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Preface

Amongst all phenomena of the physical world, light might be the one which has captured
mankind’s minds and curiosity most. Not only has it been subject of scientific interest,
but it also has found its way into literature and history in numerous metaphors, from
Let there be Light to the age of enlightenment. The variety of metaphors corresponds to
the wide range of ways vision influences the way men perceive the world around them.
Understanding the nature of light has captured some of the finest minds who ever lived,
from the ancient Greeks, e.g. Euclid1, who studied the geometric aspects of vision, to
Isaac Newton2, who found light must consist of a stream of particles. Johann Wolfgang
von Goethe3 studied the colors and gave a comprehensive account in his work Zur Far-
benlehre. It took, however, some more time until a mathematical theory of light was
established. In what can be considered one of the biggest intellectual achievement of all
times, James Clerk Maxwell4 unified the existing theories of electricity and magnetism,
which allowed him to identify light with electromagnetic radiation. This allowed differ-
ent kinds of radiation, known as x-rays, visible light, infrared light, etc., to be regarded
as similar phenomena, i.e. electromagnetic waves with different wavelengths. Besides
yielding an overwhelming variety of applications, this discovery also influenced science
itself. It was the electrodynamics of moving bodies that lead Albert Einstein5 to the
Theory of Relativity. It is amazing that the equations Maxwell used to describe the
electromagnetic fields are found to be accurate on astronomic length scales down to the
nano-meter scale, where the accurate description of matter already requires quantum
mechanics. With modern advances in nano-fabrication, it is an interesting question to
what extend the classical description based on Maxwell’s equations remain valid. This
question is the concern of current research involving the optical properties of metallic
nano-particles, falling in a rapidly growing field called Plasmonics. Plasmonics em-
ploys both, high-precision fabrication and experimental techniques on the one hand, and
sophisticated numerical methods to simulate the experiments on the other. Having ac-
curate, efficient numerical methods at hand will help to better understand experimental
data and also will help to find new properties, optimal geometries and facilitates testing
without the effort of sample preparation and expansive measurement equipment. It is
this field of numerical methods for Plasmonics that this Thesis tries to contribute to.
Before giving a detailed introduction to the Thesis and its topics, we will first give an
overview of used notation, conventions and abbreviations.

1* 360 B.C., † 280 B.C.
2* Woolsthorpe 4.1.1643, †Kensington 31.3.1727
3* Frankfurt a.M. 28.08.1749, †Weimar 22.03.1832
4* Edinburgh 13.6.1831, †Cambridge 5.11.1879
5* Ulm 14.3.1879, †Princeton 18.4.1955
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Preface

1 Notation and Conventions

Space and time are regarded as natural domains for physical processes. Where conve-
nient, we use the Fourier transform and the inverse Fourier transform as follows:

f(t) =

∫
dω f(ω)e−iωt, (1a)

f(ω) =
1

2π

∫
dt f(t)eiωt. (1b)

Vectors are written in bold face, e.g. r,E, matrices are denoted by bold underlined
letters, e.q. T. As we work in both, time and frequency domain, we use regular letters
(e.g. E = E (r, t)) for time-domain quantities and script letters (e.g. E = E (r, ω)) for
frequency-domain quantities. This allows us to omit the arguments in certain calcula-
tions without causing confusion. SI units are used unless mentioned otherwise.

We often plot wavelength and frequency-dependent quantities. It has become custom-
ary to specify the frequency in units of electron volts. This has to be understood as the
energy E = h̄ω a photon of frequency ω carries. Those readers who are more acquainted
with wavelength plots will benefit from the graph in Fig. 1 that relates photon energy
in electron volts to vacuum wavelength in nanometers.
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Figure 1: Photon energy versus vacuum wavelength of the electromagnetic wave.

v



Preface

2 Nomenclature

Frequently used physical quantities and notations are:
E,E Electric field; time, frequency domain
H,H Magnetic field; time, frequency domain
D,D Electric displacement field; time, frequency domain
B,B Magnetic flux density; time, frequency domain
ε = ε1 + iε2 Complex permittivity
εi, εe Permittivity in the interior and exterior of a scatterer
n = n1 + in2 Complex refractive index
µ Permeability
µi, µe Permeability in the interior and exterior of a scatterer
ω Angular frequency

∂tf (t) , ∂f(t)
∂t Partial derivative, in this example with respect to time

λ, λ0 Wavelength, in vacuum
k,k0 Wavevector, in vacuum
ex, ey, ez Unit vectors in Cartesian coordinates
x, y, z ∈ (−∞,+∞) Cartesian Coordinates
er, eϑ, eϕ Unit vectors in spherical coordinates
r ∈ [0,∞) Spherical coordinate, distance to origin
ϑ ∈ [0, π] Spherical coordinate, angle between positive z-axis and er
ϕ ∈ [0, 2π) Spherical coordinate, angle between positive x-axis and er
A∗ Complex conjugate of the quantity A←→
G ,
←→
I Dyadic quantities, Unit dyad
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3 List of Abbreviations

ADE Auxiliary Differential Equations, page 17
BEM Boundary Element Method, page 50
CL Cathodoluminescence, page 65
CLP Cathodoluminescence Probability, page 69
CLS Cathodoluminescence Spectroscopy, page 65
DDA Discrete Dipole Approximation, page 49
DGTD Discontinuous Galerkin Time-Domain Method, page 39
EEL Electron Energy Loss, page 64
EELP Electron Energy Loss Probability, page 68
EELS Electron Energy Loss Spectroscopy, page 64
FD Frequency-Domain, page 26
FDTD Finite Difference Time Domain, page 49
FEM Finite Element Method, page 48
LSP Localized Surface Plasmons, page 24
LSRK Low Storage Runge-Kutta, page 44
MMP Multiple Multipole, page 49
NFM Null-Field Method, page 35
NRA No-Recoil Approximation, page 69
PEC Perfect Electric Conductor, page 47
PML Perfectly Matched Layers, page 48
QSA Quasi-static Approximation, page 11
RK Runge-Kutta methods, page 44
SF Scattered-Field, page 46
SP Surface Plasmon, page 23
SPP Surface Plasmon Polariton, page 22
SRR Split Ring Resonators, page 107
SVWF Spherical Vector Wave Functions, page 30
SWF Scalar Wave Functions, page 27
TD Time-Domain, page 26
TFSF Total-Field/Scattered-Field, page 46
UPML uni-axial PML, page 48
VWF Vector Wave Functions, page 29
ZLP Zero-Loss Peak, page 65
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1 Introduction

Plasmonics. Briefly, this rapidly growing field of research could be characterized as
optics with metals in the nano-regime. Thus, plasmonics deals with the interaction of
light with metallic nano-particles, particle systems or other structures. Among the first
applications of Plasmonics might be the coloring of church windows. By adding certain
materials during the production process, nano-particles form inside the glass giving rise
to the beautiful colors. Of course, back then, this application was far from being well-
understood. A deeper understanding required the mathematical theory of light given
by J.C. Maxwell 1865 [1]. In Chapter 2 we will review some fundamentals from electro-
dynamics in both, time- and frequency-domain. The basic concepts in light scattering
will be introduced. After that, we will discuss the optical properties of metals, which
give rise to new phenomena, such as electromagnetic waves localized at metal-insulator
interfaces - the so-called Surface Plasmon. They are crucial for the optics of metallic
nano-particles. Another important milestone in the history of Plasmonics was the solu-
tion of the scattering problem for spherical particles given by G. Mie 1908 [2]. With this,
it was possible to calculate the optical resonances of metallic nano-particles, which are in
the visible regime for certain materials and due to the strong absorption near the reso-
nance wavelengths can give rise to the color of windows, for example. We will discuss Mie
theory in Chapter 3 of this Thesis which will allow us to discuss the optical properties of
spherical metallic nano-particles. Going to more general particle shapes usually requires
the use of numerical methods. We will introduce two other methods in more detail. The
first method is the T-Matrix method, which can be considered as a generalization of
Mie theory. It is a semi-analytical approximative method yielding accurate results with
relatively low computational demands and can treat particles of more general shape.
The second method is the Discontinuous Galerkin Time-Domain method. It is even
more flexible, allowing particles of arbitrary shape. Being a time-domain method, it is
potentially more flexible concerning the mathematical description of the material prop-
erties - a feature that is desirable since typical particle dimensions have reached length
scales, where improved material models might be necessary. Furthermore, we will men-
tion other methods that are commonly encountered in electrodynamics simulations and
briefly characterize them.

The extensive use of numericals method to the problem of light-scattering by metallic
nano-particles will be the topic of Chapter 4. It is known from experiments that spher-
ical silver nano-particles in glass undergo a shape transformation when irradiated with
laser pulses. The transformation process is believed to depend on the electric near-field
at the particles. We will therefore be concerned with the calculation of the optical prop-
erties of silver nano-particles and first compare different numerical methods in terms
of computation time and accuracy. Then, we calculate the properties related to the

1



1 Introduction

transformation process to see whether there is evidence to support the process model.
While the experimental technique allows to tailor the optical properties of the particles
to some extend, it is possible to do this in a more targeted manner.

With the recent decades’ advances in nano-fabrication and with modern measurement
equipment it is possible to manufacture and characterize nano-structures with unprece-
dented accuracy. This could facilitate the production of functional plasmonic structures.
The typical time-scales are in the order of femtoseconds and due to the special properties
of plasmonic structures, electromagnetic energy can be confined to sub-wavelength re-
gions. This would not be possible with conventional photonic components, which usually
require spatial dimensions of half a wavelength. Being metallic, fast and small, plasmonic
structures could be combined into existing integrated circuits and are candidates for fast
and efficient computing devices [3].

While such applications might be rather far from being realizable right now, there are
already application of plasmonic particles, e.g. as highly sensitive sensors [4] or to in-
crease the efficiency of photovoltaic systems [5]. Therefore it is important to investigate
the properties of plasmonic systems and how they could potentially pave the way for
further applications. Recently, Electron Microscopy was introduced as a tool to study
plasmonic particles [6, 7] and since then, an ever increasing number of experiments is pub-
lished. Two important experimental techniques that facilitate the study of the plasmonic
properties of individual metallic nano-particles are Electron Energy Loss Spectroscopy
and Cathodoluminescence Spectroscopy. In Chapter 5 we will introduce these two tech-
niques, present results from the literature and will establish the relation between the
experimental results and the simulation. With this as a prelude, we come to the main
topic of this thesis, which is the modification of two existing numerical methods making
possible the simulation of Electron Energy Loss Spectroscopy and Cathodoluminescence
Spectroscopy. In Chapter 6 we will extend the T-Matrix method to be applicable for
such simulations. We derive the necessary modifications, test the method for conver-
gence and will present results for particle-shapes that are also frequently encountered in
experiments.

In Chapter 7 we will extend the Discontinuous Galerkin Time-Domain method to be
also applicable for such simulations. First, we will perform tests on simple particle shapes
compare some of the results with T-Matrix results to see whether the time-domain and
the frequency-domain method results are in agreement. We will see that the agreement
is excellent and will make use of the flexibility regarding the particle shape to treat
complicated geometries. Also, we will explot the time-domain approach to study the
time evolution of the electromagnetic fields.

Finally, we will conclude the Thesis and see that we have introduced two new frame-
works to perform Electron Energy Loss and Cathodoluminescence Spectroscopy simu-
lations, the one being very efficient, the other one being flexible regarding the particle
geometry.

2



2 Electrodynamics

In this chapter we will present the mathematical preliminaries enabling us to describe
the propagation of electromagnetic waves in matter with special focus on metals. The
reasoning in this chapter follows standard text books. For electrodynamics in general,
we refer the reader to the book by Jackson [8]. For an introduction to plasmonics, we
recommend the book by Maier [9].

2.1 Maxwell’s Equations

The propagation of electromagnetic waves in space and time is described by Maxwell’s
equations. The equations were published in Maxwell’s famous 1865 paper A dynamical
Theory of the Electromagnetic Field [10] and later in his Treatise on Electricity and
Magnetism [1]. Originally given in quaternion notation, today they are usually given in
vector form and read

∇ ·B (r, t) = 0 (2.1a)

∇×H (r, t) =
∂D (r, t)

∂t
+ Js (r, t) (2.1b)

∇ ·D (r, t) = ρs (r, t) (2.1c)

∇×E (r, t) = −∂B (r, t)

∂t
(2.1d)

where E (r, t) is the electric field, D (r, t) is the electric displacement field, H (r, t) is the
magnetic field and B (r, t) is the magnetic flux density. Js (r, t) and ρs (r, t) represent an
external current and charge distribution, respectively. These distributions act as sources
to the fields, i.e. charges give rise to electric fields (Eq. (2.1c)) and currents give rise to
magnetic fields (Eq. (2.1b)). In the following, we will often omit the arguments (r, t) for
convenience.

2.1.1 Material Properties — Constitutive Relations

Matter consists of charged particles and, under the effect of an electromagnetic field,
may contribute to the charge density as well as the current density. From Eqns. (2.1b)
and (2.1c) it is apparent that these additional charges and currents act as sources to the
fields H and D, respectively. Therefore, these two fields can be regarded as auxiliary
fields that take into account the influence of matter and are functions of the other fields

3



2 Electrodynamics

E and B, respectively, such that

D = D (E) , (2.2a)

H = H (B) . (2.2b)

The most general case would be D = D (E,B) and H = H (B,E), but this material
class will not be considered here. It is convenient to introduce another two auxiliary
fields such that

D = ε0E + P, (2.3a)

H =
1

µ0
B + M, (2.3b)

where we have introduced the polarization P and the magnetization M. Furthermore
we have introduced the vacuum permittivity ε0 and the vacuum permeability µ0. Often,
Eq. (2.3b) is cast into a form similar to (2.3a) such that

B = µ0 (H + M) . (2.4)

Materials can be classified according to the properties of P and M. In natural materials,
the magnetic response at optical frequencies is usually small. For that reason, most
textbook use B = µ0H and we will also restrict ourselves to this class of materials and
only consider the permittivity ε. However, artificially fabricated materials can show a
considerable magnetic response at optical frequencies. One example of which are the so
called metamaterials [11], which usually have a special microstructure, like Split Ring
Resonators that we will encounter in Chap. 7. Therefore, the following classification of
the permittivity ε also applies to the permeability µ.

Linear isotropic

For the description of many materials, a linear isotropic relationship is a good approxi-
mation, i.e.

D = ε0εE. (2.5)

One special linear material is the vacuum. Here, D = ε0E and B = µ0H.

Linear anisotropic

The atomic order of matter may play a role in the electromagnetic response. For example,
in a crystal the response may depend on the direction of the applied field relative to the
crystal lattice. Such a behaviour is taken into account by a tensorial permittivity

Di = ε0

3∑
j=1

εijEj . (2.6)

Nevertheless, most solids are well described as isotropic media.

4



2 Electrodynamics

Nonlinear

We have introduced the polarization P as the response of a material to a certain electric
field E. As P can be considered as a function of E, we can approximate it by a Taylor
expansion

Pi (E) =
∑
j

χ
(1)
ij Ej +

∑
jk

χ
(2)
ijkEjEk +

∑
jkl

χ
(3)
ijklEjEkEl + . . . . (2.7)

Here, the χ(i) are called the susceptibility tensors. For small amplitudes of the ap-
plied field E we obtain the linear relation that we have already introduced above. For
higher amplitudes that can for example be generated with lasers, the higher order sus-
ceptibilities have to be taken into account. The nonlinearity gives rise to a number of
interesting physical effects like, for example, higher harmonic generation [12]. However,
it also renders the superposition principle invalid on which the frequency domain solu-
tion of Maxwell’s equations is based (cf. Sec. 2.1.5). Thus, for non-linear materials one
will in general have to solve Maxwell’s equations in the time-domain.

Temporally dispersive, non-local in time

So far, the relations above have all been local and instantaneous, however, in general
they can posses a non-local character. Non-locality in time means that the field values
at a given time may depend on all past field values

D (r, t) =

+∞∫
−∞

dτ ε(τ)E (r, τ − t) . (2.8)

We will see in Sec. 2.1.5 that such a relationship results in a frequency dependent per-
mittivity and is encountered, e.g., in metals.

Spatially dispersive, non-local in space

A non-locality in space is also possible, such that the field values at a given coordinate
depend on those at other coordinates at the same time

D (r, t) =

+∞∫
−∞

d3r′ ε(r, r′)E
(
r′, t
)
. (2.9)

One example for such behaviour can be found in metals. We assume that a conduction
electron is accelerated by an electric field at some position. Then, some instants later it
will cause a field at its current position. This means that we have both, non-locality in
space and time, originating from electronic transport. This also demonstrates that in real
materials the different types of responses are not as well separated as in the discussion
above. It is then important to find relations that give a reasonable approximation to
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ε1, µ1

E1,H1

ε2, µ2

E2,H2

n

Figure 2.1: Boundary between two materials with properties ε1, µ1 and ε2, µ2. n is the
unit vector normal to the interface.

reality, i.e. that show a good agreement with experiments.

2.1.2 The Wave Equation

Let us assume a linear medium with permittivity ε and permeability µ and the absence
of any charges and currents. Then we can apply the curl operator to Eq. (2.1d) and
obtain

∇×∇×E = −∇× Ḃ. (2.10)

By using B = µ0µH, D = ε0εE and Eq. (2.1b), we see that

∇×∇×E = −µ0µ∇× Ḣ = −µ0µε0εË. (2.11)

With the vector identity ∇×∇×E = ∇ (∇ ·E)−∆E and Eq. (2.1c) we finally obtain(
∆− µ0µε0ε

∂2

∂t2

)
E = 0. (2.12)

This is the wave equation in vector form, which means that each and every component of
E satisfies the wave equation and the same equation can be derived for H. In vacuum,
the propagation speed of the waves is c2

0 = 1
ε0µ0

. We see that in matter the propagation

speed is c2 = 1
ε0εµ0µ

=
c20
n2 where we have introduced the refractive index n =

√
εµ.

2.1.3 Boundary Conditions

Material interfaces play a crucial role in electrodynamics. For example, they lead to
reflection of electromagnetic waves and they can support a variety of surface waves [13],
one special type of which is the surface plasmon that we will discuss in detail later in
this chapter.

Assume a boundary between two materials, material 1 with permittivity and perme-
ability (ε1, µ1) and material 2 with (ε2, µ2) as shown in Fig. 2.1. Then, the fields obey

6
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the following boundary conditions at the interface

n · (B2 −B1) = 0, (2.13a)

n× (H2 −H1) = JS , (2.13b)

n · (D2 −D1) = σS , (2.13c)

n× (E2 −E1) = 0, (2.13d)

where jS and σS are surface current and charge densities and n is the unit vector nor-
mal to the interface. The boundary conditions are a direct consequence of Maxwell’s
equations and any solution of Maxwell’s equations for inhomogeneous materials must
obey these conditions. Especially in Mie theory discussed in Sec. 3.1 and in the T-
Matrix method discussed in Sec. 3.2 the boundary conditions are of importance for the
determination of a solution.

2.1.4 Electrodynamic Potentials

The electric and magnetic fields are vector field quantities. A vector field is uniquely
defined if its curl and divergence are known. Specifically, if the divergence of the field
vanishes, it consists solely of a rotational part. Considering Eq. (2.1a), this means that
we can write the magnetic flux density as

B = ∇×A, (2.14)

where A is the vector potential. Inserting this into Eq. (2.1d), we obtain

∇×
(

E +
∂A

∂t

)
= 0. (2.15)

Because the rotation of a gradient field is always zero, we can rewrite the expression in
brackets above as gradient of a scalar function ϕ, or likewise

E = −∇ϕ− ∂A

∂t
. (2.16)

The function ϕ is called the scalar potential. The scalar and vector potential ϕ,A
are mathematical constructs that sometimes simplify the analysis. There is a certain
freedom of choice, as we can always add the gradient of some function χ to the vector
potential leaving the magnetic flux density invariant, because

B′ = ∇×A′ = ∇× (A +∇χ) = ∇×A +∇×∇χ︸ ︷︷ ︸
=0

= B. (2.17)

Then, we see that choosing ϕ′ = ϕ − ∂tχ leaves E invariant. This freedom of choice
for A, ϕ is called gauge invariance. The Coulomb gauge is consists in choosing χ such
that ∇ · A = 0. Another choice commonly encountered is the Lorenz gauge (often
erroneously attributed to H.A. Lorentz [14]) which leads to ∇·A+ 1

c2
ϕ̇ = 0. This choice

7
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causes a decoupling of the equations governing the potentials. Furthermore this gauge is
invariant under the Lorentz transformation and therefore often encountered in relativity
calculations. In general, we will solve Maxwell’s equations directly for the electric and
magnetic field, however some calculations are more conveniently done for the potentials.
We will use the potentials to calculate the field of a moving electron in Sec. 7.1.

2.1.5 Frequency Domain Electrodynamics

In this thesis, we will be concerned with linear materials and therefore, also the linear
form of Maxwell’s equations. With this, it is often convenient to perform a Fourier
transform according to (1) on Page v with respect to time. Then, we are able to derive
relations that are satisfied by the Fourier components of the fields. As noted in the
preface we are going to use script letters for the Fourier components in order to avoid
confusion when omitting the arguments (r, ω).

∇ ·B(r, ω) = 0 (2.18a)

∇×H(r, ω) = −iωD(r, ω) + J s(r, ω) (2.18b)

∇ ·D(r, ω) = ρs(r, ω) (2.18c)

∇× E(r, ω) = iωB(r, ω) (2.18d)

So basically the Fourier transform substitutes the time derivatives by the negative imag-
inary unit multiplied by the frequency ∂t → −iω, effectively turning the differential
equation in time into an algebraic one.

By using the convolution theorem, we immediately see that the Fourier transform of
the convolution of the electric field and the permittivity Eq. (2.8) turns out to be a
product in frequency-domain, i.e.

D = ε (ω)E. (2.19)

Thus, a temporally dispersive material is described by a frequency-dependent permit-
tivity.

2.1.6 Scale Invariance of Maxwell’s equations

A special property of the homogeneous Maxwell’s equations is the so-called scale invari-
ance. Let J s = ρs = 0. Then we can introduce a scaling of the spatial coordinates
with some factor a, i.e. r′ = ar. We see that the equations (2.18) remain invariant if
we rescale the frequency according to ω′ = ω/a. If there are source terms, the equations
remain invariant if we rescale the amplitude of the sources according to J ′s = J s/a and
ρ′s = ρs/a.

This scaling behaviour indicates that there is no typical length scale associated with
Maxwell’s equations.

8
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2.1.7 Constraints on the Fourier Components

The relations between the Fourier components of the fields (2.18) follow directly from
the time-dependent Maxwell equations (2.1). Beyond that, physical reasoning yields
constraints on the Fourier components.

Physical Field are real-valued

Physical quantities like the electric and magnetic field in real space and time are required
to be real-valued. To result in a real-valued field, the Fourier components of the fields
must obey the relation

A (r, ω) = A (r,−ω)∗ (2.20)

where A ∈ {E,B,H,D}.

Causality—Kramers-Kronig relations

The causality principle states that the cause always precedes the effect. In other words, a
physical system is not influenced by its future states. Therefore, for temporally dispersive
materials (2.8) the permittivity has to be a causal function, i.e. ε (τ) = 0 ∀ τ > 0. It can
be shown that the real and imaginary part of the Fourier components of causal function
are not independent. Commonly, the relation between real and imaginary parts are
written as the Kramers-Kronig relations [15].

1 The real part of the Fourier components of the permittivity ε = ε1 + iε2 can be
expressed as a doubly infinite integral over the imaginary part and vice-versa

ε1 (ω0) =
1

π
P
∫ +∞

−∞

ε2 (ω)

ω − ω0
dω (2.21a)

ε2 (ω0) = − 1

π
P
∫ +∞

−∞

ε1 (ω)

ω − ω0
dω (2.21b)

Here, P denotes the principle value of the integral.

2.1.8 Waves in Frequency Domain — the Helmholtz Equation

From the equations governing the Fourier components of the fields (2.18) we can derive
the Helmholtz equation in vectorial form

∇×∇× E − k2E = iωµ0µJ , (2.22)

with k2 = ω2ε0εµ0µ = ω2/c2. It can be regarded as the frequency-domain equivalent
of the wave equation. This equation can also be considered as an eigenvalue problem.
To that end, we allow the medium to be inhomogeneous, i.e. ε = ε (r) and assume no
external charges and currents. Then, from Eqns. (2.18b) and (2.18d) we obtain

∇× 1

ε (r)
∇×H =

ω2

c2
H. (2.23)

9
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Again, a similar equation can be derived for E. The derivation must take the r-
dependence of ε into account. With this equation, it is possible to treat inhomogeneous
media, one example of which are periodic dielectric structures, called photonic crystals
[16, 17]. Another example of an inhomogeneous medium is a single particle embedded
in a homogeneous medium. Such geometries will be considered throughout this thesis
and we already discussed that the permittivity for metals is frequency-dependent. If we
take the frequency dependence into account, the operator on the left-hand side depends
on the eigenvalue. This makes the eigenvalue problem difficult to solve. The important
consequence is, however:

2 Any inhomogeneous medium, especially particles and particle systems, can sustain
electromagnetic fields even in the absence of sources. These fields are the solutions of
the eigenvalue problem (2.23) and are called eigenmodes of the system. Each eigenmode
Hi,E i has an eigenfrequency ωi associated to it.

The notions eigenmode and eigenfrequency are crucial for the interpretation of the ex-
periments we will discuss and the calculations we will perform in this thesis.

An alternative approach to particles and particle systems is to consider them as piece-
wise homogeneous materials. If we assume a homogeneous medium with no external
currents and charges, the Helmholtz equation simplifies to(

∆ + k2
)E = 0. (2.24)

Equally, the very same equation can be derived for H. The general solutions of the
Helmholtz equation in both, scalar and vector form will be discussed in more detail in
Sec. 3.1. We can then use the general solution as an ansatz for the fields in each homo-
geneous part of the system and then use the boundary conditions (2.13) to determine
the electromagnetic field in piecewise homogeneous media.

Green Function of the Helmholtz Equation

The Green function g(x, x′) of any linear operator L is defined as

L
[
g(x, x′)

]
= δ

(
x− x′

)
, (2.25)

where δ is the Dirac Delta distribution. It allows for a construction of particular solutions
of inhomogeneous partial differential equations, i.e. L [u (x)] = f (x). Then, the general
solution can be written with the help of the Green function as

u (x) = u0 (x) +

∫
dx′ g(x, x′)f

(
x′
)
, (2.26)

where u0 (x) is the general solution of the homogeneous equation L [u0 (x)] = 0.

10
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3 The Green Function of the scalar Helmholtz equation in three dimensions is given
by [8]

g
(
r, r′

)
=

e±ik|r−r
′|

4π |r− r′| (2.27)

and has the form of a spherical outgoing (+) or incoming (−) wave.

The first one is called retarded Green function, the latter one advanced Green function.
The exponential function in the numerator of (2.27) is the result of the finite propagation
speed of electromagnetic waves and leads to so-called retardation effects.

In general, we will deal with the vector-valued electric and magnetic field and vector-
valued currents can be the sources of the fields. To take this into account, we have to
extend the concept of the scalar Green function to the dyadic Green function. A dyad
can be considered as a second rank tensor that is formed by the juxtaposition of two
vectors. Given two vectors a and b and orthonormal vectors e1, e2, e3, which satisfy
ei · ej = δij , we define the dyad

←→
X = a ◦ b =

3∑
i,j=1

aibjei ◦ ej . (2.28)

We can right- and left-multiply a vector to a dyad, where the product acts on the right
and left vector, respectively. Thus, such products reduce to the common vector-vector
products. In the case of the scalar product between a vector and a dyad we obtain a
vector, the cross product results in a dyad. A special dyad is the unit dyad defined by

←→
I = e1 ◦ e1 + e2 ◦ e2 + e3 ◦ e3 such that

←→
I · a = a · ←→I = a. (2.29)

With this, we can define the dyadic Green function, which is generated from the scalar
one

←→
G
(
r, r′

)
=

(←→
I +

1

k2
∇ ◦∇

)
g
(
r, r′

)
. (2.30)

Therefore, the general solution of the vector Helmholtz Equation (2.22) can be written
as For each component of J s, it gives the contribution to the three components of E.
With this, we know the electric and magnetic field

E = E0 + iωµ0µ

∫
d3r′
←→
G
(
r, r′

)J s

(
r, r′

)
, (2.31)

H = H0 +

∫
d3r′

[
∇×←→G

(
r, r′

)]J s

(
r, r′

)
, (2.32)

where E0,H0 are solutions of the homogeneous equation for the respective field.

Quasi-static Approximation

For certain problems the solution of the Helmholtz equation (2.24) can be quite involved.
To simplify the analysis, sometimes the so-called Quasi-static Approximation (QSA) is
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Einc

R

λ

R

Einc

λ

Figure 2.2: Sketch of the Quasi-static approximation. If the wavelength of the
incident field inside the particle is much larger than the size of a considered
particle, one may neglect the phase of the field and assume a homogeneous
field instead. This simplifies the analysis where applicable.

employed. Let us assume a particle is irradiated with a plane wave of given wavelength
λ as sketched on the left-hand side of Fig. 2.2. Then the fields inside the particle will
oscillate and to actually calculate the field, we will have to solve the Helmholtz equation.
If the radius of the particle is small as compared to the wavelength inside the particle
R � λ as sketched on the right-hand side of Fig. 2.2, we may neglect the variation
of the phase eik·r over the particle and instead assume a homogeneous electric field
as in electrostatics. Mathematically, this is equivalent of taking the limit λ → ∞, or
equivalently |k| = 2π

λ → 0. In this limit, the Helmholtz equation becomes the Laplace
equation. Physically, this means that we have instantaneous interaction, i.e. the speed
of light goes to infinity, such that we do not have any retardation. Accordingly, the
Green function in this case reduces to the Green function of the Laplace equation

g
(
r, r′

)
=

e±ik|r−r
′|

4π |r− r′| → gL
(
r, r′

)
=

1

4π |r− r′| . (2.33)

The applicability of the QSA can be checked once results including full retardation are
available and we will be concerned with such a comparison in Sec. 6.3.1.

2.2 Plane Waves

In addition to the Fourier transform with respect to time we have used in Sec. 2.1.5, we
can likewise introduce a Fourier transform with respect to space according to

f (r) =

∫
d3k f (k) eik·r (2.34)

f (k) =
1

(2π)3

∫
d3r f (k) e−ik·r. (2.35)

12
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Any electromagnetic field E (r, t) can then be formed as a superposition of components
of the form

Ek,ω (r, t) = E0e
ik·r−iωt (2.36)

with some constant vector E0. Here, k is the wave vector, which we have already
introduced in Sec. 2.1.8. Electromagnetic waves of the form (2.36) are called plane
waves, because for any given time t, the iso-phase surfaces are planes according to
k · r − ωt = const. Also, the planes of constant phase move at constant velocity in
direction of k.

In order to satisfy the wave equation, ω and k cannot be chosen arbitrarily. Plugging
in the ansatz (2.36) into the wave equation leads to the equation(

k2 − ω2

c2

)
Ek,ω = 0 (2.37)

This equation is always satisfied if the bracket on the left-hand side vanishes. This leads
to the important relation between the wave vector k and the frequency ω. Noticing that
the speed of light is c2 = (ε0εµ0µ)−1 we see that

4 The wave vector k and the frequency ω have to satisfy the dispersion relation

ω2 =
k2

ε0ε (k, ω)µ0µ (k, ω)
=
c2

0

n2
k2 (2.38)

The dispersion relation as given above is quadratic in ω and k. Usually, the square
root is taken to obtain the linear photon dispersion in a medium of refractive index n

ω =
c0

n
|k| . (2.39)

The slope of the dispersion is exactly the phase velocity in the medium.
We see that if ε and µ happen to be both negative, the above equations are not

altered. With this postulated, Veselago investigated the properties of materials having
both ε < 0, µ < 0 and showed that such - back then hypothetical - materials show
effects like negative refraction and phase velocity [18]. While such materials have not
been found in nature, they can be created artificially, as so-called metamaterials [11].

2.3 Scattering Theory

As we will carry out electromagnetic scattering calculations in this thesis, we will review
the most important concepts and terms. In general, the term scattering refers to different
physical techniques. Commonly, one uses some sort of probe that interacts with a
target and from the change of the physical state of the probe one draws conclusion on
the physical properties of the target. The probe might be particles, as e.g. used by
Rutherford to examine the scattering of alpha particles from a thin gold foil, which lead
to the nucleus-electron picture of the atoms [19]. We are going to consider metallic nano-
particles that are probed with beams of light. One can imagine that due to the interaction
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with the particle, parts of the beam will be deflected from the original trajectory and
in addition, parts of the electromagnetic energy will be absorbed by the particle. The
deflected fields will be called scattered fields Escat,Hscat and we will see that the amount
of scattered energy as well as the angular distribution allows us to draw conclusions about
the scatterer. To quantify electromagnetic energy we introduce the Poynting vector. It
is given by

S (r, t) = E (r, t)×H (r, t) (2.40)

and can be interpreted as the density of energy flow at a point in space, it has the unit
of energy per area. In experiments, one will usually measure the time average of the
electromagnetic energy, which for time harmonic fields evaluates to

〈S〉 =
1

2
< (E ×H∗) . (2.41)

With this, we can construct a virtual sphere Ω enclosing the scatterer as sketched in
Fig. 2.3 and assume that the embedding medium is non-absorbing, i.e. =εe = 01. Then
we can integrate the Poynting vector on Ω to get the net energy flow

Wa = −
∫

Ω
S · dn, (2.42)

where n is the outward normal to Ω. If Wa > 0, this means that we have a net inflow,
i.e. energy is absorbed inside Ω and as we have assumed =εe = 0, the energy must be
absorbed by the particle. The field in the exterior of the particle is a superposition of
scattered and incident field, therefore the Poynting vector is given by

S = (Einc + Escat)× (Hinc + Hscat)

= Einc ×+Hinc︸ ︷︷ ︸
=Sinc

+ Escat ×Hscat︸ ︷︷ ︸
=Sscat

+ Einc ×Hscat + Escat ×Hinc︸ ︷︷ ︸
=Sext

(2.43)

The latter term can be understood as an interaction between the incident and the scat-
tered field and is termed extinction. We can now consider the contributions of the above
components to the energy flow

Wa = Winc −Wscat +Wext. (2.44)

The negative sign of Wscat is because the scattered field originates from inside the contour
Ω. If the surrounding medium is non-absorbing, the incident field does not contribute,
i.e. Winc = 0. We therefore see that the extinction Wext is nothing else then the
absorbed plus the scattered energy Wext = Wa +Wscat. For an incident plane wave we
can now introduce the extinction cross section and the scattering cross section, relating

1Here, we fix the notion used in the following. We denote the permittivity in the interior and exterior
of the particle as εi and εe, respectively
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Einc

Escat

Ω

εi

εe

Figure 2.3: Scattering of electromagnetic fields. We assume an electromagnetic
wave Einc that is incident on a scatterer which has the permittivity εi em-
bedded in a medium with permittivity εe. The interaction of the incident field
with the scatterer will give rise to a scattered field Escat. In a non-absorbing
medium we can evaluate the energy balance on a virtual boundary Ω and
determine the amount of scattered and absorbed electromagnetic energy as
discussed in the text.

the respective energies to the incident field energy

Cext =
Wext

1
2

√
εe
µe
|E0|2

, (2.45)

Cscat =
Wscat

1
2

√
εe
µe
|E0|2

. (2.46)

Usually, the scattering and extinction cross-sections are normalized to the geometric
cross-section of the scatterer As. This results in the extinction and scattering efficiency

Qext =
Cext
As

, (2.47)

Qscat =
Cscat
As

. (2.48)

Especially the extinction is a quantity accessible in experiments and will be used to
establish the link between experiment and calculation in Chap. 4. Due to large laser
spot-sizes, the extinction measured there is always an ensemble average. It is, however,
even possible to measure the extinction of a single 200 nm gold particle in absolute
units [20].
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2.4 Optical Properties of Metals

As discussed in Sec. 2.1.1, the behaviour of materials in electric and magnetic fields is
described by the permittivity ε and the permeability µ. One could say, that Maxwell
outsourced the problem of describing the material response from his equations. For
many materials a linear, non-dispersive response is a good approximation, however,
this does not hold for metals. Their optical response is dominated by the conduction
electrons that tend to follow an external electric field. Due to the finite (effective) mass
of the electrons, we may expect the response to depend on the frequency of the external
driving field. Using simple physical models, it is possible to find analytical expressions
for the permittivity of a metal that show a good agreement with measurements of the
permittivity from experiments.

2.4.1 Drude model - Permittivity of the free Electron Gas

We assume a homogeneous gas of electrons of number density n. The electrons of (ef-
fective) mass m are supposed to move freely against a fixed positive ion background.
Under the influence of an external driving electric field E (t), the electrons are acceler-
ated, while their motion is damped by collisions with the positive ions. The resulting
equation of motion reads

mẍ (t) +mγẋ (t) = −eE (t) , (2.49)

where the collision frequency γ is a measure for the damping. Electrons which are dis-
placed against the positive background contribute to a macroscopic polarization P (t) =
−nex (t), we therefore obtain the following differential equation for the polarization:

P̈ (t) + γṖ (t) =
ne2

m
E (t) . (2.50)

By introducing the Fourier transforms of P and E in the above equation, we obtain the
relationship between the Fourier components and obtain an explicit expression for P

P = − ne2/m

ω2 + iγω
E. (2.51)

Together with D = ε0E + P , we have obtained

D = ε0

(
1−

ω2
p

ω2 + iγω

)
E, (2.52)

where we have introduced the plasma frequency ω2
p = ne2

ε0m
. We see that there is a

correspondence between a frequency-dependent permittivity and the polarization:

5 If given by an analytical expression as above, a frequency-dependent permittivity can
be expressed as a differential equation for the polarization P (t).
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This enables us to efficiently treat temporally disperse materials in time-domain calcu-
lations by solving Eq. (2.50) simultaneously with Maxwell’s equations. This approach is
called Auxiliary Differential Equations (ADE) method.

An alternative derivation for the Drude permittivity may be obtained by using Ohm’s
law

J = σ (ω)E, (2.53)

which states that an electric field causes a current parallel to the field with amplitude
determined by the conductivity σ (ω). According to the Drude model (cf. [21]) the
conductivity of a metal is given by

σ (ω) =
σ0

1− iωτ with σ0 =
ne2τ

m
(2.54)

where the relaxation time τ is the mean time between collision of the electrons with the
positive ions. Together with Eq. (2.18b) we obtain

∇×H = −iωD + J = −iωε0E + σ (ω)E = −iωε0E +
ne2τ/m

1− iωτ E

= −iωε0

(
1− ne2/ (mε0)

ω2 + iωγ

)
E = −iωε0

(
1−

ω2
p

ω2 + iωγ

)
E

where we have used the collision frequency γ = 1/τ . Again, we arrive at the Drude
expression for the permittivity as in Eq. (2.52). This approach is redundant in the sense
that the expression for σ (ω) is obtained by reasoning similar to above, where we have
considered the free electron gas. However, an important consequence is that

6 The description of the optical response of any material can be achieved by supple-
menting Maxwell’s equations with an appropriate model for the current J.

2.4.2 Lorentz Model

The Drude model assumed a free electron gas. In addition, bound electrons might as
well contribute to the response of a metal and can be taken into account by an additional
restoring force in the equation of motion for the electrons. This results in

P̈ (t) + γṖ (t) + βP (t) =
ne2

m
E (t) . (2.55)

By the same reasoning as in the preceding section, we arrive at the Lorentz model for
the frequency-depended permittivity

ε (ω) = 1 +
ω2
L

ω2
L − iγLω − ω2

(2.56)

Due to the linearity of Maxwell’s equations, we are free to assume the response of
the metal to be a linear combination of several Drude and Lorentz contributions. The
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coefficients are usually chosen to yield a good approximation of measured datasets, which
we will discuss in the next section.

2.4.3 Permittivity Measurements

Johnson and Christy [22] performed measurements on thin films of gold, silver and cop-
per. From transmission and reflectance measurements they determine the permittivity.
For gold and silver, the results are shown in Fig. 2.4. The measured data reveal an
important characteristic of metals: The real part of the permittivity can be negative for
certain wavelengths. Also, in the infrared part of the spectrum the absolute value of the
real part can be as high as 150 and more.

Concerning the imaginary part of the permittivity, we see the onset of inter-band
transitions for both noble metals. For gold this onset falls into the visible part of the
electromagnetic spectrum around 500 nm wavelength. For silver we observe the rise
in the imaginary part for shorter wavelengths around 300 nm, thus outside the visible
part of the electromagnetic spectrum. Even though these measurements have been
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Figure 2.4: Measured data for the real (top) and imaginary (bottom) part of the per-
mittivities of gold and silver as a function of the wavelength [22].

performed on films with 20 nm to 50 nm thickness, it has become customary to use these
datasets for calculations involving nanometer-sized particles of, e.g., spherical shape. It
is not obvious that the permittivity measured at thin films is applicable here, however,
simulations involving the permittivity dataset show good agreement with experiments. It
is desirable to have an approximation of the permittivity for the noble metals in terms of
a Drude model for the use in time-domain calculations using the ADE method. Figure 2.5
shows a comparison of the permittivity data measured by Johnson and Christy [22] and
a Drude model with parameters chosen to fit the measured data given in Tab. 2.1. The
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Figure 2.5: Comparison of the real and imaginary parts of the permittivity. The blue
curves shows the measured data by Johnson and Christy [22] and the red
curves are a Drude model with parameters chosen to approximate the mea-
sured data (cf. Tab. 2.1). While the agreement is good over a wide wave-
length range, we see that the inter-band transitions below 500 nm are not
taken into account by the Drude model.

overall agreement can be considered good over a wide range of wavelengths. The inter-
band transitions that occur for gold below 500 nm and contribute to the imaginary part
of the permittivity, however, are not taken into account by the Drude model. Therefore,
we see clear deviations between the two permittivities below 500 nm. To take the inter-
band transitions into account, we have to add a Lorentz-term to the permittivity. Again,
the parameters are given in Tab. 2.1.

2.4.4 Permittivities used in this Thesis

For the calculations in this thesis, we will restrict ourselves to either experimental data
or simple Drude or Lorentz models. The reason for this is two-fold. First, we will often
be concerned with numerical methods and aim to see how accurate the numerical results
are. Here, a well behaved analytical permittivity like a Drude model is more desirable
because it results in well behaved spectra. Furthermore comparing the results of a time
domain and a frequency domain method restricts us to such analytical permittivities as
explained above. The second reason is, that using the Drude-Lorentz model given in
Tab. 2.1, we see an excellent agreement between numerical results and experiments, the
comparison of which will be shown in Sec. 7.7. Table 2.1 lists the permittivities that
we will use in our calculations. Gold and silver are the favorite materials for plasmonic
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Material Source Parameters (if applicable)
(eV)

Gold Experiment Taken from [22]
Silver Experiment Taken from [23]
Gold Drude h̄ωp = 9.073, h̄γ = 0.071
Gold Drude h̄ωp = 8.794, h̄γp = 0.066

+Lorentz h̄ωL = 2.646, h̄γL = 0.382
Aluminum Drude h̄ωp = 15, h̄γp = 0.6

Table 2.1: Permittivity models used in this thesis.

nano-particles because their resonances are located around the visible wavelength range.
In contrast to gold and silver, aluminum is a metal that is well described by a Drude
model over a huge frequency range. While for the studies shown in this thesis the
Drude and Lorentz model give good results, the applicability of these models is subject
to an ongoing debate and effort towards more sophisticated description of the optical
properties of metallic nano-particles exists. In the following we will shortly discuss the
approaches for the sake of completeness.

2.4.5 Advanced Models

The Drude and Lorentz models were derived under simple assumptions about the elec-
tron dynamics. Nevertheless they show a good agreement with experiments and are the
common choice to describe most experiments. However, with structures of nanometer
sizes, that are available due to micro fabrication, one might expect that the naive classi-
cal picture has to be replaced by a quantum mechanical one or at least be supplemented
with a semi-classical one. Concerning the Drude model, it was derived under the as-
sumption that the mean time between electron-ion-collisions is the relaxation time τ .
Assuming that the electrons propagate with the Fermi-velocity vf , we are able to calcu-
late the mean free path length. This length turns out to be in the order of 10 nm, which
is in the order of the particle sizes. Thus, the conduction electrons might be scattered at
the particle surface, which decreases the relaxation time τ and thus increases damping.
A phenomenological extension of the Drude model is to include an additional damping
term to take this effect into account.

Non-locality

As already mentioned in Sec. 2.1.1, electronic transport in a material can render the
electromagnetic response non-local. Obviously, this could apply for metals, especially
as the mean free path is in the order of 10 nm. In Fourier space, a spatially non-local
permittivity is determined by a k-dependent permittivity analogous to a temporally non-
local permittivity leads to a frequency-dependent permittivity. A non-local correction
to the permittivity was proposed by Mermin [24]. Recently, Garćıa de Abajo studied the
influence of non-locality on the scattering cross-section of a dimer of 10 nm gold sphere
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and showed that for distances larger than 1 nm influences are marginal [25]. Also recent
experiments suggest that the local classical electrodynamic description is even valid for
a dimer of nano-rods with only 1 nm distance2.

Hydrodynamic Model

Another step towards an advanced description of the electromagnetic response of metallic
nano-particles is the description of the particle’s electrons as a fluid. Let ρ and j be the
particle density and the particle current, respectively. Then, the dynamics of the fluid
is described by the Euler equations expressing the conservation of momentum

∂j

∂t
+∇ ·

(
1

ρ
j ◦ j

)
=

1

m
(FLorentz −∇p) . (2.57)

The hydrodynamic model can be mapped to a Drude model fixing all parameters except
the pressure p. One choice for the pressure is the of a degenerate electron gas, the
Thomas-Fermi pressure

p =

(
2π2
)2/3

h̄2

5m
ρ5/3 (2.58)

In addition, one has to determine the boundary conditions on the particle interface.
Choices are the so-called no-slip boundaries where the particle current vanishes on the
particle surface and the slip boundaries. Here, the normal component vanishes on the
surface. The hydrodynamic model shows new effects for certain geometries. For example,
shifts of the resonances have been observed for sphere dimers with small separations [26].
There are also linearized hydrodynamic approaches which can be solved in frequency-
domain [27].

2.5 Plasmonics — Electrodynamics with Metals

In Sec. 2.4 we have seen, that the permittivity of metals can be negative in certain
frequency ranges. This special property gives rise to a new kind of electromagnetic
wave. These waves are called Surface Plasmon Polaritons (SPP) or, shorter, surface
plasmons. We will start by considering a planar metal-insulator interface and then
discuss the electromagnetic properties of metallic particles.

2.5.1 Surface Plasmon Polaritons at planar Interfaces

We postulate the existence of waves that are confined to a planar material interface
and decay exponentially with increasing distance from the interface. Let the interface
coincide with the x-y-plane and, without loss of generality, let the wave propagate in

2arXiv:1112.5008v1
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x-direction with a wave vector component kx = β. We denote the permittivity by

ε(z) =

{
ε1 z < 0

ε2 z > 0
(2.59)

Then we choose the following ansatz for the fields for z > 0

Hy (z) = A2e
iβxe−k2z (2.60a)

Ex (z) = iA2
1

ωε0ε2
k2e

iβxe−k2z (2.60b)

Ez (z) = −A2
β

ωε0ε2
eiβxe−k2z (2.60c)

and for z < 0 we have

Hy (z) = A1e
iβxek1z (2.61a)

Ex (z) = iA1
1

ωε0ε1
k1e

iβxek1z (2.61b)

Ez (z) = −A1
β

ωε0ε1
eiβxek1z (2.61c)

Now we can use the boundary conditions (2.13) at the interface to obtain the conditions
under which the above ansatz is a solution of Maxwell’s equations, i.e.

A1 = A2 (2.62a)

k2

k1
= −ε2

ε1
(2.62b)

According to the above equations, k1 > 0 and k2 > 0 and therefore, we have the
condition <ε1 < 0 for ε2 > 0. If we assume a metal-insulator interface, we see that this
condition can fulfilled in certain frequency ranges as the permittivity of the metal ε1

can be negative. These waves sustained by metal-insulator interfaces are called surface
plasmon polariton (SPP).

Figure 2.6 shows the norm of the electric field at a metal-insulator interface. We see
that the electric field is confined to the surface. The decay length of the field depends on
the material properties, however it is usually much shorter than the free-space wavelength
at the respective frequency. This localization of the electromagnetic energy has paved
the way for a lot of interesting applications, which we will discuss in the next section.

As plane waves in the preceding section, SPPs can be characterized by a dispersion
relation.
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Figure 2.6: Color encoded norm and vector plot of the electric field at a metal-insulator
interface. The metal is assumed to be a loss-less Drude metal.

7 The dispersion relation for surface plasmon polaritons is given by

β = k0

√
ε1 (ω) ε2

ε1 (ω) + ε2
(2.63)

where β is the component of the wave vector parallel to the interface and k0 = ω/c.

We plot the dispersion relation for two different metal-insulator interfaces in Fig. 2.7. We
assume a Drude model for the metal permittivity and neglect losses, i.e. we set γ = 0.
For the insulator we choose air (blue curves, ε2 = 1) and glass (red curves, ε2 = 2.25). In
addition we plot the light-lines, i.e. the free photon dispersion, in the respective insulator
as dotted lines. Solid lines correspond to the real part of the wave vector, dashed lines
to the imaginary part. The solid lines below the light lines correspond to the bound
surface plasmon polaritons. For frequencies above the plasma frequency ωp, the real
part of the permittivity of the metal becomes positive and no such bound modes exist.
Therefore, the solid lines above the light line indicate propagating radiation. Between
the two bands we have a region where the wave vector is purely imaginary prohibiting
SPP propagation.

For frequencies approaching the surface plasmon frequency

ωsp =
ωp√

1 + ε2
(2.64)

the wave vector diverges. This situation corresponds to a coherent oscillation of the
electrons where the group velocity vg goes to zero. Strictly speaking, this mode is called
Surface Plasmon (SP), a special case of the propagating surface plasmon polariton. It
has, however, become customary to neglect this distinction and in general refer to both
kinds of waves as surface plasmons.
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The dispersion relation reveals another important characteristic of SPPs. Because
their dispersion does not intersect with the light-line, SPPs cannot be directly excited
with light in form of plane waves. Techniques like gratings or prism coupling have to be
used in such cases [9].

0 0.5 1 1.5 2
0

0.5

1

1.5

β

ω
/ω

p

Drude metal/Air

Drude metal/Glass
Light-line air
Light-line glass

Figure 2.7: Dispersion of the Surface Plasmon Polariton (SPP). The blue curves show
the SPP sustained by an infinite Drude metal-air interface, the red curves
indicate the dispersion relation for a SPP at an Drude metal-glass interface.
Losses are neglected here. The dotted lines are the free photon dispersion
relations in vacuum (blue) and glass (red), respectively.

2.5.2 Localized Surface Plasmon Polaritons

After considering a plane metal-insulator interface, we now want to discuss another form
of such an interface. As sketched in figure 2.8, a particle can also be considered as metal-
insulator interface and we may expect it to also support surface plasmons. We will see
that it indeed does and as these are bound to the particle, they are termed Localized
Surface Plasmons (LSP) or Particle Plasmons. In contrast to the SPP at planar inter-

z

x

ε1(ω)

ε2

ε1(ω)

ε2

Figure 2.8: A particle regarded as metal-dielectric interface.

faces, LSPs can be excited with light. Figure 2.9 shows the electric field at a 10 nm
sphere excited with a plane wave at the dipole resonance around 355 nm. The LSP has
two interesting properties. First, as for the SPP, the LSP field is confined to the sur-
face of the particle. The decay length of the field is much shorter than the free-space

24



2 Electrodynamics

Figure 2.9: Cross-section through an iso-surface plot of the norm of the electric field at a
10 nm silver sphere with on-resonance irradiation. The incident plane wave
is polarized along the x-axis and propagates along the z direction. Field
amplitudes are normalized to the incident field amplitude. We see that the
electric field is localized at the poles of the sphere and that the field values
in the vicinity of the poles are up to four times larger than the incident field
amplitude. These are two characteristics of Localized Surface Plasmons.

wavelength at the respective frequency. Thus, the electromagnetic energy is localized
to sub-wavelength regions, which would not be possible with conventional diffraction-
limited optics. The second important property is the so-called field-enhancement. When
excited near the LSP resonance, the amplitude of the electric field at the particle surface
can be larger than the amplitude of the incident field. Thus, LSP facilitate a very local-
ized, very intense electric field. These characteristics have been exploited for a variety of
applications. The strong confinement can be used to build waveguides from individual
particles that are much smaller than conventional photonic waveguides. The latter ones
usually require lateral dimension in the order of half a wavelength. Plasmonic waveguides
[28, 29] require only a fraction of this. As typical electronic integrated circuits, such as
the central processing unit of computers, have similar dimensions, interfacing electronics
and plasmonics could yield faster processing technologies [3]. The LSP resonances are
very sensitive to changes in their environment. This makes them suited to act as sensors
[30, 4], which can be even used for virus-detection [31]. The field-enhancements have
been used to enhance non-linear properties [32, 33].

With all these applications, understanding and tailoring the plasmonic properties
of metallic nano-particles has become a major aim of plasmonics. To that end, both
numerical and experimental methods have been developed and we will now continue
to discuss numerical methods to calculate the plasmonic properties of metallic nano-
particles.
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In this chapter, we will introduce the numerical methods used in this thesis. Our focus
will be on the solution of the scattering problem and we choose the scatterer to be
a single metallic nano-particle - the drosophila of plasmonics, as W.L. Barnes put it
[34]. For any given incident field and given scatterer, we have to calculate the scattered
field using Maxwell’s Equations. We assume that the scatterer has the permittivity
and permeability εi, µi and the surrounding medium εe, µe, where the indices stand for
interior and exterior, respectively. The situation is sketched in Fig. 3.1.

For spherical particles, the scattering problem is amenable to an analytical solution
as shown in Sec. 3.1. More general particle shapes usually require other methods that
approximate the exact solution. The methods are either based on the time-dependent

Einc

R Escat

εi(ω), µi

εe, µe

Figure 3.1: Sketch of the test scattering problem. The scatterer is a sphere of radius R
situated at the origin with a frequency dependent permittivity εi(ω). For
a given incident field Einc, we want to find the scattered field Escat that is
caused by the interaction between the scatterer and the incident field.

Maxwell Equations (2.1) or the frequency-dependent Maxwell Equations (2.18), and
hence termed time-domain (TD) and frequency-domain (FD) methods, respectively. For
FD methods, we have to solve for the Fourier coefficients of the fields for every given
frequency ω. Therefore, it is straight-forward to use experimentally measured values
for the permittivity ε (ω). In contrast to that, taking these values into account in TD
methods, would require the convolution of the time-dependent permittivity with the
electric field as in Eq. (2.8), which would lead to prohibitive memory and computation
time demands. However, we have seen in Sec. 2.4, that we can express a frequency-
dependent permittivity by differential equations for the polarization, as long as they
have a functional form as the Drude or Lorentz model or a linear combination of several
terms. This is the usual way of treating a frequency dependent permittivity in TD codes
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and it can also be used to fit a superposition of Drude-Lorentz terms to experimental
datasets.

3.1 Mie Theory

The analytical solution of the electrodynamic scattering problem for spherical particles
was solved by Gustav Mie [2] and is usually called Mie Theory or Lorenz-Mie Theory. It is
a FD method based on the solution of the vector Helmholtz Equation (2.24) in spherical
coordinates. The solutions can be generated from those of the scalar Helmholtz equation
and we will first introduce the necessary functions before proceeding to the solution of
the actual scattering problem. The discussion follows the one given by Bohren and
Huffman [35], augmented by details discussed in the book by Stratton [36].

3.1.1 Scalar Wave Functions

The scalar wave functions (SWF), i.e. the solutions of the scalar Helmholtz equation, in
spherical coordinates can be determined by the separation ansatz

ψ(r, ϑ, ϕ) = R(r)Θ(ϑ)Φ(ϕ). (3.1)

Substituting the Laplacian in spherical coordinates

∆ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sinϑ

∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1

r2 sinϑ

∂2

∂ϕ2
(3.2)

in (2.24) and using the above separation ansatz, we arrive at differential equations for
each factor.

Radial Part

For the radial part R(r), we arrive at the following differential equation:

d

dr

(
r2dR

dr

)
+
[
k2r2 − n(n+ 1)

]
R = 0 (3.3)

Introducing the dimensionless variable ρ = kr and substituting Z = R
√
ρ we arrive at

the Bessel Differential Equation

ρ
d

dρ

(
ρ
dZ

dρ

)
+

[
ρ2 −

(
n+

1

2

)2
]
Z = 0, (3.4)

27



3 Numerical Methods

the solutions of which are the Bessel functions of first kind Jν and second kind Yν with
the order ν = n+ 1

2 . Defining the spherical Bessel functions as

jn(ρ) =

√
π

2ρ
Jn+1/2(ρ) (3.5)

yn(ρ) =

√
π

2ρ
Yn+1/2(ρ) (3.6)

we see that they are exactly the solutions for the radial part. While jn(ρ) is finite at
the origin, the yn(ρ) diverge for ρ→ 0. This will be of importance when considering the
expansions of the incident and scattered electric field later on.

The linear combinations

h(1)(ρ) = jn(ρ) + iyn(ρ) (3.7)

h(2)(ρ) = jn(ρ)− iyn(ρ) (3.8)

are called spherical Hankel functions of the first and second kind, respectively and are
another linearly independent set of solutions of the Bessel equation. Their asymptotic
expressions for ρ→∞ resemble those of incoming and outgoing waves, respectively, and
therefore they are important in scattering theory.

Angular Part

For the ϕ-dependent factor of the angular part, we arrive at the differential equation

d2Φ

dϕ2
+m2Φ = 0, (3.9)

the solution of which is given by the phase factor Φ (ϕ) = eimϕ. The ϑ-dependent parts
leads to the more complicated equation

1

sinϑ

d

dϑ

(
sinϑ

dΘ

dϑ

)
+

[
n (n+ 1)− m2

sin2 ϑ

]
Θ = 0. (3.10)

The solution of this differential equation are the associated Legendre Polynomials Pmn of
order m and n. Together with Φ(ϕ) they form the well known Spherical Harmonics

Y m
n (ϑ, ϕ) = Θ(ϑ)Φ(ϕ) = αm,nP

m
n (cosϑ) eimϕ. (3.11)

The definition of the normalization factor αm,n differs in the literature. Unless mentioned
otherwise, we use the basis given by Doicu et al. [37].

From Eqns. (3.9) and (3.10) we see that the spherical harmonics are the eigenfunctions
of the angular part of the Laplacian (3.2). Further eigenvalue equations can be derived
for the angular momentum operator L̂ = −ir × ∇. The spherical harmonics are the
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eigenfunctions of the squared operator and the z-component

L̂2Y m
n = n(n+ 1)Y m

n , (3.12a)

L̂zY
m
n = mY m

n . (3.12b)

Finally, the radial part together with the angular part form the scalar wave functions.

8 The scalar wave functions (SWF), which are solutions of the scalar Helmholtz equa-
tion are given by

u1,3
mn(k, r) = z1,3

n (kr)Ymn(ϑ, ϕ), (3.13)

where z1
n = jn and z3

n = h
(1)
n .

Accordingly, u1
n is called regular SWF and u3

n is called propagating SWF. As the angular
momentum operator L̂ only operates on the angular part, the eigenvalue equations (3.12)
also hold for the SWF. In Sec. 6.1 we will see that using the angular momentum operator
formalism simplifies calculations involving the wave functions.

3.1.2 Vector Wave Functions

The solutions of the vector Helmholtz equation (2.24) can be generated from solutions
of the scalar Helmholtz equation. Let ψ be a solution of the scalar Helmholtz Equation.
Then we define

L = ∇ψ (3.14)

M = ∇× (aψ) (3.15)

N =
1

k
∇×M (3.16)

where a is a constant vector of unit length. All of the three vector functions above, which
we call Vector Wave Functions (VWF), satisfy the vector Helmholtz Equation (2.24) and,
in addition, have the following properties

∇ ·L = −k2ψ ∇ ·M = 0 ∇ ·N = 0

∇×L = 0 ∇×M = kN ∇×N = kM

i.e. M,N are solenoidal, while L is purely longitudinal.
For each solution of the scalar Helmholtz equation ψ = uimn, i = 1, 3, we can construct

corresponding VWF that we denote with Li
mn,Mi

mn,N i
mn. We see that the functions

Mi
mn,N i

mn are appropriate for the representation of the electric and magnetic field
E,H, as they are solenoidal and proportional to the curl of each other. Indeed, the
discussion of the VWF is often limited to these two, for example in the book of Bohren
and Huffman [35], because the usual scattering problem involves no free charges. How-
ever, the representation of a vector function with non-vanishing divergence requires the
inclusion of Ln.
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In the discussion above, we limited the choice of the vector a to a constant one of unit
length. In the case of spherical coordinates, however, choosing a = r yields independent
solutions as well with the advantage of being tangential or normal over the entire surface
of a sphere of given radius [36]. In the basis used by Doicu et al. [37], this results in the
explicit expressions for the Spherical Vector Wave Functions (SVWF)

M1,3
nm(kr) =

1√
2n(n+ 1)

∇u1,3
nm(kr)× r, (3.17)

N 1,3
nm(kr) =

1

k
∇×M1,3

nm(kr), (3.18)

u1,3
nm(kr) = z1,3

nm(kr)P |m|n (cos θ)ejmφ, (3.19)

z1,3
nm(kr) =

{
jn(kr) for z1

n(kr)

h
(1)
n (kr) for z3

n(kr)
, (3.20)

Pmn (cos θ) =

√
2n+ 1

2

(n−m)!

(n+m)!
P̂mn (cos θ), (3.21)

P̂mn (x) =
1

2nn!
(1− x)

m
2
∂n+m

∂xn+m
(x2 − 1)n, (3.22)

An elegant way of dealing with the SVWFs is the use of the angular momentum operator
L̂ we have already introduced above. With this, we can write

M1,3
nm(kr) =

i√
2n(n+ 1)

L̂u1,3
nm(kr), (3.23)

N 1,3
nm(kr) =

i

k
√

2n(n+ 1)
∇× L̂u1,3

nm(kr). (3.24)

Thus, the angular momentum operator generates the SVWF from the scalar wave func-
tions.

3.1.3 Field Expansion

Having the mathematical tools at hand, we are now able to represent the electric field
as a linear combination of SVWFs. Neglecting the longitudinal modes L, we obtain:

E =
∞∑
n=1

n∑
m=−n

amnM1
mn + bmnN 1

mn + fmnM3
mn + gmnN 3

mn (3.25)

If the field E is finite at the origin, the coefficients fmn and gmn must be zero, because
M3

mn and N 3
mn contain the Bessel functions of second kind yn(ρ) that diverge at the

origin. Therefore, the incident field E inc must have an expansion of the form

E inc =
∞∑
n=1

n∑
m=−n

amnM1
mn + bmnN 1

mn. (3.26)
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The same holds for the electric field inside the scatterer

E int =
∞∑
n=1

n∑
m=−n

cmnM1
mn + dmnN 1

mn. (3.27)

The scattered field, in contrast, can be assumed to consist of outgoing waves in large

distance from the scatterer. Due to the asymptotic expressions of h
(1)
n , the expansion

must have the form

Escat =
∞∑
n=1

n∑
m=−n

fmnM3
mn + gmnN 3

mn. (3.28)

The expansion of the magnetic field can be calculated from the electric field according
to Eq. (2.18d)

H = − i

ωµ
∇× E (3.29a)

= − i

ωµ

∞∑
n=1

n∑
m=−n

amn∇×Mmn + bmn∇×Nmn (3.29b)

= − ik

ωµ

∞∑
n=1

n∑
m=−n

amnNmn + bmnMmn. (3.29c)

3.1.4 Solution of the Scattering Problem

The task now is to calculate the scattered field for a given incident field. Usually, the
incident field is given by a plane wave, a Gaussian beam or, in the case of Electron
Energy Loss Spectroscopy discussed in Chap. 5, the field caused by a moving electron.
At any rate, we assume that we can expand the incident field in terms of the SVWF
as in Eq. (3.26) with known expansion coefficients amn, bmn. We then calculate the
expansion coefficients of the scattered field fmn, gmn with the help of the internal field
E int by enforcing the boundary conditions at the scatterer surface. In the spherical case,
it coincides with the iso-coordinate surface S = {(r, ϑ, ϕ) : r = R}, which simplifies the
analysis. The field outside the scatterer is given by E inc+Escat, while inside the scatterer
we only have E int. The boundary conditions (2.13) on the surface S for the tangential
components of the fields read

er × (E inc + Escat) = er × E int (3.30)

er × (Hinc + Hscat) = er ×Hint (3.31)

From these equations, together with the expansions (3.26)-(3.29), we obtain a system
of equations to determine the expansion coefficients of the scattered field fmn, gmn for
given incident field coefficients amn, bmn.
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3.1.5 Incident Plane Wave

Plane waves (cf. Sec. 2.2) are a common way to model monochromatic irradiation, e.g.
by laser beams. The plane wave

E = Ee−iωt = E0e
ik·r−iωt (3.32)

can be expanded in terms of SVWFs and the expansion coefficients are well known. For
a x-polarized plane wave, propagating in z-direction i.e. E0 = E0ex and k · r = kr cosϑ,
the expansion coefficients are well known and in the basis used by Doicu et al. [37] read:

a1n = −a−1n = in−1
√

2n+ 1, (3.33)

b1n = b−1n = in−1
√

2n+ 1. (3.34)

3.1.6 Scattering from a Spherical Particle

With the incident field known and an expansion ansatz for the scattered and internal
fields, we can enforce the boundary conditions Eq. (3.30) on the sphere surface, which
we assume to have the radius R. With this we can express the scattered field in terms
of the incident field coefficients

fmn = T 1
namn, (3.35)

gmn = T 2
nbmn. (3.36)

with the coefficients

T 1
n = −

[
mrAn(mrx) + n

x

]
jn(x)− jn−1(x)[

mrAn(mrx) + n
x

]
h

(1)
n (x)− h(1)

n−1(x)
, (3.37)

T 2
n = −

[
An(mrx)

mr
+ n

x

]
jn(x)− jn−1(x)[

An(mrx)
mr

+ n
x

]
h

(1)
n (x)− h(1)

n−1(x)
. (3.38)

Here we have introduced the dimension-less size parameter x = kR, with k being the
wave number. Furthermore we have used the logarithmic derivative of jn

An(x) =
d

dx
[ln (xjn(x))] =

[xjn(x)]′

xjn(x)
(3.39)

and the relative refractive index mr =
√
εi/εe. We are now able to evaluate the scattered

field expansion coefficients and thus, we can calculate the scattering and extinction cross-
section for a spherical particle. We obtain

Cext = − π

k2
e

∑
n,m

<{fmna∗mn + gmnb
∗
mn} (3.40)
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Cscat =
π

k2
e

∑
n,m

|fmn|2 + |gmn|2 . (3.41)

This enables us to discuss the optical properties of spherical particles. We will now
consider a 10 nm sphere of silver in the visible part of the spectrum. The permittivity
for silver is taken from Johnson and Christy [22]. To actually calculate the scattering
and extinction efficiencies, we will have to truncate the SVWF expansion of the field
at some maximum value Nr. Of course, this parameter is crucial for convergence. For
plane waves incident on spherical particles, an a priori estimate for the minimum value
of Nr as a function of the size parameter x = kR was given by Wiscombe [38]. For our
values of λ and R, x is between 0.07 and 0.3. The estimate is then given by

Nr,W =
[
x+ 4x1/3 + 1

]
. (3.42)

For the values of x mentioned above, Nr,W evaluates to 2 . . . 3. We choose Nr = 5 for the
following calculation. With an implementation of Mie theory in Mathematica, we are
able to evaluate the extinction and scattering cross-sections according to the equations
above. Figure 3.2 shows the result for our test particle situated in vacuum and in glass

300 320 340 360 380 400 420 440 460 480 500
0

10

20

λ[nm]

Qext, vacuum

Qscat(×4), vacuum
Qext, glass

Qscat(×4), glass

Figure 3.2: Scattering and extinction efficiencies (dashed and solid lines, respectively)
for a 10 nm silver sphere in vacuum (blue) and in glass (red). For metallic
particles, the absorption is dominant. With increasing refractive index of the
surrounding medium, the particle resonance shifts to the red.

(with the permittivity ε = 2.25). For both situations, we see a single resonance peak
in the spectra which is dominated by the absorption (extinction=scattering+absorption,
cf. Sec. 2.3), therefore we scale the scattering efficiency by a factor of 4.

Here, we have the opportunity to study the influence of the surrounding medium on
the LSP resonance. First, we see that the increased refractive index causes the resonance
to shift to longer wavelengths. Second, the efficiencies are larger for the particle in glass.
Intuitively, this can be considered as a result of the decreased propagation velocity of
the light in the medium, i.e. the light has ”more time” to interact with the particle and
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to be absorbed.

3.1.7 Remarks

We conclude this section by noting that the separation ansatz (3.1) can in principle be
used in all 17 coordinate systems in which the Laplacian is separable [39], including
spheroidal coordinates. We have seen that the analysis is simplified if the scatterer
surface coincides with an iso-coordinate surface. Therefore, when we will have to solve
the scattering problem for spheroids in Chap. 4, a Mie-like analytical solution would be
preferred over a numerical one. In practice, however, the evaluation of the spheroidal
harmonics [40] is an computationally expansive task, especially for complex values of
the wave vector k that occur in plasmonics due to the non-vanishing imaginary part
of the permittivity. While results have been reported for non-absorbing particles [41]
and approximative solutions for absorbing particles have been obtained [42], an efficient
method to directly evaluate the spheroidal harmonics for plasmonic particles is still
missing [43].

3.2 T-Matrix and Null-Field Method

The T-Matrix method can be considered as an extension of Mie Theory introduced in
the preceding section and allows to treat scatterers of more general shape. The theory
of the method was introduced by Waterman [44], detailed reviews and studies can be
found in the books by Mishchenko [45] and Doicu et al. [37] and also in the reviews by
Mishchenko et al. [46], [47]. Again, we expand the incident field E inc and the scattered
field Escat in terms of the SVWFs defined in Section 3.1.2:

E inc =
∞∑
n=1

n∑
m=−n

amnM1
mn + bmnN 1

mn, (3.43a)

Escat =
∞∑
n=1

n∑
m=−n

fmnM3
mn + gmnN 3

mn. (3.43b)

We now allow for a more general dependence between incident and scattered field as
compared to Mie theory(

fmn
gmn

)
= T

(
amn
bmn

)
=

(
T1,1 T1,2

T2,1 T2,2

)(
amn
bmn

)
, (3.44)

where we have introduced the Transition Matrix (T-Matrix)

T =

(
T1,1 T1,2

T2,1 T2,2

)
. (3.45)

For a given expansion of the incident field, the T-Matrix yields the expansion coefficients
of the scattered field. It might therefore be considered as a property of the scatterer and
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contains all information on the scattering process except the incident field. In practice,
the order of the expansions (3.43) has to be finite, of course, such that we have

∞∑
n=1

n∑
m=−n

· 7→
Nrank∑
n=1

min(Mrank,n)∑
m=−min(Mrank,n)

· (3.46)

The upper bounds must be chosen sufficiently large to obtain converged results. But
before discussing the numerical aspects, we will first sketch how to obtain the elements
of the T-Matrix. The standard procedure to determine the T-Matrix elements is the
so-called Null-Field Method (NFM). This method is described in detail in the book of
Doicu et al. [37] and we will follow the discussion given there.

3.2.1 Representation Theorems for Electromagnetic Fields

The Null-Field Method (NFM) relies on representation theorems for the electromagnetic
fields based on the equations given by Stratton and Chu [48]. They express electromag-
netic fields outside a given volume in terms of integrals over the volume’s surface.

Let our scatterer occupy a charge- and current-free volume V enclosed by the surface
S = ∂V . Then we can represent the scattered electric field with the help of the Green
function g(k, r, r′) (cf. Sec. 2.1.8) by

∇×
∫
S
ETscat

(
r′
)
g
(
ke, r, r

′) dS (r′)
+

i

k0εe
∇×∇×

∫
S
HT
scat

(
r′
)
g
(
ke, r, r

′) dS (r′) =

{
Escat (r) for r /∈ V
0 for r ∈ V

(3.47)

where HT
scat = n ×Hscat and ETscat = n × Escat are the tangential components of the

magnetic and electric field on S, respectively, with n being the outward normal to S. A
similar equation holds for Hscat. This means that we are able to express the scattered
fields outside the scatterer in terms of their tangential components on the scatterer
surface S. In a similar manner the field inside the scatterer can be represented as

∇×
∫
S
ETint

(
r′
)
g
(
ki, r, r

′) dS (r′)
+

i

k0εi
∇×∇×

∫
S
HT
int

(
r′
)
g
(
ki, r, r

′) dS (r′) =

{
−E int (r) for r ∈ V
0 for r /∈ V

.

(3.48)

On the scatterer surface S the boundary conditions (2.13) read

ETint = ETscat + ETinc, (3.49)

HT
int = HT

scat + HT
inc, (3.50)
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which, along with the two representations above, yield the Huygens principle for r /∈ V

Escat (r) = ∇×
∫
S
ETint

(
r′
)
g
(
ke, r, r

′) dS (r′)
+

i

k0εe
∇×∇×

∫
S
HT
int

(
r′
)
g
(
ke, r, r

′) dS (r′) for r /∈ V,
(3.51)

and the general Null-field equation for r ∈ V

−E inc (r) = ∇×
∫
S
ETint

(
r′
)
g
(
ke, r, r

′) dS (r′)
+

i

k0εe
∇×∇×

∫
S
HT
int

(
r′
)
g
(
ke, r, r

′) dS (r′) for r ∈ V,
(3.52)

which relate the tangential components of the internal fields HT
int = n × Hint and

ETint = n × E int with the scattered field Escat and the incident field E inc, respectively.
The Huygens principle (3.51) states that the scattered field is caused by the tangen-

SiS

Se

1.

NFE

2.

Huygens

E inc
ET
int

Escat

Figure 3.3: Sketch of the Null-Field Method (NFM). Two auxiliary spherical sur-
faces Si and Se are introduced inside and outside the scatterer. On Si, the
null-field equation is used to obtain a SVWF representation for the internal
surface fields. Then, the Huygens principle is used to calculate the scattered
field on any spherical surface outside the scatterer Se.

tial components of the internal fields ETint,HT
int on the surface S. The null-field equa-

tion (3.52) shows that inside the scatterer, the radiation caused by the same tangential
fields extinguishes the incident wave.

36



3 Numerical Methods

3.2.2 The Null-Field Method

Figure 3.3 sketches the steps taken in the Null-Field Method. Two auxiliary spherical
surfaces Si and Se inside and outside the scatterer, respectively, are necessary. Assuming
that the incident field E inc is given in the form of a SVWF expansion (3.43), we can plug
it in the null-field equation (3.52). Expanding the dyad gI in terms of SVWF is also
possible and if we restrict r to lie on the surface Si, we may exploit the orthogonality of
the SVWF [37] to obtain

ik2
e

π

∫
Si

ETint
(
r′
)
·
(M3

ν̄ (ker
′)

N 3
ν̄ (ker

′)

)
+i

√
µe
εe

HT
int

(
r′
)
·
(N 3

ν̄ (ker
′)

M3
ν̄ (ker

′)

)
dS(r′) = −

(
aν
bν

)
, ν = 1, 2, . . .

(3.53)

where we have used a compact vector notation and a multi-index ν = (m,n), ν̄ = (−m,n)
with ν = 1, 2, . . . meaning n = 1, 2, . . . with m = −n . . . n. This infinite set of integral
equations will be referred to as the null-field equations. They relate the surface fields of
the internal fields ETint,HT

int on the scatterer surface S with the incident field coefficients
aν , bν .

Now we choose a truncated SVWF expansion as an ansatz for the surface fields(
ET,Nint
HT,N
int

)
=

N∑
µ=1

cNµ

(
n (r′)×M1

µ̄ (kir
′)

−i
√

εi
µi

n (r′)×N 1
µ̄ (kir

′)

)
+ dNµ

(
n (r′)×N 1

µ̄ (kir
′)

−i
√

εi
µi

n (r′)×M1
µ̄ (kir

′)

)
(3.54)

where N is a truncation multi-index. Inserting the expansion (3.54) into the null-field
equations (3.53) yields equations that can be written in matrix form as

Q31 (ke, ki)

(
cNν
dNν

)
= −

(
aν
bν

)
. (3.55)

The matrix Q31 relates the expansion coefficients of the surface fields cNν , d
N
ν on S

with those of the incident field aν , bν .
On any sphere Se that completely encloses the scatterer V , we can use the Huygens

principle (3.51) to calculate the scattered field from the surface fields on S. Assuming
that the scattered field can be expressed in terms of a SVWF expansion (3.43), the
coefficients fν , gν are given by an integral over the scatterer surface S

ik2
e

π

∫
Si

ETint
(
r′
)
·
(M1

ν̄ (ker
′)

N 1
ν̄ (ker

′)

)
+i

√
µe
εe

HT
int

(
r′
)
·
(N 1

ν̄ (ker
′)

M1
ν̄ (ker

′)

)
dS(r′) =

(
fν
gν

)
, ν = 1, 2, . . .

(3.56)

We have obtained an approximation of the surface fields on S in (3.54) with the
coefficients cν , dν being determined by Eq. (3.55). Plugging the expansion into the
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above equation (3.56), we again arrive at a matrix equation, now relating the scattered
field coefficients with the surface field coefficients(

fν
gν

)
= Q11 (ke, ki)

(
cNν
dNν

)
(3.57)

Combining this equation with Eq. (3.55) and comparing it with the form of the definition
of the T-Matrix (3.45), we see that the T-Matrix is given by

T = −Q11 (ke, ki)
[
Q31 (ke, ki)

]−1
, (3.58)

where the elements of the matrices

Qpq (ke, ki) =

(
(Qpq)11

νµ (Qpq)12
νµ

(Qpq)21
νµ (Qpq)22

νµ

)
(3.59)

are given by

(Qpq)11
νµ =

∫
S

{[
n
(
r′
)
×Mq

µ

(
kir
′)] ·N p

ν̄

(
ker
′)

+

√
εi
εe

[
n
(
r′
)
×N q

µ

(
kir
′)] ·Mp

ν̄

(
ker
′)} dS (r′) (3.60a)

(Qpq)12
νµ =

∫
S

{[
n
(
r′
)
×N q

µ

(
kir
′)] ·N p

ν̄

(
ker
′)

+

√
εi
εe

[
n
(
r′
)
×Mq

µ

(
kir
′)] ·Mp

ν̄

(
ker
′)} dS (r′) (3.60b)

(Qpq)21
νµ =

∫
S

{[
n
(
r′
)
×Mq

µ

(
kir
′)] ·Mp

ν̄

(
ker
′)

+

√
εi
εe

[
n
(
r′
)
×N q

µ

(
kir
′)] ·N p

ν̄

(
ker
′)} dS (r′) (3.60c)

(Qpq)22
νµ =

∫
S

{[
n
(
r′
)
×N q

µ

(
kir
′)] ·Mp

ν̄

(
ker
′)

+

√
εi
εe

[
n
(
r′
)
×Mq

µ

(
kir
′)] ·N p

ν̄

(
ker
′)} dS (r′) (3.60d)

In summary, we have exploited the null-field equation and the Huygens principle along
with the orthogonality of the SVWF on spherical surfaces to obtain the T-Matrix. It is
given in terms of a product of two matrices (one direct, one inverse) containing integrals
involving the SVWFs over the scatterer surface S.
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3.2.3 Remarks

From the steps taken above, especially the application of the Huygens Principle, it is
clear that the scattered field expansion relies on the orthogonality of the SVWF on
the spherical surface Se. This can be chosen to be the smallest circumscribing sphere,
however there might be a remaining volume between the scatterer surface S and Se, in
which the field cannot be evaluated directly.

9 The TM is only valid outside the smallest sphere circumscribing the scatterer.

However, it is possible to compute the near-field. To that end, one has to expand the
field in the intermediate region in terms of both, radiating and propagating SVWF [49].

The integrals (3.60) that define the elements of the matrices Qpq can be evaluated
numerically by different methods. In the case of an available parametrization of the
scatterer surface, one can use them to evaluate the normal vector n and evaluate the
integrals. An alternative approach is the approximation of the scatterer surface by
triangular patches. With this, the evaluation of the integrals for scatterers of almost
arbitrary shape is possible.

Furthermore, we have only discussed the most simple case in the above derivation.
The method can be extended to inhomogeneous, anisotropic and also layered particles.
The treatment of strongly elongated particles is also possible using the Null-field Method
with Discrete Sources. There, the representation of the internal field is done by several
SVWF expansions with different origins [37]. With this, the method is applicable to a
large variety of scatterers. The method is also applicable to systems of particles using a
multiple scattering formalism. We will discuss this later in Chap. 6.

Finally, we note that in case of a spherical scatterer, the T-Matrix method actually
reduces to Mie Theory [50]. We will discuss T-Matrix results for non-spherical particles
in the following two chapters and therefore omit the discussion at this point.

3.3 Discontinuous Galerkin Time-Domain Method

The Discontinuous Galerkin Time-Domain Method (DGTD) is a versatile technique and
more general than the T-Matrix method described in the preceding section. It relies on
a discretization in space and time.

The DGTD originates from simulations of neutron transport [51] and in 2002 Hes-
thaven and Warbourton [52] demonstrated the application of the method to Maxwell’s
equations. An extensive review on the application to photonics was published recently
[53] and our discussion will follow this paper. A more detailed account on the method
can be found in the book by Hesthaven and Warbourton [54].

To apply the method, we bring Maxwell’s equations (2.1) in the form of a conservation
law. To that end, we define the material matrix

D =

(
ε (r) 0

0 µ (r)

)
, (3.61)
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Figure 3.4: Split-ring resonator discretized with a tetrahedral mesh. This picture demon-
strates the variation of the element size (h-refinement) to resolve structural
features. Taken from [53].

the state vector

~q (r, t) =

(
E (r, t)
H (r, t)

)
, (3.62)

and the flux

~F (r, t) =

~Fx (~q)
~Fy (~q)
~Fz (~q)

 with ~Fi (~q) =

(
−ei ×H (r, t)
ei ×E (r, t)

)
. (3.63)

Here, the notation ~· has been introduced to distinguish vectors with more than three
components from the physical vectors as, e.g. E. With these definitions, we can write
Maxwell’s equations in the form of a conservation law

D∂t~q (r, t) +∇ · ~F (~q) = 0. (3.64)

Obviously, the divergence equations (2.1c) and (2.1a) are explicitly left out of the
analysis. It can easily be shown that in time-domain the divergence of the initial fields
is conserved. Thus, choosing solenoidal initial fields, they remain solenoidal as long as
there are no free charges.

3.3.1 Tesselation of the Computational Domain

The computational domain is divided into a number of small volumes, the elements.
Although there is a certain freedom of choice, tetrahedral elements are typically chosen.
The size of the elements is not fixed but allowed to vary. This allows for a local refine-
ment (called h-refinement) of the mesh to improve the representation where necessary
as demonstrated in Fig. 3.4.

On each element ∆, the electric and magnetic fields, summarized in the state vector
~q (r, t), have to satisfy the conservation equation (3.64). For a numerical approximation
of the solution, ~qN , this will in general not be true, instead there will be some residuum
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given by
D∂t~q (r, t) +∇ · ~F (~q) = res. (3.65)

Given a set of basis functions {Li} that spans a finite function space, the residuum has
to be orthogonal to that space to guarantee the best approximation possible, i.e.∫

V∆

(
D∂t~q

N (r, t) +∇ · ~F
(
~qN
))
· Li (r) d3r =

∫
V∆

res · Li (r) d3r ≡ 0 (3.66)

for all test functions Li (r). So far, the above equation is completely local, i.e. there
is no coupling between the elements. However, electromagnetic waves propagate and
therefore, the elements need to be coupled in order to get a meaningful solution on the
entire computational domain. This is done via the numerical flux as described in the
next section.

3.3.2 Inter-element Coupling

One way to connect the individual elements to one another would be to impose bound-
ary conditions on each element and enforce the physical boundary conditions (2.13) on
neighbouring element boundaries. An alternative is to absorb the boundary conditions
into modifications of the physical equations. To that end, we integrate (3.66) by parts
and obtain∫

V∆

(
D∂t~q

N (r, t) · Li (r)− ~F
(
~qN
)
· ∇Li (r)

)
d3r = −

∫
∂V∆

(
n̂ · ~F

(
~qN
))
· Li (r) d2r

(3.67)
The right-hand side of the above equation is an integral over the element boundary
containing the outward normal n̂ of unit length. The flux ~F will now be replaced with
what is called the numerical flux ~F ∗. Before giving the definition of ~F ∗, we will first
undo the integration by parts to arrive at the strong variational formulation of Maxwell’s
equations∫
V∆

(
D∂t~q

N (r, t) +∇ · ~F
(
~qN
))
· Li (r) d3r =

∫
∂V∆

n̂ ·
(
~F
(
~qN
)
− ~F ∗

(
~qN
))
· Li (r) d2r

(3.68)
Still, the right-hand side of this equation is an element-local expression, unless the nu-
merical flux ~F ∗ is chosen to introduce the coupling to the neighbouring element. The
proper choice of the numerical flux is crucial for the convergence of the numerical scheme.
Hesthaven and Warburton [52] have shown that a so-called upwind flux leads to a stable
and convergent scheme, at least for a nodal scheme, that we will discuss in the next
section. The numerical flux is given by

n̂ ·
(
~F
(
~qN
)
− ~F ∗

(
~qN
))

=

( 1
Z++Z− (α[ δE− n̂ (n̂ · δE) ]+Z+n̂× δH)

1
Y ++Y − (α[ δH− n̂ (n̂ · δH) ]−Y +n̂× δE)

)
(3.69)
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with the impedance

Z± =

√
ε±

µ±
, (3.70)

and the conductance

Y ± =
1

Z±

√
µ±

ε±
. (3.71)

The superscript − and + indicate field and material properties of the local and neigh-
bouring element, respectively, and the differences are

δE = E+ −E− and δH = H+ −H− (3.72)

Furthermore, the definition (3.69) contains one free parameter α, the so-called upwind
parameter. It was shown, that choosing α ∈ [0, 1] leads to a convergent scheme. For
α = 0, the flux is central, while for α = 1 it is purely upwind. The latter choice leads to
the best convergence rates [52].

3.3.3 Semi-discretization of the Problem

We now represent the electric field on an element ∆ in terms of an expansion. Using
the same function space for the expansion and the test functions is called the Galerkin
choice. Doing so, e.g. the x-component of the electric field is given by

E∆
x (r, t) =

n∑
j=1

Ẽ∆
x,j (t)Lj (r) . (3.73)

Here, we have defined the vector Ẽ∆
x (t) which contains the time-dependent expansion

coefficients. In general, it will contain only the time-dependent expansion coefficients
of the field and the physical field has to be reconstructed by evaluating the above sum.
However, if the Lagrange polynomials Lj (r) are chosen as basis functions, the compo-
nents Ẽ∆

x,j (t) turn out to be exactly the field values at the node of Lj (r). The reason
for this is the defining property of the Lagrange polynomials

Li (rj) = δi,j =

{
0 for i 6= j

1 for i = j
(3.74)

for some given nodes ri. With this, we see that at node ri, the electric field evaluates to

E∆
x (ri, t) =

n∑
j=1

Ẽ∆
x,j (t)Lj (ri) = Ẽ∆

x,i (t) . (3.75)
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Therefore, this choice of basis functions leads to what is called a nodal scheme. In
general, we have

Lj (r) =

k+l+m≤p∑
k,l,m=0

a
(j)
k,l,mx

kylzm (3.76)

The coefficients a(j) are determined by the position of the nodes ri and Eq. (3.74).
The distribution of the nodes over the element has influence on the accuracy. For one-
dimensional systems, analytical formulae exists for the optimal choice. For two- and
three-dimensional elements, node sets can be generated from the one-dimensional sets
by the Warp and Blend technique [55]. They are not the optimal choice, however in
practise give reasonable accuracy. Increasing the maximum expansion order p will allow
for a local improvement of the accuracy, hence called p-refinement.

Defining the mass, stiffness and face mass matrices

(M)ij =

∫
V∆

d3r Li (r) · Lj (r) (3.77)

(Sk)ij =

∫
V∆

d3r Li (r) · ∂kLj (r) k = x, y, z (3.78)

(F)ij =

∫
∂V∆

d2r Li (r) · Lj (r) (3.79)

we obtain an explicit expression for the time derivatives

∂t ~̃E
∆ =

1

ε∆
(M)−1 ·

S̃
∆ × ~̃H∆ + F∆

f ·
α
[
δ ~̃E∆

f − n
(
n · δ ~̃E∆

f

)]
+ Z+n× δ ~̃H∆

f

Z̄


(3.80)

∂t ~̃H
∆ =

1

µ∆
(M)−1 ·

S̃
∆ × ~̃E∆ + F∆

f ·
α
[
δ ~̃H∆

f − n
(
n · δ ~̃H∆

f

)]
+ Y +n× δ ~̃E∆

f

Ȳ


(3.81)

Here, we have introduced the vector of stiffness matrices S̃
∆

=
(
Sx,Sy,Sz

)T
and the

difference vectors of the expansion coefficients across the face f δ ~̃E∆
f , δ

~̃E∆
f . In practise,

one does not store the entire matrices above for each element. Instead, a standard
element is introduced for which the matrices are calculated. Then, only the 3 × 3
Jacobian of the mapping to the standard element have to be stored.

3.3.4 Time Stepping

Having discretized the problem in space leaves us with a time dependent system of
ordinary differential equations

∂t~y = ~f (t, ~y) , (3.82)
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an approach usually called the method of lines. For the time integration different methods
exist and they can be classified as explicit and implicit methods. Both rely on discrete
(not necessarily equidistant) time steps ti and we have the discrete values ~yn = ~y (tn). For
implicit methods, the updated solution is given by ~yn+1 = ~ϕ (~yn+1, ~yn, ~yn−1, . . . ), which
means that we have to solve a system of equations every time step and the function ~ϕ
is determined by the specific method. In contrast to that, explicit methods allow for a
direct computation of the updated solution and we will focus on one-step methods where
only the last time step is required for updating, i.e. ~yn+1 = ~ϕ (~yn, ~yn−1, . . . ) = ~ϕ (~yn).
More specifically, we use explicit Runge-Kutta methods (RK) for the time integration,
the general updating scheme of which reads

~yn+1 = ~yn +
s∑
i=1

bi~ki (3.83)

~ki = ~f

tn + ci∆t, ~yn + ∆t
s∑
j=1

aij~kj

 (3.84)

where for explicit schemes aij = 0, j ≥ i and s defines the number of stages. Consistency
requires ci =

∑s
j=1 aij and thus, the choice of aij , bi defines the Runge-Kutta scheme.

The classical RK requires the storage of (s + 1) · N floats, where N is the number
of unknowns, which is typically in the order of several 10.000. To reduce the storage
requirements, Low Storage Runge-Kutta (LSRK) methods have been introduced [56].
The algorithm reads

~k0 = ~yn

~pi = Ai~pi−1 + ∆t ~f
(
tn + ci∆t,~ki−1

)
~ki = ~ki−1 +Bi~pi

~yn+1 = ~ks

The LSRK only requires to store 2 ·N floats, no matter how many stages are used. The
accuracy is defined by the order p of the scheme and requires the numerical error to scale
with the time step size as |~yexact (tn)− ~yn| = O (hp). The stability is a crucial point, we
will shortly discuss it here. A RK method is said to be stable, if for the test equation

y′ = λy <λ ≤ 0 (3.85)

the numerical solution shows the same behaviour as the analytical one, i.e. |y (tm + ∆t)| ≤
|y (tm)| ∀∆t > 0 and lim∆t<λ→−∞ y (tm + ∆t) = 0. The test equation was introduced
1963 by Dahlquist [57] and can be motivated in the following way. Let Jij = ∂jfi be

the Jacobian matrix of ~f in Eq. (3.82). If it varies only slowly, we can approximate it as
constant matrix and diagonalize it. Then we obtain a set of differential equations of the
form (3.85) with λ being the eigenvalues of the Jacobian. We introduce the parameter
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Figure 3.5: Stability contour (red line) of the LSRK by Kennedy and Carpenter [56]
and eigenvalues scaled by the time step (blue crosses) for a metallic cavity.
Stability requires all scaled eigenvalues to lie within the stability contour.
This can be achieved by either adjusting the time step size or modifying the
stability contour. Taken from [53].

z = ∆tλ. Then we can derive the characteristic polynomial for a Runge-Kutta method

R0 (z) =
det
(
I− zA + z~1bT

)
det (I− zA)

with ~1 = (1, 1, 1, . . . )T (3.86)

which is a polynomial in z with order s. The necessary condition for stability is given
by

R0 (∆tλ) ≤ 1. (3.87)

The region in the complex plane, where this criterion is fulfilled is always bound for
explicit methods, this is the price one pays for not solving a system of equations every
time step as in implicit methods. We see that two factors must be brought together

1. The stability contour R0 (z) = 1 given by the specific scheme

2. The eigenvalues of the Jacobian scaled with the time step size ∆tλ

Stability requires all scaled eigenvalues to lie within the stability contour. This suggests
to find a scheme with a stability contour that matches the spectrum of the Jacobian best
as done by Diehl et al. [58]. Fitting the spectrum into the contour can also be facilitated
by choosing the time step sufficiently small. This, however, increases the computational
cost, which, of course, is not desirable. An alternative approach is to tailor the stability
contour of the specific scheme. Degrees of freedom for this tailoring can be gained by
setting the number of stages larger than the order of the scheme s > p. With this
approach efficiency increases of as high as 50% have been reported [59].
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Figure 3.6: Sketch of the geometry for EELS calculation in the Total-Field/Scattered-
Field formalism. Inside the blue contour, where the scatterer is located, the
total field is propagated. On the other side of the contour, the scattered field
is propagated.

3.3.5 Extensions

The above technique allows us to propagate electromagnetic waves in the time-domain,
so far, however, nothing was said about how to model excitations and physical systems
to facilitate a simulation of real world experiments. We will focus on three aspects that
are of special importance.

Modeling Excitations

One possible way to realize excitations in the simulations would be the incorporation
of currents and charges that act as sources in Maxwell’s equations. This, however,
leads to problems, e.g. for point charges, the charge density of which diverge at the
charge position. Therefore it would be desirable to have the possibility to inject any
given field Einc (t) ,Hinc (t) into the computational domain and have it, e.g. interacting
with a scatterer. Two approaches to this problem exist, the Total-Field/Scattered-
Field (TFSF) and the Scattered-Field (SF) Formalism. The TFSF formalism requires
a virtual boundary that is introduced in the computational domain. Figure 3.6 shows
an example, where we have the TFSF boundary depicted in blue and the scatterer in
yellow. Inside the TFSF boundary, we want to propagate the total fields, which are the
(known) incident field plus the scattered field caused by the interaction of the scatterer
with the incident field

Etotal = Einc + Escat. (3.88)
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Outside the boundary, we only want to propagate the scattered field

Escat = Etotal −Einc. (3.89)

Because we assumed that the incident fields are known, we can simply subtract the
incident field when going from inside to outside the TFSF boundary.

The alternative SF approach consists of propagating only the scattered field in the
entire domain. We know that the total field satisfies Maxwell’s equations. Plugging in
Etotal = Einc + Escat and solving for Escat, we get explicit equations for the propagation
of the scattered field

µ
∂Hscat

∂t
= −∇×Escat − σ∗ (Hinc + Hscat)− (µ− µ0)

∂Hinc

∂t
, (3.90a)

ε
∂Escat

∂t
= ∇×Hscat − σ (Einc + Escat)− (ε− ε0)

∂Einc

∂t
. (3.90b)

Here, σ and σ∗ are conductivities associated to the imaginary part of ε and µ, respec-
tively. We see that the time derivative of the incident fields act as sources in those
regions that have different material properties ε, µ than the material that the incident
fields are assumed to propagate in.

Dispersive Materials

Of course, we want to be able to do time-domain calculations for dispersive materi-
als, i.e. those with a frequency-dependent permittivity like metals. We have already
mentioned the auxiliary differential equation approach in Sec. 2.4.1. There we have
seen that a frequency-dependent permittivity translates to a differential equation for a
time-dependent current in time-domain, provided that the permittivity is given by an
analytical expression, e.g. a Lorentz-Drude model. As a consequence, for time-domain
simulations, we will have to approximate the permittivity by a superposition of Drude
and Lorentz terms. Each term gives rise to a current Jp (t) with p = 1 . . . N , the sum
of which enters Maxwell’s equations. For each element with metallic permittivity, we
have to include the differential equation for J in the time integration, which increases
the number of degrees of freedom. Nevertheless, this approach is more efficient than a
direct evaluation of the convolution according to Eq. (2.8).

Absorbing boundaries

With finite memory and computation time, a simulation will only be possible for a finite
volume and finite time. This means that we will have to terminate the computational
domain with a boundary. One special choice are the so-called Perfect Electric Conductor
(PEC) boundary conditions, which read

E|∂V = 0, (3.91)
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where ∂V is the boundary of the computational domain. This condition would be fulfilled
at the interface of a metal with infinitely high conductance, hence the name.

For the simulation of most experiments, a free-space like behaviour would be desirable,
i.e. there should be no reflections from the boundaries of the computational domain. One
way to achieve this is terminating the domain by an unphysical absorptive material,
the impedance of which is matched to the element at the boundary of the physical
computational domain to avoid reflections. Then, the waves are absorbed inside the
so-called Perfectly Matched Layers (PML). On the outer boundaries, one can choose
PEC boundary conditions. Here, the reflected waves are further absorbed inside the
PML and only smallest fractions re-enter the physical domain. PMLs were proposed
by Berenger [60] and have been successfully applied in free-space-like simulations. An
equivalent formulation are the so-called uni-axial PML (UPML) [61], however, they are
easier to implement. While Berenger’s formulation consisted of splitting certain field
components into separate parts, the UPML approach leaves the field untouched but fills
the boundaries with an anisotropic material.

Further details can be found in the paper on the specific implementation of the DGTD
used in this thesis [62].

3.4 Finite Element Method

The Finite Element Method (FEM) has a lot in common with the DGTD method and
we will not discuss it in too much detail. The reason for this is that in contrast to the
methods discussed so far, we will not extend the FEM in the following Chapters for
EELS as we will do with the T-Matrix and the DGTD method. We will merely employ
it in common scattering calculations and therefore not describe details of the method,
but merely the aspects crucial for an accurate application to electromagnetic scattering.

Originating from Engineering, the FEM is nowadays used for the solution of all kinds
of problems, ranging from structural mechanics to fluid dynamics and of course electro-
dynamics. We will discuss the commercially available COMSOL Multiphysics as we are
going to employ it in our calculations in Chap. 4. A general account on the FEM for
the solution of Maxwell’s equations is given in [63]. I contrast to the DGTD method,
we will use the FEM in frequency-domain but the methods have a lot in common. The
discretization of the computational domain relies on a mesh commonly consisting of
tetrahedral elements, exactly like discussed in Sec. 3.3.1 for the DGTD method. Also,
the choice for the basis functions is the same as for the DGTD, i.e. Lagrange polyno-
mials are used. The coupling between the elements is now done in a straight-forward
way by applying the boundary conditions to the face nodes between neighbouring ele-
ments. This sort of coupling leads to a system of equations that has to be solved for
each frequency. Because each element only couples to its neighbours, the coefficient
matrix of the resulting system of equation is sparse, i.e. most of the entries are equal
to zero. For moderate systems with 10000 unknowns, the solution can be calculated
using direct solvers. They typically require a huge amount of memory but are fast. One
particular solver that is used in COMSOL Multiphysics is the MUltifrontal Massively
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Parallel Solver (MUMPS)1. For larger systems of equations iterative solvers can be used.
One particular example is the Generalized Minimal RESidual (GMRES) algorithm [64]
which is also available in COMSOL. It reformulates the problem in terms of a mini-
mization problem, where the minimum corresponds to the solution of the linear system.
Such solvers require more computation time, but less memory, facilitating the solution
of large linear systems even on regular desktop computers.

3.5 Other Methods

We finally want to name some other methods that are frequently used in electrodynamics
calculations and have not been mentioned yet. The list is by no means complete, but
will focus on methods that are typically used for the problems we will discuss in later
chapters, especially electron energy loss spectroscopy simulations.

3.5.1 Time Domain Methods

Maybe the most prominent TD method in electrodynamics is the Finite Difference Time
Domain (FDTD) method. It directly discretizes the derivatives in Maxwell’s equations
with finite differences

∂E

∂t
≈ E (tn+1)− E (tn)

∆t
, (3.92)

which, together with a cleverly chosen equidistant grid introduced by Yee [65], leads to
a second order accurate scheme. Due to the simplicity it is widely used, however it has
some conceptual weaknesses. The choice of an equidistant grid leads to the so-called
staircase approximation of round surfaces. This may result in phase-errors at bend
surfaces [66] as well as unphysical enhanced field values at the interface [67].

3.5.2 Frequency Domain Methods

The Multiple Multipole (MMP) method uses multipole expansions to approximate the
electric and magnetic field. In contrast to the T-Matrix method, the MMP uses several
multipole expansions with different origin. Matching the resulting fields at a bound-
ary leads to a overdetermined system of equations for the expansion coefficients. The
boundary conditions also yield an estimate for the numerical error. A prominent im-
plementation is MMP3D and its successors MaX-1 [68] and Openmax developed by Hafner.
The method in principle is efficient, however its accuracy strongly depends on the correct
choice for the multipole origins with respect to, e.g., a scatterer surface, which requires
some experience.

The Discrete Dipole Approximation (DDA) can be considered as a special case of the
MMP method. Here, the scatterer is approximated by an equidistant array of dipoles
(i.e. multipole expansions of maximum order 1) with polarizability α (ω). Each dipole
feels the electric field of all other dipoles plus the incident field and a self consistent

1http://graal.ens-lyon.fr/MUMPS/
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solution is found. The method was introduced by Purcell and Pennypacker [69] and is
also termed Coupled Dipole Model. An implementation called DDScat was written by
Draine and Flatau [70] and is freely available on the internet [71]. While conceptually
simple, the method requires massive computational resources to yield accurate results
as we will see in Chap. 4 as well as found by other authors [72].

The Boundary Element Method (BEM) [73] transfers Maxwell’s equations into a set
of integral equations over the particle surface. The integrals involve equivalent surface
charges and currents that occur due to the step in the permittivity at the particle surface.
The set of integral equations has to be solved self-consistently for the scalar and vector
potential inside and outside the particle, and the related surface charges and currents.
A discretization of the surface can be used leading to a system of equations with a
dense coefficient matrix with dimension 8N , where N is the number of points in the
surface discretization. This makes the method flexible regarding the particle shape, but
computationally expansive. Nevertheless, it has been used to obtain a variety of results
as we will see in Chap. 5.
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4 Shape Transformation of Silver
Nano-Particles in Glass

In Sec. 2.5.2 we have discussed the special properties of surface plasmons localized at
metallic nano-particles, which include significant near-field enhancements and strong
absorption. These properties make metallic nano-particles an interesting candidate for
technical applications.

Samples containing ensembles of particles can be produced chemically, e.g. by ion-
exchange techniques. This usually results in spherical particles which are distributed
randomly inside the sample and show a narrow size distribution. To fabricate micro- or
nanoscale devices from these composite materials, improved control of the local particle
properties is desirable. One way of achieving this is postprocessing the samples with
laser irradiation, i.e. femtosecond laser pulses. The remaining degrees of freedom are
the intensity, number of pulses and the wavelength.

Qiu et al. [74] have reported the space selective creation of silver nano-particles from
ion-doped glass by laser irradiation with a wavelength near the plasmon resonance and
subsequent annealing, showing that particles form near the focus of the beam inside the
sample. In a subsequent work [75] they have shown that it is also possible to selectively
create gold nano-particles inside the sample.

Jiang et al. [76] have demonstrated that a selective destruction of gold particles in
glass is possible by focussing the laser pulses inside the sample. The authors have
demonstrated the capability of their technique by preparing a complex 3d structure in
glass [75]. As the created particles are reported to be stable at room temperature, this
technique could be used for permanent data storage.

Beyond the creation and destruction of metallic nano-particles in glass, it has been
shown that if contained in glass, they undergo a shape transformation if the pulse in-
tensity is chosen carefully [77]. Such experiments were done in the Optics Group of the
Martin Luther University Halle-Wittenberg and a model explaining the transformation
process was developed, but it is yet subject to debate. In this chapter, we will present
the experiments and results that were obtained as well as the model of the process, which
is based on the near-field enhancement at the particles. We will use different numerical
methods to compute the near-field of the particles and compare the results. Finally, we
will perform calculations that, as we will show, support the process model.

4.1 Samples and Experimental Setup

The samples considered here consist of spherical silver nano-particles contained in a
soda-lime glass matrix. The samples were produced using a sodium-silver ion exchange
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in a NaNO3/AgNO3 melt, subsequent annealing at 560 ◦C leads to the formation of
silver particles [78]. The size of the particles increases with the depth inside the glass
[79], such that by removing the topmost layers, particles of certain sizes can be obtained.
Extinction measurements with linearly polarized light on thus prepared samples shows no
dichroism, therefore the particles are assumed to have a spherical shape [77]. The volume
filling factor of the samples is in the order of f = 10−3. The extinction spectra of such
samples show a strong peak at the frequency of the localized surface plasmon (LSP)
resonance (cf. Secs. 2.5.2 and 3.1 ), which for silver particles of r = 15 nm radius in glass
is around 410 nm and redshifts with increasing particle size. Upon irradiating the samples
with linearly polarized femtosecond laser pulses, a persistent shape transformation of the
particles can be induced [77]. It was found that for a fixed wavelength of λ = 400 nm
and a pulse duration of τ = 150 fs, the final shape depends on the intensity and number
of pulses applied to the sample. For a single pulse with high intensity of 3.5 TW/cm2,
oblate spheroids are formed, while for several 1000 pulses with lower intensity, prolate
spheroids are obtained. In both cases, the symmetry axis of the particles is parallel to the
laser polarization direction. The shape information was deduced from a detailed study
of the extinction spectra [80]. Figure 4.1 shows the direction in which the extinction
was measured. The polarization of the incident pulses was parallel (a) to the y-axis
and (b) the x-axis. The resulting extinction measurements shows two distinct peaks
that occur at different wavelengths and for different polarization, which is typical for
spheroidal particles. Intuitively, this can be understood if one considers the plasmon

Figure 4.1: Obtaining the full shape information requires extinction measurements in
several directions denoted by Sx,z. The polarization of the incident pulses
was parallel to the y-axis (a) and x-axis (b). The measurements indicate
that prolate spheroidal particles have formed, with their high symmetry axis
parallel to the polarization direction. Adapted from [80].

to be a standing wave on the particle surface. Different circumferences lead to different
wavelengths, longer ones leading to a red shift in the resonance. Therefore, a polarization
along the long semi-axes of the spheroid (p-polarization) yields a longer LSP wavelength
than for polarization parallel to the short semi-axes (s-polarization).
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Figure 4.2: Sketch of the processes leading to shape transformation. From [81].

Macroscopically, the microscopic shape transformation manifests itself as dichroism,
i.e. a polarization-dependent transmission. Therefore, irradiated samples can be used
as wavelength-dependent polarizers [78] and already are commercially available. As the
wavelengths where the respective absorption bands are located depend on the aspect
ratio of the particles, understanding the transformation process will allow for a tailoring
of the spectral properties of such polarizers. Also, many applications, like e.g. optical
signal transmission for communication, work in the near-infrared part of the spectrum,
such that high aspect ratios are desirable.

It was shown that irradiation near the LSP resonance wavelength yields a spectral
gap of 180 nm between the maxima of absorption for s- and p-polarization [81]. Further
irradiation with the same wavelength leads to a decreased absorption that is attributed
to a (partial) destruction of the particles. Using off-resonant irradiation, it is possible to
achieve even larger spectral gaps. In detail, for a sample containing particles of r = 15 nm
radius, corresponding to a LSP resonance at 410 nm, spectral gaps of up to 620 nm have
been reported when using an irradiation wavelength of λ = 550 nm [82]. It was recently
shown that using two wavelengths simultaneously, even higher aspect ratios of up to 4
can be obtained [M1].

4.2 Shape Transformation

To explain the deformation process, a model has been proposed [81]. We will discuss it in
order to show the suggested role of electric near-field in the transformation of spherical
particles to prolate spheroidal ones. As shown in Fig. 4.2 (a), the electrons in the particle
will follow the driving field with virtually no delay, for the electron dynamics happens
on femtosecond time-scales [83]. Electrons that are emitted into the glass matrix get
trapped there. Here, the near-field shape determines the preferred direction of emission.
Then, as sketched in Fig. 4.2 (b), the ionized particle is likely to emit positive silver
ions in statistical directions that meet the trapped electrons, the concentration of which
is proportional to the electric near-field. After some picoseconds, the heat flow from
the particle increases the electron and ion mobility and they can recombine forming
silver atoms which finally diffuse back and deposit at the particle surface or form small
clusters. For electrons emitted by subsequent pulses (Fig. 4.2 (c)) the remaining silver
ions may act as traps and they also recombine to silver atoms. The iteration of this
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process leads to a step-by-step transformation of the particles in the direction of the
near-field (Fig. 4.2 (d)). In the experiments the final shape of the particles was proven
to be spheroidal and we would therefore expect the near-field to be localized at the poles
of the sphere or spheroid, respectively. According to the model just outlined, this would
exactly yield the obtained shape. Also, there must be a lower threshold for the near-
field intensity such that a sufficient number of electrons are emitted in the first place.
In the following section we will undertake a numerical simulation of the experiment to
see whether theory supports all these assumptions.

4.3 Simulating the Experiment

4.3.1 Modeling the Experiment

From what we know about the experiments so far, we will now try to find an accurate
way to simulate the experiments outlined above. In principle, a sequence of pulses with
150 fs duration, approx. 100µm spot size (which also has a Gaussian intensity profile)
irradiates the sample containing silver nano-particles with approx. r = 15 nm radius.
The first attempt would be to model the entire sample and discretize it. Not only would
this require the knowledge of the shape and position of all particles in the sample, which
is not feasible at all, but a resolution fine enough to accurately represent the electric
near-field would lead to prohibitive memory requirements. Therefore we need to simplify
the modeling to the essential ingredients. It is known that the volume filling factor of

Figure 4.3: Transmission Electron Microscope picture of a silver nano-particle after ir-
radiation with low-intensity femtosecond laser pulses. Adapted from [81].

the sample is f = 10−3, so the distance between the particles is huge. The enhanced
near-field of the particle plasmon is localized at the particle surface, so it does not affect
adjacent particles. Any radiated scattered field undergoes multiple scattering, but decays
with increasing distance as O

(
1
r

)
. Therefore, we may regard the particles as isolated.

As we only assume linear material properties here, Maxwell’s Equations are linear as
well. Therefore, we are able to normalize all fields to the incident field amplitude and
directly obtain the field enhancement factor in our calculations.

The pulse duration is τ = 150 fs in the experiment. In vacuum, the spatial extend
of the pulse is d = cτ ≈ 4.5 · 10−5 m. Assuming typical wavelengths between 400 nm
and 500 nm means that we have around 100 optical cycles interacting with the particle.
Therefore, the pulses are long enough to model them with the stationary plane wave
illumination. We will determine the dimensions of the spheroids that are formed under
the assumption of volume conservation. From Transmission Electron Microscope images
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Figure 4.4: Sketch of the test setup. The prolate spheroidal particle has an aspect ratio
of 2.4, with semi-axes rx = ry = 11.2 nm and rz = 26.9 nm. The polarization
of the incident electric field is chosen parallel to the long semi-axis. Taken
from [M2].

as shown in Fig. 4.3 it is known that even for low intensities a halo around the particle
is formed. It is assumed to consist of silver ions. However, the exact properties of this
halo are not known and therefore we will neglect it in our calculations.

4.3.2 Comparison of Numerical Methods

As described in Sec. 4.2, the electric field enhancement at the silver nano-particles is
claimed to be responsible for the anisotropic emission of electrons that recombine with
trapped silver ions leading to the shape transformation. Therefore, in this section, the
near-field of the particle will be calculated. While such calculations are frequently en-
countered in the literature and a wide variety of numerical methods for this task exist,
systematic comparisons of such methods in terms of accuracy and efficiency are scarce.
In this section, we will carry out such a comparison. According to the aim of this
chapter we choose our test system to be a prolate spheroidal particle and assume the
excitation by an incident plane wave of a given wavelength. This scattering problem
can in principle be solved with a variety of electromagnetic solvers. For spherical par-
ticles, the analytical Mie theory, cf. Sec. 3.1, can be used. In spite of the similar well
behaved shape, spheroidal particles require the use of numerical methods (the reason for
this is discussed in section 3.1.7). As we aim at comparing our results with experimen-
tal data, we prefer using experimental permittivity data over approximative analytical
models (cf. Sec. 2.1.1) and employ the data for silver from Lynch and Hunter [23].
This rules out time-domain methods from the list of candidates. Among the remain-
ing frequency-domain methods, we have chosen methods that are typically encountered.
These methods and the respective implementations are the T-Matrix method, which is
described in detail in Sec. 3.2, specifically the Null-Field Method with Discrete Sources
(NFM-DS) code by Doicu et al. [37]. The Multiple Multipole method as implemented by
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Method Computation Time
(s)

FEM (COMSOL) 20
T-Matrix (NFM-DS 400) 0.2
MMP3D 44
DDScat (20× 20× 48) 20
DDScat (80× 80× 192) 1750

Table 4.1: Computation time for the scattering efficiency for a single wavelength obtained
on a standard 4 core desktop computer operating at 2.4 GHz.

Hafner [68], called MMP3D. Furthermore, the Discrete Dipole Approximation code DDScat
[70]. Both methods are briefly described in Sec. 3.5.2. Finally, we also employ the Finite
Element Method that is presented in Sec. 3.4 and implemented in the software package
Comsol Multiphysics. All but the last method are available from the internet free of
charge.

The geometric setup for the test calculations is sketched in Fig. 4.4 and inspired by
the experiments outlined above. We choose a prolate spheroidal particle with aspect
ratio of 2.4 and the same volume as a sphere with 15 nm radius. This results in a long
semi-axis length of rz = 26.9 nm and short semi-axes with length rx = ry = 11.2 nm.
The polarization of the incident electric field is chosen parallel to the long semi-axis.

We compare the results for the near-fields and for the scattering efficiency, which is
determined by the far-field. Therefore, we expect our comparison to show the accuracy
of both near- and far-field regions.

4.3.3 Scattering Efficiency

We first compare the results for the scattering efficiency (cf. Eq. (2.48) in Sec. 2.3)
obtained with the different methods. Figure 4.5 shows the scattering efficiency vs. the
incident wavelength in a logarithmic plot. The overall shape of the curve is reproduced
well by all methods. Deviations occur at the scattering peak around 610 nm, where
DDScat with a 20 × 20 × 48 grid of dipoles fails to reproduce both, the amplitude
and the spectral position of the peak. Also, there are further deviations for longer
wavelength. To obtain results comparable to the other methods, one has to increase
the number of dipoles as much as to a 80 × 80 × 192 grid of dipoles, which leads to a
computational cost that renders the method rather inefficient. The T-Matrix method
is very efficient here because it exploits the symmetry of the problem. For bodies of
revolution, the integrals over the scatterer surface Eqns. (3.60) reduce to integrals over
the generatrix of scatterer. These integrals have been discretized with 50 and 400 points
for comparison. Table 4.1 shows the computation time of the individual methods. These
values are to be understood not as a strict benchmark, but merely as a rough estimate
of the computational cost.
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Figure 4.5: Comparison of the scattering efficiencies results for the different numerical
methods. All methods expect the low-res DDScat yield agreeing results.
Adapted from [M2].

4.3.4 Near-field Distribution

The near-field of the spheroid is calculated at two wavelengths for comparison. We choose
λ1 = 310 nm and λ2 = 688 nm corresponding to off- and near-resonance excitation.
Before comparing the field distributions in more detail, we plot the near-field to get an
impression of the general shape and the correspondence between the methods. For
λ1 = 318 nm Fig. 4.6 shows that the field intensity attains a minimum at the tip of
the spheroid. This behaviour as well as the overall shape of the exterior near-field are
reproduced by all methods. Regarding the interior field, DDScat fails to produce an
accurate field distribution but shows unphysical oscillations inside the spheroid. This
stems from the fact that in order to evaluate the fields inside particle, the contribution
of the dipole closest to the point of evaluation is neglected to disguise the divergence at
the position of the dipole.

For a more quantitative comparison of the results, we introduce a measure for the
numerical error in the near-field computation. Due to the lack of an analytical reference
solution, we have to choose one numerical solution as reference. Our choice falls to
the MMP3D solution for two reasons. First, it is semi-analytical and so is the T-Matrix
method. Second, however, the MMP3D is more general in terms of the expansions that are
used to approximate the solution. Where the T-Matrix method only allows multipole
expansions, the MMP3D supports other solutions of Maxwell’s equations as well, like e.g.
plane waves, and with the necessary experience in placing the expansions, yields accurate
results. With this, we define first the `2ε-norm of the discretized electric field

‖E‖`2ε =
∑

x2
j/a

2+z2
j /b

2>ε2

|E (xj , zj)|2 1 < ε < 3. (4.1)
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4 Shape Transformation of Silver Nano-Particles in Glass

Figure 4.6: Comparison of the near-field norm |E| in the xz-plane for the different nu-
merical method at λ1 = 318 nm. a) T-Matrix, b) DDA (high res), c) FEM,
d) MMP. Taken from [M2].

For ε = 1, we are at the immediate vicinity of the particle, increasing ε corresponds to
summing over all points that are located between the particle surface and an ellipse with
semi-axes a, b = 2.4a in the x− z-plane.

Then, the near-field error with respect to the MMP3D solution is defined as

δ (ε) =
‖|E − EMMP |‖`2ε
‖EMMP ‖`2ε

. (4.2)

Figures 4.8 and 4.9 show the error δ (ε) as a function of the parameter ε for λ1 = 318 nm
and λ2 = 688 nm, respectively.

In both cases, the error increases as we approach the surface of the particle, i.e. as ε
approaches one. All methods yield reasonable accuracy for both wavelengths, however
the results are generally better for the off-resonance excitation λ1. The NFM-DS was used
with 50 and 400 integration points on the generatrix of the spheroid. For larger distance
from the surface, the NFM-DS results show a very good agreement with the reference
MMP3D solution, however approaching the surface, only the high-resolution result shows a
good agreement. For DDScat the resolution, which was crucial for correct far-field results,
does not show a dramatic influence on the near-field results, however on approaching the
particle surface, accuracy decreases. COMSOL shows moderate accuracy over the entire
distance range.

The main conclusion from these two figures is that the near-field in the very vicin-
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4 Shape Transformation of Silver Nano-Particles in Glass

Figure 4.7: Comparison of the near-field norm |E| in the xz-plane for the different nu-
merical method at λ2 = 688 nm. a) T-Matrix, b) DDA (high res), c) FEM,
d) MMP. Taken from [M2].

ity shows differences up to 10% and this has to be considered when calculating field-
enhancement values.

4.3.5 Field Enhancement as a Function of Aspect Ratio

In the preceding section we have seen that all methods yield accurate results concerning
the near-field and the extinction efficiency. Therefore, we are free to choose one method
to perform our calculations for the experimental situation as described in section 4.3.1.
Our choice falls to the FEM, i.e. COMSOL Multiphysics, because it has shown to give
accurate results plus it comes with several postprocessing possibilities like integrating,
averaging, etc. that will be useful in the following.

As outlined in Sec. 4.2, the local field enhancement is assumed to be the reason for the
anisotropic deformation process. From experiments we know that for single wavelength
irradiation there is a maximum aspect ratio that can be obtained before the particles
are destroyed. Furthermore, this maximum aspect ratio increases for longer irradiation
wavelengths and can be further increased by two wavelength irradiation.

The first fact that supports the model of the transformation process is the shape of
the near-field computed in section 4.3.2. The maximum enhancement is observed at the
poles of the spheroid as required for the anisotropic emission of electron from the particle
(cf. Sec. 4.2). To further elucidate the process, we investigate the field enhancement. To
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Figure 4.8: Near-field error for off-resonance excitation of the spheroid at λ1 = 318 nm
as a function of the parameter ε, which determines the distance from the
scatterer surface. The errors for different numerical methods are shown in
comparison with the MMP result. Adapted from [M2].

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

−4

−3

−2

−1

ε

lo
g
δ
(ε
)

FEM

T-Matrix (50)

T-Matrix (400)

DDA (low res)

DDA (high res)

Figure 4.9: Near-field error for on-resonance excitation of the spheroid at λ2 = 688 nm
as a function of the parameter ε, which determines the distance from the
scatterer surface. The errors for different numerical methods are shown in
comparison with the MMP result. Here, the error is larger than for the
off-resonance excitation. Adapted from [M2].
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that end we define the surface average of the electric field as

Fn =

∫
Surface

|n · E|
|E0|

dA, (4.3)

where E0 is the incident field amplitude. Figure 4.10 shows the field enhancement Fn
as a function of the aspect ratio of the particle for different excitation wavelengths.
Beside the wavelength used in the experiment (λ1 = 532 nm and λ2 = 800 nm), we have
also depicted the enhancement for wavelengths 10 nm above and below these values to
show the sensitivity. The enhancement values are normalized to the value observed at a
spherical particle at the respective wavelength. As it was demonstrated that the aspect
ratio increases with the number of pulses in the experiment [82], we can consider the
x-axis of Fig. 4.10 to roughly correspond to the time axis of the transformation process.

Figure 4.10: Field enhancement as a function of aspect ratio for different excitation wave-
lengths. We see that using irradiation wavelengths around 532 nm results
in huge field enhancements for aspect ratios of up to ≈ 2.4. For longer
wavelength irradiation significant field enhancements can be obtained for
larger aspect ratios as well.

The results can then be interpreted in the following way. Assume the particle is
irradiated with a single wavelength λ1 = 532 nm. Then, from the experiment we know
that the particle starts to deform to a spheroid. This means that the electric field
enhancement at the particle is sufficiently high. Upon further irradiation, the aspect
ratio starts to increase, i.e. we are moving along the x-axis and observe huge field
enhancements. When reaching an aspect ratio of around 2.2, the field enhancement
drops below the initial value and continues to decrease with higher aspect ratio. This is
agreement with the experiment, where the maximum aspect ratio obtained is 2.2− 2.4.
Now consider the simultaneous irradiation with two wavelengths λ1 = 532 nm and λ2 =
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800 nm. For the λ1 pulse, the above reasoning applies again. However, reaching aspect
ratios larger than 2, the λ2 pulse causes a field enhancement above the initial value
and thus, the above mechanism of electron and silver ion emission leading to a shape
transformation applies for the spheroidal particle with large aspect ratio in the same
way as we have explained it for the initially spherical particle above. This would explain
the continuation of the deformation process in two wavelength irradiation experiments
and also is compatible with the model of the shape transformation process.

4.4 Conclusion

In conclusion, we have seen that it is possible to induce a shape transformation of
silver nano-particles in glass by laser irradiation. We have examined the multi-shot
low intensity regime, where prolate spheroidal particles are formed. The enhancement
of the near-field of the particles is claimed to induce anisotropic electron emission. In
combination with isotropically emitted silver ions, this leads to anisotropic material
deposition and thus a shape transformation. The near-field patterns were calculated with
different numerical methods, showing that all methods yield accurate results, however in
the case of the Discrete Dipole Approximation, a huge number of dipoles was required
and unphysical features in the internal field occurred. The near-field patterns show huge
enhancements at positions that are in agreement with the model of the transformation
process. Calculation of the field enhancements for different irradiation wavelengths and
aspect ratios are in agreement with both, the finding of a maximum aspect ratio of
2.2 − 2.4 for single wavelength irradiation and larger aspect ratio of up to 4 with two
wavelength irradiation. Therefore, the calculations were shown to be reliable and the
results support the explanation of the transformation process.
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5 Electron Microscopy on Metallic
Nano-Particles

Figure 5.1: Example for Electron Energy Loss spectra for a gold split-ring resonator (in-
set) as obtained experimentally (left) and numerically (right). The scale bars
in the inset are 200 nm. Adapted from [M3]. In this chapter, the interpreta-
tion and calculation of such spectra will be discussed.

In the preceding chapter we have discussed the optical properties of metal nano-
particles that were probed using laser irradiation. In such experiments, usual laser
spot sizes are quite large compared to the particles, such that in general the response
is averaged over a large region and consequently over an ensemble of particles. It is,
however, also possible to probe single metallic nano-particles in a very precise manner.
To that end, the probe light has to be replaced by a much finer probe, i.e. electrons in our
case. Electron microscopy offers nano-meter spatial resolution and has facilitated the
study of single metal nano-particles [84]. Electron Energy Loss Spectroscopy has evolved
to a common tool to study the plasmonic properties of metallic nano-particles, because
it combines high spatial with reasonable energetic resolution. In such experiments, a
tightly focused beam of electrons is directed at the target particle. After interaction
with the target, the energy of the electrons is measured. Typical spectra show the count
of electrons that suffered a certain energy loss. Due to the high spatial resolution, such
spectra can be obtained for different positions of the particle. Figure 5.1 shows spectra
for a gold split ring resonator obtained numerically (right) and experimentally (left).

In another flavour of electron microscopy, the beam of electrons is used to excite the
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5 Electron Microscopy on Metallic Nano-Particles

target particle, but here, instead of the electron energy loss, the electromagnetic radia-
tion emitted from the particle is collected. This technique, called Cathodoluminescence
Spectroscopy, can be used to to characterize the excited plasmonic modes of the target
particle.

The aim of this chapter is to introduce the reader to the experimental techniques, give
an overview on the particles studied in experiments and finally to show how such spectra
can be calculated numerically in the framework of classical electrodynamics. This will
enable us to fully understand and interpret Fig. 5.1. In the following two chapters,
we will show how we can use the T-Matrix method and the Discontinuous Galerkin
Time-Domain method for the calculation of such spectra.

5.1 Electron Energy Loss Spectroscopy

(a) Schematic of a TEM. (b) Example EEL spectrum.

Figure 5.2: (a) Schematic picture of a transmission electron microscope. Taken from [85]
(b) Example EEL spectrum for nickel. The spectrum shows from left to right
the zero-loss peak, a bulk plasmon, the Ni M-edge, a detector gain change,
and the Ni L-edges. Taken from [86].

Electron Energy Loss Spectroscopy (EELS) is an experimental technique to examine
targets with the help of electrons, usually carried out in a Transmission Electron Mi-
croscope (TEM), a schematic of which is shown in Fig. 5.2(a). A tightly focused beam
of electrons with well defined initial kinetic energy of typically 50 keV to 300 keV is di-
rected at a target. After interacting with the target, the electrons are filtered by an
aperture. This aperture defines the so-called collection angle, which is in the order of
several milliradians. Finally, the energy of the beam-electrons is measured. Typical EEL
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spectra plot the count of electrons that suffered a certain energy loss versus the amount
of lost energy. An example spectrum for nickel is shown in Fig. 5.2(b). Assuming energy
conservation, all energy losses must be caused by excitations in the target. An important
contribution is given by the excitation of bound electrons, the so-called core loss events.
In the spectra they yield a sharp edge at the ionization energy of the corresponding
excitation. For Ni we see the M and L edges in the spectrum. For this reason, EELS can
be used for chemical analysis of the target assuming that the atomic energy levels are
known. For metallic target particles, another important contribution to the losses is due
to the excitation of plasmons - both volume and surface plasmons1. In the spectra they
show up as a more or less symmetric peak around the corresponding plasmon energy,
where the width of the peak is proportional to the lifetime of the plasmons. For the
particle sizes and materials typically used in the experiments (cf. Tab. 5.1) the plasmon
lifetimes are in the order some femtoseconds.

The largest contribution to the spectra, is the so-called zero-loss peak (ZLP). It is
caused by the elastically scattered electrons and ideally, it would only give a contribution
at exactly zero loss. In the measured spectra, however, it has a finite width of typically
some 0.1 eV and thus this width is taken as a measure for the energy resolution in the
experiments. If the peak width it too large, it might superimpose low-energy losses. In
that case, one can either measure the ZLP without target particle and subtract it from
the particle spectrum, or post-processing of the acquired data is necessary. This can be
done by deconvolution, e.g. according to Richardson and Lucy [87, 88].

In Energy Filtered EELS, the beam is raster-scanned across the particle and only
electrons within a narrow energy window are collected. This leads to a high signal at
positions, where the electrons lose a certain amount of energy. Such images, called EELS
maps, have become an important tool to study the plasmonic properties of metallic nano-
particles, too and we will discuss the correspondence between the EELS maps and the
plasmonic eigenmodes of the target particles later on.

5.2 Cathodoluminescence Spectroscopy

A technique closely related to EELS is the so-called Cathodoluminescence Spectroscopy
(CLS). In general, luminescence is the emission of electromagnetic radiation from a
physical system on relaxation from an excited to the ground state. It is termed Catho-
doluminescence (CL) if the excitation is done with an electron beam. Conventionally, the
term refers to the excitation of solids where the luminescence originates from electronic
transitions. In our context this term means the emission of electromagnetic radiation
from a metal nano-particle excited by a beam of fast electrons. It is important to notice
that in our case the radiation does not directly originate from electronic transitions but
the particle facilitates a coupling of the electron’s localized field to the far-field. This is
also called radiative decay of surface plasmons. Thus, the particle effectively acts like an
antenna. CL experiments can even yield the angular distribution and the polarization of

1When the particle size approaches the mean free path of the electrons, as it is the case for the particles
we are going to consider, this distinction is not strictly valid anymore.

65



5 Electron Microscopy on Metallic Nano-Particles

the emitted radiation. To that end, the radiation emitted from the particle is collected
by a parabolic mirror and analysed. In the next section, we will discuss examples of
both, EELS and CL measurements for metallic nano-particles.

5.3 Electron Microscopy on Metal Nano-Particles — A
Literature Survey

Geometry Mat. Size d E0 ∆E ∆x Range Calc. Comments
nm keV eV nm eV

Sphere, Rod [89] Au 25 100 0.25 2−
3

1− 4 –

Triangles [6] Ag 20− 300 100 1 − 1− 5 BEM
Rod [90] 75× 400 200 0.17 − 0.5−

3.5
BEM

Bulk particle [91] Ag 30 200 0.6 0.2 3− 10 Mie in
QSA

Particle shape obtained by
tomography

Holes in film[92] Ag 160 – 0.2 – 0.4−
3.5

–

Sphere dimers [93] Ag 10− 15 300 0.2 0.3 1− 6 FEM Dark modes are studied
Spherical, chains of
[94]

Ag 20 100 0.27 0.5 2.4−4 DDA,
optical

Sphere, Rod,
dimers of [95]

Au 20− 80 200 0.22 2 0.5−5 BEM Dark and bright modes

Triangle [96] Ag 100 15 – 10 1.5−3 FDTD CL measurement
SRR [M3] Au 0− 0 0 0 0 5 DGTD Babinet’s principle
Chain of rods [7] Au 100 30 – 10 1.5−3 Dipole

model
CL measurement

Table 5.1: Selected EEL and CL measurements from the recent literature. The particle
geometry and material is listed along with experimental parameters if stated
explicitly. The Size column gives typical length scales of the respective par-
ticles. Furthermore we list the initial energy E0 of the electrons, the energy
resolution ∆E, and the spatial resolution ∆x. The Calc. column indicates
the method that was used to calculate spectra (if any).

While EELS is a versatile technique and can be performed in many different ways, we
will now focus on the experiments relevant for this work and that is EELS on metallic
nano-particles. Table 5.1 lists such measurements selected from the recent literature.
Considering the parameters, we see that the initial energy of the beam-electrons is in
the range of E0 = 10 keV . . . 300 keV, which corresponds to velocities of v = 0.29 . . . 0.9c,
where c is the vacuum speed of light. The considered energy losses range from 0.4 eV
to 10 eV and these energies are typical for the plasmon losses. The energy and spatial
resolution ∆E and ∆x vary but can be as small as ∆E = 0.1 eV and ∆x = 0.2 nm.
Given this, we see that it is possible to investigate particles with typical sizes of 10 nm
and larger. In the experiments listed in Tab. 5.1 mostly chemically synthesized parti-
cles are used possessing a more or less spherical shape. Interestingly, Chu et al. [91]
have used electron tomography to accurately determine the 3D shape of their particle.
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Figure 5.3: Sketch of the general setup for EELS calculations. We assume a metallic
particle of size a with permittivity ε (ω). The electron hits the particle with
an impact parameter b at velocity v.

Unfortunately, they cannot exploit this information for their calculations because they
compare their measurements with spectra for spherical particles within the quasi-static
approximation, cf. Sec. 2.1.8. Beside chemically synthesized particles, also structures
that were fabricated by Focused Ion Beam techniques and Electron Beam Lithography
in [92] and [M3], respectively, are used. This opens up the opportunity to fabricate func-
tional plasmonic structures, the properties of which can be examined by EELS. Beyond
single particle experiments, several authors use particle systems to study the coupling
between the particles, be it sphere dimers [93], chains of spherical particles [94] or an
array of holes in a silver film [92]. Sphere dimers are especially well suited for studying
the inter-particle coupling and we will discuss them in Sec. 6.3.3 and Sec. 7.4 in more
detail.

5.4 The Loss- and Cathodoluminescence-Probability

We will now be concerned with the question how loss spectra as introduced in the
preceding section can be calculated from electrodynamics. As depicted in Fig. 5.3,
let us consider a single electron that is incident on the target particle with an impact
parameter b > 0, such that the electron trajectory does not penetrate the particle.
Upon approaching the particle, the field of the electron will interact with the electrons
in the particle causing charge fluctuations. These charge fluctuations will result in some
induced electric field Eind. This field now acts back onto the electron and therefore, the
electron will suffer an energy loss

∆E = e

+∞∫
−∞

dt ṙe (t) ·Eind (re (t) , t) , (5.1)

where re(t) and e denote the trajectory and charge of the electron, respectively.
If we define the probability that the electron loses a certain amount of energy h̄ω
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as P (ω), we can also express the overall energy loss as an integral over this probability

∆E = h̄

+∞∫
0

dω ωP (ω). (5.2)

We will call P (ω) electron energy loss probability (EELP). To obtain an explicit expres-
sion for the EELP, we can bring Eq. (5.1) in a form similar to Eq. (5.2). To that end, we
introduce the Fourier Transform of the induced field and exploit the symmetry property
of the Fourier components of real fields (2.20):

∆E = e

+∞∫
−∞

dt ṙe (t) ·Eind (re (t) , t)

= e

+∞∫
−∞

dω

+∞∫
−∞

dt ṙe (t) · E ind (re (t) , ω) e−iωt

= e

0∫
−∞

dω . . .E ind (re (t) , ω) e−iωt + e

+∞∫
0

dω . . .E ind (re (t) , ω) e−iωt

= e

+∞∫
0

dω . . .E ind (re (t) ,−ω) eiωt + e

+∞∫
0

dω . . .E ind (re (t) , ω) e−iωt

(2.20)
= e

+∞∫
0

dω . . .
{
E ind (re (t) , ω) e−iωt

}∗
+ e

+∞∫
0

dω . . .E ind (re (t) , ω) e−iωt

= 2e

+∞∫
0

dω

+∞∫
−∞

dt <
{

ṙe (t) · E ind (re (t) , ω) e−iωt
}
,

By comparing the above expression with Eq. (5.2) we obtain an explicit expression
for the loss probability P (ω). This expression, however, would include the equation
of motion of the electron that moves along the particle, because ṙe (t) is contained in
the above equation. To solve this problem, we would have to take into account the
interaction between the induced electric and magnetic field and the electron given by
the Lorentz force. In order to simplify things, we will make use of an approximation
and assume that the electron moves along a straight-line trajectory. We have seen in
Tab. 5.1 that typical initial electron energies are in the order of 100 keV and the losses
are in the order of several electron volts, i.e. the losses are negligible compared to the
initial energy. Furthermore, the collection angle in EELS experiments is in the order of
several milliradians. Thus the momentum component of the electron transverse to the
straight-line trajectory is small compared to the parallel component and therefore also
negligible.
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10 We assume that the momentum of the electron remains unchanged during the exci-
tation of the target particle, i.e. ve = const. This is called the no-recoil approximation
(NRA).

Besides simplifying the analysis of the energy losses, the NRA makes a solution of the
problem in frequency domain possible in the first place as we will see in Chap. 6. If we
assume that ṙe (t) = ve = const we get the following result.

11 Within the no-recoil approximation (NRA) the electron energy loss probability
(EELP) evaluates to

P (ω) =
2e

h̄ω

+∞∫
−∞

dt <
{

ve · E ind (re (t) , ω) e−iωt
}
. (5.3)

Thus, the EELP is determined by the projection of the induced electric field Fourier
component E ind on the electron trajectory. If we assume that the electron trajectory is
parallel to the z-axis, i.e. ve = veez, which is always possible without loss of generality,
because we can compensate this by an appropriate rotation of the target particle, then
only the z-component of the electric field contributes to the losses. This means that
EELS can be used to map the z-component of the excited eigenmodes of the particle
with high precision and we will demonstrate this in Sec. 7.7. Also, the EELP is related to
the photonic density of states [97], although not necessarily in a straight-forward manner
[98].

As discussed above, it is also possible, that the excited particle emits radiation. The
energy emitted by the particle in terms of radiating electromagnetic fields is given by
the integral over the Poynting vector (2.40) over a closed surface S, which for the sake
of simplicity shall be spherical, around the particle

∆Erad =

∫
S
d (ϑ, ϕ)

∫
dt r2er · [E×H] . (5.4)

We have already encountered this expression in Sec. 2.3 where we have discussed the
scattering cross-section. Thus, the energy ∆Erad is a measure for the coupling of the
excited eigenmodes to the far-field. Again, expressing this in terms of a probability, we
have

∆Erad =

∫
S
d (ϑ, ϕ)

∫
ωdω Prad (ω, ϑ, ϕ) . (5.5)

By similar reasoning as above we obtain the probability of an emission of radiation with
frequency ω in the direction (ϑ, ϕ)

Prad (ω, ϑ, ϕ) =
r2

ω
<{[E (ω, ϑ, ϕ)×H∗ (ω, ϑ, ϕ)] · er} . (5.6)

As this quantity is measured in CL experiments, we are going to call this the Catho-
doluminescence Probability (CLP). If we choose the spherical surface S to be infinitely
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large, we can replace the electric and magnetic field in Eq. (5.6) by appropriate far-field
expressions. Every propagating electromagnetic wave has the asymptotic form of an
outgoing spherical wave

E (r, ω) =
eikr

r

{
E∞ (ϑ, ϕ) +O

(
1

r

)}
, r →∞, (5.7a)

H (r, ω) =
eikr

r

{
H∞ (ϑ, ϕ) +O

(
1

r

)}
, r →∞, (5.7b)

where E∞,H∞ are the so called far-field patterns that determine the far-field amplitude
in a given direction. In addition, the far-field is purely transverse, i.e.

H∞ =

√
εe
µe

er × E∞, (5.8)

er ·H∞ = er · E∞ = 0. (5.9)

With this, we can express the CL probability (5.6) as

Prad (ω, ϑ, ϕ) =
1

ω

√
εe
µe
|E∞ (ϑ, ϕ)|2 . (5.10)

The angular distribution of the radiation can be used to characterize the correspond-
ing eigenmode of the particle and we will discuss this in more detail when presenting
numerical results for different particles in the following two chapters.

5.4.1 Analytical and Numerical Results

The EELP within the NRA can be evaluated once the induced field E ind is known. As
discussed in Sec. 2.1.8, one can make use of the quasi-static approximation (QSA) and
solve the Laplace instead of the Helmholtz equation. This simplifies the analysis and
indeed, analytical results for the loss probability have been obtained for a number of
particle systems like spheres [99], spheres embedded in a substrate [100] and spheroids
[101]. Also, results for sphere dimers were obtained by solving the Laplace equation in
bi-focal spherical coordinates [102]. All these results neglect retardation effects because
they were derived under the QSA. The first result including full retardation was reported
by Garćıa de Abajo for spherical particles [103]. With this, the influence of retardation
effects can be studied and we will show example calculations in Sec. 6.3.1 showing that
already for small particles retardation effects have to be taken into account. Thus it is
necessary to go beyond the QSA.

Concerning numerical results, we have already mentioned the methods commonly used
in Tab. 5.1. Frequency-domain methods that have been used to simulate electron mi-
croscopy experiments are the Finite Element Method (FEM), the Boundary Element
Method (BEM) and the Discrete Dipole Approximation (DDA), cf. Sec. 3.5.2. All meth-
ods are flexible concerning the scatterer shape, however the BEM is computationally
more expansive than the FEM due to the self-consistent solution. The DDA was used
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for simulations, however an enormous number of dipoles is necessary to get converged
results [72], which renders the method rather inefficient.

Concerning time-domain methods, so far only the FDTD method has been used to
simulate CL spectra [96]. In these simulations the electron beam is modeled as a series
of dipoles, each with a phase delay corresponding to the electron velocity. A detailed
discussion of this approximation and its accuracy is not given. We will see later in
Chap. 7 that a time-domain approach without this approximation is possible and also
facilitates the simulation of EELS experiments.

5.4.2 Loss Probability in Experiments

In typical experiments, the currents in the TEM are so small, that only a single electron
is in the instrument at a time. Taking the classical derivation of the EELP serious
would require each single electron to lose exactly the same amount of energy ∆E from
Eq. (5.1). As evident from the measured spectra, this is not the case. Nevertheless the
classically obtained EELP is commonly used for the interpretation of EELS experiments
and shows a very good agreement.

5.4.3 Dimensionless Units

In the following two chapters we will present calculations for the loss probability and
photon emission probability for metallic nano particles. We want to briefly comment on
the units we use in the calculations.

In Sec. 2.1.6 we have seen that Maxwell’s equations are scale invariant. As the typical
size of our particles is in the nano-meter range, we are going to specify all lengths in
units of a = 1 nm. This can be compensated for by rescaling all frequencies accordingly.
Furthermore, we set the following constants to unity: the vacuum speed of light c, the
elementary charge e, Planck’s constant h̄.

These units will be used for both, the T-Matrix calculations in Chap. 6 as well as for
the DGTD calculations in Chap. 7, thus we are able to directly compare the results.
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Microscopy

In this chapter, we will apply the T-Matrix Method to the calculation of the electron
energy loss probability (5.3) and the cathodoluminescence probability (5.6). In the
preceding Chap. 5 we have seen that the evaluation of the probabilities is based on the
field that a moving electron induces in a target particle. In Sec. 3.2 we have introduced
the T-Matrix Method and shown, that for a given incident field and particle, it can be
used to calculate the scattered field. Therefore, it can also be applied to the probability
calculation. If the field that is caused by a moving electron can be expanded in terms
of Spherical Vector Wave Functions, we can use it as incident field in the T-Matrix
formalism to calculate the induced field and finally evaluate the probabilities. We will
see in this chapter, that the expansion coefficients can be evaluated and that the T-
Matrix Method turns out to be a very efficient approach to the calculation of the loss
and cathodoluminescence probability. This will be demonstrated for selected particle
shapes that are also typically encountered in experiments.

6.1 Electron Excitation

To implement the electron excitation in the T-Matrix Method, we have to evaluate the
Spherical Vector Wave Function (SVWF) expansion coefficients for the field caused by a
moving electron. In Sec. 7.1, we will study the charge- and current density of a moving
electron as a function of position and time to obtain the electric and magnetic field caused
by it. Attempting to Fourier transform these fields and project them onto the SVWFs
would be the straight-forward approach to obtain the expansion coefficients. A more
elegant way was proposed by Graćıa de Abajo using the angular momentum operator
formalism [103]. With the expressions of (3.23) we can write the field expansion of the
incident field (3.26) as

E inc =
∞∑
n=1

n∑
m=−n

ãmnL̂u
1
nm(kr) + b̃mn∇× L̂u1

nm(kr), (6.1)

where some factors have been absorbed in the new coefficients ãmn, b̃mn to take different
normalization of the basis functions into account. Multiplying (6.1) with L̂· on both
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sides yields

L̂ · E inc =
∞∑
n=1

n∑
m=−n

ãmnL̂
2u1
nm(kr) + b̃mn L̂ · ∇ × L̂︸ ︷︷ ︸

=0

u1
nm(kr)

=
∞∑
n=1

n∑
m=−n

ãmnL̂
2u1
nm(kr) =

∞∑
n=1

n∑
m=−n

ãmnn(n+ 1)u1
nm(kr) (6.2)

where we have used that the angular part of u1, that L̂2 is acting on, is an eigenfunction

of L̂2, cf. Eq. (3.12). Similarly, multiplying (6.1) with
(
L̂×∇

)
· on both sides we

get an expression involving only the coefficient b̃mn. Thus, we are able to obtain the
contribution of the SVWFs M,N by means of projection.

Using the charge density, we can express the electric field with the help of the Green
function of the Helmholtz equation (2.27)

Eext (r) =

(
∇− ikv

c

)∫
dt eiωtG(r− re (t)), (6.3)

where we have set the electron charge q = −1. We can employ the expansion of the
Green function in terms of scalar wave functions

G = 4πk

∞∑
n=1

n∑
m=−n

jn (kr) ih(1)
n (kre (t))Ymn (Ωr)Y

∗
mn

(
Ωre(t)

)
(6.4)

to finally obtain an expression for the field caused by the moving electron

Eext (r) =

(
∇− ikv

c

) ∞∑
n=1

n∑
m=−n

jn (kr)Ymn (Ωr)φmn (6.5)

with

φmn = 4πik

∫
dt eiωth(1)

n (kre (t))Y ∗nm
(
Ωre(t)

)
. (6.6)

Now we can apply the projections above (Eq. (6.2)) to the electric field (6.5) to obtain

the expansion coefficients. Taking into account that L̂ · ∇ =
(
∇× L̂

)
· ∇ = 0 and that

v · L̂ = vL̂z, the projection of the above field on L̂ is

L̂ ·Eext =
−ikv2

c

∞∑
n=1

n∑
m=−n

mjn (kr)Ymn (Ωr)φmn (6.7)

Comparison with (6.2) yields the expansion coefficient ãmn. b̃mn can be obtained by
similar reasoning that we will omit here and we refer the reader to Appendix B of [103]
for the details. Finally, the SVWF expansion coefficients for the electric field caused by
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an electron moving at velocity v along a straight line trajectory are given by

amn =
−4πikv

c2

mAmn
n(n+ 1)

Km

(
ωb

vγ

)
eimφ0+iωz0/v, (6.8a)

bmn =
−2πik

cγ

Bmn
n(n+ 1)

Km

(
ωb

vγ

)
eimφ0+iωz0/v, (6.8b)

Amn =

√
2n+ 1

π

(n− |m|)!
(n+ |m|)! (2|m| − 1)!!

i|m|

v

(
c

vγ

)|m|
C

(|m|+1/2)
n−|m|

( c
v

)
, (6.8c)

Bmn = Am+1,n

√
(n+m+ 1)(n−m)−Am−1,n

√
(n−m− 1)(n+m), (6.8d)

where (b, φ0, z0) are the cylindrical coordinates of the electron at t = 0. The evaluation
of the coupling integral (6.6) resulting in

φmn =
4π

c
Amne

imφ0+iωz0/v (6.9)

is presented in [103]. The expansion of the Green function (6.4) is valid only for |r| <
|re (t)|, i.e. the above expression for the incident field is valid only inside a sphere of
radius min

t
|re (t)|.

Discussing the electromagnetic field caused by the moving electron in terms of these
expansion coefficients is not very vivid and we postpone the discussion to Sec. 7.1, where
we derive the electric field as a function of time from the Liénard-Wiechert potentials.
Nevertheless, we obtain some information about the field. While the dependence on the
electron velocity v is non-trivial, the impact parameter b only enters the coefficients in the
argument of the modified Bessel function Km (x). These functions decay exponentially
with increasing argument x, such that we expect a similar behaviour for the expansion
coefficients.

6.2 Calculation of the Loss- and
Cathodoluminescence-Probability

The calculation of the loss probability (5.3) and CL probability (5.6) is done by di-
rectly plugging in the SVWF expansion of the scattered field (3.43) into the respective
expressions. For the loss probability, this results in

P (ω) =
2e

h̄ω

+∞∫
−∞

dt <
{

ve · E ind (re (t) , ω) e−iωt
}

(6.10)

=
∑
m,n

2e

h̄ω

+∞∫
−∞

dt <
{
ve ·

(
fmnM3

mn (kre (t)) + gmnN 3
mn (kre (t))

)
e−iωt

}
. (6.11)
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Again, we encounter integrals of the SVWF along the electron trajectory similar to the
one in Eq. (6.6). Due to the sign reversal in the phase factor e−iωt in the above equation,
we obtain A∗ instead of A for the first integral. We finally obtain1

P (ω) =
∑
m,n

K2
m

(
ωb

vγ

)[
mv

πω2
<
(
A∗mne

imφ0+iωz0/vfmn

)
+

c

2πω2γ
<
(
B∗mne

imφ0+iωz0/vgmn

)]
. (6.12)

The CL probability in any direction is obtained from Eq. (5.6) where we have integrated
over the angles ϑ, ϕ to obtain

Prad (ω) =
1

4π2k3

∑
m,n

n(n+ 1)
[
|fmn|2 + |gmn|2

]
. (6.13)

The far-field expressions for the electric field can be directly calculated by using the far-
field expressions for the SVWF. Thus, we are also able to calculate the angle-resolved
CL probability according to Eq. (5.10).

6.3 Results

x

z

e
−

b

Figure 6.1: General setup for EELS calculation. The scatterer is located at the origin,
the electron hits it with an impact parameter b and travels along the z-
direction at velocity v. Here, the prolate spheroid is depicted, but we use
the same coordinate system for all calculations.

We are now able to use the T-Matrix method to obtain results for the loss probability
(EELP), the CL probability (CLP) and the far-field pattern of the emitted radiation.
To begin our discussion, we start with spherical particles and discuss the influence of
different parameters on the spectra before discussing spheroidal particles and a sphere
dimer.

The size of the particles is chosen to correspond to sizes of particles encountered in
the experiments listed in Tab. 5.1, which are in the order of 10 nm, typical materials are
silver and gold. In principle, the T-Matrix method allows us to use measured datasets,

1Note that the i−l in Eqns. (27) and (28) in [103] should read il
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like e.g. for gold or silver by Johnson and Christy [22], for the permittivity. Nevertheless,
we use a simple Drude model with parameters to approximate the permittivity of gold
in our discussion. The plasma energy is h̄ωp = 9.073 eV and the damping constant
is h̄γ = 0.071 eV (cf. Sec. 2.4.4). The resulting spectra show distinct peaks for the
eigenmodes which is advantageous for our discussion as it also allows to see how the
eigenmodes contribute to the spectra and how the T-Matrix method reproduces these
contributions. For comparison, we will also include spectra for the Johnson and Christy
permittivity. We always assume the particle to be located in vacuum. The impact
parameter is always chosen such that we have a distance of 0.5 nm between the particle
surface and the electron trajectory. The electron trajectory is always contained in the
x-z-plane and we indicate the location of the excitation relative to the particle in the
graphs. The velocity of the electron is chosen to be 0.3c, corresponding to 50 keV initial
energy. All calculations were done for at least 300 points in the respective frequency
interval to obtain smooth spectra. We will use a dimension-less quantity for the losses
in the spectra. Instead of the Energy loss ∆E, we choose the energy loss ∆E = h̄ω
over the plasma energy h̄ωp, resulting in ω/ωp. We do this in order to indicate that we
study a Drude model material, where appropriate we will give the energy loss in units
of electronvolt.

6.3.1 Spherical Particle

Spherical particles are an interesting model system to study different aspects of EELS
and the T-Matrix method. For spherical particles, the Spherical Vector Wave Functions
(SVWF) correspond to the eigenmodes of the particle. Thus, the expansion orders
n = 1, 2, . . . correspond to the dipole, quadrupole, etc. mode of the particle. We begin
our discussion with the influence of the maximum expansion order used in the T-Matrix
method.

Maximum Expansion order

The crucial parameter for convergence in the T-Matrix method is the truncation index
Nr. For conventional Mie theory estimates for a minimal value of Nr exist, cf. Sec. 3.1.6,
however the excitation by the moving electron encountered in EELS is spectrally broad
and thus, we expect that more multipoles are required for convergence. Figure 6.2 shows
the EEL and CL probability of a spherical particle for different maximum values of Nr.
As this is the very first example for such a spectrum, we will discuss it more detailed. We
see that the EEL spectrum shows distinct peaks for several energy losses. As mentioned
above, these peaks indicate the eigenmodes of the particle and the respective eigenfre-
quencies. The eigenmodes of the particle are influenced by both, the particle shape and
the permittivity of the particle. A huge number of eigenmodes contribute to the EELP
indicating that the electron excites a broad spectrum of eigenmodes in the near-field.
While the first few multipoles are clearly separated, the higher order multipole contri-
butions sum up to a broad shoulder at the high-frequency end of the spectrum. This
tells us that the contribution of the multipoles decrease with increasing multipole order
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Figure 6.2: EEL (top) and CL (bottom) probability for a 10 nm sphere for different
maximum expansion orders. While a huge number of multipoles contribute
to the EELP, the CLP is mostly determined by the dipole contribution plus
a small quadrupole contribution at around 0.63ωp.

and that the eigenfrequencies increase and are more closely spaced, which actually is a
consequence of the Drude model we used.

The cathodoluminescence probability (CLP), in contrast, is dominated by the dipole
contribution. While the EELP is dominated by the near-field and evanescent fields, the
CLP is a far-field quantity and indicates the coupling of the excited eigenmodes to the
far-field, i.e. propagating electromagnetic radiation. Effectively, the particle acts like an
antenna, mediating a coupling of the electron’s localized field to the far-field.

Coming back to the influence of the truncation index Nr, we have seen that due to
the Drude model the contribution of the higher order multipoles n > 8 is small and
we might neglect it here. For the following calculations we will use Nr = 12 which is
sufficient to get convergence for the first few multipoles. Where necessary we will check
the spectra for different values of Nr to check for convergence.

Particle Sizes

We now want to study the influence of the particle size on the spectra. Figure 6.3
shows spectra for spheres of radius 10 nm− 20 nm. All other parameters are unaltered.
Regarding the EELP, we see that with increasing radius

• the eigenfrequencies shift to the red

• the red-shift is larger for the lower order multipoles
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Figure 6.3: EEL (top) and CL (bottom) probability for spheres of different radius. With
increasing radius the eigenmodes shift to the red and the contribution of
higher order modes increases. In case of the CL, this leads to a considerable
contribution from the quadrupole mode for the r = 20 nm sphere.

• the contribution of the higher order multipoles increases

The red-shift can be understood intuitively, when considering the plasmon resonances
to be standing waves at the particle surface. With increasing radius the circumference
increases and the resonance occurs at a longer wavelength, i.e. lower frequencies. In the
CLP, we observe the same shifting behaviour of the eigenmodes, of course. However,
for the r = 10 nm sphere, only the dipole contributes to the spectrum. With increasing
radius, we see that the quadrupole also yields a significant contribution.

Electron velocity

In Sec. 6.1 we have seen that the electric field expansion coefficients depend on the
electron velocity v in a non-trivial way. We now study the impact of the electron velocity
on the EELP and CLP. Figure 6.4 shows the spectra for a r = 15 nm sphere for different
electron velocities v. Again, all other parameters are as mentioned above. As the peaks
in the spectra correspond to the eigenmodes which do not depend on the excitation, we
observe no spectral shift of the peaks. We see, however, that the contribution to both,
EELP and CLP decrease for increasing electron velocity. Intuitively, the interaction
time between electron and particle is shorter and thus, the probability for an excitation
decreases. For this reason, the electron velocity is chosen small in CL experiments as
compared to EELS experiments, cf. Tab. 5.1 in Sec. 5.3. The intensities of the emitted
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Figure 6.4: EEL (top) and CL (bottom) probability for a r = 15 nm sphere for different
electron velocities. For increasing velocities both, the EEL and CL ampli-
tudes decrease.

radiation are extremely small and using slow electrons, the increased probability also
increases the intensities making it easier to measure.

Far-field Radiation Patterns

Figure 6.5: Far-field pattern |E∞|2 for the r = 15 nm sphere at the (a) dipole and (b)
quadrupole resonance. Both plots are in the same arbitrary units.

In Sec. 5.3 we mentioned that in CL experiments the angular distribution of the emit-
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ted radiation can be measured. As alluded to in Sec. 6.2 the far-field radiation pattern
can be evaluated in the T-Matrix formalism, which corresponds to the angular distri-
bution of the emitted radiation. We study the far-field pattern for a r = 15 nm sphere
and an electron velocity of v = 0.3c in Fig. 6.5. It shows the angular distribution at the
dipole and quadrupole eigenfrequencies. Clearly, the angular distribution of the fields
correspond to those of a radiating dipole and quadrupole, respectively. We see that
the moment of the dipole is parallel to the x-axis and shows a slight asymmetry. The
asymmetry of the quadrupole is much more pronounced and the radiation is emitted
preferably to the far side of the sphere, i.e. the negative x-direction. This can be under-
stood, if one considers the asymmetry of the excitation field of the electron. It is shifted
from the origin along the x-axis by the impact parameter, while the sphere is located at
the origin. Thus, we may expect a certain asymmetry.

Retardation effects

In Sec. 5.4.1 we have mentioned results that were obtained for certain particle shapes us-
ing the quasi-static approximation (QSA), which neglects retardation effects, cf. Sec. 2.1.8.
We already presented results including retardation above, and we now want to compare
them with QSA results for spherical particles. In QSA the loss probability for a sphere
with radius r evaluates to [99]

PQSA (ω) =
4

πv2r2

∞∑
m,n

2− δ0,m

(n+m)!(n−m)!

(ωa
v

)2n
K2
m

(
ωb

v

)
=αn (ω) (6.14)

with the multipole polarizability

αn (ω) =
ε (ω)− 1

ε (ω) + (n+ 1)/n
a3. (6.15)

Comparison with the result including full retardation (6.12) shows an important dif-
ference. In the QSA result, the spectral position of the modes (and thus the peaks in
the EEL spectra) are only determined by the permittivity of the particle ε (ω), but not
by the size of the particle. This is reasonable as the QSA assumes an infinite speed of
light and assumes the incident field outside the particle to be constant. In the full re-
tardation result (6.12) the particle size enters via the T-Matrix that is used to calculate
the coefficients fmn, gmn. This effect is clearly visible in Fig 6.6. Already for particles
of 10 nm size, the QSA fails to correctly reproduce the spectral position of the dipole
mode (blue curves). We have seen that increasing the particle size causes a red-shift
of the resonances in the discussion above. This means that the deviations between the
QSA results and the full retardation results increase with increasing particle size, too.
This is apparent from the curves for a 20 nm sphere (red curves in Fig. 6.6). In recent
experiments, the particles are usually larger than 20 nm and we can expect the deviation
of the QSA results to the full retardation results to be even more dramatic. Therefore,
retardation effects clearly have to be taken into account when calculating EEL spectra,
especially in the context of the interpretation of experiments. It is necessary to go be-
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Figure 6.6: EEL spectra in quasi-static approximation (QSA, solid lines) and including
full retardation (dashed lines) for a 10 nm sphere and electron velocity v =
0.3c (blue) and a 20 nm sphere with v = 0.5c.

yond the QSA and this also justifies the demand for results including full retardation,
which, for more complicated particle shapes, can only be obtained numerically.

Influence of the Permittivity

Before proceeding to spheroidal particles, we want to discuss the influence of the per-
mittivity. So far, we have employed a Drude model for the permittivity. As mentioned
in Sec. 2.4, the data set measured by Johnson and Christy [22] is also commonly used
in plasmonics calculations. We therefore employ it for our calculations of the EEL and
CL spectra for gold spheres of different radius. Figure 6.7 shows the results. Here we
see that increasing the radius does not cause an observable shifting of the resonances.

The EEL spectrum shows more or less constant values for frequencies higher than the
dipole frequency. This is due to the onset of the intra-band transitions in gold observable
in the imaginary part of the measured permittivity of gold in Fig. 2.4.

6.3.2 Spheroidal Particles

Spheroids are ellipsoids with two of three axes being of equal length. They can be
obtained as bodies of revolution from an ellipse, resulting in prolate (oblate) spheroids,
if the ellipse is revolved around the long (short) axis. We already discussed in Sec. 3.1.7,
that a Mie-like approach in spheroidal coordinates is in principle possible, however the
evaluation of the spheroidal harmonics is computationally too expansive. Here, methods
like the T-Matrix Method are required. Due to their rotational symmetry, spheroids
can be treated very efficiently as the integrals needed to evaluate the T-Matrix (3.60)
reduce to integrals over the generatrix of the spheroid. As outlined in Sec. 3.2.2, we
are subject to the constraint that the expansion of the scattered field is valid only
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Figure 6.7: EEL and CL spectra for sphere of different radius with Johnson and Christy
permittivity data for gold [22]. The dependence on the sphere radius is less
pronounced than for a Drude material. The intra-band transitions cause a
constant loss probability above 2.5 eV.

outside the smallest sphere circumscribing the scatterer. Obviously, this imposes a
restriction for spheroids, such that the impact parameter has to be larger than the
longest semi-axis of the spheroid. We choose the spheroid to have an aspect ratio of
1 : 1.5 and to have the same volume as a 15 nm sphere. This results in semi-axes
length of rx = 19.66 nm, ry = rz = 13.10 nm. We excite the spheroid at the end of the
long half-axis with a surface-to-electron distance of 0.5 nm as indicated in the inset of
Fig. 6.8. As we have changed the particle geometry considerably, we plot the spectra for
different values of the truncation index Nr. Using Nr = 25 we have achieved sufficient
accuracy. The EELP shows a similar behaviour as for the spherical particle. The first few
eigenmodes are well separated, the higher order eigenmodes sum up to a broad shoulder
at the high-frequency end of the spectrum. The lowest eigenmode of the spheroid is
found at ω = 0.46ωp which is lower as compared to the 15 nm sphere at ω = 0.55ωp
in Fig. 6.3. For the spherical particle, the eigenmodes were exactly the multipoles.
This correspondence is not valid for spheroid anymore, therefore we need to further
characterize the eigenmodes. We cannot directly map the eigenmodes by scanning the
electron beam across the particle, because the electron must remain outside the smallest
circumscribing sphere. Therefore, we study the far-field patterns to gain some insight
in the eigenmodes. Figure 6.9 shows the far-field patterns at the respective resonance
frequencies indicated in Fig. 6.8. We see that pattern 6.9(a) possesses a dipolar radiation
characteristic where the dipole moment is aligned along the long axis of the spheroid,

82



6 The T-Matrix Method for Electron Microscopy

E
E
L
P

(a
.
u
.)

Nr = 10; 15; 20; 25;

0.4 0.45 0.5 0.55 0.6 0.65 0.7

(a)

(b)(c)

ω/ωp

C
L
P

(a
.
u
.)

Figure 6.8: EEL and CL spectra for a prolate spheroid with aspect ratio 1.5 and the
same volume as a 15 nm sphere. The CL spectrum has contributions from
higher order multipoles. We plot the far-field pattern for the indicated peaks
in Fig. 6.9.

(a) ω1 = 0.45ωp (b) ω2 = 0.57ωp (c) ω3 = 0.58ωp

Figure 6.9: Far-field amplitude |E∞|2 as a function of the direction for the spheroid at
frequencies indicated in Fig. 6.8. All plots are in the same arbitrary units.
We see a dipolar characteristic for patterns (a) and (c) and a quadrupolar
one for pattern (b).

i.e. the x axis. This is the same behaviour as for the lowest eigenmode of the spherical
particle. Pattern 6.9(c) has the same dipolar characteristic, but the dipole moment
is now aligned along the z axis, which is the short axis of the spheroid parallel to the
electron trajectory. Comparing the frequencies of these two dipolar modes at ω1 = 0.45ωp
and ω3 = 0.58ωp with the dipolar mode of the sphere at ωs = 0.54ωp, we see that
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ω1 < ωs < ω3. This behaviour can be explained by again thinking of the eigenmodes as
standing surface plasmon waves. For the modes depicted in pattern 6.9(a) and 6.9(c),
the circumference is given by an ellipse with semi-axes rx, rz and a circle with radius
rz, respectively. This is larger and smaller than the sphere circumference, respectively.
We therefore expect the resonances to be at lower and higher frequency, respectively.
This behaviour is well known for spheroids from optical spectroscopy, where the two
dipole modes can be addressed by using linearly polarized light with polarization along
the respective axis of the spheroid, which has been already been discussed in Sec. 4.1.
Pattern 6.9(b) has a quadrupolar characteristic with contributions from the dipolar
pattern 6.9(b) which is already expected from the CL probability in Fig. 6.8 due to the
broad peak (c).

6.3.3 Dimers of Spheres

Beyond single particle properties, experiments already study the coupling behaviour of
particles with EELS as mentioned in Tab. 5.1. So far, we have only studied single par-
ticles using the T-Matrix, however, the method can also be applied to particle systems.
To illustrate this, we will now study a dimer of nominally identical spheres. To that end,
we have to introduce the necessary extensions of the T-Matrix formalism.

Translation and Rotation of the Scatterer

The key element to the treatment of particle systems in the T-Matrix formalism are
the addition theorems for the Spherical Vector Wavefunctions (SVWF) [37] and the
multiple scattering problem. The addition theorems allow for a translation and rotation
of a SVWF expansion from one coordinate system 1 with origin R1 to some coordinate
system with origin R. A rotation of the coordinate system only affects the angular part
of the SVWFs, i.e. the Spherical Harmonics Ymn (ϑ, ϕ). The Spherical Harmonics for
given n are basis functions of an irreducible representation of the group of rotations
SO(3). For this reason, the spherical harmonics transform under rotations as

Ymn (ϑ, ϕ) =

n∑
m′=−n

anm′Ym′n (ϑ1, ϕ1) . (6.16)

Consequently, the rotated SVWFs Mmn (r, ϑ, ϕ) [Nmn (r, ϑ, ϕ)] for given n can also
be written as a linear combination of SVWFs Mm′n (r, ϑ1, ϕ1) [Nm′n (r, ϑ1, ϕ1)] of the
same n. For our truncated expansion, we can express this with the help of the rotation
matrix (Mp

mn (kr)
N p

mn (kr)

)
= R (α, β, γ)

(Mq
mn (kr1)

N q
mn (kr1)

)
, (6.17)

where α, β, γ are the Eulerian angles characterizing the rotation.
For translations, things are more involved and expressing the rotated and translated

SVWF Mmn or Nmn requires a linear combination of both SVWFs Mm′n′ and Nm′n′

where the sum now also runs over n′. For the primed indices, we again have to truncate
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Figure 6.10: Sphere dimer geometry in top-view. The crossed circle indicates the electron
trajectory.

the sum over n′ at some maximum value N ′r, which has to be sufficiently large. Ulti-
mately, the relation between the SVWF expansions can be expressed with the help of
the matrices (Mp

mn (kr)
N p

mn (kr)

)
= T pq (kR0)

(Mq
mn (kr1)

N q
mn (kr1)

)
, (6.18)

where (p, q) is one of (1, 1), (3, 3), (3, 1) and R0 = R−R1.

Multiple Scattering Problem

So far, we have used the T-Matrix to calculate the scattered field for the incident field of
the moving electron. The incident field, however, is not restricted to some external exci-
tation, but could also be caused by another scatterer. We illustrate this for the example
of the sphere dimer. We can construct the T-Matrices of the two spheres by calculating
the T-Matrix T0 for a sphere located at the origin and using the translation matrices to
move the SVWF expansion to the new origin R1/2 = (±d, 0, 0), the coordinate systems
of which we denote with 1 and 2 respectively. We thus obtain the T-Matrices of the two
spheres T1 and T2. The incident field for sphere 1 is the field of the electron plus the
field scattered from sphere 2 and vice-versa. Expressing this in terms of the T-Matrices
and solving for the total scattered field yields the T-Matrix of the particle system which
in our case evaluates to

T0 =T 1
01T1

(
I− T 3

12T2T 3
21T1

)−1 (
I + T 3

12T2T 1
21

)
T 1

10 (6.19)

+T 1
02T2

(
I− T 3

21T1T 3
12T2

)−1 (
I + T 3

21T1T 1
12

)
T 1

20,

where the translation matrix T pij translates the SVWFs of kind p from coordinate system
i to system j. This expression can easily be generalized to a larger number of scatterers
that also can have arbitrary rotation. However, we restrict ourselves to the sphere dimer.
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Application to the Sphere Dimer

We choose the spheres to have 10 nm radius and shift them along the x axis with d =
±10.5 nm to obtain a 1 nm gap between the spheres. The permittivity is the same
Drude model as in the previous calculations. The impact parameter is chosen to be
21 nm. Using the formalism outlined above, we are able to calculate the T-Matrix for the
sphere dimer and obtain EEL and CL spectra. Figure 6.11 shows the spectra for different
maximum expansion orders Nr. Due to the solution of the multiple scattering problem
the convergence behaviour is now different from the examples above. We see, however,
that using Nr = 20 is sufficient to achieve reasonable accuracy. For the truncation
index of the translation matrices we have chosen N ′r = Nr. The spectra for a single
r = 10 nm sphere have been shown in Fig. 6.3 and in comparison we see that the dimer
posses a resonance at around 0.41ωp, which is at lower frequency than for the single
sphere, the dipole resonance of which occurred around 0.56ωp. Interestingly, the CLP

E
E
L
P
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.
u
.)

Nr = 16; Nr = 18; Nr = 20;

0.4 0.45 0.5 0.55 0.6 0.65 0.7
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Figure 6.11: EEL (top) and CL (bottom) spectra for the sphere dimer for different max-
imum expansion orders Nr. In contrast to the single sphere, the dimer
shows a significant CL signal for higher-order modes. The arrows indicate
the frequencies at which far-field patterns shown in Fig. 6.12 are calculated.

of the dimer shows contributions from higher order modes as well. This is in contrast
to the single sphere, the CLP of which was dominated by the dipole contribution. To
further investigate the radiation emitted by the electron-excited dimer, Fig. 6.12 shows
the far-field patterns of the scattered field at the frequencies indicated in Fig. 6.11.
Pattern 6.12(a) and 6.12(c) exhibit dipolar characteristic with moment aligned parallel to
the dimer-axis and the electron trajectory, respectively. While all peaks in the CLP have
a similar amplitude, pattern 6.12(d) shows a much more directed emission of radiation
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(a) ω = 0.415ωp (b) ω = 0.542ωp

(c) ω = 0.578ωp (d) ω = 0.601ωp

(e) ω = 0.639ωp

Figure 6.12: Far-field amplitude |Es,∞|2 as a function of the direction for the sphere
dimer at frequencies indicated in Fig. 6.11. For details see the text.
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than the other ones with most of the radiation being emitted to the positive x-y-direction.
This means that here, it is mostly emitted towards the electron beam. Thinking of the
dimer as a nano-antenna, we see that we can increase the directivity of the far-field
emission just as it is done in radio frequency antenna technology. This idea was already
applied to nano-antennas [7] and we will come back to it in Sec. 7.5.

For the dimer there are restrictions regarding possible electron trajectories, too. As
the expansion of the electron field (6.8) is only valid for |r| < b, where b is the impact
parameter, we can only excite the dimer with an impact parameter b > 20.5 nm in our
case. This prohibits to study some of the modes of the dimer in more detail. We will,
however, come back to the sphere dimer and study the modes in more detail using the
Discontinuous Galerkin Time-Domain method in Sec. 7.4.

6.4 Conclusion

We have applied the T-Matrix method, which is well established in optical scattering
calculations, to the problem of EEL and CL spectroscopy experiments. Results for
spherical particles have been presented and the influence of the important parameters,
like sphere size and electron velocity, has been discussed. The far-field patterns of the
excited modes have been computed and discussed. They were in particular useful for
the discussion of the prolate spheroid, where we could identify the two dipolar modes
along the long and short half-axes. Using a multiple scattering formalism, we were able
to treat a sphere dimer. While particles of almost spherical shape are preferred, the
method is not restricted to such particles.

In summary, we have shown that the T-Matrix method is well-suited for EEL and
CL spectroscopy simulations. The method is very efficient due to its semi-analytical
approach and for particles that posses a certain symmetry, is is particularly efficient.
Calculations for the spheroidal particle, e.g., required only 0.8 s per frequency. The
Null-Field Method as well as the derivation of the expansion coefficients of the incident
field restrict the choice of electron trajectories. We will come back to these restrictions
and how they can possibly be overcome in the conclusion of this thesis.
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In the preceding chapter, we have used the T-Matrix Method to calculate the electron
energy loss probability and the cathodoluminescence probability. The method has proven
to be efficient, however there are restrictions concerning the electron trajectory and as
well as the particle shape. In this chapter, we are going to apply the Discontinuous
Galerkin Time-Domain Method, introduced in Sec. 3.3, to the probability calculation.
It comes with a flexible spatial discretization and no a priori restrictions for the electron
trajectory. Also, it has the advantage of being a time-domain method, which will allow
us to directly observe the time evolution of the induced field. We will discuss the incident
field as a function of space and time, before we discuss the influence of some important
parameters on the results. Then, we will compare time-domain results for spheroids
with the T-Matrix frequency-domain results to check the accuracy of the time-domain
approach. Finally, we will exploit the advantages of the method to study the Sierpinski
triangle and a pair of nano-antennas.

7.1 Electron Excitation

The Total-Field/Scattered-Field formalism detailed in Sec. 3.3.5 enables us to inject a
given electromagnetic field into the computational domain. Likewise, the Scattered-
Field formalism allows to compute the field caused by a scatterer for a given incident
electromagnetic field. Therefore, we have to calculate the field caused by a single moving
electron in order to simulate EELS experiments using the DGTD.

We start by considering the charge and current distribution for a single moving electron

ρ (r, t) = δ (r−R (t)) , (7.1a)

J (r, t) = Ṙ (t) ρ (r, t) = Ṙ (t) δ (r−R (t)) , (7.1b)

where we have denoted the trajectory of the electron by R (t). The electromagnetic
potentials A (r, t) , φ (r, t) can be calculated from these expressions with the retarded
Green function

Gret
(
r− r′, t− t′

)
=

1

4π |r− r′|δ
( |r− r′|

c
−
(
t− t′

))
, (7.2)
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which is obtained from the Fourier transform of (2.27). The δ-distribution introduces
the retardation, i.e. any perturbation travels with the finite velocity c.

φ (r, t) =
q

4πε0ε

∫
d3r′

∫
dt′

1

|r−R (t′)|δ
( |r−R (t′)|

c
−
(
t− t′

))
(7.3a)

A (r, t) =
qµ0µ

4π

∫
d3r′

∫
dt′

Ṙ (t′)
|r−R (t′)|δ

( |r−R (t′)|
c

−
(
t− t′

))
(7.3b)

Due to the retardation, the t′-integrals can not be evaluated directly, but require some
arguing. We define the argument of the δ-distribution as

f
(
t′
)

=
|r−R (t′)|

c
−
(
t− t′

)
(7.4)

and exploit that

δ
(
f
(
t′
))

=

n∑
j=1

δ (t′ − tj)∣∣∣∣( dfdt′)t′=tj
∣∣∣∣ (7.5)

where tj are the n roots of f(t′). We evaluate the derivative in the above expression

df

dt′
= 1− 1

c

(r−R (t′)) · Ṙ (t)′

|r−R (t′)| (7.6)

With V (t′) =
∣∣∣Ṙ (t′)

∣∣∣ we can estimate that

1− V (t′)
c
≤ df

dt′
≤ 1 +

V (t′)
c

. (7.7)

As we know that V (t′) < c, we deduce that f (t′) is monotonous and can have no
more than one root. If there is none, we would end up with the unphysical result that
A ≡ 0, φ ≡ 0, so there must be exactly one root tret (r, t) which is the solution of the
equation

tret (r, t) = t− 1

c
|r−R (tret (r, t))| . (7.8)

We can now perform the t′-integration in (7.3) and obtain

φ (r, t) =
q

4πε0ε

1

|r−R (tret)| − 1
c (r−R (tret)) · Ṙ (tret)

, (7.9)

A (r, t) =
qµ0µ

4π

Ṙ (tret)

|r−R (tret)| − 1
c (r−R (tret)) · Ṙ (tret)

. (7.10)

These equations define the electromagnetic potentials A and φ for a moving charge and
are termed Liénard-Wiechert potentials. Due to the retardation their evaluation for
general particle trajectories is quite involved. As discussed in Sec. 5.4, if incident on
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some metallic target particle, the electron will induce some electric and magnetic fields
at the particle which act back onto the electron. Therefore, it is subject to the force

FL (r, t) = qEind (r, t) + qṘ (r, t)×Bind (r, t) (7.11)

In addition, any accelerated charged particle will emit radiation, which leads to further
energy loss and therefore to a change in the state of motion of the electron. The rigorous
solution would require the following steps at every time t:

1. Evaluate the fields caused by the electron

2. Evaluate the fields induced at the particle surface

3. Evaluate the force FL and energy emitted by the electron

4. Integrate the equation of motion of the electron

5. Continue with step 1

Figure 7.1: Plot of the electric field vector and equipotential lines of an electron mov-
ing along the z-direction for different velocities v = 0.1c, 0.5c, 0.9c. With
increasing velocity, the field is compressed in the direction of travel, however
it remains central.

Such coupled electrodynamic-Newtonian mechanics calculation are used, e.g., in plasma
physics in so-called Particle-in-Cell simulations for a huge number of particles [104]. In
principle, the same technique could be applied here for just one particle. However, the
accurate description of EELS experiments does not require a rigorous solution of the
equation of motion of the electron. In the derivation of the loss probability in Sec. 5.4
we have applied the no-recoil approximation, which assumes that the momentum of the
electron remains unchanged. Of course, the same argument applies here and we can
assume that Ṙ (t) = v = const., which simplifies things a lot. First of all, the trajectory
of the electron is R (t) = vt + r0. This means, there is no acceleration and thus no
emission of radiation from the electron. Furthermore, the Liénard-Wiechert potentials
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and the resulting fields can be evaluated analytically. We obtain:

E (r, t) =
qγ

4πε0ε

(R (t)− r)(
|R (t)− r|2 + (1/γ2c2) ((R (t)− r) · v)2

)3/2
, (7.12a)

B (r, t) =
v

c2
×E (r, t) , (7.12b)

with γ = 1/
√

1− (v/c)2. The resulting field is still central, though it gets compressed
in the direction of travel. This result is somewhat counter-intuitive as one might have
expected the retardation to produce a more complicated field pattern. Figure 7.1 shows
the field caused by an electron moving along the z-direction. For small velocities, the
field remains almost isotropic as in the v = 0 case, for larger velocities, however, it
gets compressed in the direction of travel more and more. This effect arises due to the
retardation and the large velocity of the electron.

Alternatively, one can derive the expressions for the fields in terms of general relativity.
In the eigensystem of the electron it is at rest and the field caused by the electron is the
common central field from electrostatics, i.e.

Eel (r) =
q

4πε0ε

1

|r|2
(7.13)

and in this case, of course, Bel = 0. We now can apply the Lorentz transform to
calculate the field that an observer in the reference system will measure and obtain the
same expressions Eq. (7.12) but by a completely different method [8].

7.2 Sphere - Discretization and Accuracy

Having the electric and magnetic field caused by the electron as a function of time and
space, we are now able to use the fields in the DGTD to model Electron Energy Loss
(EEL) and cathodoluminescence (CL) experiments within the no-recoil approximation.
This can be done using either the Scattered-Field/Total-Field formalism (TFSF) or a
pure Scattered-Field formalism (SF) as explained in Sec. 3.3.5. As we calculate in time-
domain and on a finite computational domain, we have to shortly discuss how we can
obtain the EEL and the CL probability, which we have so far only discussed in frequency-
domain in Sec. 5.4. Apparently, we will have to perform a Fourier transform to obtain
the Fourier components of the fields required in Eqns. (5.3) and (5.6). To see how we
can calculate these components, we will first introduce the geometry for a typical EELS
calculation for the DGTD.

The general setup is sketched in Fig. 7.2. It shows a cross-section of the computational
domain that is discretized with tetrahedral elements as outlined in Sec. 3.3. The outer
boundaries are equipped with PML boundaries that absorb any incident fields without
reflection to simulate unbounded space (cf. Sec. 3.3.5). The dark blue region is the
scattered field region (SF), the light blue region is the total field region (TF), where both,
the excitation and the scattered field, are propagated. The excitation field diverges at
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the electron position and to screen this divergence, the electron must be located outside
the total field domain. This is achieved by extending the SF region to a small channel
that intersects the TF region and contains the electron trajectory. This small channel
can be seen in Fig. 7.2 and also in Fig. 3.6 on Page 46. Using the pure Scattered-Field
(SF) formalism, we do not have to introduce such a virtual boundary in the domain.
The SF formalism, however, relies on the linearity of Maxwell’s equations in the entire
domain, while the TFSF formalism only relies on the linearity at the virtual boundary.
In the case of a non-linear material scatterer we had to use the TFSF formalism. We will
restrict ourselves to linear permittivities in this thesis and we are free to use either the
TFSF of the SF formalism. The small channel introduced in the TFSF setup increases
the number of overall elements significantly and thus we will prefer to use the pure SF
formalism in our calculations.

dPML

sz

re (t0)PML

PML

SF

TF

Figure 7.2: DGTD setup for EELS. Cross-section of Fig. 3.6. Sketch of the geome-
try for EELS calculation in the Total-Field/Scattered-Field formalism. The
computational domain is surrounded by PML, a virtual boundary is intro-
duced that divides the domain outside the scatterer into total field (TF, light
blue) and scattered field (SF, dark blue) region. The electron trajectory as
well as the initial electron position are indicated in red.

In either formalism, we directly obtain the induced field along the electron trajectory,
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which is exactly the quantity needed to evaluate the loss probability (5.3). In order to
perform the Fourier transform to obtain E ind (re (t) , ω) we will have to record the induced
Eind (re (t) , t) along the electron trajectory and perform the Fourier transform in every
point. Here, the DGTD method imposes two restrictions. First, the computational
domain is finite and thus we can only calculate the electric field along the part of the
trajectory inside the computational domain. Second, the simulated time is finite and
in order for the Fourier transform to converge, we must propagate the fields until they
have decayed sufficiently. These two restrictions are no principle hurdle for the method
when trying to simulate EELS on metallic nano-particles.

e−

t [fs]0 1 2 3

0

10

−10

z [nm]

Figure 7.3: Example of induced field. We plot the z-component of the field induced
at a 10 nm radius aluminum sphere along the electron trajectory as a function
of time. The position of the electron as well as the relation to the sphere is
indicated. Due to the high damping in aluminum, the field decays rapidly.
We also see that the field is strongly localized at the particle.

Figure 7.3 shows an example of the induced field along the electron trajectory as a
function of time. The target particle is a 10 nm sphere with a Drude model for aluminum.
We see that the fields are localized at the particle and decay in time. Both characteristics
facilitate the simulation of EELS experiments on a finite computational domain in finite
simulation time. In the following two sections we will study how these truncations
influence the results for the loss probability.

7.2.1 Finite Simulation Time

From the induced field shown in Fig. 7.3 we calculate the Fourier components in order to
evaluate the loss probability. We have to run the simulation until the fields have almost
vanished to get converged Fourier components. To check the influence of simulation
time on the results, Fig. 7.4 shows the loss probability for a gold sphere for different
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Figure 7.4: Influence of the time probability in the DGTD simulations. If the simula-
tion time is too short, the Fourier components of the induced field have not
converged and cause oscillations in the loss probability.

times. For te = 17 fs there are huge oscillations, the amplitude of which decreases for
te = 33 fs. To get converged results we have to choose te = 67 fs in this simulation. The
time necessary depends, of course, on the particle properties, especially the permittivity.
For the aluminum Drude model used to generate Fig. 7.3 the damping is much higher
as compared to the gold Drude model used for the tests above. For dimers, we will have
to use simulation times of up to 230 fs to get converged results.

In summary, choosing the simulation time too short will result in an oscillatory be-
haviour of the loss probability and can always be compensated for by increasing the
simulation time. Therefore, we can easily rule out any artefacts resulting from the finite
time.

7.2.2 Finite Computational Domain

We now consider the finite computational domain required by the DGTD method. In
principle, the electron trajectory extends to infinity. Again, we benefit from the char-
acteristics of the induced surface plasmons. They are localized at the scatterer surface
and decay with increasing distance from the surface. Therefore, we can choose the com-
putational domain sufficiently large, such that the induced field at the boundaries of
the computational domain is negligible. Thus, the distance between scatterer and the
PML, which we want to call dPML has to be chosen sufficiently large. This is especially
important in order to prevent the surface plasmons from leaking into the PML where
they would be absorbed which would ultimately lead to an overestimated damping. We
note that the initial position of the electron re (t0) is not necessarily located inside the
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Figure 7.5: Influence of the size of the computational domain on the loss probability in
the DGTD simulations.

computational domain. The electron is represented by its electric and magnetic field
either on the TFSF boundary, or, if a SF formalism is used, inside the scatterer. These
fields may well be calculated if the electron is outside the domain.

The results for different scatterer-to-PML distances dPML are shown in Fig. 7.5. In
contrast to the finite computation time results in Fig. 7.4, the results for the different
domain sizes do not show a convergent behaviour. We see, however, that the spectral
position of the loss peaks does not shift. Furthermore, the differences in the peak
amplitude for the different sizes are quite small. The main deviations occur at the high-
frequency end of the spectrum. We have already discussed this part of the spectrum
when discussing results for the sphere using the T-Matrix method in Sec. 6.3.1. There,
we have seen that the broad peak at the end of the spectrum consists of the contributions
of a huge number of multipoles. Thus, as far as the applicability of the method to the
identification of individual eigenmodes of the particle is concerned, the deviations are
acceptable. More importantly, we have a high accuracy concerning the spectral position
of the first few eigenmodes and a reasonable accuracy for the amplitude of the loss peaks.

7.2.3 Spatial Resolution

Finally, the tetrahedral mesh determines the accuracy of the results. All geometric
properties of the particle must be represented accurately. Also, the mesh must be fine
enough to resolve the incident field of the electron. For the particles considered in the
following, the latter condition is the stronger one. Therefore, geometric features are
well represented. Concerning the incident field, we can use the T-Matrix method to
benchmark the DGTD results to see whether we get a good agreement. This is done in
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the following section for the spheroid.

7.3 Spheroid — Far-field Patterns and Cathodoluminescence

We have already studied the spheroid in Sec. 6.3.2 using the T-Matrix method. In this
section we will compare the T-Matrix results with those obtained by the DGTD, not
only for the loss probability but also for the photon emission probability, which can also
be obtained using the DGTD.

The parameters are the same as in Sec. 6.3.2 and in addition we choose the distance
to the PML to be dPML = 100 nm and the maximum element size for the scatterer to
be hscat = 1 nm. The computation time is te = 133 fs, which is sufficient for the fields
to decay. Before showing the results, we will briefly discuss how the far-field properties
can be calculated in the DGTD method.

7.3.1 Cathodoluminescence

The CL probability can be evaluated in the DGTD framework, too. As it is a frequency-
domain quantity, we will have to perform a Fourier transform just as in the calculation
of the loss probability. We are free to calculate the CL probability on any surface S
enclosing the scatterer according to Eq. (5.6). Because F (E)×F (H) 6= F (E×H), we
have to first perform the Fourier-transform and then evaluate the cross product. This
means we have to store the field values for each time-step for every node of the surface
S, which increases the memory demands of the method, however on modern computers
these demands can easily be satisfied. Thus, the DGTD method can also be used for
the simulation of cathodoluminescence experiments. Figure 7.6 shows the EELS and CL
probability of the prolate spheroid introduced in Sec. 6.3.2 calculated with the DGTD
and the T-Matrix method for comparison.

The agreement for the EELP for the lowest order modes is excellent. Some minor
deviations occur for the higher order modes between 0.65ωp and 0.7ωp. Nevertheless,
the agreement is still good.

For the CLP we also see an excellent agreement between the T-Matrix and the DGTD
results. Both, the spectral position as well as the amplitudes of the peaks are accurately
reproduced. This proves that the DGTD is well suited not only for the EELP calculation,
but also for the calculation of the CLP. In the next section we will show that also the
far-field patterns can be calculated accurately.

7.3.2 Far-field Patterns

The far-field patterns of the spheroid have already been discussed using the T-Matrix
method in Sec. 6.3.1. We will now show that the patterns can also be calculated in the
DGTD framework. Here, we have only a finite-computational domain and in order to
reduce the influence of the near-fields, we could increase the size of the computational
domain to a certain extend. This, however, will also increase the number of elements
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Figure 7.6: Comparison of the EEL and CL probability for the prolate spheroid obtained
using the T-Matrix method and the DGTD method. We see a very good
agreement between the two methods for both, the spectral position and the
amplitude of the peaks in the spectra.

and thus the computational effort. Alternatively, we can employ a near-to-far field
transformation.

The basic equation for the far-field calculation is the representation theorem for elec-
tromagnetic fields (3.47). It can be used to represent the electric field outside a given
volume V as surface integrals over ∂V involving the tangential components of the elec-
tric and magnetic field on the surface ∂V as well as the Green function of the Helmholtz
equation. The surface ∂V is not restricted to correspond to a physical boundary. We
are free to introduce a virtual boundary of spherical shape that completely encloses the
scatterer. If we assume the observation point r, where we want to evaluate the far-field,
to be in a huge distance to V we can make use of the far-field approximation. The
situation is sketched in Fig. 7.7.

We have already discussed that the asymptotic form of the scattered field is a spherical
outgoing wave, cf. Eq. (5.7a) on P. 70. Thus we can assume that k = ker. Furthermore,
the gradient operator ∇ acting on r can be replaced by ∇ ≈ −ik. Finally, we see that
|r− r′| ≈ |r|. With these assumptions, the Green function of the Helmholtz equation in
the far-field approximation reduces to

1

4π

e−ik|r−r
′|

|r− r′| ≈
1

4π

e−ikr

r
eik·r

′

∇ ≈ −ik

 for r′ ∈ ∂V and |r| � |r′| (7.14)
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with k = ker. By plugging in these expressions in the representation theorem (3.47), we
obtain the so-called near-to-far-field transform. It rules out all near-field contributions

∂V

r

r′ r− r′

Figure 7.7: Sketch of the far-field approximation. The observation point r is far
away from the point r′. The latter one is assumed to be on a spherical
surface ∂V which encloses the scatterer. Under these assumptions the Green
function of the Helmholtz equation can be simplified as explained in the text.

and allows for an accurate calculation of the far-field amplitude that is proportional to
the angle-resolved photon emission probability as shown in Sec. 5.4. With this, we can
evaluate the far-field patterns and compare them to the results of the T-Matrix method.
A comparison is shown in Fig. 7.8. We see an excellent agreement between the results
verifying the applicability of the DGTD method to angle-resolved CL calculations.

7.4 Sphere Dimer - Dark Mode Excitation

While the single particle properties can be nicely obtained using EELS, also the coupling
between plasmonic particles can be studied. In contrast to optical spectroscopy, the
unique characteristics of EELS allow for a more detailed analysis of particle systems. In
the following we will demonstrate this on a simple test system - a dimer of nominally
identical spheres.

We already discussed the sphere dimer using the T-Matrix method in Sec. 6.3.3,
however there, the electron trajectory had to be located outside the smallest sphere
circumscribing the scatterer (also, cf. Sec. 3.2.3). In the DGTD method, there is no
such restriction and we can investigate the plasmonic properties of such a dimer in
more detail. Also, because the DGTD works in time-domain, it is possible to study the
time-evolution of the induced field.

7.4.1 Time-Evolution of the Excited Fields

Being a time-domain method, it is straight-forward to study the time evolution of the
excited fields using the DGTD. Figure 7.9 shows a dimer of 10 nm spheres with a Drude
model to approximate the permittivity of aluminum (cf. Tab. 2.1). We plot the z compo-
nent of the electric field (causing the losses according to Eq. (5.3)) in the plane containing
the centers of the spheres and the electron trajectory. We are using a TFSF formalism
here, and the electron is contained in the small SF channel indicated by two lines be-
tween the spheres. The left column of Fig. 7.9 from top to bottom shows the excitation.
At t = 0.18 fs the electron, indicated as a black circle, approaches the dimer. A detailed
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Figure 7.8: Far-field patterns for the lowest order mode of the prolate spheroid obtained
with the DGTD and T-Matrix method. Both, the overall shape as well as
the amplitude are in agreement. This also holds for the higher order mode
patterns (not shown here).

look at the SF channel shows how the incident field is only propagated outside the chan-
nel. In the lower left image at t = 0.38 fs, one can already see that the electron induced
an electric field at the particles that is sustained by the dimer. This induced field is
also propagated inside the SF channel. The induced fields are oscillating and propa-
gate along the particle surface at which they are localized. Skipping forward in time
to t = 0.82 fs, we see that the fields are still sustained by the dimer. The three-image
sequence on the right give an impression of the propagation of the fields. Starting from
almost the center of the dimer, the field minimum, depicted in blue and indicated by a
white arrow, propagates in positive z direction and finally splits up into two parts that
are localized to the respective sphere. The field amplitude in the dimer gap is large due
to the coupling whereas the amplitude decreases as the surface plasmons propagate to
the far sides of the spheres. Due to the intrinsic damping of the dimer material, these
oscillating fields decay and finally vanish at later times.

7.4.2 Dark and Bright Mode Excitation

In this section, we will use the same geometry as in the preceding section, however we
now use a Drude model for gold instead of aluminum (cf. Tab. 2.1). The lower damping
for gold leads to narrower peaks in the spectra and the lower order modes are well
separated.

The coupling between the modes of the spheres can also be discussed within a hy-
bridization model [93]. Inspired by molecular physics the modes are categorized as bond-
ing and anti-bonding modes. If we approximate the spheres as dipoles, this translates to
modes where dipole moment of the spheres is parallel (bonding) or anti-parallel (anti-
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Figure 7.9: Time evolution of the z component of the electric field for an aluminum
sphere dimer. The excitation is shown in the left-hand side images, where
the electron moves in positive z direction and is marked with a black circle.
The right-hand side images show the field at later instances. The white arrow
indicates the propagation of the excited surface plasmons. For details see the
text. Adapted from [M4].
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Einc

(a) Bright mode, light excitation

Einc

(b) Dark mode, electron excitation

Figure 7.10: Mode hybridization in dimers. (a) When excited optically, e.g. with a
laser beam, the dipole moments of the two spheres will be aligned parallel
to the incident light polarization. (b) Modes where the dipole moments
are anti-parallel cannot be excited optically but require a source localized
between the sphere, such as the electron excitation in EELS.

bonding). Figure 7.10 gives a schematic representation of these modes.
For an eigenmode to be excited, not only the frequency of the excitation has to match

the frequency of the eigenmode, but also the symmetry of the eigenmode must be com-
patible with that of the excitation. As apparent from Fig. 7.10(a), the modes with
parallel dipole moments can be excited with light, e.g. with a plane wave as indicated
in the figure. Due to symmetry reasons, the modes with anti-parallel dipole moments
cannot be excited this way. Accordingly, these modes are also called bright modes and
dark modes, respectively. The dark modes can be excited, however, by a localized source
between the spheres. This can be, e.g. the spontaneous emission by a molecule in the
gap or the electron in EELS experiments, if the electron trajectory passes the sphere gap
as indicated in Fig. 7.10(b). We study the EEL spectra for the gold sphere dimer for
different excitation trajectories in Fig. 7.11. We note that for the central excitation at
position 1 indicated in the figure, the bright modes are even symmetry forbidden. Hence,
the optically bright modes are the dark modes of EELS. For the excitation at positions
2 and 3, we expect that these optically bright modes are excited as well. We see that
for position 2 and 3 (blue and red curve) there are two modes between at 0.43ωp and
0.5ωp that are excited, that do not appear in the central excitation (green curve). Hence,
these modes are optically bright modes. On the high frequency end of the spectrum, i.e.
> 0.7ωp we see several modes that are only excited in the central excitation. Thus, they
can assumed to be optically dark modes.

7.5 Sphere Dimer as a Nano-Antenna

Antennas are well known in every-day life and much of our modern communication relies
on them, be it mobile phones, radio or television broadcasting. Basically, antennas are
devices that turn localized currents into propagating electromagnetic radiation and vice-
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Figure 7.11: EELP of a gold dimer of 10 nm sphere excited at different positions to
selectively excite dark modes. For details see the text.

versa. Radio frequency antennas are macroscopic objects. For example, a simple dipole
antenna for terrestrial video broadcasting (DVB-T) has the size of some 20 cm and the
wavelength of the used frequency bands (VHF III, UHF IV, V) is between 60 cm and
160 cm. The scale invariance of Maxwell’s equations (cf. Sec. 2.1.6) suggests that an
antenna for light should have dimensions of some 100 nm. Indeed, the notion Nano-
Antenna is already well established in the literature [105] and analogs of radio frequency
antenna techniques can also be applied to nano-antennas. One example of which is
the combination of several components to increase the directivity of such antennas,
which are then termed Yagi-Uda antennas. In Sec. 6.3.3 we have studied the far-field
patterns of the sphere dimer and have observed one mode with a high directivity around
ω = 0.6ωp, plotted in Fig. 6.12(d). We now exploit this characteristic to construct a
nano-transmission line. Our transmitter will be a sphere dimer, which is excited by
an electron. In the high transmission direction, that we estimate from the far-field
pattern, we place a second dimer that will act as receiver. The distance between the
dimers is chosen sufficiently large to suppress a direct coupling due to the evanescent
near-fields. The basic setup is shown on the left-hand side of Fig. 7.12. The lateral
distance is dx = 420 nm and the vertical distance is dz = 130 nm (not to scale in the
figure). In the right-hand side of Fig. 7.12 we plot the z-component of the field that
is received along the blue line as a function of time. We see oscillations of the field
after a short time. This radiation originates from the excited transmitter dimer. We
observe huge field amplitude near the receiver dimer at z = +65 nm, which indicates that
the radiation from the transmitter indeed excites the receiver. These localized excited
fields are sustained even after the radiation from the transmitter dimer has vanished.
To further investigate the transmission, we perform a Fourier transform of the received
field and plot the power spectrum of the Ez component as a function of the z-coordinate
in Fig. 7.13. We clearly see a peak near the location of the receiver dimer at +65 nm

103



7 The Discontinuous Galerkin Time-Domain Method for Electron Microscopy

t [fs]5 10 15

dx

100

−100

z [nm]

0

e−

Figure 7.12: A nano-transmission-line. The left-hand dimer is excited by an electron and
acts as a transmitter. The right-hand side dimer is not excited and acts as
a receiver. The lateral distance is dx = 420 nm to prevent a coupling of the
two dimers by the near-fields. The field along the dashed vertical line near
the receiver dimer is shown on the right-hand side of the figure.

Figure 7.13: Absolute value of the Fourier component of Ez as a function of frequency
along the electron trajectory.

for a frequency around 0.6ωp. As this is exactly the frequency of the high directivity
mode, we conclude that we have indeed used the two dimers as a nano-transmission line
facilitating ”wireless communication in the nano-world”.

104



7 The Discontinuous Galerkin Time-Domain Method for Electron Microscopy
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Figure 7.14: Sierpinski triangle in 3rd iteration represented by a tetrahedral mesh. The
electron trajectory passes the geometric center of the triangle as indicated.

7.6 Sierpinski Triangle

So far, we have only considered particles of simple shape that could also be treated
using the T-Matrix method. One of the valuable advantages of the DGTD method is the
tetrahedral mesh, which allows for an accurate representation of complicated geometries.
To demonstrate the capabilities of the method, we choose the target particle to be the
self-similar Sierpinksi triangle. It can be constructed by starting with a solid triangle,
dividing it into four triangles and removing the middle one. Iterating this process another
two times for all resulting triangles leads to the structure shown in Fig. 7.14. Fractal
antennas are a well known approach in radio-frequency applications and recently also
the nano-meter equivalent was investigated numerically simulating optical spectroscopy
[106]. Due to the flexible tetrahedral mesh of the DGTD, we are able to simulate EELS
and CLS experiments for such complicated structures, too. Figure 7.15 shows the EEL
and CL probability for the structure and excitation shown in Fig. 7.14 for different side-
lengths l. The EELP shows three distinct peaks at the low-frequency end of the spectrum
that shift according to the side-length. Thus, they could correspond to the fundamental
modes of the faces of the triangle. These modes, however, do not significantly contribute
to the CLP. In the mid- and high-frequency region, we see a huge number of modes that
form a broad band response of the structure that contributes to both, the EELP and the
CLP. We study the influence of the iteration on the loss probability in Fig. 7.16. The
parameters are the same as above, but now we also consider the second iteration of the
triangle. At the low-frequency end of the spectrum we see two peaks for the second as
compared to three peaks for the third iteration. This suggests that these peaks indeed
are associated with the fundamental modes of the faces of the triangle faces. After the
common spectral gap, we see that for higher frequencies, there are fewer modes that
contribute to the losses for the triangle in second iteration. We see that the DGTD
opens the way towards the analysis of complicated geometries.
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Figure 7.15: EEL and CL probability for the Sierpinski triangle in 3rd iteration for differ-
ent side lengths. The EELP shows three distinct peaks at the low-frequency
end of the spectrum that shift according to the sidelength. For higher fre-
quencies, a number of peaks contribute and form a broad band of non-
vanishing loss-probability. This broad band also dominates the CLP.
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Figure 7.16: EEL spectra for the Sierpinski triangle with l = 100 nm in second and third
iteration. On the low-frequency end of the spectrum the third iteration
leads to a new peak.
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7.7 Split Ring Resonator - Babinet’s Principle

Split Ring Resonators (SRR) are the paradigm meta-atom for building metamaterials.
Intuitively, a SRR acts as a LC-circuit. A closed ring would sustain a ring current
possessing a considerable magnetic moment. If the ring is broken by a slit, this slit will
act like a capacitor and the split ring will basically act like an inductance. In contrast to
natural materials, a metamaterial consisting of SRRs will show a considerable magnetic
response in the visible part of the electromagnetic spectrum, given the parameters of the
SRR as size, gap and material are carefully chosen. For such materials the permeability
µ could even be negative. Together with the metallic properties of the SRR, i.e. ε < 0,
one could construct materials with a ε < 0 and µ < 0 at the same frequency. As
pointed out by Veselago [18], in this case, the basic equations governing electrodynamics
would remain unchanged, e.g. the refractive index n =

√
εµ, however for a plane wave,

E, B and k would merely form a left-handed set of vectors instead of a right-handed
one if we had ε > 0, µ > 0. Constructing such a material, however, would require to
exactly match the resonance frequencies of ε and µ, which is far from being feasible
even with today’s fabrication technologies. Nevertheless, potential applications, such as
optical cloaking [107] are already being discussed. Reaching for improved metamaterials
requires the exact characterization of the meta-atom, e.g. the SRR. Here, EELS offers
an excellent tool to study the plasmonic properties of SRRs as demonstrated recently
[M3, 108]. Also, the experiments performed in [M3] were simulated using the DGTD
and the results compared to the measured spectra. To that end, we represent the SRR
with a tetrahedral mesh. The lateral dimensions of the SRR are approx. 200 nm, the
thickness is assumed to be 35 nm. The SRR is suspended on a 30 nm thick silicon nitride
substrate. Further details on the fabrication process can be found in [M3].

Figure 7.17, that we have already encountered in Chap. 5, shows simulated and mea-
sured spectra of a single gold SRR obtained at three different spots. We see a very
good agreement between simulation and experiment. The major deviations concern the
relative amplitudes of the loss peaks and the fine structure of the peaks above 2.0 eV.
The latter one can be explained by the energy resolution of the measurements, which is
deuced from the width of the ZLP and evaluates to 0.18 eV. Therefore, fine features are
likely to be smeared out in the measurement while they are present in the simulation.
This also reduces the amplitudes of the peaks which explains that the peaks in the red
and green curve at 0.7 eV and the one in the blue curve at 2.0 eV are more pronounced
in the simulation.

A special mode of operation in EELS experiments is the so-called energy-filtered EELS.
Here, the electron beam is scanned across the structure and the number of electrons
within a narrow energy window in measured. Such measurements result in so-called
EELS maps. We show the maps at different energies obtained experimentally and nu-
merically for the SRR in Fig. 7.18 and its complementary structure (an aperture in a
gold film) in Fig. 7.19. Dark blue colors correspond to a low loss probability, bright yel-
low colors to a high one. Again, we see a very good agreement between the experiment
and the simulation. We have already discussed that the loss probability is determined
by the Ez component of the excited eigenmodes. In the case of well separated modes,
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Figure 7.17: EEL spectra of a single gold SRR, measured (left-hand side) and simulated
using the DGTD (right-hand side).The scale bars are 200 nm. For details
see the text.

Figure 7.18: Experimental (top) and numerical (bottom) EELS maps of a SRR for dif-
ferent loss energies. Blue colors correspond to low, yellow colors to high
amplitudes. Scale bars are 200 nm. We see a very good agreement between
theory and experiment. Adapted from [M3].

energy-filtered EELS thus maps the Ez component of a single eigenmode. For planar
metallic structures like the SRR, the electric field component can be assumed to be pro-
portional to the current density. Accordingly, low loss probabilities correspond to nodes
in the current density. With this we see that the current density has one node for the
lowest mode (b) in Fig. 7.18. For mode (c), we observe two nodes located at the arms of
the SRR and three nodes for mode (d). The discussion for the complementary structure
is not that straight-forward. However, we can make use of the generalized Babinet prin-

108



7 The Discontinuous Galerkin Time-Domain Method for Electron Microscopy

Figure 7.19: Experimental (top) and numerical (bottom) EELS maps of the complemen-
tary SRR structure for different loss energies. Scale bars are 200 nm. Again,
we see a very good agreement between theory and experiment. Adapted
from [M3].

ciple [109]. Originating from scalar diffraction theory for screens with apertures and the
complementary screen, it has also been applied to vector diffraction theory. It states that
the electric field of the direct structure and the magnetic field of the complementary one
are proportional and vice-versa. Figure 7.20 shows the z component of the electric and
magnetic field for the SRR and its complementary structure. The fields are recorded in a
plane 20 nm above the structure. The structures are excited by a plane with polarization
indicated by the white arrows. We see indeed, that the electric and magnetic field of the
direct structure are proportional to the magnetic and electric field of the complementary
one, respectively as predicted by the generalized Babinet principle. We also see that
indeed the Ez component of the direct structure corresponds to the EELS maps for the
direct structure in Fig. 7.18. Finally, we see that the EELS maps of the complementary
structure correspond to the magnetic field of the direct structure.

7.8 Conclusion

In this chapter, we have extended the DGTD method to the simulation of EELS and
CLS experiments, which required to calculate the electromagnetic field caused by a mov-
ing electron. This makes the advantages of the DGTD method, which are the flexible
spatial discretization, high order accuracy and the possibility to include non-linearities,
available for electron microscopy simulations. To the best of the author’s knowledge it
is the first report on a time-domain approach to EELS simulations and the first one of
CLS experiments that does not use an approximation of the incident field. We have
discussed the influence of the finite computational domain and finite simulation time,
and we have seen that we get accurate results with reasonable computational resources.
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Figure 7.20: Demonstration of the generalized Babinet Principle. Absolute value of the
z component of the electric and magnetic field for the SRR (top) and its
complementary structure (bottom), excited by a plane wave with the re-
spective photon energy and polarization as indicated by the arrows. We see
that for the direct structure the Ez component is proportional to the Bz
component of the complementary one and vice-versa. Taken from [M3].

We have benchmarked results for a spheroidal particle for both, EEL and CL probability
plus far-field amplitude against results obtained with the T-Matrix method. We have
seen an excellent agreement, which was not necessarily expected when comparing re-
sults of a time-domain and a frequency-domain method. The advantages of the flexible
spatial discretization have been demonstrated by simulating EELS and CLS on a fractal
structure as the Sierpinski triangle. The advantage of the time-domain approach was
demonstrated on a nano-transmission line consisting of two sphere dimers, where one
was excited with an electron acting as a transmitter and the other, far from the excited
one, acted as a receiver. Finally, the method has proven to yield results that are in very
good agreement with measurements performed on a Split Ring Resonator and its inverse
structure.

In summary, the Discontinuous Galerkin Time-Domain method can be considered as
a reliable tool for electron microscopy simulations. The flexibility regarding the spatial
discretization comes at the price of higher computational cost as compared to the T-
Matrix method. However, a time-domain method that may be extended to include
non-linear material properties might be useful in the future simulations.
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In this thesis we have presented simulations of experiments involving metallic nano-
particles. We have applied available methods to the problem of light-scattering from
spheroidal silver nano-particles in Chap. 4. We have compared the results of several
numerical methods for the near-field at the particles and also the scattering efficiency.
All methods have shown good results, however, the Discrete Dipole Approximation re-
quires massive computational resources to yield good accuracy as compared to the other
methods.

Having tested the numerical methods, we were able to undertake the simulation of
experiments where spherical silver nano-particles can be transformed to spheroidal shape
using laser irradiation. The transformation process is believed to crucially depend on
the electric near-field enhancement inherent to resonantly excited metallic nano-particles.
The simulation results were shown to be in good agreement with the possible explanation
of the process, giving evidence that the near-field plays indeed a crucial role.

Beyond the application of numerical methods, we have also extended two available
methods for light scattering, the T-Matrix Method and the Discontinuous Galerkin Time
Domain method (DGTD), to be applicable for Electron Energy Loss (EELS) and Cath-
odoluminescence Spectroscopy (CLS) experiments. The necessary extensions have been
presented and were the spherical vector wave function expansion coefficients of the field
caused by a moving electron for the T-Matrix method and the field as a function of time
and space for the DGTD Method.

The T-Matrix method is very efficient due to the semi-analytical approach and can
be applied to particle shapes usually encountered in EELS experiments, like spheres,
sphere dimers and nano-rods. We have shown results for these particles for both, EELS
and CLS experiments. Furthermore we were able to study the far-field pattern emitted
by the excited nano-particles. Overall, the T-Matrix approach to EELS and CLS is very
promising and the efficiency of the method could open up the way for the optimization of
metallic nano-structures for a given purpose. To improve the applicability of the method
to the interpretation of experiments, there are some desirable extensions. In the scope
of this thesis, unfortunately, it was not possible to cover them all. The most important
aspect would be the inclusion of a substrate to support the particle under examination.
This is no principle hurdle for the method, however, if the electron trajectory is supposed
to intersect the substrate, the derivation of the expansion coefficients must be adapted.
The same holds true for electron trajectories penetrating the particle itself. In that case,
the longitudinal modes must be taken into account in the internal field.

The Discontinuous Galerkin Time-Domain (DGTD) method was shown to be well-
suited for electron microscopy simulations as well. It has the advantage of being very
flexible regarding the particle shapes, however this comes at the price of higher compu-
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tational demands as compared to the T-Matrix method. Nevertheless, computations can
easily been done on a modern desktop computer. Here, improvements of the numerics,
especially the use of general purpose graphics processing units, might yield a dramatic
increase in efficiency. Another advantage of the DGTD method is the computation in
time-domain. Comparing results with T-Matrix results has shown an excellent agree-
ment, therefore the time-domain approach can be considered validated. It allowed to
study the time evolution of the electromagnetic fields and we have exploited this ability to
study the fields induced at a sphere dimer as well as to illustrate a nano-transmission line
consisting of two sphere dimers. Most importantly, we had the opportunity to compare
numerical and experimental results for a split-ring resonator and have seen a very good
agreement. Further development for the DGTD surely should exploit the time-domain
approach to include more sophisticated, non-linear material models, like e.g. the hy-
drodynamic model. Recent experiments suggest that the classical Drude and Lorentz
model are valid down to the nano-meter regime 1, however, more sophisticated models
could yield better agreement on even smaller scales. Here, the DGTD could be used
in conjunction with Electron Microscopy experiments to find out, for what dimensions
classical electrodynamics is still valid and what new effects are yet to be found.

1arXiv:1112.5008v1
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[83] A. A. Ünal. “Time-resolved investigations on ultrafast shape modification dy-
namics of silver nanoparticles embedded in glass”. PhD thesis. Martin-Luther-
Universität Halle-Wittenberg, 2009.
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