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Abstract
We study the two-phase flow model proposed by Dreyer, Hantke and War-
necke [22]. The model describes the evolution of a mixture of a dispersed
phase of small ball-shaped bubbles of water vapor, immersed in a carrier
fluid, the corresponding liquid water phase. The model was derived from
microscopic physical laws using averaging techniques and it is completely
in divergence form.
For the mathematical analysis here, we will only consider one space dimen-
sion, neglect the phase exchange terms handling phase transitions and as-
sume isothermal flow. In this form, it is a weakly hyperbolic system of con-
servative partial differential equations.
Since we can not use any of the existing results for the Cauchy problem of
systems of conservation laws, we can not solve for arbitrary initial data but
only for Riemann initial data.
This thesis includes the first analysis of the Riemann problem of the two-
phase flow model considered. We perform the eigenstate analysis on the
dispersed phase alone as well as the full two-phase system of equation. The
wave types and all possible wave patterns are found. These patterns may
contain delta-shocks or vaporless states.
Solutions to the Riemann problem are found by solving highly nonlinear sys-
tems of algebraic equations. These solutions are self-similar and uniquely
determined by the initial data. All solutions are given implicitly and unique-
ness was shown using monotonicity arguments. The final result is a set of
inequalities for the relative velocity between the two phases involved. To en-
sure the uniqueness of the solution, this relative velocity should be a certain
amount smaller than the sound speed in the carrier phase. Its explicit value
depends on the chosen equation of state and the parameters therein, as well
as the initial data used. These bounds on the velocity are not sharp but give
a sufficient criterion to ensure the uniqueness of the solution.
We study bubbles in a liquid carrier as well as droplets or dust particles in a
vapor carrier. In a gas, the equation of state (EOS) for isothermal flow yields
the pressure as a linear function of the density. For a liquid, the simplest real-
istic assumptions lead to an affine function for the EOS. We extend the usual
discussion of a linear equation of state to an affine linear one and therefore
include commonly used equations of state like the Tait equation or the stiff-
ened gas equation. The analysis for an affine linear equation of state is much
more complicated. This is a key point of this thesis. Nonetheless, all possible
wave configurations are discussed, the implicit functions to find a solution
are given and the inequalities assuring monotonicity are stated as well.
Numerical simulations for all considered cases were performed using a second-
order MUSCL-Hancock type scheme with MINBEE limiters and the HLL ap-
proximate Riemann solver. To improve the results, the new GHLL approxi-
mate Riemann solver was constructed and tested.





Zusammenfassung
In dieser Arbeit untersuchen wir das zwei-Phasen Modell, welches von Dreyer,
Hantke und Warnecke eingeführt wurde [22]. Das Modell beschreibt die
zeitliche Entwicklung einer Mischung aus einer gelösten Phase, bestehend
aus kleinen kugelförmigen Blasen von Wasserdampf, in zugehöriger Träger-
phase aus flüssigem Wasser. Das Modell wurde durch Mittelungstechniken
mikroskopischer physikalischer Gesetzmäßigkeiten hergeleitet und ist voll-
ständig in Divergenzform.
Für die mathematische Analyse wurde eine Raumdimension betrachtet, Quell-
terme vernachlässigt, welche für Phasenübergänge verantwortlich sind und
eine isotherme Strömung angenommen. In dieser Form ist das resultierende
Modell schwach hyperbolisch und besteht aus speziellen partiellen Differen-
tialgleichungen, sogenannten Erhaltungsgleichungen.
Da die bestehende Theorie zu Cauchy-Problemen für Systeme von Erhal-
tungsgleichung nicht angewandt werden kann, konstruieren wir Lösungen
nicht zu beliebigen Anfangsdaten, sondern nur zu Riemann-Anfangsdaten.
Die vorliegende Arbeit enthält die erste mathematische Analyse des Riemann-
Problems für das betrachtete zwei-Phasen Modell. Eine Analyse der Eigen-
zustände wird für die gelöste Phase, wie auch für das volle zwei-Phasen Sys-
tem durchgeführt. Alle Wellentypen und alle möglicherweise auftretenden
Wellenkonfigurationen werden dabei gefunden. Diese Wellenkonfiguratio-
nen können delta-Stöße oder gasfreie Zustände enthalten.
Lösungen des Riemann-Problems werden als Lösungen hochgradig nicht-
linearer algebraischer Gleichungssysteme gefunden. Diese Lösungen sind
selbstähnlich und eindeutig bestimmt durch die Anfangsdaten. Alle Lösun-
gen werden implizit angegeben und Eindeutigkeit wurde mit Hilfe eines
Monotoniearguments gezeigt. Im Ergebnis erhält man Ungleichungen für
die relative Geschwindigkeit zwischen den beiden Phasen. Um Eindeutigkeit
zu garantieren muss diese Relativgeschwindigkeit einen gewissen Betrag klei-
ner sein als die Schallgeschwindigkeit in der Trägerphase. Der genaue Wert
hängt von der gewählten Zustandsgleichung und den darin gewählten Pa-
rametern, wie auch von den Anfangsdaten ab. Diese Forderungen an die
Geschwindigkeit sind keine scharfen Ungleichungen, aber stellen hinreich-
ende Kriterien für die Eindeutigkeit dar.
Untersucht werden neben Blasen in flüssiger Trägerphase auch Tropfen oder
Staubpartikel in gasförmiger Trägerphase. In einer Gasphase wird die Zu-
standsgleichung durch eine lineare Funktion des Drucks in Abhängigkeit
der Dichte gegeben. Für eine Flüssigkeit führt die einfachste realistische An-
nahme auf eine affin lineare Funktion der Zustandsgleichung. Die Analyse
wird auf diese affin linearen Funktionen ausgeweitet und enthält daher die
für die Beschreibung von Flüssigkeiten üblicherweise als Zustandsgleichung
benutzten Tait-Gleichung und stiffened-gas Gleichung. Die mathematische
Analyse dieser affin linearen Zustandsgleichung gestaltet sich deutlich kom-
plizierter. Diese Betrachtungen sind einer der zentralen Punkte dieser Ar-
beit. Nichtsdestotrotz werden alle möglichen Wellenkonfigurationen disku-
tiert und die impliziten Funktionen zum Auffinden von Lösungen sowie die
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Monotonie garantierenden Ungleichungen angegeben.
Für alle betrachteten Fälle werden numerische Simulationen durchgeführt.
Dazu wurde das zweite Ordnung MUSCL-Hancock Schema mit MINBEE
Limitern und HLL Riemann-Löser verwendet. Um die numerischen Resul-
tate zu verbessern, wurde der neue GHLL Riemann-Löser konstruiert und
getestet.
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1
Introduction

Multi-phase flows occur in many natural and engineering applications. Con-
sider the following phases of matter: gas, liquid and solid. We are inter-
ested in flows in which one phase is dispersed in a carrier phase. With
these phases, the two-phase flows can be separated into three categories:
gas-liquid, gas-solid and liquid-solid flows. The first category includes so
called "bubbly flows" of gas bubbles in a liquid carrier. One finds these, for
example, in chemical reactors. Ship manufacturers are interested to know
the effects of bubbles formed in water due to cavitation because they cause
substantial damage to propellers. In this category, a second flow form is gas-
droplet flows typically found in atmospheric physics, where cloud formation
is of considerable interest. It involves liquid water and its vapor, as well as a
mixture of other gases. Other examples are sprays with various applications.
The second category is gas-solid particle flows. These occur in astrophysics
during star formation or in powder applications in the industry. The third
category consists of solid-liquid flows, which play an essential role in trans-
port processes like sedimentation. Here, the solid phase should only occur
in the role of the dispersed phase. Otherwise, if the solid takes the role of the
carrier phase, one has the field of porous media flows, which is quite differ-
ent in nature. In the beverage industry, coffee beans are sugar-coated using
a fluidized bed granulator. This process involves a mixture of solid particles,
liquid sprays and gas flow. All such processes are modeled using two-phase
or multi-phase flow models.

A central question in the modeling of two-phase flows is the treatment of
the interfaces between the two phases. A first approach is to incorporate the
interface directly into the model as a free boundary in the flow. The interface
itself is a discontinuity in the flow and the mathematical formulation leads to
a free-boundary problem. These models are called sharp-interface models and
they allow the exact determination of the interface position at any time. An
extensive study of sharp interface two-phase flows described by the Euler
equations can be found in the dissertation of Thein [81]. Even though this
formulation is suited for many problems, it also has its limitations. Physi-
cally a phase boundary is not a sharp discontinuity. Any internal structure
and physical phenomena having a length scale comparable with the width
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of the interface region are neglected. Furthermore, topological changes are
very hard to describe with these kinds of models. For example, merging or
creation of a bubble or a droplet due to condensation or evaporation, respec-
tively, leads to difficulties in the mathematical description of these interfaces.

If one wants to include the internal structure of an interface or consider
flows with large interface deformations, a fitting description is given by dif-
fuse interface models. Here, a special phase parameter or order parameter is
included in the system, which can change continuously between the two
states indicating a pure phase. Therefore, the sharp interface is replaced by
a thin interfacial layer in which the order parameter, which can be a concen-
tration, rapidly changes its value. Diffuse interface models are well estab-
lished in the literature for two-phase flows of liquids with identical densi-
ties, see for example Hohenberg and Halperin [40]. The model of Hohenberg
and Halperin has been modified in a thermodynamically consistent way to
allow for different densities. A compressible diffuse interface model for a
two-phase flow with non-matching densities was derived by Dreyer, Gies-
selmann and Kraus [20]. Large differences in densities between liquid and
vapor, which are of the order 103, still seem problematic. For details, we
would like to refer the reader to an upcoming PhD thesis of Hazem Yaghi.

In the work presented here, we are not particularly interested in the evo-
lution of single bubbles or droplets. Therefore, we would like to describe
the evolution of macroscopic quantities. Starting from basic physical laws,
there are many techniques to arrive at a macroscopic model. On a macro-
scopic level, often mixture models are applied. In these models, both phases
may be present at any point in space and time. This is taken into account by
volume fraction density functions. The equations are usually derived from
microscopic considerations using averaging or homogenization techniques,
see e.g. Drew and Passman [18], Ishii [41], Nigmatulin [66], Stewart and Wen-
droff [79], Crowe et al. [13] or Saurel and Abgrall [72]. Alternatively, one may
postulate macroscopic balances from basic physical laws, see e.g. Müller and
Ruggeri [65] as well as Baer and Nunziato [3].

The theoretical results which we will describe in this thesis were already
published in [34, 35]. Some of the following parts of the introduction were
taken from these publications.

We study the two-phase flow model proposed by Dreyer, Hantke and
Warnecke [22]. The model describes the evolution of a mixture of a dis-
persed phase of small ball-shaped bubbles of water vapor immersed in a
carrier fluid, the corresponding liquid water phase. The model was derived
using averaging techniques and it is completely in divergence form, unlike
those studied in [3] as well as [79]. For the mathematical analysis here, we
will only consider one space dimension, neglect the phase exchange terms
handling phase transitions and assume isothermal flow. In this form, we
may also consider the case of droplets in vapor. It turns out that, due to the
equations of state for the carrier phase, droplets in a gas are mathematically
a simpler case than gas bubbles or solids in a liquid.
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The assumption of isothermal flow that we make is actually a well justi-
fied approximation and simplification for flows with phase transitions. The
physical interpretation is that a constant temperature is due to an infinitely
fast heat flow. This does not respect the fundamental physical assumption of
finite propagation speeds, a flaw it shares with the heat equation. However,
it turns out to be a useful approximation. Due to this assumption, the latent
heat released or bound in a phase transition can be taken care of. If we used
an energy balance, we would need to include a heat flux such as Fourier’s
law. This would change the mathematical properties of the energy balance.
Having an Euler equation type energy conservation leads to inconsistencies
in the case of phase transitions, see Hantke and Thein [37].

It is important to note that omission of the source terms, which model
phase transitions, leads to the formation of solutions with delta-shocks in cer-
tain cases. These are solutions with moving singular point measures. They
appear due to the fact that in these physical situations a phase transition
would occur. In our model, this generation of the singularity comes along
with unphysical values of the volume fractions that are larger than 1 for the
vapor and negative for the liquid. These solutions also appear because on the
macroscopic scale, modeled by the mixture equations, there is no pressure for
the disperse phase. The dispersed phase particles do not exert any forces on
each other on the microscopic scale. Only forces due to collisions would lead
to a pressure at the macroscopic scale. The pressure in gas dynamics coun-
teracts singularity formation. Analogously, here the phase exchange terms
would prevent singularity formation.

The emergence of delta-shocks in our model is quite analogous to the
situation in the system of zero pressure or pressureless gas that models for
example small dusty particle clouds like a gas in outer space, see e.g. Shan-
darin and Zeldovich [75, Section VII]. Since the particles do not interact in
the form of a Brownian motion on the microscopic scale, there is no pressure
force on the macroscopic scale. Due to accretion, these dusty particles can
agglomerate to form larger solid particles like planets or a star out of a gas
cloud. These are modeled by singular measure solutions to the equations,
see e.g. Bouchut [5], Sheng and Zhang [76] or E et al. [25]. This is a kind of
phase transition in this model. A similar form of singularity formation due
to phase transition in coagulation/agglomeration models is called gelation,
see e.g. Ernst et al. [26], Escobedo et al. [27] or Jeon [43].

Another important mathematical feature of multi-phase mixture conser-
vation laws is that they have weakly hyperbolic states. By this, we mean that
all eigenvalues are real but there is at least one multiple eigenvalue that does
not have a full set of eigenvectors. Existence results for hyperbolic systems
of conservation laws in one space dimension require strict hyperbolicity, i.e.
a full set of distinct real eigenvalues. Therefore, the existing theory does not
apply to our system.

One of the most important results concerning the Cauchy problem for sys-
tems of conservation laws in one space dimension is obtained using Glimm’s
scheme, see [29]. Although the Glimm scheme gives a general existence re-
sult, we cannot make use of it. To construct a global solution it uses Lax’s
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theorem for the local solution and therefore needs the system under consid-
eration to be strictly hyperbolic. As we will show in this work, the system
under consideration is only weakly hyperbolic. For initial states sufficiently
close to each other one more global existence result of solutions to the Cauchy
problem for systems of conservation laws was obtained by Bressan [6] using
the so called front tracking algorithm. But again, to keep track of the wave
fronts, one of the crucial requirements for the system of conservation laws
under consideration is that it is strictly hyperbolic.

Due to the lack of a general theory, we will consider Riemann problems
only and not general initial data. We will analyze the elementary wave struc-
ture and use Riemann invariants as well as Rankine-Hugoniot jump condi-
tions to determine a highly nonlinear system of algebraic equations connect-
ing the initial states to each other. We then have to find a solution to these
nonlinear systems to provide a solution and use monotonicity arguments to
show uniqueness.

Simple models related to our model were studied by Zheng [92]. In the
popular Baer-Nunziato mixture model [3] there are some physical states for
which weak hyperbolicity occurs, see e.g. Andrianov and Warnecke [2]. In
the latter reference, these states were called parabolic degenerate. The term
weakly hyperbolic seems to be more adequate. The model we study here
is weakly hyperbolic for all states. An advantage of the model considered
here is that the equations are in divergence form, whereas the Baer-Nunziato
model has non-divergence terms that complicate the handling of discontinu-
ous weak solutions.

We will show the existence of self-similar solutions to the Riemann prob-
lem that are uniquely determined by the initial data of the problems. These
use the well known self-similarity of conservation laws. Our system (2.5) be-
low has some partial similarities to the Euler equations for which details on
the solutions to Riemann problems can be found in Evans [28], Smoller [78],
and Toro [83]. In our case, the solutions include classical waves such as rar-
efactions, shock waves and contact discontinuities. Interestingly, in some
cases, it is possible to obtain solutions involving vaporless states as well as
the non-classical delta-shock waves already mentioned above.

The vaporless states are analogues of the vacuum in gas dynamics, see
e.g. Liu and Smoller [60]. We already mentioned that delta-shocks appear
because the equations for the disperse phase are related to zero pressure
gas dynamics. Cheng et al. [10] constructed such solutions, see also Li and
Zhang [55]. Sheng and Zhang [76] studied the zero pressure gas dynamics
model and showed the existence of solutions involving delta-shocks as well
as vacuum states. Yang [90] also proved the existence of vacuum states and
delta-shocks for a system of conservation laws that has a particular structure
generalizing the zero pressure gas. Li and Yang [54] obtained delta-shocks as
limits of vanishing viscosity by adding a diffusive term to the system.

Delta-shocks appear in other contexts too. Mazzotti [62] constructed delta-
shock solutions for a nonlinear model of chromatography and also proved
their existence experimentally in Mazzotti et al. [63]. Tan et al. [80] showed
that delta-shocks are limiting solutions for hyperbolic conservation laws with
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vanishing viscosity. Keyfitz and Kranzer [45] showed that singular shock so-
lutions for a specific strictly hyperbolic system of conservation laws are well
defined in a space of weighted measures and satisfy viscosity limits. We see
that delta-shocks are not connected to weak hyperbolicity but due to non-
linear terms that allow singularity formation in finite time while additional
terms preventing them are absent.

Our ultimate goal is to construct numerical solutions for two or three di-
mensional isothermal versions of the system of balance laws (2.1) using split-
ting methods, see e.g. Toro [83] and the literature cited therein. Such methods
involve solving Riemann problems for the homogeneous part of the model.
This work exclusively addresses the Riemann problem. Our aim in this thesis
is to understand the mathematical structure of the conservation part of the
model.

We perform the eigenstate analysis on the dispersed phase alone as well
as the full two-phase system of equation. The wave types and all possible
wave patterns are found.
Since we can not use any of the existing results for the Cauchy problem of
systems of conservation laws, we can not solve for arbitrary initial data but
only for Riemann initial data.
Solutions to the Riemann problem are found by solving highly nonlinear sys-
tems of algebraic equations. All solutions are given implicitly and unique-
ness is shown using monotonicity arguments. The final result is a set of in-
equalities for the relative velocity between the two phases involved. This
relative velocity should be a certain amount smaller than the sound speed in
the carrier phase. Its explicit value depends on the chosen equation of state
and the parameters therein, as well as the initial data used. These bounds on
the velocity are not sharp but give a sufficient criterion to ensure the unique-
ness of the solution.
We study bubbles in a liquid carrier as well as droplets or dust particles in a
vapor carrier. In a gas, the equation of state (EOS) for isothermal flow yields
the pressure as a linear function of the density. For a liquid, the simplest real-
istic assumptions lead to an affine function for the EOS. Therefore, we extend
the usual discussion of a linear equation of state to an affine linear one. The
analysis for an affine linear equation of state is much more complicated. This
is a key point of this thesis. Nonetheless, all possible wave configurations are
discussed, the implicit functions to find a solution are given and the inequal-
ities assuring monotonicity are stated as well.
This thesis includes the first analysis of the two-phase flow model consid-
ered. It takes a first step from a linear equation of state towards more gen-
eral equations of state, which is very important with regard to applications.
Commonly used equations of state like the Tait equation or the stiffened gas
equation are included in our analysis. It is remarkable how the slight change
in the equation of state complicated the analysis considerably.
Initial data are given for all relevant cases. We choose in particular physi-
cally reasonable values. Numerical simulations are done with a second-order
MUSCL-Hancock type scheme for all the cases mentioned. We construct a
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new approximate Riemann solver called GHLL solver, which is an adapted
HLL solver for the model considered. In all cases, the analytical and numer-
ical solutions are found to be in very good agreement with each other.

The thesis is organized in the following way:
Chapter 2 contains an overview of the complete system given in [22] as

well as the isothermal version. The different choices which are possible for
the equation of state are discussed. With the choice of an affine linear equa-
tion of state, we included physical relevant descriptions for the liquid phase.

Chapter 3 starts with an introduction to the concepts used to determine
the analytical solution of the Riemann problems considered. We start with
a short introduction to the nonlinear scalar case to get the basic ideas in a
simple setting. The reader familiar with hyperbolic conservation laws may
skip this section.

We continue to describe the theory used for systems of conservation laws.
Special attention was given to the concepts of Riemann invariants and the
Rankine-Hugoniot jump conditions due to their importance in the work be-
low. We show how these relations are derived and used by giving a simple
example. A small comment is made that the classical Riemann invariants
and the generalized Riemann invariants are in fact the same object.

Chapter 4 contains the main analytical results which were published in
[34, 35]. In Section 4.1 the analytical solution for the Riemann problem of the
dispersed phase is derived. We start from the quasi-linear system and deter-
mine wave speeds and wave structures. For all possible cases, we give an
exact solution. From Section 4.2 on we discuss the carrier phase equations.
Again, we determine wave speeds and wave structures as well as Riemann
invariants and jump conditions. These relations allow us to construct a non-
linear system of equations connecting both initial states to each other. This
system allows us to calculate a solution for the unknown quantities at least
implicitly and the usage of a monotonicity argument to show uniqueness.
Again, we discuss all possible wave configurations. Both the cases of vapor
and liquid as carrier phases are taken into account.

Chapter 5 contains all aspects regarding numerical simulations. We start
with an introduction to first-order finite volume methods. Then, we dis-
cuss higher-order methods, especially the MUSCL-Hankock method as our
method of choice. Section 5.3 gives a brief overview of the classical HLL and
HLLC approximate Riemann solvers. The following Section 5.4 contains the
construction of the problem-specific GHLL Riemann solver, which was pub-
lished in [36]. We then briefly comment on the numerical analysis and try
to motivate the choice of the numerical method used in Section 5.5. We con-
clude this part with numerical simulations of the examples given in Chapter
4 in comparison to the exact solution calculated there.

In Chapter 6 we give a brief summary of the presented work. Further-
more, we comment on ongoing work and related open problems.



7

2
The two-phase Flow Model

We study the two-phase flow model proposed by Dreyer, Hantke and War-
necke [22]. It can describe the evolution of a mixture of a dispersed phase
immersed in a carrier fluid. The model was derived using spatial averaging
techniques as described in Drew and Passman [18]. A sliding average over
a ball of radius a > 0 was used, where the diameter d = 2a is the scale at
which the macroscopic equations are described. The radii of the dispersed
phase bubbles or droplets are assumed to be considerably smaller than a.

The resulting model is completely in divergence form, unlike those stud-
ied by Baer and Nunziato [3] as well as Stewart and Wendroff [79]. To avoid
the problem of the necessity of closure relations in the final macroscopic
model already the microscopic equations for the continuous phase used for
the averaging are equipped with equations of state.

We give a complete description of the model for completeness, but we will
skip the derivation since this work does not focus on mathematical model-
ing. The interested reader is referred to the two works of Dreyer, Hantke
and Warnecke [19, 22]. The following parts of this chapter are based on the
presentation given in [35].

2.1 The general two-phase flow model

Our variables are volume fraction of the dispersed phase c, pressure p, mass
density ρ, mean particle radius density R, mass distribution of the dispersed
particles m, temperature T, surface tension σ, specific total energy e, heat flux
Q, and velocity components vj in three space dimensions with j = 1, 2, 3. The
quantities R and m arise from the modeling of the phase transitions. We will
use boldface to represent vectors as well as the subscript C to distinguish the
carrier phase from the dispersed phase, the latter one without a subscript.
The time and space variables are respectively t ∈ R≥0 and x ∈ R3. We also in-
clude the gravitational acceleration g for completeness of the general model.
We will disregard the heat flux in all further considerations below. Gravi-
tational terms are meaningful only if the flow direction is vertical. We will
therefore ignore them when we consider horizontal one dimensional flows.
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We consider balance equations for the volume fraction of the dispersed
phase c, the density ρ, three components of the momentum ρvj, the total
energy e and the radius density R of the dispersed phase as well as density ρC ,
three components of momentum ρvj

C and total energy eC for the carrier phase.
We assume that the volume is completely filled by both phases. Therefore,
the volume fraction of the carrier phase is cC = 1− c. The pressure pC will
be given as a function of the density ρC by an equation of state. This will
be discussed in the following subsection. We introduce the mass, volume,
momentum and energy transfer terms Πρ , Πc , Πj

m and Πe respectively. They
will be given below. Then the model in Hantke et al. [22] consists of the
following system of partial differential equations

∂c
∂t

+∇x · (c v) = Πc

∂c ρ

∂t
+∇x · (c ρ v) = Πρ

∂c ρ vj

∂t
+∇x ·

(
c ρ vj v

)
− c ρ gj = Πj

m

∂c ρ e
∂t

+∇x · (c ρ e v )− c ρ g · v = Πe

∂c R
∂t

+∇x · (c R v) = 4R
3 Πc

∂

∂t
[(1− c )ρC ] +∇x · [(1− c ) ρC vC ] = −Πρ

∂

∂t

[
(1−c )ρC vj

C

]
+∇x ·

[
(1−c ) ρC vj

C
vC

]
+

∂ (1−c ) pC

∂xj

−(1−c ) ρCgj = −Πj
m

∂

∂t
[(1−c )ρC eC ]+∇x · (1−c ) [(ρC eC+pC) vC+Q

C ]−(1−c ) ρC g · vC = −Πe .

(2.1)

Let k be the standard Boltzmann constant, z a constant which depends on the
atomic structure of the gas considered, σ the surface tension at the interfaces
between the phases and ψ̇ represent differentiation of a quantity ψ with re-
spect to time t. Then the transfer terms appearing in system (2.1) are given
by

Πρ =
c ṁ

4
3 πR3

, Πc =
3c Ṙ

R
, Πj

m =−
c ṁ vj

4
3 πR3

, Πe =
c ṁ e
4
3 πR3

+c ρ Ṫ
kz
m0

+6
c σṘ
R2 . (2.2)

In order to maintain the nature of the disperse phase in a given carrier
phase, the dispersed phase volume fraction should not exceed a certain thresh-
old which should be smaller than one. Otherwise, the assumptions made
in deriving the model lose their validity. Although not considered in the
derivation of the model, in the limit c → 1, one obtains a valid model. Set-
ting c identically to 1 makes the first equation trivial and leaves us with an
extended zero pressure gas model, see Sheng and Zhang [76]. The carrier
phase is eliminated and the phase transition terms become meaningless.

Next we give the expressions for the quantities Ṙ and ṁ appearing in
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(2.2). According to Hantke et al. [22], when the liquid is compressible, they
are determined from the following system of ODEs

ṁ =
4πR2ρm0√

2πm0kT

[
1
ρC

(
ρkT
m0
− 2σ

R
− p̄

)
− kT

m0
ln

ρkT
p̄m0
− 1

2

(
1
ρC

− 1
ρ

)2( ṁ
4πR2

)2
]

Φ′ (R− aC t) =
R

ρC aC

(
ρkT
m0
− 2σ

R
−
(

1
ρC

− 1
ρ

)(
ṁ

4πR2

)2

− p0

)

Ṙ = −Φ (R− aLt)
R2 +

Φ′ (R− aLt)
R

+
ṁB

4πR2ρL
(2.3)

where p0 is the external pressure. This model describes the evolution of mass
and radius of a single vapor bubble in liquid water, where phase transition
is taken into account. If only small pressure differences appear, the water
can be assumed to be incompressible due to the fact that gases have a much
higher compressibility than liquids in general. It is shown in [22] that the
following incompressible model gives a sufficiently good description of the
bubble evolution

ṁ =
4πR2ρm0√

2πm0kT

[
1
ρC

(
ρkT
m0
− 2σ

R
− p̄

)
− kT

m0
ln

ρkT
p̄m0
− 1

2

(
1
ρC

− 1
ρ

)2( ṁ
4πR2

)2
]

Ḟ =
F2

2R3 +
R
ρC

(
ρkT
m0
− 2σ

R
−
(

1
ρC

− 1
ρ

)(
ṁ

4πR2

)2

− p0

)
Ṙ =

F
R2 +

ṁ
4πR2ρC

.

(2.4)

We will use the last form (2.4) of the ODE system in the numerical investiga-
tions of the model in future work.

2.2 The isothermal model

In order to have a tractable model for an analytical study of the model, we
make the assumptions that the fluids are isothermal and gravity is ignored.
The source terms modeling the phase transitions are dropped. The Riemann
problem we want to study is then given by the following system of conser-
vation laws
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∂c
∂t

+
∂

∂x
(c v) = 0

∂c ρ

∂t
+

∂

∂x
(c ρ v) = 0

∂c ρ v
∂t

+
∂

∂x

(
c ρ v2

)
= 0

∂c R
∂t

+
∂

∂x
(c R v) = 0

∂

∂t
[(1− c )ρC ] +

∂

∂x
[(1− c ) ρC vC ] = 0

∂

∂t
[(1− c )ρC vC ] +

∂

∂x

[
(1− c ) ρC v2

C

]
+

∂

∂x
[(1− c ) pC ] = 0

(2.5)

together with the piecewise constant initial data

(c, ρ, v, R, ρC , vC) (t = 0, x) =
{ (

c− , ρ− , v− , R− , ρC− , vC−

)
for x < 0(

c+ , ρ+ , v+ , R+ , ρC+ , vC+

)
for x > 0. (2.6)

The study of this Riemann problem is of great interest, analytically as well as
numerically. The above initial data are the simplest, non-trivial initial condi-
tions. Nonetheless, the solution already includes all mathematical and phys-
ical properties of the underlying conservation laws. The solution to a general
initial value problem can then be seen as a non-linear superposition of solu-
tions of local Riemann problems. One of the rare schemes with a convergence
theorem for hyperbolic conservation laws even in one space dimension, the
Glimm scheme [29], is based on this idea.

Note that the first four equations of the system (2.5) decouple from the
last equations. Therefore we will solve them separately from the rest of the
system in the next chapter.

2.3 Equations of state

In this subsection, we briefly want to discuss the equations of state consid-
ered to close the system (2.5). We neither want to discuss the derivation nor
the application of these equations. Nonetheless, we want to give some atten-
tion to the equation of state for the following reason. Almost all analytical
results for hyperbolic systems of conservation laws use the simplest possible
choice: a linear equation of state, mainly the ideal gas or perfect gas relation.
This is a valid choice since the equation of state for isothermal flow yields the
pressure as a linear function of the density in a gas. However, for a liquid,
the simplest realistic assumptions lead to an affine function for the equation
of state. The case of a liquid carrier phase thus leads to a considerable com-
plication in the determination of solutions to the Riemann problem. This will
be a key point of the analytical part of this thesis.

The two phases under consideration for the analysis are a vapor and a
liquid phase. We will consider both cases, vapor bubbles dispersed in the



2.3. Equations of state 11

liquid phase and liquid droplets in the vapor carrier phase, respectively. The
speed of sound a in a fluid is given by

a2 =
∂p
∂ρ

.

We may assume an equation of state of the following form throughout the
rest of this work

p = a2ρ + d0 with a2 = const. (2.7)

Taking the vapor phase to be an ideal gas is a valid choice for an equation of
state. We use the molecular mass m0 and the Boltzmann constant k. Then we
have

p =
kTρ

m0

with a2 =
kT
m0

, d0 = 0.

For the liquid phase let p denote the saturation pressure at temperature
T with ρ being the corresponding density. The constant K is the temperature
dependent modulus of compression. These quantities are material constants
and can be found in [87]. The pressure of the liquid phase pL can then be
given by the Tait equation of state for n = 1

p = p + K
(

ρ

ρ
− 1
)

. (2.8)

A detailed discussion of the Tait equation can be found in [24]. Written in the
form of equation (2.7) we have

d0 := p− K, a2
L :=

K
ρ

,

where aL is the speed of sound in the liquid.
It is also possible to use the stiffened gas equation, see e.g. Menikoff and
Plohr [64, Section 7], in the isothermal case

pL + π

cvρL(γ− 1)
= TL = const. (2.9)

In the form (2.7) it is

pL = TLcv(γ− 1)ρL − π, i.e. a2
L = TLcv(γ− 1), d0 = −π.

Note that due to this restriction for the equation of state, the following rela-
tion holds in all the cases considered

p = p(ρ) with
dp
dρ

= a2 = const. (2.10)
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2.4 Lower and upper bounds for carrier phase quan-
tities

For later purposes, we introduce lower and upper bounds for the concen-
tration of the carrier phase 1− cmax and 1− cmin , respectively. Whereas the
lower bound for the concentration is given naturally by the absence of the
dispersed phase, any upper bound is due to the assumption of isolated bub-
bles or droplets in the carrier phase. We will not give any explicit number for
that bound. Instead, we will assume from here on

cmin = 0 and 0 < cmax � 1.

In the same way we need to introduce a lower and an upper bound for the
carrier densities. In case of an ideal gas equation of state, one gets ρ > 0 from
the assumption of p > 0. In the case of an affine linear equation of state,
the condition of positivity of the pressure leads to a lower bound ρmin for the
density, which depends on the chosen equation of state and the parameters
therein. 1

We will introduce a quantity ρmax , too. This can be seen as a maximal den-
sity allowed. For a vapor carrier phase, there exists a physical upper bound
corresponding to the saturation pressure. For a liquid carrier phase, one has
a maximum pressure for an experimental setup or an upper bound coming
from the modeling of a real fluid by an affine linear equation of state, which
will not be valid up to infinity. Due to this freedom of choice, we will not
give any explicit value.
For any application or numerical test, one has to check the inequalities given
in Theorem 4.4.1 using explicit values. These inequalities represent bounds
for the carrier phase velocity.

1One can even drop the condition of positivity and allow negative pressures as long as
one has a lower bound for the density. This lower bound is necessary only for our later
analysis. See [17] for a discussion of negative pressures in water due to acoustic induced
cavitation.
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3
Notions on Nonlinear Hyperbolic Equations

In the analytical part of this work, we show that the two-phase flow model
that we consider is weakly hyperbolic. Therefore, we want to give a brief
introduction to the mathematics of hyperbolic as well as weakly hyperbolic
conservation laws. For further reading, we recommend the following books
out of an extensive literature on hyperbolic conservation laws. A general in-
troduction to the theory of partial differential equations (PDEs) can be found
in the book by Evans [28]. Warnecke [89] gives a detailed introduction and
discussion of analytical methods for conservation laws. For a historical sur-
vey and a precise mathematical treatment of hyperbolic conservation laws,
we refer the reader to the book of Dafermos [16]. The list of references in
this book contains almost all significant work in this field of reasearch1. The
book of Smoller [78] is one of the first extensive books on the theory of shock
waves and includes reaction-diffusion equations as well. A detailed study
of systems of conservation laws and viscous approximations can be found
in the books of Serre [73, 74]. An introduction into the mathematical and
numerical concepts of hyperbolic balance laws is given in the books of LeV-
eque [52, 53].

The following section gives a short introduction to the concepts for non-
linear scalar hyperbolic equations. Although one can find them in any of the
mentioned textbooks above, they are essential tools in our analysis later and
we want to give the reader a self-contained work.

This presentation is based on a lecture given by Prof. Michael Dumbser
during the Winter School NUMHYP 2020 in Trento.

3.1 Nonlinear scalar hyperbolic equations

We consider the following first-order nonlinear scalar equation

∂

∂t
u(t, x) +

∂

∂x
f (u(t, x)) = 0 (3.1)

1The bibliography comprises 120 pages.
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where t ∈ [0, tmax) ⊆ R≥0 denotes the time variable and x ∈ Ω ⊆ R the space
variable. The unknown quantity is denoted by u(t, x) with u : R×R → R.
It is called the conservative variable and f : R → R the nonlinear flux. The
equation (3.1) is called a conservation law. In case of a non-zero source term
on the right hand side it is called a balance law. The conservation of mass,
momentum and energy are classical examples from physics.

For sufficiently regular data, the derivatives in (3.1) are defined and the
partial differential equation (PDE) can be written in the so called quasi-linear
form. With the use of the chain rule, we get

∂u
∂t

+ a(u)
∂u
∂x

= 0, with a(u) =
d f
du

= f ′(u). (3.2)

The term a(u) is the characteristic velocity and depends on u in general. One
distinguishes three different cases of the monotonicity property of a(u):

• Convex flux, for a(u) monotonically increasing

d
du

a(u) = a′(u) = f ′′(u) ≥ 0, for all u ∈ R.

• Concave flux, if a(u) is monotonically decreasing

d
du

a(u) = a′(u) = f ′′(u) ≤ 0, for all u ∈ R.

• General flux, if there exists a u ∈ R such that

∃u :
d

du
a(u) = a′(u) = f ′′(u) = 0.

As an example, we consider the nonlinear Burgers equation.

Example 3.1.1. The nonlinear Burgers equation is given by

∂

∂t
u +

∂

∂x

(
1
2

u2
)
= 0. (3.3)

For the characteristic velocity and its derivative we obtain

a(u) =
d f
du

= u, and a′(u) = f ′′(u) = 1 ≥ 0, for all u ∈ R.

Hence, the flux of the Burgers equation is convex.

In the next section, we will see how these concepts are generalized to
systems of conservation laws.
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3.1.1 Solution along characteristics

To formulate the Cauchy problem, we need to assign an initial condition (IC)
to the PDE. Therefore, we consider the following initial value problem (IVP):

PDE :
∂u
∂t

+
∂ f
∂x

= 0,

IC : u(0, x) = u0(x),
(3.4)

with a given function u0(x) : R→ Ω. Again, we can write this in quasi-linear
form as

∂u
∂t

+ a(u)
∂u
∂x

= 0, u(0, x) = u0(x). (3.5)

We assume that the reader is familiar with the method of characteristics for a
linear PDE. In the nonlinear case, the characteristic curves are defined by the
following ODE

dx
dt

= a(u(t, x(t)), x(0) = x0. (3.6)

The total derivative or material derivative of u(t, x) computed along the charac-
teristic curve x(t) is given by

du
dt

=
∂u
∂t

+
∂u
∂x

∂x
∂t

=
∂u
∂t

+ a(u)
∂u
∂x

= 0. (3.7)

Hence, even in the nonlinear case, the solution along the characteristic curves
remains constant. Therefore, also the characteristic velocity a(u) is constant
along the characteristic. With this in mind, we obtain that the characteristic
curves are also straight lines, even in the nonlinear case, which might be
surprising at first.

From (3.6) together with the initial condition from (3.5) one gets the equa-
tion of the characteristic curves as

x = x0 + a(u0(x0))t. (3.8)

So we end up with an algebraic nonlinear scalar equation for the foot of the
characteristic x0 in terms of t and x, that is x0 = h(t, x). The solution of the
nonlinear PDE (3.4) can then be found easily. We only have to trace back the
characteristic to the foot x0 and evaluate the initial condition there

u(t, x) = u0(x0(t, x)) = u0(x− a(u0(x0))t). (3.9)

We will rewrite (3.8) in the following form

0 = x− (x0 + a(u0(x0))t) = g(t, x, x0).

We want to verify that this already provides the solution of the nonlinear
PDE with the initial condition u(0, x) = u0(x), see (3.4). The initial condition
is obviously fulfilled. Hence, we compute the derivatives of the function
g(t, x, x0) and keep in mind that x0 is a function of t and x
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0 =
∂g
∂t

=
∂g
∂t

+
∂g
∂x0

∂h
∂t

= −a(u0(x0))−
∂h
∂t
− a′(u0(x0))u′0(x0)

∂h
∂t

t.

From this relation, we get the derivative of h with respect to t, which reads

(
1 + a′(u0(x0))u′0(x0)t

) ∂h
∂t

= −a(u0(x0))

⇒ ∂h
∂t

=
−a(u0(x0))

1 + a′(u0(x0))u′0(x0)t
. (3.10)

Analogously, we get the derivative of h with respect to x from

0 =
∂g
∂x

=
∂g
∂x

+
∂g
∂x0

∂h
∂x

= 1− ∂h
∂x
− a′(u0(x0))u′0(x0)

∂h
∂x

t,

which leads to
∂h
∂x

=
1

1 + a′(u0(x0))u′0(x0)t
. (3.11)

Substituting (3.10) and (3.11) into (3.7) and using

∂u
∂t

= u′0(x0)
∂h
∂t

∂u
∂x

= u′0(x0)
∂h
∂x

leads to

∂u
∂t

+ a(u)
∂u
∂x

= u′0(x0)

(
−a(u0(x0))

1 + a′(u0(x0))u′0(x0)t
+ a

1
1 + a′(u0(x0))u′0(x0)t

)
= 0.

Therefore, we verified that (3.9) is indeed a solution of our IVP (3.4).
Note that the solution of (3.4) is given implicitly. To determine x0 numer-

ically from a given t and x one has to solve

g(x0) = x0 − x + a(u0(x0))t = 0. (3.12)

To find the root of this nonlinear equation, it is necessary to use an iterative
scheme, such as the bisection or the Newton method.

Finding the solution of the IVP (3.4) also has its limitations. When two
characteristics intersect, this method breaks down. Both characteristic curves
transport a constant solution along themselves, which means that at the in-
tersection point, we would have two different values of u. Therefore, we
would have a multi-valued solution at this point. The situation is depicted in
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x

t

x(1)0

x = x(1)0 +a(u0(x(1)0 ))t

x(2)0

x = x(2)0 +a(u0(x(2)0 ))t

Double value
of the solution

FIGURE 3.1: Multi-valued solution due to intersection of char-
acteristic curves

Fig. 3.1. We will see in the section on shock-waves how to overcome this
problem.

3.1.2 Rarefaction waves

Let us consider the following IVP

PDE: ut + fx = 0, f ′′ > 0

IC: u(0, x) = u0(x) =
{

u−, if x < x0
u+, if x ≥ x0

(3.13)

with the following property of the characteristic speed

a(u−) ≤ a(u+).

Again, the initial condition of the Riemann problem (3.13) consists of two
piecewise constant states of the variable u. The solution is given by a so-
called rarefaction wave. Its borders are defined by the two particular charac-
teristics

x = x0 + a (u−) t,
x = x0 + a (u+) t.

These characteristic curves are called head and tail of the rarefaction wave
with the footpoint located at x0. The situation is depicted in Fig. 3.2.

One finds a self-similar solution u(t, x) depending only on one variable
ξ = x−x0

t

u(t, x) = u(ξ) = u
(

x− x0

t

)
. (3.14)
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x

t

Head
x = x0 + a (u+) t

x0

Tail
x = x0 + a (u−) t

FIGURE 3.2: Characteristic curves of a rarefaction solution of
Riemann problem (3.13)

Calculating the derivatives with respect to space and time of the unknown
u(t, x) leads

∂u
∂t

= −x− x0

t2 u′,
∂u
∂x

=
1
t

u′,

where the prime denotes the derivative with respect to ξ. Substituting these
derivatives into (3.13) yields(

−x− x0

t2 + a(u(ξ))
1
t

)
u′ = 0

⇒ a(u(ξ)) =
x− x0

t
= ξ.

Hence, for the Riemann problem (3.13) the footpoints of the head and tail of
the rarefaction coincide with the initial location of the discontinuity at x0, see
Fig. 3.2. We find the entire solution of the Riemann problem as

u(t, x) =


u−, if x−x0

t < a (u−)
root of g(u) = a(u)− x−x0

t = 0, if a (u−) ≤ x−x0
t ≤ a (u+)

u+, if x−x0
t > a (u+)

(3.15)
The intermediate states between head and tail of the rarefaction are com-
puted by solving again numerically the nonlinear algebraic equation

a(u) = ξ.

3.1.3 Shock waves

To get an idea of why the notion of shock waves was introduced into the
theory of nonlinear partial differential equations, we want to consider the
following IVP for the Burgers equation already mentioned. Its quasi-linear
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form reads

PDE :
∂u
∂t

+ u
∂u
∂x

= 0

IC: u(0, x) = u0(x) =


1, if x < 0
1− x, if 0 ≤ x ≤ 1
0, if x ≥ 1.

(3.16)

We have already shown that the characteristics are straight lines, even in the
nonlinear case. Since the initial condition is constant for x ≤ 0, all the char-
acteristic curves with footpoint x0 ≤ 0 are parallel to each other. The same
applies to the characteristic curves with x0 ≥ 1. The two limiting character-
istics are c0 and c1, which are given by

c0 : x = 0 + 1 · t = t
c1 x = 1 + 0 · t = 1

Between these two curves, the characteristics converge to the intersection
point P = (1, 1) and the footpoints of these characteristics are computed
from (3.8) and read

x = x0 + a (u0 (x0)) t = x0 + (1− x0) t = x0(1− t) + t

Hence, we get for the footpoint

x0 =
x− t
1− t

.

Finally, we can calculate the solution along these characteristics

u(t, x) = u0 (x0) = 1− x0 = 1− x− t
1− t

To summarize, we give the solution for all times t ≤ 1

u(t, x) =


1, if x < t
1− x
1− t

, if t ≤ x ≤ 1

0, if x > 1

The characteristics are depicted in Fig. 3.3. The solution itself is shown in
Fig. 3.4 for different times. One can see easily that this solution has multiple
values for t ≥ 1. The problem of multi-valued solutions has been solved by
Bernhard Riemann already in 1860 [70]. Therein he introduced the concept
of shock waves, i.e. a discontinuity in the solution that guarantees the conser-
vation of the variable u. 2

2Riemann himself was skeptical at that time if these purely mathematical concepts would
be of any use in physical problems or applications: "Es lassen sich indess für den Fall,
dass die anfängliche Bewegung allenthalben in gleicher Richtung stattfindet und in jeder
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x0

t

1

1

c1c0

P

FIGURE 3.3: Characteristic curves for t ≤ 1 of problem (3.16)

3.1.4 Integral form of conservation laws

To understand the mathematical structure of shock waves, we need a dif-
ferent notion of conservation laws than the PDE formulation. The conser-
vation of mass, momentum and energy are all derived as integral conser-
vation laws. The time evolution of these integrals is described by means of
Reynolds transport theorem, see for example [89]. The PDE formulation is
then obtained by assuming an arbitrary control volume and a smooth inte-
grand. Therefore, it is not surprising that any discontinuous solution is not
included in this description.

Let us now define a control volume in space I = [xL, xR] and integrate the
PDE in (3.4) over this spatial control volume∫ xR

xL

∂u
∂t

dx +
∫ xR

xL

∂

∂x
f (u)dx = 0

Integrating by parts of the second term leads to

∂

∂t

∫ xR

xL

u(t, x)dx + f (u (t, xR))− f (u (t, xL)) = 0

The change of the conserved quantity u(t, x) inside the spacial interval I =
[xL, xR] is hence only due to the fluxes at the boundaries of this interval.

auf dieser Richtung senkrechten Ebene Geschwindigkeit und Druck constant sind, die ex-
acten Differentialgleichungen vollständig integriren; und wenn auch zur Erklärung der
bis jetzt experimentell festgestellten Erscheinungen die bisherige Behandlung vollkommen
ausreicht, so könnten doch, bei den grossen Fortschritten, welche in neuester Zeit durch
Helmholtz auch in der experimentallen Behandlung akustischer Fragen gemacht worden
sind, die Resultate dieser genaueren Rechnung in nicht allzuferner Zeit vielleicht der ex-
perimentellen Forschung einige Anhaltspunkte gewähren; und dies mag, abgesehen von
dem theoretischen Interesse, welches die Behandlung nicht linearer partieller Differential-
gleichungen hat, die Mittheilung derselben rechtfertigen." From the introduction of [70].
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(a) Solution at time t = 0 and t = 1
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(b) Multiple value solution at t = 2. Assuming the equality of
A1 and A2 the shock can be localized such that conservation
of u holds.

FIGURE 3.4: Solutions of (3.16) at different times t.

If we consider now a control volume in space and in time, that is V =
[t1, t2]× [xL, xR], the integral form of the conservation law reads∫ t2

t1

∫ xR

xL

∂u
∂t

dxdt +
∫ t2

t1

∫ xR

xL

∂

∂x
f (u)dxdt = 0

which is equivalent to∫ xR

xL

u (t2, x) dx =
∫ xR

xL

u (t1, x) dx−
∫ t2

t1

( f (u (t, xR))− f (u (t, xL))) dt

(3.17)
Thus, the conservative quantity u(t, x) at time t2 is equal to the conserved
quantity at time t1 minus the difference of the integrals of the fluxes in time
on the spatial boundaries of the control volume.
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3.1.5 Rankine-Hugoniot jump conditions

To derive the Rankine-Hugoniot relations, we need the integral formulation
of the considered PDE. Let us assume a shock wave traveling with velocity
s. We do not want to have any other waves near this discontinuity, therefore
calling it an isolated discontinuity/shock. This isolated discontinuity sepa-
rates two piecewise constant states on the left u− and on the right u+ from
each other. The PDE in integral form is then given by∫ xR

xL

(u (t2, x)− u (t1, x)) dx +

(∫ t2

t1

( f (u (t, xR))− f (u (t, xL))) dt
)
= 0,

(3.18)
where we used the control volume V = [t1, t2]× [xL, xR] with the following
properties: xL ≤ xd ≤ xR and xL ≤ xd + s (t2 − t1), where xd denotes the
position of the discontinuity at time t1. This means, that the shock is entering
the control volume at the bottom and leaves it at the top and not on the left or
right side, see Fig. 3.5. The integrals in (3.18) can then be evaluated leading

x0

t

xRxL

t2

t1

V

st1

st2

FIGURE 3.5: Control volume V used to derive the Rankine-
Hugoniot relation

to

u− (xd + s (t2 − t1)) + u+ (xR − xd − s (t2 − t1))
−u− (xd − xL)− u+ (xR − xd) + (F (u+)− F (u−)) (t2 − t1) = 0

Simplification leads to the Rankine-Hugoniot jump condition

s (u+ − u−) = F (u+)− F (u−) . (3.19)

They relate the jump of the conserved quantity u across a shock wave with
the propagation speed s and the jump of the fluxes over the discontinuity.
We will see later that this relation has the same structure for systems of con-
servation laws and in weak formulations.

Example 3.1.2. We want to consider the Burgers equation (3.3) again. It is the
simplest nonlinear equation and therefore the standard example for theoretical as well
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as numerical purposes. The flux is given by F(u) = 1
2 u2. The Rankine-Hugoniot

relation reads in this case

s (u+ − u−) =
(

1
2

u2
+ −

1
2

u2
−

)
.

The shock speed is then

s =
1
2
(u+ + u−)

In general, for a nonlinear PDE with Riemann initial data

PDE:
∂u
∂t

+
∂

∂x
f (u) = 0

IC: u(0, x) = u0(x) =
{

u−, if x < x0
u+, if x ≥ x0

(3.20)

where a(u−) > a(u+) is assumed, the solution of the IVP (3.20) is given by

u(t, x) =
{

u−, if x−x0
t < s,

u+, if x−x0
t ≥ s.

(3.21)

The shock speed s is here determined by the Rankine-Hugoniot relation (3.19).
The characteristic curves intersect, they run into each other and form a shock
wave. This situation is depicted in Fig. 3.6.

x

t

x0

s

FIGURE 3.6: Shock forming characteristic curves

3.1.6 Non-uniqueness and Lax entropy condition

We have seen in the subsection above that using the integral formulation of
our conservation law extends the set of possible solutions. The PDE formu-
lation itself only allows for sufficiently smooth solutions, unlike the integral
formulation. Solutions with discontinuities are allowed in this formulation
and they are a necessary tool for nonlinear conservation laws to overcome
the problem of multi-valued solutions. However, with the extension of the
set of possible solutions, the question of uniqueness appears naturally. One
has to find further conditions that single out a unique solution for a given
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IVP. To show the necessity of further conditions, we want to consider the
Burgers equation again.

Example 3.1.3. Consider the following IVP for the Burgers equation

PDE:
∂u
∂t

+ u
∂u
∂x

= 0

IC: u(0, x) = u0(x) =
{

0, if x < 0
1, if x ≥ 0

(3.22)

Since a(u−) = 0 < 1 = a(u+) we can find a rarefaction solution as shown in
Subsection 3.1.2. It is given by

u(t, x) =


0, if x

t < 0
x
t , if 0 ≤ x

t ≤ 1
1, if x

t > 1
(3.23)

This solution is based on the method of characteristics and satisfies the PDE in its
differential form. Since any solution that satisfies the PDE in its differential form
also satisfies the PDE in its integral form, it is also a solution of the integral form.
But we can construct another solution of the integral form, namely

u(t, x) =
{

0, if x
t < s

1, if x
t ≥ s , with s =

1
2

It is easily shown, that this a solution of (3.22). Using the integral conservation law
(3.17) over the space-time control volume V = [t1, t2] × [xL, xR], see Fig 3.5, we
obtain

xR − st2 − (xR − st1) +
1
2
(t2 − t1) = 0.

With s = 1
2 (u− + u+) = 1

2 this proves indeed that also the so-called rarefaction
shock solution satisfies the integral form of the conservation law. Hence, it is a
possible solution of our IVP (3.22). Both solutions are shown in Fig 3.7.

To solve the problem of non-uniqueness in the one dimensional scalar
case, we can make use of the famous Lax entropy condition [50]. According
to Lax, a solution is admissible if the following relation holds

a (u−) > s > a (u+)

This relation requires that the characteristic curves enter the shock wave from
both sides, or in other words, the shock is compressed from both sides. This
additional criterion singles out the physically correct solution. The relation is
nothing else than the second law of thermodynamics, stating that the math-
ematical entropy decreases over shocks (the physical entropy increases over
a shock). From the point of information entropy, the relation requires that no
new information is created by characteristics leaving the shock and hence the
second law is satisfied.
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(a) Rarefaction fan solution of Burgers equation

x
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s = 1

2

0

(b) Rarefaction shock solution of Burgers equation

FIGURE 3.7: The two possible solutions of (3.22).

Thus, for the example (3.22) only the rarefaction fan solution (3.23) shown
in Fig. 3.7(a) is physical admissible and therefore the unique solution to the
given IVP.
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3.2 Nonlinear hyperbolic systems

“The theory of the scalar balance law, in several spatial dimensions, has
reached a state of virtual completeness.” [16, page 175]. We refer the reader
to Chapter 6 in this book to get a survey of the existing scalar theory.

In contrast to this situation are systems of balance laws, even in one space
dimension. The theory here is far from being understood completely. The
successful treatment of the scalar case is based on L1 and L∞ estimates. Un-
fortunately, a similar approach is not possible for systems of conservation
laws. This loss of smoothness raises many difficulties, from adequate defin-
ing weak solutions to the problem of non-uniqueness. There are many dif-
ferent approaches to overcome these problems, vanishing viscosity limit or
the Lax condition in one space dimension, to name only a few. To formu-
late these criteria for singling out the correct physical solution turns out to be
very difficult in general. It is still an open and active field of research to find
existence and uniqueness results for systems of hyperbolic partial differential
equations.

This section presents many of the basic concepts of the theory of hyper-
bolic systems of conservation laws in one space dimension used later in this
work.

A general system of conservation laws in one space dimension is of the
following form

∂

∂t
u1(t, x) +

∂

∂x
f1 (u1(t, x), . . . , um(t, x)) = 0,

...
∂

∂t
um(t, x) +

∂

∂x
fm (u1(t, x), . . . , um(t, x)) = 0.

(3.24)

Again, t ∈ [0, tmax) ⊆ R≥0 denotes the time variable and x ∈ Ω ⊆ R the
space variable. We now have a set of unknowns ui : R × R → R called
conserved quantities and the functions fi : R→ R the (nonlinear) fluxes.

Using u = (u1, . . . , um) and f = ( f1, . . . , fm) we can write (3.24) in a com-
pact form

∂

∂t
u +

∂

∂x
f(u) = 0, (3.25)

with u : R×R→ U and f : U → Rm. Here, the open set U ⊆ Rm with u ∈ U
is the state space. The system (3.25) is completed with suitable initial data

u(0, x) = u0(x).
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If we assume the data to be sufficiently smooth we can make use of the
chain rule again and write the system in the quasi-linear form 3

∂

∂t
u + A(u)

∂

∂x
u = 0. (3.27)

The Matrix A(u) is the Jacobian of the fluxes f and thus given by

A(u) = Df(u) =


∂ f1
∂u1

· · · ∂ f1
∂um

...
...

∂ fm
∂u1

· · · ∂ fm
∂um

 (3.28)

with the eigenvalues λ1(u) . . . λm(u). The right eigenvectors {ri(u)}m
i=1 are

defined by
[A(u)− λi(u)I] ri(u) = 0, (3.29)

and correspondingly the left eigenvectors {li(u)}m
i=1 via

li(u) [A(u)− λi(u)I] = 0.

The eigenvalue λi(u) is called the i-th characteristic speed, compare with
the scalar conservation law, where the scalar quantity a(u) was the charac-
teristic speed. The pair (λi(u), ri(u)) determines the i-th characteristic field.
We will now give the very important definition of hyperbolicity for systems
of conservation laws.

Definition 3.2.1 (Hyperbolicity). The system (3.25) is hyperbolic at a point (t, x)
if the Jacobian A(u) has m real eigenvalues λ1(u) . . . λm(u) and a corresponding
set of m linearly independent right eigenvectors r1(u), ..., rm(u). If additionally the
eigenvalues λi(u) are all distinct, the system is called strictly hyperbolic.

For a hyperbolic system of conservation laws, one can find m left eigen-
vectors corresponding to the m right eigenvectors satisfying the bi-orthonormal
restriction

li(u) · rk(u) =
{

0, if i 6= k
1, if i = k .

We will comment briefly on the existence and uniqueness results for hyper-
bolic conservation laws later. Especially the assumption of strict hyperbol-
icity is a necessary ingredient for almost all results in this field. The strict

3 In general a system of first order partial differential equations of the form

∂u
∂t

+ A
∂u
∂x

+ B = 0 (3.26)

is called linear with constant coefficients if the entries aij of the matrix A are all constant and
the components bj of the vector B are also constant. If they depend on the time and space
variables, that is aij = aij(t, x) and bi = bi(t, x), the system is called linear with variable
coefficients. The system is still linear if B depends linearly on u. If the coefficient matrix
A = A(u) is a function of the vector of unknowns the system is called quasi-linear. For B = 0
it is called homogeneous, see [83].
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hyperbolicity assures many beneficial properties. For example, the eigenval-
ues and eigenvectors depend smoothly on u if the Jacobian is smooth and
strictly hyperbolic [28]. Even the solution may not depend continuously on
the initial data if the system is not strictly hyperbolic, as shown in [8]. In
Chapter 4 one can see how the lack of hyperbolicity of the considered model
creates numerous problems.

We will give another very significant definition for our work presented
here.

Definition 3.2.2 (Weak Hyperbolicity). The system (3.25) is weakly hyperbolic
at a point (t, x) if the Jacobian A(u) has m real eigenvalues λ1(u) . . . λm(u) but at
most m− 1 linearly independent right eigenvectors. Therefore, the Jacobian A(u) is
not diagonalizable.

Note, that this loss of hyperbolicity can be found under the name parabolic
degeneracy in older Literature, cf. Keyfitz [44], LeFloch [51], Tan [80] or War-
necke [2]. But the term weakly hyperbolic seems to be more adequate.

We have already seen in the case of a scalar conservation law that they
are distinguished by the mathematical properties of the flux function. If the
derivative of the flux function is constant the equation is called linear as for
example the linear advection equation with f (u) = au, a ∈ R. In the last
section we have already seen the Burgers equation with f (u) = u2/2 as an
example of a nonlinear convex flux (a(u) monotonically increasing).

The notion of linearity/nonlinearity of a scalar conservation law extends
to the case of systems in the form of a geometric relation of an eigenvector
and the gradient of the corresponding eigenvalue

Definition 3.2.3 (Genuinely Nonlinear/Linearly Degenerate). The i-th charac-
teristic field (λi(u), ri(u)) the system of conservation laws (3.25) is

• genuinely nonlinear iff

∇uλi(u) · ri(u) 6= 0 for all u ∈ U , (3.30)

• linearly degenerate iff

∇uλi(u) · ri(u) = 0 for all u ∈ U . (3.31)

It is a very important property that the notions of hyperbolicity, genuine
nonlinearity and linear degeneracy are independent of the chosen variables
in system (3.25). Let u = Φ(v) be at least a C1-diffeomorphism. System (3.25)
then becomes

∇vΦ(v)
∂v
∂t

+ A(Φ(v))∇vΦ(v)
∂v
∂x

= 0,

where ∇vΦ(v) is the Jacobian matrix of the given transformation u = Φ(v).
Using

B(v) = (∇vΦ(v))−1A(Φ(v))∇vΦ(v) (3.32)

we get
∂v
∂t

+ B(v)
∂v
∂x

= 0.
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Suppose, that the eigenvalues and associated right eigenvectors of the ma-
trix B(u) are denoted by µi(v) and r̄i(v), respectively. Regarding (3.32) as a
similarity transformation one immediately has

µi(v) = λi(u) and r̄i(v) = (∇vΦ(v))−1ri(Φ(v)).

Therefore, the following relation holds

∇uλi(u) · ri(u) = ∇uλi(Φ(v)) · ri(Φ(v))
= ∇uλi(Φ(v)) · ∇vΦ(v)r̄i(Φ(v))
= ∇vµi(v) · ri(Φ(v))

Due to this property, we can just transform a system of conservation laws into
the much simpler primitive variable form to study its characteristic fields.

3.2.1 Simple waves

In this subsection, we follow the presentation given in Evans [28]. To find
a solution to the system of conservation laws (3.25) we first search for a so-
lution having a particular form. Assume the solution having the following
structure

u(t, x) = v(w(t, x)),

with v : R → Rm and w : [0, ∞)×R → R. Solutions of this form are called
simple waves. Inserting this ansatz into (3.25) leads to

v̇(w)
∂

∂t
w + Df(v(w))v̇(w)

∂

∂x
w = 0. (3.33)

The task is now to determine the functions v and w. Equation (3.33) holds if
for some i ∈ {1, . . . , m} the function w solves

∂

∂t
w + λi(v(w))

∂

∂x
w = 0 (3.34)

and v solves
d
ds

v(s) = α(s)ri(v(s)). (3.35)

Here, α(s) ∈ R is a scaling factor, since the eigenvectors of A = Df are deter-
mined only up to a multiplicative constant. But it is convenient to normalize
the right eigenvector ri(v(s)) such that α(s) = 1.

The idea is now to solve (3.35) first. It is an ODE for the vector function v.
This equation gives rise to the following definition.

Definition 3.2.4 (Rarefaction wave curve). The i-rarefaction wave curveRi(u0)
is defined as the integral curve of the ODE-system{

v̇(s) = ri(v(s))
v(s0) = u0

, (3.36)
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where u0 ∈ Rm is a given fixed state.

From this definition we see immediately that the i-rarefaction wave curve
Ri is tangent to ri(v(s)) everywhere.

Having found a solution v of (3.35) the equation (3.34) may be regarded as
a scalar conservation law for w. We will rewrite this equation in the following
form

∂

∂t
w +

∂

∂x
fi(w) = 0, (3.37)

with the flux function given by

fi(s) :=
∫ s

0
λi(v(t))dt for s ∈ R.

Calculating the derivatives and using (3.36) leads to

f ′i (s) = λi(v(s)),
f ′′i (s) = ∇vλi(v(s)) · v̇(s) = ∇vλi(v(s)) · ri(v(s)).

(3.38)

Hence, the function fi will be

• convex, if
∇uλi(u) · ri(u) > 0 for all u ∈ U

• concave, if
∇uλi(u) · ri(u) < 0 for all u ∈ U

• linear, if
∇uλi(u) · ri(u) ≡ 0 for all u ∈ U

which should motivate Definition 3.2.3 and shows the analogy to the scalar
case, again.

Considering a general curve s→ v(s) the change of the eigenvalue along
this curve is given by

d
ds

λi(v(s)) = ∇vλi(v(s))v̇(s) = ∇vλi(v(s))ri(v(s)).

With regard to Definition 3.2.3, an eigenvalue is thus strictly monotone for
a genuinely nonlinear characteristic field and it is constant for a linearly de-
generated characteristic field along the curve v(s), which again highlights
the connection to the scalar case.
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3.2.2 The Riemann problem

The Riemann problem for a system of conservation laws is a specific IVP for
the system of conservation laws (3.25). It is given as

PDE:
∂

∂t
u +

∂

∂x
f(u) = 0

IC: u(0, x) =
{

u− for x < 0
u+ for x > 0 ,

(3.39)

with u = u(t, x) ∈ U and (t, x) ∈ (0, tmax) × R. As before u denotes the
vector of unknowns, U is the state space and the flux is given by a smooth
function f : U → Rm. The initial data consist of two constant states. We will
call the given vectors u− and u+ the left and right initial states. The initial
data are often called Riemann (initial) data.

The Riemann problem is the simplest non-trivial IVP for our system of
conservation laws. Its solution still exhibits all the classical nonlinear phe-
nomena. Its solution is not only of analytical interest but also a fundamen-
tal building block for numerical schemes. All Godunov-type finite volume
schemes require an analytical or approximate solution of the Riemann prob-
lem at each cell boundary. We will comment later on these details for numer-
ical approximations, see Chapter 5.

In the following subsections, we will present the fundamental concepts
used to find a solution to the Riemann problem (3.39). Therefore we have to
consider different strategies for the different wave types as before in the case
of a scalar hyperbolic equation.

3.2.3 Rarefaction waves and Riemann invariants

We first note that the Riemann problem for a system of conservation laws
(3.39) is invariant under the transformation (t, x) 7→ (αt, αx). A solution,
therefore, is invariant when the space and the time variable are scaled by the
same factor α, hence the name self-similar solutions. These solutions are of the
following form

u(t, x) = v(ξ) with ξ :=
x
t

, (3.40)

so with respect to the simple wave approach we set w(t, x) = ξ. Under this
ansatz the Riemann problem (3.39) as an initial value problem transforms
into a boundary value problem w.r.t. ξ

−v′(ξ)ξ + f(v(ξ))′ = 0
v(−∞) = v−
v(+∞) = v+.

Here, the prime denotes the derivative with respect to ξ. Concerning the sim-
ple wave ansatz, we can obtain the following important result immediately.
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Equation (3.34) reads

∂

∂t
w + λi(v(w))

∂

∂x
w = 0. (3.41)

In case of w(t, x) = x
t this is equivalent to

λi(v(ξ)) = ξ. (3.42)

We can now draw the important conclusion from the equations above that
the characteristic curves x(t) are straight lines, i.e. curves on which the so-
lution is constant. Following the method of characteristics, these curves are
defined by

dx
dt

= λi(v(ξ)) = ξ, (3.43)

where the index i denotes the number of the characteristic field under consid-
eration. If we fix the value of ξ, the variable v(ξ) and the eigenvalue λi(v(ξ))
are constant. In the case of a simple centered rarefaction wave, the solution
is thus constant along the characteristic curves. This can also be seen from
equation (3.41) with (3.43)

dw
dt

(t, x(t)) =
∂

∂t
w +

dx
dt

∂

∂x
w = 0.

We now want to analyze the ansatz (3.40) with regard to Definition 3.2.3,
i.e. the distinction between genuinely nonlinear and linearly degenerated
fields. Plugging the ansatz (3.40) into the PDE of (3.39) and using ∂

∂t = −
ξ
t

d
dξ

and ∂
∂x = 1

t
d

dξ leads to

− ξ

t
v′(ξ) + Df(v(ξ))

1
t

v′(ξ) = 0. (3.44)

Note again that the smoothness of the solution is of utter importance in this
case to use the chain rule. The term Df(u) = A(u) = ∂f(u)

∂u is the Jacobian
matrix of the flux function f(u) as before. Equation (3.44) can be rewritten in
the following form by multiplying with t

[A(v)− ξI] v′(ξ) = 0, (3.45)

This relation strongly reminds us of equation (3.29) for the right eigenvec-
tors as part of the definition of hyperbolicity of the system (3.25). The trivial
solution of (3.45) is

v′(ξ) = 0.

Nontrivial solutions are obtained for the case where ξ is an eigenvalue of
A and v′ is parallel to the eigenvector of A, i.e when there exists an i ∈
{1, 2, . . . , m} such that

λi(v(ξ)) = ξ and v′(ξ) = α(ξ)ri(v(ξ)).
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Here α(ξ) can be either seen as the amplitude of the vector v(ξ) or an appro-
priate scaling factor since the eigenvectors of A are only determined up to a
multiplicative constant as before. In either way, it is possible and convenient
to normalize the right eigenvector ri(v(ξ)) such that α(ξ) = 1. This leads to

λi(v(ξ)) = ξ and v′(ξ) = ri(v(ξ)). (3.46)

Thus from the first relation in (3.46), we obtain

dλi(v(ξ))
dξ

= ∇vλi(v(ξ)) · v′(ξ) = 1. (3.47)

Finally, inserting the second relation of (3.46) leads to

∇vλi(v(ξ)) · ri(v(ξ)) = 1,

which implies that the i-th characteristic field is genuinely nonlinear. Note,
that by the second relation of (3.46) the self-similar solution v(ξ) is the inte-
gral curve along the field ri(v(ξ)). In view of Definition 3.2.4 the i-rarefaction
wave curveRi(v0) is given by{

v′(ξ) = ri(v(ξ))
v(ξ0) = v0.

We have shown that the i-th characteristic field is genuinely nonlinear and
determined the i-rarefaction wave curve. These properties allow us to for-
mulate the following theorem, motivated by the presentation given in Evans
[28].

Theorem 3.2.1 (Existence of i-rarefaction waves). Suppose that for some i ∈
{1, 2, . . . , n}

(i) the i-th characteristic field (λi(u), ri(u)) is genuinely nonlinear and

(ii) u+ ∈ Ri(u−) with λi(u−) ≤ λi(u+).

Then there exists a continuous integral solution u of the Riemann problem (3.39),
which is an i-simple wave that is constant along the lines through the origin.

Proof. Choose w−, w+ ∈ R such that

u− = v(w−) and u+ = v(w+).

We will first consider the case w− < w+. Then one has to solve the Riemann
problem (3.37), that is

∂

∂t
w +

∂

∂x
fi(w) = 0,

together with the initial data

w0(x) =
{

w− if x < 0,
w+ if x ≥ 0.
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From (ii) we have λi(u−) ≤ λi(u+) and according to (3.38) this is equivalent
to f ′i (w−) < f ′i (w+). Together with condition (i) this implies the convexity
of fi. Thus we have a scalar Riemann problem with a convex flux function,
compare to (3.13). The unique solution is therefore given by (3.15), which is
a continuous rarefaction wave connecting the states w− and w+. In this case
it is

w(t, x) =


w− if x

t < λi(v(w−)),
root of λi(v( x

t ))−
x
t = 0 if λi(v(w−)) ≤ x

t ≤ λi(v(w+)),
w+ if x

t > λi(v(w+)).

Therefore u(t, x) = v(w(t, x)) with v being an integral curve of the ODE-
system (3.35) passing through u− is a solution. It is a continuous solution of
the Riemann problem (3.39). The case w− > w+ is treated analogously.

Now we have seen how one can determine the solution connecting ap-
propriate states u− and u+ along a rarefaction wave curve. This solution
is constant along lines through the origin. However, to solve the Riemann
problem, we need some relations across the different wave structures. In the
case of a rarefaction wave, we therefore search for some relations across the
rarefaction wave. We already know that the rarefaction wave curve connects
the states u− and u+ across a rarefaction. One very successful ansatz is given
by the following definition of Riemann invariants. The idea is to find func-
tions with advantageous properties along the rarefaction wave curveRi.

Definition 3.2.5 (Riemann Invariants). An i-th Riemann invariant is a smooth
function ωi : U → R such that

∇uω(u) · ri(u) = 0 for all u ∈ U . (3.48)

The gradient of the function ωi(u) is therefore perpendicular to ri(u).
With regard to Definition 3.2.4 of the rarefaction wave curve this is equiv-
alent to the very important statement that ωi is constant on the rarefaction
wave curveRi(u−). Indeed we have

d
dξ

ωi(v(ξ)) = ∇uω(u) · v′(ξ) = ∇uω(u) · ri(u) = 0,

due to the definition above. Thus one can say that an i-th Riemann invariant
is constant across a simple wave. Smoller [78] used this result as the defining
property for simple waves and reversed the argumentation given here.

Note that in general, for m > 2, Riemann invariants do not have to exist,
see Evans [28]. Only in the strictly hyperbolic case can one guarantee to find
m− 1 Riemann invariants for characteristic fields that are genuinely nonlin-
ear or linearly degenerated. The gradient of a Riemann invariant belongs to
the m − 1 dimensional subspace orthogonal to the span of the eigenvector
ri(u), see (3.48). Therefore one can find m− 1 i-th Riemann invariants with
linearly independent gradients. The proof can be found e.g. in Smoller [78].
We will not present the proof here and rather turn our attention to finding
these Riemann invariants.
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In case of a linearly degenerated field one can find a Riemann invariant
immediately. Using the definition of linear degeneracy, see Definition 3.2.3

∇uλi(u) · ri(u) = 0, (3.49)

we see that the characteristic speed λi is an i-th Riemann invariant.
In general, one can use the Equation (3.35) or, more specifically, in case of

a rarefaction wave Equation (3.46)

d
dξ

v(ξ) = ri(v(ξ)) (3.50)

to find Riemann invariants. We will show how this can be done in the fol-
lowing example. There is no general method of solving that equation, as
this comes down to knowing how to integrate all the differential equations.
But in some applications, separation of variables, homogeneity properties or
considerations of symmetry enable us to set up an explicit list of Riemann
invariants.

Example 3.2.1 (Isothermal Compressible Gas Dynamics). The governing PDE
system consists of the conservation equation of mass and momentum for the fluid

∂

∂t
ρ +

∂

∂x
(ρu) = 0

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0.

Here, ρ is the mass density of the fluid, u is the velocity and p = a2ρ is the pressure
according to the isothermal hypothesis. An equation for the energy conservation is
absent which is due to the isothermal property. The nonlinear PDE system can be
rewritten as

∂q
∂t

+
∂

∂x
f(q) = 0, q, f ∈ R2, t ∈ R+

0 , x ∈ R

where we have deliberately chosen the vector of conserved variables to be q and not
u as usual to avoid confusion with the velocity u. The conserved variables and flux
vector are defined as

q =

(
ρ

ρu

)
=

(
q1
q2

)
, f =

(
ρu

ρu2 + p

)
=

(
q2

q2
2/q1 + a2q1

)
.

One may verify that the Jacobian matrix A of the flux f with respect to the vector of
conserved variables q is given by

A =

(
0 1

−q2
2/q2

1 + a2 2q2/q1

)
=

(
0 1

a2 − u2 2u

)
.
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The diagonal matrix of eigenvalues is Λ = diag(u− a, u+ a) and the corresponding
matrix of right eigenvectors

R =

(
1 1

u− a u + a

)
.

We find that the associated characteristic fields for both eigenvalues are genuinely
nonlinear since

∇qλ1,2 = ∇q(u∓ a) =
∂

∂q
(q2/q1 ∓ a)

=
(
−q2/q2

1, 1/q1

)T
= (−u/ρ, 1/ρ)T.

(3.51)

This leads to
∇qλ1,2 · r1,2 = (−u/ρ, 1/ρ)T · (1, u∓ a)T

= ∓a/ρ 6= 0, ∀Q ∈ ΩQ.
(3.52)

These nonlinear waves associated with both eigenvalues can be either a shock wave
satisfying the Lax entropy condition in case of compression of the characteristics or
else a centered rarefaction wave.

Let us now consider the first characteristic field λ1 = u− a to be a centered rar-
efaction wave. We can then calculate the Riemann invariants using relation (3.50).
Keep in mind that in the simple wave ansatz we set q(t, x) = v(ξ). With the vector
of unknowns q and the eigenvector r1 given above we get

d
dξ

v(ξ) = r1(v(ξ)), ⇒ d
dξ

(
ρ

ρu

)
=

(
1

u− a

)
.

This leads to the following two relations

dρ

dξ
= 1,

d
dξ

(ρu) = u
dρ

dξ
+ ρ

du
dξ

= u− a.

From the first relation we get

ρ∫
ρ−

dr =
ξ∫

0

ds, ⇒ ρ(ξ) = ρ− + ξ.

Using the first relation the second one is

d
dξ

(ρu) = u + ρ
du
dξ

= u− a, ⇒ du
dξ

= − a
ρ

.
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Hence, we get

u∫
u−

du =

ξ∫
0

− a
ρ(s)

ds =
1∫

0

− a
ρ− + ξ

dξ

⇒ u(ξ)− u− = −a (ln(ρ(ζ))− ln(ρ−))

⇒ u(ζ) = u− + a ln
ρ−

ρ(ζ)
.

From this equation we can derive the Riemann invariant for isothermal gas dynamics

u(ξ) + a ln(ρ(ξ)) = u− + a ln(ρ−) := w1
1 = const. (3.53)

This relation holds across the λ1-wave. Here, we used the notation wk
j to denote the

k-th Riemann invariant associated with the j-th characteristic field. Note, that in
general for a system of m equations, relation (3.50) gives rise to m− 1 Riemann in-
variants. Hence, in this example, we get one Riemann invariant for each rarefaction
wave.

Along the characteristic curves associated with the eigenvalue λ1 we have ξ =
λ1 = u− a. Together with equation (3.53) we can calculate the primitive variables
in a particular point ξ along the characteristic curves inside the rarefaction fan as

u = a + ξ and ρ = ρ− exp
(

u− − u
a

)
. (3.54)

We will make use of these techniques later in Chapter 4 to determine the
solution to the system of conservation laws considered in the case of rarefac-
tion waves. To calculate the Riemann invariants, we will not use equation
(3.50) but instead the following so-called generalized Riemann invariants, see
Jeffrey [42].

Definition 3.2.6 (Generalized Riemann Invariants). Let (λi, ri) be the i-th char-
acteristic field of a general hyperbolic system of m conservation laws (3.25). The i-th
generalized Riemann invariants are the m− 1 ordinary differential equations

du1

r(i)1

=
du2

r(i)2

=
du3

r(i)3

= · · · = dum

r(i)m

, (3.55)

where u = (u1, u2, . . . , um)T is the vector of dependent variables in some suitable
set, which may be the set of conserved variables or primitive variables and ri =

(r(i)1 , r(i)2 , . . . , r(i)m ) the right eigenvector of the i–characteristic field.

The most important observation is that the concepts of Riemann invari-
ants and generalized Riemann invariants are absolutely identical. This can
easily be seen by expressing the generalized Riemann invariants in terms of
a parameter ξ and thus writing them in the form

du1

r(i)1

=
du2

r(i)2

=
du3

r(i)3

= · · · = dum

r(i)m

= dξ.
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One can then calculate the uj in terms of ξ by integrating the system

duj

dξ
= r(i)j , j = 1, . . . , m.

Note that this system is identical to equation (3.50) and we have calculated q
in Example 3.2.1 using this relation. The name generalized Riemann invariants
appeared because Jeffrey [42] introduced the Riemann invariants in the case
of 2× 2 systems and then generalized this idea to m×m systems of conser-
vation laws.

As the final part of this section, we want to go back to isothermal gas
dynamics. We want to show how the variable transformation to primitive
variables is done and how it simplifies the calculations, especially of the Rie-
mann invariants. In this simple example, one might barely spot the simplifi-
cation in contrast to the system of conservation laws under consideration in
Chapter 4.

Example 3.2.2 (Isothermal Compressible Gas Dynamics revisited). Again, the
system of isothermal compressible gas dynamics is given by

∂

∂t
ρ +

∂

∂x
(ρu) = 0,

∂

∂t
(ρu) +

∂

∂x

(
ρu2 + p

)
= 0.

Since, up to this point, we are only looking for smooth solutions, we can use the
product rule of differentiation on this system of conservation laws. This leads to

∂

∂t
ρ + u

∂

∂x
ρ + ρ

∂

∂x
u = 0,

ρ
∂

∂t
u + u

∂

∂t
ρ + u

∂

∂x
(ρu) + ρu

∂

∂x
u +

∂

∂x
p = 0.

We can then rewrite the second equation as

ρ
∂

∂t
u + u

(
∂

∂t
ρ +

∂

∂x
(ρu)

)
︸ ︷︷ ︸

=0

+ρu
∂

∂x
u +

∂

∂x
(a2ρ) = 0

⇒ ρ

(
∂

∂t
u + u

∂

∂x
u +

a2

ρ

∂

∂x
ρ

)
= 0.

where we have used the equation of state p = a2ρ. Hence, we can write the system in
the following quasi-linear primitive variable form with q = (ρ, u)T being the vector
of primitive variables

∂

∂t

(
ρ
u

)
+

(
u ρ

a2/ρ u

)
· ∂

∂x

(
ρ
u

)
= 0.
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The eigenvalues are therefore given as λ1 = u− a and λ2 = u + a with the corre-
sponding eigenvectors

r1 =

(
ρ
−a

)
and r2 =

(
ρ
a

)
.

Again, we get that the characteristic fields are genuinely nonlinear, see (3.51) and
(3.52)

∇qλ1,2 · r1,2 = (−u/ρ, 1/ρ)T · (1, u∓ a)T

= ∓a/ρ 6= 0, ∀Q ∈ ΩQ.

If we assume the λ1-wave to be a rarefaction wave we can immediately calculate the
generalized Riemann invariants without going through all the details in the simple
wave ansatz. The generalized Riemann invariant here reads

dq1

r(i)1

=
dq2

r(i)2

⇒ dρ

ρ
=

du
−a

,

which can be integrated without any further problem

v + a ln ρ = const. (= v− + a ln ρ−) .

Since we know the left state from the initial condition, we can determine the value of
this Riemann invariant.
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3.2.4 Shock waves and contact discontinuities

In this subsection we want to turn our attention to the cases we have not
considered yet, namely λi(u−) > λi(u+) and λi(u−) = λi(u+).

In a first attempt, we would like to use the theory developed so far in
these cases, too. Therefore we will start from the simple wave ansatz

u(t, x) = v(w(t, x)),

with v : R→ Rm and w : [0, ∞)×R→ R, again. We have already seen that
this leads to a scalar equation for w, see equation (3.34)

∂w
∂t

+ λi(v(w))
∂w
∂x

= 0,

w(0, x) = w0(x).
(3.56)

Since we already know that characteristics are straight lines and the solution
is constant along them, we can solve this transport equation immediately and
the function w only depends on the choice of the initial data w0

w(t, x) = w0(x− λi(v(t, x))t).

Let us assume the i-th characteristic field to be genuinely nonlinear. With
proper rescaling, we get

d
dw

λi(v(w)) = ∇vλi(v(w)) · v′(w) = 1,

compare to equation (3.47). Thus, adapting the initial function w0, we can get

λi(v(w)) = w. (3.57)

Hence, equation (3.56) becomes the Burgers equation, which reads

∂w
∂t

+ w
∂w
∂x

= 0.

Our aim is to solve the Riemann problem with the initial states u− and u+.
With regard to (3.57) we have for the initial function w0

w0(x) =
{

λi(u−) if x < 0,
λi(u+) if x ≥ 0.

But from Section 3.1 we already know the solution of the Burgers equation in
the case λi(u−) > λi(u+) is given by a discontinuous shock

w(t, x) =
{

λi(u−) if x
t < s,

λi(u+) if x
t ≥ s,

with s = λi(u−)+λi(u+)
2 being the shock speed, see Example 3.1.2. Conse-

quently, in case of Riemann initial states u− and u+ they can not be connected
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by a continuous i-simple wave. As we will see, they form a discontinuous
shock.

Let us now consider the case that the i-th characteristic field is linearly
degenerate. As we have seen in the previous subsection, see (3.49), in this
case the eigenvalue λi is a Riemann invariant itself, i.e. λi(u−) = λi(u+).
Along the i-simple wave the eigenvalue λi(u) is thus constant. As before,
the characteristic curves are straight lines. Since the eigenvalue is constant
these are parallel lines x − λit. The corresponding solution would then be
given as

u(t, x) = v(w0(x− λi(v(t, x))t)).

Obviously, the two states u− and u+ cannot be connected by a continuous
i-simple wave if the initial data are discontinuous.

Again, as in the scalar case, we have to turn at least to the integral form of
conservation laws to describe discontinuous solutions. For later purposes we
would like to extend this idea even further to the so-called weak formulation,
see for example [16, 78] or [89]. Therefore, let us start with a general initial
value problem of a system of conservation laws

∂

∂t
u(t, x) +

∂

∂x
f(u(t, x)) = 0,

u(0, x) = u0(x),
(3.58)

with (t, x) ∈ (0, tmax)×R.
Following the presentation given in Smoller [78] we assume for the moment
that u is a classical solution of (3.58). We will now multiply this equation with
a smooth test function with compact support, that is φ ∈ [C∞

0 ([0, tmax)×R)]m,
and integrate over a domain D. Since φ has compact support we can find a
suitable large enough rectangle D = {(t, x) ⊆ R≥0 ×R : 0 ≤ t ≤ tmax, a ≤
x ≤ b} such that φ vanishes outside of the domain D and on the lines
t = tmax, x = a and x = b. Multiplying (3.58) with φ and integrating over
t > 0 gives∫∫

t>0

(
∂

∂t
u +

∂

∂x
f(u)

)
·φ dxdt =

∫∫
D

(
∂

∂t
u +

∂

∂x
f(u)

)
·φ dxdt

=

tmax∫
0

b∫
a

(
∂

∂t
u +

∂

∂x
f(u)

)
·φ dxdt = 0.
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Integrating by parts leads to

tmax∫
0

b∫
a

(
∂

∂t
u
)
·φ dxdt =

b∫
a

u ·φ
∣∣∣∣t=tmax

t=0
dx−

tmax∫
0

b∫
a

u ·
(

∂

∂t
φ

)
dxdt

=

b∫
a

−u0(x) ·φ(0, x) dx−
tmax∫
0

b∫
a

u ·
(

∂

∂t
φ

)
dxdt,

and

tmax∫
0

b∫
a

(
∂

∂x
f(u)

)
·φ dxdt =

tmax∫
0

f(u) ·φ
∣∣∣∣x=b

x=a
dt−

tmax∫
0

b∫
a

f(u)·
(

∂

∂x
φ

)
dxdt.

Summing up these relations, we finally get

tmax∫
0

b∫
a

(
u · ∂

∂t
φ + f(u) · ∂

∂x
φ

)
dxdt +

b∫
a

u0(x) ·φ(0, x) dx = 0. (3.59)

So in case of u being a classical solution, equation (3.59) holds for all φ ∈
[C∞

0 ([0, tmax)×R)]m. Since φ vanishes outside of D we can integrate over
the whole (t, x)-plane. Furthermore, equation (3.59) makes sense for a much
broader class of functions. Thus, we give the following definition.

Definition 3.2.7 (Weak Solution). A measurable and bounded function u : (0, tmax)×
R→ Rm is called a weak solution of (3.58) if it satisfies

tmax∫
0

∞∫
−∞

(
u · ∂

∂t
φ + f(u) · ∂

∂x
φ

)
dxdt +

∞∫
−∞

u0(x) ·φ(0, x) dx = 0, b (3.60)

for every test function φ ∈ [C∞
0 ([0, tmax)×R)]m.

It is easy to verify that when u satisfies (3.60) and is at least continuously
differentiable, it is a classical solution, too. One can perform integration by
parts and one gets ∫∫

t>0

(
∂

∂t
u +

∂

∂x
f(u)

)
φ dxdt = 0,

which leads to
∂

∂t
u +

∂

∂x
f(u) = 0,

due to the arbitrariness of φ. One also has to check for the initial condition.
Therefore one can multiply this last equation by φ and integrate by parts
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again ∫∫
t>0

(
u · ∂

∂t
φ + f(u) · ∂

∂x
φ

)
dxdt +

∫
t=0

u(0, x) ·φ(0, x) dx = 0.

Comparing with (3.59) gives∫
t=0

(u(0, x)− u0(x))φ(0, x) dx = 0, (3.61)

which gives u(0, x) = u0(x), again due to the arbitrariness of φ and since u0
is assumed to be continuous. Therefore, Definition 3.2.7 is an actual general-
ization of the classical notion of solutions.

Assume now the situation where we have a region D ⊂ (0, tmax)×R and
let x = x(t) be a smooth curve dividing D into the two regions D− and D+.
Further, let u be a smooth solution in D− and D+, i.e. the equation (3.58)
holds there respectively. Moreover suppose that u has a jump discontinuity
across x = x(t) and both one-sided limits u− = u(t, x(t) − 0) and u+ =
u(t, x(t) + 0) are well defined. With φ being a test function with compact
support inD and not necessarily vanishing on x = x(t) we get from equation
(3.60)

0 =
∫∫
D

(
u · ∂

∂t
φ + f(u) · ∂

∂x
φ

)
dxdt

=
∫∫
D−

(
u · ∂

∂t
φ + f(u) · ∂

∂x
φ

)
dxdt +

∫∫
D+

(
u · ∂

∂t
φ + f(u) · ∂

∂x
φ

)
dxdt.

Integrating by parts and using the divergence theorem leads to∫∫
D−

(
u · ∂

∂t
φ + f(u) · ∂

∂x
φ

)
dxdt =−

∫∫
D−

(
∂

∂t
u +

∂

∂x
f(u)

)
·φ dxdt

+
∫

∂D−

(
uν(1) + f(u)ν(2)

)
·φ dl.

Here ν =
(

ν(1), ν(2)
)

is the outer unit normal of the boundary ∂D−. Since
u is a smooth solution in D− and φ = 0 on ∂D the integral is only non zero
along the curve x = x(t), giving∫

∂D−

(
uν(1) + f(u)ν(2)

)
·φ dl =

∫
x=x(t)

(
u−ν(1) + f(u−)ν(2)

)
·φ dl.
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Analogously, for the region D+ we get∫
∂D+

(
uν(1) + f(u)ν(2)

)
·φ dl = −

∫
x=x(t)

(
u+ν(1) + f(u+)ν

(2)
)
·φ dl,

with −ν being the outer unit normal of the boundary ∂D+. Hence, we get

0 =
∫

x=x(t)

[
(u+ − u−) ν(1) + (F (u+)− F (u−)) ν(2)

]
·φ dl.

Since this equation holds for all smooth test functions φ we get

0 = (u+ − u−) ν(1) + (F (u+)− F (u−)) ν(2).

But for a given parametrization (t, x(t)) of the discontinuity the specific unit
normal to this curve is given by ν = (−x′(t), 1)/

√
1 + (x′(t))2. Denoting

the propagation speed of the discontinuity as σ = x′(t) we finally obtain the
Rankine-Hugoniot jump conditions

Jf(u)K = σJuK, (3.62)

where we have used the jump bracket JuK = u+ − u−. We have thus shown
that not every discontinuity is permissible. Indeed, equation (3.60) implies
the Rankine-Hugoniot relations, which are restrictions on the possible curves
of discontinuity. In analogy to the rarefaction wave curve, we now define the
so called shock curve

Definition 3.2.8 (Shock wave curve). For a given state u0 we define the shock set
by

S(u0) = {u | σ (u− u0) = (F (u)− F (u0))}.
The i-th shock wave curve is then given by

Si(u0) = S+i (u0) ∪ {u0} ∪ S−i (u0),

where S+i (u0) and S−i (u0) are defined as

S+i (u0) = {u ∈ S(u) | λi(u0) < σ < λi(u)},
S−i (u0) = {u ∈ S(u) | λi(u) < σ < λi(u0)}.

Nonetheless, like in the scalar case, the Rankine-Hugoniot relations are in-
sufficient to single out a unique solution. The physical solution is determined
by an additional entropy criterion coming from the second law of thermody-
namics. We therefore give the following definition.

Definition 3.2.9 (Shock wave). Let the i-th characteristic field (λi(u), ri(u)) of
the system of conservation laws (3.25) be genuinely nonlinear and u+ ∈ Si(u−).
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The discontinuous function

u(t, x) =
{

u− if x < σt,
u+ if x ≥ σt,

is called an i-shock wave when satisfying the following entropy inequalities

λi(u+) < σ < λi+1(u+),
λi−1(u−) < σ < λi(u−),

(3.63)

which are also called Lax entropy conditions. This implies that u+ ∈ S−i (u−) has
to hold for physical relevant solutions.

The inequalities (3.63) imply the following inequality often called Lax en-
tropy condition as well

λi(u+) < σ < λi(u−). (3.64)

This criterium is often used and sufficient for many cases to single out the
unique physical solution. Also in the following chapter, relation (3.64) will
be sufficient to find a unique solution for the system of conservation laws
considered there. In general, the task of picking the unique physical solution
is far from trivial. The theory of entropy criteria is very rich and complex,
see for example Liu [56] who extended the notion of Lax entropy conditions
or the Dafermos entropy rate admissibility criterion [14]. It states that not
only should the physical entropy increase, but in fact, it should be increasing
at the maximum rate allowed by the balance laws of mass, momentum and
energy. Since these concepts are not necessary for the work presented, we
will not give any details here.

We will now turn to the last case, namely the i-th characteristic field being
linearly degenerate.

Definition 3.2.10. Let the i-th characteristic field (λi(u), ri(u)) of the system of
conservation laws (3.25) be linearly degenerate and u+ ∈ Si(u−). The discontinu-
ous function

u(t, x) =
{

u− if x < σt,
u+ if x ≥ σt,

is called a contact discontinuity with

σ = λi(u+) = λi(u−).

The rarefaction waves, shock waves and contact discontinuities are the elemen-
tary waves of the system of conservation laws (3.25). These concepts can be
directly applied to the quasi-linear system (3.27), too.
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3.2.5 General existence and uniqueness results

The classical theorem of Kruzhkov [46] provides an estimate of the L1 dis-
tance between any two bounded entropy-admissible solutions of the scalar
conservation law in one space dimension. In particular, it guarantees the
uniqueness of the entropy solution of the Cauchy problem within a class of
L∞ functions. In his work, he also established the convergence of the method
of vanishing viscosity.
For the existence problem of a single scalar conservation law, there are at least
five different methods: Hamilton-Jacobi theory, viscosity methods, nonlinear
semigroup theory, the layering method and the method of characteristics.
The latter we partly presented above. An excellent introduction to the first
three methods can be found in Serre [73], the layering method can be found
in Dafermos [16].
The uniqueness in the method of Kruzhkov is the consequence of a mono-
tonic property of the flux function. But such a property does not longer exist
if one considers systems instead of scalar equations. Therefore the question
of uniqueness no longer has a general answer. One alternative method to
approach the problem is given by the duality method of Holmgren. Even
though it was shown that this method could not work for a broad class of sys-
tems, it has given several interesting results. An introduction to this method
for a single conservation law can be found in the work of Oleinik [68].

Let us now consider systems of conservation laws. In the previous sub-
sections we have shown how to determine the elementary waves for a single
characteristic field (λi(u), ri(u)). Let us assume now that the system of con-
servation laws under consideration is strictly hyperbolic, that is the matrix
A(u) = Df(u) of the quasi-linear system

∂

∂t
u + A(u)

∂

∂x
u = 0. (3.65)

has n distinct real eigenvalues and is diagonalizable, compare to Definition
3.2.1. One of the most important existence result can be found in the very
fundamental paper of Lax [50]. For given states u− and u+ sufficiently close
to each other the Riemann problem (3.39) has a weak solution of at most
m + 1 constant states uk, k = 0, . . . , m separated by elementary waves, that is
rarefaction waves, shock waves or contact discontinuities.

However, the proof of the whole construction of a solution consisting out
of constant states separated by waves and determined by the intersection of
the adjacent wave curves breaks down in the case of a non strictly hyperbolic
system.

This result was then extended to large total variation of the initial data by
Nishida and Smoller [67]. In the case of arbitrary L∞ data, the problem was
solved in the case of the 2× 2 p-system in one space dimension by Chen et
al. [9]. Other essential works on the Riemann problem for conservation laws
are due to Dafermos [14, 15], Liu [56, 57] and many others.
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Studying the theory of systems of conservation laws, one of the most im-
portant results concerning the Cauchy problem in one space dimension is
obtained using Glimm’s scheme, see [29]. It is formulated as a convergence
theorem of approximate solutions and assures the existence of a weak solu-
tion to the given Cauchy problem. The sequence of solutions converges in
general but not necessarily to a weak solution when a particular sequence is
chosen. The convergence to a weak solution is linked to a random property of
the sequence of approximate solutions, hence the name random choice method.
As in the case of Lax’s theorem, the initial data of the Riemann problem need
to be sufficiently close to each other since the proof uses the concept of in-
variant regions and in general, for systems of at least three equations, there
does not exist an invariant compact domain for the Riemann problem, see
Serre [74, Chapter 8]. The proof of Glimm’s theorem is also based on Helly’s
theorem for the space of functions of bounded variation. This makes general-
izations to higher space dimensions very problematic [69]. Nonetheless, the
Glimm scheme is one of the only schemes at our disposal for which we have
a convergence and therefore an existence theorem in one space dimension.
Although the Glimm scheme is a general existence result, we cannot make
use of it. To construct a global solution, it uses Lax’s theorem for the local
solution and therefore needs the system under consideration to be strictly
hyperbolic. As we will show in the next chapter, the system under consider-
ation in this work is only weakly hyperbolic.

For initial states sufficiently close to each other, there is one more global
existence result of the Cauchy problem for systems of conservation laws
based on the so called front-tracking algorithm by Bressan [6]. For an introduc-
tion to this method, the reader is referred to the textbook of Bressan, see [7].
However, again, to keep track of the wave-fronts, one of the crucial require-
ments for the system of conservation laws under consideration is that it is
strictly hyperbolic. Therefore, it is not suited to treat the system under con-
sideration in this work.

Since we can not use any of the existence and uniqueness results for the
Cauchy problem, we will only use the methods presented before in this chap-
ter. Due to the lack of a general theory, we will consider Riemann problems
only and not more general initial data. We will analyze the elementary wave
structure and use Riemann invariants and Rankine-Hugoniot jump condi-
tions to get a nonlinear system of equations connecting the initial states to
each other. We then have to find a solution to these nonlinear systems to
provide a solution. To guarantee the uniqueness of a solution, we have to
impose some restrictions on the initial data and parameters in the equations
of state. This work is carried out in detail in the next chapter for different
cases of initial data.
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4
Analytical Results for the Two-Phase Flow Model

In this chapter, we present the main analytical results of this work. We try
to find an analytic solution of the Riemann problem for the isothermal two-
phase flow model (2.5). The techniques and basic concepts introduced in the
last chapter will be used. As we already mentioned in Section 2.2 the first
four equations describing the dispersed phase decouple from the last two
equations, which describe the carrier phase mass and momentum. Therefore,
our strategy is to solve the Riemann problem for the dispersed phase equa-
tions separately at first. We start with the analysis of the quasi-linearized
equations to determine the wave structure and the characteristic fields. This
chapter is based on the publications [34, 35] and extends the presentation of
the results therein.

4.1 The dispersed phase equations

As mentioned before, the first four equations of (2.5) can be decoupled from
the rest of the system since they do not depend on the carrier phase quanti-
ties. Therefore we study as a first step the solution to the Riemann problem
for the following subsystem of (2.5)

∂c
∂t

+
∂

∂x
(c v) = 0,

∂c ρ

∂t
+

∂

∂x
(c ρ v) = 0,

∂c ρ v
∂t

+
∂

∂x

(
c ρ v2

)
= 0, (4.1)

∂c R
∂t

+
∂

∂x
(c R v) = 0,

together with the piecewise constant initial data

(c, ρ, v, R) (t = 0, x) =
{

(c−, ρ−, v−, R−) for x < 0,
(c+, ρ+, v+, R+) for x > 0. (4.2)
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4.1.1 Linear analysis of the dispersed phase equations

We introduce the vector u of primitive variables defined by u = (c, ρ, v, R)T.
For smooth solutions we use the product rule of differentiation on the system
(4.1) to obtain the equivalent system

∂c
∂t
+v

∂c
∂x

+c
∂v
∂x

=0,
∂ρ

∂t
+v

∂ρ

∂x
=0,

∂v
∂t

+v
∂v
∂x

=0,
∂R
∂t

+v
∂R
∂x

=0. (4.3)

This gives us the quasi-linear form of our system as

∂u
∂t

+ A(u)
∂u
∂x

= 0, A(u) =


v 0 c 0
0 v 0 0
0 0 v 0
0 0 0 v

 . (4.4)

At this point, we want to remind the reader of Definition 3.2.2, which
states that a first-order system of partial differential equations is said to be
weakly hyperbolic if the matrix A of the quasi-linear form has all eigenvalues
in the real numbers but does not possess a complete set of eigenvectors.

The matrix A in (4.4) has the repeated eigenvalue λ = v of multiplicity
four and only three linearly independent right eigenvectors r1, r2, r4 as well
as the generalized eigenvector r3 where

r1 =


1
0
0
0

 , r2 =


0
1
0
0

 , r4 =


0
0
0
1

 , and r3 =


0
0
1
0

 .

The weak hyperbolicity corresponds to the fact that the first and third equa-
tions cannot be decoupled by a linear transformation of the primitive state
variables.

The last three equations form a proper hyperbolic system. The third one
is the Burgers equation and can be solved in conservative form completely
independently of the other equations. For the then given v, the second and
fourth equations are linear advection equations with a variable, possibly dis-
continuous coefficient. In the case of a discontinuous velocity, we see that the
first equation would involve a derivative of this velocity. This leads, as we
will see, to solutions with singular measures.

Note that the conservative system (4.1) is fully coupled and both systems,
the reduced one above and the full model, are weakly hyperbolic. The con-
servative form (4.1) is relevant for the mathematical treatment of discontinu-
ous solutions.

It is also clear that the characteristic fields are linearly degenerate since
the gradient of the eigenvalue λ = v with respect to the primitive variables
is ∇λ = r3. This gives

∇λ · r1 = ∇λ · r2 = ∇λ · r4 = 0.
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It is well known that discontinuities in solutions for conservation laws
like (4.1) may develop, even for continuous initial data, as in example (4.13)
below. Now suppose that there exists a discontinuity in the solution of (4.1)
moving with speed σ. Let us denote the jump in a quantity q between the left
state q− and the right state q+ across a given discontinuity by JqK = q+ − q−.
Then the Rankine-Hugoniot relations must hold. They are given as

σJc K− Jc vK = 0, σJc ρK− Jc ρ vK = 0,

σJc ρ vK− Jc ρ v2K = 0. σJc RK− Jc R vK = 0.
(4.5)

Solving these equations, see the Appendix, gives

JvK = 0. (4.6)

This means that the velocity is continuous across any discontinuity, which
fulfills the above jump conditions. Using (4.6) in any equation in (4.5) implies
that the speed σ of the discontinuity is given as

σ = v . (4.7)

Therefore any discontinuity will propagate with the local velocity. Such dis-
continuities are contact discontinuities, as expected from the linear degener-
acy above.
Despite the fact that we have (4.6) along a discontinuity, we may consider a
jump in v as initial data. We now construct solutions to (4.1) under different
conditions on the dispersed phase velocity. We consider three cases namely:
v− = v+, v− < v+, and v− > v+.

4.1.2 The case v− = v+ = v

We observe from (4.3) that in this case the velocity v remains constant while
the equations for c and ρ become linear advection equations with constant
speed v. Therefore the solution for the Riemann problem (4.2) is given by the
contact discontinuity

(c, ρ, v, R) =

{
(c−, ρ−, v, R−) −∞ < x < v t,

(c+, ρ+, v, R+) v t ≤ x < +∞.
(4.8)

4.1.3 The case v− < v+

Putting ρ̂ = c ρ the second and third equation of (4.1) are equivalent to the
zero pressure gas dynamics model

∂ρ̂

∂t
+

∂

∂x
(ρ̂v) = 0,

∂

∂t
(ρ̂v) +

∂

∂x

(
ρ̂v2
)
= 0, (4.9)
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These models, therefore, have a similar structure of solutions under the same
conditions for the velocity. Note that vacuum states in the pressureless gas
model correspond to vaporless states in our model. In this situation there is
no overlap of characteristics and no characteristic passes through the vapor-
less region Ω = {(x, t) : v− ≤ x/t ≤ v+} in the (x, t) plane, see Figure 4.1(a).
Following the results by Sheng and Zhang [76, p. 11] on the zero pressure

x/t = v+x/t = v−

0 x

t

(-) (+)

(a) v− < v+

δ : x/t = σ

0 x

t

(-) (+)

(b) v− > v+

FIGURE 4.1: Wave configurations for system (4.1), cases v− 6=
v+

gas dynamics model, we can construct a solution that consists of two con-
tact discontinuities and a vaporless state, with c = 0, between two constant
states. We introduce the radial variable ξ = x/t and denote the derivatives
with respect to this variable by primes, e.g. c′. Then (4.1) becomes

−ξc′ + (c v)′ = 0,

−ξ(c ρ)′ + (c ρ v)′ = 0,

−ξ(c ρ v)′ + (c ρ v2)′ = 0,

−ξ(c R)′ + (c R v)′ = 0.

(4.10)

The initial conditions (4.2) become the asymptotic boundary data

lim
ξ→−∞

(c, ρ, v, R) (ξ)=(c−, ρ−, v−, R−) , lim
ξ→∞

(c, ρ, v, R) (ξ)=(c+, ρ+, v+, R+) .

The system corresponds to a two point boundary value problem of first-order
ordinary differential equations with boundary data at infinity. For smooth
solutions, the system (4.10) is reduced to


v− ξ 0 c 0

0 c (v− ξ) 0 0
0 0 c ρ (v− ξ) 0
0 0 0 c (v− ξ)




c′

ρ′

v′

R′

 = 0. (4.11)
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The third equation is cρ(v− ξ)v′ = 0. It is satisfied if either cρ = 0, v = ξ
or v is constant. The last case can easily be ruled out. A constant intermediate
velocity must be connected to the differing initial data by at least one jump
discontinuity. Due to (4.6), the velocity cannot be discontinuous. The system
only has contact discontinuities.

We may have the second case v(ξ) = ξ to give the continuous solution
linking v− to v+. This corresponds to the usual rarefaction solution to the
Burgers equation. With this choice, the second and fourth equations of sys-
tem (4.11) are automatically satisfied. The variables ρ and R can have arbi-
trary values and jumps for ξ ∈ [v−, v+], since these would satisfy the Rankine
Hugoniot conditions (4.5) with (4.7). In the first equation we are left with the
term 0 = cv′ = c since v′(ξ) = 1. This means we have a vaporless intermedi-
ate state.

Finally, let us consider the third case cρ = 0. Assuming the intermediate
state ρ = 0, the second and third equations are satisfied.

Now if we have a vaporless intermediate state c = 0 on the interval
[v−, v+] all four equations (4.11) are satisfied automatically. We choose the
function v to be any continuous function satisfying v((v−) = v− and v(v+) =
v+. The choice v(ξ) = ξ is the simplest choice. The functions ρ and R are ar-
bitrary. This gives the solution

(c, ρ, v, R) =


(c−, ρ−, v−, R−) −∞ < ξ ≤ v−,

(0, ρ(ξ), v(ξ), R(ξ)) v− < ξ < v+,

(c+, ρ+, v+, R+) v+ ≤ ξ < +∞,

(4.12)

with ρ and R arbitrary functions, v a continuous function satisfying

ρ(v±) = ρ±, v(v±) = v±, R(v±) = R±.

4.1.4 The case v− > v+

Looking at the second and third equation of (4.1), which are equivalent to
the zero pressure gas dynamics model, we will now illustrate the existence
of blow up solutions, even for continuous initial data. Again we put ρ̂ = c ρ
and start with the initial data for Equations (4.9)

ρ̂(0, x) = 1 for all x ∈ (−∞, ∞), and v(0, x) =


1 x ≤ 0,

1− x 0 < x ≤ 1,
0 otherwise.

(4.13)

For smooth solutions, Equations (4.9) can be written as

∂ρ̂

∂t
+ v

∂ρ̂

∂x
+ ρ̂

∂v
∂x

= 0,
∂v
∂t

+ v
∂v
∂x

= 0. (4.14)
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This system decouples. We first solve the second equation, which is the Burg-
ers equation, for v. Then we use v and vx to determine the solutions of the
first equation. For the given initial data and t < 1, we can solve this system
by using the method of characteristics where the characteristic equations are
given by

dt
ds

= 1,
dx
ds

= v,
dρ̂

ds
= −ρ̂

∂v
∂x

,
dv
ds

= 0. (4.15)

We differentiate the second equation in (4.14) with respect to x to get

d
ds

(
∂v
∂x

)
= −

(
∂v
∂x

)2

.

For the initial data (4.13) this equation gives for s ∈ [0, 1)

∂v
∂x

(s, x) =
{

1/(s− 1) 0 < x ≤ 1,
0 otherwise. (4.16)

We now substitute this result into the equation involving ρ̂ in (4.15) and solve
the result to obtain for s ∈ [0, 1)

ρ̂(s, x) =
{

1/(1− s) 0 < x ≤ 1,
1 otherwise. (4.17)

It is clear from (4.16) and (4.17) that both the density and velocity gradi-
ent blow up simultaneously as s → 1 along the characteristics. Therefore
a smooth solution, in this case, is only defined for s < 1. For the Burgers
equation, we obtain a shock with speed 1/2. The blow up of vx leads to the
occurrence of a delta-shock wave. This wave is the distributional derivative
of the jump discontinuity at the shock. As a consequence, we will immedi-
ately have a singularity in the solution to the system (4.1).
Taking the first equation of (4.1) into account, a blow up in ρ̂ means a blow
up in the concentration c for given initial data with v− > v+. There is no
classical weak solution to the system since this would have to be a contact
discontinuity. This means that no solution exists in the space of functions of
bounded variation. Instead, solutions exist in the space of distributions that
are Borel measures.

Generalized Rankine-Hugoniot relations for delta-shocks

Due to the occurrence of the blow up of c, it is natural to seek solutions in
the space of Borel measures. Denote by BM (R) the space of bounded Borel
measures on R. The definition of a measure solution of (4.1) can be given as
follows.

Definition 4.1.1 (Yang [90, p. 454]). A quadruple (c, ρ, v, R) is called a measure
solution of (4.1) if it satisfies

(i) c ∈ L∞ ([0, ∞) , BM (R)) ∩ C ([0, ∞) , H−s (R)) , s > 0,
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(ii) ρ ∈ L∞ ([0, ∞) , L∞ (R)) ∩ C ([0, ∞) , H−s (R)),

(iii) v ∈ L∞ ([0, ∞) , L∞ (R)) ∩ C ([0, ∞) , H−s (R)),

(iv) R ∈ L∞ ([0, ∞) , L∞ (R)) ∩ C ([0, ∞) , H−s (R)),

(v) ρ, v and R are measurable with respect to c at almost all t ≥ 0 .

In addition, the conditions∫ ∞

0

∫
R
(φt + v φx) dc dt +

∫
R

c(0, x) φ(0, x) dx = 0,∫ ∞

0

∫
R

ρ (φt + v φx) dc dt +
∫

R
c(0, x) ρ(0, x) φ(0, x) dx = 0,∫ ∞

0

∫
R

ρ v (φt + v φx) dc dt +
∫

R
c(0, x) ρ(0, x) v(0, x) φ(0, x) dx = 0,∫ ∞

0

∫
R

R (φt + v φx) dc dt +
∫

R
c(0, x) R(0, x) φ(0, x) dx = 0,

(4.18)

hold in the sense of measures for all φ ∈ C∞
0 ([0, ∞)×R).

Definition 4.1.2. A two dimensional weighted delta functional w(t)δL , w ∈ C1([a, b]),
supported on a smooth curve L parametrized by t = s, x = x(s) for a ≤ s ≤ b is
defined by

〈w(t)δL , ϕ〉 =
∫ b

a
w(s)ϕ (t(s), x(s)) ds

for all ϕ ∈ C∞
0
(
R2).

Now we propose to find a solution of (4.1), with a discontinuity at x = x(t),
of the form

(c, ρ, v, R) (t, x) =


(c−, ρ−, v−, R−) x < x(t),(

w(t)δx(t), ρ
δ
(t), v

δ
(t), R

δ
(t)
)

x = x(t),

(c+, ρ+, v+, R+) x > x(t),

(4.19)

where x(t) ∈ C1 and δx is the standard Dirac measure with all mass at x ∈ R.
Note that we use the notations ρ

δ
, v

δ
and R

δ
for the exceptional values taken

by these physical states along the path of the singular measure.
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Theorem 4.1.1. The solution (c, ρ, v, R) defined in (4.19) satisfies (4.1) in the sense
of measures if the following relations hold:

dx
dt

= v
δ
,

dw
dt

= v
δ
JcK− Jc vK,

d(wρ
δ
)

dt
= v

δ
Jc ρK− Jc ρ vK,

d(wρ
δ
v

δ
)

dt
= v

δ
Jc ρ vK− Jc ρ v2K,

d(wR
δ
)

dt
= v

δ
Jc RK− Jc R vK.

(4.20)

Proof. The first equation in system (4.20) follows directly from the character-
istic equations and (4.7) as well as the value for v at the discontinuity given
in (4.19), to be determined later. We will assume that φ ∈ C∞

0 ([0, ∞) ×R)
and also use d/dt the convective derivative given by d/dt = ∂/∂t + v

δ
∂/∂x

along x(t). A function φ(t, x) has compact support if it vanishes outside some
bounded set. To prove the second equation in (4.20) we split the integration
of the first equation in (4.18) into the two regions separated by the disconti-
nuity at x = x(t) to get

0 =
∫ ∞

0

∫ x(t)

−∞
(φt + v−φx) c−dxdt+

∫ ∞

0

∫ ∞

x(t)
(φt + v+φx) c+dxdt+

∫ ∞

0
w(t) (φt + v

δ
φx) dt

+
∫ x(0)

−∞
c−φ(0, x) dx+

∫ ∞

x(0)
c+φ(0, x) dx.

Integration by parts leads to

=
∫ ∞

0

∫ x(t)

−∞
((c−φ)t + (c−v−φ)x) dxdt +

∫ ∞

0

∫ ∞

x(t)
((c+φ)t + (c+v+φ)x) dxdt

−
∫ ∞

0

∫ x(t)

−∞
((c−)t+(c−v−)x)φdxdt−

∫ ∞

0

∫ ∞

x(t)
((c+)t+(c+v+)x)φdxdt

+
∫ ∞

0
w(t)

dφ

dt
dt +

∫ x(0)

−∞
c−φ(0, x) dx+

∫ ∞

x(0)
c+φ(0, x) dx,

the third and fourth integral vanish and with use of Green’s Theorem for the
first two terms we get

=
∮

x(t)
(−c−φ)dx+(c−v−φ)dt−

∮
x(t)

(−c+φ)dx+(c+v+φ)dt

+
∫ x(0)

−∞
(−c−φ)dx+(c−v−φ)dt +

∫ ∞

x(0)
(−c+φ)dx+(c+v+φ)dt

−
∫ ∞

0

dw(t)
dt

φ(t, x(t))dt +
∫ x(0)

−∞
c−φ(0, x) dx+

∫ ∞

x(0)
c+φ(0, x) dx.
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Again two terms vanish and furthermore the boundary terms cancel, which
leads to

=
∮

x(t)
(−c−φ)dx+(c−v−φ)dt−

∮
x(t)

(−c+φ)dx+(c+v+φ)dt−
∫ ∞

0

dw(t)
dt

φ(t, x(t))dt

=
∫ ∞

0
−(c−φ)(t, x(t))x′(t)dt+

∫ ∞

0
(c−v−φ)(t, x(t))dt−

∫ ∞

0
−(c+φ)(t, x(t))x′(t)dt

−
∫ ∞

0
(c+v+φ)(t, x(t))dt−

∫ ∞

0

dw(t)
dt

φ(t, x(t))dt

=
∫ ∞

0

(
v

δ
JcK− Jc vK− dw(t)

dt

)
φ(t, x(t))dt.

Since φ is arbitrary, the second equation in (4.20) must hold. The third, fourth
and fifth equations in (4.20) can be proved analogously. The conditions (4.20)
are referred to as the generalized Rankine-Hugoniot relations. They describe
the relationships among the location, propagation speed, weight and assign-
ments of ρ, v as well as R on the discontinuity.

In order to obtain a physical relevant solution, the discontinuity must satisfy
the Lax entropy condition λ(v+) < σ < λ(v−) or equivalently

v+ < v
δ
< v−. (4.21)

The Riemann problem is now reduced to solving (4.20) with the initial data

x(0) = 0, w(0) = 0,

under the entropy condition (4.21). Like Yang [90] we assume a delta-shock
of the form

x(t) = σt = v
δ
t, w(t) = c

δ
t, v

δ
(t) = v

δ
, and ρ

δ
(t) = ρ

δ
.

Substituting these forms into (4.20) gives the system

c
δ

= v
δ
JcK− Jc vK,

c
δ
ρ

δ
= v

δ
Jc ρK− Jc ρ vK,

c
δ
ρ

δ
v

δ
= v

δ
Jc ρ vK− Jc ρ v2K.,

c
δ
R

δ
= v

δ
Jc RK− Jc R vK.

(4.22)

Multiplying the second equation with v
δ

and subtracting the result from the
third equation leads to a quadratic equation in v

δ
written as

−Jc ρKv2
δ
+ 2Jc ρ vKv

δ
− Jc ρ v2K = 0.

This equation possesses the solutions

v
δ
=

v−
√

c−ρ− ± v+
√

c+ρ+√
c−ρ− ±

√
c+ρ+

.
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We can easily show by use of (4.21) that the entropy solution to our Riemann
problem must satisfy

v
δ
=

v−
√

c−ρ− + v+
√

c+ρ+√
c−ρ− +

√
c+ρ+

. (4.23)

Now substituting this solution into (4.22) we obtain

c
δ
=

(
c+
√

c−ρ− + c−
√

c+ρ+√
c−ρ− +

√
c+ρ+

)
(v− − v+) , (4.24)

and

R
δ
=

c+R+
√

c−ρ−+c−R−
√

c+ρ+

c+
√

c−ρ−+c−
√

c+ρ+
, ρ

δ
=

c+ρ+
√

c−ρ−+c−ρ−
√

c+ρ+

c+
√

c−ρ−+c−
√

c+ρ+
. (4.25)

In summary, we have the following existence result.

Theorem 4.1.2 (Existence). Let v− > v+. The Riemann problem (4.1) and (4.2)
admits an entropy measure solution of the form

(c, ρ, v, R) (t, x) =


(c−, ρ−, v−, R−) x < v

δ
t,(

c
δ
t δx(t), ρ

δ
, v

δ
, R

δ

)
x = v

δ
t,

(c+, ρ+, v+, R+) x > v
δ
t,

where v
δ
, c

δ
, R

δ
and ρBδ

are given in (4.23) - (4.25).

Note that the solution c
δ
t δx(t) has the physical dimension of a dimension-

less volume fraction. By (4.24) c
δ

has the dimension of a velocity but we
are multiplying by t and δx(t) has the dimension of x−1, because this is the
dimension of approximate delta functions giving the measure δ in the limit.

4.2 The carrier phase quantities

We are now ready to determine the carrier phase density and velocity by
solving the last two equations of (2.5). They are coupled to the dispersed
phase variables through the volume fraction c. We consider the subsystem
obtained from the second and last two equations of (2.5). This system has a
similar structure to the continuity and momentum Euler equations modeling
flow in ducts of variable cross-section area. These were studied by Liu [58,
59], Andrianov and Warnecke [1], as well as Han et al. [33]. A complete
solution to the Riemann problem for these specific flows was given in the
latter, including the resonant cases.

We include the mass and momentum balance equations for the dispersed
phase since they are necessary to determine the velocity v completely. The
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subsystem can be written as

∂

∂t


c

c ρ
c ρ v

(1− c) ρC
(1− c) ρC vC

+
∂

∂x


c ρ

c ρ v
c ρ v2

(1− c) ρC vC

(1− c)(ρC v2
C
+ pC)

 = 0. (4.26)

4.2.1 Linear analysis of the full system

To understand the mathematical characteristics of this model, we calculate
the characteristic speeds and characteristic fields of the PDE system. Again
we introduce a vector u of primitive variables, this time defined as
u = (c, ρ, v, ρC , vC)

T. The system (4.26) can then be written in the quasi-linear
form as

∂u
∂t

+ B(u)
∂u
∂x

= 0,

which reads in detail

∂

∂t


c
ρ
v
ρC
vC

+



v 0 c 0 0
0 v 0 0 0
0 0 v 0 0

ρC(v− vC)

1− c
0

ρC c
1− c

vC ρC

− pC

ρC(1− c)
0 0

a2
C

ρC

vC


· ∂

∂x


c
ρ
v
ρC
vC

 = 0.

The eigenvalues of the matrix B are

λ1 = vC − aC , λ2 = λ3 = λ4 = v, λ5 = vC + aC .

There are only four corresponding right eigenvectors

r1 =


0
0
0
ρC
−aC

 , r2 =


0
1
0
0
0

 , r3 =


(1− c)(a2

C
− (vC − v)2)
0
0

pC − ρC(vC − v)2

(vC − v)(a2
C
− pC /ρC)

 , r5 =


0
0
0
ρC
aC

 .

Additionally, we have the relations

∇λ1 · r1 6= 0, ∇λ2 · r2 = ∇λ3 · r3 = 0 and ∇λ5 · r5 6= 0.

From these relations, we conclude that the λ1 and λ5 characteristic fields are
genuinely nonlinear. On the other hand, the λ2 and λ3 characteristic fields
are linearly degenerate. Therefore solutions may contain rarefaction waves
or shock waves that result from the genuinely nonlinear characteristic fields
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and contact discontinuities that arise from the linearly degenerate character-
istic field. The structure of the system also admits constant solutions. Note
further that the system additionally allows for delta-shock and vacuum-type
solutions with phase extinction as shown in Chapter 4.3.

4.2.2 Rarefaction waves

Across a left rarefaction wave, the generalized Riemann invariants are ob-
tained by solving

− aC

ρC

dρC = dvC , c = const., ρ = const., v = const.

Integrating the first equation gives

vC + aC ln ρC = const.

In this case, we have the relations

c∗− = c− , ρ∗− = ρ− , v∗− = v− , and v∗
C− = vC− − aC ln

(
ρ∗

C−

ρC−

)
. (4.27)

For a left rarefaction wave, the head speed is given by vC− − aC whereas the
tail speed is given by v∗

C− − aC . The slope inside the rarefaction fan is such
that

dx
dt

=
x
t
= vC − aC . (4.28)

Using (4.27), the solution u inside the fan is given by

u−fan =


vC = aC +

x
t

,

ρC = ρC− exp
(

vC− − vC

aC

)
.

(4.29)

On the other hand, across a right rarefaction wave, the Riemann invariants
are obtained from

aC

ρC

dρC = dvC , c = const., ρ = const., v = const.,

giving

c = const., ρ = const., v = const., and vC − aC ln ρC = const.

These imply that

c∗
+
= c+ , ρ∗

+
= ρ+ , v∗

+
= v+ , and v∗

C+
= vC+ + aC ln

(
ρ∗

C+

ρC+

)
. (4.30)
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Here we have the head speed vC+ + aC and tail speed v∗
C+

+ aC . The solution
inside the fan is given by

u+fan =


vC = −aC +

x
t

,

ρC = ρC+ exp
(

vC − vC+

aC

)
.

(4.31)

4.2.3 Shock waves

We use Rankine-Hugoniot jump conditions to derive relations across shock
waves. Suppose the left shock moves with a speed σ− . Like e.g. Toro [83] we
consider a frame of reference where the shock speed is zero. We therefore
consider the new transformed states

v̂C− = vC− − σ− and v̂∗
C− = v∗

C− − σ− . (4.32)

The Rankine-Hugoniot jump conditions in the new reference frame are then
written as

ρC− v̂C− = ρ∗
C− v̂∗

C− , ρC− v̂2
C− + a2

C
ρC− = ρ∗

C− v̂∗2
C− + a2

C
ρ∗

C− . (4.33)

We introduce the mass flux Q− . The first equation in (4.33) gives

Q− = ρC− v̂C− = ρ∗
C− v̂∗

C− , Q− > 0, (4.34)

while the second equation leads to

Q− = −a2
C

ρ∗
C− − ρC−

v̂∗
C− − v̂C−

= −a2
C

ρ∗
C− − ρC−

v∗
C− − vC−

. (4.35)

Equivalently, this equation can be written as

v∗
C− = vC− − a2

C

ρ∗
C− − ρC−

Q−
. (4.36)

We use (4.34) to rewrite the velocities in terms of the mass flux as well as
densities. Then we substitute the results into (4.35) to get

Q− =
√

a2
C
ρ∗

C−ρC− . (4.37)

We now substitute this result into (4.36) to obtain

v∗
C− = vC− − aC

ρ∗
C− − ρC−√

ρ∗
C−ρC−

. (4.38)
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Finally, from (4.32), (4.34), and (4.37) we determine the speed of the left shock
wave as

σ− = vC− − aC

√
ρ∗

C−

ρC−
.

Similarly, the mass flux Q+ for a right shock wave is given by

Q+ = −ρC+ v̂C+ = −ρ∗
C+

v̂∗
C+

, Q+ > 0.

Suppose σ+ is the speed of the right shock wave. Analogous calculations give

v∗
C+

= vC+ + aC

ρ∗
C+
− ρC+√

ρ∗
C+

ρC+

and σ+ = vC+ + aC

√
ρ∗

C+

ρC+

. (4.39)

4.3 The carrier phase solution

In the next subsections we will determine values for ρC and vC under the two
conditions v− = v+ and v− < v+ that were already studied in Subsections
4.1.2 and 4.1.3 for the gas phase. The case v− > v+ has a blow up leading
to a singular measure. In the process of the blow up the volume fraction c
takes values larger than 1, which implies that cC = 1− c < 0. This case cor-
responds physically to a phase transition which is not modeled in the system
of equations under consideration. Nevertheless, we give a solution for this
case, too.
In all three cases, we give initial data and determine the exact solution. We
want to emphasize the possibility of choosing physically relevant values for
the involved quantities. Therefore, we assumed the carrier phase to be liquid
water and used a Tait equation of state (2.8) with the corresponding parame-
ters from [87]. The initial data are given by

c ρ
[

kg
m3

]
v
[m

s

]
R ρC

[
kg
m3

]
vC

[m
s

]
p [Pa]

Left state 0.05 0.5863 10 0.001 998.2081 5 100000
Right state 0.001 0.5584 10 0.0005 998.1715 5.2887 20000

(4.40)

c ρ
[

kg
m3

]
v
[m

s

]
R ρC

[
kg
m3

]
vC

[m
s

]
p [Pa]

Left state 0.05 0.5573 -20 0.0005 993.6919 5 100000
Right state 0.001 0.5307 40 0.001 993.7095 3.6612 140000

(4.41)
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c ρ
[

kg
m3

]
v
[m

s

]
R ρC

[
kg
m3

]
vC

[m
s

]
p [Pa]

Left state 0.02 0.6879 10 0.0008 965.3410 20 145000
Right state 0.008 0.5503 -20 0.0006 966.0308 21 1655149.1033

(4.42)

where we have assumed temperatures of 293.15 K, 309.15 K and 363.15 K, re-
spectively. We give a set of initial data for a vapor carrier phase as well. In
this case the carrier phase is assumed to be water vapor with an ideal gas
equation of state at a temperature of 309.15 K. The initial data are the follow-
ing

c ρ
[

kg
m3

]
v
[m

s

]
R ρC

[
kg
m3

]
vC

[m
s

]
p [Pa]

Left state 0.05 993.6941 -20 0.0005 0.5307 5 100000
Right state 0.001 993.6919 40 0.001 0.7430 -180.3256 140000

(4.43)

All these examples fulfill the inequalities given later in this chapter.

4.4 The case v− = v+ = v

From the results in Section 4.1.2, we know that the velocity v in the dispersed
phase remains constant while the volume fraction c and the density ρ are ad-
vected with constant speed v. The possible wave configurations are depicted
in Figure 4.2.

4.4.1 Contact wave

In this first case we consider a contact wave in the dispersed phase. The jump
conditions for the two carrier phase equations at this contact read

0 = vJ(1− c) ρCK− J(1− c) ρC vCK, (4.44)

0 = vJ(1− c) ρC vCK− J(1− c) ρC v2
C
+ (1− c) pCK. (4.45)

These relations mean that the solutions u∗− and u∗
+

in Figure 4.2 are related
by the equations (

1−c∗
+

)
ρ∗

C+

(
v∗

C+
− v
)
=
(
1−c∗−

)
ρ∗

C−

(
v∗

C−− v
)

,(
1−c∗

+

)[
ρ∗

C+

(
(v∗

C+
)2−v v∗

C+

)
+ pC(ρ

∗
C+
)
]
=
(
1−c∗−

)[
ρ∗

C−

(
(v∗

C−)
2−v v∗

C−

)
+ pC(ρ

∗
C−)
]

.
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t

u−

u∗− u∗
+

u+

(a) rarefaction, contact, shock

0 x

t

u−

u∗− u∗
+

u+

(b) shock, contact, rarefaction

0 x

t

u−

u∗− u∗
+

u+

(c) rarefaction, contact, rarefaction

0 x

t

u−

u∗− u∗
+

u+

(d) shock, contact, shock

FIGURE 4.2: Wave configurations in the case v− = v+

Now using (4.29) and (4.31) for v∗ and c∗± and the equation of state gives the
system

(1−c+) ρ∗
C+

(
v∗

C+
−v
)
= (1−c−) ρ∗

C−

(
v∗

C−−v
)

,

(1−c+)
[
ρ∗

C+

(
(v∗

C+
)2−v v∗

C+

)
+
(
a2

C
ρ∗

C+
+d0

)]
= (1−c−)

[
ρ∗

C−

(
(v∗

C−)
2−v v∗

C−

)
+
(
a2

C
ρ∗

C−+d0

)]
.

Multiplying the first equation by v and adding it to the second equation leads
to

(1−c+) ρ∗
C+

(
v∗

C+
−v
)
= (1−c−) ρ∗

C−

(
v∗

C−−v
)

,

(1−c+) ρ∗
C+

[(
v∗

C+
−v
)2

+ a2
C

]
−c+d0 = (1−c−) ρ∗

C−

[(
v∗

C−−v
)2

+a2
C

]
−c−d0 .

Introducing ∆v∗
C± = v∗

C±− v allows us to solve this system easily. We describe
the values with index + as functions of the values with index −. Due to the
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quadratic nature of these equations, we get two solutions

∆v∗
C+ (1,2)

=
(1−c−)ρ

∗
C−

(
(∆v∗

C−)
2 + a2

C

)
+ d0(c+− c−)

2(1−c−)ρ∗C−∆v∗
C−

±

√(
(1−c−)ρ∗C−

(
(∆v∗

C−)
2 + a2

C

)
+ d0(c+− c−)

)2
− 4
(
(1−c−)ρ∗C−(∆v∗

C−)
2a2

C

)2

2(1−c−)ρ∗C−∆v∗
C−

,

(4.46)

(1−c+)ρ
∗
C+ (1,2)

=
(1−c−)ρ

∗
C−

(
(∆v∗

C−)
2 + a2

C

)
+ d0(c+− c−)

2a2
C

∓

√(
(1−c−)ρ∗C−

(
(∆v∗

C−)
2 + a2

C

)
+ d0(c+− c−)

)2
− 4
(
(1−c−)ρ∗C−(∆v∗

C−)
2a2

C

)2

2a2
C

.

Note that the following Prandtl-type relation holds

∆v∗
C+ (1)

∆v∗
C+ (2)

= a2
C
.

We assume the square root in these expressions being positive. Then, de-
pending on the sign in front of the quotient, we have a unique solution for
the carrier phase density and velocity in the *-region that is subsonic. Note
that subsonic here means that the relative velocity between the carrier and
dispersed phase is subsonic. We are not aware of any application where one
would move bubbles at supersonic speed through a liquid. Such a situation
would also violate basic assumptions of the model, such as assuming that
the bubbles are of almost spherical shape. Therefore, we will discuss only
the unique subsonic solutions and drop the subscript (1) or (2) in the follow-
ing discussion.

4.4.2 Vapor carrier phase

We will now consider the carrier phase as a vapor. Taking this vapor phase to
be an ideal gas is a valid choice for an equation of state, see Section 2. Starting
from the linear equation of state p = a2ρ + d0 this leads to

d0 = 0

for an ideal gas.
Note that in this case the relations (4.46) holding at the contact wave sim-

plify in the subsonic case to the following form

∆v∗
C+

= ∆v∗
C−

(1−c+)ρ
∗
C+

= (1−c−)ρ
∗
C− .
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FIGURE 4.3: Initial data (dashed lines) and exact solution (solid
lines) for a vapor carrier phase. Note the difference between
primitive and conserved variables in their behavior at the mid-
dle wave in accordance with (4.47). Initial data is given by (4.43)

Again we put ρ̂C = (1− c) ρC and we get

J∆v∗
C
K = 0,

Jρ̂∗
C
K = 0. (4.47)

The carrier phase quantities v∗
C

and the transformed ρ̂∗
C

are constant over the
contact wave. This fact can be seen in Figure 4.3. There is no jump of these
quantities, whereas one can clearly see the jump in the primitive variables
ρC and pC . Note that the jump only appears due to the back transformation
of ρ̂∗

C
where the factor (1− c) appears. The jump in the concentration c of

the dispersed phase leads to the jump of the primitive variables of the car-
rier phase. Therefore, in the conserved quantities, one has only two acoustic
waves and none of those quantities appear in the dispersed phase relations.
This is equivalent to the statement that the subsystem of these new carrier
phase equations decouples from the rest of the system (4.26). Hence the car-
rier phase equations can be solved independently. They read

∂

∂t
(ρ̂C) +

∂

∂x
(ρ̂C vC) = 0,

∂

∂t
(ρ̂C vC) +

∂

∂x

(
ρ̂C v2

C
+ p̃C

)
= 0.

This is the well known system of the isothermal Euler equations. We omit
the solution. A detailed discussion of the isothermal Euler equations may be
found in [21] or [83].
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FIGURE 4.4: Initial data (dashed lines) and exact solution (solid
lines) for a liquid carrier phase. The middle wave is a contact

wave. Initial data are given by (4.40)

4.4.3 Liquid carrier phase

Having a liquid carrier phase the solution is much more complex. To model
a liquid we use the general linear equation of state p = a2ρ + d0 with

d0 6= 0.

This leads to

J∆v∗
C
K 6= 0,

Jρ̂∗
C
K 6= 0. (4.48)

A set of initial data and the exact solution in this case are depicted in Figure
4.4. For the four unknown quantities of the carrier phase in the *-region we
have four relations. In the previous parts of this section we derived the rela-
tions which hold over the acoustic waves and determined the relations at the
contact wave, see (4.38) and (4.39) in case of a shockwave, (4.29) and (4.31) in
case of a rarefaction wave, as well as (4.44) for contact waves. Therefore, we
have to solve a nonlinear system to find the solution in the *-region. In this
case it is given by

0 = vJ(1− c) ρ∗
C
K− J(1− c) ρ∗

C
v∗

C
K, (4.49)

0 = vJ(1− c) ρ∗
C
v∗

C
K− J(1− c) ρ∗

C
v∗

C
2 + (1− c) p∗

C
K, (4.50)

v∗
C± = vC± ±


aC

ρ∗
C±−ρC±√
ρ∗

C±ρC±
ρ∗

C± > ρC± (shock),

aC ln
ρ∗

C±
ρC±

ρ∗
C± ≤ ρC± (rarefaction).

(4.51)
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We will describe the C+-quantities on the right side of the contact in terms of
the C−-quantities on the left side of the contact in the *-region. Using again
∆v∗

C± = v∗
C±− v and ρ̂ = c ρ the functions

∆v∗
C+

= V
(

∆v∗
C− , ρ̂∗

C−

)
, (4.52)

ρ̂∗
C+

= P
(

∆v∗
C− , ρ̂∗

C−

)
(4.53)

are given by equations (4.46). Alternatively, we can use (4.51) to describe
∆v∗

C± in terms of ρ̂C±

∆v∗
C± = W±

(
ρ̂∗

C±

)
. (4.54)

We now try to give an idea of the solution strategy before we state the
main result. We rewrite (4.46) by subtracting ∆v∗

C+
. Using the other relations

from the nonlinear system (4.49) - (4.51) we can further reduce the number of
unknown quantities in this function. To see this, we introduce the following
notation

A =
[
(1−c−)ρ

∗
C−

(
(∆v∗

C−)
2 + a2

C

)
+ d0(c+− c−)

]
,

B =
(
(1−c−)ρ

∗
C−

(
(∆v∗

C−)
2 + a2

C

)
+ d0(c+− c−)

)2
− 4
(
(1−c−)ρ

∗
C−(∆v∗

C−)
2a2

C

)2
.

(4.55)

Hence the first equation of (4.46) can be rewritten in the following form

0 = −∆v∗
C+

+
A−
√

B
2ρ̂∗

C−∆v∗
C−

= F
(

ρ̂∗
C− , ∆v∗

C− , ∆v∗
C+

)
= F

(
ρ̂∗

C− , W−

(
ρ̂∗

C−

)
, W+

(
ρ̂∗

C+

))
= F

(
ρ̂∗

C− , W−

(
ρ̂∗

C−

)
, W+

(
P
(

ρ̂∗
C− , W−

(
ρ̂∗

C−

))))
,

where we have used (4.52) - (4.54) to eliminate the dependencies on unknown
quantities. The function F is now an implicit function of only one unknown
variable ρ̂∗

C− . Any root of this function is a solution for ρ̂∗
C− from which we

can then calculate all the other unknown quantities. The solution is unique if
the function F is strictly monotone. The analysis of this function and its first
derivative leads to the following result.

Theorem 4.4.1. A solution of the carrier phase equations of system (4.26) in the
case v− = v+ is the root of the function

F
(

ρ̂∗
C− , W−

(
ρ̂∗

C−

)
, W+

(
P
(

ρ̂∗
C− , W−

(
ρ̂∗

C−

))))
= −∆v∗

C+
+

A−
√

B
2ρ̂∗

C−∆v∗
C−

(4.56)
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and it is unique if F is strictly monotone w.r.t. ρ̂∗
C− . This is fulfilled for B > 0 and

under the following conditions for the absolute value of the carrier velocity

(1) ∆vmax < aC

(2) ∆vmax < aC +
d0cmax

aC (1−cmax) ρmin

(3) ∆vmax < aC

(1−cmax) ρmin

2ρmax − (1−cmax) ρmin

(4) ∆vmax < −
|d0 |cmax

√
ρmaxρmin

aC (1−cmax) ρmin (ρmax+ ρmin)

+

√( |d0 |cmax
√

ρmaxρmin

aC (1−cmax) ρmin (ρmax+ ρmin)

)2

+ a2
C

(5) ∆vmax < −aC

ρmax+ ρmin

2
√

ρmaxρmin

ρmax− ρmin

2ρmax− ρmin

+

√(
aC

ρmax+ ρmin

2
√

ρmaxρmin

ρmax− ρmin

2ρmax− ρmin

)2

+
ρmin aC

2ρmax− ρmin

(4.57)

These conditions state that the relative velocities between the carrier and
dispersed phase should be only a certain amount smaller than the sound
speed. Note further that d0 is negative for fluids. To give an example we
have d0 ≈ −0.5 ∗ 109 for liquid water at 293.15 K, see [87].

Proof. To find a solution for the four unknown carrier phase quantities ρ∗
C±

and v∗
C± one uses the Riemann invariants and Rankine-Hugoniot jump con-

ditions to get the four relations (4.49) - (4.51). The first two equations

0 = vJ(1− c) ρ∗
C
K− J(1− c) ρ∗

C
v∗

C
K,

0 = vJ(1− c) ρ∗
C
v∗

C
K− J(1− c) ρ∗

C
v∗

C
2 + (1− c) p∗

C
K

possess a unique subsonic solution ∆v∗
C+

= V
(

∆v∗
C− , ρ̂∗

C−

)
and ρ̂∗

C+
= P

(
∆v∗

C− , ρ̂∗
C−

)
given by (4.46). Rewriting the first expression of (4.46) in the form

0 = F
(

ρ̂∗
C− , ∆v∗

C− , ∆v∗
C+

)
= −∆v∗

C+
+ V

(
∆v∗

C− , ρ̂∗
C−

)
and using ∆v∗

C± = W±

(
ρ̂∗

C±

)
, obtained from (4.51)

∆v∗
C± = ∆vC± ±


aC

ρ̂∗
C±−ρ̂C±√
ρ̂∗

C± ρ̂C±
ρ̂∗

C± > ρ̂C± (shock),

aC ln
ρ̂∗

C±
ρ̂C±

ρ̂∗
C± ≤ ρ̂C± (rarefaction),

we can reduce the number of unknown quantities. Note that in the case
with the + sign we will replace ρ̂∗

C+
by the function P

(
ρ̂∗

C− , W−

(
ρ̂∗

C−

))
. The
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function F is a function of ρ̂∗
C− only. A solution is then determined by

0 = F
(

ρ̂∗
C− , W−

(
ρ̂∗

C−

)
, W+

(
P
(

ρ̂∗
C− , W−

(
ρ̂∗

C−

))))
.

To verify uniqueness of solutions one checks the strict monotonicity of F, that
is

dF
dρ̂∗

C−

< 0. (4.58)

The derivative of F reads

dF
dρ̂∗

C−

=
∂F

∂ρ̂∗
C−

+
∂F

∂W−

∂W−

∂ρ̂∗
C−

+
∂F

∂W+

[
∂W+

∂P

(
∂P

∂ρ̂∗
C−

+
∂P

∂W−

∂W−

∂ρ̂∗
C−

)]
.

We omit the calculation details of all these terms and just state the result.
Using the abbreviations (4.55) the partial derivatives are

∂F
∂ρ̂∗

C−

=

(
−
√

B + A
)

d0(c+− c−)

B2(ρ̂∗
C−)

2∆v∗
C−

, (4.59)

∂F
∂W−

=
−
(
−
√

B + A
) (

ρ̂∗
C−

(
W2
− − a2

C

)
− d0(c+− c−)

)
B2ρ̂∗

C−W2
−

, (4.60)

∂W−

∂ρ̂∗
C−

=


−aC

ρ̂∗
C− + ρ̂C−

2ρ̂∗
C−

√
ρ̂∗

C− ρ̂C−

ρ̂∗
C− > ρ̂C− (shock),

−aC

1
ρ̂∗

C−

ρ̂∗
C− ≤ ρ̂C− (rarefaction),

(4.61)

∂F
∂W+

= −1. (4.62)

Further, using ρ̂∗
C+

= P
(

ρ̂∗
C− , W−

(
ρ̂∗

C−)
))

we have

∂W+

∂P
=


aC

P + ρ̂C+

2P
√

Pρ̂C+

P > ρ̂C+ (shock),

aC

1
P

P ≤ ρ̂C+ (rarefaction),
(4.63)

∂P
∂ρ̂∗

C−

=
1

2aC

[
W2
− + a2

C√
B

(
A +
√

B
)
−

4a2
C
ρ̂∗

C−W2
−√

B

]
, (4.64)

∂P
∂W−

=
1

2aC

[
2ρ̂∗

C−W−√
B

(
A +
√

B
)
−

4a2
C
(ρ̂∗

C−)
2W−√

B

]
. (4.65)

Note that the derivative (4.63) is always positive. Hence there is no depen-
dency on whether the right going wave is a shock or a rarefaction. Nonethe-
less, we have to discuss the different cases for the left going acoustic wave.
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In the case of the left moving acoustic wave being a rarefaction wave with
ρ̂∗

C− > ρ̂C− one can simplify the derivative by combining some terms together.
One gets

∂F
∂ρ̂∗

C−

+
∂F

∂W−

∂W−

∂ρ̂∗
C−

=
1

Bρ̂∗
C−

∆v∗
C+

∆v∗
C−

(∆v∗
C−− aC)

(
d0(c+− c−) + aC ρ̂∗

C−(aC+ ∆v∗
C−)
)

.

This leads to two conditions to satisfy (4.58), namely

(i) ∆v∗
C− − aC

!
< 0,

(ii) d0(c+− c−) + aC ρ̂∗
C−(aC+ ∆v∗

C−)
!
> 0.

One sees immediately that the conditions (i) and (1) are equivalent. An esti-
mate on the quantities in (ii) shows that for monotonicity of F we need

d0(c+− c−) + aC ρ̂∗
C−(aC+ ∆v∗

C−) ≥ d0cmax + aC (1−cmax) ρmin(aC − ∆vmax)
!
> 0.

This leads to

(2) ∆vmax < aC +
d0cmax

aC (1−cmax) ρmin

.

The terms of the derivative of F which are left over combine in the following
way

∂P
∂ρ̂∗

C−

+
∂P

∂W−

∂W−

∂ρ̂∗
C−

=
1
B
(aC − ∆v∗

C−)
(
(aC − ∆v∗

C−)ρ̂
∗
C+
+ 2ρ̂∗

C−∆v∗
C−

)
.

This leads to the further condition

(iii) (aC − ∆v∗
C−)ρ̂

∗
C+
+ 2ρ̂∗

C−∆v∗
C−

!
> 0.

Similar estimates of the quantities involved give

(aC − ∆v∗
C−)ρ̂

∗
C+
+ 2ρ̂∗

C−∆v∗
C− = aC ρ̂∗

C+
+ ∆v∗

C−(2ρ̂∗
C− − ρ̂∗

C+
)

≥ aC (1−cmax) ρmin− ∆vmax (2ρmax− (1−cmax) ρmin)

!
> 0,

which is equivalent to condition (3).
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In case of a left moving shock wave the combined terms of the derivative
of F read

∂F
∂ρ̂∗

C−

+
∂F

∂W−

∂W−

∂ρ̂∗
C−

=
1√

Bρ̂∗
C−

∆v∗
C+

∆v∗
C−

d0(c+− c−)

∆v∗
C−−aC

ρ̂∗
C−+ ρ̂C−

2
√

ρ̂∗
C− ρ̂C−


+aC ρ̂∗

C−(∆v∗
C−−aC)(∆v∗

C−+aC)
ρ̂∗

C−+ ρ̂C−

2
√

ρ̂∗
C− ρ̂C−

,

∂R
∂ρ̂∗

C−

+
∂R

∂W−

∂W−

∂ρ̂∗
C−

=
1√
B

ρ̂∗
C+

a2
C
+ (∆v∗

C−)
2 − 2aC ∆v∗

C−

ρ̂∗
C−+ ρ̂C−

2
√

ρ̂∗
C− ρ̂C−


+2ρ̂∗

C−∆v∗
C−

aC

ρ̂∗
C−+ ρ̂C−

2
√

ρ̂∗
C− ρ̂C−

− ∆v∗
C−

.

Again, to satisfy condition (4.58) this leads to two conditions

(iv) d0(c+− c−)

∆v∗
C−−aC

ρ̂∗
C−+ ρ̂C−

2
√

ρ̂∗
C− ρ̂C−

+ aC ρ̂∗
C−(∆v∗

C−−aC)(∆v∗
C−+aC)

ρ̂∗
C−+ ρ̂C−

2
√

ρ̂∗
C− ρ̂C−

< −|d0 |cmax

(
−∆vmax − aC

ρmax+ ρmin

2
√

ρmaxρmin

)
+aC (1−cmax) ρmin

(
(∆v∗

C−)
2−a2

C

) ρmax+ ρmin

2
√

ρmaxρmin

= aC (1−cmax) ρmin

ρmax+ ρmin

2
√

ρmaxρmin(
(∆vmax)

2 +
2|d0 |cmax

√
ρmaxρmin

aC (1−cmax) ρmin(ρmax+ ρmin)
∆vmax +

|d0 |cmax

(1−cmax) ρmin

− a2
C

)
!
< 0,

(v) ρ̂∗
C+

a2
C
+ (∆v∗

C−)
2 − aC ∆v∗

C−

ρ̂∗
C−+ ρ̂C−√

ρ̂∗
C− ρ̂C−


+2ρ̂∗

C−∆v∗
C−

aC

ρ̂∗
C−+ ρ̂C−

2
√

ρ̂∗
C− ρ̂C−

− ∆v∗
C−

 !
> 0.

Again, we have used similar estimates than before. The two relations are
simple quadratic expressions in ∆v∗

C− . One sees that satisfying (4) and (5) is
sufficient for (iv) and (v), which proves the theorem.
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FIGURE 4.5: Initial data (dashed lines) and exact solution (solid
lines) for a liquid carrier phase. The middle wave splits in two

contacts. Initial data is given by (4.41)

4.5 The case v− < v+

In this case, the middle wave consists out of two contact waves with veloc-
ities v− and v+ and a vaporless state between these two contact waves. De-
tailed results for the dispersed phase can be found in Section 4.1.3. The wave
configuration, initial data and the corresponding exact solution is depicted
in Figure 4.5. Note that in the first row, we show only a part of the x-Axis
to highlight the bubble free region, which is barely noticeable in the second
row. Starting again from the relations which hold over the acoustic waves, as
well as over a contact wave we get our nonlinear system of equations. In this
case the six relations read

0 = v+J(1− c) ρ∗
C
K− J(1− c) ρ∗

C
v∗

C
K, (4.66)

0 = v+J(1− c) ρ∗
C
v∗

C
K− J(1− c) ρ∗

C
v∗

C
2 + (1− c) p∗

C
K, (4.67)

0 = v−J(1− c) ρ∗
C
K− J(1− c) ρ∗

C
v∗

C
K, (4.68)

0 = v−J(1− c) ρ∗
C
v∗

C
K− J(1− c) ρ∗

C
v∗

C
2 + (1− c) p∗

C
K, (4.69)

v∗
C± = vC± ±


aC

ρ∗
C±−ρC±√
ρ∗

C±ρC±
ρ∗

C± > ρC± (shock),

aC ln
ρ∗

C±
ρC±

ρ∗
C± ≤ ρC± (rarefaction).

(4.70)

for the six unknown carrier phase quantities ρ∗
C− , v∗

C− , ρ∗
C+

, v∗
C+

and ρ∗
C0

, v∗
C0

.
For both contact waves we follow the approach of Section 4.4.1. The jump
conditions over the right moving contact wave, the first two equations (4.66)
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and (4.67) respectively, read

(1−c0) ρ∗
C0

(
v∗

C0
−v+

)
= (1−c+) ρ∗

C+

(
v∗

C+
−v+

)
,

(1−c0) ρ∗
C0

[(
v∗

C0
−v+

)2
+ a2

C

]
−c0d0 = (1−c+) ρ∗

C+

[(
v∗

C+
−v+

)2
+a2

C

]
−c+d0 .

Following the approach from Section 4.4.1 we get two functions

v∗
C+

= V0+

(
v∗

C0
, ρ∗

C0

)
,

ρ∗
C+

= P0+

(
v∗

C0
, ρ∗

C0

)
.

These functions are given by (compare with (4.46))

v∗
C+

= v+ +
(1−c0)ρ

∗
C0

(
(v∗

C0
− v+)

2 + a2
C

)
+ d0(c+− c0)

2(1−c0)ρ
∗
C0
(v∗

C0
− v+)

−

√(
(1−c0)ρ

∗
C0

(
(v∗

C0
− v+)

2 + a2
C

)
+ d0(c+− c0)

)2 − 4
(
(1−c0)ρ

∗
C0
(v∗

C0
− v+)

2a2
C

)2

2(1−c0)ρ
∗
C0
(v∗

C0
− v+)

,

(4.71)

(1−c+)ρ
∗
C+

=
(1−c0)ρ

∗
C0

(
(v∗

C0
− v+)

2 + a2
C

)
+ d0(c+− c0)

2a2
C

+

√(
(1−c0)ρ

∗
C0

(
(v∗

C0
− v+)

2 + a2
C

)
+ d0(c+− c0)

)2 − 4
(
(1−c0)ρ

∗
C0
(v∗

C0
− v+)

2a2
C

)2

2a2
C

.

(4.72)

The jump conditions over the left moving contact (4.68) and (4.69) read in
detail

(1−c0) ρ∗
C0

(
v∗

C0
−v−

)
= (1−c−) ρ∗

C−

(
v∗

C−−v−
)

,

(1−c0) ρ∗
C0

[(
v∗

C0
−v−

)2
+ a2

C

]
−c0d0 = (1−c−) ρ∗

C−

[(
v∗

C−−v+

)2
+a2

C

]
−c+d0 ,

from those relations we can determine the two functions

v∗
C0

= V−0

(
v∗

C− , ρ∗
C−

)
,

ρ∗
C0

= P−0

(
v∗

C− , ρ∗
C−

)
,

which we will not state in detail. They have a similar structure like (4.71) and
(4.72). Furthermore, we use the relations over the acoustic waves (4.51) from
the previous chapter, given by (4.70), to define v∗

C± = W±

(
ρ̂∗

C±

)
again.

Again we write (4.71) in the form

0 = G
(

ρ∗
C0

, v∗
C0

, v∗
C+

)
= −v∗

C+
+ V0+

(
v∗

C0
, ρ∗

C0

)
,
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and use the other relations to reduce the number of unknown quantities. The
function G can be written as function of ρ∗

C− only.

0 = G
(

ρ∗
C0

, v∗
C0

, v∗
C+

)
= G

(
P−0

(
ρ∗

C− , W−

(
ρ∗

C−

))
, V−0

(
ρ∗

C− , W−

(
ρ∗

C−

))
, . . . (4.73)

. . . V0+

(
P0+

(
P−0

(
ρ∗

C− , W−

(
ρ∗

C−

))
, V−0

(
ρ∗

C− , W−

(
ρ∗

C−

)))))
A solution ρ∗

C− of system (4.26) is now implicitly given by this equation (4.73).
It is unique, if G is a strict monotone function of ρ∗

C− . The derivative is given
by

dG
dρ∗

C−

=
∂G

∂P−0

(
∂P−0

∂ρ∗
C−

+
P−0

∂W−

∂W−

∂ρ∗
C−

)
+

∂G
∂V−0

(
∂V−0

∂ρ∗
C−

+
∂V−0

∂W−

∂W−

∂ρ∗
C−

)
(4.74)

+
∂G

∂V0+

[
∂V0+

∂P0+

(
∂P0+

∂P−0

(
∂P−0

∂ρ∗
C−

+
P−0

∂W−

∂W−

∂ρ∗
C−

)
+

∂P0+

∂V−0

(
∂V−0

∂ρ∗
C−

+
∂V−0

∂W−

∂W−

∂ρ∗
C−

))]
.

We will use the following notation

A0+ =
[
(1−c0)ρ

∗
C0

(
(v∗

C0
− v+)

2 + a2
C

)
+ d0(c+− c0)

]
,

B0+ =
(
(1−c0)ρ

∗
C0

(
(v∗

C0
− v+)

2 + a2
C

)
+ d0(c+− c0)

)2 − 4
(
(1−c0)ρ

∗
C0
(v∗

C0
− v+)

2a2
C

)2 ,

B−0 =
(
(1−c−)ρ

∗
C−

(
(v∗

C−− v−)
2 + a2

C

)
+ d0(c0− c−)

)2
− 4
(
(1−c−)ρ

∗
C−(v

∗
C−− v−)

2a2
C

)2
.
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to shorten the following expressions. We state the terms of the derivative
explicitly. Compare with (4.59) - (4.65) from Section 4.4.3.

∂G
∂V0+

= −1 (4.75)

∂V0+

∂P0+

=


aC

P0+ + ρC+

2P0+

√
P0+ρC+

P0+ > ρC+ (shock)

aC

1
P0+

P0+ ≤ ρC+ (rarefaction)
(4.76)

∂P0+

∂P−0

=
(1−c0)

2 (1−c+) aC

[
(V−0− v+)

2 + a2
C√

B0+

(
A0+ +

√
B0+

)
−

4a2
C
(1−c0) P−0(V−0− v+)

2√
B0+

]
(4.77)

P0+

∂V−0

=
(1−c0)

2 (1−c+) aC

[
2P−0(V−0− v+)√

(R)

(
A0+ +

√
B0+

)
−

4a2
C
(1−c0) (P−0)

2(V−0− v+)√
B0+

]
(4.78)

∂G
∂ρ∗

C−

=

(
−
√

B0+ + A0+

)
d0(c+− c0)√

B0+ 2(1−c0)(P−0)
2(W−− v+)

2 (4.79)

∂G
∂V−0

=
−
(
−
√

B0+ + A0+

)(
(1−c0) P−0

(
(V−0− v+)

2 − a2
C

)
− d0(c+− c0)

)√
B0+ 2(1−c0)ρ

∗
C−(W−− v+)

2

(4.80)

Again, we can combine some of these terms and resubstitute the quantities
to get some estimates later on

∂P−0

∂ρ∗
C−

+
P−0

∂W−

∂W−

∂ρ∗
C−

=
(1−c−)

2 (1−c0)
√

B−0

(
aC−(v

∗
C−− v−)

)
(4.81)((

aC−(v
∗
C−− v−)

)
(1−c0) ρ∗

C0
+ 2 (1−c−) ρ∗

C−(v
∗
C−− v−)

)
,

∂v∗
C0

∂ρ∗
C−

+
∂v∗

C0

∂v∗
C−

∂v∗
C−

∂ρ∗
C−

=
1

ρ∗
C−

√
B−0

v∗
C0
− v−

v∗
C−− v−

(
(v∗

C−− v−)− aC

)
(4.82)(

d0(c0− c−)+aC(1−c−)ρ
∗
C−

(
(v∗

C−− v−)− aC

))
.

We have stated the case of the left moving acoustic wave being a rare-
faction wave only. The derivatives are completely similar to the derivatives
from the previous chapter. Conditions (1) - (3) from Theorem 4.4.1 are there-
fore sufficient to have the appropriate sign in each term. Conditions (4) and
(5) are sufficient in case of a left moving shock wave.

There exists only one difficult term, namely (4.78). Due to the structure of
the derivative of G we can not combine this terms directly as in the previous
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chapter. Hence we need to formulate the condition

2ρ∗
C0
(v∗

C0
− v+)√

(R)

(
A0+ +

√
B0+

)
−

4a2
C
(1−c0) (ρ

∗
C0
)2(v∗

C0
− v+)√

B0+

!
< 0. (4.83)

Even though we are pretty sure that this condition is redundant, we cannot
prove it. Therefore we formulate the result in the following form:

Theorem 4.5.1. Any solution of system (4.26) in the case v− < v+ is implicitly
given by

0 = G
(

ρ∗
C0

(
ρ∗

C− , v∗
C−

(
ρ∗

C−

))
, v∗

C0

(
ρ∗

C− , v∗
C−

(
ρ∗

C−

))
, . . .

. . . v∗
C+

(
ρ∗

C+

(
ρ∗

C0

(
ρ∗

C− , v∗
C−

(
ρ∗

C−

))
, v∗

C0

(
ρ∗

C− , v∗
C−

(
ρ∗

C−

)))))
.

The solution is unique if G is strictly monotone, that is

dG
dρ∗

C−

≤ 0.

which is satisfied under the conditions (1) - (5) from Theorem 4.4.1 and (4.83) ad-
ditionally.

4.6 The case v− > v+

In this case the middle wave is a delta-shock as shown in Section 4.1.4. Hence
we can apply the Rankine-Hugoniot jump conditions. Together with the re-
lations over the acoustic waves they read

0 = v
δ
J(1− c) ρ∗

C
K− J(1− c) ρ∗

C
v∗

C
K,

0 = v
δ
J(1− c) ρ∗

C
v∗

C
K− J(1− c) ρ∗

C
v∗

C
2 + (1− c) p∗

C
K,

v∗
C± = vC± ±


aC

ρ∗
C±−ρC±√
ρ∗

C±ρC±
ρ∗

C± > ρC± (shock),

aC ln
ρ∗

C±
ρC±

ρ∗
C± ≤ ρC± (rarefaction).

This is exactly the system of nonlinear equations from Section 4.4.3 with the
substitution v → v

δ
only. The solution is therefore equivalent to the solution

given in the previous sections with v
δ

given by (4.23) instead of v.

Theorem 4.6.1. Any solution of system (4.26) in the case v− > v+ is given by
Theorem 4.4.1 with the substitution v→ v

δ
in ∆v∗

C± = v∗
C±− v.

The wave configuration and an exact solution is depicted in Figure 4.6.
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FIGURE 4.6: Initial data (dashed lines),exact solution (solid
lines) and the quantities vδ, ρδ, pδ (circles) for a liquid carrier
phase. The middle wave forms a δ-shock. Initial data is given

by (4.42)
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5
Numerical Concepts and Results

In this chapter, we want to show the results of some simple numerical simu-
lations. The aim is not to give a complete introduction to the methods used
but to show how well the analytical solution is approximated in a numeri-
cal simulation. This can only be done in one spatial dimension since we can
not construct the analytical solution in higher dimensions. We will show nu-
merical results for all the different cases of initial data that were discussed
analytically in Chapter 4.

We assume the reader to be familiar with the basic concepts of numerics
for partial differential equations, especially for hyperbolic ones. There are
many very good textbook on the numerical treatment of hyperbolic conser-
vation laws, see for example Godlewski and Raviart [30], LeVeque [52, 53],
Kröner [47] or Toro [83] and the references therein.

We will start this chapter with a short summary of the finite volume meth-
ods used for the numerical simulations. Therefore, we will give a rather un-
common but very insightful introduction on finite volume methods based
on a lecture given by Prof. Dr. Alina Chertock at the Oberwolfach Seminar
1948a on Structure-preserving methods for nonlinear hyperbolic problems.

5.1 The finite volume framework - Upwind and
central schemes

Let us consider a system of one dimensional conservation laws

∂

∂t
u +

∂

∂x
f(u) = 0, (5.1)

with u : R×R → U and f : U → Rm. Here, the open set U ⊆ Rm with
u ∈ U is the state space. Again, t ∈ [0, tmax) ⊆ R≥0 denotes the time variable
and x ∈ Ω ⊆ R the space variable. The set of unknowns ui : R×R → R

is called conserved quantities and the functions fi : R → R the (nonlinear)
fluxes. This system is subject to prescribed initial data

u(0, x) = u0(x). (5.2)
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To get a basic understanding of the numerical concepts, one often discusses
the concepts on scalar conservation laws, as we have done in the theoretical
part of this work, too. At this point we want to skip a discussion of basic
numerical concepts for scalar conservation laws and hope that the reader is
familiar with numerical concepts for the advection equation ut + aux = 0
or Burger’s equation ut +

1
2

(
u2)

x = 0. Due to the nonlinearity of the flux
function, the latter one is already a very good example of the difficulties ap-
pearing in the construction of suitable numerical methods.

Starting from the initial value problem (IVP) consisting of (5.1) together
with (5.2) we have already seen in Chapter 3 that solutions may break down
and develop such nonsmooth structures as shock waves, contact discontinu-
ities, rarefaction waves and singular δ-shocks even when the initial data are
infinitely smooth. These nonsmooth solutions are nonclassical and they are
to be understood in a weak sense, that is, in the sense of distributions. We
want to recall Definition 3.2.7, which reads as follows:

We say that u is a weak solution of the IVP if it satisfies the following
weak formulation

tmax∫
0

∞∫
−∞

(u(t, x) ·φt(t, x) + f(u(t, x)) ·φx(t, x))dxdt+
∞∫
−∞

u0(x) ·φ(0, x) dx = 0,

for every test function φ ∈ [C∞
0 ([0, tmax)×R)]m.

We have also seen that weak solutions are not unique and in order to sin-
gle out the unique physically relevant solution, one needs to impose certain
additional criteria.

The question is now how we can find a numerical approximation of a
solution of the considered IVP. Therefore we start from the system of conser-
vation laws (5.1)

∂

∂t
u +

∂

∂x
f(u) = 0,

and introduce small scales in both space ∆x and time ∆t and integrate the
system of conservation laws w.r.t. x and t over the space-time control volume
[t, t + ∆t]×

[
x− ∆x

2 , x + ∆x
2

]
, which gives

t+∆t∫
t

x+∆x
2∫

x−∆x
2

uτ(τ, ξ)dξdτ +

t+∆t∫
t

x+∆x
2∫

x−∆x
2

f(u(τ, ξ))ξdξdτ = 0.
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Using the fundamental theorem of calculus we get

x+∆x
2∫

x−∆x
2

u(t + ∆t, ξ)dξ −
x+∆x

2∫
x−∆x

2

u(t, ξ)dξ

+

t+∆t∫
t

[
f
(

u
(

τ, x +
∆x
2

))
+ f

(
u
(

τ, x− ∆x
2

))]
dτ = 0.

Rearranging these terms leads to

x+∆x
2∫

x−∆x
2

u(t + ∆t, ξ)dξ =

x+∆x
2∫

x−∆x
2

u(t, ξ)dξ

−
t+∆t∫
t

[
f
(

u
(

τ, x +
∆x
2

))
+ f

(
u
(

τ, x− ∆x
2

))]
dτ.

We introduce the sliding averages of u as

u(t, x) :=
1

∆x

x+∆x
2∫

x−∆x
2

u(t, ξ)dξ (5.3)

and divide both side of the above equation by ∆x to get

u(t+∆t, x) = u(t, x)− 1
∆x

t+∆t∫
t

[
f
(

u
(

τ, x +
∆x
2

))
+ f

(
u
(

τ, x− ∆x
2

))]
dτ.

Next, we define the averaged fluxes as

f̂(t, x) :=
1

∆t

t+∆t∫
t

f(u(τ, x))dτ (5.4)

to finally obtain

u(t + ∆t, x) = u(t, x)− ∆t
∆x

[
f̂
(

t, x +
∆x
2

)
− f̂

(
t, x− ∆x

2

)]
. (5.5)

Note that up to now, we have not discussed any numerical approximations.
The relation above only uses exact averages of the analytical solution u and
the given flux function f(u). Although it is relatively easy to get spatially
averaged values of u from initial data or previous time steps, the question
of how to compute time averaged fluxes is far from trivial. Furthermore, we
have not specified up to now around which point x the spatial part of our
control volume is centered. We will see in the following how this choice will



82 Chapter 5. Numerical Concepts and Results

distinguish upwind and central schemes.
For simplicity we will consider a uniform discretization of the computa-

tional grid from now on and introduce

• a spatial grid xj such that

xj+1 − xj = ∆x, xj− 1
2
= xj − ∆x/2, xj+ 1

2
= xj + ∆x/2, ∀j,

• computational cells Cj := [xj− 1
2
, xj+ 1

2
],

• for any time t = tn, we also define tn+1 = tn + ∆t.

With this at hand, we now have to specify the space-time control volumes,
which leads to the following distinction.

5.1.1 First-order upwind schemes

In this case we choose a space-time control volume [tn, tn+1] × [xj− 1
2
, xj+ 1

2
],

see Figure 5.1.

xj− 1
2

xj+ 1
2

tn+1

tn

xj−1 xj xj+1

FIGURE 5.1: Space-time control volume for upwind type
schemes

With this choice, the update of the conserved quantities u in cell Cj reads

u(tn+1, xj) = u(tn, xj)−
∆t
∆x

[
f̂
(

tn, xj+ 1
2

)
− f̂

(
tn, xj− 1

2

)]
, (5.6)

compare to Equation (5.5). Let Un
j be an approximation of the average value

of the j− th computational cell Cj at time tn

Un
j ≈ u

(
tn, xj

)
=

1
∆x

x
j+ 1

2∫
x

j− 1
2

u(tn, ξ)dξ (5.7)
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and Fn
j+ 1

2
some approximation to the average flux along x = xj+ 1

2

Fn
j+ 1

2
≈ f̂(tn, xj+ 1

2
) =

1
∆t

tn+1∫
tn

f(u(τ, xj+ 1
2
))dτ. (5.8)

With these notations, we get numerical methods from Equation (5.6) of the
form

Un+1
j = Un

j −
∆t
∆x

[
Fn

j+ 1
2
− Fn

j− 1
2

]
. (5.9)

Note that the conservation property is built into numerical schemes of this
form. The change of the cell average is given by the difference in fluxes across
the boundaries of the cell. The outgoing flux of one cell and the incoming
flux of the neighboring cell are identical due to the definition of the fluxes,
see (5.8).

A generic first-order upwind scheme then reads as follows

• Assume that the numerical solution is given in terms of its cell averages
at time t = tn

Un
j ≈

1
∆x

∫
Cj

u (tn, x) dx, Cj := [xj− 1
2
, xj+ 1

2
], ∀j. (5.10)

• Compute the numerical fluxes

Fn
j+ 1

2
≈ 1

∆t

tn+1∫
tn

f(u(τ, xj+ 1
2
))dτ, ∀j. (5.11)

• Update the cell averages according to the numerical scheme (5.9)

Un+1
j = Un

j −
∆t
∆x

[
Fn

j+ 1
2
− Fn

j− 1
2

]
. (5.12)

Note, that the last step can be interpreted as a representation of a semi-
discrete form

d
dt

Uj(t) = −
Fj+ 1

2
(t)− Fj− 1

2
(t)

∆x
, (5.13)

which allows the useage a Runge-Kutta type solver for the time stepping.
This is in contrast to the central schemes as we will see later. The problem of
the algorithm presented is the determination of exact or approximated fluxes
in the second step. The first finite-volume upwind scheme with an ingenious
idea to determine fluxes was proposed by Godunov in 1959 [31].
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5.1.2 The Godunov method

Even if most people working on hyperbolic PDEs today are very familiar
with Godunov’s method, it was quite revolutionary at the time it was in-
vented. During the International Conference “Mathematics and its Applica-
tions” in honor of the 90th birthday of Sergei K. Godunov, Godunov himself
told the story of how he could barely convince the members of his PhD com-
mission, containing for example Sergei L. Sobolev, of his idea to solve a PDE
without any conventional approximation of the derivatives. But today, many
finite-volume methods are based on Godunov’s ideas. It became one of the
most important building blocks of numerical schemes. We will also use a
Godunov-type numerical method for the system of conservation laws con-
sidered in this thesis.

The question at hand is still how to get an approximation for the intercell
boundary fluxes

Fn
j+ 1

2
≈ 1

∆t

tn+1∫
tn

f(u(τ, xj+ 1
2
))dτ. (5.14)

Note, that the fluxes f(u(t, xj+ 1
2
)) may vary along the integration interval.

But Godunov observed, that the cell averages Un
j are constant in each cell

Cj at each time level tn and therefore form a Riemann problem at each cell
interface xj+ 1

2

ut + f(u)x = 0

u (tn, x) = Ũn
j (x) =

{
Un

j , x < xj+ 1
2

Un
j+1, x > xj+ 1

2
.

(5.15)

This Riemann problem, which we will call RP
(

Un
j , Un

j+1

)
, can then be solved

analytically in terms of elementary waves emanating from each intercell in-
terface. See Chapter 3 for an introduction to the analytical solution of Rie-
mann problems for scalar and systems of conservation laws.

The Riemann problem RP
(

Un
j , Un

j+1

)
centered at xj+ 1

2
has a self-similar

solution U∗
j+ 1

2
which is constant along rays (x− xj+12)/(t− tn)

U∗j+ 1
2
(t, x) = U∗j+ 1

2

(
x− xj+ 1

2

t− tn

)
, ξ =

x− xj+ 1
2

t− tn .

Since we are interested in the flux along the vertical line at x = xj+ 1
2

we only
need the solution of the Riemann problem along (x − xj+ 1

2
)/(t − tn) = 0.

Therefore we can approximate the analytical solution by the constant solu-
tion of the Riemann problem (5.15)

u
(

t, xj+ 1
2

)
≈ U∗j+ 1

2

(
t, xj+ 1

2

)
= U∗j+ 1

2

(
xj+ 1

2
− xj+ 1

2

t− tn

)
≡ U∗j+ 1

2
(0).
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At this interface the flux can then be calculated using this constant value

Fn
j+ 1

2
=

1
∆t

tn+1∫
tn

f
(

U∗j+ 1
2
(0)
)

dt = f
(

U∗j+ 1
2
(0)
)

, ∀j.

That is, one has to evaluate the flux function at the so called Godunov state
U∗

j+ 1
2
(0) at each intercell boundary.

Regarding the size of time steps, one also has to impose a restriction.
Waves from neighboring Riemann problems can intersect after some time,
which is depicted in Figure 5.2. However, each wave has a finite speed

xj− 1
2

xj+ 1
2

tn+1

tn

xj−1 xj xj+1

FIGURE 5.2: Waves emanating from intercell Riemann prob-
lems

of propagation and the maximum wave speed of any Riemann problem is
bounded by

max
i,j

∣∣∣λi

(
Un

j

)∣∣∣ ,

where the λi(u) are the Eigenvalues of the Jacobian of the flux vector A(u) =
Df(u). Hence, imposing the so-called CFL condition

max
i,j

∣∣∣λi

(
Un

j

)∣∣∣ ∆t
∆x
≤ 1

2
(5.16)

ensures that waves from neighboring Riemann problems do not interact be-
fore reaching the next time level. Note that the bound 1

2 may be replaced by 1
and the Godunov state is not altered by waves emanating from neighboring
Riemann problems. The condition (5.16) with a bound of 1 is named after
Richard Courant, Kurt Friedrichs and Hans Lewy, who first introduced this
condition in 1928, see [12]. The dimensionless number

CCFL = max
i,j

∣∣∣λi

(
Un

j

)∣∣∣ ∆t
∆x

(5.17)

is called the Courant number. From linear stability analysis for explicit time
stepping one gets the restriction CCFL ≤ 1.
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Even though the Godunov scheme has many desirable properties like the
conservation property, it possesses a few problems, too.

The only information needed to determine the numerical fluxes is the
value of the fluxes at the cell interfaces. Solving the entire Riemann problem
on each interface seems unnecessary. Furthermore, this relies on the avail-
ability of an explicit formula for the solution of the Riemann problem. We
have such formulas at hand in the case of scalar conservation laws or lin-
ear systems of conservation laws. However, more complicated systems of
conservation laws may not yield such formulas. Even in the scalar case for
complicated flux functions with a large number of extremal points, one may
need to solve an optimization problem. Such a problem might be computa-
tionally very costly.

Therefore, the numerical fluxes are determined from approximate solu-
tions to Riemann problems at intercell boundaries in many cases. Meth-
ods derived in this way include the Roe solver, the Osher scheme, the HLL
solver, as well as the HLLC solver. We will only comment shortly on the Roe
scheme in the following subsection to show the basic idea and on the HLL
approaches later on.

5.1.3 The Roe scheme

This scheme is a standard method for solving nonlinear equations. The basic
idea is just to linearize them, see Roe [71]. For simplicity, we will present the
method for a scalar conservation law

ut + f (u)x = 0 ⇒ ut + f ′(u)ux = 0 ⇒ Â(u) ≈ f ′(u).

Here, Â(u) is a constant state around which the nonlinear flux function is
linearized. There are different choices, for example

Ân
j+ 1

2
= f ′

(
Un

j + Un
j+1

2

)
or Ân

j+ 1
2
=


f
(

Un
j+1

)
− f
(

Un
j

)
Un

j+1−Un
j

, Un
j 6= Un

j+1,

f ′
(

Un
j

)
, Un

j = Un
j+1.

Then, solving the linear Riemann problem

ut + Ân
j+ 1

2
ux = 0,

u (x, tn) =

{
Un

j , x < xj+ 1
2
,

Un
j+1, x > xj+ 1

2
,

becomes very easy. The solution is given by the solution of the advection
equation, so it depends only on the velocity Ân

j+ 1
2
. It reads

Fn
j+ 1

2
= FRoe

(
Un

j , Un
j+1

)
=

 f
(

Un
j

)
, Ân

j+ 1
2
≥ 0,

f
(

Un
j+1

)
, Ân

j+ 1
2
< 0.

(5.18)
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In the case of systems of conservation laws, the linearization is given by the
well known Roe matrix. The solution depends then on the eigenstructure
of this matrix. Since for the system considered in this work an eigenvector
is missing, we can not use this idea. Most of the time we will use the HLL
approximate Riemann solver presented in the next section.

5.1.4 First-order central schemes

The starting point for the first-order central scheme is exactly the same fi-
nite volume evolution equation as in the case of upwind schemes, namely
Equation (5.5)

u(t + ∆t, x) = u(t, x)− ∆t
∆x

[
f̂
(

t, x +
∆x
2

)
− f̂

(
t, x− ∆x

2

)]
,

but now evaluated at the set of points (tn, xj+ 1
2
) instead of (tn, xj). In com-

parison to the upwind scheme the control volumes will be shifted by ∆x/2
and now are [tn, tn+1]× [xj, xj+1], see Figure 5.3. Note, that while the data at

xj+ 1
2

xj+ 3
2

xj− 1
2

tn+1

tn

xj xj+1

FIGURE 5.3: Space time control volume for central schemes

t = tn are given on the original grid [xj− 1
2
, xj+ 1

2
] the new computed solution

will be obtained over the staggered grid [xj, xj+1].
Using the central space time control volume for the numerical update, we

get

Un+1
j+ 1

2
=

1
∆x

xj+1∫
xj

Ũn
j (x)dx− 1

∆x

tn+1∫
tn

[
f
(
u
(
t, xj+1

))
− f

(
u
(
t, xj

))]
dt. (5.19)

Here Ũn
j (x) is a piecewise constant function built from the given cell averages

at time t = tn. But both integrals in (5.19) can be calculated straight forward.
The space integral can be exactly evaluated, since the Ũn

j (x) is a piecewise
constant function

Ũn
j (x) =

{
Un

j , x ∈ [xj, xj+ 1
2
),

Un
j+1, x ∈ [xj+ 1

2
, xj+1).
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Therefore we get

1
∆x

xj+1∫
xj

Ũn
j (x)dx =

Un
j+1 + Un

j

2
.

As long as a proper CFL condition is chosen, no waves generated at the cell
interface can reach the vertical segments of the control volume. The solution
then remains constant at the interfaces x = xj. The time integral therefore

xj+ 1
2

xj+ 3
2

xj− 1
2

tn+1

tn

xj xj+1

FIGURE 5.4: Waves emenating from intercell Riemann prob-
lems in the case of central schemes

becomes

tn+1∫
tn

[
f
(
u
(
t, xj+1

))
− f

(
u
(
t, xj

))]
dt = ∆t

[
f
(

Un
j+1

)
− f

(
Un

j

)]
.

Inserting these results into Equation (5.19) leads to

Un+1
j+ 1

2
=

Un
j+1 + Un

j

2
− ∆t

∆x

[
f
(

Un
j+1

)
− f

(
Un

j

)]
.

But this is nothing else than the staggered Lax-Friedrichs scheme. Averaging
this result over the cells [xj− 1

2
, xj+ 1

2
] gives the Lax-Friedrichs scheme in its

typical form

Un+1
j = Un

j −
∆t
∆x

[
Fn

j+ 1
2
− Fn

j− 1
2

]
, (5.20)

with the Lax-Friedrichs flux

Fn
j+ 1

2
= FLxF

(
Un

j , Un
j+1

)
=

f
(

Un
j

)
+ f

(
Un

j+1

)
2

− ∆x
2∆t

(
Un

j+1 −Un
j

)
. (5.21)

Due to the fact that no Riemann problem has to be solved, this is an ex-
tremely simple and universal tool for solving hyperbolic systems of conser-
vation laws. On the other hand, this scheme has excessive numerical diffu-
sion. It is not well suited for resolving shock waves or contact discontinu-
ities. Due to that reason, we will use an upwind-type Godunov method for
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our numerical simulations.
One can also improve the Lax-Friedrichs scheme to have less numerical

diffusion. For example, one can replace the global value ∆x/∆t by a local
approximation of the fastest wave speed λmax(Un

j ), which leads then to the
local Lax-Friedrichs method or Rusanov’s method. There are also entirely
different choices for the numerical fluxes like the Engquist-Osher flux. We do
not want to present any details of these methods here and refer the reader to
the literature on numerical methods for conservation laws mentioned before.

Furthermore, these types of numerical schemes also lack a semi-discrete
version. This makes the construction of higher-order methods complicated
as one would like to do a high order reconstruction in space and a high order
Runge-Kutta type method for the time stepping.

5.1.5 First-order finite volume schemes - Summary

A general first-order finite volume scheme can be summarized in the follow-
ing three steps. Assume for a time t = tn we have given cell averages Un

j on
the grid cells Cj

t = tn : Un
j ≈

1
∆x

∫
Cj

u (tn, x) dx, Cj :=
[

xj− 1
2
, xj+ 1

2

]
, ∀j.

• Reconstruct the global approximate solution Ũn
j (x) from the given cell

averages

• Evolve the reconstructed function in time using either an exact or ap-
proximate solution algorithm.

– For upwind schemes solve the Riemann problems

ut + f(u)x = 0, u (tn, x) = Ũn
j (x), ∀j, (5.22)

either exact or with an approximate Riemann solver.

– For central schemes compute the shifted averages

Un+1
j+ 1

2
=

1
∆x

xj+1∫
xj

Ũn
j (x)dx− 1

∆x

tn+1∫
tn

[
f
(
u
(
t, xj+1

))
− f

(
u
(
t, xj

))]
dt.

• Average the solution at the next time level t = tn+1 over each cell Cj.

These steps can then be repeated one after another to advance a certain num-
ber of time steps. As long as the reconstructed solution Ũn

j (x) is a piecewise
constant function built from the cell averages, these schemes are only first-
order schemes. We will comment on higher-order schemes in the following
subsection.
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There are also central-upwind schemes that combine both of the above
ideas. These methods are then Godunov-type finite volume methods that
do not require solving Riemann problems at each cell interface. They also
work in the three steps presented above, that is, reconstruction, evolution
and averaging (REA). The key idea is to select space-time control volumes in
the evolution step adaptively depending on the size of Riemann fans gener-
ated at each cell interface. We refer the interested reader to Kurganov and
Tadmor [49] or Kurganov, Noelle and Petrova [48].

5.1.6 Second-order finite volume methods

The idea of improving the aforementioned algorithm is straightforward. The
piecewise constant functions only lead to a first-order method. Therefore
in the reconstruction step, the piecewise constant function is replaced by a
piecewise linear function. To achieve a second-order approximation in space,
we reconstruct the global piecewise linear solution Ũn

j (x) in the first step of
the REA algorithm

Ũn
j (x) = Un

j + σn
j
(
x− xj

)
, ∀x ∈ Cj, (5.23)

where Un
j is the cell average of the solution at time step n on the grid cell Cj

and σn
j an appropriate slope. To achieve a higher-order spatial approxima-

tion, one has to choose the order of the reconstruction polynomial accord-
ingly. The following steps of the REA algorithm, namely the evolution and
averaging steps, are then carried out almost as before in the first-order case,
see (5.22).

Note that the conservation property of the Godunov method is still valid
since we have

1
∆x

x
j+ 1

2∫
x

j− 1
2

Ũn
j (x)dx = Un

j .

The slopes in a second-order reconstruction can be chosen in different
ways, for example the central slopes

σn
j =

Un
j+1 −Un

j−1

2∆x
, (5.24)

backward slopes

σn
j =

Un
j −Un

j−1

∆x
, (5.25)

or forward slopes

σn
j =

Un
j+1 −Un

j

∆x
. (5.26)

Independently of the choice of slopes, such a method will produce oscilla-
tions near discontinuities or sharp gradients of the solution. That is due to
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Godunov’s Theorem, which states that a monotone and linear scheme will
be at most of first-order, see [31].

To avoid generating spurious oscillations, nonlinear solution-adaptive
schemes must be constructed, which lead to so called Total Variation Dimin-
ishing (TVD) Methods. There are many different approaches to get rid of
spurious oscillations. One well established approach is the usage of flux
limiters like the MINBEE or SUPERBEE limiters. Other ideas include the
ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-
Oscillatory) reconstructions by Harten, Engquist, Osher [38] and Liu, Osher,
Chan [61], respectively.

Giving a comprehensive overview of this very active field of research is
not possible within the scope of this work. We will comment on the methods
used for this work in the next section.

Having achieved a second- or higher-order spatial reconstruction with
an appropriate order of the reconstruction polynomial, one has to achieve
a high-order approximation in time as well. Otherwise, the method con-
structed is not truly of high order. By integrating the conservation law over
space

1
∆x

x
j+ 1

2∫
x

j− 1
2

[ut + f(u)x] dx = 0

one gets the semi-discrete formulation

d
dt

u(t, xj) +
f(u(t, x−

j+ 1
2
))− f(u(t, x+

j− 1
2
))

∆x
= 0,

where we have used u(t, x−
j+ 1

2
) and u(t, x+

j− 1
2
) to indicate the one-sided limits

of u at the cell boundaries of cell j. Again, let Uj(t) be an approximation of
the average value of the j − th computational cell Cj at time t and Fj+ 1

2
(t)

some numerical flux, that is

Uj(t) ≈ u
(
t, xj

)
and Fj+ 1

2
(t) ≈ f(t, x−

j+ 1
2
).

Then the evolution step of the REA algorithm reads

d
dt

Uj(t) +
Fj+ 1

2
(t)− Fj− 1

2
(t)

∆x
= 0,

compare to (5.13), where we mentioned the semi-discrete formulation before.
This can be rewritten in the following form

d
dt

Uj(t) = L(Uj(t)). (5.27)
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The operator L acts on the vector Uj(t) as

L(Uj(t)) := −
Fj+ 1

2
(t)− Fj− 1

2
(t)

∆x
. (5.28)

To achieve a fully high-order method in combination with the high-order
spatial reconstruction, one has to solve this ODE-system with a stable ODE
solver of an appropriate order, for example a Runge-Kutta type solver. None-
theless, these semi-discrete methods have a disadvantage when used for hy-
perbolic conservation laws. We will comment on this later. So instead, we
will use a fully discrete method for the simulations presented in this work,
which we will describe in the following section.

5.2 The MUSCL Method

This section is based on the presentation of the MUSCL method given in
Toro [83, Chapter 13/14]. We will only give a sufficiently brief overview of
the methods used for an understanding of the results presented later. We
would like to refer the reader to the book of Toro and the references therein
for further reading.

The idea of improving the first-order Godunov method by replacing the
piecewise constant function with a higher-order polynomial goes back to a
series of papers by van Leer, see e.g. [85]. MUSCL stands for Monotone Up-
stream–centered Scheme for Conservation Laws. It is possible to construct
high-order methods of fully discrete, semi-discrete and also implicit types. In
the last section, we have already seen how one can construct a semi-implicit
second-order MUSCL method.

We will start again from the reconstruction step of the REA algorithm and
show in which way we implemented the MUSCL idea in a fully discrete man-
ner. We will limit ourselves to the construction of a second-order method. In
abuse of notation but in accordance to Toro [83] we will call the ∆j slope vec-
tors even if they are actually differences of Un

j . We choose them according
to

∆j =
1
2
(1 + ω)∆j− 1

2
+

1
2
(1−ω)∆j+ 1

2
, (5.29)

where the differences are given by

∆j− 1
2
= Un

j −Un
j−1, ∆j+ 1

2
= Un

j+1 −Un
j . (5.30)

Here, ω ∈ [−1, 1] is a parameter and can be chosen freely. Note, that for
ω = 0 we acquire the central slopes, for ω = 1 the backward slopes and for
ω = −1 the forward slopes, respectively, compare to (5.24), (5.25) and (5.26).

The replacement of the piecewise constant function Ũn
j (x) with a piece-

wise linear one is done in the following way

Ũn
j (x) = Un

j +

(
x− xj

)
∆x

∆j, ∀x ∈ Cj =
[

xj− 1
2
, xj+ 1

2

]
, (5.31)
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where the slope σn
j is given by σn

j =
∆j
∆x .

Again, one can see immediately that the integral of Ũn
j (x) and Un

j over
Cj are identical and therefore the conservation property holds. Also, higher
orders of the reconstruction are possible.

By modifying the data in the reconstruction step, we no longer have or-
dinary Riemann problems at each cell interface. Instead, we get a so called
generalized Riemann problem (GRP)

ut + f(u)x = 0

u (tn, x) =

{
Ũn

j (x), x < xj+ 1
2

Ũn
j+1(x), x > xj+ 1

2
.

(5.32)

From this GRP we have to determine the flux Fj+ 1
2
(t) on the cell interface.

Note that the calculation of a Godunov state U∗
j+ 1

2
(0) may not be feasible,

since for a GRP the wave curves do not have to be straight lines separated
by constant states as in the case of a classical Riemann problem. We will
not present any details of the solution of generalized Riemann problems.
A MUSCLE-type scheme based on the solution of GRPs was developed by
Ben–Artzi and Falcovitz, see [4]. Since the solution of the GRP is very com-
plicated for nonlinear systems, we will rely on a different method. There are
many different schemes based on the MUSCLE reconstruction idea, includ-
ing other fully discrete methods like the Piecewise Linear Method (PLM) by
Colella [11], the Eno/Weno reconstructions as semi-discrete methods or im-
plicit methods, see Yee et al. [91].

5.2.1 The MUSCL-Hancock method

We will now present the method used in all simulations if not stated other-
wise. The name MUSCL-Hancock method goes back to van Leer [86], who
gave the name due to private communications with Hancock.

The method itself consists of three steps very similar to the first order REA
algorithm.

• Reconstruction of the local approximate solution Ũn
j (x) from the given

cell averages

Ũn
j (x) = Un

j +

(
x− xj

)
∆x

∆j, ∀x ∈ Cj, (5.33)

where ∆j is the slope vector given by (5.29). From this reconstruction
we calculate the values of Ũn

j (x) on the cell boundary. They are given
by

U−j = Un
j −

1
2

∆j, U+
j = Un

j +
1
2

∆j (5.34)

and called boundary extrapolated values.
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• Evolution of the boundary extrapolated values U−j and U+
j , see (5.34),

in each cell Cj to an intermediate time level tn+ 1
2 = tn + 1

2 ∆t using the
numerical flux function

U−j = U−j +
1
2

∆t
∆x

[
F(U−j )− F(U+

j )
]

,

U+
j = U+

j +
1
2

∆t
∆x

[
F(U−j )− F(U+

j )
]

.
(5.35)

In obtaining these values, the interaction between cells is ignored en-
tirely. The evolution of these values is fully contained in the cell Cj.
To achieve a second-order method with this form of the evolution step
leads to a drastic simplification compared to other methods mentioned
in the last subsection and goes back to Hancock, see [86].

Note, that there is no longer a single value for the flux at the intercell
boundary as before in the first-order algorithm. At the intercell bound-
ary there are now two genuinely distinct fluxes, namely F(U+

j ) and
F(U−j+1).

• Solution of the Riemann problem. One can solve now the conven-
tional Riemann problem with the evolved boundary extrapolated val-
ues given by (5.35) as constant initial datum

ut + f(u)x = 0

u (tn, x) =

 U+
j , x < xj+ 1

2

U−j+1, x > xj+ 1
2
.

(5.36)

The intercell flux can then be determined exactly as in the first order
algorithm by solving the Riemann problem exactly

Fn
j+ 1

2
= f

(
U∗j+ 1

2
(0)
)

.

Since we do not have an explicit solution to the Riemann problem of the
system under consideration in this work, we will use an approximate
Riemann solver in this step, which is shown in the next section.

• Update the cell averages with the first-order upwind formula

Un+1
j = Un

j −
∆t
∆x

[
Fn

j+ 1
2
− Fn

j− 1
2

]
. (5.37)

We already mentioned Godunov’s theorem, that there are no monotone and
linear schemes higher than first order. The scheme resulting from the above
steps will be of second order accuracy and linear, but it will also produce
spurious oscillations and is therefore not monotone. Since we want to keep
the monotonicity property, we have to make the scheme nonlinear to keep a
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higher order of approximation. Therefore, we will use the following nonlin-
ear limiters of the slopes in the reconstruction step of the algorithm

∆j =

 max
[
0, min

(
β∆j− 1

2
, ∆j+ 1

2

)
, min

(
∆j− 1

2
, β∆j+ 1

2

)]
, ∆j+ 1

2
> 0

min
[
0, max

(
β∆j− 1

2
, ∆j+ 1

2

)
, max

(
∆j− 1

2
, β∆j+ 1

2

)]
, ∆j+ 1

2
< 0

,

(5.38)
where the max and min functions are to be understood as componentwise
operations on the slope vector. The parameter β can be chosen freely. If
not stated otherwise, we will use the value β = 1 which corresponds to the
MINMOD or MINBEE limiter.

5.3 The HLL and HLLC approximate Riemann solvers

The idea for these approximate Riemann solvers goes back to Harten, Lax
and van Leer [39]. We will give a brief overview of the derivation of these
Riemann solvers following Toro [83, Chapter 10].

The main idea of the HLL solver is the assumption that the wave structure
consists out of only two waves separating three constant states. These waves
travel with the fastest and slowest signal speed s+ and s−. All other waves
are ignored and the intermediate states are lumped into one single state in the
*-region. Therefore, this solver can be accurate only for hyperbolic systems
of two equations and are definitely an approximation in our case.

We will consider a control volume V = [0, tc] × [xL, xR] including the
whole wave pattern of one Riemann problem emanating from the origin, that
is

xL ≤ tcs−, xR ≥ tcs+.

The situation is depicted in Figure 5.5.

x0

t

xRxL

tc

V

s− s+

tcs− tcs+

FIGURE 5.5: Control volume V = [0, tc]× [xL, xR] with the Rie-
mann problem emenating from the origin and the fastest signal

speeds s− and s+.
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In analogy to Section 3.1.4 and 3.1.5, we will integrate the system of con-
servation laws with Riemann initial data

ut + fx(u) = 0

u(0, x) =
{

u− for x < 0
u+ for x > 0,

(5.39)

over the given control volume and get

xR∫
xL

u(tc, x)dx =

xR∫
xL

u(0, x)dx +

tc∫
0

f (u (t, xL)) dt−
tc∫

0

f (u (t, xR)) dt.

But the integrals on the right hand side can be evaluated straight forward
since the integrands are constant or only have a single jump. This leads to

xR∫
xL

u(tc, x)dx = xRu+ − xLu− + tc (f− − f+) , (5.40)

with f− = f(u−) and f+ = f(u+). But we can also split the integral on the
left hand side in the following way

xR∫
xL

u(tc, x)dx =

tcs−∫
xL

u(tc, x)dx +

tcs+∫
tcs−

u(tc, x)dx +

xR∫
tcs+

u(tc, x)dx.

Here we know, that the integrands in the first and third integral on the right
hand side are constant. Therefore we can evaluate these integrals and get

xR∫
xL

u(tc, x)dx =

tcs+∫
tcs−

u(tc, x)dx + (tcs− − xL) u− + (xR − tcs+) u+. (5.41)

Comparing the right hand sides of (5.40) and (5.41) gives

tcs+∫
tcs−

u(tc, x)dx = tc (s+u+ − s−u− + f− − f+) .

Dividing by the length of the integration interval we get the integral average
of the intermediate state, which we will call Uhll and reads

Uhll =
1

tc (s+ − s−)

tcs+∫
tcs−

u(tc, x)dx =
s+u+ − s−u− + f− − f+

s+ − s−
. (5.42)
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Up to this point all calculations are exact. But we approximate the perhaps
difficult solution to the Riemann problem by the following solution

U(t, x) =


u−, x

t ≤ s−
Uhll, s− ≤ x

t ≤ s+
u+, x

t ≥ s+,
(5.43)

and therefore ignore any internal structure in the *-region.
Finally, we need to calculate the numerical flux along the t-axis. We will

not just put Fhll = f(Uhll) but instead use some integral relations again. For
this purpose, we will integrate the system of conservation laws (5.39) over
the left half of the previous control volume, that is [0, tc]× [xL, 0]. We obtain

0∫
tcs−

u(tc, x)dx = −tcs−u− + tc (f− − f0) ,

with f0 being the flux along the t-axis. We can rearrange this expression to
get

f0 = f− − s−u− −
1
tc

0∫
tcs−

u(tc, x)dx.

By substituting Uhll into this relation and calling the corresponding flux along
the t-axis Fhll we get

Fhll = f− + s−
(

Uhll − u−
)

,

since Uhll is again a constant integrand. Using the definition of Uhll in this
last expression leads to

Fhll =
s+f− − s−f+ + s−s+ (u+ − u−)

s+ − s−
. (5.44)

We will then choose the numerical flux at an intercell boundary in the fol-
lowing way

Fhll
j+ 1

2
=


f−, 0 ≤ s−
Fhll, s− ≤ 0 ≤ s+
f+, 0 ≥ s+.

(5.45)

Again, this flux ignores any internal structure of the exact solution. How-
ever, it is an easy to implement approximate Riemann solver we will use in
the "Solution" step of the MUSCL-Hancock algorithm, provided one has the
slowest and fastest signal speed. Since we have the exact wave speeds for
each wave of the system under consideration in this work, we can easily de-
termine these speeds and use the HLL approximate Riemann solver.

Since the internal structure in the *-region is neglected in the HLL solver,
any intermediate wave is not or only badly resolved. Therefore Toro, Spruce
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and Speares [84] proposed the HLLC approximate Riemann solver, where
the C stands for Contact. In this approach, a third wave was assumed to be
present. This reflects the structure of the exact solution of Euler equations
of gas dynamics, where one has two acoustic waves and a contact wave be-
tween them.

The derivation of the HLLC solver is almost identical to the one of the
HLL solver presented above. We will not present it here. For details see
again Toro [83, Chapter 10]. One has to split the integral over the *-region in
two parts for the now two unknown states u∗− and u∗+. Together with the two
unknown flux vectors in the *-region there are four unknown vectors in total.
The integral relations only give three relations, though. So one has to impose
some additional conditions. In the case of the Euler equations, the authors
used properties of the exact solution, namely the invariance of pressure and
velocity

p∗− = p∗+ = p∗,
u∗− = u∗+ = u∗. (5.46)

5.4 The GHLL approximate Riemann solver

For the system under consideration in this work, we only have an exact solu-
tion for the dispersed phase, see Chapter 4. Using the relations (5.46) above
did not lead to an improvement over the HLL solver in the liquid phase. We
therefore constructed an adapted solver called GHLL solver.

This section is based on the publication [36]. In order to construct the
GHLL solver, we will make use of the analytical solution derived in Chapter
4. In general, the GHLL Flux reads

Fghll =

(
F∗

Fhll
C

)
, (5.47)

where Fhll
C

denotes an HLL-type solver for the carrier phase of the system.
The GHLL flux is split into two parts, namely F∗ for the dispersed phase and
Fhll

C
the part for the carrier phase, respectively. Due to the decoupling of the

dispersed phase equations in system (2.5) from the rest, the flux can be split
in the given manner. For the dispersed components, we make use of the exact
solution given in Section 4.1:

(i) v− = v+ =: v F∗ =

{
f(u−), v > 0
f(u+), otherwise

(ii) v− < v+ F∗ =


f(u−), v− > 0
f(u+), v+ < 0
0 otherwise

(iii) v− > v+ F∗ =

{
f(u−), vδ > 0
f(u+), otherwise

,

(5.48)
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where vδ is given by

vδ =
v−
√

c−ρ− + v+
√

c+ρ+√
c−ρ− +

√
c+ρ+

,

compare to (4.23). We thus use the exact solution of the dispersed phase to
determine the numerical fluxes in the MUSCL-Hancock scheme.

For the carrier phase, we do not have an explicit solution to the Riemann
problem at hand. We therefore try to use the HLLC approach. But as stated
before, one needs some extra relations in order to construct the HLLC solver.
One would like to use the Riemann invariants at the contact wave for this
purpose. However, it is impossible to determine the Riemann invariants for
the carrier fluid across the middle wave/waves. Accordingly, the construc-
tion of an HLLC solver resp. HLLCC solver requires approximations across
the waves corresponding to λ = v. Note that in the case of the right velo-
city exceeding the left one in the dispersed phase, the middle wave splits
into two waves, creating a region without any dispersed phase material.
This splitting of the middle wave into two contact waves leads to the name
HLLCC solver. To derive the flux for the liquid components from the HLLC
or HLLCC solver and since one can not determine the Riemann invariants
exactly, we impose the following approximate Riemann Invariants across the
corresponding wave: I1 = (1− c)ρC and I2 = (1− c)ρC vC . But the result-
ing scheme for the liquid components is then equivalent to an ordinary HLL
solver.

In the following, we discuss several numerical examples for all the three
cases: Case 1 - contact case, Case 2 - vaporless case, Case 3 - δ-shock case.
We consider bubbles in liquid as well as droplets in gas. We use parameters
noted in Table 5.1. These data correspond to T = 293.15 K.

gas liquid
a
[m

s

]
369 1478

d0 [Pa] 0 -2.18 · 10−8

TABLE 5.1: Equations of state parameters

In order to give a condensed presentation for each test case, we only show
three relevant pictures to discuss the properties of the solver and we neglect
the equation describing the radius evolution.

We compare the GHLL solver to the second-order HLL solver and to the
exact solution, presented by a blue, red and a black line, resp. All simulations
are performed using the CFL number CCFL = 0.9.

Example 1 - contact case, bubbles in liquid - uses the initial data given
in Table 5.2.
We obtain the results shown in Figure 5.6. Obviously, the GHLL solver gives
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c ρ
[

kg
m3

]
v
[m

s

]
ρC

[
kg
m3

]
vC

[m
s

]
Left state 0.025 1.49 -200 998.29 -200

Right state 0.1 0.745 -200 998.24 200

TABLE 5.2: Initial data Example 1, N = 200

FIGURE 5.6: Contact case, bubbles in liquid, N = 200

- in contrast to the HLL solver - a quite good resolution for the contact wave,
even on coarse grids. On the other hand, the GHLL solver produces small
under- and overshoots near the contact in the carrier fluid, which lead to
small oscillations. These oscillations completely disappear on finer grids.
The resolution of shock waves is of the same quality for both solvers.

Example 2 - vaporless case, bubbles in liquid - uses the initial data
given in Table 5.3.

c ρ
[

kg
m3

]
v
[m

s

]
ρC

[
kg
m3

]
vC

[m
s

]
Left state 0.025 1.49 -50 998.29 -200

Right state 0.1 0.745 50 998.24 200

TABLE 5.3: Initial data Example 2, N = 200, N = 500

We obtain the results presented in Figure 5.7 for the coarse grid and in Figure
5.8 for the finer grid.

Even on a coarse grid, the GHLL solver gives a quite good approximation
of the vaporless state. Refining the mesh the GHLL solver gives a nearly
exact solution, while the resolution of the vaporless state produced by the
HLL solver is quite poor. One can clearly see that the tiny oscillations by the
GHLL solver are totally disappeared on the finer grid.

Example 3 - δ-shock case, bubbles in liquid - uses the initial data given
in Table 5.4.
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FIGURE 5.7: Vaporless case, bubbles in liquid, N = 200

FIGURE 5.8: Vaporless case, bubbles in liquid, N = 500

c ρ
[

kg
m3

]
v
[m

s

]
ρC

[
kg
m3

]
vC

[m
s

]
Left state 0.025 1.49 10 998.29 -200

Right state 0.1 0.745 -10 998.24 200

TABLE 5.4: Initial data Example 3, N = 500

Due to the formation of the singularity, the simulation for that example is
performed on a finer grid. We obtain the result shown in Figure 5.9.
While the GHLL solver gives a very good approximation of the exact solu-

tion, the HLL solver fails to resolve the singularity.
Considering bubbles in a liquid, the GHLL solver always gives much bet-

ter solutions than the HLL solver. In the following, we investigate the op-
posite case of droplets in gas. Because HLL and GHLL solver give nearly
the same solution for the contact case even on a coarse grid (N = 100), we
disclaim to present corresponding numerical results.

Example 4 - droplets in gas - uses the initial data given in Table 5.5.
The results are shown in Figure 5.10. As in the opposite case of bubbles in a
liquid, the GHLL solver gives a much better resolution of the middle state.
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FIGURE 5.9: δ-shock case, bubbles in liquid, N = 500

c ρ
[

kg
m3

]
v
[m

s

]
ρC

[
kg
m3

]
vC

[m
s

]
Left state 0.025 998.29 -200 1.49 -50

Right state 0.1 998.24 200 0.745 -50

TABLE 5.5: Initial data Example 4, N = 100

FIGURE 5.10: Vacuum case, droplets in gas, N = 100

Note that in the droplet case, the GHLL solver does not produce any over-
and undershoots.

Example 5 - δ-shock case, droplets in gas - uses the initial given in Table
5.6.

c ρ
[

kg
m3

]
v
[m

s

]
ρC

[
kg
m3

]
vC

[m
s

]
Left state 0.025 998.29 10 1.49 15

Right state 0.1 998.24 -10 0.745 -15

TABLE 5.6: Initial data Example 5, N = 500

Finally we present the results for the δ-shock case for droplets in Figure 5.11.
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As before, the HLL solver is not able to resolve the singularity while the

FIGURE 5.11: δ-shock case, droplets in gas, N = 500

GHLL solver gives a very good approximation.

In all the examples presented, the GHLL solver gives very good results
for the dispersed phase, while the HLL solver cannot fairly resolve contact
waves, vaporless states or singularities. If the carrier fluid is modeled as an
ideal gas, the new GHLL solver always gives satisfactory results.

On the other hand, if the carrier fluid is modeled as a liquid, the GHLL
solver produces small over- and undershoots in the solution of carrier fluid
on coarse grids. The reason is that for parameter |d0| � 0, the approximation
used in the HLLCC solver is to imprecise. Accordingly, for that case, one
should find a better approximation.

5.5 Method of modified equation analysis

In this section, we would like to comment on the properties of the numerical
methods used or presented in this work. In particular, we are interested in
stability, accuracy and diffusive or dispersive behavior of the methods. We
will use the so called modified equation analysis which goes back to Warming
and Hyett [88], also known as method of differential approximations. The second
name goes back to Shokin [77].

As the model equation for a hyperbolic equation, we will consider the
linear advection equation

L(u) =
∂u
∂t

+ a
∂u
∂x

= 0. (5.49)

A numerical method can then be described by an operator Lh acting on a
discrete solution uh, e.g. the upwind scheme

Lh(uh) = un+1
i − un

i +
a∆t
∆x

(
un

i − un
i+1
)
= 0 for a > 0. (5.50)

We will not perform the very similar local truncation error analysis we hope the
reader is familiar with. The local truncation error comes from the truncation
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of the infinite Taylor series to form the discrete algorithm. It is defined by

τ =
1

∆t
Lh(u),

where one applies the operator Lh to the exact solution u satisfying L(u) = 0.
In the modified equation analysis one wants to find a continuous operator

L̃ such that L̃(uh) = 0. To perform this analysis, we assume the existence of
a continuously differentiable function uh(t, x) which coincides at the mesh
points with the exact solution of the difference equation at least in some local
sense, i.e.

uh(tn, xi) = un
i . (5.51)

In general, this numerical solution uh will not satisfy (5.49) exactly, but only
approximately

∂uh
∂t

+ a
∂uh
∂x
6= 0.

We will therefore consider the modified equation or equivalent differential equa-
tion

∂uh
∂t

+ a
∂uh
∂x

=
∞

∑
l=2

cl
∂luh

∂xl (5.52)

to quantify the errors. The numerical solution solves this modified equation
exactly. This form is also called the Π-form of the differential approximation.

Let us consider the upwind scheme (5.50) to demonstrate how to get this
form. We will start from

un+1
i = un

i −
a∆t
∆x

(
un

i − un
i+1
)

for a > 0,

and in a similar manner to the local truncation error analysis, we will expand
the continuous numerical solution uh in a Taylor series in space and time
around xi and tn. We get

un
i +∆tut +

∆t2

2
utt +O(∆t3) = un

i −
a∆t
∆x

(
un

i −
(

un
i − ∆xux +

∆x2

2
uxx +O(∆x3)

))
,

which is equivalent to

ut +
∆t
2

utt +O(∆t2) = −aux + a
∆x
2

uxx +O(∆x2).

Rearranging those terms, we finally obtain

ut + aux = −∆t1

2
utt + a

∆x1

2
uxx +O(∆t2, ∆x2). (5.53)

Equation (5.53) is called the Γ-form of the differential approximation. This
form already gives us quite some information. From the terms on the right
hand side, we can see that the upwind scheme is first-order accurate in space
in time. Moreover, it is also consistent since for ∆x → 0 and ∆t→ 0 the terms
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vanish and the advection equation is satisfied.
The next objective is to replace the time-derivatives with space-derivatives

using the so called Cauchy-Kovalevskaya procedure. The reader who is famil-
iar with ADER schemes should be familiar with this procedure, too. We will
take the Γ-form (5.53) and calculate the derivatives with respect to space and
time to get

utt + auxt = −
∆t
2

uttt + a
∆x
2

uxxt +O(∆t2, ∆x2) = O(∆t, ∆x),

utx + auxx = −∆t
2

uttx + a
∆x
2

uxxx +O(∆t2, ∆x2) = O(∆t, ∆x).

Since both right hand sides are of order O(∆t, ∆x) we get

utt = a2uxx +O(∆t, ∆x),

which we will insert into the Γ-form (5.53). This leads to

ut + aux = −∆t
2

a2uxx + a
∆x
2

uxx +O(∆t2, ∆x2).

which we can write in the form of the modified equation, see (5.52), as follows

ut + aux = a
∆x
2

(
1− a

∆t
∆x

)
uxx +O(∆t2, ∆x2), (5.54)

which is the Π-form of the differential approximation. Here we can see that
the leading error term is of dissipative nature because it is in front of the
uxx term, which could be interpreted as a heat coefficient. Since a > 0 we
require for stability that CCFL = a ∆t

∆x ≤ 1 to keep the coefficient in front of
the leading error term non-negative. Note that this is a significant result.
For a given spacing ∆x, it is unnecessary to make the time step smaller and
smaller to get better results. As long as the stability requirement is fulfilled,
the diffusive error is smaller the larger the Courant number is. For CCFL = 1
the leading error term vanishes and one can show that all higher-order terms
vanish as well. Note that this is only true in the case of the linear advection
equation since the numerical values are transported exactly on the uniform
grid.

We would now like to compare this result for the explicit upwind scheme
to implicit ones. Starting with the implicit upwind scheme

un+1
i = un

i −
a∆t
∆x

(
un+1

i − un+1
i+1

)
for a > 0,

and using the Taylor series expansion again, one gets the following Γ-form

ut + aux = −∆t
2

utt + a
∆x
2

uxx − a∆tuxt +O(∆t2, ∆x2). (5.55)
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We can see that also this scheme is first-order accurate in space and time and
consistent. Going again through the Cauchy-Kovalevskaya procedure

utt + auxt = O(∆t, ∆x),
utx + auxx = O(∆t, ∆x).

to replace time-derivatives with space-derivatives on the right hand side. We
get

utt = a2uxx +O(∆t, ∆x),
uxt = utx = −auxx +O(∆t, ∆x).

Inserting these relations into the Γ-form (5.55), we obtain the Π-form again

ut + aux = −∆t
2

a2uxx + ∆ta2uxx + a
∆x
2

uxx +O(∆t2, ∆x2)

= a
∆x
2

(
1 + a

∆t
∆x

)
uxx +O(∆t2, ∆x2). (5.56)

This scheme is therefore unconditionally stable since the term in front of uxx
is always positive but at a very high cost. No matter how one chooses the
CFL number, it is always more dissipative than the explicit upwind scheme,
compare to Equation (5.54). Since we want to resolve shock waves and con-
tact discontinuities, we want to avoid numerical dissipation at all costs and
therefore, we will not use any implicit method in this work.

To analyze the physical meaning of the error terms, we will use the har-
monic analysis of Fourier applied to the modified equation (5.52). We want
to analyze the evolution of an isolated Fourier mode given as

u(t, x) = u0ei(kx−ωt),

where k = 2π
λ is the wave number and ω = 2π

T is the angular frequency.
To insert this ansatz into (5.52), we need to calculate the first derivative with
respect to time and all orders of derivatives with respect to space. They read

ut = −iωu, ux = iku, uxx = (ik)2u and
∂lu
∂xl = (ik)lu. (5.57)

Inserting these relations (5.57) into (5.52) gives the so called dispersion relation

−iω + aik =
∞

∑
l=2

cl(ik)l.

Rearranging those terms and using the following relation

il =

{
(−1)m if l = 2m,
i(−1)m if l = 2m + 1,
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we get

ω = ak + i
∞

∑
l=2

cl(ik)l

= ak + i
∞

∑
m=1

(−1)mc2mk2m −
∞

∑
m=1

(−1)mc2m+1k2m+1. (5.58)

Inserting this last relation (5.58) into the isolated Fourier mode ansatz, we
obtain

u(t, x) = u0 exp

[
i

(
kx−

(
ak + i

∞

∑
m=1

(−1)mc2mk2m −
∞

∑
m=1

(−1)mc2m+1k2m+1

)
t

)]

= u0 exp

[
ik

(
x−

(
a−

∞

∑
m=1

(−1)mc2m+1k2m

)
t

)]

· exp

[
∞

∑
m=1

(−1)mc2mk2mt

]
. (5.59)

This can be rewritten in the form

u(t, x) = u0 · eik(x−v(k)t) · e−dt, (5.60)

with

v(k) = a−
∞

∑
m=1

(−1)mc2m+1k2m, (5.61)

the wave number dependent wave speed and

d =
∞

∑
m=1

(−1)mc2mk2m, (5.62)

the diffusion error. We can clearly see that the velocity of the isolated Fourier
mode (5.61) deviates from the exact wave speed v(k) = a of the advection
equation and depends on the wave number. Different wave numbers are
therefore transported with different wave speeds, which causes dispersion.
Note, that only the coefficients in front of odd orders of derivatives cause the
dispersion errors, i.e. the coefficients c3, c5 etc. But they do not play any role
for stability considerations.

On the other hand, we have the diffusion error, which does not influence
the wave speeds but the amplitudes of the wave during propagation. To
ensure linear stability we require (−1)mc2m ≤ 0 in (5.62) as a sufficient con-
dition. This guarantees that all Fourier modes are non-increasing over time.
Note, that here only the coefficients in front of even orders of derivatives are
responsible for diffusion errors, i.e. the coefficients c2, c4, etc. Since there is
an alternating sign in the conditions (−1)mc2m ≤ 0 we require the sufficient
conditions c2 ≥ 0, c4 ≤ 0 and so on for stability.
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One can now perform this modified equation analysis for a fully discrete
and a semi-discrete method of second-order accuracy. For the fully discrete
method, we will analyze the second-order MUSCL-Hancock method again
applied to the advection equation. Without going through the calculations,
we will just state the results. The first three coefficients cl are given as

c2 = 0,

c3 =
1
6

a∆x2(CCFL − 1)(CCFL + 1),

c4 =
1
8

a∆x3(CCFL − 1)(CCFL + 1)CCFL.

From c2 we can see that this method is second-order accurate. And again,
as for the first-order upwind scheme, this method is exact for CCFL = 1. So
there is no need to go for smaller and smaller time steps to achieve a better
numerical result. Actually the error decreases for CCFL → 1.

One can also perform the modified equation analysis for a semi-discrete
method. We will use a second-order upwind reconstruction combined with
the second-order optimal TVD-Runge-Kutta scheme given by Gottlieb and
Shu, see [32]. The coefficients cl of the modified equation then read

c2 = 0,

c3 =
1
6

a∆x2(CCFL − 1)(CCFL + 1),

c4 =
1
8

a∆x3C3
CFL.

(5.63)

Despite the fact that this method is also second-order accurate and has the
same coefficient c3 in front of the dispersive terms, the coefficient c4 is very
problematic. Since a > 0, ∆x > 0 and CCFL > 0 we also have c4 > 0 in con-
tradiction to the sufficient requirements of linear stability. This could lead to
a linearly unconditionally unstable method and only the application of limiters
can save this method. This is why we did not use semi-implicit methods at all
throughout this work, but instead the somewhat optimal MUSCL-Hancock
method.

5.6 Numerical simulations

As the last part of this work, we want to present numerical simulations for
the test cases given in Chapter 4. In the following, we will use the second-
order MUSCL-Hancock scheme with MINBEE the limiter and the HLL ap-
proximate Riemann solver. The final time for all simulations is 0.5 · 10−3 s.

In Chapter 4 we discussed the exact solutions for the three different cases
for a liquid carrier phase depending on the initial velocities of the dispersed
phase. All the initial data are given in Section 4.3, but we will state the corre-
sponding ones here again at each of the following examples. We assumed the
carrier phase to be liquid water and used a Tait equation of state (2.8) with
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FIGURE 5.12: Initial data (dashed lines), exact solution (blue
lines) and numerical simulation (red lines) for a liquid carrier
phase. The middle wave is a contact wave. Initial data are given

by (5.65)

the corresponding parameters from [87]. We state those parameters and the
sound speed in the dispersed vapor phase aV for the different Temperatures
in Table (5.64).

T [K] aV

[m
s

]
ρ
[

kg
m3

]
p [Pa] K

[
109 Pa

]
293.15 423.18 1/0.00100184 2339.21 1/0.45836
309.15 434.07 1/0.00100639 5947.47 1/0.44271
363.15 466.98 1/0.00103594 70182.4 1/0.47316

(5.64)

Example 1 - contact case, bubbles in liquid The initial data of the con-
tact case are given by

c ρ
[

kg
m3

]
v
[m

s

]
R ρC

[
kg
m3

]
vC

[m
s

]
p [Pa]

Left state 0.05 0.5863 10 0.001 998.2081 5 100000
Right state 0.001 0.5584 10 0.0005 998.1715 5.2887 20000

(5.65)

where we have assumed a temperature of 293.15 K, compare to (4.40). The
initial data, the exact solution and the numerical solution are depicted in
Figure 5.12.

In general, the numerical simulation matches the exact solution very well.
Note that the first row and the first subfigure of the second row are magnified
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FIGURE 5.13: Initial data (dashed lines), exact solution (blue
lines) and numerical simulation (red lines) for a liquid carrier
phase. The middle wave splits in two contacts. Initial data are

given by (5.66)

in x-direction by a factor of ten. Otherwise, the deviation of the simulation
and the exact solution would be barely visible.

Example 2 - vaporless case, bubbles in liquid The initial data for the
second case are

c ρ
[

kg
m3

]
v
[m

s

]
R ρC

[
kg
m3

]
vC

[m
s

]
p [Pa]

Left state 0.05 0.5573 -20 0.0005 993.6919 5 100000
Right state 0.001 0.5307 40 0.001 993.7095 3.6612 140000

(5.66)

where we have assumed a temperature of 309.15 K, compare to (4.41). The
numerical results are depicted in Figure 5.13. In this case the middle wave
splits into two contact waves. Again, the numerical simulation is in very
good agreement with the exact solution. From the first row in the figure, one
could get the impression that the simulation slightly misses the exact wave
speed. But keep in mind that the exact solution only requires a continuous
connection between the initial states. For simplicity, we chose the linear con-
nection of the initial states, but each continuous solution fulfills the sufficient
condition. The numerical solution just does not follow a linear curve between
the initial states, which is perfectly fine.

Again, the first row only depicts the interval x ∈ [−0.1, 0.1]. In the pic-
tures for the liquid components, which are shown on the full numerical do-
main, one can barely see the small region between the two contact waves in
the middle.
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FIGURE 5.14: Initial data (dashed lines), exact solution (blue
lines) and numerical simulation (red lines) for a liquid carrier
phase. The middle wave forms a δ-shock. Initial data are given

by (5.67)

Usually, vacuum states in a single fluid lead to numerical problems. Note
that the absence of the dispersed phase is not a problem for the numerics
of our model. Then the volume fraction of the carrier phase just becomes
cC = 1− c = 1 and the problem reduces to a single-phase flow of the carrier
phase. So this case is not to be compared to a vacuum case from other models.

Example 3 - δ-shock case, bubbles in liquid Next, we consider the case
with a δ-shock. The volume fraction then becomes problematic. As we have
stated before, for a volume fraction c→ 1 the model is not longer valid, since
the assumption of the dispersed phase bubbles being separated by the carrier
phase is no longer true. We considered the following initial data in this case
to be

c ρ
[

kg
m3

]
v
[m

s

]
R ρC

[
kg
m3

]
vC

[m
s

]
p [Pa]

Left state 0.02 0.6879 10 0.0008 965.3410 20 145000
Right state 0.008 0.5503 -20 0.0006 966.0308 21 1655149.1033

(5.67)

where we have assumed a temperature of 363.15 K, compare to (4.42).
Again, the numerical simulation fits the exact solution quite well. As pre-

dicted by the exact solution, the values for velocity, density and pressure
respectively are changing over the middle wave. Thus, assuming them to be
constant as in the HLLC solver is not feasible. One can clearly see that the
volume fraction of the dispersed phase increases right at the middle wave. If
this concentration rises to values close to or higher than 1, the numerical sim-
ulation breaks down immediately. Note that the numerical approximation of
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the δ-shock might look very smeared out in the subfigure for the bubble con-
centration. But we again depicted only a tenth of the numerical domain. In
the subfigure for the liquid velocity, one can see the narrow peak due to the
formation of the δ-shock.

Example 4 - droplets in gas In contrast to the cases presented before
we will now perform a numerical simulation for a vapor carrier phase. In
particular the carrier phase is assumed to be water vapor with an ideal gas
equation of state at a temperature of 309.15 K. The case considered here is
identical to Example 2 with exchanged equations of state for dispersed and
carrier phase. The initial data are the following

c ρ
[

kg
m3

]
v
[m

s

]
R ρC

[
kg
m3

]
vC

[m
s

]
p [Pa]

Left state 0.05 993.6941 -20 0.0005 0.5307 5 100000
Right state 0.001 993.6919 40 0.001 0.7430 -180.3256 140000

(5.68)

Due to the initial velocities of the dispersed phase, the middle wave splits
into two contact waves. As predicted for the exact solution by (4.47), there
should be no jump of the velocity across the two contact waves in the *-
region. Note that the density and the pressure clearly are not constant across
the contact waves, which is also in accordance with the theoretical results.
However, the quantity ρ̂C = (1− c) ρC is predicted to be constant by (4.47)
and therefore, the quantity (1− c) pC must also be constant due to the lin-
ear dependence between pressure and density of the ideal gas. This can be
seen in Figure 5.15. The first row depicts the primitive variables with the
jump across the middle waves in the density and pressure. The second row
shows the quantities which were predicted to be constant in the *-region by
the theory.

In general, we wanted to depict physically relevant situations. There-
fore, not all interesting features may be clearly visible in all of these figures.
Nevertheless, we preferred to show some parts enlarged and to not always
show the whole numerical domain instead of changing to arbitrary initial
data. When doing these physically relevant simulations, the sound speed in
the liquid carrier phase is much higher than in the gaseous dispersed phase,
leading to much faster acoustic waves in the liquid phase compared to the
middle waves in the vapor phase. Thus, when the whole numerical domain
is depicted, the movement of the middle waves is barely visible.
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FIGURE 5.15: Initial data (dashed lines), exact solution (blue
lines) and numerical simulation (red lines) for a liquid carrier
phase. Note the difference between primitive and conserved
variables in their behavior at the middle wave in accordance

with (4.47). Initial data is given by (5.68)
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6
Conclusion and Outlook

In this thesis, we studied the Riemann problem for the two-phase flow model
proposed by Dreyer, Hantke and Warnecke [22] analytically. Although given
as a system of balance laws, we focused on the isothermal system of con-
servation laws derived from it. We performed the eigenstate analysis on the
dispersed phase alone as well as the full two-phase system of equation. The
wave types and all possible wave patterns were found.
We had to consider Riemann initial data since we can not use any of the
existing results for the Cauchy problem of systems of conservation laws.
Nonetheless, these are quite important as the Riemann problem solution is
not only a building block for existence results but also essential in some nu-
merical methods.
Solutions to the Riemann problem were found by solving highly nonlinear
systems of algebraic equations. All solutions are given implicitly and the
uniqueness was shown using monotonicity arguments. The final result is a
set of inequalities for the relative velocity between the two phases involved.
The given bounds on the velocity are not sharp but give a sufficient criterion
to ensure the uniqueness of the solution.
We studied bubbles in a liquid carrier as well as droplets or dust particles
in a vapor carrier. In a gas, the equation of state (EOS) for isothermal flow
yields the pressure as a linear function of the density. For a liquid, the sim-
plest realistic assumptions lead to an affine function for the EOS. Therefore,
commonly used affine linear equations of state like the Tait equation or the
stiffened gas equation are included in our analysis. In the case of a liquid
carrier phase, this leads to a considerable complication in the determination
of the solutions to Riemann problems. Nonetheless, all possible wave con-
figurations were discussed, the implicit functions to find a solution are given
and the inequalities assuring monotonicity are stated as well.
Thus, this work includes a first analysis of the two-phase flow model consid-
ered. It takes a first step from a linear equation of state towards more general
equations of state, which is very important with regard to applications. Ini-
tial data were given for all relevant cases. We chose, in particular, physically
reasonable values.

There are still many open questions regarding the existence and unique-
ness of solutions for the model considered. We will name a few here.
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How can we get to arbitrary initial data? We have not done any work
concerning this question up to now. However, it is very interesting if, with a
Riemann solution at hand, one could generalize the results to arbitrary initial
data as in the Glimm or front tracking scheme.

Is it possible to generalize the equation of state even further? The first
drafts of this work specifically only considered bubbles in liquid. We then
tried to work with a general equation of state p = p(ρ) as far as possible.
To solve the Riemann invariants at the acoustic waves, we needed the sound
speed to be constant. Therefore, the form of the equation of state given in this
work with a constant sound speed is the most general for which we could get
an analytical solution. But it would be very interesting if other techniques
could lead to a generalization of the results presented.

Considering the numerical part of this work, we obtained simulations
for the cases considered in the analytical sections of this work. We used
a second-order MUSCL-Hancock scheme with the MINBEE limiter and the
HLL approximate Riemann solver.

Since we only have an analytical solution in the one dimensional case,
we left out simulations of higher space dimensions, even though we have
already obtained a few of them. Only in one space dimension, we can directly
compare analytical and numerical results. The numerical simulations could
be understood as a confirmation of the analytical calculations done. On the
other hand, the analytical solution is a tool to verify numerical schemes in
one space dimension and then generalize them to higher space dimensions
in the hope that they will still approximate the exact solution.

Considering the order of convergence of the scheme, we right now work
on the fourth-order ADER scheme introduced by Titarev and Toro [82] in the
local space-time DG version proposed by Dumbser, Balsara, Toro and Munz
[23]. We already implemented this solver for 2× 2 systems of conservation
laws. We hope that this scheme has a better performance when compared to
the MUSCL-Hancock scheme.

We also tried to improve the classical HLL approximate Riemann solver
by introducing the GHLL solver in [36]. This solver improved the resolution
of δ-shocks and contacts in the dispersed phase using the information from
the explicit analytical solution in this phase. However, it led to oscillations
in the carrier phase quantities. The construction of an improved Riemann
solver for the model considered is therefore still an open problem.

We would also like to use solvers which use the eigenstructure of the
quasi-linear system of conservation laws like the Roe scheme. But since the
system of conservation laws under consideration is only weakly hyperbolic,
we lack an eigenvector, which does not allow the usage of such numerical
schemes. At the moment, we have two different ideas of how to overcome
this difficulty. One is to slightly modify the equations to end up with a hy-
perbolic model and the second one uses generalized eigenvectors.

To fully treat the numerical investigation of this model, we want to write
a follow-up paper on this issue in the near future.
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A
Calculations

To derive (4.6) we note that the system (4.5) implies that

c−R−v−−c+R+v+

c−R−−c+R+

=
c−v−−c+v+

c−−c+
=

c−ρ−v−−c+ρ+v+

c−ρ−−c+ρ+

=
c−ρ−v

2
−−c+ρ+v2

+

c−ρ−v−−c+ρ+v+

= σ.

(A.1)

Equality of the first and second terms gives

0 = (c−v− − c+v+) (c−R− − c+R+)− (c− − c+) (c−R−v− − c+R+v+) ,

= c2
−v−R− − c−v−c+R+ − c+v+c−R− + c2

+
v+R+ − c2

−R−v−
+ c−c+R+v+ + c+c−R−v− − c2

+
R+v+ ,

= − c−v−c+R+ − c+v+c−R− + c−c+R+v+ + c+c−R−v− ,
= c−c+R+ (v+ − v−)− c−c+R− (v+ − v−) ,
= c−c+ (R+ − R−) (v+ − v−) . (A.2)

Similarly, equality of the second and third terms in (A.1) leads to

0 = c−c+ (ρ+ − ρ−) (v+ − v−) . (A.3)

Finally, equality of the second and fourth terms in (A.1) implies that

0 = c−c+ (ρ+v+ − ρ−v−) (v+ − v−) . (A.4)

Clearly, if c−c+ 6= 0 the equations (A.3) and (A.4) give v− = v+ which is the
required result in (4.6). Now suppose that c− = 0. Our aim is to show that a
shock wave can not connect the state with c− = 0 to that with c+ 6= 0. We will
prove the result using a contradiction argument as follows. Suppose a shock
wave connects the two states above. Then the shock speed is calculated from
(A.1) as

σ = v+ .
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This result violates the Lax entropy condition v− > σ > v+ for appearance
of a shock wave. The case for c− 6= 0 and c+ = 0 leads to the same results.
Therefore (4.6) holds in all cases.

We now solve the quadratic equation which leads to (4.23).

v
δ
=

2Jc ρ vK±
√

4Jc ρ vK2 − 4Jc ρKJc ρ v2K
2Jc ρK

,

=
(c−ρ−v−−c+ρ+v+)±

√
(c−ρ−v−−c+ρ+v+)

2−(c−ρ−−c+ρ+)
(
c−ρ−v2

− −c+ρ+v2
+

)
(c−ρ− − c+ρ+)

=
(c−ρ−v−−c+ρ+v+)±

√
−2c−ρ−v−c+ρ+v++c+ρ+c−ρ−v2

−+c−ρ−c+ρ+v2
+

(c−ρ− − c+ρ+)

=
(c−ρ−v−−c+ρ+v+)±(v−−v+)

√c−ρ−c+ρ+

(c−ρ− − c+ρ+)

=

(
c−ρ−±

√c−ρ−c+ρ+

)
v−−

(
c+ρ+±

√c−ρ−c+ρ+

)
v+

(c−ρ− − c+ρ+)

=

(√c−ρ−±
√c+ρ+

)
v−
√c−ρ−−

(√c+ρ+±
√c−ρ−

)
v+

√c+ρ+(√c−ρ− −
√c+ρ+

) (√c−ρ− +
√c+ρ+

)
=

√c−v−v− ∓
√c+v+v+√c−v− ∓
√c+v+
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