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Chapter 1

Introduction

The main objects of study in this thesis are local cohomology modules. We write

Hi
a(M) for the ith local cohomology of a module M with respect to some ideal

a. We refer the reader to see [Br-Sh], [Gr2], [Sch4], [Hun2] and [Eis] as suitable

sources to study local cohomology and related subjects. Let us first introduce

the subject and main problems. After this we will present some known related

results and finally we will give a summary of the results obtained in this work.

Local cohomology was introduced by Grothendieck [Gr], in the early 1960s,

in part to answer the following conjecture of Pierre Samuel:

Conjecture 1.0.1. Let R be a Noetherian local ring and R̂ its completion with respect to
the maximal ideal. If R̂ is a complete intersection and for each prime ideal P of R of height
≤ 3, RP is a UFD, then R is a UFD.

Among many other attributes, local cohomology allows one to answer many

seemingly difficult questions. A good example of such a problem, where local

cohomology provides a partial answer, is the question of how many generators

ideals have up to radical. In general, if b is an ideal of a ring R, the radical of b is

the ideal

Rad b = {x ∈ R : xm ∈ b for some m}.

We say an ideal b is generated up to radical by n elements if there exist

x1, ..., xn ∈ b such that Rad(b) = Rad(x1, ..., xn). For example, the ideal b ⊆ k[x, y]
generated by x2, xy, y2 is generated up to radical by the two elements x, y. Recall

that the radical of an ideal a is the intersection of all primes ideals which contain

a.

1



2 CHAPTER 1. INTRODUCTION

Given an ideal a what is the least number of elements needed to generate it

up to radical? A particular example of this problem is the following: let R =

k[x, y, u, v] be a polynomial ring in four variables over the field k. Consider the

ideal a = (xu, xv, yu, yv). This ideal is its own radical, i.e. a = Rad(a). The four

given generators of a are minimal. On the other hand, it can be generated up to

radical, by the three elements xu, yv, xv + yu. This holds since (xv)2 = xv(xv +

yu)− (xu)(yv) ∈ (xu, yv, xv + yu). Are there two elements which generate it up

to radical? Could there even be one element which generates a up to radical?

The answer to the last question is no, there cannot be just one element gener-

ating the ideal a up to radical, due to an obstruction first proved by Krull, namely

the height of the ideal. Krull’s famous height theorem states:

Theorem 1.0.2. (Generalized principal ideal Theorem) Let R be a Noetherian ring and
a = (x1, ..., xn) be an ideal generated by n elements. If p is a minimal prime over a, then
the height of p is at most n. In particular, if an ideal a is generated up to radical by n
elements, then the height of a is at most n.

In the example we are considering, the height of a is two as it is the intersection

of the two height two ideals (x, y) and (u, v). Krull’s height theorem implies

that two is the smallest number of polynomials which could generate a up to

radical. This still begs the question, are there two polynomials F, G ∈ a such that

Rad(F, G) = a?

Trying to find two such polynomials F, G by some type of random search

would be hard, if not impossible. Of course if there are no such polynomials, no

search would find them, but even if two such polynomials do exist, it is likely no

random search would find them. The problem is that these polynomials would

normally be extremely special, so that writing down general polynomials in a

would not work. Instead, we would like to find, in some cohomology theory, an

obstruction to being generated up to radical by two elements. Local cohomology

provides such an obstruction. To a ring R and ideal b, we will associate for i ≥ 0

modules Hi
b(R) with the properties that

(1) Hi
b(R) = Hi

Rad(b)(R), and

(2) if b is generated by k-elements, then Hi
b(R) = 0 for all i > k.
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Finally, for a = (xu, xv, yu, yv), we will prove that H3
a(R) 6= 0, and therefore a

cannot be generated up to radical by two elements.

Item (2), is one of the most powerful tools in local cohomology. In a view

of above notes, we would like to extend the description to the above question

to this question that how many equations it takes to define an algebraic set X

set-theoretically over an algebraically closed field. Of course X can be defined

by n equations if and only if there is an ideal c with n generators, having the

same radical as I(X), the ideal of X. Since the local cohomology Hi
a(M) depends

only on the radical of a, we would have Hi
I(X)(M) = Hi

c(M) = 0 for all i > n
and all modules M. See [Schm-Vog] and [St-Vog] for some examples where this

technique is used, and [Lyu] for a recent survey including many pointers to the

literature.

For an R-module M and an ideal a, consider the family of local cohomology

modules {Hi
m(M/anM)}n∈N . For every n there is a natural homomorphism

Hi
m(M/an+1M) → Hi

m(M/anM) such that the family forms a projective system.

The projective limit Fi
a(M) := lim←−n

Hi
m(M/anM) is called the i-th formal local

cohomology of M with respect to a. Formal local cohomolgy modules used by

Peskine and Szpiro in [Pes-Szp] when R is a regular ring. Recently Schenzel [Sch]

has defined formal local cohomology modules for a local ring (R,m) and a finitely

generated R-module M. For more information see chapter three.

1.1 Objectives and conclusions

In the sequel, we are going to introduce the considered problems and results in

this work:

• In Chapter 2 we introduce the definitions and notations will be used

throughout this work.

At first we give the definition of local cohomology modules in conjunction

with some of their properties. Next the concept of colocalization which is intro-

duced by A. Richardson will be considered. Richardson’s definition has a great

advantage in contrast to the previous definitions, i.e. it preserves Artinian mod-

ules through the colocalization.

• Important problems concerning local cohomology modules are vanishing,

finiteness and Artinianness results (e.g. [Hun]). Not so much is known about
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the Artinianness of formal local cohomology modules. In [Asgh-Divan] As-

gharzadeh and Divani-Aazar have investigated some properties of these kind of

modules. For instance they showed that Fdim M
a (M) is Artinian ( [Asgh-Divan,

Lemma 2.2]), but Fi
a(M) is not Artinian in general, at i = fgrade(a, M) and

i = dim M/aM where they are the first respectively last non-zero amount of for-

mal local cohomology modules (cf. [Asgh-Divan, Theorem 2.7]). We pursue this

line to find out conditions for Artinianness of formal local cohomology modules.

As a main result in section 3.2 we have following Theorem:

Theorem 1.1.1. (cf. Theorem 3.2.4) Let (R,m) be a local ring and M be a finitely gener-
ated R-module. For given integers i and t > 0, the following statements are equivalent:

(1) SuppR̂(F
i
a(M)) ⊆ V(mR̂) for all i < t;

(2) Fi
a(M) is Artinian for all i < t;

(3) SuppR̂(F
i
a(M)) ⊆ V(aR̂) for all i < t.

(4) a ⊆ Rad(AnnR(F
i
a(M))) for all i < t;

Suppose that t ≤ depth M, then the above conditions are equivalent to

(5) Fi
a(M) = 0 for all i < t;

where R̂ denotes the m-adic completion of R.

This Theorem can be considered as the dual to the Faltings’ finiteness Theorem

(cf. [Br-Sh, Theorem 9.1.2]) for formal local cohomology modules.

• For an R-module M, CosuppR(M) ⊆ V(AnnR M), for definition of cosup-

port of a module, see chapter three. When M is representable, then CosuppR(M) =

V(AnnR M) (cf. Theorem 3.3.2). Of a particular interest is to see when the co-

support of formal local cohomology module is a closed subset of Spec R in the

Zariski topology. More precisely in order to show that Cosupp(Fi
a(M)) being

closed, it is enough to show that Coass(Fi
a(M)) is finite (cf. Lemma 3.4.5), so it

has encouraged us to consider the Coass(Fi
a(M)) extensively.

• Of a particular interest are the first non-vanishing (resp. the last non-

vanishing) cohomological degree of the local cohomology modules Hi
a(M),
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known as the grade grade(a, M) (resp. cohomological dimension cd(a, M)).

It is a well-known fact that

grade(a, M) ≤ cd(a, M) ≤ dim M.

In the case of a = m it follows that cd(m, M) = dim M. While for an arbitrary

ideal a ⊂ R the Hartshorne-Lichtenbaum Vanishing Theorem says that

Hd
a (M) = 0⇐⇒ dim R̂/aR̂ + p > 0 for all p ∈ AssR̂ M̂ such that dim R̂/p = d,

d = dim M (see [Hart] and [Br-Sh]). Here M̂ resp. R̂ denotes the completion of M
resp. R. When Hd

a (M) 6= 0 one of the most important views concerning this is to

express Hd
a (M) via Hd

m(M). More precisely the kernel of the natural epimorphism

Hdim M
m (M)→ Hdim M

a (M) has been calculated explicitly.

Theorem 1.1.2. (cf. Theorem 4.1.5 and Corollary 4.1.7) Let a denote an ideal of a local
ring (R,m). Let M be a finitely generated R-module and d = dim M. Then there is a
natural isomorphism

Hd
a (M) ∼= Hd

mR̂
(M̂/QaR̂(M̂)) ∼= Hd

mR̂
(M̂/Pa(M̂)M̂),

where QaR̂(M̂) is a certain submodule of M̂ (cf. 4.1.3) and Pa(M̂) ⊆ R̂ is the ideal as
defined in 4.1.6.

The above results lead us to establish some properties of HomR̂(Hd
a (R), Hd

a (R)).
First of all a brief about endomorphism rings could be instrumental for under-

standing the content.

One can often translate properties of an object into properties of its endomor-

phism ring. For instance, a module is indecomposable if and only if its endomor-

phism ring does not contain any non-trivial idempotents (cf. [Jacob]). Note that

a module M is decomposable if M = M1 ⊕ M2 where Mi 6= 0 for i = 1, 2 are

submodules of M. Otherwise M is indecomposable.

Not so much is known about the ring HomR(Hd
a (R), Hd

a (R)) and its relation to

a given ring R. In Theorem 4.2.2, for a local ring (R,m) and its m-adic completion

R̂, we show that the map

Φ : R̂→ HomR̂(Hd
a (R), Hd

a (R))
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is an isomorphism if and only if QaR̂(R̂) = 0 and R̂/QaR̂(R̂) satisfies Serre’s con-

dition S2 (for more details see section two of chapter 4). Furthermore we show

that HomR̂(Hd
a (R), Hd

a (R)) is a finitely generated R̂-module and it is a commuta-

tive semi-local Noetherian ring (cf. Theorem 4.2.2(3),(4)).

• In Chapter 5, we give some connectedness Theorems. Let R be a com-

mutative ring. The spectrum of R, denoted by Spec(R), is the topological space

consisting of all prime ideals of R, with topology defined by the closed sets

V(a) = {p ∈ Spec(R) : p ⊇ a}, for each ideal a of R. This topology is called

the Zariski topology. Clearly if R is nonzero, then Spec R is non-empty. Spec R
enjoys very nice properties. For instance it is compact and moreover it is irre-

ducible if and only if its nilradical is a prime ideal (a topological space X is ir-

reducible if it cannot be written as a union of two closed proper subsets A, B of

X). However Spec(R) is not a connected space in general. It is known that for a

local ring R, Spec R is connected. More generally Spec R is disconnected if and

only if R contains a non-trivial idempotents element. The concept of a topolog-

ical space being connected in codimension k (∈ N ∪ {0}) was made precise by

Hartshorne [Hart2]. For definitions and more details see also chapter 5.

Next we recall a definition given by Hochster and Huneke (see [Hoch-Hun,

(3.4)]).

Definition 1.1.3. Let (R,m) denote a local ring. We denote by G(R) the undirected
graph whose vertices are primes p ∈ Spec R such that dim R = dim R/p, and two
distinct vertices p, q are joined by an edge if and only if (p, q) is an ideal of height one.

We extend a classical result of Hochster-Huneke to an arbitrary ideal a of R as

follows:

Theorem 1.1.4. (cf. Theorem 5.2.5) Let (R,m) denote a complete local ring and d =

dim R. For an ideal a ⊂ R the following conditions are equivalent:

(1) Hd
a (R) is indecomposable.

(2) HomR(Hd
a (R), E(R/m)) is indecomposable.

(3) The endomorphism ring of Hd
a (R) is a local ring.

(4) The graph G(R/Qa(R)) is connected,
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for the definition of Qa(R), see 4.1.3.

• In chapter 6 at first we give some results on the attached prime ideals of

local cohomology via colocalization. Next we give a short simple proof to the

Sharp’s asymptotic prime divisor. Let R be a commutative ring and a an ideal

of R. For every Artinian R-module A, Att(0 :A an) and Att(0 :A an/0 :A an−1)

are ultimately constant and At(a, A) and Bt(a, A) denote their ultimate constant

values (cf. [Sh2]). In [Sh1], Sharp showed that

At(a, A) \ Bt(a, A) ⊆ AttR(A)

for every Artinian module A, by generalization of Heinzer-Lantz Theorem.

Schenzel [Sch2] has given an alternative proof for mentioned Theorem in case

that for a local ring (R,m), if m ∈ AtR(a, A) \ BtR(a, A), then m ∈ AttR A ∩V(a),

where V(a) is the set of prime ideals of R containing ideal a. Then we give a short

simple proof for Sharp’s Theorem using the concept of colocalization introduced

by Richardson [Rich], (cf. Theorem 6.0.8).

Note on references: Some of the materials in this Thesis have been submitted

elsewhere. Some of the results have been appeared in [E].





Chapter 2

Preliminaries

In this chapter, we give a brief summary of subjects that are used throughout

this thesis and provide proofs for the lesser-known results. For a more in-depth

treatment of the subject, we introduce suitable references in each section.

2.1 Definitions and basic properties of Local coho-

mology

In this section we present a quick review of local cohomology. For omitted proofs

and more details we refer the reader to [Br-Sh].

Let M be an R-module and a ⊂ R be an ideal, set

Γa(M) = {x ∈ M : anx = 0 for some n ≥ 0},

simply it implies the following equality:

Γa(M) =
⋃

n(0 :M an).

Γa is a covariant R-linear functor which is left exact and additive. For i ∈ N0,

the i-th right derived functor of Γa is denoted by Hi
a and will be referred to as the

i-th local cohomology functor with respect to a. In other words, if I• is an injec-

tive resolution of M, then Hi
a(M) = Hi(Γa(I•)) for all i ≥ 0. As an alternative

definition for local cohomology module one can use the following:

Hi
a(M) = lim−→n

Exti
R(R/an, M).

9
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To compute Hi
a(M) one can also use the Čech complex. If a = (a1, ..., an), then

Hi
a(M) is the i-th cohomology of the complex

0→ M→ ⊕Mai → ⊕i<jMaiaj → ...→ Ma1...an → 0.

It is noteworthy to mention that if b is another ideal with the same radical as

a, then Hi
b(M) = Hi

a(M) for all i and for all R-module M.

Let a be an ideal of R, an R-module M is called a-torsion-free when Γa(M) = 0

and M is a-torsion when Γa(M) = M.

Lemma 2.1.1. ( [Br-Sh, Lemma 2.1.1 ]) Let a ⊂ R be an ideal and M an R-module.
Assume that M is finitely generated. Then M is a-torsion-free if and only if a contains a
non-zerodivisor on M.

Proof. Let r ∈ a be a non-zerodivisor on M and Assume that m ∈ Γa(M) be an

arbitrary element. So there exists an integer n such that anm = 0. Then it follows

that is rnm = 0, from which we deduce that m = 0. �

Lemma 2.1.2. ( [Br-Sh, Corollary 2.1.7]) Let a ⊂ R be an ideal and M an R-module.

(1) Let M be an a-torsion R-module. Then Hi
a(M) = 0 for all i > 0.

(2) For each R-module N and for all i > 0

Hi
a(Γa(N)) = 0 and Hi

a(N) ∼= Hi
a(N/Γa(N)).

One of the most useful properties of local cohomology is the following Theo-

rem:

Theorem 2.1.3. Let f : R→ S be a ring homomorphism of Noetherian rings, a an ideal
of R and i ∈ Z.

(1) (Independence Theorem, [Br-Sh, Theorem 4.2.1]) Let M be an S-module. Then
Hi

a(M) ∼= Hi
aS(M) as S-modules where the first local cohomology is considered

over the ring R.

(2) (Flat base change Theorem, [Br-Sh, Theorem 4.3.2]) Assume that f is a flat ho-
momorphism and M an R-module. Then there is an isomorphism

Hi
a(M)⊗R S ∼= Hi

aS(M⊗R S).
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Note that the homomorphisms R → R̂ and R → Rp are flat, so in the light of

Theorem 2.3 one can see that

Hi
a(M)⊗R R̂ ∼= Hi

aR̂
(M⊗R R̂)

and

Hi
a(M)⊗R Rp

∼= Hi
aRp

(M⊗R Rp).

2.1.1 Ideal transforms

We denote the covariant, R-linear functor lim−→n∈N
HomR(a

n, .) by Da which is

called the a-transform functor. For each R-module M,

Da(M) = lim−→n∈N
HomR(a

n, M).

There are some important connections between the a-transform functor and

local cohomology functors. Below we state one of such connections will be used

in this work:

Theorem 2.1.4. ( [Br-Sh, Theorem 2.2.4]) For each R-module M, the sequence

0 −→ Γa(M) −→ M −→ Da(M) −→ H1
a(M) −→ 0

is exact.

Let a = aR be a principal ideal, then a-transform functor can be state explicitly

by localization, i.e. DRa(M) ∼= Ma (cf. [Br-Sh, Theorem 2.2.16]).

2.1.2 Vanishing Theorems

Theorem 2.1.5. (Grothendieck’s Vanishing Theorem) ( [Br-Sh, Theorem 6.1.2]) Let
M be an R-module. Then Hi

a(M) = 0 for all i > dim M.

Theorem 2.1.6. (The Non-Vanishing Theorem) ( [Br-Sh, Theorem 6.1.4]) Assume that
(R,m) is local, and let M be a non-zero finitely generated R-module of dimension n. Then
Hn

m(M) 6= 0.

When (R,m) is a local ring and the nonzero finitely generated R-module M
has dimension n, then Hn

m(M) 6= 0, so that in view of Grothendieck’s Vanishing

Theorem, n = dim M is the greatest integer i for which Hi
m(M) 6= 0



12 CHAPTER 2. PRELIMINARIES

2.1.3 Artinian local cohomology modules

The following theorem is a useful tool to see when local cohomology is Artinian:

Theorem 2.1.7. ( [Mel, Theorem 1.3]) Assume that M is an a-torsion R-module for
which (0 :M a) is Artinian. Then M is Artinian.

Immediately one can exploit the above theorem to prove next Theorem on

Artinianness of local cohomology modules:

Theorem 2.1.8. ( [Br-Sh, Theorem 7.1.3 and 7.1.6]) Assume that (R,m) is local and let
M be a finitely generated R-module. Then

(1) the R-module Hi
m(M) is Artinian for all i ∈N0.

(2) the R-module Hdim M
a (M) is Artinian.

Proof.

(1) We prove it by induction on i. Obviously H0
m(M) is of finite length, thus

Artinian, since it is a finite module with support in {m}. Assume we have

shown the conclusion for i− 1, where i ≥ 1. By replacing M by M/Γa(M),

we may assume that there is an M-regular element a in m. The exact se-

quence

0→ M a→ M→ M
′ → 0

where M
′
= M/aM, yields an exact sequence

Hi−1
m (M

′
)→ Hi

m(M)
a→ Hi

m(M).

By hypothesis Hi−1
m (M

′
) is Artinian, so 0 :Hi

m(M) a, the kernel of multipli-

cation by the element a on Hi
m(M), is Artinian. In addition, any element in

Hi
m(M) is annihilated by a power of a, since a ∈ m. It follows from Theorem

2.1.7 that Hi
m(M) is Artinian.

(2) By induction on d := dim M. If d = 0, then M is of finite length, and so

is its submodule Γa(M). So assume n ≥ 1 and put M = M/Γa(M). Then

Hd
a (M) ∼= Hd

a (M) and dim M ≥ dim M. If M = 0 or d > dim M, then

Hd
a (M) = 0, so we may assume that a contains an M-regular element a.

Putting M
′
= M/aM, we have dim M

′
= d− 1 and the exact sequence

0→ M a→ M→ M
′ → 0
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yields an exact sequence

Hd−1
a (M

′
)→ Hd

a (M)
a→ Hd

a (M).

By the induction hypothesis, Hd−1
a (M

′
) is Artinian, so 0 :Hd

a(M) a, is Ar-

tinian. Since
⋃

n≥1(0 :Hd
a(M) an) = Hd

a (M). Now Hd
a (M) is Artinian by

Theorem 2.1.7.

�

Each Artinian R-module has a natural structure as an (Artinian) R̂-module. In

fact for an Artinian R-module M there is an R̂-isomorphism ψ : M⊗R R̂→ M for

which

ψ(∑u
i=1 xi ⊗ âi) = ∑u

i=1 âixi

(for x1, ..., xu ∈ M and â1, ..., âu ∈ R̂). Because each element of M is annihilated by

some power of m (cf. [Sh-Vam, 3.21] and [Mat, 3.4(1)]). Now let x ∈ M, â ∈ R̂ and

(an)n≥1 be a Cauchy sequence of elements of R which converges to â in R̂. Then

the values of the sequence (anx)n≥1 of elements of M are ultimately constant. It

is straightforward to check that M may be given the structure of an R̂-module

in such a way that âx is equal to the ultimate constant value of the sequence

(anx)n≥1. It follows that a subset of M is an R-submodule if and only if it is an

R̂-submodule (cf. [Sh3, lemma 2.1]).

2.2 Canonical module

In this section we present a quick review of canonical modules. The notion of a

canonical module of a (Noetherian) local ring is due to Grothendieck [Gr2]. In

the sequel we define canonical modules via local cohomology modules.

Theorem 2.2.1. (Grothendieck) Suppose that the local ring (R,m) is the factor ring of a
Gorenstein ring (S, n) with r = dim S. Then there are functorial isomorphisms

Hi
m(M) ∼= HomR(Extr−i

S (M, S), E), i ∈ Z,

for any finitely generated R-module M, where E denotes the injective hull of the residue
field. (see also [Sch4, Theorem 1.8] for an alternative proof)
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In the situation of Theorem 2.2.1 we introduce a few abbreviations. For i ∈ Z

put

Ki
M = Extr−i

S (M, S).

Moreover for i = dim M we often write KM instead of Kdim M
M . The module KM

is called the canonical module of M. In the case of M = R it coincides with

the classical definition of the canonical module of R (cf. [Herz-Kunz]). By the

Matlis duality and by Theorem 2.2.1 the modules Ki
M do not depend up to iso-

morphisms on the presentation of the Gorenstein ring S. Clearly Ki
M = 0 for all

i > dim M and i < 0.

For a finitely generated R-module M say it satisfies Serre’s condition Sk, k ∈
N, provided

depth Mp ≥ min{k, dim Mp} for all p ∈ Supp M.

Note that M satisfies S1 if and only if it is unmixed. M is a Cohen-Macaulay

module if and only if it satisfies Sk for all k ∈N.

Theorem 2.2.2. (cf. [Sch4, Theorem 1.14]) Let M denote a finitely generated, equidi-
mensional R-module with d = dim M, where R is a factor ring of a Gorenstein ring.
Then for an integer k ≥ 1 the following statements are equivalent:

(1) M satisfies condition Sk.

(2) The natural map τM : M → KKM is bijective (resp. injective for k = 1) and
Hi

m(KM) = 0 for all d− k + 2 ≤ i < d.

It turns out that for a module M satisfying S2 the natural map τM : M→ KKM

is an isomorphism.

Corollary 2.2.3. (cf. [Sch4, Corollary 1.15]) With the notation of Theorem 2.2.2, suppose
that the R-module M satisfies the condition S2. For an integer k ≥ 2 the following
conditions are equivalent:

(1) KM satisfies condition Sk.

(2) Hi
m(M) = 0 for all d− k + 2 ≤ i < d.

Remark 2.2.4. By the previous result the canonical module KM of M is a Cohen-
Macaulay module provided M is a Cohen-Macaulay module.
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Lemma 2.2.5. Let M denote a finitely generated R-module of dimension d. Then

(1) KM satisfies S2 ( [Sch4, Lemma 1.9(e)]).

(2) AnnR KM = (AnnR M)d ( [Sch3, Proposition 3.4]).

(3) AssR KM = (AssR M)d ( [Gr2, Proposition 6.6]).

Note that for an ideal a ⊂ R with dim R/a = d we will denote by ad the

intersection of those primary components in a minimal reduced primary decom-

position of a which are of dimension d. If Z ⊂ Spec R and d ∈ N, then we put

Zd = {p ∈ Z : dim R/p = d}.
In the end we express some significant facts on canonical modules could be

useful in the next chapters. We refer the reader to [Aoya], [Aoya-Goto] and

[Hoch-Hun].

Theorem 2.2.6. Let R be a local ring of dimension d and with canonical module KR. Let
h be the natural map from R to HomR(KR, KR). Then

(1) HomR(KR, KR) is a semi-local ring which is finitely generated as an R-module.

(2) HomR(KR, KR) is a commutative ring.

(3) The map h is an isomorphism if and only if R is S2 if and only if R̂ is S2.

2.3 Colocalization

For a given commutative ring R and a multiplicative closed subset S ⊂ R, the

functor S−1(−) = S−1R⊗− is the well-known localization functor. It is known

that for a Noetherian R-module M, S−1(M) is a Noetherian S−1R-module. For an

Artinian module N, S−1(N) is sometimes zero. It is a natural question whether

there exists a functor S−1(−) (which is called colocalization functor) from the

category of R-modules to the category of S−1R-modules to be well-behavior by

Artinian modules.

Recently, A. S. Richardson [Rich] has proposed the definition for colocaliza-

tion fulfilled the expected properties. In particular, S−1(−) preserves secondary

representations and attached primes (the duals of primary decompositions and

associated primes; cf. [Mac] and [Br-Sh, Section 7.2]) and the colocalization of an
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Artinian R-module is an Artinian S−1R-module (cf. Theorem 2.3.4). This colocal-

ization functor should define a sensible cosupport (see Definition 3.3.1). In par-

ticular, the cosupport of a nonzero module should be nonempty, the cosupport of

an Artinian module N should be V(Ann N), and the cosupport of a finitely gen-

erated module should, like the ordinary support of an Artinian module, consist

solely of maximal ideals (cf. Theorem 3.3.2).

Melkersson and Schenzel [Mel-Sch] defined the colocalization functor as

HomR(S−1R,−) where this definition works well when restricted to the class

of Artinian modules, with the exception that it almost never takes an Artinian

module to an Artinian module. However, this definition does not work at all

well for non-Artinian modules. For example, if S is a multiplicative closed set of

integers which includes a nonunit, then Hom(S−1Z, Z) = 0, which says that the

cosupport of Z, under this definition, is empty, which is definitely not what we

want.

Throughout this Thesis we use the concept of colocalization due to Richard-

son.

Definition 2.3.1. Let B be a commutative ring. Let EB be the injective hull of ⊕B/m,
the sum running over all maximal ideals m of B, and let DB be the functor Hom(−, EB).

This module EB is the minimal injective cogenerator of the category of B-

modules; that is, it is the smallest injective module with the property that, for

every module M and nonzero x ∈ M, there is a homomorphism ϕ : M → EB

with ϕ(x) 6= 0.

Let R be a commutative ring and S a multiplicative closed subset of R.

Definition 2.3.2. For any R-module M, the co-localization of M relative to S is the
S−1R-module S−1M = DS−1R(S

−1DA(M)). If S = R \ p for some p ∈ Spec R, we
write pM for S−1M.

It follows from the definition S−1(−) is exact and additive functor, as it is a

composition of exact, additive functors.

As mentioned above Richardson’s definition of colocalization preserves Ar-

tinian modules through the colocalization. In order to prove this claim we need

the following result due to Ooishi (cf. [Ooish, Theorem 1.6]). By the completion

of a semi- local ring B with maximal ideals m1, ...,mr, we mean the direct sum of

completion B̂i of local rings Bi = Bmi , i = 1, ..., r (cf. [Nag]).
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Theorem 2.3.3. Assume B is semi-local and Noetherian.

(1) If M is a finitely generated B-module, then DB(M) is Artinian.

(2) If M is an Artinian B-module then DB(M) is finitely generated over the completion
of B.

(3) If B is complete and M is either finitely generated or Artinian, then M ∼= D2
B(M).

Now by definition of colocalization and Theorem 2.3.3 we have:

Theorem 2.3.4. (cf. [Rich, Theorem 2.3]) Suppose R is semi-local and complete. If S−1R
is also semi-local, but not necessarily complete, then S−1(−) takes Artinian R-modules
to Artinian S−1R-modules.

Vanishing and non-vanishing of S−1(−) is appeared in the next lemma:

Lemma 2.3.5. (cf. [Rich, Lemma 2.1]) Let M be an R-module.

(1) If sM = 0 for some s ∈ S then S−1M = 0.

(2) If
⋂

s∈S sM 6= 0, then S−1M 6= 0.

2.4 Attached primes

The theory of attached prime ideals and secondary representation of a module

has been developed by I.G. MacDonald in [Mac] which is in a certain sense dual

to the theory of associated prime ideals and primary decompositions. This theory

was applied to the theory of local cohomology by him and R.Y. Sharp (cf. [Mac]

and [Sch3]). In the sequel we express a brief review of some facts which are used

in the further chapters. we refer the reader to see [Mats] for more information.

A non-zero R-module S is called secondary when for each r ∈ R, either rS = S
or there exists n ∈ N such that rnS = 0. When this is the case, p = Rad(0 :R
S) is a prime ideal of R and S is called p-secondary R-module. Furthermore a

secondary representation of an R module M is an expression for M = S1 + S2 +

... + St, t ∈ N as a sum of finitely many secondary submodules of M. One may

assume that the pi = Rad(0 : Si), i = 1, 2, ..., t are all distinct and by omitting

redundant summands, that the representation is minimal. Then the set of prime
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ideals {p1, ..., pt} does not depend on the representation and it is called the set

of attached prime ideals of M, and denoted by Att(M). As a result note that

Artinian modules are representable moreover an Artinian module A is nonzero

if and only if Att A 6= ∅. For more information see also [Br-Sh].

The set of associated primes of Hom(M, N) where M is a finitely generated

and N any module over a Noetherian ring R is useful to investigate the associated

primes of Matlis dual of finite modules (cf. [Bour]):

Proposition 2.4.1. Let R be a Noetherian ring, M a finitely generated R-module and N
an arbitrary R-module. Then AssR Hom(M, N) = AssR N ∩ SuppR M.

Its dual to Artinian modules has been proved in [Mel-Sch, Proposition 5.2]:

Proposition 2.4.2. Let R be a commutative ring, A an Artinian R-module and N a
finitely presented R-module. Then AttR A⊗R N = AttR A ∩ SuppR N.

Next proposition shows the relation between Ass M and Att D(M) where M
is a Noetherian R-module:

Proposition 2.4.3. (cf. [Br-Sh, 10.2.20]) Let (R,m) be a local ring and M be a Noethe-
rian R-module. Then DR(M) is an Artinian R-module and AttR D(M) = AssR M.

In the next Proposition we see an Artinian analogue of the well-known fact

that if N is a Noetherian R-module and r ∈ R, then r is a non-zerodivisor on N if

and only if r lies outside all the associated prime ideals of N.

Proposition 2.4.4. (cf. [Br-Sh, Proposition 7.2.11]) Let A be an Artinian R-module and
r ∈ R. Then

(1) rA = A if and only if r ∈ R \ ∪p∈Att Ap; and

(2) Rad(0 :R A) = ∩p∈Att Ap.

Proof. Clearly we may assume that A 6= 0, since Att 0 = ∅. Let A = S1 + S2 +

... + Sn with Si pi-secondary (1 ≤ i ≤ n) be a minimal secondary representation

of M.

(1) Suppose that r ∈ R \ ∪p∈Att Ap; then rSi = Si for all i = 1, ..., n and so

rA = A. On the other hand if r ∈ pj for some j with 1 ≤ j ≤ n, then rhSj = 0

for a sufficiently large integer h, and so

rh A = rhS1 + rhS2 + ... + rhSn ⊆ ∑n
i=1,i 6=j Si ⊂ A.
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(2) In order to prove just note that

Rad(0 :R A) = ∩n
i=1 Rad(0 :R Si) = ∩n

i=1pi.

�





Chapter 3

Results on formal local cohomology

In this chapter we deal with the formal local cohomolgy modules which is used

by Peskine and Szpiro in [Pes-Szp] when R is a regular ring. Recently Schen-

zel [Sch] has defined formal local cohomology modules for a local ring (R,m) and

a finitely generated R-module M. Not so much is known about their properties.

Recently there were some attempts in order to investigate Artinianness proper-

ties of formal local cohomology. For instance it has been shown that Fdim M
a (M)

is Artinian but Fi
a(M) is not Artinian in general, for i = fgrade(a, M) and i =

dim M/aM where they are the first respectively last non-zero amount of formal

local cohomology modules (cf. [Asgh-Divan, 2.2 and 2.7]) or see Lemma 3.2.1 and

Theorem 3.2.2 below. We pursue this line to find out conditions for Artinianness

of formal local cohomology modules. Let i < t, t > 0 be two integers, we give

some equivalent conditions for Artinianness of Fi
a(M) for all i < t (cf. Theorem

3.2.4). In fact among the other conditions we show that Artinianness of all Fi
a(M)

for all i < t where t itself is ≤ depth M, implies vanishing of all those Fi
a(M).

Of a particular interest are the closed subsets of Spec R in the Zariski topology.

We consider the cosupport of Fi
a(M) to see when it is a closed subset of Spec R.

For an Artinian module M, it is known that Cosupp M = V(Ann M). More pre-

cisely in order to show that Cosupp(Fi
a(M)) being closed, it is enough to show

that Coass(Fi
a(M)) is finite (cf. Lemma 3.4.5), so it has encouraged us to consider

the Coass(Fi
a(M)) extensively.

21
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3.1 Formal Local Cohomology

Let (R,m, k) be a local Noetherian ring, a an ideal of R and let M be an R-

module. Consider the family of local cohomology modules {Hi
m(M/anM)}n∈N .

For every n there is a natural homomorphism Hi
m(M/an+1M) → Hi

m(M/anM)

such that the family forms a projective system. The projective limit Fi
a(M) :=

lim←−n
Hi

m(M/anM) is called the i-th formal local cohomology of M with respect

to a. Formal local cohomolgy modules used by Peskine and Szpiro in [Pes-Szp]

when R is a regular ring.

Let x = {x1, ..., xr} denote a system of elements such that m = Rad(x). In [Sch,

Proposition 3.2], Schenzel has proved the following isomorphisms to give a new

aspect of formal local cohomology modules via cohomology of inverse limit of

projective systems {Čx ⊗M/anM}:

lim←−n
Hi

m(M/anM) ∼= Hi(lim←−n
(Čx ⊗M/anM))

where Čx denotes the Čech complex of R with respect to x .

Formal local cohomology is well-behaved under completion:

Proposition 3.1.1. [Sch, Proposition 3.3] Let M be a finitely generated R-module. Then
lim←−n

Hi
m(M/anM), i ∈ Z, has a natural structure as an R̂-module and there are isomor-

phisms

lim←−n
Hi

m(M/anM) ∼= lim←−n
Hi

m̂(M̂/anM̂)

for all i ∈ Z.

Proof. Let N be a finitely generated R-module. Then it is known that Hi
m(N),

i ∈ Z, is an Artinian R-module (cf. Theorem 2.1.8). Because of the flatness of

R̂ over R there are R-isomorphisms Hi
m(N) ∼= Hi

m̂(N̂) for all i ∈ Z. Now take

N = M/anM and pass to the projective limit. Then this proves the claim. �

By the result of T. Kawasaki (cf. [Kawas]) R possesses a dualizing complex D•R
if and only if R is the factor ring of a Gorenstein ring. By dualizing complex we

mean a bounded complex of injective R-modules whose cohomology modules

Hi(D•R), i ∈ Z, are finitely generated R-module (cf. [Hart3] or [Sch4]). In the light

of Proposition 3.1.1 and Cohen’s structure Theorem we can assume the existence

of a dualizing complex in order to consider the formal local cohomology. Using
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this view formal local cohomology could be express in terms of a certain local

cohomology of the dualizing complex (cf. [Sch, Theorem 3.5]):

lim←−n
Hi

m(M/anM) ∼= HomR(H−i
a (HomR(M, D•R)), E)

∼= HomR(H−i(Čx ⊗HomR(M, D•R)), E),

for all i ∈ Z, where M be a finitely generated R-module, E = ER(R/m) denotes

the injective hull of the residue field k and a = Rad(x). As a consequence of

above explanations there is a following description of formal local cohomology

as a Matils dual of a certain generalized local cohomology introduced by Herzog

[Herzog] in the case local ring (R,m) is a factor ring of a local Gorenstein ring S:

lim←−n
Hi

m(M/anM) ∼= HomR(Ht−i
aS (M, S), E), i ∈ Z,

where M is considered as an S-module, dim S = t and E = E(R/m) is as above.

(cf. [Sch, Remark 3.6]).

One of the notable properties of formal local cohomology modules is that

lim←−n
Hi

m(M/anM) ∼= (lim←−n
Hi

m(M/anM))a,

i.e. they are a-adically complete for a finitely generated module M (cf. [Sch, Theo-

rem 3.9]). From this isomorphism one can deduce that
⋂

t≥1(a
tlim←−n

Hi
m(M/anM)) =

0.

We may also consider the following Remark in (cf. [Hel-St, Remark 3.1]):

Remark 3.1.2. Let (R,m) be a Noetherian local ring, a an ideal of R and M an R-module
such that SuppR(M) ⊆ V(a). Then the natural map

D(M)→ D(M)a

is an isomorphism. In particular,
⋂

l∈N alD(M) = 0, where D(M) = HomR(M, E(R/m)).

Proof. We have to show that the canonical map

D(M) −→ lim←−l∈N
(D(M)/alD(M))

is bijective; but one has

D(M) = D(Γa(M))

= D(lim−→l∈N
HomR(R/al, M))

= lim←−l∈N
D(HomR(R/al, M))

= lim←−l∈N
D(M)/alD(M)
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where the last equality follows by Hom−⊗-adjointness. Now it is easy to see

that this is the canonical isomorphism D(M)
∼=→ D(M)a. �

In the sequel we consider the behaviour of formal cohomology with short

exact sequences of R-modules.

Theorem 3.1.3. (cf. [Sch, Theorem 3.11]) Let (R,m) denote a local ring. Let 0 −→
A −→ B −→ C −→ 0 denote a short exact sequence of finitely generated R-modules.
For an ideal a of R there is a long exact sequence

... −→ Fi
a(A) −→ Fi

a(B) −→ Fi
a(C) −→ Fi+1

a (A) −→ ....

Let M be a finitely generated R-module. For an R-submodule N of M denote

by N :M 〈m〉 the ultimate constant R-module N :M mn, n large.

Let 0 =
⋂

p∈Ass M Z(p) denote a minimal primary decomposition of 0 in M.

Moreover, let a denote an ideal of R. Then define

Ta(M) = {p ∈ AssR M : dim R/(a, p) = 0}.

Furthermore, put

uM(a) =
⋂

p∈Ass M\Ta(M) Z(p).

Now it will be shown that uM(a) plays an important role in order to under-

stand the 0-th formal cohomology module.

Lemma 3.1.4. (cf. [Sch, Lemma 4.1])With the previous notation we have:

(1)
⋂

n≥1(anM :M< m >) = uM(a).

(2) AssR(uM(a)) = Ta(M).

(3) lim←−n
H0

m(M/anM) ∼= uM̂(aR̂).

Sketch of the proof: In order to prove (1) and (2) it is enough to consider

⋂
n≥1(anM :M< m >) =

⋂
p∈Supp(M/an M)\V(m) ker(M→ Mp)

(cf. [Sch3, Lemma 2.1]) and note that ker(M→ Mp) = Z(p).
For (3) note that by Proposition 3.1.1 we may assume that R respectively M

are complete ring respectively module. Consider the short exact sequence

0→ {anM}n∈N → {anM :M 〈m〉}n∈N → {H0
m(M/anM)}n∈N → 0,
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where H0
m(M/anM) = anM :M 〈m〉 /anM.

By passing to the projective limit it provides an injection

0→ ⋂
n≥1(a

nM :M 〈m〉)
ϕ→ lim←−n

H0
m(M/anM).

In order to prove that ϕ is surjective, use the fact that M as an m-adically complete

module is also a-adically complete, see [Sch, Lemma 4.1] for the details. �

For a finitely generated module M the largest non-vanishing value of Fi
a(M)

is known. To be more precise consider next Theorem:

Theorem 3.1.5. (cf. [Sch, Theorem 4.5]) Let M be a finitely generated R-module. Then

dimR M/aM = sup{i ∈ Z : lim←−n
Hi

m(M/anM) 6= 0}.

Sketch of the proof: By virtue of Grothendieck’s vanishing Theorem 2.1.5

dimR M/aM ≥ sup{i ∈ Z : lim←−n
Hi

m(M/anM) 6= 0}.

Consider the short exact sequence

0→ anM/an+1M→ M/an+1M→ M/anM→ 0,

it yields the epimorphism

Hd
m(M/an+1M)→ Hd

m(M/anM)→ 0,

of nonzero R-modules for all n ∈ N(cf. Theorem 2.1.6) where d := dimR M/aM.

Hence the inverse limit lim←−n
Hd

m(M/anM) is non-zero. �

The infimum for the non-vanishing of formal local cohomology is called the

formal grade. Let M be a finitely generated R-module, then it is defined as

fgrade(a, M) = inf{i ∈ Z : lim←−n
Hi

m(M/anM) 6= 0}.

For more information see [Sch].

The Mayer-Vietoris sequence in local cohomology is an important tool for con-

nectedness phenomenons (cf. chapter 5). Here is the analogue of it for formal

local cohomology:
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Theorem 3.1.6. (cf. [Sch, Theorem 5.1]) Let a, b two ideals of a local ring (R,m). For a
finitely generated R-module M there is the long exact sequence

...→ lim←−n
Hi

m(M/(a∩ b)nM)→ lim←−n
Hi

m(M/anM)⊕ lim←−n
Hi

m(M/bnM)→ ....

lim←−n
Hi

m(M/(a, b)nM)→ ...,

where i ∈ Z.

The long exact sequence relates the a-formal cohomology to the (a, xR)-formal

cohomology for any element x ∈ m. To be more precise:

Theorem 3.1.7. (cf. [Sch, Theorem 3.15]) Let x ∈ m denote an element of (R,m). For
an ideal a and a finitely generated R-module M there is the long exact sequence

...→ Hom(Rx, lim←−n
Hi

m(M/anM))→ lim←−n
Hi

m(M/anM)→

lim←−n
Hi

m(M/(a, x)nM)→ ...,

where i ∈ Z.

3.2 On Artinianness results

Important problems concerning local cohomology modules are vanishing, finite-

ness and Artinianness results. In the present section we study the vanishing and

Artinianness conditions of formal local cohomology modules as our main result.

Not so much is known about the mentioned properties. In [Asgh-Divan] As-

gharzadeh and Divani-Aazar have investigated some properties of formal local

cohomology modules. For instance they showed the following lemma. From now

on for simplicity we use the notation Fi
a(M) for lim←−n

Hi
m(M/anM).

Lemma 3.2.1. Let a be an ideal of a local ring (R,m) and M a finitely generated R-
module of dimension d. Then Fd

a(M) is Artinian.

Proof. It was proved by induction on the number of generators of ideal a

in [Asgh-Divan, Lemma 2.2]). Here we give an alternative proof:
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By Independence Theorem we may assume that Ann M = 0 and so d =

dim R. As Hd
m(M/anM) is right exact (n ∈N) we have

Hd
m(M/anM) ∼= Hd

m(R)⊗R M/anM
∼= Hd

m(M)⊗R R/an

∼= Hd
m(M)/anHd

m(M).

Since Hd
m(M) is an Artinian module so there exists an integer n0 such that for all

integer m ≥ n0 we have amHd
m(M) = an0 Hd

m(M). Then one can see that

Fd
a(M) ∼= Hd

m(M)/an0 Hd
m(M),

which is an Artinian module. �

By virtue of the proof of Lemma 3.2.1, we may consider AttR(F
d
a(M)) =

AttR(Hd
m(M)) ∩V(a).

Next they showed that Fi
a(M) is not Artinian in general, at i = fgrade(a, M)

and i = dim M/aM. To be more precise the following result holds.

Theorem 3.2.2. (cf. [Asgh-Divan, Theorem 2.7]) Let a be an ideal of a local ring (R,m).

(1) If M is a finitely generated R-module such that f := fgrade(a, M) < depth M,
then F

f
a(M) is not Artinian.

(2) If R is Cohen-Macaulay and ht a > 0, then FdimR/a
a (R)is not Artinian.

We pursue this line to find out conditions for Artinianness of formal local

cohomology modules.

Lemma 3.2.3. Let (R,m) be a complete local ring and M a finitely generated R-module.
Then

Supp(F0
a(M)) =

⋃
p∈AssR F0

a(M) V(p).

Moreover Supp(F0
a(M)) ∩V(a) ⊆ V(m) .

Proof. We only prove the first part because the second part is a consequence

of it. As F0
a(M) is a finitely generated R-module (Lemma 3.1.4), then in order to

prove the claim it is enough to consider 0 :R F0
a(M). Let 0 = ∩p∈Ass MZ(p) de-

note a minimal primary decomposition of 0 in M. By virtue of Lemma 3.1.4(2)

F0
a(M) = ∩p∈Ass M\Ta(M)Z(p). Now the proof is clear. To this end note that

AssR F0
a(M) = Ta(M). �
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Theorem 3.2.4. Let (R,m) be a local ring and M be a finitely generated R-module. For
given integers i and t > 0, the following statements are equivalent:

(1) SuppR̂(F
i
a(M)) ⊆ V(mR̂) for all i < t;

(2) Fi
a(M) is Artinian for all i < t;

(3) SuppR̂(F
i
a(M)) ⊆ V(aR̂) for all i < t.

(4) a ⊆ Rad(AnnR(F
i
a(M))) for all i < t;

Suppose that t ≤ depth M, then the above conditions are equivalent to

(5) Fi
a(M) = 0 for all i < t;

where R̂ denotes the m-adic completion of R.

Proof.
(1)⇒ (3) and (2)⇒ (1) are obvious.

(3)⇒ (2) : We argue by induction on t. By passing to the completion, we may

assume that R is complete (cf. Proposition 3.1.1).

Let t = 1, then i = 0. As F0
a(M) is a finitely generated submodule of M and

since by assumption Supp(F0
a(M)) ⊆ V(a), then by lemma (3.2.3)

Supp(F0
a(M)) = Supp(F0

a(M)) ∩V(a) ⊆ V(m).

Hence F0
a(M) is Artinian.

Now let t > 1, put M = M/H0
a(M). From the exact sequence

0 −→ H0
a(M) −→ M −→ M −→ 0

we get the long exact sequence

... −→ Fi
a(H0

a(M)) −→ Fi
a(M) −→ Fi

a(M) −→ Fi+1
a (H0

a(M)) −→ ....

As Fi
a(H0

a(M)) = Hi
m(H0

a(M)) is an Artinian R-module for every j ∈ Z (cf. The-

orem 2.1.8), then one can see that Supp(Fi
a(M)) ⊆ V(a) for all i < t. Hence it

is enough to show that Fi
a(M) is Artinian, so we may assume that H0

a(M) = 0.

Hence there exists an M-regular element x in a such that from the exact sequence

0 −→ M x→ M −→ M/xM = M̃ −→ 0
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we deduce the long exact sequence

... −→ Fi
a(M)

x→ Fi
a(M) −→ Fi

a(M̃) −→ Fi+1
a (M) −→ .... (∗)

As for all i < t, Supp(Fi
a(M)) ⊆ V(a) , it implies that Supp(Fi

a(M̃)) ⊆ V(a) for

all i < t− 1. Hence by induction hypothesis Fi
a(M̃) is Artinian for all i < t− 1.

Therefore in the view of (∗), (0 :Fi
a(M) x) is Artinian for all i < t .

On the other hand since Supp(Fi
a(M)) ⊆ V(a) for all i < t , one can see that

Fi
a(M) =

⋃
(0 :Fi

a(M) a
α) ⊆ ⋃

(0 :Fi
a(M) xα) ⊆ Fi

a(M)

so Fi
a(M) =

⋃
(0 :Fi

a(M) xα) . Therefore by Theorem 2.1.7, Fi
a(M) will be Ar-

tinian.

(2) ⇒ (4) : Since Fi
a(M) is a-adically complete for every i ∈ Z , then⋂

n a
nFi

a(M) = 0. Moreover for all i < t, Fi
a(M) is Artinian. Hence there is

an integer u such that auFi
a(M) = 0.

(4) ⇒ (3) Without loss of generality we may assume that R is complete. Let

an(Fi
a(M)) = 0 for some integer n and p ∈ Supp(Fi

a(M)) \ V(a). Then one can

write

Fi
a(M) = Fi

a(M)/an(Fi
a(M)).

Now apply − ⊗ Rp to the both sides of the above equality to get Fi
a(M)p = 0

which is a contradiction.

(1) ⇒ (5) : By passing to the completion we may assume that R is complete.

We use induction on t. Let t = 1, i = 0.

As Supp(F0
a(M)) ⊆ V(m), so F0

a(M) must be zero. Otherwise since

∅ 6= Ass(F0
a(M)) ⊆ Supp(F0

a(M)) ⊆ V(m)

so

m ∈ Ass(F0
a(M)) = {p ∈ Ass M; dim(R/a+ p) = 0},

this is contradiction to depth M > 0.

Now let depth M ≥ t > 1. Thus there exists x ∈ m that is an M-regular

element. Consider the short exact sequence

0→ M xl
→ M→ M/xl M = M̄→ 0
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for every l. So we have the following long exact sequence

...→ Fi−1
a (M̄)→ Fi

a(M)
xl
→ Fi

a(M)→ Fi
a(M̄)→ ...

for every l.

As depth M̄ = depth M− 1 > 0 and for all i < t− 1 , Supp(Fi
a(M̄)) ⊆ V(m) .

Then by induction hypothesis Fi
a(M̄) = 0 for all i < t − 1 . So for every l,

(0 :Ft−1
a (M) xl) is a homomorphic image of Ft−2

a (M̄). Hence (0 :Ft−1
a (M) xl) = 0

for every l.

Take into account that by assumption Supp(Fi
a(M)) ⊆ V(m) for every i < t,

hence Ft−1
a (M) = ∪(0 :Ft−1

a (M) xl) = 0 . This completes the proof. �

One can see that Theorem 3.2.4 can be considered as the dual to the Faltings’

finiteness Theorem (cf. [Br-Sh, Theorem 9.1.2]).

The following example can be instrumental for understanding Theorem 3.2.4.

Example 3.2.5. (cf. [Sch, Example 5.2]) Let k be a field. Let R = k[|x1, x2, x3, x4|] denote
the formal power series ring in four variables over k. Put a = (x1, x2)R, b = (x3, x4)R
and c = a∩ b. Then the Mayer-Vietoris sequence provides the isomorphism R ∼= F1

c (R).
To this end note that (a, b) is the maximal ideal of the complete local ring R. Therefore
SuppF1

c (R) = Spec R and clearly R is not Artinian, here i < t = 2.

3.3 Cosupport

In this section we examine the cosupport of formal local cohomology. Yassemi

in [Yas] has defined the CoSuppR M as the set of prime ideals q such that there

exists a cocyclic homomorphic image L of M with p ⊇ Ann(L) (an R-module L
is cocyclic if L is a submodule of E(R/m) for some m ∈ max(R)). His defini-

tion is equivalent with Melkerson-Schenzel’s definition for Artinian R-modules

(cf. [Yas]). Melkerson-Schenzel’s definition of colocalization does not preserve

Artinian R-module to Artinian S−1R-module through colocalization for a multi-

plicative closed subset of R (cf. [Mel-Sch]). We use the concept of cosupport has

introduced by A. Richardson (cf. 2.3.2).

Definition 3.3.1. For any R-module M, the co-support of M is CoSupp M = {p ∈
Spec R : pM 6= 0}.
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For brevity we often write CoSupp M for CoSuppR M when there is no ambi-

guity about the ring R.

Following Theorem makes the cosupport of a module more clear:

Theorem 3.3.2. (cf. [Rich, Theorem 2.7]) Let R be a ring and M an R-module.

(1) CoSupp M = Supp DR(M), where DR is defined in (2.3.1).

(2) CoSupp M = ∅ if and only if M = 0.

(3) CoSupp M ⊆ V(Ann M).

(4) If M is representable, then CoSupp M = {p ∈ Spec R : p ⊃ q f or some q ∈
Att M} = V(Ann M).

(5) If 0 → M
′ → M → M

′′ → 0 is exact, then CoSupp M = CoSupp M
′ ∪

CoSupp M
′′
.

(6) If M is finitely generated then CoSupp M = V(Ann M) ∩max(R).

Sketch of the proof:

(1) It is clear by definition.

(2) It follows by (1).

(3) Use Lemma 2.3.5 to prove.

(4) Let M be representable so M = ∑n
i=1 Ni, Rad(AnnR Ni) = pi with pi ∈

Spec R for i ∈ {1, ..., n} and n ∈N. Then 0 :R M ⊆ p if and only if 0 :R Nj ⊆
p for some j ∈ {1, ..., n}. It proves the second equality. In order to prove

the first equality it is enough to show that V(Ann M) ⊆ CoSupp M which

follows by Theorem 6.0.8.

(5) Follows from the exactness of colocalization.

(6) since M is finitely generated, we have DR(M)p ∼= HomRp(Mp, (ER)p) for all

p ∈ Spec R, so Supp DR(M) ⊆ Supp M ∩ Supp EA = V(Ann M) ∩max(R).
On the other hand, if m is maximal, then (ER)m ∼= ERm , so

mM ∼= HomRm(HomRm(Mm, ERm), ERm)
∼= Mm ⊗HomRm(ERm , ERm)
∼= M̂m,
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which is nonzero if and only if m ∈ V(Ann M).

�

It is known that for every R-module M and every integer i we have Supp Hi
a(M) ⊆

V(a). It is natural to ask whether this is true for formal local cohomology. We

give an affirmative answer to the above question in the case Fi
a(M) is Artinian

while (R,m) is a local ring and M a finitely generated R-module. At first, we

should make some preparations.

Proposition 3.3.3. (cf. [Rich, Proposition 2.5]) Let M and N be R-modules with M
finitely generated, and let i be any integer.

(1) S−1 TorR
i (M, N) ∼= TorS−1R

i (S−1M, S−1N).

(2) S−1 Exti
R(M, N) ∼= Exti

S−1R(S
−1M, S−1N).

Lemma 3.3.4. Let R be a ring and M, N be R-modules. Then the following statements
are true:

(1) CoSupp(M) is stable under specialization, i.e.

p ∈ Cosupp(M), p ⊆ q⇒ q ∈ Cosupp(M).

(2) Let M be a finite module, then CoSupp(M⊗R N) ⊆ Supp M ∩CoSupp N.

Proof.

(1) Let p ∈ Cosupp(M), then by definition DRp(DR(M)p) is nonzero and so is

DR(M)p. As 0 6= DR(M)p = (DR(M)q)pRq , then DR(M)q 6= 0. It implies

that qM 6= 0.

(2) Let p ∈ CoSupp(M⊗R N), then 0 6= p(M⊗R N) = Mp ⊗Rp
pN, by (3.3.3).

So Mp 6= 0 and pN 6= 0. Hence p ∈ Supp M ∩CoSupp N.

�

Next Lemma plays a significant role to lead us to the desired result.

Lemma 3.3.5. Let a be an ideal of a ring R. Let N be an Artinian R-module with
AttR(N) ⊆ V(a). Then CoSupp N ⊆ V(a).
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Proof. As N is Artinian so the descending chain

aN ⊇ a2N ⊇ ... ⊇ anN ⊇ ...

of submodules of N is stable, i.e. there exists an integer k that akN = ak+1N. As

AttR(N/akN) = AttR(N) ∩ V(a) (cf. Proposition 2.4.1) and CoSupp(N/akN) ⊆
V(a) by virtue of lemma 3.3.4, then by passing to N/akN we may assume that

akN = 0.

Let p ∈ CoSupp N, then pN 6= 0 so by Lemma 2.3.5, for every s ∈ S = R \ p,

sN 6= 0. On the other hand as
⋂

n a
nN = akN = 0, hence for every s ∈ S,

sN 6⊆ atN. Then for all s ∈ S, s /∈ at. It means that p ∈ V(a). �

Corollary 3.3.6. Let i ∈ Z. Let (R,m) be a local ring and M be a finitely generated R-
module. Assume that Fi

a(M) is an Artinian R-module, then CoSuppFi
a(M) ⊆ V(a).

Proof. As Fi
a(M) is Artinian and a-adically complete so there exists an integer

k such that
⋂

n≥1 a
nFi

a(M) = akFi
a(M) = 0. Hence Proposition 2.4.4(2) implies

that AttFi
a(M) ⊆ V(a), so it follows that CoSuppFi

a(M) ⊆ V(a) by Lemma 3.3.5.

�

Remark 3.3.7. Converse of corollary (3.3.6) is not true in general. Let R = k[|x|] denote
the formal power series ring over a field k. Put a = (x)R. Then

CoSuppF0
a(R) = Supp DR(DR(H1

a(R))) = Supp H1
a(R) ⊆ V(a)

but F0
a(R) is not Artinian.

We now turn our attention to prove Theorem (3.3.10). For this reason we give

some preliminary lemmas:

Lemma 3.3.8. Let (R,m) be a local ring and M be a finitely generated R-module. Then

Fc
a(M) ∼= Fc

a(R)⊗R M,

where c := dim R/a.

Proof. At first note that by definition of inverse limit, Fj
a(−) preserves finite

direct sum, for every j ∈ Z. Furthermore Fc
a(−) is a right exact functor (cf. The-

orem 3.1.5). Hence by Watts’ Theorem ( [Rot, Theorem 3.33]) the claim is proved.

�
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Lemma 3.3.8 declares that Fc
a(R) = 0 if and only if Fc

a(M) = 0 for all finitely

generated R-module M.

We utilize the useful consequence of Gruson’s Theorem (e.g., [Vas, Corollary

4.3]) allows us to reduce to the case M = R when considering the cosupport of

top formal local cohomology modules.

Lemma 3.3.9. Let M be a finite faithful R-module and N an arbitrary R-module. Then
M⊗R N = 0 if and only if N = 0.

Proof. We cite a proof is appeared in a note due to B. Johnson. Suppose

M ⊗R N = 0. It suffices to show that N ⊗R L = 0 for any R-module L. Let

λ(L) denote the length of the shortest filtration of L such that the factor modules

of the filtration are homomorphic images of direct sums of copies of M (This

filtration exists by Grusson’s Theorem, cf. [Vas, Theorem 4.1]). If λ(L) = 1 then

L is the homomorphic image of ⊕nM for some n. Since M ⊗R N = 0, certainly

⊕nM⊗R N = 0 and hence M⊗R L = 0. Suppose λ(L) > 1. Then there exists a

short exact sequence 0 → L
′ → L → L

′′ → 0 such that λ(L
′
) and λ(L

′′
) are less

than λ(L) By induction, N ⊗R L
′′
= 0 = N ⊗R L

′
. By the right exactness of tensor

products, we see that N ⊗R L = 0. �

Next Theorem is the analogue for formal local cohomology of the result due

to Huneke-Katz-Marley in [Hun-Kat-Mar, Proposition 2.1]:

Theorem 3.3.10. Let (R,m) be a local ring. Let M be a finitely generated R-module.
Then

(1) CoSupp(Fc
a(M)) = CoSupp(Fc

a(R/J)),

(2) Supp(Fc
a(M)) = Supp(Fc

a(R/J)),

where J := AnnR M and c := dim R/a.

Proof. (1): Since for every i ∈ Z, Fi
a(M) ∼= Fi

a(R/J)(M), by Independence

Theorem (cf. 2.1.3(1)), we may replace R by R/J to assume that M is faithful.

Note that for dim R/(a, J) < c, there is nothing to prove because, Fc
a(M) = 0.

In the view of lemma 3.3.8 and Proposition 3.3.3, for every p ∈ Spec R

pFc
a(M) ∼= Mp ⊗Rp

pFc
a(R).
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As Mp is faithful Rp-module, (3.3.9) implies that Mp ⊗R
pFc

a(R) = 0 if and

only if pFc
a(R) = 0, which completes the proof.

(2): To prove we use the localization instead of colocalization in the proof of

(1). �

3.4 Coassociated primes

There have been three earlier attempts to dualize the theory of associated primes.

The first one was made by I.G. Macdonald in [Mac] by defining the set Att(M)

of attached prime ideals of an A-module M. The theory of attached primes is

particularly well-behaved when M has a secondary representation (which is the

dual notion to primary decomposition). However, in general this theory is not

completely satisfactory.

Next, L. Chambless [Cham], H. Zöschinger [Z2] and S. Yassemi [Yas] defined

the set CoassR(M) of coassociated prime ideals of an R-module M. Yassemi’s def-

inition of coassociated primes (below) is equivalent with Macdonald’s definition

when M has secondary representation, and that this is equivalent with Chamb-

less and Zöschinger’s definitions (cf. [Yas] for details).

Definition 3.4.1. (1) For any maximal ideal m of R we define a duality functor
Dm(−) = Hom(−, E(R/m)) where E(R/m) is the injective envelope of R/m.

(2) We say that an R-module L is cocyclic if L is a submodule of E(R/m) for some
m ∈ max(R). In other words L ⊆ Dm(R) for some m ∈ max(R).

(3) Let M be an R-module. A prime ideal p of R is called a coassociated prime of M if
there exists a cocyclic homomorphic image L of M such that p = Ann(L). The set
of coassociated prime ideals of M is denoted by CoassR(M)

For brevity we often write Coass(M) for CoassR(M) when there is no ambi-

guity about the ring R.

Below we collect some facts on coassociated primes, for more details see [Yas].

Theorem 3.4.2. Let M, M
′
, M

′′
be R-modules.

(1) p ∈ Coass(M) if and only if there exists m ∈ max(R) ∩ V(p) such that p ∈
Ass(Dm(M)).
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(2) If 0 → M
′ → M → M

′′ → 0 is an exact sequence, then Coass(M
′′
) ⊆

Coass(M) ⊆ Coass(M
′
) ∪Coass(M

′′
).

(3) If M is a finite R-module and N is any R-module, then

Coass(M⊗ N) = Supp M ∩Coass(N).

(4) If M is an Artinian R-module, then Coass(M) is finite.

Proof. see [Yas, 1.7, 1.10, 1.21, 1.22]. �

Next we show the relation between coassociated primes of a module and

Richardson’s cosupport.

Lemma 3.4.3. Let (R,m) be a local ring and M an R-module. Then the following state-
ments are true:

(1) Coass(M) ⊆ CoSupp(M).

(2) Every minimal element of CoSupp(M) belongs to Coass(M).

(3) For any Noetherian R̂-module M, Coass(M) = CoSupp(M) ⊆ {m}, where R̂
denotes the m-adic completion of R.

Proof.

(1) Let p ∈ Coass(M). Then p ∈ Ass DR(M) so pRp ∈ AssRp DR(M)p which im-

plies that 0 6= HomRp(Rp/pRp, DR(M)p), so it remains nonzero by applying

HomRp(−, ERp(Rp/pRp)). It follows by definition that p ∈ CoSupp(M).

(2) Let p ∈ min CoSupp(M), then p ∈ min Supp DR(M) (cf. 3.3.2). Hence

p ∈ min Ass DR(M) and it follows that p ∈ min Coass(M).

(3) It is clear that Coass(M) = ∅ if and only if M = 0 if and only if CoSupp(M) =

∅. In the case Coass(M) is non-empty the claim follows by (1) and (2). �

It should be noted that Supp(Fi
a(M)) is closed when Ass(Fi

a(M)) is finite.

In fact for a local Gorenstein ring (R,m), Ass(Fi
a(R)) = Ass DR(Hdim R−i

a (R))
where it was discussed extensively in [Hel]. Take into account that it is not finite

in general.
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Remark 3.4.4. ( [Asgh-Divan, Remark 2.8(vi)]) Let (R,m) be complete Gorenstein and
equicharacteristic ring with dim R > 2. Let p be a prime ideal of R of height 2 and
take x ∈ m \ p. Then by [Hel, Corollary 2.6], AssR(F

dim R−1
(x) (R)) = Spec R \V((x)).

Since ht p = 2, there are infinitely many prime ideals of R which are contained in p, and
so AssR(F

dim R−1
(x) (R)) is infinite.

Our motivation to consider the Coass(Fi
a(M)) arises from the following

Lemma. Of a particular interest are the closed subsets of Spec R in the Zariski

topology. We consider to the cosupport of Fi
a(M) to see when it is a closed subset

of Spec R. For an Artinian module N, it is known that Cosupp N = V(Ann N)

(cf. 3.3.2). More precisely in order to show that Cosupp(Fi
a(M)) being closed, it is

enough to show that Coass(Fi
a(M)) is finite, so it has encouraged us to consider

the Coass(Fi
a(M)).

Lemma 3.4.5. Let (R,m) be a local ring and M be an R-module. The set of minimal
primes in CoSupp(M) is finite if and only if CoSupp(M) is a closed subset of Spec R.

Proof. Let CoSupp(M) = V(b) for some ideal b of R. As R is Noetherian then

so is R/b. It turns out that the set of minimal elements of CoSupp(M) is finite.

For the reverse direction, let p1, ..., pt be the minimal prime ideals of CoSupp(M).

Put q := ∩ipi. We claim that CoSupp M = V(q).

It is clear that CoSupp(M) ⊆ V(q). For the opposite direction assume that

there is a prime ideal Q ⊃ q. Then Q ⊃ pj, for some 1 ≤ j ≤ t so the proof follows

by lemma 3.3.4(1). �

Take into account that when R is a complete local Gorenstein ring and Fi
a(M)

is assumed to be either Noetherian or Artinian module, then

CoSupp(Fi
a(M)) = Supp Hdim R−i

a (M, R).

As we have seen in Theorem 3.2.2, for a Cohen-Macaulay ring R with ht a > 0,

Fdim R/a
a (M) is not Artinian. Moreover Fdim M/aM

a (M) is not finitely generated for

dim M/aM > 0 (cf. [Asgh-Divan, Theorem 2.6 (ii)]). Below we give an alternative

proof.

Theorem 3.4.6. Let a be an ideal of a local ring (R,m) and M a finitely generated R-
module. Assume that dim M/aM > 0. Then Fdim M/aM

a (M) is not a finitely generated
R-module.
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Proof. Put c := dim M/aM. In the contrary assume that Fc
a(M) is a finitely

generated R-module. Let x ∈ m be a parameter element of M/aM. Hence Theo-

rem 3.1.7 implies the following long exact sequence

...→ Hom(Rx,Fc
a(M))→ Fc

a(M)→ Fc
(a,x)(M)→ ...,

where i ∈ Z. As dim M/(a, x)M < dim M/aM, then Fc
(a,x)(M) = 0. Now let

f ∈ Hom(Rx,Fc
a(M)). Fix an arbitrary integer n, so

f (1/xn) = xm f (1/xm+n) ∈ xmFc
a(M),

for every integer m. It implies that f (1/xn) ∈ ⋂
m xmFc

a(M) = 0 by Krull’s Theo-

rem, hence f = 0. Now it follows that Fc
a(M) = 0, which is a contradiction, see

3.1.5. �

Now we examine the set of coassociated primes of top formal local cohomol-

ogy to show that by some assumptions on R, it could be finite.

Proposition 3.4.7. Let a be an ideal of a complete Gorenstein local ring (R,m) and
c := dim R/a. Let M be a finitely generated R-module. Then

CoassR(F
c
a(M)) = SuppR M ∩AssR(Hht a

a (R)).

Proof.
CoassR(F

c
a(M)) = CoassR(F

c
a(R)⊗R M)

= SuppR M ∩CoassR(F
c
a(R))

= SuppR M ∩AssR(Hht a
a (R)),

where the first equality is clear by lemma 3.3.8, the second equality follows by

3.4.2(3). �

It should be noted that by hypotheses in Proposition 3.4.7, ht a = gradeR a (by

gradeR a we mean the common length of maximal R-sequences in a) and it is well-

known that AssR(HgradeR a
a (R)) is finite, e.g see [Mar, Proposition 1.1] or [Hel2,

Theorem 1].

Corollary 3.4.8. Keep the notations and hypotheses in Proposition 3.4.7,

Fc
a(M) = 0 if and only if SuppR M ∩AssR(Hht a

a (R)) = ∅.
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Proof. It follows by the fact that Fc
a(M) = 0 if and only if CoassR(F

c
a(M)) =

∅. �

In the light of Lemma 3.1.4, one can see that for a local ring R, CoassR(F
0
a(R))

is not the same with CoassR̂(F
0
a(R)).

Remark 3.4.9. (1) (cf. [Z, Beispiel 2.4]) Let (R,m) be a local ring, then

CoassR R̂ = {m} ∪ {p ∈ Spec R : R/p is not complete}.

(2) CoassR̂ F0
a(R) is finite, as F0

a(R) is a finitely generated R̂-module (cf. Lemma
3.1.4) but CoassR F0

a(R) is not finite in general. The example in [Asgh-Divan,
Remark 2.8(iii)] shows it more clear. let T := Q[X, Y](X,Y) and a := (X, Y)T.
Then F0

a(T) = T̂ = Q[[X, Y]]. For each integer n, let pn := (X − nY)T. Then
it is easy to see that T/pn ∼= Q[Y](Y), and so it is not a complete local ring.
By (1), CoassT F0

a(T) = {a} ∪ {p ∈ Spec T : T/p is not complete }. Hence
CoassT(F

0
a(T)) is not finite.

Proposition 3.4.10. Let i ∈ Z. Let a ⊂ R be an ideal of a ring R. If CoassR Fi
a(R)

is finite, then so is CoassR Fi
a(R/H0

a(R)). In the case Fi
a(R/H0

a(R)) is Artinian, the
converse can be true.

Proof. Consider the exact sequence

0→ H0
a(R)→ R→ R/H0

a(R) = R→ 0.

It provides the following long exact sequence

...→ Fi
a(H0

a(R))
ψ→Fi

a(R)
ϕ→ Fi

a(R)→ Fi+1
a (H0

a(R))→ ..., (∗)

for every i.
As Fi

a(H0
a(R)) = Hi

m(H0
a(R)) is Artinian, it follows that Coass(Fi

a(H0
a(R))) is

finite.

By virtue of (∗), we get the following short exact sequence

0→ U → Fi
a(R)→ U

′ → 0,

where U = coker ψ and U
′
= coker ϕ. It implies that CoassFi

a(R) is finite. To

this end consider Coass(U) is finite, by assumption and 3.4.2(2). Furthermore

Coass(U
′
) is finite as Fi+1

a (H0
a(R)) is Artinian. �

Now we are going to give more information on the last non-vanishing formal

local cohomology module.
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Theorem 3.4.11. Let (R,m) be a local ring of dimension d ≥ 1. Let Fd
a(R) = 0. Then:

(1) If p ∈ CoassFd−1
a (R), then it implies that dim(R/(a, p)) = d− 1.

(2) Assh(R) ∩CoassFd−1
a (R) ⊆ {p ∈ Spec R : dim R/p = d, Rad(a+ p) 6= m}.

(3) If CoassFd−1
a (R) ⊆ Assh(R), then {p ∈ Spec R : dim(R/(a, p)) = d− 1} ⊆

CoassFd−1
a (R).

Proof.

(1) Let p ∈ CoassFd−1
a (R). As Fd

a(R) = 0, by Theorem 3.1.5

dim R/(a, p) ≤ dim R/a ≤ d− 1.

On the other hand p ∈ Coass(R/p⊗R Fd−1
a (R)), because

Coass(R/p⊗R Fd−1
a (R)) = Supp R/p∩CoassFd−1

a (R).

It yields with the similar argument to lemma 3.3.8 that 0 6= R/p ⊗R

Fd−1
a (R) = Fd−1

a (R/p). So we have dim R/(a, p) ≥ d − 1. It completes

the proof.

(2) Let p ∈ Assh(R) ∩ CoassFd−1
a (R). Then similar to (1), Fd−1

a (R/p) 6= 0 and

moreover Rad(a+ p) 6= m. To this end note that if Rad(a+ p) = m, then

Fd−1
a (R/p) = 0 by Grothendieck’s vanishing Theorem.

(3) Let p ∈ Spec R and dim(R/(a, p)) = d − 1. Then it follows that ∅ 6=
CoassFd−1

a (R/p) = Supp(R/p) ∩ CoassFd−1
a (R). Let q ∈ CoassFd−1

a (R)
then, q ⊇ p, but by assumption q is minimal so we deduce that q = p. �

Remark 3.4.12. The inclusion in Theorem 3.4.11(2) is not an equality in general. For
example Let R = k[[x, y, z]] denote the formal power series ring in three variables over a
field k. Let a = (x, y) be an ideal of R which is of dimension one and put p = 0. It is
clear that F3−1

a (R) = 0 = F3
a(R), that is CoassF3−1

a (R) = ∅.

Lemma 3.4.13. Let (R,m) be a local complete ring and a an ideal of R. Let p be a minimal
prime ideal of a. Then q ∈ CoassR(R̂p) implies that q ⊆ p.
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Proof. The proof is straightforward. Let q ∈ CoassR(R̂p), then

0 6= HomR(R/q, HomR(R̂p, ER(R/m))) = HomR(R/q⊗R R̂p, ER(R/m)).

It yields that

0 6= R/q⊗R R̂p = R/q⊗R Rp ⊗Rp R̂p.

It is clear that Rp/qRp 6= 0 and so q must be contained in p. �

Next result shows that for a one dimensional ideal a of a complete local ring

R of dimension d, CosuppFd−1
a (R) is closed.

Theorem 3.4.14. Let (R,m) be a local complete ring of dimension d. Let a be an ideal of
dimension one. Then

Fd−1
a (R) = 0, when d > 2,

in particular CoassR Fd−1
a (R) = ∅.

CoassR Fd−1
a (R) ⊆ {m}, when d = 1

and in the case d = 2

CoassR Fd−1
a (R) =

⋃r
i=1 CoassR(R̂pi) = {p1, ..., pr} ∪ (

⋃s
j=1{qj : Rpi /qjRpi is not complete }),

where p1, ...pr are minimal prime ideals of a and q1, ...qs are minimal prime ideals of R
with qj ⊆ pi for i ∈ {1, ..., r}.

In particular CosuppFd−1
a (R) is closed for all d > 0.

Proof. For d > 2 and d = 1, the claim is clear.

Let d = 2. Suppose that p1, ..., pr be the minimal prime ideals of a. Put S =⋂r
i=1(R \ pi), choose y ∈ m \⋃r

i=1 pi. By Theorem 2.1.4, for any n ∈N we have

0→ H0
m(R/an)→ R/an → D(y)(R/an)→ H1

m(R/an)→ 0,

where D(y)(R/an) is the (y)-transform functor. One can see that D(y)(R/an) ∼=
RS/anRS, so we get the following exact sequence

0→ H0
m(R/an)→ R/an → RS/anRS → H1

m(R/an)→ 0.

Furthermore RS/anRS
∼= ⊕r

i=1Rpi /a
nRpi . All the modules satisfying the Mittag-

Leffler condition so by applying inverse limits we get

0→ R/F0
a(R)→ ⊕r

i=1R̂pi → F1
a(R)→ 0.
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It yields that CoassR(F
1
a(R)) ⊆ ⋃r

i=1 CoassR(R̂pi) ⊆ CoassR(F
1
a(R)) ∪ {m}. In

the view of lemma 3.4.13, CoassR(F
1
a(R)) =

⋃r
i=1 CoassR(R̂pi). Now the claim is

proved by Remark 3.4.9(1). To this end note that CoassR(R̂pi) = CoassRpi
(R̂pi)∩R

for every i ∈ {1, ..., r}. �

Remark 3.4.15. Keep the notations and hypotheses in Theorem 3.4.14 and let M be a
finitely generated R-module. As R is complete so by Cohen’s structure Theorem, there
exists a Gorenstein local ring (S, n) where R is a homomorphic image of S and dim R =

dim S. Then by virtue of 3.3.8 we have

AssR H1
aS(M, S) ⊆ CoassFd−1

a (R)

is finite.



Chapter 4

Top local cohomology modules

In this chapter we consider Hdim M
a (M); the last possible non-vanishing local co-

homology module. It is known by the Grothendieck’s vanishing Theorem (cf.

2.1.5) that Hi
a(M) = 0 for all i > dim M.

Let (R,m) be a local ring and M be a finitely generated R-module. Then there

is the long exact sequence

Hi
m(M)→ Hi

a(M)→ lim−→n
Exti

R(m
n/an, M)→ ...

relating the local cohomology of M with respect to a and m resp. It follows

by Hartshorne’s result, see [Hart, p. 417], that lim−→n
Extdim M

R (mn/an, M) = 0.

Therefore Hdim M
a (M) is - as an epimorphic image of Hdim M

m (M) - an Artinian

R-module.

The kernel of the natural epimorphism Hdim M
m (M) → Hdim M

a (M) was calcu-

lated in [Divan-Sch], but here we calculate it more precisely in the first section.

Furthermore it yields a new equivalent statement to Hartshorne-Lichtenbaum

vanishing Theorem.

The above results lead us to establish some properties of HomR̂(Hd
a (R), Hd

a (R))
in section two. First of all a brief about endomorphism rings could be instrumen-

tal for understanding the content.

Let G be an abelian group. An endomorphism of G is a group homomorphism

from G to itself. The set End G of endomorphisms of G is a ring where the addi-

tion is defined point-wise and the multiplication is given by composition: Given

f , g ∈ End G, the sum f + g is the function defined by ( f + g)(x) = f (x) + g(x)
and the product f g is the function defined by ( f g)(x) = f (g(x)). Let R = End G.

43
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Then G is a left R-module where the scalar multiplication is just function evalua-

tion that is, given f ∈ R and x ∈ G, the scalar product f x is just f (x).
If k is a field and we consider the k-vector space kn, then the endomorphism

ring of kn (which consists of all k-linear maps from kn to kn) is naturally identified

with the ring of n × n matrices with entries in k which is not commutative in

general.

One can often translate properties of an object into properties of its endomor-

phism ring. For instance, a module is indecomposable if and only if its endomor-

phism ring does not contain any non-trivial idempotents (cf. [Jacob]). Note that

a module M is decomposable if M = M1 ⊕ M2 where Mi 6= 0 for i = 1, 2 are

submodules of M. Otherwise M is indecomposable. It follows that if End M for

a module M 6= 0 is local, then M is indecomposable.

Not so much is known about the ring HomR(Hd
a (R), Hd

a (R)) and its relation to

a given ring R. In Theorem 4.2.2, for a local ring (R,m) and its m-adic completion

R̂, we show that in some cases the map

Φ : R̂→ HomR̂(Hd
a (R), Hd

a (R))

could be an isomorphism. Furthermore we show that HomR̂(Hd
a (R), Hd

a (R)) is a

commutative semi-local Noetherian ring which is a finitely generated R̂-module.

4.1 Ideas around Hartshorne-Lichtenbaum vanishing

Theorem

Let (R,m) be a commutative, Noetherian local ring (with identity) of dimension d,

and let a be a proper ideal of R. It is well known that, for an R-module M, the local

cohomology modules Hi
a(M) vanish for all i > d, while Hd

a (M) ∼= M⊗R Hd
a (R).

These results accord some importance to Hd
a (R) and a sufficient condition for

its vanishing is given by the following theorem, which was first proved by R.

Hartshorne.

Theorem 4.1.1. ( [Hart, 3.1] and also [Pes-Szp, III,3.1]) If, for every minimal prime
ideal q of R̂ of dimension d, we have dim(R̂/aR̂ + q) ≥ 1, then Hd

a (R) = 0.

In both Hartshorne’s proof [Hart, Theorem 3.1] and the proof of C. Peskine

and L. Szpiro [Pes-Szp, III,3.1], an important ingredient is an analysis of a situa-
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tion in which R is complete: Hartshorne reduces to a case where R is a complete,

normal, local domain; Peskine and Szpiro work with a complete Gorenstein local

ring to obtain the result. Both proofs use Chevalley’s Theorem [Zar-Sam, VIII,

Sec.5, Theorem 13] for a complete local ring to compare topologies defined in

terms of symbolic prime powers with ideal-adic topologies. For more informa-

tion cf. [Call-Sh]. After them F. W. Call and R.Y. Sharp [Call-Sh] used symbolic

prime powers rather differently in order to analyse the case when R is Goren-

stein by consideration of properties of a minimal injective resolution for R. As

further references for the proof of Hartshorne-Lichtenbaum Theorem see [Sch3]

and [Divan-Sch] used canonical modules.

In the following we bring a proof of the Hartshorne-Lichtenbaum Vanishing

Theorem was appeared in [Br-Sh]. For a new proof we refer the reader to Hel-

lus’ Habilitation [Hel]. When R is a d-dimensional complete local domain, the

statement simplifies: Hd
a (M) = 0 for every R-module M if dim R/a > 0.

Theorem 4.1.2. (Hartshorne-Lichtenbaum Vanishing Theorem) Suppose that (R,m)

is local of dimension d and also that a is proper. Then the following statements are equiv-
alent:

(1) Hd
a (R) = 0;

(2) For each (necessarily minimal) prime ideal p of R̂, satisfying dim R̂/p = d, we
have dim R̂/(aR̂ + p) > 0.

Proof. (1) ⇒ (2): Assume that Hd
a (R) = 0 and that there exists a prime ideal

p of R̂ such that dim R̂/p = d but dim R̂/(aR̂ + p) = 0. Since the natural ring

homomorphism R → R̂ is flat, it follows from the flat base change Theorem (cf.

2.1.3(2)) that there is an R̂-isomorphism Hd
a (R)⊗R R̂ ∼= Hd

aR̂
(R̂), and so Hd

aR̂
(R̂) =

0.

Now mR̂ is the maximal ideal of the local ring R̂, and our assumptions

mean that (R̂/p,mR̂/p) is a d-dimensional local ring and (aR̂ + p)/p is an

(mR̂/p)-primary ideal of this ring. It therefore follows from Theorem 2.1.6 that

Hd
(aR̂+p)/p

(R̂/p) 6= 0. We now deduce from the Independence Theorem that

Hd
aR̂
(R̂/p) 6= 0. Therefore we have Hd

aR̂
(R̂) 6= 0, and this is a contradiction.

(2) ⇒ (1): Suppose Hd
a (R) 6= 0. Then Hd

aR̂
(R̂) 6= 0. Simply we may reduce to

the case (R,m) is a local Gorenstein domain such that p ∈ Spec R and Hd
p (R) 6= 0
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with dim R/p = 1. This is impossible as

Hd
p (R) = lim−→n

Extd
R(R/p(j), R) = 0,

as depth R/p(j) > 0 for every j ∈N. �

In order to extend the equivalent relations to Hartshorne-Lichtenbaum van-

ishing Theorem we show the relation between Hd
a (M) and Hd

m(M), where

dim M = d.

By a primary submodule we mean a proper submodule N of a module M
such that whenever r ∈ R, m ∈ M \ N and rm ∈ N, then there exists a positive

integer n such that rnM ⊆ N. N is called p-primary where p is the prime ideal

p = Rad(N :R M).

For an R-module M let 0 = ∩n
i=1Qi(M) denote a minimal primary decompo-

sition of the zero submodule of M. That is Qi(M), i = 1, . . . , n, is a pi primary

submodule of M. Clearly AssR M = {p1, . . . , pn}.

Definition 4.1.3. Let a ⊂ R denote an ideal of R. We define two disjoint subsets U, V
of AssR M related to a

(a) U = {p ∈ AssR M|dim R/p = d and dim R/a+ p = 0}.

(b) V = {p ∈ AssR M|dim R/p < d or dim R/p = d and dim R/a+ p > 0}.

Finally we define Qa(M) = ∩pi∈UQi(M). In the case U = ∅, put Qa(M) = M.

The following Lemma gives a better understanding of the previous definitions

(see [Sch, Lemma 2.7]).

Lemma 4.1.4. With the previous notation we have that

AssR Qa = V, AssR M/Qa = U and U ∪V = AssR M.

Proof. Let AssR M = {p1, ..., pn} and 0 = ∩n
i=1Qi(M) a minimal primary

decomposition. First it is clear that AssR M/Qa = U. Remember that Qa =

∩pi∈UQi(M) is a reduced minimal primary decomposition. By our choose of V
we have V = {p ∈ AssR M|p /∈ U}. In order to show that AssR Qa = V it is

enough to prove that AssR Qa = {p ∈ AssR M|p /∈ U}.
Let Q

′
a(M) = ∩pi /∈UQi(M). First note that Qa = Qa + Q

′
a(M)/Q

′
a(M) ⊆

M/Q
′
a(M). Therefore AssR Qa ⊆ {p ∈ AssR M|p /∈ U} as easily seen. Now
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let p ∈ {p ∈ AssR M|p /∈ U} be a given prime ideal. Then Qa/Qa ∩ Z(p) ∼=
Qa + Z(p)/Z(p) is a nonzero p-coprimary module, where Z(p) is a p-primary

submodule. Since Qa ∩ Z(p) is part of a minimal reduced primary decomposition

of 0 in Qa it follows that p ∈ AssR Qa, as required. The last claim is clear and

follows by the definition of U and V. �

Now we are prepared in order to establish the first main result of this section.

It explains in more detail the structure of Hd
a (M), d = dim M.

Theorem 4.1.5. Let a denote an ideal of a local ring (R,m). Let M be a finitely generated
R-module and d = dim M Then there is a natural isomorphism

Hd
a (M) ∼= Hd

mR̂
(M̂/QaR̂(M̂)).

Proof. First note that Hd
a (M) is an Artinian R-module. So it admits a unique

R̂-module structure compatible with its R-module structure such that the natural

homomorphism

Hd
aR̂
(M̂) ∼= Hd

a (M)⊗R R̂→ Hd
a (M)

is an isomorphism. That is, without loss of generality we may assume that R is

complete.

Now apply the local cohomology functor to the short exact sequence

0→ Qa(M)→ M→ M/Qa(M)→ 0

it implies a natural isomorphism Hd
a (M) ∼= Hd

a (M/Qa(M)). To this end recall

that Hi
a(Qa(M)) = 0 for all i ≥ d. The vanishing for i = d follows by the

Hartshorne-Lichtenbaum Vanishing Theorem because of AssR Q = V, where

Q = Qa(M). By the base change of local cohomology there is the isomorphism

Hd
a (M/Qa(M)) ∼= Hd

a+AnnR M/Q(M/Q).

In order to complete the proof it is enough to show that m = Rad(a+AnnR M/Q).

To this end consider

V(a+ AnnR M/Q) = V(a) ∪ SuppR M/Q = ∪p∈UV(a+ p) = {m},

as required. �

In the case of M = R in Theorem (4.1.5) it follows that Hd
a (R) = Hd

mR̂
(R̂/QaR̂(R̂)).

By the definition QaR̂(R̂) is equal to the intersection of all the p-primary compo-

nents of a reduced minimal primary decomposition of the zero ideal in R̂ such
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that dim R̂/p = dim R and dim R̂/aR̂ + p = 0. Next we want to extend this to the

case of an R-module M.

Definition 4.1.6. Let M denote a finitely generated module over the local ring (R,m).

Let a ⊂ R denote an ideal. Then define Pa(M) as the intersection of all the primary
components of AnnR M such that dim R/p = dim M and dim R/a+ p = 0. Clearly
Pa(M) is the pre-image of QaR/ AnnR M(R/ AnnR M) in R.

With these preparations we are able to prove the extension we have in mind.

Corollary 4.1.7. Let M denote a finitely generated R-module and d = dim M. Let
I ⊂ R be an ideal. Then

Hd
a (M) ∼= Hd

mR̂
(M̂/Pa(M̂)M̂),

where Pa(M̂) ⊂ R̂ is the ideal as defined in Definition (4.1.6).

Proof. As in the beginning of proof of Theorem (4.1.5) we may assume that R
is a complete local ring without loss of generality. Let R = R/ AnnR M. Then by

base change and the right exactness there are the isomorphisms

Hd
a (M) ∼= Hd

aR
(M) ∼= Hd

aR
(R)⊗R M.

Now by virtue of Theorem (4.1.5) there is the isomorphism Hd
aR
(R) ∼= Hd

m(R/Pa(M)).

Therefore it follows that

Hd
aR
(R)⊗R M ∼= Hd

m(R/Pa(M))⊗R M ∼= Hd
m(M/Pa(M)M),

which finishes the proof of the statement. �

For an Artinian R-module A, the decreasing sequence of submodules {an A}n∈N

becomes stable. Let 〈a〉A denote the ultimative stable value of this sequence of

decreasing submodules. For each Artinian R-module there is the theory of sec-

ondary representations; see section 2.4. In particular, for an ideal a of R it follows

that 〈a〉A = am A, m enough large, coincides with the sum of all pi-secondary

components Ai of a minimal secondary representation A = ∑n
i=1 Ai of A such

that a 6⊆ pi (where pi = Rad(0 :R Ai), 1 ≤ i ≤ n). Pursuing this point of view it is

shown in [Divan-Sch, Theorem 1.1] that

Hd
a (M) ∼= Hd

m(M)/ ∑n∈N〈m〉(0 :Hd
m(M) a

n).
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Remark 4.1.8. (1) Let a ⊂ R denote an ideal. For a finitely generated R-module M
there is a natural epimorphism

Hd
m(M)→ Hd

a (M)→ 0, d = dim M,

(see [Divan-Sch]). By above explanations the kernel is described as ∑n∈N〈m〉(0 :Hd
m(M)

an).

Let us consider the previous epimorphism as an epimorphism of R̂-modules. Then
by Corollary (4.1.7) its kernel is equal to Pa(M̂)Hd

mR̂
(M̂), or in other words

Hd
a (M) ∼= Hd

mR̂
(M̂)/Pa(M̂)Hd

mR̂
(M̂).

This follows easily since Hd
mR̂

(M̂/Pa(M̂)M̂) ∼= Hd
mR̂

(M̂)⊗R̂ R̂/Pa(M̂).

(2) With the previous notations the following conditions are equivalent:

(a) Hd
a (M) = 0.

(b) Hd
mR̂

(M̂) = Pa(M̂)Hd
mR̂

(M̂).

(c) Hd
m(M) = ∑n∈N < m > (0 :Hd

m(M) a
n).

4.2 Endomorphism rings of Hdim R
a (R)

In this section we consider the endomorphism rings of certain local cohomology

modules Hi
a(R). In the case of i = dim R and a = m Hochster and Huneke ex-

amined the endomorphism rings of local cohomology modules(see [Hoch-Hun])

and in the case of i = ht a and R a Gorenstein ring were studied by Schenzel

(see [Sch5] and the references there). Here we continue with the case of i = dim R
and an arbitrary ideal a ⊂ R.

Let (R,m) denote a d-dimensional local ring. For an ideal a ⊂ R we investigate

the endomorphism ring of Hd
a (R). In particular, we study the natural homomor-

phism

R→ HomR(Hd
a (R), Hd

a (R)), r 7→ mr,

where mr denotes the multiplication map by r ∈ R. Since Hd
a (R) admits the struc-

ture of an R̂-module (see 2.1.8) it follows that HomR(Hd
a (R), Hd

a (R)) has a unique
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natural R̂-module such that the diagram

R → HomR(Hd
a (R), Hd

a (R))
↓ ‖
R̂ → HomR̂(Hd

a (R), Hd
a (R)).

is commutative. That is, the map R → HomR(Hd
a (R), Hd

a (R)) factors through R̂.

Before we study the endomorphism ring we need an auxiliary statement on the

Matlis dual of Hd
a (R).

Lemma 4.2.1. Let a denote an ideal in a local ring (R,m).

(1) Ta(R) = HomR(Hd
a (R), ER(R/m)) is a finitely generated R̂-module.

(2) AssR̂ Ta(R) = {p ∈ Ass R̂|dim R̂/p = dim R and dim R̂/aR̂ + p = 0}.

(3) KR̂(R̂/Qa(R̂)) ∼= Ta(R). In particular, It is satisfies S2 situation. Furthermore
when R̂/Qa(R̂) is Cohen-Macaulay then so is Ta(R).

(4) AnnR̂(Hd
a (R)) = Qa(R̂)d.

Proof.

(1) As Hd
a (R) is an Artinian module, so by local duality Ta(R) is a finitely gen-

erated R̂-module.

(2) By virtue of (1), Ta(R) is a finitely generated R̂-module so by Proposition

2.4.3, AssR̂ Ta(R) = AttR̂ Hd
a (R).

By virtue of Corollary 4.1.7, Hd
a (R) ∼= Hd

mR̂
(R̂)⊗R̂ R̂/Pa(R̂). It follows from

2.4.2 that

AttR̂ Hd
a (R) = AttR̂ Hd

mR̂
(R̂) ∩ Supp(R̂/Pa(R̂)),

which is equal to {p ∈ Ass R̂|dim R̂/p = dim R and dim R̂/aR̂+ p = 0}. To

this end note that AttR̂ Hd
mR̂

(R̂) = {p ∈ Ass R̂|dim R̂/p = dim R}, cf. [Br-

Sh, Theorem 7.3.2].

(3) By Hom−⊗ adjointness

Ta(R) = HomR(Hd
a (R), ER(R/m))

= HomR̂(Hd
aR̂
(R̂), ER(R/m)).
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By Theorem 2.2.1 and Matlis duality it is isomorph to the following

HomR̂(HomR̂(KR̂(R̂/Qa(R̂)), ER(R/m)), ER(R/m)) ∼= KR̂(R̂/Qa(R̂)).

Obviously by 2.2.5(1) it satisfies the S2-situation. Now the last claim follows

by 2.2.4.

(4) For every module R-module N, Ann N = Ann D(N). Then it follows that

AnnR̂(Hd
a (R)) = AnnR̂(KR̂(R̂/Qa(R̂)). By virtue of 2.2.5(2) the last one is

equal to Qa(R̂)d.

�

For an R-module M the natural map R → HomR(M, M) is in general neither

injective nor surjective.

Theorem 4.2.2. Let a denote an ideal in a local ring (R,m). Let

Φ : R̂→ HomR̂(Hd
a (R), Hd

a (R))

the natural homomorphism. Then

(1) ker Φ = QaR̂(R̂)d.

(2) Φ is surjective if and only if R̂/QaR̂(R̂) satisfies S2.

(3) HomR̂(Hd
a (R), Hd

a (R)) is a finitely generated R̂-module.

(4) HomR̂(Hd
a (R), Hd

a (R)) is a commutative semi-local Noetherian ring.

Proof. First note that as Hd
a (R) is an Artinian R-module so Hd

a (R) ∼= Hd
aR̂
(R̂)

(see explanations after 2.1.8). That is, without loss of generality we may assume

that R is a complete local ring. By virtue of Theorem (4.1.5) there is the natural

isomorphism Hd
a (R) ∼= Hd

m(R/Q), Q = Qa(R). Then

KR/Q
∼= D(Hd

m(R/Q)) ∼= HomR(Hd
a (R), ER(R/m)).

Because Hd
a (R) is Artinian the Matlis’ duality provides an isomorphism

HomR(Hd
a (R), Hd

a (R)) ∼= HomR(KR/Q, KR/Q).
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Therefore the kernel of Φ equals to AnnR KR/Q = Qd (cf. 2.2.5(2))which proves

(1). Because the endomorphism ring of Hd
a (R) is isomorphic to the endomor-

phism ring of the canonical module of KR/Q the results in (2), (3) and (4) are

shown by 2.2.6. �

In the next we want to relate some homological properties of Ta(R) with those

of the endomorphism ring HomR(Hd
a (R), Hd

a (R)) resp. R̂/QaR̂(R̂).

Theorem 4.2.3. Let a be an ideal of a complete local ring (R,m). For an integer r ≥ 2

we have the following statements:

(1) Suppose R/Qa(R) has S2. Then Ta(R) satisfies the condition Sr if and only if
Hi

m(R/Qa(R)) = 0 for d− r + 2 ≤ i < d.

(2) R/Qa(R) satisfies the condition Sr if and only if Hi
m(Ta(R)) = 0 for d− r + 2 ≤

i < d and R/Qa(R) ∼= HomR(Hd
a (R), Hd

a (R)).

In particular, if R/Qa(R) has S2 it is a Cohen-Macaulay ring if and only if the module
Ta(R) is Cohen-Macaulay.

Proof. By our conventions and definitions it follows that Ta(R) ∼= KR/Q,

where Q = Qa(R), and R/Q ∼= HomR(Hd
a (R), Hd

a (R)). Then the statement in

(1) resp. in (2) follows by virtue of 2.2.3, 2.2.2 and 4.2.2 for M = R/Q resp.

M = KR/Q. �



Chapter 5

Connectedness

Let R be a commutative ring. The spectrum of R denoted by Spec(R), is the

topological space consisting of all prime ideals of R with topology defined by the

closed sets V(a) = {p ∈ Spec(R) : p ⊇ a}, for each ideal a of R. This topology

is called the Zariski topology. Clearly if R is nonzero, then Spec R is non-empty.

Spec R enjoys very nice properties. For instance it is compact and moreover it is

irreducible if and only if its nilradical is a prime ideal (a topological space X is

irreducible if it cannot be written as a union of two closed proper subsets A, B
of X). However it is not a connected space in general. Recall that a topological

space is connected if it cannot be written as a disjoint union of two proper closed

subsets. It is known that for a local ring R, Spec R is connected. More generally

Spec R is disconnected if and only if R contains a non-trivial idempotents ele-

ment. Following Remark gives an algebraic interpret of connectedness which is

easily seen by definition.

Remark 5.0.4. Let I, J be ideals of a ring R. The topological space Spec(R/I) \V(J) is
disconnect whenever there are ideals a and b of R satisfying the following conditions

(1) neither a nor b is J-primary,

(2) Rad(I) = Rad(a∩ b) and

(3) Rad(J) = Rad(a+ b).

The concept of a topological space being connected in codimension k (∈ N ∪
{0}) was made precise by Hartshorne [Hart2]. To be more precise we need a few

53
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more preparations. First we cite some definitions and facts related to connected-

ness from [Hart2].

Definition 5.0.5. Let X be a Noetherian topological space and Y be an irreducible closed
subspace of X. Then we define the codimension of Y in X to be the supremum of those
integers n such that there exists a sequence of closed irreducible subspaces Xi of X,

Y ⊂ X0 ⊂ X1 ⊂ ... ⊂ Xn ⊂ X.

And we denote it by codim(Y, X).

Now, we can define connectedness in codimension k:

Definition 5.0.6. Let X be a Noetherian topological space, and k ≥ 0 be an integer. If X
satisfies any of the following equivalent conditions

(1) If Y is a closed subset of X, and codim(Y, X) > k, then X \Y is connected.

(2) Let X
′

and X
′′

be irreducible components of X. Then we can find a finite sequence

X
′
= X1, X2, ..., Xn = X

′′

which is composed of irreducible components of X, such that for each i = 1, 2, ..., n−
1, Xi ∩ Xi+1 is of codimension ≤ k in X.

we say that X is connected in codimension k.

It is known that being connected in codimension k, for any k, implies being

connected (cf. [Hart2]). Now we may deduce the algebraic interpret of the above

definition as follows

Definition 5.0.7. Spec(R) is connected in codimension one if Spec(R) \ V(a) is con-
nected, for every ideal a of R with ht(a) ≥ 2 .

Remark 5.0.8. A ring R is connected in codimension one if and only if whenever a

and b are ideals in R such that Rad(a) 6= 0, Rad(b) 6= 0 and Rad(a ∩ b) = 0, then
ht(a+ b) ≤ 1.

Proof. (cf. [Hun3]) Note that given a and b as above,

X := Spec(R) \V(a+ b) = (V(a) ∩ X) ∪ (V(b) ∩ X)
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is disconnected. Thus if R is connected in codimension 1, ht(a+ b) ≤ 1.

On the other hand, if R is not connected in codimension 1, there is an ideal

K ⊆ R, ht(K) ≥ 2, such that X := Spec(R) \ V(K) is disconnected. Write X =

(V(a) ∩ X) ∪ (V(b) ∩ X). Then a and b satisfy the above conditions. We now

show that Rad(a+ b) ⊇ K and hence ht(a+ b) ≥ ht(K) ≥ 2.

Consider p ∈ Spec(R) such that a+ b ⊆ p. Then p ∈ V(a) and p ∈ V(b). Thus

p /∈ X, i.e. p ∈ V(K). Thus K ⊆ p which proves K ⊆ Rad(a+ b). �

Next we recall a definition given by Hochster and Huneke (see [Hoch-Hun,

(3.4)]).

Definition 5.0.9. Let (R,m) denote a local ring. We denote by G(R) the undirected
graph whose vertices are primes p ∈ Spec R such that dim R = dim R/p, and two
distinct vertices p, q are joined by an edge if and only if (p, q) is an ideal of height one.

Next examples make the above definition more clear (cf. [Hun3]):

Example 5.0.10. (1) Let

R := k[X, Y, U, V]/((X, Y) ∩ (U, V)) = k[x, y, u, v].

Then R has two minimal primes, p := (x, y) and q := (u, v). Since ht(p+ q) = 2,
then the graph G(R) consists of two vertices p and q that are not connected to each
other.

(2) Let

R := k[X, Y, U, V]/((X, Y) ∩ (Y, U) ∩ (U, V)) = k[x, y, u, v].

There are three minimal primes, p1 = (x, y), p2 = (y, u) and p3 = (u, v). In this
case G(R) consists of three vertices p1, p2 , p3 and two edges between p1 , p2 and
p2 , p3.

Connection between the above materials is appeared in Proposition 5.2.4. Our

goal in this chapter is to prove some connectedness theorems for Spec R via en-

domorphism rings of top local cohomology modules.
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5.1 Mayer-Vietoris sequence

The Mayer-Vietoris sequence has applications to connectedness properties of al-

gebraic varieties.

Theorem 5.1.1. (cf. [Br-Sh, 3.2.3]) Let R be a Noetherian ring, a, b be ideals of R and M
an R-module. Then there exists a natural long exact sequence

0→ H0
a+b(M)→ H0

a(M)⊕ H0
b(M)→ H0

a∩b(M)→ ...→ Hi
a+b(M)

→ Hi
a(M)⊕ Hi

b(M)→ Hi
a∩b(M)→ ....

Proof. For all n ∈N there exists a short exact sequence

0→ R/(an ∩ bn)→ R/an ⊕ R/bn → R/an + bn → 0.

It yields a long exact sequence of local cohomology modules by applying HomR(−, M)

...→ Exti
R(R/an + bn, M)→ Exti

R(R/an ⊕ R/bn, M)→ Exti
R(R/(an ∩ bn), M)→ ....

This forms a directed system of long exact sequences. Then take direct limits to

get the desired long exact sequence. To this end note that {an + bn} is cofinal with

{(a+ b)n}, because an + bn ⊆ (a+ b)n and (a+ b)2n ⊆ an + bn and {an ∩ bn} is

cofinal with {(a∩ b)n}, because (a∩ b)n ⊆ an ∩ bn and by the Artin-Rees Lemma,

there exists k = k(n) such that for all m ≥ k

am ∩ bn = am−k(ak ∩ bn) ⊆ am−kbn.

Therefore, for m ≥ n + k we have

am ∩ bm ⊆ am ∩ bn ⊆ am−kbn ⊆ anbn ⊆ (a∩ b)n.

�

5.2 Connectedness Theorems

There are several many papers to show that local cohomology yields connected-

ness results, for instance see [Falt], [Falt2] , [Divan-Sch], [Hoch-Hun] and [Rung].

One of the well-known results about connectedness is the Faltings’ connect-

edness Theorem:
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Theorem 5.2.1. Let (R,m) be a complete local domain. If a is an ideal of R with ara a ≤
dim R− 2, then Spec(R/a) \ {m/a}, the punctured spectrum of R/a, is connected.

For an ideal a of a Noetherian ring R

ara(a) = inf{µ(b) : Rad(a) = Rad(b), b is an ideal },

where µ(b) is the minimal number of generators of the ideal b.

Hochster and Huneke have obtained generalizations of Faltings’ connected-

ness Theorem. One such is [Hoch-Hun, Theorem 3.3]:

Theorem 5.2.2. Let (R,m) be a complete equidimensional ring of dimension d such
that Hd

m(R) is indecomposable as an R-module; equivalently, the canonical module KR is
indecomposable.

If a is an ideal of R with ara a ≤ d− 2, then Spec(R/a) \ {m/a} is connected.

This section is devoted to characterize the number of the maximal ideals of

the endomorphism ring HomR̂(Hd
I (R), Hd

I (R)), d = dim R. In fact we give some

equivalent statements to connectedness.

Theorem 5.2.3. (cf. [Hoch-Hun, Theorem (3.6)]) Let (R,m) be a complete local equidi-
mensional ring and d = dim R. Then the following conditions are equivalent:

(1) Hd
m(R) is indecomposable.

(2) KR, the canonical module of R is indecomposable.

(3) The ring HomR(KR, KR) is local.

(4) For every ideal J of height at least two, Spec(R) \V(J) is connected.

(5) The graph G(R) is connected.

Sketch of the proof: We shall prove that (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒
(3). The equivalence of (1) and (2) is clear.

(2) ⇔ (3) If the S := HomR(KR, KR) is not local, then KR is a product of

nonzero factors corresponding to the various factors rings of S, and this will yield

a non-trivial direct sum decomposition of KR over R. On the other hand, if S
is local, it contains no idempotents other than 0, 1, and this implies that KR is

indecomposable.
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(3) ⇒ (4) To prove use Remark 5.0.4, then one can replace a , b by their

powers and assume that ab = 0 but a+ b has height at least two. Then find a

contradiction.

(4) ⇒ (5) Suppose that one has ideals a , b such that a ∩ b is nilpotent. Then

we can replace a , b by their radicals while only increasing a+ b. Then each of

a , b is a finite intersection of primes. For each minimal prime p of R, p ⊇ a ∩ b,

and so p must contain either a minimal prime of a or a minimal prime of b. Thus,

p must be either a minimal prime of a or a minimal prime of b. If we omit all

non-minimal primes from the primary decomposition of a (respectively, b) and

intersect the others, we get two larger ideals whose intersection is still Rad(0).

Thus, it is possible to give a , b such that Rad(a ∩ b) = Rad(0) and a + b has

height two if and only if one can do this with ideals a , b coming from a partition

of the minimal primes of R into two nonempty sets, with a the intersection of the

minimal primes in one set and b the intersection of the minimal primes in the

other set. If one set consists of {p1, ..., ph} and the other of {q1, ..., qk} we shall

have a = ∩ipi, b = ∩jqj , and a+ b will then have the same radical as ∩i,j(pi + qj),

and will have height at least two if and only if every pi + qj has height at least

two. Thus, (4) fails if and only if the minimal primes can be partitioned into two

nonempty sets such that no edge of G(R) joins a vertex in one set to a vertex in

the other, which is precisely the condition for G(R) to be disconnected.

(5) ⇒ (3) If S has two or more maximal ideals, say M1, ...,Mr, where r ≥ 2,

for each Mj let Pj denote the set of minimal primes of S contained in Mj . Then

Pj is evidently non-empty. There is a bijection between the minimal primes of S
and those of R, so that for each Pj there is a corresponding set of minimal primes

Qj of R. To complete the argument, it will suffice to show that if i, j are different

then it is impossible to have an edge joining a vertex in Qi to a vertex in Qj . If

there were such an edge, there would be a height one prime p of R containing

both a minimal prime in Qi and a minimal prime in Qj . Then Rp
∼= Sp , and it

follows that the unique prime of S lying over p contains both a prime of Pi and a

prime of Pj . Let M be a maximal ideal of R containing p. Then M contains both

a prime of Pi and a prime of Pj , which is impossible: S is a finite product of local

rings, and each prime ideal of S is therefore contained in a unique maximal ideal

of S, forcing Mi = M = Mj. �

Next we are interested in the connectedness of G(R). That is characterized in



5.2. CONNECTEDNESS THEOREMS 59

the following statement.

Proposition 5.2.4. Let (R,m) denote a local ring with d = dimR. Then the following
conditions are equivalent:

(1) The graph G(R) is connected.

(2) Spec R/0d is connected in codimension one.

(3) For every ideal JR/0d of height at least two, Spec(R/0d) \ V(JR/0d) is con-
nected.

Proof. (1) and (3) are equivalent by Theorem 5.2.3 and by virtue of Definition

5.0.7, (2) and (3) are equivalent. �

Next we describe when the endomorphism ring of Hd
a (R), d = dim R, is a

local ring. In other words we generalized the results in 5.2.3.

Theorem 5.2.5. Let (R,m) denote a complete local ring and d = dim R. For an ideal
a ⊂ R the following conditions are equivalent:

(1) Hd
a (R) is indecomposable.

(2) Ta(R) is indecomposable.

(3) The endomorphism ring of Hd
a (R) is a local ring.

(4) The graph G(R/Qa(R)) is connected.

Proof. We may always assume that Q = Qa(R) is a proper ideal. In the case

of Q = R there is nothing to show. As it follows by the results in chapter four, we

have the following isomorphisms

Hd
m(R/Q) ∼= Hd

a (R), KR/Q
∼= Ta(R) and End Hd

m(R/Q) ∼= End Hd
a (R),

where End denotes the endomorphism ring. That is, we have reduced the proof of

the statement to the corresponding result for Hd
m(R/Q). Note that d = dim R/Q.

Then the equivalence of the conditions follows by 5.2.3. �

Now we shall describe t, the number of connected components of G(R/Qa(R)).
A connected component of an undirected graph is a subgraph in which any two

vertices are connected to each other by paths, and which is connected to no

additional vertices.
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Definition 5.2.6. Let a be an ideal in a local ring (R,m). Suppose that Q = Qa(R) is
a proper ideal. Let Gi, i = 1, . . . , t, denote the connected components of G(R/Q). Let
Qi, i = 1, . . . , t, denote the intersection of all p-primary components of a reduced minimal
primary decomposition of Q such that p ∈ Gi. Then Q = ∩t

i=1Qi and G(R/Qi) =

Gi, i = 1, . . . , t, is connected. Moreover, let ai, i = 1, . . . , t, denote the image of the ideal
a in R/Qi.

Theorem 5.2.7. Let a denote an ideal of a complete local ring (R,m) with d = dim R ≥
2. Then

End Hd
a (R) ' End Hd

a1
(R/Q1)× . . .× End Hd

at
(R/Qt)

is a semi-local ring, End Hd
ai
(R/Qi), i = 1, . . . , t, is a local ring and therefore t is equal

to the number of maximal ideals of End Hd
a (R).

Proof. As in the proof in Theorem 4.2.2 we have End Hd
m(R/Q) ' End Hd

a (R). For

an integer 1 ≤ i ≤ t we define Q̃i = ∩i
j=1Qj, in particular Q̃t = Q. Then there is

the short exact sequence

0→ R/Q̃i+1 → R/Q̃i ⊕ R/Qi+1 → R/(Q̃i + Qi+1)→ 0.

Because Gi+1 and Gj for j = 1, . . . , i, are not connected it follows by the defini-

tion that ht(Q̃i + Qi+1) ≥ 2 and therefore dim R/(Q̃i + Qi+1) ≤ d− 2. Whence

the short exact sequence induces isomorphisms Hd
a (R/Q̃i+1) ' Hd

a (R/Q̃i) ⊕
Hd

a (R/Qi+1) and by induction

Hd
a (R/Q) ' ⊕t

i=1Hd
a (R/Qi).

Furthermore, because of Theorem 4.1.5 and Corollary 4.1.7 we have

Hd
a (R) ' Hd

m(R/Q) and Hd
ai
(R/Qi) ' Hd

a (R/Qi) ' Hd
m(R/Qi), i = 1, . . . , t.

Now by Matlis duality it turns out that

End Hd
a (R) ' End KR/Q and HomR(Hd

m(R/Qj), Hd
m(R/Qi)) ' HomR(KR/Qi , KR/Qj)

for all i, j = 1, . . . , t. Moreover we see that HomR(KR/Qi , KR/Qj) = 0 for i 6= j
because

AssR HomR(KR/Qi , KR/Qj) = AssR KR/Qj ∩ SuppR R/Qi = ∅
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for all i 6= j as follows by the definitions, Proposition 2.4.1 and Lemma 2.2.5(3).

This implies the decomposition

End Hd
a (R) ' End Hd

a1
(R/Q1)× . . .× End Hd

at
(R/Qt)

because End KR/Qi ' End Hd
ai
(R/Qi), i = 1, . . . , t, as follows again by Matlis du-

ality. By Theorem 5.2.5 the endomorphism ring of Hd
ai
(R/Qi), i = 1, . . . , t, is a lo-

cal ring. So we get the decomposition as a direct product of rings and End Hd
a (R)

is a semi-local ring with t as its number of maximal ideals.





Chapter 6

Attached primes and Sharp’s
asymptotic Theorem

In this chapter we study some results on attached primes of modules via colocal-

ization (cf. 2.4). The colocalization functor preserves secondary representations

and attached primes (Theorem 6.0.8 below). As an application of this one may

investigate the attached primes of colocalization of local cohomology modules.

Theorem 6.0.8. (cf. [Rich, Theorem 2.2]) Let S ⊆ R be a multiplicatively closed subset
of R and M be an R-module. Let p be a prime ideal of R.

(1) If M is p-secondary, then S−1M is zero, if S ∩ p 6= ∅.

(2) If M is p-secondary, then S−1M is S−1p-secondary, if S ∩ p = ∅.

(3) If M is representable then so is S−1M and Att S−1M = {S−1p : p ∈ Att M and S∩
p = ∅}.

Throughout this chapter we denote by ER the injective hull of⊕R/m, the sum

running over all maximal ideals m of R and let DR be the functor Hom(−, ER) (cf.

Definition 2.3.1).

6.1 Attached primes of local cohomology

An important application of the theory of attached primes and secondary repre-

sentation has been to local cohomology modules of finite R-module. Let (R,m)

63
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be a complete local ring. In the light of Theorem 2.3.4 colocalization preserves

Artinian modules through colocalization. This section is based on utilize of this

property.

We examine the set of attached prime ideals of last non-vanishing value of lo-

cal cohomology. It is known that Hdim R
a (R) is an Artinian R-module (cf. Theorem

2.1.8). Hence its colocalization is an Artinian module, when (R,m) is a complete

local ring. So the set of attached primes will be well-defined.

Theorem 6.1.1. Let (R,m) be a complete local ring, a be an ideal of R and p ∈ Spec R.
Let c be an integer such that Hi

a(R) = 0 for every i > c. Assume that Hc
a(R) is Artinian.

Then

(1) AttRp(
pHc

a(R)) ⊆ {qRp : dim R/q ≥ c, q ⊆ p and q ∈ Spec R}.

(2) AttRp(
pHdim R

a (R)) = {qRp : dim R/q = dim R , q ⊆ p, Rad(a + q) =

m and q ∈ Spec R}.

Proof.

(1) As Hc
a(R) is an Artinian module, then by Matlis duality Hc

a(R) ∼= DR(DR(Hc
a(R))).

It implies that

Att Hc
a(R) = Att DR(DR(Hc

a(R))) = Ass DR(Hc
a(R)).

Therefore by virtue of Theorem 6.0.8 we may have

AttRp(
pHc

a(R)) = {qRp : q ∈ AssR DR(Hc
a(R)) and q ⊆ p}.

Since q ∈ AssR DR(Hc
a(R)), then

0 6= HomR(R/q, DR(Hc
a(R))) = DR(Hc

a(R)⊗R R/q) = DR(Hc
a(R/q)).

To this end note that the first equality follows by Hom−⊗-adjointness and

the second one follows by the fact that Hc
a(−) is a right exact functor. Hence

we may deduce that Hc
a(R/q) 6= 0 so dim R/q ≥ c.

(2) Put d := dim R. If Hd
a (R) = 0 we are done. Then we assume that Hd

a (R) 6=
0.

⊆: Let qRp ∈ AttRp(
pHd

a (R)). As we have seen in part one, Hd
a (R/q) 6= 0 so

dim R/q = d and by HLVT (Theorem 4.1.2) Rad(a+ q) = m.



6.1. ATTACHED PRIMES OF LOCAL COHOMOLOGY 65

⊇: By virtue of Theorem 6.0.8

AttRp(
pHd

a (R)) = {qRp : q ∈ AttR Hd
a (R), q ⊆ p},

so it is enough to show that q ∈ AttR Hd
a (R).

As dim R/q = d and Rad(a+ q) = m, so Independence Theorem implies

that Hd
a (R/q) 6= 0. Hence Proposition 2.4.2 implies that

∅ 6= AttR(Hd
a (R/q)) = AttR(Hd

a (R)) ∩ SuppR(R/q). (∗)

In the contrary assume that q /∈ AttR Hd
a (R). Then by virtue of (∗) there

exists a prime ideal q0 ∈ AttR Hd
a (R) such that q0 ⊃ q and so dim R/q0 < d.

On the other q0 ∈ AttR Hd
a (R) if and only if q0Rq0 ∈ AttRq0

(q0 Hd
a (R)) (cf.

6.0.8). By virtue of part one dim R/q0 ≥ d which is contradiction. Now the

proof is complete.

�

Remark 6.1.2. The inclusion in Theorem 6.1.1(1) is not an equality in general. Let
(R,m) be a complete local ring of dimension d > 0 and p be a d-dimensional minimal
prime ideal of R. Assume that Hd

a (R) = 0, then AttRp(
pHd

a (R)) = ∅ but {qRp :

dim R/q = d and q ⊆ p} = {pRp}.

Proposition 6.1.3. Let (R,m) be a complete local ring of dimension d. Let a be an ideal
of R. Assume that Hd−1

a (R) is Artinian and Hd
a (R) = 0. Then

(1) AttR(Hd−1
a (R)) ⊆ {p ∈ Spec R : dim R/p = d − 1, Rad(a + p) = m} ∪

Assh(R).

(2) {p ∈ Spec R : dim R/p = d− 1, Rad(a+ p) = m} ⊆ AttR(Hd−1
a (R)).

Proof.

(1) Let p ∈ AttR Hd−1
a (R) so pRp ∈ AttRp(

pHd−1
a (R)), hence by Theorem 6.1.1

dim R/p ≥ d− 1.

When dim R/p = d it follows that p ∈ Assh(R). In the case dim R/p =

d − 1, as p ∈ AttR Hd−1
a (R) = AssR DR(Hd−1

a (R)) and Hd−1
a (−) is a right

exact functor so one can deduce that Hd−1
a (R/p) 6= 0. Hence by Hartshorne-

Lichtenbaum vanishing Theorem there exists a prime ideal q ⊇ p of R of

dimension d− 1 with Rad(a+ q) = m. Now one can see that q = p.
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(2) Let dim R/p = d − 1 and Rad(a + p) = m, then Theorem 6.1.1(2) im-

plies that pRp ∈ AttRp(
pHd−1

a (R/p)). Using 6.0.8 we deduce that p ∈
AttR(Hd−1

a (R/p)). Now by the epimorphism

Hd−1
a (R)→ Hd−1

a (R/p)→ 0

we see that p ∈ AttR(Hd−1
a (R)).

�

It is noteworthy to say that in the situation of Proposition 6.1.3 if a is an ideal

of dimension one, the inclusion at (1) will be an equality, see [Hel, Theorem 8.2.3].

6.2 Sharp’s Asymptotic Theorem

Let R be a commutative ring (not necessarily Noetherian) and a an ideal of R. For

every Artinian R-module A, AttR(0 :A an) and AttR((0 :A an)/(0 :A an−1)) are

ultimately constant and AtR(a, A) and BtR(a, A) denote their ultimate constant

values (cf. [Sh2]). Clearly BtR(a, A) ⊆ AtR(a, A). In [Sh1], Sharp showed that

At(a, A) \ Bt(a, A) ⊆ AttR(A)

for every Artinian module A, by generalization of Heinzer-Lantz Theorem.

Schenzel [Sch2] has given an alternative proof for mentioned Theorem in case

that for a local ring (R,m), if m ∈ AtR(a, A) \ BtR(a, A) then m ∈ AttR A ∩V(a),

where V(a) is the set of prime ideals of R containing ideal a. In this section we

give a short simple proof to Sharp’s Theorem using the concept of colocalization.

At first we give some preliminary lemmas in order to prove Theorem 6.2.4 as

the main result in this section.

Lemma 6.2.1. Let A be an Artinian R-module. Let p be a prime ideal of R and n be an
arbitrary integer. Then

p(0 :A an) = (0 : pA anRp).

Proof. We prove by definition of colocalization and use of Hom−⊗-adjointness
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as follows:

p(0 :A an) ∼= DRp((DR(0 :A an))p)
∼= DRp((HomR(HomR(R/an, A), ER))p)
∼= DRp((R/an ⊗R DR(A))p)
∼= HomRp(Rp/anRp ⊗Rp DR(A)p, E(Rp/pRp))
∼= HomRp(Rp/anRp, DRp(DR(A)p))
∼= HomRp(Rp/anRp, pA)
∼= (0 :pA anRp).

�

Lemma 6.2.2. Let A be an Artinian R-module. Let p be a prime ideal of R and n be an
arbitrary integer. Then

p(0 :A an/0 :A an−1) = (0 :pA anRp/0 :pA an−1Rp).

Proof. For an integer n, there is the following short exact sequence

0→ 0 :A an−1 → 0 :A an → 0 :A an/0 :A an−1 → 0. (∗)

As colocalization is a covariant exact functor we get

0→p (0 :A an−1)→p (0 :A an)→p (0 :A an/0 :A an−1)→ 0

so in the view of lemma 6.2.1, the claim is clear. �

In the case (R,m) is a local ring, for an Artinian R-module A it follows by

Proposition 2.4.2 that m /∈ AttR A if and only if A/mA = 0.

Lemma 6.2.3. ( [Sch2, lemma 3.1]) Let a be an ideal of local ring (R,m). Suppose that
m ∈ AtR(a, A) \ BtR(a, A) for an Artinian R-module A. Then m ∈ AttR A ∩V(a).

Proof. By tensoring the exact sequence (∗) with R/m, it yields the existence of

an integer m0 ∈N such that the derived homomorphism

ψn : (0 :A an−1)⊗R R/m→ (0 :A an)⊗R R/m (∗∗)

is a surjective homomorphism of non-zero and finite dimensional R/m-vector

spaces for all n ≥ m0. To this end note that by assumption m /∈ BtR(a, A). By
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(∗∗) there is an integer m ∈ N such that the epimorphisms ψn, n ≥ m become

isomorphisms. Hence {(0 :A an)⊗R R/m, ψn} is a direct system with

0 6= (0 :A am)⊗R R/m ∼= lim−→n
((0 :A an)⊗R R/m).

The direct limit commutes with the tensor product, i.e.

0 6= (lim−→n
0 :A an)⊗R R/m ∼= A⊗R R/m = A/mA.

Whence m ∈ AttR A. �

Theorem 6.2.4. (Sharp’s Asymptotic Theorem) Let A be an Artinian R-module. Then

AtR(a, A) \ BtR(a, A) ⊆ AttR A ∩V(a).

Proof. Let p ∈ AtR(a, A) = AttR(0 :A an). Then by Theorem 6.0.8 and Lemma

6.2.1
pRp ∈ AttRp(

p(0 :A an)) = AttRp(0 :pA anRp)

= AtRp(aRp, pA).

On the other hand by virtue of Lemma 6.2.2, p /∈ AttR(0 :A an/0 :A an−1) if

and only if pRp /∈ AttRp(0 :pA anRp/0 :pA an−1Rp) = BtRp(a
nRp, pA).

So in the view of Lemma 6.2.3, it yields that

pRp ∈ (AttRp
pA) ∩V(aRp).

Hence p ∈ (AttR A) ∩V(a). �



Chapter 7

Summary and further problems

The present research was devoted to a study on local cohomology modules.

About the importance and motivation to work on these modules and also about

their properties we refer the reader to chapter one and chapter two of this thesis.

7.1 Formal local cohomology

Let (R,m) be a local ring and M be a finitely generated R-module. In Chapter 3,

we deal with the question when formal local cohomology modules are Artinian.

Our efforts led to the following result:

Theorem 7.1.1. Let (R,m) be a local ring and M be a finitely generated R-module. For
given integers i and t > 0, the following statements are equivalent:

(1) SuppR̂(F
i
a(M)) ⊆ V(mR̂) for all i < t;

(2) Fi
a(M) is Artinian for all i < t;

(3) SuppR̂(F
i
a(M)) ⊆ V(aR̂) for all i < t.

(4) a ⊆ Rad(AnnR(F
i
a(M))) for all i < t;

Suppose that t ≤ depth M, then the above conditions are equivalent to

(5) Fi
a(M) = 0 for all i < t;
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Let ϕ : R → S be a flat ring homomorphism, then for any R-module N and

any q ∈ Spec S

SuppR(N) = {q∩ R : q ∈ SuppS(N ⊗R S)}

(cf. [Tou-Yas, lemma 2.1]). But according to [Asgh-Divan, Remark 2.8(vii)], the

analogue of the Flat Base Change Theorem is not true in general, for formal local

cohomology. It seems to be an important question to ask

•What is SuppR(F
i
a(M))?

• Formal local cohomology modules are very seldom finitely generated. It can

be a natural question to find out the equivalent statements for finiteness of formal

local cohomology. For instance Fdim M/aM
a (M) is not finitely generated but F0

a(M)

is a finitely generated R̂-module.

Let (R,m) be a complete local ring then

Fi
a(M) is finite ⇔ Fi

a(M)/aFi
a(M) is finite . (∗)

If Fi
a(M)/aFi

a(M) is Artinian (i ∈ Z), then in the case a 6= m, as Att(Fi
a(M)/aFi

a(M)) ⊆
V(a), then by virtue of (∗), Fi

a(M) is not finitely generated. In this direction it

is known that for an integer t such that Fi
a(M) is Artinian for all i > t, then

Ft
a(M)/aFt

a(M) is Artinian. Consequently Ft
a(M) is not finite provided a 6= m.

• One of our structural results is to find the Coass(Fd−1
a (R)) where (R,m) is

a complete local ring of dimension d and a is a one dimensional ideal of R. It is

an open question to investigate it for an arbitrary ideal. Moreover investigation

of Coass(Fd−i
a (R)) for i ≥ 2 could be interesting. In particular, it can be helpful to

clarify some aspects of Ass Hi
a(R), when (R,m) is a Gorenstein local ring.

Note that finiteness of Coass(Fi
a(R)) implies that

Cosupp(Fi
a(R)) = Supp HomR(F

i
a(R), E(R/m))

to be closed.

7.2 Top local cohomology

Ogus [Og, Corollary 2.11] in equicharacteristic 0 and Peskine and Szpiro [Pes-Szp,

5.5] in equicharacteristic p > 0 generalized the vanishing Theorem of Hartshorne
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[Hart] for the cohomological dimension of the complement of a subvariety of

projective space. Huneke and Lyubeznik [Hun-Lyu, Theorem 2.9] gave a new

characteristic-free proof of it:

Theorem 7.2.1. Let (R,m) be a regular local ring of dimension d containing a field and
let a be an ideal of R. Then the following are equivalent:

(1) Hi
a(R) = 0 for i = d− 1, d.

(2) dim R/a ≥ 2 and Spec(R/a) \ {m} is formally geometrically connected.

Hochster and Huneke [Hoch-Hun, Theorem 3.3] generalized Faltings’ con-

nectedness Theorem as follows:

Theorem 7.2.2. Let (R,m) be a complete equidimensional local ring of dimension d
such that Hd

m(R) is an indecomposable R-module. Let Hi
a(R) = 0 for i = d− 1, d, then

Spec(R/a) \ {m} is connected.

Hartshorne-Lichtenbaum vanishing Theorem gives a characterization for van-

ishing of Hd
a (R). In Theorem 4.1.5, we have expressed the isomorphism Hd

a (R) ∼=
Hd

mR̂
(R̂/J) for a certain ideal J of R̂. It translates the properties of Hd

a (R) via

Hd
mR̂

(R̂), which is more known. On the other hand Hd−1
a (R) is more mysterious.

In Proposition 6.1.3 we gave some information about Att Hd−1
a (R), also some of

the properties of HomR(Hd−1
a (R), E(R/m)) for a one dimensional ideal a have

been appeared in [Hel].

Now the natural question can be as follows:

•When Hd−1
a (R) is zero? What are Ass Hd−1

a (R) and Att Hd−1
a (R)?





Notation

Ass The set of associated primes

Att The set of attached primes

Coass The set of coassociated primes

Cosupp Cosupport (of a module)

Čx Čech complex

D• Dualizing complex

DR(−) Hom(−, ER)

ER Minimal injective cogenerator of the category of R-modules

Fi
a(M) i-th formal local cohomology of a module M

HLVT Hartshorne-Lichtenbaum vanishing Theorem

KM Canonical module of a module M
max(R) the set of maximal ideals of R
M̂ m-adic completion of a module M
pM Colocalization of module M with respect a prime ideal p

Rad(−) Radical (of an ideal)

Supp Support (of a module)
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