(
F1(Y1), F2(Y2)

) ∂Fl(Yl)
∂βl

(
∂Fl(Yl)
∂βl

)T
−
∫ ∞

0

∫ ∞
0

c2
l

(
F1(y1), F2(y2)

)
c
(
F1(y1), F2(y2)

) ∂Fl(yl)
∂βl

(
∂Fl(yl)
∂βl

)T
f1(y1) f2(y2) dy1dy2, (A.7)

for l = 1, 2.
Next we show that

E
c12

(
F1(Y1), F2(Y2)

)
c
(
F1(Y1), F2(Y2)

) ∂F1(Y1)
∂β1

(
∂F2(Y2)
∂β2

)T =) (A.8)

∫ ∞
0

∫ ∞
0

c
(
F1(y1), F2(y2)

) ∂f1(y1)
∂β1

(
∂f2(y2)
∂β2

)T
dy1dy2.
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The expectaion on the l.h.s. of (A.8) equals

∫ ∞
0

∫ ∞
0

c12
(
F1(y1), F2(y2)

) ∂F1(y1)
∂β1

(
∂F2(y2)
∂β2

)T
f1(y1) f2(y2) dy1dy2.

Writing

c12
(
F1(y1), F2(y2)

) ∂F1(y1)
∂β1

f1(y1) = ∂

∂β1

[
c2
(
F1(y1), F2(y2)

)
f1(y1)

]
− c2

(
F1(y1), F2(y2)

) ∂f1(y1)
∂β1

,

the last double integral rewrites as

∫ ∞
0

{∫ ∞
0

[
∂

∂β1

[
c2
(
F1(y1), F2(y2)

)
f1(y1)

]
− c2

(
F1(y1), F2(y2)

)∂f1(y1)
∂β1

]
dy1

}
(
∂F2(y2)
∂β2

)T
f2(y2) dy2.

Now for any fixed y2,
∫ ∞

0

∂

∂β1

[
c2
(
F1(y1), F2(y2)

)
f1(y1)

]
dy1 = ∂

∂β1

∫ 1

0
c2
(
r, F2(y2)

)
dr = 0,

since the last integral does not depend on β1. We have obtained that the expectation
on the l.h.s. of (A.8) is equal to

−
∫ ∞

0

∫ ∞
0

c2
(
F1(y1), F2(y2)

) ∂f1(y1)
∂β1

(
∂F2(y2)
∂β2

)T
f2(y2) dy1dy2

= −
∫ ∞

0

∂f1(y1)
∂β1

{∫ ∞
0

c2
(
F1(y1), F2(y2)

)(∂F2(y2)
∂β2

)T
f2(y2) dy2

}
dy1.

Writing

c2
(
F1(y1), F2(y2)

)(∂F2(y2)
∂β2

)T
f2(y2) =(

∂

∂β2

[
c
(
F1(y1), F2(y2)

)
f2(y2)

])T
− c

(
F1(y1), F2(y2)

) (∂f2(y2)
∂β2

)T
,

and observing that for any fixed y1

∫ ∞
0

∂

∂β2

[
c
(
F1(y1), F2(y2)

)
f2(y2)

]
dy2 = ∂

∂β2

∫ ∞
0

c
(
F1(y1), s

)
ds = 0,
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we get (A.8). From (A.4) and (A.8) we get

E
∂2 log c

(
F1(Y1), F2(Y2)

)
∂β1∂β2

 = (A.9)

∫ ∞
0

∫ ∞
0

[
c
(
F1(y1), F2(y2)

)∂f1(y1)
∂β1

∂f2(y2)
∂β2

−
c1
(
F1(y1), F2(y2)

)
c2
(
F1(y1), F2(y2)

)
c
(
F1(y1), F2(y2)

) ∂F1(y1)
∂β1

∂F2(y2)
∂β2

f1(y1) f2(y2)
]

dy1dy2.

Observing that

∂Fl(yl)
∂βl

= ∂Fl(yl)
∂γl

∂γl
∂βl

,
∂fl(yl)
∂βl

= ∂fl(yl)
∂γl

∂γl
∂βl

, (A.10)

and ∂γl
∂βl

= γl(xl)
(
1, xl

)T
, l = 1, 2, (A.11)

formulas (6.25) in Subsection 6.3.2 follow from (A.7) and (A.9).

The derivatives ∂fl(yl)
∂γl

and ∂Fl(yl)
∂γl

are given by

∂

∂γl
f l(yl) =

δl
(

log(yl)− log(ν
l
)− ψ(κl)

)
Γ(κl)νκll

, (A.12)

where κl = γl(xl)∆ and δl = exp
(
−yl/νl

)
yκl−1
l ∆, and

∂

∂γl
Fl(yl) = ∂

∂γl

Γ̃(κl, yl/νl)
Γ(κl)

= ∆
(
− Γ(κl)(yl/νl)κl

2F̃2(κl, κl;κl + 1, κl + 1;−yl/νl)− ψ(κl)
Γ̃(κl, yl/νl)

Γ(κl)

− exp(yl/νl)
Γ(κl, yl/νl, 0)

Γ(κl)

)
,

(A.13)

such that ψ(κ) = ∂
∂κ

ln(Γ(κ)) indicates the digamma function, Γ(s, z, 0) = Γ(s, z)−
Γ(s), Γ̃(κl, yl/νl) refers to the lower incomplete Gamma function, and 2F̃2 denotes the
regularized hypergeometric function which is a slight modification of the generalized
hypergeometric function 2F2(κ, κ;κ+ 1, κ+ 1;−y/ν) and given by

2F̃2(κ, κ;κ+ 1, κ+ 1;−y/ν) =
1 +∑∞

k=1

(
κ

κ+k

)2 (−y/ν)k
k!

Γ(κ+ 1)2 .
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