DOI: 10.1002/pamm.202100235

On Adaptive Patankar Runge-Kutta methods

Stefan Kopecz¹, Andreas Meister¹, and Helmut Podhaisky^{2,*}

¹ University of Kassel, Department of Mathematics, Heinrich-Plett-Str. 40, 34132 Kassel, Germany

² University of Halle, Institute of Mathematics, Theodor-Lieser-Str. 5, 06120 Halle, Germany

We apply Patankar Runge-Kutta methods to y' = M(y)y and focus on the case where M(y) is a graph Laplacian as the resulting scheme will preserve positivity and total mass. The second order Patankar Heun method is tested using four test problems (stiff and non-stiff) cast into this form. The local error is estimated and the step size is chosen adaptively. Concerning accuracy and efficiency, the results are comparable to those obtained with a traditional L-stable, second order Rosenbrock method.

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

1 Definition of the Scheme

Consider the autonomous initial value problem

$$y'(t) = M(y(t))y(t), \quad y(t_0) = t_0, \quad t \in [t_0, t_{end}],$$
(1)

with $y(t) \in \mathbb{R}^n$ and $M(y(t)) \in \mathbb{R}^{n \times n}$. If M(y) is a graph Laplacian, then positivity and total mass are conserved by the analytical solution y(t), see [1] for details and other schemes.

A Patankar Runge–Kutta method for (1) takes the form

$$y^{(k)} = y^{n} + h \sum_{\nu=1}^{k-1} a_{k\nu} M(y^{(\nu)}) \operatorname{diag}(w_{\nu}) y^{(k)}$$

$$y^{n+1} = y^{n} + h \sum_{k=1}^{s} b_{k} M(y^{(k)}) \operatorname{diag}(\widehat{w}) y^{n+1}$$
(2)

where w_{ν} and \hat{w} are so-called Patankar weight. Autonomous production-destruction systems can be written in the form (1) and the scheme (2) is then equivalent to existing formulations of Patankar Runge-Kutta methods [2,3].

2 Numerical Experiments

In this note, we focus exclusively on the robust second order Patankar Heun method [2]

$$y^{(2)} = y^{n} + hM(y^{n})y^{(2)},$$

$$y^{n+1} = y^{n} + \frac{h}{2}\left(M(y^{n})\operatorname{diag}(\frac{y^{n}}{y^{(2)}}) + M(y^{(2)})\right)y^{n+1}.$$

Schemes of order 3 (cf. [3]) and higher (cf. [4]) will be considered in future work.

The following problems are considered:

1. Lotka, A non-stiff problem of Lotka-Volterra type

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} 1 - y_2 & 0 \\ y_2 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, \quad y(0) = [1, 2]^\top, \quad t \in [0, 10].$$
(3)

This problem does not originate from a production-destruction system (although a first integral exists) and hence M(y) is not a graph Laplacian. Consequently, the Patankar method is not guaranteed to preserve quantities.

2. Robertson, cf. [5], with $k_1 = 0.04$, $k_2 = 3 \cdot 10^7$ and $k_3 = 10^4$ in the form

$$\begin{pmatrix} y_1' \\ y_2' \\ y_3' \end{pmatrix} = \begin{pmatrix} -k_1 & k_3 y_2 & 0 \\ k_1 & -k_2 y_2 - k_3 y_3 & 0 \\ 0 & k_2 y_2 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad y(0) = [1, 0, 0]^\top, \quad t \in [0, 10^5].$$
(4)

Here, M(y) is a graph Laplacian. The numerical solution will be positive and the total mass is conserving. Usually, one has $t_{end} = 10^{11}$. This works, too – with smaller errors but we want to see the errors to be able to evaluate the adaptive stepping.

www.gamm-proceedings.com

© 2021 The Authors. Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH.

^{*} Corresponding author: e-mail helmut.podhaisky@mathematik.uni-halle.de

C C S This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Fig. 1: Results for Lotka-Volterra (3).

Fig. 3: Results for the pollution problem.

Fig. 2: Results for the Robertson problem (4).

Fig. 4: Results for MAPK.

- 3. Pollu, a stiff system of 20 components, taken from cf. [5]. This is a production-destruction system which be written (in several different ways) in the form (1) with a graph Laplacian M(y).
- 4. MAPK, taken from [1], the origin is [6], consisting of six equations. It has a graph Laplacian and it is mildly stiff.

The code has been implemented in Julia and can be downloaded from https://www2.mathematik.uni-halle.de/podhaisky/ software/aprk/. Stepsize control is standard and based on the first order error estimate $y^{n+1} - y^{(2)}$. Figures 1-4 shows that the adaptive code works in all cases. Compared with the two-stage second order Rosenbrock method ROS2 [7], the Patankar Runge–Kutta shows a similar accuracy except for problem Pollu.

3 Conclusion

The proposed adaptive second order scheme works robustly. Note, the Patankar Runge-Kutta method outperforms ROS2 for low tolerances in the Robertson problem – in a regime, where positivity of the solution is crucial. A detailed analysis and the use of higher order Patankar Runge–Kutta methods is future work.

Acknowledgements Open access funding enabled and organized by Projekt DEAL.

References

- [1] S. Blanes, A. Iserles, and S. Macnamara, Positivity-preserving methods for population models, 2021, arXiv:2102.08242.
- [2] H. Burchard, E. Deleersnijder, and A. Meister, Appl. Numer. Math. 47(1), 1–30 (2003).
- [3] S. Kopecz and A. Meister, Appl. Numer. Math. 123, 159–179 (2018).
- [4] P. Öffner and D. Torlo, Appl. Numer. Math. 153, 15–34 (2020).
- [5] F. Mazzia and C. Magherini, Test set for initial value problem solvers, release 2.4, 2008, http://pitagora.dm.uniba.it/ testset.
- [6] O. Hadač, F. Muzika, V. Nevoral, M. Přibyl, and I. Schreiber, PLOS ONE 12(6), e0178457 (2017).
- [7] J.G. Verwer, E.J. Spee, J.G. Blom, and W. Hundsdorfer, SIAM J. Sci. Comput. 20(4), 1456–1480 (1999).