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On Adaptive Patankar Runge–Kutta methods
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We apply Patankar Runge–Kutta methods to y′ = M(y)y and focus on the case where M(y) is a graph Laplacian as
the resulting scheme will preserve positivity and total mass. The second order Patankar Heun method is tested using four
test problems (stiff and non-stiff) cast into this form. The local error is estimated and the step size is chosen adaptively.
Concerning accuracy and efficiency, the results are comparable to those obtained with a traditional L-stable, second order
Rosenbrock method.
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1 Definition of the Scheme

Consider the autonomous initial value problem

y′(t) = M(y(t))y(t), y(t0) = t0, t ∈ [t0, tend], (1)

with y(t) ∈ Rn and M(y(t)) ∈ Rn×n. If M(y) is a graph Laplacian, then positivity and total mass are conserved by the
analytical solution y(t), see [1] for details and other schemes.

A Patankar Runge–Kutta method for (1) takes the form

y(k) = yn + h
k−1∑

ν=1

akνM(y(ν)) diag(wν)y
(k)

yn+1 = yn + h
s∑

k=1

bkM(y(k)) diag(ŵ)yn+1

(2)

where wν and ŵ are so-called Patankar weight. Autonomous production-destruction systems can be written in the form (1)
and the scheme (2) is then equivalent to existing formulations of Patankar Runge-Kutta methods [2, 3].

2 Numerical Experiments

In this note, we focus exclusively on the robust second order Patankar Heun method [2]

y(2) = yn + hM(yn)y(2),

yn+1 = yn +
h

2

(
M(yn) diag(

yn

y(2)
) +M(y(2))

)
yn+1.

Schemes of order 3 (cf. [3]) and higher (cf. [4]) will be considered in future work.
The following problems are considered:

1. Lotka, A non-stiff problem of Lotka-Volterra type
(
y′1
y′2

)
=

(
1− y2 0
y2 −1

)(
y1
y2

)
, y(0) = [1, 2]⊤, t ∈ [0, 10]. (3)

This problem does not originate from a production-destruction system (although a first integral exists) and hence M(y)
is not a graph Laplacian. Consequently, the Patankar method is not guaranteed to preserve quantities.

2. Robertson, cf. [5], with k1 = 0.04, k2 = 3 · 107 and k3 = 104 in the form


y′1
y′2
y′3


 =



−k1 k3y2 0
k1 −k2y2 − k3y3 0
0 k2y2 0






y1
y2
y3


 , y(0) = [1, 0, 0]⊤, t ∈ [0, 105]. (4)

Here, M(y) is a graph Laplacian. The numerical solution will be positive and the total mass is conserving. Usually, one
has tend = 1011. This works, too – with smaller errors but we want to see the errors to be able to evaluate the adaptive
stepping.
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2 of 2 Section 18: Numerical methods of differential equations

Fig. 1: Results for Lotka-Volterra (3). Fig. 2: Results for the Robertson problem (4).

Fig. 3: Results for the pollution problem. Fig. 4: Results for MAPK.

3. Pollu, a stiff system of 20 components, taken from cf. [5]. This is a production-destruction system which be written (in
several different ways) in the form (1) with a graph Laplacian M(y).

4. MAPK, taken from [1], the origin is [6], consisting of six equations. It has a graph Laplacian and it is mildly stiff.

The code has been implemented in Julia and can be downloaded from https://www2.mathematik.uni-halle.de/podhaisky/
software/aprk/. Stepsize control is standard and based on the first order error estimate yn+1 − y(2). Figures 1-4 shows that
the adaptive code works in all cases. Compared with the two-stage second order Rosenbrock method ROS2 [7], the Patankar
Runge–Kutta shows a similar accuracy except for problem Pollu.

3 Conclusion

The proposed adaptive second order scheme works robustly. Note, the Patankar Runge-Kutta method outperforms ROS2 for
low tolerances in the Robertson problem – in a regime, where positivity of the solution is crucial. A detailed analysis and the
use of higher order Patankar Runge–Kutta methods is future work.
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