
RECONFIGURABLE EMBEDDED CONTROL SYSTEMS:

PROBLEMS AND SOLUTIONS

By

Dr.rer.nat.Habil. Mohamed Khalgui

c⃝ Copyright by Dr.rer.nat.Habil. Mohamed Khalgui, 2012

v

Martin Luther University, Germany

Research Manuscript for Habilitation Diploma in Computer Science

1. Reviewer: Prof.Dr. Hans-Michael Hanisch, Martin Luther University, Germany,

2. Reviewer: Prof.Dr. Georg Frey, Saarland University, Germany,

3. Reviewer: Prof.Dr. Wolf Zimmermann, Martin Luther University, Germany,

Day of the defense: Monday January 23rd 2012,

Table of Contents

Table of Contents vi

English Abstract x

German Abstract xi

English Keywords xii

German Keywords xiii

Acknowledgements xiv

Dedicate xv

1 General Introduction 1

2 Embedded Architectures: Overview on Hardware and Operating Systems 3
2.1 Embedded Hardware Components . 3

2.1.1 Microcontrollers . 3
2.1.2 Digital Signal Processors (DSP): . 4
2.1.3 System on Chip (SoC): . 5
2.1.4 Programmable Logic Controllers (PLC): 6

2.2 Real-Time Embedded Operating Systems (RTOS) 8
2.2.1 QNX . 9
2.2.2 RTLinux . 9
2.2.3 VxWorks . 9
2.2.4 Windows CE . 10

2.3 Known Embedded Software Solutions . 11
2.3.1 Simple Control Loop . 12
2.3.2 Interrupt Controlled System . 12
2.3.3 Cooperative Multitasking . 12
2.3.4 Preemptive Multitasking or Multi-Threading 12
2.3.5 Microkernels . 13
2.3.6 Monolithic Kernels . 13
2.3.7 Additional Software Components: 13

2.4 Conclusion . 14

3 Embedded Systems: Overview on Software Components 15
3.1 Basic Concepts of Components . 15
3.2 Architecture Description Languages . 17

3.2.1 Acme Language . 17
3.2.2 Rapide Language . 17

vi

vii

3.2.3 Wright Language . 18
3.2.4 Aesop Language . 18
3.2.5 Metah Language . 18
3.2.6 Architecture Analysis and Design Language 18
3.2.7 Unicon Language . 19
3.2.8 Darwin Language . 19

3.3 Component-based Technologies . 19
3.3.1 Industrial Technology IEC61131 . 19
3.3.2 Industrial Technology IEC61499 . 20
3.3.3 Port Based Object Technology . 21
3.3.4 Koala Technology . 23
3.3.5 Pecos Technology . 23
3.3.6 Rubus Technology . 24

3.4 Conclusion . 25

4 Formalisms for Modelling and Verification of Embedded Systems 26
4.1 Petri nets . 26
4.2 NCES Formalism: Extension of Petri Net 27
4.3 Temporal Logic . 28

4.3.1 Computation Tree Logic . 28
4.3.2 Extended Computation Tree Logic 29
4.3.3 Timed Computation Tree Logic . 30

4.4 Conclusion . 30

5 Problems and Contributions 31

6 Reconfigurable Component-based Embedded Systems: New Motivations 33
6.1 Plant Formalization . 34
6.2 Control Components . 34

6.2.1 Formalization . 35
6.2.2 Specification . 35

6.3 Reconfigurable Systems: State of the Art 35
6.4 New Reconfiguration Semantic . 36
6.5 Industrial Case Studies: Reconfiguration of Benchmark Production Systems

FESTO and EnAS . 37
6.5.1 FESTO Manufacturing System . 37
6.5.2 EnAS Manufacturing System . 38

6.6 Reconfiguration Forms . 43
6.7 Conclusion . 45

7 Safety Multi-Agent Reconfigurable Architectures: Modelling And Verifi-
cation 47
7.1 Introduction . 47
7.2 State of the Art . 48

7.2.1 Model Checking . 48
7.2.2 Multi-Agent Systems . 49

7.3 Contribution: Multi-Agent Architecture for Reconfigurable Embedded Con-
trol Systems . 50
7.3.1 Reconfiguration in a Device . 51
7.3.2 Reconfiguration in a Distributed Architecture 54
7.3.3 Implementation . 63

7.4 Contribution: NCES-based Modelling and SESA-Based Model Checking of
Distributed Reconfigurable Embedded Systems 64
7.4.1 NCES-Based Specification of a Reconfiguration Agent 65
7.4.2 SESA-Based Model Checking in a Device 66
7.4.3 SESA-Based Model Checking of the Coordination Agent 69

viii

7.5 Contribution: Hierarchical Verification of Control Components 73
7.5.1 Refinement-based Specification and Verification of a Network of Con-

trol Components . 73
7.5.2 Generalization: Refinement-based Specification and Verification of a

Reconfigurable System . 79
7.6 Application: Implementation of Multi-Agent Reconfigurable IEC61499 Systems 81

7.6.1 Implementation of Reconfiguration Agents 83
7.6.2 Agent Interpreter . 83
7.6.3 Reconfiguration Engine . 85
7.6.4 Agent Converter . 85
7.6.5 Implementation of The Coordination Agent 87

7.7 Conclusion . 89
7.8 References of the Chapter’s Contributions 90

8 Feasible Execution Models for Reconfigurable Real-Time Embedded Con-
trol Systems 91
8.1 Introduction . 91
8.2 State of the Art . 92
8.3 Temporal Properties of Reconfigurable Embedded Control Systems 93
8.4 Contribution: Formalization of Reconfigurable Embedded Control Systems 93

8.4.1 Action of Control Component . 94
8.4.2 Trace of Control Component . 95

8.5 Contribution: Verification and Assignment of Control Components to OS
Tasks . 95
8.5.1 Verification and Pre-scheduling of a Container 96
8.5.2 Verification of OS tasks for a Reconfiguration Scenario 101

8.6 Generalization: Verification and Assignment of Reconfigurable Embedded
Control Systems . 102
8.6.1 Algorithm . 103
8.6.2 Discussion . 104

8.7 conclusion . 104
8.8 References of the Chapter’s Contributions 105

9 Dynamic Low Power Reconfigurations of Real-Time Embedded Systems106
9.1 Introduction . 106
9.2 Related Works . 107

9.2.1 Reconfigurations of Embedded Systems 107
9.2.2 Real-Time Scheduling . 108
9.2.3 Low Power Scheduling . 109

9.3 Formalization of Reconfigurable Real-Time Systems 110
9.4 Power Consumption of Reconfigurable Embedded Real-Time Systems . . . 111
9.5 Contribution: Agent-based Architecture for Low Power Reconfigurations of

Embedded Systems . 112
9.5.1 Modification of periods and deadlines 113
9.5.2 Modification of WCETs . 113
9.5.3 Removal of Tasks . 114

9.6 Experimentation . 115
9.6.1 Implementation of the Reconfiguration Agent 115
9.6.2 Simulations . 117
9.6.3 Analysis . 119
9.6.4 Advantages of the First Solution . 119
9.6.5 Application and Advantages of the Third Solution 120

9.7 Conclusion . 121
9.8 References of the Chapter’s Contributions 121

ix

10 Simulation of Control Components implementing a Reconfiguration Sce-
nario 126
10.1 Introduction . 126
10.2 Industrial Case Study . 127

10.2.1 Presentation . 127
10.2.2 Problem . 128
10.2.3 Numerical Characterization . 128

10.3 State of the Art . 129
10.4 Contribution: Formalization of Control Components 130

10.4.1 Control Modules . 130
10.4.2 Formalization . 131
10.4.3 Deadline Processing . 134

10.5 Contribution: Characterization of Critical Scenarios 135
10.5.1 Blocking Problem . 135
10.5.2 Critical Scenarios . 136

10.6 Contribution: Optimization of the Simulation 136
10.6.1 Architecture of Simulators . 136
10.6.2 Formalization . 137
10.6.3 Implementation . 140

10.7 Evaluation of the Performance . 142
10.8 Conclusion . 143
10.9 References of the Chapter’s Contributions 144

11 Conclusion 145

Bibliography 147

English Abstract

The postdoctoral thesis deals with reconfigurable embedded control systems following com-

ponent based approaches. Assuming their behaviors to be adapted by automatic reconfig-

urations, we define components as software units such that a system is implemented by a

network of components. We propose a multi-agent architecture to handle automatic recon-

figurations where local scenarios are handled by reconfiguration agents in controllers, and

a coordination agent is designed to coordinate between devices. We develop NCES-based

optimal models for this architecture, use SESA to verify CTL properties, and address the

generation of different real-time reconfigurable execution models for systems. Thereafter,

an agent-based technique is engineered allowing low-power reconfigurations of embedded

controllers. Finally, optimized simulations of systems are performed.

x

German Abstract

Die Habilitationsschrift beschftigt sich mit rekonfigurierbaren Embedded-Control-Systemen

mittels Komponenten-basierten Anstzen. Ausgehend von einer automatischen Rekonfigu-

ration von Systemverhalten, definieren wir Komponenten als Software-Einheiten, um ein

System durch ein Netzwerk von Komponenten zu implementieren. Wir schlagen eine Multi-

Agenten-Architektur fr die automatische Rekonfiguration vor, in der lokale Szenarien durch

Rekonfigurationsagenten im Controller verarbeitet werden und ein Koordinationsagent die

Abstimmung zwischen den Gerten bernimmt. Wir entwickeln NCES-basierte optimale Mod-

elle fr diese Architektur, verwenden SESA zur berprfung von CTL Eigenschaften und behan-

deln die Erzeugung unterschiedlicher Echtzeit-rekonfigurierbarer Ausfhrungsmodelle fr die

Systeme. Die Rekonfigurierung von Low-Power-Embedded-Controllern wird dann mithilfe

einer Agenten-basierten Technik ermglicht. Schlielich wurden optimierte Systemsimulatio-

nen durchgefhrt.

xi

English Keywords

Embedded Control System, Reconfiguration, Software Component, Multi-Agent Architec-

ture, TNCES, Computation Tree Logic, Model Checking, Execution Model, Low-Power and

Real-Time Scheduling, Simulation.

xii

German Keywords

Embedded Control System, Rekonfiguration, Software-Komponente, Multi-Agenten- Ar-

chitektur, TNCES, Computation Tree Logic, Model Checking, Execution Model, Low-

Power-und Echtzeit-Scheduling, Simulation.

xiii

Acknowledgements

I would like to thank Prof. Hans-Michael Hanisch who helped and encouraged me to follow

a post-doc research at Martin Luther University... supported me to have a fund from

Humboldt Foundation.. and collaborated with me to apply for Habilitation Diploma at the

same university. Today I want to say Thank You HAMI: Man and Professor.

I would like to thank Prof. Ludwig Staiger for useful services and rich collaboration, I

am grateful also for the reviewers of this manuscript: Prof. Wolf Zimmermann and Prof.

Georg Frey.. for their serious and useful reviewing tasks which helped me to improve the

quality of this work...

I want to thank also all my colleagues at Martin Luther University.. in particular Prof.

Zhiwu Li and also my colleagues at the research laboratory of Prof. Hanisch...

Finally, I want to thank Olfa: Wife and Scientific Collaborator... for stable support and

encouragements...

xiv

Dedicate

To Olfa, my son Med Aziz and my daughter Nour El-Hayet.....

xv

List of Figures

2.1 An 8-bit microcontroller that includes a CPU running at 12 MHz, 128 bytes

of RAM, 2048 bytes of EPROM, and I/O in the same chip. 5

2.2 AMD Geode is an x86 compatible system-on-a-chip. 6

2.3 Microcontroller-based System-on-a-Chip. 7

2.4 An example of PLC. 8

2.5 RT-Linux Architecture. 10

2.6 Windows CE Architecture. 11

2.7 A Screenshot of Microsoft Windows CE 5.0. 11

2.8 Structures of Microkernels and Monolothic Kernels. 13

3.1 An IEC 61499 Function Block . 21

3.2 The ECC of the FB BeltFB . 21

3.3 A PBO module . 22

3.4 Network of PBO modules . 22

3.5 Network of PBO modules . 23

3.6 Example of PBO Objects implementing a PID Algorithm 24

3.7 A PBO Component : Speed Regulator . 24

3.8 A Rubus Component : BrakeSystem . 25

4.1 A module of Net Condition/Event Systems 28

6.1 The FESTO modular production system 38

6.2 Functional operations of the FESTO system 39

6.3 EnAS-Demonstrator in Halle . 40

6.4 Distribution of the EnAS stations . 41

6.5 Functional operations of the system EnAS 41

6.6 Policy1: production of a tin with only one piece. 42

6.7 Policy2: production of tins with double pieces. 42

6.8 An IEC61499-based Design of FESTO . 43

6.9 An IEC61499-based Design of EnAS. 44

xvi

xvii

6.10 Interactions between the Control Component CC Jack1 and the plant sen-

sors S22 and S23 before the activation of act12 45

7.1 Multi-agent architecture of distributed reconfigurable embedded systems. . 50

7.2 Specification of the FESTO Agent by nested state machines 54

7.3 Specification of the EnAS Agent by nested state machines 55

7.4 The system’s state machine of the FESTO Benchmark Production System:

SSM(FESTO). 56

7.5 The system’s state machine of the EnAS Benchmark Production System:

SSM(EnAS). 57

7.6 A Coordination Matrix. 57

7.7 Coordination Matrices For the FESTO and EnAS Benchmark Production

Systems. 59

7.8 Coordination between the FESTO and EnAS agents to optimize their pro-

ductivities. 60

7.9 Coordination between the FESTO and EnAS agents when Drill machine1

is broken. 61

7.10 Evaluation of the multi-agent architecture by Varying the number of recon-

figurations. 62

7.11 The main interface. 63

7.12 Reconfiguration Agent. 63

7.13 Coordination Agent. 64

7.14 First example of Communication Protocol. 65

7.15 Second example of Communication Protocol. 65

7.16 Design of the FESTO agent with the NCES formalism. 66

7.17 Design of the EnAS system with the NCES formalism. 67

7.18 Reachability graph of the first Production Policy. 68

7.19 Automatic Distributed Reconfigurations in FESTO and EnAS when the

drilling machines Drill machine1 or Drill machine2 are broken at run-time. 71

7.20 Automatic Distributed Reconfigurations in FESTO and EnAS when hard-

ware problems occurs at run-time. 72

7.21 Automatic Distributed Reconfigurations in FESTO and EnAS to regulate

the whole system performance. 72

7.22 The abstract model M1
{2,1,2,1};{1,1,0,0} of FESTO and EnAS systems 75

7.23 The first Step of an automatic refinement process 76

7.24 The second Step of an automatic refinement process 77

7.25 The last Steps of an automatic refinement process 78

xviii

7.26 Refinement-based Verification of FESTO and EnAS Benchmark Production

Systems . 80

7.27 (a) Number of states automatically generated by SESA for the refinement-

based specification and verification of 7 different networks of Control Com-

ponents. (b) Number of states generated by SESA for the specification and

verification of 7 networks of Control Components without applying any re-

finement . 80

7.28 Automatic specification of feasible Control Components of FESTO and EnAS

systems . 81

7.29 A reachability graph generated by SESA in Step7 whenReconfiguration2,1,2,1

is applied in FESTO and Reconfiguration1,1,0,0 is applied in EnAS 82

7.30 A reachability graph generated by SESA in Step 6 whenReconfiguration1,1,1,1

is applied in FESTO and Reconfiguration2,1,0,0 is applied in EnAS 82

7.31 A reachability graph generated by SESA in Step 6 whenReconfiguration2,2,2,2

is applied in FESTO and Reconfiguration1,1,0,0 is applied in EnAS 83

7.32 Interaction between the Agent and the Embedded Control System. 84

7.33 Function Blocks-based implementation of the agent interpreter in the EnAS

system. 84

7.34 Management Function Block”. 85

7.35 Management Services offered by the Function Block ”Manager”. 86

7.36 Interactions between FESTO and EnAS agents 88

7.37 The Manager behavior when the EnAS productivity has to be improved . . 89

8.1 Verification and Assignment of Reconfigurable Control Components to sets

of Feasible OS Tasks . 92

8.2 Assumed distribution of FESTO’s blocks on two resources 94

8.3 Reachability graphs of Container2 for the high and medium production

modes. 98

8.4 A pre-scheduling portion of container1 and container2 for the Medium pro-

duction mode. 99

8.5 The OS tasks implementing the system in the Medium Production Mode. . 102

8.6 The OS tasks implementing the system in the High Production Mode. . . 103

8.7 Context switchings for the different production modes of the FESTO Manu-

facturing System. 105

9.1 An example of periodic tasks . 109

9.2 Initial System Tasks . 117

9.3 Added Tasks . 117

xix

9.4 Static Priorities . 118

9.5 Developed Software . 119

9.6 Low power reconfiguration after the addition of AA1 119

9.7 Low power reconfiguration after the addition of the first ten tasks 120

9.8 Low power reconfiguration after the addition of the thirty new tasks 120

9.9 Power save by modify periods . 121

9.10 Power save by modify WCETs . 122

9.11 Compare the number of removed task between two remove strategies . . . 122

9.12 Compare power save between two remove strategies 123

9.13 New Configuration of the System (1) . 124

9.14 New Configuration of the System (2) . 125

10.1 A set of belts transporting pieces in the ITIA factory 128

10.2 The ITIA footwear factory in Vigevano (Italy). 129

10.3 Implementation of the footwear system in Vigevano (Italy). 130

10.4 Formalization of a Control Component. 131

10.5 Behavior of CFM and VPM modules. 132

10.6 The modularity of the system of belts in Vigevano (Italy). 133

10.7 Temporal behavior of a Control Component. 134

10.8 Characterization of a blocking problem. 136

10.9 Architecture of the simulators implemented in the Vigevano platform (Italy). 138

10.10Comparison between the proposed simulator and a simple simulator. . . . 142

10.11Evaluation of performance. 143

Chapter 1

General Introduction

Embedded Systems exist in all aspects of our modern life due to many cases of their use.
Nowadays, telecommunication systems employ numerous embedded systems from telephone
switches to mobile phones at the end-user. Computer networking uses also dedicated em-
bedded controllers-based routers and network bridges to route data. Consumer electronics
include personal digital assistants (PDAs), mp3 players, mobile phones, videogame consoles,
digital cameras, DVD players, GPS receivers, and printers. Many household devices, such
as televisions, microwave ovens, washing machines and dishwashers, are including embed-
ded electronics to provide flexibility, efficiency and features. Advanced Heating, Ventilating,
and Air Conditioning (HVAC) systems use networked thermostats to more accurately and
efficiently control temperature that can change by time of day and season. Home automa-
tion uses wired- and wireless-networking that can be used to control lights, climate, secu-
rity, audio/visual, surveillance, etc., all of which use embedded controllers for sensing and
controlling. Today, all the transportation systems from flight, maritime to automobiles, mo-
torcycles and bikes increasingly use embedded electronics for control and supervision. New
airplanes contain advanced avionics such as inertial guidance systems and GPS receivers
that should have considerable safety requirements. Various electric motors brushless DC
motors, induction motors and DC motors are using electric/electronic motor controllers.
Automobiles, electric vehicles, and hybrid vehicles are increasingly using embedded systems
to maximize efficiency and reduce pollution. Other automotive safety systems include anti-
lock braking system (ABS), Electronic Stability Control (ESC/ESP), traction control (TCS)
and automatic four-wheel drive. Today, medical equipment is continuing to advance with
more embedded software solutions for vital signs monitoring, electronic stethoscopes for
amplifying sounds, and various medical imaging (PET, SPECT, CT, MRI) for non-invasive
internal inspections. In addition to commonly described embedded systems based on small
computers, a new class of miniature wireless devices called motes are quickly gaining pop-
ularity as the field of wireless sensor networking rises. Wireless sensor networking, WSN,
couples full wireless subsystems to sophisticated sensors, enabling people and companies
to measure a myriad of things in the physical world and act on this information through
monitoring and control controllers. These motes are completely self contained, and will
typically run off a battery source for many years before the batteries need to be changed or

1

2

charged.
We are interested in this manuscript in reconfigurable embedded control architectures

that should be automatically reconfigured in order to save their behaviors or sometimes im-
prove their performance. Before presenting in Section 5 the problems and our contributions,
we present in the next Section known hardware components as well as operating systems
which are used in new generations of embedded architectures. We describe thereafter in
Section 3 well-known Architecture Description Languages and Industrial Technologies used
today for the development of software component-based embedded systems. We present in
Section 4 the theoretical formalisms that will be used in our contributions. The goal behind
these introductive chapters is to familiarize the reader with the environment of embedded
technologies.

Chapter 2

Embedded Architectures:
Overview on Hardware and
Operating Systems

We present in this chapter some technical overviews on hardware architectures as well as
operating systems of embedded controllers that we assume as parts of complete devices
to control included physical parts. We present first of all the different possible hardware
architectures that can compose these controllers, before describe thereafter different used
operating systems of this technology and show also different used embedded software archi-
tectures 1.

2.1 Embedded Hardware Components

We present well-known hardware components that are usually selected and deployed by
industrial developers of embedded systems.

2.1.1 Microcontrollers

These controllers are small self-contained computers based on single integrated circuits to be
composed of (rich details are in http://www.microcontroller.com/): (a) Central Processing
Unit - ranging from small and simple 4-bit processors to complex 32- or 64-bit processors,
(b) Discrete input and output bits, allowing control or detection of the logic state of an
individual package pin, (c) Serial input/output such as serial ports (UARTs), (d) Other se-
rial communications interfaces like I2C, (e) Serial Peripheral Interface and Controller Area
Network for system interconnect, (f) Peripherals such as timers, event counters, PWM
generators, and watchdog, (g) Volatile memory (RAM) for data storage ROM, EPROM,

1Some information and Figures are from www.wikipedia.org.

3

4

EEPROM or Flash memory for program and operating parameter storage, (h) Clock gen-
erator - often an oscillator for a quartz timing crystal, resonator or RC circuit, (i) Many
include analog-to-digital converters, (j) In-circuit programming and debugging support.

In contrast to classic microprocessors used in high-performance or general purpose ap-
plications, most of current microcontrollers use four-bit words and operate at clock rate
frequencies as low as 4 kHz, as this is adequate for many typical applications that enable
low power consumptions (milliwatts or microwatts). They generally have the ability to re-
tain functionality while waiting for an event such as a button press or other interrupt. In this
case, the power consumption while sleeping may be just nanowatts. Microcontrollers are
generally used in automatically controlled products and devices, such as automobile engine
control systems, implantable medical devices, remote controls, office machines, appliances,
power tools, and toys (Figure 2.1). By reducing the size and cost compared to a design
that uses a separate microprocessor, memory, and input/output devices, microcontrollers
make it economical to digitally control even more devices and processes. Nowadays, several
dozen microcontroller architectures are exploited like (http://www.microcontroller.com/):
(a) 68HC11,(b) 8051, (c) ARM processors (from many vendors) using ARM7 or Cortex-M3
cores, (d) STMicroelectronics STM8S (8-bit), ST10 (16-bit) and STM32 (32-bit), (e) At-
mel AVR (8-bit), AVR32 (32-bit), and AT91SAM, (f) Freescale ColdFire (32-bit) and S08
(8-bit), (g) Hitachi H8, Hitachi SuperH, (h) Hyperstone E1/E2, (i) MIPS (32-bit PIC32),
(j) NEC V850, (k) PIC (8-bit PIC16, PIC18, 16-bit dsPIC33 / PIC24), (l) PowerPC ISE,
(m) PSoC, (n) Rabbit 2000, (o) Texas Instruments MSP430 (16-bit), C2000 (32-bit), and
Stellaris (32-bit), (p) Toshiba TLCS-870, (q) Zilog eZ8, eZ80.

2.1.2 Digital Signal Processors (DSP):

They are specialized microprocessors with optimized architectures for fast digital signal
processing that require large numbers of mathematical operations to be performed quickly
and repetitively on sets of data2. Signals are constantly converted from analog to digital,
manipulated digitally, and then converted again to analog form. Nowadays, many DSP
applications have real-time constraints such that for the system to work, the DSP task
must be completed within some fixed time. In addition, many microprocessors and op-
erating systems are able to execute DSP algorithms successfully, but are not suitable for
use in portable small devices such as mobile phones and PDAs because of power supply
and space constraints. A specialized Digital Signal Processor is able to provide lower-cost
solutions, with better performance, lower real-time constraints, and no requirements for
specialized cooling or large batteries. The architecture of a digital signal processor is opti-
mized specifically for digital signal processing. Digital signal processing is often deployed
in specialized microprocessors such as the DSP56000, the TMS320, or the SHARC. These
often process data using fixed-point arithmetic, although some versions are available which
use floating point arithmetic and are more powerful. Finally, we note that known appli-
cations of DSP are speech compression and transmission in digital mobile phones, room

2More details are available in the website of Texas Instrument: http://www.ti.com.

5

Figure 2.1: An 8-bit microcontroller that includes a CPU running at 12 MHz, 128 bytes of
RAM, 2048 bytes of EPROM, and I/O in the same chip.

matching equalization of sound in Hifi and sound reinforcement applications, weather fore-
casting, economic forecasting, seismic data processing, analysis and control of industrial
processes, computer-generated animations in movies, medical imaging such as CAT scans
and MRI, MP3 compression, image manipulation, high fidelity loudspeaker crossovers and
equalization, and audio effects for use with electric guitar amplifiers.

2.1.3 System on Chip (SoC):

This system deploys all components of a computer or other electronic systems into a sin-
gle integrated circuit called a chip [1]. It may contain digital, analog, mixed-signal, and
often radio-frequency functions all on a single chip substrate (Figure 2.2). Microcontrollers
typically have under 100K of RAM (often just a few KBytes) and often assumed to be
single-chip-systems; whereas the term SoC is typically used with more powerful processors
which are capable to run complex software such as Windows or Linux, which need external
memory chips (flash, RAM) to be useful, and which are used with various external peripher-
als. Systems-on-chips are largely used to reduce manufacturing costs and to enable smaller
embedded systems. A typical SoC consists of: (a) One microcontroller (Figure 2.3), mi-
croprocessor or DSP core(s). Some SoCs (called multiprocessor System-on-Chip (MPSoC))
include more than one processor core, (b) Memory blocks including a selection of ROM,
RAM, EEPROM and Flash, (c) Timing sources including oscillators and phase-locked loops,

6

Figure 2.2: AMD Geode is an x86 compatible system-on-a-chip.

(d) Peripherals including counter-timers, real-time timers and power-on reset generators,
(e) External interfaces including industry standards such as USB, FireWire, Ethernet, US-
ART, SPI, (f) Analog interfaces including ADCs and DACs, (g) Voltage regulators and
power management circuits.

These blocks are connected by either a proprietary or industry-standard bus such as the
AMBA bus. Finally, we note that SoCs can be fabricated by several technologies, including:
(i) Full custom, (ii) Standard cell, (iii) FPGA.

2.1.4 Programmable Logic Controllers (PLC):

Being microprocessor-based devices, they have similar internal structures to many embedded
controllers and computers3. They consist of CPU, Memories and I/O devices (Figure 2.4).
These components are integral to these controllers. The main differences between PLCs
and other microprocessor based devices are that PLC are units of rugged design for an
industrial setting and are shielded for improved electrical noise immunity. Further they
are modular, allowing easy replacement and addition of units. They support standardized
I/O connections and signal levels and are designed for the ease of programming, to allow
personnel unfamiliar with computer languages to program the PLCs in-plant. The CPU
used in PLC is a standard CPU which is used in many other microprocessor controlled

3More details are available in the website of Plcopen: http://www.plcopen.org/

7

Figure 2.3: Microcontroller-based System-on-a-Chip.

systems. The choice of the CPU depends on the process to be controlled. Generally 8
or 16 bit CPUs fulfill the requirements adequately. Memory in PLC is divided into the
program memory which is usually stored in EPROM/ROM, and the operating memory.
The RAM memory is necessary for the operation of the program and the temporary storage
of input and output data. Typical memory sizes of PLC systems are around 1kb for small
PLCs, few kb for medium sizes and greater than 10-20 kb for larger PLC depending on the
requirements. Many PLC would support easy memory upgrades. Input/Output units are
the interfaces between the internal PLC and the external processes to be monitored and
controlled. Small PLC units would have around 40 I/O connections with larger ones having
more than 128 with either local or remote connections and extensive upgrade capabilities.
Programming units are essential components of the PLC. Since they are used only in the
development/testing stage of a PLC program, they are not permanently attached to the
controller. The program in a ladder diagram or other form can be designed and usually
tested before downloading to the PLC. The programming unit can be a dedicated device or
a personal computer. It allows the graphical display of the program (ladder diagram). The
unit, once connected to the PLC can download the program and allows for the real time
monitoring of its operation to assist debugging. Once the program is found to operate as
required the programming unit is disconnected from the PLC which continues the operation.

8

Figure 2.4: An example of PLC.

2.2 Real-Time Embedded Operating Systems (RTOS)

An embedded operating system is classically addressed for embedded computer architec-
tures, and should be designed to be very compact and efficient, forsaking many functions
that non-embedded computer operating systems provide, and which may not be used by
the specialized applications they run. It is frequently a real-time operating system. A
real-time operating system (RTOS) is an operating system (OS) intended for real-time ap-
plications, and offers programmers more control over process priorities. An application’s
process priority level may exceed that of a system process. Real-time operating systems
minimize critical sections of system code, so that the application’s interruption is nearly
critical. A key characteristic of a real-time OS is the level of its consistency concerning the
amount of time it takes to accept and complete an application’s task. A hard real-time
operating system has less jitter (i.e. the variability) than a soft real-time operating system.
A real-time OS that can usually or generally meet a deadline is a soft real-time OS, but if
it can meet a deadline deterministically it is a hard real-time OS. A real-time OS has an
advanced algorithm for scheduling where a scheduler flexibility enables a wider, computer-
system orchestration of process priorities, but a real-time OS is more frequently dedicated
to a narrow set of applications. Key factors in a real-time OS are minimal interrupt latency
and minimal thread switching latency, but a real-time OS is valued more for how quickly
or how predictably it can respond than for the amount of work it can perform in a given
period of time. Nowadays, the following real-time operating systems are the well-known
and most widely deployed.

9

2.2.1 QNX

As a well-known microkernel-based OS, QNX is based on the idea of running most of the
OS in the form of a number of small tasks, known as servers (rich details are available in
http://www.qnx.com/). This differs from the more traditional monolithic kernel, in which
the operating system is a single very large program composed of a huge number of ”parts”
with special abilities. In the case of QNX, the use of a microkernel allows users (developers)
to turn off any functionality they do not require without having to change the OS itself;
instead, those servers are simply not run. The system is quite small, with earlier versions
fitting on a single floppy disk. QNX has been ported to a number of platforms and now
runs on practically any modern CPU that is used in the embedded market. This includes
the PowerPC, x86 family, MIPS, SH-4 and the closely related family of ARM, StrongARM
and XScale CPUs.

2.2.2 RTLinux

It is a hard real-time RTOS microkernel that runs the entire Linux operating system (rich
details are in http://www.rtlinuxfree.com/) as a fully preemptive process (Figure 2.5). Nu-
merous versions of RT Linux are available, free or commercial. Two commonly available free
RT Linux versions are: (i) Real-Time Application Interface (RTAI), developed by the Milan
Polytechnical University and available at www.aero.polimi.it/ rtai/. (ii) RTL, developed
by New Mexico Tech and now maintained by FSM Labs with a free version available at
www.rtlinux.org. RTLinux was based on a lightweight virtual machine where the Linux
Kernel was given a virtualized interrupt controller and timer, and all other hardware access
was direct. From the point of view of the real-time component, the Linux Kernel is a thread.
Interrupts needed for deterministic processing are processed by the real-time component,
while other interrupts are forwarded to Linux, which runs at a lower priority than real-time
threads. Linux drivers handle almost all I/O.

2.2.3 VxWorks

A popular real-time multi-tasking operating system for embedded microprocessor systems,
designed byWind River Systems of Alameda (rich details are available in www.windriver.com/).
Like Unix and Linux, VxWorks is generally compliant with the IEEE’s POSIX (Portable
Operating System Interface) standard, version 1003.1b. The current release of VxWorks is
version 5.4. VxWorks projects are usually developed in the Tornado 2 Integrated Develop-
ment Environment (IDE) which provides for specifying a configuration (e.g., the libraries
with which a project is linked), project builds, and code testing. VxWorks runs on many
target processors including, but not limited to the following processors: Motorola PowerPC,
68K and CPU32 cores; MIPS; ARM; Intel X86 (386 and up) and i960. The key features
of the current OS are: (a) Multitasking kernel with preemptive and round-robin scheduling
and fast interrupt response, (b) Memory protection to isolate user applications from the

10

Figure 2.5: RT-Linux Architecture.

kernel, (c) symmetric multiprocessing (SMP) support, (d) Fast, flexible inter-process com-
munication including Transparent Inter-Process Communication (TIPC), (e) Error handling
framework, (f) Binary, counting, and mutual exclusion semaphores with priority inheritance,
(g) Local and distributed message queues, (h) POSIX PSE52 certified conformance, (i) File
system IPv6 networking stack, (j) VxSim simulator to simulate a VxWorks target for use as
a prototyping and testing environment. Note that WindView provides advanced debugging
tools for the simulator environment.

2.2.4 Windows CE

Also known officially as Windows Embedded Compact (rich details are available in www.windowsce.com/).
Windows CE is an operating system developed by Microsoft for computers and embed-
ded systems (Figure 2.6). Microsoft Windows CE’s code base is separate from that of
”industrial-strength” operating systems such as Windows 2000. CE was designed to run in
memory- and power-constrained devices. It was also designed so that it could be quickly
ported to new hardware architectures. The primary feature that differentiates Windows CE
from competitors such as the Palm OS is that CE is a 32-bit, multi-threaded, multi-tasking
operating system. Because Windows CE was designed to be portable to a wide range of
processors, power management details differ from one device to the next. However, the
CE API does support a set of power monitoring functions in order to allow applications
to determine the remaining life of the battery, whether batteries are currently being used,
and whether the batteries are currently being charged. The Windows CE API provides also
access to a system object database. This database supports data compression, searching,
sorting and synchronization with the desktop through the Microsoft ActiveSync services.
Serial communications take place through a standard serial port on CE devices. The ma-
jority of the standard Win32 communication APIs have been ported to CE so it is very

11

Figure 2.6: Windows CE Architecture.

Figure 2.7: A Screenshot of Microsoft Windows CE 5.0.

likely that any communications code for Win32 can be quickly ported to a CE device with
minor modifications. Windows CE devices can be expanded also to support standard Eth-
ernet connections as well as wireless LAN connections. Finally, Windows CE devices can be
expanded through their support of a CompactFlash slot. This expandability allows extra
memory or other devices to be added quickly and inexpensively to a CE device (Figure 2.7).

2.3 Known Embedded Software Solutions

There are several different types of software architectures in common use for embedded
systems.

12

2.3.1 Simple Control Loop

The software simply has a loop that calls subroutines, each of which manages a part of the
hardware or software [72].

2.3.2 Interrupt Controlled System

Some embedded systems are predominantly interrupt controlled [40]. This means that tasks
performed by the system are triggered by different kinds of events. An interrupt could be
generated for example by a timer in a predefined frequency, or by a serial port controller
receiving bytes. These kinds of systems are used if event handlers need a low latency and
the event handlers are short and simple. Usually these kinds of systems run a simple task
in a main loop also, but this task is not very sensitive to unexpected delays. Sometimes
the interrupt handler will add longer tasks to a queue structure. Later, after the interrupt
handler has finished, these tasks are executed by the main loop. This method brings the
system close to a multitasking kernel with discrete processes.

2.3.3 Cooperative Multitasking

A form of multitasking where it is the responsibility of the currently running task to give
up the processor to allow other tasks to run [49]. Cooperative multitasking requires the
programmer to place calls at suitable points in his code to allow his task to be descheduled
which is not always easy if there is no obvious top-level main loop or some routines run for
a long time. If a task does not allow itself to be descheduled, then all the other tasks on the
system will appear to ”freeze” and will not respond to user action. The advantage of coop-
erative multitasking is that the programmer knows where the program will be descheduled
and can make sure that this will not cause unwanted interaction with other processes.

2.3.4 Preemptive Multitasking or Multi-Threading

A type of multitasking where the scheduler can interrupt and suspend (”swap out”) the
currently running task in order to start or continue running (”swap in”) another task [49].
The tasks under preemptive multitasking can be written as though they were the only
task and the scheduler decides when to swap them. The scheduler must ensure that when
swapping tasks, sufficient state is saved and restored that tasks do not interfere. The length
of time for which a process runs is known as its ”time slice” and may depend on the task’s
priority or its use of resources such as memory and I/O. We note OS/2, Unix use preemptive
multitasking. This contrasts with cooperative multitasking where each task must include
calls to allow it to be descheduled periodically.

13

Figure 2.8: Structures of Microkernels and Monolothic Kernels.

2.3.5 Microkernels

A Microkernel provides the mechanisms needed to implement an operating system, such as
low-level address space management, thread management, and inter-process communication
[111, 41]. If the hardware provides multiple privilege levels, then the Microkernel is the only
software executing at the most privileged level (generally referred to as supervisor or kernel
mode). Actual operating system services, such as device drivers, protocol stacks, file systems
and user interface code are contained in its user space.

2.3.6 Monolithic Kernels

A monolithic kernel (Figure 2.8) is a kernel architecture where the entire operating system is
working in the kernel space and alone as supervisor mode [41]. The monolithic differs from
other operating system architectures in that it defines alone a high-level virtual interface
over computer hardware, with a set of primitives or system calls to implement all operating
system services such as process management, concurrency, and memory management itself
and one or more device drivers as modules. Common examples of monolithic kernels are
Embedded Linux and Windows CE.

2.3.7 Additional Software Components:

in addition to the core operating system, many embedded systems have additional upper-
layer software components. These components consist of networking protocol stacks like
CAN, TCP/IP, FTP, HTTP, and HTTPS, and also included storage capabilities like FAT
and flash memory management systems. If the embedded devices has audio and video
capabilities, then the appropriate drivers and codecs will be present in the system. In

14

the case of the monolithic kernels, many of these software layers are included. In the
RTOS category, the availability of the additional software components depends upon the
commercial offering.

2.4 Conclusion

We cover in the first chapter the different well-known hardware technologies which are used
in advanced embedded architectures. We present in particular four technologies: microcon-
trollers, digital signal processors, system on chip, and programmable logic controllers. We
want to be independent of any one of them by assuming in the following of this manuscript
a general hardware architecture to be composed of a processor, a memory and I-O inter-
faces. We cover also in this chapter the different well-known embedded operating systems
where we detail QNX, RTLinux, VxWorks, and Windows CE. We want also in this research
to be independent of any OS and any embedded software solutions, while assuming in the
following that non-preemptive and preemptive scheduling policies are available to schedule
tasks of embedded software.

Chapter 3

Embedded Systems: Overview on
Software Components

The development of safe embedded systems is not a trivial activity because a failure can
be critical for the safety of human beings (e.g. air and railway traffic control, nuclear plant
control, aircraft and car control). They have classically to satisfy functional and temporal
properties according to user requirements [15], but their time to market should be shorter
than ever. To address all these important requirements, the component-based approach
is studied in several academic research works and also in industrial projects to develop
modular embedded systems. The general goal is to control the design complexity and to
support the reusability of already developed components [39]. We present basic concepts
of software components in this chapter, before describe thereafter well-known component-
based architecture description languages (abbr, ADL) and industrial technologies [8].

3.1 Basic Concepts of Components

Nowadays, many definitions of software components are proposed in the component-based
software development (CBSD). The best accepted and well-known definition is based on
Szyperskis work [114]: a component is a unit of composition with contractually specified
interfaces and fully explicit context dependencies that can be deployed independently and is
a subject to a third-party composition. We follow in this book the definition of Szyperski by
stressing the separation between the component’s implementation and interface. Szyper-
ski [114] tends to insist that components should be delivered in binary form, and that
deployment and composition should be performed at run-time. To meet functional and
real-time constraints in this manuscript, we assume off-line compositions of critical compo-
nents. There are two basic prerequisites described in [8] and that enable components to be
integrated and work together:

• A component model specifies the standards and conventions that components must
follow to enable proper interactions,

15

16

• A component framework is the design-time and run-time infrastructure that manages
resources for components and supports component’s interactions.

There is an obvious correspondence between the conventions of a component model and
the supporting mechanisms and services of a component framework. Component models
and frameworks can be specified at different levels of abstraction as described in [8]:

• Some component models (e.g., COM) are specified on the level of the binary exe-
cutable, and the framework consists of supporting OS services.

• Some component models (e.g., JavaBeans, CCM, or .Net) are specified on the level of
byte- code.

• Some component models (e.g., Koala) are specified on the level of a programming
language (such as C). The framework can contain glue code and possibly a runtime
executive, which are bundled with the components before compilation.

We note also that a clear distinction between two perspectives of a component is defined
in [8]:

• The component’s implementation which is an executable realization to obey rules of
the corresponding model. Depending on this model, component implementations are
provided in binary form, byte code, compilable C code, etc.

• The component’s interface summarizes the properties of the component that are ex-
ternally visible to the other parts, and which can be used when designing the system.
An interface may list the signatures of operations, in which case it can be used to check
that components interact without causing type mismatches. An interface may contain
additional information about the component’s patterns of interaction with its envi-
ronment or about extra-functional properties such as execution time; this allows more
system properties to be determined when the system is first designed. An interface
that, in addition to information about operation signatures, also specifies functional
or extra-functional (for example temporal) properties is called a rich interface [8].

A contract is defined in the component-based approach as a specification of functional
or extra-functional properties of a component, which are observable in its interface. A
contract can be seen as specifying constraints on the interface of a component. Properties of
components can be expressed in their contracts as defined in [8]. To structure the exposition
into different types of component properties, we use the classification of contracts proposed
in [21], where a contract hierarchy is defined consisting of four levels:

• Level 1: Syntactic interface, or signature (i.e. types, fields, methods, signals, ports
etc., that constitute the interface),

• Level 2: Constraints on values of parameters and of persistent state variables, ex-
pressed, e.g., by pre- and post-conditions and invariants,

17

• Level 3: Synchronization between different services and method calls (e.g., expressed
as constraints on their temporal ordering),

• Level 4: Extra-functional properties (in particular real-time attributes, performance,
QoS (i.e. constraints on response times, throughput, etc.).

3.2 Architecture Description Languages

Architecture Description Languages (ADLs) have been developed as useful languages for
expressing system’s architectures as compositions of software modules and/or hardware
objects. Typical concepts of ADLs are components, ports, connectors, etc. They can
also describe various classes of component properties. Component properties expressed in a
system description using an ADL should in principle be expressible in component interfaces.
ADLs concentrate on the system’s description, whose properties are the composition of
properties visible in component interfaces. We present in the following some selected ADLs
as described in [8].

3.2.1 Acme Language

Acme is a simple, generic software architecture description language (ADL) [8]. It is built
on a core ontology of seven types of entities for the architectural representation: compo-
nents, connectors, systems, ports, roles, representations, and rep-maps. Of the seven types,
the most basic elements of any architectural description are components, connectors, and
systems:

• Components: represent the primary computational elements and data stores of a
system. Typical examples of components include such things as clients, servers, filters,
objects, blackboards, and databases,

• Connectors: represent interactions among components. Computationally speaking,
connectors mediate the communication and coordination activities among compo-
nents. Examples include simple forms of interaction, such as pipes, procedure call,
and event broadcast. But connectors may also represent more complex interactions,
such as a client-server protocol or a SQL link between a database and an application.

• Systems: represent configurations of components and connectors.

3.2.2 Rapide Language

The language Rapide is generally used for building large-scale, distributed multi-language
component-based systems [8]. This technology defines a component as a module imple-
menting interfaces, and connectors as modules to connect sending and receiving interfaces.

18

Rapide is based upon a new generation of computer languages, called Executable Archi-
tecture Definition Languages (EADLs), and an innovative tool set supporting the use of
EADLs in evolutionary development and rigorous analysis of large-scale systems.

3.2.3 Wright Language

The language Wright based on the classic concepts of components and connectors, pro-
vides formal basis for architectural specifications and analysis of software systems. Work
on Wright has focused on the concept of explicit connector types, on the use of automated
checking of architectural properties, and on the formalization of architectural styles. To fur-
ther aid developers in the realization and exploitation of architectural abstractions, Wright
defines a set of standard consistency and completeness checks that can be used to increase
the designer’s confidence in the design of a system. These checks are defined precisely
in terms of Wright’s underlying models, and can be checked by using a standard model
checking technology [8].

3.2.4 Aesop Language

The Aesop language is used for the architectural design of component-based systems. It
provides a generic toolkit and communication infrastructure that users can customize with
architectural style descriptions, and a set of tools that they would like to use for architec-
tural analysis. Example of Aesop tools include cycle detectors, type consistency verifiers,
formal communication protocol analyzers, C-code generators, compilers, structured lan-
guage editors, and rate-monotonic analysis tools [8]. An architectural style description
includes items such as a vocabulary of design elements (components, connectors, and pat-
terns) along with their associated semantics, global design rules, customized visualizations,
and other information, if desired.

3.2.5 Metah Language

The language Metah provides means to express, analyze and implement architectures of
embedded real-time software components [8]. This language works with architectural char-
acteristics to predict overall system’s behavior and permit rapid reconfigurations of compo-
nents. Metah is a Computer Aided Software Engineering (CASE) tool set for architectural
specifications, analysis, integrations and verifications of real-time embedded systems.

3.2.6 Architecture Analysis and Design Language

The Architecture Analysis and Design Language (AADL) is an architecture description
language. AADL was first developed in the field of avionics, and was known formerly as
the Avionics Architecture Description Language. It is derived from MetaH. AADL is used

19

to model the software and hardware architecture of an embedded, real-time system. Due
to its emphasis on the embedded domain, AADL contains constructs for modelling both
software and hardware components. This architecture model can then be used either as
a design documentation, for analysis (such as schedulability and flow control) or for code
generation [8].

3.2.7 Unicon Language

UniCon is an architectural description language whose focus is on supporting the variety
of architectural parts and styles found in the real world and on constructing systems from
their architecture descriptions. An architecture description in UniCon consists of a set
of components and connectors. A component is a locus of data or computation, while a
connector mediates the interaction among components. Each component has an interface
that exports a set of players. These players engender the ways in which the component can
interact with the outside world. Similarly, a connector’s protocol exports a set of roles that
engender the ways in which the connector can mediate interaction [8].

3.2.8 Darwin Language

Darwin is an Architecture Description Language (ADL) that can be used in a context of
software engineering to describe the organization of a piece of software in terms of com-
ponents, their interfaces, and the bindings between components. In comparison to others
ADLs, such as Wright, the language does not provide the notion of connectors [8].

3.3 Component-based Technologies

Nowadays, rich component-based technologies have been proposed to develop embedded
control systems. We present some of them which are well-known and well-used in Industry
as described in [8].

3.3.1 Industrial Technology IEC61131

In the area of Industrial Automation, the programmable logic controllers are a widely used
technology. However, for the last twenty years, the corresponding applications have been
written in many different languages, resulting in inefficient work for technicians, mainte-
nance personnel and system designers. For instance, there are numerous versions of the
so-called ladder diagram language, and furthermore this language is poorly equipped with
facilities such as: (a) Control over program execution, (b) Definition and manipulation
of data structures, (c) Arithmetic operations or, (d) hierarchical program decomposition.
These problems led to the constitution of a working group within the International Electro-
technical Commission IEC, with the aim to define a standard for the complete design of

20

programmable logic controllers. While previous efforts had been made before, IEC61131 has
received worldwide international and industrial acceptance. The first document introduc-
ing the general concepts was published in 1992 and followed by the definition of equipment
requirements and tests. The core of the standard is its third part, published in 1993,
which describes the harmonization and coordination of the already existing programming
languages. The technology IEC61131 is described as follows:

• Component types: an application is divided into a number of blocks,

• Supported languages: a block is written in any of the languages proposed in the
standard. There are two textual languages (ST, IL) and three graphical languages
(FBD, LD, SFC):

– Function Block Diagram (FBD) is used for the description and regulation of
signal and data flows through Function Blocks. It can nicely express the inter-
connection of control system algorithms and logic,

– Structured Text (ST) is a high level textual language, with a Pascal-like syntax,

– Instruction List (IL) is an assembler-like language, found in a wide range of
PLCs,

– Ladder Diagram (LD) is a graphical language based on the relay ladder logic,
which allows the connection of previously defined blocks. For historical reasons,
it is the most frequently used in actual PLC programs.

– Sequential Function Chart (SFC) is used to combine in a structured way units de-
fined with the four languages above. It mainly describes the sequential behavior
of a control system and defines control sequences that are time- and event-driven.
It can express both high-level and low-level parts of a program.

3.3.2 Industrial Technology IEC61499

We present the main concepts of the Component-based International Industrial Standard
IEC61499 [50] which is an extension of the technology IEC 61131.3. According to this
standard, a Function Block (FB) (figure 3.1) is a unit of software supporting functionalities
of an application [73, 121, 84]. It is composed of an interface and an implementation such
that the interface contains data/event inputs and outputs supporting interactions with the
environment. Events are responsible for activations of the block while data contain val-
ued information. The implementation of the block contains algorithms to execute when
corresponding events occur. The selection of an algorithm to execute is performed by a
state machine called Execution Control Chart (ECC) which is also responsible for send-
ing output events at the end of the algorithm execution. The block BELTFB shown in
Figure 3.1 is a FB used to control conveyer belts. It is activated by the input events :
INIT , OBJ ARR, OBJ LEFT and STOPI, and responds to the environment by the
output events INITO, CNF , MOV EF and STOPO. When the event OBJ ARR occurs,

21

the state OBJ ARRIV ED is activated as shown in Figure 3.2 to execute the algorithm
Inc.Counter. Once such execution finishes, the ECC sends the output event CNF and
activates the states MOV E OR START depending on the value of the internal variable
Count. In particular, when the output event CNF has to be sent, the block updates the
corresponding output data COUNT and SPEED. According to the Standard IEC61499,
a control application is specified by a network of FBs where each event input (resp. out-
put) of a block is linked to an event output (resp. input) by a channel and corresponds
otherwise to a global input (resp. output). Data inputs and outputs follow the same rules.
The architecture of the execution environment is well defined by a network of devices where
each one is composed of one processing unit and interfaces (with sensors, actuators and
the network). Moreover, it is characterized by logical execution unit(s) called resource(s).
A resource defines the important boundary existing between what is within the scope of the
IEC61499 model and what is device (OS) and networks (communication protocols) [73].

 INIT
 OBJ_ARR
 OBJ_LEFT
 STOPI

INITO
 CNF

MOVEF
STOPO

COUNT

SPEED

BELTFB

Figure 3.1: An IEC 61499 Function Block

Figure 3.2: The ECC of the FB BeltFB

3.3.3 Port Based Object Technology

The technology Port-Based Objects combines the object-based design with port automaton
design. A port-based object which is a software control module, is defined as an object

22

Figure 3.3: A PBO module

Figure 3.4: Network of PBO modules

that has various ports for real-time communications. Each module has a state and is
characterized by its methods to be hidden from other objects. Only the ports of an object
are visible to other objects. A simplified model of a port-based object is shown in Figure 3.3.
Each module has zero or more input ports, zero or more output ports, and may have any
number of resource ports. Input and output ports are used for communication between tasks
in the same subsystem, while resource ports are used for external communication to the
subsystem, such as with the physical environment, other subsystems, or a user interface.
A link between two objects is created by connecting an output port of one module to a
corresponding input port of another module. A configuration can be legal only if every
input port in the system is connected to one, and only one, output port, but a single output
may be used as input by multiple tasks (Figure 3.4).

A Port-Based Object can have two kinds of inputs: constant input that needs to be read
during initialization (in-const), and variable input which must be read at the beginning of
each control cycle (in-var) for periodic tasks, or at any start of event processing for aperiodic
tasks. Similarly, a task can have output constants (out-const) or output variables (out-var).
Both the constants and variables are transferred through the global state variable table.
The input and output connections shown in the control module library in Figure 3.5 are
all variables. An example of PBO objects implementing a PID algorithm is described in
Figure 3.6. It uses three modules: the joint position trajectory generator, the PID joint
position controller, and the torque-mode robot interface. We present also in Figure 3.7
Speed Regulator as a simple example of PBO components regulating the vehicle speed. The
component cyclic periodically sends desired values to Regulate which regulates measured
values from Interface.

23

Figure 3.5: Network of PBO modules

3.3.4 Koala Technology

The technology Koala is developed and used at Philips [8]. It was designed to build software
control units for consumer products such as televisions, video recorders, CD and DVD
players, and recorders. A Koala component is a piece of code that can interact with its
environment through explicit interfaces. As a consequence, a basic component has no
dependencies to other components, and is characterized as follows:

• Component Implementation is a directory with a set of C and header files that may
use each other in arbitrary ways, but communication with other components is routed
only through header files generated by the Koala compiler,

• Component Interface: the directory also contains a component definition file, describ-
ing among other things the interfaces of the component.

3.3.5 Pecos Technology

The PECOS project aims to develop component-based embedded systems such as smart
cell phones, PDAs, and industrial field devices [8]. It defines a component model as follows::

• Component’s Interfaces are defined by Input-Output Ports, and connectors to connect
compatible ports.

24

Figure 3.6: Example of PBO Objects implementing a PID Algorithm

Regulate Interface

Cyclic
Actuator Actuator

V
 m

es
u

re
d

V
 d

es
ir

ed
 Vregulated

V
 m

es
u

re
d

Figure 3.7: A PBO Component : Speed Regulator

• Component’s Types: Active Components (with own thread), Passive Components
(encapsulating behavior without threads), Event Components (triggered by events),

• Component’s attributes can specify memory consumption, WCET, cycle time, and
priority,

3.3.6 Rubus Technology

Rubus is a small Real Time Operating System, developed by Arcticus Systems (www.arcticus.se/)
[8]. It is divided into a first part supporting time-triggered execution and a second sup-
porting event-triggered execution. Time-triggered execution is to support hard real-time
applications with a deterministic execution mechanism. To support component-based hard
real-time systems, Arcticus Systems propose a component model and associated develop-
ment tools for use with the Rubus operating system. A basic software component consists
of a behavior, a persistent state, a set of in-ports/out-ports and an entry function which
is its main functionality. A task provides the thread of execution for a component. The
entry function takes as an argument a set of in-ports, the persistent state, and the reference
to the out-ports. The attributes of a task are Task ID, Period, Release Time, Deadline,
and WCET. In addition, precedence and mutual exclusion ordering between tasks can be
specified. We present in Figure 3.8 BrakeSystem as a simple example of Rubus compo-
nents to use in a vehicle. The component BrakeLeftRight allows to brake left or right
by considering the pressure and also the speed of the vehicle. Detailed descriptions of this
example are available in [32].

25

Task :
BrakeLeftRight

Task :
OutputBrakeleftPressure

Speed

Task state information Task state information

brake left

brake right Task :
OutputBrakeright

Task state information

Figure 3.8: A Rubus Component : BrakeSystem

3.4 Conclusion

We present in this chapter the concept of component-based embedded control systems.
A component is classically characterized by an implementation as well as a set of inter-
faces to interact with its environment. The implementation can be in a binary form, byte
code, compilable C code, etc. Nowadays, several architecture description languages and
component-based technologies have been proposed to develop systems. We describe in this
research the well-known among them by detailing in particular their concepts of software
components. Nevertheless, we want in the following to be independent of any technology
and any language by defining a general concept of Control Components for the development
of embedded control systems. The goal is to be able to reuse already developed components
and exploit different rich libraries of ADL and Industrial Technologies for future develop-
ments of new embedded control systems.

Chapter 4

Formalisms for Modelling and
Verification of Embedded Systems

A Finite State Machine is a model of computation consisting of a set of states, a start state,
an input alphabet, and a transition function that maps input symbols and current states
to next states. Computation begins in the start state with an input string. It changes to
new states depending on the transition function. We present in this chapter the formalism
Net Condition/Event Systems (NCES) which is an extension of Petri nets that belong to
the family of finite state machines. We present thereafter the temporal logic ”Computation
Tree Logic” which is used for the specification of properties of NCES.

4.1 Petri nets

A Petri net is one of several mathematical modelling languages for the description of systems
[98]. It consists of places, transitions, and directed arcs. Arcs run from a place to a transition
or vice versa, never between places or between transitions. The places from which an arc
runs to a transition are called the input places of the transition; the places to which arcs
run from a transition are called the output places of the transition. Places may contain
a natural number of tokens. A distribution of tokens over the places of a net is called a
marking. A transition of a Petri net may fire whenever there is a token at the end of all
input arcs; when it fires, it consumes these tokens, and places tokens at the end of all output
arcs. A firing is atomic, i.e., a single non-interruptible step. The execution of Petri nets
is non-deterministic: when multiple transitions are enabled at the same time, any one of
them may fire. If a transition is enabled, it may fire, but it doesn’t have to. Formally, a
Petri net is defined by the following 3-tuple:

• S is a finite set of places,

• T is a finite set of transitions,

• S and T are disjoint, i.e. no object can be both a place and a transition,

26

27

• W = (S × T) ∪ (T × S) −→ N is a multi set of arcs, i.e. it defines arcs and assigns
to each arc a non-negative integer arc multiplicity; note that no arc may connect two
places or two transitions.

The flow relation is the set of arcs: F = {(x, y)/W (x, y) > 0}. In many textbooks, arcs
can only have multiplicity 1, and they often define Petri nets using F instead of W . A Petri
net graph is a bipartite graph (S ∪ T, F) with node partitions S and T . The preset of a
transition t is the set of its input places: •t = {s ∈ S/W (s, t) > 0}; its postset is the set of
its output places: t• = {s ∈ S/W (t, s) > 0}. A marking of a Petri net (graph) is a multi
set of its places, i.e., a mapping M : S −→ N. We say the marking assigns to each place a
number of tokens. A Marked Petri net is a 4-tuple (S, T,W,M0), where:

• (S, T,W) is a Petri net graph,

• M0 is the initial marking.

4.2 NCES Formalism: Extension of Petri Net

The formalism of Net Condition/Event Systems (NCES) is an extension of Petri nets. It was
introduced by Rausch and Hanisch in [97] and further developed through the last years, in
particular in [42], according to which a NCES is a place-transition net formally represented
by a tuple (figure 4.1):

NCES = (P, T, F,CN,EN,Cin, Ein, Cout, Eout,

Bc, Be, Cs, Dt,m0) where,

(i) P (resp, T) is a non-empty finite set of places (resp, transitions), (ii) F is a set of
flow arcs, F : (PXT)

∪
(TXP), (iii) CN (resp, EN) is a set of condition (resp, event) arcs,

CN ⊆ (PXT) (resp, EN ⊆ (TXT)), (iv) Cin (resp, Ein) is a set of condition (resp, event)
inputs, (v) Cout (resp, Eout) is a set of condition (resp, event) outputs, (vi) Bc (resp, Be)
is a set of condition (resp, event) input arcs in a NCES module, (vii) Bc ⊆ (CinXT) (resp,
Be ⊆ (EinXT)), (viii) Cs (resp, Dt) is a set of condition (resp, event) output arcs, (ix)
Cs ⊆ (PXEout) (resp, Dt ⊆ (TXEout)), (x) m0 : P → 0, 1 is the initial marking.

The semantics of NCES are defined by the firing rules of transitions. There are several
conditions to be fulfilled to enable a transition to fire. First, as it is in ordinary Petri nets,
an enabled transition has to have a token concession. That means that all pre-places have to
be marked with at least one token. In addition to the flow arcs from places, a transition in
NCES may have incoming condition arcs from places and event arcs from other transitions.
A transition is enabled by condition signals if all source places of the condition signals are
marked by at least one token. The other type of influence on the firing can be described
by event signals which come to the transition from some other transitions. Transitions
having no incoming event arcs are called spontaneous, otherwise forced. A forced transition
is enabled if it has token concession and it is enabled by condition and event signals [97].

28

Figure 4.1: A module of Net Condition/Event Systems

On the other hand, the NCES formalism is enriched last years to consider time con-
straints applied to the input arcs of transitions: to every pre-arc of a transition, an interval
[eft,lft] of natural numbers is attached with 0 ≤ eft ≤ w (w is a fixed integer). The inter-
pretation is as follows, every place p bears a clock which is running iff the place is marked
and switched off otherwise. All running clocks run at the same speed measuring the time
the token status of its place has not been changed i.e. the clock on a marked place p shows
the age of the youngest token on p. If a firing transition t is able to remove a token from the
place p or adds a token to p then the clock of p is turned back to 0. In addition, a transition
t is able to remove tokens from its pre-places (i.e. to fire) only if for any pre-place p of t the
clock at place p shows a time u(p) such that eft(p, t) ≤ u(p) ≤ lft(p, t). Hence, the firing
of transitions is restricted by the clock positions.

4.3 Temporal Logic

The ”Computation Tree Logic” CTL offers facilities for the specification of properties to
fulfill by the system behavior [99, 100]. In this section, we briefly present this logic, its
extension ”Extended Computation Tree Logic” (denoted by eCTL) and the ”Timed Com-
putation Tree Logic” (denoted by TCTL).

4.3.1 Computation Tree Logic

In CTL, all formulae specify behaviors of the system starting from an assigned state in
which the formula is evaluated by taking paths (i.e. sequence of states) into account. The
semantics of formulae is defined with respect to a reachability graph where states and paths
are used for the evaluation. A reachability graph M consists of all global states that the
system can reach from a given initial state. It is formally defined as a tuple M = [Z,E]
where,

• Z is a finite set of states,

29

• E is a finite set of transitions between states, i.e. a set of edges (z, z′), such that z, z′

∈ Z and z′ is reachable from z.

In CTL, paths play the key role in the definition and evaluation of formulae. By defi-
nition, a path starting in the state z0 is a sequence of states (zi) = z0z1... such that for all
j ≥ 0 it holds that there is an edge (zj , zj+1)∈ E. In the following, we denote by (zi) such
path. The truth value of CTL formulae is evaluated with respect to a certain state of the
reachability graph. Let z0 ∈ Z be a state of the reachability graph and φ a CTL formula,
then the relation |= for CTL formulae is defined inductively.

* Basis:

** z0 |= φ iff the formula φ holds in z0,

** z0 |= true always holds,

** z0 |= false iff never holds,

* Steps:

** z0 |= EFφ iff there is a path (zi) and j ≥ 0 such that zj |= φ,

** z0 |= AFφ iff for all paths (zi) there exists j ≥ 0 such that zj |= φ,

** z0 |= AGφ iff for all paths (zi) and for all j ≥ 0 it holds zj |= φ,

4.3.2 Extended Computation Tree Logic

In CTL, it is rather complicated to refer to information contained in certain transitions
between states of a reachability graph. A solution is given in [99, 100] for this problem
by proposing an extension of CTL called Extended Computation Tree Logic ECTL. A
transition formula is introduced in ECTL to refer to a transition information contained in
the edges of the reachability graph. Since it is wanted to refer not only to state information
but also to steps between states, the structure of the reachability graph M = [Z,E] is
changed as follows:

• Z is a finite set of states,

• E is a finite set of transitions between states, i.e. a set of labeled edges (z,s,z’), such
that z, z′ ∈ Z and z′ is reachable from z by executing the step s.

Let z0 ∈ Z be a state of the reachability graph, τ a transition formula and φ an ECTL
formula. The relation |= for ECTL formulae is defined inductively:

• z0 |= EτXφ: iff there exists a successor state z1 such that there is an edge (z0, s, z1)
∈ E where (z0, s, z1) |= τ and z1 |= φ holds,

• z0 |= AτXφ: iff z1 |= φ holds for all successors states z1 with an edge (z0, s, z1) ∈ E
such that (z0, s, z1) |= τ holds,

30

4.3.3 Timed Computation Tree Logic

TCTL is an extension of CTL to model qualitative temporal assertions together with time
constraints. The extension essentially consists in attaching a time bound to the modalities
and we note that a good survey can be found in [4]. For a reachability graphM = [Z,E], the
state delay D is defined as a mapping D : Z → N0 and for any state z = [m,u] the number
D(z) is the number of time units which have to elapse at z before firing any transition from
this state. For any path (zi) and any state z ∈ Z we put:

• D[(zi), z] = 0, if z0 = z,

• D[(zi), z] = D(z0) +D(z1) + ...+D(zk−1), if zk = z and z0, ..., zk−1 ̸= z,

With other words, D[(zi), z] is the number of time units after which the state z on the
path (zi) is reached the first time, i.e. the minimal time distance from z0. Let z0 ∈ Z be a
state of the reachability graph and φ a TCTL formula. The relation |= for TCTL is defined
as follows:

• z0 |= EF [l, h]φ, iff there is a path (zi) and a j > 0 such that zj |= φ and l ≤
D((zi), zj) ≤ h,

• z0 |= AF [l, h]φ, iff for all paths (zi), there is a j > 0 such that zj |= φ and l ≤
D((zi, zj) ≤ h,

4.4 Conclusion

We present in this chapter the formalism Net Condition/Event Systems (NCES) which is an
extension of Petri nets, and which will be used for the modelling of reconfigurable embedded
control systems in following sections. We present also the temporal logic Computation Tree
Logic that we will use to describe functional and temporal properties of such systems. These
choices are done regarding the rich experience of the host laboratory1 in this domain.

1Research Laboratory on Automation Technology at Martin Luther University in Germany

Chapter 5

Problems and Contributions

We want in this monograph to propose new technical solutions for developments of reconfig-
urable embedded control systems following software component-based approaches. We are
interested in automatic reconfigurations of autonomous and adaptive embedded controllers
to be automatically changed at run-time.

The first question to ask in the following chapter is what Architecture Description Lan-
guage or Industrial Technology should we choose to develop systems? the answer is difficult
since each language or technology is rich, useful and well-used by known organizations and
companies in the World (Chapter 4). A solution that we propose is to define a general
concept of Control Components to be assumed as software units for controls of physical
processes. A Control Component can be a Koala module, a PBO object, a Function Block
or also any concept of components defined by an ADL. It is composed of an implemen-
tation supporting component’s tasks and an interface for external interactions. We define
a formalization of reconfigurable embedded control systems to be assumed as networks of
Control Components with precedence constraints that we model according to the formalism
Net Condition/Event systems (NCES). We define in the same chapter a new definition of
reconfigurations that should be applied to bring the whole system at run-time to optimal
and safe behaviors. We classify thereafter all possible reconfiguration scenarios to three
forms dealing with the modification of the software architecture, the composition of com-
ponents or the easy modification of data. This classification is applied to two Benchmark
Production Systems FESTO and EnAS following the technology IEC61499 and available at
Martin Luther University in Germany.

We are interested in Chapter 7 in the modelling and verification of component-based
reconfigurable embedded control systems. The question is how can we model any form
of reconfigurations ? how to perform correct and coherent distributed reconfigurations of
different devices ? how can we apply a model checking while controlling the verification
complexity ? finally an important question is how to implement distributed automatic re-
configurations ? We define in this chapter a multi-agent reconfigurable architecture where
a Reconfiguration Agent is proposed for each device of the execution environment to handle
local reconfigurations, and a Coordination Agent is defined to coordinate between devices

31

32

by using a well-defined communication protocol. the goal is to allow coherent and feasi-
ble distributed reconfigurations. We model these agents by NCES and apply the model
checker SESA to check their feasibility. We use in this case the temporal logic ”Computa-
tion Tree Logic” to describe functional and temporal properties of this architecture. Once
agents checked, the next step to be addressed is the verification of the different networks
of Control Components that can be executed after different reconfiguration scenarios. We
define therefore a refinement-based approach that checks in step by step each network for
the definition, modelling and verification of Control Components. The last section of this
chapter deals with implementations of reconfiguration scenarios according to the technology
IEC61499.

We are interested in Chapter 8 in feasible execution models of reconfigurable real-time
embedded control systems. We mean by an execution model the set of feasible OS tasks
encoding the system. We are not restricted in this research to a particular Operating System
while assuming that preemptive and non-preemptive Earliest Deadline First policies are
supported. We define an approach that constructs the different feasible sets of OS tasks
implementing the system after different possible automatic reconfiguration scenarios. Only
one set should be loaded in memory after the corresponding scenario. These tasks are
verified by applying previous solid results in the theory of real-time scheduling.

We are interested in Chapter 9 in the low power scheduling of reconfigurable real-time
embedded control systems. We assume synchronous real-time tasks starting at t=0 such
that their deadlines are equal to their periods. After a particular reconfiguration scenario,
the energy consumption should be stable or decreased in order to consider limitations in
the embedded batteries. We define technical solutions allowing modifications of the system
parameters if such consumption is increased after any scenario. In this case, we propose to
change periods of some tasks, to change their execution times or to remove some of them.
We present several simulations proving the benefits of our solutions.

Finally, we are interested in Chapter 10 in optimal simulations of reconfigurable real-time
embedded control systems which is not an exhaustive approach. We limit our research to
simulations of a network of components specifying the system after a particular scenario. We
propose in this case to inject faults in order to bring their behaviors to well-defined critical
executions. We define a master-slave architecture where the master decides new errors to
be injected by the slaves which are located in different levels of the system hierarchical
models. This contribution is applied to the footwear factory of the ITIA-CNR Institute in
Italy where simulations and analysis are made.

Chapter 6

Reconfigurable Component-based
Embedded Systems: New
Motivations

Although each one of Architecture Description Languages and component-based technolo-
gies is rich and useful, we want in our research work to be independent of any one of them
by defining the general concept of ”Control Component” as an event-triggered software
unit to be composed of an interface for external interactions and an implementation that
provides control computations of physical processes [58]. A Control Component in this
book can be a Function Block according to the Standard IEC61499, a Koala component
according to the Koala technology, a software component according to an ADL..., etc. It
checks and interprets evolutions of the environment (i.e. user new commands, evolution
of corresponding physical processes or execution of other previous components) by read-
ing data from sensors before possible reactions to activate corresponding actuators in the
plant. We define the concept of Container to gather components sharing the control of
same physical processes. A container defines a logic execution unit corresponding to time
slots of the processing unit. It corresponds in the operational level to an OS task. We
compose the plant of different physical processes under precedence constraints that define
the production order. It is formalized by sets of sensors and actuators under precedence
constraints to control corresponding physical processes.

A crucial criterion to consider for new generations of embedded systems is the automatic
improvement of their performance at run-time. Indeed, these systems should dynamically
and automatically improve their quality of service according to well-defined conditions. In
addition, they should dynamically reduce the memory occupation and therefore the energy
consumption in order to decrease the execution cost. They have also to dynamically reduce
the number of running controllers or also the traffic on used communication networks.
We define in this chapter a new reconfiguration semantic that we apply to Benchmark
Production Systems available in the research laboratory of Prof.Dr. Hans-Michael Hanisch
at Martin Luther University. To cover all possible reasons in industry, we define different

33

34

reconfiguration forms to change the architectures, structures or data of the whole system
to safe and preferment behaviors.

6.1 Plant Formalization

We denote in the following by Sys the control system that controls, by reading data from
sensors and activating corresponding actuators, the plant which is classically composed of
a set of physical processes denoted by ”Plant”. Let αsensors and αactuators be respectively
the set of sensors and actuators in the plant. For each sensor sens ∈ αsensors, we assume
that any data reading by Sys is an event ev = event(sens), and for each actuator act ∈
αactuators, we define a couple of events (activ, cf) = activation(act) that corresponds to the
activation of and the confirmation from act. Let ϕsensors be the set of events to occur when
data are read from sensors of αsensors and let ϕactuators be the set of couples of events when
actuators of αactuators are activated.

ϕsensors = {ev/∃sens ∈ αsensors, ev = event(sens)}

ϕactuators = {(activ, cf)/∃act ∈ αactuators, (activ, cf) = activation(act)}

We characterize each process φ ∈ Plant by (i) a set denoted by sensors(φ) of sensors
that provide required data by Sys before the activation of φ; (ii) a set of actuators denoted
by actuators(φ) and activated by the system under well defined conditions. The control of
the different physical processes of ”Plant” should satisfy a partial order that we characterize
as follows for each actuator act ∈ αactuators: (i) prev(act): a set of actuators to be activated
just before the activation of act, (ii) follow(act): a set of actuator sets such that only one set
should be activated between all sets in a particular execution scenario when the activation
of act is done, (iii) sensor(act): a set of sensors that provide required data by Sys before
any activation of act. We denote in the following by first(αactuators) (resp. last(αactuators))
the set of actuators with no predecessors in the plant: they are the first (resp. last) to be
activated by the system.

6.2 Control Components

We define in this section the concept of ”Control Components” for embedded control systems
to be assumed in the following as networks of components with precedence constraints that
allow controls of physical processes by reading and interpreting data from sensors before
possible reactions and activations of corresponding actuators. To check the whole behavior
of a control system when errors are assumed to occur at run-time, NCES-based models are
proposed thereafter for these components.

35

6.2.1 Formalization

We define a Control Component CC as an event-triggered software unit of Sys to control
physical processes of the plant. It is composed of an interface for external interactions with
the environment (the plant or other Control Components), and an implementation which is
a set of algorithms for interpretations of input data from sensors of αsensors before possible
activations of corresponding actuators of αactuators. The system Sys is assumed to be a
set of Control Components with precedence constraints such that each component should
start its control task of the plant when all its predecessors finish their executions. We define
event flows to be exchanged between system components to order their executions according
to their precedence constraints. We denote in the following by φ(CC) the set of Control
Components of Sys such that each component is characterized as follows:

CC = {pred, succ, sens, act}, where:

(i) pred(CC): the set of Control Components that should be executed before the ac-
tivation of CC, (ii) succ(CC): the set of Control Components to be activated when the
execution of CC is well-finished, (iii) sens(CC): the set of sensors that provide required
data for CC, (iv) act(CC): the set of actuators to be activated by CC. We assume a buffer
in this research to store input events until their treatment by the components. To organize
the distribution of Control Components in a same device controlling a subset of physical
processes of ”Plant”, we define the concept of logical containers. In the functional level,
a container gathers components that share the control of same processes, and corresponds
in the execution level to an OS task that can be under real-time constraints. Therefore,
the Control Components of the system are distributed on several containers that should be
assigned to OS tasks from the functional to operational architectures.

6.2.2 Specification

We specify the behavior of a Control Component CC by a NCES-based model that has
only one initial place and is characterized by a set of traces such that each trace tr contains
the following transitions: (i) i(CC, sensors set): a transition of the CC model that allows
data readings from a subset of sensors sensors set ⊆ αsensors, (ii) a(CC, act set): a tran-
sition of the CC model that allows the activation of the subset act set ⊆ αactuators, (iii)
cf(CC, act set): a transition allowing a final confirmation from actuators of act set once
the corresponding physical processes finish their executions.

6.3 Reconfigurable Systems: State of the Art

Nowadays, rich research works have been proposed to develop reconfigurable embedded sys-
tems. The authors propose in [6] reusable Function Blocks to implement a broad range of
embedded systems where each block is statically reconfigured without any re-programming.

36

This is accomplished by updating the supporting data structure, i.e. a state transition
table, whereas the executable code remains unchanged and may be stored in permanent
memory. The state transition table consists of multiple-output binary decision diagrams
that represent the next-state mappings of various states and the associated control actions.
The authors propose in [101] a complete methodology based on the human intervention to
dynamically reconfigure control systems. They present in addition an interesting experi-
mentation showing the dynamic change by users of a Function Block’s algorithm without
disturbing the whole system. The authors use in [116] Real-time-UML as a meta-model
between design models and their implementation models to support dynamic user-based
reconfigurations of control systems. The authors propose in [22] an agent-based reconfig-
uration approach to save the whole system when faults occur at run-time. Finally the
authors propose in [2] an ontology-based agent to perform system reconfigurations that
adapt changes in requirements and also in the environment. They are interested to study
reconfigurations of control systems when hardware faults occur at run-time.

Although the applicability of these contributions in industry is clear and obvious, we
believe in their limitation in particular cases (i.e. to resolve hardware faults or to add new
functionalities like updates of algorithms in blocks) without studying all possible reasons
to apply reconfigurations like improvements of the system’s performance. They do not
consider also particular reconfiguration techniques that we can probably apply at run-time
like additions of data/event inputs/outputs in control systems.

6.4 New Reconfiguration Semantic

We are interested in this manuscript in dynamic reconfigurations of embedded systems
(manual or automatic) that we define as follows.

Definition. A dynamic reconfiguration is any change according to well-defined con-
ditions in software as well as hardware components to lead the whole embedded system at
run-time to better and safe behaviors.

We mean in this definition by a change in software components any operation allowing
the addition, removal or also update of components to improve the whole system’s behavior.
We mean also by a change in hardware components any operation allowing the addition,
removal or also update of devices to be used in the execution environment. This new def-
inition remains compatible with previous works on reconfigurations of systems. Indeed, as
defined in [2], the reconfiguration is applied to save the system when hardware problems
occur at run-time. In this case, we have to apply changes in software as well as hardware
components to bring the whole architecture to optimal and safe behaviors. In addition, as
defined in [101], the reconfiguration is manually applied to add new functionalities in the
system. Therefore, it corresponds also to changes in software and hardware components in
order to bring the whole architecture to optimal behaviors. Finally, a dynamic reconfigu-
ration will be in our research work any automatic action that saves the system, enriches its
behaviors or also improves its performance at run-time. To our knowledge, this definition
covers all possible reconfiguration cases in industry.

37

6.5 Industrial Case Studies: Reconfiguration of Benchmark

Production Systems FESTO and EnAS

We apply this new semantic of reconfiguration to two Benchmark Production Systems 1

following the Standard IEC61499: FESTO and EnAS available in the research laboratory
of Prof.Dr. Hans-Michael Hanisch at Martin Luther University in Germany. For the sale
of our contributions, we imagine new functionalities in these systems.

6.5.1 FESTO Manufacturing System

The FESTO Benchmark Production System is a well-documented demonstrator used by
many universities for research and education purposes, and is used as a running example in
the context of this chapter (Figure 6.1). FESTO is composed of three units: the Distribu-
tion, the Test and the Processing units. The Distribution unit is composed of a pneumatic
feeder and a converter. It forwards cylindrical work pieces from a stack to the testing unit
which is composed of the detector, the tester and the elevator. This unit performs checks
on work pieces for height, material type and color. Work pieces that successfully pass this
check are forwarded to the rotating disk of the processing unit, where the drilling of the work
piece is performed. We assume in this research work two drilling machines Drill machine1
and Drill machine2 to drill pieces. The result of the drilling operation is next checked
by the checking machine and the work piece is forwarded to another mechanical unit. We
present in Figure 6.2 the sequence of functional operations in the system such that each
operation needs required data from sensors to activate corresponding actuators.

For the sale of our contributions, we assume three production modes of FESTO according
to the rate of input pieces denoted by number pieces into the system (i.e. ejected by the
feeder).

• Case1: High production. If number pieces ≥ Constant1, Then the two drilling
machines are used at the same time to accelerate the production. In this case, the
Distribution and Testing units should forward two successive pieces to the rotating
disc before starting the drilling with Drill machine1 AND Drill machine2. For this
production mode, the periodicity of input pieces is p = 11seconds.

• Case2: Medium production. If Constant2 ≤ number pieces < Constant1, Then
we use Drill machine1 OR Drill machine2 to drill work pieces. For this production
mode, the periodicity of input pieces is p = 30seconds.

• Case3: Light production. If number pieces < Constant2, Then only the drilling
machine Drill machine1 is used. For this production mode, the periodicity of input
pieces is p = 50seconds.

1Detailed descriptions are available in our website: http://aut.informatik.uni-halle.de.

38

Figure 6.1: The FESTO modular production system

On the other hand, if one of the drilling machines is broken at run-time, then we
have to only use the other one. In this case, we reduce the periodicity of input pieces to
p = 40seconds. The system is completely stopped in the worst case if the two drilling
machines are broken. According to the rate of input pieces, the dynamic reconfiguration is
useful to:

• protect the whole system when hardware faults occur at run-time. Indeed, IfDrill machine1
(resp, Drill machine2) is broken, then the drilling operation will be supported by
Drill machine2 (resp, Drill machine1),

• improve the system productivity. Indeed, if the rate of input pieces is increased, then
we improve the production from the Light to the Medium or from the Medium to the
High mode.

This first example shows the new reconfiguration semantic in industry: we can change
the system configuration to improve the performance even if there are no faults.

6.5.2 EnAS Manufacturing System

The Benchmark Production System EnAS was designed as a prototype to demonstrate
energy-antarcic actuator/sensor systems. For the sale of this contribution, we assume that
it has the following behavior: it transports pieces from the production system (i.e. FESTO
system) into storing units (Figure 6.3). The pieces in EnAS shall be placed inside tins to

39

piece
ejection

Convert

Detect

Test Elevate

Tester Failed

Rotate

Drill 1

Drill 2

Check Evacuate

S1 S3

S4

S5 S6 S7

S8

S9 S10

S11 S12

S15 S16

S13 S14

S17 S18 S19

act1 act2

act3 act5

act6

act8

act7

act9 act10

Piece Convert Piece

Heigh
Color

Material
act4

down piece

piece disc

Machine piece

Machine piece

depth diameter

Feeder Converter

Tester Elevator

Disc

Driller 1

Driller 2

Checker Evacuator2

Evacuator1

S2

Figure 6.2: Functional operations of the FESTO system

close with caps afterwards. Two different production strategies can be applied : we place
in each tin one or two pieces according to production rates of pieces, tins and caps. We
denote respectively by nbpieces, nbtins+caps the production number of pieces and tins (as well
as caps) per hour and by Threshold a variable (defined in user requirements) to choose the
adequate production strategy.

The EnAS system is mainly composed of a belt, two Jack stations (J1 and J2) and two
Gripper stations (G1 and G2) (Figure 8.4). The Jack stations place new produced pieces
and close tins with caps, whereas the Gripper stations remove charged tins from the belt
into the storing units. We present in Figure 6.9 the sequence of functional operations of
EnAS such that each operation needs required data from sensors to activate corresponding
actuators.

Initially, the belt moves a particular pallet containing a tin and a cap into the first Jack
station J1. According to production parameters, we distinguish two cases,

• First production policy: If (nbpieces/nbtins+caps ≤ Threshold), Then the Jack
station J1 places from the production station a new piece and closes the tin with the
cap. In this case, the Gripper station G1 removes the tin from the belt into the storing
station St1 (Figure 6.6).

40

Figure 6.3: EnAS-Demonstrator in Halle

• Second production policy: If (nbpieces/nbtins+caps > Threshold), Then the Jack
station J1 places just a piece in the tin which is moved thereafter into the second Jack
station to place a second new piece. Once J2 closes the tin with a cap, the belt moves
the pallet into the Gripper station G2 to remove the tin (with two pieces) into the
second storing station St2 (Figure 6.7).

For the sale of our contributions, we assume that each piece (resp, tin and cap) costs 0.4=C
(resp, 0.6=C). In addition, let us assume that Threshold = 1.5. According to production
parameters, we have to apply the best production policy as follows,

• If nbpieces/nbtins+caps = 180/100 > Threshold, Then,

– If we apply the first policy, Then we will charge 100 tins per hour that cost
100=C/h,

– Else If we apply the second policy, Then we will only charge 90 tins per hour
that cost 126=C/h and the gain is 26%.

• If nbpieces/nbtins+caps = 100/100 < Threshold, Then,

– If we apply the first policy, Then we will charge 100 tins per hour that cost
100=C/h,

– Else If we apply the second policy, Then we will have 50 tins per hour that
cost 70=C/h and the loss is −30%.

According to production parameters, the dynamic reconfiguration of the transportation
system is useful to:

41

Figure 6.4: Distribution of the EnAS stations

Move Belt

S20 S21

act11

New
pallet End

cycle

Belt

Put piece Move Belt

Grippe

Put piece Move Belt

S22 S23

act12

Jack1

act13

Belt

S24

S28

S25 S26

act14

Jack2

act15

Belt

S27

Grippe

act17

Gripper G2

act16

Gripper G1

S29

Pallet Piece Jack1 comes back

OR

Pallet

Pallet Piece Jack2 comes back

Pallet

Figure 6.5: Functional operations of the system EnAS

• protect the system when hardware problems occur at run-time. For example, if the
Gripper G2 is broken, then we have to follow the first production policy by placing
only one piece in each tin.

• improve the production gain when (nbpieces/nbtins+caps > Threshold). In this case,
we have to apply the second policy and have therefore to apply changes in the system’s
architecture and blocks to follow this policy.

In these Benchmark Production Systems FESTO and EnAS, the reconfiguration is not
only applied to resolve hardware problems as proposed in [2, 22] but also to improve the
system’s performance by increasing the production gain or the number of produced pieces.
This new semantic of reconfiguration will be a future issue in industry. We note in addi-
tion that 11 physical processes of Plant are distinguished: Feeder, Converter, Detector,
Tester, Evacuator1, Elevator, Disc, Driller1, Driller2, Checker, Evacuator2. The ac-
tuators act6 and act7 are characterized in particular as follows: prev(act6) = {act5};
follow(act6) = {{act7}, {act8}}; sensor(act7) = {S15, S16}. Before the activation of
act7, Sys should know if a piece is available in Drill machine1 (i.e. information to be

42

Conveyor Jack1 Gripper1

moveJ1

Load &
Close

moveG1

Remove

Figure 6.6: Policy1: production of a tin with only one piece.

Conveyor Jack1 Gripper1

moveJ1

Load

moveJ2

Remove

Jack2 Gripper2

Load & Close

moveJ2

Figure 6.7: Policy2: production of tins with double pieces.

provided by the sensor S16) and also if this machine is ready (i.e. information pro-
vided by S15). Note that act1 (resp. act10) is the only actuator without predecessors
(resp. successors) in FESTO: act1 ∈ first(αactuators) and act10 ∈ last(αactuators). The
EnAS Benchmark Production System is composed of 7 physical processes. We character-
ize the actuator act13 corresponding to the Belt as follows: (i) prev(act13) = {act12};
(ii) follow(act13) = {{act14}, {act16}}, (iii) sensor(act13) = {S24}. Note that act11
(resp. act16 and act17) is (resp. are) the only actuator(s) without predecessors (resp. suc-
cessors) in EnAS: (i) act11 ∈ first(αactuators), (ii) act16 ∈ last(αactuators), (iii) act17 ∈
last(αactuators).

In the Benchmark Production Systems FESTO and EnAS, the Control Components
are Function Blocks according to the Standard IEC61499. We present respectively their
assumed Function Blocks-based designs in Figure 6.8 and Figure 6.9. We present in par-
ticular the times to distribute, test, drill and finally check work pieces (In particular, the

43

Figure 6.8: An IEC61499-based Design of FESTO

drilling operation takes 5 seconds before forwarding the piece into the checking machine).
We show in Figure 6.10 a NCES-based model of the Control Component CC Jack1 that
controls in EnAS the Jack station J1. This component should read required data from the
sensors S22 (i.e. the pallet is in front of J1) and S23 (i.e. a new piece is ready to be put in
the tin) before a possible activation of the actuator act12.

6.6 Reconfiguration Forms

We propose in this section a classification of all possible reconfiguration forms of embedded
control systems:

• First Form. It deals with the change of the application architecture that we consider
as a composition of components. In this case, we have possibly to add, remove or also
change the localization of components (from one to another device). This reconfigu-
ration form requires to load new (or to unload old) blocks in (from) the memory

Running example1. In the FESTO manufacturing system, we distinguish two ar-
chitectures:

– First Architecture (Light production). We implement the system with the
first architecture If we apply the Light production mode (i.e. number pieces <
Constant2). In this case, the Function Block Drill2 is not loaded in the memory,

– Second Architecture. We implement the system with the second architecture If
we apply the High or also the Medium mode (i.e. number pieces ≥ Constant2).
In this case, we load in the memory the Function Blocks Drill1 and Drill2.

44

J1_CTL

Load

Load&close

Init Inito

Acq1

Acq2 G1_CTL

Init Inito

Close

G2_CTL

Init Inito

Close

Belt_CTL

Init Inito

Move_load

Move_close

Loa

Clo

J2_CTL

Load&close

Init Inito

Acq2

Lo&Cl

Figure 6.9: An IEC61499-based Design of EnAS.

Running example2. In the EnAS manufacturing system, we distinguish two archi-
tectures:

– We implement the system with the first architecture If we follow the first produc-
tion policy. In this case, we load in the memory the Function Blocks J1 CTL,
Belt CTL and G1 CTL,

– We implement the system with the second architecture If we follow the second
production policy. In this case, we load in the memory the Function Blocks
J1 CTL, J2 CTL, Belt CTL and G2 CTL,

If we follow the first production policy and nbpieces/nbtins+caps becomes higher than
Threshold, Then we should load the function block G2 CTL in the memory to follow
the second production policy.

• Second form. It deals with the reconfiguration of the application without changing
its architecture (i.e. without loading or unloading components). In this case, we apply
changes of the internal structure of components or of their composition.

Running example1. In the FESTO system, we distinguish for the second architec-
ture the following cases:

– High production. If number pieces ≥ Constant1, Then we should apply an
automatic modification of the ECC of Rotat Disc in order to use the two drilling
machines Drill machine1 and Drill machine2,

– Medium production. If Constant2 ≤ number pieces < Constant1, Then
we should apply a new modification of such ECC in order to use one of these
machines.

Running example2. In the EnAS system, if we follow the second policy and the
Jack station J2 is broken, then we should change the internal behavior (i.e. the ECC

45

P5

Module of act12

ev10

ev9

[a,b]
P6

P1

Module of Sensor s23

ev2

P0

Module of Sensor s22

ev1

NCES-based Model
of the Control Component

CC_Jack1

ev4

ev5

ev6
ev7

P2

P3

P4

Signal From the previous component
CC_Belt that controls the Belt

ev3

ev8

Signal into the next component
CC_Belt that controls the Belt

i(
C

T
,{

s2
2,

s2
3}

)

a(
C

T
,{

ac
t1

2}
)

cf
(C

T
,{

ac
t1

2}
)

Figure 6.10: Interactions between the Control Component CC Jack1 and the plant sensors
S22 and S23 before the activation of act12

structure) of the block J1 CTL to close the tin with a cap once it contains only one
piece. The tin will be moved directly to the Gripper G2. We do not change in this
example the application architecture (i.e. loading or unloading blocks) but we just
change the behavior of particular blocks.

• Third form. It simply deals with easy reconfigurations of application data (i.e.
internal data of components or global data of the system).

Running example1. In the FESTO system, If we apply the Medium production
mode (i.e. the second architecture), Then the production periodicity is 30 seconds,
whereas If we apply in the same architecture the High mode Then the periodicity is
11 seconds.

Running example2. In the EnAS system, If a hardware problem occurs at run-
time, Then we have to change the value of Threshold to a number max value. In
this case, we will not be interested in the performance improvement but in the rescue
of the whole system to guarantee a minimal level of productivity.

6.7 Conclusion

We define in this chapter the concept of Control Components in order to be independent of
any Architecture Description Language or industrial technology. Each component is a unit
of software allowing controls of physical processes by reading required data from sensors
before possible reactions to activate corresponding actuators. In the functional level, the
system’s components are assumed to be distributed on containers that we define as OS tasks

46

in the operational level. We propose in addition a new definition of reconfiguration scenarios
to address new requirements in Industry: a dynamic reconfiguration is a technical run-time
solution for systems to be optimal and safe. This definition is applied to two Benchmark
Production Systems FESTO and EnAS available in the research laboratory of Prof. Hans-
Michael Hanisch. Finally, we classify all reconfiguration scenarios into three forms. The
first deals with the modification of software architectures, the second with compositions of
components, and the last with easy updates of data. This classification covers all possible
reconfiguration forms to dynamically bring systems to safe and optimal behaviors while
satisfying user requirements and environment’s evolutions.

Chapter 7

Safety Multi-Agent Reconfigurable
Architectures: Modelling And
Verification

7.1 Introduction

We propose in this chapter a distributed multi-agent architecture for automatic reconfig-
urations of embedded control systems. A Reconfiguration Agent ”RA” is affected in this
architecture to each device of the execution environment to handle local automatic re-
configurations, and a unique Coordination Agent ”CA” is defined to manage distributed
reconfigurations between devices because any uncontrolled automatic reconfiguration ap-
plied in a device can lead to critical problems or serious disturbances in others. We define
the concept of ”Coordination Matrix” to define for each distributed reconfiguration scenario
the behavior of all concerned agents that should simultaneously react. According to the
urgency of reconfiguration scenarios, we define priority levels for concurrent matrices allow-
ing different reconfigurations of same devices. The Coordination Agent handles all matrices
to coordinate between agents according to a well-defined communication protocol: when
an agent applies in the corresponding device a reconfiguration scenario, the Coordination
Agent should inform other concerned agents to react and to bring the whole distributed
architecture into safe and optimal behaviors [59]. To check the whole distributed archi-
tecture, we model each reconfiguration agent by nested state machines (i.e. states can be
other state machines) according to the formalism Net Condition-Event Systems (NCES),
and use the well-expressive temporal logic ”Computation Tree Logic” (denoted by CTL)
as well as its extensions (eCTL and TCTL) to specify functional and temporal properties
of agents and system’s components that we verify by the model checker SESA. At this
step, the internal behavior in each device is checked, but the coordination between agents
should be verified in order to avoid any critical problems at run-time. We propose for each
Coordination Matrix a NCES-based model and apply the model checker SESA to check if

47

48

all the system’s agents react as described in user requirements to guarantee safe distributed
reconfigurations [55].

The next step to be addressed is the specification and verification of different networks of
Control Components that correspond to different reconfiguration scenarios to be automat-
ically applied by each Reconfiguration Agent [62]. We want in this case to apply a model
checking for automatic and manual verifications of functional properties of such networks
[47]. This verification is difficult to do in complex cases like the assumed reconfigurable
Benchmark Systems FESTO and EnAS. We propose therefore to apply a refinement-based
technique that automatically models and checks in several steps each network of compo-
nents. An abstract model of the network is defined in the first step according to the formal-
ism NCES. It is automatically refined step by step thereafter to automatically generate in
each step NCES-based models of Control Components to be automatically checked by the
model checker SESA for the verification of deadlock properties. In addition, we manually
verify functional properties described according to the temporal logic ”Computation Tree
Logic” (abbr. CTL) in order to check the correct behavior of the new generated compo-
nents in each step [100]. If the refinement-based specification and verification of Control
Components is feasible in different steps, Then the correctness of their network is deduced.
The safety of the whole reconfigurable system is confirmed if all its networks of Control
Components are correct.

Finally, If Control Components are assumed to be Function Blocks according to the
Industrial Standard IEC61499, we propose in this chapter XML-based implementations for
both coordination and reconfiguration agents that we tested to the benchmark production
systems FESTO and EnAS [61].

7.2 State of the Art

We present well-known model checkers for verifications of functional and temporal proper-
ties, before describe thereafter some research studies on multi-agent systems.

7.2.1 Model Checking

Finite state machines (abbr. FSM) are widely used for the modelling of control flow in em-
bedded systems and are amenable to formal analysis like model checking [28, 29, 30, 44, 120,
80]. Two kinds of computational tools have been developed in recent years for model check-
ing: tools like KRONOS [33], UPPAAL [5], HyTech [43] and SESA [103] which compute
sets of reachable states exactly and effectively, whereas emerging tools like CHECKMATE
[27], d/dt [9] and level-sets [86] methods approximate sets of reachable states. Several re-
search works have been proposed in recent years to control the verification complexity by
applying hierarchical model checking for complex embedded systems. The authors propose
in [3] an approach for verifications of hierarchical (i.e. nested) finite state machines whose
states themselves can be other machines. The straightforward way to analyze a hierarchical

49

machine is to flatten and apply a model checking tool on the resulting ordinary FSM, but
the authors show in this interesting research work that this flattening can be avoided by
developing useful algorithms for verifications of hierarchical machines. We use SESA in our
research work to validate multi-agent reconfigurable embedded systems, where each agent
is specified by nested Net Condition-Event Systems.

7.2.2 Multi-Agent Systems

Several research works have been done in recent years in academia and also in industry to
define inter-agents communication protocols for multi-agent systems. The authors focus in
[91] on the communicative act between agents and define a general semantic framework for
specifying a class of Agent Communication Language (ACLs) based on protocols. They
introduce a small ACL denoted by sACL for different application domains and describe
a development method to define an ACL for a particular application. The authors are
interested in [81] in Distributed Constraint Satisfaction Problems (DisCSP) as an impor-
tant area of research for multi-agent systems. The agents work together to solve problems
that cannot be completely centralized due to security, dynamics, or complexity. The au-
thors present an algorithm called asynchronous partial overlay (APO) for solving DisCSPs
that is based on a mediated negotiation process. The same authors present in [83, 82]
a cooperative negotiation protocol that solves a distributed resource allocation problem
while conforming to soft real-time constraints in a dynamic environment. A fully auto-
mated and knowledge-based organization designer for multi-agent systems called KB-ORG
is proposed in the same research activities [106]. Organization design is the process that
accepts organizational goals, environmental expectations, performance requirements, role
characterizations, as well as agent descriptions, and assigns roles to each agent. In [31], an
agent-based power-aware sensor network called CNAS (Collaborative Network for Atmo-
spheric Sensing) is proposed for ground-level atmospheric monitoring. The CNAS agents
must have their radios turned off most of the time, as even listening consumes significant
power. CNAS requires agent policies that can intelligently meet operational requirements
while communicating only during intermittent, mutually established, communication win-
dows. The authors describe in [87] the architecture and implementation of the security
(X-Security) system, which implements authentification and secure communication among
agents. The system uses certification authority (CA) and ensures full cooperation of se-
cured agents and already existing (unsecured) ones. The authors propose augmenting in
[20] the capabilities of current multi-agent systems to provide for the efficient transfer of
low-level information, by allowing backchannels of communications between agents with
flexible protocols in a carefully principled way.

In our research work, we are interested in the communication and collaboration between
agents to guarantee safe and adequate distributed reconfigurations of embedded control
systems. These communications are handled by a Coordination Agent that coordinates
between agents according to environment’s evolutions, user requirements and also priorities
of reconfigurations.

50

Device 3

Device 4

Device 5

Device 6

Device 7

Device n

Device 1

Device 2

Communication
Network

Agent 2

Agent 1

Agent n

Agent 7

Agent 6

Agent 5

Agent 4

Agent 3

Coordination Agent

Hardware problemImprovement of the System performance

Adaptation to the
reconfiguration of

Device 3

Database

Adaptation to the
reconfiguration of

Device 3

Adaptation to the
reconfiguration of

Device 1

Adaptation to the
reconfiguration of

Device 1

Coordination between
Agent 3, Agent 6 and Agent 7

Coordination between
Agent 1, Agent 2 and Agent 4

Figure 7.1: Multi-agent architecture of distributed reconfigurable embedded systems.

7.3 Contribution: Multi-Agent Architecture for Reconfig-

urable Embedded Control Systems

We define in this section a multi-agent architecture for distributed reconfigurable systems
where a reconfiguration agent is assigned in this architecture to a device of the execution
environment to handle automatic reconfigurations of Control Components. It is specified
by nested state machines that support all reconfiguration forms. Nevertheless, the coor-
dination between agents in this distributed architecture is extremely important because
any uncontrolled automatic reconfiguration applied in a device can lead to critical prob-
lems, serious disturbances or also inadequate distributed behaviors in others. To guarantee
safe distributed reconfigurations, we define the concept of Coordination Matrix that defines
correct reconfiguration scenarios to be simultaneously applied in distributed devices, and
define the concept of Coordination Agent that handles coordination matrices to coordinate
between distributed agents. We propose in this section an inter-agents communication pro-
tocol to manage concurrent distributed reconfiguration scenarios in same devices (Figure
7.1).

Running Example. In the Production Systems FESTO and EnAS where a recon-
figuration agent is defined for each one of them, the reconfiguration of the first can lead
to a reconfiguration of the second in order to guarantee a coherent production in the two
platforms. This means:

• If Constant2 ≤ number pieces, Then the FESTO Agent has to apply the Medium
or the High Production Mode, and in this case the EnAS Agent has to improve the
productivity by applying the Second Production Policy in order to put two pieces in
each tin.

51

• If Constant2 > number pieces, Then the FESTO Agent has to decrease the produc-
tivity by applying the Light mode (i.e. only Drill machine1 is used), and in this case,
the EnAS Agent has also to decrease to productivity by applying the First Production
Policy in order to put only one piece in the tin according to user requirements.

On the other hand, when a hardware problem occurs at run-time in a platform, a recon-
figuration of the second is required as follows:

• If one of the Jack stations J1 and J2 or the Gripper station G2 is broken in the EnAS
Production System, Then the corresponding Agent has to decrease the productivity by
applying the First Production mode, and in this case the FESTO Agent has also to
follow the Light Production mode in order to guarantee a coherent behavior.

• If one of the drilling machines Drill machine1 and Drill machine2 is broken, Then
the FESTO Agent has to decrease the productivity, and in this case the EnAS Agent
has to follow the First Production Mode where only one piece is put in a tin.

7.3.1 Reconfiguration in a Device

We define for each device of the execution environment a unique agent that checks the
environment evolution and takes into account user requirements to apply automatic recon-
figuration scenarios.

Architecture of the Reconfiguration Agent

We define the following units that belong to three hierarchical levels of the agent architec-
ture:

• First level: (Architecture Unit) this unit checks the system behavior and changes
its architecture (adds/removes Control Components) when particular conditions are
satisfied.

• Second level: (Control Unit) for a particular loaded architecture, this unit checks
the system behavior and: reconfigures compositions of components (i.e. changes the
configuration of connections), or adds/removes event inputs/outputs, or reconfigures
the internal behavior of components,

• Third level: (Data Unit) this unit updates data if particular conditions are satisfied.

We design the agent by nested state machines where the Architecture Unit is specified
by an Architecture State Machine (denoted by ASM) in which each state corresponds to a
particular architecture of the system. Therefore, each transition of the ASM corresponds
to the load (or unload) of Control Components into (or from) the memory. We construct
for each state S of the ASM a particular Control State Machine (denoted by CSM) in

52

the Control Unit. This state machine specifies all reconfiguration forms to possibly apply
when the system’s architecture corresponding to the state S is loaded (i.e. modification of
compositions of components or of their internal behavior). Each transition of any CSM has
to be fired if particular conditions are satisfied. Finally, the Data unit is specified also by
Data State Machines (denoted by DSMs) where each one corresponds to a state of a CSM
or the whole ASM.

Notation. we denote in the following by,

• nASM the number of states in the state machine ASM (i.e. the number of all possible
software architectures to implement the system). ASMi (i ∈ [1, nASM]) denotes a
state of ASM to encode a particular architecture (i.e. particular network of compo-
nents). This state corresponds to a particular state machine CSM that we denote by
CSMi (i ∈ [1, nASM]),

• nCSMi the number of states in CSMi and let CSMi,j (j ∈ [1, nCSMi]) be a state of
CSMi,

• nDSM the number of Data State Machines corresponding to all possible reconfigura-
tion scenarios of the system. Each state CSMi,j (j ∈ [1, nCSMi]) is associated to a
particular DSM state machine DSMk (k ∈ [1, nDSM]).

• nDSMk
the number of states in DSMk. DSMk,h (h ∈ [1, nDSMk

]) denotes a state of
the state machine DSMk which can correspond to one of the following cases: (i) one
or more states of a CSM state machine, (ii) more than one CSM state machine, (iii)
all the ASM state machines.

The agent automatically applies at run-time different reconfiguration scenarios such that
each one denoted by Reconfigurationi,j,k,h corresponds to a particular network of Control
Components Networki,j,k,h as follows: (i) the architecture ASMi is loaded in the memory,
(ii) the control policy is fixed in the state CSMi,j , (iii) the data configuration corresponding
to the state DSMk,h is applied.

Running example. We present in Figure 7.2 the nested state machines of the FESTO
Agent. The ASM state machine is composed of two states ASM1 and ASM2 corresponding
to the first (i.e. the Light Production Mode) and the second (the High and Medium modes)
architectures. The state machines CSM1 and CSM2 correspond to the states ASM1 and
ASM2. In CSM2 state machine, the states CSM21 and CSM22 correspond respectively
to the High and the Medium Production Modes (where the second architecture is loaded).
To fire a transition from CSM21 to CSM22, the value of number pieces should be in
[Constant2, Constant1[. We note that the states CSM12 and CSM25 correspond to the
blocking problem where the two drilling machines are broken. Finally the state machines
DSM1 and DSM2 correspond to the state machines CSM1 and CSM2. In particular, the
state DSM21 encodes the production periodicity when we apply the High Production Mode
(i.e. the state CSM21 of CSM2), and the state DSM22 encodes the production periodicity
when we apply the Medium mode (i.e. CSM22 of CSM2). Finally, the state DSM23

53

corresponds to CSM23 and CSM24 and encodes the production periodicity when one of
the drilling machines is broken. We design the agent of the EnAS Benchmark Production
System by nested state machines as depicted in Figure 7.3. The first level is specified by
ASM where each state defines a particular architecture of the system. The state ASM1

(resp. ASM2) corresponds to the second (resp. first) policy where Control Components
that control J1, J2 and G2 (resp. only J1 and G1) are loaded in memory. We associate
for each one of these states a CSM in the Control Unit. Finally, Data Unit is specified
by DSM which defines the values that Threshold takes under well-defined conditions. Note
that if we follow the Second Production Policy (state ASM1) and the gripper G2 is broken,
then we should change the policy and also the system architecture by loading the Control
Component G1 CTL to remove pieces into Belt1. On the other hand, we associate in the
second level for the state ASM1 the CSM CSM1 that defines the different reconfiguration
forms to apply when the first architecture is loaded in the memory. In particular, If the
state CSM11 is active and the Jack station J1 is broken, Then we activate the state CSM12

in which the Jack station J2 is running alone to place only one piece in the tin. In this
case, the internal behavior of the block Belt CTL should be changed (i.e. the tin should be
transported directly to the station J2). In the same way, If we follow the same policy in the
state CSM11 and the Jack station J2 is broken, Then we should activate the state CSM13

where the behavior of J1 should be changed to place a piece in the tin that should be closed
too (i.e. the behavior of the Control Component J1 CTL should be reconfigured). We finally
specify in Data Unit a DSM where we change the value of Threshold when Gripper G1 is
broken (we suppose as an example that we are not interested in the system performance
when this Gripper is broken). By considering this hierarchical model of agents, we specify
all possible reconfiguration scenarios that can be applied in embedded control systems: Add-
Remove (first level) or Update the structure of Control Components (second level) or just
Update data (third level).

System Behavior

The different reconfiguration scenarios applied by the agent define all possible behaviors of
the system when well-fixed conditions are satisfied. We specify these behaviors by a unique
System State Machine (denoted by SSM) in which each state corresponds to a particular
Control Component.

Running example1. We specify in Figure 7.16 the different behaviors of FESTO that
we can follow to resolve hardware problems or to improve the system performance. The
branch Branch1 specifies the system behavior when Drill machine1 or Drill machine2 is
broken or also when the Medium Production Mode is applied, Branch2 defines the system
behavior when the High Production Mode is applied, and Branch3 defines the behavior when
the Light Production Mode is applied.

Running example2. We specify in Figure 7.5 the different behaviors of EnAS that
we can follow to resolve hardware problems or to improve the system performance. In
this example, we distinguish four traces encoding four types of different behaviors. The

54

Figure 7.2: Specification of the FESTO Agent by nested state machines

trace trace1 implements the system behavior when the Jack station J1 is broken. The trace
trace2 implements the system behavior to apply the second production policy. The trace
trace3 implements the system behavior when the Jack station J2 is broken. Finally the last
scenario implements the system behavior when the Gripper G2 is broken or when we have
to apply the first production policy. Note finally that each state corresponds to a particular
behavior of a system’s component when the corresponding input event occurs.

7.3.2 Reconfiguration in a Distributed Architecture

We are interested in automatic reconfigurations of Control Components to be distributed
on networks of devices where the coordination between agents is important. We define in
this section the concept of Coordination Matrix to define coherent reconfiguration scenarios
in distributed devices. We propose in addition an architecture of multi-agent distributed re-
configurable systems where an inter-agents communication protocol is defined to guarantee
safe behaviors after any distributed automatic reconfiguration.

Distributed Reconfigurations

Let Sys be a distributed reconfigurable system of n devices, and let Ag1,..., Agn be n agents
to handle automatic distributed reconfiguration scenarios of these devices. We denote in
the following by Reconfigurationa

ia,ja,ka,ha
a reconfiguration scenario applied by Aga (a

∈ [1, n]) as follows: (i) the corresponding state machine ASM is in the state ASMia . Let

55

ASM
1

ASM
2

!G1^G2

q p^J1^J2
!J1^J2

!G2^G1

!J2^J1^G1

q<p ^J1^J2

E
n

A
S

 A
g
en

t

CSM11

CSM
12

CSM
13

CSM
14

!J1^J2

J1^J2 !J2^J1^!G1

J1^J2

!J1^!J2

!J2^J1^!G1
!J1^!J2

!J1^J2

J1^J2

!J1^!J2

ASM1
CSM21

CSM
22

G1

!G1^!G2

!J1^!J2

J1^!J2

ASM2

DSM
31

DSM 32

Threshold=cte1

Threshold=max_value

G1!G1

DSM

Figure 7.3: Specification of the EnAS Agent by nested state machines

condaia be the set of conditions to reach this state, (ii) the state machine CSM is in the state
CSMia,ja . Let condaja be the set of conditions to reach this state, (iii) the state machine
DSM is in the state DSMka,ha . Let condaka,ha

be the set of conditions to reach this state.
To handle coherent distributed reconfigurations that guarantee safe behaviors of the whole
system Sys, we define the concept of Coordination Matrix of size (n,4) that defines coherent
scenarios to be simultaneously applied by different agents. Let CM be a such matrix that
we characterize as follows: each line a (a ∈ [1, n]) corresponds to a reconfiguration scenario
Reconfigurationa

ia,ja,ka,ha
to be applied by Aga as follows:

CM [a, 1] = ia; CM [a, 2] = ja; CM [a, 3] = ka; CM [a, 4] = ha

According to this definition: If an agentAga applies the reconfiguration scenarioReconfigurationa

CM [a,1],CM [a,2],CM [a,3],CM [a,4], Then each other agent Agb (b ∈ [1, n]\{a}) has to apply the

scenario Reconfigurationb
CM [b,1],CM [b,2],CM [b,3],CM [b,4] (Figure 7.6). We denote in the fol-

lowing by idle agent each agent Agb (b ∈ [1, n]) which is not required to apply any recon-
figuration when others perform scenarios defined in CM . In this case:

CM [b, 1] = CM [b, 2] = CM [b, 3] = CM [b, 4] = 0

condbCM [b,1] = condbCM [b,2] = condbCM [b,3],CM [b,4] = True

We denote in addition by ξ(Sys) the set of coordination matrices to be considered for
the reconfiguration of the distributed embedded system Sys. Each Coordination Matrix
CM is applied at run-time if for each agent Aga (a ∈ [1, n]) the following conditions are
satisfied:

condaCM [a,1] = condaCM [a,2] = condaCM [a,3],CM [a,4] = True

56

Figure 7.4: The system’s state machine of the FESTO Benchmark Production System:
SSM(FESTO).

On the other hand, we define Concurrent Coordination Matrices, CM1 and CM2 two
matrices of ξ(Sys) that allow different reconfigurations of a same agent Agb (∀b ∈ [1, n]) as
follows:

• CMj [b, i] ̸= 0 ∀ j ∈ {1, 2} and i ∈ [1, 4]. In this case, Agb should react when CM1 or
CM2 is desired by the Coordination Agent,

• CM1[b, i] ̸= CM2[b, i] ∀i ∈ [1, 4]. In this case, Agb should apply two different reconfig-
uration scenarios when CM1 and CM2 are simultaneously desired by the Coordination
Agent.

In this case, the system behavior is not deterministic because the agent Agb should
follow two different reconfiguration scenarios at the same time. To guarantee a deterministic
behavior when Concurrent Coordination Matrices are required to be simultaneously applied,
we define priority levels for them such that only the matrix with the highest priority level
should be applied. We denote in the following by:

• Concur(CM) the set of concurrent matrices of CM ∈ ξ(Sys),

• level(CM) the priority level of the matrix CM in the set Concur(CM) ∪ {CM}.

In this case, Concur(CM1) = {CM2} and If CM1 has the highest priority, Then the
agent Agentb should apply Reconfigurationb

CM1[b,1],CM [b,2],CM [b,3],CM [b,4]. The application
of the second matrix CM2 is rejected.

57

Figure 7.5: The system’s state machine of the EnAS Benchmark Production System:
SSM(EnAS).

Figure 7.6: A Coordination Matrix.

Running Example. In the Benchmark Production Systems FESTO and EnAS, we
show in Figure 7.7 the Coordination Matrices to be applied in order to guarantee coherent
distributed reconfigurations at run-time. According to Figures 7.2 and 7.3:

• the first matrix CM1 is applied when the FESTO Agent applies the Light Production
Mode (i.e. the states ASM1, CSM11 and DSM11 are activated and Reconfiguration1,1,1,1

is applied) and the EnAS Agent is required to decrease the productivity by applying the
First Production Policy to put only one piece in each tin (i.e. the states ASM2 and
CSM21 are activated and Reconfiguration2,1,0,0 is applied),

• the second matrix CM2 is applied when the FESTO Agent applies the High Production
Mode (i.e. the states ASM2, CSM21 and DSM21 are activated and Reconfiguration2,1,2,1

is applied) and the EnAS Agent is required to increase the productivity by applying the
Second Production Mode to put two pieces into each tin (i.e. the states ASM1 and
CSM11 are activated and Reconfiguration1,1,0,0 is applied),

• the third matrix CM3 is applied when the FESTO Agent applies the Medium Produc-
tion Mode (i.e. the states ASM2, CSM22 and DSM22 are activated and Reconfiguration2,2,2,2

is applied). In this case the EnAS System is required to apply the Second Production

58

Policy (i.e. the states ASM1 and CSM11 are activated and Reconfiguration1,1,0,0 is
applied),

• the fourth matrix CM4 is applied when the Jack station J1 in the EnAS system is
broken (i.e. the states ASM1 and CSM12 are activated and Reconfiguration1,2,0,0 is
applied). In this case the FESTO system has to decrease the productivity by applying
the Light Production Mode (i.e. the states ASM1, CSM11 and DSM11 are activated
and Reconfiguration1,1,1,1 is applied),

• the matrix CM5 is applied when the Jack station J2 and the Gripper station G1

are broken in the EnAS system (i.e. the states ASM1andCSM13 are activated and
Reconfiguration1,3,0,0 is applied). In this case the FESTO system is required to de-
crease the productivity by applying the Light Production Mode,

• the matrix CM1 is applied at run-time when the Gripper station G2 is broken (i.e.
the states ASM2 and CSM21 are activated and Reconfiguration2,1,0,0 is applied). In
this case the FESTO agent has also to decrease the productivity by applying the Light
Production Mode,

• the matrix CM6 is applied when the Drilling machine Drill machine1 is broken in
FESTO (i.e. the states ASM2, CSM23 and DSM23 are activated and Reconfiguration2,3,2,3

is applied). In this case, EnAS is required to decrease the productivity by apply-
ing the First Production Mode (i.e. the states ASM2 and CSM21 are activated and
Reconfiguration2,1,0,0 is applied),

• the matrix CM7 is applied when the second drilling machine is broken at run-time.
In this case the EnAS system is required also the decrease the productivity by applying
the First Production Mode,

• finally, the matrix CM8 is applied at run-time to stop the whole production when the
two drilling machines Drill machine1 and Drill machine2 are broken. In this case
the EnAS Agent has to reach the halt state (i.e. the states ASM1 and CSM14 are
activated and Reconfiguration1,4,0,0 is applied).

Coordination Between Distributed Agents

We guarantee a coherent behavior of the whole distributed architecture, by defining a Coor-
dination Agent (denoted by CA(ξ(Sys))) that handles the Coordination Matrices of ξ(Sys)
in order to control the rest of agents (i.e. Aga, a ∈ [1, n]) as follows:

• When a particular agent Aga (a ∈ [1, n]) should apply a reconfiguration scenario
Reconfigurationa

ia,ja,ka,ha
(i.e. under well-defined conditions), it sends the following

request to CA(ξ(Sys)) to obtain its authorization:

request(Aga, CA(ξ(Sys)), Reconfigurationa
ia,ja,ka,ha

).

59

1 1 1 1
2 1 0 0

CM1

2 1 2 1
1 1 0 0

CM2

2 2 2 2
1 1 0 0

CM3

1 1 1 1
1 2 0 0

CM4

1 1 1 1
1 3 0 0

CM5

2 3 2 3
2 1 0 0

CM6

2 4 2 3
2 1 0 0

CM7

2 5 0 0
2 2 0 0

CM8

Figure 7.7: Coordination Matrices For the FESTO and EnAS Benchmark Production Sys-
tems.

• When CA(ξ(Sys)) receives this request that corresponds to a particular coordina-
tion matrix CM ∈ ξ(Sys) and if CM has the highest priority between all matrices
of Concur(CM) ∪ {CM}, then CA(ξ(Sys)) informs the agents that have simultane-
ously to react with Aga as defined in CM . The following information is sent from
CA(ξ(Sys)):

For each Agb, b ∈ [1, n] \ {a} and CM [b, i] ̸= 0, ∀ i ∈ [1, 4]:

reconfiguration(CA(ξ(Sys)), Agb,

Reconfigurationb
CM [b,1],CM [b,2],CM [b,3],CM [b,4])

• According to well-defined conditions in the device of each Agb, the CA(ξ(Sys)) request
can be accepted or refused by sending one of the following answers:

– If condbib = condbjb = condbkb,hb
= True

Then the following reply is sent from Agb to CA(ξ(Sys)):

possible reconfig(Agb, CA(ξ(Sys)),

Reconfigurationb
CM [b,1],CM [b,2],CM [b,3],CM [b,4]).

– Else the following reply is sent from Agb to CA(ξ(Sys)):

not possible reconfig(Agb, CA(ξ(Sys)),

Reconfigurationb
CM [b,1],CM [b,2],CM [b,3],CM [b,4]).

• If CA(ξ(Sys)) receives positive answers from all agents, Then it authorizes the re-
quired reconfigurations in the concerned devices:

For each Agb, b ∈ [1, n] and CM [b, i] ̸= 0, ∀ i ∈ [1, 4],
apply(Reconfigurationb

CM [b,1],CM [b,2],CM [b,3],CM [b,4]) in deviceb.

60

Figure 7.8: Coordination between the FESTO and EnAS agents to optimize their produc-
tivities.

Else If CA(ξ(Sys)) receives a negative answer from a particular agent, and If the
reconfiguration scenario Reconfigurationa

ia,ja,ka,ha
allows optimizations of the whole

system behavior, Then CA(ξ(Sys)) refuses the request of Aga by sending the follow-
ing reply:

refused reconfiguration(CA(ξ(Sys)), Aga,

Reconfigurationa
CM [a,1],CM [a,2],CM [a,3],CM [a,4])).

Running example. In the Benchmark Production Systems FESTO and EnAS, we
show in Figure 7.8 the interactions between their agents when number pieces ≥ Constant1.
In this case, the Coordination Agent uses the Matrix CM2 to coordinate between them in
order to apply in FESTO the High Production Policy and in EnAS the Second Production
Mode. We show in Figure 7.9 the coordination between these agents when Drill machine1
is broken in FESTO. In this case, the Coordination Agent uses the Matrix CM6 to decrease
the productivity in EnAS. We note that any reconfiguration scenario should be applied after
the complete process of a piece in FESTO and EnAS.

Evaluation of the Proposed Multi-Agent Architecture

We evaluate in this section the proposed multi-agent architecture for automatic reconfig-
urations of distributed embedded control systems by counting the maximum number of
exchanged messages between agents after distributed reconfiguration scenarios. We as-
sume as a particular case that all Coordination Matrices are concurrent. We denote by
numbercoordinationmessages such number when we use a Coordination Agent to coordinate between
distributed devices of the execution environment, and by numbermessages when we do not
apply any coordination. In this case, each agent should know priorities of matrices, and

61

Figure 7.9: Coordination between the FESTO and EnAS agents when Drill machine1 is
broken.

should inform all others before applying reconfiguration scenarios in the corresponding de-
vice. Let numberreconfigurations be the number of desired reconfigurations by the distributed
agents.

• If we apply the proposed approach where a Coordination Agent is applied to coordi-
nate between devices such that the highest-priority reconfiguration scenario is applied
at run-time, Then numbercoordinationmessages is as follows:

numbercoordinationmessages = numberreconfigurations + 3 * (n− 1) + 1

Indeed, numberreconfigurations among n agents desiring reconfigurations of correspond-
ing devices send numberreconfigurations messages to the Coordination Agent, but only
the highest-priority message is accepted before a notification is sent to the rest (i.e.
n-1) of agents. The Coordinator decides any scenario to be applied once answers are
received from the distributed agents,

• If we apply an approach without any coordination where each agent should inform all
others before applying reconfiguration scenarios, Then numbermessages is as follows:

numbermessages = numberreconfigurations * 3 * (n− 1)

In this case, each agent desiring reconfigurations sends messages to all others before
waiting their answers and deciding the next scenario to be applied.

The gain of our approach is then the decrease of these exchanged messages between
distributed devices of the execution environment:

Gain = numbercoordinationmessages / numbermessages = 1/(3*(n-1)) +
1/numberreconfigurations + 1/(numberreconfigurations ∗ 3 ∗ (n− 1))

62

t

t

t

t

t

t

t

t

t

t

Sec. Prod

Fst. Prod

Hgh. Prod
Med. Prod
Low. Prod

1

1

1

1

1

1

1

Cond. H
Cond. M
Cond. L

Cond. S

Cond. F

CM1

CM2

EnAS

FESTO

Dist And Tester

Drill1

Drill2

J1

G1

J2

G2

EnAS

FESTO

CM5

CM4

CM6

CM8

CM3

CM1

CM6

t0 t1 t2 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

CM7

Figure 7.10: Evaluation of the multi-agent architecture by Varying the number of reconfig-
urations.

Application. If n = 100 and numberreconfigurations = 100, Then Gain = 0, 01.
Running example. We use in this research work the Simulink environment to simulate

both FESTO and EnAS as well as their coordination when hardware faults occur in the plant
or when the improvement of performance should be applied according to user requirements.
We show in Figure 7.10 the behaviors of these benchmark platforms to be balanced between
high, medium and light productions according to environment’s evolutions. The figure shows
also the different matrices to be used by the Coordination Agent to guarantee coherent dis-
tributed reconfigurations. In particular, the matrix CM2 is applied at t2 by the Coordination
Agent to improve the productivity of FESTO and EnAS. The matrix CM4 is used at t3 to
decrease this productivity under well-defined conditions. We show also in the same Figure
how FESTO is stopped at t5 or at t7 when Drill1 and Drill2 or the Distribution and Tester
units are broken.

63

7.3.3 Implementation

We developed a complete tool ProtocolReconf by using Qt Creator 2.0.0 (for more infor-
mation we refer to http://qt.nokia.com/products). We firstly present its different graphic
interfaces before we show a simulation verifying the communication protocol. The tool Pro-
tocolReconf offers the possibility to create the Reconfiguration and Coordination Agents
(Figure 7.11) by introducing their parameters. For the Reconfiguration Agent (Figure
7.12), it is necessary to define the Data, Device and Reconfigurations. Each data must
be defined by indicating its name and value, and each device is characterized also by its
identifier and state (functional or broken). It is required to define the different scenarios
that the Reconfiguration Agent can support so that when a modification occurs in the sys-
tem, it should look for the convenient reconfiguration. For the Coordination Agent (Figure
7.13), it is necessary to define the set of Coordination Matrices and especially the current
matrix to apply to the whole system. The communication between the different Recon-
figuration Agents follows the specific defined protocol. To ensure a new reconfiguration,
an agent sends a request to the Coordination Agent indicating the new reconfiguration to
apply. Consequently, the coordinator searches the right Coordination Matrix and sends a
request to the rest of concerned Reconfiguration Agents. After receiving all the feedbacks,
the Coordination Agent decides to apply this new coordination matrix (if all reconfiguration
agents accept this modification) or to cancel the corresponding reconfiguration scenario.

Figure 7.11: The main interface. Figure 7.12: Reconfiguration Agent.

Running Example1. In FESTO and EnAS (Figure 7.14), we assume that the ma-
trix CM2 is applied i.e. the FESTO’s Agent applies the High Production Mode and the
EnASs Agent applies the Second Production Strategy. To verify the interaction between

64

Figure 7.13: Coordination Agent.

these agents when a particular hardware problem occurs, we change the state of the de-
vice Driller1 which becomes broken. Consequently, the FESTO’s Agent should decrease the
production by sending a request to the Coordination Agent in order to look for the most
convenient matrix which is CM6. The Coordination Agent sends a request to decrease the
production in EnAS. The EnAS’s Agent studies the feasibility of this new reconfiguration
in order to accept the decrease of production. In this case, the Coordination Agent sends a
final confirmation to officially apply this new Coordination Matrix.

Running Example2. We assume that the matrix CM6 is applied i.e. the FESTO’s
Agent applies the Low Production Mode and the EnAS’s Agent applies the First Production
Strategy (Figure 7.15). When the state of the device Driller2 becomes broken, the FESTO’s
Agent should stop the production by sending a request to the Coordination Agent in order to
halt the second agent. The Coordination Agent decides to apply the matrix CM8 and sends a
request to stop the production in EnAS. The EnAS’s Agent accepts this new reconfiguration.
Consequently, the Coordination Agent sends a confirmation to stop the production in both
EnAS and FESTO system.

7.4 Contribution: NCES-based Modelling and SESA-Based

Model Checking of Distributed Reconfigurable Embed-

ded Systems

We specify each reconfiguration agent affected to a particular device of the execution en-
vironment by nested (i.e. hierarchical) Net Condition-Event Systems that support all re-
configuration forms, and specify also the different networks of Control Components that

65

Figure 7.14: First example of Communication
Protocol.

Figure 7.15: Second example of Communica-
tion Protocol.

implement this device in different possible reconfiguration scenarios by NCES-based mod-
els, before apply the model checker SESA to check eCTL-based functional and TCTL-based
temporal properties described in user requirements. We specify in addition each Coordina-
tion Matrix by a NCES-based model and apply also SESA to check that any distributed
reconfiguration scenario applied by agents brings the whole distributed architecture into
safe and optimal behaviors.

7.4.1 NCES-Based Specification of a Reconfiguration Agent

We use in this research the formalism Net Condition/Event Systems that provides useful
facilities to specify any synchronization between agents and Control Components. We use
in particular event-condition signals from agents to activate traces of states in the SSM
(i.e. a reconfiguration), and use also event signals to synchronize the state machines: ASM,
CSM and DSM of each agent.

Running example1. We show in Figure 7.16 the agent model in FESTO according to
the formalism NCES. In the ASM state machine, the place PF1 defines the Light Produc-
tion Mode and corresponds to the state machine CSM1(PF1). The synchronization between
these two machines is supported by an event signal ev1. On the other hand, the place PF2
defines the Medium or the High mode and corresponds to the state machine CSM(PF2)
(synchronization is supported by the event signal ev2). The place PF5 of CSM(P2) de-
fines the High Production Mode and corresponds to the place PF12 when the period p =
11seconds is applied. The place PF3 of CSM(PF2) defines the Medium Production Mode

66

P3

P4P5

P6

P7

t5 t6

t7
t8

t9t10

t11 t12
t13

t14

t15 t16

t17

t18

t19

t20 t21

t22

t23
V

CSM2(P2)

P1 P2

t1

t2

P0

t3

t4

ASM

V

V

P8
P9

t24

t25 P10

t26

CSM1(P1)

V

P11
t27

DSM1 DSM2

P12

P13

P14

t28

t29

t30

t31

t32

t33

P15

ev2

ev1

Figure 7.16: Design of the FESTO agent with the NCES formalism.

and corresponds to the place PF13 when the period p = 30seconds is applied.
Running example2. Figure 7.17 shows the models of EnAS according to the formalism

NCES. We specify temporal intervals in the transitions of the system’s model according to
user requirements. When the Jack station J1 is broken, the agent activates the place PE12

and sends a condition signal to activate the trace trace1 in the system. Note that the
architecture and control state machines are communicating by event signals to synchronize
the agent’s behavior. Finally, the state ”Well” represents a deadlock in the system when
the Jack stations J1 and J2 are broken.

7.4.2 SESA-Based Model Checking in a Device

We limit our research work to two types of extra-functional constraints namely: Temporal
and QoS properties. We use the temporal logic CTL as well as its extensions to specify
these properties and the model checker SESA to check the system feasibility in each device
of the execution environment.

Running example. In EnAS, we apply the model checker SESA to verify properties of
its Control Components implementing the different reconfiguration scenarios. We generate
with this tool different reachability graphs corresponding to these scenarios. We present in
Figure 7.18 the graph that corresponds to the second Production Policy where the states
State1,...State17 encode the behavior of the Agent as well as the system’s components when
nbpieces/nbtins+caps > Threshold.

* Verification of Functional Properties

67

Figure 7.17: Design of the EnAS system with the NCES formalism.

In order to validate the whole architecture, we verify functional properties of state
machines specifying the agent to prove the correct adaptation of the system to any
change in its environment, and verify the functional correctness of the different net-
works of components.

Running example. In EnAS, we check functional properties of the state machines
encoding the Agent. In particular, we have to check if the system applies the second
policy whereas the Gripper station G2 is broken. We propose the following eCTL
formula:

z0 |= AGAte1XPS2

This formula allows to check with SESA that whenever a state transition fulfilling te1
is possible (e.g. G2 is broken), this transition leads to a successor state in which PS2

holds true in the reachability graph (e.g. we apply the second Production Policy). This
formula is proven to be False.

68

Figure 7.18: Reachability graph of the first Production Policy.

The following formula is proven to be True:

z0 |= AGAte1XPS8

Indeed, whenever the Gripper G2 is broken, the state PS8 of SSM is activated. On
the other hand, to check the behavioral order of the SSM when the Gripper station
G2 is broken (e.g. Load a piece and Close the tin in the Jack station J1, then move
the Belt to the Gripper station G1 to remove the product to Belt1), we propose the
following eCTL formula:

z0 |= AGAt40XAFEt45XAFEt46XTRUE

This formula is proven to be True with the model checker SESA.

* Verification of Temporal Properties

We verify TCTL-based temporal properties of the networks of components corre-
sponding to the different reconfiguration scenarios as follows:

Running example. In the EnAS platform, when the Gripper station G2 is broken,
we should check if the duration to activate the Gripper station G1 does not exceed 5
time units. Therefore, we propose to apply the following formula:

69

AF [2, 5]PS11

This formula is proven to be True with the Model checker SESA. To check if the
Gripper station is reachable in 3 time units, we should verify the following formula:

EF [2, 3]PS11

It is proven to be False with the model checker.

* Verification of QoS Properties

The last property to be verified according to user requirements is the QoS where we
check if the system provides the minimal accepted quality at run-time. We use in this
case the eCTL logic to specify the QoS formulas.

Running example. In the EnAS platform, we verify if the system provides the min-
imal accepted QoS. According to the value of nbpieces/nbtins+caps, we should verify if
the system applies the best production policy. We propose to following eCTL formula,

z0 |= AGAte3XPS11

Indeed, we should verify if nbpieces/nbtins+caps ≤ Threshold (e.g. the first Production
Policy should be applied), then the fourth trace of SSM should be activated (e.g.
the state PS11 should be activated). By applying the tool SESA, we find that this
formula is True.

7.4.3 SESA-Based Model Checking of the Coordination Agent

The model checking of a distributed reconfigurable system is mandatory to check the re-
activity of distributed agents when reconfiguration scenarios are applied in corresponding
devices. We propose a NCES-based model for each Coordination Matrix to be handled
by the Coordination Agent, and propose thereafter the verification of the whole system
behavior by applying the model checker SESA and the temporal logic CTL.

* NCES-Based Modelling of the Coordination Agent

We model each Coordination Matrix CM ∈ ξ(Sys) to be handled by the Coordination
Agent CA(ξ(Sys)) by a NCES-based Coordination Model in which the conditions
condaia , condaja and condaka,ha

are verified for each non idle agent Aga (a ∈ [1, n])
(i.e. application of the reconfiguration scenario Reconfigurationa

ia,ja,ka,ha
) before an

authorization is sent to all non idle agents in order to effectively apply corresponding
reconfigurations.

Running Example1. We show in Figure 7.19 the Coordination Module Module(CM7,8)
to be applied when the drilling machines Drill machine1 or Drill machine2 are bro-
ken (i.e. the states PF4 and PF7 of the CSM1(PF1)). In this case, the EnAS

70

Agent should reduce the productivity by applying the First Production Mode (i.e. the
state PE2 of ASM(EnAS)). We show in Figure 7.20 the module Module(CM4,5)
that defines the behavior of the Coordination Matrix when the Jack stations J1, J2 or
the Gripper G1 are broken. In this case, the FESTO Agent should reduce the produc-
tivity by applying the Light Production Mode (i.e. the state PF1 of ASM(FESTO)).
We show in Figure 7.21 the module Module(CM1) that defines the behavior of the
Coordination Matrix when the Light Production Mode is applied by the FESTO Agent
(number pieces < Constant2). In this case, the EnAS Agent should apply the First
Production Mode in which only one piece is put in the tin. On the other hand, the
module Module(CM2, 3) defines the behavior of the Coordination Matrix when the
FESTO Agent should apply the High or the Medium modes. In this case the EnAS
Agent should change the production strategy to the Second Production Mode where two
pieces are put in the tin. To manage concurrent coordination matrices, the resolution
of hardware problems is assumed to have a higher priority than any optimization of
the system productivity. Therefore, the Coordination Matrix CM7,8 (CM4,5, resp)
has higher priority than CM1 (CM2,3, resp). According to Figure 7.21, the matrix
CM1 (CM2,3, resp) is applied if and only if the drilling machines Drill machine1
and Drill machine2 (the Jack stations J1, J2 and the Gripper station G1) are not
broken.

* SESA-Based Verification of Distributed Reconfigurations

We verify with the model checker SESA the behavior of the whole control system
when distributed reconfigurations are applied by the Coordination Agent. Indeed, we
have to check for each Coordination Matrix CM ∈ ξ(Sys) that whenever an Agent
Aga (a ∈ [1, n]) applies a reconfiguration scenario under well-defined conditions, the
other non-idle agents have to react by applying required reconfigurations.

Running Example. In the Benchmark Production Systems FESTO and EnAS,
we apply the model checker SESA to verify distributed reconfiguration scenarios of
NCES-based models describing agents. Our objective is to check that whenever one
of these demonstrators improves or decreases the productivity, the other applies the
same strategy. We have in addition to check that each one reacts when any hardware
problem occurs in the other. This verification is mandatory in order to guarantee co-
herent behaviors of these complementary demonstrators. The model checker generates
a reachability graph composed of 162 states for the NCES-based models of the consid-
ered agents. We specify the following functional properties according to the temporal
logic CTL:

• Property1: whenever the drilling machines Drill machine1 or Drill machine2
are broken in the Benchmark System FESTO (i.e. the states PF7 or PF4 are
reached), the EnAS system should therefore decrease the productivity (i.e. the
state PE2 is reached). The following formulas are proven to be true by the model
checker SESA:

71

Figure 7.19: Automatic Distributed Reconfigurations in FESTO and EnAS when the drilling
machines Drill machine1 or Drill machine2 are broken at run-time.

Formula1: z0 |= AGAte7XAGAtc1XPF7

Formula2: z0 |= AGAte7XAGAtc1XPF4

• Property2: whenever the Jack stations J1 and J2 or the Gripper station G1
are broken in the Benchmark System EnAS. the FESTO system should react
by decreasing the productivity to the Light Production Mode. The following
formulas are proven to be true by the model checker SESA:

Formula2 (J1 is broken): z0 |= AGAtf2XAGAtc3XPF12

Formula3 (J2 and G1 are broken): z0 |= AGAtf2XAGAtc3XPF13

• Property3: If the condition number pieces ≥ Constant2 is satisfied and the
system FESTO improves in this case the productivity to the Medium or the High
modes (i.e. the place PF2 is reached), then the EnAS system should improve
also the productivity by applying the second Production Policy where two pieces

72

Figure 7.20: Automatic Distributed Reconfigurations in FESTO and EnAS when hardware
problems occurs at run-time.

PF1 PF2

tf1

tf2

PF0

tf3

tf4

ASM(FESTO)

V

V

PE1 PE2

V

V

PE0

!G2^G1

!J2^J1^G1

policy1

policy2

!J1^J2

!G1^G2

ASM(EnAS)

te1

te2

te3

te4

te5

te6

Model(CM1) Model(CM
2,3

)

te7

te8

J1^J2^G2

!(J1^J2^G2)

Drill1 ^Drill2

J1^J2^G2

Drill1 ^Drill2
!(Drill1
^Drill2)

te9

tc4

tc5

tc6

tc7

Figure 7.21: Automatic Distributed Reconfigurations in FESTO and EnAS to regulate the
whole system performance.

73

are put in each tin. The following formula is proven to be true by the model
checker SESA:

Formula4: z0 |= AGAtf8XAGAtc4XPF2

• Property4: If the condition (nbpieces/nbtins+caps > Threshold) is satisfied and
the EnAS system has to improve the productivity by applying the second mode
(i.e. the place PE1 is reached), then the FESTO system should also increase
the productivity by applying the Medium or High modes (i.e. the state PF1 is
reached). The following formula is proven to be true by the model checker SESA:

Formula5: z0 |= AGAtf1XAGAtc6XPE1

7.5 Contribution: Hierarchical Verification of Control Com-

ponents

Once the Reconfiguration and Coordination Agents are well-checked, we are interested
in this section in the detailed model checking of Control Components implementing each
complex network of Sys and to be executed after a well-defined reconfiguration scenario.
To control the verification complexity, we check step by step each network Neta,b,c,d (a ∈
[1, nASM], b ∈ [1, nCSMa], c ∈ [1, nDSM], d ∈ [1, nDSMc]) by applying a refinement-based
strategy. We define at first time a NCES-based abstract model for each Networka,b,c,d which
is automatically refined in several steps where NCES-based models of Control Components
are automatically generated. The model checker SESA is automatically applied in each step
to verify deadlock properties of the new generated components, and is manually applied to
verify in addition CTL-based functional properties according to user requirements. The
whole control system is feasible if each network Neta,b,c,d of Control Components is correct
and safe.

7.5.1 Refinement-based Specification and Verification of a Network of

Control Components

Let Neta,b,c,d be a network of Control Components that implement the system according
to described conditions in user requirements. We specify at first time this network by a
NCES-based abstract model (denoted initially by M1

a,b,c,d) in which:

• data are read from sensors to activate actuators of first(αactuators),

• all the actuators of last(αactuators) are activated.

74

The Control Components composing this network are automatically modeled in several
steps according to the formalism NCES, and are automatically and manually checked in
each step by the model checker SESA as follows:

In each Step i (i ≥ 1), Control Components are recursively modeled and checked as
follows:

Step i.

• The abstract model M i
a,b,c,d is automatically refined by generating a new set setia,b,c,d

of NCES-based models of Control Components,

• A new abstract model M i+1
a,b,c,d is automatically generated from M i

a,b,c,d,

• The model checker SESA is automatically applied to verify deadlock properties of
Control Components of setia,b,c,d with M i+1

a,b,c,d. It is manually applied in addition to
verify CTL-based functional properties.

If the new generated Control Components are safe and correct Then:

If M i+1
a,b,c,d is not empty Then it is automatically refined in Step i+1,

Else the network of Control Components Neta,b,c,d is safe.

Else The whole system is not feasible because Neta,b,c,d is not safe.

Running example. In FESTO and EnAS, we show in Figure 7.22 the abstract NCES-
based model M1

{2,1,2,1};{1,1,0,0} where the High Production Mode is followed in the first

system (i.e. Reconfiguration2,1,2,1 is applied and Net2,1,2,1 is executed) and the Second
Production Policy is followed in the second one (i.e. Reconfiguration1,1,0,0 is applied and
Net1,1,0,0 is executed). This model contains four abstract traces of states. In particular,
the first trace tr1 is followed by FESTO when the test of the workpiece is failed. tr1 is
characterized as follows:

** It reads data from the sensors S1 and S2 to activate thereafter the actuator act1,

** It allows the activation of the actuator act4 to evacuate the failed workpiece (act4 ∈
last(αactuators)).

We present in Figure 7.23 the first step of the refinement process to automatically gen-
erate NCES-based models of CC Feeder2,1,2,1 and CC Belt1,1,0,0 that respectively control
the Feeder in FESTO and the Belt in EnAS. The model checker SESA is automatically
applied in this step to check the safety of these components (i.e. no deadlock is pos-
sible). We present in Figure 7.24 the second refinement step to automatically generate
CC Convert2,1,2,1 and CC Jack11,1,0,0 that respectively control the Converter in FESTO
and the first Jack station in EnAS. We present in Figure 7.25 the last steps to automati-
cally generate CC Checker2,1,2,1 and CC Evac2,1,2,1 that respectively control Checker and
Evacuator2 in FESTO.

75

P0

P2

P3

Abstract NCES M1
{2,1,2,1};{1,1,0,0}

ev
(s

2
0)

ev

(s
2

1)

ev
(s

1
)

ev
(s

2
)

ie
(a

ct
10

)
ie

(a
ct

17
)

o
e(

ac
t1

0
)

o
e(

ac
t1

7
)

V V

P6

P7

P4

P5

P8

P9

P1

ie
(a

ct
4)

ie

(a
c

t1
6

)

ie
(a

c
t4

)
o

e(
ac

t1
6)

tr1tr2 tr3tr4

Figure 7.22: The abstract model M1
{2,1,2,1};{1,1,0,0} of FESTO and EnAS systems

Formalization

We formalize the automatic refinement-based specification and verification of Control Com-
ponents that implement the whole control system. We denote by Σi

a,b,c,d the set of actuators

that should be considered for the refinement of the abstract model M i
a,b,c,d (when the recon-

figuration scenario Reconfigurationa,b,c,d is well-applied by the agent) and by first(Σi
a,b,c,d)

a subset of actuators of Σi
a,b,c,d with no predecessors in Σi

a,b,c,d.

∀act ∈ first(Σi
a,b,c,d), prev(act) ⊂ αactuators \ Σi

a,b,c,d

Let simul setia,b,c,d be a subset of actuators to be activated simultaneously in first(Σi
a,b,c,d).

We denote in addition by sensor(simul setia,b,c,d) the set of sensors that provide required

data before any activation of simul setia,b,c,d, and we denote by set follow(simul setia,b,c,d)
the following set:

set follow(simul setia,b,c,d) =

{act set ⊂ αactuators/∃act ∈ simul setia,b,c,d, act set ∈ follow(act)}

The automatic refinement-based specification and verification of Control Components
is applied as follows:

Algorithm. Step-By-Step

* For each Step i corresponding to the refinement of the NCES-based abstract model
M i

a,b,c,d:

** For each simul setia,b,c,d ⊂ first(Σi
a,b,c,d):

*** create Control Component CC,

76

CC_Feeder
2,1,2,1

P10

P11

P12

V

ev
(s

1

)
ev

(s
2

)

ie(act1)

oe(act1)

CC_Belt
1,1,0,0

p13

P14

P15

ev
(s

2
0)

ev

(s
21

)

ie(act11)

oe(act11)

Automatic Generation of Control Components

Control Component to
eject pieces by the Feeder

Control Component to
move the belt into Jack1

P0

P2

P3

Abstract NCES M1
{2,1,2,1};{1,1,0,0}

ev
(s

2
0)

ev

(s
2

1)

ev
(s

1
)

ev
(s

2
)

ie
(a

ct
10

)
ie

(a
ct

17
)

o
e(

ac
t1

0
)

o
e(

ac
t1

7
)

V

P6

P7

P4

P5

P8

P9

P1

ie
(a

ct
4)

ie

(a
c

t1
6

)

ie
(a

c
t4

)
o

e(
ac

t1
6)

tr1tr2 tr3tr4

synchronization with

temp(tr 1) of M2
{2,1,2,1};{1,1,0,0}

synchronization with
temp(tr 3) of

M2
{2,1,2,1};{1,1,0,0}

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t13

t14

t15

t16

t17

t18

Figure 7.23: The first Step of an automatic refinement process

*** For each act ∈ simul setia,b,c,d,

**** add i(CC, sensor(act)) to CC,

**** add a(CC, act),

**** add cf(CC, act),

*** I ← simul setia,b,c,d ∩ last(αactuators),

*** For each act′ ∈ I,

**** M i
a,b,c,d ←M i

a,b,c,d \ i(M i
a,b,c,d, sensor(act

′)),

**** M i
a,b,c,d ←M i

a,b,c,d \ a(M i
a,b,c,d, act

′),

**** M i
a,b,c,d ←M i

a,b,c,d \ cf(M i
a,b,c,d, act

′),

*** simul setia,b,c,d ← simul setia,b,c,d \ I,
*** If(simul setia,b,c,d)

**** For each act′ ∈ simul setia,b,c,d,

***** M i
a,b,c,d ←M i

a,b,c,d \ i(M i
a,b,c,d, sensor(act

′)),

**** For each set′ ∈ set follow(simul setia,b,c,d), For each act′ ∈ set′,

***** M i
a,b,c,d ←M i

a,b,c,d ∪ i(M i
a,b,c,d, sensor(act

′)).

77

CC_Convert
{2,1,2,1}

P27

P28

P29

ev
(s

3
)

ie(act2)

oe(act2)

CC_Jack1
{1,1,0,0}

P30

P31

P32

e
v(

s2
2)

ev

(s
23

)

ie(act12)

oe(act12)

Automatic Generation Of Control Components

Control Component
to convert a piece

Control Component to
activate Jack1

P16

P18

P19

Abstract NCES M2
{2,1,2,1};{1,1,0,0}

ev
(s

2
3)

ev

(s
2

2)

ev
(s

3
)

ie
(a

ct
10

)
ie

(a
ct

17
)

o
e(

ac
t1

0
)

o
e(

ac
t1

7
)

P23

P25

P20

P21

P24

P2
6

P17

ie
(a

ct
4)

ie

(a
c

t1
6

)

ie
(a

c
t4

)

tr1tr2 tr3tr4

o
e(

ac
t1

6
)

P22

Event from
cf(CC1,act1)

Event from
cf(CC2,act11)

t19

t20

t21

t22

t23

t24

t25

t26

t27

t28

t29

t30

t31

t32

t33

t34

t35

t36

Figure 7.24: The second Step of an automatic refinement process

* If SESA automatically finds a deadlock in the current step, or manually proves that a
CTL-based property is not satisfied,

** Then Stop the automatic construction,

** Else

*** Σi+1
a,b,c,d ← Σi

a,b,c,d \first(Σi
a,b,c,d),

*** M i+1
a,b,c,d ←M i

a,b,c,d,

*** If(Σi+1
a,b,c,d)

**** Then apply Step i+ 1 to refine the NCES-based model M i+1
a,b,c,d,

*** Else display(System is safe).

End Algorithm.
Running Example. In the systems FESTO and EnAS, and according to Figure

7.23, first(Σ1
{2,1,2,1};{1,1,0,0}) = {act1, act11}. We refine therefore the abstract NCES-based

model M1
{2,1,2,1};{1,1,0,0} into two Control Components CC Feeder2,1,2,1 and CC Belt1,1,0,0

that respectively activate the actuators act1 and act11. A new abstract modelM2
{2,1,2,1};{1,1,0,0}

is automatically generated fromM1
{2,1,2,1};{1,1,0,0} where first(Σ

2
{2,1,2,1};{1,1,0,0}) = {act2, act12}.

78

P1

P34

P35

M7
{2,1,2,1};{1,1,0,0}

ev
(s

1
7)

ev

(s
1

8)

ie
(a

ct
10

)

Automatic Generation of Control Components

cf
(a

ct
10

)

P36

P37

P38

CC_Checker {2,1,2,1}

e
v(

s1
7)

e

v(
s1

8)

ie
(a

ct
9)

cf
(a

ct
9)

P40

P41

P42

M8
{2,1,2,1};{1,1,0,0}

ev
(s

1
7)

ev

(s
18

)

ie
(a

ct
10

)

cf
(a

ct
10

)

P43

P44

P45

CC_Evac {2,1,2,1}

ev
(s

1
9)

ie
(a

c
t1

0)

cf
(a

ct
10

)

P46

P47

P48

M9
{2,1,2,1};{1,1,0,0}

P33

Events from
cf(CC15,act7) and

cf(CC14,act8)

P39

Automatic Generation of Control Components

P49

t37

t38

t39

t40

t41

t42

t43

t44

t45

t46

t47

t48

t49

t50

t51

t52

t53

t54

Figure 7.25: The last Steps of an automatic refinement process

Verification of CTL-based Properties with SESA

In addition to automatic verifications of deadlock properties, we manually verify in each
refinement step eCTL-based properties of FESTO and EnAS Benchmark Production Sys-
tems in order to check if the generated Control Components satisfy user requirements. In
particular, the precedence constraint between the actuators act1 and act2 (resp. act11 and
act12) is manually verified in the first refinement step when the NCES-based models of
the components CC Feeder{2,1,2,1} and CC Convert{2,1,2,1} are generated. We propose the
following eCTL formula:

z0 |= AGAt20XP10 (resp. z0 |= AGAt26XP13)

Indeed, whenever a state transition of the reachability graph that fulfills the transition
t20 (resp. t26) of the abstract model M2

{2,1,2,1};{1,1,0,0} is possible i.e. the Plant Control

System reads data from the sensor S3 (resp. sensors S22 and S23), this transition should
lead to a successor state in which P10 (resp. P13) holds true i.e. the actuator act1 (resp.

79

act11) is already activated. These properties are proven to be True by the model checker
SESA.

7.5.2 Generalization: Refinement-based Specification and Verification of

a Reconfigurable System

We apply the proposed refinement-based technique to automatically specify different net-
works of Control Components that can probably implement the whole embedded system
after well-defined reconfiguration scenarios:

Algorithm. Specify Verify
For each Architecture ASMa, i ∈ [1, nASM]
For each Control policy CSMa,b, b ∈ [1, nCSMa]

For each Data configuration DSMc,d, d ∈ [1, nDSMc] such that DSMc =
Data(CSMa,b)

Step-By-Step(Neta,b,c,d);
If a deadlock occurs or a CTL-based property is not satisfied in Stepi i ≥ 1

Then Stop Algorithm; Display (system is infeasible);
Display(System is feasible);

End.

We developed and tested in our research laboratory these algorithms by checking the
safety and correctness of different networks that can probably implement the Benchmark
Production Systems FESTO and EnAS. If each network that corresponds to a particular
reconfiguration scenario is correctly specified and verified, Then the correctness of these
demonstrators is deduced. The complexity of these algorithms is as follows: let n be an up-
per bound of nASM , max{nCSMa , a ∈ [1, nASM]} and max{nDSMc , c ∈ [1, nDSM]}, and let β
be the biggest number of steps to generate in one of the considered scenarios, the complexity
is then in O(n3.β). In FESTO and EnAS, 49 reachability graphs are automatically gener-
ated by SESA to check the feasibility of Control Components in seven different networks
corresponding to seven reconfiguration scenarios. We present in Figure 7.26 the number of
states generated in each one of these graphs. By applying the proposed refinement-based
approach, the sum of states generated by SESA after the verification of these different net-
works is 3736 states, whereas the number of states is theoretically about 1014 when we apply
a classic approach without refinement for the verification of these demonstrators (Figure
7.27). This comparison shows the significance of our contributions in this study.

Running Example. We show in Figure 7.29 a reachability graph which is automati-
cally generated by SESA in a last refinement step when Reconfiguration2,1,2,1 (i.e. High

80

Steps

States
Number

1 2 3 4 5 6 7

121 35 71 191 94 144 16

States
Number 123 36 74 183 91 36 16

FESTO: Reconfiguration
2,1,2,1

EnAS: Reconfiguration
1,1,0,0

FESTO: Reconfiguration
2,2,2,2

EnAS: Reconfiguration
1,1,0,0

States
Number 119 37 75 187 33 12 16

FESTO: Reconfiguration
1,1,1,1

EnAS: Reconfiguration
2,1,0,0

States
Number 131 38 73 186 31 24 16

FESTO: Reconfiguration
2,3,2,3

EnAS: Reconfiguration
2,1,0,0

States
Number 124 34 72 185 92 36 16

FESTO: Reconfiguration
2,4,2,3

EnAS: Reconfiguration
1,1,0,0

States
Number 128 35 77 189 31 12 16

FESTO: Reconfiguration
1,1,1,1

EnAS: Reconfiguration
1,2,0,0

States
Number 118 37 78 188 29 14 16

FESTO: Reconfiguration
1,1,1,1

EnAS: Reconfiguration
1,3,0,0

Figure 7.26: Refinement-based Verification of FESTO and EnAS Benchmark Production
Systems

0

50

100

150

200

250

1 2 3 4 5 6 7

0

1E+14

2E+14

3E+14

4E+14

5E+14

6E+14

7E+14

8E+14

9E+14

1E+15

1 2 3 4 5 6 7 8

Step1 Step2 Step3 Step4 Step5 Step6 Step7

N
u

m
be

r
of

 s
ta

te
s

N
um

b
er

 o
f s

ta
te

s

Time (hour)

10 20 30 40 50 60 70 80

Figure 7.27: (a) Number of states automatically generated by SESA for the refinement-
based specification and verification of 7 different networks of Control Components. (b)
Number of states generated by SESA for the specification and verification of 7 networks of
Control Components without applying any refinement

81

Figure 7.28: Automatic specification of feasible Control Components of FESTO and EnAS
systems

Production Policy) is applied in FESTO and Reconfiguration1,1,0,0 (i.e. Second Produc-
tion Mode) is applied in EnAS, to check the Control Components CC Checker2,1,2,1 and
CC Evacuator2,1,2,1 that control respectively the physical processes Checker and Evacuator2
in FESTO. We show in Figure 7.30 another reachability graph which is automatically gen-
erated by SESA in Step 6 when Reconfiguration1,1,1,1 (i.e. Light Production Policy)
is applied in FESTO and Reconfiguration2,1,0,0 (i.e. First Production Mode) is applied
in EnAS, to check the Control Component CC Drill12,1,2,1 that controls Drill machine1
in FESTO. We show finally in Figure 7.31 a reachability graph generated in Step 6, when
Reconfiguration2,2,2,2 (i.e. Medium Production Mode) is applied in FESTO andReconfiguration

1,1,0,0 (First Production Mode) is applied in EnAS, to check the Control Components
CC Drill22,2,2,2 and CC G21,1,0,0 that control respectively Drill machine2 in FESTO and
the second Gripper station in EnAS.

7.6 Application: Implementation of Multi-Agent Reconfig-

urable IEC61499 Systems

We define XML-based implementations of Reconfiguration and Coordination agents for
distributed reconfigurable embedded control systems following the technology IEC61499.
A Control Component is assumed in this section to be a Function Block according to this
industrial technology.

82

Figure 7.29: A reachability graph generated by SESA in Step7 when Reconfiguration2,1,2,1

is applied in FESTO and Reconfiguration1,1,0,0 is applied in EnAS

Figure 7.30: A reachability graph generated by SESA in Step 6 when Reconfiguration1,1,1,1

is applied in FESTO and Reconfiguration2,1,0,0 is applied in EnAS

83

S1
S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13
S14

S15

S16

S17

S18
S19

S20

S21

S22

S23
S24

S25

S26

S27

S28

S29

S30
S31

S32

S33

S34

S35

S36

Figure 7.31: A reachability graph generated by SESA in Step 6 when Reconfiguration2,2,2,2

is applied in FESTO and Reconfiguration1,1,0,0 is applied in EnAS

7.6.1 Implementation of Reconfiguration Agents

A reconfiguration agent is composed of three modules: Interpreter, Reconfiguration Engine
and Converter. The second is the main module to decide automatic reconfigurations at
run-time, whereas the rest is used for external interactions (Figure 7.32).

7.6.2 Agent Interpreter

To guarantee a high reactivity of the agent, Interpreter ensures by sensors the detection
of hardware problems that disturb any normal execution of the system, and ensures also
the evaluation of production parameters for any optimization of performance. Interpreter
ensures in addition all interactions with the Coordination Agent CA(ξ(Sys)).

Running Example. In the Benchmark Production System EnAS, Interpreter should
detect by sensors any hardware problem in the plant to apply thereafter automatic reconfig-
urations that guarantee safe behaviors of the whole system. In addition, it should count the
number of pieces nb pieces and tins (as well as caps) nb tins+ caps per hour. We present
in Figure 7.33 an IEC61499-based implementation of Interpreter where the Function Block
FB Inventory counts such numbers and FB Evaluate evaluates each hour if the First or
the Second Production Policy should be followed (evaluation of nb pieces / (nb tins+ caps
× Threshold)).

84

FB_Manager
FB_Manager

Third Level:
Second Level:

First Level:
Architecture Unit

FB_Manager

Function Blocks
implementing the

Embedded Control System

R
ec

o
n

fi
g

u
ra

ti
o

n
 A

g
en

t

INIT
REQ

QI
PARAMS
CMD
CMD_PARAMS

INITO
CNF

QO
STATUS

RESULTS

Interpreter

Converter to XML

Plant

In
fo

rm
at

io
n

 o
n

 p
ro

d
u

ct
iv

it
y

o
r

h
ar

d
w

ar
e

p
ro

b
le

m
s

Libraries of
Function Blocks

XML code blocks

Instanciation of
Function Blocks

Figure 7.32: Interaction between the Agent and the Embedded Control System.

E_Cycle

EOINIT

FB_Cycle1

IO_Reader

REQ
INIT INITO

IND

Q1
PARAMS
SD_1

Q0
STATUS

RD_1

Inventory

Get

INIT
INIT

O
IND

PARAMS
nbpieces

E_Cycle

INITO
Scan

FB_Cycle2

Evaluate

Get
INIT Inito

IND

PARAM1
PARAM2
PARAM3

DECISION

Stop

DTT: 1second

<pieces, tins, caps>

INIT

Stop

DT
T: 60mn

nbtins
nbcaps

Panel Adrs

FB_InventoryFB_Reader FB_Evaluate

Figure 7.33: Function Blocks-based implementation of the agent interpreter in the EnAS
system.

85

INIT
REQ

INITO
CNF

MANAGER
QI

PARAMS
CMD
CMD_PARAMS

QO
STATUS

RESULTS

EVENT
EVENT

BOOL
ANY

FB_MGT_CMD
FB_MGT_DATA

EVENT
EVENT

BOOL
FB_MGT_STATUS
FB_MGT_DATA

Figure 7.34: Management Function Block”.

7.6.3 Reconfiguration Engine

The reconfiguration engine is the agent’s mind that receives notifications from Interpreter
to decide and apply thereafter new automatic reconfigurations of the whole system. It
contains the Architecture, Control and Data units (Figure 7.32).

7.6.4 Agent Converter

According to [73], the Standard IEC61499 defines a Standardized Management Function
Block Manager (Figure 7.32 and Figure 7.34) that offers rich services to Create (load),
Initiate, Start, Stop and Delete Function Blocks at run-time (Figure 7.35). This block
can be used by specifying different values for the input CMD that allows various service
functions which are characterized by the value of the input CMD PARAMS. The response
to each form of service functions is given by the value returned in the output Status.

Examples.

• CMD = CREATE,

• CMD PARAMS = fb instance definition,

• PARAMS = fb instance definition data,

• RESULT = fb instance reference.

This operation allowsManager to automatically create an instance fb instance definition
in the control system. We note that data types for values (for the inputs PARAMS and
RESULT) are not defined in IEC61499 and are regarded as implementation specific. How-
ever, the standard has defined a data exchange format for porting Function Block definitions
based on the XML language which is chosen as a file exchange format for IEC61499 library
elements, for example, for exchanging Function Block definitions between engineering sup-
port systems and other IEC61499 compliant applications.

To handle interactions between the Reconfiguration Agent and Function Blocks of the
system, we use as a technical solution the management Function Block Manager that ap-
plies desired reconfiguration scenarios. When a scenario is fixed by the engine (i.e. ASM,
CSM and DSM state machines) according to environment evolutions and user requirements,

86

Service Function Description

Create

Initialise

Start

Stop

Delete

Create data type definitions, function block types, instances and
connections between function blocks. This will involve downloading
definitions from a source, e.g. copying across a network, copying in
from a memory smart card.

Initialise data type definitions, function block types, instances and
connections between function blocks. This concerns setting up
function blocks and connections into a runnable state and will
include resetting variables to their default initial values.

The Start function triggers the execution of function block networks
within a resource. Typically it will start the resource scheduling
function and start to run SI function blocks that generate timing
events. These in turn trigger chains of events that cause function
block execution.

The Stop service causes all execution to cease by suspending the
resource scheduling function.

The Delete service can be used to delete the definition of any data
type, function block or connection.

Figure 7.35: Management Services offered by the Function Block ”Manager”.

the converter sends this decision in forms of XML code blocks to Manager which effectively
applies such reconfiguration by exploiting a well-defined library to automatically create, up-
date or delete Function Blocks. The module Converter is technically based on a conversion
table that defines for each scenario to be fixed by the engine, the XML file that contains
the corresponding XML code blocks. In this table, each entry [< i1, i2 >,< j1, j2 >,<
k1, h1, k2, h2 >,< @Manager >,< @XML−File >] defines the addresses of Manager and
the XML file that contains the XML code blocks when the engine reconfigures the system
from Reconfigurationi1,j1,k1,h1 to the scenario Reconfigurationi2,j2,k2,h2 (the ASM state
machine evolutes from the state ASMi1 to ASMi2, the CSM state machine evolutes from
the state CSMi1,j1 to CSMi2,j2 and the DSM state machine evolutes from DSMk1,h1 to
DSMk2,h2).

Running Example. In the Benchmark System EnAS, Converter is based on a con-
version table containing 18 entries that correspond to different reconfiguration cases to be
fixed by the engine. The EnAS agent behaves as follows:

* If nbpieces + nbtins+caps ≤ Threshold and no hardware problems occur,

** Then Interpreter signals the Engine to apply the First Production Policy by ac-
tivating the state S21. In this case, Converter sends XML code blocks to the
Function Block Manager as follows:

*** Stops the Function Blocks J2 FB and G2 FB,

*** Deletes from the memory these blocks,

*** Creates the block G1 FB to implement the First Production Policy,

*** Initializes and Connects this block to the rest of the network of Function
Blocks before starting its execution.

** Else If nbpieces + nbtins+caps > Threshold, Then Interpreter asks the Engine
to apply the Second Production Policy by activating the state S11. In this case,
Converter sends XML code blocks to the Function Block Manager as follows:

87

*** Stops the Function Block G1 FB that controls the Gripper station G1,

*** Deletes this block from the memory,

*** Creates the blocks J2 FB and G2 FB that control respectively J2 and G2

to implement the Second Production Policy,

*** Initializes and Connects these blocks to the rest of the network of Function
Blocks before starting its execution.

7.6.5 Implementation of The Coordination Agent

We define an implementation for the Coordination Agent CA(ξ(Sys)) to be composed of
an Interface for interactions with Reconfiguration Agents, and an Engine which is the mind
to decide coherent automatic reconfigurations of the whole distributed embedded control
system [60]. The Coordination Matrixes of ξ(Sys) are stored in different files of a database
such that each one contains a table in which each line a ∈ [1, n] defines the following pa-
rameters: < @ − Agenta >, < ia >, < ja >, < ka >, < ha > that respectively define the
address of the agent Agenta and the reconfiguration scenario Reconfigurationia,ja,ka,ha to
be automatically applied in the corresponding device. The Engine receives notifications for
possible reconfigurations from distributed agents, before decides which scenario correspond-
ing to a well-defined Coordination Matrix should be applied. It interacts thereafter with all
concerned devices of the distributed architecture to execute such scenario. We implement
the Engine by the following algorithm.

Algorithm. Repeat indefinitely,

• For any Reconfigurationia,ja,ka,ha received from Agenta (a ∈ [1, n])

– CM ←−Matrix(Reconfigurationia,ja,ka,ha),

– If level(CM) = max, /* CM has the highest priority in Concur(CM)∪{CM}*/
∗ Then, Tab←− file(CM), /* file(CM) a file presenting all desired reconfig-

urations by CM */

∗ For each b ∈ [1, n]�{a},
· Send XML-bloc < Tab[b, 1] >, < CA >, < Tab[b, 2] >, < Tab[b, 3] >,
< Tab[b, 4] >, < Tab[b, 5] > to Tab[b, 1], /*< Tab[b, 1] > defines the
address of Agentb*/

∗ If @b ∈ [1, n]�{a} such that CA(ξ(Sys)) receives: < not − possible >,
< Tab[b, 1] >, < Tab[b, 2] >, < Tab[b, 3] >, < Tab[b, 4] >, < Tab[b, 5] >,

· Then, For each b ∈ [1, n], Send XML-bloc < apply >, < Tab[b, 1] >,
< CA >, < Tab[b, 2] >, < Tab[b, 3] >, < Tab[b, 4] >, < Tab[b, 5] >
to Tab[b, 1], /* in this case, automatic reconfigurations are applied in
distributed devices*/

∗ Else Send XML-bloc < reject >, < Tab[a, 1] >, < CA >, < Tab[a, 2] >,
< Tab[a, 3] >, < Tab[a, 4] >, < Tab[a, 5] > to Tab[a, 1], /*the Coordination
Agent rejects the request of Agenta*/

88

Interpreter InterpreterCA
FESTO Agent EnAS Agent

<@-FESTO>,<2>,<1>,<2>,<1>

<@-EnAS>, <1>,<1>,<0>,<0>

<possible>, <@-EnAS>, <1>,<1>,<0>,<0>

<apply>, <@-FESTO>, <1>,<1>,<0>,<0> <apply>, <@-EnAS>, <1>,<1>,<0>,<0>

File - CM 2

@-FESTO 2 1 2 1

@-EnAS 1 1 0 0

Engine Converter FB Manager
FESTO Agent

<High>
<state=CSM21> <CMD = "Stop", CMD_PARAMS = "Rotat_Disc m">

<CMD = "Delete", CMD_PARAMS = "Rotat_Disc m">

<CMD = "Create", CMD_PARAMS = "Rotat_Disc h">

<CMD = "Create", CMD_PARAMS = "Drill2">

<CMD = "Init", CMD_PARAMS = "Rotat_Disc h">

<CMD = "Init", CMD_PARAMS = "Drill2">

<CMD = "Start", CMD_PARAMS = "Rotat_Disc h">

<CMD = "Create", CMD_PARAMS =
"Connect(Rotat_Disc h,Drill2)">

<CMD = "Start", CMD_PARAMS = "Drill2">

Converter FB_Manager

<CMD = "Stop", CMD_PARAMS = "G1_FB">

Engine

< state = "S1 1" >

<CMD = "Delete", CMD_PARAMS = "G1_FB">

<CMD = "Create", CMD_PARAMS = "J2_FB">

<CMD = "Create", CMD_PARAMS = "G2_FB">

<CMD = "Init", CMD_PARAMS = "J2_FB">

<CMD = "Init", CMD_PARAMS = "G2_FB">

<CMD = "Start", CMD_PARAMS = "J2_FB">

<CMD = "Create", CMD_PARAMS =
"Connect(Belt_FB,J2_FB)">

< Threshold = "0 " >

<CMD = "Start", CMD_PARAMS = "G2_FB">

<CMD = "Create", CMD_PARAMS =
"Connect(Belt_FB,G2_FB)">

Figure 7.36: Interactions between FESTO and EnAS agents

End.
Running Example. In the systems FESTO and EnAS, we present in Figure 7.36 the

exchanged XML blocks between agents to apply in the first platform the High Production
Policy and in the second the Second Production Mode according to the Coordination Matrix
CM2. The FESTO agent sends to CA(ξ(Sys)) a request to improve the productivity by
applying Reconfiguration2,1,2,1. The Coordination Agent sends a request to the EnAS
agent that checks if the Second Production Policy is applicable. In this case, an acceptation
is sent to CA(ξ(Sys)) that confirms both automatic reconfigurations in these platforms. In
this case, the Function Block Rotat disch is loaded in memory to apply the High Production
Policy. The block Drill2 is loaded in addition to allow drilling of pieces with Drill1. On
the other hand, the blocks J2 FB and G2 FB are loaded in EnAS to apply the Second
Production Policy (Figure 7.37).

89

J1_FB

Load

Load&close

Init Inito

Acq1

Acq2

G1_FB

Init Inito

Close

Belt_FB

Init Inito

Move_load

Move_close

Loa

Clo

Lo&Cl

J1_FB

Load

Load&close

Init Inito

Acq1

Acq2

G2_FB

Init Inito

CloseBelt_FB

Init Inito

Move_load

Move_close

Loa

Clo

J2_FB

Load&close

Init Inito

Acq2

Lo&Cl

FB_Manager

INIT
REQ

QI

PARAMS
CMD
CMD_PARAMS

INITO
CNF

QO
STATUS

RESULTS

Delete G1_FB

Create G2_FB

Create J2_FB

F
ir

st
 p

ro
d

u
ct

io
n

 p
o

lic
y

S
ec

o
n

d
 p

ro
d

u
ct

io
n

 p
o

lic
y

Figure 7.37: The Manager behavior when the EnAS productivity has to be improved

7.7 Conclusion

We define in this chapter a multi-agent architecture for distributed reconfigurable embed-
ded control systems. We assume a Reconfiguration Agent for each device of the execution
environment to handle local automatic reconfigurations according to conditions in user re-
quirements, and propose in addition a Coordination Agent for useful coordination between
devices when distributed reconfiguration scenarios should be applied. An inter-agents com-
munication protocol is defined to manage this coordination. We propose NCES-based mod-
els for both kinds of agents to check the feasibility of the system when reconfigurations
should be applied at run-time. Nevertheless, the functional correctness of each possible net-
work of Control Components should be validated for each scenario. We propose therefore
a refinement-based approach that generates Control Components step by step and checks
their feasibility. The tool ”ProtocolReconf” is develop to simulate the whole defined multi-
agent architecture, and a prototype is implemented to apply the refinement-based approach.
If Control Components are assumed to be IEC61499 Function Blocks, then we propose an
XML-based implementation of Reconfiguration and Coordination Agents to handle dynamic
reconfiguration scenarios of the embedded control system.

90

7.8 References of the Chapter’s Contributions

• M. Khalgui, O. Mosbahi, Intelligent distributed control systems, International
Journal on Information and Software Technology (accepted for publication), 2010,

• M. Khalgui, Distributed Reconfigurations of Autonomous IEC61499 Sys-
tems, accepted for publication in ACM Transactions in Embedded Computing Sys-
tems, 2011,

• M. Khalgui, O. Mosbahi, Formal Approach for the Development of Intelligent
Industrial Control Components, International Journal of Modelling, Identifica-
tion and Control (IJMIC), in print, to be published in 2011,

• M. Khalgui, O. Mosbahi, Z. Li, Run-Time Reconfigurations of Embedded Con-
trollers, accepted for publication in ACM Transactions in Embedded Computing
Systems, 2011,

• M. Khalgui, H-M Hanisch, Reconfiguration of Distributed Embedded Con-
trol Systems, IEEE Transactions on Systems, Machine and Cybernetics, Part A,
(Accepted to be published in 2011),

• M. Khalgui, O. Mosbahi, Zhiwu Li, H-M. Hanisch, Reconfiguration of Distributed
Embedded-Control Systems, IEEE/ASME Transactions on Mechatronics, 2010,

• M. Khalgui, O. Mosbahi, Z. Li, H-M. Hanisch, Development of Agent-based Re-
configurable Embedded Control Systems: From Modelling to Implemen-
tation, IEEE Transactions on Computers, (Accepted to be published in 2011),

• M. Khalgui,NCES-based Modelling and CTL-based Verification of Reconfig-
urable Embedded Systems In Manufacturing Industry, International Journal
of Computers in Industry, accepted, to appear in 2010,

• M. Khalgui, H-M Hanisch, Automatic NCES-based Specification and SESA-
based Verification of Feasible Control Tasks in Benchmark Production
Systems, International Journal of Modelling, Identification and Control, accepted
to appear in 2010,

Chapter 8

Feasible Execution Models for
Reconfigurable Real-Time
Embedded Control Systems

8.1 Introduction

The chapter deals with execution models of reconfigurable real-time embedded control sys-
tems to be implemented by different networks of components such that each network should
be executed when a corresponding reconfiguration scenario is automatically applied at run-
time. We assume that the system’s components are located in different containers sharing
controls of same physical processes. We mean by execution models the different possible
real-time OS tasks that implement the reconfigurable system’s behavior in the operational
level. We transform at first time each network of components to a system of actions with
precedence constraints in order to base our work on previous solid theories on real-time
scheduling [26]. Therefore, the event-triggered model of the network is transformed to a
time-triggered one. We propose an approach based on the non-preemptive scheduling policy
”Earliest Deadline First” (denoted by EDF) to verify temporal bounds of components lo-
cated in each container. If it is feasible, then we generate a pre-scheduling which is a Direct
Acyclic Graph (DAG) to define the corresponding execution sequencing function of the con-
tainer. If all containers are feasible, then we transform the corresponding pre-schedulings
to recurring OS tasks [14]. To meet temporal bounds, we analyze in addition the on-line
preemptive schedulability of these tasks because it is often required as denoted in [115] to
apply an on-line preemptive policy for scheduling of OS tasks. Thanks to this approach,
the network of components corresponding to each reconfiguration scenario is transformed
to feasible OS tasks. In addition, the reconfigurable system is considered as sets of OS
tasks where each set is loaded in memory when the corresponding reconfiguration scenario
is applied (i.e. a particular network of components). We present in Figure 8.1 the different
steps to be applied for the feasible assignment of reconfigurable components to OS tasks of

91

92

Reconfiguration
Agent

Network CCN1

Reconfiguration
Scenario: Reconfig1

Reconfiguration
Scenario: Reconfigm

Network CCNm

Container
Cont1,1

Container
Cont1,n

Container
Contm,1

Container
Contm,k

Scheduling
Pre-sched1,1

Pre-Scheduling of each Container

Scheduling
Pre-sched1,n

Scheduling
Pre-schedm,1

Scheduling
Pre-schedm,k

Assignment of each Container to an OS task

OS task of
Cont1,1

OS task of
Cont1,n

OS task of
Contm,1

OS task of
Cont1,m

Feasibility Analysis of tasks
for Reconfig1

Feasibility Analysis of tasks
for Reconfigm

System Feasible
and Assigned

System Unfeasible
and Unassigned

A
g

en
t-

b
as

ed
 S

o
ft

w
ar

e
A

rc
h

it
ec

tu
re

 o
f

R
ec

o
n

fi
g

u
ra

b
le

 C
o

n
tr

o
l S

ys
te

m
s

D
is

tr
ib

u
ti

o
n

o

n
 C

o
n

ta
in

er

 V
er

if
ic

at
io

n

o
f

te
m

p
o

ra
l b

o
u

n
d

s

S
eq

u
en

ci
n

g
s

T
ra

n
sf

o
rm

at
io

n
 o

f
th

e
fu

n
ct

io
n

al

in
to

 t
h

e
o

p
er

at
io

n
al

 a
rc

h
it

ec
tu

re

S
et

s
o

f
O

S
 t

as
ks

 w
h

er
e

o
n

ly
 o

n
e

is
 t

o
 lo

ad
 in

 t
h

e
m

em
o

ry
 a

t
a

g
iv

en
 t

im
e

O
n

-l
in

e
fe

as
ib

ili
ty

 o

f
ta

sk
s

O
n

ly
 o

n
e

n
et

w
o

rk
 im

p
le

m
en

ts

th
e

sy
st

em
 a

t
a

g
iv

en
 t

im
e

Figure 8.1: Verification and Assignment of Reconfigurable Control Components to sets of
Feasible OS Tasks

the execution environment [57].

8.2 State of the Art

Nowadays, many research works on assignments of components have been proposed. In
[52, 119], an approach is proposed to assign all the system’s components to only one exe-
cution thread. This sequential single-threaded approach seems to be inefficient for complex
systems as explained in [36, 79]. In [118], another solution is proposed by assigning each
component to only one thread. Nevertheless, this approach is limited because it deals with
devices containing small numbers of components. In [35], an interesting solution is pro-
posed by assigning subsets of application’s components to threads. Each subset is defined
as a container handling the execution of the corresponding components. Although this ap-
proach seems to be efficient and flexible, the assignment does not take into account temporal
constraints to strictly satisfy by the system’s components [117].

93

8.3 Temporal Properties of Reconfigurable Embedded Con-

trol Systems

According to user requirements, we define in this section temporal properties to be sat-
isfied by the components of a reconfigurable control system. We introduce the function
cause to capture end-to-end bounds on Networki,j,k,h that implements the system when
the scenario Reconfigurationi,j,k,h is applied. This function specifies a causality between
an event input of a component and the corresponding output of another one. We de-
fine in addition the set inputsi,j,k,h (outputsi,j,k,h, resp) of input (output, resp) events of
Networki,j,k,h with no predecessors (successors, resp) in the system (i.e. global input and
output events). In this chapter, we assume periodic events of inputsi,j,k,h. We classically
characterize each event iei,j,k,h ∈ inputsi,j,k,h by a release time ri,j,k,h, a period pi,j,k,h and
a constant deadline di,j,k,h [112]. We carefully precise that the same event can be charac-
terized by different temporal parameters for different reconfiguration scenarios. We denote
by bound event(iei,j,k,h, oei,j,k,h) the end-to-end bound to be satisfied between the receive
of a global input event iei,j,k,h (iei,j,k,h ∈ inputsi,j,k,h) and the sent of a global output event
oei,j,k,h (oe ∈ outputsi,j,k,h).

Running example. In the system FESTO, we assume in Figure 8.2 that the Function
Blocks are distributed on two resources (analogue of containers in the IEC61499 termi-
nology). We assume also the following end-to-end bounds for the different reconfiguration
scenarios.

• High production. The drilling of two pieces has to satisfy:

bound(Send2,1,2,1,Evo2,1,2,1) = 45

• Medium production. The drilling of one piece has to satisfy:

bound(Send2,2,2,2,Evo2,2,2,2) = 30

• Light production. The drilling of one piece by Drill machine1 has to satisfy:

bound(Send1,1,1,1,Evo1,1,1,1) = 35

8.4 Contribution: Formalization of Reconfigurable Embed-

ded Control Systems

We formalize a reconfigurable control system for verifications of temporal properties. We
transform each network of components (corresponding to a reconfiguration scenario) to a

94

Init Inito

Sendo
Init Init InitInito Inito Inito
Conv Convo Occ Occo Test T_No

Feder Converter Detector Tester

T_Ok

 Init Inito
Evac

Test_Failed

time= 1 seconds time= 2 seconds time= 1 seconds time= 2 seconds

time= 1 seconds

Send

time= 4 seconds

Init

Init

Inito

Inito

Rot Roto1

Drill1 Drillo1
Rotat_Disc

Drill1

 Init Inito
Drill2 Drillo2

Drill2

Evacuate_piece

Init Inito
Ev

 Init Inito
Che1 Cheo

Check_piece

Che2

time= 5 seconds

time= 5 seconds

time= 5 seconds time= 1 seconds

Roto2
Evo

 Init Inito
Elev Elevo

Elevator

time= 5 seconds

Resource1

Resource2

Figure 8.2: Assumed distribution of FESTO’s blocks on two resources

system of actions with precedence constraints in order to exploit previous results on real-
time scheduling [112, 14]. In a such network, we define an action as the execution of
a component when a well-defined input event occurs. Moreover, we define a trace as a
sequence of actions under causality relation in the network.

8.4.1 Action of Control Component

We define an action acti,j,k,h as the execution of a component belonging to Networki,j,k,h
(execution of one or several algorithms of the component) when a particular input event
iei,j,k,h occurs. We denote in the following by σi,j,k,h (resp, σCont

i,j,k,h) the set of the system’s
actions (resp, the set of actions in a container Cont) where we characterize acti,j,k,h ∈ σi,j,k,h
as follows:

• WCET (acti,j,k,h) (resp, BCET (acti,j,k,h)) : the Worst (resp, Best) Case Execution
Time of the sequence of algorithms corresponding to iei,j,k,h.

• pred(acti,j,k,h) : the set of actions to execute in the system before the acti,j,k,h exe-
cution. These actions belong to components producing the output events linked to
iei,j,k,h.

95

• succ(acti,j,k,h) : a set of actions sets. Each actions set corresponds to a possible
execution scenario (ie. only one set of actions set is performed at a time). The actions
of a set have to be executed once the execution of acti,j,k,h is finished. These actions
belong to components activated once the treatment corresponding to iei,j,k,h finishes.

• (ri,j,k,h, pi,j,k,h, di,j,k,h) : the two first parameters characterize the activation of acti,j,k,h
[112]. They should be processed while taking into account the execution of pred(acti,j,k,h).
The deadline di,j,k,h defines the latest completion date of the execution. To respect
temporal bounds, it should be processed while taking into account the deadlines of
the acti,j,k,h successors.

Let first(σi,j,k,h) (resp, last(σi,j,k,h)) be a subset of σi,j,k,h where each action is with no
predecessors (resp successors) in σi,j,k,h. In particular, we denote by first(σCont

i,j,k,h) (resp,

last(σCont
i,j,k,h)) a subset of σCont

i,j,k,h such that each action is with no predecessors (resp suc-

cessors) in σCont
i,j,k,h and we denote in addition by actp,qi,j,k,h the q − th instance of the action

actpi,j,k,h belonging to the network of components Networki,j,k,h.

8.4.2 Trace of Control Component

By considering precedence constraints between actions in Networki,j,k,h, we define a trace
tri,j,k,h of σCont

i,j,k,h the following sequence,

tri,j,k,h = act0i,j,k,h,, act
n−1
i,j,k,h where,

• ∀p ∈ [1, n− 1], actp−1
i,j,k,h = pred(actpi,j,k,h)

• act0i,j,k,h ∈ first(σCont
i,j,k,h) and actn−1

i,j,k,h ∈ last(σCont
i,j,k,h)

The execution of the trace tri,j,k,h has to satisfy an end-to-end response time bound
eertb(tri,j,k,h) according to user requirements. In this chapter, we consider non reentry
traces [68] : ”the execution of the z − th instance of the trace must not start before the
execution end of the (z − 1) − th one”. Therefore, the period of act0i,j,k,h is greater than
eertb(tri,j,k,h). To satisfy all the considered bounds in requirements, we propose in [64] a
technique to process deadlines for the different actions of traces in Networki,j,k,h.

8.5 Contribution: Verification and Assignment of Control

Components to OS Tasks

We verify temporal properties of Networki,j,k,h before assign the corresponding components
to feasible OS tasks of the execution environment in order to translate the functional to the
operational architecture of this network [54]. We assume in the following that Networki,j,k,h

96

is distributed on a set of containers (denoted by containers) located in a device. To verify
and assign the network, we analyze the schedulability of Control Components in each con-
tainer Cont ∈ containers by constructing a reachability graph to verify temporal properties
(end-to-end bounds). If it is feasible, then we generate a pre-scheduling that defines the
sequencing of components in Cont, and if all containers are feasible, then we transform
the corresponding pre-schedulings into OS tasks (i.e. one container is assigned into one OS
task). To complete the temporal verification of bounds, we check the on-line preemptive
feasibility of these tasks by applying a schedulability analysis. As denoted in [115], it is
often required to apply an on-line preemptive policy to schedule OS tasks in devices. This
methodology of verification and assignment has different advantages: it reduces the num-
ber of tasks to schedule by regrouping components of a container in a single task. This
advantage is required by several Real Time Operating Systems which restrict such number
[115]. Thanks to this regrouping, the complexity of the schedulability analysis of OS tasks
is controlled and the context switching is minimized at run-time [65].

8.5.1 Verification and Pre-scheduling of a Container

To verify temporal bounds of Networki,j,k,h that contain components located in a container
Cont (Cont ∈ containers), we construct in a well-defined Hyper Period a reachability graph
by applying the scheduling policy ”Earliest Deadline First” [112]. If it is feasible, then we
generate a pre-scheduling as a Direct Acyclic Graph.

• Hyper Period for a Reconfiguration Scenario

Let lcmi,j,k,h be the least common multiple of periods of actions in first(σCont
i,j,k,h).

Let actmax
i,j,k,h = {rmax, pmax, dmax} and actmin

i,j,k,h = {rmin, pmin, dmin} be two actions of

first(σCont
i,j,k,h) such that,

∀actai,j,k,h ∈ first(σCont
i,j,k,h), rmin ≤ ra ≤ rmax

By exploiting a previous result on the hyper period for asynchronous systems [71],
the schedulability analysis should be done in HPCont

i,j,k,h = [rmin; rmax + 2.lcmi,j,k,h].

Running example. In the Benchmark Production System FESTO, the hyper period
for Resource1 is calculated for all possible reconfiguration scenarios. In particular:

– HPResource1
2,1,2,1 = [0, 22] for the High Production Mode,

– HPResource1
2,2,2,2 = [0, 60] for the Medium Production Mode,

– HPResource1
1,1,1,1 = [0, 100] for the Light Production Mode,

• Reachability Graph of a Container for a Reconfiguration Scenario

We propose a technique for the generation of the reachability graph GCont
i,j,k,h that

presents all possible execution scenarios of components (of Networki,j,k,h) located in

97

the container Cont when Reconfigurationi,j,k,h is applied. Each trajectory of this
graph presents a scheduling of system’s traces in Cont. A state Ci,j,k,h of a trajectory
contains a selected instance of action to execute among all active ones. We apply the
static Earliest Deadline First policy (denoted by EDF) [112] to perform the selection.
A state Ci,j,k,h of GCont

i,j,k,h is characterized as follows,

Ci,j,k,h = {Si,j,k,h, act
m,n
i,j,k,h, ti,j,k,h} where,

– Si,j,k,h : a set of instances of actions to execute,

– actm,n
i,j,k,h : the selected instance among all active ones of Si,j,k,h according to the

EDF policy,

– ti,j,k,h : the start time of the actm,n
i,j,k,h execution,

The first state of the graph is denoted by C0
i,j,k,h = {S0

i,j,k,h, act
min,1
i,j,k,h, t

0
i,j,k,h} where

S0
i,j,k,h contains instances of actions belonging to first(σCont

i,j,k,h). To construct the
reachability graph, the following rules are applied recursively for each state Ci,j,k,h =
{Si,j,k,h, act

m,n
i,j,k,h, ti,j,k,h} without a successor :

Construction Of GCont
i,j,k,h

– Rule 0 : Stop Condition.

If ti,j,k,h > rmax + 2.lcmi,j,k,h , Then we reach the limit of HPCont
i,j,k,h and the

construction of the current trajectory is stopped,

– Rule 1 : Verification of Constraints.

If there exists an instance actp,qi,j,k,h ∈ Si,j,k,h missing its deadline, then the net-
work of components is unfeasible in the container Cont. Otherwise, an instance
actm,n

i,j,k,h (actmi,j,k,h belongs to tri,j,k,h in the container Cont) is selected by apply-
ing the static EDF policy,

– Rule 2 : Construction of New States.

For each set of succ(actm,n
i,j,k,h), a new state of GCont

i,j,k,h has to be constructed. If
actmi,j,k,h belongs to last(tri,j,k,h), then a new instance of tri,j,k,h is started,

Running example. In the system FESTO, we construct the reachability graph for
each resource and for each reconfiguration scenario. In Figure 8.3, we present reach-
ability graphs of Resource2 for the high and the medium production modes. These
graphs are constructed respectively in HPResource2

2,1,2,1 and HPResource2
2,2,2,2 . In the first

mode, we have to execute the two actions Drill1 and Drill2 to drill two pieces in
Drill machine1 and Drill machine2, whereas in the second mode we execute only
one of the two actions. Finally, we note that initialization actions are not considered
in these graphs.

98

Figure 8.3: Reachability graphs of Container2 for the high and medium production modes.

• Generation Of a pre-scheduling for a Reconfiguration Scenario

If the reachability graph is correctly constructed in the hyper period HPCont
i,j,k,h (i.e. all

temporal properties are satisfied), then a static scheduling StatCont
i,j,k,h is generated to

be used by the OS when the current reconfiguration scenario Reconfigurationi,j,k,h

is applied at run-time. This scheduling is a DAG where each trajectory specifies a
possible execution of the system. A state of the graph specifies the execution start time
of an action’s instance which is selected in the corresponding node of the reachability
graph.

Running example. In the system FESTO, we generate a pre-scheduling from the
reachability graph that we construct for each resource and for each particular recon-
figuration scenario. We show in Figure 8.4 pre-scheduling portions of Resource1 and
Resource2 for the Medium production mode. These pre-schedulings are generated in
well-defined Hyper Periods according to the followed production mode.

• Assignment of Control Components to OS Tasks

We propose a technique to assign the pre-scheduling StatCont
i,j,k,h defining the sequencing

of Control Components in Cont (when the reconfiguration scenarioReconfigurationi,j,k,h

is applied) to an OS task. By considering the conditional structure of StatCont
i,j,k,h, we

use the recurring task model to apply the assignment [14]. This model was introduced
to represent conditional real-time codes.

Recurring task : a recurring task Γ is characterized by a task graph G(Γ) and a
period P (Γ). The task graph G(Γ) is a Direct Acyclic Graph (DAG) with a unique

99

Figure 8.4: A pre-scheduling portion of container1 and container2 for the Medium pro-
duction mode.

source vertex (denoted by τ0) and a unique sink vertex. Each vertex of this DAG
represents a subtask (denoted by τ) and each edge represents a possible flow of control.
A vertex of Γ is characterized by a WCET and a deadline d. In addition, an edge (τ ,
τ ′) is characterized by a real number p(τ , τ ′) denoting the minimum amount of time
that must elapse after vertex τ is triggered (t(τ)) and before vertex τ ′ can be triggered
(t(τ ′)) [14].

We encode the graph structure with the set pred(τ) (resp, succ(τ)) that defines sub-
tasks of Γ such that only one has to be executed before (resp, after) τ . By consider-
ing two behavioral modes in the hyper period HPCont

i,j,k,h, the pre-scheduling StatCont
i,j,k,h

should be transformed to two recurring tasks ΓCont
i,j,k,h and Γ′Cont

i,j,k,h. The task ΓCont
i,j,k,h im-

plements the stationary behavior (in [rmin, rmax]) whereas the task Γ′Cont
i,j,k,h implements

the non-stationary one (in [rmax, rmax+2.lcm]). Note that ΓCont
i,j,k,h is periodic with the

same period of the stationary mode.

A straightforward transformation consists in associating each subtask to an action’s
instance. Nevertheless, this transformation produces recurring tasks with several sub-
tasks. This transformation increases the complexity of the schedulability analysis [14].
To control this complexity, we merge as a solution a sequence of instances of actions
into a unique subtask. To verify all bounds during the feasibility analysis of these OS
tasks, an instance acta,bi,j,k,h ∈ StatCont

i,j,k,h such that actai,j,k,h ∈ last(σCont
i,j,k,h) must be the

last instance of a subtask τi,j,k,h. According to the EDF policy, the deadline of τi,j,k,h
is then the deadline of acta,bi,j,k,h.

Notations. In the following, stat succ(acta,bi,j,k,h) (resp stat pred(acta,bi,j,k,h)) denotes

the set of instances following (resp preceding) the instance acta,bi,j,k,h in StatCont
i,j,k,h.

A subtask τi,j,k,h of ΓCont
i,j,k,h has to be implemented as follows,

τi,j,k,h = act0,ci,j,k,h , act1,gi,j,k,h......, act
d−1,f
i,j,k,h such that,

100

– ∀ y ∈ [0, d − 2], stat succ(acty,pi,j,k,h) = {acty+1,q
i,j,k,h} : the sequence implementing

τi,j,k,h is a sequence of instances in StatCont
i,j,k,h,

– actd−1
i,j,k,h is an action without successors in σCont

i,j,k,h or actd−1,f
i,j,k,h has more than one

successor in StatCont
i,j,k,h,

actd−1
i,j,k,h ∈ last(σCont

i,j,k,h) or cardinality(stat succ(act
d−1,f
i,j,k,h)) > 1

Let first(τi,j,k,h) (resp last(τi,j,k,h)) be the first (resp last) instance of the subtask
τi,j,k,h. Moreover, let first stat(StatCont

i,j,k,h) be the set of instances in StatCont
i,j,k,h with

no predecessors to execute in the stationary mode. We apply the following rules to
construct the task ΓCont

i,j,k,h. The first rule constructs the first subtask τ0i,j,k,h of the

recurring task ΓCont
i,j,k,h, whereas the second one is applied recursively to construct the

other subtasks,

Rule 0. Construction of the First Subtask τ0i,j,k,h in ΓCont
i,j,k,h.

If cardinality(first stat(StatCont
i,j,k,h)) = 1, Then, {τ0i,j,k,h} = first stat(StatCont

i,j,k,h)

Otherwise, a virtual subtask τ0i,j,k,h in G(ΓCont
i,j,k,h) is constructed as follows:

– WCET (τ0i,j,k,h) = 0,

– For each state acta,bi,j,k,h ∈ first stat(StatCont
i,j,k,h), a subtask τ zi,j,k,h such that (τ0i,j,k,h,τ

z
i,j,k,h)

∈ G(ΓCont
i,j,k,h) and p(τ0i,j,k,h,τ

z
i,j,k,h) = 0 is constructed,

The triggering time of the subtask τ0i,j,k,h is equal to the minimum of the execution

start times of instances in first stat(StatCont
i,j,k,h) :

t(τ0i,j,k,h) = min{t(acta,bi,j,k,h),act
a,b
i,j,k,h ∈ first stat(StatCont

i,j,k,h)}.

Rule 1. Construction of Subtasks.

Let τai,j,k,h be a subtask of ΓCont
i,j,k,h such that last(τai,j,k,h) has a successor in StatCont

i,j,k,h,

∃ act0,qi,j,k,h ∈ StatCont
i,j,k,h, act

0,q
i,j,k,h ∈ stat succ(last(τai,j,k,h))

Let τ bi,j,k,h be the successor of τai,j,k,h in ΓCont
i,j,k,h (τ bi,j,k,h ∈ succ(τai,j,k,h)),

τ bi,j,k,h = act0,qi,j,k,h, act
1,w
i,j,k,h,,act

d−1,p
i,j,k,h such that,

actd−1,p
i,j,k,h in last(σCont

i,j,k,h) or cardinality(stat succ(act
d−1,p
i,j,k,h))> 1

By considering the recurring task concept as presented in [14], the following temporal
constraints for this new subtask are defined,

101

– The ready time t(τ bi,j,k,h) is equal to the earliest possible execution time of

the instance act0,qi,j,k,h. This time should take into account the execution of the

act0,qi,j,k,h predecessors in StatRes
i,j,k,h. We characterize it as follows,

t(τ bi,j,k,h) = max{r(act0,qi,j,k,h);

maxτai,j,k,h=pred(τbi,j,k,h)
{t(τai,j,k,h) +

∑
actp,wi,j,k,h∈τ

a
i,j,k,h

BCET (actpi,j,k,h)}}

– The minimum amount of time p(τai,j,k,h,τ
b
i,j,k,h) is classically equal to the

difference between the triggering times of τ bi,j,k,h and τai,j,k,h : pb = t(τ bi,j,k,h) −
t(τai,j,k,h),

– The deadline db, corresponds to the deadline of the last instance actd−1,p
i,j,k,h of

τ bi,j,k,h,

– The execution requirement WCET (τ bi,j,k,h) is the sum of the WCETs of the

τ bi,j,k,h actions,

Finally, we apply the same method to construct the recurring task Γ′Cont implementing
the non-stationary behavior of the container Cont.

Running example. In the system FESTO, we assign the Control Components of
each container for each particular production mode to an OS task. Figure 8.5 shows the
OS tasks ΓResource1

2,2,2,2 and ΓResource2
2,2,2,2 implementing the system in the stationary behavior

when the medium production mode is applied by the agent. We show in Figure 8.6 the
OS tasks ΓResource1

2,1,2,1 and ΓResource2
2,1,2,1 implementing the system in the stationary behavior

when the high production mode is applied.

8.5.2 Verification of OS tasks for a Reconfiguration Scenario

At this step, the network of Control Components Networki,j,k,h distributed on containers of
the set Containers is assigned to independent OS tasks of the execution environment (each
container is assigned to a recurring task). By considering the transformation technique,
the precedence constraints between actions of σCont

i,j,k,h are not lost. Indeed, the temporal
characterization of tasks preserves such dependencies. We apply the schedulability condi-
tion defined in [14] to check the preemptive on-line feasibility of the tasks implementing
Networki,j,k,h when Reconfigurationi,j,k,h is applied. This condition should be applied in
a fixed hyper-period hp as follows,

hpi,j,k,h = [0,

∑
ΓCont
i,j,k,h

∈S
2∗E(ΓCont

i,j,k,h)

1−
∑

ΓCont
i,j,k,h

∈S
ρave(ΓCont

i,j,k,h)
] where,

• S : the set of the recurring tasks of Networki,j,k,h to validate,

• E(ΓCont
i,j,k,h) : denotes the maximum possible cumulative execution requirement on any

path from the source node to the sink node of the task graph G(ΓCont
i,j,k,h),

102

Figure 8.5: The OS tasks implementing the system in the Medium Production Mode.

• ρave(Γ
Cont
i,j,k,h) : denotes the quantity E(ΓCont

i,j,k,h)/P(Γ
Cont
i,j,k,h),

The schedulability condition indicates that the system is feasible if and only if,

∀t ∈ hpi,j,k,h,
∑

ΓCont
i,j,k,h∈S

ΓCont
i,j,k,h.dbf(t) ≤ t

where, ΓCont
i,j,k,h.dbf(t) is a function accepting as argument a non negative real number t.

This function processes the maximum cumulative execution requirement by jobs of ΓCont
i,j,k,h

having both ready times and deadlines within any time interval of duration t. Finally, note
that [14] proposes an interesting technique to compute this function in the hyper period
hpi,j,k,h.

8.6 Generalization: Verification and Assignment of Recon-

figurable Embedded Control Systems

We generalize in this section the verification of temporal bounds of components encoding
the system after different reconfiguration scenarios. We generalize also their assignment to
sets of OS tasks. Each set should be load in memory by the agent if the corresponding
reconfiguration scenario is applied.

103

Figure 8.6: The OS tasks implementing the system in the High Production Mode.

8.6.1 Algorithm

To check and assign a reconfigurable system to the execution environment, we should ver-
ify end-to-end response time bounds of the network of components Networki,j,k,h corre-
sponding to a particular reconfiguration scenario Reconfigurationi,j,k,h (i ∈ [1, nASM],
j ∈ [1, nCSMi], k ∈ [1, nDSM] and h ∈ [1, nDSMk

]). This network is distributed on several
containers. We have to construct if possible for each one of them a pre-scheduling. If it is
feasible, we transform this pre-scheduling to an OS task that we have to check its on-line
feasibility. Finally, if all the networks of components corresponding to the different reconfig-
uration scenarios are feasible and correctly assigned, then the whole reconfigurable system
is feasible and correctly assigned.

——————

Algorithm. Verification and Assignment
For each Architecture ASMi, i ∈ [1, nASM],
For each Control policy CSMi,j , j ∈ [1, nCSMi],

For eachData configurationDSMk,h, h ∈ [1, nDSMk
] such thatDSMk = Data(CSMi,j),

Construction Of GRes
i,j,k,h for each Cont ∈ containers,

If a deadline is violated in Networki,j,k,h,
Then Display(System is unfeasible),

Else Generation Of a Pre-scheduling for each Cont ∈ containers,
for each Cont ∈ containers Assignment of Cont to an OS task,
If all constructed OS tasks meet their deadlines,

Then Display(Networki,j,k,h is correctly checked and assigned to the exe-
cution environment),

Else System is unfeasible,
Display(Reconfigurable System is correctly checked and assigned),

End Algorithm.

104

——————

we compute the algorithm’s complexity by defining n as an upper bound of nASM ,
max{nCSMi , i ∈ [1, nASM]} and max{nDSMk

, k ∈ [1, nDSM]}. The complexity of the al-
gorithm is then in O(n3). In the research laboratory of automation technology at Martin
Luther University, we developed the tool X − Assign that supports this algorithm for the
verification and assignment of reconfigurable systems. In addition to the benchmark system
FESTO, we applied this tool to the EnAS demonstrator.

8.6.2 Discussion

The approach that we propose to assign networks of components to sets of OS tasks has
advantages. As required by several RTOS, it reduces the number of OS tasks implementing
the system. In the system FESTO, two tasks (corresponding to Resource1 and Resource2)
are enough to support Distribution, Test and Processing Units. As shown in Figure 8.7,
this approach reduces also the context switching between tasks at run-time as follows:

• Case1. High production mode. if we consider each component as an OS task
(i.e. the assumption proposed in [118]), then 22 context switchings are applied in the
Hyper period. Thanks to our approach where only two tasks implement the whole
system, only 2 context switchings are applied between them.

• Case2. Medium and Light production modes. 18 context switchings are applied
in the Hyper period if we consider each component as an OS task [118]. In our
approach, only 4 context switchings are applied between the two tasks implementing
the system.

8.7 conclusion

The chapter proposes a methodology to check and assign Control Components of recon-
figurable embedded control systems to feasible OS tasks of the execution environment.
These components are assumed to be distributed on several containers and should meet
corresponding real-time constraints. The system is implemented by different networks of
components such that each one is loaded in memory when the corresponding reconfigu-
ration scenario is applied at run-time. We propose a technical solution that generates a
pre-scheduling for each container and for each network of components. This pre-scheduling
is assigned thereafter to an OS task that we should check its feasibility. The system is
implemented therefore by different sets of OS tasks such that each set should be executed
when the corresponding reconfiguration scenario is applied.

105

Figure 8.7: Context switchings for the different production modes of the FESTO Manufac-
turing System.

8.8 References of the Chapter’s Contributions

• M. Khalgui, H-M. Hanisch, Reconfiguration of Industrial Embedded Systems,
Industrial Information Technology Handbook, Editor : Luis Gomes, CRC Press, 2009,

• M. Khalgui, A Deployment Methodology of Real-time Industrial Control
Applications in Distributed Controllers, International Journal of Computers in
Industry. Vol59, N.5, 2008,

• M. Khalgui, H-M Hanisch, A formal Approach to Check and Assign Recon-
figurable Control Applications into Programmable Logic Controllers, Asian
Journal of Control. Vol.11, N.3, 2009,

Chapter 9

Dynamic Low Power
Reconfigurations of Real-Time
Embedded Systems

9.1 Introduction

Nowadays1, the minimization of the energy consumption is an important criterion for the
development of real-time embedded systems due to limitations in capacities of their bat-
teries, in addition to their tasks which become more and more complex than ever. These
systems should provide optimal real-time services with low power consumptions. Several
interesting research works have been proposed in recent years for their real-time and low
power scheduling [104, 93, 124, 122, 37]. The new generations of such systems are address-
ing new criteria as flexibility and agility. To reduce their cost, they should be changed and
adapted to their environment without disturbances. Several interesting academic and in-
dustrial research works have been made in recent years to develop reconfigurable embedded
systems [38]. We distinguish in these works two reconfiguration policies: static and dynamic
reconfigurations where static reconfigurations are applied off-line to apply changes before
the system’s cold start [6], whereas dynamic reconfigurations are dynamically applied at
run-time. Two cases exist in the latter: manual reconfigurations applied by users [101] and
automatic reconfigurations applied by Intelligent Agents [66, 2]. We are interested in this
research in dynamic reconfigurations of real-time embedded systems that should meet dead-
lines defined in user requirements [13]. These systems using CMOS-based processors [102],
are implemented by sets of tasks that we assume independent, periodic and synchronous
(e.g. they are simultaneously activated at t = 0 time units). Each set is executed when a
particular reconfiguration scenario is applied at run-time. According to [76], we characterize
each task in this study by a functional priority defining its static priority in the system, a

1This research is done in the Research Laboratory of Prof. Zhiwu Li at Xidian University in China for
the co-supervision of the PhD student Mr. Xi Wang form February 2010 to january 2013.

106

107

period equals to the deadline, and a Worst Case Execution Time (WCET). We define an au-
tomatic reconfiguration any operation allowing additions-removals or also updates of tasks
at run-time. Therefore the system’s implementation is dynamically changed and should
meet all considered deadlines of the current combination of tasks. In addition, the energy
consumption should not be increased but should be stable or decreased after each possible
reconfiguration in order to satisfy the battery capacities. To reach this goal, we define
an agent-based architecture where an intelligent software agent is proposed to check each
dynamic (manual or automatic) reconfiguration scenario to be applied at run-time, and to
help users for feasible and lower power reconfigurations. If some tasks violate corresponding
deadlines, or if the power consumption is increased, the agent proposes new solutions for
users in order to re-obtain the system’s feasibility with low power consumption. The agent
proposes first of all to modify periods of tasks in order to decrease the processor speed
which is proportional to its power. It suggests as a second solution to modify execution
times of tasks in order to decrease the processor utilization. Finally it proposes for users to
remove some tasks according to their functional static priorities or also according to their
processor utilizations. The minimization of the energy consumption is computed for each
solution. The users should decide in this case which solution to apply in order to guarantee
feasible low power reconfigurations of the real-time embedded system where all tasks (new
and old) meet deadlines with a low power consumption. We developed at Xidian University
in China a tool that supports all the services offered by the agent.

In the next section, we analyze previous works on low power and real-time scheduling as
well as reconfigurations of embedded architectures, before formalize reconfigurable real-time
systems in Section 3 and evaluate the power consumption of such systems in Section 4. We
define in Section 5 the agent-based architecture for low power reconfigurations of real-time
embedded systems. This architecture is implemented, simulated and analyzed in Section 6.
Finally, we conclude and present our future works in Section 7.

9.2 Related Works

We present related works dealing with reconfigurations, real-time and low-power scheduling
of embedded systems.

9.2.1 Reconfigurations of Embedded Systems

Nowadays, rich research works have been proposed to develop reconfigurable embedded
systems. The authors propose in [6] reusable tasks to implement a broad range of systems
where each task is statically reconfigured without any re-programming. This is accom-
plished by updating the supporting data structure, i.e. a state transition table, whereas
the executable code remains unchanged and may be stored in permanent memory. The
state transition table consists of multiple-output binary decision diagrams that represent
the next-state mappings of various states and the associated control actions. The authors

108

propose in [101] a complete methodology based on the human intervention to dynamically
reconfigure tasks. They present in addition an interesting experimentation showing the
dynamic change by users of tasks without disturbing the whole system. The authors in
[116] use Real-time-UML as a meta-model between design models of tasks and their imple-
mentation models to support dynamic user-based reconfigurations of control systems. The
authors propose in [22] an agent-based reconfiguration approach to save the whole system
when faults occur at run-time. Finally the authors propose in [2] an ontology-based agent
to perform system’s reconfigurations that adapt changes in requirements and also in envi-
ronment. They are interested to study reconfigurations of control systems when hardware
faults occur at run-time. We are interested in this study in feasible low power dynamic
reconfigurations of real-time systems where additions and removals of real-time tasks are
applied at run-time.

9.2.2 Real-Time Scheduling

Real-time scheduling has been extensively studied in the last three decades [13]. Several
Feasibility Conditions (FC) for the dimensioning of a real-time system are defined to enable
a designer to grant that timeliness constraints associated with an application are always
met for all possible configurations. Different classes of scheduling algorithms are followed:
(i) Clock-driven: primarily used for hard real-time systems where all properties of all jobs
are known at design time. (ii) Weighted round-robin: primarily used for scheduling a
real-time traffic in high-speed, (iii) Priority-driven: primarily used for more dynamic real-
time systems with a mixture of time-based and event-based activities. Among all priority-
driven policies, Earliest Deadline First (EDF) or Least Time to Go is a dynamic scheduling
algorithm used in real-time operating systems. It places processes in a priority queue.
Whenever a scheduling event occurs (task finishes, new task released, etc.) the queue will
be searched for the process closest to its deadline. This process is the next to be scheduled
for execution. EDF is an optimal scheduling algorithm on preemptive uniprocessors in
the following sense: if a collection of independent periodic jobs characterized by arrival
times equal to zero and by deadlines equal to corresponding periods, can be scheduled by a
particular algorithm such that all deadlines are satisfied, then EDF is able to schedule this
collection of jobs.

We present the following well-known concepts in the theory of real-time scheduling [76]:

• A periodic task Ti (Ci;Ti;Di) is an infinite collection of jobs that have their request
times constrained by a regular inter-arrival time Ti, a Worst Case Execution Time
(WCET) Ci and a relative deadline Di,

• A real-time scheduling problem is said feasible if there is at least one scheduling policy
able to meet the deadlines of all the considered tasks,

• A set of tasks is schedulable with a given scheduling policy if and only if no jobs of
this set miss their deadlines,

109

Figure 9.1: An example of periodic tasks

• A task is valid with a given scheduling policy if and only if no jobs of this task miss
their deadlines,

• An idle time t of a processor is defined as a time where no tasks released before time t
are pending at time t. An interval of successive idle times is classically called an idle
period,

• A busy period is defined as a time interval [a, b) such that there is no idle time in
[a, b) (the processor is fully busy) and such that both a and b are idle times,

• In the case of independent, periodic and synchronous tasks (e.g. simultaneously acti-
vated at t = 0), the verification of the system’s schedulability is possible to be done
in a hyper period [0, LCM] where LCM is the Least Common Multiple [76],

• U =
n∑

i=1

Ci
Ti

is the processor utilization factor. In the case of synchronous, independent

and periodic tasks such that their deadlines are equal to their periods, U ≤ 1 is a
necessary and sufficient condition for the EDF-based scheduling of real time tasks.

We present an example of periodic tasks simulated by Cheddar [107] in Fig. 9.1, which
contains two synchronous periodic tasks. Both of them release at time equals to zero time
unit. The first task, task1, with period/deadline equals to 4 time units and C1 equals to
2 time units. The second one, task2, with period/deadline equals to 5 time units and C2

equals to 2 time units. In this figure, we can see that the processor utilization of the tasks
set is 0.9, and both task1 and task2 respect their deadlines. The LCM is 20 time units.

9.2.3 Low Power Scheduling

Several interesting research works have been proposed for low power and real-time schedul-
ing of real-time embedded systems. Under the well-known Fixed Priority Preemptive Policy

110

(FPP), Shin and Choi [104] present a simple run-time strategy that reduces the energy con-
sumption and the work in [93] proposes an optimal solution having an exponential algorith-
mic complexity. Yun and Kim [124] prove that computing the voltage schedule for real-time
tasks under FPP is NP-hard and proposes an approximate solution to resolve the problem. If
the well-known EDF Policy is applied, Yao et al. in [122] propose an off-line algorithm to find
a voltage schedule for independent tasks. Over the past several years, many methods and
techniques for minimizing power consumption for low power systems have been published,
e.g. [16, 85, 89]. Power-reduction techniques can be in general classified into two categories
[95]: static and dynamic. Dynamic techniques are generally easy to implement and applied
at run-time. Examples of such techniques include those in [104, 78, 17, 45, 92, 96, 110].
We note also that several static power management policies have been investigated, e.g.
[122, 46, 51, 94]. Previous investigations on the voltage scheduling problem have focused
mainly on real-time jobs running under dynamic-priority scheduling algorithms such as the
EDF algorithm [46, 10, 67, 90]. This research is interested in low power reconfigurations
of real-time embedded systems where dynamic addition-removal-update of tasks can be
applied at run-time.

9.3 Formalization of Reconfigurable Real-Time Systems

Nowadays, dynamic reconfigurations of embedded real-time systems are useful technical
solutions to save the whole software/hardware architecture when faults occur at run-time, or
also to improve the system’s performance under well-defined conditions. A reconfiguration
scenario is assumed to be an operation allowing the addition-removal-update of tasks from-
to the system. Nevertheless, each scenario should be applied while reducing the energy
consumption which is a very important criterion. Indeed, when a scenario is dynamically
applied such that new tasks are added to the system, the energy consumption should be
stable or decreased. We assume in this research work a real-time embedded system Sys as
a set of tasks that should meet real-time constraints defined in user requirements: Sys =
{T0, T1, · · ·, Tn}. When a reconfiguration scenario is applied, a subset of tasks can be
added/removed to/from the system. Each task Ti of Sys is classically characterized by (i) a
function fi defining its functional priority among all the system’s tasks. In this case, the task
cannot be removed while the others with lower functional priorities are executed. (ii) the
release time Ri defining the execution start time of the task, (iii) the Worst Case Execution
Time Ci, (iv) the period Ti, (v) the deadline Di. We assume in addition that (a) all the
system’s tasks are periodic and synchronous: all release times are equal to zero time units
(see Fig. 9.1), (b) the period of each task is equal to the corresponding deadline. We assume
in the following that the system Sys is dynamically reconfigured at run-time such that its
new implementation is Sys = {T0, T1, · · ·, Tn, Tn+1, · · ·, Tm}. The subset {Tn+1, · · ·, Tm} is
added to the initial implementation {T0, T1, · · ·, Tn}. The processor utilization before and
after the reconfiguration scenario is as follows:

111

Ubefore =

n∑
i=1

Ci/pi (9.3.1)

Uafter =
m∑
i=1

Ci/pi (9.3.2)

9.4 Power Consumption of Reconfigurable Embedded Real-

Time Systems

We want in this section to evaluate the new energy consumption after a reconfiguration
scenario. In the literature, the power consumption of a processor following the CMOS
technology is determined by two components: static and dynamic power consumptions [102].
The static consumption is the product of the device leakage current and the supply voltage.
It is assumed to be negligible in this research. The dynamic consumption is composed of
two sections: Transient power consumption and capacitive-load power consumption. It can
be expressed as follows:

PD = PT + PL (9.4.1)

such that:

PT = Cpd × V 2
CC × fI ×NSW (9.4.2)

PL =
∑

(CLn × fOn)× V 2
CC (9.4.3)

where

• Cpd = is the power consumption capacitance (F),

• fI = is the input frequency (Hz),

• fOn = represents the different output frequencies at each output, numbered 1 through
n (Hz),

• NSW = is the total number of outputs switching,

• VCC = is the supply voltage (V),

• CLn = represents the different load capacitances at each output, numbered 1 through
n.

112

We assume in this chapter that the processor speed (Sp) is proportional to the voltage
[93] and also to the processor utilization (U):

Sp ∝ VCC ∝ U (9.4.4)

where

VCC = k2U (9.4.5)

According to Eq. (9.4.1), the dynamic power consumption (P) of a CMOS circuit is
quadratically dependent on the voltage.

P = PD = [(Cpd × fI ×NSW) +
∑

(CLn × fOn)]× V 2
CC (9.4.6)

where,
P = k1V

2
CC (9.4.7)

Such that,

k1 = (Cpd × fI ×NSW) +
∑

(CLn × fOn) (9.4.8)

By considering Eq. (9.4.6);

P = kU2 (9.4.9)

where

k = k1 × k22 (9.4.10)

If Uafter ≤ Ubefore, then the processor speed after the reconfiguration scenario will be
lower than that before, and in this case the power will be stable or minimized. The Eq.
(9.4.9) is interesting and will be used to allow low power reconfigurations of embedded
real-time systems: if the processor utilization is stable or decreased after any dynamic
reconfiguration scenario, then the power will be stable or decreased too.

9.5 Contribution: Agent-based Architecture for Low Power

Reconfigurations of Embedded Systems

We define an agent-based architecture for dynamic low power reconfigurations of an embed-
ded real-time system. When automatic or manual reconfigurations are applied at run-time
to add, remove or update tasks, the agent should check if the power consumption is in-
creased. In this case, it should propose useful functional (remove tasks) or temporal (change
their parameters) solutions for the minimization of energy consumption. We propose three
technical solutions to be proposed by the agent: (i) modification of periods (e.g. deadlines)
of tasks, (ii) modification of their WCETs, (iii) or removal of some others. In this case,

113

the users should decide a new low-power configuration of the system according to these
solutions.

9.5.1 Modification of periods and deadlines

When a reconfiguration scenario is dynamically applied at run-time to add new tasks, the
processor utilization of the system will be certainly increased. If the new utilization Uafter

is larger than 1, then the system is not feasible. The agent proposes as a first technical
solution to modify the periods and deadlines of tasks in order to decrease the processor
utilization Uafter to be not only lower than 1 but also than Ubefore. For the reconfigured
system, we can get:

Uafter =

m∑
i=1

Ci/p
′
i (9.5.1)

We assume that p′1 = p′2 = · · · = p′m = p in which p′1, p
′
2, . . ., and p′m are the modified

periods for each task.

Uafter =

m∑
i=1

Ci/p ≤ Ubefore (9.5.2)

p ≥
m∑
i=1

Ci/Ubefore (9.5.3)

Because each period should be integer, we can change Eq. (9.5.3) into Eq. (9.5.4):

p′ = ⌈(
m∑
i=1

Ci)/Ubefore⌉ (9.5.4)

According to Eq. (9.4.9), the new energy consumption is as follows:

Pafter = k(U2
after) (9.5.5)

9.5.2 Modification of WCETs

For the low power reconfiguration of embedded systems, the agent proposes as a second
technical solution to reduce the WCETs of tasks in order to decrease the processor utilization
Uafter. According to Eq. (9.5.2), we can get:

Uafter =
m∑
i=1

C ′
i/pi (9.5.6)

We suppose that C ′
1 = C ′

2 = · · · = C ′
m = C ′ in which, C ′

1, C
′
2, . . ., and C ′

m are the new
WCETs of tasks.

114

Uafter =

m∑
i=1

(C ′/pi) ≤ Ubefore (9.5.7)

C ′ ≤ Ubefore/
m∑
i=1

(1/pi) (9.5.8)

Because each period should be integer, we can change Eq. (9.5.8) into Eq. (9.5.9):

C ′ = ⌊Ubefore/

m∑
i=1

(1/pi)⌋ (9.5.9)

C ′ in Eq. (9.5.9) is the modified WCET of each task. The actual utilization of the
processor is as follows:

Uafter = C ′ ×
m∑
i=1

(1/pi) (9.5.10)

The total energy consumption is shown by Eq. (9.5.5).

9.5.3 Removal of Tasks

The third solution that the agent proposes allows the removal of tasks in order to minimize
the energy consumption after any reconfiguration scenario of the embedded system. We
propose two policies: the agent suggests to remove tasks according to their functional
priorities or according to their processor utilization. This solution is not interesting but
useful in many scenarios.

First Policy: Functional Priority Criterion.

By defining for each task Ti a functional priority fi, the agent suggests to remove tasks with
lower functional priorities because their removal can be useful for a low power reconfigu-
ration of the system. Let List be the list of tasks of Sys in ascending order of functional
priorities. We can remove the most unimportant tasks to keep the new utilization of the
system Uafter lower than Ubefore as follows:

Uafter =

m∑
fi=1

(Ci/pi) ≤ Ubefore (9.5.11)

The agent should look for the highest value of Uafter such that Uafter ≤ Ubefore. The
total energy consumption is shown by Eq. (9.5.5).

115

Second Policy: Processor Utilization Criterion.

It is similar to the first policy. The difference is not to order tasks according to their
static priorities, but according to their processor utilization. In this case, if the system
is not feasible or consumes more energy, then we should remove the tasks with highest
utilizations.

9.6 Experimentation

We present in this section an experimentation applying low power reconfigurations of em-
bedded real-time systems. We present first of all the implementation of the agent-based
architecture, before we show the simulations and analysis that is made to evaluate the
benefits of our contributions.

9.6.1 Implementation of the Reconfiguration Agent

We present the agent’s implementation that checks dynamic (automatic or manual) recon-
figuration scenarios, in Algorithm 1, and suggests useful solutions for the minimization of
the energy consumption. Each solution is generated as an input file from the agent to the
well-known model simulator Cheddar [107] to check its feasibility. This implementation is
tested in our research laboratory at Xidian University by assuming several cases of systems.

According to Eq. (9.3.1), we can calculate Ubefore. According to Eqs. (9.5.4) and
(9.5.9), we can calculate p′ in Section 5.1 and C ′ in Section 5.2, respectively. According to
Eqs. (9.5.1) and (9.5.6), we can calculate the processor utilization after the modification
of periods and deadlines U1

after and processor utilization after the modification of WCET

U2
after, respectively. According to Eq. (9.5.11), we can calculate U3

after and U4
after, respec-

tively. U3
after and U4

after here correspond to the utilization after tasks are removed by the
two policies in Section 5.3. According to Eq. (9.4.9), the power consumption is decrease,
in EDF, before the system is reconfigured Pbefore, the power consumption decrease after
periods and deadlines are modified P 1

after, WCET modified P 2
after, the tasks removal by

function priorities P 3
after or the utilization P 4

after can be calculated. The decrease of the
energy consumption of each technical solution in Algorithm 1 is as follow:

Pbefore = 1− U2
before (9.6.1)

P i
after = 1− (U i

after)
2(for : i = 1, 2, 3, 4) (9.6.2)

P i
decrease = P i

after − Pbefore(for : i = 1, 2, 3, 4) (9.6.3)

To the first two technical solutions, the algorithm complexity is O(n), and to the third
one, it is O(n2).

116

Algorithm 1 low-power reconfigurations

input ”system.txt” file;// the system initial configuration
input ”add.txt” file;// addition of new tasks
input ”priority.txt” file;// functional priorities of tasks
compute (Ubefore);
calculate period p′;// solution 1 to compute the new period of tasks
for(i = 1, i = size(system) + size(add), i + +)// to compute the new utilization when
periods are modified

Ui = Ci/p
′;∑

U1
after+ = Ui;

endfor;
Evaluate energy(Ubefore,U

1
after);

calculate execution time C ′;// solution 2 to compute the new WCET of tasks
for i = 1, i = size(system) + size(add), i + +// to compute the new utilization when
execution times are modified

Ui = C ′/pi;∑
U2
after+ = Ui;

endfor;
Evaluate energy(Ubefore,U

2
after);

sort all the tasks by a descending order based on their static;
Loop1 remove tasks priority(Sysnew1);// solution 3 to remove possible tasks (first crite-
rion)
for i = 1, i = size(Sysnew1), i++;// to compute the new utilization when tasks are removed
(first criterion)∑

U3
after+ = Ui;

endfor;
keep minimal(U3

min after);
EndLoop1
Evaluate energy(Ubefore,U

3
min after);

sort all the tasks by a ascending order based on their utilization;
Loop2 remove tasks utilization(Sysnew2);//solution 3 to remove possible tasks (second
criterion)
for i = 1, i = size(Sysnew2), i++;//to compute the new utilization when tasks are removed
(second criterion)∑

U4
after+ = Ui;

endfor;
keep minimal(U4

min after);

Evaluate energy(Ubefore,U
4
min after);

EndLoop2
end;

117

Figure 9.2: Initial System Tasks

Figure 9.3: Added Tasks

9.6.2 Simulations

We present some simulations applying low-power reconfigurations of an embedded real-time
system which is initially composed of 50 tasks, and which is dynamically reconfigured at
run-time to add 30 new ones. We assume the following temporal characteristics of the
system:

• Initial System’s Tasks: All the following initial tasks of the system are in the file
system.txt ((Ri, Ci, Ti, Di) define the temporal parameters of the task Ai) (Fig. 9.2),

• Added Tasks: All the added new tasks are described in the file add.txt (Fig. 9.3),

• Static priorities: All the functional priorities of the system’s tasks are defined in
the file priority.txt (Fig. 9.4).

118

Figure 9.4: Static Priorities

We performed several simulations to apply the proposed technical solutions for low power
reconfigurations of the system. We note that the initial processor utilization Ubefore =
0.91224. If we only add the task AA1, the processor utilization Uafter = 0.926874 which
is lower than 1. The system is still feasible where all deadlines are satisfied. Nevertheless,
the energy consumption is increased (Ubefore ≥ Uafter) which is not usually accepted. By
applying the first solution where periods and deadlines of tasks are modified to be equal to
355, the processor utilization becomes Uafter = 0.909859. According to Eqs. (9.6.1) and
(9.6.2), the power reduction before and after the automatic reconfiguration is as follows:

Pbefore = 1− 0.912242 = 16.7819% (9.6.4)

Pafter = 1− 0.9098592 = 17.2156% (9.6.5)

We show in Fig. 9.5 a software package that we developed to compute the new periods
as well as the new processor utilization. According to Eq. (9.6.3), the decrease of the energy
consumption is as follows:

Pafter − Pbefore = 0.433749% (9.6.6)

In a similar way, we apply the second and third solutions to decrease the energy consump-
tion in the system. By modifying the execution times, the energy consumption decreases
2.45583%. It decreases also in the third case when we remove tasks: (i) according to their
functional priorities: 3.77711%, (ii) according to their utilization: 3.37665%. We show in
Fig. 9.6 the initial utilization U , the utilization including the task AA1 U ′, the utilization
after the reconfiguration scenario U ′′, the power reduction before the reconfiguration sce-
nario P , the power reduction after such scenario P ′, and the energy consumption decrease
P ′′. The parameters CP, CW, RP, and RU, correspond to the modification of periods, the

119

Figure 9.5: Developed Software

Figure 9.6: Low power reconfiguration after the addition of AA1

modification of WCETs, the removal of tasks according to functional priorities, and the re-
moval of tasks according to processor utilizations, respectively. We show in Fig. 9.7 useful
solutions for low power reconfigurations of the system when we add the first 10 tasks, We
show in Fig. 9.8 new solutions when we add all the 30 tasks. We show in Appendix the new
configuration of the system when we add all the new tasks. We denote in this case by NP:
the new period, ENP: the power decrease when we modify the period, NW: the new WCET,
ENW: the power decrease in this case, RP: the number of removed tasks according to their
static priorities, ERP: the corresponding power decrease, RU: the number of removed tasks
according to their processor utilization, and ERU: the corresponding power decrease.

9.6.3 Analysis

We present some analysis that prove the advantages of the different proposed solutions.

9.6.4 Advantages of the First Solution

According to Eqs. (9.5.4) and (9.5.5), the power minimization is proven to be dependent of
the WCETs. If all the 30 tasks are added, their WCETs are equal to 165. We made several
simulations for

∑
Ci = 3, 4, 5, · · ·, 165. The result is shown in Fig. 9.9 in which we find a

decrease of consumption between 0 and 0.45%, the energy save was piecewise approximate

120

Figure 9.7: Low power reconfiguration after the addition of the first ten tasks

Figure 9.8: Low power reconfiguration after the addition of the thirty new tasks

linear depend on the
∑

Ci = 3, 4, 5, · · ·, 165.

Advantages of the Second Solution

According to the Eqs. (9.5.10) and (9.5.5), the power minimization is proven to be depen-

dant of periods. If all the 30 tasks are added, the value of
30∑
i=1

1/pi is equal to 0.131684.

We made simulations for subsets of tasks, the range of
∑

1/pi is between 0 and 0.131684.
The result is shown in Fig. 9.10 where the minimization of the energy consumption is be-
tween 0 and 35%. This simulation proves the benefits of the second solution than the first.
Nevertheless, sometimes, the modification of periods is more simpler than minimization of
WCET. We cannot judge that the second solution is more good than the first.

9.6.5 Application and Advantages of the Third Solution

In the third solution where tasks are removed at run-time to minimize the energy consump-
tion after reconfiguration scenarios, we applied several simulations to evaluate the benefits.
In Fig. 9.11, the continuous line presents the first policy where the priority function is used
as a criterion to remove tasks. In this case, the number of removed tasks is equal or greater
than the added one: the tasks remaining in the system are less than 50. The dotted line
corresponds to the removal of tasks according to their processor utilizations. The number of
removed tasks is smaller than that added. This second policy is more useful than the first.
We show in Fig. 9.12 the minimization of the energy consumption when we apply the first
(continuous line) and second (dotted line) policy. We note that the energy consumption
stills minimal when we apply the second solution where WCETs of tasks are modified.

121

Figure 9.9: Power save by modify periods

9.7 Conclusion

The chapter deals with low power and real-time dynamic reconfigurations of embedded
systems to be implemented by sets of tasks that should meet real-time constraints while
satisfying limitations in capacities of batteries. A reconfiguration scenario means the addi-
tion, removal or update of tasks in order to save the system when faults occur or to improve
its performance. The energy consumption can often be increased or real-time constraints
can often be violated when tasks are added. To allow a stable energy consumption before
and after each reconfiguration scenario, we define an agent-based architecture where an
intelligent software agent is proposed to check each dynamic reconfiguration scenario and
to suggest for users useful solutions in order to minimize the energy consumption. It pro-
poses to modify periods, reduce execution times of tasks or remove some of them. A tool is
developed and tested to support all these services. In our future work, we plan to study low
power and real-time reconfigurations of asynchronous tasks that can be loaded in a same
processor or can be distributed on different calculators.

9.8 References of the Chapter’s Contributions

• X. Wang, M. Khalgui, and Z. Li, Low Power Manual and Automatic Reconfig-
urations of Embedded Real-Time Systems, IEEE Transactions on Automation
Science and Engineering (submitted),

Appendix

122

Figure 9.10: Power save by modify WCETs

Figure 9.11: Compare the number of removed task between two remove strategies

123

Figure 9.12: Compare power save between two remove strategies

124

Figure 9.13: New Configuration of the System (1)

125

Figure 9.14: New Configuration of the System (2)

Chapter 10

Simulation of Control Components
implementing a Reconfiguration
Scenario

10.1 Introduction

We are interested in this chapter in discrete event simulations of reconfigurable embedded
systems to verify functional and temporal properties defined in user requirements [75, 113].
In addition to end to end bounds, the blocking problem should be checked for each Control
Component to avoid any situation in which the number of input events is higher than the
size of the corresponding buffer. Nevertheless, the simulation is known classically as a non
exhaustive approach [23, 24] especially for complex systems because it is not possible to sim-
ulate all possible execution scenarios and it is not possible to detect all possible faults in these
scenarios. We optimize in this work the simulation by applying a technique to be based on
fault injections in order to bring the whole system to critical scenarios where functional and
temporal properties can be possibly violated. By concentrating the simulation around these
scenarios, it will be possible to detect faults and to check major critical behaviors of the sys-
tem. We are interested in this chapter in the simulation of a particular network of Control
Components Networki,j,k,h (a ∈ [1, nASM], b ∈ [1, nCSMa], c ∈ [1, nDSM], d ∈ [1, nDSMc])
to be executed when the reconfiguration scenario Reconfigurationi,j,k,h is automatically
applied at run-time. We apply this approach of simulation to an embedded system imple-
menting a footwear factory in Italy where Control Components are designed in different
levels of a hierarchy to control the design complexity [56]. The Simulink-Stateflow envi-
ronment and formal rules are proposed in [12] to implement this software architecture. We
formalize a Control Component by introducing two modules: the Control Function Module
implementing the component’s behavior when a particular input event occurs at run-time,
and the Virtual Plant Module supporting interactions of the component with physical pro-
cesses. Therefore, the application is considered as a set of Control Function Modules with

126

127

precedence constraints that should meet temporal bounds. We propose a technique to pro-
cess a deadline for each control module in order to satisfy the corresponding bound and
define thereafter a characterization of critical execution scenarios where a blocking problem
can occur or a temporal property can be violated in a Control Component. To consider the
system’s hierarchy, we define a model of simulators based on the well known ”master-slave”
architecture to bring the whole system’s behavior to critical scenarios. In this model, a
slave is defined for each level of the system’s hierarchy and the master chooses useful errors
to inject in Control Components of each level by the corresponding slave. All the slaves
are running in parallel, they do not exchange data and their role is just to inject faults in
hardware components of the corresponding levels. We present in the chapter the benefits
of this approach by presenting our results that we found in the footwear factory in Italy.

in the next Section, we present a system implementing this factory, and analyze in
Section 3 some related works on simulations of embedded systems. We formalize Control
Components in Section 4 by introducing two modules defining its behavior. We characterize
in Section 5 the critical execution scenarios of a Control Component where a blocking
problem is possible to occur or a temporal property can be violated. The architecture
of proposed simulators is formalized and implemented in Section 6 before we evaluate in
Section 7 its performance and show the results that we found in the footwear factory.

10.2 Industrial Case Study

We are interested in a sub-system of the footwear factory which is implemented according
to the IEC61499 technology at the ITIA-CNR Institute in Italy (Figure 10.2).

10.2.1 Presentation

Let us consider 9 belts for the transport of produced pieces (pairs of shoes) from six pro-
duction stations Station1,..., Station6 to a storing and packing station Station7 (figure
10.1). The bidirectional belt Belt7 transports pieces from the discs disc1 and disc2 to the
belt Belt8. Each belt (as well as a disc) is characterized by a maximum number of pieces
to transport together. According to the production policy in the factory, we assume that
the pairs of shoes coming from the different production stations follow an aperiodic flow.

By applying the rules proposed in [12], we show in Figure 10.3 the modular implemen-
tation of this sub-system as a composition of 9 composite Function Blocks (i.e. composed
of Function Blocks) where each block controls the command of a particular belt or a disc.
In the following, we will not be interested in the internal behavior of each block. We refer
to detailed documentations available at the ITIA-CNR Institute.

128

Figure 10.1: A set of belts transporting pieces in the ITIA factory

10.2.2 Problem

In the transportation system, a critical problem that we should avoid is the saturation of
belts when the station Station7 is storing and packing a set of successive shoes coming
from the belt Belt8. Moreover, the production of a pair of shoes should satisfy an end to
end response time bound described in user requirements between the exit from a Stationj
(j ∈ [1, 6]) and the packing in the station Station7. To guarantee a correct production
according to these constraints, we apply in this research work a simulation based on a fault
injection technique to check the feasibility of the transportation system in the worst case.

10.2.3 Numerical Characterization

According to documented user requirements available at the ITIA-CNR Institute, the fol-
lowing numerical parameters are considered in this chapter:

• The size of the buffer storing input events in each block FB Beltj (j ∈ [1, 6] or j = 8)
is m = 1 and by considering the double transportation direction, the size of the buffer
in each block controlling a disc or the belt FB Belt7 is m = 2. Finally, the size of
the buffer FB Belt9 is m = 14 which corresponds to the maximum number of shoes
waiting the packing that the system can support.

• The worst case execution time of the algorithm in Belt9 is 12 time units, the worst
time to execute the corresponding Service Interface Function Block is 8 time units
and finally the worst time to transport a pair of shoes for FB Belt9 is 60 time units.
For the rest of belts, these times are equal respectively to 5, 5 and 20 time units.

• The production of each pair of shoes from a Stationj (j ∈ [1, 6]) to the station
Station7 should satisfy an end to end bound equal to 220 time units.

129

Figure 10.2: The ITIA footwear factory in Vigevano (Italy).

10.3 State of the Art

Several rich research works have been proposed to simulate manufacturing systems [105, 69]
since the earliest simulation generator developed by [88]. Among all these contributions,
Lee proposes in [70] an automatic simulation modelling methodology based on the part flow
specified in a process model and the resource description specified in resource model. In
this work, the process model describes the process sequence and the resource alternatives
for manufacturing each part. In the same way, a similar methodology is proposed in [11] to
generate simulations for KANBAN-controlled manufacturing systems. We note that these
two approaches use the generated simulation model for design and analysis of the system.
In [109], the authors present an architecture for the generation of Simulation-based Shop
Floor Control System (SSFCS) by formally modelling the components (execution model,
simulation model and resource model) that comprise the SSFCS. The execution model is a
model describing only the execution activities required to control process (i.e. interfacing
with physical equipment and performing synchronization among different controllers), the
resource model contains a set of required definitions and symbolic descriptions to describe
all the individual resources and finally the simulation model comprise all the required infor-
mation defining the system simulation [108]. Although this architecture is interesting and
useful in manufacturing industry, concentrating the system execution around critical scenar-
ios to detect all possible faults and to keep a controlled verification has not been considered.
As a solution in our contribution, we base the simulator on a fault-injection technique to
bring the system’s execution into such scenarios. Nowadays, several fault injection meth-
ods and tools have been proposed [18, 48]. These methods are based on simulation-based

130

Figure 10.3: Implementation of the footwear system in Vigevano (Italy).

techniques [34], software implemented techniques [25, 53, 77], hardware-based techniques
[7] and hybrid techniques where hardware and software approaches are applied together to
optimize the performance [123]. None of these techniques seems to be a general solution
since they are generally targeted to a particular platform or particular types of applications
[19].

10.4 Contribution: Formalization of Control Components

We formalize any system by defining two formal modules encoding the behavior of each Con-
trol Component. In order to meet real-time constraints, a technique is proposed thereafter
to process deadlines for these components.

10.4.1 Control Modules

We characterize the behavior of a Control Component by defining the following formal
modules:

• Control Function Module : We define a set of Control Function Modules for
a component (denoted thereafter by CFM) such that each one encodes a control
function implemented by an algorithm to execute when a corresponding input event
occurs in the component.

131

CF1

VP1,k1

CFj

VP1,kj

ie1

iej

oe1,1

oe1,q1

oej,1

oej,q1

Control Component

Figure 10.4: Formalization of a Control Component.

Notation. In the following, we denote by cf(CC) the set of Control Functions of a
Control Component CC.

• Virtual Plant Module : We define for a Control Component a set of virtual plant
modules (denoted thereafter by V PM) such that each one is the interface between
a unique CFM and a set of physical processes. In the IEC61499 standard, Service
Interface Function Blocks are used to implement these modules [74].

Notation. In the following, we denote by vp(CC) the set of the Virtual Plant Modules
of a Control Component CC.

Notation. We denote in the following by cf modules (vp modules ,resp) the set of all
the Control Function (Virtual Plant, resp) modules implementing the application.

According to these definitions, the Control Function Modules define the functional ar-
chitecture of the application, and the Virtual Plant Modules define interactions of Control
Modules with physical processes. We abstract in the following these processes in the cor-
responding Virtual Plant Modules. We show in Figure 10.4 a Control Component charac-
terized by j CFM modules corresponding to different input events such that each one CFi

(i ∈ [1, j]) implements a Control Function controlling physical processes through a V PM
module V Pi. Once the control of these processes is correctly done, the module sends output
events to following components in the application (Figure 10.5).

Running example. In the Italian footwear platform located in Vigevano, we present
the three levels containing the blocks that control the belts and the two discs. The third
level contains CFM and V PM modules controlling belts Belt1,, Belt6, the second level
contains modules controlling the two discs and the first level contains modules controlling
the rest of belts (figure 10.6).

10.4.2 Formalization

To simulate a control system, we formalize a Control Function Module cf ∈ cf modules as
follows:

132

S0

S1

S2

S3

Init

Input event occurs

Execution of the
Control function

Activation of VPM

S4

Notification from VPM

Sent of output
events

S'0

S'1

S'2

S'3

Init

Activation of VPM

Interaction with
processes

Notification
 to CFM

Automata of the Control
Function Module

Automata of the Virtual
Plant Module

Figure 10.5: Behavior of CFM and VPM modules.

• pred(cf): a set of Control Function Modules preceding cf in the system (i.e. their
execution precedes that of cf).

• succ(cf): a set of Control Function Module sets such as only one module set should
be executed in the application after the cf execution.

• d(cf): the deadline of the module that we have to calculate while taking into account
the successors of cf in order to meet end to end bounds.

Running example. In the manufacturing platform in Vigevano, we formalize the
modules CF (FB Disc1) and CF (FB Disc2) as follows:

pred(CF (FB Disc1)) = {CF (FB Belt1), CF (FB Belt2), CF (FB Belt3)}

pred(CF (FB Disc2)) = {CF (FB Belt4), CF (FB Belt5), CF (FB Belt6)}

succ(CF (FB Disc1)) = succ(CF (FB Disc2)) = {{CF (FB Belt7)}}

Notation. We denote in the following by first(cf modules) (last(cf modules), resp)
the set of Control Function Modules without predecessors (successors, resp) in the system.

Notation. Let CC be a Control Component of a system and let cf and vp be two
corresponding modules. We denote by,

133

Figure 10.6: The modularity of the system of belts in Vigevano (Italy).

• θ(cf) the execution time of the algorithm implementing the module cf [64]. We
consider this parameter as a constant.

• θ(vp) the duration taken by vp to answer the cf . We characterize this duration by
the following parameters,

** θ(SIFB) : the execution time of the software interface modules (middleware)
located in the module to interact with physical processes. We consider this
parameter as a constant,

** θ(processes) : the duration taken by the physical processes to realize the required
functionality. We consider this parameter as a constant,

** θ(errors) : the duration of external errors that can occur during the treatment
of vp. This parameter increases the response time to cf . We consider it as a
variable equal to zero in the best case.

By considering this characterization, the parameter θ(vp) is as follows,

θ(vp) = θ(sifb) + θ(processes) + θ(errors)

We show in Figure 10.7 the temporal behavior of a Control Component when a particular
input event occurs. In this case, the Control Function Module cf is activated to be executed

134

Figure 10.7: Temporal behavior of a Control Component.

according to priority rules in the scheduler [63]. It activates also the corresponding Virtual
Plant Module vp based on interface blocks in order to interact with physical processes.
As presented in the figure, external errors occur in the hardware components and increase
the response time of the vp module. Once the physical process finishes execution, the vp
notifies cf which sends corresponding output events to the following cf modules in the
control application.

We define a Sequence of Control Function Modules a sequence of modules with prece-
dence constraints in the application.

Seq : cf0, cf1,, cfn−1 such as,

• cf0 ∈ first(cf modules) and cfn−1 ∈ last(cf modules),

• ∀ i ∈ [1, n− 1], cfi−1 ∈ pred(cfi),

According to this formalization, the system is transformed to a set of Control Function
Modules with precedence constraints. We are interested in these modules to optimize the
system simulation.

Running example. In the transportation system of the footwear factory, we distinguish
six different sequences defining the behavior of the whole sub-system from the six production
stations to the storing and packing station.

∀j ∈ [1, 3], Seqj =
cf(FB Beltj), cf(FB Disc1), cf(FB Belt7), cf(FB Belt8), cf(FB Belt9)

∀j ∈ [4, 6], Seqj =
cf(FB Beltj), cf(FB Disc2), cf(FB Belt7), cf(FB Belt8), cf(FB Belt9)

10.4.3 Deadline Processing

According to user requirements, each application sequence Seq of Control Function Modules
should meet an end to end bound denoted by bound(Seq). To meet all bounds, we process
deadlines for the different modules of sequences and in particular for Seq : cf0, cf1,,
cfn−1 as follows:

135

• The deadline of the last module cfn−1 is:

d(cfn−1) = bound(Seq)

• The deadline of any module d(cfj), j ∈ [0, n − 2] is processed so that its successors
meet also their deadlines as follows, ∀j ∈ [0, n− 2],

d(cfj) =

mins∈succ(cfj),cfk∈s{d(cfk)−
∑d(cfh)≤d(cfk)

cfh∈s (θ(cfh) + θ(sifbh) + θ(processesh))}

Running example. In the followed platform in Vigevano, the deadline d(cf(FB Disc1))
of cf(FB Disc1) is processed so that its successor cf(FB Belt7) meets also its deadline:

d(cf(FB Disc1)) =
d(cf(FB Belt7))− θ(cf(FB Belt7))− θ(SIFB(FB Belt7))− θ(FB Belt7)

10.5 Contribution: Characterization of Critical Scenarios

We define a critical scenario as a bad execution with the high probability to violate func-
tional or temporal constraints. This scenario exists if a particular component risks in a first
possible case to be blocked when it is waiting a response from a corresponding physical pro-
cess whereas the buffer cannot receive new input events (i.e. the number of input events is
higher than the buffer size) or it risks in a second possible case to violate the corresponding
deadline.

10.5.1 Blocking Problem

We define a buffer of size m for a Control Component to store input events waiting their
treatment by the corresponding CFM and V PM modules. A V PM module treats one
input event at the same time, whereas a CFM module is allowed to treat new input events
(according to the FIFO priority) while V PM is occupied by the treatment of a previous
event. To avoid in the buffer any blocking problem which risks a non predictable behavior
of the component, the treatment of m input events by cf should not be lower than the
duration θ(vp). Otherwise, the component is completely saturated and cannot handle an
additional input event. We formalize this problem as follows (figure 10.8),

m . θ(cf) ≥ θ(vp) =⇒ No deadlock in fb

Note finally that we are not interested in the probability computing of blocking problems
but we aim to characterize critical execution scenarios of the system in order to optimize
the discrete event simulation.

136

Figure 10.8: Characterization of a blocking problem.

10.5.2 Critical Scenarios

We define a critical scenario as any execution such that we risk to have a blocking problem
or to violate temporal constraints. We formalize this scenario as follows,
∃lj ∈ levels, ∃fbh ∈ setj , ∃cfk ∈ cf(fbh) such as,

* First case:The treatment of m input events in CCh is lower than the response time of
vpk.

m . θ(cfk) ≤ θ(vpk)

Note that we consider aperiodic input events. Therefore, even if this condition is veri-
fied, it does not imply automatically a blocking problem but it increases its probability
to occur.

* Second case: the deadline risks to be violated because the treatment of cfk and vpk
finishes in time (t denotes the time to start the execution of cfk).

t+ θ(cfk) + θ(vpk) = d(cfk)

10.6 Contribution: Optimization of the Simulation

We optimize in our research work the simulation of a system by applying a fault injection
technique to bring the execution of the corresponding components to critical scenarios in
order to control the verification complexity. To take into account the application modularity,
we propose an architecture of simulators to simulate the Control Components in the different
levels of the corresponding hierarchy.

10.6.1 Architecture of Simulators

We use the master − slave architecture to implement the discrete event simulator where
the master is the main module of the simulation. It is based on heuristics to bring the

137

whole application to critical scenarios, whereas each slave is a module corresponding to a
unique level of the system’s hierarchy. It is controlled by the master to apply the simulation
strategies in the corresponding level.

Master Simulator

According to our formal characterization, θ(errors) is the only variable between all temporal
parameters, therefore to bring the execution of a particular Control Component CC ∈
setj (located in the level lj) to a critical scenario, the master simulator should act on the
corresponding parameters θ(errors). These errors will be injected by the slave of the level
lj in the hardware components interacting with CC.

Slave Simulator

In the control system, each V PM module uses sensors, actuators and a communication
network to control physical processes. To apply any simulation strategy fixed by the master,
the slave injects errors in these hardware components such that their duration is the same
fixed by the master. Note that all the slave simulators are running in parallel, they do
not exchange data and their role is just to inject faults in hardware components of the
corresponding levels.

Running example. In the footwear system located in Vigevano, we show in Figure
10.9 the architecture of simulators composed of one master and three slaves by considering
the system hierarchy composed of three levels. These slaves are running in parallel without
any data exchange to inject faults in hardware components of the corresponding levels in
order to apply the simulation strategies fixed by the master.

10.6.2 Formalization

We formalize in this section the master and slave simulators to check the feasibility of
hierarchical control systems. We define for each Control Function Module cf ∈ cf modules
the different values of the corresponding parameter θ(errors) in order to bring the system
execution to critical scenarios. Moreover, we define for the different hardware components
the possible values of errors to inject by the corresponding slave.

Formalization of the master simulator

We define at first time the possible values of errors to bring a particular control function
to a critical scenario. We generalize thereafter the values of errors for the whole control
functions implementing the system.

• Simulation of a Control Function

138

Figure 10.9: Architecture of the simulators implemented in the Vigevano platform (Italy).

139

During the simulation of a control function cf (with a corresponding virtual plant vp)
belonging to a Control Component CC, the master should predict external errors to
probably allow the occurrence of m+1 new input events waiting cf and vp modules.
Therefore, to bring the execution of CC to a critical scenario, the duration of external
errors should be bounded as follows,

m . θ(cf) - θ(process) - θ(sifb)

≤ θ(error) ≤

d(cf)− θ(cf)− θ(process)− θ(sifb)

Where the upper bound represents a majoration to meet temporal properties and the
lower bound a condition to have m + 1 input events waiting their treatment. The
master should test all possible values of θ(error) in order to create if possible critical
execution scenarios of the system.

• Generalization: Simulation of an Application

Let max simulation be the duration of the simulation and period error a constant.
We process for each control function an interval of external errors to bring the corre-
sponding component to critical scenarios.

∀lj ∈ Levels, ∀CCh ∈ setj , ∀cfk ∈ cf(CCh),

mh.θ(cfh)−θ(SIFB)−θ(process) ≤ θ(error) ≤ d(cfh)−θ(cfh)−θ(process)−θ(sifb)

The master should choose new values of errors for the different control functions at
each ⌊max simulation/period error⌋ time unit(s).

Running example. Implementation of the Master Simulator
In the example of the footwear factory in Vigevano, we define the different values of

errors to bring each Control Component (i.e. Function Block) to critical scenarios.

• For each block FB Beltj (j ∈ [1, 6]), θ(error Beltj) should be in [0,20] to create a
blocking problem or to violate a temporal property:

0 ≤ θ(error Beltj) ≤ 20, (j ∈ [1, 6])

• For each block FB Discj (j ∈ [1, 2]) controlling a rotating disc, θ(error Discj) should
be in [0,50] to bring the system to critical scenarios:

0 ≤ θ(error discj) ≤ 50, (j ∈ [1, 2])

140

• For the Function Block FB Belt7 controlling the belt that transports pieces from the
rotating discs, θ(error Belt7) should be in [0,80] to create a blocking problem or to
violate a temporal property:

0 ≤ θ(error Belt7) ≤ 80

• For the block FB Belt8 activated by FB Belt7, θ(error Belt8) should be in [0,110]
to bring the block to a blocking problem or to violate an end to end bound:

0 ≤ θ(error Belt8) ≤ 110

• Finally, for the last block FB Belt9 used to transport final products, θ(error Belt9)
should be in [100,140] to possibly obtain a blocking problem or to violate a temporal
property. Therefore, only 40 among 140 values of this parameter should be injected by
the slave.

100 ≤ θ(error Belt9) ≤ 140

Formalization of a Slave Simulator.

In the simulator architecture, each slave applies the simulation strategies desired by the
master. It injects errors in the hardware components used in the corresponding level.
For each parameter θ(error) fixed by the master for a particular Control Function cf of
the system, the slave should compose the correct combination of errors in the hardware
components.

Notation. Let us denote respectively by error(s), error(a) and error(net) the duration
of an error occurring in a sensor s, an actuator a and a network net. In addition, let us
denote respectively by sensor(vp) and actuator(vp) the set of sensors and actuators handled
by the virtual plant vp.

We formalize the error injection applied by each slave as follows:
∀lj ∈ Levels, ∀CCh ∈ setj , ∀vpk ∈ vp(CCh),∑

s∈sensor(vpk) error(s) +
∑

a∈actuator(vpk) error(a) + error(net) = θ(errork)

10.6.3 Implementation

We present in this section the implementation sketch of the master and slave (Table 10.1).
The master function Master simul() defines new simulation strategies. It is based on
the function Init() that processes intervals of errors to be injected by the different slaves.
The slave function Activate slave() applies the master strategies by injecting errors in
hardware components of the corresponding level.

Running example. Fault Injection Simulation.

141

Function : Master simul()
Begin

Init(levels);
For t from 0 to max simulation step by period error

For each level lj ∈ levels
For each CC ∈ setj

For each cf ∈ cf(CC)
θ(error) ← θ(error) + ⌊(Imax(cf) −

Imin(cf))/⌊max simulation/period error⌋⌋
Activate slave(lj , cf, θ(error));

End.
Function : Init(levels)
Begin

For each level lj ∈ levels
For each CC ∈ setj

For each cf ∈ cf(CC)
Imax(cf)← d(cf)− θ(cf)− θ(SIFB)− θ(process);
Imin(cf)← m ∗ θ(cf)− θ(SIFB)− θ(process);
θ(error)← Imin(cf);

End.
Function : Activate slave(lj , cf, θ(error))
//This code implements the slave simulator of the level lj .
Begin

vp ← V PM(cf);
If(network(vp))
/*vp sends messages on the network*/

error(sensor(vp))← θ(error)/3;
error(actuator(vp))← θ(error)/3;
error(net(vp))← θ(error)/3;
inject(sensor(vp), error(sensor(vp)));
inject(actuator(vp), error(actuator(vp)));
inject(net(vp), error(net(vp)));

Else
error(sensor(vp))← θ(error)/2;
error(actuator(vp))← θ(error)/2;
inject(sensor(vp), error(sensor(vp)));
inject(actuator(vp), error(actuator(vp)));

End.

Table 10.1: Implementation of Master and Slave simulators

142

Time
2000 4000 6000 8000 10.000

Number of
tested errors

10

20

30

40

50

Simple
simulator

master
simulator

60

70

80

Time
2000 4000 6000 8000 10.000

number of
blocking

1

2

3

4

5

Simple
simulator

master
simulator

Figure 10.10: Comparison between the proposed simulator and a simple simulator.

In the footwear factory in Vigevano, we implemented all the transportation system in
the Simulink Environment (Version 7.1) and applied the simulation in a PC of frequency
1.7GHZ and RAM = 512MB (Intel centrino). To analyze the performance of our master
simulator based on the injection of errors that we carefully calculate to obtain critical sce-
narios, we implemented another simulator based on a Random algorithm to inject randomly
errors in hardware components. By considering aperiodic input flow of shoes, we applied
more than 100 simulation cases. We show in Figure 10.10 the most significant case that
proves the advantage of our master simulator. According to this figure, the master should
check only 40 values of θ(error Belt9) instead of 140 values when we apply a random sim-
ulator. Therefore, by verifying the system feasibility around critical scenarios, the master is
able to detect as soon as possible any blocking problem (Figure 10.10), whereas the random
simulator is not able because it injects randomly errors in hardware components.

10.7 Evaluation of the Performance

In order to evaluate the performance of our master simulator, we apply the simulation
for three cases : periodic, sporadic and aperiodic input events [112]. The best significant
case that we found among 100 simulations is presented in Figure 10.11, where the vertical
line represents the ideal simulation in which we detect 7 blocking problems at t = 0 but
this simulation is an unreal and impossible case to reach. Let us denote respectively by
period, sporad and aperiod the simulation curves corresponding to the periodic, sporadic
and aperiodic input events and let us denote also by Area the rectangle area delimited
by the ideal bound of simulation and the time t = 10.000. The performance of the master
simulator for the different cases of periodic, aperiodic and sporadic input events is as follows,

performanceperiod = (
∫ 10000
0 period(t).dt)/Area

143

Time
2000 4000 6000 8000 10.000

number of
blocking

1

2

3

4

5

Simple
simulator

aperiodic

6 periodic

7

sporadic

Ideal simulation

Figure 10.11: Evaluation of performance.

performanceaperiod = (
∫ 10000
0 aperiod(t).dt)/Area

performancesporad = (
∫ 10000
0 sporad(t).dt)/Area

We define as follows the general performance perf of our simulator by processing the
average of these three performances:

perf = ((performanceperiod + performanceaperiod + performancesporad)/3) ∗ 100

Running example: Numerical Results. According to Figure 10.11, the performance
of the master simulator is as follows,

performanceperiod = 0.58; performancesporad = 0.48

performanceaperiod = 0.32

perf = 46%

The performance of our master-slave simulator is 46% of the ideal simulator whereas the
performance of the random simulator is 16% (e.g the master is 3 times more performant than
the random simulator). This result presents the advantage of simulation that we propose.

10.8 Conclusion

The chapter deals with optimal verifications of Control Components implementing an em-
bedded control system after a particular reconfiguration scenario. To check functional and
temporal properties, we are interested in the system simulation which is known as a non ex-
haustive method. We apply therefore a fault injection technique to improve its performance.

144

To achieve a feasible simulation, we define at first time a formalization of a Control Compo-
nent by introducing two types of modules: the Control Function Module implementing the
component behavior when a particular input event occurs and the Virtual Plant Module
supporting interactions with physical processes. Therefore, our system is transformed to a
system of Control Function Modules with precedence constraints. We propose a technique
processing a deadline for each module in order to meet temporal properties. We define
critical scenarios for the Control Function Modules to define worst case executions where
blocking problems can occur or deadlines can be violated. Therefore, an interesting idea
is to apply the simulation around these scenarios by injecting faults in physical processes
interacting with Control Components. To consider the system’ software design in different
levels of a hierarchy, we propose a simulator architecture based on the master-slave model
where a slave is affected to each level in order to inject errors in the corresponding hardware
components, whereas the master chooses the best values of these errors to generate critical
scenarios. We applied this approach to a sub-embedded system of the footwear factory in
Vigevano and found interesting results proving the performance of the master that reaches
46% of the ideal simulator’s performance.

10.9 References of the Chapter’s Contributions

• M. Khalgui, E. Carpanzano, H-M Hanisch,An Optimized Simulation of Component-
based Embedded Systems In Manufacturing Industry, International Journal
of Simulation and Process Modelling. 2009.

Chapter 11

Conclusion

The manuscript deals with reconfigurable embedded control systems following the component-
based approach to address new current requirements of our community. We define the
general concept of Control Components to be assumed as software units controlling physi-
cal processes. A Control Component is composed of an interface for external interactions
with the environment, and an implementation that supports its functional tasks. We de-
fine a classification of all possible reconfiguration forms that can be automatically applied
at run-time: addition-removal of components, modification of their compositions or finally
updates of data. We propose in addition a multi-agent architecture for such systems where
a Reconfiguration Agent is affected to each device of the execution environment to handle
local reconfigurations, and a Coordination Agent is proposed to coordinate between devices
in order to guarantee coherent and feasible reconfigurations. We model the whole archi-
tecture according to the formalism Net Condition/Event Systems (NCES) and apply the
model checker SESA to verify functional and temporal properties described in the temporal
logic ”Computation Tree Logic” CTL. We verify in addition each network of components
that corresponds to a particular reconfiguration scenario of the system. A refinement-based
approach is proposed to model and check network’s components in step by step. Moreover,
we define technical solutions to implement automatic reconfigurations of embedded con-
trol systems following the Industrial Technology IEC61499. To construct their operational
architectures, we define an approach that generates the different execution models of recon-
figurable embedded systems. In this case, different sets of feasible OS tasks are constructed
to implement the system for different reconfiguration scenarios. We define in addition an
approach proposing useful technical solutions for low power reconfigurations of embedded
architectures. We propose in particular to reduce periods and execution times of tasks or
also to remove some of them in order to consider limitations in embedded batteries. We
define finally an approach allowing optimal simulations of embedded architectures where a
solution is proposed to inject faults and to bring the system’s behavior to critical executions.
We developed prototypes encoding the contributions of this research work which is applied
to different case studies, and is published in prestigious international journals.

In our future works, we plan to study the manual reconfigurations of embedded systems
by using the UML language for the static redesign of components. This research work is

145

146

interesting in many industrial fields. We plan also to assume sporadic and aperiodic tasks
for the generation of execution models of embedded systems. In this case, sporadic and
aperiodic real-time recurring tasks should be constructed. We plan in addition to assume
such tasks for low power reconfigurations of embedded systems. Finally, we plan to develop
a complete environment that contains all our research works and that should be applied to
real industrial platforms.

Bibliography

[1] B. Al-Hashimi. System-on-chip: next generation electronics. In Institution of Engi-

neering and Technology, ISBN-10: 0863415520, 2006.

[2] Yazen Al-Safi and V. Vyatkin. An ontology-based reconfiguration agent for intelligent

mechatronic systems. In Third International Conference on Industrial Applications

of Holonic and Multi-Agent Systems. Springer-Verlag, 2007.

[3] R. Alur and M. Yannakakis. Model checking of hierarchical state machines. In Sixth

ACM Symposium on the Foundations of Software Engineering, pp. 175-188, 1998.

[4] Rajeev Alur and Thomas A. Henzinger. Logics and models of real-time: A survey. In

Proceedings of Real-time: theory in practice, Volume 600 of Lecture Notes in Com-

puter Science, Springer-Verlg, 1992.

[5] T. Amnell, G. Behrmann, J. Bengtsson, P. R. D’Argenio, A. David, A. Fehnker,

T. Hune, B. Jeannet, K. G. Larsen, M. O. Mller, P. Pettersson, C. Weise, and W. Yi.

Uppaal - Now, Next, and Future. In Proceedings of Modelling and Verification of Par-

allel Processes (MOVEP’2k), France. LNCS Tutorial 2067, pages 100-125, F. Cassez,

C. Jard, B. Rozoy, and M. Ryan (Eds.), 2001.

[6] Ch. Angelov, K. Sierszecki, and N. Marian. Design models for reusable and recon-

figurable state machines. In L.T. Yang and All (Eds): EUC 2005, LNCS 3824,

pp:152-163. International Federation for Information Processing., 2005.

[7] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. F. Fabre, J. C. Laprie, E. Martins, and

D. Powell. Fault injection for dependability validation : a methodology and some

147

148

applications. In IEEE transaction on software engineering. Vol 16, N2, pp. 166-182,

1990.

[8] Artist-Project. Roadmap : Component-based Design and Integration Platforms.

www.artist-embedded.org, 2003.

[9] E. Asarin, O. Bournez, T. Dang, and O. Maler. Approximate reachability analysis of

piecewise-linear dynamical systems. In Hybrid Systems: Computation and Control,

Third International Workshop, LNCS, 2000.

[10] Melhem R. Mosse D. Alvarez-P. M. Aydin, H. Dynamic and aggressive scheduling

techniques for power-aware real-time systems. In Proceedings of Real-Time Systems

Symposium, 2001.

[11] H. Aytug and C. Dogan. A framework and a simulation generator for kanban-

controlled manufacturing systems. In Computers and Industrial Engineering, Vol34,

N2, pp. 337-350, 1998.

[12] Andrea Ballarino and Emanuele Carpanzano. Modular automation systems design

using the iec 61499 and the simulink/stateflow toolboxes. In Proceedings of the 2002

Japan-USA Symposium of Flexible Automation, 2002.

[13] Goossens J. Baruah, S. Scheduling real-time tasks: Algorithms and complexity. In

In Handbook of Scheduling: Algorithms, Models, and Performance Analysis, Joseph

Y-T Leung (ed). Chapman Hall/ CRC Press.3. (2004), 2004.

[14] S Baruah. Dynamic and static priority scheduling of recurring real-time tasks. In

Real-time Systems. vol. 24, n 1, 2003.

[15] Sanjoy Baruah and Joel Goossens. Scheduling real-time tasks: Algorithms and com-

plexity. In Handbook of Scheduling: Algorithms, Models, and Performance Analysis,

Joseph Y-T Leung (ed). Chapman Hall/ CRC Press.3, 2004.

[16] Bogliolo A. Micheli G. Benini, L. A survey of design techniques for system-level

dynamic power management. In IEEE Trans. VLSI Sys., 8(3). (2000) 299-316, 2000.

149

[17] Bogliolo A. Paleologo G. Micheli-G. Benini, L. Policy optimization for dynamic power

management. In IEEE Trans. CAD and Sys., 18(6). (1999) 813-833, 1999.

[18] A. Benso, P. L. Civera, M. Rebaudengo, M. Sonza Reorda, and A. Ferro. A hybrid

fault injection methodology for real-time systems. In The 28th Annual International

Symposium of Fault-Tolerant Computing. Germany. pp. 74-75, 1998.

[19] A. Benso, M. Rebaudengo, and M. S. Reorda. Fault injection for embedded

microprocessor-based systems. In Journal of Universal Computer Science. Vol.5, N.

10, pp. 693, 1999.

[20] Mary Berna-koes, Illah Nourbakhsh, and Katia Sycara. Communication efficiency in

multiagent systems. In International Conference on Robotics and Automation, April

26 - May 1, 2004, pp 2129 2134, Vol.3, 2003.

[21] A. Beugnard, J. M. Jzquel, and N. Plouzeau. Making components contract aware.

IEEE Computer, 32(7) : 38-45, 1999.

[22] Robert W. Brennan, Martyn Fletcher, and Douglas H. Norrie. A holonic approach

to reconfiguring real-time distributed control systems. In Multi-Agent Systems and

Applications: MASA’01. Springer-Verlag, 2001.

[23] E. Carpanzano and A. Ballarino. A structured approach to the design and simulation-

based testing of factory automation systems. In International Symposium on Indus-

trial Electronics, ISIE2002, Italy., 2002.

[24] E. Carpanzano, L. Ferrarini, and C. Maffezzoni. Modular testing of logic control

functions with matlab. In 13th European Simulation Symposium and Exhibition.,

2001.

[25] J. Carreira, H. Madeira, and J. Silva. Xception : Software fault injection and monitor-

ing in processor functional units. In Conference on dependable computing for critical

applications, DCCA-5, USA, 1995.

150

[26] Liang Chen, Jianming, and shuqing Wang. Scheduling and control co-design for

delay compensation in networked control system. In Asian Journal of Control, Vol.8,

Num.2, 2007.

[27] A. Chutinan and B. K. Krogh. Verification of polyhedral-invariant hybrid automata

using polygonal flow pipe approximations. In Hybrid Systems: Computation and

Control, Second International Workshop, LNCS, 1999.

[28] E. Clarke and E. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. In In Proc. Workshop on Logic of Programs, LNCS

131, pages 5271. Springer-Verlag,, YEAR = 1981,.

[29] E. Clarke, O. Grumberg, and D. Peled. Model checking. In MIT Press, 2000.

[30] E. Clarke and R. Kurshan. Computer-aided verification. In IEEE Spectrum, 33(6),

1996.

[31] Daniel D. Corkill, Douglas Holzhauer, and Walter Koziarz. Turn off your radios!

environmental monitoring using power-constrained sensor agents. In In First Inter-

national Workshop on Agent Technology for Sensor Networks (ATSN-07), Honolulu,

Hawaii, pages 3138, 2007.

[32] I. Crnkovic and M. Larsson. Building reliable component-based software systems. In

Artech House. UK, 2002.

[33] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool kronos. In Hybrid Systems

III, Verification and Control, LNCS 1066, Springer-Verlag, 1996.

[34] T.A. Delong, B. W. Johnson, and J. A. Profeta. A fault injection technique for vhdl

behavioral-level models. In IEEE Design and Test of Computers, 1996.

[35] G. Dukas and K. Thramboulidis. A Real-Time Linux Execution Environment for

Function-Block Based Distributed Control Applications. 2nd IEEE International Con-

ference on Industrial Informatics. INDIN’04, 2005.

151

[36] L. Ferrarini and C. Veber. Implementation approaches for the execution model of IEC

61499 applications. 2me IEEE International Conference on Industrial Informatics.

Germany. INDIN’04, 2004.

[37] Navet N. Gaujal, B. Dynamic voltage scaling under edf revisited, real-time systems. In

Springer Verlag, 37(1), Some results are available as research report INRIA RR-5125.

(2007) 77-97, 2007.

[38] A-L. Gehin and M. Staroswiecki. Reconfiguration analysis using generic component

models. In IEEE Transactions on Systems, Machine and Cybernetics, Vol.38, N.3,

2008.

[39] G Goessler and J Sifakis. Composition for component-based modeling. In Proceedings

of FMCO’02, the Netherlands, LNCS 2852, pages 443-466., 2002.

[40] Mikell P. Groover. Automation, production systems, and computer-integrated man-

ufacturing. In Prentice Hall, 3 edition, ISBN-10: 0132393212, 2007.

[41] Sibsankar Haldar and Alex A. Aravind. Operating systems. In Pearson Education; 1

edition, 2010.

[42] H-M. Hanisch and A. Luder. Modular modelling of closed-loop systems. In Colloquium

on Petri Net Technologies for Modelling Communication Based Systems, pp. 103-

126,Germany,, 1999.

[43] T. A. Henzinger, P. Ho, and H. Womg-Toi. Hytech: the next generation. In TACAS95:

Tools and Algorithms for the Construction and Analysis of Systems, LNCS, 1997.

[44] G. Holzmann. The model checker spin. In IEEE Transactions on Software Engineer-

ing, 23(5), 1997.

[45] Potkonjak M. Srivastava M B. Hong, I. On-line scheduling of hard real-time tasks on

variable voltage processor. In Proceedings of ICCAD. (1998) 653-656, 1998.

152

[46] Qu G. Potkonjak M. Srivastava-M B. Hong, I. Synthesis techniques for low-power

hard real-time systems on variable voltage processors. In Proceedings of RTSS. (1998)

178-187, 1998.

[47] P-A. Hsiung, Y-R. Chen, and Y-H. Lin. Model checking safety-critical systems using

safecharts. In IEEE Transactions on Computers, vol.56, no.5, 2007.

[48] M-C. Hsueh, T. K. Tsai, and R. K. Iyer. Fault injection techniques and tools. In

IEEE Computer Journal. Vol.30, N.4, pp : 75-82, 1997.

[49] Kamal Hyder and Bob Perrin. Embedded systems design using the rabbit 3000 mi-

croprocessor, interfacing, networking, and application development (embedded tech-

nology). In Publisher: Newnes, ISBN-10: 0750678720, 2004.

[50] International Standard IEC61499. Industrial process measurements and control sys-

tems. In International Electrotechnical Commission (IEC) Committee Draft, 2004.

[51] Yasuura H. Ishihara, T. Voltage scheduling problem for dynamically variable voltage

processors. In ISLPED. (1998) 197-202, 1998.

[52] A. Lobov J-L-M. Lastra, L. Godinho and R. Tuokko. An iec 61499 application gen-

erator for scan-based industrial controllers. 3nd IEEE International Conference on

Industrial Informatics. INDIN’05, 2005.

[53] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham. Ferrari : a flexible software-

based fault and error injection system. In IEEE transaction on computers. Vol 44,

N. 2, pp. 248-260, 1995.

[54] M. Khalgui. A deployment methodology of real-time industrial control applications

in distributed controllers. In International Journal of Computers in Industry. Vol59,

N.5, 2008.

[55] M. Khalgui. Nces-based modelling and ctl-based verification of reconfigurable em-

bedded systems in manufacturing industry. In International Journal of Computers in

Industry, 2010.

153

[56] M. Khalgui, E. Carpanzano, and H-M Hanisch. An optimized simulation of

component-based embedded systems in manufacturing industry. In International

Journal of Simulation and Process Modelling, 2009.

[57] M. Khalgui and H-M. Hanisch. A formal approach to check and assign reconfigurable

control applications into programmable logic controllers. In Asian Journal of Control.

Vol.11, N.3, 2009.

[58] M. Khalgui and H-M. Hanisch. Automatic nces-based specification and sesa-based

verification of feasible control tasks in benchmark production systems. In International

Journal of Modelling, Identification and Control, 2010.

[59] M. Khalgui and H-M. Hanisch. Reconfiguration of distributed embedded control

systems. In IEEE Transactions on Systems, Machine and Cybernetics, Part A, (Ac-

cepted to be published in 2011), 2011.

[60] M. Khalgui and O. Mosbahi. Intelligent distributed control systems. In Information

and Software Technology, 2011.

[61] M. Khalgui, O. Mosbahi, H-M Hanisch, and Z. Li. Implementation of agent-based

reconfigurable embedded control systems. In IEEE Transactions on Mechatronics,

(Accepted),, 2011.

[62] M. Khalgui, O. Mosbahi, Z Li, and H-M. Hanisch. Development of agent-based

reconfigurable embedded control systems: From modelling to implementation. In

IEEE Transactions on Computers, (Accepted to be published in 2011), 2011.

[63] M Khalgui, X Rebeuf, and F Simonot-Lion. A behavior model for iec 61499 function

blocks. In Thrid International Workshop on Modelling of Objects, Components, and

Agents (MOCA04). Denmark, 2004.

[64] M Khalgui, X Rebeuf, and F Simonot-Lion. Component-based deployment of indus-

trial control systems: an hybrid scheduling approach. In 11th IEEE International

Conference on Emerging Technology and Factory automation (ETFA06). Czech Re-

public, 2006.

154

[65] M. Khalgui and K. Thramboulidis. An iec61499-based development approach for

distributed industrial control applications. In International Journal of Modelling,

Identification and Control. Vol5, N.1, 2008.

[66] Mosbahi O. Zhiwu Li. Hans-Michael Hanisch. Khalgui, M. Reconfigurable multi-agent

embedded control systems: From modelling to implementation. In IEEE Transactions

on Computers. (2010), 2010.

[67] Kim J. Min S. L. Kim, W. A dynamic voltage scaling algorithm for dynamic-priority

hard real-time systems using slack time analysis. In Proceedings of Design, Automation

and Test in Europe, 2002.

[68] M H Klein, T Ralya, B Pollack, R Obenza, and M G Harbour. A practioner’s hand-

book for real-time analysis guide to rate monotonic analysis for real-time systems. In

Kluwer Academic Booktitle, 1993.

[69] O. Labarthe, A. Ferrarini, B. Espinsse, and B. Montreuil. Multi-agent modelling for

simulation of customer-centric supply chain. In International Journal of Simulation

and Process Modelling, Vol.2, N. 3/4, pp. 150-163, 2006.

[70] S. Lee. Automatic generation of simulation model for shop floor control system. In

Master’s thesis, Postech, 1996.

[71] J Leung and J Whitehead. On the complexity of fixed-priority scheduling of periodic

real-time tasks. In Real-time tasks, performance Evaluation. vol. 2, 1982.

[72] ed Levine, William S. The control handbook. In New York: CRC Press. ISBN

978-0-849-38570-4, 1996.

[73] R Lewis. Modelling control systems using iec 61499. In Institution Of Engineering

and Technology. UK, 2001.

[74] R. Lewis. Modelling control systems using IEC 61499: Applying Function Blocks to

distributed systems. IEE Control Engineering Series 59. The institution of Electrical

Engineers, 2001.

155

[75] T. Licht, L. Schmidt, C.m. Schlick, L. Dohmen, and H. Luczak. Person-centred

simulation of product development processes. In International Journal of Simulation

and Process Modelling, Vol.3, N. 4, pp. 204-218, 2007.

[76] L. Layland J W. Liu, C. Scheduling algorithms for multiprogramming in a hard real

time environment. In J. ACM, 20. (1973) 46-61, 1973.

[77] T. Lovric. Processor fault simulation with profi. In European Simulation Symposium

ESS95, 1995.

[78] Chung EY. Simunic T. Micheli-G De. Benini L. Lu, YH. Quantitative comparison of

power management algorithms. In Design, Automation and Test in Europe Conference

and Exhibition. (2000) 20-26, 2000.

[79] E. Carpanzano M. Colla and A. Brusafferri. Applying the IEC 61499 Model to the

Schoe Manufacturing Sector. 11th IEEE International Conference on Emerging Tech-

nologies and Factory Automation. ETFA’06, 2006.

[80] Lu Ma and J.J.P Tsai. Formal modeling and analysis of a secure mobile-agent system.

In IEEE Transactions on Systems, Machine and Cybernetics, Vol.38, N.1, 2008.

[81] R. Mailler and V. Lesser. A mediation based protocol for distributed constraint satis-

faction. In The Fourth International Workshop on Distributed Constraint Reasoning,

pp. 49-58, 2003.

[82] R. Mailler and V. Lesser. A cooperative mediation-based protocol for dynamic, dis-

tributed resource allocation. In IEEE Transaction on Systems, Man, and Cybernetics,

Part C, Special Issue on Game-theoretic Analysis and Stochastic Simulation of Nego-

tiation Agents, Volume 36, Number 1, IEEE Press, pp. 80-91, 2006.

[83] R. Mailler, V. Lesser, and Bryan Horling. Cooperative negotiation for soft real-

time distributed resource allocation. In Proceedings of Second International Joint

Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2003), ACM

Press, pp. 576-583, 2003.

156

[84] V. Marik, V. Vyatkin, and A. Colombo. Holonic and multi-agent systems in man-

ufacturing. In Proceedings of HoloMAS’07 conference. Lecture Notes in Computer

Science, Vol. 4659, Springer Verlag, 2007.

[85] G. Micheli and L. Benini. System-level low power optimization: Techniques and tools.

In Trans. Design Auto. of Electr. Sys., 5(2), 2000.

[86] I. Mitchell and C. Tomlin. Level set methods for computation in hybrid systems. In

Hybrid Systems: Computation and Control, Third International Workshop, LNCS,

2000.

[87] Petr Novak, Milan Rollo, Jiri Hodik, and Tomas Vlcek. Communication security

in multi-agent systems. In Multi-Agent Systems and Aplications III, pages 454–463.

Springer-Verlag, 2003.

[88] P.M. Oldfather, A.S. Ginsberg, and H.M. Markowitz. Programming by questionnaire:

how to construct a program generator. In Rand Report, RM-5129-PR, 1966.

[89] M. Pedram. Power minimization in ic design: principles and applications. In ACM

Transactions on Design Automation of Electronic Systems (TODAES) 1(1). (1996)

56-66, 1996.

[90] Shin K. G. Pillai, P. Real-time dynamic voltage scaling for low-power embedded oper-

ating systems. In Proceedings of ACM Symposium on Operating Systems Principles,

2001.

[91] J. Pitt and A. Mamdani. Communication protocols in multi-agent systems: A devel-

opment method and reference architecture. In In F. Dignum and M. Greaves (eds.),

Issues in Agent Communication, LNAI1916, pp160-177, Springer Verlag, 2000.

[92] Wu Q. Pedram M. Qiu, Q. Dynamic power management of complex system using

generalized stochastic petrinets. In DAC. (2000) 352-356, 2000.

[93] Hu. X. Quan, G. Minimum energy fixed-priority scheduling for variable voltage pro-

cessors, design, automation and test. In In: Europe Conference and Exhibition. (2002)

782-787, 2002.

157

[94] Hu X S. Quan, G. Energy efficient fixed-priority scheduling for real-time systems on

voltage variable processors. In Design Automation Conference. (2001) 828-833, 2001.

[95] Pedram M. Rabaey, J. Low power design methodologies. In Kluwer, 1996.

[96] Gupta R. Ramanathan, D. System level online power management algorithms. In

DATE. (2000) 606-611, 2000.

[97] M. Rausch and H-M. Hanisch. Net condition/event systems with multiple condition

outputs. In Symposium on Emerging Technologies and Factory Automation. Vol.1,

pp.592-600., 1995.

[98] Wolfgang Reisig. Petri nets: an introduction. In Springer-Verlag New York, Inc,

ISBN:0-387-13723-8, 161 pages, 1985.

[99] S. Roch. Extended computation tree logic. In Proceedings of the CESP2000 Workshop,

number 140in Informatik Berichte, pages225-234, Germany, 2000.

[100] S. Roch. Extended computation tree logic: Implementation and application. In

Proceedings of the AWPN2000 Workshop, Germany, 2000.

[101] Martijn N. Rooker, Christoph Sunder, Thomas Strasser, Alois Zoitl, Oliver Hummer,

and Gerhard Ebenhofer. Zero downtime reconfiguration of distributed automation

systems : The εcedac approach. In Third International Conference on Industrial

Applications of Holonic and Multi-Agent Systems. Springer-Verlag, 2007.

[102] A. Sarvar. cmos power consumption and cpd calculation. In Texas Instruments, 1997.

[103] SESA. Signal/net system analyzer. In http://www.ece.auckland.ac.nz/ vy-

atkin/tools/modelchekers.html, 2008.

[104] Choi K. Shin, Y. Power conscious fixed priority scheduling for hard real-time systems.

In ACM. In: 36th Design Automation Conference. (1999) 134-139, 1999.

[105] M. Sierhuis, W. J. Clancey, and R. J. J. Van Hoof. Brahms: a multi-agent modelling

environment for simulating work processes and practices. In International Journal of

Simulation and Process Modelling, Vol.3, N.3, pp. 134-152, 2007.

158

[106] M. Sims, D. Corkill, and V. Lesser. Automated organization design for multi-agent

systems. In Autonomous Agents and Multi-Agent Systems, Volume 16, Number 2,

Springer-Netherlands, pp. 151-185, 2008.

[107] Legrand J. Nana L. Marce-L. Singhoff, F. A holonic approach to reconfiguring realtime

distributed control systems. In Cheddar: A flexible real time scheduling framework,

Atlanta, GA, United states, Association for Computing Machinery. (2004) 1-8, 2004.

[108] Young Jun Son and Richard A. Wysk. Automatic siultion model generation for

simulation-based, real-time shop floor control. In Computers in Industry, Vol.45,

pp. 291-308, 2001.

[109] Young Jun Son, Richard A. Wysk, and Albert T. Jones. Simulation-based shop floor

control: formal model, model generation and control interface. In IIE Transactions,

Vol.35, pp.29-48, 2003.

[110] Chandrakasan A. Brodersen R. Srivastava, M. Predictive system shutdown and other

architectural techniques for energy efficient programmable computation. In IEEE

Trans. VLSI Sys., 4. (1996) 42-55, 1996.

[111] William Stallings. Operating systems: Internals and design principles. In Prentice

Hall; 4 edition, 2000.

[112] J Stankovic, M Spuri, and K Ramamritham. Deadline scheduling for real-time sys-

tems. In Booktitle: Kluwer Academic Booktitles, 2005.

[113] G. Subramaniam and A. Gosavi. Simulation-based optimisation for material dispatch-

ing in vendor-managed inventory systems. In International Journal of Simulation and

Process Modelling, Vol. 3, N. 4, pp. 238-245, 2007.

[114] C. Szyperski. Component Software : Beyond Object-Oriented Programming. ACM

Press and Addison-Wesley. New York, 1998.

[115] H Takada and K Sakamura. mu-itron for small-scale embedded systems. In IEEE

MICRO. vol. 15, n6, 1995.

159

[116] K. Thramboulidis, G. Doukas, and A. Frantzis. Towards an implementation model for

fb-based reconfigurable distributed control applications,. In Proceedings of 7th IEEE

International Symposium on Object-Oriented Real-Time Distributed Computing, pp.

193-200, 2004.

[117] K. Thramboulidis and G. Dukas. IEC61499 execution model semantics. International

Conference on Industrial Electronics, Technology and Automation. CISSE-IETA’06,

2006.

[118] K. Thramboulidis and A. Zoupas. Real-Time Java in Control and Automation. 10th

IEEE International Conference on Emerging Technologies and Factory Automation.

ETFA’05, 2005.

[119] Function-Block-Run time Toolkit. Rockwell automation. http://www.holobloc.com,

2007.

[120] M. Vardi and P. Wolper. Reasoning about infinite computations. In Information and

Computation, 115(1), 1994.

[121] V. Vyatkin. Iec61499 function blocks for embedded and distributed control systems

design. In Book of ISA-o3neida series, Instrumentation, Systems and Automation

society, 2007.

[122] Demers-A.-Shenker S. Yao, F. A scheduling model for reduced cpu energy. In Pro-

ceedings of IEEE annual foundations of computer science. (1995) 374-382, 1995.

[123] L. T. Young, R. Iyer, and K. K. Goswami. A hybrid monitor assisted fault injection

experiment. In Conference on dependable computing for critical applications, DCCA-

3. pp. 163-174, 1993.

[124] Kim. J. Yun, H. On energy-optimal voltage scheduling for fixed-priority hard real-

time systems. In ACM Transactions on Embedded Computing Systems(TECS) 2(3).

(2003) 393-430, 2003.

