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Abstract
Aim: The island species–area relationship (ISAR) quantifies how the number of spe-
cies increases as the area of an island or island-like habitat gets larger and is one 
of the most general patterns in ecology. However, studies that measure the ISAR 
often confound variation in sampling methodology and analyses, precluding appro-
priate syntheses of its underlying mechanisms. Most ISAR studies use only presence–
absence data at the whole-island scale, whereas we planned to use a framework that 
applies individual-based rarefaction to synthesize whether and how the ISAR differs 
from the null expectation of the passive sampling hypothesis.
Location: Five hundred and five islands from 34 different archipelagos across the 
world, including oceanic islands, lake islands and forest islands.
Major taxa studied: Local assemblages of plants, invertebrates, herpetofauna, birds 
and mammals.
Methods: We collated local-scale species abundance data from multiple archipelagos 
(median of 12 islands per study) and used a rarefaction-based approach to synthesize 
the relationship between island size and (1) sample effort-controlled rarefied species 
richness, or (2) an effective number of species derived from the probability of inter-
specific encounter (an index of community evenness).
Results: When we applied rarefaction to control for sampling effort, the numbers 
of species and their relative abundances across all studies differed from the pas-
sive sampling hypothesis. Our measure of evenness also increased with island size, 
suggesting that the disproportionate effects we observed influenced both rarer and 
more common species. We found few associations between the slope of this effect 
and island type or taxon, but we did find that island archipelagos with greater eleva-
tional heterogeneity also deviated more from the null expectation than those with 
less heterogeneity.
Main conclusions: Using a synthetic approach across island archipelagos, we reject 
the null expectation that passive sampling causes the ISAR and instead suggest that 
ecological mechanisms leading to disproportionate (non-random) effects on larger 
relative to smaller islands are predominant.
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1  | INTRODUC TION

The island species–area relationship (ISAR) describes how the num-
bers of species on an island or island-like habitat increases with island 
area. The ISAR is typically positive (e.g., Arrhenius, 1921; Drakare 
et al., 2006; Lomolino, 2000; Matthews et al., 2019; Schoener, 1976; 
Triantis et al., 2012), except in unusual circumstances, such as when 
larger islands have lower habitat heterogeneity than smaller islands, 
when sampling is less complete in larger than smaller islands, or 
on particularly small islands where stochastic processes predom-
inate (i.e., the small island effect; Wang et  al.,  2018). ISARs occur 
across taxa and appear on islands (Kreft et  al.,  2008; Matthews 
et al., 2016; Triantis et al., 2012), island-like systems, such as lakes 
(Browne,  1981; Dodson, 1992; Hobæk et  al.,  2002), habitat frag-
ments (Matthews et al., 2014, 2016), mountain tops (Brown, 1971), 
natural forest patches (Azeria et al., 2009; Lövei & Magura, 2006) 
and inselbergs (Porembski & Barthlott, 2012). Indeed, the ISAR has 
been of central importance in the development of some of the most 
influential concepts in ecology, such as the theory of island bioge-
ography (MacArthur & Wilson, 1967; Warren et al., 2015), and has 
transcended research on the influence of habitat loss and fragmen-
tation on biodiversity patterns (e.g., Chase et al., 2020; Fahrig, 2003; 
Haddad et al., 2015; Laurance, 2008).

Despite being one of the most general and well-known patterns 
in biogeography, there is a lack of consensus on what shapes diver-
sity patterns such as the ISAR on islands (Whittaker & Fernández-
Palacios, 2007). One of the main reasons for this uncertainty lies in 
the different ways in which biodiversity is estimated on islands for 
analyses. Theories underlying the ISAR were developed to describe 
the total number of species that occur on an island (MacArthur & 
Wilson,  1963, 1967). To date, syntheses of ISARs have focused on 
studies of whole island-level data of species richness patterns (e.g., 
Matthews et  al.,  2016; Triantis et  al.,  2012), which provide useful  
information regarding the overall shape of the ISAR but are less useful 
for evaluating the potential mechanisms creating them. One important 
way to examine the possible mechanisms underlying the ISAR is to mea-
sure patterns of diversity and relative abundances of species at areas 
less than the total island (Chase et al., 2019). Unfortunately, ISAR stud-
ies are fraught with highly variable sampling designs that strongly influ-
ence its observed shape (Scheiner, 2003; Scheiner et al., 2011; Schrader 
et al. 2019) and have heretofore precluded meaningful synthesis.

The simplest explanation for a positive ISAR is passive sampling 
(Connor & McCoy, 1979). With passive sampling, larger islands pas-
sively sample more individuals from the regional pool and therefore 
have more species than smaller islands. Passive sampling was noted 
in some of the earliest discussions of the ISAR (e.g., Arrhenius, 1921) 
and is often considered a “null” expectation for the ISAR (e.g., 
Coleman et  al.,  1982; Hill et  al.,  1994; McGuiness 1984a). Passive 

sampling can be detected (or refuted) by comparing the numbers of 
species observed with a fixed sampling area across islands that vary 
in area (e.g., Giladi et al., 2014; Hill et al., 1994; Kohn & Walsh, 1994) 
or by using null models and rarefaction-based approaches (e.g., 
Chase et  al.,  2019; Coleman et  al.,  1982). When passive sampling 
is the only mechanism operating, we expect an increase in whole-
island species richness with island area, but no change in the rela-
tive abundances of species or the number of species with a fixed 
sampling effort (i.e., smaller islands are passive samples of larger 
islands). Although often discounted as a real mechanism underlying 
the ISAR, but simply one that should be accounted for, a number of 
empirical studies have suggested evidence for passive sampling as 
a main driver of ISARs using effort-controlled methods. These in-
clude breeding birds on islands in a reservoir (Coleman et al., 1982), 
colonists of intertidal boulders (McGuiness, 1984b), trees in forest 
fragments (Hill et al., 1994), several studies on plants in island and 
island-like fragments (Gilaldi et al. 2014), and zooplankton in fresh-
water lakes (Gooriah & Chase, 2020). Furthermore, although mech-
anisms other than passive sampling are often invoked, many models 
of ISARs implicitly assume that individuals and species are randomly 
pulled from a distribution in a way similar to passive sampling; such 
models are often used when, for example, making projections of 
species losses with habitat loss (e.g., Chase et al., 2020).

If the null hypothesis of passive sampling is rejected, we can in-
voke ecological mechanisms that determine the magnitude by which 
it deviates, and the relative abundances of some species increase 
(or decrease) more than would have been expected by random sam-
pling. Hereafter, we call these “disproportionate effects”, and they 
can include the influence of area per se (Connor & McCoy, 1979), 
such as variable colonization–extinction dynamics (e.g., MacArthur 
& Wilson, 1963, 1967), or population-level processes that tend to be 
more prominent in communities on smaller rather than larger islands 
(e.g., Allee effects or demographic stochasticity) (e.g., Courchamp 
et al., 2008; Lande, 1998). When larger islands have higher coloni-
zation rates and lower extinction rates or demographic stochasticity 
is much less likely on larger islands, we would often expect there to 
more species on an island and in any given sample within that island 
than would have been expected from a passive sampling hypothesis 
from the regional species pool. It is also possible that when colo-
nization rates are very low and extinction rates very high, smaller  
islands can have fewer species than would have been expected in any 
given sample. In either case, we would expect a positive relationship 
between the numbers of species found in a given effort-controlled 
sample and the area of that island. Disproportionate effects lead-
ing to the ISAR can arise when habitat heterogeneity increases with 
island area, particularly when species have some degree of habitat 
specialization (Guadagnin & Malchik 2007; Hart & Horwitz,  1991; 
Hortal et al., 2009; Triantis et  al.,  2003; Williams,  1943). Here, if 
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multiple samples are taken from across a larger island that has higher 
habitat heterogeneity, the number of species for a given sampling 
effort (e.g., rarefied richness) would increase with increasing island 
size. Empirical support for disproportionate effects where effort-
controlled samples of species richness increase with increasing  
island size, leading to the ISAR, include studies of plants on an island 
archipelago off the British coast (Kohn & Walsh, 1994), birds, but-
terflies, lizards and frogs on the Andaman and Nicobar islands in the 
Indian Ocean (Gooriah et al., 2020), and grasshoppers from patch-
like grassland openings in the Midwestern USA (Chase et al., 2019).

Although comparing effort-controlled patterns of species richness 
with island area is a useful way to test the null expectation of passive 
sampling, some caveats need to be considered. For example, Karger 
et al. (2014) found no influence of island area on the number of spe-
cies in a small fixed-area plot, but a positive relationship with larger 
plot sizes owing to the inclusion of more rare species, allowing them 
to reject passive sampling. Likewise, Sfenthourakis and Panitsa (2012) 
found no influence of island area on the numbers of species in fixed-
area plots, but did find strong compositional variation among plots, sug-
gesting strong habitat heterogeneity effects. Finally, it is important to 
note that rejecting the null hypothesis of passive sampling by compar-
ing effort-controlled species richness in individual studies with a limited 
number of islands can be difficult when there are many sources of vari-
ation. A quantitative synthesis of multiple islands from multiple studies 
can provide a more robust test of the null and alternative hypotheses.

Here, we take a step towards circumventing some of the limita-
tions of previous studies by applying parts of a recently developed 
individual-based, rarefaction-based approach for evaluating the 
null expectation of passive sampling against the alternative (Chase 
et al., 2019). It also allows us to evaluate the effects of island area on 
multiple components of species diversity that account differentially 
for relative commonness and rarity of species (i.e., species richness 
vs. an effective number of species). Specifically, we compiled species 
abundance information from 505 “true” islands and natural island-
like habitats (barrier islands, lake islands and forest islands) across 
a wide range of taxa (birds, herpetofauna, invertebrates, mammals 
and plants) from 34 separate datasets of archipelagos. Although 34 
multiple-island datasets is many fewer than previous syntheses on the 
ISAR calculated at the whole-island level (e.g., Matthews et al., 2019; 
Triantis et al., 2012), the data needs for our approach (sample-level 
data including total and relative abundances across multiple islands) 
are much more stringent, and our synthesis represents a thorough 
search of the openly available data (and some previously unavailable 
data). Our focus here is specifically on “natural” islands rather than 
habitat islands that are formed after habitat destruction and fragmen-
tation, which have had less time to achieve equilibrium and were the 
subject of a different (albeit related) project (Chase et al., 2020).

1.1 | Questions and hypotheses

Given that it is rare for studies to present both information on the 
total numbers of species per island and data on their abundances 

from samples within islands, we focused only on datasets with  
information on the latter; that is, we did not quantify the ISAR of 
total species richness, which has been well studied and synthesized 
previously, although we expect that it was operating at the scale of 
the entire island for most of these studies, because this is a very gen-
eral pattern (e.g., Matthews et al., 2016, 2019; Triantis et al., 2012). 
Instead, we focused on identifying potential mechanisms underly-
ing the ISAR by estimating diversity parameters from standardized 
sampling regimes within islands of an archipelago. To do so, we used 
parts of an individual-based rarefaction framework overviewed 
by Chase et al.  (2019). Figure 1 presents a conceptual overview of 
the questions we asked and hypotheses we tested, which were as 
follows.

1.1.1 | Question 1: Can we reject the null hypothesis 
that the ISAR results from passive sampling?

To evaluate whether species diversity on small islands and larger is-
lands results from passive sampling of individuals from a larger spe-
cies pool, we analysed the rarefied number of species, Sn, expected 
from a sample of n (e.g., Chao et al. 2014; Gotelli & Colwell, 2001) 
from each island. Here, n was taken as the product of two times the 
minimum number of individuals (of all species combined) observed 
on an island within each dataset (see Chao et al., 2014). By compar-
ing Sn with island area, we can test the null expectation of the passive 
sampling hypothesis. With passive sampling, the numbers of spe-
cies from an effort-controlled sample, Sn, should be unchanged with  
increasing island area (Chase et  al.,  2019). Although passive sam-
pling might seem unrealistic in the face of many ecological processes 
that could differ between larger and smaller islands, it has not been 
rejected in a number of studies (e.g., Coleman et  al.,  1982; Gilaldi 
et al., 2014; Gooriah & Chase, 2020; Hill et  al.,  1994; McGuiness 
1984b). Furthermore, passive sampling is often assumed implicitly 
in species–area modelling and how to project species losses with 
habitat losses (e.g., He & Hubbell, 2011), which can underestimate 
losses if passive sampling is not the only mechanism acting (Chase 
et al., 2020).

If, instead, Sn increases with island area (i.e., if the slope esti-
mate of the relationship between Sn and island area is greater than 
zero), we can reject the passive sampling hypothesis and conclude 
that some other mechanism (e.g., disproportionate effects or 
heterogeneity) is driving the ISAR. Given that we combine indi-
viduals from plots sampled from across multiple habitats across 
each sampled island, this approach can capture disproportionate 
effects that emerge owing to a number of possible mechanisms, 
including those attributable to area per se (e.g., colonization–
extinction dynamics, dispersal limitation and Allee effects), in 
addition to habitat heterogeneity, which will create opportunities 
for different species in different localities. We can then estimate 
the magnitude of any deviation from the null expectation to dis-
cern whether differences in taxa, island type or island character-
istics might be important. Finally, although we often expect these 
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disproportionate effects to lead to positive relationships, Sn can 
also have a negative relationship with island area, for example, 
if habitats are less heterogeneous or species coexistence is less 
likely in larger areas.

1.1.2 | Question 2: If there is a disproportionate 
effect, what role do rare species play in this 
relationship?

To determine whether any deviations from the null expectation 
emerged because of changes only to rare species (in which case, we 
would expect a change in Sn with island area) or owing to changes 
in the entire shape of the relative abundance distribution, we cal-
culated another metric intended to capture changes in the relative 
abundances of more common species. Specifically, we used the 

effective numbers of species (sensu Jost,  2006) conversion of the 
probability of interspecific encounter [PIE; Hurlbert,  1971; PIE is 
the complement of Simpson's diversity, and the inverse of PIE is a 
Hill (1973) number with q = 2], which we refer to as SPIE (see Chase 
et al., 2019). SPIE represents a metric of “evenness” that is strongly 
influenced by changes in the overall dominance of the most common 
species in a community and is relatively insensitive to rare species. If 
island area has a positive influence on both Sn and SPIE, we would sur-
mise that overall evenness is changing with island area and that both 
common and rare species are increasing more than expected from 
sampling to drive the ISAR. Instead, if Sn increases with island area 
but SPIE does not change, we would surmise that an observed posi-
tive ISAR would largely be a result of there being disproportionately 
more rare species on larger islands. Finally, as with Sn above, SPIE can 
also decrease with increasing island area if larger islands support less 
even communities.

F I G U R E  1   (a) Conceptual schematic diagram for the three hypotheses overviewed in the text. Passive sampling (left panels) is when the 
smaller island (smaller circle) has a passive sample of the individuals on the larger island (larger circle). Disproportionate effects (right two 
panels) illustrate a case where the smaller island has fewer species (rare species only) or fewer species and less even communities (rare and 
common species) than expected from a random sample of the larger island. Dots represent individuals on a given island, and colours indicate 
different species. Within each island, standardized samples are depicted here with square “quadrats” taken (note that the real sampling 
design varied among studies but was standardized for analyses). (b) Expected relationships with island size from the different hypotheses for 
the rarefied number of species (Sn) and the effective number of species given the probability of interspecific encounter (SPIE; an estimate of 
evenness) (modified from Chase et al., 2019, 2020) 
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2  | METHODS

2.1 | Data search and compilation

To search for studies that contained abundance-level data of assem-
blages from multiple islands, we used Google Scholar and Web of 
Science (WoS) and entered the following keywords: species AND 
abundance OR survey AND islands OR archipelago. We selected 
studies for multiple taxa that reported species abundances across 
islands in an archipelago, forest islands or lake islands. If these 
data were not immediately available in the article or associated 
supplemental material, we contacted the corresponding authors 
to ask whether they could supply the required abundance data. 
Additionally, we extended our search to include several data por-
tals, including Dryad (https://datad​ryad.org/), Knowledge Network 
for Biocomplexity (KNB); https://knb.ecoin​forma​tics.org/), the 
Environmental Data Initiative (https://envir​onmen​talda​taini​tiati​
ve.org/) and FigShare (https://figsh​are.com/), using the following 
keywords: species, abundance, islands and archipelagos.

We ensured that each included dataset met the following criteria. 
First, the islands in the dataset were natural landmasses surrounded 
by water, or natural forest patches surrounded by a matrix of habi-
tats that are less hospitable to these organisms. We identified four 
island types: (1) oceanic islands (this includes islands in archipelagos 
and atolls); (2) barrier islands; (3) islands within lakes; and (4) forest 
islands. Second, there were more than two islands surveyed in the 
study, and surveys used consistent methodology where sampling ef-
fort could be evaluated and controlled. Third, the studies recorded 

abundances of each species in an assemblage such that rarefaction 
and relative abundances could be estimated.

In total, we compiled data from assemblages on 505 islands 
from 34 separate datasets (Figure  2). These datasets come from 
the following 32 publications (two publications had two datasets 
each): Andrade and Marini (2002); As (1984); Barun et al. (2010), Bell 
et al. (2017); Borges et al. (2016); Choi and An (2011); Da Silva et al. 
(2019); Davidar et al. (2001); Devy et al. (1998); Dueser et al. (1979); 
Evans et  al.  (2016); Hatteland et  al.  (2008); Jonsson et  al.  (2011); 
Karger et  al.  (2014); Kotze et  al.  (2000); MacDonald et  al.  (2018); 
Pereira et  al.  (2017); Perillo et  al.  (2020; data in the paper by 
Perillo  (2017); Pierce et  al.  (2003); Puspitasari (2016); Rangasamy 
et  al.  (2014); Rocamora et  al.  (2003); Schilthuizen et  al.  (2013); 
Schrader et al. (2019); Surendran and Vasudevan (2015); Theuerkauf 
et al. (2017); Usher and Edwards (1986); Waqa-Sakiti et al. (2018); 
Werden (2012); Xu et al. (2017); Žagar et al. (2013); and Zalewski and 
Ulrich (2006). Studies included datasets on volcanic islands (n = 17), 
continental islands (n = 9), islands within lakes (n = 4) and natural 
forest islands (n = 4) across several different taxonomic groups (in-
vertebrates, n = 16; birds, n = 7; herpetofauna, n = 7; plants, n = 2; 
and mammals, n = 2). The number of islands per dataset ranged from 
3 to 42, with a mean of 14.5 islands and a median of 12 islands per 
dataset.

Sampling effort varied across studies, but could be categorized 
broadly into two methods: (1) fixed sampling, whereby sampling 
effort was the same across all islands in a dataset (n = 7); and (2) 
proportional sampling (n  =  27), whereby sampling effort varied 
with island size. Island area and other pertinent characteristics 

F I G U R E  2   Locations of the 34 datasets included in the analysis. Point size indicates the number of islands in a dataset, colour indicates 
focal taxonomic group, and shape represents island type 

https://datadryad.org/
https://knb.ecoinformatics.org/
https://environmentaldatainitiative.org/
https://environmentaldatainitiative.org/
https://figshare.com/
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(e.g., elevation, coordinators and sampling effort) were extracted 
from the respective papers, from data providers and/or from online  
resources (e.g., https://www.google.com/earth/, https://www.wikip​
edia.org/ and https://www2.jpl.nasa.gov/srtm/). Most datasets 
have been published previously, but we provide them here for ease 
of reuse and reproducibility. Species abundances in a few of the 
datasets were previously unpublished (Jonsson et al., 2011; Karger 
et al., 2014; Schrader et al., 2019; Zalewski & Ulrich, 2006), but are 
made available here in an accompanying repository link. The R code 
used for standardizing the data and the analyses described below 
are available at: https://github.com/chase​-lab/ISAR_synth​esis. They 
are also mirrored and archived along with the data at https://zenodo.
org/recor​d/50370​70#.YNrQP​OgzY2w. Finally, the data are available 
at the following Dryad link: https://doi.org/10.5061/dryad.pnvx0​
k6n0.

2.2 | Statistical analyses

From each island, we estimated Sn using the “mobr” package 
(McGlinn et al., 2019) and SPIE using the “vegan” package (Oksanen 
et al., 2019). To evaluate the relationship between island area and  
Sn and SPIE, we fitted hierarchical linear models to each metric as 
a function of island area. Island area was log10-transformed and 
centred by subtracting the mean from each observed island area 
before model fitting. Both our response metrics took positive, non-
integer values, and we fitted models to both metrics that assumed 
log-normal error distributions and identity link functions. We fit-
ted models that estimated an overall relationship with island area 
and also allowed the slope and intercept of the relationship to vary 
among datasets (i.e., the slope and intercept were estimated as fixed 
effects, in addition to random effects for each study).

To evaluate whether additional factors could be underlying the 
patterns observed, we examined study-level posterior samples of 
the slope estimates as a function of taxonomic groups, island types 
and elevation (a.s.l.) range. Taxonomic groups were simplified into 
five categories (plants, invertebrates, herpetofauna, birds and mam-
mals). For our analyses, we did not have enough islands of each  
island type to evaluate variation among all island types fully. 
However, in order to test a key hypothesis that more isolated islands 
might experience different mechanisms from island archipelagos 
that were more connected, we separated islands into two catego-
ries. First, we defined “true islands” (n = 17) as volcanic oceanic is-
lands within archipelagos that are isolated and separated by a harsh 
oceanic matrix. Second, “other islands” (n = 17) included continen-
tal islands, forest islands, lake islands and barrier islands, which are 
close to the mainland and have fewer dispersal barriers and/or are 
surrounded by a more hospitable matrix. We included atolls in this 
category because it is typical for islands that make up an atoll to be 
highly connected (note that decisions on how to categorize island 
type did not influence the results qualitatively).

In order to evaluate a potential role of habitat heterogeneity 
in any potential deviations from the null expectation, we used the 

elevational range as a measure of within-island heterogeneity. This 
is because some islands are flat, with little habitat heterogeneity, 
whereas others are variable in elevation, containing many habitat 
types, and this elevational difference among islands can strongly in-
fluence the ISAR (e.g., Ricklefs & Lovette, 1999). We calculated the 
range of elevations spanned by the islands for 31 of the 34 datasets 
(elevation data were unobtainable for islands in three studies). We 
calculated elevational range as the difference between the highest 
and lowest maximum elevations among islands within each dataset. 
To quantify the relationship between elevational range and study-
level slope estimates, we fitted random-effects meta-analytical 
models that incorporated study-level uncertainty (i.e., the standard 
error of the posterior distributions). Elevational range was log10-
transformed before model fitting, study was included as a random 
intercept, and both the models assumed Gaussian error distributions 
and identity link functions.

For Bayesian inference and estimates of uncertainty, models 
were fitted using the Hamilton Monte Carlo sampler, Stan (Carpenter 
et al., 2017), and coded with the “brms” package (Bürkner, 2018). All 
models were fitted with four chains and 3,000 iterations, with 1,500 
used as a warm-up. We used the default, weakly regularizing pri-
ors for all the parameters. Visual inspection of the chains showed 
excellent convergence, and all Rhat values were <  1.02 (Gelman 
et al., 2013).

3  | RESULTS

After controlling for sampling effort within studies, we observed 
an overall positive trend, whereby the slopes of the relationship  
between the biodiversity variables (Sn and SPIE) and island area were 
different from zero across all studies; that is, standardized species 
richness, Sn (Figure 3a), in addition to our metric of evenness, SPIE 
(Figure 3b), increased with island area, allowing us to reject the null 
hypothesis of passive sampling effects.

As with any synthetic analysis, one concern with combin-
ing studies lies with the combination of studies having different 
sampling methodologies. Although individual-based rarefactions 
that we use here are generally robust to differences in sampling, 
they can be biased when low numbers are sampled. In our anal-
yses, some datasets collected data from a fixed sampling area, 
whereas others collected data from more plots on larger islands. It 
is plausible that the latter data types would be more likely to find 
divergence from the null expectation because they sample larger 
extents (hence, larger environmental characteristics) than studies 
with fixed samples. As a result, we removed the seven datasets 
with fixed sampling and re-ran the analyses on the 27 remaining 
datasets (with 403 islands) that used sampling proportional to 
area. In the Supporting Information (Table S1), we show that the 
overall slope of the relationship between Sn and SPIE was largely 
unchanged when these datasets were removed. Another potential 
concern is that when the number of individuals on an island is very 
small, individual-based rarefaction will be limited in its ability to 

https://www.google.com/earth/
https://www.wikipedia.org/
https://www.wikipedia.org/
https://www2.jpl.nasa.gov/srtm/
https://github.com/chase-lab/ISAR_synthesis
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detect differences in species richness relative to cases where the 
numbers of individuals are very high. To discern whether there was 
any effect of very low numbers of individuals on our results, we 
sequentially removed any island from the entire analysis that had 
< 10 or < 20 total individuals in a sample. In either case, removal of 
islands with very low numbers of individuals had no overall influ-
ence on the slopes estimated from our analyses for either Sn or SPIE 
(Supporting Information Table S1).

To examine how the biodiversity variables (Sn and SPIE) varied 
with island area according to taxa and island types, we examined 
the posterior density plots of study-level variation in the slopes of Sn 
and SPIE. Although the mean slope values were different from zero 
across all taxa and island types, we did find that herpetofauna had 
weaker relationships between both Sn and SPIE and island area than 
other taxa where there were enough data to evaluate (i.e., n  >  5; 
Figure 4a). We found no clear differences in ISAR relationships be-
tween islands of different types (Figure 4b). Finally, using elevational 
range as a proxy for within-archipelago heterogeneity, we found 
a slight positive relationship for study-level ISARs and elevational 
range for both Sn and SPIE, although the 95% credible intervals over-
lapped zero for both metrics (Figure 5).

4  | DISCUSSION

The ISAR is one of the most well-known patterns in biogeogra-
phy, with much speculation regarding its underlying mechanisms. 
However, previous syntheses have primarily examined the re-
lationship at the whole-island scale (e.g., Matthews et  al.,  2016; 
Triantis et  al.,  2012) or have been ambiguous about the scale of 

measurement (Drakare et  al.,  2006). With the combination of our 
individual rarefaction-based tools for hypothesis testing, in addition 
to a synthetic approach that allows us to take advantage of the com-
bined information across multiple studies, we were able to reject the 
null hypothesis that the ISAR largely results only from passive sam-
pling effects; that is, across studies, we found generally more species 
for a given sample of individuals (Sn), in addition to more even com-
munities (higher SPIE, indicating more relatively common species), 
with increasing island area.

Consistent with our overall result, a number of individual studies 
have found some indication of ecological mechanisms allowing more 
species (and more even and/or heterogeneous communities) beyond 
that expected from passive sampling (e.g., Gooriah et al., 2020; Kohn 
& Walsh, 1994; Sfenthourakis & Panitsa, 2012). In short, this sug-
gests that within-island metacommunity-level processes vary with 
island area. Such processes could include dispersal limitation and 
dispersal surplus, local demographic factors (e.g., stochasticity and 
Allee effects) and/or geometric effects (e.g., edge effects or habitat 
heterogeneity) that would differentially influence species on smaller 
islands relative to larger islands and therefore diverge from the null 
expectation (Burns & Neufeld, 2009; Schrader et al., 2020). Owing 
to the limitations of data available from many studies, we cannot rule 
out a “breakpoint” consistent with a small island effect in some stud-
ies, where rarefied richness does not increase with island area in the 
smaller islands but does so among larger islands. Furthermore, given 
that our analyses are on patterns that are aggregates of the dynamics 
of many different species across scales (i.e., metrics of biodiversity), 
we are unable to test any of these mechanisms explicitly for each 
dataset. Further insights would need more information, for example, 
on among-site variation in species composition (i.e., β-diversity) and, 

F I G U R E  3   Relationship between (a) rarefied richness (Sn) and (b) evenness measured by the effective number of species given the 
probability of interspecific encounter (SPIE) and island area for each study (n = 34). The overall slope (β) coefficient for each metric and its 
corresponding 95% credible interval are shown at the top-left corner and represented by the continuous black line and surrounding shading. 
Colours denote different taxonomic groups listed in the key 
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possibly, the variation in environmental conditions among sampling 
points, which we were unable to obtain from most of these studies.

Our overall results that larger islands house more species than 
expected by passive sampling and that much of this arises because 
larger islands have more habitat heterogeneity might not be partic-
ularly surprising to many. However, testing (and rejecting) the pas-
sive sampling hypothesis will allow us to provide better predictive 
power when predicting how species richness should change with 
increasing or decreasing island size (e.g., when habitats are lost or 
restored). Furthermore, passive sampling has been a long-held “null” 
expectation for the ISAR that has not yet been refuted fully. In 
fact, passive sampling has been identified as the likely mechanism 

behind a number of empirical studies of the ISAR in both natural 
islands and island-like habitat fragments (e.g., Bidwell et  al., 2014; 
Coleman et  al.,  1982; Gooriah & Chase, 2020; Haila,  1983; Hill 
et  al.,  1994; Ouin et  al.,  2006). Likewise, using different methods, 
Giladi et al. (2014) synthesized data from 28 studies on fragmenta-
tion in vegetated systems and suggested that 64% of them could not 
reject the null expectation of passive sampling. Without the power 
of our cross-site synthesis, a more nuanced picture would also have 
emerged from our analyses if we had taken a “vote-counting” ap-
proach. Specifically, when looking at the individual studies in our 
synthesis of islands, we find that c.  50% of them (17 of 34) could 
not individually be used to reject the passive sampling hypothesis. 

F I G U R E  4   Study-level variation in the island species–area relationship (ISAR). Posterior density plots of study-level variation in the slopes 
of the rarefied number of species (Sn) and the effective number of species given the probability of interspecific encounter (SPIE) grouped by 
(a) taxon group and (b) island type. The continuous black line and shading shows the overall slope and 95% credible interval. Each density 
plot is based on 1,000 samples from the posterior distribution of the study-level slope estimates. Black triangles indicate the median values, 
and densities are shaded by quantiles 
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However, by combining the studies into a single overarching analy-
sis, we were able to achieve a more conclusive test and rejection of 
the passive sampling hypothesis.

When we compared differences in the slopes among the stud-
ies in our synthesis, we found little clear variation among taxonomic 
groups or island types. This is, at least in part, because of the small 
sample size within individual categories. However, we had consid-
erable power (n = 17) to evaluate differences among “true islands”, 
which are typically more likely to be more isolated from one another 
and other island types that might be more likely to experience “res-
cue effects” (Brown & Kodric-Brown,  1977) from higher dispersal 
rates and/or higher matrix permeability (Itescu, 2019). As a result, 
we hypothesized that “true islands” might have a stronger relation-
ship between island area and effort-controlled diversity measures. 
However, we found no such patterns, as seen in Figure 4b. We did, 
however, find a slight tendency for herpetofauna to have lower 
slopes for both Sn and SPIE than other taxa; that is, although there 
was an overall positive relationship, on a per sample-effort basis, this 
taxon was less strongly influenced by island area per se than other 
taxa. We can only speculate regarding possible reasons, includ-
ing potentially lower dispersal rates that would act against strong 
metacommunity-like processes such that sampling effects could 
play a stronger role.

Interestingly, we found that the deviation from the null expecta-
tion (magnitude of the slope) of both SPIE and Sn was greater when 
heterogeneity (measured with elevational range as a proxy) within 
an island archipelago was larger (Figure 5). This suggests that at least 

some of the overall positive relationship between effort-controlled 
biodiversity measures and island area resulted when larger islands 
had higher levels of habitat heterogeneity. This is consistent with the 
conclusions of Triantis et al. (2003), who used different methodology 
also to suggest a predominant role for habitat heterogeneity in driv-
ing the ISAR (Triantis et al., 2003).

Although most studies in our analysis showed positive or weakly 
positive effects of island area on sample effort-controlled patterns 
of diversity, one study on ground beetles (Coleoptera: Carabidae) on 
lake islands showed a strongly negative relationship between sam-
ple effort-controlled diversity estimates and island area (Zalewski & 
Ulrich, 2006). Here, it is possible that some disproportionate effects 
favour many beetles species on smaller islands, such as the disruption 
of interspecific interactions (e.g., via pathogens, predators or com-
petitors). It is also possible that heterogeneity was higher in smaller 
islands, as has been observed elsewhere (Báldi, 2008; Hatteland 
et al., 2008; Nentwig et al., 2019). In such cases, we might expect a 
weaker or even negative ISAR depending on whether passive sam-
pling effects (which are always operating) outweigh the dispropor-
tionate or heterogeneity effects. Most archipelagos in our dataset, 
however, had increasing heterogeneity with increasing island area, 
including the study by Zalewski and Ulrich (2006), suggesting that 
this was not likely to be the cause.

Overall, we find that processes beyond passive sampling effects 
seem to be a primary driver of ISAR patterns. Previous syntheses 
of the ISAR have been hampered by the lack of consensus on how 
to measure and interpret the ISAR. Moreover, most ISAR studies 

F I G U R E  5   Study-level slope estimates as a function of elevational range per archipelago. Study-level slope estimates for (a) rarefied 
richness (Sn) and (b) evenness (SPIE) as a function of the elevational range for each archipelago. The elevational range was calculated as the 
difference between the highest and lowest maximum elevation within each archipelago. Each point shows the median and 95% credible 
interval from the island species–area relationship (ISAR) models, and the line and shading show the regression and 95% credible interval for 
study-level slope estimates as a function of elevational range
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commonly use the total number of species on islands as the main 
variable when evaluating species–area relationships; therefore, most 
available data on islands do not include species abundances from 
local samples. An important caveat of our synthesis, however, is that 
our analyses were only able to examine local-level processes, be-
cause these data together with data on within-island variation and 
total island species richness are rarely collected at the same times/
places. Future studies able to examine data fully, from local sam-
ples to the entire island, would allow a much deeper analysis of the 
drivers of the ISAR. This will give us a deeper understanding of the 
potential underlying factors influencing species patterns on islands, 
hence providing an important step toward effectively protecting and 
managing biodiversity on islands and island-like habitats.
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