"Die mutualistische Interaktion von Arabidopsis thaliana und Piriformospora indica - eine Metabolomanalyse"

Dissertation

zur Erlangung des akademischen Grades

Doctor rerum naturalium (Dr.rer.nat.)

vorgelegt der

Naturwissenschaftlichen Fakultät I

Biowissenschaften

der Martin-Luther-Universität Halle-Wittenberg

von

Frau Claudia Bernstein

geb. am 14.05.1983 in Weißenfels

Gutachter:

1. Prof. Scheel, Leibniz-Institut für Pflanzenbiochemie, Halle/Saale

2. Prof. Degenhardt, Martin-Luther-Universität Halle-Wittenberg

3. Prof. Kogel, Justus-Liebig-Universität Gießen

Halle (Saale), den 11.06.2012

für meine Männer

Robert und Jamie

Inhaltsverzeichnis

Abkürzungsverzeichnisv
1 Einleitung 1
1 1 Die Dhizeenhäre
1.2 Mutualistische Interaktionen
1.3 Piriformospora indica
1.4 Interaktion zwischen <i>P_indica</i> und seinem Wirt
1.5 Metabolomics
1 6 Massenspektrometrie
1 7 Metabolomics als Ansatz zur Untersuchung der Interaktion zwischen A thaliana und P indica13
1.8 Ziel der Arbeit
2 Material und Methoden 16
2.1 Material
2.1.1. Verwendete PC-Programme
2.1.2 Chemikalien und Reagenzien 16
2.2 Methoden
2.2.1 Biologische Methoden
2.2.1.1 Kultivierung von <i>A. thaliana</i>
2.2.1.2 Kultivierung von <i>P. indica</i> 17
2.2.1.3 Optimierung der Medienzusammensetzung17
2.2.1.4 Optimierung der Lichtbedingungen
2.2.1.5 Untersuchung des wachstumsförderdernden Effekts bei Co-Kultivierung von A. thaliana
mit <i>P. indica</i>
2.2.1.6 Untersuchung des wachstumsfördernden Effektes des AtPi Mediums auf A. thaliana 19
2.2.1.7 Untersuchung des wachstumsfördernden Effektes des Pi Mediums auf A. thaliana 19
2.2.1.8 Untersuchung des wachstumsfördernden Effektes auf A. thaliana nach Eluatzugabe 20
2.2.1.9 Untersuchung des wachstumsfördernden Effektes von fraktionierten Eluaten auf
A. thaliana
2.2.1.10 Untersuchung des wachstumsfördernden Effektes von Pantothensäure
2.2.1.11 Untersuchung des wachstumsfördernden Effektes von Leu-Leu 22
2.2.2 Chromotographisch-Spektrometrische Methoden 22
2.2.2.1 Versuchsaufbau für die LC-MS Analysen 22
2.2.2.2 LC-MS Strukturaufklärung 24

2.2.2.3 LC-MS Gewebevergleich24	4
2.2.2.4 LC-MS Analyse der Fraktionen	5
2.2.2.5 Versuchsaufbau für die GC-MS Analysen2	5
2.2.2.6 Extraktion und Derivatisierung für die GC-MS2	5
2.2.2.7 GC-MS Messungen	5
2.2.2.8 GC-MS Datenauswertung	3
2.2.3 Mikroskopische Methoden	6
2.2.3.1 Wurzelmorphologie	6
3 Ergebnisse	7
3.1 Etablierung einer hydroponischen Kultur	7
3.1.1 Ansprüche an das optimale Kultivierungsmedium2	7
3.1.2 Aufbau der hydroponischen Kultur	7
3.1.3 Optimierung der hydroponischen Kultur28	3
3.2 Co-Kultivierung von <i>A. thaliana</i> mit <i>P. indica</i>	3
3.2.1 Untersuchung des wachstumsförderdernden Effekts bei Co-Kultivierung A. thaliana mi	it
P. indica	3
3.2.2 Untersuchung des wachstumsfördernden Effektes des AtPi Mediums auf A. thaliana	6
3.2.3 Untersuchung des wachstumsfördernden Effektes des Pi Mediums auf A. thaliana	Э
3.2.4 Untersuchung des wachstumsfördernden Effektes auf A. thaliana nach Eluatzugabe	С
3.2.5 Untersuchung des wachstumsfördernden Effektes von fraktionierten Eluaten auf A. thaliana 4	1
3.2.6 Wurzelmorphologie42	2
3.3 LC-MS Analysen	4
3.3.1 Die Experimente	4
3.3.2 LC-Datenauswertung	5
3.3.2.1 Metaboliten-Profiling der Blätter4	8
3.3.2.2 Metaboliten-Profiling der Wurzeln	Э
3.3.2.3 Metaboliten-Profiling des Myzels5	1
3.3.2.4 Metaboliten-Profiling des Mediums	2
3.3.3 LC-MS Strukturaufklärung	9
3.3.3.1 Pantothensäure	C
3.3.3.2 Leu-Leu	2
3.3.3.4 Nicotinsäure	5
3.3.3.5 Glycero-Phosphorylcholin	5

3.3.4 Gewebevergleich der differentiellen LC-MS Massensignale	67
3.3.5 LC-MS Analyse der Fraktionen des AtPi Mediums	70
3.4 GC - MS Analysen	71
3.4.1 GC-MS Datenauswertung	71
3.4.1.1 Metaboliten-Profiling der Wurzeln	74
3.4.1.2 Metaboliten-Profiling des Myzels	74
3.4.1.3 Metaboliten-Profiling des Mediums	75
3.4.2 Gewebevergleich der differentiellen GC-MS Metaboliten	79
3.5. Untersuchung des wachstumsfördernden Effektes von Pantothensäure und Leu-Leu	85
3.5.1 Pantothensäure	85
3.5.2 Leu-Leu	89
4 Diskussion	93
4.1 Hydroponische Kultur	93
4.2 Untersuchung des wachstumsfördernden Effekts von P. indica auf A. thaliana	96
4.3 Aufarbeitung des Mediums	100
4.4 LC-MS Datenauswertung	102
4.5 Auswertung des Metaboliten-Profilings	105
4.6 Metaboliten-Profiling	107
4.6.1 Metaboliten-Profiling der Blätter	107
4.6.2 Metaboliten-Profiling der Wurzeln	108
4.6.3 Metaboliten-Profiling des Myzels	114
4.6.4 Metaboliten-Profiling des Mediums At vs m	116
4.6.5 Metaboliten-Profiling des Mediums Pi vs m	117
4.6.6 Metaboliten-Profiling des Mediums AtPi vs At	120
4.6.7 Metaboliten-Profiling des Mediums AtPi vs Pi	125
4.7 Wachstumsfördernde Substanzen	127
4.8 Weiterführende Experimente	129
5 Zusammenfassung	131
6 Literaturverzeichnis	133
7 Anhang	145
7.1 Gewebevergleich der differentiellen LC-MS Massensignale	145

7.1.1 Gewebevergleich der differentiellen LC-MS Massensignale der Wurzeln14	46
7.1.2 Gewebevergleich der differentiellen LC-MS Massensignale des Myzels1	54
7.1.3 Gewebevergleich der differentiellen LC-MS Massensignale des At vs. AtPi Mediums 1	57
7.1.4 Gewebevergleich der differentiellen LC-MS Massensignale des At vs. m Mediums 10	63
7.1.5 Gewebevergleich der differentiellen LC-MS Massensignale des Pi vs. m Mediums 10	69
7.1.6 Gewebevergleich der differentiellen LC-MS Massensignale des Pi vs. AtPi Mediums 1	79
7.2 MS/MS Messungen	92
7.2.1 MS/MS Messungen der differentiellen Massensignale des Mediums AtPi > At	93
7.2.2 MS/MS Messungen der differentiellen Massensignale des Mediums At > m	.08
7.3. GC-MS Spektren	24
7.4 zusätzliche Experimentdaten24	40
Danksagung24	41
Eidesstattliche Erklärung	42
Lebenslauf	43

Abkürzungsverzeichnis

Chemikalien (z. B. MeOH), Länder (u. a. USA), Maßeinheiten (z. B. m, Da, µL) sowie Medien, die im Text näher erläutert werden, befinden sich nicht im Abkürzungsverzeichnis. Für ein besseres Verständnis werden aus dem Englischen und dem Latein übernommene Begriffe nicht übersetzt und in der Arbeit kursiv hervorgehoben.

Abb.	Abbildung			
A. thaliana	Arabidopsis thaliana			
At	A. thaliana, die in hydroponischer Kultur angezogen wurden			
AtPi	A. thaliana, die mit P. indica in hydroponischer Kultur			
	angezogen wurden			
DA	DataAnalysis –Programm der Firma Bruker, Bremen			
ESet	Experimentenset			
FC	fold change			
FG	Frischgewicht			
GC-MS	Gaschromatographie-Massenspektrometie			
GMD	Golm Metabolome Database			
HPLC	High performance liquid chromatography-			
	Hochleistungsflüssigkeitschromatographie			
LC-MS	Liquid chromatography–mass spectrometry			
	Flüssigkeitschromatographie-Massenspektrometie			
m	Medium, dass sich in der hydroponischen Kultur befand			
MS	mass spectrometry - Massenspektrometrie			
MS/MS	Tandem mass spectrometry – Fraktionierung der [m/z]			
[<i>m/z</i>]	Masse/Ladungsverhältnis = Massensignal			
P. indica	Piriformospora indica			
Pi	P. indica, der in hydroponischer Kultur angezogen wurde			
QA	QuantAnalysis –Programm der Firma Bruker, Bremen			
RT	Retentionszeit			
Tab.	Tabelle			
TG	Trockengewicht			
TMS	Trimethylsilyl			
UPLC-ESI-QTOF-MS	Ultra Performance Liquid Chromatography-Electrospray			
	ionization-Quadrupol-Time of flight- mass spectrometry			

1 Einleitung

1.1 Die Rhizosphäre

Für Landpflanzen ist ihre Wurzel ein lebensnotwendiger Teil. Sie verankert den Pflanzenspross im Boden, nimmt Wasser und Nährstoffe auf. Zusätzlich kommuniziert die Pflanze über die Wurzeln in der Rhizosphärenschicht mit dem Boden und darin lebenden Bodenorganismen. Die Rhizosphäre ist der Bodenbereich, der durch die lebende Wurzel beeinflusst wird (Hiltner, 1904) und beträgt etwa 3 mm um die Wurzel. Dieser Bodenbereich zeichnet sich durch einen im Vergleich zum restlichen Boden geringeren pH-Wert aus, der durch abgegebene Protonen der Pflanze zur besseren Nährstoffaufnahme entsteht. Auch sind die Sauerstoff- und Nährstoffkonzentrationen in der Rhizosphäre leben mehr Bakterien, Pilze und Nematoden als in dem umgebenden Boden. Diese Zunahme an mikrobieller Diversität wird als Rhizosphäreneffekt bezeichnet.

Die Pflanze sekretiert passiv oder aktiv Substanzen in die Rhizosphäre, die als Wurzelexsudate bezeichnet werden (Bais et al., 2006). Diese werden durch Diffusion, Ionenkanäle und Transporter, wie ABC Transporter aus der Wurzel geschleust (Badri et al., 2009). Wurzelexsudate können u.a. Kohlenhydrate, organische Säuren, Aminosäuren, anorganische Ionen und Sekundärmetabolite beinhalten, die auch als Substrate für die Rhizosphärenorganismen dienen (Hartmann et al., 2009; Roshina und Roshina, 1993). Die Zusammensetzung der Exsudate hängt sowohl von der Pflanzenspezies als auch von ihrem Entwicklungsstadium und dem Einfluss äußerer Faktoren wie Licht, Temperatur und Bodenzusammensetzung ab.

Wurzelexsudate erfüllen verschiedene Aufgaben. So kann die Pflanze durch die Exsudate das Wachstum anderer Pflanzen inhibieren (Allelopathie), mit denen sie um Nährstoffe konkurriert. Während der Lokalisation anderer Wurzeln im Boden muss sie dabei anhand der sekretierten Wurzelexsudate zwischen Selbst- und Fremdwurzel unterscheiden (Biedrzycki und Bais, 2010). So wachsen beispielsweise Erbsenwurzeln nicht zu den Wurzeln der eigenen Spezies, aber direkt in die Richtung der Konkurrenzwurzeln (Falik et al., 2003), um dort die allelopathisch wirkenden Substanzen abzugeben.

Weiterhin kann die Pflanze durch Sekretion von Wurzelexsudaten schwer lösliche Nährstoffe, wie Kalziumphosphate oder Eisen mobilisieren. Dies geschieht durch die

Wurzelhaube (Calyptra). Von ihr wird eine schleimige Substanz ausgeschieden, die es der Wurzel ermöglicht durch das Erdreich zu wachsen, um neuen Boden für sich verfügbar zu machen und mit der Sekretion der Wurzelexsudate Nährstoffe zu mobilisieren.

Mit Hilfe der Wurzelexsudate ist es der Pflanze möglich mit den Bodenorganismen zu interagieren. Die in der Rhizosphäre auftretende Interaktion zwischen der Pflanzenwurzel und den Bodenorganismen kann positiv, neutral oder negativ sein (Singh et al., 2004). Als Beispiel für negative Interaktion dienen pathogene Mikroben, parasitäre Pflanzen oder wirbellose Herbivoren, die der Pflanze schaden. Sie finden ihren Wirt anhand bestimmter Stoffe in den abgesonderten Wurzelexsudaten. So werden die pathogenen Phytophthora sojae-Zoosporen durch die sekretierten Substanzen Genistein und Daidzein der Sojabohne an die Wurzel gelockt (Hirsch et al., 2003). Auch Nematoden, wie zum Beispiel der parasitische Fadenwurm, orientieren sich mittels ihrer Chemosensoren zu den Wurzeln ihrer Wirtspflanzen, um diese penetrieren zu können. Nach Eindringen der Nematoden werden mittels diverser Exsudate Signale zwischen Wirt und Parasit ausgetauscht (Bird, 2004). Durch die Sekretion von antimikrobiellen Substanzen sollen Pathogene vertrieben oder getötet werden. Dabei wird zwischen den Phytoanticipinen (konstitutiv ausgeschiedene phenolische Substanzen) und den Phytoalexinen, die nur nach Pathogenbefall produziert werden, unterschieden (VanEtten et al., 1994). So sekretieren z.B. Arabidopsis thaliana-Wurzeln nach Befall mit Pseudomonas syringae antimikrobielle Stoffe wie Buttersäure, um das pathogene Bakterium zu bekämpfen (Bais et al., 2005). Ein weiteres Beispiel sind phenolische Substanzen, die von Gerstenwurzeln ausgeschieden werden, um den pathogenen Pilz Fusarium graminearum am Befall der Wurzel zu hindern (Lanoue et al., 2010). Sekretierte Strigolactone dienen für die Samen von chlorophylllosen pflanzlichen Wurzelparasiten, wie die Sommerwurzen, als Keimungsinduktoren. Sind diese Stoffe nicht in den Wurzelexsudaten von Tomatenpflanzen (z.B. bei der Mutante SL-ORT1) enthalten, ermöglicht dies eine Resistenz gegenüber dem pflanzlichen Parasiten (Dor et al., 2011).

Interagiert die Pflanzenwurzel mittels ihrer Wurzelexsudate positiv mit den Bodenorganismen, spricht man von Symbiosen. Diese werden in mutualistische (für beide Partner vorteilsbringend), kommensale (für einen Partner von Vorteil, aber kein Nachteil für den anderen Interaktionspartner) und parasitäre Symbiose (ausnutzen des einen Partners, der daraus Nachteile zieht) unterteilt (Rodriguez und Redman, 2008). Mutualistische Interaktionen zwischen der Pflanze und ihrem Partner können sich in allen Pflanzenteilen ausbilden. Ein Beispiel hierfür sind wachstumsfördernde Mikroorganismen (*plant growth*-

promoting-rhizobacteria, PGPR), wie endophytische und rhiziobiale Bakterien sowie Mykorrhizapilze.

1.2 Mutualistische Interaktionen

Zu den Mikroorganismen, die in der Rhizosphäre leben und eine positive Interaktion mit Pflanzen eingehen, gehören auch die Protozoen (tierische Einzeller), die abgestorbene Pflanzenteile, Tiere und Bakterien zersetzten und so die Nährstoffe den Pflanzen wieder zur Verfügung stellen. Sind Protozoen vorhanden, entwickeln Pflanzen ein größeres Wurzelsystem. Protozoen stellen Nährstoffe für Rhizobakterien bereit, die umgewandelt und für die Pflanze verfügbar an die Wurzel abgegeben werden können. So wurde in Reispflanzen ein größeres Wurzelsystem und eine erhöhte Stickstoffkonzentration im Boden in Gegenwart von Protozoen festgestellt (Kreuzer et al., 2006).

Ein weiteres Beispiel sind die plant growth-promoting-rhizobacteria, sich frei bewegende, wurzelkolonisierende Vitamine nicht-pathogene, Bakterien, die Hormone, und wachstumsförderende Substanzen für Pflanzen produzieren (Babalola. 2010). Rhizobakterien formen Zellaggregate an der Wurzel, wobei die Dichte der Zellen durch Quorum sensing (QS), einer Zell-Zell Kommunikation gesteuert wird. Dabei werden verschiedene Derivate der N-Acyl-L-Homoserinlactone (AHL) von gramnegativen Bakterien als Signalmoleküle verwendet. So sind die AHL Rhll/R und Lasl/R aus Pseudomonas aeruginosa in die Regulation der Wachstumsförderung bei Reis involviert (Steindler et al., 2009). Grampositive Bakterien nutzen dagegen Oligopeptide als Signalmoleküle (Miller und Bassler, 2001).

Bei der mutualistischen Interaktion zwischen den Leguminosen und den Rhizobien der Gruppe Frankia binden die gramnegativen Bakterien Luftstickstoff und machen diesen für die Pflanzen verfügbar. Die Pflanzenwurzel scheidet phenolische Exsudate aus, die die bakteriellen *nod*-Gene aktivieren. Daraufhin lagern sich die Rhizobien an die Wurzel an und sekretieren Lipochitooligosaccharide (*Nod factors*). Diese veranlassen die Wurzelhaare nach innen zu wachsen und Knöllchen zu bilden, in denen die Bakterien anaerob Stickstoff fixieren können (Murray, 2011).

Neben Bakterien treten auch Pilze symbiontisch in Wechselwirkung mit der Pflanzenwurzel. Sehr gut untersucht ist dabei die Assoziationen von Pilzen und Pflanzenwurzeln die als Mykorrhiza bezeichnet wird. In dieser Form der mutualistischen Interaktion leben 80% der Pflanzen weltweit (Wang und Qiu, 2006). Gekennzeichnet ist diese Beziehung durch den Austausch von Kohlenhydraten, die von der Pflanze bereitgestellt werden und von Mineralstoffen, die aus dem Boden durch Hyphen und Arbuskeln von Pilzen zur Pflanze transportiert werden (Nehls et al., 2010; Ohkama-Ohtsu und Wasaki, 2010). Weiterhin zeichnet sich diese mutualistische Interaktion durch ein verstärktes Pflanzenwachstum und eine erhöhte Resistenz gegenüber Pathogenen aus (Adesemoye et al., 2009; Bennett et al., 2006).

Mykorrhizapilze werden in 3 Klassen unterteilt: Ektomykorrhiza, Endomykorrhiza und arbuskuläre Mykorrhiza. Bei der Ektomykorrhiza umspinnt der Pilz die Pflanzenwurzel, dringt aber nicht in die Wurzelzellen ein. Bei der Endomykorrhiza wächst der Pilz in die Zellen der Wurzelrinde ein und bildet dort eine Art Haustorium aus, über das der Stoffaustausch erfolgt. Bei der arbuskulären Mykorrhiza bildet der Pilz verzweigte Hyphen in Bäumchenform (Arbuskeln) in den Wurzelzellen aus.

Für die Initiierung der Interaktion mit den Mykorrhizapilzen sekretiert die Pflanzenwurzel Strigolactone in die Rhizosphäre, diese werden von den Mykorrhizapilzen aufgenommen und stimulieren das Wachstum der Pilze. Diese senden wiederum Myc-Faktoren aus, die für die mutualistische Interaktion wichtig sind. Diese Myc-Faktoren können z.B. sulfonierte und nichtsulfonierte Lipochitooligosaccharide (LCOs) sein, die neben der Formierung der arbuskulären Mykorrhiza auch das Wurzelwachstum in Medicago stimulieren (Maillet et al., 2011). Lysophosphatidylcholin löst die Genexpression der pflanzlichen Phosphattransporter aus, wodurch die Wurzel das vom arbuskulären Mykorrhizapilz sekretierte Orthophosphat aufnehmen kann (Bucher et al., 2009; Drissner et al., 2007). Dies führt zu einer besseren Versorgung mit dem lebensnotwendigen Phosphor und somit zu einer Wachstumssteigerung der Pflanze.

Neben den Mykorrhizapilzen gibt es auch wurzelendophytische Pilze, die ebenfalls mutualistisch mit ihrem pflanzlichen Partner interagieren können. Zu diesen gehört *Piriformospora indica*.

1.3 Piriformospora indica

Piriformospora indica (*P. indica*) wurde in der indischen Thar-Wüste gefunden (Verma et al., 1998) und zur Ordnung der *Sebacinales* der Basidiomyzeten gezählt (Weiss et al., 2004). Der Endophyt zeigt ein breites Wirtsspektrum, sowohl bei Orchideen (Blechert et al., 1999), als auch bei Nutzpflanzen wie Gerste, Tabak, Mais, Tomate und Fenchel (Barazani et al., 2005; Dolatabadi et al., 2011; Fakhro et al., 2009; Kumar et al., 2009; Waller et al., 2005) konnte ein wachstumsfördernder Effekt in Form einer Gewichtszunahme der Blätter als auch

der Wurzel nachgewiesen werden, der auch den Ernteertrag steigert. Weiterhin sind Pflanzen nach Kolonisierung mit *P. indica* resistenter gegen abiotischen Stress, wie z.B. hohen Salzkonzentrationen im Boden oder Trockenheit (Baltruschat et al., 2008; Sherameti et al., 2008a). Auch bei biotischem Stress, wie Pathogenbefall, sind mit *P. indica* interagierende Pflanzen vitaler (Fakhro et al., 2009; Stein et al., 2008).

Im Gegensatz zu arbuskulären Mykorrhizapilzen kann *P. indica* axenisch, d.h. ohne Wirtsorganismus, kultiviert werden (Varma et al., 1999). Ein weiterer Vorteil dieses Endophyten ist, dass er mit der Modellpflanze *Arabidopsis thaliana* interagiert (Peskan-Berghöfer et al., 2004), wohingegen die arbuskulären Mykorrhizapilze nicht mit Arabidopsis wechselwirken. *A. thaliana* und *P. indica* werden als gutes Modellsystem beschrieben (Peskan-Berghöfer et al., 2004; Sherameti et al., 2008a), um die mutualistische Interaktion zwischen einer Pflanze und einem Wurzelendophyten zu studieren, da das Genom von *A. thaliana* sequenziert ist, sehr viele Signalwege und Metaboliten bekannt sind und so relativ leicht Rückschlüsse von den gemessenen Daten gezogen werden können.

Während seines Lebenszyklus bildet *P. indica* an den Hyphenspitzen Chlamydosporen aus (Verma et al., 1998) (Abb. 1. 1a). Diese dienen zur Überdauerung und zur Neubesiedlung von Wurzeln. Wird ein neuer Wirt gefunden, bildet sich vor allem am älteren Wurzelgewebe (Differenzierungszone und Wurzelhaarzone) ein dichtes Hyphennetz aus, welches sich sowohl inter – als auch intrazellulär (in den äußeren Schichten des Wurzelkortex und der Rhizodermis) verbreitet (Peskan-Berghöfer et al., 2004) (Abb. 1. 1b).

Abb. 1. 1 : *P. indica* Hyphen und Chlamydosporen (a) umspinnen eine Arabidopsiswurzel (b). Zwei Wochen alte Pflanzen wurden in hydroponischer Kultur für weitere zwei Wochen mit *P. indica* co-kultiviert. Die Anfärbung erfolgte durch Fuchsin.

Laut Jacobs et al. (2011) wurden nach der biotrophen Kolonisation mit *P. indica* in den befallenen Wurzelzellen Zelltodreaktionen beobachtet. Diese scheinen für die Interaktion

wichtig zu sein. Etwa sieben Tage nach der Besiedlung der Wurzel sporuliert *P. indica* extraund intrazellulär und ist so für einen neuen Besiedlungszyklus bereit.

1.4 Interaktion zwischen P. indica und seinem Wirt

Seit der Entdeckung von *P. indica* (Verma et al., 1998) wurde der Endophyt und die Interaktion mit seinen vielen Wirten intensiv erforscht. So wurde eine innige Assoziation von *P. indica* mit dem α-Proteobakterium *Rhizobium radiobacter* beobachtet, ohne dass der Endophyt anscheinend nicht existieren kann. Dieses Bakterium hat ebenfalls einen wachstumsförderenden Effekt auf Gerste, dieser ist allerdings nicht so stark wie nach Co-Kultivierung mit *P. indica* (Sharma et al., 2008).

Der beschriebene wachstumsfördernde Effekt wurde nach Co-Kultivierung detektiert, d.h. wenn die Pflanzenwurzeln von Myzel umspannt waren. Dieser Effekt konnte jedoch auch bei Arabidopsis Keimlingen beobachtet werden, bei denen die Wurzel keinen direkten Kontakt mit den Hyphen von P. indica hatte (Shahollari et al., 2005). Es müssen demnach Substanzen sekretiert worden sein, die für die Interaktion und Wachstumsförderung verantwortlich sind. So wurde z.B. ein massiver Transfer von Phosphat in die Wurzel beobachtet (Shahollari et al., 2005). Dieser Transfer wird von einem hochaffinen Phosphattransporter gewährleistet, der in den externen Hyphen von P. indica lokalisiert und in die Versorgung der Wirtspflanzen mit Phosphat aktiv involviert ist (Kumar et al., 2011; Yadav et al., 2010). Bei der Besiedlung der Pflanze unterdrückt oder umgeht P. indica die Wirtsimmunität, indem er pflanzliche Abwehrgene supprimiert, wie Beispielsweise PYK10, eine Wurzel- und Hypokotylspezifische β-Glucosidase/Myrosinase (Jacobs et al., 2011; Sherameti et al., 2008b). Die Wachstumsförderung wird von einer Co-Regulierung von Enzymen in der Wurzel begleitet, die in den Nitrat- und Stärkemetabolismus der Pflanze involviert sind (Sherameti et al., 2005). Weiterhin induziert Piriformospora indica eine erhöhte Trockenstresstoleranz, dies wird u.a. durch die Stimulierung der Expression von trockenstressrelevanten Genen und antioxidantischen Enzymaktivitäten erreicht (Baltruschat et al., 2008; Sherameti et al., 2008a; Sun et al., 2010).

In einem Screen zur Isolierung von Pflanzenmutanten, die nicht mehr auf *P. indica* reagieren, konnte eine Ethylmethan-Sulfonat Mutante (*pii-2* für *piriformospora indica-insensitive-2*) gefunden werden (Shahollari et al., 2007). Es konnten weitere Mutanten (z.B. *pii-3* und *pii-4*) detektiert werden, deren genetische bzw. funktionelle Grundlage noch nicht identifiziert wurde (Vadassery et al., 2009a).

Trotz intensiver Forschung konnte der zugrunde liegende Signalweg zur Interaktion bzw. Wachstumsförderung auf genetischer Ebene noch nicht aufgeklärt werden.

Aus diesem Grund existiert zudem der Versuch, die Interaktion von *P. indica* mit seinem Wirt auf Metabolitenebene bzw. auf Ebene von Hormonen aufzuklären. Hormone spielen bei Entwicklung und Wachstum von Pflanzen eine große Rolle. Deshalb wurde untersucht, ob *P. indica* den Hormonhaushalt während der Interaktion beeinflusst, und dadurch die Wachstumsförderung hervorruft.

P. indica produziert Auxin (IAA) in Flüssigkultur (Sirrenberg et al., 2007), allerdings hat das Hormon keinen Einfluss auf die Interaktion in Arabidopsis (Lee et al., 2011; Vadassery et al., 2008). Weiterhin konnte gezeigt werden, dass das gasförmige Hormon Ethylen für die von *P. indica* induzierte Resistenz nicht wichtig ist (Molitor und Kogel, 2009). Jedoch sind Ethylensignalkomponenten und Ethylenabhängige Transkriptionsfaktoren für die Balance zwischen einer vorteilhaften und einer unvorteilhaften Symbiose zwischen dem Pilz und seinem Wirt essentiell (Camehl und Oelmuller, 2010; Camehl et al., 2010).

Für die von *P. indica* induzierte Resistenz gegen Pathogene ist Jasmonsäure (JA) entscheidend (Molitor und Kogel, 2009; Stein et al., 2008), allerdings ist die Wachstumsförderung nicht von JA abhängig (Camehl et al., 2010). Dafür scheint die Wachstumsförderung von der trans-Zeatin Biosynthese und dem CRE/AHK2-Rezeptor substantiell abhängig zu sein, jedoch sind die Cytokinine für die Wurzelkolonisation nicht wichtig (Vadassery et al., 2008).

Der pflanzliche Gibberellinbiosyntheseweg wird nach Interaktion mit *P. indica* signifikant verändert (Schafer et al., 2009b), was darauf hinweist, dass Gibberelline an der Wurzelkolonisation beteiligt sind (Jacobs et al., 2011; Schafer et al., 2009a).

Zusammenfassend sind die untersuchten Hormone für Teilaspekte der Interaktion (induzierte Resistenz, Wurzelkolonisation, etc.) mitverantwortlich, aber ein spezifisches Hormon bzw. spezifischer Hormonsignalweg ist nicht für die komplette Interaktion zwischen Pflanze und *P. indica* maßgeblich.

Neben den Hormonen wurden auch einzelne Metaboliten(gruppen) untersucht, die für die Interaktion von *P. indica* mit seinem Wirt von Bedeutung sind. In mit *P. indica* kolonisierten Wurzeln wurde ein erhöhtes Ascorbatlevel gefunden (Baltruschat et al., 2008; Vadassery et al., 2009b; Waller et al., 2005), welches in seiner Funktion als Antioxidans ein wichtiger Radikalfänger ist. Weiterhin war die Menge an freien Zuckern und Aminosäuren in kolonisierten Wurzeln reduziert (Schafer et al., 2009a). Dies deutet auf einen Transfer der Substanzen von der Wurzel zu dem Pilz hin. Im Kulturfiltrat und Myzel von *P. indica* konnten

Benzoesäure und dessen Analoge per HPLC-Analyse detektiert werden, allerdings hatten diese keinen Einfluss auf die Wachstumsförderung in Mais, Reis und Gerste (Varma et al., 2001). Auch zur Steigerung von wirtschaftlich wichtigen Naturstoffen wurde *P. indica* herangezogen. In Flachszellkulturen konnte nach *P. indica* Zugabe eine erhöhte Produktion von Podophyllotoxinen nachgewiesen werden (Baldi et al., 2008). Diese Substanzen sind für die Herstellung von Anitkrebsarzneien wichtig. Weiterhin konnte nach Co-Kultivierung mit Fenchel das Level an Anethol gesteigert werden (Dolatabadi et al., 2011). Dieser Metabolit wird vor allem als Duft- und Aromastoff in der Industrie eingesetzt.

Obwohl einzelne Metabolitenklassen während der Co-Kultivierung mit *P. indica* in den letzten zehn Jahren gerichtet analysiert wurden, wurde bisher keine umfassende Analyse der kleinen Moleküle während der Interaktion durchgeführt.

1.5 Metabolomics

Metabolomics ist die vergleichende quantitative und qualitative Analyse aller Metaboliten in den Zellen, Geweben und Organen eines Organismus während seiner Lebenszeit unter verschiedenen Bedingungen (Fiehn et al., 2000; Krastanov, 2010). Allerdings ist die simultane Analyse aller Metaboliten nahezu unmöglich, da die Substanzen große strukturelle Unterschiede untereinander zeigen und die Konzentrationen der Stoffe mehrere Konzentrationsbereiche überspannen. Zudem treten manche Metabolite lediglich in einem begrenzten Gewebe auf oder kommen nur zu bestimmten Zeiten, z.B. einzelnen Entwicklungsstadien oder nach äußeren Einflüssen, wie Stress (Trockenheit, Pathogenbefall) vor (Böttcher et al., 2011).

Es gibt verschiedene Ansätze für Metabolomuntersuchungen: die *targeted metabolite analysis*, bei der gerichtet einzelne oder ein kleines Set von Substanzen, wie Phenylpropanoide oder Aminosäuren, detektiert und quantifiziert wird, das *metabolite profiling*, bei dem ungerichtet das Metabolom analysiert, identifiziert und möglichst quantifiziert werden soll und das *metabolite fingerprinting*, bei dem das gesamte Metabolom analysiert wird, ohne die Substanzen zu identifizieren (Abb. 1. 2) (Krastanov, 2010). Bei der ungerichteten Analyse werden alle messbaren Metaboliten ermittelt und ausgewertet (*metabolite profiling* und *metabolite fingerprinting*), dadurch ist es möglich, bisher unbekannte Substanzen zu finden (Carraro et al., 2009).

Bei den Metabolomuntersuchungen werden die Metabolitmuster zwischen der Kontrolle und einer oder mehreren Testgruppen verglichen. Durch diese Untersuchungen, vor allem beim

Metaboliten-Profiling, können Profile von Wildtyp und Mutante, verschiedenen Ökotypen oder Kultivaren oder die Änderungen während der Entwicklung und in der Antwort auf Umweltfaktoren verglichen werden (Fernie et al., 2004).

Abb. 1. 2: Möglichkeiten der Metabolomuntersuchungen. Neben der gerichteten Analyse (*targeted analysis*) gibt es das *Metabolic profiling* und das Metabolic fingerprinting. Bei hoher Datenqualität wird nur eine kleine Anzahl an Metaboliten analysiert (*targeted profiling*), bei einer großen Anzahl an Metaboliten ist die Datenqualität niedriger (*Metabolic fingerprinting*). Verändert nach Krastanov, 2010.

Pflanzliche Metaboliten sind alle kleinen Moleküle, deren Masse geringer als 1000 Da groß ist. Sie werden in Primär- und Sekundärmetabolite unterteilt. Die Primärmetaboliten sind für die Grundprozesse in der Pflanze, wie Wachstum, Entwicklung und Fortpflanzung essentiell. Sekundärmetabolite werden dafür nicht benötigt, allerdings sind sie für die Anpassung an die sich verändernden Umweltbedingungen, zur Verteidigung gegen Pathogene und Herbivore und zum Schutz gegen abiotischen Stress wichtig (Kliebenstein, 2004). Sekundärmetaboliten werden aus Primärmetaboliten gebildet, dabei müssen sie mitunter stark strukturell verändert werden, um ihre verschiedenen Funktionen und biologische Aktivitäten ausüben zu können. Pflanzen enthalten eine große Zahl an Metaboliten, vor allem Sekundärmetaboliten, die je nach Spezies von 4.000 bis 20.000 variieren können (Fernie et al., 2004). Es sind mehr als

200.000 Sekundärmetaboliten der Pflanzen bekannt, welche aber nur einen kleinen Teil der Gesamtmetaboliten ausmachen (Goodacre et al., 2004; Schwab, 2003).

Für Metabolomicsanalysen werden vor allem die Kernspinresonanzspektroskopie (NMR) und die Massenspektrometrie (MS) verwendet (Last et al., 2007), da durch die strukturelle Diversität der Substanzen verschiedene analytische Techniken von Nöten sind, um diese Stoffe zu detektieren, quantifizieren und zu identifizieren. In dieser Arbeit soll nur auf die Massenspektrometrie eingegangen werden.

1.6 Massenspektrometrie

Bei der Massenspektrometrie handelt es sich um ein Analyseverfahren, bei dem Ionen von (an)organischen Substanzen generiert und diese anschließend nach ihrem Masse/Ladungsverhältnis (m/z) aufgetrennt und detektiert werden (Kienitz, 1968). Ein Massenspektrometer besteht aus einer Ionenquelle, einem Massenanalysator und einem Detektor.

In der Ionenquelle wird der Analyt ionisiert. Dies kann durch Elektronenstoßmethoden (z.B. Elektronenstoßionisation - EI, Chemische Ionisation - CI), Teilchenbeschußmethoden (*Fast Atom Bombardment*), Photoionisationsmethoden (z.B. Matrix-unterstützte Laser-Desorption/Ionisation - MALDI) und Sprühmethoden (z.B. Elektrosprayionisation - ESI) geschehen.

Im Analysator werden die Ionen nach ihrem Masse/Ladungsverhältnis (*m/z*) aufgetrennt. Es gibt dabei verschiedene Analysatoren: Sektorfeld-MS, elektrische Ionenfallen (*Ion Trap*), Flugzeitanalysator (*Time of Flight*, TOF), Quadrupol oder magnetische Ionenfallen (Ionencyclotonresonanz, ICR).

Im Detektor werden die separierten Ionen erfasst. Zum Einsatz kommende Detektoren können Photomultiplier, Sekundärelektronenvervielfacher (SEV), Faraday-Auffänger oder Mikrokanalplatten (MCP) sein.

Das zu vermessende Stoffgemisch kann entweder direkt in das Massenspektrometer injiziert werden oder vorher chromatographisch aufgetrennt werden. Dies kann über Flüssigkeitschromatographie (LC), Kapillarelektrophorese oder Gaschromatographie (GC) geschehen. In dieser Arbeit wurden für das Metaboliten-Profiling ein UPLC-ESI-QTOF-MS und ein GC-Quad-MS verwendet.

Das UPLC-ESI-QTOF-MS (*Ultra Performance Liquid Chromatography* -Elektronensprayionisation - *Quadrupol* - *Time of Flight* - Massenspetrometer) besteht aus

einer UPLC, welche das Probengemisch flüssigkeitschromatographisch auftrennt. Der Vorteil einer UPLC gegenüber einer HPLC ist, dass bei der UPLC höhere Drücke möglich sind und somit eine schnellere Chromatographie bei gleichbleibender Auflösung gewährleistet werden kann (Plumb et al., 2008; Sherma, 2005). Bei der flüssigkeitschromatographischen Auftrennung wird die Substanz in der Umkehrphasentrennung (*reversed phase*, RP) mit einem Laufmittel, der mobilen Phase durch eine Trennsäule (z.B. gefüllt mit Octadecylsilan als Derivatisierungsreagenz für das Silicagel, auch C-18 Säule genannt), der unpolaren stationären Phase, gepumpt. Die mobile Phase besteht meist aus Mischungen von Wasser oder Puffer mit Acetonitril oder Methanol, die in einem Gradienten über die Trennsäule gepumpt werden. Die Retentionszeit einer Substanz ist durch die Abhängigkeit von der Verweildauer in der stationären Phase und die Rücklösung in die mobile Phase gekennzeichnet, die durch einen Gradienten in der mobilen Phase beeinflusst werden kann. Diese Auftrennung eignet sich vor allem für semipolare Substanzen.

Bei der Elektrosprayionisation (ESI) wird die Analytlösung durch eine Metallkapillare geleitet, an deren Spitze eine Spannung anliegt. Eine positive Spannung erzeugt positiv geladene lonen, eine negative Spannung negativ geladene Ionen. Um hohe Flussraten gewährleisten zu können, wird mit einer pneumatisch unterstützten Version von ESI gemessen. Dabei wird ein Trägergas wie Stickstoff konzentrisch-gleichgerichtet um den Ausgang der LC-Kapillare herum gesprüht, wodurch die austretende Lösung effektiver vernebelt wird (Lehmann, 1996). Es werden Quasimolekülionen ([M+H]⁺ bei positiver Spannung, [M-H]⁻ bei negativer Spannung), Addukte (z.B. [M+Na]⁺) und mehrfach geladene Ionen erzeugt (Budzikiewicz, 1998).

Im Quadrupol werden die erzeugten Ionen durch ein statisches, elektrisches Feld beschleunigt und durchfliegen zentral vier parallel liegende Stabelektroden (Quadrupol). Dort findet eine Massen/Ladungsselektierung statt, so dass den Teilchen eine definierte Masse zugeschrieben wird.

Beim Eintritt in den Flugzeitanalysator (*Time of Flight*, TOF) haben alle Ionen die gleiche kinetische Energie. Da die Geschwindigkeit des Ions von seinem Masse-Ladungs-Verhältnis abhängt, erreichen schwerere Ionen nach einer definierten Flugstrecke den Detektor später als leichte Ionen. Dadurch kann das Massen/Ladungsverhältnis der Ionen bestimmt werden.

Mit der verwendeten GC-Quad-MS können nur Substanzen gemessen werden, die gasförmig oder verdampfbar sind. Das Analytgemisch wird durch eine in einem beheizbaren Säulenofen befindliche Trennsäule geleitet, in der Stickstoff oder Helium als mobile Phase dient. Das Stoffgemisch wird über einen beheizbaren Injektor injiziert und verdampft und im

Anschluss an den Durchflug durch den Quadrupol vermessen. Die Trennung des Stoffgemisches erfolgt dadurch, dass die einzelnen Gasmoleküle je nach Polarität und Dampfdruck unterschiedlich lange an der stationären Phase der Säule verweilen. In der GC-MS werden die Fragmente der Substanzen als nominale Massen gemessen, die dann durch den Vergleich mit den Substanzbibliotheken identifiziert werden können (Hübschmann, 2009).

Metabolitenlevel sind hoch variabel und hängen von vielen Umweltparametern ab, die nicht immer kontrolliert werden können (z.B. Temperaturschwankungen). Deshalb ist es essentiell, ein gut durchdachtes Experimentdesign auszuarbeiten, das etablierte Standards zu Pflanzenwachstum, Probenahme und -aufarbeitung und Datenauswertung besitzt. Um den Effekt der biologischen Variabilität zu reduzieren, kann eine bestimmte Anzahl an Individuen gepoolt werden (Böttcher et al., 2011). Weiterhin ist eine entsprechend hohe Anzahl an biologischen und technischen Replikaten erforderlich, um eine statistische Absicherung der Daten zu gewährleisten.

Für die umfangreiche Datenauswertung nach einem ungerichteten (non-targeted) Metaboliten-Profiling stehen verschiedene Software Plattformen zur Verfügung. Für diese Arbeit wurde für die LC-MS Auswertung die open source Software XCMS (Smith et al., 2006) verwendet, die an die LC-QTOF-MS angepasst wurde (Tautenhahn et al., 2007, 2008). Die Auswertung der Rohdaten ist aufwendig, da je nach Massenspektrometer und verwendeter LC-Säule die Retentionszeiten der Stoffe variieren und so kein Abgleich mit einer Spektrenbibliothek durchgeführt werden kann, um die differentiellen Massensignale ([m/z]) zu identifizieren. Es existieren Spektrenbibliotheken bzw. Datenbanken für LC-MS Daten, wie z.B. MassBank (Horai et al., 2010) oder KEGG (http://www.genome.jp/kegg/ligand.html). Mit diesen kann jedoch nur das Spektrum bzw. Fragmentierungsmuster (nach erfolgter MS/MS) abgeglichen werden, aber eine echte Strukturaufklärung ist nicht möglich. Wurde ein differentielles Massensignal auf wenige mögliche Metaboliten eingegrenzt, kann der differentielle Metabolit mittels Standards verifiziert werden. Nur wenn Retentionszeit und Fragmentierungsmuster des Standards mit dem unbekannten Massensignal übereinstimmen, gilt die Identifizierung des Metaboliten als verifiziert.

Kann ein differentieller Metabolit nicht in einer Spektrenbibliothek gefunden werden, kann versucht werden, diesen über sein Fragmentierungsmuster aufzuklären. Dies ist aber im Allgemeinen sehr zeitaufwendig, wenn nicht Grundkenntnisse zur Strukturklasse etc. vorliegen (Böttcher et al., 2011). Ziel ist es, die Summenformel des differentiellen Metaboliten zu bestimmen. Je höher die Auflösung und Messgenauigkeit des

Massenspektrometers, desto stärker kann das Massensignal auf wenige Summenformeln eingeschränkt werden. Konnte eine Summenformel bestimmt werden und ist die Strukturklasse bekannt, kann in chemischen Datenbanken wie ChemSpider (http://www.chemspider.com) oder PubChem (http://pubchem.ncbi.nlm.nih.gov) nach der Substanz gesucht werden. Anschließend muss über einen Standard der Metabolit verifiziert werden.

Für die GC-MS Auswertungen existieren seit längerem Datenbanken für die Identifizierung von Metaboliten (Finkle et al., 1974; Finkle et al., 1972). Für diese Arbeit wurden das Software Programm TagFinder (Luedemann et al., 2008) und die Golm Metabolome Database (GMD) (Kopka et al., 2005; Schauer et al., 2005) genutzt. Dort können anhand der vergleichbaren Retentionszeitwerte und des Fragmentierungsmusters die unbekannten Metaboliten aufgeklärt werden.

1.7 Metabolomics als Ansatz zur Untersuchung der Interaktion zwischen *A. thaliana* und *P. indica*

Die Interaktion zwischen *P. indica* und seinen Wirten konnte auf genetischer Ebene noch nicht aufgeklärt werden. Deshalb könnte ein Metaboliten-Profiling zur Identifizierung der beteiligten Komponenten beitragen. Bisher konnten in der Modellpflanze Arabidopsis jeweils etwa 300 - 400 Primär- und Sekundärmetabolite identifiziert werden (Böttcher et al., 2011; Fiehn et al., 2000). Diese machen allerdings nur einen Bruchteil der mehreren hunderttausenden bisher nicht identifizierten Metaboliten aus.

Die Sekundärmetaboliten von Arabidopsis können in sieben Klassen unterteilt werden: Glukosinolate, Indole und Indol-Schwefelverbindungen, Phenylpropanoide, Benzenoide, Flavonoide, Terpene, Fettsäurederivate (D'Auria und Gershenzon, 2005), wobei bis auf Terpene und einige Fettsäurederivate alle Stoffgruppen per LC/ESI-MS detektiert werden können (Böttcher et al., 2011).

Da die Interaktion von *A. thaliana* und *P. indica* in der Rhizosphäre stattfindet, liegt ein besonderes Interesse in den Wurzelexsudaten, die von Arabidopsis abgegeben werden. Es wurden in vielzähligen Arbeiten die "Wurzelexsudate" von Pflanzen, u.a. von *A. thaliana* untersucht. Dabei wurden die Keimlinge zumeist in Schüttelkultur (z.B. Schüttelkolben oder 6-Well-Platten) angezogen, d.h. sowohl Wurzeln als auch Stängel und Blätter hatten Kontakt mit dem Medium (Badri et al., 2008; Badri et al., 2009; Bais et al., 2005; Biedrzycki et al., 2010; Broeckling et al., 2008; Jaitz et al., 2011; Loyola-Vargas et al., 2007; Walker et al.,

2004). Die analysierten Exsudate enthielten demnach nicht nur die Wurzelexsudate, sondern auch die Blattexsudate. Demzufolge wurde bis jetzt keine umfassende Analyse der Wurzelexsudate von *A. thaliana* durchgeführt.

Obwohl eine Vielzahl von Naturprodukten aus Pilzen identifiziert werden konnten, gibt es immer noch unzählige Substanzen, die noch nicht entdeckt wurden. Dies liegt vor allem daran, dass bis jetzt nur eine kleine Anzahl an Pilzen kultiviert und erforscht wurde. Mit jedem neuen Pilz werden in der Regel auch neue Substanzen entdeckt (Brakhage und Schroeckh, 2011). Die Hauptklassen an Sekundärmetaboliten in Pilzen sind nichtribosomale Peptide, Alkaloide, Terpene und Polyketide (Rohlfs und Churchill, 2011), die auch als Antibiotika und Immunsuppressiva dienen können (Newman et al., 2003).

Die sich während der Interaktion von *A. thaliana* und *P. indica* verändernden Metabolitprofile sind bisher nur punktuell beleuchtet worden. Es konnte bis jetzt nicht geklärt werden, wie die Interaktion initiert wird, welche Substanzen für die Kommunikation essentiell sind oder welches die wachstumsfördernden Stoffe sind. Es gibt bisher keine umfassende Analyse zu den Metaboliten, die im Allgemeinen während der Interaktion von *A. thaliana* und *P. indica* sekretiert werden. Es ist daher von Interesse ein ungerichtetes Metaboliten-Profiling (*non-targeted metabolite profiling*) per GC-MS und LC-MS, in dem sowohl die Primär- als auch die Sekundärmetaboliten abgedeckt werden, durchzuführen.

1.8 Ziel der Arbeit

Der Wurzelendophyt P. indica kann mit vielen Pflanzenspezies eine Interaktion eingehen, die u.a. in einer Wachstumsförderung für seinen Wirt resultiert. In dieser Arbeit soll die Interaktion zwischen dem Endophyten und der Modellpflanze A. thaliana auf Metabolitenebene untersucht werden. Dabei sollen die Substanzen, deren Konzentration sich während der Co-Kultivierung der beiden Partner in den Blättern, Wurzeln und Myzel verändern, detektiert und möglichst strukturell identifiziert werden. Da die mutualistische Interaktion im Wurzelbereich stattfindet, ist die Sekretion der Wurzelexsudate in die Rhizosphäre und die Sekretion der pilzlichen Metaboliten von besonderem Interesse. Für diesen Ansatz muss ein hydroponisches System etabliert werden, in dem eine optimale Anzucht des Pilzes und der Pflanze, inklusive Trennung der einzelnen Gewebeteile für die Analytik der Substanzen, gewährleistet ist. Nach Optimierung des hydroponischen Systems soll einerseits die Co-Kultivierung von A. thaliana mit P. indica und andererseits die Aufarbeitung des Mediums etabliert werden. Nach der Co-Kultivierung sollen die einzelnen Gewebeteile und das Medium per UPLC-ESI-QTOF-MS und GC-Quad-MS vermessen und analysiert werden. Für einzelne identifizierte Substanzen soll untersucht werden, ob sie einen wachstumsfördernden Effekt auf *A. thaliana* haben.

Desweiteren soll eine allgemeine und umfassende Analyse der Sekretion der Wurzelexsudate von *A. thaliana* in das Medium durchgeführt werden, was durch die Etablierung der hydroponischen Kultur möglich wird.

Durch diese Arbeit soll ein erster Einblick in das Metabolitenmuster nach Co-Kultivierung von *A. thaliana* mit *P. indica* gewonnen werden, wobei der Fokus auf den Wurzelexsudaten des Kultivierungsmediums liegt.

2 Material und Methoden

2.1 Material

2.1.1. Verwendete PC-Programme

Es wurden die Softwareprogramme IrfanView, EndNote X4, R, SigmaPlot 11.0, Microsoft Office (Excel, Word, PowerPoint), Microsoft benutzt.

2.1.2 Chemikalien und Reagenzien

So weit nicht anders angegeben, wurden die Chemikalien von den Firmen Fluka (Hamburg), Merck (Darmstadt), Duchefa (Haarlem, Niederlande), Sigma-Aldrich (Hamburg), Serva (Heidelberg) und Roth (Karlsruhe) bezogen.

2.2 Methoden

2.2.1 Biologische Methoden

Für alle Versuche wurden zwei Experimentensets durchgeführt. Pro Experimentenset wurden mindestens drei Kästen pro Behandlung kultiviert. Die Blätter und Wurzeln wurden gepoolt, anschließend das Gewicht bestimmt. Danach wurden die Daten der beiden Experimentensets vereint.

Für die Experimente wurden pro Kasten 48 Pflanzen angezogen, außer bei 2.2.1.5 -Untersuchung des wachstumsförderdernden Effekts bei Co-Kultivierung wurden 24 Pflanzen pro Kasten verwendet.

2.2.1.1 Kultivierung von A. thaliana

Die Versuche wurden mit der Pflanze *Arabidopsis thaliana* Genotyp Col-0 durchgeführt. Die Keimlinge wurden bei 22-23 °C, 8 h Licht und 130 µmol [·] s^{-1.} m⁻² (Percival Scientific, Perry, USA) in einem hydroponischen System angezogen. Dafür wurde in einen autoklavierten, gelben Spitzenkasten eine sterile PCR-Platte (Roth, Karlsruhe) hineingelegt, diese mit Gelrite (12,5 g/L, Serva, Heidelberg) befüllt und anschließend die Spitzen der PCR-Gefäße steril entfernt. Danach wurde der Kasten mit 180 mL autoklaviertem Murashige-Skoog-

Medium mit Gamborg Vitaminen (4,4 g/L, Duchefa, Haarlem, Niederlande) mit 0,5 % (w/v) Saccharose und einem pH von 5,8 (mit KOH eingestellt) befüllt. Der Deckel des Spitzenkastens wurde mit Leukopor fixiert. Die Pflanzen im Kasten erhielten etwa 100 µmol [·] s^{-1.} m⁻² Licht, da der Deckel 30 µmol [·] s^{-1.} m⁻² absorbierte. Die *A. thaliana* Samen wurden mit Chlorgas sterilisiert und pro befüllten PCR-Platten-Vial ein Samen platziert. So wurden 48 Samen pro Kasten eingesetzt. Nach einer Woche wurden nicht gekeimte Samen durch Pflanzen ersetzt, die parallel auf Murashige-Skoog-Agar angezogen wurden.

Chlorgas Sterilisation

Natriumhypochlorid (10 mL) wurden mit 5 mL Salzsäure versetzt und nach 30 Minuten Inkubation im Exsikkator wurde das Stoffgemisch für zwei Stunden abgepumpt. Anschließend wurden die Reaktionsgefäße in denen sich die Samen befanden verschlossen und bei Raumtemperatur im Dunkeln aufbewahrt.

Murashige-Skoog -Agar

Für ein Liter wurden 4,4 g Murashige-Skoog-Medium mit Gamborg Vitaminen, 3 g Gel-Rite, 0,5 g MES, 13,7 g Saccharose in Wasser aufgelöst, ein pH 5,8 mit KOH eingestellt und autoklaviert.

2.2.1.2 Kultivierung von P. indica

Piriformospora indica wurde im KM-Medium mit Agar bei 28°C im Dunkeln angezogen (Peskan-Berghöfer et al., 2004). Wurde der Pilz in Schüttelkultur gehalten, wurde ein Stück Agar mit Myzel (Ø 0,8 cm) in einen Schüttelkolben mit KM-Medium bei 28°C und 90 rpm kultiviert. Für die Co-Kultivierungsversuche wurde ein Stück Agar mit *P. indica* Myzel (Ø 0,8 cm) in das Medium der hydroponischen Kultur gegeben und unter denselben Bedingungen wie *A. thaliana* kultiviert.

2.2.1.3 Optimierung der Medienzusammensetzung

Um für die Analysen ein geeignetes Medium für *A. thaliana* und *P. indica* zu finden (siehe 3.1.1), wurden die Pflanzen laut 2.2.1.1 im Spitzenkasten entweder mit Hoagland-Medium (von Roepenack-Lahaye et al., 2004), KM-Medium (Peskan-Berghöfer et al., 2004) oder Murashige-Skoog-Medium befüllt und nach 14 Tagen das Gewicht der Blätter bestimmt. Dafür wurden alle Pflanzen eines Kastens (max. 48 Pflanzen) über dem Agar abgeschnitten (Stängel und Blätter), in Tüchern kurz abgetupft, um eventuelle Mediumreste zu entfernen und anschließend das Frischgewicht auf einer Waage bestimmt. Das Gewicht und die

Anzahl der Pflanzen wurden notiert und das Frischgewicht wurde durch die Anzahl der Pflanzen geteilt.

Um ein geeignetes Medium für *P. indica* zu finden wurde ein Stück Agar mit *P. indica* Myzel wurde für zwei Wochen im Schüttelkolben in den drei Medien kultiviert, anschließend das Medium über einen Rundfilter (Roth, Karlsruhe) filtriert und das Myzel in der Lyophylle (Christ Alpha 1-4 LD plus, Osterode) getrocknet, danach wurde das Gewicht auf der Waage bestimmt.

Nachdem das Murashige-Skoog-Medium als Standardmedium für die Co-Kultivierung ausgewählt wurde, sollte die ideale Saccharosekonzentration für *P. indica* und *A. thaliana* bestimmt werden. Dafür wurden dem Medium verschiedene Saccharosekonzentrationen (0% (w/v), 0,05% (w/v), 0,1% (w/v), 0,25% (w/v) und 0,5% (w/v)) zugegeben und nach vier Wochen das Blatt- und Wurzelgewicht bestimmt. Die Wurzeln eines Kastens wurden nach Entfernung der oberen Pflanzenteile mit einer Pinzette aus dem Agar gezogen, mit Tüchern kurz abgetupft, um eventuelle Mediumreste zu entfernen und anschließend das Frischgewicht auf einer Waage bestimmt. Das Gewicht und die Anzahl der Pflanzen wurden notiert und das Frischgewicht wurde durch die Anzahl der Pflanzen geteilt.

Für die Bestimmung der idealen Saccharosekonzentration im Murashige-Skoog-Medium für *P. indica* wurde ein Stück Agar mit Myzel in Kolben mit Murashige-Skoog-Medium mit unterschiedlichen Saccharosekonzentrationen Saccharosekonzentrationen (0% (w/v), 0,05% (w/v), 0,1% (w/v), 0,25% (w/v) und 0,5% (w/v)) gegeben. Nach zwei Wochen wurde das Myzel geerntet und das Trockengewicht bestimmt.

2.2.1.4 Optimierung der Lichtbedingungen

Um zu untersuchen, ob bei einer Lichtstärke von 100 µmol⁻ s⁻¹ m⁻² ein wachstumsfördernder Effekt von *P. indica* auf *A. thaliana* zu verzeichnen ist (siehe 3.1.3), wurden sieben Tage alte Pflanzen in hydroponischer Kultur angezogen. Anschließend wurde ein Stück Agar einer unbehandelten Agarplatte (At) bzw. ein Stück Agar mit *P. indica* Myzel (AtPi) zu dem Medium gegeben und nach zwei Wochen das Frischgewicht der Blätter und der Wurzeln bestimmt.

2.2.1.5 Untersuchung des wachstumsförderdernden Effekts bei Co-Kultivierung von *A. thaliana* mit *P. indica*

Für die Erstellung der Zeitkurve der Co-Kultivierung wurden *A. thaliana* Pflanzen für zwei Wochen in hydroponischer Kultur angezogen (siehe 3.2.1). Es wurde anschließend ein Stück Agar (At) bzw. ein Stück Agar mit *P. indica* Myzel (AtPi) zu dem Medium gegeben und über sechs Wochen wöchentlich Blätter, Wurzeln und *P. indica*-Myzel geerntet und gewogen. Das Myzel wurde aus den Kästen mit Filterpapier filtriert und gefriergetrocknet, anschließend das Trockengewicht bestimmt. Ebenfalls wurde nur ein Stück Agar mit Myzel in hydroponischer Kultur kultiviert, um die Myzelgewichte (Pi) zu bestimmen.

Um herauszufinden, ob die Zunahme an Blattgewicht durch Wassereinlagerung oder durch vermehrte Zellbildung zustande kam, wurden 14 Tage alte Pflanzen mit einem Agarstück ohne (At) und mit *P. indica* (AtPi) für zwei Wochen kultiviert. Anschließend wurde das Blattfrischgewicht bestimmt. Die Blätter wurden danach in Stickstoff tiefgefroren, gefriergetrocknet und anschließend das Trockengewicht bestimmt.

2.2.1.6 Untersuchung des wachstumsfördernden Effektes des AtPi Mediums auf *A. thaliana*

Für das Mediumaustauschexperiment (siehe 3.2.2) wurden zwei Wochen alte Pflanzen mit einem Agarblock ohne Myzel (At) und mit *P. indica*-Myzel (AtPi) co-kultiviert und nach 14 Tagen wurde das Medium über einen Sterilfilter (SteritopTM Flaschenaufsatzfilter, Durapore® (PVDF)-Membran, Roth, Karlsruhe), der mit einer Vakuumpumpe verbunden war, sterilfiltriert. Dieses sterilfiltrierte Medium, in dem sich die sekretierten Substanzen der Pflanzen (At) bzw. Pflanzen und Pilz (AtPi) befanden, wurde zu neuen 14 Tagen alten Pflanzen gegeben und nach vier Wochen wurde das Frischgewicht von Blättern und Wurzeln bestimmt.

2.2.1.7 Untersuchung des wachstumsfördernden Effektes des Pi Mediums auf *A. thaliana*

Für das *P. indica* Mediumaustauschexperiment (siehe 3.2.3) wurde *P. indica* im Schüttelkolben für zwei Wochen angezogen, das Pilzmedium über einen Sterilfilter, der mit einer Vakuumpumpe verbunden war, sterilfiltirert. Das Medium (180 mL pro Kasten) wurde pro Versuchsansatz (At bzw. AtPi) vereint (ca. 1 L), sterilfiltriert und anschließend je 180 mL

pro Kasten zu zwei Wochen alten Pflanzen gegeben. Nach vier Wochen Kultivierung wurde das Gewicht der Blätter und Wurzeln bestimmt.

2.2.1.8 Untersuchung des wachstumsfördernden Effektes auf *A. thaliana* nach Eluatzugabe

Für die Herstellung des Eluats wurden 14 Tage alte Pflanzen für zwei Wochen mit *P. indica* co-kultiviert, anschließend das Medium über eine Strata-X Säule (Strata-X 33u Polymeric reversed Phase 1 g/20 mL Giga Tubes, Phenomenex, Torrance, USA) aufkonzentriert. Für die Äquilibrierung wurden 10 mL Methanol und anschließend 1 mL Wasser über die Säule gegeben. Dann wurde das Medium (180 mL) auf die Säule geladen. Anschließend wurde mit 10 mL 0,1 % iger Ameisensäure gewaschen, die Säule eine Minute getrocknet und dann mit 10 mL Methanol:Acetonitril (1:1) eluiert. Das Eluat wurde in drei 4 mL Glasvials aufgefangen und das Volumen in der Speed Vac (Christ RVC 2-25 CO plus, Osterode) reduziert, anschließend wurde das Eluat vereinigt und weiter eingetrocknet. Schlussendlich wurde das fast getrocknete Eluat in 500 μL Wasser aufgenommen.

Für die Zugabe der Eluate zu den Kästen (siehe 3.2.4) wurden mehrere Eluate eines Typs (z.B. AtPi Eluat) vereinigt und anschließend sterilfiltriert (Rotilabo-Spritzenfilter, PVDF, steril Porengröße 0.22 µM, Roth, Karlsruhe).

Zwei Wochen alte Pflanzen, die in hydroponischer Kultur angezogen wurden, wurden für vier Wochen mit Eluat behandelt. Dafür wurde drei Mal pro Woche entweder 41,6 μ L (At Eluat AtPi 1x) oder 83,3 μ L (At Eluat AtPi 2x und At Eluat At) Eluat zu den Kästen gegeben. Nach 12-maliger Zugabe wurde so die Menge von 500 μ L bzw. 1000 μ L erreicht. Während dieser Zeit wurde das sterilfiltrierte Eluat bei 4 °C im Dunkeln aufbewahrt.

Nach vier Wochen und 12-maliger Zugabe des jeweiligen Eluates wurde die Pflanzen geerntet und das Gewicht der Blätter und der Wurzeln bestimmt.

2.2.1.9 Untersuchung des wachstumsfördernden Effektes von fraktionierten Eluaten auf *A. thaliana*

Das Medium, welches nach zwei Wochen Co-Kultivierung von *A. thaliana* mit *P. indica* gewonnen wurde, wurde über eine Strata-X 33 µm Reversed Phase (Phenomenex, Torrance, USA) 1 g/20 mL Säule aufkonzentriert. Für die Elution wurde wie folgt vorgegangen. Nach dem Trocknen der Säule wurde mit 10 mL 20 % Methanol eluiert.

Anschließend wurde die Säule wieder getrocknet und mit 40 % Methanol eluiert. Nach erneuter Trocknung wurde jeweils mit 10 mL 60 % Methanol, 80 % Methanol und 100 % Methanol:Acetonitril (50:50) eluiert. Die Eluate wurden mittels der Speed Vac eingeengt und in 500 μ L Wasser aufgenommen. Ein Teil der Eluate (100 μ L) wurde abgenommen und erneut eingeengt und dann mit 100 μ L 30 % Methanol aufgenommen und für die LC-MS-Messungen verwendet.

Die in Wasser aufgenommenen Eluate eines Elutionsschrittes (z.B. At 20 %) wurden vereinigt und sterilfiltriert. Anschließend wurden die Eluate zu zwei Wochen alten Pflanzen gegeben. Dafür wurde drei Mal wöchentlich 83,3 μ L pro Kasten zugeführt. Nach 12-maliger Zugabe (insgesamt 1000 μ L) wurden die Pflanzen nach vier Wochen geerntet und das Blatt - und Wurzelgewicht bestimmt (siehe 3.2.5).

2.2.1.10 Untersuchung des wachstumsfördernden Effektes von Pantothensäure

Zwei Wochen alte Pflanzen, die in hydroponischer Kultur angezogen wurden, wurden für vier Wochen mit Pantothensäure behandelt. Dafür wurde drei Mal pro Woche Pantothensäure zu den Kästen gegeben. Nach 12-maliger Zugabe wurde so die Endkonzentration von 5 nM, 10 nM, 25 nM, 50 nM und 100 nM erreicht. Während dieser Zeit wurde die sterilfiltrierte Pantothensäure bei 4 °C im Dunkeln aufbewahrt. Anschließend wurden die Blätter und Wurzeln geerntet und das Gewicht bestimmt.

Dieselbe Versuchsdurchführung wurde bei den Konzentrationen von 10 µM, 20 µM, 50 µM, 100 µM und 200 µM Pantothensäure durchgeführt.

Wurde Pantothensäure zu *P. indica* zugegeben, wurde *P. indica* in Schüttelkolben mit 180 mL Murashige-Skoog-Medium kultiviert und die Substanz wurde drei Mal wöchentlich zugegeben bis nach vier Wochen die Endkonzentration von 5 nM, 10 nM, 25 nM, 50 nM und 100 nM erreicht wurde. Anschließend wurde das Myzel über einen Rundfilter gefiltert, in der Lyophylle gefriergetrocknet und das Trockengewicht bestimmt.

Dieselbe Versuchsdurchführung wurde bei den Konzentrationen von 10 μ M, 20 μ M, 50 μ M, 100 μ M und 200 μ M Pantothensäure durchgeführt.

2.2.1.11 Untersuchung des wachstumsfördernden Effektes von Leu-Leu

Die Versuchsdurchführung mit Zugabe von Leu-Leu erfolgte sowohl bei den Pflanzen als auch bei *P. indica* analog Pantothensäure.

2.2.2 Chromotographisch-Spektrometrische Methoden

2.2.2.1 Versuchsaufbau für die LC-MS Analysen

Für die LC-MS Analysen wurde A. thaliana für 14 Tage in hydroponischer Kultur angezogen. Anschließend wurden die Pflanzen entweder für weitere zwei Wochen mit einem Agarblock (At) oder mit einem Agarblock mit P. indica Myzel (AtPi) kultiviert. Desweiteren wurde ein Kasten ohne Pflanzen und Pilz mitgeführt, indem sich nur Medium befand (m). Zusätzlich wurde P. indica allein kultiviert (Pi). Somit konnten alle Vergleiche zwischen den einzelnen Geweben (Blätter, Wurzeln und Myzel) und den unterschiedlichen Medien gewährleistet werden. Nach erfolgter Kultivierung wurden die Blätter und Wurzeln geerntet und sofort in Stickstoff tiefgefroren. Das Pilzmyzel wurde filtriert, in Stickstoff eingefroren und anschließend gefriergetrocknet. Die Gewebe wurden nachfolgend methanolisch extrahiert. Dafür wurden die Gewebe unter Stickstoff gemörsert. Anschließend wurden entweder 50 mg (Blätter), 15 mg (Wurzeln) oder 2 mg (Myzel) eingewogen und 150 mL eiskalter 80 % Methanol (indem sich 10 µM Biochanin befand) zugegeben und gemischt. Nach zehn minütigem Ultraschallbad wurde bei 16 °C und 19.000 g für zehn Minuten zentrifugiert und der Überstand in neue Reaktionsgefäße überführt und bei 4 °C aufbewahrt. Auf das Pellet wurden erneut 150 µL 80 % Methanol gegeben. Nach erfolgtem Ultraschallbad und Zentrifugation wurden die Überstände vereint und die Lösung in der Speed Vac eingeengt. Die fast trockenen Substanzen wurden in 200 µL 30 % Methanol wieder aufgenommen und in ein Glasvial filtriert (Syringe Filter 4 mm Single Use Filter Device 0.2 µm PTFE Membrane, Whatman, Kent, Großbritannien). Anschließend wurden die Proben sofort vermessen. Das Medium wurde in Glasflaschen gesammelt, eine Standardmischung zugegeben (Biochanin A, Phlorizin und Anissäure je 10 μ M) und über eine Festphasenextraktion auf einer Strata-X Reversed Phase Säule aufkonzentriert. Eluiert wurden die Säulen mit 50:50 Acetonitril: Methanol, anschließend eingeengt und mit 500 µL 30 % Methanol wieder aufgenommen. Die Proben wurde nach Böttcher et al. (2009) in der ULPC-ESI-QTOF-MS vermessen (ACQUITY UPLC, Waters mit Säule: ACQUITY UPLC HSS T3 1.8 µm 1.0 x 100 mm Column, Waters, Milford, USA, ESI-Q-TOF-MS: mircotof-QII bzw. mircotof-Q,

Bruker, Bremen). Für die Analysen wurden die in Tabelle 2. 1 aufgeführten Gradienten benutzt.

Gradient 1		Gradient 2	
Zeit	% Acetonitril	Zeit	% Acetonitril
[Sekunden]		[Sekunden]	
0	5	0	5
60	5	60	5
600	95	360	30
720	95	600	95
721	5	720	95
840	5	721	5
		840	5

Tabelle 2. 1: Übersicht über die verwendeten UPLC-Gradienten.

Die im Ergebnisteil und Anhang angegeben Retentionszeiten stammen von ESet 1. In Tabelle 2. 2: Verwendete Gradienten für die Gewebe und Medien. ist eine Übersicht über die jeweils verwendeten Gradienten für die einzelnen Gewebe und Medien aufgeführt.

Gewebe/Medium	Gradient
Blätter ESet1 und ESet2	Gradient 1
Wurzeln ESet1 und ESet2	Gradient 1
Myzel ESet1 und ESet2	Gradient 1
Medium At ESet1	Gradient 2
Medium AtPi ESet1	Gradient 2
Medium m ESet1 und ESet2	Gradient 1
Medium At ESet2	Gradient 1
Medium AtPi ESet2	Gradient 1
Medium Pi	Gradient 1

Tabelle 2. 2: Verwendete Gradienten für die Gewebe und Medien.

Die Experimente wurden pro Experimentenset drei Mal unabhängig voneinander wiederholt, mit jeweils drei Kästen pro Versuchsansatz, so dass neun Kästen (biologische Replikate) für ein Experimentenset (ESet 1) zur Analyse herangezogen werden konnten. Zudem wurde jede generierte Probe drei Mal vermessen (technische Replikate). Zu einem späteren Zeitpunkt wurde das vorgestellte Experimentenset wiederholt (ESet 2) und die Schnittmengen von beiden Sets zusammengeführt. Für das ESet 2 für den Vergleich At vs. m wurden die Kästen für zwei Wochen mit einem Hafer-Bohne Agarstück (Eschen-Lippold et al., 2009) versehen. So konnten die Unterschiede, die durch die Zusammensetzung des KM-Agars und des Hafer-Bohne Agars zustande kamen, ausgemittelt werden.

Die Datenanalyse erfolgte nach Böttcher et al. (2009). Nachdem die differentiellen Signale pro ESet ermittelt wurden, wurden diese verglichen und nur die Massensignale ([m/z]), die in beiden ESets differentiell waren, wurden weiter bearbeitet. Als differentiell galt ein Massensignal, wenn bei dem Vergleich (z.B. Wurzel At vs AtPi) der *fold change* (FC) \ge 2, der *p-value* \le 0,05, die Intensität des größeren Signals mindestens 1000 betrug und das [m/z] in 75 % der Messdaten einer Gruppe zu finden war. Dies stellte eine manuelle Kontrolle der Daten dar.

Die differentiellen Massensignale wurden mit dem Programm Data Analysis (DA) (Bruker, Bremen) verifiziert. Weiterhin wurden die gefilterten Massensignale mit dem Programm Quant Analysis (QA) (Bruker, Bremen) kontrolliert. Dieses Programm berechnet in einem *batch* nochmals die Intensität der einzelnen Signale womit ein genauerer *fold change* angegeben werden konnte.

2.2.2.2 LC-MS Strukturaufklärung

Die Strukturaufklärung wurde mit Hilfe von Dr. Christoph Böttcher (IPB, Halle) durchgeführt. Dafür wurden die ermittelten Muttermassen bei einer Volt Stärke von 15 eV, 25 eV und 40 eV fragmentiert (Böttcher et al., 2009).

Für die Standardmessungen wurde die jeweilige Referenzsubstanz in 30 % Methanol aufgenommen und vermessen (siehe 3.3.3).

2.2.2.3 LC-MS Gewebevergleich

Für den Gewebevergleich (siehe 3.3.4) wurden die differentiellen [m/z] mit allen gemessenen Massensignalen eines Gewebes bzw. Mediums verglichen. Fand sich zu der spezifischen Retentionszeit das zu vergleichende Massensignal wurde das Verhältnis der Metaboliten (*fold change*) notiert. War das Massensignal in dem vergleichendem Gewebe/Medium nicht differentiell, wurde auf eine genaue Darstellung des *fold changes* der Übersichtlichkeit halber verzichtet und als " ~1" dargestellt. Wurde das Massensignal nicht in einem anderem Gewebe oder Medium gefunden, wurde dies mit "-" gekennzeichnet.

2.2.2.4 LC-MS Analyse der Fraktionen

Die unter 2.2.1.8 hergestellten Fraktionen wurden per UPLC-ESI-QTOF-MS vermessen und nach Datenauswertung wurden die differentiellen Massensignale mit den differentiellen Massensignalen des Vergleichs Medium AtPi > At verglichen. Nur die [m/z], die in beiden Vergleichen differentiell waren, wurden berücksichtigt.

2.2.2.5 Versuchsaufbau für die GC-MS Analysen

Die Experimente zur anschließenden Analyse mittels GC-MS wurden analog 2.2.2.1 durchgeführt.

2.2.2.6 Extraktion und Derivatisierung für die GC-MS

Für die Extraktion wurden entweder 50 mg Blätter, 15 mg Wurzeln oder 2 mg gefriergetrocknetes Myzel eingewogen, unter Stickstoff gemörsert und 360 μL Methanol zugegeben. Die Proben wurden bei 70 °C für 15 Minuten geschüttelt, anschließend auf Raumtemperatur abgekühlt und mit 200 μL Chloroform versetzt. Nach 5 minütiger Inkubation bei 37 °C wurden 400 μL Wasser zugegeben und für 5 Minuten bei 19.000 *g* zentrifugiert. 100 μL der oberen polaren Phase wurden in der Speed Vac eingetrocknet und anschließend derivatisiert. Dafür wurden die Proben mit 40 μL Methoxyaminhydrochlorid (20 mg/mL in Pyridin) versehen und für 90 Minuten bei 30 °C inkubiert. Dann wurden 80 μL eines Mixes (1:7; v/v) von (N,O-bis(trimethylsilyl)trifluoroacetamid, BSTFA) und N-Alkanen (Decan, Dodecan, Pentadecan, Nonadecan, Docosan, Octacosan, Dotriacontan) zugegeben und für 30 Minuten bei 37 °C geschüttelt.

2.2.2.7 GC-MS Messungen

Die GC-MS Messungen und anschließende Auswertung wurden von Dr. Nadine Strehmel (IPB, Halle) durchgeführt.

Für die GC-MS Messungen wurde 1 µL jeder Probe bei 230 °C in *splitless mode* bei konstanten Helium Gasfluss in folgendes Temperaturprogram injiziert: 6890N Gas

Chromatographie System (Agilent Technologies, Böblingen) mit einer ZB-5 fused Silicakapillar Säule, 0,25 µm Durchmesser, 30 mm Länge, 0.25 mm Innerer Durchmesser und einer 10 mm EZ-guard Vorsäule (Phenomenex, Torrance, USA). Das Temperaturprogramm enthielt eine initiale isothermale Periode (1 Min) bei 70 °C, einen 9 °C/min Anstieg bis 300 °C und zum Schluss 5 min konstante Temperatur bei 300°C. Die anschließende QUAD-Detektion wurde mit einer 5975 MSD (Agilent Technologies, Böblingen) mit drei Scans/s in dem Bereich vom 70–600 amu durchgeführt.

2.2.2.8 GC-MS Datenauswertung

Die Datenauswertung wurde mit Hilfe der Metalign Software (Lommen, 2009) und der TagFinder Software (Luedemann et al., 2008) durchgeführt. Die relevanten Massenspektren wurden mit der Golm Metabolome Database Mass Spectral Compendium (Kopka et al., 2005), NIST 08 und dem Massbank Mass Spectral Compendium durchgeführt. Die identifizierten Stoffe wurden anhand eines Standards verifiziert.

2.2.3 Mikroskopische Methoden

2.2.3.1 Wurzelmorphologie

Zu zwei Wochen alten Pflanzen wurde entweder ein Stück Agar ohne (At) oder mit *P. indica* Myzel (AtPi) gegeben und nach weiteren zwei Wochen die Pflanzen geerntet und morphologisch untersucht (siehe 3.2.6). Die Pflanzen wurden entweder in hydroponischer Kultur oder auf Agarplatten mit Murashige-Skoog-Medium kultiviert. In die Murashige-Skoog-Medium-Platten wurde zusätzlich ein steriles Netz gelegt, damit die Wurzeln nicht in den Agar hinein wuchsen.

Die Fuchsinfärbung wurde nach Waller et al. (2005) durchgeführt. Weiterhin wurde eine Tintenfärbung durchgeführt (Vierheilig et al., 1998). Die Betrachtung erfolgte am Lichtmikroskop (Zeiss, Jena) bei 20-facher Vergrößerung.
3 Ergebnisse

3.1 Etablierung einer hydroponischen Kultur

3.1.1 Ansprüche an das optimale Kultivierungsmedium

Ziel der Arbeit war, Metabolite zu identifizieren, deren Konzentration sich während der Co-Kultivierung zwischen der Pflanzenwurzel von *A. thaliana* und dem Pilzmyzel von *P. indica* verändern. Dafür müssen die Metabolite technisch einfach aus dem sie umgebenden Medium extrahiert werden können.

Dies ist bei der Anzucht in Erde und auf Agar nicht der Fall (siehe Diskussion 4.1). Eine hydroponische Kultur bietet optimale Bedingung für die Untersuchungen der Metaboliten, die sich während der Interaktion des Endophyten *P. indica* mit den Wurzeln von *A. thaliana* verändern. Es sollten neben den ins Medium sekretierten Metaboliten auch die unterschiedlichen Substanzen in den Blättern und Wurzeln der Pflanzen, sowie das Pilzmyzel bei Co-Kultivierung mit und ohne *P. indica/A. thaliana* analysiert werden.

3.1.2 Aufbau der hydroponischen Kultur

Für die hydroponische Kultur wurde ein gelber Spitzenkasten verwendet, in den eine PCR-Platte eingesetzt wurde (siehe Material und Methoden 2.2.1.1). Die Reaktionsgefäße der PCR-Platte wurden mit Agar versehen, anschließend wurden die Spitzen der einzelnen Reaktionsgefäße steril abgeschnitten. In den Boden des Spitzenkastens wurden 180 mL Medium gefüllt (Abb. 3. 1a und b), damit die Spitzen der PCR-Reaktionsgefäße sich im Medium befanden, aber die Oberseite der PCR-Platte nicht mit Medium bedeckt war. Die Pflanzensamen wurden auf den Agar gesetzt, so dass sich nach Keimung der Samen die Blätter über der PCR-Platte befanden und die Wurzeln durch den Agar in das Medium wuchsen (Abb. 3. 1c). Die Sterilität wurde gewahrt, indem der Deckel des Spitzenkastens wieder verschlossen wurde. Dies bewirkte auch eine erhöhte Luftfeuchtigkeit in dem Kasten. Ein Austausch an Gasen war trotz verschlossenem Deckel möglich.

Abb. 3. 1: a) Aufsicht auf einen gelben Spitzenkasten, in dem sich eine mit Agar und Pflanzen befüllte PCR-Platte befindet, wobei durch die abgeschnittenen Spitzen die Wurzeln in das Medium ragten; b) Querschnitt durch eine PCR-Platte im Spitzenkasten. Die PCR-Reaktionsgefäße haben Kontakt mit dem Medium; c) Querschnitt durch eine mit Agar und Pflanzen befüllte PCR-Platte. Die Wurzeln sind nach unten aus dem Agar in Richtung des Mediums gewachsen.

Pro Spitzenkasten wurden 48 Pflanzen angezogen. Die Pflanzen wurden alternierend eingesetzt (vier pro Reihe), so dass sie einen möglichst großen Abstand hatten, um den Kontakt zwischen den Pflanzen weitgehend zu vermeiden (Abb. 3. 1a). Sollten die Pflanzen länger in der hydroponischen Kultur verbleiben und mehr Platz benötigen, bestand die Möglichkeit, auf der PCR-Platte eine Reihe nicht zu besetzten, so dass sich ingesamt 24 Pflanzen im Kasten befanden. Der Platz zwischen den Pflanzen ist wichtig, da zu eng stehende Pflanzen nur geringfügig weiterwachsen und Stresssymptome zeigen können. Durch den gewählten Abstand berührten sich die Pflanzen nicht bzw. nur sehr geringfügig, wodurch Platzmangel und Stress vermieden werden konnten.

Bei der Ernte wurden alle Pflanzen eines Kastens gepoolt und als ein Datenpunkt erfasst, wodurch kleine Schwankungen innerhalb des Kastens bzw. der Pflanzen ausgeglichen werden konnten. Die Zahl der Pflanzen gibt eine gute Anzahl für die statistische Verteilung. In der Literatur wurden beispielsweise 10 Pflanzen pro Pool benutzt (von Roepenack-Lahaye et al., 2004), somit ist die Anzahl von 24 bzw. 48 Pflanzen mehr als ausreichend.

Um die hydroponische Kultur zu etablieren, wurden verschiedene Bedingungen, wie die Medienzusammensetzung und die Lichtstärke, optimiert.

3.1.3 Optimierung der hydroponischen Kultur

Für alle Co-Kultivierungsexperimente zwischen *A. thaliana* und *P. indica* war es nötig, ein geeignetes Medium zu finden, in dem beide Partner angezogen werden konnten. Es wurden

drei Medien getestet. Zum einen wurden zwei gängige Medien für hydroponische Kulturen für *A. thaliana* verwendet (Schlesier et al., 2003; von Roepenack-Lahaye et al., 2004). Dies sind einerseits das Hoagland-Medium und andererseits das Murashige-Skoog-Medium mit Gamborg-B5 Vitaminen das mit 0,5 % Saccharose versetzt wurde. Außerdem diente das KM-Medium, in dem *P. indica* standardmäßig angezogen wurde, als weiteres mögliches Anzuchtmedium für beide Partner. Es wurden Keimlinge für 14 Tage in den drei Medien angezogen und anschließend das Gewicht der Blätter, die Keimungsrate der Samen und die Blattgesundheit (eventuelle Chlorosen, Rotfärbungen) untersucht (Tabelle 3. 1).

Tabelle 3. 1: Frischgewicht, Keimungsrate und Blattgesundheit nach 14-tägigem Wachstum in verschiedenen Medien, Zusammenführung der Ergebnisse aus zwei Sets von Experimenten; n = 5 für KM-Medium, n = 6 für Hoagland- und Murashige-Skoog-Medium.

	FG [mg] Blätter pro	Keimungsrate [%]	Blattgesundheit
	Pflanze		
KM-Medium	$2,26 \pm 0,44$	84,17 ± 11,47	Chlorosen
Hoagland-Medium	$2,22 \pm 1,00$	68,75 ± 17,23	gut
Murashige-Skoog-Medium	$1,93 \pm 0,29$	81,25 ± 13,5	gut

Die Pflanzen in den verschiedenen Medien wiesen ein vergleichbares Blattfrischgewicht auf, wobei *A. thaliana* im Hoagland-Medium inkonsistent wuchs, was sich in der hohen Standardabweichung des Blattgewichtes widerspiegelt. Weiterhin war die Keimungsrate im Hoagland-Medium die niedrigste. Die Pflanzen, die im KM-Medium angezogen wurden, wiesen Chlorosen auf, was auf einen Mineralstoffmangel hinweist. Im Murashige-Skoog-Medium zeigten die Pflanzen sowohl eine gute Blattgesundheit, als auch eine gute Keimungsrate. Demnach war das Murashige-Skoog-Medium für die Pflanzen das am besten geeignete Medium.

Es wurde ebenfalls das Wachstum von *P. indica* in den drei verschiedenen Medien untersucht. Dafür wurden Kolben mit dem entsprechenden Medium mit einem *P. indica* Myzelstück versehen und 14 Tage in Schüttelkolben kultiviert. Anschließend wurde das Trockengewicht des Myzels bestimmt (Tabelle 3. 2).

29

Tabelle 3. 2: Trockengewicht des *P. indica* Myzels nach zweiwöchiger Anzucht in verschiedenen Medien, Zusammenführung der Ergebnisse aus zwei Sets von Experimenten; n = 6 für KM-Medium, n = 8 für Hoaglandund Murashige-Skoog-Medium.

	Trockengewicht [mg]
KM-Medium	931,25 ± 37,25
Hoagland-Medium	4,33 ± 1,26
Murashige-Skoog-Medium	44,11 ± 5,50

Das größte Gewicht konnte mit dem KM-Medium erzielt werden, welches das optimierte Anzuchtmedium für *P. indica* ist. Der Endophyt wuchs kaum bzw. gar nicht im Hoagland-Medium. Das Trockengewicht kommt hier von dem angeimpften Agarstück mit Myzel zustande. Im Murashige-Skoog-Medium konnte eine Gewichtszunahme von *P. indica* erreicht werden. Da sowohl *A. thaliana*, als auch *P. indica* schlecht bzw. gar nicht in Hoagland-Medium wuchsen, konnte dieses nicht verwendet werden. In KM-Medium zeigte der Endophyt die beste Entwicklung, die Pflanzen wiesen jedoch Chlorosen auf. Beide Partner konnten sich gut im Murashige-Skoog-Medium entwickeln, so dass sich die weitere Optimierung auf dieses Medium konzentrierte.

Nach Schlesier et al. (2003), wurde die Anzucht von A. thaliana in hydroponischer Kultur mit Murashige-Skoog-Medium mit 0,5 % Saccharose beschrieben. So wurde die Menge der Saccharose im Medium untersucht, die nötig ist, damit sowohl A. thaliana als auch P. indica optimale Gewichte erreichen. Da das Medium aufkonzentriert und mittels Massenspektronomie vermessen werden sollte, war es jedoch erforderlich, die Menge an Zucker möglichst gering zu halten. Die, relativ zu den anderen im Medium messbaren Metaboliten. hohe Menge an Saccharose würde ansonsten zu massiven Ionensuppresionseffekten im vorderen polaren Bereich des Elutionsprofils führen (Böttcher et al., 2007). Es wurden dem Murashige-Skoog-Medium verschiedene Konzentrationen (0% (w/v), 0,05% (w/v), 0,1% (w/v), 0,25% (w/v) und 0,5% (w/v)) Saccharose zugesetzt und nach vier Wochen das Blatt- und Wurzelgewicht der Pflanzen analysiert (Abb. 3. 2).

Das Blattgewicht war bei den Pflanzen, die im zuckerfreien Medium wuchsen, am geringsten, wohingegen bei 0,25 % (w/v) und 0,5 % (w/v) Saccharose im Murashige-Skoog-Medium die höchsten Blattfrischgewichte erzielt werden konnten. Das Wurzelgewicht war unabhängig von der Zuckerkonzentration im Medium konstant.

30

Abb. 3. 2: Abhängigkeit des Blatt - und Wurzelwachsums von *A. thaliana* in Bezug auf ansteigende Saccharosekonzentrationen im Murashige-Skoog-Medium. Dargestellt ist das Frischgewicht (FG) in mg pro Pflanze nach vier Wochen Kultivierung. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; n = 7 (außer für 0,05% (w/v) Saccharose, n = 6).

Anschließend wurde das Wachstum des Pilzes in Murashige-Skoog-Medium mit unterschiedlichen Saccharosekonzentrationen untersucht. Dafür wurde ein Myzelstück von *P. indica* in Schüttelkolben mit ansteigenden Konzentrationen an Saccharose gegeben und nach zwei Wochen das Trockengewicht des Myzels bestimmt (Abb. 3. 3).

Abb. 3. 3: Abhängigkeit des Myzelwachsums von *P. indica* in Bezug auf ansteigende Saccharosekonzentrationen im Murashige-Skoog-Medium. Das Trockengewicht (TG) in mg des Myzels von *P. indica* wurde nach zwei Wochen im Schüttelkolben (28°C) bestimmt. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; n = 6 für 0 % (w/v) und 0,05 % (w/v); n = 4 für 0,10 % (w/v); n = 5 für 0,25 % (w/v) und 0,5 % (w/v) Saccharose.

Die durchgeführten Untersuchungen haben gezeigt, dass *P. indica* im zuckerfreien Medium nicht wächst, das Gewicht ergibt sich aus dem angeimpften Agarstück mit Myzel. Mit steigender Saccharosekonzentration erhöht sich das Gewicht des Pilzmyzels, welches bei Anzucht mit 0,5 % (w/v) Saccharose im Murashige-Skoog-Medium das größte Trockengewicht aufweist.

Da *P. indica* mit 0,5 % (w/v) Saccharose im Murashige-Skoog-Medium das höchste Gewicht aufwies und *A. thaliana* bei dieser Zuckerkonzentration, wie auch bei 0,25 % Saccharose das größte Frischgewicht zeigte, wurde entschieden, das Murashige-Skoog-Medium mit 0,5 % (w/v) Saccharose zu versetzten, wie auch bei Schlesier et al. (2003) angegeben.

Nach Optimierung des Mediums wurde die hydroponische Kultur unter verschiedenen Lichtbedingungen getestet. Laut Peskan-Berghöfer et al. (2004) ist ein wachstumsfördernder Effekt bei der Co-Kultivierung von *A. thaliana* mit *P. indica* bei einer Lichtstärke von ca. 100 µmol · s⁻¹· m⁻² zu beobachten. Eine Zunahme des Blattgewichtes konnte auch in dieser Arbeit in Hydrokultur bei dieser Lichtstärke nachgewiesen werden. Das Wurzelgewicht änderte sich durch die Behandlung mit *P. indica* nicht (Daten nicht gezeigt).

Weiterhin wurde die Co-Kultivierung unter Kurz- und Langtagbedingungen untersucht. Unter Langtagbedingungen begannen Pflanzen, die mit *P. indica* co-kultiviert wurden, bereits nach drei Wochen Infloreszensen auszubilden (die Pflanzen waren insgesamt fünf Wochen alt). Im Vergleich dazu bildeten Kontrollpflanzen frühstens nach 8 Wochen Infloreszensen aus. Da die mit *P. indica* kultivierten Pflanzen unter Langtagbedingungen nach fünf Wochen in den generativen Status übergingen, wurde entschieden, *A. thaliana* unter Kurztagbedingungen zu kultivieren, da für die Metabolitenmessungen beide Behandlungsgruppen (*A. thaliana* +/-*P. indica*) sich im selben (vegetativen) Entwicklungsstadium befinden sollten, um nur den Einfluss von *P. indica* auf Veränderungen der Metaboliten zu untersuchen.

Nach den Vorversuchen für die optimalen Bedingungen für die hydroponische Kultur in Bezug auf die zukünftigen Metabolitenmessungen können folgende Kulturbedingungen zusammengefasst werden: Die Pflanzen werden in Murashige-Skoog-Medium (mit Gamborg B5 Vitaminen) mit 0,5 % (w/v) Saccharose bei einer Belichtung von 100 µmol⁻ s^{-1.} m⁻² unter Kurztagbedingungen angezogen.

32

3.2 Co-Kultivierung von A. thaliana mit P. indica

3.2.1 Untersuchung des wachstumsförderdernden Effekts bei Co-Kultivierung *A. thaliana* mit *P. indica*

Nachdem die Bedingungen für die hydroponische Kultur optimiert worden sind, in der eine signifikante Erhöhung des Blattgewichtes nach Co-Kultivierung mit *P. indica* erreicht werden konnte, wurde eine Zeitkurve für die Co-Kultivierung erstellt, um zu untersuchen, ab welchem Zeitpunkt der wachstumsfördernde Effekt einsetzt und zudem einen guten Zeitpunkt für die Metabolitenmessungen zu erhalten.

Dafür wurden zwei Wochen alte *A. thaliana* Pflanzen mit einem reinem Agarblock (At) oder einem Agarblock mit *P. indica* Pilzmyzel (AtPi) co-kultivert und nach 1 - 6 Wochen geerntet, um das Gewicht der Blätter und Wurzeln zu bestimmen (Abb. 3. 4).

Abb. 3. 4: Frischgewicht (FG) in mg pro Pflanze nach 1 - 6 Wochen Co-Kultivierung. Pflanzen wurden mit einem Agarblock ohne Pilzmyzel (At) bzw. mit einem Agarblock, auf dem sich Pilzmyzel von *P. indica* befand (AtPi) für 1 - 6 Wochen co-kultiviert und anschließend das Gewicht der Blätter und Wurzeln der Pflanzen bestimmt. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; n = 8 (außer für At 1 und 2 Wochen n = 6 und für At 5 Wochen n = 7); ungepaarter t-Test * $P \le 0.05$, ** $P \le 0.001$.

Generell konnte beobachtet werden, dass sich das Wurzelgewicht mit Dauer der Kultivierung unabhängig von den Behandlungen erhöhte. Im Gegensatz dazu konnte schon nach einer Woche Co-Kultivierung ein signifikante Erhöhung des Blattfrischgewichtes in den *P. indica* behandelten Pflanzen beobachtet werden. Dieser Effekt verstärkte sich, je länger die Co-Kultivierung andauerte. So ist z.B. nach sechs Wochen Co-Kultivierung das Blattgewicht bei den mit *P. indica* behandelten Pflanzen um ca. 50 % höher als bei den At Pflanzen (Tabelle 3. 3).

Tabelle 3. 3: Zunahme des Gewichts der Blätter nach verschiedenen Zeitpunkten der Co-Kultivierung mit *P. indica* (AtPi) im Vergleich zur Kontrolle (At) in Prozent. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten; n = 8 (außer für At 1 und 2 Wochen n = 6 und für At 5 Wochen n = 7). Daten sind von Abb. 3.4 entnommen.

Wochen der Co-Kultivierung	% Wachstumsförderung
1	18,3
2	23,3
3	30,6
4	31,9
5	39,4
6	49,1

Zusätzlich wurde das Trockengewicht von *P. indica* nach Kultivierung ohne (Pi) und mit Pflanzen (AtPi) gegeben und nach 1 - 6 Wochen bestimmt, um zu untersuchen, wie sich das Wachstum von *P. indica* in Gegenwart von *A. thaliana* verändert (Abb. 3. 5).

Die Analyse des Trockengewichts ergab, dass der Pilz mit bzw. ohne *A. thaliana* gleich gut wächst, es gibt zu keinem Zeitpunkt der Kultuivierung einen statistisch signifikanten Unterschied im Myzelgewicht.

Zudem haben die Untersuchungen gezeigt, dass ein geeigneter Zeitpunkt für die Metabolitenmessungen nach zwei Wochen Co-Kultivierung erreicht war, da der Unterschied in der Gewichtszunahme der Blätter nach Behandlung mit *P. indica* im Vergleich zu den Kontrollpflanzen auch optisch gut zu analysieren war (Abb. 3. 6), und so vor dem Ernten bereits nachvollzogen werden konnte, ob die Interaktion zwischen *A. thaliana* und *P. indica* erfolgreich war.

Abb. 3. 5: Trockengewicht (TG) in mg des Pilzmyzels von *P. indica* nach 1 - 6 Wochen Co-Kultivierung mit bzw. ohne *A. thaliana*. Der Pilz wurde mit *A. thaliana* (AtPi) bzw. allein (Pi) für 1 - 6 Wochen co-kultiviert und anschließend wurde das Trockengewicht des Myzels bestimmt. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; n = 7 (außer für AtPi, Pi 1 Woche und At Pi 3 Wochen n = 8, Pi 6 Wochen n = 6).

Abb. 3. 6: Aufsicht auf zwei Kästen, in denen sich vier Wochen alte *A. thaliana* Pflanzen befinden. Zwei Wochen alte Pflanzen wurden in a) mit einem Kontrollagarblock ohne Myzel (At) bzw. in b) mit einem Agarblock mit Myzel von *P. indica* (AtPi) versetzt und die Größe der Blätter nach weiteren zwei Wochen fotodokumentiert. Der Größenunterschied der Pflanzen ist deutlich zu erkennen.

Weiterhin waren die Pflanzen und das Pilzmyzel ausreichend gewachsen, um genug Material für die Ananlysen zu liefern. Die weiteren Experimente sollten mit zwei Wochen alten Pflanzen durchgeführt werden, die für weitere zwei Wochen mit bzw. ohne Pilzmyzel co-kultiviert wurden. Die Gesamtkultivierungsdauer von vier Wochen ist eine praktikable Zeit für die Experimente.

Zudem sollte untersucht werden, ob sich der wachstumsfördernder Effekt auf die Zunahme an Biomasse der Blättern oder durch Vergrößerung der Zellen (Wassereinlagerung) zurückführen lies. Dafür wurde das Frischgewicht und anschließend das Trockengewicht von vier Wochen alten Pflanzen nach zwei Wochen der Co-Kultivierung mit *P. indica* (AtPi) bzw. ohne Pilz (At) bestimmt (Tabelle 3. 4).

Tabelle 3. 4 Frischgewicht (FG) und Trockengewicht (TG) in mg der Blätter nach vier Wochen. Zwei Wochen alte Pflanzen wurden für weitere zwei Wochen mit einem Agarblock (At) bzw. einem Agarblock mit Pilzmyzel (AtPi) co-kultiviert, anschließend die Blätter geerntet und das Frisch- und Trockengewicht bestimmt, n = 3 mit Standartabweichungen.

	FG [mg] Blätter	TG [mg] Blätter	TG in [%] des FG
At	420,80 ± 18,89	24,83 ± 0,58	5,91 ± 0,12
AtPi	572,40 ± 36,35	$36,35 \pm 2,40$	5,99 ± 0,52

Sowohl das Frisch - als auch das Trockengewicht waren nach Co-Kultivierung mit *P. indica* signifikant höher. Das Trockengewicht der Kontrollpflanzen als auch der mit *P. indica* behandelten Pflanzen beträgt 6 % des Frischgewichtes. Da nach der Gefriertrocknung in den Proben der gleiche Wassergehalt vorzufinden ist, kann das höhere Trockengewicht der AtPi Pflanzen nur darauf zurückzuführen sein, dass mehr Biomasse gebildet wurde.

3.2.2 Untersuchung des wachstumsfördernden Effektes des AtPi Mediums auf *A. thaliana*

Da bei der Co-Kultivierung mit *P. indica* eine Steigerung des Blattfrischgewichtes im Vergleich zu den unbehandelten Pflanzen zu verzeichnen war, sollte geklärt werden, ob unter den Metaboliten, die ins Medium sekretiert wurden, auch wachstumsfördernde Substanzen enthalten waren. So sollte nachvollzogen werden, ob ein Austausch an Metaboliten im Medium stattfand und die Stoffe nicht nur direkt von den Wurzeln an das Myzel und umgekehrt abgeben werden. Weiterhin sollte untersucht werden, ob die Substanzen, die während der Co-Kultivierung sekretiert werden, im Medium akkumulieren, damit sie per Massenspektromtrie vermessen werden können. Würden die Metaboliten sofort von den Wurzeln bzw. dem Myzel aufgenommen werden, könnten diese im Medium nicht

detektiert werden. Die wachstumsfördernden Substanzen sind hierfür ein guter Indikator. Würde ein Medium, indem die sekretierten Substanzen nach der Co-Kultivierung enthalten sind, bei bisher unbehandelten Pflanzen einen wachstumsfördernden Effekt auslösen, ist davon auszugehen, dass sich sowohl wachstumsfördernde, als auch andere (z.B. für die Interaktion wichtige) Stoffe in dem co-kultivierten Medium befanden.

Um diese Fragestellung zu untersuchen wurden zwei Wochen alte Pflanzen mit einem Agarblock ohne Myzel (At) und mit *P. indica* Myzel (AtPi) co-kultiviert und nach 14 Tagen wurde das Medium sterilfiltriert (siehe Schema Abb. 3. 7). Dieses sterilfiltrierte Medium, indem sich die sekretierten Substanzen der Pflanzen (At) bzw. Pflanzen und Pilz (AtPi) befanden, wurde zu neuen 14 Tagen alten Pflanzen gegeben und nach vier Wochen wurde das Frischgewicht von Blättern und Wurzeln bestimmt (Abb. 3. 8). Der Zeitraum von vier Wochen wurde gewählt, damit eventuelle kleine Unterschiede im Gewicht besser detektiert werden konnten als nach zwei Wochen Wachstum mit dem zugegebenen Medien.

Abb. 3. 7: Schema für das Mediumaustauschexperiment. Nach 14-tägiger Co-Kultivierung wurde das Medium sterilfiltriert und zu zwei Wochen alten Pflanzen gegeben. Diese wuchsen in dem sterilfiltriertem Medium für vier Wochen und wurden anschließend geerntet.

Abb. 3. 8: Frischgewicht [mg] der Blätter und Wurzeln nach vier Wochen Kultivierung in einem ausgetauschten, sterilfiltrierten Medium. Dieses sterilfiltrierte Medium stammt aus einer zwei-wöchigen Co-Kultivierung mit und ohne *P. indica*. 14 Tage alten A. thaliana-Pflanzen wurden mit sterilfiltriertem Medium entweder aus Kästen mit Kontrollpflanzen (At mit At Medium) oder aus mit *P. indica* co-kultivierten Kästen (At mit AtPi Medium) versetzt und nach vier Wochen das Blatt- und Wurzelgewicht bestimmt. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; At n = 7, AtPi n = 8; ** ungepaarter t-Test P \leq 0,01

Die Pflanzen, die mit dem Medium versetzt wurden, das aus der Co-Kultivierung mit *P. indica* stammt, zeigten eine Gewichtszunahme der Blätter von etwa 18 % gegenüber den Kontrollpflanzen, die mit dem Pflanzenmedium kultiviert wurden. Dies entspricht dem Zuwachs nach 1-2 wöchiger Co-Kultivierung mit *P. indica* (siehe Tabelle 3. 3).

Die Wurzeln waren bei den Pflanzen, die mit dem co-kultivierten *P. indica* Medium behandelt wurden, stark verkürzt und in den Agar der PCR-Reaktionsgefäße hinein gewachsen, dies zeigt sich auch in dem signifikant erniedrigten Wurzelgewicht im Vergleich zu den Pflanzen, die mit At Medium kultivert wurden.

Da der wachstumsfördernder Effekt bei der Co-Kultivierung in den Blättern beobachtet werden konnte, deutet die Zunahme an Blattgewicht bei den sterilfiltrierten Medium, in dem zuvor *P. indica* mit *A. thaliana* wuchs darauf hin, dass wachstumsfördernde Substanzen in dem Medium akkumulierten, die vorher während der Co-Kultiverung von beiden Partnern in das Medium sekretiert wurden. Damit waren die Vorraussetzungen für eine erfolgreiche Massenspektrometrische Analyse des Mediums erfüllt.

3.2.3 Untersuchung des wachstumsfördernden Effektes des Pi Mediums auf *A. thaliana*

Um zu überprüfen, ob die Interaktion von Pflanze und Pilz gewährleistet sein muss, damit *P. indica* wachstumsfördernde Substanzen sekretiert oder ob der Pilz auch ohne pflanzlichen Partner diese Stoffe ins Medium ausscheidet, wurde *P. indica* im Schüttelkolben für zwei Wochen angezogen, das Pilzmedium sterilfiltriert und anschließend zu zwei Wochen alten Pflanzen gegeben. Nach weiteren vier Wochen Kultivierung wurde das Gewicht der Blätter und Wurzeln bestimmt (Abb. 3. 9).

Abb. 3. 9: FG [mg] der Blätter und Wurzeln nach vier Wochen Kultivierung in einem ausgetauschten, sterilfiltrierten Medium. Dieses sterilfiltrierte Medium stammt aus einer zwei-wöchigen Kultivierung von *P. indica*. 14 Tage alte *A. thaliana* wurden entweder mit keinem neuen Medium (At) oder sterilfiltriertem *P. indica* Medium (At mit Pi Medium) versetzt und nach vier Wochen das Blatt- und Wurzelgewicht bestimmt. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; At n = 9, AtPi n = 8; ** ungepaarter t-Test P \leq 0,01.

Aus den durchgeführten Untersuchungen geht hervor, dass durch den Zusatz von sterilfiltriertem Pilzmedium zu den Pflanzen kein signifikanter Unterschied in den Blattfrischgewichten detektiert werden konnte. Dies deutet darauf hin, dass *P. indica* die wachstumsfördernden Substanzen anscheinend nur während der Interaktion mit *A. thaliana* sekretiert.

Erneut konnte beobachtet werden, dass die Wurzeln bei den Pflanzen, die mit dem *P. indica* Medium behandelt wurden, stark verkürzt und in den Agar der PCR-Reaktionsgefäße hinein gewachsen waren, was sich auch in dem signifikant erniedrigten Wurzelgewicht im Vergleich zu den unbehandelten Pflanzen widerspiegelt.

3.2.4 Untersuchung des wachstumsfördernden Effektes auf *A. thaliana* nach Eluatzugabe

Für die massenspektrometrischen Messungen musste das Medium über Festphasenchromatographie von 180 mL auf 500 µL aufkonzentriert werden um einerseits das Volumen zu verringern und die Metaboliten aufzukonzentrieren, und andererseits den Zuckerüberschuss zu verringern. Es war ungewiss, ob in der Reversed Phase Säule die Substanzen verbleiben, die während der Interaktion sekretiert wurden. Somit sollte das aufkonzentrierte und eluierte Medium (im folgenden Eluat genannt) auf einen wachstumsfördernden Effekt getestet werden, da dies ein Indikator für das Vorhandensein der wichtigen Metaboliten im Medium war.

Für das Experiment wurden zwei Wochen alte Pflanzen über vier Wochen (3 x pro Woche) mit einer einfachen Menge (insgesamt 0,5 mL, At Eluat AtPi 1x) und einer zweifachen Menge (insgesamt 1 mL, At Eluat AtPi 2x) an Eluaten, die aus dem aufkonzentrierten, mit *P. indica* co-kultivierten Medium stammten, behandelt. Als Kontrolle wurde das Eluat von At Kästen zugegeben (insgesamt 1 mL, At Eluat At). Anschließend wurde das Frischgewicht der Blätter und Wurzeln bestimmt (Abb. 3. 10).

Bei der Auswertung wurden die zwei Experimentensets (ESets) nicht zusammengefasst, da zwischen den einzelnen ESets ein signifikanter Unterschied in den Werten eines Messpunktes (z.B. At Eluat At) bei allen Konzentrationen auftrat. Der Trend innerhalb eines ESets ist jedoch vergleichbar mit dem zweiten ESet. Die Werte für das zweite ESet sind im Anhang zu finden (siehe 7.4). In beiden ESets konnte durch die Zugabe des aufkonzentrierten co-kultiviertem Mediums in der zwei fachen Konzentration (At Eluat AtPi 2x) ein signifikanter wachstumsfördernder Effekt in den Blättern dokumentiert werden. Der Zuwachs von 9 % ist zwar kleiner als bei der *P. indcia* Co-Kultivierung nach einer Woche, allerdings enthält auch das aufkonzentrierte Medium die sekretierten Metaboliten der Interaktion, u.a. die wachstumsfördernden Substanzen, wodurch die Zunahme des Blattgewichtes zu erklären ist.

Abb. 3. 10: Frischgewicht (FG) in mg pro Pflanze nach Zugabe von aufkonzentriertem Medium. Zwei Wochen alte Pflanzen wurden mit einer einfachen (At Eluat AtPi 1x) oder zweifachen (At Eluat AtPi 2x) Konzentration an aufkonzentrierten AtPi Medium oder Medium von At Pflanzen (At Eluat At) über vier Wochen behandelt. Anschließend wurden die Pflanzen geerntet und das Gewicht bestimmt. n = 4 (außer At Eluat AtPi 2x n = 3); ** ungepaarter t-Test $P \le 0,01$ im Vergleich zur Kontrollgruppe (At Eluat At) mit Standartabweichungen.

Durch die Zugabe der AtPi Eluate zu den Pflanzen verringerten sich die Wurzelgewichte statistisch signifikant. Je mehr AtPi Eluat zugegeben wurde, desto stärker war der Effekt. Das geringere Gewicht spiegelte sich auch optisch wider, da die Wurzeln, die mit dem AtPi Eluat behandelt wurden, stark verkürzt und in den Agar hineingewachsen waren.

3.2.5 Untersuchung des wachstumsfördernden Effektes von fraktionierten Eluaten auf *A. thaliana*

Da das AtPi Eluat, das von dem Medium der Co-Kultivierung mit *P. indica* stammt, einen wachstumsfördernden Effekt besitzt, sollte für die späteren Massenspektrometriemessungen Fraktionen der AtPi Eluate hergestellt werden, um unterscheiden zu können, welche Substanzen möglicherweise für die Interaktion und welche für den wachstumfördernden Effekt verantwortlich sind.

Nachdem zwei Wochen alte Pflanzen für 14 Tage mit *P. indica* co-kultiviert wurden, wurde das Medium über eine Festphasenchromatographie aufkonzentriert. Das Medium wurde in Fraktionen von 20 %, 40 %, 60 %, 80 % und 100 % Methanol eluiert. Im Anschluß wurden 14 Tage alte Pflanzen über vier Wochen (3 x pro Woche) mit je insgesamt 1 mL an

fraktioniertem AtPi Medium bzw. als Kontrolle mit eluiertem At Medium behandelt, anschließend das Blatt- und Wurzelgewicht bestimmt (Abb. 3. 11).

Abb. 3. 11: Frischgewicht (FG) in mg pro Pflanze nach Zugabe von aufkonzentriertem, fraktioniertem Medium. Zwei Wochen alte Pflanzen wurden mit den AtPi Eluatfraktionen (AtPi 20 %, AtPi 40 %, AtPi 60 %, AtPi 80 %, AtPi 100 %) oder At Eluat (At Eluat At) über vier Wochen behandelt. Anschließend wurden die Pflanzen geerntet und das Gewicht bestimmt. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; At Eluat At n = 8; At 20 %, At 60 %, At 80 % n = 7; At 40 % und At 100 % n = 6; ** ungepaarter t-Test P \leq 0,01 im Vergleich zur Kontrollgruppe (At Eluat At).

Die Untersuchungen haben gezeigt, dass sowohl nach 1-2 Wochen der Co-Kultivierung von *A. thaliana* mit *P. indica*, als auch nach Zugabe der 60%-Methanolfraktion eine signifikante Gewichtszunahme von 18 % bei den Blättern zu verzeichnen war. Dagegen konnte in den Wurzelgewichten kein Unterschied nach den Behandlungen festgestellt werden. Es scheint, dass die wachstumsfördernden Substanzen vor allem in der 60 % AtPi Eluatfraktion zu finden sind, in den anderen Fraktionen könnten dagegen Metaboliten enthalten sein, die z.B. für die Interaktion der beiden Partner wichtig sind.

3.2.6 Wurzelmorphologie

Da *P. indica* mit *A. thaliana* über die Wurzeln interagiert, wurde untersucht, ob sich Veränderungen in der Morphologie der Wurzeln zeigten. Es ist bekannt, dass die Wurzeln von *Spilanthes calva*, *Withania somnifera* und *A. thaliana* eine verstärkte Verzweigung im

Vergleich zur Kontrolle aufweisen, wenn sie mit *P. indica* auf Agarplatten co-kultiviert wurden (Rai et al., 2001; Shahollari et al., 2007).

Um zu untersuchen ob dieser Effekt auch im hier vorliegenden System beobachtet werden kann, wurden zu 14 Tagen alten Pflanzen *P. indica* Pilzmyzel (AtPi) oder ein Kontrollagarblock (At) gegeben und nach weiteren zwei Wochen die Pflanzen geerntet. Die Pflanzen wuchsen entweder in hydroponischer Kultur (Abb. 3. 12 a, b ,e und f) oder auf Murashige-Skoog-Medium-Agarplatten (Abb. 3. 12 c, d, g und h). Die Pflanzen wurden fotographiert (Abb. 3. 12 a-d) bzw. mit Fuchsinlösung gefärbt und unter dem Mikroskop betrachtet (Abb. 3. 12 e-h).

Abb. 3. 12: *A. thaliana* Pflanzen nach Co-Kultivierung mit und ohne *P. indica*. Zwei Wochen alte Pflanzen wuchsen für weitere zwei Wochen in hydroponischer Kultur mit zugesetzem Agarblock (At) (a und e) bzw. mit einem *P. indica*-Agarblock (AtPi) (b und f). Weitere Pflanzen wurden auf Agarplatten ohne *P. indica* (c und g) bzw. mit *P. indica* Myzel (d und h) behandelt. Der weiße Block bei a)-d) entspricht 1 cm x 1 cm. e)-h): Mikroskopische Aufnahmen von *A. thaliana* Wurzeln (Fuchsinfärbung) nach Co-Kultivierung mit/ohne *P. indica*. Maßstabsbalken entsprechen 0,1 mm.

Die Wurzeln der At Pflanzen in der hydroponischen Kultur sind wenig bis gar nicht verzweigt (Abb. 3. 12 a), bilden aber eine normale Anzahl an Wurzelhaaren aus (Abb. 3. 12 e). Wurden

3 Ergebnisse

die Pflanzen mit *P. indica* co-kultiviert, waren die Wurzeln stärker verzweigt und wiesen weniger Wurzelhaare im Vergleich zur Kontrolle auf (Abb. 3. 12 b und Abb. 3. 12 f).

Die At Pflanzen, die auf Agarplatten wuchsen, zeigten weniger verzweigte Wurzeln, dafür mehr Wurzelhaare als die mit *P. indica* co-kultiverten Pflanzen (Abb. 3. 12 c, d und Abb. 3. 12 g, h). Jedoch waren die Wurzeln der Pflanzen, die auf Agar wuchsen im allgemeinen verzweigter als die Wurzeln der Pflanzen, die in hydroponischer Kultur kultiviert wurden. Die in hydroponischer Kultur mit *P. indica* co-kultivierten Pflanzen zeigten eine Akkumulation von Pilzmyzel mit Chlamydosporen, die sich außerhalb der Wurzel detektieren ließen. Intrazelluläre Hyphen oder Chlamydosporen konnten jedoch nicht beobachtet werden (Abb. 3. 13 a und b). Im Gegensatz dazu konnten Schäfer et al. (2007) in Gerste sowohl extra- als auch intrazelluläre Hyphen detektieren.

Abb. 3. 13: Mikroskopische Aufnahme einer vier Wochen alten *A. thaliana* Wurzel (Tintenfärbung), die für zwei Wochen mit *P. indica* co-kultiviert wurde, in verschiedenen Fokussierungsstufen. a) Wurzeloberfläche, b) Zellen in der Wurzel. Es ist deutlich zu erkennen, dass die Hyphen und Chlamydosporen von *P. indica* um die Wurzel angeordnet waren, jedoch nicht intrazellulär auftraten. Maßstabsbalken entspricht 20 µm.

P. indica penetriert die Wurzeln von *A. thaliana* Wurzeln in hydroponischer Kultur nicht. Dies konnte auch Dr. Alga Zuccaro (MPI Marburg) bestätigen, die in einer Kooperation die Wurzeln aus der hydroponischen Kultur untersuchte.

3.3 LC-MS Analysen

3.3.1 Die Experimente

Um die semipolaren Metabolite zu identifizieren, die sich während der Interaktion zwischen der Pflanzenwurzel von *A. thaliana* und dem Pilzmyzel von *P. indica* in den einzelnen Geweben verändern bzw. sekretiert werden, wurden 14 Tage alte *A. thaliana* Pflanzen, die in

hydroponischer Kultur angezogen wurden, entweder für weitere zwei Wochen mit einen Kontrollagarblock (At) oder mit einem Agarblock mit P. indica Myzel (AtPi) kultiviert. Desweiteren wurde ein Kasten ohne Pflanzen und Pilz mitgeführt, indem sich nur Medium befand (m). Zusätzlich wurde P. indica allein kultiviert (Pi). Somit konnten alle Vergleiche zwischen den einzelnen Geweben (Blätter, Wurzeln und Myzel) und den unterschiedlichen Medien gewährleistet werden (Tabelle 3. 5). Nach erfolgter Kultivierung wurden die Blätter und Wurzeln geerntet und sofort in Stickstoff tiefgefroren. Das Pilzmyzel wurde filtriert, in Stickstoff eingefroren und anschließend gefriergetrocknet. Die Gewebe wurden nachfolgend methanolisch extrahiert. Das Medium wurde in Glasflaschen gesammelt, eine Standardmischung zugegeben (Biochanin A, Phlorizin und Anissäure) und über eine Festphasenextraktion auf einer Strata-X Reversed Phase Säule aufkonzentriert, um damit die Saccharose weitestgehend aus dem Medium zu entfernen und das Volumen des Mediums zu verringern. Eluiert wurden die Säulen mit Acetonitril/Methanol (1:1 (V/V)), anschließend eingeengt und mit 30 % Methanol wieder aufgenommen. So wurde pro Kasten das Volumen von 180 mL auf 500 µL (um das 360 fache) verringert. Die gewonnenen Eluate wurden direkt vermessen.

Die Experimente wurden dreimal unabhängig voneinander wiederholt, mit jeweils drei Kästen pro Versuchsansatz, so dass neun Kästen für ein Experimentenset (ESet 1) zur Analyse herangezogen werden konnten. Zu einem späteren Zeitpunkt wurde der vorgestellte Versuchsaufbau wiederholt (ESet 2) und die Daten von beiden Sets zusammengeführt.

Name	Inhalt des Kastens
At	A. thaliana in PCR-Platte, Medium mit Kontroll-Agarblock
AtPi	A. thaliana in PCR-Platte, Medium mit P. indica Myzel-Agarblock
m	PCR-Platte, Medium mit Kontroll-Agarblock
Pi	PCR-Platte, Medium mit <i>P. indica</i> Myzel-Agarblock

Tabelle 3. 5: Übersicht über die vier Versuchsansätze der zwei Experimentensets.

3.3.2 LC-Datenauswertung

Für das ungerichtete Metaboliten-Profiling (*non targeted metabolite profiling*) mussten die Daten so diskriminiert werden, das am Ende der Prozedur beim Vergleich von zwei Behandlungsgruppen eine Liste von Massensignalen ([m/z]) erstellt werden konnte, die in ihrer Intensität unterschiedlich sind (*fold change* \ge 2).

Jeder Extrakt wurde dreimal an einem UPLC-ESI-QTOF-MS Gerät (Bruker, Bremen) im positiven und negativen Modus vermessen (technische Replikate). Die Rohdaten wurden konvertiert und in XCMS (Nordstrom et al., 2006; Smith et al., 2006; Tautenhahn et al., 2008) analysiert. Anschließend wurden die Daten in Excel ausgewertet.

Dafür wurde der Mittelwert der Intensität eines jeden gemessenen Massensignals der zu einer Gruppe (z.B. At) gehörenden Daten gebildet. Dieser wurde dem Mittelwert der Intensität der zu vergleichenden Gruppe (z.B. AtPi) gegenübergestellt. Aus diesen Werten konnte der Unterschied in den Intensitäten (*fold change*) berechnet werden. Weiterhin wurde der Fehlerindikator (*p-value*) berechnet. Ein [*m/z*]-Retentionszeit-Paar wurde als unterschiedlich definiert, wenn der *fold change* der Intensität des Massensignals mindestens 2 betrug, der *p-value* kleiner als 0,05 war, die Intensität (des größeren Signals) mindestens 1000 betrug und das Massensignal in 75 % der gemessenen Daten einer Gruppe vorkam.

Die Daten wurden nicht normalisiert, da die Ergebnisse zwischen nicht normalisierten und normalisierten Daten identisch waren.

Die Liste wurde nach Retentionszeit (RT) geordnet, so dass Massensignale, die zusammengehören und demnach zur selben Retentionszeit auftreten, zusammen analysiert werden konnten. Anschließend wurde für jedes Massensignal in dem Programm Data Analysis (DA) (Bruker, Bremen) kontrolliert, ob es zu der beschriebenen Zeit in den Rohdaten zu finden ist und ob der Unterschied (*fold change*) der Intensitäten zwischen den Gruppen mindestens 2 beträgt. Dies wurde durchgeführt, um auszuschließen, dass die Intensität des Massensignals nur in (sehr) wenigen Dateien sehr hoch auftrat und damit den Mittelwert verschob, so dass es als differentiell angesehen wurde. Mit dem Programm Quant Analysis (QA) (Bruker, Bremen) wurde der *fold change* nochmals genauer ermittelt.

Die erhaltene Liste aus einem Experimentenset wurde mit der Liste aus dem zweitem Experimentenset verglichen und nur die Intensitäten der Massensignale, die in beiden ESets differentiell waren, wurden zu einer Liste vereint. Nachdem die Liste der Massensignale (geordnet nach Retentionszeit) erstellt wurde, konnte eine Abschätzung der potentiellen Metaboliten erfolgen. Da eine Substanz zu einer gegeben Retentionszeit im Spektrum auftaucht, die z.T. fragmentiert (z.B. [M-H₂O]⁺) bzw. Addukte (z.B. [M + Na]⁺, [M+K]⁺) bildet, gehören die Massensignale bei einer definierten Retentionszeit meist zu einem Signalcluster. So kann die Zahl von differentiellen Massensignalen zu einer Retentionszeit auf potentielle Signalmoleküle abgeschätzt werden.

46

Abb. 3. 14 zeigt an einem Beispiel des Vergleiches des Mediums At mit AtPi die Übersicht über den Ablauf der oben beschriebenen Datenauswertung und die Reduzierung der vielen Massensignale zu wenigen Kandidaten.

Abb. 3. 14: Übersicht über den Ablauf der Datenauswertung am Beispiel des At und AtPi Mediums von Experimentset 1 und 2, das im positiven Modus gemessen wurde. Nach dem Erstellen der Excel-Liste durch das Programm XCMS werden alle Massensignale nach Eigenschaften gefiltert (*fold change* (FC) \ge 2, *p-value* \le 0,05 und das Auftreten des differentiellen Massensignale in mind. 75 % der Files einer Gruppe (75 %)). Anschließend wurden die differentiellen Massensignale in zwei Gruppen (At > AtPi; AtPi > At) aufgeteilt. Danach wurden die Massensignale in DataAnalysis und QuantAnalysis überprüft und anschließend die zwei Experimentensets zusammengeführt. Die Massensignale, die in beiden ESets differentiell waren wurden zu einer Liste vereint und daraus die Anzahl der potentiellen Metabolite kalkuliert.

Die beschriebene Analyse wurde für alle 48 Vergleiche der einzelnen Gewebe und der Medien durchgeführt. Dabei wurden pro Vergleich jeweils zwei Experimentensets im positiven und negativen Messmodus analysiert (Tabelle 3. 6).

47

	Vergleiche jeweils im positiven und negativen Messmodus
Blätter	AtPi > At, AtPi < At
Wurzeln	AtPi > At, AtPi < At
Myzel	AtPi > Pi, AtPi < Pi
Medium	AtPi > At, AtPi < At, At > m, At < m, Pi > m, Pi < m, AtPi > Pi, AtPi < Pi

Tabelle 3. 6: Übersicht über die durchgeführten Vergleiche in den Geweben und Medien jeweils in positivem und negativem Messmodus.

3.3.2.1 Metaboliten-Profiling der Blätter

Als erstes wurde untersucht, inwiefern sich die Interaktion der Wurzeln von *A. thaliana* mit *P. indica* auf die Metabolitenzusammensetzung der Blätter der Pflanze auswirkt. Die Blätter haben keinen direkten Kontakt zu dem Pilz, zeigen aber nach Co-Kultivierung ein größeres Gewicht, wenn die Pflanzen mit *P. indica* vergesellschaftet wurden. Es wurde das differentielle Metabolitenmuster untersucht, das nach der Kultivierung von *A. thaliana* (At) und *A. thaliana* mit *P. indica* (AtPi) entstand (Tabelle 3. 7 und Tabelle 3. 8).

Tabelle 3. 7: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten in den Blättern, die nach Co-Kultivierung mit *P. indica* erhöht waren (AtPi > At) nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus. DA: DataAnalysis, QA: QuantAnalysis, FC: *fold change*

	AtPi > At pos		AtPi > At neg	
	ESet 1	ESet 2	ESet 1	ESet 2
[m/z] gesamt	2400	3567	743	1097
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	12	105	1	2
[<i>m</i> / <i>z</i>] nach Gruppierung	12	92	1	2
[<i>m/z</i>] nach DA und QA	9	57	1	2
Schnittmenge beider Experimente	-			-
potentielle Metaboliten	-			-

	AtPi < At pos		AtPi < At neg	
	ESet 1	ESet 2	ESet 1	ESet 2
[m/z] gesamt	2400	3567	743	1097
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	12	105	1	2
[<i>m</i> / <i>z</i>] nach Gruppierung	-	13	-	-
[<i>m/z</i>] nach DA und QA	-	8	-	-
Schnittmenge beider Experimente	-		-	
potentielle Metaboliten	-		-	

Tabelle 3. 8: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten in den Blättern, die nach Co-Kultivierung mit *P. indica* erniedrigt waren (AtPi < At) nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

Nach Auswertung der Massensignale wurde festgestellt, dass im positiven Messmodus mehr Massensignale detektiert wurden als im negativen Modus. Die Massensignale, die in den cokultivierten Pflanzen (AtPi) im Vergleich zu den Kontrollpflanzen (At) erhöht waren (AtPi > At), unterschieden sich in den einzelnen Experimentensets sowohl im positiven als auch im negativen Messmodus. Nach Zusammenführung der beiden ESets konnten keine gemeinsamen [m/z] gefunden werden. Die Veränderungen im Metabolitenlevel der einzelnen ESets waren demnach nicht auf die Co-Kultivierung zurückzuführen, sonst wären in beiden ESets die gleichen Massensignale bzw. Metaboliten differentiell gewesen.

Auch die [m/z], die in den At Pflanzen erhöht waren, konnten nicht in beiden ESets gefunden werden und somit keine generellen Massensignale identifiziert werden, die in den Blättern differentiell waren.

Es sind somit keine statistisch signifikanten Alterierungen im sekundären Metabolitenlevel der Blätter zu beobachten.

3.3.2.2 Metaboliten-Profiling der Wurzeln

Im Anschluss wurden die Veränderungen im Metabolitenlevel der Wurzeln untersucht. Dabei wurden die Massensignale der Kontrollpflanzen (At) mit denen der co-kultivierten Pflanzen (AtPi) verglichen (Tabelle 3. 9 und Tabelle 3. 10).

	AtPi > At pos		AtPi > At neg	
	ESet 1	ESet 2	ESet 1	ESet 2
[m/z] gesamt	3407	3536	1031	1610
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	441	329	139	189
[<i>m/z</i>] nach Gruppierung	372	254	126	153
[<i>m/z</i>] nach DA und QA	281	202	96	122
Schnittmenge beider Experimente	119		67	
potentielle Metaboliten	~ 51		~ 40	

Tabelle 3. 9: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich AtPi > At der Wurzeln nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

Tabelle 3. 10: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich AtPi < At der Wurzeln nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

	AtPi < At pos		AtPi < At neg	
	ESet 1	ESet 2	ESet 1	ESet 2
[m/z] gesamt	3407	3536	1031	1610
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	441	329	139	189
[<i>m</i> / <i>z</i>] nach Gruppierung	69	75	13	36
[<i>m/z</i>] nach DA und QA	48	60	12	27
Schnittmenge beider Experimente	14		8	
potentielle Metaboliten	~ 7		~ 7	

In beiden Experimentensets wurden vergleichbar viele Massensignale detektiert. Nach Schnittmengenbildung der beiden ESets konnten im positiven Modus für AtPi > At 119 differentielle Massensignale gefunden werden, die in etwa 51 Metaboliten resultieren. Im negativen Modus konnten ca. 40 differentielle Metaboliten analysiert werden. Nach Vergleich der positiven und negativen Massensignale konnten etwa 65 individuelle Metaboliten identifiziert werden (Tabelle 3. 21). Die Zahl der Metaboliten verringert sich, da zur selben Retentionszeit Massensignale im positiven und negativen Modus detektiert wurden, die wahrscheinlich zu demselben Metabolitencluster gehören. So konnten durch den Vergleich der Massensignale mitunter das $[M + H]^+$ und $[M - H]^-$ eines Metaboliten identifiziert werden,

da sich die [m/z] um zwei unterschieden (z.B. [m/z] 282,0932 $[M + H]^+$ und [m/z] 280,0855 $[M - H]^-$ bei einer RT von 167 Sekunden).

Bei dem Vergleich, welche Massensignale in den At Wurzeln im Vergleich zu den AtPi Wurzeln erhöht waren, wurden etwa sieben Metaboliten im positiven und sieben Metaboliten im negativen Messmodus identifiziert. Dies ergibt ca. 12 individuelle Metaboliten (Tabelle 3. 21).

3.3.2.3 Metaboliten-Profiling des Myzels

Es wurde weiterhin das Myzel von *P. indica* untersucht. Dabei wurde nach Massensignalen gesucht, die sich nach Co-Kultivierung mit der Pflanze von denen unterschieden, die im Myzel vorhanden waren, wenn der Pilz allein kultiviert wurde (Tabelle 3. 11 und Tabelle 3. 12).

Tabelle 3. 11: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich AtPi < Pi des Myzels nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

	AtPi < Pi pos		AtPi < Pi neg	
	ESet 1	ESet 2	ESet 1	ESet 2
[m/z] gesamt	1433	1916	167	729
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	167	501	40	174
[<i>m</i> / <i>z</i>] nach Gruppierung	31	160	24	86
[<i>m/z</i>] nach DA und QA	19	123	17	67
Schnittmenge beider Experimente	10		8	
potentielle Metaboliten	~ 6		~ 4	

Während im positiven Modus noch eine annähernd gleiche Zahl an Gesamtmassensignalen zwischen den beiden Experimentensets zu verzeichnen war, konnte dies für den negativen Modus nicht festgestellt werden. Weiterhin wurden im ESet 2 mehr differentielle Massensignale detektiert als im ESet 1.

	AtPi > Pi pos		AtPi > Pi neg	
	ESet 1	ESet 2	ESet 1	ESet 2
[<i>m</i> /z] gesamt	1433	1916	167	729
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	167	501	40	174
[<i>m/z</i>] nach Gruppierung	136	334	16	88
[<i>m/z</i>] nach DA und QA	109	244	12	69
Schnittmenge beider Experimente	9		12	
potentielle Metaboliten	~ 5		~ 3	

Tabelle 3. 12: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich AtPi > Pi des Myzels nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

Von der Anzahl der Massensignale, die im Pilzmyzel im Vergleich zu dem co-kultivierten Myzel erhöht waren, konnte nur ein kleiner Teil der [*m*/*z*] von ESet 2 weitergeführt werden, da nur wenige Massensignale in beiden ESets übereinstimmten. Dies ergab ca. sechs Metaboliten im positiven Modus und etwa vier Metaboliten im negativen Modus. Zusammengefasst sind ca. neun Metaboliten gegenüber dem co-kultivierten Myzel erhöht (Tabelle 3. 21). Dies zeigt, dass die differentiellen Metaboliten im positiven und negativen Modus nicht in der Retentionszeit übereinstimmen, mit Ausnahme von einem Metaboliten.

Die Substanzen, die im co-kultivierten Myzel erhöht sind, sind in den einzelnen ESets sehr unterschiedlich. So konnten im positiven Modus nur 10 % der differentiellen Massensignale des jeweiligen ESets nach der Schnittmengenbildung der beiden ESets weiterverwendet werden. Im negativen Modus konnten alle gefundenen differentiellen Massensignale aus ESet 1 in ESet 2 wiedergefunden werden. Dies ergab etwa fünf Substanzen, die im positiven Modus und ca. drei Stoffe, die im negativen Modus gemessen wurden. Die fünf und drei Substanzen aus dem positiven und negativen Modus ergeben zusammengefasst sechs Metaboliten, die nach Co-Kultivierung im *P. indica* Myzel erhöht waren (Tabelle 3. 21).

3.3.2.4 Metaboliten-Profiling des Mediums

Besonderes Augenmerk lag auf der Auswertung des Mediums, da sich dort die sekretierten Substanzen der Wurzeln und des Myzels befanden. Als erstes wurde untersucht, wie sich die Intensitäten der Metaboliten zwischen dem Medium der Kontrollpflanzen (At) und dem Medium der mit Pilz co-kultivierten Pflanzen veränderten (Tabelle 3. 13 und Tabelle 3. 14).

Tabelle 3. 13: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich AtPi > At des Mediums nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

	AtPi > At pos ESet 1 ESet 2		AtPi > At neg	
			ESet 1	ESet 2
[m/z] gesamt	6942 4383		574	652
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	574 284		118	140
[<i>m</i> / <i>z</i>] nach Gruppierung	472	114	85	71
[<i>m/z</i>] nach DA und QA	325	98	73	59
Schnittmenge beider Experimente	80		24	
potentielle Metaboliten	~ 73		~ 19	

Tabelle 3. 14: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich AtPi < At des Mediums nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

	AtPi < At pos		AtPi < At neg		
	ESet 1 ESet 2		ESet 1	ESet 2	
[<i>m</i> / <i>z</i>] gesamt	6942	4383	574	652	
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	574 284		118	140	
[<i>m</i> / <i>z</i>] nach Gruppierung	102	170	33	69	
[<i>m/z</i>] nach DA und QA	65	137	26	57	
Schnittmenge beider Experimente	35		8	8	
potentielle Metaboliten	~ 19		~ 5		

Im Experimentenset 1 sind etwa dreimal so viele AtPi > At Massensignale im positiven Modus nach der Qualitätskontrolle durch Data Analysis und Quant Analysis (Bruker, Bremen) vorhanden wie in ESet 2. Nach Zusammenführung der beiden Listen von ESet 1 und ESet 2 ist ersichtlich, dass fast alle differentiellen Massensignale von ESet 2 in ESet 1 wiederzufinden sind. Im negativen Modus wurden etwa gleich viele differentielle [m/z] in beiden ESets gefunden. Dies ergibt ca. 73 Metaboliten im positiven und etwa 19 Metaboliten im negativen Modus. Zusammengefasst sind ca. 84 Metaboliten in dem co-kultiviertem Medium erhöht (Tabelle 3. 21).

Es wurden im ESet 2 etwa doppelt so viele differentielle Massensignale, die im At Medium höher als in dem AtPi Medium sind, wie in ESet 1 detektiert. Die Übereinstimmung zwischen den beiden ESets ist etwa 50 % (positiver Modus) und 30% (negativer Modus), so dass nach Zusammenlegung der beiden ESets ca. 19 Metaboliten im positiven und etwa fünf Metaboliten im negativen Modus zu verzeichnen waren. Insgesamt waren ca. 23 Metaboliten in den Kontrollkästen im Vergleich zu den AtPi Kästen erhöht (Tabelle 3. 21).

Es wurde weiterhin untersucht, welche Substanzen *P. indica* in das Medium sekretiert bzw. aufnimmt und verbraucht. Deshalb wurde das Medium, in dem *P. indica* kultiviert wurde (Pi) mit dem reinem Medium (m) verglichen (Tabelle 3. 15 und Tabelle 3. 16). Bei diesem Vergleich wurde nur ein Experimentenset durchgeführt.

Tabelle 3. 15: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich m < Pi des Mediums nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

	m < Pi pos	m < Pi neg
[m/z] gesamt	3499	576
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	220	111
[<i>m/z</i>] nach Gruppierung	66	48
[<i>m/z</i>] nach DA und QA	54	39
potentielle Metaboliten	~ 23	~ 18

Tabelle 3. 16: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich m > Pi des Mediums nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

	m > Pi pos	m > Pi neg
[m/z] gesamt	3499	576
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	220	111
[<i>m</i> / <i>z</i>] nach Gruppierung	154	63
[<i>m/z</i>] nach DA und QA	115	45
potentielle Metaboliten	~ 42	~ 29

54

Es sind ca. 23 Metaboliten im positiven und etwa 18 Metaboliten im negativen Modus gemessen worden, die im Pi Medium erhöht waren. Nach Zusammenfassung der beiden Messmodi waren 33 Metabolite differentiell, d.h. von *P. indica* sekretiert (Tabelle 3. 21). Die Metaboliten, die in dem reinen Medium (m) gegenüber dem Pi Medium erhöht waren, könnten von *P. indica* abgebaut oder verbraucht worden sein. So konnten 42 Metaboliten im positiven Modus und 29 Metaboliten im negativen Modus detektiert werden. Insgesamt konnten 53 differentielle Metaboliten identifiziert werden, die im reinen Medium (m) erhöht waren (Tabelle 3. 21).

Um herauszufinden, welche Substanzen *A. thaliana* in das Medium sekretiert bzw. aus dem Medium aufnimmt, wurden im Experimentenset 1 At Kästen und reinen Medium (m) Kästen mit einem KM-Agarblock versetzt. Im ESet 2 sollte ein Agarblock zugesetzt werden, der sich in der Zusammensetzung von dem KM-Agar unterschied. So wurde ein Hafer-Bohne Agarblock zu den At und reinen Medium (m) Kästen zugesetzt. Die unterschiedlichen Agarblöcke geben über die Zeit verschiedene Substanzen ab. So wurden die beiden ESets zusammengeführt, um zu sehen, welche Metaboliten sich wirklich verändern, unabhängig vom zugesetzten Agarblock. Die Daten sind in Tabelle 3. 17 und Tabelle 3. 18 zu sehen.

	m < At pos		m < At neg		
	ESet1	ESet 2	ESet1	ESet 2	
[m/z] gesamt	4215	3840	630	663	
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	218 343		141	133	
[<i>m</i> / <i>z</i>] nach Gruppierung	160	263	96	84	
[<i>m/z</i>] nach DA und QA	132	213	81	75	
Schnittmenge beider Experimente	91		4	49	
potentielle Metaboliten	~ 82		~ 45		

Tabelle 3. 17: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich m < At des Mediums nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

Es sind ca. 82 (positiver Modus) bzw. etwa 45 (negativer Modus) Metabolite in den At Medien erhöht. Die beiden Messmodi zusammengefasst ergeben ca. 94 differentielle Metaboliten. Dies zeigt, dass sehr viele Metaboliten sowohl im positiven wie auch im negativen Modus detektiert werden konnten, welches sich in der Überlappung der beiden Zahlen widerspielgelt. Somit werden etwa 94 Metaboliten von *A. thaliana* ins Medium sekretiert (Tabelle 3. 21).

Tabelle 3. 18: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich m > At des Mediums nach den einzelnen Schritten der Auswertung im positiven und negativen Messmodus.

	m > At pos		m > At neg	
	ESet1	ESet 2	ESet1	ESet 2
[m/z] gesamt	4215	3840	630	663
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	218 343		141	133
[<i>m</i> / <i>z</i>] nach Gruppierung	58	80	45	49
[<i>m/z</i>] nach DA und QA	49	54	33	38
Schnittmenge beider Experimente	9		1	6
potentielle Metaboliten	~ 7		~	10

Metaboliten, die im m Medium erhöht waren, könnten von *A. thaliana* aufgenommen oder modifziert worden sein. So konnten ca. sieben Metaboliten im positiven und etwa 10 Metaboliten im negativen Messmodus gezählt werden, die aber individuell in den jeweiligen Messmodi auftraten. So konnten insgesamt ca. 16 differentielle Substanzen detektiert werden (Tabelle 3. 21).

Desweiteren wurde untersucht, welche Metaboliten sich im Vergleich des co-kultivierten Mediums und des *P. indica* Mediums verändern (Tabelle 3. 19, Tabelle 3. 20).

Tabelle 3. 19: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich AtPi < Pi des Mediums nach den einzelnen Schritten der Auswertung

	AtPi < Pi pos	AtPi < Pi neg
[<i>m</i> / <i>z</i>] gesamt	4050	617
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	288	155
[<i>m</i> / <i>z</i>] nach Gruppierung	89	57
[<i>m/z</i>] nach DA	66	41
potentielle Metaboliten	~ 20	~ 19

	AtPi > Pi pos	AtPi > Pi neg
[<i>m</i> / <i>z</i>] gesamt	4050	617
[<i>m/z</i>] nach FC, <i>p-value</i> , 75%	288	155
[<i>m</i> / <i>z</i>] nach Gruppierung	199	98
[<i>m/z</i>] nach DA	157	86
potentielle Metaboliten	~ 54	~ 51

Tabelle 3. 20: Anzahl an Massensignalen [m/z] und potentiellen Metaboliten im Vergleich AtPi > Pi des Mediums nach den einzelnen Schritten der Auswertung

Es sind ca. 20 Metaboliten sowohl im positiven als auch im negativen Messmodus im Pi Medium gegenüber dem AtPi Medium erhöht. Insgesamt sind etwa 33 Metaboliten in dem Pilzmedium differentiell (Tabelle 3. 21).

In dem Medium der Co-Kultivierung sind etwa 50 Metaboliten im positiven und im negativen Messmodus im Vergleich zu dem Pilzmedium erhöht. Grundsätzlich kann gesagt werden, dass nach Auswertung aller Massensignale in beiden Messmodi insgesamt ca. 78 differentielle Metaboliten gefunden wurden die im co-kultivierten Medium erhöht waren (Tabelle 3. 21).

In Tabelle 3. 21 wurde die Anzahl der differentiellen [m/z] und potentiellen Substanzen im positiven und negativen Modus für alle Gewebe und Medien zusammengestellt. Weiterhin wurden die Massensignale der Kandidaten, die im positiven und negativen Messmodus gemessen wurden, verglichen. Da einige Stoffe sowohl im positiven als auch im negativen Modus *in source* fragmentieren, konnte man die Massensignale, die zur selben Retentionszeit in beiden Messmodi auftauchen, zu denselben Metaboliten zählen. Damit reduziert sich die Anzahl der auszuwertenden Substanzen weiter.

Die Listen, in denen für die einzelnen Vergleiche der Wurzeln, des Myzels und des Mediums die Massensignale mit ihrer Retentionszeit aufgelistet sind, sind aus Platzgründen im Anhang (siehe 7.1) zu finden. Dort sind die [m/z], die Retentionszeit und der *fold change* von ESet 1 und ESet 2 aufgelistet.

57

Tabelle 3. 21: Übersicht über die Anzahl der Massensignale und potentieller Metaboliten im positiven und negativen Messmodus für die verschiedenen Extrakte.

		Massensignale (Anzahl Kandidaten) die im positiven Modus auftraten	Massensignale (Anzahl Kandidaten) die im negativen Modus auftraten	Anzahl Kandidaten positiv und negativ zusammengefasst
Blätter	AtPi < At	- (-)	- (-)	-
	AtPi > At	- (-)	- (-)	-
Wurzeln	AtPi < At	14 (~7)	8 (~7)	~ 12
	AtPi > At	119 (~51)	67 (~40)	~ 65
Myzel	AtPi < Pi	10 (~6)	8 (~4)	~ 9
	AtPi > Pi	9 (~5)	12 (~3)	~ 6
Medium	AtPi < At	35 (~19)	8 (~5)	~ 23
	AtPi > At	80 (~73)	24 (~19)	~ 84
	m > At	9 (~7)	16 (~10)	~ 16
	m < At	91 (~82)	49 (~45)	~ 94
	m > Pi	115 (~42)	45 (~29)	~ 53
	m < Pi	54 (~23)	39 (~18)	~ 33
	AtPi < Pi	66 (~20)	41 (~19)	~ 33
	AtPi > Pi	157 (~54)	86 (~51)	~78

3.3.3 LC-MS Strukturaufklärung

Es wurde mit einer detaillierten Betrachtung der differentiellen Metaboliten im Medium begonnen, da in dieser Arbeit einerseits die sekretierten Stoffe der Pflanzen und anderseits der Austausch an Signalmolekülen zwischen *A. thaliana* und *P. indica* im Vordergrund stand. Diese ausgetauschten Stoffe sind vorwiegend im Medium zu erwarten, da sowohl der pflanzliche (über die Wurzeln) als auch der pilzliche Partner im Medium miteinander kommunizieren. Um dieser Fragestellungen auf den Grund zu gehen, wurden von den differentiellen Massensignalen MS/MS Messungen durchgeführt, um Anhand des Fragmentierungsmusters den Metaboliten identifizieren zu können. Diese MS/MS Messungen wurden für alle differentiellen Massensignale – Retentionszeitpaare des Vergleichs AtPi > At (insgesamt 104) und für alle alternierenden Massensignale des Vergleichs At > m (insgesamt 140) durchgeführt (siehe 7.2).

Es wurde versucht, für alle Fragmente und auch potentielle Muttermassen eine Summenformel zu berechnen. Dafür musste zuerst festgestellt werden, welche Ladung der Metabolit besitzt. Durch das Massen/Ladungsverhältnis und den Abstand der Isotopenpeaks zum Mutterpeak kann die Ladung bestimmt werden. Mehrfach geladene Massensignale sind schwerer zu identifizieren, da die Muttermasse z.B. bei einem zweifach geladenen Massensignal doppelt so groß ist, wie das angezeigte Massenladungsverhältnis. Mitunter ist die Zahl des Massensignals dann so hoch, dass sie außerhalb des gewählten linearen Messbereichs (1000 Da) liegt. Würde man den Messbereich erweitern, wird der Messfehler größer und damit die Bestimmung der Summenformel ungenauer. Wenn das Massensignal einfach geladen ist bzw. sich die mehrfach geladenen Massensignale im linearen Messbereich befinden, kann versucht werden eine Summenformel zu bestimmen. Bei einem gegeben Massensignal und einer Fehlertoleranz von 10 ppm sind meist mehrere Summenformeln möglich. Je höher die Zahl des Massen/Ladungsverhältnisses ist, desto größer ist die Zahl der potentiellen Summenformeln, da es mehr Varianten der Elementzusammensetzung gibt. Das Programm Data Analysis (Bruker, Bremen) schlägt Summenformeln mit der gewählten Fehlertoleranz vor, jedoch muss überprüft werden, ob die Summenformel chemisch sinnvoll ist. So ist eine viel größere Anzahl an Stickstoff-, Sauerstoff-, Phosphor- und Schwefelatomen gegenüber von Kohlenstoffatomen (z.B. $C_7H_5N_5O_7S_3$) chemisch meist unmöglich. Durch die Fragmentierung des Massensignals kann versucht werden sich über die einzelnen Fragmente an die Summenformel anzunähern. Aus den einzelnen Fragmenten können Strukturinformationen abgeleitet werden, z.B. bei einer

Wasserabspaltung muss eine freie OH-Gruppe verfügbar sein, sonst könnte dieses Fragment (z.B. $[M + H - H_2O]^+$) nicht entstehen. Auch wenn eine Summenformel bestimmt werden konnte, ist die Identifikation der Substanz noch nicht abgeschlossen. Da es keine Datenbanken gibt, in denen die Fragmentierungsmuster und Retentionszeiten wie bei den GC-MS Analysen verglichen werden können, muss anhand der chemischen Informationen (Fragmentierung, Summenformel etc.) in Datenbanken wie ChemSpider (www.chemspider.com) meist von über 1000 möglichen Substanzen die wahrscheinlichste ermittelt werden. Wenn erwerbbar, kann der Standard dieses Stoffes ebenfalls massenspektrometrisch analysiert und die beiden Muster verglichen werden. Stimmten diese und die Retentionszeit überein, gilt die Identifizierung des Metaboliten als verifiziert.

Einzelne Ergebnisse der MS/MS Messungen sollen nachfolgend detaillieter betrachtet werden.

3.3.3.1 Pantothensäure

Beim Vergleich zwischen dem Medium der co-kultivierten Pflanzen (AtPi) und der Kontrollpflanzen (At) wurden die differentiellen Massensignale, deren Intensität in dem AtPi Medium erhöht war, näher untersucht.

Dafür wurden die differentiellen Massensignale, die zu einer diskreten Retentionszeit gehörten als Gruppe zusammengefasst und nach möglichen Muttermassen ($[M + H]^+$, $[M - H]^-$) gesucht. Nachfolgend sind in Tabelle 3. 22 die differentiellen [m/z] aufgelistet, die im positiven und negativen Modus zu der Retentionszeit von 101 Sekunden eluierten.

Tabelle 3. 22: Analytische Daten der differentiellen Massensignale bei einer Retetionszeit von 101 Sekunden, die im AtPi Medium eine höhere Intensität als im At Medium aufwiesen.

gemessenes Massensignal	Retentionszeit [sek]	absolute (p) und relative (%) Intensität	fold change ESet 1	fold change ESet 2	mögliche Annotierung
220,112	101	9531 (43,2)	4,1	12,5	[M + H]⁺
202,101	101	5063 (22,9)	5,8	9,0	[M - H ₂ O]⁺
242,094	101	22041 (100)	5,4	9,0	[M + Na]⁺
218,104	102	12003 (100)	37,6	14,0	[M – H] ⁻

In Abb. 3. 15 ist das extrahierte Ionenchromatogramm der Masse *m/z* 220,11 zu sehen. Deutlich ist eine höhere Intensität des Massensignals im co-kultivierten Medium (AtPi) als in dem At Medium zu erkennen.

Abb. 3. 15: extrahiertes Ionenchromatogramm des [m/z] 220,11. Blau: AtPi Medium, rot: At Medium

Da das [m/z] 220,11 die Muttermasse ($[M + H]^+$) zu sein schien, wurde von dieser Masse ein MS/MS-Spektrum angefertigt (Abb. 3. 16), um durch die entstehenden Fragmente Rückschlüsse auf die Struktur und damit Identität des Massensignals ziehen zu können.

Abb. 3. 16: Fragmentierungsmuster des [m/z] 220,11 bei CE von 15 eV im positiven Modus.

Anhand des Fragmentierungsmusters konnten Rückschlüsse auf die Struktur des Metaboliten gezogen werden. So entspricht der Abstand zwischen [m/z] 220,1182 und [m/z] 202,1073 einem Wassermolekül (H₂O, [m/z] 18,0109 Da). Die weiteren Abspaltungen zwischen den einzelnen Fragmenten sind in Abb. 3. 17 aufgezeigt.

$$220,1182 \xrightarrow{-H_2O} 202,1073 \xrightarrow{-H_2O} 184,0973$$

$$220,1182 \xrightarrow{-H_2O} 202,1073 \xrightarrow{-H_2O} 184,0973$$

$$174,1144 \xrightarrow{-CH_2} 160,0951 \xrightarrow{-H_2O} 142,0853$$

$$174,0746$$

Abb. 3. 17: Fragmente des Massensignals 220,1182 und die möglichen Abspaltungen zwischen den einzelnen Fragmenten.

Anhand der Abspaltungen konnte geschlussfolgert werden, dass das Molekül mindestens fünf Sauerstoffatome, 10 Wasserstoffatome und zwei Kohlenstoffatome besitzt. Mit Hilfe des Programms Data Analysis (Bruker, Bremen) konnte die putative Summenformel C₉H₁₇NO₅ bestimmt werden. Anschließend wurde eine Strukturhypothese für die einzelnen [m/z] erstellt (Abb. 3. 18).

Abb. 3. 18: Strukturhypothesen für die gemessenen Fragmente von [*m*/*z*] 220,12 und [*m*/*z*] 202,11.

Aufgrund der vorgeschlagenen Summenformel und der Strukturhypothesen der einzelnen Fragmente wurde angenommen, dass der Metabolit Pantothensäure war. Der erworbene Standard der Pantothensäure und die Originalprobe (AtPi) eluierten zur selben Retentionszeit und zeigten dasselbe Fragmentierungsmuster. Weiterhin wurde ein Additionsspike-Experiment durchgeführt, indem Pantothensäure dem AtPi Medium zugesetzt wurde. Der ursprüngliche Peak des AtPi Medium zur Retentionszeit von 101 Sekunden verstärkte sich nach Zugabe des Standards. Die detektierte Substanz mit der Retentionszeit 101 und den [m/z] 220,1182 $[M + H]^+$ konnte somit als Pantothensäure identifiziert werden.

3.3.3.2 Leu-Leu

Ein weiteres differentielles Massensignal, welches in dem AtPi Medium erhöht war, hatte die [m/z] 245,17 und eluierte zu einer Zeit von 239 Sekunden. Die auftretenden Massensignale sind in Tabelle 3. 23 aufgelistet.
gemessenes Massensignal	Retentionszeit [sek]	absolute (p) und relative (%) Intensität	fold change ESet 1	fold change ESet 2	mögliche Annotierung
245,177701	237	38663 (100)	3,3	2,3	[M + H]⁺

Tabelle 3. 23: Analytische Daten der differentiellen Massensignale zu der Retentionszeit 237 Sekunden, die in dem AtPi Medien eine höhere Intensität als in den At Medien hatten.

Das [m/z] 245,18 könnte das Mutterion ($[M + H]^+$) sein, weshalb von dieser Masse ein MS/MS-Spektrum angefertigt wurde (Abb. 3. 19).

Abb. 3. 19: Fragmentierungsmuster von [*m/z*] 245,18 bei CE von 15 eV im positiven Modus.

Die Massendifferenzen lassen folgende Abspaltungen zwischen den Fragmenten vermuten (Abb. 3. 20).

$$245,1845 \xrightarrow[-H_2O]{} 227,1742 \xrightarrow[-CO]{} 199,1831$$

Abb. 3. 20: Fragmente des Massensignals 245,1845 und die möglichen Abspaltungen zwischen den einzelnen Fragmenten.

Anhand der Abspaltungen besitzt das Molekül mindestens sieben Kohlenstoffatome, 11 Wasserstoffatome, zwei Sauerstoffatome und ein Stickstoffatom. Die Summenformelbestimmung ergab $C_{12}H_{24}N_2O_3$. Die folgende Abbildung zeigt die Strukturhypothese für die einzelnen Fragmente (Abb. 3. 21).

Abb. 3. 21: Strukturhypothesen für die gemessenen Fragmente von [m/z] 245,18.

Die Analyse der Strukturhypothese führte zu der Annahme, dass der untersuchte Metabolit ein Dipeptid war, in dem beide Aminosäuren eine molare Masse von 131,17 besaßen. Dies konnten die Aminosäuren Leucin oder Isoleucin sein. Die vier möglichen Kombinationen (Leu-IIe, IIe-Leu, Leu-Leu und IIe-IIe) wurden als Standards bestellt und chromatographisch zusammen mit dem AtPi Medium analysiert (Abb. 3. 22).

Abb. 3. 22: extrahiertes Ionenchromatogramm [m/z] 245,17 der vier Standards (5 μM) und des AtPi Mediums. Grün: IIe-IIe, blau: Leu-IIe, rot: IIe-Leu, schwarz: Leu-Leu, lila: AtPi Medium.

Die vier Dipeptide eluieren zu unterschiedlichen Retentionszeiten, wodurch sie gut voneinander zu trennen sind. Es zeigte sich, dass das Dipeptid Leu-Leu die fast gleiche Retentionszeit wie der Metabolit im AtPi Medium aufwies. Der kleine Unterschied in der Retentionszeit-Zeit ist auf Matrixeffekte zurückzuführen (Böttcher et al., 2007).

Das Dipeptid Leu-Leu zeigte dasselbe Fragmentierungsmuster wie die Substanz der Masse [m/z] 245.17. Durch ein Additionsexperiment konnte die Identität des Metaboliten zusätzlich verifiziert werden. Die Analyse führte zur Identifizierung des Dipeptids Leu-Leu.

3.3.3.4 Nicotinsäure

Zu der Retentionszeit von 41 Sekunden eluierte ein [m/z] 124,03, bei welchem die Intensität um Faktor 2 in den AtPi Medium erhöht war (Tabelle 3. 24).

Tabelle 3. 24: Analytische Daten des differentiellen Massensignals zu der Retentionszeit 41 Sekunden, das in dem AtPi Medien eine höhere Intensität als in den At Medien hatte.

gemessenes Massensignal	Retentionszeit [sek]	absolute (p) und relative (%) Intensität	fold change ESet 1	fold change ESet 2	mögliche Annotierung
124,0324	41	203900 (100)	2,2	2,1	[M + H]⁺

In den MS/MS Messungen fraktionierte das Massensignal nicht, es wurde nur der Hauptpeak von 124,03 detektiert. Allerdings war es möglich die Summenformel C₆H₅NO₂ zu bestimmen. Diese Summenformel führte zu der Substanz Nicotinsäure (Abb. 3. 23), welche mit dem dazugehörigen Standard verifiziert werden konnte.

Abb. 3. 23: Strukturformel von Nicotinsäure.

3.3.3.5 Glycero-Phosphorylcholin

Beim Vergleich des At Mediums mit dem m Medium, konnte bei der Retentionszeit von 209 Sekunden ein [m/z] 428,20 detektiert werden, welches von *A. thaliana* in das Medium sekretiert wurde (

Tabelle 3. 25).

Tabelle 3. 25: Analytische Daten des differentiellen Massensignals zu der Retentionszeit 209 Sekunden, das in dem At Medien eine höhere Intensität als im m Medien hatte.

gemessenes Massensignal	Retentionszeit [sek]	absolute (p) und relative (%) Intensität	fold change ESet 1	fold change ESet 2	mögliche Annotierung
428,2008	209	20335 (100)	3,4	5,8	[M + H]⁺

Von dem Massensignal wurde ein MS/MS-Spektrum angefertigt (Abb. 3. 24), um durch die entstehenden Fragmente Rückschlüsse auf die Struktur und damit Identität des Massensignals ziehen zu können.

Abb. 3. 24: Fragmentierungsmuster des [*m/z*] 428,20 bei CE von 25 eV im positiven Modus.

Nach erfolgter MS/MS Fraktionierung konnte durch die charakteristische Abspaltung des [m/z] 184,07 (Abb. 3. 25) ein Glycero-Phosphorylcholin mit der Summenformel C₁₇H₃₄NO₉P detektiert werden.

$$428,2056 \xrightarrow{-H_2O} 410,1975 \xrightarrow{-C_{12}H_{20}NO5} 184,0767 \xrightarrow{-PO_3H} 104,1087$$

Abb. 3. 25: Fragmente des Massensignals 428,2056 und die möglichen Abspaltungen zwischen den einzelnen Fragmenten.

Das Fragment 184,07 ist typisch für ein Phosphorylcholin. Die Seitenkette besteht aus einem C_9 -Körper, allerdings ist die genaue Struktur unklar, so dass kein Standard für die Verifizierung herangezogen werden konnte. In Abb. 3. 26 sind zwei mögliche Strukturformeln angegeben.

Abb. 3. 26: Dargestellt sind zwei mögliche Strukturformeln für [*m/z*] 428,20.

3.3.4 Gewebevergleich der differentiellen LC-MS Massensignale

Für alle differentiellen Massensignale wurde ein "Gewebevergleich" durchgeführt, d.h. es wurde untersucht, ob das alternierende Massensignal aus einem Vergleich (z.B. AtPi > At) in einem anderen Gewebe bzw. Medium vorkommt. So kann ermittelt werden, ob dieser Metabolit speziell in einem Gewebe oder Medium vorkommt oder ob dies eine generelle Substanz ist, die in allen Geweben und Medien auftaucht. Der Gewebevergleich einzelner alternierender Massensignale des Vergleichs AtPi > At wird hier stellvertretend vorgestellt (Tabelle 3. 26), die komplette Liste von allen Geweben und Medien findet sich im Anhang (siehe 7.1). Dabei wurde der *fold change* als ~1 angegeben, wenn das Massensignal in dem Gewebe oder Medium vorkam, aber nicht den Anforderungen als differentielles [m/z] entsprach (*fold change* ≥ 2 , *p*-value ≤ 0.05 , Intensität (des größeren Signals) mind. 1000, Massensignal in 75 % der gemessenen Daten einer Gruppe). Erfüllte das gemessene Massensignal die Anforderungen, wurde neben dem *fold change* auch dargestellt, in welchem Gewebe bzw. Medium das [m/z] erhöht ist.

Tabelle 3. 26: Gewebevergleich einiger differentieller Massensignale des Vergleichs AtPi > At. Es wurde der *fold change* (FC) in jedem Gewebe bzw. Medium analysiert. In grau hervorgehoben sind die Massensignale der identifizierten Metaboliten Nicotinsäure ([m/z] 124,03), Pantothensäure ([m/z] 220,11; 202,10; 242,09) und Leu-Leu ([m/z] 245,17).

Eluate AtPi	> At		Blätte	r	Wurzel		Myzel	Eluate At vs m		Eluate Pi vs m		Eluate Pi vs AtPi	
[<i>m/z</i>]	RT [sek]	FC ESet 1	FC		FC		FC	FC		FC		FC	
124,0324	41	2,2	-		~ 1		~ 1	~ 1		~ 1		~ 1	
211,1008	78	230539,0	-		-		-	-		299547,5	Pi > m	5,0	Pi < AtPi
220,1117	102	4,1	-		-		-	-		-		2,0	Pi > AtPi
202,1007	102	5,8	-		-		-	-		-		~ 1	
242,0943	102	5,4	-		~ 1		-	-		-		2,0	Pi > AtPi
245,1777	237	3,3	-		-		-	-		-		~ 1	
390,1109	238	5,2	~ 1		5,6	At < AtPi	-	-		-		102978,8	AtPi > Pi
582,2840	261	1535963,8	-		-		-	-		-		116827,9	AtPi > Pi
250,0652	355	5,1	-		~ 1		-	32619,1	At > m	-		~ 1	
412,0941	371	62,8	-		-		-	53367,3	At > m	-		132530,6	AtPi > Pi

Das Massensignal 124,03 bei einer Retentionszeit von 41 Sekunden (Nicotinsäure) hat in dem AtPi Medium eine 2,2-fach höhere Intensität als im At Medium. Nicotinsäure konnte in den Wurzeln, im Myzel und in allen Medien detektiert werden. Allerdings ist diese Substanz dort nicht differentiell. In den Blättern konnte dieser Metabolit nicht identifiziert werden. Nur während der Co-Kultivierung steigt die Konzentration an Nicotinsäure in dem AtPi Medium an.

Das [*m*/*z*] 211,10 bei einer Retentionszeit von 78 Sekunden hat in dem AtPi Medium einen sehr hohen *fold change*. Dies kommt zustande, da der Metabolit nur in dem AtPi Medium, nicht aber in dem At Medium detektiert wurde. In den Blättern, Wurzeln und Myzel ist dieses [*m*/*z*] nicht zu finden, auch nicht im Vergleich zwischen den Medien At und m. In den Kästen in dem sich nur Medium befand (m) ist dieser Metabolit ebenfalls nicht zu finden. Deshalb ist auch in dem Vergleich von m zu Pi der *fold change* sehr hoch. Dies bedeutet, dass sich der Stoff nur in dem Pilzmedium befindet. Im Vergleich zwischen Pilzmedium und co-kultiviertem Medium ist die Intensität fünfmal höher in dem AtPi Medium. Zusammengefasst deutet dies darauf hin, dass der Metabolit von *P. indica* gebildet und sekretiert wurde, da er nur in den Medien zu finden ist, in dem der Pilz kultiviert wurde. Durch die Co-Kultivierung verstärkt der Pilz die Sekretion um das Fünffache.

Pantothensäure ([m/z] 220,11, 202,10 und 242,09) wurde neben dem co-kultiviertem Medium noch in dem Vergleich des Pi > AtPi Mediums als differentieller Metabolit (*fold change* = 2,0) gefunden. Dies lässt darauf schließen, dass dieser Metabolit vor allem von *P. indica* in das Medium sekretiert wurde und von *A. thaliana* aufgenommen und verstoffwechselt wurde, da Pantothensäure weniger im co-kultiviertem Medium zu finden ist als im Pilzmedium.

Leu-Leu ([m/z] 245,17) kommt neben dem Vergleich der Medien AtPi > At (*fold change* = 3,3) auch in dem Mediumvergleich AtPi vs. Pi vor, ist dort allerdings nicht differentiell. Das Dipeptid wird während der Co-Kultivierung wahrscheinlich vermehrt von *P. indica* in das Medium sekretiert.

Während der Co-Kultivierung steigt die Konzentration des Massensignals 390,11 bei einer Retentionszeit von 238 um das 5,2-fache. Dieser Metabolit ist auch in den Blättern zu finden, allerdings ist er nicht differentiell. In den Wurzeln ist der Stoff um das 5,6-fache in den AtPi Wurzeln erhöht. Weder im Myzel noch im Pilzmedium kommt dieses [m/z] vor. Deshalb ist auch ein sehr hoher *fold change* bei dem Vergleich AtPi gegen Pi zu finden. Dies deutet darauf hin, dass der Metabolit von den Pflanzen in das Medium sekretiert wurde.

Das [m/z] 582,28 bei einer Retentionszeit von 261 Sekunden kommt nur in den AtPi Medium vor. In allen anderen Geweben und Medien ist dieser Metabolit nicht zu finden. Dieser Stoff wurde demnach erst bei der Co-Kultivierung produziert und sekretiert.

Der Metabolit mit dem [m/z] 250,06 bei einer Retentionszeit von 355 Sekunden wird von *A. thaliana* ins Medium sekretiert. Die Substanz wurde auch in der Wurzel gefunden, dort ändert sich die Menge des Metaboliten nicht. Während der Co-Kultivierung wird der Stoff aber vermehrt (um das 5,1-fache) ins Medium sekretiert.

Das [*m*/*z*] 412,09 bei einer Retentionszeit von 371 Sekunden hat einen *fold change* von 62,8 im Vergleich zwischen AtPi > At. Es kommt nicht in den Geweben vor und auch nicht in dem Medium allein. *P. indica* produziert diesen Stoff nicht, da er im Pilzmedium allein nicht zu finden ist. Die Substanz wird von *A. thaliana* ausgeschieden und wird während der Co-Kultivierung verstärkt sekretiert.

3.3.5 LC-MS Analyse der Fraktionen des AtPi Mediums

Das Medium wurde über eine *Reversed Phase* Säule aufkonzentriert, um das zu analysierende Volumen zu verkleinern und den Überschuss an Saccharose zu reduzieren. Die gewonnenen Eluate des AtPi Mediums verfügen über wachstumsfördernde Substanzen (siehe Abb. 3. 10). Das Medium wurde anschließend Fraktionsweise eluiert (20 %, 40 %, 60 %, 80 % und 100 % Methanol), eingedampft und in Wasser wieder aufgenommen und zu den Pflanzen gegeben. Dort konnte bei der 60 %igen Methanolfraktion ebenfalls ein wachstumsfördernder Effekt beobachtet werden (Abb. 3. 11). Die Fraktionen wurden nachfolgend massenspektrometrisch vermessen. Dabei wurden die hier generierten differentiellen [m/z] mit den differentiellen Massensignalen des Vergleiches des Mediums AtPi > At abgeglichen. Nur Massensignale die in beiden Listen vorkamen wurden für die Auswertung herangezogen. In Tabelle 3. 27 sind die differentiellen Massensignale der einzelnen Fraktionen dargestellt.

20 %		40 %		60 %		80 %		100 %	MeOH
[<i>m/z</i>]	RT								
219,0184	27	219,0184	27	261,0798	203	250,0652	355	203,0461	28
203,0461	28	203,0461	28	319,0832	207	412,0941	371	149,0170	515
124,0324	41	124,0324	41	372,1447	279				
277,0870	80	149,0193	202	161,0903	340				
220,1117	102	252,0751	214	143,0797	340				
202,1007	102	245,1777	237	307,1748	425				
242,0943	102	161,0903	340	149,0170	515				
		143,0797	340			-			
		149,0170	515						

Tabelle 3. 27: Differentielle Massensignale der einzelnen Fraktionen. In grau hervorgehoben sind die Massensignale der identifizierten Metaboliten Nictotinsäure ([m/z] 124,03), Pantothensäure ([m/z] 220,11; 202,10; 242,09) und Leu-Leu ([m/z] 245,17).

Bei der Analyse der AtPi Eluate fällt auf, dass nur 23 % der in ESet 1 und ESet 2 generierten differentiellen Massensignale in den Fraktionen (als differentielle [m/z]) wiedergefunden werden konnten. Dabei wurden auch die Substanzen Pantothensäure, Nicotinsäure und das Dipeptid Leu-Leu detektiert.

3.4 GC - MS Analysen

3.4.1 GC-MS Datenauswertung

Die für die LC-MS Analysen durchgeführten Experimente wurden wiederholt, die Gewebe in Stickstoff tiefgefroren und für die GC-MS Analysen aufgearbeitet. Das Medium wurde über eine *Reversed Phase* Säule aufkonzentriert und nach der Derivatisierung von Dr. Nadine Strehmel vermessen.

Für die Auswertung der Daten wurden nur solche Metabolitencluster als differentiell angesehen, deren *fold change* \geq 2 und der *p*-value unter 0,05 war. Anschließend konnte eine Übersichtsliste über die differentiellen Metabolitencluster für alle Gewebe und Medienvergleiche erstellt werden (Tabelle 3. 28).

Tabelle	3.	28:	Übersicht	über	die	Anzahl	der	Massensignalcluster	und	identifizierter	Metabolite	nach	GC-MS
Messun	ger	n für	die versch	ieden	en G	Gewebe	und	Medienvergleiche.					

1

		differentielle MS Cluster (davon
		identifizierte Substanzen)
Blätter	AtPi > At	-
	AtPi < At	-
Wurzeln	AtPi > At	12 (6)
	AtPi < At	6 (4)
Myzel	AtPi > Pi	4 (1)
	AtPi < Pi	7 (4)
Medium	AtPi > At	22 (10)
	AtPi < At	5 (2)
	Pi > m	17 (9)
	Pi < m	1 (0)
	At > m	3 (1)
	At < m	-
	AtPi > Pi	33 (3)
	AtPi < Pi	13 (1)

In den Blättern von A. thaliana konnten keine differentiellen Metaboliten identifiziert werden. Da sowohl in den LC- als auch in den GC-MS Messungen keine alternierenden Metaboliten detektiert wurden, scheint sich durch die Co-Kultivierung mit P. indica im Metabolitenlevel der Blätter nichts zu ändern.

Es konnten in den Wurzeln 13 Metabolitencluster detektiert werden, die in den co-kultivierten Wurzeln im Vergleich zu den At Wurzeln erhöht sind. Sechs Metaboliten haben in den At Wurzeln eine höhere Konzentration als in den AtPi Wurzeln.

In dem co-kultiviertem Myzel wurden vier Metaboliten gefunden, deren Signal eine höhere Intensität als in dem Pi Myzel hatte. Weiterhin konnten sieben Metabolitencluster identifiziert werden, die im Pi Myzel im Vergleich zum AtPi Myzel erhöht sind.

Durch die Co-Kultivierung von *A. thaliana* mit *P. indica* sind 22 Metaboliten in dem AtPi Medium im Vergleich zu dem At Medium differentiell erhöht, dies sind die stärksten Änderungen im Primärmetabolitenhaushalt. Im At Medium wiesen fünf Metabolitencluster eine höhere Intensität als im AtPi Medium auf.

Im Pilzmedium wurden 18 Metaboliten in das Medium sekretiert, wohingegen ein Metabolit von *P. indica* abgebaut bzw. modifiziert wurde.

Es wurden drei Metabolite von *A. thaliana* in das Medium sekretiert, allerdings wurden keine Metabolite aufgenommen oder abgebaut.

In Tabelle 3. 28 wurde neben der Anzahl der differentiellen Metabolitencluster auch die Anzahl der identifizierten Metaboliten dargestellt. Für die Identifizierung wurde das gemessene Spektrum mit den Spektren der Golm Metabolome Database (GMD) (Kopka et al., 2005; Schauer et al., 2005) verglichen. Wurde zu dem gemessenen Spektrum ein geeignetes Referenzspektrum gefunden, wurde anhand des dazugehörigen Standards die Identität der Substanz verifiziert. In Abb. 3. 27 ist als Beispiel das gemessene und das Referenzspektrum für *myo*-Inositol dargestellt, dessen Konzentration in den AtPi Wurzeln und im AtPi Myzel erhöht war.

3.4.1.1 Metaboliten-Profiling der Wurzeln

Im Folgenden werden die differentiellen Metabolitencluster in Tabellen aufgelistet. In den Blättern konnten keine differentiellen Stoffe identifiziert werden. In Tabelle 3. 29 sind die unbekannten und identifizierten differentiellen Metaboliten der GC-MS Analysen der Wurzeln mit ihren *Fold changes* (FC) dargestellt.

Tabelle 3. 29: Identifizierte und unbekannte Metaboliten und deren FC der Wurzeln der Vergleiche AtPi > At und AtPi < At. Gezeigt sind die Derivate der Verbindungen mit der jeweiligen Anzahl ihrer TMS (Trimethylsilyl) Gruppen. Konnten die Substanzen nicht identifiziert werden, wurden diese als "Unbekannte" dargestellt.

AtPi > At	
Name	FC
Fructose (1MEOX) (5TMS)	2,4
Unbekannte 01	2,4
Unbekannte 02	2,5
Glucose (1MEOX) (5TMS)	2,6
Myo-Inositol (6TMS)	2,7
Unbekannte 03	2,8
Unbekannte 04	3,0
Unbekannte 05	3,3
2-Hydroxypropansäure (2TMS)	5,6
Unbekannte 06	8,6
Unbekannte 07	11,7
α,α-Trehalose (8TMS)	14,8

AtPi < At	
Name	FC
Serin (3TMS)	2,1
Unbekannte 08	2,1
Unbekannte 08	2,2
Asparagin (3TMS)	2,4
Pyroglutamat (2TMS)	3,0
Harnstoff (2TMS)	3,5

In den co-kultivierten Wurzeln ist die Konzentration der Zucker Glucose, Fructose und Trehalose erhöht, wohingegen die Konzentration der Aminosäuren Asparagin, Pyroglutamat und Serin erniedrigt ist.

3.4.1.2 Metaboliten-Profiling des Myzels

Anschließend wurden die differentiellen Metabolitencluster des Myzels betrachtet. In Tabelle 3. 30 sind die unbekannten und identifizierten differentiellen Metaboliten des Myzels im Vergleich mit ihren *fold changes* dargestellt. Tabelle 3. 30: Identifizierte und unbekannte Metaboliten und deren FC des Myzels. Gezeigt sind die Derivate der Verbindungen mit der jeweiligen Anzahl ihrer TMS (Trimethylsilyl) Gruppen. Konnten die Substanzen nicht identifiziert werden, wurden diese als "Unbekannte" dargestellt.

AtPi > Pi	
Name	FC
Myo-Inositol (6TMS)	3,1
Unbekannte 10	4,0
Unbekannte 11	4,7
Unbekannte 12	4,9

AtPi < Pi	
Name	FC
Alanin (2TMS)	2,4
Unbekannte 13	2,5
Ornithin (3TMS)	2,5
Pyroglutamat (2TMS)	2,9
Unbekannte 14	2,9
Serin (3TMS)	3,0
Unbekannte 15	3,3

In dem co-kultivierten Myzel wurde *myo*-Inositol vermehrt gefunden, die Aminosäuren Serin, Pyroglutamat, Ornithin und Alanin waren dagegen im AtPi Myzel in geringerer Menge vorhanden.

3.4.1.3 Metaboliten-Profiling des Mediums

Weiterhin wurde das Medium analysiert. In Tabelle 3. 31 sind die unbekannten und identifizierten differentiellen Metaboliten des Mediums im Vergleich des AtPi Mediums und dem At Mediums mit ihren *fold changes* dargestellt.

Tabelle 3. 31: Identifizierte und unbekannte Metaboliten und deren FC des Mediums im der Vergleiche AtPi > At und AtPi < At. Gezeigt sind die Derivate der Verbindungen mit der jeweiligen Anzahl ihrer TMS (Trimethylsilyl) Gruppen. Konnten die Substanzen nicht identifiziert werden, wurden diese als "Unbekannte" dargestellt. In grau hervorgehoben sind die Metabolite, die auch per LC-MS identifiziert werden konnten.

AtPi > At	
Name	FC
Unbekannte 16	2,0
Unbekannte 17	2,1
Unbekannte 18	2,2
Adipinsäure (2TMS)	2,3

AtPi < At	
Name	FC
Unbekannte 27	2,1
Unbekannte 28	2,2
2-Deoxyadenosin (3TMS)	3,9
Unbekannte 2	4,7

3,5-Dimethylbenzoesäure	2,4
Unbekannte 19	2,4
Unbekannte 20	2,5
3-Phenylmilchsäure (2TMS)	2,5
2-Hydroxypropansäure (2TMS)	2,5
Bernsteinsäure (2TMS)	2,5
Unbekannte 21	2,6
Unbekannte 22	2,7
Fructose (1MEOX) (5TMS)	2,9
Unbekannte 23	3,0
Pantothensäure (3TMS)	3,0
Glucose (1MEOX) (5TMS)	3,5
Nicotinsäure (1TMS)	4,1
4-Hydroxybenzoesäure (2TMS)	5,0
Unbekannte 24	5,2
Unbekannte 25	5,5
Unbekannte 26	7,5
2-Furansäure (1TMS)	8,8

Saccharose (8TMS) 38,8

Es konnte eine Vielzahl an Säuren identifiziert werden. In dem AtPi Medium ist die Konzentration an 2-Furansäure am stärksten erhöht, wohingegen in dem At Medium die Konzentration von Saccharose etwa 39-mal gegenüber dem AtPi Medium erhöht ist. Weiterhin konnten die in der LC-MS identifizierten Metabolite Pantothensäure und Nicotinsäure hier bestätigt werden.

In Tabelle 3. 32 ist der einzige differentielle Metabolit des Mediums im Vergleich des At Mediums und dem reinem Medium (m) mit ihren *fold changes* aufgelistet. Tabelle 3. 32: Identifizierter Metabolit und dessen FC des Mediums der Vergleiche At > m und At < m. Gezeigt ist das Derivat der Verbindung mit der Anzahl an TMS (Trimethylsilyl) Gruppen.

At > m	
Name	FC
2-Deoxyadenosin (3TMS)	6,6

Es konnte nur der DNA Baustein 2-Deoxyadenosin als differentieller Metabolit in dem At > m Medium detektiert werden. In dem Vergleich At < m konnte keine differentielle Substanz ermittelt werden.

In Tabelle 3. 33 sind die unbekannten und identifizierten differentiellen Metaboliten des Mediums im Vergleich des Pi Mediums und dem reinem Medium (m) mit ihren *fold changes* dargestellt.

Tabelle 3. 33: Identifizierte und unbekannte Metaboliten und deren FC des Mediums im der Vergleiche Pi > m und Pi < m. Gezeigt sind die Derivate der Verbindungen mit der jeweiligen Anzahl ihrer TMS (Trimethylsilyl) Gruppen. Konnten die Substanzen nicht identifiziert werden, wurden diese als "Unbekannte" dargestellt.

Pi > m	
Name	FC
Unbekannte 30	2,0
3,5-Dimethylbenzoesäure (1TMS)	2,0
Unbekannte 31	2,2
Benzoesäure (1TMS)	2,2
Unbekannte 32	2,5
1-(4-Hydroxy-3-methoxyphenyl)-	2.6
1,2,3-Propanetriol (4TMS)	2,0
Unbekannte 22	2,7
Fructose (1MEOX) (5TMS)	2,7
Unbekannte 24	2,8
Nicotinsäure (1TMS)	2,9
Adipinsäure (2TMS)	3,0
Unbekannte 33	3,5

Pi < m	
Name	FC
Unbekannte 34	2,0

Unbekannte 23	3,5
Glucose (1MEOX) (5TMS) MP	4,9
2-Furansäure (1TMS)	5,0
4-Hydroxybenzoesäure (2TMS)	8,2
Unbekannte 26	13,8

Die Auswertung dieses Vergleichs hat gezeigt, dass in das Pi Medium neben einigen Zuckern (Glucose und Fructose) vor allem Säuren, wie z.B. Nicotinsäure, Adipinsäure und Benzoesäure sekretiert wurden. Außerdem wurden mehr Substanzen in das Medium sekretiert als von dem Pilz aufgenommen bzw. metabolisiert wurden.

In Tabelle 3. 34 sind die unbekannten und identifizierten Metaboliten des Mediums im Vergleich des AtPi Mediums und dem Pi Mediums, welche differentiell waren, mit ihren *fold changes* dargestellt.

Tabelle 3. 34: Identifizierte und unbekannte Metaboliten und deren FC des Mediums im der Vergleiche AtPi > Pi und AtPi < Pi. Gezeigt sind die Derivate der Verbindungen mit der jeweiligen Anzahl ihrer TMS (Trimethylsilyl) Gruppen. Konnten die Substanzen nicht identifiziert werden, wurden diese als "Unbekannte" dargestellt.

AtPi > Pi	
Name	FC
Fructose (1MEOX) (5TMS)	2,0
Unbekannte 35	2,3
Unbekannte 36	2,3
Unbekannte 37	2,5
Unbekannte 38	2,6
Unbekannte 39	2,7
Unbekannte 40	3,1
2-Desoxyribose (2TMS)	3,2
Unbekannte 41	3,3
Unbekannte 20	3,4
Unbekannte 42	3,5
Unbekannte 43	4,2

AtPi < Pi	
Name	FC
Unbekannte 19	3,0
Unbekannte 64	3,2
Unbekannte 65	3,3
Unbekannte 66	3,4
Unbekannte 67	3,6
2-Phosphoglycerat (4TMS)	3,9
Unbekannte 24	4,0
Unbekannte 68	4,3
Unbekannte 69	4,6
Unbekannte 70	5,1
Unbekannte 71	5,6
Unbekannte 72	55,2

Unbekannte 44	4,5
Unbekannte 45	5,4
Unbekannte 46	5,5
Unbekannte 47	6,1
Unbekannte 48	6,5
Unbekannte 49	6,9
Unbekannte 50	6,9
Unbekannte 51	7,0
Unbekannte 52	7,7
Unbekannte 53	8,4
Unbekannte 54	9,2
Unbekannte 55	11,0
Unbekannte 56	13,6
Unbekannte 57	15,6
Unbekannte 58	15,9
Unbekannte 59	17,9
Unbekannte 60	18,9
Unbekannte 61	19,9
Unbekannte 62	20,0
Scopoletin (1TMS)	29,5
Unbekannte 63	35,0

Unbekannte 73 222293,6

In dem co-kultivierten Medium ist die Konzentration einiger Substanzen stark gegenüber dem Pilzmedium erhöht. So ist z.B. die Konzentration an Scopoletin im AtPi Medium etwa 30-mal höher als im Pi Medium. Im Pilzmedium wurde eine Substanz detektiert, welche im AtPi nicht gefunden wurde (Unbekannte 71). Dadurch kommt der hohe *fold change* zustande.

3.4.2 Gewebevergleich der differentiellen GC-MS Metaboliten

Für die identifizierten Metaboliten der GC-MS Analysen wurde ebenfalls ein "Gewebevergleich" erstellt, indem verglichen wurde, ob ein Metabolit auch in einem anderen Gewebe oder Medium zu finden ist (Tabelle 3. 35). Dabei wurden die *fold changes* als ~1 angegeben, wenn die Substanz in dem Gewebe oder Medium vorkam, aber nicht den Anforderungen als differentieller Metabolit entsprach (*fold change* \geq 2, *p*-value \leq 0,05). Erfüllte der identifizierte Stoff die Anforderungen, wurde neben dem *fold change* auch dargestellt, in welchem Gewebe bzw. Medium die Konzentration der Substanz erhöht ist.

Tabelle 3. 35: Gewebevergleich der identifizierten differentiellen Metaboliten. Es wurde der FC der identifizierten Substanz in jedem Gewebe bzw. Medium analysiert. Dargestellt sind die Derivate der Verbindungen mit der jeweiligen Anzahl ihrer TMS (Trimethylsilyl) Gruppen.

	Blä	ätter	Wurzel Myzel		ľ	Medium		Medium		Medium		Medium			
							AtPi vs At		Pi vs m		At vs m		AtPi vs Pi		
	FC		FC	>		С		FC		FC		FC		FC	
2-Furansäure (1TMS)	-		-		-		8,8	AtPi > At	5,0	Pi > m	~1		-		
3,5-Dimethylbenzoesäure (1TMS)	-		-		-		~1		2,0	Pi > m	~1		~1		
2-Deoxyadenosin (3TMS)	-		-		-		3,9	AtPi < At	~1		6,6	At > m	~1		
Adipinsäure (2TMS)	-		-		-		2,3	AtPi > At	3,0	Pi > m	~1		~1		
Alanin (2TMS)	~1		~1		2,4	AtPi < Pi	-		-		-		-		
Asparagin (3TMS)	~1		2,4	AtPi < At	-		-		-		-		-		
Benzoesäure (1TMS)	-		-		-		~1		2,2	Pi > m	~1		~1		
4-Hydroxybenzoesäure (2TMS)	-		-		-		5,0	AtPi > At	8,2	Pi > m	~1		~1		
Fructose (1MEOX) (5TMS)	~1		2,4	AtPi > At	-		2,9	AtPi > At	2,7	Pi > m	~1		2,0	AtPi > Pi	
Glucose (1MEOX) (5TMS)	~1		2,6	AtPi > At	~1		3,5	AtPi > At	4,9	Pi > m	~1		~1		
Myo-Inositol (6TMS)	~1		2,7	AtPi > At	3,1	AtPi > Pi	~1		~1		~1		-		
2-Hydroxypropansäure (2TMS)	~1		5,6	AtPi > At	~1		2,5	AtPi > At	~1		~1		~1		
3-Phenylmilchsäure (2TMS)	-		-		-		2,5	AtPi > At	-		-		~1		

Nicotinsäure (1TMS)	-	~1		~1		4,1	AtPi > At	2,9	Pi > m	~1	~1	
Ornithin (3TMS)	~1	-		2,5	AtPi < Pi	-		-		-	-	
Pantothensäure (3TMS)	-	-		-		3,0	AtPi > At	~1		~1	~1	
Pyroglutamat (2TMS)	~1	3,0	AtPi < At	2,9	AtPi < Pi	~1		~1		~1	-	
Serin (3TMS)	~1	2,1	AtPi < At	3,0	AtPi < Pi	-		-		-	-	
1-(4-Hydroxy-3- methoxyphenyl)-1,2,3- Propanetriol (4TMS)	-	-		-		~1		2,6	Pi > m	~1	~1	
Bernsteinsäure (2TMS)	-	-		-		2,5	AtPi > At	~1		~1	~1	
Saccharose (8TMS)	~1	~1		~1		38,8	AtPi < At	~1		~1	~1	
α,α-Trehalose (8TMS)	-	14,8	AtPi > At	~1		-		-		-	-	
Harnstoff (2TMS)	~1	3,5	AtPi < At	-		-		-		-	-	
Scopoletin	-	-		-		~1		-		-	29,5	AtPi > Pi
2-Phosphoglycerat	~1	~1		~1		~1		~1		~1	3,9	AtPi < Pi
Desoxyribose	-	~1		-		~1		-		-	3,2	AtPi > Pi

Die identifizierten Substanzen lassen sich in verschiedene Gruppen einteilen. So sind 2-Furansäure, Adipinsäure und 4-Hydroxybenzoesäure nicht in den Geweben zu finden, jedoch ist ihre Konzentration in dem AtPi > At Medium und in dem Pi > m Medium erhöht. Dies deutet darauf hin, dass diese Substanzen von *P. indica* gebildet und in das Medium sekretiert wurden.

3,5-Dimethylbenzoesäure, Benzoesäure und 1-(4-Hydroxy-3-methoxyphenyl)-1,2,3-Propantriol sind in den Medien zu finden, allerdings ist die Konzentration der Substanzen nur in dem Pilzmedium erhöht. Weiterhin konnten sie in keinem Gewebe identifiziert werden. In den anderen Medien konnten die Verbindungen zwar detektiert werden, allerdings sind sie dort nicht differentiell. Daraus lässt sich schließen, dass *P. indica* diese Stoffe vermehrt in das Medium sekretiert, wenn er allein kultiviert wird.

2-Deoxyadenosin wird von *A. thaliana* gebildet und sekretiert, da die Konzentration dieses Stoffes in den At > m Medien und in den At > AtPi Medien erhöht ist. Die Substanz wurde in keinem Gewebe gefunden. Zusammenfassend betrachtet, sekretiert *A. thaliana* 2-Deoxyadenosin in das Medium, während der Co-Kultivierung mit *P. indica* nimmt die Konzentration im Medium ab.

Sowohl Alanin als auch Ornithin konnten nicht in den Medien identifiziert werden und ihre Konzentrationen sind nur im Pi Myzel erhöht. Während der Co-Kultivierung könnten diese Stoffe im Myzel verstoffwechselt werden.

Die Zucker Fructose und Glucose und die 2-Hydroxypropansäure konnten in (fast) allen Medien und Geweben identifiziert werden. In den Blättern, im Myzel und in dem At > m Medium sind diese Stoffe nicht differentiell. Die Konzentrationen der Substanzen sind in den AtPi Wurzeln und in dem AtPi Medium erhöht, wobei Fructose in dem Pilzmedium gegenüber dem co-kultivierten Medium vermindert zu finden ist. Zusammenfassend betrachtet, könnten diese Stoffe vor allem während der Co-Kultivierung in den Wurzeln gebildet werden und in das Medium sekretiert werden. Auch eine vermehrte Sekretion der Substanzen von *P. indica* in das Medium und anschließende Aufnahme der Stoffe durch die Wurzeln ist möglich.

Myo-Inositol wurde in allen untersuchten Geweben und Medien detektiert. Allerdings ist diese Verbindung nur in den co-kultivierten Wurzeln und im co-kultivierten Myzel als differentieller Metabolit zu finden. Die Substanz kann entweder von *A. thaliana* produziert und dann von der Wurzel an das anhaftende Myzel abgegeben worden sein oder *P. indica* hat das gebildete *Myo*-Inositol an die Wurzeln abgegeben.

3 Ergebnisse

Die Säuren 3-Phenylmilchsäure, Pantothensäure und Bernsteinsäure konnten nicht in den Geweben identifiziert werden, deren Konzentration ist aber in dem co-kultiviertem Medium erhöht. Da Pantothensäure und Bernsteinsäure in den anderen Medien zwar vorkommen aber nicht differentiell sind, kann davon ausgegangen werden, dass die drei Säuren für die Co-Kultivierung vermehrt produziert worden sind. Pantothensäure konnte in den LC-MS Analysen ebenfalls detektiert werden. Sowohl in den GC-MS als auch in den LC-MS Analysen wurde Pantothensäure nicht in den Geweben gefunden und war in dem co-kultivierten Medium in der gleichen Größenordnung differentiell. Im Gegensatz zu den LC-MS Analysen konnte der Stoff in den GC-MS Analysen auch in den anderen Medien detektiert werden, allerdings waren die Konzentrationen nicht signifikant differentiell. Somit konnten sowohl in der LC-MS als auch in der GC-MS gleiche Ergebnisse erzielt werden.

Die Konzentrationen an Pyroglutamat und Serin nahmen während der Co-Kultivierung in den Wurzeln und in dem AtPi Medium ab. Sie scheinen demnach während der Co-Kultivierung verstoffwechselt zu werden.

α,α-Trehalose konnte nicht in den Medien detektiert werden, jedoch ist die Konzentration in den AtPi Wurzeln erhöht. Zudem wurde der Stoff im Myzel gefunden, ist dort allerdings nicht differentiell. Vielleicht nimmt die Wurzel während der Co-Kultivierung diesen Stoff von dem Myzel auf oder produziert diese Substanz selbst.

Die Konzentration an Saccharose war in dem At Medium gegenüber dem AtPi Medium etwa 39-fach erhöht. Dies ist der höchste gemessene *fold change* in den GC-MS Analysen. Saccharose ist in allen Geweben und Medien zu finden, jedoch könnte dieser Stoff während der Co-Kultivierung vermehrt in andere Substanzen, wie Fructose und Glucose umgebildet werden, weshalb seine Konzentration so stark abnimmt.

Harnstoff konnte neben der Wurzel auch in den Blättern identifiziert werden, ist jedoch nicht differentiell. In den Wurzeln wurde dieser Metabolit während der Co-Kultivierung in geringerer Menge gefunden. Dieser Stickstofflieferant wird vielleicht selbst oder als ein Stoffwechselprodukt in die Blätter transportiert, wo er weitere Verwendung findet.

Die Konzentration an Scopoletin und 2-Desoxyribose ist im co-kultiviertem Medium gegenüber dem Pilzmedium stark erhöht. Auch im Vergleich AtPi vs At sind die Substanzen zu finden, jedoch nicht differentiell.

2-Phosphoglycerat ist als Intermediat der Glykolyse in allen Geweben und Medien zu finden, wurde jedoch vermehrt im Pilzmedium gegenüber dem co-kultivierten Medium detektiert.

Zusammenfassend betrachtet, konnten anhand der Gewebevergleiche mögliche metabolische Zusammenhänge für die identifizierten Substanzen während der Interaktion von *A. thaliana* und *P. indica* aufgezeigt werden.

3.5. Untersuchung des wachstumsfördernden Effektes von Pantothensäure und Leu-Leu

Nach der Identifizierung einiger Metaboliten, die eine mögliche Rolle in der Interaktion von *A. thaliana* und *P. indica* spielen, sollten ausgesuchte Substanzen auf einen möglichen wachstumsfördernden Effekt hin untersucht werden. Da in der 60 % Eluatfraktion, die einen wachstumsfördernder Effekt auf *A. thaliana* hat (siehe Abb. 3. 11), kein Metabolit identifiziert werden konnte, wurde entschieden 2 Substanzen aus einer anderen Fraktion zu testen. So wurde Pantothensäure als ein Vertreter der B-Vitamine, welche eine wachstumsfördernden Effekt auf manche Pflanzen hat (Hussain und Vancura, 1970; Sahi et al., 1988) und das Dipeptid Leu-Leu, welches bei mutualistischen Interaktionen eine Rolle spielt und bei einem Bakterium eine Wachstumsförderung stimulierte (Huang et al., 2007; Saguir et al., 2008), analysiert. Die Substanzen waren in dem co-kultivierten Medium im Vergleich zum At Medium erhöht. Da nicht eindeutig geklärt werden konnte, von welchem Partner Pantothensäure sekretiert wurde (wurde bei den LC-MS und GC-MS Analysen in allen Medien, aber in keinem Gewebe detektiert) und das Dipeptid Leu-Leu nur in dem co-kultivierten Medium zu finden ist, wurden sowohl die Pflanzen, als auch das Pilzmyzel mit den Substanzen behandelt.

3.5.1 Pantothensäure

Anhand einer Konzentrationskurve mit dem Standard konnte die physiologische Konzentration von Pantothensäure im AtPi Medium bestimmt werden. Sie beträgt 3 nM (Daten nicht gezeigt). So wurde aufsteigend von dieser Konzentration zu 14 Tage alten Pflanzen über vier Wochen (drei Mal wöchentlich) Pantothensäure gegeben bis die Endkonzentration von 5 nM, 10 nM, 25 nM, 50 nM und 100 nM erreicht wurde. Anschließend wurde das Gewicht der Blätter und Wurzeln bestimmt (Abb. 3. 28).

Abb. 3. 28: Frischgewicht (FG) in mg pro Pflanze nach vier-wöchiger Zugabe von Pantothensäure. 14 Tage alte Pflanzen wurden für vier weitere Wochen mit verschiedenen Konzentrationen an Panthothensäure behandelt. Die Substanz wurde dem Medium zwölfmal zugegeben. Gezeigt sind die Endkonzentrationen an Pantothensäure nach vier-wöchiger Zugabe. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; n = 8 für At H₂O, At 5 nM und At 10 nM, n = 7 für At 25 nM, At 50 nM und At 100 nM.

Es konnte kein signifikanter Unterschied zwischen den Blattgewichten nach Zugabe von unterschiedlichen Konzentrationen an Pantothensäure festgestellt werden. Auch die Wurzelgewichte differierten nicht voneinander.

Da bei den Konzentrationen im nM Bereich kein wachstumsfördernder Effekt zu verzeichnen war, wurde das Experiment mit höheren Konzentrationen an Pantothensäure wiederholt. So wurde zu zwei Wochen alten Pflanzen über vier Wochen (3 x wöchentlich) Pantothensäure gegeben bis die Endkonzentration von 10 μ M, 20 μ M, 50 μ M, 100 μ M und 200 μ M erreicht wurde. Anschließend wurde das Gewicht der Blätter und Wurzeln bestimmt (Abb. 3. 29).

Abb. 3. 29: Frischgewicht (FG) in mg pro Pflanze nach vier-wöchiger Zugabe von Pantothensäure. 14 Tage alte Pflanzen wurden für vier weitere Wochen mit verschiedenen Konzentrationen an Panthothensäure behandelt. Die Substanz wurde dem Medium zwölfmal zugegeben. Gezeigt sind die Endkonzentrationen an Pantothensäure nach vier-wöchiger Zugabe. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; n = 8 (außer At H₂O n = 9, At 50 μ M und At 200 μ M n = 7).

Auch bei dieser Untersuchung konnte kein signifikatner Unterschied im Blatt- und Wurzelgewicht nach Zugabe im µM Bereich beobachtet werden.

Die durchgeführten Experimente deuten darauf hin, dass Pantothensäure im getesteten nM und µM Bereich keinen wachstumsfördernden Einfluss auf A. *thaliana* hat.

Weiterhin wurden verschiedene Konzentrationen an Pantothensäure zum Pilzmyzel in hydroponischer Kultur gegeben, um zu untersuchen, ob *P. indica* von der Zugabe der Substanz profitiert. Dafür wurde über vier Wochen (3 x wöchentlich) Pantothensäure zu *P. indica* im Schüttelkolben gegeben. Nach Erreichen der Endkonzentration von 5 nM, 10 nM, 25 nM, 50 nM und 100 nM wurde das Myzel geerntet, gefriergetrocknet und das Trockengewicht bestimmt (Abb. 3. 30).

Abb. 3. 30: Trockengewicht (TG) in mg des Myzels von *P. indica* nach vier-wöchiger Zugabe von Pantothensäure. Die Substanz wurde dem Medium zwölfmal zugegeben. Gezeigt sind die Endkonzentrationen an Pantothensäure nach vier Wochen Zugabe. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; n = 8 (außer At H₂O und At 10 nM n = 7).

Es konnte nach der Zugabe von Pantothensäure im nM Bereich kein wachstumsfördernder Effekt bei *P. indica* beobachtet werden.

Deshalb wurde auch hier der Versuch mit höheren Konzentrationen an Pantothensäure wiederholt. So wurde über vier Wochen (3 x wöchentlich) Pantothensäure zu *P. indica* gegeben bis die Endkonzentration von 10 μ M, 20 μ M, 50 μ M, 100 μ M und 200 μ M erreicht wurde. Anschließend wurde das Trockengewicht des Pilzmyzels bestimmt (Abb. 3. 31).

Abb. 3. 31: Trockengewicht (TG) in mg des Myzels von *P. indica* nach vier-wöchiger Zugabe von Pantothensäure. Die Substanz wurde dem Medium zwölfmal zugegeben. Gezeigt sind die Endkonzentrationen an Pantothensäure nach vier Wochen Zugabe. n = 4, ungepaarter t-Test ** $P \le 0,01$ im Vergleich zur Kontrollgruppe (Pi H₂O) mit Standartabweichungen.

Bei einer Konzentration von 200 µM konnte eine signifikante Erhöhung des Pilzmyzelgewichtes gegenüber der Wasserkontrolle detektiert werden. Allerdings ist die Anzahl der getesteten Proben nicht groß genug, um eine abgesicherte Aussage treffen zu können. Der Versuch muss deshalb wiederholt werden.

3.5.2 Leu-Leu

Da über Dipeptide als Signalmoleküle wenig bekannt ist, wurde der differentielle Metabolit in dem AtPi Medium Leu-Leu für die Versuche zur Wachstumsförderung der Pflanze und des Pilzes herangezogen. Leu-Leu konnte nur in dem AtPi Medium detektiert werden, in keinem anderen Medium bzw. Gewebe. Es scheint eine Substanz zu sein, die nur während der Co-Kultivierung von *A. thaliana* und *P. indica* auftritt. Anhand einer Konzentrationskurve mit dem Standard konnte die physiologische Konzentration von Leu-Leu im AtPi Medium bestimmt werden. Sie beträgt 3,5 nM (Daten nicht gezeigt). So wurde aufsteigend von dieser Konzentration zu 14 Tage alten Pflanzen über vier Wochen (3 x wöchentlich) Leu-Leu gegeben bis die Endkonzentration von 5 nM, 10 nM, 25 nM, 50 nM und 100 nM erreicht wurde. Anschließend wurde das Gewicht der Blätter und Wurzeln bestimmt (Abb. 3. 32).

Abb. 3. 32: Frischgewicht (FG) in mg pro Pflanze nach vier wöchiger Zugabe von Leu-Leu. 14 Tage alte Pflanzen wurden für vier Wochen mit verschiedenen Konzentrationen an Leu-Leu behandelt. Die Substanz wurde dem Medium zwölfmal zugegeben. Gezeigt sind die Endkonzentrationen an Leu-Leu nach vier Wochen Zugabe. n = 6 für 25 nM, n = 7 für At H2O, 10 nM 50 nM, n = 8 für 5 nM, 100 nM mit Standartabweichungen.

Es konnte kein signifikanter Unterschied zwischen den Blattgewichten nach Zugabe von unterschiedlichen Konzentrationen an Leu-Leu festgestellt werden. Auch die Wurzelgewichte differierten nicht voneinander.

Da bei den Konzentrationen von Leu-Leu im nM Bereich kein wachstumsfördernder Effekt gezeigt werden konnte, wurde der Versuch mit höheren Konzentrationen in μ M Bereich wiederholt. Dafür wurden 14 Tage alte Pflanzen über vier Wochen (3 x wöchentlich) mit Leu-Leu behandelt bis die Endkonzentration von 10 μ M, 20 μ M, 50 μ M, 100 μ M und 200 μ M erreicht wurde. Anschließend wurde das Gewicht der Blätter und Wurzeln bestimmt (Abb. 3. 33).

Abb. 3. 33: Frischgewicht (FG) in mg pro Pflanze nach vier-wöchiger Zugabe von Leu-Leu. 14 Tage alte Pflanzen wurden für vier Wochen mit verschiedenen Konzentrationen an Leu-Leu behandelt. Die Substanz wurde dem Medium zwölfmal zugegeben. Gezeigt sind die Endkonzentrationen an Leu-Leu nach vier Wochen Zugabe. n = 8 für At H2O, 50 μ M und 100 μ M, n = 7 für 20 μ M und 200 μ M mit Standartabweichungen.

Es konnte kein signifikanter Unterschied zwischen den Blattgewichten nach Zugabe von unterschiedlichen Konzentrationen an Leu-Leu festgestellt werden. Auch die Wurzelgewichte differierten nicht voneinander.

Weiterhin wurden verschiedene Konzentrationen an Leu-Leu zum Pilzmyzel in hydroponischer Kultur gegeben, um zu untersuchen, ob *P. indica* von der Zugabe der Substanz profitiert. Dafür wurde über vier Wochen (3 x wöchentlich) Leu-Leu zu *P. indica* im Schüttelkolben gegeben. Nach erreichen der Endkonzentration von 5 nM, 10 nM, 25 nM, 50 nM und 100 nM wurde das Myzel geerntet, gefriergetrocknet und das Trockengewicht bestimmt (Abb. 3. 34).

Abb. 3. 34: Trockengewicht (TG) in mg des Myzels von *P. indica* nach vier wöchiger Zugabe von Leu-Leu. Die Substanz wurde dem Medium zwölfmal zugegeben. Gezeigt sind die Endkonzentrationen an Leu-Leu nach vier Wochen Zugabe. Zusammenführung der Ergebnisse aus zwei Sets von Experimenten mit Standartabweichungen; n = 8, ungepaarter t-Test *P \leq 0,05 im Vergleich zur Kontrollgruppe (Pi H₂O).

Es konnte ein signifikanter Gewichtszuwachs des *P. indica* Myzels bei einer Konzentration von 50 nM Leu-Leu beobachtet werden. Allerdings ist der Effekt nur minimal. Das Experiment sollte deshalb wiederholt werden, unter Umständen auch mit engeren Konzentrationsschritten (z.B. 30 nM, 40 nM, 50nM, 60 nM, etc.), um den Effekt vielleicht deutlicher detektieren zu können.

Es wurden auch Konzentrationen von Leu-Leu im μ M Bereich gestestet, diese zeigten aber keinen Einfluss auf das Gewicht von *P. indica* (Daten nicht gezeigt).

Zusammenfassend betrachtet hat sich gezeigt, dass Pantothensäure und Leu-Leu keinen wachstumfördernden Einfluss auf *A. thaliana* haben. Die Experimente mit *P. indica* müssen wiederholt bzw. der Konzentrationsbereich verfeinert werden, um eine Aussage über die wachstumsfördernden Eigenschaften der Substanzen Auskunft geben zu können.

4 Diskussion

Pflanzen interagieren in der Rhizosphäre mit einer Vielzahl an Bodenorganismen durch ihre Wurzelexsudate. Ist die Wechselwirkung positiver Natur, spricht man von einer mutualistischen Interaktion. Diese kann z.B. mit Rhizobakterien oder mit Mykorrhizapilzen eingegangen werden. Der Vorteil für die Pflanze besteht in der erhöhten Resistenz gegenüber Pathogenen und einem verstärkten Pflanzenwachstum. Ein Vertreter der Pilze, die an mutualistischen Interaktionen beteiligt ist, ist *Piriformospora indica*. Der Endophyt kann mit einer Vielzahl von Pflanzenspezies wechselwirken (Barazani et al., 2005; Dolatabadi et al., 2011; Fakhro et al., 2009; Kumar et al., 2009; Peskan-Berghöfer et al., 2004; Waller et al., 2005). Dies resultiert in einer Gewichtszunahme und einer gesteigerten Resistenz gegen biotischen und abiotischen Stress (Baltruschat et al., 2008; Fakhro et al., 2009; Sherameti et al., 2008; Stein et al., 2008; Waller et al., 2005).

Der Mechanismus der Interaktion konnte bisher weder durch einen genetischen Ansatz, noch durch Proteom-Analysen aufgeklärt werden. Auch auf Metabolitenebene wurden bisher nur vereinzelt Substanzklassen untersucht, die aber nicht klären konnten, welche Metaboliten für die Kommunikation zwischen den beiden Partnern essentiell sind oder welches die wachstumsfördernden Substanzen darstellen.

In dieser Arbeit wurde erstmals ein ungerichtetes Metaboliten-Profiling (*non-targeted metabolite profiling*) per GC-MS und LC-MS durchgeführt, in dem sowohl die Primär- als auch die Sekundärmetaboliten untersucht wurden, die sich während der Interaktion von *A. thaliana* und *P. indica* verändern. Es wurde besonderes Augenmerk auf die Wurzelexsudate gelegt, die einerseits von *A. thaliana* sekretiert wurden und andererseits auf die Exsudate, die sich während der Interaktion verändern.

4.1 Hydroponische Kultur

Während der Arbeit wurde eine hydroponische Kultur entwickelt, um die Interaktion zwischen *A. thaliana* und *P. indica* zu untersuchen. Dies wurde nötig, da bisher kein optimales System für die Analysen zur Verfügung stand. Die Bedingungen während der Versuche müssen möglichst gleichbleibend sein, um die Reproduzierbarkeit und damit eine optimale Vergleichbarkeit zwischen den zu untersuchenden Behandlungen gewährleisten zu können. Dies ist auch für die fundierte statistische Auswertung der erhaltenen Daten wichtig. Um die Interaktion zwischen *A. thaliana* und *P. indica* zu untersuchen wurden die beiden Organismen zusammen bisher entweder auf Erde oder Agar angezogen (Camehl et al., 2010; Peskan-Berghöfer et al., 2004). Um die Metabolite, deren Konzentration sich während der Interaktion zwischen der Pflanzenwurzel von *A. thaliana* und dem Pilzmyzel von *P. indica* verändert, zu identifizieren, müssen diese technisch einfach aus dem sie umgebenden Medium extrahiert werden können. Dies ist bei der Anzucht in Erde nicht der Fall. Erde setzt sich aus verschiedenen Stoffen zusammen, die mitunter (je nach Lieferant und Charge) variieren. So können Unterschiede im Substrat das Wachstum der Pflanze und des Pilzes beeinflussen und damit auch deren Metabolitenzusammensetzung. Außerdem stellt das Substrat Erde ein unsteriles Ökosystem dar, indem viele verschiedene Organismen leben. Man kann die sekretierten Substanzen nicht eindeutig dem zu untersuchenden Pilz bzw. der Pflanze zuordnen, da andere Organsimen ebenfalls Metaboliten in die Erde absondern können. Da die Extraktion von löslichen Stoffen aus Erde zudem aufwendig ist, war Erde als Medium ungeeignet.

Agar bietet zwar den Vorteil, dass die Zusammensetzung nicht variiert und das System steril bleibt. Allerdings ist auf Agarplatten die Separierung der Blätter von dem Pilzmyzel nicht zu gewährleisten, weiterhin ist das Myzel schwer zu ernten, da es in den Agar hineinwächst. Die Metaboliten müssten aus dem Agar herausgelöst werden, um sie zu identifizieren. Dies ist ebenfalls aufwendig. Außerdem ist die Varianz unter den Pflanzen einer Gruppe (z.B. Kontrolle) auf Agar sehr stark (Daten nicht gezeigt; Korrespondenz mit anderen Arbeitsgruppen), so dass eine sehr große Anzahl von Pflanzen getestet werden muss, um eine statistisch abgesicherte Aussage treffen zu können.

Die Kultivierung der Pflanzen und des Pilzes auf Agarplatten benötigt sehr spezifische Anforderungen, da der wachstumsfördernde Effekt nach Kultivierung mit *P. indica* auf Agarplatten nur von einigen wenigen Arbeitsgruppen beobachtet werden konnte. Dagegen konnten viele andere Gruppen, die auf diesem Forschungsgebiet arbeiten, diesen Phänotyp nicht reproduzieren (persönliche Korrespondenz). Hier wurden *A. thaliana* und *P. indica* entweder auf Erde kultiviert oder die Interaktion mit einer anderen Pflanzenspezies (z.B. Getreide) untersucht. Demnach ist auch Agar als Kultivierungsmedium ungeeignet, um die Interaktion von *A. thaliana* und *P. indica* zu untersuchen.

In einer hydroponischen Kultur können Pflanzen und der Pilz steril angezogen werden. Dadurch werden keine Fremdkomponenten analysiert, die z.B. von Bakterien und anderen Pilzen abgegeben werden könnten. Das Medium und der Agar unterliegen einer gleichbleibenden Zusammensetzung, dies ist wichtig für die Vergleichbarkeit der Versuche. Außerdem sind die Pflanzenteile separiert, so dass man die Blätter und Wurzeln einzeln untersuchen kann. Zusätzlich ist das Myzel leicht aus dem Medium abzufiltrieren. Weiterhin ist die Aufarbeitung des Mediums, in dem sich die gelösten Stoffe befinden, einfacher als bei Erde oder Agar, da diese sich schon in Lösung befinden.

Es existieren bereits verschiedene hydroponische Systeme, in denen Pflanzen angezogen und anschließend auf ihre "Wurzelexsudate" hin untersucht wurden. Allerdings wurde dabei der gesamte Keimling in Schüttelkultur (z.B. Schüttelkolben oder 6-Well Platten) angezogen, d.h. sowohl Wurzeln, Stängel und Blätter hatten Kontakt mit dem Medium (Badri et al., 2008; Badri et al., 2009; Bais et al., 2005; Biedrzycki et al., 2010; Broeckling et al., 2008; Jaitz et al., 2011; Loyola-Vargas et al., 2007; Walker et al., 2004). Die analysierten Exsudate waren somit Gesamtpflanzenexsudate und keine Wurzelexsudate. Diese Art der hydroponischen Kultur war für die Metabolomanalyse von *A. thaliana* und *P. indica* ungeeignet, da einerseits reine Wurzelexsudate untersucht und andererseits das Myzel und die Wurzeln separiert von den Blättern angezogen werden sollten.

In der Literatur sind weiterhin hydroponische Kulturen beschrieben, bei denen die Pflanzenteile separiert angezogen wurden und sich nur die Wurzeln im Medium befanden (Sarret et al., 2006; von Roepenack-Lahaye et al., 2004). Allerdings sind diese Systeme, ebenso wie das käuflich zu erwerbende Araponics System (http://www.araponics.com/) nicht steril zu kultivieren. Durch den notwendigen wöchentlichen Mediumwechsel kann die Sekretion der Wurzelexsudate nur über einen kurzen Kultivierungszeitraum untersucht werden. Sollen die Ausscheidung der Wurzelexsudate über einen längeren Zeitraum analysiert werden oder ein Kultivierungspartner (Pilz, Bakterium) zu den Pflanzen gegeben werden, kann nicht gewährleistet werden, dass die detektierten Substanzen von den beiden kultiverten Partnern sekretiert worden sind und nicht durch die Kontamination mit einem unerwünschten Organismus (Bakterium, Pilz oder Hefen) sekretiert wurden. Deshalb ist ein steriles Sytem unumgänglich. Diese drei vorgestellten Systeme nehmen zudem viel Platz im Phytokammerschrank ein. Somit kann nur eine begrenzte Zahl an Pflanzen gleichzeitig angezogen werden. Dies kann bei der statistischen Auswertung Probleme bereiten, da nicht genug Pflanzenmaterial analysiert werden kann. Auch das Poolen von Pflanzen ist bei wenigen Individuen pro Anzucht zeitaufwendig, da das gewünschte Material in mehren Experimenten generiert werden muss.

Bei Schlesier et al. (2003) wurden die Pflanzen in "Einmachgläsern" angezogen, wobei die Samen auf einen extra dafür hergestellten Ständer mit einem Metallnetz gelegt werden.

Vorteil dieses Systems ist, dass es steril bleibt. Ein Nachteil ist, dass die Pflanzen zu nah zueinander keinen definierten Abstand haben. Somit könnten die Pflanzen zu nah beieinander stehen, was sich in Stressreaktionen äußern kann, weshalb viele Pflanzen in der Natur mittels Allelopathie die Samen ihrer eigenen Spezies daran hindern zu keimen (Singh et al., 1999). Demnach war es eine wichtige Vorraussetzung, eine hydroponische Kultur zu entwickeln und zu validieren, in der die Blätter separiert von den Wurzeln und Medium wachsen konnten, die Pflanzen in einem definierten Abstand zueinander standen und die hydroponische Kultur über einen längeren Zeitraum steril gehalten werden konnte. Die in dieser Arbeit etablierte hydroponische Kultur erfüllt all diese Bedingungen. Daher konnte die Co-Kultivierung zwischen den Pflanzen und dem Endophyten durchgeführt werden, welche in einer Blattgewichtszunahme von *A. thaliana* resultierte.

4.2 Untersuchung des wachstumsfördernden Effekts von *P. indica* auf *A. thaliana*

Es wurde nach der Co-Kultivierung von *A. thaliana* und *P. indica* der Phänotyp der Wurzeln sowohl auf Agarplatten als auch in hydroponischer Kultur untersucht. Die Wurzeln nach Co-Kultivierung mit *P. indica* sind auf Agar verzweigter als die Kontrollpflanzen (Abb. 3.13). Dies wurde auch bei Shahollari et al. (2007) festgestellt. Die Pflanzen in hydroponischer Kultur besitzen eine Hauptwurzel und nur wenige Seitenwurzeln. Nach Co-Kultivierung verzweigten sich die Wurzeln, die sich in den PCR-Vials mit Agar befanden, verstärkt. Allerdings hatte nur die Hauptwurzel Kontakt mit dem sich darunter befindenden Medium. Dies wurde sowohl bei den Kontrollpflanzen als auch bei den mit *P. indica* co-kultivierten Pflanzen beobachtet. Da die Nährstoffe in der hydroponischen Kultur um die Wurzel herum gespült wurden, war es nicht nötig ein weites Wurzelnetz wie in Erde oder auf Agar zu bilden, um neue Nährstoffe verfügbar zu machen. Sowohl auf Agar als auch in der hydroponischen Kultur besaßen die AtPi Pflanzen weniger Wurzelhaare. Peskan-Berghöfer et al. (2004) konnten dies ebenfalls beobachten. *P. indica* übernimmt die Funktion der Wurzelhaare zum Teil (z.B. Nährstoffaufnahme, etc.) und macht diese somit überflüssig, weshalb weniger Wurzelhaare gebildet wurden.

Während der Co-Kultivierung von *A. thaliana* mit *P. indica* in hydroponischer Kultur konnte ein signifikanter wachstumsfördernder Effekt in den Blättern schon nach einer Woche der Interaktion nachgewiesen werden. Je länger die Interaktion zwischen *A. thaliana* und *P. indica* dauerte, desto größer war die Wachstumsförderung und damit die Gewichtszunahme der Blätter (siehe Abb. 3.5). In den Wurzeln konnte jedoch keine *P. indica* abhängige Gewichtszunahme festgestellt werden. Peskan-Berghöfer et al. (2004) konnten ebenfalls nach acht Tagen Co-Kultivierung eine signifikante Gewichtszunahme der Blätter auf Agar nachweisen.

In der Literatur wurde beschrieben, dass *A. thaliana* nach Co-Kultivierung mit dem Wurzelendophyten *P. indica* sowohl eine Gewichtszunahme in den Blättern als auch in den Wurzeln auf Agar zeigt (Camehl und Oelmuller, 2010; Peskan-Berghöfer et al., 2004; Shahollari et al., 2007; Shahollari et al., 2005; Vadassery et al., 2009a; Vadassery et al., 2008). Angaben zum Wurzelgewicht von *A. thaliana* nach Co-Kultivierung in Erde sind in der Literatur nicht zu finden. In anderen Pflanzenspezies jedoch wurde eine Gewichtzunahme in den Wurzeln detektiert, wenn die Pflanzen in Erde wuchsen (Dolatabadi et al., 2011; Kumar et al., 2009; Rai et al., 2001; Sarma et al., 2011; Serfling et al., 2007). In der vorliegenden Arbeit wurden auch die Wurzelgewichte nach Co-Kultivierung auf Agar gemessen, wobei eine signifikante Gewichtszunahme in den Blättern und Wurzeln gegenüber den Kontrollpflanzen erzielt werden konnte (Daten nicht gezeigt). Demnach ist spezifisch in der hydroponischen Kultur keine Wachstumsförderung in den Wurzeln von *A. thaliana* zu verzeichnen.

Die Wachstumsförderung kann bei Pflanzen durch drei Wirkungsarten hervorgerufen werden, wobei auch eine Kombination dieser möglich ist. Diese Arten sind Biodüngerwirkung, Bioprotektor-Wirkung und Bioregulator-Wirkung (Bloemberg und Lugtenberg, 2001; Gianinazzi et al., 1995). Wenn Pflanzen ihre Wurzeloberfläche in Erde oder Agar vergrößern, machen sie sich damit auch mehr Nährstoffe verfügbar, die während der Wachstumsphase aus dem bisher besiedelten Boden bzw. Agar aufgenommen und damit verbraucht wurden. Deshalb ist es für die Pflanze essentiell, ständig neue Wurzeln zu bilden, die neue Nährstoffe verfügbar machen können. Wenn die Pflanzen mit einem Wurzelendophyten wie P. indica co-kultiviert werden, kann der Endophyt schwer zugängliche Nährstoffe leichter verfügbar machen (Biodünger-Wirkung). Außerdem kann die Pflanze mit Hilfe des Pilzes in weitere Agar- bzw. Bodenschichten vordringen, um wieder neue Nährstoffe aufzunehmen. Bei der Interaktion mit Mykorrhizapilzen werden vor allem die Nährstoffe Stickstoff und Phosphat aus der Erde für die Pflanze verfügbar gemacht (Karandashov und Bucher, 2005; van der Heijden, 2010). Während der Interaktion mit P. indica wird aktiv Phosphat in die Wurzel transportiert (Kumar et al., 2011a; Shahollari et al., 2005; Yadav et al., 2010). Weiterhin wurde eine verstärkte Akkumulierung von Stickstoff in den Wurzeln von P. indica besiedelten A. thaliana gezeigt (Sherameti et al., 2005). In der hydroponischen Kultur hingegen ist es nicht nötig die Nährstoffe in aufwendiger Weise

verfügbar zu machen, da die Wurzeln dauerhaft von dem Medium umspült und somit kontinuierlich mit Nährstoffen versorgt werden. Deshalb ist eine Vergrößerung der Wurzeloberfläche nicht notwendig.

Durch *P. indica* werden bisher unbekannte wachstumsfördernde Substanzen und Stoffe abgegeben, die die Gesundheit der Pflanze steigern (Bioprotektor-Wirkung, z.B. erhöhte Resistenz gegen Salzstress, Pathogene). Dies stimuliert die Pflanze zu mehr Wachstum, welches sich in einem erhöhten Blattgewicht und einer vermehrten Bildung von Samen und Früchten widerspiegelt. Durch die größere Blattoberfläche kann eine erhöhte Photosyntheserate erzielt werden und damit mehr Energie bzw. Zucker gebildet werden, welche wiederum zum Endophyten geleitet werden (Bago et al., 2003).

Ein weiterer Grund für die Wachstumsförderung von A. thaliana kann der Eingriff in den Hormonhaushalt der Pflanzen sein (Bioregulator-Wirkung). Es wurde gezeigt, dass die Interaktion und hervorgerufene Resistenz von P. indica bei vielen Pflanzen durch verschiedene Hormone beeinflusst wurde (Camehl und Oelmuller, 2010; Camehl et al., 2010; Jacobs et al., 2011; Lee et al., 2011; Molitor und Kogel, 2009; Schafer et al., 2009a, b; Stein et al., 2008; Vadassery et al., 2008). Jedoch konnten weder die Hormone für den wachstumsfördernden Effekt allein verantwortlich gemacht werden, noch scheint die bessere Nährstoffversorgung durch P. indica der Grund für die Wachstumsförderung zu sein. Es konnte gezeigt werden, dass die größten Wuchsunterschiede bei Gerste im Freilandversuch zwischen den Kontrollpflanzen und den P. indica behandelten Pflanzen bestanden, wenn die Pflanzen voll gedüngt wurden (Achatz, 2006). Dies spricht nicht für eine bessere Nährstoffversorgung als Grund für die Wachstumsförderung. Entweder wirken die hier beschriebenen Faktoren kumulativ, so dass sie einzeln nicht als wachstumsfördernder Effekt angesehen werden, sondern nur wenn mehrere Wirkungen zusammen agieren. Andererseits könnte es (bisher unbekannte) Substanzen geben, die für die Wachstumsstimulierung verantwortlich sind.

Eine weitere makroskopische Auffälligkeit der *A. thaliana-P. indica*-Interaktion war, dass *P. indica* die Wurzeln von *A. thaliana* während der Co-Kultivierung in hydroponischer Kultur nicht penetriert. Das Myzel umschließt die Wurzeln, es werden auch extrazellulär Chlamydosporen gebildet, es konnten jedoch keine Hyphen und Chlamydosporen in den Wurzelzellen detektiert werden. Auch ein Kooperationspartner (Dr. Alga Zuccaro, MPI Marburg), die eine Penetration der Wurzeln nach *P. indica* Co-Kultivierung in Erde und auf
Agar beobachten konnte, konnte keine Penetration der hydroponischen Kultur-Wurzeln feststellen. Nach Co-Kultvierung von *A. thaliana* mit einem GFP-fluoreszierenden *P. indica*-Stamm (Dr. Alga Zuccaro, MPI Marburg), konnten die Chlamydosporen und die Hyphen nur außerhalb der Wurzel beobachtet werden (Daten nicht gezeigt). Demnach konnte durch verschiedene visuelle Methoden gezeigt werden, dass *P. indica A. thaliana* in hydroponischer Kultur nicht penetriert.

In der Literatur wurde die Penetration für verschiedene Pflanzen wie Gerste (Jacobs et al., 2011; Schafer et al., 2007), aber auch Arabidopsis beschrieben (Peskan-Berghöfer et al., 2004). Dabei werden Zelltodreaktionen beobachtet, die laut Schafer et al. (2007) essentiell für die Etablierung der Interaktion zwischen *P. indica* und seinem Wirt sind. Es wurde allerdings auch berichtet, dass *P. indica* die Wurzeln zwar penetriert, aber keine Wurzelzellen zerstört, d.h. keine Zelltodreaktionen nötig sind (Peskan-Berghöfer et al., 2004). Eine Möglichkeit für die extrazelluläre und nicht intrazelluläre Anhaftung von *P. indica* an die *A. thaliana* Wurzeln in hydroponischer Kultur könnte sein, dass die Penetration nicht notwendig ist, da durch das Medium die Stoffe gelöst vorliegen und von beiden Partnern leicht sekretiert und aufgenommen werden können. Wenn *P. indica* seinen Wirt penetriert muss er dessen Abwehrsystem umgehen, was mit erhöhten Energiekosten einhergeht (Jacobs et al., 2011).

Auffällig bei den Mediumaustauschexperimenten war, dass die Wurzeln der Pflanzen, die mit dem sterilfiltrierten AtPi Medium (siehe Abb. 3. 8), mit dem sterilfitriertem Pi Medium (siehe Abb. 3. 9) und mit den Eluaten (siehe Abb. 3. 10) behandelt wurden, sehr kurze und in den Agar zurückgezogene Wurzeln aufzeigten. In den Blättern wurde währenddessen entweder ein wachstumsfördernder Effekt (Abb. 3.8 und 3.10) oder keine Veränderung im Blattgewicht (Abb. 3.9) beobachtet. Vielleicht befanden sich in den Eluaten während der Interaktion sekretierte Substanzen, die auf die Wurzeln einen wachstumshemmenden Effekt haben. Es könnte sein, dass die mit dem AtPi Eluat behandelten Pflanzen die für sie unvorteilhaften Subtanzen in einer zu hohen Konzentration im Medium vorfinden, weshalb sich die Wurzeln in den Agar zurückziehen. Diese hemmenden Stoffe werden wahrscheinlich von P. indica abgegeben, da bei den Kontrollpflanzen, die mit dem At Eluat behandelt wurden, kein wachstumshemmender Effekt beobachtet wurde. In der Literatur wurde ebenfalls gezeigt, dass ein P. indica Kulturfiltrat wachstumsinhibierende Effekte auf Arbaidopsiswurzeln hat (Sirrenberg et al., 2007). Diese Wachstumshemmung soll auf Auxin im Kulturfiltrat zurückzuführen sei. In dieser Arbeit wurde allerdings kein unterschiedlicher Level an Auxinen (z.B. beim Vergleich des Medien Pi > m oder AtPi </> Pi) gemessen. Die

99

wachstumshemmenden Substanzen werden teilweise während der Festphasenextraktion aus dem Medium entfernt, da nach Zugabe der Eluate (Abb. 3. 10) das Wurzelwachstum stärker ist, als nach Zugabe des Mediums (Abb. 3. 8 und 3. 9). Da durch die Festphasenextraktion vor allem polare Stoffe aus dem Medium entfernt werden, ist zu vermuten, dass die wachstumsinhibierenden Substanzen zu dieser Stoffklasse gehören. Trotz der wachstumshemmenden Verbindungen, die das Wurzelwachstum beinträchtigen, konnte ein wachstumsfördernder Effekt in den Blättern beobachtet werden (Abb. 3. 8 und 3. 10). Die wachstumsfördernden Metaboliten wurden mitunter durch Diffusion in den Agar befördert, wo sie ihre Wirkung an den Pflanzenwurzeln entfalten konnten.

4.3 Aufarbeitung des Mediums

Neben den Geweben sollte auch das Medium per GC-MS und LC-MS vermessen werden. Dafür musste dieses aufkonzentriert werden, da die Menge von 180 mL nicht direkt im Massenspektrometer analysiert werden konnte. Damit wurde auch die Konzentration der Substanzen, die sich in dem Medium befanden, um das 360-fache erhöht und somit konnte gewährleistet werden, dass sich Metaboliten, die nur in geringen Mengen im Medium auftraten von den Geräten detektiert werden konnten. Weiterhin sollten die Zucker möglichst vollständig aus dem Medium entfernt werden, da die LC-MS- und GC-MS-Säulen und die Ionenquelle sonst hochgradig kontaminiert werden würden. Weiterhin würden Matrixeffekte die Quantifikationsgenauigkeit negativ beeinflussen. Als Matrixeffekte werden dabei die Änderung der Ionisationseffektivität der Analyten durch die Anwesenheit von co-eluierenden Substanzen bezeichnet (Böttcher et al., 2007; Taylor, 2005).

Demnach war es essentiell, das Medium aufzukonzentrieren und die Zucker zu reduzieren. Dafür standen vier Typen von Säulen zur Auswahl: Anionenaustauscher, Kationenaustauscher und ungeladene Säulen (Kieselgel und Umkehrphase C-18 (Reversed phase)). Anionen- und Kationenaustauscher können starke oder schwache Anionen bzw. Kationen binden und mit dem geeigneten Lösungsmittel wieder eluiert werden. Diese Säulen sind vor allem für die Anreicherung von Säuren bzw. Basen und Dipolen geeignet. Mit den Kieselgelsäulen können vor allem stark polare Substanzen aufkonzentriert werden, die reversed phase Säulen binden unpolare und semipolare Substanzen. Mit letzteren können meisten Stoffklassen angereichert werden, weshalb diese Säulen für die die Probenvorbereitung für LC-MS Messungen empfohlen werden (Böttcher et al., 2011). In dieser Arbeit wurde das Medium über eine solche reversed phase Säule aufkonzentriert, um

die Sekundärmetaboliten anzureichern und die Zucker, welche polare Substanzen sind, abzureichern. Für die Messungen mit der LC-MS ist dieser Säulentyp gut geeignet, allerdings werden bei der GC-MS vor allem polare Stoffe wie Zucker gemessen, weshalb dieser Säulentyp für die GC-MS eigentlich nicht geeignet ist. Da dem Medium 0,5 % Saccharose zugesetzt wurden, damit *P. indica* in dem Murashige-Skoog-Medium wuchs, ist der Zucker in großem Überschuss vorhanden. Würde das Medium über einen Kationen– oder Anionenaustauscher aufkonzentriert werden, würden die Chromatogramme mit den Peaks für Saccharose, Fructose und Glucose (Saccharose zerfällt in Glucose und Fructose) überlagert werden und dadurch alle anderen Stoffe supprimieren. So war eine Abreicherung der Zucker auch für die GC-MS notwendig.

Die Konzentrierung der Substanzen, die in das Medium ausgeschieden wurden, ist durch die reversed phase Säule gut gelungen. Dies zeigt sich z.B. darin, dass die Substanzen, die während der Co-Kultivierung in das Medium sekretiert wurden, auch nach der Anreicherung im Eluat enthalten und aktiv sind. So konnte mit dem AtPi Eluat ein wachstumsfördernder Effekt erzielt werden (Abb. 3.11). Allerdings ist der wachstumsfördernde Effekt der AtPi Eluate (+ 9 %) nicht so groß wie der des sterilfiltrierten Mediums (+ 18 %) (Abb. 3. 9) oder von P. indica selbst (+ 31,9 %) (Abb. 3.5). Wurden die Pflanzen mit dem Eluat der 60 % Methanol Eluatfraktion behandelt (Abb. 3.12) konnte eine Gewichtszunahme der Blätter von 18 % erreicht werden. Dies entspricht den Ergebnissen des sterilfiltrierten Mediums (Abb. 3.9). Eine Erklärung für diese Unterschiede könnte darin liegen, dass im Gesamteluat die wachstumsstimulierenden Substanzen nicht so konzentriert vorliegen wie in der 60 % Fraktion oder andere Substanzen enthalten sein könnten, die die wachstumsfördernden Stoffe supprimieren. Der wachstumsfördernde Effekt ist am stärksten, wenn P. indica direkt mit den Pflanzenwurzeln interagiert. Einerseits könnten bestimmte Substanzen von P. indica produziert und sekretiert werden, die sofort von der Pflanzenwurzel aufgenommen und verstoffwechselt werden, wobei diese Substanzen jedoch mit dem hier gewählten experimenteller Ansatz nicht detektiert werden können.

Andererseits wurde zumindest ein Teil der wachstumsfördernden Substanzen in das Medium abgegeben, da sowohl mit dem sterilfiltrierten Medium als auch durch die AtPi Eluate eine Wachstumsstimulierung der Blätter erreicht werden konnte. Somit sollten die Substanzen, die während der Interaktion von *A. thaliana* und *P. indica* sekretiert werden, nach der Aufkonzentration des Mediums in den Eluaten zu finden sein.

Um herauszufinden, wie viel Prozent einer Substanz nicht von der Säule aufgenommen und eluiert wurden, wurden verschiedene bekannte Konzentrationen an Pantothensäure und

101

Leu-Leu (beides Verbindungen, die in dem AtPi Medium detektiert wurden) über die Säule gegeben und die Konzentration der Waschfraktion als auch des Eluates analysiert (Daten nicht gezeigt). So wurden Konzentrationen gewählt, die mehrere Zehnerpotenzen höher waren, als in den Medium vorgefunden wurden, um eine Überladung der Säule zu simulieren und zu analysieren, wie viel der Substanz noch im Eluat wiederzufinden war. So wurde z.B. von 15 µM Pantothensäure etwa 80 % in dem Eluat wiedergefunden. Da Pantothensäure in dem AtPi Medium eine Konzentration von 3 nM hatte, kann davon ausgegangen werden, dass diese Substanz nahezu vollständig eluiert wurde und somit in der MS detektiert werden konnte. Dies sollte auch für alle anderen unpolaren und semipolaren Stoffe gelten, die währen der Kultivierung in das Medium abgegeben wurden. Wenn Stoffe jedoch in einer sehr niedrigen Konzentration (fmol und kleiner) sekretiert wurden, können diese nicht per MS erfasst werden, da die UPLC-ESI-QTOF-MS ein Detektionslimit von etwa 1 pmol hat (Böttcher et al., 2011) und die GC-Quad-MS ein Detektionslimit im Bereich von nmol - pmol besitzt (Strehmel, 2010). Es ist auch möglich, dass eine der wichtigen Substanzen für die Interaktion nicht in der doppelten Konzentration im Vergleich zur Kontrolle vorliegen muss (fold change \geq 2), sondern vielleicht nur 1,5-mal mehr vorhanden ist. Diese Stoffe fallen ebenfalls aus der Statistik heraus. Da die Anzahl der zu analysierenden Massensignale jedoch zu groß gewesen wäre, wurde die untere Grenze des fold changes bei 2 gesetzt. Teilweise waren die Substanzen, die in dem einen ESet differentiell waren und in den anderen ESet nicht, sehr niedrig konzentriert, d.h. am Detektionslimit der UPLC-ESI-QTOF-MS. Daher konnten die Substanzen nicht mehr (in jeder Probe) gemessen werden und fielen so aus der Statistik heraus.

4.4 LC-MS Datenauswertung

In der vorliegenden Arbeit wurde nach Interaktion von *A. thaliana* mit *P. indica* ein ungerichtetes Metaboliten-Profiling der Blätter, der Wurzeln, des Myzels und des Mediums durchgeführt. Bisher wurden nur vereinzelt ungerichtete Metabolomanalysen per LC-MS veröffentlicht. So wurden Erdbeerblüten (Hanhineva et al., 2008) und Maiskörner (Manetti et al., 2006), die Wurzeln des Engelwurz (*Angelica acutiloba*) (Tianniam et al., 2009), ein Arabidopsis Gesamtpflanzenextrakt (Nakabayashi et al., 2009), Arabidopsis-Blätter (Böttcher et al., 2008) sowie die Blätter und Wurzeln von Arabidopsis (von Roepenack-Lahaye et al., 2004) einem *non-targeted profiling* unterzogen. Dabei konnte von einigen Metaboliten die Struktur aufgeklärt werden.

Weit häufiger hingegen ist die Analyse bestimmter Substanzklassen, wie z.B. der Strigolactone in Hülsenfrüchtlern (Yoneyama et al., 2008), organische Säuren in den Geweben und Wurzeln von Mais, der Lupine und Kichererbsen (Erro et al., 2009), Anthocyane in *Brunfelsia calycina* Kronblättern (Bar-Akiva et al., 2010) oder phenolische Cholinester in Arabidopsis und Rapssamen (Böttcher et al., 2009). Die gerichtete Analyse ist um ein vielfaches einfacher, da die Substanzklasse bekannt ist und nur nach wenigen Verbindungen gesucht wird, für die meist eine Datenbank bzw. Referenzspektren und Standards vorliegen.

In dem in dieser Arbeit analysierten Medium befanden sich die Wurzelexsudate von *A. thaliana*, einerseits ohne Fremdeinwirkung (At > m), andererseits während der Interaktion mit *P. indica* (At vs. AtPi). Es gibt bisher nur wenige Arbeiten, in denen Wurzelexsudate per LC-MS und GC-MS vermessen wurden. Es wurden die Wurzelexsudate von *A. thaliana*, welche in Erde gewachsen waren, in der Rhizosphärenschicht der Erde untersucht. Dabei wurde die Analyse entweder auf einzelne Stoffklassen, wie Glucosinolate beschränkt, wobei nur die Zugehörigkeit zu der Substanzklasse und PCAs (*Principal component analysis*) gezeigt werden konnten (Bressan et al., 2009) oder die Unterschiede der Proben in einer HCA (*Hierarchical cluster analysis*) verdeutlicht werden konnten (Micallef et al., 2009). PCA und HCA sind mathematische Verfahren, um umfangreiche Datensätze zu strukturieren, zu vereinfachen und zu veranschaulichen. Meist kann so dargestellt werden, dass sich die eine Gruppe von der anderen untersuchten Gruppe unterscheidet. Mehr Informationen sind aus diesen Verfahren jedoch nicht zu gewinnen. Eine PCA und HCA kann als erster Hinweis für das Ergebnis dienen, die schwierige Analyse und Aufklärung der Metaboliten sollte allerdings danach erfolgen.

Weitere "Wurzelexsudat"-Analysen (die gesamten Pflanzen wurden in hydroponischer Kultur angezogen, demnach eigentlich Gesamtpflanzenexsudat) wurden per LC-MS von Raps untersucht, indem organische Säuren identifiziert wurden (Jaitz et al., 2011). In Arabidopsis wurden sekundäre Pflanzenstoffe detektiert, allerdings konnten nur nominale (d.h. keine hochauflösenden) Massensignale gezeigt werden. Es wurden weder Angaben zu Fragmentierungen gemacht, noch eine Strukturaufklärung durchgeführt, die zu einer Aufklärung der Identität der Substanzen führen konnten (Loyola-Vargas et al., 2007).

Ein ungerichtetes Metabolit-Profiling ist mit Hilfe der LC-MS schwierig, da die Strukturaufklärung kompliziert und zeitaufwendig ist. Dies ist einerseits auf die sehr große Anzahl der sekundären Pflanzenstoffe zurückzuführen, andererseits sind die öffentlich

zugänglichen Datenbanken nicht so umfassend wie die deutlich länger etablierten GC-MS Datenbanken. Demnach ist die Identifizierung von Substanzen für die GC-MS leichter. So wurde ein ungerichtetes Metaboliten-Profiling per GC-MS in gerösteten Haselnüssen und in Kaffeepulver durchgeführt (Cordero et al., 2010a; Cordero et al., 2010b). In Arabidopsis wurden "Wurzelexsudate" (sprich Gesamtpflanzenextrakte in hydroponischer Kultur) per GC-MS vermessen und einige Substanzen identifiziert (Badri et al., 2008; Steeghs et al., 2004).

Zusammenfassend wurden in dieser Arbeit erstmals die Exsudate von *A. thaliana* Wurzeln per LC-MS und GC-MS in einem *non-targeted metabolite profiling* analysiert. Weiterhin wurde versucht, die differentiellen Massensignale strukturell aufzuklären und wenn dies nicht möglich war, anhand der Fragmentierungsmuster zumindest nähere Aussagen zu der Zugehörigkeit zu einer Substanzklasse zu treffen.

Im Rahmen der Arbeit wurde das unter 3.3.1 beschriebene Experimentenset 1 (ESet 1) durchgeführt. Dabei wurden drei unabhängige Experimente realisiert, wobei pro Experiment drei Kästen pro Untersuchungsansatz gewählt wurden (biologische Replikate) und von jedem Kasten 48 Pflanzen gepoolt wurden. Demnach sind genügend Individuen untersucht worden. Der Pool von 48 Pflanzen ist mehr als ausreichend, kleine Unterschiede zwischen den Pflanzen bzw. ihren Wurzelexsudaten werden ausgeglichen. Es ist sinnvoll, dass man, um eine sehr große Anzahl von Messproben zu minimieren, die Pflanzen poolt, wenn die biologische Variabilität größer ist als die technische Variabilität (Kendziorski et al., 2005). So wurden beispielsweise für ein LC-MS Profiling 10 Pflanzen pro Messung gepoolt (von Roepenack-Lahaye et al., 2004).

Da jede Probe dreimal vermessen wurde (technische Replikate), konnten insgesamt 27 Messungen pro Untersuchungsansatz erreicht werden und mit den anderen Untersuchungsansätzen verglichen werden (z.B. Wurzeln At vs. Wurzeln AtPi).

Im Laufe der Arbeit wurde das gesamte Experimentenset im Rahmen einer Kooperation wiederholt (ESet 2). Die gewonnenen Daten wurden mit dem ersten Experimentenset verglichen und zusammengeführt, da die Annahme bestand, dass die Massensignale, die in beiden Experimentensets differentiell sind, wirklich divergent sind. Werden die beiden ESets verglichen, fällt die unterschiedliche Anzahl an (differentiellen) Massensignalen auf. So wurden z.B. bei den Blättern im positiven Modus im ESet 1 2400 und im ESet 2 3567 Gesamtmassensignale bzw. im Vergleich AtPi > At der Blätter 9 (ESet 1) und 57 (ESet 2) differentielle Massensignale gemessen. Diese unterschiedlichen Zahlen können einerseits dadurch zustande kommen, dass zwischen den zwei Experimentensets minimale Unterschiede in der Kultivierung aufgetreten sein könnten. Es wurde zwar versucht, die

Experimentensets identisch durchzuführen, jedoch kann nicht ausgeschlossen werden, dass z.B. das Licht, durch Abnutzung der Lampen, minimal (ca. 10 µmol · s^{-1.} m⁻²) stärker oder schwächer war. Außerdem wurden die gelben Kästen zwischen den beiden ESets ein Jahr für hydroponische Kulturen benutzt, so dass eventuell Weichmacher aus den Kästen beim ersten ESet noch zusätzlich in das Medium abgegeben wurden. Ein Effekt, den die Weichmacher auf die Pflanzen bzw. den Pilz hatten, kann nicht ausgeschlossen werden. Diese Unterschiede in der Kultivierung könnten einen Einfluss auf das Metabolitenmuster haben.

Massensignale wurden nur dann als differentiell eingestuft, wenn der *fold change* bei zwei oder höher lag, der p-value unter 0,05 war, das Signal eine Intensität von mindestens 1000 besaß und das Signal in 75 % der Messungen einer Gruppe vorkam. Erfüllte ein [m/z] eine der Anforderungen nicht, war es nicht differentiell. So konnte es vorkommen, dass ein Massensignal im ESet 1 die genannten Voraussetzungen erfüllte, aber im ESet 2 z.B. nur einen *fold change* von 1,8 besaß und deshalb nicht beachtet wurde. Auch kam es vor, dass in einem ESet der *fold change* höher als zwei war, der p-value aber über 0,05 und das Signal deshalb nicht als differentiell angesehen wurde, aber in dem anderen ESet durchaus differentiell war, da alle Anforderungen erfüllt waren. So wurde die Anzahl nach Zusammenführen der beiden ESets minimiert, da in beiden ESets die oben genannten Anforderungen erfüllt sein mussten.

4.5 Auswertung des Metaboliten-Profilings

Während der Auswertung des Metaboliten-Profilings wurde versucht, möglichst alle differentiellen Metaboliten zu identifizieren. Da die Strukturaufklärung der LC-MS Daten sehr schwierig ist, ist es kaum möglich, Strukturen aufzuklären, wenn nicht wenigstens die Substanzklasse bekannt ist (Böttcher et al., 2011). Da in dieser Arbeit ein ungerichteter Ansatz (*non targeted*) durchgeführt wurde, war über die Substanzklassen nur wenig bekannt. Mit der durchgeführten Methode konnten Sekundärmetaboliten der Klassen Flavonoide, Phenylpropanoide, Glucosinolate, Anthocyane, Indole, manche Fettsäuren und kleine Peptide gemessen werden. Für die Vergleiche AtPi > At Medium und At > m Medium, sowohl im positiven als auch negativen Messmodus, wurde mittels der MS/MS Fraktionierungen versucht, die Summenformeln zu bestimmen (siehe 7.2). Anschließend sollten per Datenbankrecherche Vorschläge für mögliche Substanzen erhalten werden, die wiederrum durch einen Abgleich mittels Standards hätten verifiziert werden können. Durch die MS/MS Fraktionierungen konnte für etwa 65 % der Massensignale des Vergleichs des Mediums

AtPi > At und ca. 45 % der Metaboliten des Vergleichs der At > m Eluate eine Summenformel bestimmt werden. Wurden diese Summenformeln in einer Datenbankrecherche (z.B. abgeglichen, bei www.chemspider.com) wurde pro Summenformel vielzählige Strukturformeln und damit Substanznamen (ca. 1000) vorgeschlagen. Diese Substanzen konnten jedoch aus Kosten- und Zeitgründen nicht alle einzeln überprüft und abgeglichen werden, so dass nur wenige Metaboliten per LC-MS identifiziert werden konnten (ca. 1% der differentiellen Substanzen).

Insgesamt gelang die Identifizierung von 28 Substanzen, wobei die Mehrzahl der Stoffe in den GC-MS Analysen detektiert wurde. Durch die Analyse der GC-MS Daten konnten etwa 33 % der differentiellen Metaboliten durch den Abgleich mit der Golm Metabolome Database (GMD) (Kopka et al., 2005; Schauer et al., 2005) identifiziert werden. Obwohl die Datenbank eine umfangreiche Substanzbibliothek bereitstellt, konnten viele der Metaboliten nicht identifiziert werden. Dies liegt einerseits daran, das auch in der GMD einige unbekannte Substanzen (sogenannte NAs) gelistet sind, die noch nicht identifizieret worden sind. Anderseits sind unter Umständen bisher unbekannte Stoffe während der Interaktion von *A. thaliana* mit *P. indica* produziert worden. Es wurden wohl auch viele pilzliche Metaboliten in die Medien sekretiert, in denen *P. indica* kultiviert wurde, die bisher nicht in einer Datenbank zu finden sind. Es ist anzustreben, die bisher unbekannten Substanzen zu identifizieren, damit eine genauere Analyse für die mutualistische Interaktion stattfinden kann.

Ein erster Schritt für einen tieferen Einblick in die mutualistische Interaktion bietet neben der Identifizierung der einzelnen Stoffe und der Abgleich mit Literatur über mögliche Funktionen in der Interaktion der Gewebevergleich. Für alle differentiellen Massensignale (positiver und negativer Messmodus) der LC-MS Analysen wurde ein "Gewebevergleich" erstellt, d.h. es wurde überprüft, ob das differentielle Massensignal in den Geweben (Blatt, Wurzel, Myzel) und in den einzelnen Medienvergleichen zu finden ist und ob es dort ebenfalls differentiell ist (siehe 7.1). Die Überprüfung erfolgte durch Retentionszeitvergleich und die Übereinstimmung der [m/z] (Nachkommastellen). Bei den GC-MS Analysen konnte nur bei den identifizierten Metaboliten ein Gewebevergleich vorgenommen werden, da bei den unbekannten Metabolitenclustern ein Vergleich nicht möglich war.

Durch den Gewebevergleich kann abgeschätzt werden, ob der differentielle Metabolit von der Pflanze, dem Pilz oder von beiden produziert und sekretiert worden ist. In der Diskussion ist bei den Literaturvergleichen der einzelnen Stoffe auch mit aufgeführt, in welchem Gewebe bzw. Medium diese Substanz ebenfalls detektiert wurde.

Ein Teilaspekt dieser Arbeit war es, wenn möglich, die wachstumsfördernden Stoffe zu identifizieren. Dafür wurden Fraktionen des Eluates gesammelt und in der LC-MS vermessen (siehe 3.3.5). Insgesamt konnten nur etwa 20 % der Massensignale, die in dem Gesamteluat AtPi > At differentiell waren, als differentielle Massensignale in den Fraktionen gefunden werden. Dies könnte dadurch zu Stande kommen, dass einzelne Massensignale die Kriterien (*fold change* \geq 2, *p*-value \leq 0,05, Auftreten des [*m*/*z*] in mindestens 75 % der Files einer Gruppe) nicht erfüllen konnten. Um diese Analyse weiter zu verfolgen, sollten die Versuche mit einer höheren Anzahl von Proben wiederholt werden, damit eine bessere statistische Auswertung gewährleistet werden kann. Dabei werden sicherlich auch mehr differentielle Massensignale denen der Gesamteluate entsprechen. Weiterhin sollten die einzelnen Fraktionen auch per GC-MS untersucht werden, um möglichst alle potentiell wachstumsfördernden Substanzen identifizieren zu können. Dabei kann sich vor allem auf die 60 % Fraktion konzentriert werden, da diese bei Zugabe zu *A. thaliana* eine Wachstumsförderung zeigte (siehe 3.2.5).

4.6 Metaboliten-Profiling

4.6.1 Metaboliten-Profiling der Blätter

Bei dem Vergleich der Blätter zwischen der Kontrolle (At) und den Blättern der mit P. indica co-kultivierten Pflanzen (AtPi) konnten sowohl in der LC-MS als auch in der GC-MS keine differentiellen Massensignale/Metaboliten identifiziert werden. Die durch P. indica stimulierte Wachstumsförderung wird in den Blättern beobachtet. Da sich das Metabolitenmuster nicht signifikant ändert, kann davon ausgegangen werden, dass über die Wurzel das Signal (z.B. Vorhandensein mehrerer Metaboliten, Signalkaskade auf Proteinebene nach Bindung einer oder mehrerer Substanzen an einen Rezeptor) an den oberirdischen Teil der Pflanze geleitet wird, welche mit der Produktion von mehr Biomasse reagiert. Dabei wird der Metabolitenhaushalt nicht verändert, es mag vielleicht eine höhere Konzentration an Stoffen vorhanden sein, die allerdings auf die Blattmasse bezogen nicht differentiell ist. Es ist natürlich auch möglich, dass eine minimale Änderung des Metabolitenlevels, z.B. ein fold change von 1,2 oder 1,5 ausreicht, um die Wachstumsförderung in den Blättern zu gewährleisten. Auf molekularbiologischer Ebene wurden bisher keine Gene publiziert, die sich während der Co-Kultivierung verändern. Ebenso wenig wurden bisher Metaboliten identifiziert, die in den Blättern nach Kolonisation von Pflanzen mit P. indica verändert wurden. Die bisher gefunden Gene und Metaboliten wurden alle in den Wurzeln identifiziert.

4.6.2 Metaboliten-Profiling der Wurzeln

Während der Co-Kultivierung mit *P. indica* wurden in den Wurzeln von *A. thaliana* etwa 12 in der LC-MS und sechs in der GC-MS detektierte Metaboliten reprimiert (At > AtPi). Dagegen wurden ca. 65 differentielle Metaboliten in den LC-MS und 13 in den GC-MS Analysen hochreguliert.

Im Folgenden werden die identifizierten Metaboliten genauer untersucht. In Abb. 4. 1 sind die Metaboliten, die per LC-MS und GC-MS identifiziert wurden, in die jeweiligen Stoffwechselwege von Arabidopsis eingeordnet. In den Kontrollwurzeln (At) war die Konzentration der Substanzen Pyroglutamat, Harnstoff und der proteinogenen Aminosäuren Serin und Asparagin gegenüber den co-kultivierten Wurzeln erhöht. Die Konzentrationen der Zucker Fructose, Trehalose und Glucose, sowie die Substanzen *myo*-Inositol und Milchsäure waren hingegen in den At Wurzeln erniedrigt.

Abb. 4. 1: Einordnung der identifizierten Metaboliten der Wurzeln in eine Übersicht der Stoffwechselwege in *Arabidopsis thaliana*. In blau sind die identifizierten Metaboliten hervorgehoben, die im Vergleich AtPi > At differentiell waren. In rot sind die Metaboliten des Vergleichs AtPi < At gekennzeichnet. Die Abbildung wurde mit Hilfe von KEGG erstellt.1 Glycanbiosynthese und -Metabolismus, 2 Lipid-Metabolismus, 3 Terpenoid und Polyketid-Metabolismus, 4 Xenobioticaabbau und -Metabolismus, 5 Kohlenhydrat-Metabolismus, 6 Aminosäuren-Metabolismus, 7 Energie-Metabolismus, 8 Nukleotid-Metabolismus, 9 Cofaktoren- und Vitamin-Metabolismus, 10 Biosynthese von weiteren Sekundärmetaboliten, 11 Metabolismus von weiteren Aminosäuren.

Der Gehalt an Pyroglutamat war in den AtPi Wurzeln erniedrigt. Pyroglutamat (pGlu, 5-Oxo-L-Prolin) ist eine nicht proteinogene, zyklische Aminosäure. Sie kann entweder enzymatisch als Intermediat von Stoffwechselwegen, wie bei dem ¥-Glutamylzyklus gebildet werden (Van der Werf und Meister, 1975) oder während der Proteinbiosynthese als Terminalaminosäure in Proteinen benutzt werden. Weiterhin kommt Pyroglutamat als freie Aminosäure in pflanzen vor. Sie spielt demnach eine wichtige Rolle im gesamten Metabolismus. Sowohl in den cokultivierten Wurzeln wie auch im co-kultivierten Myzel ist diese Aminosäure reduziert. Dies spricht für einen Verbrauch der Substanz.

Die Konzentration an den Aminosäuren Asparagin und Serin war in den AtPi Wurzeln erniedrigt. In der Literatur wurde beschrieben, dass der Totalaminosäuregehalt, dabei vor allem Asparagin in mit *P. indica* kolonisierten Gerstenwurzeln in den Wurzelspitzen und der Elongationszone reduziert war. Dies könnte daran liegen, dass die Aminosäuren an *P. indica* abgegeben werden. In dieser Untersuchung wurden auch die Konzentration an freien Zucker erniedrigt (Schafer et al., 2009a), wohingegen in dieser Arbeit die Zucker Glucose, Fructose und Trehalose verstärkt in den kolonisierten Wurzeln zu finden waren. Da die Untersuchungen zu unterschiedlichen Zeiten stattfanden (3 bzw. 7 Tage nach Start der Interaktion (Schafer et al., 2009a) und 14 Tage nach Initiierung der Interaktion), könnte am Anfang vermehrt Zucker verbraucht werden, wohingegen nach "Stabilisierung" der Interaktion die Zuckerkonzentration wieder steigt.

Trehalose (1-α-Glucopyranosyl-1-α-Glucopyranosid) ist ein Zweifachzucker, der von Pflanzen, Bakterien und Pilzen produziert werden kann (Elbein, 1974). Er spielt eine Rolle bei der Stressabwehr, wie Hitze – und Kältestress und damit einhergehendem Trockenstress, sowie als Energie- und Kohlenstoffquelle (Crowe et al., 1998; Crowe et al., 1984; Ribeiro et al., 1997; Wiemken, 1990). Trehalose wurde auch in Arabidopsis entdeckt (Vogel et al., 2001), allerdings sind die Konzentrationen kaum detektierbar (Leyman et al., 2001; Vogel et al., 2001). Gebildet wird Trehalose und Trehalose-6-phosphat in Arabidopsis von dem Enzym Trehalose-6-phosphat-Synthase (AtTPS1). Dieses Enzym und demnach Trehalose und Trehalose-6-phosphat spielen eine wichtige Rolle in der Regulation des Glucosemetabolismus und üben Einfluss auf Signalgene während der Pflanzenentwicklung aus (Avonce et al., 2005; Lunn et al., 2006). Trehalose wird von dem Enzym in zwei Glucosemoleküle gespalten (Muller et al., 2001), die dem Stoffwechsel anschließend zur Verfügung stehen.

Bei der Interaktion von Hülsenfrüchtlern, wie Sojabohnen und Medicago, mit Knöllchenbakterien akkumuliert Trehalose als Stabilisator bei Salz- und Osmosestress

(Brechenmacher et al., 2010; Lopez et al., 2008; Streeter und Gomez, 2006). In den Wurzelknöllchen von Hülsenfrüchten wurde eine erhöhte Konzentration des Disaccharids gefunden (Müller et al., 1994; Streeter, 1985), was darauf schließen lässt, dass Trehalose eine wichtige Rolle bei der Symbiose spielen könnte. So ist mindestens ein funktionierender Trehalose-Biosyntheseweg nötig, damit *S. meliloti* die Wurzeln der Luzerne besiedeln kann (Dominguez-Ferreras et al., 2009). Maispflanzen zeigen eine höhere Blatt- und Wurzelbiomasse, wenn sie mit dem Stickstofffixierenden Bakterium *A. brasilense* kolonisiert sind, dass hohe Level an Trehalose enthält (Rodriguez-Salazar et al., 2009).

Trehalose und Mannitol spielen eine große Rolle für die Vitalität bei Mykorrhizapilzen (Niederer et al., 1989). Einerseits steigt in Stresssituationen, wie bei Hitze, Kälte- oder osmotischem Stress die Konzentration an Trehalose in den mykorrhizierten Wurzeln an (Crowe, 2007; Lopez et al., 2007; Niederer et al., 1992; Pfeffer et al., 2004; Schellenbaum et al., 1999). Damit können Proteine und Membranen geschützt werden. Dies wird nötig, wenn die Pilze in in trockenen Gebieten beheimatet sind, wie z.B. P. indica. Andererseits ist Trehalose ein Transportzucker für Mykorrizapilze (Söderström et al., 1988). Während der Interaktion von Mykorrhizapilzen mit ihrem Wirt steigt die Konzentration von Trehalose an (Martin et al., 1988; Wallenda et al., 1996). Es wurde gezeigt, dass Aminosäuren und Zucker von den Mykorrhizapilzen aus den Wurzeln aufgenommen wurden (Govindarajulu et al., 2005; Pfeffer et al., 1999). Während der Interaktion von P. indica mit A. thaliana in hydroponischer Kultur ist die Konzentration von Trehalose, Glucose und Fructose in den cokultivierten Wurzeln höher als in den Kontrollwurzeln. Saccharose (1-α-D-Glucopyranosyl-2β-D-fructofuranosid), welche dem Medium zugegeben wurde, stellt den wichtigsten Transportzucker in Pflanzen dar. Wird Saccharose gespalten, steht ein Glucose- und ein Fructosemolekül zur Verfügung. Da Saccharose ca. 39-fach weniger in dem co-kultivierten Medium zu finden ist, kann davon ausgegangen werden, dass während der Co-Kultivierung Saccharose verstoffwechselt wurde. Da die Konzentration an Glucose und Fructose steigt, ist eine Spaltung von Saccharose wahrscheinlich. Glucose könnte anschließend in Trehalose (bestehend aus zwei Glucosemolekülen) umgewandelt worden sein. Da das Disaccharid eine Rolle bei der Interaktion von Rhizobakterien und Mykorrhizapilzen mit ihrem Wirt spielt, ist eine solche Funktion auch bei der Interaktion von P. indica mit A. thaliana wahrscheinlich. Mit P. indica kolonisierte Pflanzen zeigen ebenfalls eine erhöhte abiotische Stressresistenz (Baltruschat et al., 2008; Sherameti et al., 2008a; Waller et al., 2005). Auch ist bekannt, dass P. indica einen wachstumsfördernden Effekt auf Pflanzen besitzt (u.a. (Fakhro et al., 2009; Kaldorf et al., 2005; Kumar et al., 2011a; Kumar et al., 2011b; Sahay und Varma, 1999;

Singh et al., 2000). Trehalose könnte eine der Substanzen während der Interaktion sein, die für die erhöhte Stresstoleranz und für die Wachstumsförderung verantwortlich ist.

In den in dieser Arbeit durchgeführten Analysen wurde weniger Harnstoff in den Wurzeln nach Co-Kultivierung gefunden, jedoch in den Blättern zeigte sich kein Unterschied im Harnstofflevel. Harnstoff (auch Urea, Kohlensäurediamid) wird entweder aus dem Katabolismus von Arginin gebildet oder von der Wurzel aufgenommen. Harnstoff kann von Arabidopsis direkt über den DUR3-Transporter aufgenommen werden (Liu et al., 2003) oder in Form von Ammonium oder Nitrat, nachdem die Bodenmikroben den Harnstoff zersetzt haben. Wird Harnstoff direkt über die Wurzel aufgenommen, wird es durch die Urease in einer enzymatischen Hydrolyse in Ammoniak und Carbamat zersetzt (Blakeley et al., 1969). Harnstoff ist demnach ein Stickstofflieferant. Der in den AtPi Wurzeln vorhandene Harnstoff könnte vermehrt während der Co-Kultivierung mit *P. indica* als Stickstoffdonator genutzt worden sein und in den Blättern verstoffwechselt worden sein (vermehrte Bildung von Blattmaterial, Wachstumsförderung).

Das in den AtPi Wurzeln und in dem AtPi Myzel vermehrt gefundene myo-Insositol (Cyclohexan-cis-1,2,3,5-trans-4,6-hexol) ist ein sechswertiger zyklischer Alkohol, der für viele Stoffwechselwege essentiell ist (Brinch-Pedersen et al., 2006). So ist myo-Inositol z.B. ein Vorläufermetabolit für die Synthese verschiedener Zellwandpolymere (Loewus und Murthy, 2000). Weiterhin dient myo-Insositol als Träger für die aktivierte Galaktose, welche später in Saccharose umgewandelt wird (Kandler und Hopf, 1982). In Zellmembranen ist myo-Insositol die strukturelle Basis für Phospholipide und Glycosylphosphatidylinositol-Anker, die Glykoproteine an der Membran verankern (Lehle, 1990; Schultz et al., 1998). Inositoltrisphosphat (IP₃) spielt als second messenger bei der Signalübertragung in Zellen eine wichtige Rolle. IP₃ ist in der Lage, den Zellstoffwechsel zu beeinflussen, so bewirkt es Ca²⁺-Konzentration beispielsweise den Anstieg der innerhalb der Zelle. Inositolhexakisphosphat (IP₆) dient als Speicherform für myo-Inositol und Phosphat in Pflanzen (Raboy, 2003). IP₆ wird in der Vakuole gespeichert. Wird myo-Inositol für den Stoffwechsel gebraucht, entlässt der Transporter INT1 in Arabidopsis das gespeicherte myo-Inositol in das Cytoplamsa und stellt es so zur Verfügung (Schneider et al., 2008). Myo-Inositol wurde nach Co-Kultivierung vermehrt in den Wurzeln und im Myzel detektiert. Dies lässt darauf schließen, dass diese Substanz vermehrt für Stoffwechselvorgänge gebraucht wird. Myo-Inositol wurde dem Medium als Teil der Gamborg B5-Vitamine zugegeben und konnte somit in allen Medien detektiert werden, allerdings nicht als differentieller Metabolit. Da sich die Konzentration in den Medien nicht ändert, lässt sich darauf schließen, dass myoInositol nicht aus dem Medium aufgenommen wurde, sondern von *A. thaliana* und/oder *P. indica* produziert wurde. Entweder haben die beiden Organsimen durch die Co-Kultivierung den Impuls für die vermehrte Produktion von *myo*-Inositol erhalten, oder ein Organismus hat diese Substanz vermehrt produziert und an seinen Interaktionspartner abgegeben.

In den AtPi Wurzeln wurde eine erhöhte Konzentration an Milchsäure detektiert. Milchsäure (2-Hydroxypropansäure) kann von den Wurzeln als antimikrobielle Substanz ausgeschieden werden und so zur Verteidigung gegen Parasiten dienen. Protonierte Milchsäure wird in Arabidopsis von dem Transporter AtNIP2;1 transportiert, welcher vor allem in den Gefäßen der Wurzeln exprimiert wird. Das *AtNIP2;1* Gen wird vor allem bei Wurzelüberflutung und damit einhegendem Sauerstoffdefizit exprimiert (Choi und Roberts, 2007). Da die Wurzeln in dieser Arbeit in hydroponischer Kultur gehalten wurden und sich damit permanent im Medium befanden, könnte die erhöhte Produktion von Milchsäure in den Wurzeln durch Sauerstoffmangel induziert worden sein.

Während der Interaktion mit wachstumsstimulierenden Bakterien wird Milchsäure vermehrt in den Wurzeln gefunden. So wurde in den Wurzelhaaren der Sojabohne nach Kolonisierung dem stickstofffixierenden mit Bakterium *B. japonicum* ein erhöhtes Level an 2-Hydroxypropansäure detektiert (Brechenmacher et al., 2010). Nach Besiedlung mit Knöllchenbakterien wurde in den Wurzelknöllchen der Luzerne mehr Milchsäure akkumuliert als in den Wurzeln und die Konzentration an 2-Hydroxypropansäure steigt in den Wurzelknöllchen, wenn die Pflanze unter Salzstress steht (Barsch et al., 2006; Swaraj und Bishnoi, 1999). Weiterhin wurde gezeigt, dass Polymere der Milchsäure einen wachstumsfördernden Effekt bei Mais und Sojabohne haben (Chang et al., 1996; Kinnersley et al., 1990). Wenn eine Pflanze mit P. indica co-kultiviert wird steigt die Toleranz gegen Salz- und Trockenstress (Baltruschat et al., 2008; Sherameti et al., 2008a; Waller et al., 2005). Weiterhin wurde ein wachstumsfördernder Effekt bei Pflanzen nachgewiesen, die mit P. indica kultiviert wurden (Fakhro et al., 2009; Kaldorf et al., 2005; Kumar et al., 2011a; Kumar et al., 2011b; Sahay und Varma, 1999; Singh et al., 2000). Milchsäure könnte eine Substanz sein, die für die erhöhte Salztoleranz und für die Wachstumsförderung verantwortlich ist.

Anhand der Gene und Proteine, die in die Interaktion von *A. thaliana* und P. *indica* involviert sind, kann unter Umständen mit den Metaboliten, die in dieser Arbeit identifiziert wurden, eine Signalkaskade erstellt werden. Deshalb wurden die publizierten Gene und Proteine, die

während der Interaktion differentiell waren, auf Gemeinsamkeiten mit den identifizierten Metaboliten untersucht.

In der Literatur wurden die Wurzeln nach Co-Kultivierung auf genetischer Ebene intensiv erforscht. Es wurden zum Beispiel die Transkriptlevel von Abwehrgenen während der Interaktion untersucht. So wurden die Gene PR-1, PR-2, PR-3, PR-4 nach Co-Kultivierung mit P. indica reprimiert. Dagegen wurden PDF1.2, PDF2.3 und PDF 2.1 vermehrt exprimiert (Knecht et al., 2010). In einer anderen Untersuchung wurden während der Interaktion von A. thaliana mit P. indica die Abwehrgene PR2, PAL2 und ERF1 exprimiert, wohingegen PR3, PDF1.2 reprimiert wurden (Camehl et al., 2011). Weiterhin wurden die vorher untersuchten Gene Pr-1, PR-2, PR-3, PR-4, PDF1.2, ERF1, GapC während der Co-Kultivierung von A. thaliana mit P. indica untersucht, es wurden jedoch keine Unterschiede im Expressionslevel gefunden (Camehl und Oelmuller, 2010). Die divergenten Aussagen (so wird das Gen PDF1.2 je nach Publikation vermehrt bzw. vermindert exprimiert oder ändert das Expressionslevel nicht) könnten auf unterschiedliche Ausführungen im Experimentdesign oder der Kultivierungszeitpunkte zurückzuführen sein. Es kann jedoch mit diesen Daten keine allgemein gültige Aussage getroffen werden.

Es wurde außerdem gezeigt, dass das Abwehrgen *PYK10* (eine Wurzel- und Hypokotylspezifische β-Glucosidase/Myrosinase) für die Wurzelkolonisierung von *A. thaliana* wichtig ist (Sherameti et al., 2008b). Weiterhin wurden Ethylen-abhängige Gene während der Kultivierung von *A. thaliana* und *P. indica* untersucht, dabei wurden drei Gene reprimiert und die folgenden sechs Gene vermehrt exprimiert: 2-Nitropropan Dioxygenase (At5g64250), Homeodomain Transcription Faktor (At2g35940), Nitratreductase 2 (At1g37130), Uclacyanin Protein (STELLA, At3g60270); Germin Type 2 (At5g38910) und Calmodulin-bindendes Protein (At5g26920) (Camehl et al., 2010). Diese Ethylensignalkomponenten und Ethylen-abhängige Transkriptionsfaktoren sind für die Balance zwischen einer vorteilhaften und einer unvorteilhaften Symbiose essentiell (Camehl und Oelmuller, 2010; Camehl et al., 2010). Das Hormon Ethylen ist jedoch für die von *P. indica* induzierte Resistenz nicht wichtig (Molitor und Kogel, 2009).

In einer weiteren Untersuchung zur Interaktion von Arabidopsis mit *P. indica* wurden die Gene für das *LRR1* Protein (*leucine-rich repeat* Protein), für die *NPDO* (2-Nitropropandioxygenase), MIOX (für ein Enzym das in die Ascorbat-Biosynthese involviert ist), *CIPK13* (für einen Ca²⁺ Sensor) und *GLR2.5* (Ca²⁺ Signaltransduktionsgen) vermehrt exprimiert (Vadassery et al., 2009a).

Auf Proteinlevel wurde eine Rezeptor Kinase vermehrt nach Co-Kultiverung in den Wurzeln von *A. thaliana* gefunden (Shahollari et al., 2005). Die Wachstumsförderung wird von einer Co-Regulierung von Enzymen in der Wurzel, die in den Nitrat- und Stärkemetabolismus der Pflanze involviert sind, begleitet (Sherameti et al., 2005). *Piriformospora indica* induziert eine erhöhte Trockenstresstoleranz, dies wird u.a. durch die Stimulierung der Expression von trockenstressrelevanten Genen und Enzymen mit antioxidanten Eigenschaften erreicht (Baltruschat et al., 2008; Sherameti et al., 2008a; Sun et al., 2010). Anhand der in dieser Arbeit identifizierten Metaboliten kann keine Verbindung zu den Genen hergestellt werden, die in der Interaktion involviert sind.

Es wurden in der Literatur auch der Einfluss verschiedener Hormone während der Interaktion von *A. thaliana* und *P. indica* in den Wurzeln untersucht (siehe Einleitung 1.4). In dieser Arbeit konnten keine Hormone gefunden werden, deren Konzentrationen sich in den At Wurzeln von den AtPi Wurzeln unterschied.

In *P. indica*-behandelten Wurzeln wurde ein erhöhter Ascorbatlevel gefunden (Baltruschat et al., 2008; Vadassery et al., 2009b; Waller et al., 2005), dieses Antioxidans ist ein wichtiger Radikalfänger. In dieser Abreit konnte jedoch kein differentieller Ascorbatlevel detektiert werden.

4.6.3 Metaboliten-Profiling des Myzels

In dem Metaboliten-Profiling des Myzels von *P. indica* wurden sechs differentielle Metaboliten in der LC-MS und vier alternierende Substanzen in der GC-MS identifiziert, deren Konzentration in den co-kultivierten Myzel erhöht war (AtPi > Pi). Dagegen konnten neun Metaboliten in der LC-MS und sieben Stoffe in der GC-MS detektiert werden, deren Konzentration in dem Myzel ohne Pflanzeneinwirkung höher war (AtPi < Pi). Im Allgemeinen wird die Konzentration von sehr wenigen Substanzen im Myzel während der Co-Kultivierung verändert. Dies deutet darauf hin, dass Substanzen, die von *P. indica* zur Interaktion mit *A. thaliana* beitragen entweder in das Medium abgegeben wurden oder direkt an die Wurzeln weitergereicht wurden. Stoffe die *P. indica* aufnimmt, werden wahrscheinlich verstoffwechselt oder sind in so geringen Konzentrationen vorhanden, dass der Unterschied zwischen den Behandlungen mit und ohne Pflanze nur bei wenigen Metaboliten zu detektieren ist.

In Abb. 4. 2 sind die differentiellen Metaboliten, die in den LC-MS und GC-MS Analysen identifiziert worden sind, in die entsprechenden Stoffwechselwege eingeordnet. Im co-

kultivierten Myzel ist myo-Inositol vermehrt detektiert worden. Die Konzentration der Substanzen Pyroglutamat, Ornithin, Alanin und Serin sind im Pi Myzel erhöht.

Abb. 4. 2: Einordnung der identifizierten Metaboliten des Myzels in eine allgemeine Übersicht der Stoffwechselwege. In blau sind die identifizierten Metaboliten hervorgehoben, die im Vergleich AtPi > Pi differentiell waren. In rot sind die Metaboliten des Vergleichs AtPi < Pi gekennzeichnet. Die Abbildung wurde mit Hilfe von KEGG erstellt.1 Glycanbiosynthese und -Metabolismus, 2 Lipid-Metabolismus, 3 Terpenoid und Polyketid-Metabolismus, 4 Xenobioticaabbau und -Metabolismus, 5 Kohlenhydrat-Metabolismus, 6 Aminosäuren-Metabolismus, 7 Energie-Metabolismus, 8 Nukleotid-Metabolismus, 9 Cofaktoren- und Vitamin-Metabolismus, 10 Biosynthese von weiteren Sekundärmetaboliten, 11 Metabolismus von weiteren Aminosäuren.

In der Literatur konnte bisher nur im Kulturfiltrat und Myzel von *P. indica* Benzoesäure und dessen Analoge per HPLC Analyse detektiert werden (Varma et al., 2001). In dieser Arbeit wurden Benzoesäure und dessen Analoge nicht als differentielle Metaboliten im Myzel von *P. indica* gefunden.

In dem co-kultivierten Myzel wurde vermehrt *myo*-Inositol gefunden. Diese Substanz ist für verschiedene Stoffwechselvorgänge, z.B. für den Aufbau von Zellmembranen wichtig (siehe Abschnitt 4.6.2 Metaboliten-Profiling der Wurzeln). Dieser Stoff wird sowohl in den Wurzeln als auch im Myzel vermehrt während der Co-Kultivierung gefunden. Im Myzel könnte *myo*-Inositol ebenso in verschiedene Stoffwechselvorgänge involviert sein (siehe Abschnitt 4.6.2 Metaboliten-Profiling der Wurzeln).

Die Konzentrationen der Aminosäuren Serin, Alanin, Ornithin und Pyroglutamat sind in dem co-kultiviertem Myzel niedriger als in dem Kontrollmyzel. Dies lässt darauf schließen, dass während der Co-Kultivierung eine höhere Stoffwechselaktivität zu verzeichnen ist, in der die Aminosäuren involviert sind. Ornithin ist eine nicht proteinogene Aminosäure, die als Ausgangsstoff für Polyamine dient, welche für die Interaktion von Mykorrhizapilzen mit ihrem Wirt eine Rolle spielen (Niemi et al., 2006). Alanin kann als Stickstoffreserve in ruhenden Sporen von Pilzen dienen (Gachomo et al., 2009). Da *P. indica* Sporen bildet und diese vielleicht während der Interaktion vermehrt keimen, um neue Wurzeln zu besiedeln, könnte Alanin als Stickstofflieferant verbraucht werden, weshalb die Konzentration in dem co-kultivierten Myzel sinkt.

4.6.4 Metaboliten-Profiling des Mediums At vs m

Bei der Untersuchung des Pflanzenmediums konnten 94 Metaboliten in der LC-MS und drei Substanzen in der GC-MS detektiert werden, die in das Medium sekretiert wurden. Dagegen wurden 16 Metaboliten in der LC-MS gefunden, die von der Pflanze aufgenommen bzw. verstoffwechselt wurden. Dies zeigt, dass vor allem Sekundärmetaboliten von *A. thaliana* in das Medium sekretiert wurden.

Von den Substanzen, die in das Medium sekretiert wurden, konnten 2-Desoxyadenosin und ein Glycero-Phosphatidylcholin mit der Summenformel C₁₇H₃₄NO₉P detektiert werden.

2-Desoxyadenosin ist einer der vier Nukleosidbausteine, aus denen die DNA aufgebaut ist. Es ist daher essentiell für alle Lebewesen. Es wird von *A. thaliana* in das Medium sekretiert, während der Co-Kultivierung nimmt die Konzentration ab. Vielleicht wird 2-Desoxyadenosin während der Interaktion vermehrt aus dem Medium aufgenommen und in neu synthetisierte DNA eingebaut. In Tabelle 3.4 wurde gezeigt, dass die Wachstumsförderung durch vermehrte Zellproduktion zustande kam. Dafür wird auch neu synthetisierte DNA benötigt. Warum die drei anderen DNA-Bausteine in dieser Analyse nicht differentiell waren, bleibt zu klären.

Lyso-Phosphatidylcholine sind hoch mobile Lysolipide, die in Pflanzen an einer Vielzahl von zellulären Prozessen beteiligt sind, wie die Ansäuerung des Cytoplasmas und damit einhergehender extrazellulärer Alkalisierung und dadurch zur Änderung der Genexpression (Meijer und Munnik, 2003; Zhao et al., 2005). Phosphatidylcholine werden durch die Phospholipase A2 hydrolysiert, es entstehen Lyso-Phosphatidylcholine. Diese wurden sowohl als mögliche Signale in der Abwehrantwort (Narvaez-Vasquez et al., 1999), als auch

als Signalkomponenten bei der Kolonisation mit Pathogenen oder symbiotischen Pilzen, inklusive Mykorrhizapilzen gefunden (Drissner et al., 2007; Guimil et al., 2005). Das in dieser Arbeit identifizierte Glycero-Phosphatidylcholin wurde jedoch noch nicht in der Literatur beschrieben. Demnach bleibt seine Funktion unklar. Das Glycero-Phosphatidylcholin wurde in den Blättern und in den Medien detektiert, allerdings ist die Konzentration nicht signifikant verändert. Außer in dem At > m Vergleich ist die Konzentration bei dem Medium AtPi > Pi um etwa das Dreifache erhöht. Dieser Stoff scheint also vermehrt von *A. thaliana* sekretiert zu werden. Möglicherweise dient es als "Lockstoff" für symbiotische Pilze, damit eine mutualistische Interaktion eingegangen werden kann. Um die genaue Funktion dieses Stoffes zu untersuchen, müsste zuerst die Struktur aufgeklärt werden.

4.6.5 Metaboliten-Profiling des Mediums Pi vs m

Im Vergleich des Pilzmediums mit dem Kontrollmedium konnten 33 Metaboliten in der LC-MS und 17 Substanzen in der GC-MS ermittelt werden, deren Konzentration im Pilzmedium erhöht ist (Pi > m). Dagegen sind 53 Metaboliten in der LC-MS und ein Stoff in der GC-MS identifiziert worden, deren Konzentration in dem Pilzmedium erniedrigt ist (Pi < m).

In Abb. 4. 3 sind die differentiellen Metaboliten, die per LC-MS und GC-MS identifiziert wurden, in ihre jeweiligen Stoffwechselwege eingeordnet. Alle identifizierten Stoffe sind im Pilzmedium verstärkt zu finden, dazu zählen die Säuren 3,5-Dimethylbenzoesäure, Benzoesäure, 1-(4-Hydroxy-3-methoxyphenyl)-1,2,3-Propantriol, 4-Hydroxybenzoesäure, Adipinsäure, Milchsäure, Nicotinsäure, 2-Furansäure und die Zucker Fructose und Glucose.

Abb. 4. 3: Einordnung der identifizierten Metaboliten des Mediums Pi vs. m in eine allgemeine Übersicht der Stoffwechselwege. In blau sind die identifizierten Metaboliten hervorgehoben, die im Vergleich Pi > m differentiell waren. In der Abbildung konnten die Substanzen 3,5-Dimethylbenzoesäure, 1-(4-Hydroxy-3-methoxyphenyl)-1,2,3-Propanetriol und 2-Furansäure (alle Pi > m) nicht integriert werden. Die Abbildung wurde mit Hilfe von KEGG erstellt.1 Glycanbiosynthese und -Metabolismus, 2 Lipid-Metabolismus, 3 Terpenoid und Polyketid-Metabolismus, 4 Xenobioticaabbau und -Metabolismus, 5 Kohlenhydrat-Metabolismus, 6 Aminosäuren-Metabolismus, 7 Energie-Metabolismus, 8 Nukleotid-Metabolismus, 9 Cofaktoren- und Vitamin-Metabolismus, 10 Biosynthese von weiteren Sekundärmetaboliten, 11 Metabolismus von weiteren Aminosäuren.

Im Kulturfiltrat und Myzel von *P. indica* konnte Benzoesäure und dessen Analoge per HPLC Analyse detektiert werden. Diese Substanzen hatten jedoch keinen Einfluss auf die Wachstumsförderung in Mais, Reis und Gerste (Varma et al., 2001). In dieser Arbeit wurden Benzoesäure und dessen Analoge 4-Hydroxybenzoesäure und 3,5-Dimethylbenzoesäure als differentielle Metaboliten im *P. indica* Medium gefunden. Diese Substanzen können als antimikrobielle Stoffe dienen, so soll Benzoesäure die Membrandurchlässigkeit der Mikroben beeinflussen (Holyoak et al., 1999). Da die Kultivierung mit *P. indica* die Pflanzen resistenter gegenüber Wurzelparasiten, wie Fusarium, macht (Kumar et al., 2009; Rai et al., 2004; Sarma et al., 2011; Serfling et al., 2007), könnte *P. indica* Benzoesäure und dessen Derivate für diesen Zweck nutzten.

Weiterhin wurden die Zucker Glucose und Fructose vermehrt in dem Pi Medium detektiert. Dies könnte auf eine Spaltung der im Medium befindlichen Saccharose durch *P. indica* zurück zu führen sein. Diese Zucker könnten von *P. indica* aufgenommen und anschließend für das Wachstum des Pilzes bzw. für dessen Stoffwechselwege benutzt worden sein.

1-(4-Hydroxy-3-methoxyphenyl)-1,2,3-Propantriol, auch Guaiacylglycerol genannt, ist ein Produkt der Ligninspaltung in Weichholz (Adler et al., 1957; Nord, 1954; Otsuka et al., 2003). Es wurde vermutet, dass Guaiacylglycerol aus der Spaltung von Lignin nach Pilzbefall entsteht (Ishikawa et al., 1963). Dafür spaltet das pilzliche Beta-Aryl Ether Spaltungsenzym Guaiacylglycerol-Beta-O-Guaiacylether in Guaiacylglycerol und Guaiacol (Otsuka et al., 2003). 1-(4-Hydroxy-3-methoxyphenyl)-1,2,3-Propantriol wurde in allen Medien detektiert, allerdings ist es nur vermehrt im Pilzmedium zu finden. Wahrscheinlich besitzt dieser Metabolit eine bisher unbekannte Funktion während der Interaktion.

Adipinsäure (Hexandisäure) ist eine Dicarbonsäure, deren Derivate, wie Adipinsäuremonoethylester eine fungizide Wirkung auf Botrytis cinerea haben (Flors et al., 2004; Vicedo et al., 2006). Die fungizide Wirkung beruht zum Teil auf der zytoplasmatischen Ansäuerung, die wichtige metabolische Funktionen inhibieren (Pearce et al., 2001). Adipinsäure wurde sowohl in dem *P. indica* Medium und in dem co-kultivierten Medium (AtPi) vermehrt gefunden. In den Geweben ist diese Substanz nicht detektiert wurden. Da die Kultivierung mit *P. indica* die Pflanzen resistenter gegenüber Wurzelparasiten, wie Fusarium, macht (Kumar et al., 2009; Rahnamaeian et al., 2009; Rai et al., 2004; Sarma et al., 2011; Serfling et al., 2007), könnte *P. indica* Adipinsäure und deren Derivate als Fungizid nutzten.

Furansäure (2-Furan-Carboxylsäure) kann von Bodenbakterien als Kohlenstoffquelle genutzt werden, und diese bilden vermehrt die Aminosäure L-Glutaminsäure (Kakinuma und Yamatodani, 1964). Bei dem Bakterium *Vibrio* stimuliert Furansäure dessen Wachstum (Evans und Venables, 1990). Weiterhin wurde Furansäure in einem marinen Pilz gefunden, hat aber keine antimikrobiellen Eigenschaften (Abdel-Lateff et al., 2009). Bisher konnte der Säure keine Funktion zugewiesen werden. Furansäure wurde sowohl in dem *P. indica* Medium und in dem co-kultivierten Medium (AtPi) vermehrt detektiert. In den Geweben wurde dieser Stoff nicht gefunden.

Nicotinsäure (Pyridin-3-Carbonsäure, Vitamin B₃) ist in den Stoffwechsel bzw. als NAD/NADP in Redoxreaktionen involviert. Bei manchen Bakterien steigert Nicotinsäure das Wachstum (Greenstein et al., 2011). Es wurde gezeigt, dass B-Vitamine, wie Nicotinsäure, essentiell für Mykorrhizapilze sind und dass sie diese selbst produzieren können (Slankis, 1973; Strzelczyk und Rozycki, 1985). Da Nicotinsäure essentiell für den Stoffwechsel von *A. thaliana* als auch für *P. indica* ist, wurde diese Substanz in allen Geweben und Medien

119

detektiert. In den LC-MS Messungen konnte Nicotinsäure nur in dem Vergleich des Mediums AtPi > At als differentieller Metabolit gefunden werden, in den GC-MS Messungen noch zusätzlich in dem Vergleich des Mediums Pi > m. Eine vermehrte Sekretion des B₃ Vitamins lässt auf einen erhöhten Stoffwechsel schließen, wofür Nicotinsäure gebraucht wird.

Die möglichen Funktionen von Milchsäure wurden bereits im Abschnitt 4.6.2 (Metaboliten-Profiling der Wurzeln) diskutiert.

4.6.6 Metaboliten-Profiling des Mediums AtPi vs At

Während der Co-Kultivierung mit *P. indica* wurde in dem Medium von *A. thaliana* die Konzentration von etwa 23 in der LC-MS und fünf in der GC-MS detektierte Metaboliten verringert (At > AtPi). Dagegen war bei ca. 84 Metaboliten in den LC-MS und 22 in den GC-MS Analysen die Konzentration in dem co-kutliviertem Medium höher (AtPi > At).

In Abb. 4. 4 sind die differentiellen Metaboliten, die via LC-MS und GC-MS identifiziert wurden, in ihre jeweiligen Stoffwechselwege eingeordnet. Die Stoffe Saccharose und 2-Deoxyadenosin wurden vermehrt im Kontrollmedium (At) gefunden. Die Konzentration der Säuren Nicotinsäure, Pantothensäure, Adipinsäure, Milchsäure, 4-Hydroxybenzoesäure, Bernsteinsäure, 3-Phenylmilchsäure, 3,5-Dimethylbenzoesäure und 2-Furansäure, sowie von Leu-Leu und Fructose sind in den co-kultivierten Medium (AtPi) gegenüber dem At Medium erhöht.

Abb. 4. 4: Einordnung der identifizierten Metaboliten des Vergleichs des Mediums AtPi vs At in eine allgemeine Übersicht der Stoffwechselwege. In blau sind die identifizierten Metaboliten hervorgehoben, die im Vergleich AtPi > At differentiell waren. In rot sind die Metaboliten des Vergleichs AtPi < At gekennzeichnet. Die Metaboliten 3,5-Dimethylbenzoesäure, Leu-Leu und 2-Furansäure (alle AtPi > At) konnten nicht in die Abbildung integriert werden. Die Abbildung wurde mit Hilfe von KEGG erstellt.1 Glycanbiosynthese und -Metabolismus, 2 Lipid-Metabolismus, 3 Terpenoid und Polyketid-Metabolismus, 4 Xenobioticaabbau und -Metabolismus, 5 Kohlenhydrat-Metabolismus, 6 Aminosäuren-Metabolismus, 7 Energie-Metabolismus, 8 Nukleotid-Metabolismus, 9 Cofaktoren- und Vitamin-Metabolismus, 10 Biosynthese von weiteren Sekundärmetaboliten, 11 Metabolismus von weiteren Aminosäuren.

Zu den identifizierten Substanzen, deren Konzentration in dem co-kultivierten Medium reduziert ist (AtPi < At), gehören Saccharose und 2-Desoxyadenosin.

Saccharose ist dem Medium zugesetzt worden und während der Aufarbeitung des Mediums wurde versucht, die Zucker aus dem Medium zu entfernen. Deshalb ist die Detektion von Saccharose als differentieller Metabolit fragwürdig. Auf der anderen Seite beträgt der *fold change* 39, der höchste Unterschied bei den GC-MS Messungen. Wenn man davon ausgeht, dass die Festphasensäule einen bestimmten Prozentsatz an Zuckern bindet und der (überschüssige) Zucker, der während der Prozedur der Aufkonzentrierung des Medium entfernt werden soll, auch im Durchfluss bzw. der Waschfaktion landet, dann könnte in dem Medium, in dem viel mehr Saccharose enthalten ist auch mehr Zucker an der Säule binden. Wenn der *fold change* von 39 die reale Abnahme von Saccharose aus dem AtPi Medium

wiedergibt, dann könnte die Saccharose einerseits aufgenommen und in ihre Bestandteile Fructose und Glucose zerlegt worden sein (Konzentration von beiden in den AtPi Wurzeln erhöht) oder direkt im Medium gespalten worden sein (Konzentration von Fructose auch im AtPi Medium erhöht). Die möglichen Funktionen der Zucker sind im Abschnitt 4.6.2 (Metaboliten-Profiling der Wurzeln) beschrieben.

2-Desoxyadenosin ist einer der vier Nukleosidbausteine, aus denen die DNA aufgebaut ist. Es wird von *A. thaliana* in das Medium sekretiert (At > m), während der Co-Kultivierung nimmt die Konzentration ab (AtPi < At). Vielleicht wird 2-Desoxyadenosin während der Interaktion von *P. indica* und *A. thaliana* vermehrt aus dem Medium aufgenommen und in neu synthesierte DNA eingebaut.

Von den identifizierten differentiellen Substanzen, deren Konzentration im co-kultivierten Medium erhöht ist, wurden bereits einige Stoffe in vorherigen Abschnitten diskutiert.

Die als fungizid wirkende Adipinsäure wurde sowohl in dem co-kultivierten Medium als auch im Pilzmedium vermehrt detektiert (Abschnitt 4.6.5 Metaboliten-Profiling des Mediums Pi vs m). Ebenso wurden die Konzentrationen an Benzoesäure und deren Derivate, die eine antimikrobielle Wirkung haben, in dem Pilzmedium gesteigert. Die Konzentration an Milchsäure ist ebenfalls in dem AtPi Medium erhöht. 2-Furansäure ist sowohl im Pilzmedium als auch im co-kultivierten Medium vermehrt zu finden. All diese Stoffe scheinen während der Co-Kultivierung von *A. thaliana* und *P. indica* vor allem vom Endophyten in das Medium sekretiert zu werden.

Die in dem Abschnitt 4.6.5 (Metaboliten-Profiling des Mediums Pi vs m) behandelte Nicotinsäure ist auch als differentieller Metabolit in dem Vergleich des Mediums AtPi > At detektiert worden. Nicotinsäure wird in A. thaliana von einer N-Methyltransferase in Trigonellin (1-N-Methylnicotinsäure) umgewandelt (Katoh und Hashimoto, 2004). Trigonellin ist in der Regulierung des Zellzyklus, von verschiedene Stressfaktoren und in der Nodulierung beteiligt (Minorsky, 2002). Weiterhin kann Nicotinsäure auch in Nicotinsäure-1N-Glucosid (Na-Glc) umgewandelt werden. Na-Glc stellt das Hauptkonjugat von Nicotinsäure in A. thaliana dar (Matsui et al., 2007). Trigonellin kann durch eine Nicotinamidase in A. thaliana weiter in Nicotinamidadenindinukleotid (NAD) und Nicotinamidadenindinukleotidphosphat (NADP) umgewandelt werden (Matsui et al., 2007; Wang und Pichersky, 2007). Diese Coenzyme spielen im Stoffwechsel eine wichtige Rolle, sie sind z. B. am Citratzyklus und Redoxreaktionen beteiligt und essentiell für die Regeneration von DNA. Weiterhin wurde gezeigt, dass zyklische ADP-Ribose (cADPR) und

Nicotinsäureadenindinukleotidphosphat (NAADP) Regulatoren des Ca²⁺⁻ Singalweges sind und damit die Zellfunktion beeinflussen (Guse, 2002). Nicotinsäure kann verschiedene Abwehrantworten in Pflanzen auslösen und steigert die Salztoleranz in Salix (Ohlsson et al., 2008). Damit könnte Vitamin B₃ ein Metabolit sein, der für die beschriebene Salztoleranz nach *P. indica* Kultivierung (Baltruschat et al., 2008; Sherameti et al., 2008a; Waller et al., 2005) mitverantwortlich ist.

Milchsäure wurde im Abschnitt 4.6.2 (Metaboliten-Profiling der Wurzeln) behandelt. Sie wurde im Zusammenhang für die erhöhte Stresstoleranz beschrieben und ihre Polymere haben einen wachstumsfördernden Effekt. In der Literatur wurde beschrieben, dass Milchsäure in den Wurzelexsudaten von Tabak und Sonnenblumen zu finden ist (Chiang et al., 2006). Milchsäure wurde vermehrt in den AtPi Wurzeln gefunden und in das co-kultiviertem Medium sekretiert, da sowohl Milchsäure (2-Hydroxypropansäure) als auch ihr Derivat 2-Hydroxy-3-Phenylpropansäure detektiert wurden. Für dieses wurde eine allelopathische (Schilling et al., 1986) und fungizide Wirkung (Ryan et al., 2008) beschrieben. 2-Hydroxy-3-Phenylpropansäure wurde nur während der Co-Kultivierung sekretiert. Milchsäure und 2-Hydroxy-3-Phenylpropansäure Stoffe könnten für die erhöhte Pathogenresistenz (Fakhro et al., 2009; Jacobs et al., 2011; Stein et al., 2008; Vadassery und Oelmuller, 2009) der Pflanzen nach Interaktion mit *P. indica* beteiligt sein.

Bernsteinsäure (Butandisäure) ist eine aliphatische Dicarbonsäure, die bei vielen Pflanzen, wie Weizen, Tomate, Tabak, Baumwolle oder Medicago, als Wurzelexsudat beschrieben wurde (Chiang et al., 2006; Henry et al., 2007; Kamilova et al., 2006; Kumar et al., 2007; Lipton et al., 1987). Sie könnte als Metallchelator fungieren, da Dicarbonsäuren vermehrt von Pflanzen ausgeschieden werden, die mit hohen Metallkonzentrationen leben müssen (Meier et al., 2011; Pirenos et al., 2002). Weiterhin sind organische Säuren essentiell für die Besiedlung mit Rhizobakterien bei der Tomate, da die Bakterien die organischen Säuren verwerten (Chin et al., 2000; Lugtenberg et al., 2001). *A. thaliana* könnte Bernsteinsäure in das Medium sekretieren, damit *P. indica* diese organische Säure aufnehmen und verstoffwechseln kann.

Pantothensäure ((R)-N-(2,4-Dihydroxy-3,3-dimethyl-1-oxobutyl)-b-Alanine) ist auch als Vitamin B5 bekannt. Es ist das Vorläufermolekül vom Coenzym A und des Acylgruppenüberträgers, welche in vielen energieerzeugenden Reaktionen und für einige Enzyme essentiell sind (Tahiliani und Beinlich, 1991). Das Coenzym A spielt eine wichtige Rolle bei vielen Stoffwechselwegen, wie beispielsweise dem Citratzyklus oder bei der

123

Synthese von vielen Sekundärmetaboliten, wie zum Beispiel Lignin. Pantothensäure kann von Bakterien, Pilzen und Pflanzen, aber nicht von Tieren produziert werden (Smith und Song, 1996; Strzelczyk und Rozycki, 1985). Sie ist für das Wachstum von verschiedenen Organismen essentiell, wie für Hefe oder Pflanzen (Mueller und Klotz, 1938; Sahi et al., 1988; Williams et al., 1933). Das Rhizosphärenbakterium Pseudomonas fluorescens, welches eine hohe Menge an Biotin und Pantothensäure produziert, hat einen wachstumsfördernden Effekt auf Maispflanzen (Hussain und Vancura, 1970). Mutanten des Bakteriums, die in der Pantothensäurebiosynthese gestört sind, können die Zuckerrübe nicht mehr kolonisieren (Rainey, 1999). Die Konzentration an Pantothensäure ist in dem cokultivierten Medium erhöht. Im Myzel ist Pantothensäure nicht zu detektieren. Es ist möglich, dass P. indica die produzierte Pantothensäure in das Medium sekretiert. Dies deutet darauf hin, dass Vitamin B₅ für die Interaktion zwischen A. thaliana und P. indica wichtig sein könnte. Deshalb wurde Pantothensäure jeweils zu A. thaliana und P. indica gegeben, um zu untersuchen, ob Vitamin B₅ einen wachstumsfördernden Effekt bei diesen Organismen besitzt (siehe Abschnitt 3.5.1). In dieser Arbeit wurden verschiedene Konzentrationen an Pantothensäure zu den Pflanzen gegeben. Aber weder im nM noch im µM Zugabe Konzentrationsbereich konnte die zu Α. thaliana einen signifikanten wachstumsfördernden Effekt erzielen. Wurde Pantothensäure zu P. indica Myzel gegeben, konnte bei der Zugabe einer sehr hohen Konzentration (200 µM) eine Gewichtssteigerung erzielt werden. Die physiologische Konzentration von Pantothensäure im co-kultivierten Medium betrug allerdings nur 3 nM, demnach ist die wachstumsstimmulierende Konzentration um den Faktor 10⁶ höher und kann daher nicht als realistische Konzentration während der Co-Kultivierung angesehen werden. Trotzdem ist es bemerkenswert eine Wachstumsförderung bei P. indica mit Pantothensäure erreichen zu können. Die Experimente müssen aber wiederholt werden, um einerseits die Daten zu verifizieren. Andererseits sollte die wirksame Konzentration (z.B. 150 µM, 175 µM, 200 µM, 225 µM, etc.), genauer bestimmt werden.

Das Dipeptid Leu-Leu (Leucylleucine bzw. 2-(2-Amino-4-Methylpentanamido)-4-Methylpentanonsäure) wird von dem filamentösen Rhizosphärenpilz Trichoderma harzianum durch den Peptidtransporter ThPTR2 aufgenommen (Vizcaino et al., 2006). Zyklisches Leu-Leu konnte in den Exsudaten eines endophytischen Pilzes für Mangroven detektiert werden (Huang et al., 2007). Das Dipeptid steigert das Wachstum des Milchsäurebakteriums *Lactobacillus plantarum* signifikant (Saguir et al., 2008). Da Leu-Leu nur in dem

124

co-kultiverten Medium verstärkt vorkam und außer im Pilzmedium nicht detektiert werden konnte, sollte untersucht werden, ob Leu-Leu eine Rolle bei symbiotischen Interaktionen spielen und auch eine Wachstumsförderung auslösen kann. Dafür wurde das Dipeptid in der vorliegenden Arbeit bei *A. thaliana* und *P. indica* auf einen wachstumsfördernden Effekt getestet (siehe Abschnitt 3.5.2). Bei *A. thaliana* konnte nach Zugabe von Leu-Leu sowohl im nM als auch im µM-Bereich keine Wachstumsförderung festgestellt werden (siehe Abschnitt 3.5.2). Wurde das Dipeptid zu *P. indica* gegeben, konnte bei einer Konzentration von 50 nM eine Steigerung des Myzelgewichtes nachgewiesen werden. Diese Konzentration ist ca. 10-Mal höher als in dem co-kultivierten Medium. Die Experimente sollten wiederholt werden, um die Daten zu verifizieren und die wirksame Konzentration genauer zu ermitteln (z.B. 40 nM, 50 nM, 75 nM, 100 nM).

4.6.7 Metaboliten-Profiling des Mediums AtPi vs Pi

In dem Vergleich des co-kultivierten Mediums mit dem Pilzmediums konnten 33 Metaboliten in der LC-MS und 13 Substanzen in der GC-MS ermittelt werden, deren Konzentration im Pilzmedium erhöht sind (AtPi < Pi). Dagegen sind 78 Metaboliten in der LC-MS und 33 Stoffe in der GC-MS identifiziert worden, deren Konzentration in dem Pilzmedium erniedrigt ist (AtPi > Pi).

In Abb. 4. 5 sind die differentiellen Metaboliten aufgezeigt, die in den LC-MS und GC-MS Analysen identifiziert wurden. Die Konzentration der Substanzen Fructose, Scopoletin und Desoxyribose ist in dem co-kultivierten Medium (AtPi) gegenüber dem Pilzmedium erhöht, die Konzentration an 2-Phosphoglycerat ist erniedrigt.

Abb. 4. 5: Einordnung der identifizierten Metaboliten des Vergleichs des Mediums AtPi vs Pi in eine allgemeine Übersicht der Stoffwechselwege. In blau sind die identifizierten Metaboliten hervorgehoben, die im Vergleich AtPi > Pi differentiell waren. In rot sind die Metaboliten des Vergleichs AtPi < Pi gekennzeichnet Die Abbildung wurde mit Hilfe von KEGG erstellt.1 Glycanbiosynthese und -Metabolismus, 2 Lipid-Metabolismus, 3 Terpenoid und Polyketid-Metabolismus, 4 Xenobioticaabbau und -Metabolismus, 5 Kohlenhydrat-Metabolismus, 6 Aminosäuren-Metabolismus, 7 Energie-Metabolismus, 8 Nukleotid-Metabolismus, 9 Cofaktoren- und Vitamin-Metabolismus, 10 Biosynthese von weiteren Sekundärmetaboliten, 11 Metabolismus von weiteren Aminosäuren.

Neben Fructose ist auch die Konzentration an Scopoletin in dem co-kultivierten Medium gegenüber dem Pilzmedium erhöht. Scopoletin (7-Hydroxy-6-methoxy-2H-chromen-2-on) ist ein Hydroxycoumarin, welches vor allem in Pflanzenwurzeln zu finden ist. Die Substanz wurde auch in Arabidopsis-Wurzeln detektiert, wobei die Konzentration um ein vielfaches gegenüber dem oberirdischen Pflanzenteil erhöht war (Kai et al., 2008; Kai et al., 2006). Die Hydroxycoumarine gehören zu den Phytoalexinen, welche fungizide und antibakterielle Eigenschaften besitzen (Carpinella et al., 2005; Cespedes et al., 2006; Valle et al., 1997) und sind in der Abwehrantwort der Pflanze bei verschiedenen Stresssituationen involviert (Giesemann et al., 1986; Matern, 1991; Shimizu et al., 2005). Scopoletin ist vermehrt in den Wurzeln zu finden und wird wahrscheinlich auch sekretiert. Dadurch ließe sich die erhöhte Konzentration gegenüber dem Pilzmedium erklären.

Weiterhin wurden die Substanzen 2-Phosphoglycerat und Desoxyribose in dem Vergleich der AtPi vs Pi Medien gefunden. Die Glycerinsäure 2-Phosphoglycerat (3-Hydroxy-2- (phosphonooxy)propansäure) ist ein Intermediat in der Glykolyse, welches in dem Pilzmedium eine höhere Konzentration als in dem co-kultivierten Medium aufweist. Desoxyribose ist ein Grundbaustein der DNA und deren Konzentration in dem AtPi Medium erhöht. Beide Stoffe sind essentiell für den Grundstoffwechsel und werden vielleicht von den jeweiligen Organismen (Pflanze und Pilz) vermehrt gebildet oder verbraucht.

4.7 Wachstumsfördernde Substanzen

Es ist mehrfach beschrieben worden, dass *P. indica* einen wachstumsfördernden Effekt auf Pflanzen besitzt (Fakhro et al., 2009; Kaldorf et al., 2005; Kumar et al., 2011a; Kumar et al., 2011b; Sahay und Varma, 1999; Singh et al., 2000). Demnach muss es Substanzen geben, die diesen Effekt auslösen. Von den identifizierten Metaboliten, die in den co-kultivierten Wurzeln bzw. Medien (AtPi) zu finden waren, wurde bei einigen in der Literatur ein wachstumsfördernder Effekt nachgewiesen. So konnte für Pantothensäure und Leu-Leu ein solcher für Pflanzen bzw. Bakterien beschrieben werden (Hussain und Vancura, 1970; Saguir et al., 2008; Sahi et al., 1988). Jedoch zeigten die Pflanzen nach Behandlung mit den Substanzen kein verstärktes Wachstum (siehe Abschnitt 3.5.1). Es ist jedoch möglich, dass nicht nur ein Stoff für die Wachstumsförderung essentiell ist. Vielmehr könnten mehrere Substanzen kumulativ wirken. Deshalb sollten die möglichen wachstumsfördernden Stoffe nicht nur einzeln, sondern auch zusammen getestet werden. Dies gilt auch für Pantothensäure und Leu-Leu.

In der Literatur wurden bisher wenige Metaboliten identifiziert, die bei mutualistischen Interaktionen eine Rolle spielen. Als wachstumsstimulierende Substanzen konnten für Mykorrhizapilze zwei Fettsäurederivate (2-Hydroxytetradecanonsäure und 2-Hydroxydodecanonsäure) identifiziert werden, welche von Pflanzenwurzeln sekretiert wurden und das Hyphenwachstum induzieren (Nagahashi und Douds, 2011). Auxofuran, welches von einem Mykorrhizahelferbakterium gebildet wird, fördert das Myzelwachstum und die Ausbildung einer Ectomykorrhiza mit der Wirtspflanze (Keller et al., 2006; Riedlinger et al., 2006). Sesquiterpenlactone, die von der Wirtspflanze sekretiert werden, bewirken eine Verzweigung bei den Mykorrhizapilzen (Akiyama et al., 2005; Buee et al., 2000). Die in der Literatur beschriebenen Substanzen konnten in dieser Arbeit jedoch nicht als differentielle Metaboliten in den Geweben oder Medien detektiert werden.

127

4 Diskussion

Für die Etablierung der Mykorrhiza sekretiert die Pflanzenwurzel einen branching factor, welcher von den Sporen aufgenommen wird. Diese Hormone, die Strigolactone, stimulieren die Bildung der sogenannten Myc-Faktoren, die von den Mykorrhizapilzen sekretiert werden (Akiyama und Hayashi, 2006) und von den Pflanzen erkannt werden. Die Myc-Faktoren verändern die intrazelluläre Kalziumkonzentration (Chabaud et al., 2011; Oldroyd und Downie, 2006) und können dadurch die Genexpression aktivieren (Kosuta et al., 2003), eine Änderung im Kohlenhydrat Metabolismus bewirken (Gutjahr et al., 2009) und die laterale Wurzelverzweigung stimulieren (Olah et al., 2005). Die Stimulation von lateralen Wurzelverzweigungen konnte bereits in Abhängigkeit von Lipochitooligosaccharide gezeigt werden (Maillet et al., 2011). Somit sind die Myc-Faktoren essentiell für die Symbiose. Bisher konnten diese Faktoren jedoch nicht (vollständig) identifiziert werden (Kosuta et al., 2003; Parniske, 2008). Es wird angenommen, dass die Zuführung von Phosphat entscheidend für die Wachstumsförderung ist (Parniske, 2008). Für die Ausbildung der Arbuskeln sind Lysophosphatidylcholine notwendia. die als Signalmoleküle dienen und Phosphattransportergene in Pflanzenwurzeln induzieren (Bucher et al., 2009; Drissner et al., 2007). Ist die Symbiose etabliert, werden vor allem Hexosen von der Pflanze an den Mykorrhizapilz abgegeben, der diese metabolisiert.

Da die Myc-Faktoren nicht vollständig identifiziert wurden sind, kann nicht beurteilt werden, ob diese Verbindungen auch bei der in dieser Arbeit untersuchten mutualistischen Interaktion eine Rolle spielen. In dieser Arbeit konnte kein Vertreter der Substanzklasse der Lipochitooligosaccharide, die für die Wurzelverzweigung wichtig sind (Maillet et al., 2011) identifiziert werden.

Bei der Interaktion von Pflanzen mit Rhizobien sekretiert die Pflanzenwurzel Flavonoide, um die Bakterien anzulocken (Buee et al., 2000). Die Bakterien produzieren wiederum sogenannte Nod-Faktoren, die durch ein N-Acetylglucosamin-Rückgrad und verschiedene Seitenketten gekennzeichnet sind (Denarie et al., 1996; Parniske, 2008; Schultze und Kondorosi, 1998). Ähnlich den Myc-Faktoren verändern die Nod-Faktoren die intrazelluläre Kalziumkonzentration (Chabaud et al., 2011; Oldroyd und Downie, 2006) und beeinflussen dadurch die sich anschließenden zellulären Prozesse.

Sowohl die Myc-Faktoren als auch die Nod-Faktoren sind essentiell für die Symbiose zwischen der Pflanze und dem Mykorrhizapilz bzw. den Rhizobien. Eine genaue Identifizierung der wachstumsfördernden Substanzen ist jedoch bis dato auf dem Gebiet der mutualistischen Interaktion zwischen Pflanzen und Mykorrhizapilzen bzw. Rhizobien nicht erfolgt. Demnach kann nicht verglichen werden, ob dieselben Stoffe bei der Interaktion von *A. thaliana* und *P. indica* eine Rolle spielen.

4.8 Weiterführende Experimente

Die in dieser Arbeit durchgeführten Experimente geben einen ersten Einblick in die Veränderung des Metabolitenprofils von *A. thaliana* und *P. indica* während der mutualistischen Interaktion der beiden Partner. Zudem wurden die Wurzelexsudate von *A. thaliana* in hydroponischer Kultur umfassend analysiert. Durch die Identifizierung von einzelnen Metaboliten konnten punktuell Zusammenhänge in der Interaktion beleuchtet werden. Jedoch müssen weitere bisher unbekannte Metaboliten strukturell aufgeklärt werden, um einen tieferen Einblick in die Interaktion zu erlangen. Deshalb ist es essentiell, die Verbindungen, die während der Co-Kultivierung ins Medium sekretiert werden, zu identifizieren. Dies müsste Aufbauend auf die MS/MS Fraktionierungen durchgeführt werden. Auch die Metaboliten, die während der Interaktion in den Wurzeln, im Myzel und in den anderen Medien differentiell waren, sollten eingehend untersucht werden.

Die umfangreichen Metabolomics-Daten, die durch die LC-MS und GC-MS Analysen generiert wurden, könnten durch einen Proteomics Ansatz ergänzt werden. Durch die Untersuchung der Proteine, die während der Co-Kultivierung von der Pflanze und dem Pilz sekretiert werden bzw. deren Zusammensetzung und Konzentration sich in den Geweben verändern, könnte auf weitere wichtige Zusammenhänge in der Interaktion verweisen. Wenn idealerweise die generierten Metabolomics-Daten mit den Proteomics-Daten (teilweise erstellt von Shahollari et al. (2005)) und die publizierten Genomics-Daten (Schafer et al., 2009a; Zuccaro et al., 2011) zusammen analysiert werden, könnte ein umfassender Einblick in die Interaktion von *A. thaliana* und *P. indica* erhalten werden.

Ein interessanter Untersuchungsansatz wäre zudem die Erstellung einer Zeitkurve der Interaktion auf Metabolitenebene. In der Literatur wurde die Genexpression nach einigen Tagen der Co-Kultivierung untersucht (Camehl et al., 2010; Deshmukh et al., 2006; Stein et al., 2008). So könnten die metabolomischen Änderungen, die während der einzelnen Stadien der Co-Kultivierung auftreten (Initiierung, Ausbildung und nach der Etablierung der Interaktion) verglichen werden.

Die bisher identifizierten Metaboliten könnten nach der hier erfolgten Literaturrecherche weiter untersucht werden, ob sie für die Interaktion bzw. Wachstumsförderung eine Rolle

spielen. Für den Ansatz der Wachstumsförderung könnten die einzelnen Substanzen, wie z.B. Trehalose oder Milchsäure, für die ein wachstumsfördernder Effekt beschrieben wurde, in hydroponischer Kultur zu den Pflanzen bzw. zum Pilz gegeben werden. Dabei sollten die Substanzen nicht nur einzeln, sondern auch im Gemisch zugegeben werden, um einen kumulativen Effekt zu untersuchen. Um weiterhin heraus zu finden, ob ein Stoff für die Interaktion zwischen *A. thaliana* und *P. indica* essentiell ist, könnten sowohl Pflanzen- als auch Pilzmutanten, die diesen Metaboliten nicht mehr produzieren bzw. aufnehmen können für die Co-Kultivierung eingesetzt werden und anschließend untersucht werden, ob die Interaktion weiterhin stattfindet.

Für die Identifizierung der wachstumsfördernden Substanzen könnte ein vergleichbarer Ansatz wie in dieser Arbeit beschrieben gestaltet werden, in dem die differentiellen Metaboliten die während der Interaktion von A. thaliana und P. indica sekretiert werden mit den differentiellen Metaboliten der Interaktion von A. thaliana mit Piriformospora williamsii (Williams, 1985) verglichen werden. P. williamsii (multinucleate rhizoctonia DAR 29830) ist eng verwandt mit P. indica, jedoch kann nur eine sehr geringe Wachstumsförderung mit diesem Pilz erzielt werden (Basiewicz et al., 2011; Deshmukh et al., 2006). Mit diesem Ansatz kann gut zwischen den Substanzen, die von A. thaliana und den Pilzen sekretiert werden (die die gleichen Verbindungen sekretieren sollten, um die Interaktion zu initiieren und auszubilden) und den wachstumsfördernden Substanzen, die nur vermehrt von P. indica sekretiert werden. unterschieden werden. Durch die Identifizieruna der wachstumsfördernden Substanzen könnte zukünftig in der Landwirtschaft gezielter und damit weniger gedüngt werden, da nur die Mineralien in der benötigten Konzentration in den Boden gebracht werden müssten und durch die Zugabe der wachstumsfördernden Substanzen ein erhöhter Ertrag erzielt werden könnte.

Neben der Interaktion von *A. thaliana* und *P. indica* wurde auch die Sekretion von Substanzen durch *A. thaliana* in das Medium untersucht. Dies ist in diesem Umfang bisher nicht geschehen, da entweder nur einzelne Substanzen/Substanzklassen analysiert worden oder ein "Gesamtpflanzenexsudat" untersucht wurde. Mit der Aufklärung der Identität der einzelnen Metaboliten kann erstmals herausgefunden werden, welche Substanzen von *A. thaliana* sekretiert werden. In weiterführenden Experimenten sollte deren Funktion genauer untersucht werden. In dieser Arbeit wurde der Ökotyp Col-0 untersucht, die genetische Variation der einzelnen Ökotypen von Arabidopsis könnte ebenfalls untersucht werden.

5 Zusammenfassung

Der Wurzelendophyt *P. indica* kann mit vielen Pflanzenspezies eine mutualistische Interaktion eingehen, die u.a. in einer erhöhten Resistenz gegenüber biotischen und abiotischen Stressoren und in einer Wachstumsförderung für seinen Wirt resultiert. In der vorliegenden Arbeit sollte die Wechselwirkung zwischen *P. indica* und der Modelpflanze *A. thaliana* auf Metabolitenebene untersucht werden.

Dafür wurde eine hydroponische Kultur etabliert, in der beide Partner kultiviert werden konnten und eine Wachstumsförderung von *A. thaliana* als Zeichen der stattgefundenen Interaktion zu detektieren war. So konnte nach einer Woche der Co-Kultivierung eine signifikante Steigerung des Blattgewichtes erzielt werden. Dabei war die Wachstumsförderung umso stärker, je länger die Interaktion zwischen dem Endophyten und den Pflanzen andauerte. Das Wurzelgewicht hingegen wurde von *P. indica* nicht beeinflusst.

Nach Etablierung der hydroponischen Kultur wurden vier Wochen alte Pflanzen, die zwei Wochen mit *P. indica* kultiviert wurden, einem ungerichtetem Metaboliten-Profiling unterzogen. Dabei sollten die Substanzen, deren Konzentrationen sich während der Co-Kultivierung von *A. thaliana* und *P. indica* in den Blättern, den Wurzeln und dem Myzel verändern, detektiert und möglichst strukturell identifiziert werden. Desweiteren sollten die Medien genauer untersucht werden, da dort die mutualistische Interaktion zwischen den beiden Partnern stattfand. Dabei war die Sekretion der Wurzelexsudate in die Rhizosphäre und die Sekretion der pilzlichen Metaboliten von besonderem Interesse.

In dem durchgeführten Metaboliten-Profiling wurden sowohl die differentiellen Metaboliten des Primär- als auch des Sekundärstoffwechsels untersucht. Dafür wurden die Gewebe und Medien per GC-Quad-MS und UPLC-ESI-QTOF-MS vermessen und analysiert.

In den Blättern wurden weder in den GC-MS, noch in den LC-MS-Analysen differentielle Metaboliten gefunden. In den Wurzeln und im Myzel sind einige Substanzen detektiert wurden, deren Konzentration nach der Co-Kultivierung sowohl erhöht als auch erniedrigt war. Die größten Änderungen im Metabolitenprofil sind

131

jedoch in den Medien zu verzeichnen, in denen die mutualistische Interaktion stattfand.

Es wurde eine weitreichende Strukturaufklärung der Massensignale des cokultivierten Mediums und des *A. thaliana* Mediums durchgeführt. Es konnten 28 Substanzen identifiziert werden, darunter organische Säuren, wie Bernsteinsäure, Benzoesäure und Nicotinsäure, Zucker wie z.B. Fructose, *myo*-Inositol und Trehalose und einige Aminosäuren, wie Serin, Ornithin und Alanin. Durch die Identifizierung der Stoffe und den durchgeführten Gewebevergleich der differentiellen Massensignale konnte ein Einblick in die Interaktion von *A. thaliana* und *P. indica* auf Metabolitenebene gewonnen werden. So wurden mehrere Stoffe, wie z.B. Milchsäure oder Adipinsäure, identifiziert, die in anderen mutualistischen Interaktionen, wie bei den Mykorrhizapilzen und den Rhizobien, eine Rolle spielen.

Für einzelne identifizierte Substanzen wurde in der Literatur ein wachstumsfördernder Effekt beschrieben, die zwei getesteten Metaboliten Pantothensäure und das Dipeptid Leu-Leu konnten jedoch unter den hier gewählten experimentellen Bedingungen keine Wachstumsförderung bei *A. thaliana* bewirken. Durch diese Arbeit konnte ein erster Einblick in das sich nach Co-Kultivierung von *A. thaliana* mit *P. indica* veränderte Metabolitenmuster gewonnen werden.

6 Literaturverzeichnis

Abdel-Lateff, A., Fisch, K., und Wright, A.D. (2009). Trichopyrone and other constituents from the marine sponge-derived fungus Trichoderma sp. Z Naturforsch C *64*, 186-192.

Achatz, B. (2006). Untersuchungen zum Einfluss des Wurzelendophyten Piriformospora indica auf das Wachstum von Hordeum vulgare, die Resistenz gegen Blumeria graminis f.sp. hordei und die Genexpression in den Blättern. Unveröffentlichte Dissertaion, Philipps-Universität-Marburg.

Adesemoye, A.O., Torbert, H.A., und Kloepper, J.W. (2009). Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol *58*, 921-929.

Adler, E., Pepper, J.M., und Eriksoo, E. (1957). Action of mineral acid on lignin and model substances of guaiacylglycerol-beta-aryl ether type. Ind Eng Chem 49, 1391-1392.

Akiyama, K., und Hayashi, H. (2006). Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot *97*, 925-931.

Akiyama, K., Matsuzaki, K., und Hayashi, H. (2005). Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824-827.

Avonce, N., Leyman, B., Thevelein, J., und Iturriaga, G. (2005). Trehalose metabolism and glucose sensing in plants. Biochem Soc Trans 33, 276-279.

Babalola, O.O. (2010). Beneficial bacteria of agricultural importance. Biotechnol Lett 32, 1559-1570.

Badri, D.V., Loyola-Vargas, V.M., Broeckling, C.D., De-la-Pena, C., Jasinski, M., Santelia, D., Martinoia, E., Sumner, L.W., Banta, L.M., Stermitz, F., und Vivanco, J.M. (2008). Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant Physiol *146*, 762-771.

Badri, D.V., Quintana, N., El Kassis, E.G., Kim, H.K., Choi, Y.H., Sugiyama, A., Verpoorte, R., Martinoia, E., Manter, D.K., und Vivanco, J.M. (2009). An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol *151*, 2006-2017.

Bago, B., Pfeffer, P.E., Abubaker, J., Jun, J., Allen, J.W., Brouillette, J., Douds, D.D., Lammers, P.J., und Shachar-Hill, Y. (2003). Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol *131*, 1496-1507.

Bais, H.P., Prithiviraj, B., Jha, A.K., Ausubel, F.M., und Vivanco, J.M. (2005). Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434, 217-221.

Bais, H.P., Weir, T.L., Perry, L.G., Gilroy, S., und Vivanco, J.M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol *57*, 233-266.

Baldi, A., Jain, A., Gupta, N., Srivastava, A.K., und Bisaria, V.S. (2008). Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett *30*, 1671-1677.

Baltruschat, H., Fodor, J., Harrach, B.D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K.H., Schafer, P., Schwarczinger, I., Zuccaro, A., und Skoczowski, A. (2008). Salt tolerance of barley induced by the root endophyte *Piriformospora indica* is associated with a strong increase in antioxidants. New Phytol.

Bar-Akiva, A., Ovadia, R., Rogachev, I., Bar-Or, C., Bar, E., Freiman, Z., Nissim-Levi, A., Gollop, N., Lewinsohn, E., Aharoni, A., Weiss, D., Koltai, H., und Oren-Shamir, M. (2010). Metabolic networking in Brunfelsia calycina petals after flower opening. J Exp Bot *61*, 1393-1403.

Barazani, O., Benderoth, M., Groten, K., Kuhlemeier, C., und Baldwin, I.T. (2005). *Piriformospora indica* and *Sebacina vermifera* increase growth performance at the expense of herbivore resistance in *Nicotiana attenuata*. Oecologia *146*, 234-243.

Barsch, A., Tellstrom, V., Patschkowski, T., Kuster, H., und Niehaus, K. (2006). Metabolite profiles of nodulated alfalfa plants indicate that distinct stages of nodule organogenesis are accompanied by global physiological adaptations. Mol Plant Microbe Interact *19*, 998-1013.

Basiewicz, M., Weiß, M., Kogel, K.H., Langen, G., Zorn, H., und Zuccaro, A. (2011). Molecular and phenotypic characterization of Sebacina vermifera strains associated with orchids, and the description of Piriformospora williamsii sp. nov. Fungal Biology *FUNBIO-D-11-00179R2*.

Bennett, A.E., Alers-Garcia, J., und Bever, J.D. (2006). Three-way interactions among mutualistic mycorrhizal fungi, plants, and plant enemies: hypotheses and synthesis. Am Nat *167*, 141-152.

Biedrzycki, M.L., und Bais, H.P. (2010). Kin recognition: another biological function for root secretions. Plant Signal Behav *5*, 401-402.

Biedrzycki, M.L., Jilany, T.A., Dudley, S.A., und Bais, H.P. (2010). Root exudates mediate kin recognition in plants. Commun Integr Biol *3*, 28-35.

Bird, D.M. (2004). Signaling between nematodes and plants. Curr Opin Plant Biol 7, 372-376.

Blakeley, R.L., Hinds, J.A., Kunze, H.E., Webb, E.C., und Zerner, B. (1969). Jack bean urease (EC 3.5.1.5). Demonstration of a carbamoyl-transfer reaction and inhibition by hydroxamic acids. Biochemistry *8*, 1991-2000.

Blechert, O., Kost, G., Hassel, A., Rexer, K.-H., und Varma, A. (1999). First remarks on the symbiotic interaction between Piriformospora indica and terrestrial orchids. In: Varma, A, Hock, B (eds) Mycorrhiza, 2nd edn Springer-Verlag, Heidelberg, pp 683–688.

Bloemberg, G.V., und Lugtenberg, B.J. (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion Plant Biology *4*, 343-350.

Böttcher, C., Roepenack-Lahaye, E.V., Willscher, E., Scheel, D., und Clemens, S. (2007). Evaluation of matrix effects in metabolite profiling based on capillary liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry. Anal Chem *79*, 1507-1513.

Böttcher, C., Von Roepenack-Lahaye, E., und Scheel, D. (2011). In: Genetics and Genomics of the Brassicaceae; Plant Genetics and Genomics: Crops and Models, Resources for Metabolomics. *Volume 9*, 469-503.

Böttcher, C., von Roepenack-Lahaye, E., Schmidt, J., Clemens, S., und Scheel, D. (2009a). Analysis of phenolic choline esters from seeds of Arabidopsis thaliana and Brassica napus by capillary liquid chromatography/electrospray- tandem mass spectrometry. J Mass Spectrom *44*, 466-476.

Böttcher, C., von Roepenack-Lahaye, E., Schmidt, J., Schmotz, C., Neumann, S., Scheel, D., und Clemens, S. (2008). Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiol 147, 2107-2120.

Böttcher, C., Westphal, L., Schmotz, C., Prade, E., Scheel, D., und Glawischnig, E. (2009b). The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell *21*, 1830-1845.

Brakhage, A.A., und Schroeckh, V. (2011). Fungal secondary metabolites - strategies to activate silent gene clusters. Fungal Genet Biol *48*, 15-22.

Brechenmacher, L., Lei, Z., Libault, M., Findley, S., Sugawara, M., Sadowsky, M.J., Sumner, L.W., und Stacey, G. (2010). Soybean metabolites regulated in root hairs in response to the symbiotic bacterium Bradyrhizobium japonicum. Plant Physiol *153*, 1808-1822.

Bressan, M., Roncato, M.A., Bellvert, F., Comte, G., Haichar, F.Z., Achouak, W., und Berge, O. (2009). Exogenous glucosinolate produced by Arabidopsis thaliana has an impact on microbes in the rhizosphere and plant roots. ISME J *3*, 1243-1257.

Brinch-Pedersen, H., Hatzack, F., Stoger, E., Arcalis, E., Pontopidan, K., und Holm, P.B. (2006). Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis. J Agric Food Chem *54*, 4624-4632.

Broeckling, C.D., Broz, A.K., Bergelson, J., Manter, D.K., und Vivanco, J.M. (2008). Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol *74*, 738-744.

Bucher, M., Wegmuller, S., und Drissner, D. (2009). Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Opin Plant Biol *12*, 500-507.

Budzikiewicz, H. (1998). Massenspektrometrie, 4. Auflage, Wiley-VCH Weinheim New York Chichester Singapore. 28-30.

Buee, M., Rossignol, M., Jauneau, A., Ranjeva, R., und Becard, G. (2000). The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates. Mol Plant Microbe Interact *13*, 693-698.

Camehl, I., Drzewiecki, C., Vadassery, J., Shahollari, B., Sherameti, I., Forzani, C., Munnik, T., Hirt, H., und Oelmuller, R. (2011). The OXI1 Kinase Pathway Mediates Piriformospora indica-Induced Growth Promotion in Arabidopsis. PLoS Pathog 7, e1002051.

Camehl, I., und Oelmuller, R. (2010). Do ethylene response factors-9 and -14 repress PR gene expression in the interaction between Piriformospora indica and Arabidopsis? Plant Signal Behav *5*.

Camehl, I., Sherameti, I., Venus, Y., Bethke, G., Varma, A., Lee, J., und Oelmuller, R. (2010). Ethylene signalling and ethylene-targeted transcription factors are required to balance beneficial and
nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol.

Carpinella, M.C., Ferrayoli, C.G., und Palacios, S.M. (2005). Antifungal synergistic effect of scopoletin, a hydroxycoumarin isolated from Melia azedarach L. fruits. J Agric Food Chem *53*, 2922-2927.

Carraro, S., Giordano, G., Reniero, F., Perilongo, G., und Baraldi, E. (2009). Metabolomics: a new frontier for research in pediatrics. J Pediatr *154*, 638-644.

Cespedes, C.L., Avila, J.G., Martinez, A., Serrato, B., Calderon-Mugica, J.C., und Salgado-Garciglia, R. (2006). Antifungal and antibacterial activities of Mexican tarragon (Tagetes lucida). J Agric Food Chem *54*, 3521-3527.

Chabaud, M., Genre, A., Sieberer, B.J., Faccio, A., Fournier, J., Novero, M., Barker, D.G., und Bonfante, P. (2011). Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger Ca2+ spiking in the legume and nonlegume root epidermis. New Phytol *189*, 347-355.

Chang, Y.N., Mueller, R.E., und lannotti, E.L. (1996). Use of low MW polylactic acid and lactide to stimulate growth and yield of soybeans. Plant Growth Regul *19*, 223-232.

Chiang, P.N., Wang, M.K., Chiu, C.Y., und Chou, S.Y. (2006). Effects of cadmium amendments on low-molecular-weight organic acid exudates in rhizosphere soils of tobacco and sunflower. Environ Toxicol *21*, 479-488.

Chin, A.W.T.F., Bloemberg, G.V., Mulders, I.H., Dekkers, L.C., und Lugtenberg, B.J. (2000). Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol Plant Microbe Interact *13*, 1340-1345.

Choi, W.G., und Roberts, D.M. (2007). Arabidopsis NIP2;1, a major intrinsic protein transporter of lactic acid induced by anoxic stress. J Biol Chem 282, 24209-24218.

Cordero, C., Liberto, E., Bicchi, C., Rubiolo, P., Reichenbach, S.E., Tian, X., und Tao, Q. (2010a). Targeted and non-targeted approaches for complex natural sample profiling by GCxGC-qMS. J Chromatogr Sci *48*, 251-261.

Cordero, C., Liberto, E., Bicchi, C., Rubiolo, P., Schieberle, P., Reichenbach, S.E., und Tao, Q. (2010b). Profiling food volatiles by comprehensive two-dimensional ga schromatography coupled with mass spectrometry: advanced fingerprinting approaches for comparative analysis of the volatile fraction of roasted hazelnuts (Corylus avellana L.) from different origins. J Chromatogr A *1217*, 5848-5858.

Crowe, J.H. (2007). Trehalose as a "chemical chaperone": fact and fantasy. Adv Exp Med Biol *594*, 143-158.

Crowe, J.H., Carpenter, J.F., und Crowe, L.M. (1998). The role of vitrification in anhydrobiosis. Annu Rev Physiol *60*, 73-103.

Crowe, J.H., Crowe, L.M., und Chapman, D. (1984). Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science *223*, 701-703.

D'Auria, J.C., und Gershenzon, J. (2005). The secondary metabolism of Arabidopsis thaliana: growing like a weed. Curr Opin Plant Biol *8*, 308-316.

Denarie, J., **Debelle**, F., **und Prome**, J.C. (1996). Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem *65*, 503-535.

Deshmukh, S., Huckelhoven, R., Schafer, P., Imani, J., Sharma, M., Weiss, M., Waller, F., und Kogel, K.H. (2006). The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc Natl Acad Sci U S A *103*, 18450-18457.

Dolatabadi, H.K., Goltapeh, E.M., Jaimand, K., Rohani, N., und Varma, A. (2011). Effects of Piriformospora indica and Sebacina vermifera on growth and yield of essential oil in fennel (Foeniculum vulgare) under greenhouse conditions. J Basic Microbiol *51*, 33-39.

Dominguez-Ferreras, A., Soto, M.J., Perez-Arnedo, R., Olivares, J., und Sanjuan, J. (2009). Importance of trehalose biosynthesis for Sinorhizobium meliloti Osmotolerance and nodulation of Alfalfa roots. J Bacteriol *191*, 7490-7499.

Dor, E., Yoneyama, K., Wininger, S., Kapulnik, Y., Koltai, H., Xie, X., und Hershenhorn, J. (2011). Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology *101*, 213-222.

Drissner, D., Kunze, G., Callewaert, N., Gehrig, P., Tamasloukht, M., Boller, T., Felix, G., Amrhein, N., und Bucher, M. (2007). Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science *318*, 265-268.

Elbein, A.D. (1974). The metabolism of alpha, alpha-trehalose. Adv Carbohydr Chem Biochem *30*, 227-256.

Erro, J., Zamarreno, A.M., Yvin, J.C., und Garcia-Mina, J.M. (2009). Determination of organic acids in tissues and exudates of maize, lupin, and chickpea by high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem *57*, 4004-4010.

Eschen-Lippold, L., Draeger, T., Teichert, A., Wessjohann, L., Westermann, B., Rosahl, S., und Arnold, N. (2009). Antioomycete activity of gamma-oxocrotonate fatty acids against P. infestans. J Agric Food Chem *57*, 9607-9612.

Evans, J.S., und Venables, W.A. (1990). Degradation of thiophene-2-carboxylate, furan-2-carboxylate, pyrrole-2-carboxylate and other thiophene derivatives by the bacterium Vibrio YC1. Appl Microbiol Biotechnol *32*, 715-720.

Fakhro, A., Andrade-Linares, D.R., von Bargen, S., Bandte, M., Buttner, C., Grosch, R., Schwarz, D., und Franken, P. (2009). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza.

Falik, O., Reides, P., Gersani, M., und Novoplansky, A. (2003). Self/non-self discrimination in roots. J of Ecol *91*, 525-531.

Fernie, A.R., Trethewey, R.N., Krotzky, A.J., und Willmitzer, L. (2004). Metabolite profiling: from diagnostics to systems biology. Nat Rev Mol Cell Biol *5*, 763-769.

Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R.N., und Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nat Biotechnol *18*, 1157-1161.

Finkle, B.S., Foltz, R.L., und Taylor, D.M. (1974). A comprehensive GC-MS reference data system for toxicological and biomedical purposes. J Chromatogr Sci *12*, 304-328.

Finkle, B.S., Taylor, D.M., und Bonelli, E.J. (1972). A GC-MS reference data system for the identification of drugs of abuse. J Chromatogr Sci *10*, 312-333.

Flors, V., Miralles, M.C., Varas, E., Company, P., Gonzalez-Bosch, C., und Garcia-Agustin, P. (2004). Effect of analogues of plant growth regulators on in vitro growth of eukaryotic plant pathogens. Plant Pathol *53*, 58-64.

Gachomo, E., Allen, J.W., Pfeffer, P.E., Govindarajulu, M., Douds, D.D., Jin, H., Nagahashi, G., Lammers, P.J., Shachar-Hill, Y., und Bucking, H. (2009). Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids. New Phytol *184*, 399-411.

Gianinazzi, S., Trouvelot, A., Lovato, P., Vantuinen, D., Franken, P., und Gianinazzipearson, V. (1995). Arbuscular mycorrhizal fungi in plant production of temperate agroecosystems. Critical Reviews in Biotechnology *15*, 305-311.

Giesemann, A., Biehl, B., und Lieberei, R. (1986). Identification of scopoletin as a phytoalexin of the rubber tree *Hevea brasiliensis*. J Phytopathol *117*, 373-376.

Goodacre, R., Vaidyanathan, S., Dunn, W.B., Harrigan, G.G., und Kell, D.B. (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol 22, 245-252.

Govindarajulu, M., Pfeffer, P.E., Jin, H., Abubaker, J., Douds, D.D., Allen, J.W., Bucking, H., Lammers, P.J., und Shachar-Hill, Y. (2005). Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature *435*, 819-823.

Greenstein, R.J., Su, L., und Brown, S.T. (2011). Growth of M. avium subspecies paratuberculosis in culture is enhanced by nicotinic acid, nicotinamide, and alpha and beta nicotinamide adenine dinucleotide. Dig Dis Sci *56*, 368-375.

Guimil, S., Chang, H.S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E.J., Docquier, M., Descombes, P., Briggs, S.P., und Paszkowski, U. (2005). Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A *102*, 8066-8070.

Guse, A.H. (2002). Cyclic ADP-ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP): novel regulators of Ca2+-signaling and cell function. Curr Mol Med 2, 273-282.

Gutjahr, C., Novero, M., Guether, M., Montanari, O., Udvardi, M., und Bonfante, P. (2009). Presymbiotic factors released by the arbuscular mycorrhizal fungus Gigaspora margarita induce starch accumulation in Lotus japonicus roots. New Phytol *183*, 53-61.

Hanhineva, K., Rogachev, I., Kokko, H., Mintz-Oron, S., Venger, I., Karenlampi, S., und Aharoni, A. (2008). Non-targeted analysis of spatial metabolite composition in strawberry (Fragariaxananassa) flowers. Phytochemistry *69*, 2463-2481.

Hartmann, A., Schmid, M., van Tuinen, D., und Berg, G. (2009). Plant-driven selection of microbes. Plant and Soil, 235-257.

Henry, A., Doucette, W., Norton, J., und Bugbee, B. (2007). Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress. J Environ Qual *36*, 904-912.

Hiltner, L. (1904). Über neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründung und Brache. Arbeiten der Deutschen Landwirtschaftgesellschaft *98*, 59-78.

Hirsch, A., Bauer, W.D., Bird, D.M., Culimore, J., Tyler, B., und Yoder, J.I. (2003). Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology *84*, 858-868.

Holyoak, C.D., Bracey, D., Piper, P.W., Kuchler, K., und Coote, P.J. (1999). The Saccharomyces cerevisiae weak-acid-inducible ABC transporter Pdr12 transports fluorescein and preservative anions from the cytosol by an energy-dependent mechanism. J Bacteriol *181*, 4644-4652.

Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M.Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K., und Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom *45*, 703-714.

Huang, H., She, Z., Lin, Y., Vrijmoed, L.L., und Lin, W. (2007). Cyclic peptides from an endophytic fungus obtained from a mangrove leaf (Kandelia candel). J Nat Prod *70*, 1696-1699.

Hübschmann, H.-J. (2009). Handbook of GC/MS. . Wiley-VCH-Verlag Weinheim.

Hussain, A., und Vancura, V. (1970). Formation of biologically active substances by rhizosphere bacteria and their effect on plant growth. Folia Microbiol (Praha) *15*, 468-478.

Ishikawa, H., Schubert, W.J., und Nord, F.F. (1963). Investigations on Lignins and Lignification. Xxx. Enzymic Degradation of Guaiacylglycerol and Related Compounds by White-Rot Fungi. Biochem Z 338, 153-163.

Jacobs, S., Zechmann, B., Molitor, A., Trujillo, M., Petutschnig, E., Lipka, V., Kogel, K.H., und Schaefer, P. (2011). Broad Spectrum Suppression of Innate Immunity Is Required for Colonization of Arabidopsis thaliana Roots by the Fungus Piriformospora indica. Plant Physiol.

Jaitz, L., Mueller, B., Koellensperger, G., Huber, D., Oburger, E., Puschenreiter, M., und Hann, S. (2011). LC-MS analysis of low molecular weight organic acids derived from root exudation. Anal Bioanal Chem *400*, 2587-2596.

Kai, K., Mizutani, M., Kawamura, N., Yamamoto, R., Tamai, M., Yamaguchi, H., Sakata, K., und Shimizu, B. (2008). Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J *55*, 989-999.

Kai, K., Shimizu, B., Mizutani, M., Watanabe, K., und Sakata, K. (2006). Accumulation of coumarins in Arabidopsis thaliana. Phytochemistry *67*, 379-386.

Kakinuma, A., und Yamatodani, S. (1964). L-Glutamic Acid Formation from 2-Furoic Acid by Soil Bacteria. Nature *201*, 420-421.

Kaldorf, M., Koch, B., Rexer, K.H., Kost, G., und Varma, A. (2005). Patterns of interaction between Populus Esch5 and Piriformospora indica: a transition from mutualism to antagonism. Plant Biol (Stuttg) 7, 210-218.

Kamilova, F., Kravchenko, L.V., Shaposhnikov, A.I., Azarova, T., Makarova, N., und Lugtenberg,
B. (2006). Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact *19*, 250-256.

Kandler, O., und Hopf, H. (1982). Oligosaccharides based on sucrose (sucrosyl oligosaccharides). In Plant Carbohydrates 1 Encyclopedia of Plant Physiology: Plant Carbohydrates I, Intracellular Carbohydrates, New Series, Vol 13A, FA Loewus and W Tanner, eds (Berlin: Springer-Verlag), pp 348–383.

Karandashov, V., und Bucher, M. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci *10*, 22-29.

Katoh, A., und Hashimoto, T. (2004). Molecular biology of pyridine nucleotide and nicotine biosynthesis. Front Biosci *9*, 1577-1586.

Keller, S., Schneider, K., und Sussmuth, R.D. (2006). Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Antibiot (Tokyo) *59*, 801-803.

Kendziorski, C., Irizarry, R.A., Chen, K.S., Haag, J.D., und Gould, M.N. (2005). On the utility of pooling biological samples in microarray experiments. Proc Natl Acad Sci U S A *102*, 4252-4257.

Kienitz, H. (1968). Einführung in Massenspektrometrie, Kienitz, H., editor; Verlag Chemie, Weinheim. **Kinnersley, A.M., Scott, T.C.I., Yopp, J.H., und Whitten, G.H.** (1990). Promotion of plant growth by polymers of lactic acid. Plant Growth Regul *9*, 137-146.

Kliebenstein, D. (2004). Secondary metabolites and plant/environment interactions: a view through Arabidopsis thaliana tinged glasses. Plant Cell Environ, 675-684.

Knecht, K., Seyffarth, M., Desel, C., Thurau, T., Sherameti, I., Lou, B., Oelmuller, R., und Cai, D. (2010). Expression of BvGLP-1 encoding a germin-like protein from sugar beet in Arabidopsis thaliana leads to resistance against phytopathogenic fungi. Mol Plant Microbe Interact *23*, 446-457.

Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., Dormann, P., Weckwerth, W., Gibon, Y., Stitt, M., Willmitzer, L., Fernie, A.R., und Steinhauser, D. (2005). GMD@CSB.DB: the Golm Metabolome Database. Bioinformatics *21*, 1635-1638.

Kosuta, S., Chabaud, M., Lougnon, G., Gough, C., Denarie, J., Barker, D.G., und Becard, G. (2003). A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol *131*, 952-962.

Krastanov, A. (2010). Metabolomics - The State Of Art. Biotechnol & Biotechnol 24, 1537-1543.

Kreuzer, K., Adamczyk, J., Iijima, M., Wagner, M., Scheu, S., und Bonkowski, M. (2006). Grazing of a common species of soil protozoa (Acanthamoeba castellanii) affects rhizosphere bacterial community composition and root architecture of rice (Oryza sativa L.). Soil Biology & Biochemistry *38*, 1665-1672.

Kumar, M., Yadav, V., Singh, A., Tuteja, N., und Johri, A.K. (2011a). Piriformospora indica enhances plant growth by transferring phosphate. Plant Signal Behav 6.

Kumar, M., Yadav, V., Tuteja, N., und Johri, A.K. (2009). Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology *155*, 780-790.

Kumar, R., Bhatia, R., Kukreja, K., Behl, R.K., Dudeja, S.S., und Narula, N. (2007). Establishment of Azotobacter on plant roots: chemotactic response, development and analysis of root exudates of cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.). J Basic Microbiol *47*, 436-439.

Kumar, V., Sahai, V., und Bisaria, V.S. (2011b). High-density spore production of Piriformospora indica, a plant growth-promoting endophyte, by optimization of nutritional and cultural parameters. Bioresour Technol *102*, 3169-3175.

Lanoue, A., Burlat, V., Henkes, G.J., Koch, I., Schurr, U., und Rose, U.S. (2010). De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol *185*, 577-588.

Last, R.L., Jones, A.D., und Shachar-Hill, Y. (2007). Towards the plant metabolome and beyond. Nat Rev Mol Cell Biol *8*, 167-174.

Lee, Y.C., Johnson, J.M., Chien, C.T., Sun, C., Cai, D., Lou, B., Oelmuller, R., und Yeh, K.W. (2011). Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact *24*, 421-431.

Lehle, L. (1990). Phosphatidyl inositol metabolism and its role in signal transduction in growing plants. Plant Mol Biol *15*, 647-658.

Lehmann, W.D. (1996). In: Massenspektrometrie in der Biochemie, Heidelberg, Neckar Spektrum Akademischer Verlag.

Leyman, B., Van Dijck, P., und Thevelein, J.M. (2001). An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci *6*, 510-513.

Lipton, D.S., Blanchar, R.W., und Blevins, D.G. (1987). Citrate, Malate, and Succinate Concentration in Exudates from P-Sufficient and P-Stressed Medicago sativa L. Seedlings. Plant Physiol *85*, 315-317.

Liu, L.H., Ludewig, U., Frommer, W.B., und von Wiren, N. (2003). AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell *15*, 790-800.

Loewus, F.A., und Murthy, P.P.N. (2000). myo-Inositol metabolism in plants. Plant Sci 150, 1-19.

Lommen, A. (2009). MetAlign: interface-driven, versatile metabolomics tool for hyphenated full-scan mass spectrometry data preprocessing. Anal Chem *81*, 3079-3086.

Lopez, M., Tejera, N.A., Iribarne, C., Lluch, C., und Herrera-Cervera, J.A. (2008). Trehalose and trehalase in root nodules of Medicago truncatula and Phaseolus vulgaris in response to salt stress. Physiol Plant *134*, 575-582.

Lopez, M.F., Manner, P., Willmann, A., Hampp, R., und Nehls, U. (2007). Increased trehalose biosynthesis in Hartig net hyphae of ectomycorrhizas. New Phytol *174*, 389-398.

Loyola-Vargas, V.M., Broeckling, C.D., Badri, D., und Vivanco, J.M. (2007). Effect of transporters on the secretion of phytochemicals by the roots of Arabidopsis thaliana. Planta 225, 301-310.

Luedemann, A., Strassburg, K., Erban, A., und Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography--mass spectrometry (GC-MS)-based metabolite profiling experiments. Bioinformatics *24*, 732-737.

Lugtenberg, B.J., Dekkers, L., und Bloemberg, G.V. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol *39*, 461-490.

Lunn, J.E., Feil, R., Hendriks, J.H., Gibon, Y., Morcuende, R., Osuna, D., Scheible, W.R., Carillo, P., Hajirezaei, M.R., und Stitt, M. (2006). Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADPglucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J *397*, 139-148.

Maillet, F., Poinsot, V., Andre, O., Puech-Pages, V., Haouy, A., Gueunier, M., Cromer, L., Giraudet, D., Formey, D., Niebel, A., Martinez, E.A., Driguez, H., Becard, G., und Denarie, J. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature *469*, 58-63. Manetti, C., Bianchetti, C., Casciani, L., Castro, C., Di Cocco, M.E., Miccheli, A., Motto, M., und Conti, F. (2006). A metabonomic study of transgenic maize (Zea mays) seeds revealed variations in osmolytes and branched amino acids. J Exp Bot *57*, 2613-2625.

Martin, F., Ramstedt, M., Soderhall, K., und Canet, D. (1988). Carbohydrate and Amino Acid Metabolism in the Ectomycorrhizal Ascomycete Sphaerosporella brunnea during Glucose Utilization : A C NMR Study. Plant Physiol *86*, 935-940.

Matern, U. (1991). Coumarins and other phenylpropanoid compounds in the defense response of plant cells. Planta Med *57*, S15-20.

Matsui, A., Yin, Y., Yamanaka, K., Iwasaki, M., und Ashihara, H. (2007). Metabolic fate of nicotinamide in higher plants. Physiol Plant *131*, 191-200.

Meier, S., Alvear, M., Borie, F., Aguilera, P., Ginocchio, R., und Cornejo, P. (2011). Influence of copper on root exudate patterns in some metallophytes and agricultural plants. Ecotoxicol Environ Saf. Meijer, H.J., und Munnik, T. (2003). Phospholipid-based signaling in plants. Annu Rev Plant Biol *54*, 265-306.

Micallef, S.A., Shiaris, M.P., und Colon-Carmona, A. (2009). Influence of Arabidopsis thaliana accessions on rhizobacterial communities and natural variation in root exudates. J Exp Bot *60*, 1729-1742.

Miller, M.B., und Bassler, B.L. (2001). Quorum sensing in bacteria. Annu Rev Microbiol *55*, 165-199. Minorsky, P.V. (2002). Trigonelline: a diverse regulator in plants. . Plant Physiol *128*, 7-8.

Molitor, A., und Kogel, K.H. (2009). Induced resistance triggered by Piriformospora indica. Plant Signal Behav *4*, 215-216.

Mueller, J.H., und Klotz, A.W. (1938). Pantothenic acid as a growth factor for the Diphtheria Bacillus. J Am Chem Soc *60*, 3086-3087.

Muller, J., Aeschbacher, R.A., Wingler, A., Boller, T., und Wiemken, A. (2001). Trehalose and trehalase in Arabidopsis. Plant Physiol *125*, 1086-1093.

Müller, J., Xie, Z.P., Staehelin, C., Mellor, R.B., Boller, T., und Wiemken, A. (1994). Trehalose and trehalase in root nodules from various legumes. Physiol Plant *90*, 86-89.

Murray, J.D. (2011). Invasion by invitation: rhizobial infection in legumes. Mol Plant Microbe Interact *24*, 631-639.

Nagahashi, G., und Douds, D.D., Jr. (2011). The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Fungal Biol *115*, 351-358.

Nakabayashi, R., Kusano, M., Kobayashi, M., Tohge, T., Yonekura-Sakakibara, K., Kogure, N., Yamazaki, M., Kitajima, M., Saito, K., und Takayama, H. (2009). Metabolomics-oriented isolation and structure elucidation of 37 compounds including two anthocyanins from Arabidopsis thaliana. Phytochemistry *70*, 1017-1029.

Narvaez-Vasquez, J., Florin-Christensen, J., und Ryan, C.A. (1999). Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell *11*, 2249-2260.

Nehls, U., Gohringer, F., Wittulsky, S., und Dietz, S. (2010). Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol (Stuttg) *12*, 292-301.

Newman, D.J., Cragg, G.M., und Snader, K.M. (2003). Natural products as a source of new drugs over the period 1981–2002. Journal of Natural Products *66*, 1022–1037.

Niederer, M., Pankow, W., und Wiemken, A. (1989). Trehalose synthesis in mycorrhiza of Norway spruce – an indicator of vitality. European Journal of Forest Pathology *19*, 14-20.

Niederer, M., Pankow, W., und Wiemken, A. (1992). Seasonal changes of soluble carbohydrates in mycorrhizas of Norway spruce and changes induced by exposure to frost and desiccation. . European Journal of Forest Pathology *22*, 291-299.

Niemi, K., Sutela, S., Haggman, H., Scagel, C., Vuosku, J., Jokela, A., und Sarjala, T. (2006). Changes in polyamine content and localization of Pinus sylvestris ADC and Suillus variegatus ODC mRNA transcripts during the formation of mycorrhizal interaction in an in vitro cultivation system. J Exp Bot *57*, 2795-2804.

Nord, F.F. (1954). The formation of lignin and its biochemical degradation. Geochimica et Cosmcchimica Acta *28*, 1507-1521.

Nordstrom, A., O'Maille, G., Qin, C., und Siuzdak, G. (2006). Nonlinear data alignment for UPLC-MS and HPLC-MS based metabolomics: quantitative analysis of endogenous and exogenous metabolites in human serum. Anal Chem *78*, 3289-3295.

Ohkama-Ohtsu, N., und Wasaki, J. (2010). Recent progress in plant nutrition research: cross-talk between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol *51*, 1255-1264.

Ohlsson, A.B., Landberg, T., Berglund, T., und Greger, M. (2008). Increased metal tolerance in Salix by nicotinamide and nicotinic acid. Plant Physiol Biochem *46*, 655-664.

Olah, B., Briere, C., Becard, G., Denarie, J., und Gough, C. (2005). Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J *44*, 195-207.

Oldroyd, G.E., und Downie, J.A. (2006). Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol *9*, 351-357.

Otsuka, Y., Sonoki, T., Ikeda, S., Kajita, S., Nakamura, M., und Katayama, Y. (2003). Detection and characterization of a novel extracellular fungal enzyme that catalyzes the specific and hydrolytic cleavage of lignin guaiacylglycerol beta-aryl ether linkages. Eur J Biochem *270*, 2353-2362.

Parniske, M. (2008). Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6, 763-775.

Pearce, G., Moura, D.S., Stratmann, J., und Ryan, C.A. (2001). Production of multiple plant hormones from a single polyprotein precursor. Nature *411*, 817-820.

Peskan-Berghöfer, T., Shahollari, B., Giong, P.H., Hehl, S., Markert, C., Blanke, V., Kost, G., Varma, A., und Oelmüller, R. (2004). Association of *Piriformospora indica* with *Arabidopsis thaliana* roots represents a novel system to study beneficial plant–microbe interactions and involves early plant protein modifications in the endoplasmic reticulum and at the plasma membrane. PHYSIOLOGIA PLANTARUM *122*, 465-477.

Pfeffer, P.E., Douds, D.D.J., Bucking, H., Schwartz, D.P., und Shachar-Hill, Y. (2004). The fungus does not transfer carbon to or between roots in an arbuscular mycorrhizal symbiosis. New Phytol *163*, 617-627.

Pfeffer, P.E., Douds Jr, D.D., Becard, G., und Shachar-Hill, Y. (1999). Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol *120*, 587-598.

Pirenos, M.A., Magalhaes, J.V., Alves, V.M.C., und Kochian, L.V. (2002). The physiology and biophysics of an aluminium tolerance mechanism based on root citrate exudation in maize. Plant Physiol *129*, 1194-1206.

Plumb, R.S., Jones, M.D., Rainville, P.D., und Nicholson, J.K. (2008). A rapid simple approach to screening pharmaceutical products using ultra-performance LC coupled to time-of-flight mass spectrometry and pattern recognition. J Chromatogr Sci *46*, 193-198.

Raboy, V. (2003). myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64, 1033-1043.

Rahnamaeian, M., Langen, G., Imani, J., Khalifa, W., Altincicek, B., von Wettstein, D., Kogel, K.H., und Vilcinskas, A. (2009). Insect peptide metchnikowin confers on barley a selective capacity for resistance to fungal ascomycetes pathogens. J Exp Bot *60*, 4105-4114.

Rai, M., Acharya, D., Singh, A., und Varma, A. (2001). Positive growth responses of the medicinal plants Spilanthes calva and Withania somnifera to inoculation by Piriformospora indica in a field trial. Mycorrhiza *11*, 123-128.

Rai, M.K., Varma, A., und Pandey, A.K. (2004). Antifungal potential of *Spilanthes calva* after inoculation of *Piriformospora indica*. Mycoses *47*, 479-481.

Rainey, P.B. (1999). Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ Microbiol *1*, 243-257.

Ribeiro, M.J., Reinders, A., Boller, T., Wiemken, A., und De Virgilio, C. (1997). Trehalose synthesis is important for the acquisition of thermotolerance in Schizosaccharomyces pombe. Mol Microbiol *25*, 571-581.

Riedlinger, J., Schrey, S.D., Tarkka, M.T., Hampp, R., Kapur, M., und Fiedler, H.P. (2006). Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol *72*, 3550-3557.

Rodriguez-Salazar, J., Suarez, R., Caballero-Mellado, J., und Iturriaga, G. (2009). Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett *296*, 52-59.

Rodriguez, R., und Redman, R. (2008). More than 400 million years of evolution and some plants still can't make it on their own: plant stress tolerance via fungal symbiosis. J Exp Bot *59*, 1109-1114.

Rohlfs, M., und Churchill, A.C. (2011). Fungal secondary metabolites as modulators of interactions with insects and other arthropods. Fungal Genet Biol *48*, 23-34.

Roshina, V., und Roshina, V. (1993). In: The excretory functions of higher plants. Springer-Verlag, Berlin.

Ryan, L.A., Dal Bello, F., und Arendt, E.K. (2008). The use of sourdough fermented by antifungal LAB to reduce the amount of calcium propionate in bread. Int J Food Microbiol *125*, 274-278.

Saguir, F.M., Loto Campos, I.E., und Manca de Nadra, M.C. (2008). Utilization of amino acids and dipeptides by Lactobacillus plantarum from orange in nutritionally stressed conditions. J Appl Microbiol *104*, 1597-1604.

Sahay, N.S., und Varma, A. (1999). *Piriformospora indica*: a new biological hardening tool for micropropagated plants. FEMS Microbiol Lett *181*, 297-302.

Sahi, S.V., Saxena, P.K., Abrams, G.D., und King, J. (1988). Identification of the biochemical lesion in a pantothenic requiring auxotroph of Datura innoxia P. Mill. J Plant Physiol *133*, 277-280.

Sarma, M.V., Kumar, V., Saharan, K., Srivastava, R., Sharma, A.K., Prakash, A., Sahai, V., und Bisaria, V.S. (2011). Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol.

Sarret, G., Harada, E., Choi, Y.E., Isaure, M.P., Geoffroy, N., Fakra, S., Marcus, M.A., Birschwilks, M., Clemens, S., und Manceau, A. (2006). Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol *141*, 1021-1034.

Schafer, P., Khatabi, B., und Kogel, K.H. (2007). Root cell death and systemic effects of *Piriformospora indica*: a study on mutualism. FEMS Microbiol Lett 275, 1-7.

Schafer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons-Kuhnemann, J., Sonnewald, S., Sonnewald, U., und Kogel, K.H. (2009a). Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J.

Schafer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons-Kuhnemann, J., Sonnewald, S., Sonnewald, U., und Kogel, K.H. (2009b). Phytohormones in plant root-Piriformospora indica mutualism. Plant Signal Behav *4*, 669-671.

Schauer, N., Steinhauser, D., Strelkov, S., Schomburg, D., Allison, G., Moritz, T., Lundgren, K., Roessner-Tunali, U., Forbes, M.G., Willmitzer, L., Fernie, A.R., und Kopka, J. (2005). GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett *579*, 1332-1337.

Schellenbaum, L., Sprenger, N., Schuepp, H., Wiemken, A., und Boller, T. (1999). Effects of drought, transgenic expression of a fructan synthesizing enzyme and of mycorrhizal symbiosis on growth and soluble carbohydrate pools in tobacco plants. New Phytol *142*, 67-77.

Schilling, D.G., Jones, L.A., Worsham, A.D., Parker, C.E., und Wilson, R.F. (1986). Isolation and identification of some phytotoxic compounds from aqueous extracts of rye (Secale cereale L.). J Agric Food Chem *34*, 633-638.

Schlesier, B., Bréton, F., und Mock, H.-P. (2003). A hydroponic culture system for growing *Arabidopsis thaliana* plantlets under sterile conditions. Plant Molecular Biology Reporter *21*, 449-456.

Schneider, S., Beyhl, D., Hedrich, R., und Sauer, N. (2008). Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1, a novel tonoplast-localized transporter for myo-inositol. Plant Cell *20*, 1073-1087.

Schultz, C., Gilson, P., Oxley, D., Youl, J., und Bacic, A. (1998). GPI-anchors on arabinogalactanproteins: Implications for signalling in plants. Trends Plant Sci *3*, 426-431.

Schultze, M., und Kondorosi, A. (1998). Regulation of symbiotic root nodule development. Annu Rev Genet 32, 33-57.

Schwab, W. (2003). Metabolome diversity: too few genes, too many metabolites? Phytochemistry *6*2, 837-849.

Serfling, A., Wirsel, S.G., Lind, V., und Deising, H.B. (2007). Performance of the biocontrol fungus *Piriformospora indica* on wheat under greenhouse and field conditions. Phytopathology *97*, 523-531.

Shahollari, B., Vadassery, J., Varma, A., und Oelmuller, R. (2007). A leucine-rich repeat protein is required for growth promotion and enhanced seed production mediated by the endophytic fungus *Piriformospora indica* in *Arabidopsis thaliana*. Plant J *50*, 1-13.

Shahollari, B., Varma, A., und Oelmuller, R. (2005). Expression of a receptor kinase in Arabidopsis roots is stimulated by the basidiomycete Piriformospora indica and the protein accumulates in Triton X-100 insoluble plasma membrane microdomains. J Plant Physiol *162*, 945-958.

Sharma, M., Schmid, M., Rothballer, M., Hause, G., Zuccaro, A., Imani, J., Kampfer, P., Domann, E., Schafer, P., Hartmann, A., und Kogel, K.H. (2008). Detection and identification of bacteria intimately associated with fungi of the order Sebacinales. Cell Microbiol *10*, 2235-2246.

Sherameti, I., Shahollari, B., Venus, Y., Altschmied, L., Varma, A., und Oelmuller, R. (2005). The endophytic fungus *Piriformospora indica* stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and *Arabidopsis* roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem *280*, 26241-26247.

Sherameti, I., Tripathi, S., Varma, A., und Oelmuller, R. (2008a). The root-colonizing endophyte *Pirifomospora indica* confers drought tolerance in *Arabidopsis* by stimulating the expression of drought stress-related genes in leaves. Mol Plant Microbe Interact *21*, 799-807.

Sherameti, I., Venus, Y., Drzewiecki, C., Tripathi, S., Dan, V.M., Nitz, I., Varma, A., Grundler, F.M., und Oelmuller, R. (2008b). PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between *Arabidopsis thaliana* and the endophytic fungus *Piriformospora indica*. Plant J *54*, 428-439.

Sherma, J. (2005). UPLC: Ultra-performance liquid chromatography. J AOAC Int 88, 63A-67A.

Shimizu, B., Miyagawa, H., Ueno, T., Sakata, K., Watanabe, K., und Ogawa, K. (2005). Morning glory systemically accumulates scopoletin and scopolin after interaction with Fusarium oxysporum. Z Naturforsch C *60*, 83-90.

Singh, A., Sharma, J., Rexer, K.-H., und Varma, A. (2000). Plant productivity determinants beyond minerals, water and light: *Piriformospora indica* – A revolutionary plant growth promoting fungus. CURRENT SCIENCE *79*, 1548-1554.

Singh, B.K., Millard, P., Whiteley, A.S., und Murrell, J.C. (2004). Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol *12*, 386-393.

Singh, H.P., Batish, D.R., und Kohli, R.K. (1999). Autotoxicity: concept, organisms, and ecological significance. Critical Reviews in Plant Sciences *18*, 757-772.

Sirrenberg, A., Gobel, C., Grond, S., Czempinski, N., Ratzinger, A., Karlovsky, P., Santos, P., Feussner, I., und Pawlowski, K. (2007). *Piriformospora indica* affects plant growth by auxin production. Physiol Plant *131*, 581-589.

Slankis, V. (1973). Hormonal relationships in mycorrhizaldevelopment. In Ectomycorrhizae Eds G C Marks and T T Kozlowski Academic Press, NY, 232-298.

Smith, C., und Song, W. (1996). Comparative nutrition of pantothenic acid. The Journal of Nutritional Biochemistry 7, 312-321.

Smith, C.A., Want, E.J., O'Maille, G., Abagyan, R., und Siuzdak, G. (2006). XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem *78*, 779-787.

Söderström, B., Finlay, R.D., und Read, D.J. (1988). The structure and function of the vegetative mycelium of ectomycorrhizal plants 4. Qualitative analysis of carbohydrate contents of mycelium interconnecting host plants. New Phytologist *109*, 163-166.

Steeghs, M., Bais, H.P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., und Vivanco, J.M. (2004). Proton-transfer-reaction mass spectrometry as a new tool for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol *135*, 47-58.

Stein, E., Molitor, A., Kogel, K.H., und Waller, F. (2008). Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol *49*, 1747-1751.

Steindler, L., Bertani, I., De Sordi, L., Schwager, S., Eberl, L., und Venturi, V. (2009). Lasl/R and RhII/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 75, 5131-5140.

Streeter, J.G. (1985). Accumulation of alpha,alpha-trehalose by Rhizobium bacteria and bacteroids. J Bacteriol *164*, 78-84.

Streeter, J.G., und Gomez, M.L. (2006). Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules. Appl Environ Microbiol *7*2, 4250-4255.

Strehmel, N. (2010). GC-TOF-MS basierte Analyse von niedermolekularen Primär- und Sekundärmetaboliten agrarwirtschaftlich bedeutsamer Nutzpflanzen. unveröffentlichte Dissertaion, Universität Potsdam.

Strzelczyk, E., und Rozycki, H. (1985). Production of B-group vitamins by bacteria isolated from soil, rhizosphere, and mycorrhizosphere of pine (Pinus sylvestris L.). Zentralbl Mikrobiol *140*, 293-301.

Sun, C., Johnson, J.M., Cai, D., Sherameti, I., Oelmuller, R., und Lou, B. (2010). Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol *167*, 1009-1017.

Swaraj, K., und Bishnoi, N.R. (1999). Effect of salt stress on nodulation and nitrogen fixation in legumes. Indian J Exp Biol *37*, 843-848.

Tahiliani, A.G., und Beinlich, C.J. (1991). Pantothenic acid in health and disease. Vitam Horm *46*, 165-228.

Tautenhahn, R., Böttcher, C., und Neumann, S. (2007). Annotation of LC/ESI-MS mass signals. In: Hochreiter S (ed) Bioinformatics and research and development, Springer, Heidelberg. pp 371–380.

Tautenhahn, R., Böttcher, C., und Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics *9*, 504.

Taylor, P.J. (2005). Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem *38*, 328-334.

Tianniam, S., Bamba, T., und Fukusaki, E. (2009). Non-targeted metabolite fingerprinting of oriental folk medicine Angelica acutiloba roots by ultra performance liquid chromatography time-of-flight mass spectrometry. J Sep Sci *32*, 2233-2244.

Vadassery, J., und Oelmuller, R. (2009). Calcium signaling in pathogenic and beneficial plant microbe interactions: What can we learn from the interaction between Piriformospora indica and Arabidopsis thaliana. Plant Signal Behav *4*.

Vadassery, J., Ranf, S., Drzewiecki, C., Mithofer, A., Mazars, C., Scheel, D., Lee, J., und Oelmuller, R. (2009a). A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J.

Vadassery, J., Ritter, C., Venus, Y., Camehl, I., Varma, A., Shahollari, B., Novak, O., Strnad, M., Ludwig-Muller, J., und Oelmuller, R. (2008). The role of auxins and cytokinins in the mutualistic interaction between *Arabidopsis* and *Piriformospora indica*. Mol Plant Microbe Interact *21*, 1371-1383.

Vadassery, J., Tripathi, S., Prasad, R., Varma, A., und Oelmuller, R. (2009b). Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. J Plant Physiol.

Valle, T., Lopez, J.L., Hernandez, J.M., und Corchete, P. (1997). Antifungal activity of scopoletin and its differential accumulation in Ulmus pumila and Ulmus campestris cell suspension cultures infected with Ophiostoma ulmi spores. Plant Sci *125*, 97-101.

van der Heijden, M.G. (2010). Mycorrhizal fungi reduce nutrient loss from model grassland ecosystems. Ecology *91*, 1163-1171.

Van der Werf, P., und Meister, A. (1975). The metabolic formation and utilization of 5-oxo-L-proline (L-pyroglutamate, L-pyrrolidone carboxylate). Adv Enzymol Relat Areas Mol Biol *43*, 519-556.

VanEtten, H.D., Mansfield, J.W., Bailey, J.A., und Farmer, E.E. (1994). Two Classes of Plant Antibiotics: Phytoalexins versus "Phytoanticipins". Plant Cell 6, 1191-1192.

Varma, A., Savita, V., Sudha, Sahay, N., Butehorn, B., und Franken, P. (1999). *Piriformospora indica*, a cultivable plant-growth-promoting root endophyte. Appl Environ Microbiol *65*, 2741-2744.

Varma, A., Singh, A., Sudha, Sahay, N.S., Sharma, J., Roy, A., Kumari, M., Rana, D., Thakran, S., Deka, D., Bharati, K., Hurek, T.B., O., Rexer, K.-H., Kost, G., Hahn, A., Hock, B., Maier, W.,

Walter, M., Strack, D., und Kranner, I. (2001). Piriformospora indica: an axenically culturable mycorrhizal fungus. The Mycota IX (Hock, B,ed), Berlin: Springer Verlag, 125–150.

Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarbhoy, A., Bisen, P., Bütehorn, B., und Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a new rootcolonizing fungus. Mycologia, 898–905.

Vicedo, B., de Ia, O.L.M., Flors, V., Finiti, I., Del Amo, G., Walters, D., Real, M.D., Garcia-Agustin, P., und Gonzalez-Bosch, C. (2006). Control of the phytopathogen Botrytis cinerea using adipic acid monoethyl ester. Arch Microbiol *184*, 316-326.

Vierheilig, H., Coughlan, A.P., Wyss, U., und Piche, Y. (1998). Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol *64*, 5004-5007.

Vizcaino, J.A., Cardoza, R.E., Hauser, M., Hermosa, R., Rey, M., Llobell, A., Becker, J.M., Gutierrez, S., und Monte, E. (2006). ThPTR2, a di/tri-peptide transporter gene from Trichoderma harzianum. Fungal Genet Biol *43*, 234-246.

Vogel, G., Fiehn, O., Jean-Richard-dit-Bressel, L., Boller, T., Wiemken, A., Aeschbacher, R.A., und Wingler, A. (2001). Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J Exp Bot *52*, 1817-1826.

von Roepenack-Lahaye, E., Degenkolb, T., Zerjeski, M., Franz, M., Roth, U., Wessjohann, L., Schmidt, J., Scheel, D., und Clemens, S. (2004). Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol *134*, 548-559.

Walker, T.S., Bais, H.P., Deziel, E., Schweizer, H.P., Rahme, L.G., Fall, R., und Vivanco, J.M. (2004). Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol *134*, 320-331.

Wallenda, T., Schaeffer, C., Einig, W., Wingler, A., Hampp, R., Seith, B., George, E., und Marschner, H. (1996). Effects of varied soil nitrogen supply on Norway spruce (Picea abies [L] Karst). 2. Carbon metabolism in needles and mycorrhizal roots. Plant and Soil *186*, 361-369.

Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Huckelhoven, R., Neumann, C., von Wettstein, D., Franken, P., und Kogel, K.H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci U S A *102*, 13386-13391.

Wang, B., und Qiu, Y.L. (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza *16*, 299-363.

Wang, G., und Pichersky, E. (2007). Nicotinamidase participates in the salvage pathway of NAD biosynthesis in Arabidopsis. Plant J *49*, 1020-1029.

Weiss, M., Selosse, M.A., Rexer, K.H., Urban, A., und Oberwinkler, F. (2004). Sebacinales: a hitherto overlooked cosm of heterobasidiomycetes with a broad mycorrhizal potential. Mycol Res *108*, 1003-1010.

Wiemken, A. (1990). Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek *58*, 209-217.

Williams, P.G. (1985). Orchidaceous rhizoctonias in pot cultures of vesicular-arbuscular mycorrhizal fungi. Can J Bot *63*, 1329-1333.

Williams, R.J., Lyman, C.M., Goodyear, G.H., Truesdail, J.H., und Holaday, D. (1933). "Pantothenic Acid," A Growth Determinant of Universal Biological Occurrence. J Am Chem Soc *55*, 2912-2927.

Yadav, V., Kumar, M., Deep, D.K., Kumar, H., Sharma, R., Tripathi, T., Tuteja, N., Saxena, A.K., und Johri, A.K. (2010). A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in the phosphate transport to the host plant. J Biol Chem.

Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., und Hayashi, H. (2008). Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol *179*, 484-494.

Zhao, J., Davis, L.C., und Verpoorte, R. (2005). Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv *23*, 283-333.

Zuccaro, A., Lahrmann, U., Guldener, U., Langen, G., Pfiffi, S., Biedenkopf, D., Wong, P., Samans, B., Grimm, C., Basiewicz, M., Murat, C., Martin, F., und Kogel, K.H. (2011). Endophytic Life Strategies Decoded by Genome and Transcriptome Analyses of the Mutualistic Root Symbiont Piriformospora indica. PLoS Pathog 7, e1002290.

7.1 Gewebevergleich der differentiellen LC-MS Massensignale

Für alle differentiellen Massensignale, die in den LC-MS Analysen detektiert wurden, wurde ein Gewebevergleich durchgeführt. Dadurch kann beurteilt werden, ob ein differentielles Massensignal auch in anderen Geweben bzw. Medien vorkam und ob es dort ebenfalls differentiell war.

In den einzelnen Tabellen ist jeweils das differentielle Massensignal ([*m/z*]) die Retentionszeit (RT) in Sekunden des ESets 1 und die *fold changes* (FC) der jeweiligen ESets angegeben. Bei dem Vergleich wurde "~ 1" angegeben, wenn das Massensignal detektiert wurde, aber nicht differentiell war, "-" wenn das Massensignal nicht in dem Gewebe/Medium gefunden wurde. Der *fold change* sowie in welcher Gruppe das Massensignal größer war, wurden angegeben, wenn das Massensignal differentiell in dem jeweiligen Vergleich war. Es wurde in den verglichenen Geweben/Medien nur ein *fold change* angegeben, das Massensignal musste jedoch in beiden ESets differentiell sein.

7.1.1 Gewebevergleich der differentiellen LC-MS Massensignale der Wurzeln

Tab. 7. 1: Gewebevergleich der differentiellen Massensignale der Wurzeln At > AtPi im positiven Modus gemessen.

				Blätter	Myzel	Eluate /	AtPi vs. At	Eluate At	vs. m	Eluate r	n vs. Pi	Eluate At	Pi vs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC	FC		FC		FC		FC	
252,9694	28	3,2	2,0	~ 1	-	-		-		-		-	
353,9198	29	3,1	2,0	~ 1	-	-		-		-		-	
454,8709	29	3,0	2,2	-	-	-		-		-		-	
220,0930	156	3,7	2,6	~ 1	-	~ 1		~ 1		~ 1		~ 1	
259,1104	156	2,3	2,1	~ 1	-	~ 1		10,3	At > m	~ 1		5,3	Pi < AtPi
237,1188	156	4,6	3,5	~ 1	-	~ 1		~ 1		~ 1		~ 1	
333,0799	157	2,0	2,2	-	-	-		-		-		-	
410,0580	158	3,2	2,2	-	-	-		-		-		-	
413,1397	167	2,5	2,1	~ 1	-	~ 1		-		-		-	
592,1609	173	2,8	2,3	-	-	~ 1		67936,2	At > m	-		-	
517,0182	185	2,4	2,2	~ 1	-	-		-		-		-	
200,0646	186	2,2	2,0	~ 1	-	-		-		-		-	
386,1848	186	2,4	2,0	~ 1	-	~ 1		72978,9	At > m	-		-	
504,2298	275	3,2	2,0	~ 1	-	~ 1		38906,9	At > m	-		30667,6	Pi < AtPi

_				Blätter	Myzel	Eluate AtP	i vs. At	Eluate At vs.	m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
	RT	FC	FC	FC	FC	FC		FC		FC		FC	
[<i>m/z</i>]	[sek]	ESet 1	ESet 2										
128,0363	42,84	4,1	2,7	-	-	-		-		-		-	
801,1453	158,63	2,6	2,1	-	-	-		-		-		-	
849,1982	175,76	2,9	4,0	-	-	-		-		-		-	
590,1618	207,51	2,9	2,4	-	-	~ 1		7936,8	At > m	-		-	
530,0510	231,63	9244,7	2,9	-	-	-		-		-		-	
313,0504	459,29	3,9	2,0	-	-	-		-		-		-	
473,1282	459,79	3,9	2,0	-	-	-		-		-		-	

Tab. 7. 2: Gewebevergleich der differentiellen Massensignale der Wurzeln At > AtPi im negativen Modus gemessen.

Tab. 7. 3: Gewebevergleich der differentiellen Massensignale der Wurzeln At < AtPi im positvien Modus gemessen.

				Blätter	Myzel	Eluate	e AtPi vs. At	Eluate At	vs. m	Eluate	m vs. Pi	Eluate AtF	Pi vs. Pi
[<i>m/z</i>]	RT [sek]	FC	FC	FC	FC	FC		FC		FC		FC	
239,0627	45	2,8	2,7	-	-	-		-		-		-	
126,0320	65	1676468,4	1729239,5	-	-	~ 1		~ 1		~ 1		~ 1	
113,0237	65	11,9	343398,4	-	-	~ 1		~ 1		~ 1		~ 1	
323,0684	117	6,0	6,0	-	-	~ 1		-		-		-	
323,0682	129	5,0	7,6	-	-	-		-		-		-	
513,1491	155	3,4	2,3	~ 1	-	-		-		-		-	
525,1786	165	5,0	2,9	-	-	-		-		-		-	
533,1674	166	7,3	2,6	-	-	-		-		-		-	
704,2318	166	66766,2	3,3	-	-	-		-		-		-	
365,1128	166	2,8	2,6	~ 1	-	~ 1		59035,6	At > m	-		57952,4	Pi < AtPi
343,1445	166	4,4	2,0	-	-	-		-		-		-	

325,1334	166	5,3	2,1	-	-	-	-		-	-	
697,2288	166	33775,6	2,2	-	-	-	-		-	-	
502,6482	166	3,5	3,4	-	-	-	-		-	-	
282,0932	167	2,9	4,2	-	-	~ 1	-		-	-	
516,0899	169	2,3	2,3	~ 1	-	-	-		-	-	
252,1043	169	2,1	2,8	~ 1	-	~ 1	-		-	-	
202,1220	170	2,1	2,4	~ 1	-	-	-		-	-	
224,1045	170	2,0	2,1	~ 1	-	~ 1	-		-	-	
193,0815	174	5,0	2,1	-	-	~ 1	-		-	-	
317,1151	174	5,8	507220,3	~ 1	-	~ 1	-		-	-	
395,1225	175	5,6	2,4	~ 1	-	~ 1	-		-	-	
767,2589	175	19923,7	3,5	-	-	-	-		-	-	
161,0554	175	4,6	2,7	-	-	~ 1	-		-	-	
329,1173	179	2,0	2,1	~ 1	-	~ 1	~ 1		-	-	
251,0930	179	91556,6	100303,4	-	-	~ 1	~ 1		~ 1	~ 1	
599,1518	181	3,3	2,6	-	-	-	-		-	-	
216,0599	183	91460,9	144943,7	-	-	-	-		-	-	
260,0486	183	23,1	474772,4	-	-		-		-	-	
238,0676	184	2,4	5,4	~ 1	-	~ 1	53110,3	At > m	-	43716,4	Pi < AtPi
801,1060	187	3,2	3,2	-	-	-	-		-	-	
367,0895	187	44912,5	2,7	-	-	-	-		-	-	
422,5949	187	29170,4	46835,9	-	-	-	-		-	-	
509,1337	187	20760,3	3,2	-	-	-	-		-	-	
385,0918	188	30205,9	64164,3	-	-	-	-		-	-	
445,0771	188	110954,1	161944,1	-	-	-	-		-	-	
145,0446	188	210818,2	334746,8	~ 1	-	~ 1	-		-	-	
285,0921	188	220746,9	11,4	-	-	~ 1	-		-	-	
302,1183	188	63367,3	191949,5	~ 1	-	-	-		-	-	
446,1050	188	149023,0	339855,7	-	-	-	-		-	-	

588,1505	188	18720,5	40595,1	-	-	-		-		-	-	
341,0538	188	48352,7	78212,6	-	-	-		-		-	-	
591,1626	188	9,2	7,0	~ 1	-	-		-		-	-	
339,0117	188	39083,5	3,7	-	-	-		-		-	-	
304,0649	188	292710,1	14,6	-	-	-		-		-	-	
296,0760	188	44566,5	82951,0	~ 1	-	-		-		-	-	
438,1160	188	24355,0	52630,4	-	-	-		-		-	-	
243,0506	188	32612,6	44512,1	-	-	-		-		-	-	
323,0421	188	9,9	7,7	-	-	-		-		-	-	
307,0733	188	10,8	6,2	~ 1	-	5,5	At < AtPi	-		-	227257,5	Pi < AtPi
185,0389	188	4,5	3,6	-	-	-		-		-	-	
504,1219	188	47020,3	25816,2	-	-	-		-		-	-	
124,0341	194	3,0	3,6	-	-	~ 1		201132,3	At > m	-	-	
390,1103	195	5,6	6,5	-	-	4,9	At < AtPi	-		-	102978,8	Pi < AtPi
267,0831	195	5,4	5,5	-	-	-		-		-	-	
249,0692	195	5,2	4,4	~ 1	-	~ 1		-		-	75058,2	Pi < AtPi
274,0649	197	80407,7	2,8	~ 1	-	~ 1		-		-	-	
252,0834	197	3,5	5,1	-	-	~ 1		-		-	-	
416,1537	201	4,4	4,7	-	-	~ 1		-		-	-	
331,1320	211	10,7	125231,6	-	-	-		-		-	-	
352,1542	213	2,3	87961,4	-	-	~ 1		-		-	-	
418,1301	214	2,2	2,6	-	-	~ 1		-		-	53969,0	Pi < AtPi
409,1418	224	5,9	4,0	-	-	-		-		-	-	
390,0657	228	63783,8	63834,8	-	-	-		-		-	-	
388,1197	228	34628,2	92082,8	-	-	~ 1		-		-	-	
763,1626	228	20312,0	24549,8	-	-	-		-		-	-	
393,0741	228	27,0	11,8	~ 1	-	91486,5	At < AtPi	-		-	2,6	Pi < AtPi
329,0480	228	38100,3	30076,7	-	-	-		-		-	-	
390,5668	228	25357,9	22545,9	-	-	-		-		-	-	

409,0470	228	29934,0	66581,3	-	-	~ 1		-		-	-	
271,0399	228	9,5	5,4	-	-	-		-		-	-	
539,1316	229	9,7	5,9	-	-	-		-		-	-	
352,1370	232	88541,0	87961,4	-	-	~ 1		-		-	-	
294,0121	240	5,5	37668,2	-	-	-		-		-	-	
272,0300	240	7,4	63307,4	-	-	-		-		-	-	
138,9912	240	5,5	76886,4	-	-	-		-		-	-	
429,2014	249	43602,7	223953,4	-	-	~ 1		-		-	~ 1	
133,0606	256	3,6	13,0	-	-	-		-		-	-	
613,1467	260	2,5	2,1	-	-	~ 1		-		-	-	
193,0476	260	2,2	2,8	-	-	~ 1		-		-	-	
287,0524	260	5,7	4,8	-	-	~ 1		-		-	-	
561,1535	271	2,2	2,0	-	-	-		-		-	-	
531,1422	272	2,7	2,4	-	-	-		-		-	-	
267,0848	272	2,4	2,2	-	-	~ 1		-		-	-	
429,2047	283	42278,7	45478,7	-	-	~ 1		-		-	-	
275,1588	285	2,9	2,1	-	-	-		-		-	-	
311,1792	285	2,7	2,1	-	-	-		-		-	-	
307,1847	292	202174,2	102205,0	-	-	-		-		-	-	
275,1592	300	2,0	2,1	-	-	-		-		-	-	
667,2126	300	2,4	2,1	-	-	~ 1		-		-	-	
545,1550	314	11,3	5,6	-	-	~ 1		243803,6	At > m	-	395215,7	Pi < AtPi
565,2186	348	3,2	2,5	-	-	-		-		-	-	
581,1858	348	2,5	2,1	-	-	-		-		-	-	
230,0840	348	2,2	2,3	-	-	-		-		-	-	
221,1142	349	3,0	2,4	~ 1	-	~ 1	At < AtPi	-		-	-	
651,2182	366	2,8	3,2	-	-	-		-		-	-	
335,0558	366	2,6	2,7	~ 1	-	-		-		-	-	
500,2662	451	2,4	3,9	-	-	-		-		-	-	

337,2668	451	2,5	3,1	~ 1	~ 1	-	-	-	-	
280,1425	453	2,0	2,2	-	-	-	-	-	-	
279,6405	453	2,5	2,8	-	~ 1	-	-	-	-	
542,3118	453	2,9	3,0	-	-	-	-	-	-	
460,2732	460	2,2	35551,4	-	-	-	-	-	-	
436,2718	477	2,2	3,8	-	-	-	-	-	-	
454,2843	477	2,3	4,1	~ 1	-	~ 1	-	-	-	
544,3278	486	70971,8	43399,7	-	-	-	-	-	-	
522,3472	494	4,7	4,1	-	-	-	-	-	-	
421,2266	506	2,3	2,1	~ 1	~ 1	~ 1	~ 1	~ 1	~ 1	
317,2017	507	4,9	3,0	-	-	~ 1	-	-	-	
524,3637	536	4,5	3,6	~ 1	-	-	-	-	-	
347,2149	540	6,6	2,3	-	-	~ 1	-	-	-	
603,3284	591	2,1	2,2	-	-	-	-	-	-	
413,3581	604	3,9	2,0	-	-	-	-	-	-	
481,2877	607	1391328,1	203942,7	-	~ 1	~ 1	-	-	-	
523,3523	653	2,1	2,4	-	-	-	-	-	-	
481,3391	655	3,1	2,3	-	~ 1	-	-	-	-	
481,3737	659	2,9	2,3	-	-	-	-	-	-	
629,3988	682	3,0	2,1	-	-	~ 1	-	-	-	
395,3617	683	2,3	2,2	-	-	-	-	-	-	

Tab. 7. 4: Gewebevergleich der differentiellen Massensignale der Wurzeln At < AtPi im negativen Modus gemessen.

				Blätter	Myzel		Eluate	AtPi vs. At	Eluate At vs. m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
		FC	FC										
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC		FC	1	FC	FC		FC	[<i>m/z</i>]
404,1070	29	2,5	2,7	~ 1	~ 1		3,3	At > AtPi	~ 1	~ 1		2,8	Pi > AtPi
439,0849	33	3,0	3,1	-	2,4	Pi > AtPi	~ 1		~ 1	~ 1		-	
299,0792	129	6,3	6,6	-	-		-		-	-		-	
351,1325	157	2,7	2,2	-	-		-		-	-		-	
395,1338	157	2,0	2,2	-	-		-		-	-		-	
387,1329	166	4,5	2,0	-	-		~ 1		-	-		-	
280,0855	167	2,6	3,7	~ 1	-		-		-	-		-	
236,0947	167	2,2	2,9	-	-		-		-	-		-	
492,1095	169	2,1	2,2	~ 1	-		36,8	At < AtPi	-	-		97891,0	Pi < AtPi
771,1713	171	2,2	20870,7	-	-		-		-	-		-	
793,1565	172	2,1	20531,6	-	-		-		-	-		-	
137,0253	172	2,0	5,6	-	-		~ 1		-	63749,5	Pi > m	2,4	Pi > AtPi
407,0658	172	2,0	4,1	-	-		-		-	-		-	
293,1271	174	218734,4	333570,3	~ 1	-		-		-	-		-	
575,1707	181	3,4	3,0	-	-		-		-	-		-	
236,0592	183	34,5	44,2	-	-		~ 1		-	-		12586,3	Pi < AtPi
192,0681	183	42787,7	22,8	-	-		-		-	-		-	
736,1241	184	9969,1	10586,3	-	-		-		-	-		-	
381,0563	187	22534,5	62999,0	-	-		-		-	-		-	
687,1350	187	9197,7	23544,2	-	-		-		-	-		-	
567,1812	187	9253,0	24345,1	-	-		-		-	-		-	
405,1238	187	8868,5	2,0	-	-		-		-	-		-	
121,0308	188	4,2	5,2	-	-		-		-	-		-	
283,0860	188	8,8	7,5	-	-		-		-	-		-	

329,0925	188	15,2	13,6	~ 1	-	-	-	-	-	
355,1095	188	3,5	2,1	~ 1	-	~ 1	-	-	-	
710,2429	194	2,2	3,8	-	-	-	-	-	-	
605,2080	195	2,6	3,2	-	-	-	-	-	-	
390,1255	195	3,6	3,6	-	-	~ 1	-	-	-	
250,0749	197	6,9	7,5	-	-	~ 1	-	-	~ 1	
385,1586	224	40035,8	135588,5	-	-	-	-	-	-	
437,0794	228	10597,9	5,9	-	-	-	-	-	-	
739,1916	228	18619,1	68570,7	-	-	-	-	-	-	
369,0918	228	32543,8	10,4	-	-	-	-	-	-	
761,1767	228	18615,9	11,6	-	-	-	-	-	-	
325,0996	228	62420,4	13,1	-	-	-	-	-	-	
265,0771	228	5,4	42924,1	~ 1	-	-	-	-	-	
515,1522	229	25798,3	4,6	-	-	-	-	-	-	
471,1601	229	15791,4	3,9	-	-	-	-	-	-	
237,0440	239	3,5	2,8	~ 1	-	-	-	-	-	
272,0195	240	7,0	9,8	-	-	-	-	-	-	
270,0219	240	7,8	18,7	-	-	-	-	-	-	
226,0309	240	6,8	10,8	-	-	-	-	-	-	
447,1044	242	4,6	4,3	~ 1	-	-	-	-	-	
264,0920	256	6,1	22,1	-	-	~ 1	-	-	17867,4	Pi < AtPi
589,1678	260	3,6	2,2	-	-	~ 1	-	-	-	
431,1180	260	12505,7	4,8	-	-	-	-	-	-	
537,1739	271	2,0	2,0	-	-	-	-	-	-	
405,2207	282	22893,7	8,8	-	-	-	-	-	-	
445,1462	288	2,0	2,0	-	-	-	-	-	-	
555,2554	300	3,1	2,3	-	-	-	-	-	-	
497,2458	348	3,0	2,3	-	-	-	-	-	-	
293,1799	348	3,3	2,6	-	-	~ 1	-	-	13937,3	Pi < AtPi

563,2205	348	2,5	2,1	-	-	-	-	-	-	
539,2574	366	2,8	2,9	-	-	-	-	-	-	
597,3142	471	10582,9	3,0	-	~ 1	-	-	-	-	
452,2872	477	2,0	5,3	-	~ 1	-	-	-	-	
566,3556	486	11,8	37777,6	-	~ 1	-	-	-	-	
501,2298	487	2,4	2,0	-	-	-	-	-	-	
637,4109	512	19985,8	11369,6	-	~ 1	-	-	-	-	
741,4016	522	6,1	27835,6	-	-	-	-	-	-	
568,3710	536	5589,0	3,1	-	-	-	-	-	-	
725,4046	571	3,8	5,6	-	-	-	-	-	-	
655,4552	583	2,0	2,2	-	-	-	-	-	-	
585,4956	649	6784,0	2,8	-	~ 1	-	-	-	-	
499,3715	653	2,6	2,6	-	-	-	-	-	-	
605,4165	682	5,0	2,8	-	~ 1	-	-	-	-	

7.1.2 Gewebevergleich der differentiellen LC-MS Massensignale des Myzels

Tab. 7. 5: Gewebevergleich der differentiellen Massensignale des Myzels Pi > AtPi im positiven Modus gemessen.

				Blätter	Myzel	Eluate AtPi vs. At	Eluate At vs. m	Eluate m vs. Pi	Eluate AtPi vs. Pi
		FC	FC						
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC	FC	FC	FC	FC
723,1934	34	4,0	3,4	-	~ 1	-	-	-	-
360,1465	34	3,4	2,6	-	~ 1	~ 1	-	-	-
702,2690	34	5,2	4,3	-	-	~ 1	~ 1	-	-
441,0960	34	3,5	4,1	-	-	-	-	-	-
707,2195	34	4,3	5,1	-	-	-	-	~ 1	3,8 Pi > AtPi
365,1021	35	2,5	2,7	-	~ 1	2,1 At > AtPi	~ 1	~ 1	2,2 Pi > AtPi
313,2284	491	2,1	2,4	-	-	~ 1	~ 1	~ 1	2,3 Pi < AtPi

335,1227	516	3,9	2,8	~ 1	~ 1	~ 1	3,1	At < m	~ 1	~ 1	
459,2735	541	4,6	6,1	-	-	-	-		-	-	
355,2915	559	28082,2	6,1	-	-	-	-		-	-	

Tab. 7. 6: Gewebevergleich der differentiellen Massensignale des Myzels Pi > AtPi im negativen Modus gemessen.

				Blätter	Myzel		Eluate	AtPi vs. At	Eluate At	vs. m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
		FC	FC											
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC		FC		FC		FC		FC	
719,2113	33	2,9	3,7	-	-		-		-		-		-	
746,2307	33	3,0	3,6	-	-		-		-		-		-	
781,2108	33	4,1	4,9	-	-		-		-		-		-	
439,0885	34	2,4	3,4	-	3,0	At < AtPi	~ 1		~ 1		~ 1		-	
347,2222	612	2,3	5,2	~ 1	~ 1		-		-		-		-	
279,2337	612	3,0	9,4	~ 1	~ 1		-		-		-		-	
533,4594	640	2,4	2,9	-	~ 1		~ 1		~ 1		~ 1		~ 1	
281,2499	650	3,1	4,9	-	~ 1		~ 1		~ 1		~ 1		~ 1	

Tab. 7. 7: Gewebevergleich der differentiellen Massensignale des Myzels Pi < AtPi im positiven Modus gemessen.

				Blätter	Myzel	Eluate	AtPi vs. At	Eluate At v	/s. m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
		FC	FC										
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC	FC		FC		FC		FC	
219,0239	28	2,0	2,9	-	~ 1	5,5	At < AtPi	-		-		~ 1	
707,6602	29	2,0	15956,7	-	-	-		-		-		-	
606,7068	29	2,0	26468,6	-	-	-		-		-		-	
399,0858	29	2,5	4,4	-	-	-		-		-		-	
483,9140	29	2,4	8,3	-	-	-		-		-		-	

382,9631	30	2,3	4,0	-	-	-	-	-	-	
718,4049	465	3,7	2,7	-	-	-	-	-	-	
597,3742	573	3,7	4,1	-	-	~ 1	-	-	-	
392,3303	606	2,7	3,3	-	-	-	-	-	-	

Tab. 7. 8: Gewebevergleich der differentiellen Massensignale des Myzels Pi < AtPi im negativen Modus gemessen.

				Blätter	Myzel	Eluate	AtPi vs. At	Eluate At	vs. m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
		FC	FC										
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC	FC		FC		FC		FC	
242,0519	27	2,2	2,6	~ 1	~ 1	-		-		-		-	
541,7287	28	2,0	5,4	~ 1	-	-		-		-		-	
539,7305	28	2,2	5,4	~ 1	-	-		-		-		-	
640,6835	28	2,1	4,7	~ 1	-	-		-		-		-	
669,7013	28	2,4	7,7	~ 1	-	-		-		-		-	
770,6548	28	2,5	11435,5	-	-	-		-		-		-	
768,6557	28	2,8	9,3	~ 1	-	-		-		-		-	
869,6098	28	2,4	6,0	-	-	-		-		-		-	
667,7013	28	2,6	9,1	~ 1	-	-		-		-		-	
566,7503	28	2,2	7,0	~ 1	~ 1	-		-		-		-	
568,7472	29	2,1	5,9	-	-	-		-		-		-	
637,3938	651	3,5	2,4	-	-	-		-		-		-	

7.1.3 Gewebevergleich der differentiellen LC-MS Massensignale des At vs. AtPi Mediums

Tab. 7. 9: Gewebevergleich de	differentiellen Massensignale des Mediums At	< AtPi im positiven Modus gemessen.

				Blätter	Wurz	eln	Myze	el	Eluate At	vs. m	Eluate m vs	. Pi	Eluate AtPi	vs. Pi
	RT	FC	FC											
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC		FC	•	FC		FC	T	FC	
226,9452	26	5,4	6,1	-							~ 1		~ 1	
219,0184	27	5,3	2,7	-	~ 1		2,9	Pi < AtPi					~ 1	
203,0461	28	4,0	2,2	-			~ 1		~ 1		~ 1		2,1	Pi < AtPi
527,1430	29	102691,2	115817,9	-									~ 1	
973,3014	41	2,0	3,1	-									~ 1	
124,0324	41	2,2	2,1	-	~ 1		~ 1		~ 1		~ 1		~ 1	
811,2491	41	2,5	2,5	-									~ 1	
649,2012	41	2,2	2,8	-									~ 1	
359,2179	77	4,3	4,4	-									3,9	Pi < AtPi
211,1008	78	230539,0	328439,3	-							299547,5	Pi > m	~ 1	
381,2030	78	2,7	3,2	-					~ 1		~ 1		2,5	Pi < AtPi
277,0870	80	3,8	15,6	-									7,0	Pi < AtPi
220,1117	102	4,1	12,5	-									145758,4	Pi < AtPi
202,1007	102	5,8	9,0	-									60866,7	Pi < AtPi
242,0943	102	5,4	9,0	-	~ 1								14,1	Pi < AtPi
342,1924	122	5,3	9,4	-									2,2	Pi < AtPi
360,2030	145	2,7	2,5	-					~ 1		~ 1		~ 1	
275,1039	165	3,2	2,1	-					~ 1				2,2	Pi < AtPi
252,1028	201	10,2	5,3	~ 1	2,1	At < AtPi					~ 1		~ 1	
149,0193	202	5,3	2,0	-							~ 1		~ 1	
261,0798	203	8,2	6,7	-							~ 1		3,2	Pi < AtPi
319,0832	207	8,0	7,9	-							~ 1		3,0	Pi < AtPi

252,0751	214	2,5	2,4	-	3,5	At < AtPi		~ 1	~ 1		~ 1	
307,0742	220	6,2	4,6	~ 1	10,8	At < AtPi					227257,5	Pi < AtPi
247,1003	226	5,4	4,0	-					~ 1		2,8	Pi < AtPi
261,1160	233	19,0	6,7	~ 1			~ 1		~ 1		~ 1	
670,3584	233	149576,0	72480,1	-							72480,1	Pi < AtPi
370,7132	235	102229,6	67018,3	-							3,7	Pi < AtPi
552,3077	235	106719,4	48982,8	-							2,4	Pi < AtPi
245,1777	237	3,3	2,3	-							14,0	Pi < AtPi
390,1109	238	5,2	4,8	~ 1	5,6	At < AtPi					102978,8	Pi < AtPi
718,3445	240	177436,3	86106,4	-							86084,0	Pi < AtPi
402,1220	243	5,0	6,9	-							3,1	Pi < AtPi
534,9275	243	210393,0	159243,8	-							159243,8	Pi < AtPi
573,2693	244	31,0	31,9	~ 1							13,3	Pi < AtPi
277,1126	246	2,2	7,6	-							2,3	Pi < AtPi
245,1299	247	6,2	2,4	-							~ 1	
386,1504	247	8,4	7,3	~ 1	~ 1			~ 1	2,0	Pi > m		
343,1881	257	48,1	91,3	-							4,7	Pi < AtPi
527,3049	257	248115,0	141385,4	-							7,4	Pi < AtPi
582,2840	261	153563,8	116913,3	-							116828,0	Pi < AtPi
620,6250	261	323989,4	190759,9	-							190759,9	Pi < AtPi
513,2880	263	81,4	5,8	-							5,0	Pi < AtPi
358,1645	266	4,4	4,2	-					~ 1		2,5	Pi < AtPi
418,1289	276	3,2	2,2	-	2,2	At < AtPi					53969,0	Pi < AtPi
655,3558	277	91506,3	47942,1	-							47942,2	Pi < AtPi
290,0944	278	50071,6	47270,7	-					44914,1	Pi > m	~ 1	
372,1447	279	5,9	5,3	-	~ 1						2,8	Pi < AtPi
333,1009	286	12,6	171,4	-								
340,1560	293	6,1	210,7	~ 1	~ 1						3,0	Pi < AtPi

386,1230	294	7,9	7,3	~ 1								3,8	Pi < AtPi
372,1791	296	6,0	5,3	-								2,7	Pi < AtPi
313,1453	297	5,1	3,1	-				~ 1				2,6	Pi < AtPi
393,0710	298	17,6	8,1	~ 1	27,0	At < AtPi						14,1	Pi < AtPi
688,3708	300	811724,9	427859,9	-						30392,1	Pi > m	2,3	Pi < AtPi
461,2318	313	6,5	4,2	-	~ 1		~ 1					3,0	Pi < AtPi
511,1702	332	9,2	6,3	-	~ 1							4,9	Pi > AtPi
161,0903	340	219191,6	265858,1	~ 1						1302029,1	Pi > m	4,4	Pi > AtPi
143,0797	340	150595,4	169833,5	-						747151,3	Pi > m	1037242,6	Pi < AtPi
410,1156	347	4,2	3,7	-	~ 1		~ 1	277973,4	At > m			132530,6	Pi < AtPi
390,1089	354	3,8	25,1	-	~ 1							108871,3	Pi < AtPi
250,0652	355	5,1	3,5	-	~ 1			32619,1	At > m			~ 1	
403,2724	360	120787,0	58131,2	-						94846,2	Pi > m	~ 1	
385,2591	360	59358,7	30012,3	-						32143,7	Pi > m	~ 1	
421,2807	360	109589,8	57401,6	-						86798,1	Pi > m	60679,6	Pi < AtPi
412,0941	371	62,8	2,1	-				53367,3	At > m			132530,6	Pi < AtPi
390,1102	372	5,5	25,1	-	~ 1							39789,9	Pi < AtPi
124,0329	372	5,4	4,5	-								3,4	Pi < AtPi
342,1346	380	3,1	4,7	-						~ 1		~ 1	
431,2211	388	3,8	4,9	-									
307,1748	425	9,7	5,1	-				3,0	At < m	~ 1			
315,1526	485	2,1	5,9	~ 1				~ 1				~ 1	
149,0170	515	5,3	10,4	-								4,7	Pi < AtPi
317,1278	515	3,7	3,1	-			~ 1	~ 1		3,1	Pi > m	5,6	Pi < AtPi
401,2445	521	67307,1	35703,8	-						47146,3	Pi > m	~ 1	
497,2718	523	1282790,8	230743,2	-			~ 1					230747,6	Pi < AtPi
327,2198	585	3,0	2,7	~ 1	~ 1			~ 1		~ 1		2,6	Pi < AtPi
619,3834	595	2,5	5,3	-			~ 1			~ 1		~ 1	

575,3580	596	2,2	5,0	-			~ 1	~ 1	~ 1	
531,3334	597	2,0	2,6	-				~ 1	~ 1	
353,1979	598	2,2	8,2	-				~ 1	3,8	Pi < AtPi

Tab. 7. 10: Gewebevergleich der differentiellen Massensignale des Mediums At < AtPi im negativen Modus gemessen.

				Blätte	r	Wurzelr	n	Myze	I	Eluate	At vs. m	Eluate m vs. F	Pj	Eluate At	Pi vs. Pi
	RT	FC	FC												
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC		FC		FC		FC		FC		FC	
378,9190	25	2,3	2,1	-		-		-		-		~ 1		~ 1	
316,9482	25	3,7	3,3	-		-		-		-		2,2	Pi > m	~ 1	
248,9609	26	3,3	42967,2	-		-		-		-		~ 1		~ 1	
267,0411	40	5,5	11,0	-		-		-		-		3,9	Pi > m	~ 1	
548,3367	44	2,1	2,0	-		-		-		-		-		2,1	Pi < AtPi
218,1044	102	37,6	14,0	-		-		-		-		-		8,7	Pi < AtPi
358,2024	145	2,6	2,1	-		-		-		~ 1		~ 1		~ 1	
175,0626	180	21105,8	13,9	-		-		-		-		-		23607,3	Pi < AtPi
264,0901	195	6,9	22941,1	-		-		-		-		-		2,1	Pi < AtPi
492,1128	202	36,8	5,5	~ 1		~ 1		-		-		-		97891,0	Pi < AtPi
195,0677	207	29958,1	30103,0	-		-		-		-		88120,6	Pi > m	2,9	Pi > AtPi
157,0521	219	22184,3	21384,4	-		-		-		-		-		21383,6	Pi < AtPi
285,1367	230	40043,8	39195,9	-		-		-		-		21543,2	Pi > m	~ 1	
131,0731	230	36,0	12,2	-		-		-		-		42097,3	Pi > m	2,1	Pi < AtPi
525,3145	257	18670,6	15951,6	-		-		-		-		-		6,6	Pi < AtPi
165,0574	271	2,4	111028,1	~ 1		~ 1		-		-		97626,5	Pi > m	~ 1	
266,1077	278	36534,8	37427,2	-		-		-		-		26024,3	Pi > m	~ 1	
248,0960	278	16730,6	18553,9	-		-		-		-		14053,7	Pi > m	~ 1	
171,0685	289	2,8	2,2	-		-		-		~ 1		~ 1		~ 1	
223,1008	340	265997,1	670623,3	~ 1				-		-		2782196,4	Pi > m	4,1	Pi > AtPi

469,1943	340	22726,3	72227,1	-		-	-	367987,1	Pi > m	5,1	Pi > AtPi
309,1063	418	3,1	3,8	-	~ 1	-	~ 1	4,5	Pi > m	~ 1	
251,1005	443	2,3	2,0	-	-	-	-	2,4	Pi > m	-	
315,1639	512	2,1	2,3	-	-	-	~ 1	~ 1		~ 1	

Tab. 7. 11: Gewebevergleich der differentiellen Massensignale des Mediums At > AtPi im positiven Modus gemessen.

				Blätte	er	Wurz	eln	Myzel		Eluate At vs	s. m	Eluate m v	s. Pi	Eluate A	tPi vs. Pi
	RT	FC	FC												
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC		FC		FC		FC		FC		FC	
327,1020	25	27699,9	2,7	-		-		~ 1		~ 1		~ 1		~ 1	
265,1048	26	3,6	3,7	~ 1		-		~ 1		~ 1		~ 1		2,5	Pi > AtPi
283,1110	26	2,9	2,9	-		-		~ 1		~ 1		~ 1		2,2	Pi > AtPi
122,0637	26	2,7	3,0	-		-		~ 1		~ 1		~ 1		2,5	Pi > AtPi
299,1083	26	3,0	3,2	~ 1		-		~ 1		~ 1		~ 1		2,2	Pi > AtPi
219,1203	26	3,2	3,2	-		-		-		~ 1		~ 1		2,1	Pi > AtPi
183,0632	26	2,5	3,0	-		-		-		~ 1		~ 1		2,2	Pi > AtPi
151,0909	26	2,9	2,6	-		-		-		~ 1		~ 1		~ 1	
281,0974	26	3,0	2,7	-		-		-		~ 1		~ 1		2,0	Pi > AtPi
123,0701	26	4,1	2,9	-		-		-		~ 1		~ 1		-	
233,1391	26	2,4	2,4	-		-		-		~ 1		~ 1		~ 1	
365,0941	28	3,7	2,1	-		-		2,7	Pi > AtPi	~ 1		~ 1		2,2	Pi > AtPi
444,0528	33	2,1	2,1	-		-		~ 1		~ 1		~ 1		~ 1	
362,0870	33	6,6	4,3	-		-		~ 1		~ 1		~ 1		2,9	Pi > AtPi
268,1399	43	3,1	2,6	-		-		-		~ 1		~ 1		~ 1	
239,1450	44	2,0	2,1	-		-		-		~ 1		~ 1		~ 1	
136,0555	48	3,6	2,3	~ 1		~ 1		-		4,7	At > m	2,0	Pi < m	4,2	Pi < AtPi
320,1655	59	84055,0	121631,8	-		-		-		~ 1		179391,5	Pi < m	-	
306,0907	60	2,1	2,0	~ 1		~ 1		-		4537125,5	At > m	201260,7	Pi > m	11,2	Pi < AtPi

288,0833	60	4,3	2,3	-	~ 1		-	93248,4	At > m	-		-	
368,0922	61	2,6	2,2	-	~ 1		-	93208,4	At > m	-		42807,7	Pi < AtPi
285,0700	90	2,3	2,1	-	-		-	~ 1		~ 1		2,1	Pi > AtPi
281,0994	107	3,1	2,7	-	~ 1		-	~ 1		~ 1		~ 1	
264,0748	139	2,2	2,1	-	-		-	~ 1		~ 1		~ 1	
297,0965	165	4,3	3,9	-	-		-	~ 1		~ 1		2,7	Pi > AtPi
281,1011	165	3,9	5,9	~ 1	-		-	~ 1		~ 1		2,7	Pi > AtPi
256,1009	169	3,3	2,2	~ 1	~ 1		-	101246,2	At > m	-		2,1	Pi < AtPi
261,1166	192	6,4	6,3	~ 1	-		~ 1	~ 1		11,5	Pi < m	-	
271,1665	204	3,0	112096,1	-	-		-	~ 1		115357,2	Pi < m	-	
169,0711	241	4,1	3,0	-	-		-	~ 1		3,3	Pi < m	~ 1	
427,0990	281	3,0	2,7	~ 1	~ 1		-	~ 1		~ 1		3,1	Pi > AtPi
494,1313	282	2,2	2,2	-	2,5	At > AtPi	-	66570,3	At > m	-		-	
343,0843	282	5,4	2,1	~ 1	2,6	At > AtPi	-	134931,8	At > m	-		-	
335,1048	340	2,7	2,6	-	2,0	At < AtPi	-	467243,3	At > m	-		-	
546,1475	352	2,1	2,0	-	~ 1		-	29251,0	At > m	-		-	

Tab. 7. 12: Gewebevergleich der differentiellen Massensignale des Mediums At > AtPi im negativen Modus gemessen.

				Blätt	ter	Wurze	In	Myzel	Eluate At v	s. m	Eluate m v	s. Pi	Eluate A	tPi vs. Pi
	RT	FC	FC											
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC		FC		FC	FC		FC		FC	
377,0876	30	3,6	3,8	-		-		~ 1	~ 1		~ 1		4,4	Pi > AtPi
404,1071	30	3,3	2,9	~ 1		2,5	At < AtPi	~ 1	~ 1		~ 1		2,8	Pi > AtPi
341,1111	31	4,6	2,9	-		-		~ 1	~ 1		~ 1		2,2	Pi > AtPi
469,0247	31	3,7	4,5	-		-		-	~ 1		~ 1		3,9	Pi > AtPi
235,1217	44	2,1	2,7	-		-		-	~ 1		~ 1		2,3	Pi > AtPi
327,1128	213	4,5	2,8	~ 1		-		-	195806,6	At > m	-		70198,3	Pi < AtPi
395,1980	269	2,1	105089,1	-		~ 1		-	~ 1		135626,7	Pi < m	-	

327,1310 383 2,4 2,0 - - 8,2 At > m -	18055,3 Pi < AtPi
---	-------------------

7.1.4 Gewebevergleich der differentiellen LC-MS Massensignale des At vs. m Mediums

Tab. 7. 13: Gewebevergleich der differentiellen Massensignale des Mediums At > m im positiven Modus gemessen.

				Blätte	r Wurze	In My	/zel	Eluate /	At vs. AtPi	Eluate m	/s. Pi	Eluate AtPi v	rs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC	FC)	FC		FC		FC	
136,0609	46	4,7	3,2	~ 1	~ 1	-		3,6	At > AtPi	2,0	Pi < m	4,2	Pi < AtPi
300,1270	50	251625,1	11,0	-	~ 1	-		~ 1		-		-	
152,0571	54	11,3	14,2	-	-	-		~ 1		2,4	Pi > m	2,8	Pi < AtPi
557,1495	54	55433,8	58034,9	-	-	-		~ 1		-		-	
297,0980	59	2,2	26,9	-	-	-		~ 1		~ 1		~ 1	
269,1039	59	2,5	2,8	-	-	-		~ 1		~ 1		~ 1	
306,0989	61	4537125,5	5395532,0	~ 1	~ 1	-		2,0	At > AtPi	201260,7	Pi > m	11,2	Pi < AtPi
347,0728	61	169353,7	226282,7	~ 1	~ 1	-		~ 1		-		2,0	Pi < AtPi
288,0865	61	93248,4	117720,2	-	~ 1	-		2,5	At > AtPi	-		-	
386,1063	61	68507,3	85862,0	-	~ 1	-		~ 1		-		2,3	Pi < AtPi
368,0970	61	93208,4	111474,9	-	~ 1	-		2,1	At > AtPi	-		42807,7	Pi < AtPi
334,0925	61	53304,4	75515,1	-	~ 1	-		~ 1		-		-	
206,0469	62	95499,2	108933,2	-	~ 1	-		~ 1		-		2,5	Pi < AtPi
289,1367	62	84859,3	110787,9	-	~ 1	-		~ 1		-		-	
336,1076	62	71415,6	96118,8	-	~ 1	-		~ 1		-		-	
144,0467	62	2,9	2,5	~ 1	~ 1	~ `	1	~ 1		~ 1		~ 1	
328,0783	67	271280,9	320739,4	-	~ 1	-		~ 1		340765,3	Pi > m	~ 1	
168,0431	70	131064,2	105472,1	-	-	-		~ 1		-		114241,0	Pi < AtPi
383,1094	80	221309,0	215967,5	-	-	-		~ 1		-		-	
265,0765	80	1168166,9	3,2	-	-	-		~ 1		-		-	

507,1624	80	123544,7	123902,6	-	-		-	~ 1		-		-	
262,0665	80	226624,9	234539,1	-	-		-	~ 1		-		-	
504,1534	80	117194,4	113110,1	-	-		-	~ 1		-		-	
192,0748	101	68695,1	71220,2	-	-		-	~ 1		-		51925,4	Pi < AtPi
130,0632	121	118942,4	175757,3	-	-		-	~ 1		-		-	
556,1489	133	64863,8	61356,5	-	-		-	~ 1		-		~ 1	
192,1380	137	134100,9	160694,8	~ 1	-		-	~ 1		-		5,7	Pi < AtPi
392,0969	144	493094,1	695015,0	~ 1	~ 1		-	~ 1		-		594675,1	Pi < AtPi
256,1039	156	101246,2	117232,8	~ 1	~ 1		-	3,3	At > AtPi	-		2,1	Pi < AtPi
259,1112	156	10,3	488198,4	~ 1	2,3	At > AtPi	-	~ 1		~ 1		5,3	Pi < AtPi
365,1210	167	59035,6	120862,4	~ 1	2,8	At < AtPi	-	~ 1		-		57952,4	Pi < AtPi
212,1253	174	98416,1	98994,3	~ 1	~ 1		-	~ 1		-		80829,8	Pi < AtPi
287,1075	174	149534,3	158427,2	~ 1	~ 1		-	~ 1		-		134681,5	Pi < AtPi
295,1582	180	2,2	104907,5	-	-		-	~ 1		54519,0	Pi < m	140061,6	Pi < AtPi
351,1031	180	137487,6	292622,7	~ 1	~ 1		-	~ 1		-		-	
389,1208	181	48716,7	48434,7	~ 1	~ 1		-	~ 1		-		-	
238,0703	181	53110,3	49047,8	~ 1	2,4	At < AtPi	-	~ 1		-		43716,4	Pi < AtPi
405,1722	181	180351,3	248282,5	~ 1	~ 1		-	~ 1		-		229663,1	Pi < AtPi
152,0553	182	66154,0	57175,5	-	~ 1		-	~ 1		-		-	
614,7726	182	58269,5	43344,1	-	-		-	~ 1		-		-	
411,1192	190	793002,5	2,6	~ 1	~ 1		-	~ 1		-		500736,1	Pi < AtPi
206,0621	191	734542,7	675744,3	-	~ 1		-	~ 1		-		494326,8	Pi < AtPi
250,0699	191	47528,1	746373,1	-	-		-	-		-		-	
124,0373	191	201132,3	190769,2	-	3,0	At < AtPi	-	~ 1		-		-	
441,1323	191	45149,9	63137,5	-	-		-	~ 1		-		41384,7	Pi < AtPi
391,1127	196	86622,7	87807,8	-	2,7	At < AtPi	-	~ 1		-		116860,2	Pi < AtPi
268,0799	196	279349,7	280455,6	-	~ 1		-	~ 1		-		260389,4	Pi < AtPi
117,0550	202	44416,8	32055,1	~ 1	~ 1		-	~ 1		-		-	
145,0500	203	239441,7	208121,9	~ 1	~ 1		-	~ 1		-		-	
160,0735	203	251636,6	228105,7	~ 1	~ 1		-	~ 1		-		183955,8	Pi < AtPi

148,0717	203	48986,4	45613,9	-	~ 1	-	~ 1		-		40842,0	Pi < AtPi
130,0630	203	164972,1	174842,3	~ 1	~ 1	-	~ 1		-		140120,5	Pi < AtPi
498,0926	203	31040,1	34265,4	~ 1	~ 1	-	~ 1		-		40409,0	Pi < AtPi
149,0585	204	89792,5	7,2	~ 1	~ 1	-	~ 1		-		115908,5	Pi < AtPi
342,1040	205	71262,9	86651,3	~ 1	~ 1	-	~ 1		-		95126,0	Pi < AtPi
345,1126	205	1729152,0	1684927,3	~ 1	~ 1	-	~ 1		-		54,0	Pi < AtPi
231,0489	205	84444,3	96438,0	~ 1	~ 1	-	~ 1		-		109646,8	Pi < AtPi
301,1235	205	79729,2	91346,6	~ 1	~ 1	-	~ 1		-		2,7	Pi < AtPi
592,1635	209	118192,8	104784,1	-	~ 1	-	~ 1		-		78383,8	Pi < AtPi
428,2008	209	3,4	5,8	~ 1	-	-	~ 1		~ 1		3,3	Pi < AtPi
400,1077	212	44726,9	36701,2	~ 1	~ 1	-	~ 1		-		42297,9	Pi < AtPi
491,1709	216	191636,7	180757,0	~ 1	~ 1	-	~ 1		-		236437,3	Pi < AtPi
412,2048	216	215500,4	3,3	-	-	-	~ 1		-		-	
279,1617	216	2,1	164755,5	-	~ 1	-	~ 1		-		305610,7	Pi < AtPi
152,0552	217	70479,7	57008,8	-	~ 1	-	~ 1		-		-	
494,1409	217	66570,3	49606,5	-	~ 1	-	2,0	At > AtPi	-		-	
343,0904	217	134931,8	100139,4	-	~ 1	-	2,3	At > AtPi	-		-	
347,1621	218	5,5	10,5	~ 1	~ 1	-	~ 1		-		7,0	Pi < AtPi
379,0990	223	65549,4	54463,6	~ 1	~ 1	-	~ 1		-		77069,0	Pi < AtPi
210,0901	228	70669,6	96282,7	~ 1	~ 1	-	~ 1		-		83204,6	Pi < AtPi
268,0800	230	107268,4	6,0	-	~ 1	-	~ 1		-		1,9	Pi < AtPi
460,1204	230	358245,6	173073,8	-	~ 1	-	~ 1		-		184858,2	Pi < AtPi
399,1384	232	210335,1	120116,4	-	-	-	~ 1		-		142174,3	Pi < AtPi
441,1337	233	571410,0	424122,8	~ 1	~ 1	-	~ 1		-		400120,0	Pi < AtPi
342,1521	238	92317,4	69309,8	-	~ 1	-	~ 1		-		-	
467,1860	242	135532,8	300735,1	-	~ 1	-	~ 1		-		132613,9	Pi < AtPi
212,1037	251	168501,2	127541,4	-	-	-	~ 1		-		3,9	Pi < AtPi
335,1071	253	467243,3	1110914,3	-	~ 1	-	2,4	At > AtPi	-		-	
390,1540	254	640370,2	481474,0	-	-	-	~ 1		-		10,0	Pi < AtPi
412,1339	255	53367,3	36441,6	~ 1	-	 -	~ 1		-		125176,5	Pi < AtPi

410,1235	255	277973,4	205356,1	~ 1	-		-	4,1	At < AtPi	-	1037242,6	Pi < AtPi
524,1725	256	89503,9	57355,9	-	~ 1		-	~ 1		-	39960,1	Pi < AtPi
268,0791	256	294909,8	10,0	-	~ 1		-	~ 1		-	261494,0	Pi < AtPi
224,1056	264	189873,3	357548,6	~ 1	~ 1		-	~ 1		-	227998,8	Pi < AtPi
202,1234	264	94287,2	201449,5	~ 1	~ 1		-	2,0	At < AtPi	-	133086,9	Pi < AtPi
407,1295	276	184671,6	502927,4	~ 1	~ 1		-	~ 1		-	181303,6	Pi < AtPi
504,2337	278	38906,9	49414,8	~ 1	3,2	At > AtPi	-	~ 1		-	30667,6	Pi < AtPi
399,1949	284	117030,0	194990,8	-	-		-	~ 1		-	-	
329,1526	286	92058,4	76097,7	~ 1	~ 1		-	~ 1		-	60171,5	Pi < AtPi
545,1576	318	243803,6	174252,0	-	11,3	At < AtPi	-	~ 1		-	395215,7	Pi < AtPi
463,2286	378	251105,8	147335,6	-	~ 1		-	~ 1		-	157790,9	Pi < AtPi

Tab. 7. 14: Gewebevergleich der differentiellen Massensignale des Mediums At > m im negativen Modus gemessen.

				Blätter	Wurzel	n M	lyzel	Eluate A	At vs. AtPi	Eluate m	vs. Pi	Eluate AtPi	vs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC	F	С	FC		FC		FC	
266,0970	53	119,1	86,5	-	-	-		~ 1		17,4	Pi > m	3,0	Pi < AtPi
555,1392	54	35953,5	46279,8	-	-	-		~ 1		-		9,2	Pi < AtPi
295,0922	61	73297,0	80491,4	-	~ 1	-		~ 1		-		3,0	Pi < AtPi
382,0850	61	26174,2	30051,1	-	~ 1	-		~ 1		-		2,4	Pi < AtPi
350,0956	61	48949,0	51511,7	~ 1	~ 1	-		~ 1		-		~ 1	
595,1355	76	6,4	8,4	-	-	-		~ 1		-		-	
241,0905	80	24,9	124,7	-	-	-		~ 1		-		20,6	Pi < AtPi
530,1260	97	38158,6	29384,1	-	-	-		~ 1		-		4,3	Pi < AtPi
554,1367	133	44009,0	39713,5	-	-	-		~ 1		7907,2	Pi > m	2,7	Pi < AtPi
530,1263	136	13468,6	10836,5	-	-	-		~ 1		9600,9	Pi > m	~ 1	
545,1275	152	7,7	21996,5	-	-	-		~ 1		~ 1		2,7	Pi < AtPi
227,1481	174	23440,3	25651,3	~ 1	~ 1	-		~ 1		-		15707,2	Pi < AtPi
327,1154	180	195806,6	314755,0	~ 1	~ 1	-		4,5	At > AtPi	-		70198,3	Pi < AtPi

395,1005	180	19192,1	33445,0	~ 1	-	~ 1	-	~ 1	-	-	
427,1843	181	18327,5	14552,5		-	~ 1	-	~ 1	-	11685,0	Pi < AtPi
739,2038	196	17745,8	15421,1	~ 1	-	~ 1	-	~ 1	-	15619,6	Pi < AtPi
443,1578	203	17223,2	13326,2	~ 1	-		-	~ 1	-	15515,7	Pi < AtPi
496,0801	203	52134,9	49766,9	-	-	~ 1	-	~ 1	-	69070,7	Pi < AtPi
165,0637	203	32632,3	22,5	~ 1	-	~ 1	-	~ 1	-	42243,0	Pi < AtPi
343,1079	205	26415,1	23847,5	~ 1	-	~ 1	-	~ 1	-	29143,0	Pi < AtPi
665,2225	205	39270,9	36612,6	~ 1	-	~ 1	-	~ 1	-	42388,9	Pi < AtPi
643,2431	205	44562,2	31740,7	~ 1	-	~ 1	-	~ 1	-	32504,3	Pi < AtPi
321,1255	205	30418,0	26305,5	~ 1	-	~ 1	-	~ 1	-	31010,7	Pi < AtPi
277,1384	205	83,4	276877,9	~ 1	-	~ 1	-	~ 1	-	46,9	Pi < AtPi
235,1276	205	103898,9	86331,4	~ 1	-	~ 1	-	~ 1	-	96823,0	Pi < AtPi
369,1251	208	46221,5	83323,3	~ 1	-	~ 1	-	~ 1	-	49713,7	Pi < AtPi
381,1808	216	23873,1	21161,0	~ 1	-	~ 1	-	~ 1	-	25482,6	Pi < AtPi
423,1913	216	133323,0	117343,4	~ 1	-	~ 1	-	~ 1	-	145727,8	Pi < AtPi
467,1796	216	23999,7	19753,9	~ 1	-	~ 1	-	~ 1	-	23481,0	Pi < AtPi
593,1501	216	41686,5	28619,4	~ 1	-	~ 1	-	~ 1	-	44575,0	Pi < AtPi
577,1560	230	29710,1	24541,3	~ 1	-	~ 1	-	~ 1	-	25855,2	Pi < AtPi
443,1958	241	91309,4	190930,7	-	-	~ 1	-	~ 1	-	90095,7	Pi < AtPi
485,2038	266	110269,7	185950,8	~ 1	-	~ 1	-	~ 1	-	67073,3	Pi < AtPi
339,1399	275	65796,3	164518,7	~ 1	-	~ 1	-	~ 1	-	53493,5	Pi < AtPi
583,2159	285	44798,2	25533,4	-	-		-	~ 1	-	20777,2	Pi < AtPi
207,1479	286	19186,8	12510,7	-	-		-	~ 1	-	17099,5	Pi < AtPi
479,2492	307	36207,2	25035,4	~ 1	-	~ 1	-	~ 1	-	32788,9	Pi < AtPi
505,2633	315	13089,4	10751,9	-	-	~ 1	-	~ 1	-	12055,1	Pi < AtPi
567,1694	318	17403,2	10959,3	-	-	~ 1	-	~ 1	-	26535,7	Pi < AtPi
174,0648	321	14930,2	15561,1	-	-	-	-	~ 1	-	 12842,2	Pi < AtPi
421,2360	324	25134,1	23594,3	-	-	~ 1	-	~ 1	-	28549,4	Pi < AtPi
422,2217	343	15264,5	14768,0	~ 1	-	~ 1	-	~ 1	-	18784,5	Pi < AtPi
439,2345	378	73385,3	43521,1	-	-	-	-	~ 1	-	42464,9	Pi < AtPi

473,2535	382	28177,5	13493,7	-	-	-	-	~ 1	-	15653,2	Pi < AtPi
223,2144	386	2,2	2,8	-	-	-	-	~ 1	~ 1	2,3	Pi < AtPi
267,2036	386	2,2	2,6	-	-	-	-	~ 1	~ 1	2,3	Pi < AtPi
333,1742	386	2,1	2,4	~ 1	-	-	-	~ 1	~ 1	~ 1	
311,1919	386	2,1	2,4	-	-	-	-	~ 1	~ 1	2,3	Pi < AtPi
231,1826	392	2,3	2,7	-	-	-	-	~ 1	-	-	

Tab. 7. 15: Gewebevergleich der differentiellen Massensignale des Mediums At < m im positiven Modus gemessen.

				Blätter	Wurze	ln Myze	el	Eluate At	vs. AtPi	Eluate	m vs. Pi	Eluate At	:Pi vs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC	FC		FC		FC		FC	
155,0144	88	3,5	2,9	-	-	-		-		2,0	Pi < m	-	
241,0671	251	2,5	2,5	-	~ 1	-		~ 1		~ 1		2,8	Pi > AtPi
240,0996	270	2,1	3,1	-	-	-		~ 1		~ 1		3,1	Pi > AtPi
228,0993	280	2,9	3,6	-	-	-		~ 1		~ 1		4,2	Pi > AtPi
324,1390	438	2,5	2,1	-	-	~ 1		~ 1		~ 1		2,2	Pi > AtPi
279,0882	460	3,0	2,3	-	-	-		~ 1		~ 1		2,9	Pi > AtPi
301,1734	460	4,5	3,1	~ 1	~ 1	~ 1		~ 1		~ 1		4,6	Pi > AtPi
323,1568	460	3,9	2,3	~ 1	~ 1	~ 1		~ 1		~ 1		3,3	Pi > AtPi
338,2244	492	4,7	2,6	-	-	-		~ 1		4,3	Pi < m	~ 1	Pi < AtPi

Tab. 7. 16: Gewebevergleich der differentiellen Massensignale des Mediums At < m im positiven Modus gemessen.

				Blätte	٢	Wurzeln	Myzel	Eluate At	vs. AtPi	Eluate	em vs. Pi	Eluate	e AtPi vs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC		FC	FC	FC		FC		FC	
277,1012	309	4,3	2,5	~ 1		~ 1	~ 1	~ 1		~ 1	Pi < m	~ 1	Pi > AtPi
213,1575	351	6,7	4,0	-		-	-	-		~ 1	Pi < m	4,5	Pi > AtPi

239,1366	357	3,0	2,4	-	-	-	~ 1	~ 1	Pi < m	2,7	Pi > AtPi
221,1277	359	2,0	2,1	-	-	-	-	~ 1	Pi > m	-	
237,1215	359	2,3	2,9	-	-	-	~ 1	~ 1	Pi > m	~ 1	Pi > AtPi
197,1633	384	2,3	2,2	-	-	-	~ 1	~ 1	Pi < m	~ 1	Pi > AtPi
261,1578	396	3,7	3,9	-	-	-	~ 1	~ 1	Pi < m	5,6	Pi > AtPi
610,3377	402	3,6	2,0	-	-	-	~ 1	~ 1	Pi < m	~ 1	Pi > AtPi
395,2460	410	2,8	2,3	-	-	-	~ 1	~ 1	Pi < m	~ 1	Pi > AtPi
255,2040	433	7,7	2,6	-	-	-	-	~ 1	Pi < m	4,0	Pi > AtPi
577,3466	460	9,6	7,5	-	-	-	~ 1	~ 1	Pi < m	11,5	Pi > AtPi
599,3273	460	7,6	5,4	-	-	-	~ 1	~ 1	Pi < m	8,8	Pi > AtPi
277,1881	460	4,4	3,4	-	-	-	~ 1	~ 1	Pi < m	4,6	Pi > AtPi
345,1728	460	2,6	2,5	~ 1	~ 1	~ 1	~ 1	~ 1	Pi < m	2,7	Pi > AtPi
299,1688	460	2,7	2,6	~ 1	~ 1	~ 1	~ 1	~ 1	Pi < m	3,0	Pi > AtPi
367,1535	460	2,5	2,4	~ 1	~ 1	~ 1	~ 1	~ 1	Pi < m	2,7	Pi > AtPi

7.1.5 Gewebevergleich der differentiellen LC-MS Massensignale des Pi vs. m Mediums

Tab. 7. 17: Gewebevergleich der differentiellen Massensignale des Mediums Pi > m im positiven Modus gemessen.

			Blätter	Wurzeln		Myzel		Eluate At vs. AtPi		Eluate m vs. At		Eluate AtPi vs. Pi	
	RT	FC											
[<i>m/z</i>]	[sek]	ESet 1	FC	FC		FC		FC		FC		FC	
152,0571	53	2,4	~ 1	~ 1		~ 1	Pi < AtPi	~ 1		11,3	At > m	2,8	Pi < AtPi
306,0971	62	201260,7	~ 1	~ 1		-		2,0	At > AtPi	4537125,5	At > m	11,2	Pi < AtPi
328,0776	66	340765,3	~ 1	~ 1		-		~ 1		271280,9	At > m	~ 1	
490,1294	70	26494,9	-	-		-		-		-		~ 1	
211,1040	76	299547,5	-	-		-		230539,0	At < AtPi	-		~ 1	
298,0954	151	4,7	-	-		-		~ 1		-		6,6	Pi > AtPi
136,0599	151	250026,5	-	-		-		~ 1		-		5,8	Pi > AtPi

346,1152	152	35744,9	-	-		-	-		-	35660,4	Pi > AtPi
162,0528	162	30311,2	~ 1	-		-	31906,9	At < AtPi	-	~ 1	
244,1475	166	39727,7	-	-		-	51468,1	At < AtPi	-	~ 1	
139,0377	167	6,4	-	~ 1		-	-		-	~ 1	
121,0264	167	58785,6	-			-	-		-	~ 1	
391,0982	169	2,2	~ 1	~ 1		-	~ 1		-	~ 1	
246,1637	180	18,2	-			-	-		-	~ 1	
541,1393	182	2,8	-	~ 1		-	-		-	~ 1	
115,0511	182	30133,0	-			-	-		-	30076,0	Pi > AtPi
219,0612	182	42480,8	~ 1	~ 1		-	-		-	~ 1	
133,0634	182	33470,0	-	3,4	At < AtPi	-	~ 1		-	~ 1	
432,2705	203	2,3	-	-		-	~ 1		-	~ 1	
688,3748	218	30392,1	-	-		-	802917,9	At < AtPi	-	14,1	Pi < AtPi
290,0964	223	44914,1	-	-		-	50137,5	At < AtPi	-	1,1	Pi < AtPi
129,0668	225	46595,8	-	~ 1		-	-		-	2,5	Pi > AtPi
147,0767	226	2,6	-	~ 1		-	-		-	2,4	Pi > AtPi
386,1278	230	2,0	~ 1	-		-	6,7	At < AtPi	~ 1	3,8	Pi < AtPi
128,0597	256	131019,6	~ 1	~ 1		-	~ 1		-	4,0	Pi > AtPi
133,0954	256	3,5	~ 1	-		-	-		-	2,3	Pi > AtPi
143,0838	256	747151,3	-	-		-	149089,4	At < AtPi	-	4,4	Pi > AtPi
145,0976	256	165315,1	-	-		-	-		-	3,3	Pi > AtPi
161,0944	256	1302029,1	-	-		-	215176,1	At < AtPi	-	4,9	Pi > AtPi
189,0882	256	555754,8	-	~ 1		-	~ 1		-	5,9	Pi > AtPi
208,0609	256	186995,8	~ 1	-		-	-		-	4,5	Pi > AtPi
211,0744	256	3,2	-	~ 1		-	~ 1		-	3,4	Pi > AtPi
229,0809	255	840633,4	-	~ 1		-	-		-	6,6	Pi > AtPi
247,0917	256	37,8	-	~ 1		-	~ 1		-	7,9	Pi > AtPi
302,1015	255	106183,7	-	63367,3	At < AtPi	-	-		-	4,2	Pi > AtPi
320,1116	255	6,9	-	-		-	-		-	5,7	Pi > AtPi
327,1380	255	48211,5	~ 1	-		-	-		-	3,3	Pi > AtPi
329,1167	255	518810,5	~ 1	2,0	At < AtPi	-	-		-	11,4	Pi > AtPi
----------	-----	----------	-----	-----	-----------	---	----------	-----------	-----	------	-----------
338,1226	255	385039,9	~ 1	~ 1		-	~ 1		-	10,4	Pi > AtPi
345,1450	255	61329,6	-	~ 1		-	-		-	2,6	Pi > AtPi
432,1622	255	273574,8	-	~ 1		-	-		-	9,3	Pi > AtPi
473,1728	255	84677,0	~ 1	~ 1		-	-		-	2,6	Pi > AtPi
487,1587	255	63222,6	~ 1	~ 1		-	-		-	2,1	Pi > AtPi
711,2644	255	99580,3	-	-		-	-		-	10,6	Pi > AtPi
421,2890	257	86798,1	-	-		-	109144,6	At < AtPi	-	~ 1	
403,2784	257	94846,2	-	-		-	120323,9	At < AtPi	-	~ 1	
385,2647	258	32143,7	-	-		-	61935,0	At < AtPi	-	~ 1	
315,1730	303	397655,4	-	-		-	~ 1		~ 1	~ 1	
161,0947	331	187034,6	~ 1	~ 1		-	215176,1	At < AtPi	-	2,6	Pi > AtPi
143,0831	331	133549,3	-	-		-	149089,4	At < AtPi	-	3,6	Pi > AtPi
455,2711	384	63276,4	-	-		-	84725,2	At < AtPi	-	~ 1	
455,2693	396	59572,7	-	-		-	-		-	~ 1	
317,1372	408	3,1	-	-		-	3,1	At < AtPi	~ 1	5,6	Pi < AtPi
401,2589	414	47146,3	-	-		-	67307,1	At < AtPi	-	~ 1	

Tab. 7. 18: Gewebevergleich der differentiellen Massensignale des Mediums Pi > m im negativen Modus gemessen.

			Blätter	Wurz	eln	Myzel	Eluate At	vs. AtPi	Eluate	m vs. At	Eluate A	AtPi vs. Pi
	RT	FC										
[<i>m/z</i>]	[sek]	ESet 1	FC	FC		FC	FC		FC		FC	
384,9364	26	2,2	-	-		-	~ 1		-		~ 1	
316,9519	26	2,2	-	-		-	3,7	At < AtPi	-		~ 1	
267,0454	41	3,9	-	-		-	5,5	At < AtPi	-		~ 1	
926,2679	45	4,0	-	-		-	~ 1		-		~ 1	
266,0967	53	17,4	-	-		-	~ 1		119,1	At > m	3,0	Pi < AtPi
297,0448	167	14845,2	-	-		-	-		-		8,2	Pi > AtPi
137,0325	167	63749,5	-	2,0	At < AtPi	-	~ 1		-		2,4	Pi > AtPi

413,1215	182	21008,8	-	~ 1		-	-		-		21009,0	Pi > AtPi
195,0740	182	88120,6	-	-		-	29958,1	At < AtPi	-		2,9	Pi > AtPi
254,1096	198	11117,7	-	-		-	~ 1		-		~ 1	
285,1377	199	21543,2	-	-		-	40043,8	At < AtPi	-		~ 1	
131,0792	199	42097,3	-	-		-	36,0	At < AtPi	-		2,1	Pi < AtPi
353,1050	222	34534,0	~ 1	-		-	~ 1		-		~ 1	
165,0639	222	97626,5	~ 1	2,0	At < AtPi	-	2,4	At < AtPi	-		~ 1	
147,0537	222	53800,7	-	-		-	~ 1		-		~ 1	
248,0997	223	14053,7	-	-		-	16730,6	At < AtPi	-		~ 1	
266,1101	223	26024,3	-	-		-	36534,8	At < AtPi	-		~ 1	
209,0898	225	98458,6	-	-		-	~ 1		-		4,8	Pi > AtPi
229,0354	243	18817,9	-	-		-	-		-		2,0	Pi > AtPi
225,1106	255	3,1	~ 1	-		-	-		-		2,5	Pi > AtPi
709,2449	256	16637,7	-	-		-	-		-		3,4	Pi > AtPi
715,2628	256	55723,0	-	I		-	-		-		6,4	Pi > AtPi
223,1059	256	2782196,4	~ 1	-		-	265997,1	At < AtPi	-		4,1	Pi > AtPi
469,1848	256	367987,1	~ 1	-		-	22726,3	At < AtPi	-		5,1	Pi > AtPi
159,0894	256	23554,9	-	-		-	-		-		3,2	Pi > AtPi
659,2276	258	77451,4	-	I		-	~ 1		-		3,0	Pi > AtPi
681,2052	258	12393,3	~ 1	~ 1		-	-		-		2,0	Pi > AtPi
309,1077	295	3,5	~ 1	I		-	2,9	At < AtPi	~ 1		~ 1	
329,1665	296	33868,7	-	-		-	~ 1		-		~ 1	
265,1192	323	3,9	-	I		-	~ 1		-		~ 1	
309,1072	323	4,5	~ 1	~ 1		-	~ 1		~ 1		~ 1	
329,2383	335	2,6	-	~ 1		-	~ 1		5,4	At > m	2,1	Pi < AtPi
251,1386	416	2,4	-	-		-	~ 1		-		~ 1	
268,1555	443	2,9	-	~ 1		-	~ 1		~ 1		~ 1	
555,2816	444	3,8	-	~ 1		-	~ 1		~ 1		~ 1	
553,2816	444	3,9	-	~ 1		~ 1	~ 1		~ 1		~ 1	
265.1553	444	3.1	~ 1	~ 1		~ 1	~ 1		~ 1		~ 1	

293,1848	526	3,0 ~ 1	~ 1	~ 1	~ 1	~ 1	2,9	Pi > AtPi
421,2269	539	2,8 -	~ 1	~ 1	~ 1	~ 1	~ 1	

Tab. 7. 19: Gewebevergleich der differentiellen Massensignale des Mediums Pi < m im positiven Modus gemessen.

			Blätter	Wurzeln	Myzel	Eluate At ve	s. AtPi	Eluate m vs	. At	Eluate AtF	Pi vs. Pi
	RT	FC									
[<i>m/z</i>]	[sek]	ESet 1	FC	FC	FC	FC		FC		FC	
235,1161	42	2,0	-	-	-	~ 1		~ 1		~ 1	
254,1564	58	2,2	-	~ 1	-	~ 1		~ 1		~ 1	
195,1101	58	2,2	-	-	-	~ 1		~ 1		~ 1	
320,1676	58	179391,5	-	-	-	84055,0	At > AtPi	~ 1		-	
120,0785	79	20,1	~ 1	-	-	-		3,4	At < m	-	
310,1234	79	5,1	-	~ 1	-	-		~ 1		-	
155,0146	87	2,0	-	-	-	-		3,5	At < m	-	
582,3176	133	504108,4	-	-	-	~ 1		~ 1		-	
304,6327	134	115014,0	-	-	-	-		3,2	At < m	-	
211,1368	137	2,1	-	-	-	~ 1		~ 1		~ 1	
230,1152	141	112786,5	-	-	-	-		~ 1		-	
146,0530	147	25,4	~ 1	~ 1	-	~ 1		~ 1		-	
188,0678	147	5,8	~ 1	~ 1	-	~ 1		~ 1		~ 1	
545,2872	149	274611,9	-	-	-	~ 1		~ 1		-	
320,1867	153	77830,7	-	-	-	-		~ 1		-	
355,7049	153	62363,9	-	-	-	-		~ 1		-	
414,2295	153	158817,3	-	~ 1	~ 1	-		~ 1		-	
244,1257	154	391350,6	-	-	-	-		~ 1		-	
522,7560	156	77022,6	-	-	-	-		77071,5	At < m	-	
233,1251	157	75092,2	-	-	-	~ 1		~ 1		-	
313,6796	157	64637,4	-	-	-	-		~ 1		-	

360,6819	157	31,6	-	-	-	~ 1		~ 1		-	
720,3576	157	91771,0	-	-	-	~ 1		~ 1		-	
425,7177	158	118805,9	-	-	-	~ 1		~ 1		-	
289,1525	158	51635,1	-	-	-	~ 1		~ 1		-	
678,3135	159	257304,5	-	-	-	~ 1		~ 1		-	
646,3270	162	81176,0	-	-	-	-		~ 1		-	
528,2863	164	76941,5	-	-	-	~ 1		~ 1		-	
263,1337	165	2,3	-	-	-	~ 1		~ 1		-	
213,1201	165	11,0	-	~ 1	-	~ 1		~ 1		-	
373,2720	165	78867,3	-	-	-	~ 1		~ 1		-	
459,2248	166	91424,8	-	-	-	-		~ 1		-	
440,2409	169	201807,5	-	-	-	~ 1		~ 1		-	
371,2195	170	110759,0	-	-	~ 1	~ 1		~ 1		-	
261,1198	170	11,5	~ 1	-	~ 1	~ 1		~ 1		-	
578,7856	170	163748,9	-	-	-	-		3,3	At < m	-	
380,1885	171	82452,7	-	-	-	~ 1		~ 1		-	
276,1319	173	3,0	-	-	-	~ 1		~ 1		-	
245,1781	174	51476,6	-	-	-	~ 1		~ 1		-	
399,2266	175	114466,2	-	-	~ 1	-		~ 1		-	
549,2421	175	288525,9	-	~ 1	-	~ 1		~ 1		-	
477,1916	177	281452,6	~ 1	-	-	~ 1		~ 1		-	
455,2100	177	614047,5	-	-	-	~ 1		~ 1		-	
271,1707	177	115357,2	-	-	-	2,7	At > AtPi	~ 1		-	
215,1353	177	423864,9	-	-	-	~ 1		~ 1		-	
449,2001	177	72905,8	-	-	~ 1	~ 1		~ 1		-	
427,2143	177	132181,5	-	-	-	~ 1		~ 1		-	
635,2960	177	152732,5	-	~ 1	-	-		~ 1		-	
217,0964	178	2,4	-	-	-	~ 1		~ 1		-	
295,1576	180	54519,0	-	-	-	~ 1		2,2	At > m	140061,6	Pi < AtPi
383,2199	180	93567,0	-	-	-	~ 1		~ 1		-	

560,2798	181	106652,7	~ 1	-	-	-		~ 1		-	
472,2686	183	186376,7	-	-	-	~ 1		~ 1		-	
446,2478	183	63621,2	-	~ 1	~ 1	-		~ 1		-	
496,7495	185	90262,2	-	-	-	~ 1		~ 1		-	
415,2187	187	390940,6	-	-	-	-		3,5	At < m	-	
714,3614	187	50896,9	-	-	-	-		7,8	At < m	-	
630,3168	187	513116,1	-	~ 1	-	~ 1		~ 1		-	
245,1796	187	172689,1	-	-	-	~ 1		~ 1		14,0	Pi < AtPi
525,2600	190	164331,5	-	-	-	~ 1		~ 1		-	
682,8075	191	55605,9	-	-	-	-		~ 1		-	
837,4349	193	35512,4	-	-	-	~ 1		~ 1		-	
997,5047	193	47968,5	-	-	-	~ 1		~ 1		-	
305,1529	194	58864,5	~ 1	~ 1	~ 1	~ 1		~ 1		-	
321,6220	193	35746,3	-	-	-	-		35748,0	At < m	-	
455,2108	194	220323,3	-	-	-	~ 1		~ 1		-	
475,2462	194	131016,5	-	-	-	-		~ 1		-	
553,3267	193	466104,7	-	-	-	~ 1		~ 1		-	
597,2815	194	275567,8	-	-	-	~ 1		~ 1		-	
604,2923	193	1112388,2	-	-	-	~ 1		3,4	At < m	-	
619,2712	194	100858,1	~ 1	-	-	~ 1		~ 1		-	
738,3642	194	45536,9	-	-	-	~ 1		~ 1		-	
169,0734	198	3,3	-	-	-	4,1	At > AtPi	~ 1		~ 1	
197,1241	199	3,6	-	-	-	~ 1		~ 1		-	
243,1301	199	347615,5	-	-	-	~ 1		~ 1		-	
328,2120	198	49401,4	-	-	-	~ 1		~ 1		-	
447,2434	199	62756,4	-	-	-	-		~ 1		-	
488,2448	198	14,9	-	-	-	-		~ 1		-	
628,3171	199	153163,6	-	-	-	~ 1		153171,3	At < m	-	
714,8475	198	81634,8	-	-	-	~ 1		~ 1		-	
725,8376	198	61131,1	-	-	-	~ 1		~ 1		-	

351,1953	202	138901,6	-	~ 1	-	~ 1	~ 1		-	
397,2019	202	229999,3	-	-	-	~ 1	~ 1		-	
419,1867	202	196539,6	-	~ 1	-	~ 1	~ 1		-	
560,2663	203	226124,9	-	-	-	~ 1	~ 1		-	
652,3917	208	139122,0	-	-	-	~ 1	~ 1		-	
607,3633	209	61473,9	-	-	-	~ 1	~ 1		-	
373,2336	211	40095,8	-	-	~ 1	~ 1	~ 1		-	
635,3336	212	1013209,0	-	-	-	~ 1	~ 1		-	
657,3158	212	543962,6	-	-	-	~ 1	~ 1		-	
337,1423	212	356444,9	-	~ 1	-	~ 1	~ 1		-	
658,3167	212	244766,3	-	-	-	~ 1	~ 1		-	
489,2600	213	89660,2	-	-	~ 1	-	~ 1		-	
514,2802	214	232944,7	-	-	-	~ 1	~ 1		-	
669,3784	214	63407,7	-	-	-	~ 1	5,9	At < m	-	
229,1459	214	4,5	~ 1	~ 1	-	~ 1	~ 1		56333,1	Pi > AtPi
277,1150	215	123684,7	-	-	-	~ 1	~ 1		-	
425,2662	216	133982,1	-	-	-	~ 1	~ 1		-	
553,3280	216	562063,6	-	-	-	~ 1	~ 1		-	
684,3818	218	152513,7	-	-	-	~ 1	~ 1		-	
659,3282	218	186684,2	-	-	-	~ 1	~ 1		-	
342,2273	218	37869,1	-	-	-	~ 1	2,0	At > m	-	
755,3880	222	288316,0	-	-	-	~ 1	~ 1		-	
397,1697	223	106946,1	-	~ 1	-	~ 1	~ 1		-	
668,3513	225	129442,2	-	-	-	~ 1	~ 1		-	
326,2000	229	572109,0	-	-	-	~ 1	~ 1		-	
635,3313	230	299547,8	-	-	-	-	 -		-	
559,3351	232	130382,5	-	-	-	~ 1	 ~ 1		-	
439,2857	236	1306925,3	-	-	-	~ 1	~ 1		-	
324,2202	236	116066,6	-	-	-	~ 1	~ 1		-	
627,3408	246	6,9	-	-	-	~ 1	~ 1		-	

530,2885	254	58999,5	-	-	-	~ 1	~ 1		-	
435,2090	254	2,0	~ 1	-	~ 1	~ 1	~ 1		~ 1	
338,2241	491	4,3	-	-	~ 1	~ 1	4,7	At < m	~ 1	
399,1760	509	2,4	-	~ 1	~ 1	~ 1	~ 1		-	

Tab. 7. 20: Gewebevergleich der differentiellen Massensignale des Mediums Pi < m im negativen Modus gemessen.

			Blätter	Wurzeln	Myzel	Eluate At vs. AtPi	Eluate m vs.	At Eluate AtP	'i vs. Pi
	RT	FC							
[<i>m/z</i>]	[sek]	ESet 1	FC	FC	FC	FC	FC	FC	
267,0814	49	3,1	-	-	-	~ 1	2,5 At >	m 2,8	Pi < AtPi
580,3053	133	50369,4	-	-	-	~ 1	~ 1	-	
543,2759	149	36614,6	-	-	-	~ 1	~ 1	-	
412,2225	154	38150,2	-	-	-	~ 1	~ 1	-	
607,2099	156	10382,9	-	-	-	-	~ 1	-	
291,1055	157	2,9	-	-	-	~ 1	~ 1	-	
718,3438	157	21940,3	-	-	-	~ 1	~ 1	-	
328,1572	164	10692,8	-	-	-	-	~ 1	-	
371,2699	165	10621,4	-	-	-	~ 1	~ 1	-	
453,2004	177	300038,1	~ 1	-	-	~ 1	~ 1	-	
475,1812	177	42487,2	~ 1	-	-	~ 1	~ 1	-	
381,1833	177	18796,9	~ 1	~ 1	-	~ 1	9,6 At >	m 150142,1	Pi < AtPi
425,2053	177	35264,5	~ 1	~ 1	-	~ 1	~ 1	-	
470,2615	183	11759,6	-	-	-	-	~ 1	-	
628,3036	187	40659,0	-	-	-	~ 1	~ 1	-	
523,2514	190	57356,9	-	-	-	~ 1	~ 1	-	
602,2799	193	72683,8	-	-	-	~ 1	4,0 At <	m -	
551,3167	194	30317,3	-	-	-	~ 1	~ 1	-	
453,2011	194	75003,6	~ 1	-	-	~ 1	~ 1	-	

595,2698	194	87892,2	-	-	-		~ 1		~ 1	-	
617,2526	194	14950,5	-	-	-		~ 1		~ 1	-	
241,1277	199	233597,3	-	-	-		~ 1		~ 1	-	
197,1383	199	33206,7	-	-	-		~ 1		~ 1	-	
417,1785	202	11925,7	-	-	-		-		~ 1	-	
395,1978	202	135626,7	-	~ 1	-		2,1	At > AtPi	~ 1	-	
338,1773	205	14015,5	-	-	-		-		~ 1	-	
439,2217	206	14108,2	-	-	-		~ 1		~ 1	-	
551,2798	210	16798,2	-	-	-		~ 1		~ 1	-	
633,3217	212	301495,9	~ 1	-	-		~ 1		~ 1	-	
512,2718	214	45383,5	-	-	-		~ 1		~ 1	-	
275,1114	215	7,1	-	~ 1	-		~ 1		~ 1	-	
551,3167	216	39050,3	-	-	-		~ 1		~ 1	-	
682,3713	217	12957,3	-	-	-		~ 1		~ 1	-	
753,3714	222	45139,9	-	-	-		~ 1		~ 1	-	
666,3402	225	14010,3	-	-	-		~ 1		~ 1	-	
557,3265	232	13439,5	-	-	-		~ 1		~ 1	-	
354,2074	250	18247,7	-	-	-		~ 1		~ 1	-	
187,1058	256	2,1	-	-	-		~ 1		~ 1	-	
377,1632	489	2,5	-	-	-		~ 1		~ 1	-	
309,1795	489	2,9	~ 1	~ 1	~ 1		~ 1		~ 1	~ 1	
353,2041	510	2,5	~ 1	~ 1	~ 1		~ 1		~ 1	~ 1	
397,2284	523	2,5	~ 1	~ 1	2,0	Pi > AtPi	~ 1		~ 1	~ 1	
441,2528	533	2,2	~ 1	~ 1	~ 1		~ 1		~ 1	~ 1	
485,2764	539	2,3	-	-	~ 1		~ 1		~ 1	~ 1	
529,2997	544	2,9	-	-	-		~ 1		~ 1	-	

7.1.6 Gewebevergleich der differentiellen LC-MS Massensignale des Pi vs. AtPi Mediums

			DIVILLA	14/	N.4					N (
	D.T.	=0	Blatter	vvurzein	INIYZEI		Eluate A	at vs. Atpi	Eluate A	At VS. M	Eluate Pl V	s. m
[RI	FC	50	50	50		F 0		50		50	
[<i>m</i> / <i>z</i>]	[sek]	ESet 1	FC	FC	FC	Г	FC		FC		FC	
345,1170	26	2,3	-	-	-		~ 1		~ 1		~ 1	
265,1096	26	2,5	~ 1	-	~ 1		2,9	At > AtPi	~ 1		~ 1	
299,1135	26	2,2	~ 1	-	~ 1		2,4	At > AtPi	~ 1		~ 1	
219,1220	26	2,1	-	-	-		2,3	At > AtPi	~ 1		~ 1	
281,1015	26	2,0	-	-	-		2,0	At > AtPi	~ 1		~ 1	
183,0669	26	2,2	-	-	-		2,5	At > AtPi	~ 1		~ 1	
122,0690	26	2,5	-	-	~ 1		2,5	At > AtPi	~ 1		~ 1	
381,0729	29	3,6	~ 1	~ 1	~ 1		~ 1		~ 1		~ 1	
365,1012	29	2,2	-	~ 1	2,5	Pi > AtPi	2,1	At > AtPi	~ 1		~ 1	
707,2121	31	3,8	-	-	~ 1		~ 1		~ 1		~ 1	
362,0905	32	2,9	-	~ 1	~ 1		6,6	At > AtPi	~ 1		~ 1	
193,0442	70	2,0	-	-	-		1,0	At > AtPi	2,3	At < m	~ 1	
285,0733	85	2,1	-	-	-		2,1	At > AtPi	~ 1		~ 1	
308,1126	86	2,3	-	-	-		~ 1		~ 1		~ 1	
136,0600	151	5,8	-	-	-		~ 1		-		250026,5	Pi > m
297,0987	151	2,7	-	-	-		4,3	At > AtPi	~ 1		~ 1	
346,1152	152	35660,4	-	-	-		-		-		35744,9	Pi > m
281,1031	152	2,7	~ 1	~ 1	-		3,9	At > AtPi	~ 1		~ 1	
115,0511	182	30076,0	-	-	-		-		-		30133,0	Pi > m
433,1832	214	2,7	-	-	-		2,3	At > AtPi	~ 1		~ 1	
229,1397	216	56333,1	-	-	-		~ 1		~ 1		4,5	Pi < m
427,1059	218	3,1	~ 1	-	-		~ 1		~ 1		~ 1	
129,0668	226	2,5	-	~ 1	-		~ 1		-		46595,8	Pi > m

Tab. 7. 21: Gewebevergleich der differentiellen Massensignale des Mediums Pi > AtPi im positiven Modus gemessen.

147,0766	226	2,4	-	~ [·]	1	-	-		-		2,6	Pi > m
241,0665	251	2,8	-	~ '	1	-	~ 1		2,5	At < m	~ 1	
128,0596	256	4,0	-	-		-	~ 1		-		131019,6	Pi > m
133,0953	256	2,3	~ 1	-		-	-		-		3,5	Pi > m
143,0835	256	4,4	-	-		-	149089,4	At < AtPi	-		747151,3	Pi > m
145,0977	256	3,3	-	-		-	-		-		165315,1	Pi > m
161,0936	256	4,9	-	-		-	215176,1	At < AtPi	-		1302029,1	Pi > m
189,0882	256	5,9	-	-		-	~ 1		-		555754,8	Pi > m
208,0609	256	4,5	~ 1	-		-	-		-		186995,8	Pi > m
211,0748	256	3,4	-	-		-	~ 1		-		3,2	Pi > m
229,0811	256	6,6	-	-		-	-		-		840633,4	Pi > m
247,0923	255	7,9	-	-		-	~ 1		-		37,8	Pi > m
302,1017	255	4,2	-	-		-	-		-		106183,7	Pi > m
320,1117	255	5,7	-	-		-	-		-		6,9	Pi > m
327,1388	255	3,3	~ 1	-		-	-		-		48211,5	Pi > m
329,1170	255	11,4	-	-		-	-		-		518810,5	Pi > m
338,1228	255	10,4	~ 1	~ '	1	-	~ 1		-		385039,9	Pi > m
345,1449	255	2,6	-	~ '	1	-	-		-		61329,6	Pi > m
432,1617	255	9,3	-	-		-	-		-		273574,8	Pi > m
473,1727	255	2,6	~ 1	~ '	1	-	-		-		84677,0	Pi > m
487,1590	255	2,1	-	-		-	-		-		63222,6	Pi > m
711,2646	255	10,6	-	-		-	-		-		99580,3	Pi > m
240,0995	270	3,1	-	~ `	1	-	~ 1		2,1	At < m	~ 1	
256,0945	270	2,2	-	-		-	~ 1		~ 1		~ 1	
250,0821	280	53584,0	-	-		-	~ 1		-		~ 1	
228,0993	280	4,2	-	-		-	~ 1		2,9	At < m	~ 1	
161,0950	331	2,6	-	-		-	-		-		187034,6	Pi > m
143,0832	331	3,6	-	-		-	-		-		133549,3	Pi > m
288,2884	389	4,1	~ 1	~ '	1	~ 1	~ 1		~ 1		~ 1	
295,1857	402	2,1	-	-		-	~ 1		2,1	At < m	~ 1	

314,1582	402	2,9	-	-	-	~ 1	3,1	At < m	~ 1
317,1671	402	2,6	~ 1	~ 1	~ 1	~ 1	~ 1		~ 1
279,1873	433	2,2	-	-	-	~ 1	4,7	At < m	~ 1
324,1389	437	2,2	-	-	~ 1	~ 1	2,5	At < m	~ 1
611,3045	460	47581,6	-	-	-	-	56830,6	At < m	~ 1
539,2664	460	2,3	-	-	-	-	2,4	At < m	~ 1
437,2532	460	52816,4	-	-	-	-	54847,7	At < m	~ 1
595,3255	460	2,7	-	-	-	~ 1	2,5	At < m	~ 1
301,1733	460	4,6	~ 1	~ 1	~ 1	~ 1	4,5	At < m	~ 1
323,1566	460	3,3	~ 1	~ 1	~ 1	~ 1	3,9	At < m	~ 1
279,0892	460	2,9	-	-	-	-	3,0	At < m	~ 1
259,0916	460	45343,0	-	-	-	-	4,4	At < m	~ 1
249,1773	461	64473,9	-	~ 1	~ 1	~ 1	2,2	At < m	~ 1

Tab. 7. 22: Gewebevergleich der differentiellen Massensignale des Mediums Pi > AtPi im negativen Modus gemessen.

			Blätter	Wurze	In	Myzel	Eluate At	vs. AtPi	Eluate At	vs. m	Eluate Pi vs	s. m
	RT	FC										
[<i>m/z</i>]	[sek]	ESet 1	FC	FC		FC	FC		FC		FC	
341,1128	30	2,2	-	-		~ 1	4,6	At > AtPi	~ 1		~ 1	
377,0880	30	4,4	-	-		~ 1	3,6	At > AtPi	~ 1		~ 1	
404,1062	31	2,8	~ 1	2,5	At < AtPi	~ 1	3,3	At > AtPi	~ 1		~ 1	
469,0200	32	3,9	-	-		-	3,7	At > AtPi	~ 1		~ 1	
235,1270	44	2,3	~ 1	~ 1		-	2,1	At > AtPi	~ 1		~ 1	
297,0449	167	8,2	-	-		-	-		-		14845,2	Pi > m
137,0326	167	2,4	-	2,0	At < AtPi	-	~ 1		-		63749,5	Pi > m
413,1215	182	21009,0	-	~ 1		-	-		-		21008,8	Pi > m
195,0742	182	2,9	-	-		-	29958,1	At < AtPi	-		88120,6	Pi > m
209,0896	225	4,8	-	-		-	~ 1		-		98458,6	Pi > m
229,0355	243	2,0	-	-		-	-		-		18817,9	Pi > m

709,2449	256	3,4 -		-	-	-		-		16637,7	Pi > m
715,2624	256	6,4 -		-	-	-		-		55723,0	Pi > m
469,1847	256	5,1 ~ 1	1	-	-	22726,3	At < AtPi	-		367987,1	Pi > m
223,1060	256	4,1 ~ 1	1	-	-	265997,1	At < AtPi	-		2782196,4	Pi > m
159,0895	256	3,2 -		-	-	-		-		23554,9	Pi > m
659,2270	258	3,0 -		-	-	~ 1		-		77451,4	Pi > m
332,9754	313	5,0 -		-	-	~ 1		~ 1		~ 1	
156,9959	313	2,3 -		-	-	-		~ 1		~ 1	
154,9979	313	2,9 -		~ 1	-	~ 1		~ 1		~ 1	
321,1172	328	14186,6 -		-	-	~ 1		15200,6	At < m	~ 1	
149,0682	328	12221,0 ~ ⁻	1	-	-	-		-		~ 1	
213,1565	351	4,5 -		-	-	-		6,7	At < m	~ 1	
239,1357	357	2,7 -		-	-	~ 1		3,0	At < m	~ 1	
309,1400	384	3,7 -		-	-	-		3,5	At < m	~ 1	
261,1569	396	5,6 -		-	-	~ 1		3,7	At < m	~ 1	
587,3522	402	3,2 -		-	-	-		3,6	At < m	~ 1	
255,1992	433	4,0 -		-	-	-		7,7	At < m	~ 1	
577,3462	460	11,5 -		-	-	~ 1		9,6	At < m	~ 1	
599,3272	460	8,8 -		-	-	~ 1		7,6	At < m	~ 1	
233,1973	460	3,6 -		-	-	-		3,6	At < m	~ 1	
609,3340	460	10805,8 -		-	-	-		8,2	At < m	~ 1	
277,1880	460	4,6 ~ 1	1	~ 1	~ 1	~ 1		4,4	At < m	~ 1	
346,1757	460	2,6 -		-	-	~ 1		2,7	At < m	~ 1	
299,1688	460	3,0 ~ 1	1	~ 1	~ 1	~ 1		2,7	At < m	~ 1	
345,1723	460	2,7 ~ 1	1	~ 1	~ 1	~ 1		2,6	At < m	~ 1	
367,1535	460	2,7 ~ 1	1	~ 1	~ 1	~ 1		2,5	At < m	~ 1	
435,1371	460	2,1 -		-	-	-		-		~ 1	
261,1576	461	5,5 -		-	-	-		4,6	At < m	~ 1	
275,1717	482	10037,2 -		-	-	~ 1		2,1	At < m	~ 1	
293,1846	526	2,9 ~ 1	1	~ 1	~ 1	2,4	At > AtPi	~ 1		3,0	Pi > m

Tab. 7. 23: Gewebevergleich der differentiellen Massensignale des Mediums Pi < AtPi im positiven Modus gemessen.

			Blätter	· Wurzelr	1	Myzel	Eluate At vs.	AtPi	Eluate At vs	. m	Eluate Pi vs	. m
	RT	FC										
[<i>m/z</i>]	[sek]	ESet 1	FC	FC		FC	FC		FC		FC	•
203,0497	29	2,1	-	-		~ 1	3,9	At < AtPi	~ 1		~ 1	
136,0606	47	4,2	~ 1	~ 1		-	3,6	At > AtPi	4,7	At > m	~ 1	
252,1055	48	5,9	-	-		-	~ 1		553493,2	At > m	-	
268,1025	53	3,3	~ 1	-		-	~ 1		4,7	At > m	~ 1	
152,0571	53	2,8	~ 1	~ 1		~ 1	~ 1		11,3	At > m	2,4	Pi > m
306,0968	61	11,2	~ 1	~ 1		-	2,0	At > AtPi	4537125,5	At > m	201260,7	Pi > m
368,0982	61	42807,7	-	~ 1		-	2,1	At > AtPi	93208,4	At > m	-	
386,1065	61	2,3	-	~ 1		-	~ 1		68507,3	At > m	-	
347,0734	61	2,0	~ 1	~ 1		-	~ 1		169353,7	At > m	-	
206,0467	61	2,5	-	~ 1		-	~ 1		95499,2	At > m	-	
354,1189	62	2,1	-	-		-	~ 1		-		-	
381,2045	68	2,5	-	-		-	~ 1		~ 1		~ 1	
168,0426	69	114241,0	-	-		-	~ 1		131064,2	At > m	-	
359,2236	74	3,9	-	-		-	3,6	At < AtPi	-		-	
277,0888	76	7,0	-	-		-	~ 1		-		-	
268,0784	78	2,3	-	~ 1		-	~ 1		-		-	
150,0741	85	59371,5	-	-		-	~ 1		-		-	
202,1039	99	60866,7	-	-		-	50636,7	At < AtPi	-		-	
220,1141	99	145758,4	-	-		-	95317,4	At < AtPi	-		-	
242,0965	99	14,1	-	~ 1		-	220410,4	At < AtPi	-		-	
192,0742	100	51925,4	-	-		-	~ 1		68695,1	At > m	-	
315,0918	103	2,6	-	-		-	~ 1		-		~ 1	
342,1974	115	2,2	-	-		-	208845,7	At < AtPi	-		-	
192,1377	137	5,7	~ 1	-		-	~ 1		134100,9	At > m	-	
302,1921	139	3,2	-	-		-	~ 1		3,8	At > m	~ 1	

392,0965	144	594675,1	~ 1	~ 1		-	~ 1		493094,1	At > m	-	
306,0974	144	50113,2	~ 1	~ 1		-	~ 1		41824,2	At > m	-	
195,0637	144	42361,9	-	-		-	~ 1		-		-	
275,1067	151	2,2	-	-		-	2,1	At < AtPi	~ 1		-	
224,0754	153	54142,3	-	-		-	~ 1		-		-	
256,1034	156	2,1	~ 1	~ 1		-	3,3	At > AtPi	101246,2	At > m	-	
259,1116	156	5,3	~ 1	2,3	At > AtPi	-	~ 1		10,3	At > m	~ 1	
302,1900	160	2,1	-	-		-	~ 1		3,8	At > m	~ 1	
365,1182	166	57952,4	~ 1	~ 1		-	~ 1		59035,6	At > m	-	
287,1065	174	134681,5	~ 1	~ 1		-	~ 1		149534,3	At > m	-	
212,1248	174	80829,8	~ 1	~ 1		-	~ 1		98416,1	At > m	-	
229,1488	174	170584,5	~ 1	~ 1		-	~ 1		183106,1	At > m	-	
450,2101	174	2,6	-	-		-	~ 1		-		-	
147,0530	175	2,2	-	-		-	~ 1		-		-	
136.0724	180	2,2	-	-		-	~ 1		-		-	
		,										
295,1591	180	140061,6	-	-		-	~ 1		2,2	At > m	54519,0	Pi < m
295,1591 261,0815	180 180	140061,6 3,2	-	-		-	~ 1 5,3	At < AtPi	2,2 -	At > m	54519,0 ~ 1	Pi < m
295,1591 261,0815 319,0866	180 180 181	140061,6 3,2 3,0	- - -	- - -		- - -	~ 1 5,3 5,1	At < AtPi At < AtPi	2,2 - -	At > m	54519,0 ~ 1 ~ 1	Pi < m
295,1591 261,0815 319,0866 405,1685	180 180 181 181	140061,6 3,2 3,0 229663,1	- - - ~ 1	- - - ~ 1		- - - -	~ 1 5,3 5,1 ~ 1	At < AtPi At < AtPi	2,2 - - 180351,3	At > m At > m	54519,0 ~ 1 ~ 1 -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699	180 180 181 181 181	140061,6 3,2 3,0 229663,1 43716,4	- - - ~1 ~1	- - - ~ 1 2,4	At < AtPi	- - - -	~ 1 5,3 5,1 ~ 1 ~ 1	At < AtPi At < AtPi	2,2 - - 180351,3 53110,3	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311	180 180 181 181 181 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8	- - ~ 1 ~ 1 -	- - - ~ 1 2,4 -	At < AtPi	- - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0	At < AtPi At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906	180 180 181 181 181 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3		- - - ~ 1 2,4 - -	At < AtPi	- - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1	At < AtPi At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158	180 180 181 181 181 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7	- - ~ 1 ~ 1 - - -	- - - ~ 1 2,4 - - -	At < AtPi	- - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6	At < AtPi At < AtPi At < AtPi At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121	180 180 181 181 181 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4	- - ~ 1 ~ 1 - - - - - -	- - - ~ 1 2,4 - - - - - - -	At < AtPi	- - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4	At < AtPi At < AtPi At < AtPi At < AtPi At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662	180 180 181 181 181 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1		- - - ~ 1 2,4 - - - - - - - -	At < AtPi	- - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0	At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - - - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662 573,2737	180 180 181 181 181 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1 13,3	- - ~ 1 ~ 1 - - - - - - - - - - - -	- - - - - 2,4 - - - - - - - - - - - - - - - - -	At < AtPi	- - - - - - - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0 17,6	At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - - - - - - - - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662 573,2737 307,0772	180 181 181 181 188 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1 13,3 227257,5		- - - - - - - - - - - - - - - - - 10,8	At < AtPi	- - - - - - - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0 17,6 ~ 1	At < AtPi At < AtPi	2,2 - 180351,3 53110,3 - - - - - - - - - - - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662 573,2737 307,0772 206,5626	180 180 181 181 181 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1 13,3 227257,5 102899,1		- - - - - 2,4 - - - - - - - - - - - - 10,8 ~ 1	At < AtPi	- - - - - - - - - - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0 17,6 ~ 1 ~ 1 ~ 1	At < AtPi At < AtPi	2,2 - 180351,3 53110,3 - - - - - - - - - 158279,9	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662 573,2737 307,0772 206,5626 411,1175	180 181 181 181 188 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1 13,3 227257,5 102899,1 500736,1		- - - - - 2,4 - - - - - - - - - - 10,8 ~ 1 ~ 1 ~ 1	At < AtPi	- - - - - - - - - - - - - - - - - - -	$\begin{array}{c} \sim 1 \\ 5,3 \\ 5,1 \\ \sim 1 \\ \sim 1 \\ 210393,0 \\ \sim 1 \\ 102229,6 \\ 106719,4 \\ 149576,0 \\ 17,6 \\ \sim 1 \\ \sim 1 \\ \sim 1 \\ \sim 1 \end{array}$	At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - - - - - - 158279,9 793002,5	At > m At > m At > m At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - - - -	Pi < m

441,1299	191	41384,7	-	-		-	~ 1		45149,9	At > m	-	
247,1015	192	2,8	-	-		-	4,5	At < AtPi	-		~ 1	
163,0723	192	45086,8	~ 1	~ 1		-	~ 1		41630,8	At > m	-	
263,1311	192	4,0	-	-		-	~ 1		-		2,5	Pi < m
406,1571	193	54122,4	~ 1	~ 1		-	~ 1		-		-	
718,3530	194	86084,0	-	-		-	177436,3	At < AtPi	-		-	
249,0732	195	75058,2	~ 1	5,2	At < AtPi	-	~ 1		-		-	
390,1156	195	102978,8	-	5,6	At < AtPi		4,9	At < AtPi	-		-	
268,0797	196	260389,4	-	~ 1		-	~ 1		279349,7	At > m	-	
245,1797	196	14,0	-	-		-	5,0	At < AtPi	~ 1		172689,1	Pi < m
582,2869	196	116828,0	-	-		-	152118,9	At < AtPi	-		-	
620,6314	197	190759,9	-	-		-	330307,8	At < AtPi	-		-	
130,0625	203	140120,5	-	~ 1		-	~ 1		164972,1	At > m	-	
148,0717	203	40842,0	-	~ 1		-	~ 1		48986,4	At > m	-	
160,0733	203	183955,8	-	~ 1		-	~ 1		251636,6	At > m	-	
231,0482	205	109646,8	~ 1	~ 1		-	~ 1		84444,3	At > m	-	
249,0607	204	56009,3	~ 1	~ 1		-	~ 1		-		-	
275,0809	205	53076,0	~ 1	-		-	~ 1		44767,0	At > m	-	
277,1097	204	2,3	-	-		-	3,8	At < AtPi	-		-	
301,1230	205	2,7	~ 1	~ 1		-	~ 1		79729,2	At > m	-	
305,1146	205	2,7	~ 1	~ 1		-	~ 1		90258,3	At > m	-	
340,1545	205	76210,3	~ 1	~ 1		-	~ 1		~ 1		-	
342,1029	205	95126,0	~ 1	~ 1		-	~ 1		71262,9	At > m	-	
345,1122	205	54,0	~ 1	~ 1		-	~ 1		1729152,0	At > m	-	
402,1274	203	3,1	~ 1	-		-	~ 1		-		-	
479,1007	204	49691,0	~ 1	~ 1		-	~ 1		-		-	
498,0917	203	40409,0	~ 1	~ 1		-	~ 1		31040,1	At > m	-	
503,1650	204	70924,8	-	~ 1		-	~ 1		-		-	
513,2899	205	5,0	-	-		-	124415,0	At < AtPi	-		-	
527,3084	202	7,4	-	-		-	245397,3	At < AtPi	-		-	

667,2346	205	44644,0	~ 1	~ 1		-	-	~ 1		-		-	
683,2030	205	51925,0	~ 1	~ 1		-	-	~ 1		-		-	
437,1041	208	87036,6	~ 1	~ 1		-	-	~ 1		-		-	
592,1629	209	78383,8	-	~ 1		-	-	~ 1		118192,8	At > m	-	
444,1372	210	2,1	-	-		-	-	~ 1		-		-	
655,3634	211	47942,2	-	-		-	9	90374,5	At < AtPi	-		-	
358,1692	211	2,5	-	-		-	-	~ 1		-		~ 1	
400,1066	212	42297,9	~ 1	~ 1		-	-	~ 1		44726,9	At > m	-	
418,1343	215	53969,0	-	2,2	At < AtPi	-	-	~ 1		-		-	
120,0781	215	76552,8	-	-		-	-	~ 1		~ 1		-	
491,1686	216	236437,3	~ 1	~ 1		-	-	~ 1		191636,7	At > m	-	
279,1638	216	305610,7	-	-		-	-	~ 1		2,1	At > m	-	
595,1623	216	39163,7	~ 1	~ 1		-	-	~ 1		-		-	
215,1068	217	66647,8	-	-		-	-	~ 1		-		-	
275,0952	217	2,0	-	-		-	-	~ 1		-		-	
437,1397	217	2,7	-	~ 1		-	-	~ 1		-		-	
688,3773	218	14,1	-	-		-	-	~ 1		-		30392,1	Pi > m
347,1608	218	7,0	~ 1	~ 1		-	-	~ 1		5,5	At > m	-	
372,1524	219	2,8	-	-		-	Ę	5,7	At < AtPi	-		-	
379,0979	223	77069,0	~ 1	~ 1		-	-	~ 1		65549,4	At > m	-	
340,1601	224	3,0	-	-		~ 1	-	~ 1		~ 1		~ 1	
313,1491	227	2,7	-	-		-		2,4	At < AtPi	~ 1		-	
210,0902	228	83204,6	~ 1	~ 1		-	-	~ 1		70669,6	At > m	-	
393,0765	229	2,6	~ 1	27,0	At < AtPi	-	3	3,1	At < AtPi	-		-	
433,1122	230	63362,5	~ 1	-		-	-	~ 1		63173,1	At > m	-	
386,1278	230	3,8	~ 1	~ 1		-	6	6,7	At < AtPi	~ 1		2,0	Pi > m
460,1198	230	184858,2	-	~ 1		-	-	~ 1		358245,6	At > m	-	
180,0642	230	27752,6	-	-		-	-	~ 1		-		-	
399,1379	232	142174,3	-	-		-	-	~ 1		210335,1	At > m	-	
441,1322	233	400120,0	~ 1	~ 1		-	-	~ 1		571410,0	At > m	-	

461,2382	234	2,3	-	-		~ 1	3,9	At < AtPi	-		-	
467,1863	241	132613,9	-	~ 1		-	~ 1		135532,8	At > m	-	
387,1226	248	55017,2	~ 1	~ 1		-	~ 1		85268,4	At > m	-	
511,1759	249	3,0	-	-		-	5,0	At < AtPi	-		-	
212,1037	251	3,9	-	-		-	~ 1		168501,2	At > m	-	
243,0847	253	2,6	-	-		-	~ 1		-		~ 1	
390,1532	253	10,0	-	-		-	~ 1		640370,2	At > m	-	
410,1237	255	1037242,6	-	-		-	4,1	At < AtPi	277973,4	At > m	-	
328,1577	255	2,1	-	-		-	~ 1		~ 1		~ 1	
393,1616	255	45722,1	~ 1	-		-	~ 1		-		-	
524,1745	256	39960,1	-	~ 1		-	~ 1		89503,9	At > m	-	
268,0792	258	261494,0	-	~ 1		-	~ 1		294909,8	At > m	-	
390,1166	259	132530,6	-	-		-	3,5	At < AtPi	-		-	
250,0685	259	108871,3	-	~ 1		-	3,6	At < AtPi	32619,1	At > m	-	
138,1251	264	34433,4	~ 1	~ 1		-	~ 1		-		-	
224,1055	264	227998,8	~ 1	~ 1		-	~ 1		189873,3	At > m	-	
202,1235	264	133086,9	~ 1	~ 1		-	~ 1		94287,2	At > m	-	
124,0372	268	39789,9	-	-		-	4,3	At < AtPi	-		-	
407,1282	276	181303,6	~ 1	~ 1		-	~ 1		184671,6	At > m	-	
504,2332	278	30667,6	~ 1	3,2	At > AtPi	-	~ 1		38906,9	At > m	-	
453,2098	279	2,0	-	-		-	~ 1		-		~ 1	
342,1383	280	3,4	-	-		-	3,5	At < AtPi	-		~ 1	
288,1026	285	53660,7	-	~ 1		-	~ 1		-		-	
607,2110	285	28261,6	-	-		-	~ 1		64415,7	At > m	-	
329,1526	286	60171,5	~ 1	-		-	~ 1		92058,4	At > m	-	
455,1269	298	65446,9	-	-		-	~ 1		-		-	
333,1279	299	29,3	-	-		-	~ 1		-		-	
545,1576	318	395215,7	-	11,3	At < AtPi	-	~ 1		243803,6	At > m	-	
267,0841	318	98860,3	-	~ 1		-	~ 1		59114,4	At > m	-	
401,1775	324	54397,5	~ 1	~ 1		-	~ 1		67071,0	At > m	-	

411,1004	336	279797,3	-	-	-		~ 1		-		-	
256,0772	363	168485,4	~ 1	~ 1	-		~ 1		-		-	
463,2278	378	157790,9	-	~ 1	-		~ 1		251105,8	At > m	-	
391,2068	383	2,3	-	-	-		~ 1		3,3	At > m	-	
149,0213	408	4,7	-	-	-		~ 1		-		-	
317,1356	408	5,6	-	-	~ 1		3,1	At < AtPi	~ 1		3,1	Pi > m
497,2813	422	230747,6	~ 1	-	-		1236399,3	At < AtPi	-		-	
353,2054	533	3,8	-	-	-		2,0	At < AtPi	-		~ 1	
327,2336	534	2,6	~ 1	~ 1	~ 1		~ 1		~ 1		~ 1	
341,2603	570	2,8	~ 1	~ 1	~ 1		~ 1		~ 1		~ 1	
425,2127	574	7,1	~ 1	~ 1	~ 1		~ 1		-		3,1	Pi < m
329,2388	588	2,0	-	~ 1	-		~ 1		~ 1		~ 1	

Tab. 7. 24: Gewebevergleich der differentiellen Massensignale des Mediums Pi < AtPi im negativen Modus gemessen.

			Blätter	Wurzeln	Myzel	Eluate At vs	s. AtPi	Eluate At vs	. m	Eluate P	i vs. m
	RT	FC									
[<i>m/z</i>]	[sek]	ESet 1	FC	FC	FC	FC		FC		FC	
266,0967	53	3,0	-	-	-	~ 1		119,1	At > m	17,4	Pi > m
334,0813	53	2,3	-	-	-	~ 1		48068,6	At > m	-	
555,1371	54	9,2	-	-	-	~ 1		35953,5	At > m	-	
215,0638	56	7,9	-	-	-	~ 1		-		-	
295,0914	61	3,0	-	~ 1	-	~ 1		73297,0	At > m	-	
382,0851	62	2,4	-	~ 1	-	~ 1		26174,2	At > m	-	
357,2178	69	2,8	-	-	-	84884,2	At < AtPi	-		-	
241,0906	80	20,6	-	-	-	~ 1		24,9	At > m	-	
225,0953	94	2,1	-	-	-	~ 1		-		-	
530,1258	96	4,3	-	-	-	~ 1		38158,6	At > m	-	
218,1109	99	8,7	-	-	-	37,6	At < AtPi	-		-	
393,0388	103	2,0	-	-	-	~ 1		-		~ 1	

554,1354	133	2,7	-	-		-	~ 1		44009,0	At > m	7907,2	Pi > m
478,0885	141	11379,1	-	~ 1		-	~ 1		-		-	
154,0231	146	41276,1	-	-		-	~ 1		-		-	
545,1263	152	2,7	-	-		-	~ 1		7,7	At > m	~ 1	
399,1023	161	12568,9	-	~ 1		-	~ 1		-		-	
175,0694	165	23607,3	-	-		-	21105,8	At < AtPi	-		-	
129,0642	169	34104,0	-	-		-	~ 1		-		-	
261,1414	169	68391,1	-	-		-	~ 1		-		-	
492,1035	172	97891,0	~ 1	2,1	At < At	Pi -	36,8	At < AtPi	-		-	
264,0905	173	2,1	-	-		-	6,9	At < AtPi	-		-	
227,1471	174	15707,2	~ 1	~ 1		-	~ 1		23440,3	At > m	-	
165,0289	179	2,4	-	-		-	~ 1		-		-	
327,1143	180	70198,3	~ 1	~ 1		-	4,5	At > AtPi	195806,6	At > m	-	
293,1537	180	11520,9	~ 1	-		-	~ 1		2,2	At > m	-	
427,1817	181	11685,0	-	~ 1		-	~ 1		18327,5	At > m	-	
381,1802	181	150142,1	~ 1	~ 1		-	~ 1		-		18796,9	Pi < m
236,0650	184	12586,3	-	34,	5 At < Atl	Pi -	~ 1		-		-	
157,0588	190	21383,6	-	-		-	22184,3	At < AtPi	-		-	
739,2015	196	15619,6	~ 1	~ 1		-	~ 1		17745,8	At > m	-	
131,0796	199	2,1	-	-		-	36,0	At < AtPi	-		42097,3	Pi > m
525,3007	202	6,6	-	-		-	18670,6	At < AtPi	-		-	
496,0791	203	69070,7	~ 1	~ 1		-	~ 1		52134,9	At > m	-	
443,1557	203	15515,7	~ 1	-		-	~ 1		17223,2	At > m	-	
165,0635	203	42243,0	~ 1	~ 1		-	~ 1		32632,3	At > m	-	
321,1231	205	31010,7	~ 1	~ 1		-	~ 1		30418,0	At > m	-	
343,1076	205	29143,0	~ 1	~ 1		-	~ 1		26415,1	At > m	-	
643,2402	205	32504,3	~ 1	~ 1		-	~ 1		44562,2	At > m	-	
665,2218	205	42388,9	~ 1	~ 1		-	~ 1		39270,9	At > m	-	
277,1374	205	46,9	~ 1	~ 1		-	~ 1		-		-	
235,1274	205	96823,0	~ 1	~ 1		-	~ 1		103898,9	At > m	-	

369,1239	208	49713,7	~ 1	~ 1		-	~ 1		46221,5	At > m	-	
416,1230	215	11569,0	~ 1	~ 1		-	~ 1		-		-	
381,1791	216	25482,6	~ 1	~ 1		-	~ 1		23873,1	At > m	-	
491,1721	216	11000,8	~ 1	~ 1		-	~ 1		-		-	
423,1901	216	145727,8	~ 1	~ 1		-	~ 1		133323,0	At > m	-	
467,1766	216	23481,0	~ 1	~ 1		-	~ 1		23999,7	At > m	-	
277,1601	216	15,8	-	-		-	~ 1		-		-	
593,1482	217	44575,0	~ 1	~ 1		-	~ 1		41686,5	At > m	-	
311,1203	223	12052,3	~ 1	~ 1		-	~ 1		-		-	
577,1521	230	25855,2	~ 1	~ 1		-	~ 1		29710,1	At > m	-	
443,1939	241	90095,7	-	~ 1		-	~ 1		91309,4	At > m	-	
144,0538	249	5,1	-	-		-	~ 1		3,9	At > m	-	
264,0955	258	17867,4	-	6,1	At < AtPi	-	~ 1		-		-	
485,2024	266	67073,3	-	~ 1		-	~ 1		110269,7	At > m	-	
327,1287	275	18055,3	~ 1	-		-	2,0	At > AtPi	8,2	At > m	-	
339,1376	276	53493,5	~ 1	~ 1		-	~ 1		65796,3	At > m	-	
583,2152	285	20777,2	-	-		-	~ 1		44798,2	At > m	-	
415,1984	286	10316,9	-	-		-	~ 1		11658,6	At > m	-	
207,1474	286	17099,5	-	-		-	~ 1		19186,8	At > m	-	
437,2396	289	29764,7	-	~ 1		-	~ 1		32317,0	At > m	-	
403,1073	290	14689,1	-	-		-	~ 1		-		-	
307,1607	303	11198,9	-	-		-	~ 1		4,1	At > m	-	
281,1498	305	524089,1	-	-		-	~ 1		198374,9	At > m	-	
479,2496	307	32788,9	~ 1	~ 1		-	~ 1		36207,2	At > m	-	
505,2680	315	12055,1	-	~ 1		-	~ 1		13089,4	At > m	-	
227,1366	317	25793,3	-	-		-	~ 1		-		-	
567,1679	318	26535,7	-	~ 1		-	~ 1		17403,2	At > m	-	
174,0639	320	12842,2	-	-		-	~ 1		14930,2	At > m	-	
421,2352	323	28549,4	-	~ 1		-	~ 1		25134,1	At > m	-	
329,2381	335	2,1	-	~ 1		-	~ 1		5,4	At > m	2,6	Pi > m

293,1811	338	13937,3	-	3,3	At < AtPi	~ 1	~	· 1	-		-	
455,2283	338	11768,6	-	-		-	~	· 1	-		-	
422,2196	343	18784,5	~ 1	~ 1		-	~	· 1	15264,5	At > m	-	
411,2044	345	10739,1	-	-		-	~	· 1	13876,8	At > m	-	
405,2404	365	15358,0	-	~ 1		-	~	· 1	12744,5	At > m	-	
323,1591	377	10458,7	-	-		-	~	· 1	10690,4	At > m	-	
439,2344	378	42464,9	-	-		-	~	· 1	73385,3	At > m	-	
277,1853	378	28905,8	-	~ 1		~ 1	~	· 1	6,3	At > m	-	
473,2537	382	15653,2	-	-		-	~	· 1	28177,5	At > m	-	
413,2186	383	16862,9	-	-		-	~	· 1	26099,7	At > m	-	
223,2137	385	2,3	-	-		-	~	· 1	2,2	At > m	~ 1	
311,1918	385	2,3	-	-		-	~	· 1	2,1	At > m	~ 1	
267,2028	385	2,3	-	-		-	~	· 1	2,2	At > m	~ 1	
205,1669	393	13709,8	~ 1	-		-	~	· 1	-		-	

7.2 MS/MS Messungen

Die Auswertungen der MS/MS Messungen für die differentiellen Massensignale der Medien At > m und AtPi > At (im positiven und negativen Modus) der LC-MS Analysen wurden mit dem Programm Data Analysis (Bruker, Bremen) durchgeführt.

Die Abstände zwischen den einzelnen Fragmenten wurden mit Hilfe der Data Analysis (Bruker, Bremen) Software bestimmt, dabei durfte der Fehler nicht größer als 10 ppm sein. Für die Summenformelbestimmung war die Toleranz ebenfalls maximal 10 ppm. Weiterhin sollte in der Kalkulation der Summenformel die Anzahl an Sauerstoff-, Stickstoff-, Schwefel- und Phosphoratomen nicht größer sein als die Anzahl der Kohlenstoffatome.

Es konnte nicht für alle Massensignale ein MS/MS Fragmentmuster erstellt werden. Dies könnte daran liegen, dass das Massensignal nicht das Mutterion ([M + H]⁺ bzw. [M - H]⁻) war. Desweiteren könnten die Stoßenergien von 15 eV, 25 eV und 40 eV nicht ausreichend gewesen sein, um einige Moleküle zu fragmentieren. Bei manchen Molekülen war die niedrigste angewendete Stoßenergie von 15 eV zu hoch, so dass das Molekülion in viele kleine Fragmente gespalten wurde, die dann nicht mehr als Fragmente des Massensignals zu detektieren waren. Konnten keine Fragmente eines Moleküls generiert werden, wurde dies mit "-" gekennzeichnet. Es wurde trotzdem versucht eine Summenformel zu bestimmen.

7.2.1 MS/MS Messungen der differentiellen Massensignale des Mediums AtPi > At

Tab. 7. 25: Fragmentierung der differentiellen LC-MS Massensignale im positiven Modus des Mediums AtPi > At. Die Fragmente wurden durch MS/MS Läufe mit 15 eV, 25 eV und 40 eV gewonnen. In grau sind die identifizierten Massensignale mit ihrem Namen dargestellt.

			15 eV		25 eV		40 eV			
	RT	FC		Intesität		Intesität		Intesität	Mögliche	
[<i>m/z</i>]	[sek]	ESet 1	Fragment	[%]	Fragment	[%]	Fragment	[%]	Annotierung	Mögliche Summenformel
226,9452	26	63952,1	226,9697	9,6	226,9676	6,8				$C_7H_3N_2O_5S^+/C_6H_3N_4O_2S^+$
					208,9532	6,7			226 - H ₂ O	
			205,6449	25,2						
			197,1308	24,3	197,1312	8,4				
			182,9016	100	182,9028	100	182,9015	44,4		
					169,8939	7,7	169,8934	15,3		
			159,9693	20,5						
			154,0847	35,7	154,9063	61,6	154,9058	100	182 - CO	
			141,9575	19,1					159 - H₂O	$C_4NO_3S^+/C_3N_3S_2^+$
					138,9115	15,8	138,9115	25,6	182 - CO ₂	
219,0184	27	5,5	-		-		-			
527,1430	29	102691,2	527,1646	100	527,1622	100	527,157	4,5	[M + H]⁺	$C_{16}H_{27}N_6O_{14}^+/C_{24}H_{31}O_{11}S^+$
			365,1143	5,4	365,1091	52,5	365,1078	100	[M + H - Glc] ⁺	$C_{10}H_{17}N_6O_9^+/C_{18}H_{21}O_6S^+$
					347,0927	6,5	347,0931	6,6	$[M + H - Glc - H_2O]^+$	
203,0461	29	3,9	203,0604	5,1	203,0538	8,5	203,054	9	[M + H - 2Glc] ⁺	$C_4H_7N_6O_4^+/C_{12}H_{11}OS^+$
124,0324	41	2,3	124,0398	100	124,039	100	-		[M +H]⁺	$C_6H_6NO_2^+$
Nicotinsäure										
973,3014	41	21322,4	973,3242	89	973,3242	4,2			[M + H] ⁺	$C_{43}H_{57}O_{25}^{+}$
811,2491	41	4,2	811,2567	23	811,2586	7,1			[M + H - Glc] ⁺	$C_{37}H_{47}O_{20}^{+}$
649,2012	41	2,7	649,2096	39,6	649,2076	13,5			[M + H - 2 Glc] ⁺	$C_{31}H_{37}O_{15}^{+}$
			487,1598	62,7	487,1578	32,1			[M + H - 3 Glc] ⁺	$C_{25}H_{27}O_{10}^+$
			325,1068	100	325,1055	100	325,1066	100	[M + H - 4 Glc]⁺	$C_{19}H_{17}O_5^+$
			163,0533	6,6	163,052	4,4			[M + H - 5 Glc]⁺	$C_{13}H_7^+$
359,2179	77	3,6	359,2200	100						$C_{22}H_{31}O_4^+/C_{12}H_{27}N_{10}O_3^+$

			342,1959 288,1823 270,1722 242,6572 197,1249	40,9 24,2 26,6 13,9 28,6	288,1803 270,1699 227,1294 197,122	7,7 16,5 9,3 23,3	197,1216	8,8	288 - H ₂ O	
			172,0893	34,8	172,088	33,3				
			171,1033	47,8						
			154,0784	49,2	154,0779 126,0852	100 9,6	154,0779 126,0831	100 23,3	$C_{10}H_{21}O_4$ 154 - CO	$C_{12}H_{10}^{+}$
211,1008	78	230539,0	211,092	100	211,096	100	-			
381,2030	78	2,7	-		381,2122 197,1278 154,0844	100 10,1 19	381,2136 197,1314 154,0868	19,9 71,1 100		
					10 1,00 1 1		10 1,0000			$C_9H_{17}N_4O_4S^+/C_{12}H_{13}N_4O_4^+$ oder $C_{11}H_{17}O_8^+$ oder
277,0870	80	63483,1	-	100	277,0955 259,0824 233,1047 215,0912 197,1282 189,1139 172,0888 154,0853 152,0559 136,0601 123,0768	56,2 11,6 6,3 11,3 10,5 7,7 7,6 21,3 19,5 100 10,1	277,069 136,0626	9,5 100	$[M + H]^{+}$ $[M + H - H_{2}O]^{+}$ $[M + H - CO_{2}]^{+}$ $[M + H - H_{2}O - CO_{2}]^{+}$ $215 - H_{2}O$ $233 - CO_{2}$ $172 - H_{2}O$ $154 - H_{2}O$	$C_{12}H_{21}O_3S_2^+$
220,1117 202,1007 Pantothensäu	102 102 re	95317,4 50636,7	220,1103 202,1019 184,093	100 25 11,5	220,1099 202,1016 184,0927 142,0816 124,0713 116,0305	11 32,7 29 21,8 29 16,4	124,07	45	[M + H] ⁺ [M + H - H ₂ O] ⁺ [M + H - 2 H ₂ O] ⁺ 184 - C ₂ H ₂ O 142 - H ₂ O	$C_9H_{18}NO_5^+$ $C_9H_{16}NO_4^+$ $C_9H_{14}NO_3^+$ $C_7H_{12}NO_2^+$ $C_7H_{10}NO^+$

194

242.0943	102	220410.4	90,0521	15,4	103,0725 98,0213 90,0515 85,062 72,041	18,2 25,5 100 14,5 25,5	98,0212 95,0461 90,0511 85,0625 72,0416 70,0259 67,0509 57,0694	65 35 60 25 100 80 50 25	[M + H + Na]⁺	$C_{5}H_{11}O_{2}^{+}$ $C_{4}H_{4}NO_{2}^{+}$ $C_{6}H_{7}O^{+}$ $C_{3}H_{8}NO_{2}^{+}$ $C_{5}H_{9}O^{+}$ $C_{3}H_{6}NO^{+}$ $C_{9}H_{18}NO_{5}Na^{+}$
342.1924	122	208845.7	-		342.204	90				$C_{16}H_{28}N_{3}O_{5}^{+}$
- , -		,			288,193	28,5				$C_{13}H_{26}N_{3}O_{4}^{+}$
					270,1836	20			288- H ₂ O	
					197,1296	54,6	197,1292	25,4		
					172,0985	48,7	172,098	11,8		$C_8H_{14}NO_3^+$
					154,0848	100	154,085	100	172 - H ₂ 0	$C_8H_{12}NO_2^{-1}$
260 2020	115	2.7	260 1095	100	260 1059	100	126,0878	60,9	$154 - CO/C_2H_4$	
360,2030	145	2,7	360,1985	20	360,1958	30.8			[IVI + F] [M + H - H O] ⁺	
			213 1425	20 16	342,0304	30,0				
			210,1120	10	198.127	23.1				
					172,0304	69,2	172,0893	100		
					,	,	154,0813	93,8	172 - H₂O	
							86,0901	43,8		
							72,0845	31,3		
275,1039	165	41	275 1117	100	075 4445	100				
	100	,,,	275,1117	100	275,1115	100	-		[M + H] ⁺	$C_{12}H_{19}O_7$
	100	-, -	259,1416	1,77	275,1115 259,128	100	-		[M + H] ⁺	$C_{12}H_{19}O_7$
	100	.,.	259,1416 217,1047	1,77 1,46	275,1115 259,128 217,1052	100 5 18,9	-		$[M + H]^{+}$ $[M + H - C_2H_2O_2]^{+}$	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$
		1,1	273,1117 259,1416 217,1047	1,77 1,46	275,1115 259,128 217,1052 175,0857	100 5 18,9 2,6	-		$[M + H]^{+}$ $[M + H - C_2H_2O_2]^{+}$	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$
		.,.	259,1416 217,1047 154,0838	1,77 1,46 0,69	275,1115 259,128 217,1052 175,0857 154,0857	100 5 18,9 2,6 2,8	-		[M + H] ⁺ [M + H - C₂H₂O₂] ⁺	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$
252 1028	201	117788.0	259,1416 217,1047 154,0838	1,77 1,46 0,69	275,1115 259,128 217,1052 175,0857 154,0857 123,0776	100 5 18,9 2,6 2,8 5	-		[M + H] ⁺ [M + H - C ₂ H ₂ O ₂] ⁺	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$
252,1028	201	117788,0	259,1416 217,1047 154,0838 - - 149,0229	100 1,77 1,46 0,69	275,1115 259,128 217,1052 175,0857 154,0857 123,0776 - 149,0223	100 5 18,9 2,6 2,8 5 72 3	- -		$[M + H]^{+}$ $[M + H - C_2H_2O_2]^{+}$ $[M + H]^{+}$	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$ $C_{10}H_{17}O_5^+$

			121,0256	22,2	111 0076	100			$[M + H - CO/C_2H_4]^+$	$C_7H_5O_2^+/C_6HO_3^+$
004.0700	000	5.0	114,020	10	114,0276	100				
261,0798	203	5,3	-		-		-			$C_{19}H_{9}N_{4}O$
319,0832	207	5,1	319,0923	100	319,0951	100			[M + H] ⁺	$C_{19}H_{15}N_2OS^{-}$
			289,1212	3	289,12	22,9				
			234,0396	5,4	234,0394	19,7				
			220,06	5,1	220,0601	32				$C_{15}H_{10}NO^+$
			171,0991	15,2	171,0998	40,8				
					154,0889	28,6				
252,0751	214	2,5	-		-		-			$C_{14}H_{10}N_{3}O_{2}^{+}$
,		,								$C_7H_{10}N_2O_0S^{+/}C_{10}H_{15}N_2O_0^{+}$
307.0742	220	5.5	307.0847	100	-		-			oder $C_{10}H_{15}O_2S^+$
001,0112		0,0	185 0442	27.6						$C_{0}H_{0}N_{0}O_{7}^{+/}C_{4}O_{0}H_{0}S^{+}$
			145 031	42						
247 1003	226	4.5	-	74	-		-			CurHuN ⁺
247,1000	220	-,0								$C_{15} H_{11} N_4$
261 1160	222	16	261 1272	100	261 1202	27.1			[NA , L]+	$C_{10} = 1_{21} + 4_{4} + 5_{2} + 5_{14} + 1_{17} + 1_{2} + 5_{3}$
201,1100	200	4,0	201,1275	100	201,1303	27,1				
			000 4004	40.0	243,1130	11,9			$[101 + H - H_2O]$	
			233,1321	10,9					$[WI + H - CO/C_2H_4]^{*}$	
			223,0978	26,2						
									[M + H - H ₂ O -	
			215,1219	19,3	215,1205	11,6			$[C_2H_4]^+$	
					187,1222	13,1				
					170,0735	12,1	170,0705	61,9		
					145,0543	10,3				
						,	130.0639	66.4		
			120.0801	21.6	120.0803	100	120.0792	100		
670.3584	233	149576.0	670.385	100	670.3836	19.6	670.3725	7.2		
0.0,000.			010,000		401 2034	21.2	401 2096	24.2		
					101,2001	21,2	101,2000	21,2		$C_{22}H_{22}N_{2}^{+/}C_{22}H_{22}NO_{4}^{+}$
			330 1735	26.0	330 160/	100	330 1600	100		oder $C_{2}H_{2}N_{2}S^{+}$
			550,1755	20,9	550,1034	100	270 1010	50		
							210,1019	30		
							197,1236	32,3		
							154,0835	22,1		

370,7132	235	102229,6	-		-		-			
552,3077	235	106719,4	-		-		-			
245,1777	237	5,0	245,1767	100			-		[M + H]⁺	$C_{12}H_{25}N_2O_3^+$
Leu-Leu			227,1745	3,1					[M + H - H ₂ O] ⁺	$C_{12}H_{23}N_2O_2^+$
			199,1801	15,4					[M + H - H ₂ O - CO] ⁺	$C_{11}H_{23}N_2O^+$
			132,1003	7,7	132,1004	8,9				$C_{6}H_{14}NO_{2}^{+}$
			86,093	57,7	86,0919	100				$C_5H_{12}N^+$
390,1109	238	4,9	390,122	34,7						
			267,0883	46,5						
			249,0775	95,7	249,0779	44,1			267 - H ₂ O	
			194,0832	13,5						
			145,0493	4,1						
			124,0374	100	124,0376	100	124,0375	100		
718,3445	240	177436,3	718,3486	100	718,3434	100	718,3125	11,3	[M + H] ⁺	
					700,3686	3,8			[M + H -H ₂ O] ⁺	
			629,3153	18,3	629,3057	57,7	629,2952	11,3		
					611,2837	6,2	611,3001	8,8	629 - H ₂ O	
			516,2054	6,7	516,2218	98,5	516,218	87,5		
							498,2017	21,3	516- H ₂ O	
					488,208	4,6	488,2326	20		
					417,1447	23,1	417,1468	100		
					399,1535	8,5	399,1385	93,8	417- H ₂ O	
					346,1292	7,7	346,1209	22,5		
							328,1088	28,8	346 - H ₂ O	
					302,1883	5,4	302,1913	8,8		
							272,1525	16,3		
							245,0732	18,8		
							213,1612	8,8		
402,1220	243	6,0	-		402,1307	100			[M + H] ⁺	$C_{16}H_{24}N_3O_7S^+$
					349,1859	36,7	349,1847	100		
					319,092	25,5				
					300,0973	29,8				
									[M + H - Cystein-	
					154,085	9,9	154,0857	9,1	Glutamat] ⁺	$ C_8H_{12}NO_2^+ $

7 Anhan	g
---------	---

534,9275	243	210393,0	-		-		-			
573,2693	244	17,6	573,2836	100	-		-			
			407,0983	72,6						
			389,0855	40					389 - H ₂ O	
			231,0927	30						
			171,1067	54,8						
			143,1127	45,5					171 - CO	
277,1126	246	3,8	277,1195	100	277,1191	17,3			[M + H] ⁺	$C_{10}H_{21}N_4OS_2^+/C_9H_{17}N_4O_6^+$
					233,1682	11,5			[M + H - CO ₂] ⁺	
			262,0678	40,8	262,0663	17,4				
			120,0798	60,3	120,0813	100	120,08	100		
386,1504	247	4,8	386,155	82,6					[M + H] ⁺	$C_{16}H_{24}N_{3}O_{8}^{+}$
245,1299	247	4,5	245,138	100	245,1397	100	245,1372	25,7	$[M + H - C_4 H_3 N_3 O_3]^+$	$C_{12}H_{21}O_5^+$
			227,1213	9,8					245 -H ₂ O	
					189,1116	10	189,1118	22,9		$C_9H_{17}O_4^{+}$
			187,1242	32,3					215 - CO/C ₂ H ₄	
			177,0451	8,7	474 4040	4 5	474 4000		205 -CO/C ₂ H ₄	
					171,1019	15	171,1002	45,7	189- H ₂ O	
							150,075	17,1		
			1 40 0000	100	1 40 00	100	125,0952	100		
			149,0602	100	149,06	100	149,0013	100	$177 - CO/C_2 \Pi_4$	$C_9 \Pi_9 O_2$
							107,0004	17,1	120- H ₂ U	
							97,1000	02,9		
2/2 1001	257	267072.0					03,0000	17,1		
343,1001	207	20/0/3,0	-		-		-			
										$C_{25}\Pi_{47}N_6O_4S$ oder
527 2040	257	249115.0			527 2020	15.9	527 2202	167		$C_{26}\Pi_{47}\Pi_{4}O_{5}S$ odei
527,5049	231	240113,0	-		527,5029	15,0	521,2295	10,7		$C_{28} I_{43} I_{6} O_{4}$
					138 2755	100			$C H N O^{+}$	$C_{23} I_{40} I_{3} O_{3} O_{3} O_{40} O_{1}^{+}$
					410 2804	26.3				
						20,5				Cu-HayNaOaS ⁺ oder
					343 2003	53	343 1972	100	438 - CcHoN	$C_{40}H_{07}N_{4}O_{0}^{+}$
					0.0,2000	0,0	325,1855	10,3		- 13 ^{-12/1} 4 - 2

					254,1502	13,7	254,1492 226,1505 189,123 155,0801	82 25,6 19,2 46,2	343 - C ₃ H ₇ NO ₂ / C ₂ H ₇ N ₃ O	$C_{14}H_{24}NOS^{+}/C_{17}H_{20}NO^{+}$
582,2840	261	153563,8	582,2975	37,2	582,3064	15,9				
			497,2637	100	497,2633	100				
			279,1198	51,1						
			245,1203	49,4						
			230,1079	41,6						
					154,0769	60,8	154,0769	100		
620,6250	261	323989,4	-		-		-			
513,2880	263	126192,6	513,2657	25,1	-		-			
			343,1888	100						
358,1645	266	3,1	358,1785	100	358,1756	84,4				$C_8H_{24}N_9O_7^+/C_{19}H_{24}N_3O_4^+$
					330,1792	9,2			$[M + H - CO/C_2H_4]^+$	
			327,2044	8,8						
			273,1252	8,7	273,1232	100	273,1223	100		$C_7H_{21}N_4O_7^+/C_{19}H_{17}N_2^+$
			245,1273	4,2					273- CO/C ₂ H ₄	
			133,0845	6,3						
418,1289	276	2,8	418,13	100	418,1462	25				
			152,0521	98	152,0531	100	152,0504	100		$C_5H_6N_5O^+$
655,3558	277	91506,3	655,3174	81,4	-		-			
			407,1943	30,2						
			377,184	100					407 - CH ₂ O	
			358,1765	27,2						
			279,1356	87						
			211,1298	7						
290,0944	278	50071,6	290,1017 272,1465 259,1012	100 27,2 20,3	290,1283	45,4	290,1072	22,4		$C_{15}H_{16}NO_5^{+\prime}C_{16}H_{12}N_5O^+$ oder $C_{19}H_{16}NS^+$ oder $C_{16}H_{20}NS_2^+$

			227,1844 208,1331	17 60,5	208,1341	70,6				
			190,1233 143,097	31 15,7	202,1085 190,1251	49,5 100	190,1213	100	208 -H ₂ O	$C_{12}H_{16}NO^+$
				- ,						$C_{14}H_{22}N_5O_7^+$ oder
372,1447	279	5,7	372,1548	100	372,1551	100	372,1675	13,2	[M + H] ⁺	$C_{15}H_{26}N_5O_2S_2^+$
					287,1012	44,6	287,1045	50,9		
					273,1228	53,9	273,1233	100	$[M + H - C_4 H_5 NO_2]^+$	$C_{10}H_{17}N_4O_5^{+\prime}C_{11}H_{21}N_4S_2^{+\prime}$
			261,1612	4,8						
			233,1673	4	233,1639	5,3	233,0712	14,8	261-N ₂	
			205,0845	63,3	205,0843	69,4	205,0853	29,8	273 - C ₃ H ₄ N ₂	$C_7H_{13}N_2O_5^+/C_8H_{17}N_2S_2^+$
					188,0685	7,6	188,0688	76,4		
					154,084	3,6				
					120,0777	4,3	120,0797	29,6	154-H ₂ O ₂	
333,1009	286	2,6	333,1137	100	333,1149	18				
					259,0824	16,6				
			245,1366	10,1	245,1333	18,4				
			169,0876	4,2						
					146,0717	8,3	146,0743	18,7		$C_6H_{12}NO_3^+$
			120,0584	6,1	120,0574	100	120,0569	100	146 - C ₂ H ₂	$C_4H_{10}NO_3^+$
340,1560	293	2,6	340,1655	100	340,1676	61,4				
			278,1671	14,5	278,1672	100	278,1659	100	-	
							294,1604	23	278 - O	
										$C_{19}H_{20}N_3O_6^+$ oder
386,1230	294	6,7	386,1278	100	386,1311	100	386,1362	3,3		$C_{12}H_{28}N_5O_3S_3^{-1}$
					301,0807	14	301,0805	5,6		
					007 000 4	05	007 0000	7.0		$C_{15}H_{15}N_2O_4$ oder
					287,0984	25	287,0963	7,8	$386 - C_4 H_5 NO_2$	$C_8H_{23}N_4OS_3$
					216,0264	3	216,0283	17,8		
070 4704	000	0.4	070 4005	400	202,0472	22,5	202,0463	100		
372,1791	296	3,1	372,1825	100	372,1837	100	372,1888	13,6		$G_{15}H_{26}N_5O_6$
					287,1348	20,1	454 0000	00.0		
					154,0782	28,3	154,0809	60,3		

			144,0413	7,7	144,0414	9,2	144,0377	100		$C_4H_6N_3O_3^+$
313,1453	297	2,4	313,1565	53,2	313,1661	1,7				$C_{18}H_{21}N_2O_3^+$
			267,1509	9,2						
			193,0488	2,8	193,0491	3				
			166,0861	25,6	166,0853	5,6			[M + H - C₀H₀NO] ⁺	$C_{0}H_{12}NO_{2}^{+}$
			133,0823	15.5	133,0649	2,4				0 12 2
			120,0784	100	120,0787	100	120,0786	100	166 - CH ₂ O ₂	$C_8H_{10}N^+$
393,0710	298	92670,0	393,0839	100	393,089	9,5	-			$C_{18}H_{17}O_{10}^{+}$
			355,1897	16,6						
			315,1752	7,2						
			271,0453	50,8	271,0437	44,4				
			239,0921	73,7	239,0911	100				$C_{12}H_{15}O_5^+$
			202,0871	30,7						
					176,0935	23,1				
			169,6139	17,5						
			147,5987	25,8						
			125,5854	25,2						
688,3708	300	811724,9	688,3839	100						
			650,8681	18,8						
			595,8454	35,8	595,8502	10				
							453,2446	36,3		
							425,2462	38,4	453 -CO	
							340,1579	100		
			329,1748	78,7	329,1766	100	329,1767	73		$C_{20}H_{25}O_4^+/C_{16}H_{21}N_6O_2^+$
							323,1319	60,8		
			283,1326	4,8	283,1359	18,5	283,1393	81,9		
			254,145	7,5	254,1439	21,6	254,1421	54,4		
							212,0978	84,9		
							198,086	39,7		
			186,078	3,7	186,0827	5,4				
			158,0836	2,7	158,087	7,8			186 - CO	
							155,0752	62,2		
461,2318	313	4,0	461,246	100	461,2466	100	461,2561	8,1		$C_{28}H_{33}N_2O_4^+$
			423,1575	4	423,1603	7,7				

			376,1905 277,1102 263,1393	4,4 8,8 9,1	376,1903 277,1523 263,1411	46,9 49,3 13,4	376,1872	25,2	$[M + H - C_4H_7NO]^+$ $[M + H - C_{13}H_{12}O]^+$	$C_{24}H_{26}NO_3^+$ $C_{15}H_{21}N_2O_3^+$
			229,1509	5,4						
					192,1037	29,1	192,1043	100	376 - C ₁₃ H ₁₂ O	$C_{11}H_{14}NO_{2}^{+}$
511,1702	332	5,0	511,188	100	511,1884	100	511,1857	33,6		
			443,2417	12,2			400 4000	70.0		
					112 1552	1/1	420,1202	12,2		
			407 0007	60.3	412,1552	14,1	412,1317	100		
			301 0708	21 1						
			331,0730	21,1			327 0966	94.8		
			326.2092	31.9	326.2102	14.3	027,0000	54,0		
				0.,0		,•	313,117	37,2		
			303,0721	29,9			,	,		
			,				283,1079	30,5		
							228,0643	64,3		
			177,1122	12,5	177,1115	6,1				
			133,0854	15	133,085	12,6				
161,0903	340	219191,6	161,0918	100	161,0924	100				C ₁₁ H ₁₃ O ⁺
					146,0654	36,8				
143,0797	340	150595,4			143,078	31,6			[M + H - H ₂ O] ⁺	$C_{11}H_{11}^{+}$
			133,0957	8,7	133,0953	63,1				$C_{10}H_{13}^{+}$
					131,0796	36,8	131,0433	40,8		$C_{10}H_{11}^{+}$
			119,0821	5,2	119,0814	73,7	405 0054	70.4		
					105,0662	84,2	105,0651	73,1		
					91,0522	16,8	91,0506	20.1		
							79,0308	29.9		
410,1156	347	4,1	410,1183	38,1				_0,0	[M + H] ⁺	$C_{18}H_{16}N_7O_5^+/C_{17}H_{20}N_3O_9^+$
			392,1063	2,8					[M -H₂O] ⁺	C ₁₈ H ₁₄ N ₇ O ₄ ⁺ /C ₁₇ H ₁₈ N ₃ O ₈ ⁺
			267,0784	13,6					-	$C_{15}H_{11}N_2O_3^+$
			249,068	51,4	249,0688 186,0505	7,8 3,5			267 - H ₂ O	$C_{15}H_{9}N_{2}O_{2}^{+}$

			144,0421	100	144,0414	100	144,0397	100		
			126,028	3,6	126,0292	15,7	126,0289	40,4	144 - H₂O	
				,			113,02	5,2	126 -CH	
390,1089	354	3,6	390,1223	100	390,1231	4,3			[M + H] ⁺	$C_{20}H_{16}N_5O_4^+$
			268,0833	38,1	268,0828	29			$[M + H - C_7 H_6 O_2]^+$	$C_{13}H_{10}N_5O_2$
250,0652	355	3,6	250,0728	27,4	250,0722	23,7			268- H ₂ O	$C_{13}H_8N_5O$
			232,0619	9,5	-				250 - H ₂ O	$C_{13}H_6N_5$
				,	228,0664	22,4			-	
			205,086	2,9	205,0833	3,6				
			124,0378	28,6	124,0375	100	124,0372	100		
421,2807	360	109589,8	421,2902	100	421,2938	100	-		[M + H] ⁺	$C_{20}H_{41}N_2O_7^+$
403,2724	360	120787,0	403,2863	99,5	403,2884	91,3	-		421- H ₂ O	$C_{20}H_{39}N_2O_6^+$
385,2591	360	59358,7	385,2765	96,9	385,2765	85,4			403- H ₂ O	$C_{20}H_{37}N_2O_5^+$
			367,265	33,8	367,2628	47,8			385- H ₂ O	$C_{20}H_{35}N_2O_4^+$
			349,2547	18,1	349,2543	47			367- H ₂ O	$C_{20}H_{33}N_2O_3^+$
			331,2413	12,2	331,2441	23,3			349- H ₂ O	$C_{20}H_{31}N_2O_2^+$
			303,1964	25,1	303,1975	31,9				
			301,1813	12,5	301,181	56,1				
			285,1849	8,8	285,1878	30,4			303-H ₂ O, 301 - O	
			265,1581	4,3	265,1605	26,4				
					224,1086	53,8			331 -C₅H ₁₇ NO	$C_{15}H_{14}NO^{+}$
					189,1635	7,4				
					161,0962	8,6				
					133,0942	4,5				
412,0941	371	19632,1	412,1046	100	412,1037	15,5	-			$C_{21}H_{18}NO_8^+/C_{22}H_{14}N_5O_4^+$
			391,1853	41,6						
			289,0712	90,1	289,0733	100				
					273,1115	86,7			412- C ₅ HNO ₄ ???	$C_{16}H_{17}O_4^+/C_{17}H_{13}N_4^+$
					133,0844	88,9			273- C ₁₀ H ₄ O/C ₉ H ₄ N ₂	$C_6H_{13}O_3^+/C_8H_9N_2^+$
390,1102	372	5,4	390,1148	31,8	390,2491	7,8			$[M + H]^{+}$	$C_{20}H_{16}N_5O_4^+$
			267,082	27,3					$[M + H - C_6H_5NO_2]^+$	$C_{14}H_{11}N_4O_2^+$
			249,0693	27,3	249,0712	7,5				
124,0329	372	4,3	124,0365	100	124,0354	100	124,0353	100	267 - C ₈ H ₅ N ₃	$C_6H_6NO_2^+$
					105,0312	7,4	105,0309	11,2		

	0.70	~~~~~					1		ra a 1.13±	
342,1738	373	33287,3	342,1698	100	342,173	52,7	-		[M + H] ⁺	$C_{14}H_{24}N_5O_5^{-}/C_{15}H_{29}N_9O^{-}$
			273,1577	21,9	273,1581	100			$[M + H - C_3H_3NO]^+$	$C_{11}H_{21}N_4O_4^+/C_{12}H_{17}N_8^+$
342,1346	380	3,0	342,1349	100	342,1468	16,8	-		[M + H]⁺	$C_{19}H_{20}NO_5^+/C_{20}H_{16}N_5O^+$
			273,1606	7,5	273,16	100				
			257,0837	13,9	257,0793	35,1				
			243,1058	34,3	243,1008	53,2				
431,2211	388	2,2	431,2213	100	431,235	31			[M + H] ⁺	$C_{27}H_{31}N_2O_3^+$
			346,1794	4,4	346,1818	14,6				
					332,2023	14,8				
					,				[M + H -	
			247.1461	8.9	247.1467	100			$[C_{9}H_{12}N_{2}O_{3}]^{+}$	
			, -	- , -	179,1199	18.6	179.1181	48.4		- 13 13
					162,0919	19.8	162,091	100		
			133,0845	8.9	133.0834	7.9	,			
307,1748	425	74484.0	-	0,0	-	.,•	-			$C_{20}H_{22}N_2O^+$
315,1526	485	2.1	315,1596	100	315,1612	100	-		[M + H] ⁺	$C_{10}H_{22}O_4^+$
0.0,.010		_,.	0.0,.000		265,1798	14			[]	- 13: 123 - 4
					187,0749	18,9			$[M + H - C_7 H_{12} O_2]^+$	$C_{12}H_{11}O_{2}^{+}$
149,0170	515	4,9	149,022	100	149,0237	31,8	-		[M + H] ⁺	$C_8H_5O_3^+$
,		,	121,0274	25,5	121,0237	100			ÎM + H - CO]⁺	$C_7H_5O_2^+$
				,						$C_{18}H_{21}O_5^+$ oder
317.1278	515	3.1	317.128	100	317.1376	100	-			$C_{14}H_{17}N_6O_3^+/C_{13}H_{21}N_2O_7^+$
,		,	,		261,0645	10.6				
					245.0711	3.2				
401.2445	521	67307.1	401.257	100	401.257	100	-		[M + H] ⁺	$C_{21}H_{27}O_7^+$
,	•=•	,.	383.2471	9.2	383.2559	46			$[M + H - H_2O]^+$	-213/ - /
			365.2372	12	365.241	38.6			383- H ₂ O	
			287.1897	10.2	287,1946	66				
			269,1773	6,9	269,1835	82			287 - H ₂ O	
			251,1733	5.4	251,1697	46.8			269 - H ₂ O	
497.2718	523	1282790.8	497.3172	100	497.3123	100	419.3082	25.1	$[M + H]^{+}$	$C_{28}H_{41}N_4O_4^+$
,								_0,1	[M + H -	- 20+14 - 4
			298,2782	26.5	298,2773	58,7	298,276	100	$[C_{10}H_5N_3O_2]^+$	$C_{18}H_{36}NO_{2}^{+}$
			227,201	54,8	227,2019	26,7	227,2011	85,6	298 - C₄H ₉ N	$C_{14}H_{27}O_{2}^{+}$

463,2631	570	2,0	-		-		-			
327,2198	585	2,3	-		-		-		[M + H] ⁺	$C_{22}H_{31}O_2^+$
619,3834	595	2,3	-		-		-			
575,3580	596	2,2	575,3699	14,5	575,3712	24,4	575,3748	100		
							437,2291	2,9		
							375,1934	17,8		
							353,2084	3,2		
							331,1734	3,4		
			301,1383	100	301,137	100	301,1353	46,8		$C_{19}H_{17}N_4^+/C_{18}H_{21}O_4^+$
							271,1424	3,1		
							245,074	3,2		
							149,0178	4,4		
531,3334	597	2,0	-		-		-			
353,1979	598	2,1	-		-		-			

Tab. 7. 26: Fragmentierung der differentiellen LC-MS Massensignale im negativen Modus des Mediums AtPi > At. Die Fragmente wurden durch MS/MS Läufe mit 15 eV, 25 eV und 40 eV gewonnen. In grau sind die identifizierten Massensignale mit ihrem Namen dargestellt.

			15 eV		25 eV		40 eV			
				Intesität		Intesität		Intesität	Mögliche	Mögliche
[<i>m/z</i>]	RT [sek]	FC ESet 1	Fragment	[%]	Fragment	[%]	Fragment	[%]	Annotierung	Summenformel
378,9190	25	2,3	242,9438 212,9102 194,9078 174,956 158,9786 146,9653	28,4 3,7 3,1 100 12,1 4,7	174,9538 146,9581	100 71,7	146,9611	100	212 - H₂O 174 - CO	
316,9482	25	3,7	-		-		-			
248,9609	26	3,3	-		-		-			
267,0411	40	5,5	267.0216	51,3					[M - H] ⁻	$C_{10}H_{3}N_{8}O_{2}^{-}$
			122.0174	100					[M - H -	$C_3N_5O^2$

									C ₇ H ₃ N ₃ O] ⁻	
548,3367	44	2,1	548,3312	100	548,3267	100	548,3318	33		
					304,1856	5,1	304,185	100		$C_{13}H_{26}N_{3}O_{5}^{-}$
							286,1848	46,6		
							268,1596	22,9		
							230,1462	29,5		
218,1044	102	37,6	218,0995	12,5	-		-			$C_{10}H_{12}N_5O^{-1}$
			146,0815	100						
358,2024	145	2,6	358,1964	100	358,1962	28,1	-		[M - H] ⁻	$C_{16}H_{28}N_3O_6^-$
			340,1847	10,9	340,1858	15,9			[M - H - H ₂ O] ⁻	$C_{16}H_{26}N_{3}O_{5}^{-}$
					322,1783	3,3			340 - H ₂ O	$C_{16}H_{24}N_{3}O_{4}$
					296,1986	3,6				
					256,1255	11,4				
					238,1178	3			256 - H ₂ O	
			230,1489	10,8	230,1488	100			[M - H - C ₆ H ₈ O ₃] ⁻	$C_{10}H_{20}N_{3}O_{3}^{-}$
					212,139	21,7			230 - H ₂ O	$C_{10}H_{18}N_3O_2^{-1}$
					186,1602	9,9				
175,0626	180	21105,8	175.0804	100	-		-			
			146.9717	32,2						
			131.0754	19						
			115.0357	27,1						
264,0901	195	6,9	264.1021	100	-		-		[M - H] ⁻	$C_{15}H_{10}N_{3}O_{2}^{-}$
			220.0688	43,7					[M - H - CH₄O] ⁻	$C_{13}H_6N_3O^-$
492,1128	202	36,8	492,1036	100	492,0999	29,3				
			428,1036	21,9	477,0788	33				
					428,1037	100				
					299,0493	4,5				
					274,9876	9,5	274,9953	25,4		
					259,016	16,4	259,0166	51,7		
			234,0801	3,2	234,0789	75	234,07	100		$C_{13}H_8N_5^{-1}$
195,0677	207	29958,1	195,064	100	-		-			$C_{11}H_7N_4^{-1}$
			175,0403	19,3						
			131,0515 113.0038	40,1 20,9						
----------	-----	----------	----------------------	--------------	----------	------	----------	------	---	---
157,0521	219	22184,3	-	- / -	-		-			$C_7H_9O_4/C_8H_5N_4$
285,1367	230	40043,8	285.1498	99,6					[M - H] ⁻	C ₁₄ H ₂₁ O ₆ /C ₁₁ H ₁₃ N ₁₀
131,0731	230	36,0	131.0682	100	131,0837	100	131,1086	100		
525,3145	257	18670,6	525,3028	100	525,3012	100				
			484,147	29,1	484,1371	31,1				
			341,1842	5,5	341,1801	70,1				
			297,1928	3,8	297,1919	76,8	297,1978	100	341 - CO ₂	
					279,1787	18,2			297 - H ₂ O	
165,0574	271	2,4	165.0557	27,8	165,0722	2,7				$C_6H_5N_4O_2/C_5H_9O_6$
			147.0438	100	147,0598	58			165 - H₂O	$C_6H_3N_4O^{-}/C_5H_7O_5^{-}$
			119.0472	32,1	119,0597	10			147 -CO	$C_5H_3N_4/C_4H_7O_4$
					117,0435	34,1	117,0834	100		
266,1077	278	36534,8	266.1440	52,1					[M - H] ⁻	C ₉ H ₁₂ N ₇ O ₃ ⁻ /C ₁₃ H ₁₆ NO ₅ ⁻
248,0960	278	16730,6	248.1302	100					[M - H - H ₂ O] ⁻	$C_9H_{10}N_7O_2^{-}/C_{13}H_{14}NO_4^{-}$
			136.0455	37,1						
171,0685	289	2,8	171.0576	10,3					[M - H] ⁻	$C_5H_7N_4O_3^-$
			146.9497	4,8						
			127.0597	100	127,0622	100			[M - H - CO ₂] ⁻	$C_4H_7N_4O^-$
469,1943	340	22726,3	469,1817	41,8						
			289,0987	5,6			381,1266	2,9		
							319,0764	4		
							291,0775	6,2	319 - CO	
							265,0646	20,4	291 - C ₂ H ₂	
			245,0786	6,9	245,0779	4,1	245,0577	3,2		
223,1008	340	265997,1	223,097	100	223,0992	2,2	223,0966	80,3		$C_{12}H_{15}O_{4}^{-}$
			203,0712	7,1	203,068	3,5	203,0705	9,3		$C_{12}H_{11}O_{3}^{-}$
			159,0809	54,4	159,0808	100	159,0806	53,1	203 - CO ₂	$C_{11}H_{11}O^{-}$
			147,0795	2,8	147,078	10,4				
			143,0836	2,4	143,0845	14,4				
			133,0656	18,3	133,0654	48,5	133,063	17,6	159 - C ₂ H ₂	

			131,0853	13	131,0844	57	131,0834	14,8	159 - CO	
					129,0696	43,9	129,0669	100	159 - CH ₂ O	
309,1063	418	3,1	309,1017	100						$C_{15}H_{13}N_6O_2$ $/C_{14}H_{17}N_2O_6^{-1}$
			227,1277	50,5	227,1256	48,6				
			178,9655	74,6	178,963	18,1				
					146,1634	50,9			178 - O ₂	
					127,1097	100	127,1157	100		
251,1005	443	2,3	251.1106	100	251,1284	100	-			C ₁₃ H ₁₅ O ₅ ⁻ /C ₁₄ H ₁₁ N ₄ O ⁻
			154.9739	12,8	154,9941	49				
			120.9565	4,8	120,9696	50				
315,1639	512	2,1	315,1596	100			-			C ₁₉ H ₂₃ O ₄ ⁻
			297,1535	8						
			285,1465	40,2	285,1454	100				
					269,1124	57				
			265,1563	17,7						
			257,1147	38,9	257,1138	30,4				
			223,1919	28,3						
			195,1344	20,7						
			174,954	19,9						

7.2.2 MS/MS Messungen der differentiellen Massensignale des Mediums At > m

Tab. 7. 27: Fragmentierung der differentiellen LC-MS Massensignale im positiven Modus des Mediums At > m. Die Fragmente wurden durch MS/MS Läufe mit 15 eV, 25 eV und 40 eV gewonnen. In grau sind die identifizierten Massensignale mit ihrem Namen dargestellt.

			15 eV		25 eV		40 eV			
	RT			Intesität		Intesität		Intesität	Mögliche	Mögliche
[<i>m/z</i>]	[sek]	FC	Fragment	[%]	Fragment	[%]	Fragment	[%]	Annotierung	Summenformel
136,0609	46	4,7	136,0577	100	136,0578	100	136,0599	100		$C_5H_6N_5^+$

							119,032	23,9		
300,1270	50	251625,1	-		-		-			
557,1495	54	55433,8	557,1564	54						
			446,1101 1	00	446,1105	21,3				
			348,0699 4	8,2	348,0706	36,1				
			290,0848 2	1,7	290,0877	24,5				
			268,1039 2	2,7		·				
152,0571	54	11,3	152,056 52	2,8	152,0568	100	152,0553	100		$C_4H_{10}NO_5^+/C_5H_6N_5O^+$
			135,0257 2	0,3	135,025	90			152 - NH₃	
297,0980	59	2,2	297,1032 1	00	297,1028	47,1			[M + H] ⁺	$C_8H_{17}N_4O_8^+$
					279,0925	2,6			$[M + H - H_2O]^+$	$C_8H_{15}N_4O_7^+$
269,1039	59	2,5	269,1077	6,1	269,1071	15,7				
					251,0971	3,7			269 - H₂O	
					233,0888	4,6			251 - H₂O	
					221,0864	4,5	221,0875	2,8		
					205,1453	7,3				
					188,1174	6,6	188,1153	11	205 - NH₃	
			122,0691	6,3	122,069	100	122,0691	100	188 - CO	$C_6H_8N_3^+$
306,0989	61	4537125,5	-		306,0981	5,8			[M + H]⁺	$C_{15}H_{16}NO_6^+/C_{16}H_{12}N_5O_2^+$
									$[M + H - C_4 H_8 O/$	$C_{11}H_8NO_2^+$
					186,0571	9,6	186,0568	3,9	$C_5H_4N_4]^+$	
144.0467	64	2.0			1 4 4 0 4 5 7	100	111 015	100		
144,0467	01	2,9			144,0457	100	144,045	50.4	$100 - U_2 \Pi_2 U$	$C_9\Pi_6NO$
					120,0329	24,5	126,0329	50,4	144 - H ₂ U	C ₉ Π₄N
					113,0269		113,0264	50,0		
247.0700	64	400252.7			112,0191	35,2	112,0191	100	120 - CH ₂	
347,0728	61	169353,7	-		-		-			
200,0000	01	93246,4	-		-		-			
360,1063	61	00007,3	-		-		-			
306,0970	61	93206,4	-		-		-			
334,0923	10	05400.2	-		-		-			
200,0409	02	90499,2	-		-		-			
289,1367	62	84859,3	-		-		-			

336,1076	62	71415,6	-	-		-			
328,0783	67	271280,9	328,084 100	328,0855	19,2			[M + H] ⁺	C ₁₇ H ₁₄ NO ₆ ⁺
			288,1938 9,4	288,1939	18				
			270,1836 4,7	270,1832	16,1	270,1864	4,5	288 - H ₂ O	
			197,1299 5,5	5 197,1292	48	197,1304	26,7		
			172,0979 10,5	5 172,099	21,3	172,0963	6,6		$C_8H_{14}NO_3^+$
			154,085 10,5	5 154,0856	100	154,0853	100	172 - H₂O	$C_8H_{12}NO_2^+$
			146,0609 3,5	5 146,054	11,3	146,0585	13,4		
168,0431	70	131064,2	-	-		-		[M + H] ⁺	$C_{11}H_6NO^+$
383,1094	80	221309,0	-	-		-			
507,1624	80	123544,7	507,1528 6,4	ł					
			285,077 18,4	285,0764	42,2	285,0781	22,1		
			267,0784 100	267,0807	100	267,08	49,1		
265,0765	80	1168166,9	265,0816 61,8	3 265,0798	84,6				$C_{12}H_{13}N_2O_5^+$
				245,0864	25,3	245,0868	22,2		
				232,0786	100	232,0779	88,3		
				222,0705	46,6				
				199,0987	15,7	199,0978	100		
			149,0314 24,2	2 149,0809	16,8				
						147,0778	68,8		
262,0665	80	226624,9	-					[M + H]⁺	$C_{13}H_{12}NO_5^+/C_{14}H_8N_5O^+$
504,1534	80	117194,4	-						
192,0748	101	68695,1	192,08 100) –				[M + H]⁺	$C_9H_{10}N_3O_2^+$
130,0632	121	118942,4	130,0634 100) -				[M + H]⁺	C ₉ H ₈ N ⁺
556,1489	133	64863,8	-						
192,1380	137	134100,9	192,1421 100)				[M + H]⁺	$C_{12}H_{18}NO^+$
			175,1158 16	5				[M + H - NH ₃] ⁺	
			157,105 2,6	5					
			128,1416 49,4	ŀ				157 - H ₂ O	
392,0969	144	493094,1	392,0998 100	392,0979	29,1			[M + H]⁺	C ₁₈ H ₁₈ NO ₉ ⁺
				374,0861	3,8			$[M + H - H_2O]^+$	$C_{18}H_{16}NO_{8}^{+}$
			348,1099 5,5	348,1076	6,5			[M + H - CO ₂] ⁺	$C_{17}H_{18}NO_{7}^{+}$

			306,0985 9,2 144,0443 14,2	2 306,0993 231,049 187,0596 186,0563 144,0439 126,0326	27,1 4,2 4,4 5,4 100 16,9	186,0577 144,0441 126,0328	13 100 69,2	348 - C ₂ H ₂ O 306 - C ₃ H ₇ O ₂ 231 - CO ₂ 231 - CHO ₂ 187 - NH ₃ 144 - H ₂ O	$\begin{array}{c} C_{15}H_{16}NO_{6}^{+} \\ C_{12}H_{9}NO_{4}^{+} \\ C_{11}H_{9}NO_{2}^{+} \\ C_{11}H_{8}NO_{2}^{+} \\ C_{9}H_{6}NO^{+} \\ C_{9}H_{4}N^{+} \end{array}$
256,1039	156	101246,2	-					[M + H] ⁺	$C_{19}H_{14}N^{+}/C_{14}H_{14}N_{3}O_{2}^{+}$
259,1112	156	10,3	259,1117 100) -				[M + H]⁺	$C_{19}H_{15}O^{+}$
			245,0905 13,8	3				$[M + H - CH_2]^+$	
			229,152 7,9						
365,1210	167	59035,6	365,1218 100	365,123	80			[M + H]⁺	$C_{19}H_{17}N_4O_4^+$
			345,0996 3,2	2					
				288,1922	21,4				
			277,1468 3,3	3					
				270,1779	24,2			288 - H ₂ O	
			249,1558 5	249,1584	15,3				
			225,1093 8,9	225,1127	28,4				
				205,6419	22				
				197,1296	45,1	197,1305	44,3		
			172,098 3,9	172,0996	29,5				
			154,0876 4,1	154,0845	100	154,0848	100	172 - H ₂ O	$C_8H_{12}NO_2^+$
				136,0715	17,5			154 - H ₂ O	
212,1253	174	98416,1	-						
287,1075	174	149534,3	-	-		-			
295,1582	180	2,2	295,1639 41,8	5				[M + H]⁺	$C_{16}H_{19}N_6^+/C_{15}H_{23}N_2O_4^+$
			278,1388 7,6	5				[M + H - NH ₃] ⁺	
			252,0809 32,9						
			181,0838 6	5					
			149,058 24,1	149,0595	18,4	149,0577	25,4		
			136,074 100	136,0736	100	136,0746	100		
				119,048	11,6	119,0473	58,6	136 - NH₃	
351,1031	180	137487,6	-	-		-			

389,1208	181	48716,7	389,1313	10,9						
			283,0719	100	283,0719	60,4				
			167,093	26,4	167,0928	44,4	167,0916	13,8		
			152,0556	80,1	152,0554	100	152,0554	100		
238,0703	181	53110,3	-		-		-		[M + H]⁺	$C_{12}H_8N_5O^+/C_{11}H_{12}NO_5^+$
405,1722	181	180351,3	405,1714	100	405,1724	100	-			
			237,1044	3,6						
			223,0926	5,4	223,0905	17,4				
			195,0977	2,9	195,0959	5,7			223 - CO	
			160,071	6						
152,0553	182	66154,0	-		-		-		[M + H]⁺	$C_5H_6N_5O^+$
614,7726	182	58269,5	-		-		-			
411,1192	190	793002,5	411,1223	100	411,1219	32,7			[M + H]⁺	$C_{21}H_{19}N_2O_7^+$
			268.08	87	268 0795	41 4	268 0784	12 7	[M + H -	C ₄₀ H ₄ ,NO ₀ ⁺
			200,00	0,1	200,0700	, .	200,0701	12,1	C ₉ H₅NO] ⁻	
			250,0686	3,4	250,0698	22,6	250,0672	2,9	268 - H ₂ O	$C_{12}H_{12}NO_5^+$
					232,0607	2,8			250 - H ₂ O	$C_{12}H_{10}NO_4^+$
					186,0568	4	186,0557	9,6	232 - CH ₂ O ₂	$C_{11}H_8NO_2^+$
			144,0443	14,4	144,0445	100	144,0442	100	186 - C ₂ H ₂ O	C ₉ H ₆ NO ⁺
					124,0351	13,6	124,035	61,5		
206,0621	191	734542,7	206,0667	100						$C_8H_8N_5O_2^+/C_7H_{12}NO_6^+$
			186,0584	4,2						
			144,0469	26,6	144,0466	31,1	144,0468	30		
			126,0357	27,7	126,0355	37,5	126,0355	89,8	144 - H ₂ O	
124,0373	191	201132,3	124,0375	69,3	124,0374	100	124,0377	100		$C_6H_6NO_2^+$
					113,0267	3,2	113,0273	19,5	126 - CH	
250,0699	191	47528,1	-		-		-			$C_{13}H_8N_5O^+$
441,1323	191	45149,9	-		-		-			
391,1127	196	86622,7	391,1192	3,9						
			268,0831	100	268,0822	100	268,083	17,1		$C_{12}H_{14}NO_6^+/C_{13}H_{10}N_5O_2^+$
			249,0768	8,1	249,0791	3,8				
			210,112	2,9						

						154,0859	3,7	
			124,0375 19,	3 124,0369	38,1	124,0371	00	
268,0799	196	279349,7	268,083 10	0 268,0832	28,8			$C_{12}H_{14}NO_{6}^{+}$
			244,0861	5				
			226,0802 4,	7				
			209,0799	5				
			124,0368 16,	2 124,038	100	124,0371	00	$C_6H_6NO_2^+$
160,0735	203	251636,6	160,0728 57,	3 160,0706	5,3		[M + H] ⁺	$C_7 H_{12} O_4^+$
145,0500	203	239441,7	145,0487 10	0 145,0479	26,6		[M + H - CH ₃]	$^{+}$ C ₆ H ₉ O ₄ $^{+}$
				129,0523	75		145 - O	
			128,0449 35,	2 128,0446	34,1	128,0445	00 145 - OH	
117,0550	203	44416,8	117,0529 55,	1 117,0526	100	117,0521 6	5,4 145 - CO	$C_5H_9O_3^+$
148,0717	203	48986,4	-	-		-		
130,0630	203	164972,1	-	-		-		
498,0926	203	31040,1	498,1113 25,	5				
			453,2035 54,	6 453,202	40,1			
			418,1326 24,	7				
			378,2022 15,	7 387,2046	24,2			
			152,0569 10	0 152,0538	100	152,0566	00	$C_5H_6N_5O^+$
149,0585	204	89792,5	-	-		-	[M + H] ⁺	$C_9H_9O_2^+$
342,1040	205	71262,9	-	-		-		
345,1126	205	1729152,0	345,1146 10	345,1125	100		[M + H]⁺	$C_{22}H_{17}O_4^+$
				311,0998	8,4	311,0942	00 [M + H - H ₂ O ₂	2]+
			301,1238 1	1 301,1241	34,7		[M + H - CO ₂]	$^{+}$ C ₂₁ H ₁₇ O ₂ ⁺
				293,0879	21	293,0857 6	7,1 311 - H ₂ O	
				271,0428	9,8			
				259,112	15,8		301 - C ₂ H ₂ O	$C_{19}H_{15}O^{+}$
				241,0968	5		259 - H ₂ O	$C_{19}H_{13}^{+}$
231,0489	205	84444,3	-				[M + H]⁺	$C_{10}H_7N_4O_3^+$
301,1235	205	79729,2	301,131 64,	3 301,1333	31,9	-	[M + H]⁺	$C_{15}H_{17}N_4O_3^+/C_{14}H_{21}O_7^+$
				220,9911	45,3			
			205,0979 46,	3				

					195,0116	22,9				
			193,1404	100						
					177,001	44,2			195 - H₂O	
			144,1014	50	144,045	29,8				
					127,0772	100			144- OH	
592,1635	209	118192,8	592,1744	100	592,175	13,3			[M + H]⁺	
			400,1283	53,3	400,127	61,4				
			353,1561	5,4						
			323,1408	15,5	323,1479	10,5	323,1447	13,1		
			295,1178	40	295,1181	29,1	295,116	37,3		
			238,0715	9	238,0728	35,7	238,0732	7,5		$C_{11}H_{12}NO_5^+/C_{12}H_8N_5O^+$
			220,0622	19,2	220,0627	100	220,0631	21,3	238 - H ₂ O	$C_{11}H_{10}NO_4^+/C_{12}H_6N_5^+$
			193,0515	4,2	193,0511	39,3	193,0512	100	220 - CHN	$C_{10}H_9O_4^+/C_{11}H_5N_4^+$
428,2008	209	3,4	428,2034	100	428,2056	70			[M + H] ⁺	$C_{17}H_{35}NO_9P^+$
Glycero-Ph	lospory	/lcholin			410,1913	20,8			$[M + H - H_2O]^+$	$C_{17}H_{32}NO_8P^+$
									410 -	
			184,0767	5,7	184,0714	100	184,0767	100	$C_{12}H_{20}NO_5$	$C_5H_{12}O_3P^+$
							104,1087	5,4	184 - PO₃H	$C_5 H_{11}^+$
400,1077	212	44726,9	400,1098	100	-				[M + H] ⁺	$C_{21}H_{14}N_5O_4^+$
			355,0423	4,7						-
			257,0697	5,9						
			239,0577	17					257 - H2O	$C_{12}H_7N_4O_2^+$
			144,0466	32,8						
			116,0678	4,2						
491,1709	216	191636,7	491,1777	100	491,178	100	491,1742	17,5	[M + H]⁺	
			447,1882	5,2	447,1876	53,4	447,1915	18,5	$[M + H - CO_2]^+$	
			343,0935	42,6	343,0957	26,2				
			152,0565	9,1	152,056	11,5	152,0568	100		
412,2048	216	215500,4	412,2061	100	412,2049				[M + H]⁺	
			394,1938	4,9	394,1949				[M + H - H2O]	
							315,0939	6,5		
							283,0966	11	315 - O ₂	

						255,1051	7,5	283 - NO	
						229,1395	17,4		
			184,0725 6,7	184,0715		184,0714	100		$C_7H_{10}N_3O_3^+/C_5H_{12}O_3P^+$
			152,0532 8,2	152,0522		152,0532	28,7	184 - CH ₄ O	
279,1617	216	2,1	279,1677 100						$C_{15}H_{23}N_2O_3^+$
			166,0853 56,7	166,0839	45,1				$C_9H_{12}NO_2^+$
			149,0586 25,7					166 - NH₃	$C_9H_9O_2^+$
			120,0769 14,3	120,0781	100	120,0751	100		
152,0552	217	70479,7	152,0604 76,2	152,0551	42,9			[M + H]⁺	$C_5H_6N_5O^+$
			135,0378 100	135,0244	100				
494,1409	217	66570,3	-	-		-			
343,0904	217	134931,8	-	-		-			
347,1621	218	5,5	347,1697 100	347,1702	100	347,1753	100		
			213,1602 15	5					
			185,1634 15	185,1164	1,3			213 - CO	
				166,0867	0,8				
				154,0849	0,6	154,0852	44,6		
379,0990	223	65549,4	379,1018 100	379,1045	100			[M + H]⁺	$C_{18}H_{19}O_9^+$
			335,1111 10,9	335,1129	60,3			$[M + H - CO_2]^+$	$C_{17}H_{19}O_7^+$
				293,1026	24,1			335 - C ₂ H ₂ O	$C_{15}H_{17}O_{6}^{+}$
				237,1123	11,6				
			209,1133 7,2	209,1142	28,7			237 - CO	
			191,066 7,7	191,0694	19,5				$C_{11}H_{11}O_{3}^{+}$
			124,0377 3,5	124,0387	21,5	124,0365	100		
210,0901	228	70669,6	-	-		-		[M + H] ⁺	$C_{14}H_{12}NO^{+}$
460,1204	230	358245,6	460,1229 100	460,1219	75,6				
268,0800	230	107268,4	268,0806 7,1	268,0807	100	268,0744	21,6		$C_{12}H_{14}NO_{6}^{+}$
				250,069	8,1			268 - H2O	
			229,1514 3,1	229,1515	4,8				
			193,0476 3,2	2 193,0472	84,6	193,0483	100		$C_{10}H_9O_4^+$
						178,0244	6,2	193 - CH3	
				124,0349	7,8	124,0349	13,2		

399,1384	232	210335,1	399,1439 1	00	399,1447	100				
					379,0583	3 15 6	217 1000	27		
					317,1895	15,6	317,1898	37		
			000 4540	4	220 4544	10	232,1359	100		
			229,1340	,⊺ ⊥⊿	229,1544	10 1				
			210,091	-,4	210,0927	10,4	202 0574	07.4		
					202,0609	19	202,0374	27,1		
					151 095	10	170,0070	00 74 7		
444 4007	222	571410.0	441 1000 1	00	134,005	4,2	104,0000	04,1		
441,1337	233	571410,0	441,1303	00	441,1301	145	441,130	04, I 100		
					339,1020	14,5	226 2046	7 1		
			224.226		320,2032	0,5	320,2040	7,1		
			324,220	,4 . 7	324,2274	4,0	279,0005	20		
			229,1552), <i>1</i>	229,1323	0,0 10.1	229,1347	23,9 21 2		
			211,142	.,9	211,1410	10,1	211,1400	21,3 47 E	$229 - \Pi_2 \cup$	
242 1521	220	00017 4	242 1571 1	00	103,1401	3,5	103,1405	47,5	211 - 00	
342,1521	238	92317,4	342,1571	00	342,1501	12,0				$C_{17}\Pi_{20}N_5O_3$
			268,0843	43	268,0833	41,8			[M + H - C₄H₁₀O]⁺	$C_{13}H_{10}N_5O_2^+$
			250.0732 40	6.6	250.0717	39.8			268 - H ₂ O	$C_{13}H_8N_5O^+$
			232.0623	.2	,-	, -			250 - H ₂ O	- 13 0 3 -
			- ,	,	193,0848	18,1			2 - Z -	
			124,0386 13	8,8	124,0374	100	124,0381	100		
467,1860	242	135532,8	467,1947 1	00	467,1943	100	467,1952	100		
					321,1343	8,4	321,1309	87		
			277,1076	',1	277,1055	6				
			251,128 34	,7	251,1277	43,5	251,1269	91,3		C ₁₄ H ₁₉ O ₄ ⁺ /C ₁₅ H ₁₅ N ₄ ⁺
			239,0929 1	,8	239,0921	13,5				
			223,0919	3,3						
212,1037	251	168501,2	212,1122 1	00	-		-			
335,1071	253	467243,3	335,109 1	00	335,1132	50,2	-			
					249,1452	17,2				
			185,0406	20	185,04	100				

216

640370,2 5 53367,3 5 277973,4	390,1587 247,1161 229,1054 144,0445 - 410,1289 267,0866 249,0762	100 5,3 7,2 34,6 100 9,4	390,1573 247,1159 229,1059 144,0453 126,0327 - 410,1308	11,3 4,6 23 100 5,5 67	229,1039 186,0556 144,0445 126,0323 -	3,1 3,9 100 29,7	$[M + H]^{+}$ $[M + H - C_{8}H_{5}N_{3}] +$ $247 - H_{2}O$ $229 - C_{2}H_{5}N$ $186 - C_{2}H_{2}O$ $144 - H_{2}O$ $[M + H]^{+}$	$C_{21}H_{20}N_5O_3^+$ $C_{13}H_{15}N_2O_3^+$ $C_{13}H_{13}N_2O_2^+$ $C_{11}H_8NO_2^+$ $C_9H_6NO^+$ $C_9H_4N^+$
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 7 9 7 3,4 5 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	247,1161 229,1054 144,0445 - 410,1289 267,0866 249,0762	5,3 7,2 34,6 100 9,4	247,1159 229,1059 144,0453 126,0327 - 410,1308	4,6 23 100 5,5 67	229,1039 186,0556 144,0445 126,0323 -	3,1 3,9 100 29,7	$[M + H - C_8H_5N_3] + 247 - H_2O 229 - C_2H_5N 186 - C_2H_2O 144 - H_2O [M + H]^+$	$C_{13}H_{15}N_2O_3^+$ $C_{13}H_{13}N_2O_2^+$ $C_{11}H_8NO_2^+$ $C_9H_6NO^+$ $C_9H_4N^+$
5 53367,3 5 277973,4	247,1161 229,1054 144,0445 - 410,1289 267,0866 249,0762	5,3 7,2 34,6 100 9,4	247,1159 229,1059 144,0453 126,0327 - 410,1308	4,6 23 100 5,5 67	229,1039 186,0556 144,0445 126,0323 -	3,1 3,9 100 29,7	$C_8H_5N_3]+$ 247 - H ₂ O 229 - C ₂ H ₅ N 186 - C ₂ H ₂ O 144 - H ₂ O	$C_{13}H_{15}N_{2}O_{3}^{+}$ $C_{13}H_{13}N_{2}O_{2}^{+}$ $C_{11}H_{8}NO_{2}^{+}$ $C_{9}H_{6}NO^{+}$ $C_{9}H_{4}N^{+}$
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	229,1054 144,0445 - 410,1289 267,0866 249,0762	7,2 34,6 100 9,4	229,1059 144,0453 126,0327 - 410,1308	23 100 5,5 67	229,1039 186,0556 144,0445 126,0323 -	3,1 3,9 100 29,7	247 - H_2O 229 - C_2H_5N 186 - C_2H_2O 144 - H_2O [M + H_1^+	$\begin{array}{c} C_{13}H_{13}N_{2}O_{2}^{+} \\ C_{11}H_{8}NO_{2}^{+} \\ C_{9}H_{6}NO^{+} \\ C_{9}H_{4}N^{+} \end{array}$
5 53367,3 5 277973,4	144,0445 - 410,1289 267,0866 249,0762	34,6 100 9,4	144,0453 126,0327 - 410,1308	100 5,5 67	186,0556 144,0445 126,0323 -	3,9 100 29,7	229 - C_2H_5N 186 - C_2H_2O 144 - H_2O [M + H] ⁺	$C_{11}H_8NO_2^+$ $C_9H_6NO^+$ $C_9H_4N^+$
5 53367,3 5 277973,4	- 410,1289 267,0866 249,0762	34,6 100 9,4	144,0453 126,0327 - 410,1308	100 5,5 67	144,0445 126,0323 -	100 29,7	$186 - C_2H_2O$ 144 - H_2O IM + H1 ⁺	$\begin{array}{c} C_9H_6NO^+\\ C_9H_4N^+\\ \end{array}$
5 53367,3 5 277973,4	- 410,1289 267,0866 249,0762	100 9,4	126,0327 - 410,1308	5,5 67	126,0323 -	29,7	144 - H ₂ O [M + H] ⁺	$C_9H_4N^+$
5 53367,3 5 277973,4	- 410,1289 267,0866 249,0762	100 9,4	- 410,1308	67	-		$[M + H]^{+}$	
5 277973,4	410,1289 267,0866 249,0762	100 9,4	410,1308	67			[]	$U_{14}H_{14}NU^{\circ}$
	267,0866 249,0762	9,4					[M + H]⁺	$C_{15}H_{24}NO_{12}^{+}/C_{16}H_{20}N_{5}O_{8}$
	249,0762		267,0863	6,6			[M + H - C₂H₀NO₅]⁺	$C_{13}H_{15}O_6^+/C_{14}H_{11}N_4O_2^+$
	111 0105	13,4	249,0763	32,1			267 - H ₂ O	$C_{13}H_{13}O_5^+/C_{14}H_9N_4O^+$
	144,0405	40,8	144,0466	100	144,0468	100	_	
			126,0352	6,3	126,035	23	144 - H ₂ O	
89503,9	524,1814	5,3					[M + H] ⁺	
294909,8	268,0824	100	268,0823	100	268,0823	48,1		C ₁₂ H ₁₄ NO ₆ ⁺ /C ₁₃ H ₁₀ N ₅ O ₂ ⁺
	250,072	7,7	250,0718	24,9	250,0712	19,5	268 - H₂O	
	232,0614	10,1	232,0611	22,6	232,0653	4,8	250 - H ₂ O	
			190,0509	8	190,0503	10,7		
			155,0693	3,4	147,0433	16,4		
			124,0378	10,2	124,0373	100		
189873,3	224,1092	100	-		-		[M + H]⁺	$C_{15}H_{14}NO^{+}$
	209,0831	2,5						
	160,1085	5,5						
94287,2	202,1267	100	202,1232	40	-		[M + H]⁺	$C_{13}H_{16}NO^+$
	171,1283	4,5						
	163,1481	2,9						
	138,1264	41	138,1259	100				
	121,0996	<u>3,</u> 5	121,0988	23,2				
184671,6	407,1355	100	407,1339	100	-			
	363,1421	8,7	363,1427	84				
	189873,3 94287,2 184671,6	189873,3 224,1092 209,0831 160,1085 94287,2 202,1267 171,1283 163,1481 138,1264 121,0996 184671,6 407,1355 363,1421	189873,3 224,1092 100 209,0831 2,5 160,1085 5,5 94287,2 202,1267 100 171,1283 4,5 163,1481 2,9 138,1264 41 121,0996 3,5 184671,6 407,1355 100 363,1421 8,7	190,0509 155,0693 124,0378 189873,3 224,1092 100 209,0831 2,5 160,1085 5,5 94287,2 202,1267 100 1138,1264 41 138,1259 121,0996 3,5 121,0988 184671,6 407,1355 100 407,1339 363,1421 8,7 363,1427 22	190,0509 8 155,0693 3,4 124,0378 10,2 189873,3 224,1092 100 209,0831 2,5 160,1085 5,5 94287,2 202,1267 100 163,1481 2,9 138,1264 41 138,1259 121,0996 3,5 121,0988 23,2 184671,6 407,1355 100 407,1339 100 363,1421 8,7 363,1427 84	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

7 Anhang	
----------	--

					321,1335	18,1			
			210,1181	4,2					
			177,1121	7,2					
			155,0982	5,5					
			133,0833	8,2	133,0846	14,4			
504,2337	278	38906,9	504,2425	100			-	[M + H]⁺	
			486,227	8,4				$[M + H - H_2O]^+$	
			429,2113	10	429,2096	21,7			
			375,1968	30,7					
			357,1859	52,6	357,1859	100		375 - H ₂ O	
			309,0758	13	309,0753	98,1			
399,1949	284	117030,0	399,196	100	399,1976	22,8			
			237,1437	23,7	237,1442	100	237,1435 10	0	$C_{11}H_{27}N_8O_8^+/C_{10}H_{17}N_6O^+$
			221,1133	5,8					
329,1526	286	92058,4	329,159	100	329,1523	24,3	-		$C_{16}H_{25}O_7^+/C_{12}H_{21}N_6O_5^+$
			313,1089	11,9					
			301,1076	3,5					
			285,1127	7				313 - CO	
			273,0915	3,1					
			253,0851	7	253,0864	100		285 - CH ₄ O	
					225,0935	57,1		253 - CO	
			185,0413	8,7					
545,1576	318	243803,6	-						
463,2286	378	251105,8	463,2317	100	463,2315	100			
					301,1758	87,8	301,176		$C_{15}H_{21}N_6O^+/C_{14}H_{25}N_2O_5^+$

Tab. 7. 28: Fragmentierung der differentiellen LC-MS Massensignale im negativen Modus des Mediums At > m. Die Fragmente wurden durch MS/MS Läufe mit 15 eV, 25 eV und 40 eV gewonnen.

			15 eV		25 eV		40 eV			
	RT			Intensität		Intensität		Intensität	Mögliche	Mögliche
[<i>m/z</i>]	[sek]	FC	Fragment	[%]	Fragment	[%]	Fragment	[%]	Annotierung	Summenformel
266,0970	53	119,1	266,0859	100	266,0879	21,6			[M - H] ⁻	$C_{10}H_{12}N_5O_4^{-1}$
					176,0546	13	176,0562	8,7	[M - H -	$C_7H_6N_5O^-$
									$[C_{3}H_{6}O_{3}]^{-}$	
			150,0398	23,4	150,0411	100	150,0420	51,4	$176 - C_2 H_2$	$C_5H_4N_5O^-$
					133,0157	26,5	133,0151	100	150 - NH₃	C₅HN₄O ⁻
555,1392	54	35953,5	-		-		-			
295,0922	61	73297,0	295,0844	39,1			-			$C_{13}H_{15}N_2O_6/C_{14}H_{11}N_6O_2$
			249,1311	78,4						
			219,0712	36,6						
			158,9799	100	158,9797	100				
382,0850	61	26174,2	-		-		-			
350,0956	61	48949,0	350,0965	100	-		-			
			179,0581	48,6						
			161,0493	11,9					179 - H ₂ O	
			143,0360	7,8					161 - H ₂ O	
595,1355	76	6,4	-		-		-			
241,0905	80	24,9	-		-		-			$C_{17}H_9N_2^{-1}$
530,1260	97	38158,6	-		-		-			
554,1367	133	44009,0	554,1396	98,5	554,1377	83				
					419,0920	32,7				
					321,0509	24,6	321,0486	26,8		
							293,0424	18,8	321 - N ₂	
			242,9465	100			-		_	
							195,0091	25.9		
					134,0491	100	134,0496	100		
530.1263	136	13468.6	-		-		-			
545,1275	152	7,7	545,1244	100	545,1218	81,1				

					499,2523	100	499,2428	34,4		
					440.0044	00.0	455,2344	30		
					419,0944	80,6	040 4000	50		
					405 0007	00.4	213,1220	52		
0074404	474	00440.0			125,0387	60,4	125,0391	100		
227,1481	1/4	23440,3	-		-		-			$C_{10}H_{19}N_4O_2$
395,1005	180	19192,1	395,0970	100	395,0888	3,6				
			349,0912	28,7	349,0895	13,2				
327,1154	180	195806,6	327,1079	84,2	327,1085	100	327,1071	22,9		$C_{14}H_{19}N_2O_7^{-1}$
			191,0345	17,3	191,0362	8,1	191,0334	25,8		$C_{10}H_7O_4/C_{11}H_3N_4$
							176,0119	100	191 - CH₃	
					165,0565	6	165,0541	62,5		
					147,0462	6,1	174,0484	51,6	165 - H₂O	
427,1843	181	18327,5					-			
			381,1774	100	381,1771	54,8				
			235,1202	8,4	235,1200	100				
739.2038	196	17745.8	739.2093	100	739.2127	100				
,		,.	593,1418	57.4	593,1659	80.8	593,1517	100		
			,			,-	430.0920	67.5		
					329.0764	61.8	,	,-		
					307 0937	52.1				
					001,0001	02,1	284 0367	57 6		
			277 1260	93.6	277 1366	62 5	204,0007	07,0		CueHu-On ⁻
1/3 1578	203	17223.2	-	55,0	-	02,0	_			
406 0901	203	52124.0			-		-			
490,0601	203	22622.2	-		-		-			
105,0037	203	32032,3	-	1.0	-		-			
000,2220	205	39270,9	005,22	1,0						
0 40 4070	005	004454	387,09	4,7						
343,1079	205	26415,1	343,10	100	343,1024	34,1			387 - CO ₂	
				. -			319,1021	69,8		
			317,12	29	317,1223	100				
							301,0919	50,4	319 - H ₂ O	

					299,1110	12,1		317 - CO ₂	
			277,12	11,7					
					275,1135	13	275,1120 100		
					257,1001	7,1	257,1007 62,5	275 - H ₂ O	
							235,1191 14,6		
							217,1075 5,9	235 - H ₂ O	
							183,0278 8,2		
643,2431	205	44562,2	-		-		-		
321,1255	205	30418,0			-		-		$C_{24}H_{17}O^{-}/C_{19}H_{17}N_{2}O_{3}^{-}$
			235,11	100					
277,1384	205	83,4	277,15	5,4			-	[M - H] ⁻	$C_{12}H_{17}N_6O_2/C_{11}H_{21}N_2O_6$
235,1276	205	103898,9	235,11	100	235,1165	100		$[M - H - C_2 H_2 O]^{-1}$	$C_9H_{19}N_2O_5^{-}/C_{10}H_{15}N_6O^{-}$
			192,07	14,6					
			165,05	27,8	165,0559	100			
			121,07	12,3	121,0682	40,6		165 - CO ₂	
369,1251	208	46221,5	369,12	100			-	[M - H] ⁻	$C_{18}H_{17}N_4O_5/C_{17}H_{21}O_9$
			327,11	78,2				$[M - H - C_2H_2O]^{-1}$	C ₁₆ H ₁₅ N ₄ O ₄ ⁻ /C ₁₅ H ₁₉ O ₈ ⁻
			309,09	54,2	309,1044	10		327 - H ₂ O	C ₁₆ H ₁₃ N ₄ O ₃ ⁻ /C ₁₅ H ₁₇ O ₇ ⁻
			277,14	26,8					
			262,07	20,5	262,0746	38,7			
			249,06	15,9				262 - CH	
			235,11	41,7	235,1215	100		369 - C ₇ H ₃ O ₃	C ₁₁ H ₁₅ N ₄ O ₂ ⁻ /C ₁₀ H ₁₉ O ₆ ⁻
			165,05	8,6	165,0564	23,7			
			147,04	8,5				165 - H ₂ O	
423,1913	216	133323,0	423,19	72				[M - H] ⁻	$C_{19}H_{27}N_4O_7^{-1}$
381,1808	216	23873,1	381,18	100	381,1812	38,1		$[M - H - C_2H_2O]^{-1}$	$C_{17}H_{25}N_4O_6$
			321,11	3				381 - C ₃ H ₈ O	$C_{14}H_{17}N_4O_5$
			277,13	8,5				321 - CO ₂	$C_{13}H_{17}N_4O_3$
			235,12	35	235,1233	100	235,1196 100	277 - C ₂ H ₂ O	$C_{11}H_{15}N_4O_2$
			217,11	4,1	217,1085	2,8		235 - H ₂ O	$C_{11}H_{13}N_4O^{-1}$
467,1796	216	23999,7	-		-		-	_	
593,1501	216	41686,5	593,14	100	593,1490	100			

	[551,13	12,1						
			507,12	13,7	507,1354	14				
					465,1302	15,9	465,1333	15,3		
					447,0951	33,8	447,0970	19,7		
					431,0934	47,5				
							430,0914	78,4	447 - OH	
							285,0425	100		
			275,10	54,5	275,1055	56,2	275,1043	24,6		
577,1560	230	29710,1	577,15	96,6	577,1680	52,4	-			
					431,1011	93,7				
			297,14	100	297,1424	100				
443,1958	241	91309,4	-		-		-			
485,2038	266	110269,7	485,20	100	485,2230	4,8	-			
			443,18	79	443,1904	75				
					297,1353	100				
					273,0756	44,4				
										$C_{24}H_{19}O_2/C_{20}H_{15}N_6$ oder
339,1399	275	65796,3	-		-		-			$C_{19}H_{19}N_2O_4^{-1}$
583,2159	285	44798,2	-		-		-			
207,1479	286	19186,8	-		-		-			$C_{12}H_{19}N_2O^{-1}$
479,2492	307	36207,2	479,25	49	479,2562	4,7	-			
			437,23	44,5	437,2350	13,6				
			411,09	57,7	365,0944	64,6				
			365,09	50,6	349,1263	15,6				
			349,12	100	291,1796	28,9				
			281,14	72,5	281,1428	100				
			271,19	38,6	271,1898	18,4				
505,2633	315	13089,4	-		-		-			
567,1694	318	17403,2	-		-		-			
174,0648	321	14930,2	174,05	100	174,0573	33,6			[M - H] ⁻	C ₁₀ H ₈ NO ₂
			159,03	15,7	159,0347	13,6			[M + H - CH ₃] ⁻	$C_9H_5NO_2^-$
1										

					131,0445	4,7				
			115,04	4,7	115,0428	32,1	115,0451	100	131 - O	
421,2360	324	25134,1	421,20	100	421,2248	67			[M - H] ⁻	
					403,2044	7			[M - H - H₂O] ⁻	
					377,2217	5,1			[M - H - N₂O] ⁻	
			349,11	22,6		-				
			281,12	50,8	281,1369	100	281,1396	100		
					257,1695	4,2				
							249,1840	4,6		
							233,1551	7,9	249 - CH ₄	
									257 - 2 H₂O,	
					221,1487	17,8	221,1512	22,1	249 - C ₂ H ₄	
					145,0594	26	145,0627	35,3		
					127,0514	5	127,0535	16,4	145 - H ₂ O	
422,2217	343	15264,5	422,21	100	422,2187	100			[M - H] ⁻	$C_{22}H_{32}NO_7^{-1}$
					404,2047	27,2			[M - H - H ₂ O] ⁻	
					293,1798	35,5				
					249,1860	22,5	249,1887	46,3	293 - CO ₂	
							221,1569	100	249 - C ₂ H ₄	
					146,0459	11,1	146,0524	19,5		
					128,0350	33,5	128,0361	60,4	146 - H ₂ O	$C_5H_6NO_3^-$
439,2345	378	73385,3	439,23	6,1			-			
			277,18	100	277,1835	100				
					257,1560	44,5				
473,2535	382	28177,5	473,23	100			-			$C_{27}H_{37}O_7/C_{28}H_{37}O_7$
			425,21	19,8						
			401,21	95,1	401,2258	42,3			473 - C ₃ H ₄ O ₂	$C_{24}H_{33}O_5/C_{25}H_{29}N_4O^{-1}$
			353,19	23,5	353,2061	100				
			309,19	14,4	309,2054	5,4			353 - N ₂ O	
			259,15	4,9	259,1607	5,7				
223,2144	386	2,2	-		-		-			$C_{14}H_{27}N_2^{-1}$
267,2036	386	2,2	267,20	33,3	267,1891	9,4				$C_{15}H_{27}N_2O_2^{-1}$

			223,21	100	223,2002	100			267- CO ₂	$C_{14}H_{27}N_2^{-1}$
333,1742	386	2,1	333,16	100	333,1775	18,1			[M - H] ⁻	$C_{13}H_{25}N_4O_6^-$
			315,15	53,4	315,1546	88,9			[M - H - H ₂ O] ⁻	
			291,15	77,9	291,1600	100				
					263,1646	35,1			291 - CO	
			259,16	7,9			259,1675	100		
			241,14	72,4	241,1416	14,7			259 - H ₂ O	
					197,1536	8,8			241 - CO ₂	
311,1919	386	2,1	311,18	54,6					[M - H] ⁻	$C_{16}H_{27}N_2O_4/C_{17}H_{27}O_5$
			293,17	9,3					[M - H - H ₂ O] ⁻	
			267,19	100	267,1976	7,4			[M - H - CO ₂] ⁻	C ₁₅ H ₂₇ N ₂ O ₂ /C ₁₆ H ₂₇ O ₃
			249,18	7,3	249,1872	4	249,1886	10,2	267 - H ₂ O	
			241,14	18						
			223,20	96,1	223,2071	100	223,2075	100	267 - CO ₂	$C_{14}H_{27}N_2^{-}/C_{15}H_{27}O^{-}$
							207,1750	13,2	249 - C ₂ H ₂ O	
231,1826	392	2,3	231,17	100	231,1755	100	-			$C_{10}H_{23}N_4O_2/C_{11}H_{23}N_2O_3$

7.3. GC-MS Spektren

Tab. 7. 29: Auflistung der differentiellen Metabolitencluster, die in den GC-MS Analysen detektiert wurden. Es ist für das jeweilige Metabolitencluster die Clusterzeit und das zugehörige Spektrum aufgelistet. Konnte die Verbindung identifiziert werden, ist der Name aufgeführt. Die nicht identifizierten Metabolitencluster wurden mit Unbekannte 1-76 nummeriert.

Name	Clustertime	Spektrum
Unbekannte 28	1013,86	92:2238 93:4199 106:18909
Unbekannte 41	1021,39	76:849 80:892 87:738 103:836 115:3070 118:10188
Unbekannte 40	1032,26	211:1486 261:1764 353:1196
4-Hydroxy-	1068,98	87:1244 88:1031 101:1163 102:1140 103:842 117:9793 118:1431 119:999 131:1506 133:3100 190:2513
benzoesäure (2TMS)		191:3032 192:1083 219:1088

4-Hydroxy-	1069,18	87:1265 88:1048 101:1038 102:1118 103:748 115:663 117:11610 118:1430 119:895 129:549 131:1366
benzoesäure (2TMS)		134:763 135:559 190:2936 191:3635 192:951 193:599 219:1120
Unbekannte 64	1077,25	77:3489 91:1709 106:2409 107:3041 108:1777 134:7433 135:4283
Unbekannte 49	1097,52	80:1064 100:1080 154:4813 155:946
Alanin (2TMS)	1108,3	76:1509 77:1025 84:1225 85:1073 86:5255 87:1856 88:1339 94:1419 100:6484 101:3573 102:2633
		103:3188 114:1226 115:1711 116:90617 117:11384 118:3792 119:1135 128:1550 130:1357 131:2676
		132:1488 133:4384 134:987 144:1036 190:7572 191:1690 192:1127 218:2110
2-Furansäure (1TMS)	1136,75	85:814 95:6313 96:1066 97:1018 125:9884 126:2145 127:1127 169:4665 170:1287 184:1366
Unbekannte 46	1175,78	131:939 133:864 159:3623 160:856
Unbekannte 20	1181,99	82:1390 89:3222 99:1376 114:793 115:687 189:1514 200:1507
Unbekannte 56	1213,93	115:795 131:1687 133:709 248:785
Unbekannte 24	1218,62	76:2418 77:1617 82:3752 84:3327 85:2587 86:3119 89:6754 98:1777 99:3679 100:21519 101:2380
		102:1928 115:2715 128:2102 140:772 156:53034 157:6666 158:2931 189:3759 200:5384 216:4847
Unbekannte 68	1224,43	139:999 169:3524 170:1286
Unbekannte 39	1229,99	84:958 139:1459 212:794 227:2324 228:831
Unbekannte 71	1237,32	96:804 102:877 116:2016 197:733
Urea (2TMS)	1242,65	85:608 87:923 99:2393 100:1371 101:1088 115:569 116:506 117:448 130:1164 131:1184 132:863 133:803
		146:1326 171:1389 173:819 189:8784 190:1639 191:922
Unbekannte 47	1246,33	83:834 129:1286 143:991 159:4321 160:832
Unbekannte 22	1247,88	86:948 96:1321 100:4241 114:2376 127:1561 128:1047
Unbekannte 03	1251,47	105:766 135:459 179:807
Benzoesäure (1TMS)	1252	76:70089 77:909785 78:60945 80:1167 81:2403 82:1336 83:3516 84:1085 85:3737 86:1998 89:25313
		91:16318 92:4137 93:5251 94:1271 95:3824 96:12924 97:1915 98:1302 100:2558 101:2261 102:1100
		104:13306 105:999794 106:74628 107:9811 108:1221 109:2463 112:995 114:2834 116:14049 118:2513
		119:12576 120:3479 121:15100 122:2674 123:1388 128:1033 129:1357 131:3629 132:1412 133:4534
		134:6964 135:634685 136:85754 137:24902 138:2121 150:2206 151:1452 163:3990 164:2995 165:1217
		169:991 170:1186 174:1079 175:1038 178:5712 179:1220234 180:175630 181:53667 182:4744 185:1076
		193:22205 194:87668 195:14376 196:4148
Unbekannte 30	1258,65	76:929 77:1313 82:2249 83:1343 84:1022 85:936 87:1315 89:4425 90:961 91:813 98:987 99:948 100:811
		110:1415 113:1753 114:7864 115:1176 119:1012 129:2507 130:1001 141:1538 142:1131 143:1589 216:856
		231:1082
Unbekannte 13	1283,76	101:3031 129:2021 175:4675 218:4037

2-Desoxyribose	1283,9	81:3380 99:903 111:895 113:943 127:985 143:828 155:3067 156:959 157:999 169:3041 170:3282 171:1127
(2TMS)		
Nicotinsäure (1TMS)	1298,22	76:14574 77:31904 78:228048 80:1753 81:1754 82:1324 83:3576 84:2174 85:1380 86:1158 90:7356
		91:1538 92:2230 93:3726 94:2695 95:1806 96:1560 104:1393 105:22245 106:192909 107:14602 108:2475
		109:2802 110:1529 120:4013 121:1389 122:4816 123:1548 134:1874 135:1979 136:227349 137:29340
		138:9120 150:2071 151:1333 162:1639 164:1852 179:2001 180:406454 181:56576 182:17739 183:2656
		194:3883 195:12377 196:2488
Bernsteinsäure	1318,96	76:1351 77:883 112:2322 116:829 129:3204 130:1023 131:898 133:1052 172:1047 173:912 247:2008
(2TMS)		248:949
Unbekannte 35	1336,4	81:6242 82:784 83:1411 85:850 88:784 89:1604 96:982 103:1630 105:764 115:1372 116:890 117:1327
		119:1795 131:1722 133:5516 134:1061 135:1004 175:1163 177:1192 189:2458 190:804 191:3495 192:1011
		193:4130 194:1235 195:741 205:2529 206:961 207:7117 208:1752 209:1140 221:37065 222:8489 223:4802
		224:1054 289:2788 290:957 291:698
Unbekannte 38	1349,35	77:1427 84:992 89:2924 93:1238 98:2105 101:906 103:1282 114:963 116:1078 171:730 184:1049 212:923
Unbekannte 66	1364,34	97:3649 115:755 117:1584 129:1370 130:717 131:1111 132:1022 145:746 157:733 187:1492 196:804
		206:953 215:1781
Unbekannte 31	1364,98	108:1122 152:1426 166:1180 167:1098 240:4069 241:1208 242:816 254:744
Serin (3TMS)	1373,25	76:414 86:510 88:767 89:519 100:4455 101:965 102:544 103:2160 114:589 115:981 116:1752 117:1007
		119:589 130:526 131:932 132:1516 133:3024 134:653 135:460 158:468 159:498 160:412 172:553 174:1035
		175:359 188:1701 189:775 190:607 203:1226 204:16680 205:3452 206:1536 216:675 218:10669 219:2157
		220:1049 278:1646 279:543 306:752
Serin (3TMS)	1373,31	100:2440 103:1321 116:1110 132:1043 133:2131 203:882 204:7303 205:1879 206:979 218:4655 219:1290
		278:1119
Unbekannte 45	1424,01	94:654 103:942 129:707 167:840 169:1495 234:2175
Unbekannte 16	1438,27	77:1162 89:769 103:922 133:1357 163:1040 207:1844
3,5-	1464,84	76:699 83:762 89:965 95:860 96:886 103:939 133:1988 163:1476 207:2102 212:880 287:1273
Dimethylbenzoesäure		
(1TMS)		
Unbekannte 51	1481,7	115:725 129:1090 133:906
Unbekannte 60	1494,59	79:3524 83:709 129:712 143:720 301:878
Adipinsäure (2TMS)	1510,67	76:2396 83:2723 85:906 86:1150 99:1145 101:1128 103:1084 111:5752 112:919 115:989 116:1312
		117:2192 129:3311 130:1331 131:1214 133:1501 141:3254 142:1046 143:810 157:963 159:1903 172:2735
		173:993 185:1180 204:1164 217:1485 275:2793 276:918

Pyroglutamat (2TMS)	1535	77:1157 80:866 82:1167 83:1074 84:2604 85:2385 86:3444 97:730 98:1519 99:1502 100:3465 101:1173
		102:1134 103:1112 110:1247 112:3321 113:1354 114:2036 115:1377 117:1759 121:1424 126:1156 130:774
		131:2301 132:1131 133:4259 134:1154 140:3920 141:2249 142:1823 154:1482 155:1238 156:71477
		157:9864 158:4766 168:1033 174:1056 214:1299 218:1167 228:1262 230:9141 231:2391 232:4519
		258:7794 259:2031 260:1268
Pyroglutamat (2TMS)	1535,55	76:3679 77:1648 80:937 81:492 82:1462 83:1301 84:5047 85:4354 86:6732 89:620 94:873 96:736 97:878
		98:2173 99:2503 100:8210 101:2016 102:1295 103:1704 105:715 110:1491 111:770 112:7326 113:2087
		114:3728 115:2427 117:3393 119:1192 121:2537 126:1481 127:855 128:956 129:1259 130:1321 131:4982
		132:1917 133:10134 134:1661 135:1028 139:678 140:9004 141:4066 142:3235 143:1081 144:738 150:818
		151:477 154:2219 155:1795 156:203858 157:27122 158:9795 168:1290 170:774 172:757 173:473 174:1503
		175:455 185:533 186:760 188:1007 190:697 191:375 202:1553 203:597 204:665 214:1914 215:740
		216:1553 218:3465 220:522 228:1551 229:602 230:23648 231:4971 232:16718 233:3566 234:1463
		258:20710 259:4559 260:2050 273:1000 306:745
Unbekannte 69	1545,1	103:1214 174:955 185:867 258:1196
Unbekannte 37	1545,17	85:1070 105:838 129:685
Unbekannte 02	1557,05	80:551 91:513 94:535 95:1487 96:5552 97:837 105:332 106:753 107:752 122:603 123:631 124:1449
		125:6952 126:898 130:850 146:2728 227:418
Unbekannte 19	1599,81	76:995 81:1201 87:920 101:2085 105:906 113:1158 115:853 116:1101 117:1885 119:3344 127:1064
		129:802 131:2020 133:11618 134:2552 135:1580 141:1038 161:8136 162:1692 213:1296 221:5788
		222:1459 223:939 235:1705 275:2222
3-Phenyl-Lactatsäure	1603,46	78:1564 91:18563 92:2179 103:3960 104:2961 115:1289 121:1280 131:3244 135:1643 177:1057 178:920
(2TMS)		190:758 193:23203 194:4586 195:1457 204:1231 205:1742 219:2329 220:4744 267:2772 295:2292
Unbekannte 52	1633,7	89:754 97:1890 115:803 125:1280 133:684 187:1529
Unbekannte 15	1638,34	76:12097 77:1767 84:2740 86:1670 87:7954 88:1570 89:845 90:722 99:933 100:2897 101:7955 102:2171
		103:2803 104:1048 113:1321 114:1624 115:1736 116:2514 117:4072 118:1727 119:1405 128:6662
		129:2111 130:7826 131:20761 132:5848 133:8078 134:2897 135:1537 142:1722 143:1292 144:720
		145:1048 150:2833 151:1186 156:2852 157:1067 158:2853 159:6111 160:1811 161:3694 162:1006 189:884
		205:1621 206:2256 207:974 217:918 218:1656 219:3220 220:1874 221:1715 230:2685 232:2482 233:5911
		234:1783 246:19207 247:5044 248:6280 249:81058 250:17810 251:7956 252:1584 261:1723 277:1657
		323:2169 348:2445 350:878 351:6497 352:2339 353:1593 363:1495 366:2806 367:1258
Unbekannte 09	1638,58	76:7240 84:1760 85:536 86:877 87:4476 88:791 89:473 98:461 99:495 100:2240 101:4473 102:1122
		103:1595 112:457 113:773 114:900 115:1004 116:1370 117:2331 118:974 119:687 128:4863 129:1377
		130:4428 131:11462 132:3289 133:4394 134:1477 135:709 140:644 142:889 144:419 145:461 150:1599

		151:594 156:1596 157:550 158:1593 159:3484 160:878 161:2083 174:526 203:473 204:692 205:811
		206:1229 207:490 216:499 218:1063 219:1763 220:969 221:838 230:1478 231:513 232:1282 233:3124
		234:805 246:15108 247:3460 248:3621 249:42698 250:9450 251:4305 252:776 261:748 263:379 277:711
		323:1003 348:1337 349:526 350:450 351:3369 352:1138 353:630 363:790 366:1367
Unbekannte 08	1638,73	104:530 143:715 146:569 235:588 320:437
4-Hydroxy-	1642,62	76:7048 77:5109 78:2601 80:827 81:1686 82:884 83:3206 84:855 85:3167 87:1544 89:6458 90:3305
benzoesäure (2TMS)		91:12406 92:10350 93:4085 94:849 95:3369 96:1499 97:2287 98:789 99:1119 101:1074 102:1068 103:4120
		104:3913 105:7456 106:1436 107:3201 109:1901 111:1617 115:2778 116:901 117:2029 118:2166 119:4571
		120:3447 121:5018 122:4854 123:2483 125:946 126:10629 129:963 131:2216 133:7112 134:2467 135:9607
		136:2475 137:2025 143:1006 145:1040 150:3521 151:16359 152:2932 153:1208 157:1145 163:1982
		165:2268 166:2499 167:952 177:2059 178:932 179:11718 180:2083 181:2451 191:2866 192:1251
		193:41910 194:17383 195:6452 196:1192 207:6462 208:1549 209:1826 217:2837 221:1465 223:52903
		224:18926 225:9314 226:1618 237:1613 267:73298 268:22844 269:11734 270:2369 281:4385 282:20424
		283:8193 284:3374
Unbekannte 14	1645,9	76:1523 77:853 81:1017 82:1007 83:896 86:1806 93:1109 94:1317 95:6174 96:41878 97:4631 98:884
		100:10021 101:2662 102:1554 103:1541 106:691 107:1239 108:1321 109:1003 115:1245 117:1586 118:997
		119:1073 122:1065 123:1061 124:1008 125:1000 126:1451 128:659 130:3020 131:2627 132:5314 133:4774
		134:1870 135:1426 136:906 140:1413 144:1090 146:1064 150:964 151:776 153:703 158:1029 159:1251
		160:1476 163:929 164:1620 165:1663 166:1010 167:1928 174:1459 181:1673 182:1702 195:992 196:5121
		197:41603 198:8198 199:2214 203:3018 204:986 209:1130 218:50251 219:10770 220:4888 221:1095
	4004 70	2/1:5312 2/2:2065 2/3:1003 299:15/5
Asparagin (31MS)	1694,73	76:496 77:340 101:406 114:492 115:660 116:3547 117:827 125:372 128:459 130:663 131:886 132:1855
		133:884 141:775 159:522 188:1264 189:487 202:752 204:555 215:707 216:442 218:785 231:2357 232:807
Link algorate CC	4007.00	258:517 275:574 333:493
Unbekannte 65	1697,83	89:663 103:915 115:1256 129:816 131:906 133:852
Unbekannte 34	1715,76	77:3390 103:1300 151:840 225:1389 313:2889 314:1252 315:867 317:1686 367:2984 368:1223 369:836
2-Phosphoglycerat	1762,33	76:786 77:1696 79:1268 83:1324 85:1998 103:834 107:2346 111:779 133:5371 134:961 135:1077 151:4023
(4TMS)		166:1716 167:877 179:862 181:4849 182:1121 183:949 195:3812 196:1193 209:1685 211:893 224:2128
		225:807 299:6692 300:1791 301:893 314:3729 315:1023
Ornithin (3TMS)	1774,23	86:1410 100:1017 130:1391 131:1247 142:2652 174:6581 175:1683 176:975 186:1833 244:1112 348:1247
Unbekannte 70	1781,21	103:3589 167:867 210:1152
Unbekannte 11	1809,94	89:2824 103:3051 117:950 129:1672 131:1026 133:2127 159:1230 217:8520 218:2300 219:1506 257:2754
		258:1142 289:1053 379:1898

Unbekannte 12	1825,37	88:1166 89:3856 103:4903 117:1573 129:2254 131:1628 133:3098 143:1200 159:1351 169:857 189:1465
		199:1251 217:11625 218:2727 219:1760 230:978 233:1131 257:4467 258:1737 289:1630 379:2780
		380:1287
Unbekannte 33	1831,1	91:985 101:2164 102:881 104:1263 115:1918 116:1280 117:1403 130:872 133:2485 135:971 163:1467
		177:1167 179:16068 180:3567 181:1285 191:1420 193:2222 203:1725 205:1189 217:937 220:4667
		221:1537 253:1283 292:1723 293:1053
Unbekannte 29	1848,53	78:2550 91:1766 102:1465 103:3499 104:3016 118:1407 119:2386 132:1786 161:2989 162:1221 191:4430
		192:1101 205:3441 206:1546 220:7658 221:3830 222:1632 265:4593 266:1727
Unbekannte 59	1881,06	111:727 220:774 226:1055
Fructose (1MEOX)	1908,17	76:1636 77:922 82:1614 83:853 84:9563 85:2614 86:1081 87:2222 88:3769 89:27228 90:2550 91:1339
(5TMS)		98:1137 99:1917 100:6335 101:8044 102:2975 103:262480 104:24545 105:11849 106:844 111:777 112:554
		113:3426 114:4497 115:3197 116:3205 117:46940 118:4838 119:5689 120:725 121:490 126:2053 127:1396
		128:2087 129:17611 130:4452 131:15829 132:2819 133:56239 134:7003 135:4076 136:513 140:795
		141:780 142:2711 143:4693 144:1304 145:2851 146:1491 150:1935 151:872 152:508 154:687 155:699
		156:1596 157:4903 158:2482 159:2204 160:1078 161:1359 162:451 163:6456 164:1146 165:743 168:805
		169:485 170:691 171:530 172:12284 173:9494 174:2701 175:5669 176:1083 177:2993 178:579 179:516
		180:774 186:1733 187:1632 188:3332 189:25267 190:5744 191:14577 192:2732 193:1633 194:371 198:884
		199:406 200:2264 201:6530 202:5808 203:4020 204:22056 205:42746 206:9384 207:8037 208:1559
		209:732 214:2865 215:1152 216:5479 217:174817 218:34959 219:15895 220:2873 221:11810 222:2718
		223:1642 228:1104 229:1446 230:3449 231:4155 232:1597 233:1047 235:1839 240:1103 242:1165 243:694
		244:3245 245:1073 246:1357 247:2320 248:895 249:586 254:550 256:3404 257:1034 258:692 260:9355
		261:2932 262:7173 263:6390 264:1742 265:1554 268:577 270:886 272:513 274:706 275:1070 276:2593
		277:28814 278:8358 279:4165 280:948 288:2780 289:941 290:677 291:12002 292:4272 293:2176 294:625
		300:884 302:2851 303:1678 304:1130 305:2886 306:1386 307:134197 308:37886 309:18806 310:3725
		311:936 318:3854 319:3415 320:1394 321:626 328:655 330:2236 331:850 332:1678 333:2475 334:3195
		335:4982 336:1859 337:776 344:669 345:553 350:1634 351:673 358:480 360:428 364:16857 365:5456
		366:2723 367:768 376:1253 378:702 379:462 392:545 393:1038 394:508 402:563 420:470 464:827
		466:1070 492:634 554:1454 555:777 569:633
Fructose (1MEOX)	1908,22	76:2755 77:2456 80:1064 81:1364 82:2763 83:1846 84:11341 85:3557 86:1905 87:3534 88:5021 89:34838
(5TMS)		90:3718 91:2384 94:1125 95:977 96:1070 97:1311 98:2117 99:3166 100:7860 101:10590 102:5137
		103:316506 104:29656 105:14945 106:1812 107:948 109:1092 110:1599 111:1873 112:2055 113:5030
		114:5789 115:4625 116:4790 117:57892 118:6467 119:7576 120:1543 124:1034 125:1184 126:3424
		127:2415 128:3378 129:22834 130:6105 131:20762 132:6377 133:70328 134:9462 135:5537 136:1325
		137:1291 138:1002 139:1027 140:1796 141:2466 142:3994 143:9627 144:2462 145:4673 150:3113

		151:1961 152:1418 154:1776 155:2175 157:6903 158:4037 159:3515 160:2380 161:2948 162:1375
		163:8396 164:2406 165:2051 166:1180 167:1207 168:1920 169:1390 170:1879 171:2359 172:16868
		173:13041 174:4466 175:7192 176:2323 177:4519 178:2791 179:1911 180:1948 181:1358 182:1388
		183:935 184:2020 185:1297 186:3393 187:2731 188:4512 189:32646 190:7740 191:19815 192:4563
		193:3511 194:1519 195:883 196:1416 197:1002 198:2124 200:3727 201:9207 202:14940 203:6264
		204:27326 205:49085 206:11356 207:10396 208:2684 209:1812 210:1175 212:1427 213:1759 214:4702
		215:2590 216:9931 217:239748 218:48196 219:22325 220:4790 221:14644 222:3781 223:3897 224:1194
		225:997 226:1427 227:1242 228:2365 229:2899 230:5495 231:7068 232:3182 233:4334 234:1372 235:3646
		236:1648 237:1758 238:1304 240:2265 241:1171 242:2368 243:1944 244:5170 245:2666 246:3343
		247:5547 248:3028 249:1520 253:1218 254:2844 255:1528 256:6015 257:2145 258:1951 260:11541
		261:4354 262:9125 263:9318 264:3522 265:2925 266:2049 267:1265 268:1487 269:1385 270:2337
		271:1552 272:1393 274:2312 275:2798 276:4818 277:40976 278:12559 279:6570 280:2545 281:1342
		286:2683 287:1897 288:4645 289:2383 290:2781 291:15119 292:5672 293:3790 294:1680 295:1483
		300:2251 301:2374 302:4657 303:3517 304:2768 305:4453 307:190439 308:53460 309:27686 310:6409
		311:2706 312:1613 314:1261 316:1445 317:1565 318:5167 319:5208 320:4123 321:1984 322:1150
		328:1966 329:1723 330:4466 331:2269 332:3769 333:4551 334:5336 335:8671 336:4077 337:2396
		338:2390 342:2122 343:1454 344:1865 345:1594 346:1786 348:2016 350:3597 351:2370 352:1638
		358:1790 359:1745 360:2431 362:1471 364:24669 365:8360 366:4870 367:2202 373:1371 374:1465
		376:2980 377:1866 378:2983 379:1619 388:973 390:3571 391:2384 392:1693 393:2782 394:2077 402:1780
		403:1911 404:1291 420:1594 434:2308 435:1316 448:2569 464:2187 465:2684 466:2210 467:1444
		492:1593 493:2487 554:2987 555:2206 556:1609 569:3094 570:1781
Unbekannte 01	1908,52	184:469 314:416 377:570 390:619 465:452
Unbekannte 53	1908,69	79:1349 153:1379 298:1224 433:1357 538:1200
Glucose (1MEOX)	1936,81	76:3029 78:1084 80:1327 81:2348 82:3362 83:2830 84:2631 85:2786 86:4891 87:3359 88:3620 89:34323
(5TMS)		90:3649 91:2623 93:938 94:1185 96:1888 97:2114 98:2009 99:5179 100:8273 101:12062 102:9873
		103:81872 104:8657 105:19139 106:3092 107:1798 110:1609 111:2242 112:2353 113:3599 114:10026
		115:6139 116:9354 117:57201 118:6670 119:6780 120:1770 121:2045 124:1465 125:1379 126:2795
		127:3456 128:4452 129:38939 130:10513 131:20543 132:4539 133:51165 134:7903 135:7878 136:2246
		137:1024 138:2651 139:2032 140:1657 141:2281 142:4392 143:11754 144:2959 145:7405 150:3752
		151:2421 152:1588 153:1230 154:1886 155:3336 156:3374 157:24495 158:9070 159:7604 160:128253
		161:21905 162:7305 163:15472 164:2471 165:1879 166:1145 167:1206 168:2282 169:2750 170:3740
		171:2782 172:3458 173:5204 175:12882 176:3377 177:5158 178:1779 179:2509 180:3113 181:2416
		182:2620 183:1745 184:2425 185:2971 186:4087 187:2650 188:4173 189:35855 190:10134 191:24672
		192:3646 193:4918 194:2077 195:1123 196:1677 197:1080 198:2050 199:2549 200:3059 201:3824

		202:2559 203:5512 204:40693 205:420668 206:44533 207:45878 208:4883 209:2430 210:4176 211:1566
		212:1604 213:2422 214:3930 215:4209 216:12512 217:88084 218:19707 219:10350 220:6037 221:10273
		222:3372 223:2338 224:2512 225:1498 226:1306 227:1241 228:2845 229:21692 230:7718 231:15220
		232:5045 233:6401 234:5066 235:2690 236:1475 237:1478 240:2416 241:1725 242:4246 243:3838
		244:5008 245:6917 246:5265 247:4074 248:3965 249:1740 253:1184 254:1867 255:1409 256:3206
		257:2320 258:2169 259:3295 260:3278 261:2246 262:7979 263:3496 264:2480 265:2718 266:1512
		267:1155 268:2242 269:4551 270:3187 271:3601 272:4356 273:11428 274:9886 275:9076 276:3562
		277:9988 278:5194 279:3196 280:1826 281:1888 284:4460 285:4877 286:3927 287:1720 288:1772
		289:1558 290:3302 291:23169 292:7396 293:4515 294:2072 295:1305 296:1175 298:1123 300:4595
		301:2500 302:2913 303:2075 304:2854 305:11858 306:6513 307:11396 308:4113 309:2691 310:1622
		314:1502 315:1977 316:1636 317:4313 319:270331 320:78356 321:39250 322:9436 323:3596 324:1537
		328:1528 329:1623 330:2346 331:3057 332:2862 333:3047 334:2321 336:1974 342:1285 343:3836
		344:2798 345:2537 346:1764 356:1128 358:4277 359:2108 360:1702 362:3368 363:5275 364:9373
		365:5471 366:3073 367:1684 374:4326 375:2445 376:3876 377:2308 378:1499 379:1721 389:1819
		390:2531 391:2139 393:2011 405:1014 420:1525 432:1520 433:1437 448:2303 449:1545 450:2039
		464:2985 465:1885 466:3154 467:1781 468:1337 480:1646 523:2021 554:2590
Glucose (1MEOX)	1937,18	76:4225 77:2215 79:1033 80:822 81:1062 82:4660 83:4100 84:1615 85:3850 86:7867 87:4474 88:5046
(5TMS)		89:55565 90:4769 91:2941 96:642 97:1526 98:1987 99:4606 100:15451 101:21121 102:11652 103:181111
		104:17666 105:42336 106:4276 107:1796 110:1030 111:2010 112:2780 113:4892 114:19711 115:10129
		116:9633 117:119444 118:12216 119:11759 121:861 125:717 126:2681 127:5094 128:7301 129:77965
		130:19325 131:38479 132:7232 133:100648 134:13679 135:8428 136:955 138:673 139:670 140:1165
		141:2314 142:5906 143:20249 144:3495 145:13139 150:5080 151:2306 152:1162 153:626 154:1247
		155:1794 156:1974 157:54026 158:14143 159:7922 160:305113 161:48602 162:14522 163:15509 164:2525
		165:1646 166:638 167:458 168:2294 169:2897 170:1590 171:1121 172:4420 173:8853 174:4316 175:10690
		176:2194 177:7766 178:1506 179:953 180:962 181:768 182:846 184:651 185:1166 186:5280 187:2192
		188:2338 189:61348 190:18053 191:28800 192:5312 193:3275 194:782 195:485 196:1028 198:1571
		200:3103 201:5551 202:2633 203:7937 204:96860 205:436520 206:86776 207:45084 208:8935 209:2466
		210:5817 211:1125 212:1033 213:522 214:1918 215:6259 216:27613 217:210339 218:44755 219:19748
		220:4413 221:18493 222:4516 223:2536 224:643 226:611 227:537 228:2921 229:47505 230:15525
		231:31152 232:9049 233:10590 234:7780 235:2223 237:753 240:2235 241:1199 242:2115 243:4220
		244:7949 245:3245 246:7585 247:3977 248:1712 249:946 253:523 254:1067 256:3670 257:1442 258:873
		259:1884 260:2477 261:1483 262:15872 263:4116 264:1714 265:3002 266:913 267:612 268:2231 269:6697
		270:2677 271:1450 272:936 273:587 274:16082 275:5082 276:3527 277:20662 278:9534 279:4240
		280:1231 281:544 286:1123 288:964 289:1087 290:2861 291:52117 292:15117 293:8263 294:2119

		300:6431 301:1868 302:2755 303:1375 304:3034 305:26617 306:11689 307:23406 308:6763 309:3022
		310:724 314:755 316:1123 317:1484 319:651642 320:189481 321:92645 322:18666 328:894 330:2118
		331:3164 332:2474 333:2929 334:1333 335:732 336:1360 342:923 343:5351 344:2635 345:2068 346:1002
		347:584 348:669 350:801 351:550 358:2376 359:1137 360:867 364:17321 365:8267 366:3608 367:1138
		368:435 374:5577 375:1951 376:5567 377:1861 378:998 379:839 389:1298 390:2080 391:834 392:694
		393:1009 394:495 420:876 421:767 432:822 433:846 434:682 448:2080 449:906 450:613 464:3540
		465:1503 466:4446 467:1781 468:864 480:983 481:496 523:665 554:1379 555:749
Unbekannte 23	1946,97	76:1533 77:1589 80:1057 81:1110 82:1691 83:1014 84:1258 85:1619 86:2729 87:1793 88:1793 89:11753
		90:1842 91:1555 95:1055 96:1354 97:2128 98:1428 99:2135 100:3223 101:6533 103:23153 104:2979
		105:5915 106:1716 107:1102 110:1325 111:1673 112:1661 113:2281 114:4645 115:3518 116:3652
		117:19774 118:3036 119:3136 120:1224 121:1027 124:1190 126:2017 127:1876 128:2176 129:18206
		130:4641 131:6425 132:2095 133:19760 134:3587 135:2948 136:1229 138:1497 140:1187 141:1628
		142:3052 143:7191 144:2013 145:3230 146:1718 150:1836 151:1486 152:1029 153:1138 154:1644
		155:1546 156:1944 157:6238 158:4437 159:2943 160:21655 161:5745 162:2473 163:5708 164:1943
		165:1521 168:2106 169:1797 170:1690 171:2813 172:1683 173:2237 174:2757 175:7625 176:2123
		177:2882 178:1383 179:1262 180:1239 181:1439 182:1414 183:1111 184:1248 185:1476 186:1905
		188:4910 189:21519 190:4801 191:4819 192:1631 193:2147 196:1452 198:1515 199:1748 200:3491
		201:1984 202:1424 204:3018 205:96862 206:19368 207:12703 208:3043 209:1668 210:1681 212:2178
		213:1457 214:1649 215:2053 217:3882 218:1767 219:3672 220:1790 221:4265 222:1980 223:1429 226:967
		228:1564 229:1423 230:2216 231:3365 232:1788 233:2033 234:1976 235:1339 237:1316 240:1347
		241:1308 242:1775 243:1648 244:2057 245:3557 246:1717 248:1007 249:1841 254:1467 255:1345
		256:1468 257:1422 258:2590 259:6225 260:2996 261:1971 262:1531 263:1984 270:1440 271:2158
		272:5773 273:19396 274:6126 275:3540 276:1590 284:1749 285:1987 286:2071 287:1825 288:1483
		289:1177 290:1294 291:1209 300:1682 301:2335 302:2165 303:1627 305:1512 318:1460 330:1222
		333:1628 344:1313 347:1495 359:1296 362:3041 363:7193 364:3058 365:2112 375:1427 386:902 387:954
		388:1078 391:1813 418:1360 419:927 420:918 507:1458 508:2084 509:1652 510:1048
Unbekannte 42	1951,11	91:5008 97:2898 116:14727 119:16921 131:9759 132:4648 161:15776 174:14714 192:5684 203:14110
		219:15494 220:4912 235:2809 299:1786
Unbekannte 21	1972,22	77:1778 98:938 152:766 390:1192 508:1032
Unbekannte 32	1974,1	83:849 84:2801 85:1118 86:884 87:1211 88:1970 89:7907 90:1448 91:1043 99:1106 100:1598 101:3265
		102:1266 103:26129 104:4184 105:2149 111:863 113:1176 114:1543 115:1521 116:2147 117:9196
		118:1697 119:1966 125:810 126:1321 127:1039 128:1299 129:4568 130:3252 131:4550 133:8987 134:1945
		135:1595 141:843 142:1663 143:4125 144:1248 145:1155 146:890 154:1008 155:908 156:1544 157:1601
		158:1943 159:2159 160:1299 161:1197 163:3169 164:1238 165:1061 168:1280 169:1105 170:1325

		171:1501 172:2075 173:1566 174:1699 175:3184 176:1160 182:743 184:1096 186:1095 187:1117 188:2601
		189:7322 190:2213 191:1944 193:1157 196:918 198:991 199:965 200:2111 201:1362 202:1265 203:1283
		204:3474 205:13317 206:3376 214:1180 215:1229 216:1349 217:2777 218:1154 228:1131 229:1100
		230:1942 231:2321 232:1290 242:1218 243:1095 244:1731 245:1220 246:1218 247:1447 256:1670
		257:1033 258:1691 259:3213 260:1614 261:1094 262:1011 263:1229 271:1105 272:2485 273:1770
		274:1051 275:1115 284:1078 285:1291 286:1135 287:1594 288:3924 289:3570 290:1535 301:951 302:1147
		311:1062 312:2187 313:1054 314:848 317:1780 318:3433 329:1057 330:2053 331:1058 332:952 333:997
		343:1318 344:1080 347:967 360:1166 374:1056 402:1703 403:965 420:1501 492:1345
Unbekannte 26	1980,51	76:19460 77:20684 78:9885 79:14110 80:2769 81:2336 82:2863 83:1714 84:3723 85:6605 86:3567 87:2519
		88:4042 89:27072 90:4570 91:43201 92:5835 93:1372 94:2066 95:3151 96:1079 97:2684 98:2853 99:6498
		100:4869 101:50984 102:14980 103:47621 104:11975 105:47293 106:8229 107:1720 108:1714 110:5707
		111:3848 112:2262 113:6373 114:4379 115:50999 116:29771 117:66243 118:18780 119:48346 120:7871
		121:1893 122:2071 123:2174 124:2077 125:3839 126:5374 127:4406 128:39667 129:54967 130:93731
		131:88116 132:42761 133:120036 134:26481 135:20704 136:4371 137:2818 138:2275 139:1089 140:2894
		141:7975 142:11408 143:116564 144:42577 145:69001 146:9707 150:3805 151:2553 152:1353 153:2505
		154:3021 155:4135 156:3591 157:8024 158:6870 159:25826 160:10760 161:23933 162:2891 163:46492
		164:10583 165:2105 166:1103 167:2686 168:5400 169:16346 170:8292 171:14490 172:7102 173:13448
		174:6858 175:27603 176:15542 177:63489 178:11702 179:4190 180:4408 181:2396 182:3440 183:3144
		184:2972 185:5180 186:3692 187:6515 188:9867 189:32538 190:19415 191:115921 192:9121 193:7969
		194:1969 195:3393 196:3431 197:2770 198:3692 199:3658 200:5092 201:19853 202:8719 203:12391
		204:34901 205:58898 206:12014 207:935273 208:72885 209:20720 210:3336 211:3111 212:2849 214:5149
		215:7264 216:5596 217:57232 218:26961 219:186314 220:132843 221:1006442 222:42801 223:12997
		224:2556 225:2823 226:3834 227:3981 228:7721 229:4556 230:7447 231:21967 232:6598 233:13728
		234:88667 235:45228 236:10194 237:5860 240:2857 241:2361 242:4137 243:4134 244:8658 245:21808
		246:1550 247:6529 248:3011 250:2067 251:1445 253:2017 254:1177 255:5861 256:13112 257:6058
		258:9032 259:18131 260:4175 261:2897 262:9140 263:10779 264:3845 265:3636 267:1290 268:3154
		269:2062 270:3898 271:7441 272:15920 273:9500 274:5676 275:4761 276:2357 278:2170 279:1278
		281:22422 282:7383 283:3153 284:6041 285:2921 286:4950 287:4819 288:12396 289:23185 290:8840
		291:4918 292:52643 293:18722 294:10011 295:2643 296:1446 297:2967 298:2661 299:2169 300:2571
		301:2999 302:5489 303:2780 304:4232 305:5200 306:1777 307:13666 308:4694 309:2279 311:4613
		312:5320 313:6033 314:4028 315:2146 317:7688 318:13091 319:5946 320:3462 321:2087 328:1909
		329:4721 330:10472 331:5365 332:4648 333:4467 334:2487 335:20025 336:6742 337:4585 338:1426
		342:2446 343:5693 344:6218 345:3321 346:2531 348:2861 349:1878 350:3227 357:1612 360:4003
		361:1953 372:2302 374:2751 376:2879 386:3491 388:2509 389:1962 401:2591 402:6373 403:3760

		417:2113 418:4702 419:3131 420:4012 421:2153 422:2057 425:10406 426:4096 427:2301 476:1929
		477:2320 478:2195 492:2513 507:1679 508:3352
Unbekannte 72	1981,72	355:1202 356:2001 370:1543 373:2085 446:1854
Unbekannte 73	1982,3	87:26072 127:54644 310:9901
Pantothensäure	2018,4	77:1031 83:993 98:1440 102:1159 104:1091 115:1026 116:1184 117:2309 129:1760 130:1058 143:1226
(3TMS)		144:1478 145:1341 146:1006 157:2342 158:925 159:1545 201:1499 247:1876 261:1101 291:4259 292:1440
		293:982 420:1578
1-(4-Hydroxy-3-	2035,43	86:1296 100:1113 116:1285 130:935 144:956 172:650 174:7313 175:1759 176:1040 188:1246 232:837
methoxyphenyl)-		290:1410
1,2,3-Propanetriol		
(4TMS)		
Scopoletin (1TMS)	2058,72	79:986 91:894 206:2018 234:4112 264:2073
Unbekannte 10	2068,98	76:1707 77:1384 81:1681 85:1639 86:1749 87:1603 88:1734 89:30656 90:2886 91:2815 99:1986 100:16911
		101:7992 102:6368 103:30265 104:3286 105:3944 111:1472 113:2741 115:3576 116:5131 117:13958
		118:2071 119:3444 127:1663 128:1996 129:25734 130:5085 131:11910 132:6748 133:22543 134:3412
		135:2440 141:1265 142:2330 143:5863 144:1656 145:3132 146:2046 150:2309 155:2006 157:5021
		158:2045 159:1973 160:2843 161:1771 163:3253 169:3550 171:1709 172:5221 173:2219 174:2078
		175:2675 177:2041 187:1697 188:1497 189:15786 190:4224 191:15407 192:3183 193:2131 196:1032
		201:1535 203:5697 204:305124 205:70107 206:27727 207:6230 208:1580 215:2181 216:1924 217:71448
		218:20051 219:8682 220:56547 221:13976 222:5545 223:1530 229:2860 230:3883 231:4083 232:2005
		233:8144 234:2289 235:1596 242:1314 243:6212 244:2486 245:1912 246:1280 259:4423 260:1427
		261:1086 270:1664 274:2038 277:1314 278:1361 291:6716 292:2563 293:1569 294:1250 304:1858
		305:6565 306:2486 307:2262 317:1790 318:1420 319:68316 320:20327 321:9914 322:2394 331:1810
		332:1712 333:1879 361:2153
Unbekannte 50	2107,38	76:1114 104:1140 223:988
Unbekannte 54	2114,82	85:641 103:925 133:811 269:836
Unbekannte 63	2122,58	91:755 115:899 135:675 204:722 307:1605 322:2150
Myo-Inositol (6TMS)	2133,69	81:446 99:337 101:731 103:2697 104:378 113:462 115:464 116:793 117:1006 119:540 127:479 129:7007
		130:945 131:3366 132:581 133:6380 134:999 135:718 143:2688 144:449 145:469 150:589 157:534 159:370
		161:561 175:850 177:458 189:2312 190:3305 191:12111 192:2459 193:1338 203:956 204:15540 205:3924
		206:1626 207:1519 208:422 217:28055 218:5592 219:2711 220:490 221:3662 222:977 223:531 230:1264
		231:665 243:701 265:4837 266:1417 267:722 278:1048 291:12818 292:3576 293:2498 294:656 304:1456
		305:28614 306:9584 307:4752 308:1095 317:742 318:15637 319:6430 320:2995 321:821 343:619 345:535

		367:2018 368:846 369:543 378:438 379:682 380:417 392:773 393:1709 394:734 395:484 419:695 432:3759
		433:2931 434:1509 435:609 507:1633 508:817
Myo-Inositol (6TMS)	2135,09	76:6861 77:4414 78:1266 79:3093 80:1027 81:13151 82:1688 83:8325 84:1497 85:7680 86:1712 87:7918
		88:3098 89:5419 91:1699 93:989 95:1487 97:2425 98:2121 99:9139 100:2027 101:23934 102:9111
		103:147138 104:14491 105:11302 106:1427 107:1299 109:4098 111:10813 112:2182 113:14703 114:2700
		115:12393 116:19861 117:33183 118:5141 119:18721 120:2705 121:2028 125:3504 126:2343 127:17119
		129:335391 130:40198 131:138528 132:21027 133:323714 134:45570 135:28075 136:2932 137:1867
		139:2876 140:1605 141:9277 142:9823 143:101834 144:12726 145:15752 150:19011 151:9082 152:1649
		153:4946 154:2093 155:9738 156:6860 157:24198 158:4043 159:10371 160:2698 161:29755 162:5337
		163:11451 164:2138 165:1856 167:2225 168:1346 169:8475 170:2249 171:3487 172:1860 173:9393
		174:2563 175:31013 176:5741 177:22406 178:3719 179:3431 180:1323 181:4685 182:1636 183:3125
		185:5870 186:1728 187:5001 189:83553 190:108413 191:933035 192:167861 193:81724 194:10114
		195:3115 197:1712 199:2618 200:1693 201:11590 202:4352 203:41396 204:648091 205:157509 206:61941
		207:71434 208:14735 209:7988 210:1790 211:1579 213:3149 214:1569 215:22048 217:2147264
		218:415660 219:181366 220:25208 221:198645 222:44299 223:24679 224:4116 225:2017 227:3738
		228:3771 229:10122 230:56907 231:31762 232:9321 233:3773 235:6582 236:1945 237:2435 239:6524
		240:1877 241:3231 242:2750 243:35723 244:8797 245:14319 246:3581 247:2793 248:970 249:4595
		250:1623 251:1614 253:1505 255:9949 256:2745 257:6271 258:1873 259:1396 261:1440 263:3986
		265:474527 266:118232 267:62432 268:11194 269:3968 270:2196 271:11808 272:3118 273:2145 275:3101
		276:1606 277:13269 278:27090 279:13583 280:5110 281:2839 289:8255 291:416916 292:118923
		293:117258 294:27616 295:11065 296:2456 301:2081 302:2303 303:10670 305:2714070 306:785315
		307:389157 308:79431 309:19552 310:3165 313:2064 315:2259 316:4194 318:1487430 319:602316
		320:257836 321:65463 322:14720 323:2929 327:4275 328:2029 329:6836 330:2948 331:17240 332:6591
		333:3328 334:1393 341:1327 342:2814 343:44227 344:15244 345:23928 346:6832 347:3299 352:4502
		353:1777 354:1137 359:2347 360:1940 365:6945 367:188896 368:64779 369:35850 370:8766 371:2965
		372:797 377:1530 378:10754 379:23529 380:11560 381:6054 382:2159 391:5718 392:26202 393:125873
		394:47504 395:24760 396:6448 397:2337 403:1402 404:2745 405:7706 406:12042 407:11344 408:4741
		409:2276 417:14753 418:6678 419:40821 420:15125 421:8200 422:2500 423:1128 432:306133 433:236564
		434:110539 435:42041 436:11749 437:3096 479:1389 507:94399 508:44135 509:26024 510:8381 511:2759
		522:3701 523:2049 524:1502 597:1279
Unbekannte 43	2158,81	115:803 117:815 131:883 133:743 143:742 145:918 157:997 287:2228 288:1461
Unbekannte 55	2232,42	83:701 105:813 129:692 174:792
Unbekannte 27	2366,58	200:726 214:948 216:1379 241:679 315:1406 432:1291

Unbekannte 67	2424,52	101:811 117:1541 133:1036 205:999 315:3070 316:1120 329:1547 419:1192 533:1047
Unbekannte 25	2482,26	76:1524 79:788 80:1271 81:1382 82:1282 83:1434 84:2352 85:7050 86:1251 87:1662 88:6394 89:4738
		90:1108 91:1250 92:1254 93:1032 97:5540 98:8305 99:14416 100:2092 101:4964 102:1758 103:22814
		104:3458 105:2259 109:919 111:1719 112:8962 113:2966 114:1196 115:1962 116:2089 117:7049 118:1238
		119:1836 124:3799 125:25487 126:200468 127:18799 128:12269 129:11373 130:2162 131:5944 132:1243
		133:9742 134:1967 135:1783 140:1279 141:1402 142:2123 143:5872 144:1387 145:1557 150:1219
		151:1196 155:1307 156:1093 157:2683 158:1101 159:1110 163:1048 169:4073 170:1136 171:1023
		173:1253 174:973 175:1377 177:1142 180:972 183:989 184:1204 185:1171 189:6490 190:1636 191:4346
		192:1298 193:1031 199:930 200:5256 201:1713 202:1197 203:1910 204:3008 205:2029 207:1426 214:1085
		215:6644 216:2167 217:141945 218:29271 219:13815 220:2892 221:2230 229:2049 230:8591 231:4280
		232:1595 233:1068 243:2290 244:1180 245:1163 257:2655 258:1272 259:1054 270:2537 271:2224
		272:1222 273:1169 274:969 291:1369 305:1364 319:2142 320:1364 345:1185 346:1413 347:1032 361:6239
		362:2129 363:1475 398:4398 399:1560 400:2836 401:1343 402:1008 432:1183 488:1817 489:1181
		490:15899 491:8293 492:4838 493:1567 578:1137
Unbekannte 07	2492,02	77:3546 103:1914 105:14850 106:1990 117:1159 129:1413 133:1244 135:1027 179:2473 191:1282
		204:3029 205:1215 217:6326 218:1998
Unbekannte 18	2492,24	77:2197 103:1665 106:1493 117:1054 129:1450 133:1133 135:927 179:2433 204:2540 217:3360 218:2168
		219:1054
Unbekannte 58	2558,36	78:928 103:1100 106:2238 133:980 160:992 204:1668 217:1588 218:795 238:1914 352:1034
Unbekannte 36	2603,19	79:1045 89:985 91:2311 103:2653 104:1718 115:1297 116:936 117:2109 118:1952 119:28598 120:3676
		129:2051 131:1174 133:1737 134:818 135:1057 169:1058 173:1769 189:1459 191:1867 204:5953 205:1741
		206:1264 217:3745 218:1805 219:1077 221:1137 231:1012 233:3037 234:1098 243:739 259:1119 263:1749
		287:982 291:733 331:5050 332:2172 333:1291
2-Deoxyadenosin	2658,56	76:1220 81:3488 84:2938 85:1881 86:1186 87:1457 89:1617 99:2425 100:1461 101:3182 102:931
(3TMS)		103:10513 104:2038 105:1383 109:996 110:1568 111:2417 113:1425 115:1256 116:1337 117:3127
		119:1388 123:1214 125:1051 127:1273 129:2383 131:2369 133:3505 134:1384 136:1027 137:1376
		138:1479 142:1409 143:1616 145:2242 150:1063 151:1132 155:1984 157:1158 161:1039 162:2047 163:964
		164:3715 165:4760 166:2103 169:1906 170:1784 171:1834 175:1086 176:2194 177:1313 180:2095
		189:2858 190:2069 191:2363 192:27651 193:5212 194:2218 202:1284 204:1360 205:1280 206:4601
		207:22871 208:13696 209:4289 210:1542 217:2815 218:10827 219:3479 220:2027 221:1139 232:1793
		233:1633 234:3544 235:1251 236:11767 237:4376 238:2070 245:1002 246:1137 262:1082 264:2219
		266:1336 279:1371 280:2021 308:727 334:1555 349:1539 362:1207 364:1580 452:2927 453:1400 467:4210
		468:2305 469:1335

Unbekannte 62	2703,9	77:683 103:730 133:687 204:962 217:863
Saccharose (8TMS)	2717,92	76:14944 77:9277 78:2140 79:4783 80:2759 81:45793 82:5424 83:13726 84:2912 85:16757 86:3897
		87:18777 88:12342 89:45000 90:5125 91:5314 92:1148 93:2271 94:1867 95:3821 96:1822 97:10892
		98:3927 99:18865 100:4569 101:56685 102:29555 103:829365 104:79566 105:36976 106:3042 107:2365
		108:1195 109:27020 110:3365 111:15185 112:4147 113:41853 114:10406 115:27960 116:34961
		117:224967 118:24732 119:28063 120:3845 121:3260 123:2063 125:7360 126:4231 127:29407 129:685168
		130:92457 131:149824 132:26835 133:228558 134:33635 135:25443 136:3918 137:3037 138:1144
		139:16075 140:7089 141:32921 142:37153 143:120433 144:18149 145:39149 150:23989 151:17845
		152:3629 153:18638 154:9056 155:90103 156:22615 157:144998 158:21867 159:27444 160:5415
		161:20400 162:5218 163:34119 164:6377 165:5005 166:2913 167:12285 169:615802 170:97309 171:59515
		172:9538 173:38819 174:8582 175:34719 176:7931 177:34623 178:6743 179:6007 180:2328 181:15098
		182:6864 183:46329 184:8388 185:17593 186:4342 187:17484 189:252140 190:58718 191:405471
		192:75352 193:40719 194:6642 195:4529 196:1712 197:5219 198:2429 199:31616 200:6650 201:25251
		202:16803 203:108714 204:315500 205:232495 206:61577 207:53497 208:11514 209:7049 210:1798
		211:3637 212:1388 213:6492 214:2731 215:84255 217:2764096 218:618468 219:280297 220:50147
		221:106904 222:25678 223:15824 224:3490 225:3433 226:1388 227:24120 228:9390 229:157625
		230:175918 231:147167 232:43749 233:61124 234:18136 235:8789 236:2568 237:2819 238:1410 239:6881
		240:2710 241:47647 243:537432 244:126628 245:156957 246:42806 247:56368 248:13485 249:7656
		250:1925 251:1720 252:1438 253:3018 254:2019 255:23135 256:10312 257:164119 258:42104 259:83701
		260:19834 261:10106 262:3081 263:13192 264:4208 265:19582 266:5654 267:4642 268:1856 269:4649
		271:830649 272:201191 273:107804 274:22399 275:14720 276:3953 277:16908 278:12258 279:7501
		280:2938 281:3854 282:1634 283:2695 284:1774 285:3174 286:1411 287:6153 288:4943 289:22486
		291:115070 292:39746 293:45197 294:13130 295:6628 296:2028 297:2549 299:1641 301:3094 302:1838
		303:24393 304:23494 305:126196 306:58715 307:34127 308:11081 309:4495 310:4149 311:2578 312:982
		313:1954 314:1025 315:3896 317:57784 318:28614 319:434312 320:151175 321:75317 322:20263
		323:6145 324:1587 325:1622 327:2151 328:1256 329:3943 331:230294 332:75866 333:52581 334:15666
		335:11453 336:4041 337:2531 338:1024 341:2221 342:1354 343:5848 345:77058 346:28169 347:44063
		348:16103 349:10607 350:3649 351:1961 355:3864 356:2733 357:2719 359:12044 361:4022990
		362:2079903 363:984264 364:216289 365:69631 366:14859 367:5404 368:1611 369:1344 371:1288
		373:9766 374:8433 375:4602 376:2374 377:8350 378:9187 379:9997 380:4532 381:4102 382:1695
		383:1217 387:1679 389:1230 391:2578 392:2311 393:6532 394:2916 395:2748 396:1280 399:1247
		401:1496 403:1324 405:5687 406:3080 407:3386 408:1502 409:1222 417:2276 418:1242 419:2253
		420:1291 421:4816 422:2663 423:1887 424:866 427:1244 429:2149 431:2431 432:1307 433:6845 434:3847
		435:41150 437:974130 438:370133 439:200715 440:58095 441:18284 442:4157 443:1327 449:3746

		450:46188 451:327939 452:137167 453:72628 454:22265 455:7251 456:1957 463:10276 464:11077
		465:5318 466:3947 467:6736 468:3113 469:2031 477:1099 481:4479 482:2163 483:1391 517:1451
		521:1054 525:1609 565:1937 566:1121
Unbekannte 17	2727,49	103:1140 115:1140 117:865 129:1421 130:1185 131:1158 133:875 189:1091 191:1836 204:3983 205:1904
		206:1353 217:3973
Unbekannte 57	2729,14	77:708 495:845
α,α-Trehalose	2817,84	76:3618 79:1151 81:11871 82:1660 83:2838 84:798 86:1184 87:4531 88:1855 89:13996 90:1658 91:1095
(8TMS)		93:735 95:1293 97:2846 98:1158 99:6100 100:1242 101:18230 102:5740 103:151314 104:23957 105:10943
		106:955 109:7325 110:1007 111:4393 112:1272 113:15962 114:3587 115:8276 116:15700 117:66208
		118:9872 119:10450 120:1293 121:877 123:761 125:1833 126:1336 127:7868 129:150137 130:30591
		131:46112 132:10125 133:41486 134:11138 136:1308 139:3976 140:1660 141:6941 142:8595 143:34632
		144:5022 145:14277 150:8348 151:4678 152:1174 153:5010 154:2494 155:35945 156:6805 157:38922
		158:6617 159:8758 160:1746 161:7157 162:1823 163:13165 164:2243 166:891 167:3162 169:151813
		170:31082 171:19749 172:2895 173:18149 174:3492 175:15533 176:3157 177:13565 178:2579 179:2292
		181:4049 183:12039 184:2458 185:4148 186:1425 187:4981 189:112714 190:43682 191:356467 192:99681
		193:33853 194:5859 195:2302 197:1850 198:786 199:10284 200:2162 201:7039 202:5679 203:50240
		204:170247 205:104915 206:37597 208:4619 209:2845 210:836 213:2200 215:12755 217:313098
		218:134245 219:75735 220:14579 221:25132 222:9222 223:5900 224:1399 227:7361 228:3376 229:51952
		230:29578 231:46559 232:13545 233:36884 234:12058 235:5060 236:1445 237:1200 239:1848 241:18299
		242:8831 243:164863 244:42125 245:49379 246:11042 247:14866 248:3200 249:2586 254:976 255:5357
		256:2777 257:24095 258:6233 259:19405 260:5244 261:2976 263:18689 264:4831 265:13348 266:3475
		267:2517 269:1625 271:212611 272:49532 273:28862 274:5247 275:3985 276:1375 277:3772 278:6032
		279:8578 280:2927 281:1717 282:824 285:1221 287:6415 288:2374 289:9651 290:9869 291:83998
		292:25067 293:14070 294:2756 297:1219 301:1126 303:5174 304:13685 305:79912 306:33574 307:16893
		308:4547 309:1957 313:1416 315:1745 317:30604 318:14131 319:136857 320:42408 321:21626 322:5170
		323:1895 329:2116 331:125696 332:48297 333:28988 334:7744 335:4175 336:1739 343:2032 344:1927
		345:22577 346:8135 347:8346 348:2779 349:4554 350:1834 351:1311 357:1112 361:1114709 362:536951
		363:310953 364:77760 365:20250 366:4103 367:1258 373:4075 374:1680 375:1264 377:14976 378:7925
		379:8477 380:3676 381:1803 385:692 391:1161 393:5800 394:2879 395:1526 405:2899 406:2251 407:3238
		408:1537 409:1352 417:892 419:1056 421:1455 433:1515 435:20318 436:8844 437:5190 438:2171
		450:3067 451:16173 452:6903 453:4316 454:1722 463:6682 464:3485 465:1933 466:1584 467:1014
		468:595 475:1179 481:856 553:1203 565:3311 566:1865
Unbekannte 48	2823,56	139:1287 179:980 191:1060 194:1031 218:1006 223:934 248:1093 293:1230 299:1133 313:1176 320:1222
		1355:842 382:1365

Unbekannte 04	2830,93	103:805 131:409 133:545 191:450 193:445 195:862 204:666 217:1218 267:578 361:2158 362:795
Unbekannte 06	2830,99	77:1633 135:4994 207:12676
Unbekannte 61	2866,25	77:750 103:733 217:780
Unbekannte 44	2926,56	77:860 78:1456 89:1268 91:1047 103:6031 104:3972 105:1385 115:801 116:1138 117:2378 119:1350 129:3096 130:901 131:2484 132:5481 133:2766 143:1163 159:953 161:1567 162:3391 163:1351 169:1072 173:1872 177:2874 189:2051 190:785 191:2630 192:948 193:2099 194:2001 195:945 203:1199 204:18318 205:5658 206:8145 208:967 217:7416 218:2939 219:1620 220:1470 221:22458 222:5589 223:2872 231:1237 233:2993 234:1062 243:1051 251:4064 263:1607 291:1364 294:1794 295:1185 305:1524
Unbekannte 05	3081,35	93:1.4239 332.1994 333.1309 339.1696 361.1130 91:642 103:2665 105:430 116:664 117:1006 119:1095 129:2060 130:485 131:1551 132:570 133:1336 134:585 135:898 143:538 155:423 157:425 161:708 162:636 163:432 169:1252 189:793 191:1745 192:793 193:623 204:3380 205:1926 206:748 207:766 217:4314 218:1256 219:897 221:910 223:582 229:549 230:508 231:575 235:700 243:1374 244:553 245:538 251:617 252:881 271:1221 272:440 291:574 293:893 294:770 295:459 305:1035 309:802 319:817 324:4579 325:1430 326:733 331:672 361:4997 362:1621 363:924 450:1438 451:826 452:592

7.4 zusätzliche Experimentdaten

Zusätzliche Daten für 3.2.4 Test auf wachstumsfördernden Effekt durch Eluatzugabe (Abb. 3. 10).

Tab. 7. 30: Frischgewicht in mg pro Pflanze nach Zugabe von aufkonzentriertem Medium. Zwei Wochen alte Pflanzen wurden mit einer einfachen (At Eluat AtPi 1x) oder zweifachen (At Eluat AtPi 2x) Konzentration an aufkonzentrierten AtPi Medium oder Medium von At Pflanzen (At Eluat At) über vier Wochen behandelt. Anschließend wurden die Pflanzen geerntet und das Gewicht bestimmt. n = 3, (außer At Eluat At n = 4).

	Blätter [mg]	Wurzeln [mg]
At Eluat At	43,5 ± 2,71	2,20 ± 0,59
At Eluat AtPi 1x	40,17 ± 8,22	2,15 ± 0,11
At Eluat AtPi 2x	48,24 ± 1,02	$0,88 \pm 0,08$

Danksagung

Ich bin zutiefst dankbar, dass ich meine Promotion bei Prof. Dierk Scheel durchführen konnte. Neben der Überlassung des spannenden Themas, der ausgezeichneten Betreuung, das in mich gesetzte Vertrauen ist vor allem der Wille von Dierk, dass ich trotz meiner zeitweiligen schwierigen persönlichen Situation die Promotion weiterführen konnte, hervorzuheben. Ohne die Unterstützung von Dierk hätte ich die Doppelbelastung "alleinerziehende" Mutter und Promotion nicht gemeistert.

Prof. Scheel, Prof. Kogel und Prof. Degenhart danke ich für die Erstellung der Gutachten und dem BMBF für die finanzielle Unterstützung (GABI Future).

Edda von Roepenack-Lahaye möchte ich für die entspannte Betreuung und das offene Miteinander danken. Christoph Böttcher danke ich für die Hilfe bei der Auswertung der MS/MS Spektren. Vielen Dank an Nadine Strehmel für die Durchführung der GC-MS Messungen und Auswertung. Stephan Schmidt möchte ich für die vielen anregenden Hilfe bei Gespräche und der Behebung zahlreicher Fehlermeldungen des Massenspektrometers danken. Domenika, Katja und Jessica danke ich für die hervorragende technische Unterstützung. Es hat Spaß gemacht mit euch zu arbeiten.

Ulli bin ich wahnsinnig für ihre sehr selbständige Hiwi-Arbeit dankbar.

Allen Mitarbeitern der Abteilung SE möchte ich für die gute Arbeitsatmosphäre, die Hilfsbereitschaft und den guten Kuchen (vor allem der Kaffeerunde) bedanken. Ebenfalls gilt mein Dank der Administration (vor allem Frau Balkenhohl), die unbürokratisch geholfen hat, wo sie konnte. Auch Herrn Bartz danke ich für die Behebung der zahlreichen PC-Probleme. Den Bioinformatikern danke ich für ihre stetige Hilfe bei allerlei Programm - und Auswerteproblemen.

Vielen Dank an Edda, Stephan, Katrin, Janett und Robert für das Korrekturlesen der Arbeit.

Auch möchte ich Prof. Lahaye danken, dass ich in seiner Arbeitsgruppe die Arbeit zusammenschreiben durfte.

Vielen Dank an meine Freunde Anke, Annelie, Ela, Janett, Katrin, Kristin, Petra, René, Susi und Tine für die schöne Zeit.

Meiner Familie, vor allem meinen Eltern, bin ich zutiefst für ihre Unterstützung dankbar. Danke, dass ihr an mich geglaubt habt.

Robert, danke dafür dass du da bist. Trotz der schwierigen Zeiten, die wir durchmachen mussten, stehst du zu mir, baust mich auf und bist bei den schönen Momenten im Leben an meiner Seite. Vielen Dank für unseren wundervollen Sohn, dem du ein großartiger Vater bist.

Eidesstattliche Erklärung

Hiermit erkläre ich, dass ich diese Arbeit selbständig und ohne fremde Hilfe verfasst, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt und die den Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Diese Arbeit wurde an keiner anderen Fakultät oder Universität zur Begutachtung eingereicht. Ich bewerbe mich mit dieser Arbeit erstmals um die Erlangung des Doktorgrades.

Halle (Saale), den 16.01.2012

Claudia Bernstein
Lebenslauf

Persönliche Daten

Geburtsdatum und -ort	14.05.1983 in Weißenfels
aktuelle Adresse	Fasanenweg 6, 82061 Neuried
Familienstand	verheiratet mit Robert Morbitzer, wissenschaftlicher Mitarbeiter, 1 Kind: James Edward *05. März 2010

Ausbildung

09/1989 – 08/1993	Grundschule Bergschule Weißenfels
09/1993 – 08/2002	Goethe-Gymnasium Weißenfels
2002	Abitur
09/2002 – 09/2007	Martin-Luther-Universität Halle/Wittenberg, Studium zum Diplom Biochemiker
11/2006 – 09/2007	Leibniz Institut für Pflanzenbiochemie, Halle, Diplomarbeit bei Prof. Wasternack, Abteilung Naturstoff-Biotechnologie, Thema: "Nachweis eines Jasmonsäure-Aminosäure-Konjugat- bindenden Proteins in Zellsuspensionskulturen der Tomate."
12/2007 – 08/2011	Leibniz Institut für Pflanzenbiochemie, Halle/Saale, Promotion bei Prof. Scheel, Abteilung Stress - und Entwicklungsbiologie, Thema: "Die mutualistische Interaktion von <i>Arabidopsis thaliana</i> und <i>Piriformospora indica</i> - eine Metabolomanalyse."
seit 09/2011	Ludwig-Maximilians-Universität München, Biologische Fakultät, wissenschaftlicher Hilfsarbeiter bei Prof. Lahaye

Halle (Saale), den 16.01.2012

Claudia Bernstein

7.1 Gewebevergleich der differentiellen LC-MS Massensignale

Für alle differentiellen Massensignale, die in den LC-MS Analysen detektiert wurden, wurde ein Gewebevergleich durchgeführt. Dadurch kann beurteilt werden, ob ein differentielles Massensignal auch in anderen Geweben bzw. Medien vorkam und ob es dort ebenfalls differentiell war.

In den einzelnen Tabellen ist jeweils das differentielle Massensignal ([*m/z*]) die Retentionszeit (RT) in Sekunden des ESets 1 und die *fold changes* (FC) der jeweiligen ESets angegeben. Bei dem Vergleich wurde "~ 1" angegeben, wenn das Massensignal detektiert wurde, aber nicht differentiell war, "-" wenn das Massensignal nicht in dem Gewebe/Medium gefunden wurde. Der *fold change* sowie in welcher Gruppe das Massensignal größer war, wurden angegeben, wenn das Massensignal differentiell in dem jeweiligen Vergleich war. Es wurde in den verglichenen Geweben/Medien nur ein *fold change* angegeben, das Massensignal musste jedoch in beiden ESets differentiell sein.

7.1.1 Gewebevergleich der differentiellen LC-MS Massensignale der Wurzeln

Tab. 7. 1: Gewebevergleich der differentiellen Massensignale der Wurzeln At > AtPi im positiven Modus gemessen.

				Blätter	Myzel	Eluate /	AtPi vs. At	Eluate At	vs. m	Eluate r	n vs. Pi	Eluate At	Pi vs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC	FC		FC		FC		FC	
252,9694	28	3,2	2,0	~ 1	-	-		-		-		-	
353,9198	29	3,1	2,0	~ 1	-	-		-		-		-	
454,8709	29	3,0	2,2	-	-	-		-		-		-	
220,0930	156	3,7	2,6	~ 1	-	~ 1		~ 1		~ 1		~ 1	
259,1104	156	2,3	2,1	~ 1	-	~ 1		10,3	At > m	~ 1		5,3	Pi < AtPi
237,1188	156	4,6	3,5	~ 1	-	~ 1		~ 1		~ 1		~ 1	
333,0799	157	2,0	2,2	-	-	-		-		-		-	
410,0580	158	3,2	2,2	-	-	-		-		-		-	
413,1397	167	2,5	2,1	~ 1	-	~ 1		-		-		-	
592,1609	173	2,8	2,3	-	-	~ 1		67936,2	At > m	-		-	
517,0182	185	2,4	2,2	~ 1	-	-		-		-		-	
200,0646	186	2,2	2,0	~ 1	-	-		-		-		-	
386,1848	186	2,4	2,0	~ 1	-	~ 1		72978,9	At > m	-		-	
504,2298	275	3,2	2,0	~ 1	-	~ 1		38906,9	At > m	-		30667,6	Pi < AtPi

_				Blätter	Myzel	Eluate AtP	i vs. At	Eluate At vs.	m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
	RT	FC	FC	FC	FC	FC		FC		FC		FC	
[<i>m/z</i>]	[sek]	ESet 1	ESet 2										
128,0363	42,84	4,1	2,7	-	-	-		-		-		-	
801,1453	158,63	2,6	2,1	-	-	-		-		-		-	
849,1982	175,76	2,9	4,0	-	-	-		-		-		-	
590,1618	207,51	2,9	2,4	-	-	~ 1		7936,8	At > m	-		-	
530,0510	231,63	9244,7	2,9	-	-	-		-		-		-	
313,0504	459,29	3,9	2,0	-	-	-		-		-		-	
473,1282	459,79	3,9	2,0	-	-	-		-		-		-	

Tab. 7. 2: Gewebevergleich der differentiellen Massensignale der Wurzeln At > AtPi im negativen Modus gemessen.

Tab. 7. 3: Gewebevergleich der differentiellen Massensignale der Wurzeln At < AtPi im positvien Modus gemessen.

				Blätter	Myzel	Eluate	e AtPi vs. At	Eluate At	vs. m	Eluate	m vs. Pi	Eluate AtF	Pi vs. Pi
[<i>m/z</i>]	RT [sek]	FC	FC	FC	FC	FC		FC		FC		FC	
239,0627	45	2,8	2,7	-	-	-		-		-		-	
126,0320	65	1676468,4	1729239,5	-	-	~ 1		~ 1		~ 1		~ 1	
113,0237	65	11,9	343398,4	-	-	~ 1		~ 1		~ 1		~ 1	
323,0684	117	6,0	6,0	-	-	~ 1		-		-		-	
323,0682	129	5,0	7,6	-	-	-		-		-		-	
513,1491	155	3,4	2,3	~ 1	-	-		-		-		-	
525,1786	165	5,0	2,9	-	-	-		-		-		-	
533,1674	166	7,3	2,6	-	-	-		-		-		-	
704,2318	166	66766,2	3,3	-	-	-		-		-		-	
365,1128	166	2,8	2,6	~ 1	-	~ 1		59035,6	At > m	-		57952,4	Pi < AtPi
343,1445	166	4,4	2,0	-	-	-		-		-		-	

325,1334	166	5,3	2,1	-	-	-	-		-	-	
697,2288	166	33775,6	2,2	-	-	-	-		-	-	
502,6482	166	3,5	3,4	-	-	-	-		-	-	
282,0932	167	2,9	4,2	-	-	~ 1	-		-	-	
516,0899	169	2,3	2,3	~ 1	-	-	-		-	-	
252,1043	169	2,1	2,8	~ 1	-	~ 1	-		-	-	
202,1220	170	2,1	2,4	~ 1	-	-	-		-	-	
224,1045	170	2,0	2,1	~ 1	-	~ 1	-		-	-	
193,0815	174	5,0	2,1	-	-	~ 1	-		-	-	
317,1151	174	5,8	507220,3	~ 1	-	~ 1	-		-	-	
395,1225	175	5,6	2,4	~ 1	-	~ 1	-		-	-	
767,2589	175	19923,7	3,5	-	-	-	-		-	-	
161,0554	175	4,6	2,7	-	-	~ 1	-		-	-	
329,1173	179	2,0	2,1	~ 1	-	~ 1	~ 1		-	-	
251,0930	179	91556,6	100303,4	-	-	~ 1	~ 1		~ 1	~ 1	
599,1518	181	3,3	2,6	-	-	-	-		-	-	
216,0599	183	91460,9	144943,7	-	-	-	-		-	-	
260,0486	183	23,1	474772,4	-	-		-		-	-	
238,0676	184	2,4	5,4	~ 1	-	~ 1	53110,3	At > m	-	43716,4	Pi < AtPi
801,1060	187	3,2	3,2	-	-	-	-		-	-	
367,0895	187	44912,5	2,7	-	-	-	-		-	-	
422,5949	187	29170,4	46835,9	-	-	-	-		-	-	
509,1337	187	20760,3	3,2	-	-	-	-		-	-	
385,0918	188	30205,9	64164,3	-	-	-	-		-	-	
445,0771	188	110954,1	161944,1	-	-	-	-		-	-	
145,0446	188	210818,2	334746,8	~ 1	-	~ 1	-		-	-	
285,0921	188	220746,9	11,4	-	-	~ 1	-		-	-	
302,1183	188	63367,3	191949,5	~ 1	-	-	-		-	-	
446,1050	188	149023,0	339855,7	-	-	-	-		-	-	

588,1505	188	18720,5	40595,1	-	-	-		-		-	-	
341,0538	188	48352,7	78212,6	-	-	-		-		-	-	
591,1626	188	9,2	7,0	~ 1	-	-		-		-	-	
339,0117	188	39083,5	3,7	-	-	-		-		-	-	
304,0649	188	292710,1	14,6	-	-	-		-		-	-	
296,0760	188	44566,5	82951,0	~ 1	-	-		-		-	-	
438,1160	188	24355,0	52630,4	-	-	-		-		-	-	
243,0506	188	32612,6	44512,1	-	-	-		-		-	-	
323,0421	188	9,9	7,7	-	-	-		-		-	-	
307,0733	188	10,8	6,2	~ 1	-	5,5	At < AtPi	-		-	227257,5	Pi < AtPi
185,0389	188	4,5	3,6	-	-	-		-		-	-	
504,1219	188	47020,3	25816,2	-	-	-		-		-	-	
124,0341	194	3,0	3,6	-	-	~ 1		201132,3	At > m	-	-	
390,1103	195	5,6	6,5	-	-	4,9	At < AtPi	-		-	102978,8	Pi < AtPi
267,0831	195	5,4	5,5	-	-	-		-		-	-	
249,0692	195	5,2	4,4	~ 1	-	~ 1		-		-	75058,2	Pi < AtPi
274,0649	197	80407,7	2,8	~ 1	-	~ 1		-		-	-	
252,0834	197	3,5	5,1	-	-	~ 1		-		-	-	
416,1537	201	4,4	4,7	-	-	~ 1		-		-	-	
331,1320	211	10,7	125231,6	-	-	-		-		-	-	
352,1542	213	2,3	87961,4	-	-	~ 1		-		-	-	
418,1301	214	2,2	2,6	-	-	~ 1		-		-	53969,0	Pi < AtPi
409,1418	224	5,9	4,0	-	-	-		-		-	-	
390,0657	228	63783,8	63834,8	-	-	-		-		-	-	
388,1197	228	34628,2	92082,8	-	-	~ 1		-		-	-	
763,1626	228	20312,0	24549,8	-	-	-		-		-	-	
393,0741	228	27,0	11,8	~ 1	-	91486,5	At < AtPi	-		-	2,6	Pi < AtPi
329,0480	228	38100,3	30076,7	-	-	-		-		-	-	
390,5668	228	25357,9	22545,9	-	-	-		-		-	-	

409,0470	228	29934,0	66581,3	-	-	~ 1		-		-	-	
271,0399	228	9,5	5,4	-	-	-		-		-	-	
539,1316	229	9,7	5,9	-	-	-		-		-	-	
352,1370	232	88541,0	87961,4	-	-	~ 1		-		-	-	
294,0121	240	5,5	37668,2	-	-	-		-		-	-	
272,0300	240	7,4	63307,4	-	-	-		-		-	-	
138,9912	240	5,5	76886,4	-	-	-		-		-	-	
429,2014	249	43602,7	223953,4	-	-	~ 1		-		-	~ 1	
133,0606	256	3,6	13,0	-	-	-		-		-	-	
613,1467	260	2,5	2,1	-	-	~ 1		-		-	-	
193,0476	260	2,2	2,8	-	-	~ 1		-		-	-	
287,0524	260	5,7	4,8	-	-	~ 1		-		-	-	
561,1535	271	2,2	2,0	-	-	-		-		-	-	
531,1422	272	2,7	2,4	-	-	-		-		-	-	
267,0848	272	2,4	2,2	-	-	~ 1		-		-	-	
429,2047	283	42278,7	45478,7	-	-	~ 1		-		-	-	
275,1588	285	2,9	2,1	-	-	-		-		-	-	
311,1792	285	2,7	2,1	-	-	-		-		-	-	
307,1847	292	202174,2	102205,0	-	-	-		-		-	-	
275,1592	300	2,0	2,1	-	-	-		-		-	-	
667,2126	300	2,4	2,1	-	-	~ 1		-		-	-	
545,1550	314	11,3	5,6	-	-	~ 1		243803,6	At > m	-	395215,7	Pi < AtPi
565,2186	348	3,2	2,5	-	-	-		-		-	-	
581,1858	348	2,5	2,1	-	-	-		-		-	-	
230,0840	348	2,2	2,3	-	-	-		-		-	-	
221,1142	349	3,0	2,4	~ 1	-	~ 1	At < AtPi	-		-	-	
651,2182	366	2,8	3,2	-	-	-		-		-	-	
335,0558	366	2,6	2,7	~ 1	-	-		-		-	-	
500,2662	451	2,4	3,9	-	-	-		-		-	-	

337,2668	451	2,5	3,1	~ 1	~ 1	-	-	-	-	
280,1425	453	2,0	2,2	-	-	-	-	-	-	
279,6405	453	2,5	2,8	-	~ 1	-	-	-	-	
542,3118	453	2,9	3,0	-	-	-	-	-	-	
460,2732	460	2,2	35551,4	-	-	-	-	-	-	
436,2718	477	2,2	3,8	-	-	-	-	-	-	
454,2843	477	2,3	4,1	~ 1	-	~ 1	-	-	-	
544,3278	486	70971,8	43399,7	-	-	-	-	-	-	
522,3472	494	4,7	4,1	-	-	-	-	-	-	
421,2266	506	2,3	2,1	~ 1	~ 1	~ 1	~ 1	~ 1	~ 1	
317,2017	507	4,9	3,0	-	-	~ 1	-	-	-	
524,3637	536	4,5	3,6	~ 1	-	-	-	-	-	
347,2149	540	6,6	2,3	-	-	~ 1	-	-	-	
603,3284	591	2,1	2,2	-	-	-	-	-	-	
413,3581	604	3,9	2,0	-	-	-	-	-	-	
481,2877	607	1391328,1	203942,7	-	~ 1	~ 1	-	-	-	
523,3523	653	2,1	2,4	-	-	-	-	-	-	
481,3391	655	3,1	2,3	-	~ 1	-	-	-	-	
481,3737	659	2,9	2,3	-	-	-	-	-	-	
629,3988	682	3,0	2,1	-	-	~ 1	-	-	-	
395,3617	683	2,3	2,2	-	-	-	-	-	-	

Tab. 7. 4: Gewebevergleich der differentiellen Massensignale der Wurzeln At < AtPi im negativen Modus gemessen.

				Blätter	Myzel		Eluate	AtPi vs. At	Eluate At vs. m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
		FC	FC										
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC	1	FC		FC	FC	1	FC	[<i>m/z</i>]
404,1070	29	2,5	2,7	~ 1	~ 1		3,3	At > AtPi	~ 1	~ 1		2,8	Pi > AtPi
439,0849	33	3,0	3,1	-	2,4	Pi > AtPi	~ 1		~ 1	~ 1		-	
299,0792	129	6,3	6,6	-	-		-		-	-		-	
351,1325	157	2,7	2,2	-	-		-		-	-		-	
395,1338	157	2,0	2,2	-	-		-		-	-		-	
387,1329	166	4,5	2,0	-	-		~ 1		-	-		-	
280,0855	167	2,6	3,7	~ 1	-		-		-	-		-	
236,0947	167	2,2	2,9	-	-		-		-	-		-	
492,1095	169	2,1	2,2	~ 1	-		36,8	At < AtPi	-	-		97891,0	Pi < AtPi
771,1713	171	2,2	20870,7	-	-		-		-	-		-	
793,1565	172	2,1	20531,6	-	-		-		-	-		-	
137,0253	172	2,0	5,6	-	-		~ 1		-	63749,5	Pi > m	2,4	Pi > AtPi
407,0658	172	2,0	4,1	-	-		-		-	-		-	
293,1271	174	218734,4	333570,3	~ 1	-		-		-	-		-	
575,1707	181	3,4	3,0	-	-		-		-	-		-	
236,0592	183	34,5	44,2	-	-		~ 1		-	-		12586,3	Pi < AtPi
192,0681	183	42787,7	22,8	-	-		-		-	-		-	
736,1241	184	9969,1	10586,3	-	-		-		-	-		-	
381,0563	187	22534,5	62999,0	-	-		-		-	-		-	
687,1350	187	9197,7	23544,2	-	-		-		-	-		-	
567,1812	187	9253,0	24345,1	-	-		-		-	-		-	
405,1238	187	8868,5	2,0	-	-		-		-	-		-	
121,0308	188	4,2	5,2	-	-		-		-	-		-	
283,0860	188	8,8	7,5	-	-		-		-	-		-	

329,0925	188	15,2	13,6	~ 1	-	-	-	-	-	
355,1095	188	3,5	2,1	~ 1	-	~ 1	-	-	-	
710,2429	194	2,2	3,8	-	-	-	-	-	-	
605,2080	195	2,6	3,2	-	-	-	-	-	-	
390,1255	195	3,6	3,6	-	-	~ 1	-	-	-	
250,0749	197	6,9	7,5	-	-	~ 1	-	-	~ 1	
385,1586	224	40035,8	135588,5	-	-	-	-	-	-	
437,0794	228	10597,9	5,9	-	-	-	-	-	-	
739,1916	228	18619,1	68570,7	-	-	-	-	-	-	
369,0918	228	32543,8	10,4	-	-	-	-	-	-	
761,1767	228	18615,9	11,6	-	-	-	-	-	-	
325,0996	228	62420,4	13,1	-	-	-	-	-	-	
265,0771	228	5,4	42924,1	~ 1	-	-	-	-	-	
515,1522	229	25798,3	4,6	-	-	-	-	-	-	
471,1601	229	15791,4	3,9	-	-	-	-	-	-	
237,0440	239	3,5	2,8	~ 1	-	-	-	-	-	
272,0195	240	7,0	9,8	-	-	-	-	-	-	
270,0219	240	7,8	18,7	-	-	-	-	-	-	
226,0309	240	6,8	10,8	-	-	-	-	-	-	
447,1044	242	4,6	4,3	~ 1	-	-	-	-	-	
264,0920	256	6,1	22,1	-	-	~ 1	-	-	17867,4	Pi < AtPi
589,1678	260	3,6	2,2	-	-	~ 1	-	-	-	
431,1180	260	12505,7	4,8	-	-	-	-	-	-	
537,1739	271	2,0	2,0	-	-	-	-	-	-	
405,2207	282	22893,7	8,8	-	-	-	-	-	-	
445,1462	288	2,0	2,0	-	-	-	-	-	-	
555,2554	300	3,1	2,3	-	-	-	-	-	-	
497,2458	348	3,0	2,3	-	-	-	-	-	-	
293,1799	348	3,3	2,6	-	-	~ 1	-	-	13937,3	Pi < AtPi

563,2205	348	2,5	2,1	-	-	-	-	-	-	
539,2574	366	2,8	2,9	-	-	-	-	-	-	
597,3142	471	10582,9	3,0	-	~ 1	-	-	-	-	
452,2872	477	2,0	5,3	-	~ 1	-	-	-	-	
566,3556	486	11,8	37777,6	-	~ 1	-	-	-	-	
501,2298	487	2,4	2,0	-	-	-	-	-	-	
637,4109	512	19985,8	11369,6	-	~ 1	-	-	-	-	
741,4016	522	6,1	27835,6	-	-	-	-	-	-	
568,3710	536	5589,0	3,1	-	-	-	-	-	-	
725,4046	571	3,8	5,6	-	-	-	-	-	-	
655,4552	583	2,0	2,2	-	-	-	-	-	-	
585,4956	649	6784,0	2,8	-	~ 1	-	-	-	-	
499,3715	653	2,6	2,6	-	-	-	-	-	-	
605,4165	682	5,0	2,8	-	~ 1	-	-	-	-	

7.1.2 Gewebevergleich der differentiellen LC-MS Massensignale des Myzels

Tab. 7. 5: Gewebevergleich der differentiellen Massensignale des Myzels Pi > AtPi im positiven Modus gemessen.

				Blätter	Myzel	Eluate AtPi vs. At	Eluate At vs. m	Eluate m vs. Pi	Eluate AtPi vs. Pi
		FC	FC						
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC	FC	FC	FC	FC
723,1934	34	4,0	3,4	-	~ 1	-	-	-	-
360,1465	34	3,4	2,6	-	~ 1	~ 1	-	-	-
702,2690	34	5,2	4,3	-	-	~ 1	~ 1	-	-
441,0960	34	3,5	4,1	-	-	-	-	-	-
707,2195	34	4,3	5,1	-	-	-	-	~ 1	3,8 Pi > AtPi
365,1021	35	2,5	2,7	-	~ 1	2,1 At > AtPi	~ 1	~ 1	2,2 Pi > AtPi
313,2284	491	2,1	2,4	-	-	~ 1	~ 1	~ 1	2,3 Pi < AtPi

335,1227	516	3,9	2,8	~ 1	~ 1	~ 1	3,1	At < m	~ 1	~ 1	
459,2735	541	4,6	6,1	-	-	-	-		-	-	
355,2915	559	28082,2	6,1	-	-	-	-		-	-	

Tab. 7. 6: Gewebevergleich der differentiellen Massensignale des Myzels Pi > AtPi im negativen Modus gemessen.

				Blätter	Myzel		Eluate	AtPi vs. At	Eluate At	vs. m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
		FC	FC											
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC		FC		FC		FC		FC	
719,2113	33	2,9	3,7	-	-		-		-		-		-	
746,2307	33	3,0	3,6	-	-		-		-		-		-	
781,2108	33	4,1	4,9	-	-		-		-		-		-	
439,0885	34	2,4	3,4	-	3,0	At < AtPi	~ 1		~ 1		~ 1		-	
347,2222	612	2,3	5,2	~ 1	~ 1		-		-		-		-	
279,2337	612	3,0	9,4	~ 1	~ 1		-		-		-		-	
533,4594	640	2,4	2,9	-	~ 1		~ 1		~ 1		~ 1		~ 1	
281,2499	650	3,1	4,9	-	~ 1		~ 1		~ 1		~ 1		~ 1	

Tab. 7. 7: Gewebevergleich der differentiellen Massensignale des Myzels Pi < AtPi im positiven Modus gemessen.

				Blätter	Myzel	Eluate	AtPi vs. At	Eluate At v	/s. m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
		FC	FC										
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC	FC		FC		FC		FC	
219,0239	28	2,0	2,9	-	~ 1	5,5	At < AtPi	-		-		~ 1	
707,6602	29	2,0	15956,7	-	-	-		-		-		-	
606,7068	29	2,0	26468,6	-	-	-		-		-		-	
399,0858	29	2,5	4,4	-	-	-		-		-		-	
483,9140	29	2,4	8,3	-	-	-		-		-		-	

382,9631	30	2,3	4,0	-	-	-	-	-	-	
718,4049	465	3,7	2,7	-	-	-	-	-	-	
597,3742	573	3,7	4,1	-	-	~ 1	-	-	-	
392,3303	606	2,7	3,3	-	-	-	-	-	-	

Tab. 7. 8: Gewebevergleich der differentiellen Massensignale des Myzels Pi < AtPi im negativen Modus gemessen.

				Blätter	Myzel	Eluate	AtPi vs. At	Eluate At	vs. m	Eluate m	vs. Pi	Eluate At	Pi vs. Pi
		FC	FC										
[<i>m/z</i>]	RT [sek]	ESet 1	ESet 2	FC	FC	FC		FC		FC		FC	
242,0519	27	2,2	2,6	~ 1	~ 1	-		-		-		-	
541,7287	28	2,0	5,4	~ 1	-	-		-		-		-	
539,7305	28	2,2	5,4	~ 1	-	-		-		-		-	
640,6835	28	2,1	4,7	~ 1	-	-		-		-		-	
669,7013	28	2,4	7,7	~ 1	-	-		-		-		-	
770,6548	28	2,5	11435,5	-	-	-		-		-		-	
768,6557	28	2,8	9,3	~ 1	-	-		-		-		-	
869,6098	28	2,4	6,0	-	-	-		-		-		-	
667,7013	28	2,6	9,1	~ 1	-	-		-		-		-	
566,7503	28	2,2	7,0	~ 1	~ 1	-		-		-		-	
568,7472	29	2,1	5,9	-	-	-		-		-		-	
637,3938	651	3,5	2,4	-	-	-		-		-		-	

7.1.3 Gewebevergleich der differentiellen LC-MS Massensignale des At vs. AtPi Mediums

Tab. 7. 9: Gewebevergleich de	differentiellen Massensignale des Mediums At	< AtPi im positiven Modus gemessen.

				Blätter	Wurz	eln	Myze	el	Eluate At	vs. m	Eluate m vs	. Pi	Eluate AtPi	vs. Pi
	RT	FC	FC											
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC		FC	•	FC		FC	T	FC	
226,9452	26	5,4	6,1	-							~ 1		~ 1	
219,0184	27	5,3	2,7	-	~ 1		2,9	Pi < AtPi					~ 1	
203,0461	28	4,0	2,2	-			~ 1		~ 1		~ 1		2,1	Pi < AtPi
527,1430	29	102691,2	115817,9	-									~ 1	
973,3014	41	2,0	3,1	-									~ 1	
124,0324	41	2,2	2,1	-	~ 1		~ 1		~ 1		~ 1		~ 1	
811,2491	41	2,5	2,5	-									~ 1	
649,2012	41	2,2	2,8	-									~ 1	
359,2179	77	4,3	4,4	-									3,9	Pi < AtPi
211,1008	78	230539,0	328439,3	-							299547,5	Pi > m	~ 1	
381,2030	78	2,7	3,2	-					~ 1		~ 1		2,5	Pi < AtPi
277,0870	80	3,8	15,6	-									7,0	Pi < AtPi
220,1117	102	4,1	12,5	-									145758,4	Pi < AtPi
202,1007	102	5,8	9,0	-									60866,7	Pi < AtPi
242,0943	102	5,4	9,0	-	~ 1								14,1	Pi < AtPi
342,1924	122	5,3	9,4	-									2,2	Pi < AtPi
360,2030	145	2,7	2,5	-					~ 1		~ 1		~ 1	
275,1039	165	3,2	2,1	-					~ 1				2,2	Pi < AtPi
252,1028	201	10,2	5,3	~ 1	2,1	At < AtPi					~ 1		~ 1	
149,0193	202	5,3	2,0	-							~ 1		~ 1	
261,0798	203	8,2	6,7	-							~ 1		3,2	Pi < AtPi
319,0832	207	8,0	7,9	-							~ 1		3,0	Pi < AtPi

252,0751	214	2,5	2,4	-	3,5	At < AtPi		~ 1	~ 1		~ 1	
307,0742	220	6,2	4,6	~ 1	10,8	At < AtPi					227257,5	Pi < AtPi
247,1003	226	5,4	4,0	-					~ 1		2,8	Pi < AtPi
261,1160	233	19,0	6,7	~ 1			~ 1		~ 1		~ 1	
670,3584	233	149576,0	72480,1	-							72480,1	Pi < AtPi
370,7132	235	102229,6	67018,3	-							3,7	Pi < AtPi
552,3077	235	106719,4	48982,8	-							2,4	Pi < AtPi
245,1777	237	3,3	2,3	-							14,0	Pi < AtPi
390,1109	238	5,2	4,8	~ 1	5,6	At < AtPi					102978,8	Pi < AtPi
718,3445	240	177436,3	86106,4	-							86084,0	Pi < AtPi
402,1220	243	5,0	6,9	-							3,1	Pi < AtPi
534,9275	243	210393,0	159243,8	-							159243,8	Pi < AtPi
573,2693	244	31,0	31,9	~ 1							13,3	Pi < AtPi
277,1126	246	2,2	7,6	-							2,3	Pi < AtPi
245,1299	247	6,2	2,4	-							~ 1	
386,1504	247	8,4	7,3	~ 1	~ 1			~ 1	2,0	Pi > m		
343,1881	257	48,1	91,3	-							4,7	Pi < AtPi
527,3049	257	248115,0	141385,4	-							7,4	Pi < AtPi
582,2840	261	153563,8	116913,3	-							116828,0	Pi < AtPi
620,6250	261	323989,4	190759,9	-							190759,9	Pi < AtPi
513,2880	263	81,4	5,8	-							5,0	Pi < AtPi
358,1645	266	4,4	4,2	-					~ 1		2,5	Pi < AtPi
418,1289	276	3,2	2,2	-	2,2	At < AtPi					53969,0	Pi < AtPi
655,3558	277	91506,3	47942,1	-							47942,2	Pi < AtPi
290,0944	278	50071,6	47270,7	-					44914,1	Pi > m	~ 1	
372,1447	279	5,9	5,3	-	~ 1						2,8	Pi < AtPi
333,1009	286	12,6	171,4	-								
340,1560	293	6,1	210,7	~ 1	~ 1						3,0	Pi < AtPi

386,1230	294	7,9	7,3	~ 1								3,8	Pi < AtPi
372,1791	296	6,0	5,3	-								2,7	Pi < AtPi
313,1453	297	5,1	3,1	-				~ 1				2,6	Pi < AtPi
393,0710	298	17,6	8,1	~ 1	27,0	At < AtPi						14,1	Pi < AtPi
688,3708	300	811724,9	427859,9	-						30392,1	Pi > m	2,3	Pi < AtPi
461,2318	313	6,5	4,2	-	~ 1		~ 1					3,0	Pi < AtPi
511,1702	332	9,2	6,3	-	~ 1							4,9	Pi > AtPi
161,0903	340	219191,6	265858,1	~ 1						1302029,1	Pi > m	4,4	Pi > AtPi
143,0797	340	150595,4	169833,5	-						747151,3	Pi > m	1037242,6	Pi < AtPi
410,1156	347	4,2	3,7	-	~ 1		~ 1	277973,4	At > m			132530,6	Pi < AtPi
390,1089	354	3,8	25,1	-	~ 1							108871,3	Pi < AtPi
250,0652	355	5,1	3,5	-	~ 1			32619,1	At > m			~ 1	
403,2724	360	120787,0	58131,2	-						94846,2	Pi > m	~ 1	
385,2591	360	59358,7	30012,3	-						32143,7	Pi > m	~ 1	
421,2807	360	109589,8	57401,6	-						86798,1	Pi > m	60679,6	Pi < AtPi
412,0941	371	62,8	2,1	-				53367,3	At > m			132530,6	Pi < AtPi
390,1102	372	5,5	25,1	-	~ 1							39789,9	Pi < AtPi
124,0329	372	5,4	4,5	-								3,4	Pi < AtPi
342,1346	380	3,1	4,7	-						~ 1		~ 1	
431,2211	388	3,8	4,9	-									
307,1748	425	9,7	5,1	-				3,0	At < m	~ 1			
315,1526	485	2,1	5,9	~ 1				~ 1				~ 1	
149,0170	515	5,3	10,4	-								4,7	Pi < AtPi
317,1278	515	3,7	3,1	-			~ 1	~ 1		3,1	Pi > m	5,6	Pi < AtPi
401,2445	521	67307,1	35703,8	-						47146,3	Pi > m	~ 1	
497,2718	523	1282790,8	230743,2	-			~ 1					230747,6	Pi < AtPi
327,2198	585	3,0	2,7	~ 1	~ 1			~ 1		~ 1		2,6	Pi < AtPi
619,3834	595	2,5	5,3	-			~ 1			~ 1		~ 1	

575,3580	596	2,2	5,0	-			~ 1	~ 1	~ 1	
531,3334	597	2,0	2,6	-				~ 1	~ 1	
353,1979	598	2,2	8,2	-				~ 1	3,8	Pi < AtPi

Tab. 7. 10: Gewebevergleich der differentiellen Massensignale des Mediums At < AtPi im negativen Modus gemessen.

				Blätte	r	Wurzelr	n	Myze	I	Eluate	At vs. m	Eluate m vs. F	Pj	Eluate At	Pi vs. Pi
	RT	FC	FC												
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC		FC		FC		FC		FC		FC	
378,9190	25	2,3	2,1	-		-		-		-		~ 1		~ 1	
316,9482	25	3,7	3,3	-		-		-		-		2,2	Pi > m	~ 1	
248,9609	26	3,3	42967,2	-		-		-		-		~ 1		~ 1	
267,0411	40	5,5	11,0	-		-		-		-		3,9	Pi > m	~ 1	
548,3367	44	2,1	2,0	-		-		-		-		-		2,1	Pi < AtPi
218,1044	102	37,6	14,0	-		-		-		-		-		8,7	Pi < AtPi
358,2024	145	2,6	2,1	-		-		-		~ 1		~ 1		~ 1	
175,0626	180	21105,8	13,9	-		-		-		-		-		23607,3	Pi < AtPi
264,0901	195	6,9	22941,1	-		-		-		-		-		2,1	Pi < AtPi
492,1128	202	36,8	5,5	~ 1		~ 1		-		-		-		97891,0	Pi < AtPi
195,0677	207	29958,1	30103,0	-		-		-		-		88120,6	Pi > m	2,9	Pi > AtPi
157,0521	219	22184,3	21384,4	-		-		-		-		-		21383,6	Pi < AtPi
285,1367	230	40043,8	39195,9	-		-		-		-		21543,2	Pi > m	~ 1	
131,0731	230	36,0	12,2	-		-		-		-		42097,3	Pi > m	2,1	Pi < AtPi
525,3145	257	18670,6	15951,6	-		-		-		-		-		6,6	Pi < AtPi
165,0574	271	2,4	111028,1	~ 1		~ 1		-		-		97626,5	Pi > m	~ 1	
266,1077	278	36534,8	37427,2	-		-		-		-		26024,3	Pi > m	~ 1	
248,0960	278	16730,6	18553,9	-		-		-		-		14053,7	Pi > m	~ 1	
171,0685	289	2,8	2,2	-		-		-		~ 1		~ 1		~ 1	
223,1008	340	265997,1	670623,3	~ 1				-		-		2782196,4	Pi > m	4,1	Pi > AtPi

469,1943	340	22726,3	72227,1	-		-	-	367987,1	Pi > m	5,1	Pi > AtPi
309,1063	418	3,1	3,8	-	~ 1	-	~ 1	4,5	Pi > m	~ 1	
251,1005	443	2,3	2,0	-	-	-	-	2,4	Pi > m	-	
315,1639	512	2,1	2,3	-	-	-	~ 1	~ 1		~ 1	

Tab. 7. 11: Gewebevergleich der differentiellen Massensignale des Mediums At > AtPi im positiven Modus gemessen.

				Blätte	er	Wurz	eln	Myzel		Eluate At vs	s. m	Eluate m v	s. Pi	Eluate A	tPi vs. Pi
	RT	FC	FC												
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC		FC		FC		FC		FC		FC	
327,1020	25	27699,9	2,7	-		-		~ 1		~ 1		~ 1		~ 1	
265,1048	26	3,6	3,7	~ 1		-		~ 1		~ 1		~ 1		2,5	Pi > AtPi
283,1110	26	2,9	2,9	-		-		~ 1		~ 1		~ 1		2,2	Pi > AtPi
122,0637	26	2,7	3,0	-		-		~ 1		~ 1		~ 1		2,5	Pi > AtPi
299,1083	26	3,0	3,2	~ 1		-		~ 1		~ 1		~ 1		2,2	Pi > AtPi
219,1203	26	3,2	3,2	-		-		-		~ 1		~ 1		2,1	Pi > AtPi
183,0632	26	2,5	3,0	-		-		-		~ 1		~ 1		2,2	Pi > AtPi
151,0909	26	2,9	2,6	-		-		-		~ 1		~ 1		~ 1	
281,0974	26	3,0	2,7	-		-		-		~ 1		~ 1		2,0	Pi > AtPi
123,0701	26	4,1	2,9	-		-		-		~ 1		~ 1		-	
233,1391	26	2,4	2,4	-		-		-		~ 1		~ 1		~ 1	
365,0941	28	3,7	2,1	-		-		2,7	Pi > AtPi	~ 1		~ 1		2,2	Pi > AtPi
444,0528	33	2,1	2,1	-		-		~ 1		~ 1		~ 1		~ 1	
362,0870	33	6,6	4,3	-		-		~ 1		~ 1		~ 1		2,9	Pi > AtPi
268,1399	43	3,1	2,6	-		-		-		~ 1		~ 1		~ 1	
239,1450	44	2,0	2,1	-		-		-		~ 1		~ 1		~ 1	
136,0555	48	3,6	2,3	~ 1		~ 1		-		4,7	At > m	2,0	Pi < m	4,2	Pi < AtPi
320,1655	59	84055,0	121631,8	-		-		-		~ 1		179391,5	Pi < m	-	
306,0907	60	2,1	2,0	~ 1		~ 1		-		4537125,5	At > m	201260,7	Pi > m	11,2	Pi < AtPi

288,0833	60	4,3	2,3	-	~ 1		-	93248,4	At > m	-		-	
368,0922	61	2,6	2,2	-	~ 1		-	93208,4	At > m	-		42807,7	Pi < AtPi
285,0700	90	2,3	2,1	-	-		-	~ 1		~ 1		2,1	Pi > AtPi
281,0994	107	3,1	2,7	-	~ 1		-	~ 1		~ 1		~ 1	
264,0748	139	2,2	2,1	-	-		-	~ 1		~ 1		~ 1	
297,0965	165	4,3	3,9	-	-		-	~ 1		~ 1		2,7	Pi > AtPi
281,1011	165	3,9	5,9	~ 1	-		-	~ 1		~ 1		2,7	Pi > AtPi
256,1009	169	3,3	2,2	~ 1	~ 1		-	101246,2	At > m	-		2,1	Pi < AtPi
261,1166	192	6,4	6,3	~ 1	-		~ 1	~ 1		11,5	Pi < m	-	
271,1665	204	3,0	112096,1	-	-		-	~ 1		115357,2	Pi < m	-	
169,0711	241	4,1	3,0	-	-		-	~ 1		3,3	Pi < m	~ 1	
427,0990	281	3,0	2,7	~ 1	~ 1		-	~ 1		~ 1		3,1	Pi > AtPi
494,1313	282	2,2	2,2	-	2,5	At > AtPi	-	66570,3	At > m	-		-	
343,0843	282	5,4	2,1	~ 1	2,6	At > AtPi	-	134931,8	At > m	-		-	
335,1048	340	2,7	2,6	-	2,0	At < AtPi	-	467243,3	At > m	-		-	
546,1475	352	2,1	2,0	-	~ 1		-	29251,0	At > m	-		-	

Tab. 7. 12: Gewebevergleich der differentiellen Massensignale des Mediums At > AtPi im negativen Modus gemessen.

				Blätt	ter	Wurze	In	Myzel	Eluate At v	s. m	Eluate m v	s. Pi	Eluate A	tPi vs. Pi
	RT	FC	FC											
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC		FC		FC	FC		FC		FC	
377,0876	30	3,6	3,8	-		-		~ 1	~ 1		~ 1		4,4	Pi > AtPi
404,1071	30	3,3	2,9	~ 1		2,5	At < AtPi	~ 1	~ 1		~ 1		2,8	Pi > AtPi
341,1111	31	4,6	2,9	-		-		~ 1	~ 1		~ 1		2,2	Pi > AtPi
469,0247	31	3,7	4,5	-		-		-	~ 1		~ 1		3,9	Pi > AtPi
235,1217	44	2,1	2,7	-		-		-	~ 1		~ 1		2,3	Pi > AtPi
327,1128	213	4,5	2,8	~ 1		-		-	195806,6	At > m	-		70198,3	Pi < AtPi
395,1980	269	2,1	105089,1	-		~ 1		-	~ 1		135626,7	Pi < m	-	

327,1310 383 2,4 2,0 - - 8,2 At > m -	18055,3 Pi < AtPi
---------------------------------------	-------------------

7.1.4 Gewebevergleich der differentiellen LC-MS Massensignale des At vs. m Mediums

Tab. 7. 13: Gewebevergleich der differentiellen Massensignale des Mediums At > m im positiven Modus gemessen.

				Blätte	r Wurze	In My	/zel	Eluate /	At vs. AtPi	Eluate m	/s. Pi	Eluate AtPi v	rs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC	FC)	FC		FC		FC	
136,0609	46	4,7	3,2	~ 1	~ 1	-		3,6	At > AtPi	2,0	Pi < m	4,2	Pi < AtPi
300,1270	50	251625,1	11,0	-	~ 1	-		~ 1		-		-	
152,0571	54	11,3	14,2	-	-	-		~ 1		2,4	Pi > m	2,8	Pi < AtPi
557,1495	54	55433,8	58034,9	-	-	-		~ 1		-		-	
297,0980	59	2,2	26,9	-	-	-		~ 1		~ 1		~ 1	
269,1039	59	2,5	2,8	-	-	-		~ 1		~ 1		~ 1	
306,0989	61	4537125,5	5395532,0	~ 1	~ 1	-		2,0	At > AtPi	201260,7	Pi > m	11,2	Pi < AtPi
347,0728	61	169353,7	226282,7	~ 1	~ 1	-		~ 1		-		2,0	Pi < AtPi
288,0865	61	93248,4	117720,2	-	~ 1	-		2,5	At > AtPi	-		-	
386,1063	61	68507,3	85862,0	-	~ 1	-		~ 1		-		2,3	Pi < AtPi
368,0970	61	93208,4	111474,9	-	~ 1	-		2,1	At > AtPi	-		42807,7	Pi < AtPi
334,0925	61	53304,4	75515,1	-	~ 1	-		~ 1		-		-	
206,0469	62	95499,2	108933,2	-	~ 1	-		~ 1		-		2,5	Pi < AtPi
289,1367	62	84859,3	110787,9	-	~ 1	-		~ 1		-		-	
336,1076	62	71415,6	96118,8	-	~ 1	-		~ 1		-		-	
144,0467	62	2,9	2,5	~ 1	~ 1	~ `	1	~ 1		~ 1		~ 1	
328,0783	67	271280,9	320739,4	-	~ 1	-		~ 1		340765,3	Pi > m	~ 1	
168,0431	70	131064,2	105472,1	-	-	-		~ 1		-		114241,0	Pi < AtPi
383,1094	80	221309,0	215967,5	-	-	-		~ 1		-		-	
265,0765	80	1168166,9	3,2	-	-	-		~ 1		-		-	

507,1624	80	123544,7	123902,6	-	-		-	~ 1		-		-	
262,0665	80	226624,9	234539,1	-	-		-	~ 1		-		-	
504,1534	80	117194,4	113110,1	-	-		-	~ 1		-		-	
192,0748	101	68695,1	71220,2	-	-		-	~ 1		-		51925,4	Pi < AtPi
130,0632	121	118942,4	175757,3	-	-		-	~ 1		-		-	
556,1489	133	64863,8	61356,5	-	-		-	~ 1		-		~ 1	
192,1380	137	134100,9	160694,8	~ 1	-		-	~ 1		-		5,7	Pi < AtPi
392,0969	144	493094,1	695015,0	~ 1	~ 1		-	~ 1		-		594675,1	Pi < AtPi
256,1039	156	101246,2	117232,8	~ 1	~ 1		-	3,3	At > AtPi	-		2,1	Pi < AtPi
259,1112	156	10,3	488198,4	~ 1	2,3	At > AtPi	-	~ 1		~ 1		5,3	Pi < AtPi
365,1210	167	59035,6	120862,4	~ 1	2,8	At < AtPi	-	~ 1		-		57952,4	Pi < AtPi
212,1253	174	98416,1	98994,3	~ 1	~ 1		-	~ 1		-		80829,8	Pi < AtPi
287,1075	174	149534,3	158427,2	~ 1	~ 1		-	~ 1		-		134681,5	Pi < AtPi
295,1582	180	2,2	104907,5	-	-		-	~ 1		54519,0	Pi < m	140061,6	Pi < AtPi
351,1031	180	137487,6	292622,7	~ 1	~ 1		-	~ 1		-		-	
389,1208	181	48716,7	48434,7	~ 1	~ 1		-	~ 1		-		-	
238,0703	181	53110,3	49047,8	~ 1	2,4	At < AtPi	-	~ 1		-		43716,4	Pi < AtPi
405,1722	181	180351,3	248282,5	~ 1	~ 1		-	~ 1		-		229663,1	Pi < AtPi
152,0553	182	66154,0	57175,5	-	~ 1		-	~ 1		-		-	
614,7726	182	58269,5	43344,1	-	-		-	~ 1		-		-	
411,1192	190	793002,5	2,6	~ 1	~ 1		-	~ 1		-		500736,1	Pi < AtPi
206,0621	191	734542,7	675744,3	-	~ 1		-	~ 1		-		494326,8	Pi < AtPi
250,0699	191	47528,1	746373,1	-	-		-	-		-		-	
124,0373	191	201132,3	190769,2	-	3,0	At < AtPi	-	~ 1		-		-	
441,1323	191	45149,9	63137,5	-	-		-	~ 1		-		41384,7	Pi < AtPi
391,1127	196	86622,7	87807,8	-	2,7	At < AtPi	-	~ 1		-		116860,2	Pi < AtPi
268,0799	196	279349,7	280455,6	-	~ 1		-	~ 1		-		260389,4	Pi < AtPi
117,0550	202	44416,8	32055,1	~ 1	~ 1		-	~ 1		-		-	
145,0500	203	239441,7	208121,9	~ 1	~ 1		-	~ 1		-		-	
160,0735	203	251636,6	228105,7	~ 1	~ 1		-	~ 1		-		183955,8	Pi < AtPi

148,0717	203	48986,4	45613,9	-	~ 1	-	~ 1		-		40842,0	Pi < AtPi
130,0630	203	164972,1	174842,3	~ 1	~ 1	-	~ 1		-		140120,5	Pi < AtPi
498,0926	203	31040,1	34265,4	~ 1	~ 1	-	~ 1		-		40409,0	Pi < AtPi
149,0585	204	89792,5	7,2	~ 1	~ 1	-	~ 1		-		115908,5	Pi < AtPi
342,1040	205	71262,9	86651,3	~ 1	~ 1	-	~ 1		-		95126,0	Pi < AtPi
345,1126	205	1729152,0	1684927,3	~ 1	~ 1	-	~ 1		-		54,0	Pi < AtPi
231,0489	205	84444,3	96438,0	~ 1	~ 1	-	~ 1		-		109646,8	Pi < AtPi
301,1235	205	79729,2	91346,6	~ 1	~ 1	-	~ 1		-		2,7	Pi < AtPi
592,1635	209	118192,8	104784,1	-	~ 1	-	~ 1		-		78383,8	Pi < AtPi
428,2008	209	3,4	5,8	~ 1	-	-	~ 1		~ 1		3,3	Pi < AtPi
400,1077	212	44726,9	36701,2	~ 1	~ 1	-	~ 1		-		42297,9	Pi < AtPi
491,1709	216	191636,7	180757,0	~ 1	~ 1	-	~ 1		-		236437,3	Pi < AtPi
412,2048	216	215500,4	3,3	-	-	-	~ 1		-		-	
279,1617	216	2,1	164755,5	-	~ 1	-	~ 1		-		305610,7	Pi < AtPi
152,0552	217	70479,7	57008,8	-	~ 1	-	~ 1		-		-	
494,1409	217	66570,3	49606,5	-	~ 1	-	2,0	At > AtPi	-		-	
343,0904	217	134931,8	100139,4	-	~ 1	-	2,3	At > AtPi	-		-	
347,1621	218	5,5	10,5	~ 1	~ 1	-	~ 1		-		7,0	Pi < AtPi
379,0990	223	65549,4	54463,6	~ 1	~ 1	-	~ 1		-		77069,0	Pi < AtPi
210,0901	228	70669,6	96282,7	~ 1	~ 1	-	~ 1		-		83204,6	Pi < AtPi
268,0800	230	107268,4	6,0	-	~ 1	-	~ 1		-		1,9	Pi < AtPi
460,1204	230	358245,6	173073,8	-	~ 1	-	~ 1		-		184858,2	Pi < AtPi
399,1384	232	210335,1	120116,4	-	-	-	~ 1		-		142174,3	Pi < AtPi
441,1337	233	571410,0	424122,8	~ 1	~ 1	-	~ 1		-		400120,0	Pi < AtPi
342,1521	238	92317,4	69309,8	-	~ 1	-	~ 1		-		-	
467,1860	242	135532,8	300735,1	-	~ 1	-	~ 1		-		132613,9	Pi < AtPi
212,1037	251	168501,2	127541,4	-	-	-	~ 1		-		3,9	Pi < AtPi
335,1071	253	467243,3	1110914,3	-	~ 1	-	2,4	At > AtPi	-		-	
390,1540	254	640370,2	481474,0	-	-	-	~ 1		-		10,0	Pi < AtPi
412,1339	255	53367,3	36441,6	~ 1	-	-	~ 1		-		125176,5	Pi < AtPi

410,1235	255	277973,4	205356,1	~ 1	-		-	4,1	At < AtPi	-	1037242,6	Pi < AtPi
524,1725	256	89503,9	57355,9	-	~ 1		-	~ 1		-	39960,1	Pi < AtPi
268,0791	256	294909,8	10,0	-	~ 1		-	~ 1		-	261494,0	Pi < AtPi
224,1056	264	189873,3	357548,6	~ 1	~ 1		-	~ 1		-	227998,8	Pi < AtPi
202,1234	264	94287,2	201449,5	~ 1	~ 1		-	2,0	At < AtPi	-	133086,9	Pi < AtPi
407,1295	276	184671,6	502927,4	~ 1	~ 1		-	~ 1		-	181303,6	Pi < AtPi
504,2337	278	38906,9	49414,8	~ 1	3,2	At > AtPi	-	~ 1		-	30667,6	Pi < AtPi
399,1949	284	117030,0	194990,8	-	-		-	~ 1		-	-	
329,1526	286	92058,4	76097,7	~ 1	~ 1		-	~ 1		-	60171,5	Pi < AtPi
545,1576	318	243803,6	174252,0	-	11,3	At < AtPi	-	~ 1		-	395215,7	Pi < AtPi
463,2286	378	251105,8	147335,6	-	~ 1		-	~ 1		-	157790,9	Pi < AtPi

Tab. 7. 14: Gewebevergleich der differentiellen Massensignale des Mediums At > m im negativen Modus gemessen.

				Blätter	Wurzel	n M	lyzel	Eluate A	At vs. AtPi	Eluate m	vs. Pi	Eluate AtPi	vs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC	F	С	FC		FC		FC	
266,0970	53	119,1	86,5	-	-	-		~ 1		17,4	Pi > m	3,0	Pi < AtPi
555,1392	54	35953,5	46279,8	-	-	-		~ 1		-		9,2	Pi < AtPi
295,0922	61	73297,0	80491,4	-	~ 1	-		~ 1		-		3,0	Pi < AtPi
382,0850	61	26174,2	30051,1	-	~ 1	-		~ 1		-		2,4	Pi < AtPi
350,0956	61	48949,0	51511,7	~ 1	~ 1	-		~ 1		-		~ 1	
595,1355	76	6,4	8,4	-	-	-		~ 1		-		-	
241,0905	80	24,9	124,7	-	-	-		~ 1		-		20,6	Pi < AtPi
530,1260	97	38158,6	29384,1	-	-	-		~ 1		-		4,3	Pi < AtPi
554,1367	133	44009,0	39713,5	-	-	-		~ 1		7907,2	Pi > m	2,7	Pi < AtPi
530,1263	136	13468,6	10836,5	-	-	-		~ 1		9600,9	Pi > m	~ 1	
545,1275	152	7,7	21996,5	-	-	-		~ 1		~ 1		2,7	Pi < AtPi
227,1481	174	23440,3	25651,3	~ 1	~ 1	-		~ 1		-		15707,2	Pi < AtPi
327,1154	180	195806,6	314755,0	~ 1	~ 1	-		4,5	At > AtPi	-		70198,3	Pi < AtPi

395,1005	180	19192,1	33445,0	~ 1	-	~ 1	-	~ 1	-	-	
427,1843	181	18327,5	14552,5		-	~ 1	-	~ 1	-	11685,0	Pi < AtPi
739,2038	196	17745,8	15421,1	~ 1	-	~ 1	-	~ 1	-	15619,6	Pi < AtPi
443,1578	203	17223,2	13326,2	~ 1	-		-	~ 1	-	15515,7	Pi < AtPi
496,0801	203	52134,9	49766,9	-	-	~ 1	-	~ 1	-	69070,7	Pi < AtPi
165,0637	203	32632,3	22,5	~ 1	-	~ 1	-	~ 1	-	42243,0	Pi < AtPi
343,1079	205	26415,1	23847,5	~ 1	-	~ 1	-	~ 1	-	29143,0	Pi < AtPi
665,2225	205	39270,9	36612,6	~ 1	-	~ 1	-	~ 1	-	42388,9	Pi < AtPi
643,2431	205	44562,2	31740,7	~ 1	-	~ 1	-	~ 1	-	32504,3	Pi < AtPi
321,1255	205	30418,0	26305,5	~ 1	-	~ 1	-	~ 1	-	31010,7	Pi < AtPi
277,1384	205	83,4	276877,9	~ 1	-	~ 1	-	~ 1	-	46,9	Pi < AtPi
235,1276	205	103898,9	86331,4	~ 1	-	~ 1	-	~ 1	-	96823,0	Pi < AtPi
369,1251	208	46221,5	83323,3	~ 1	-	~ 1	-	~ 1	-	49713,7	Pi < AtPi
381,1808	216	23873,1	21161,0	~ 1	-	~ 1	-	~ 1	-	25482,6	Pi < AtPi
423,1913	216	133323,0	117343,4	~ 1	-	~ 1	-	~ 1	-	145727,8	Pi < AtPi
467,1796	216	23999,7	19753,9	~ 1	-	~ 1	-	~ 1	-	23481,0	Pi < AtPi
593,1501	216	41686,5	28619,4	~ 1	-	~ 1	-	~ 1	-	44575,0	Pi < AtPi
577,1560	230	29710,1	24541,3	~ 1	-	~ 1	-	~ 1	-	25855,2	Pi < AtPi
443,1958	241	91309,4	190930,7	-	-	~ 1	-	~ 1	-	90095,7	Pi < AtPi
485,2038	266	110269,7	185950,8	~ 1	-	~ 1	-	~ 1	-	67073,3	Pi < AtPi
339,1399	275	65796,3	164518,7	~ 1	-	~ 1	-	~ 1	-	53493,5	Pi < AtPi
583,2159	285	44798,2	25533,4	-	-		-	~ 1	-	20777,2	Pi < AtPi
207,1479	286	19186,8	12510,7	-	-		-	~ 1	-	17099,5	Pi < AtPi
479,2492	307	36207,2	25035,4	~ 1	-	~ 1	-	~ 1	-	32788,9	Pi < AtPi
505,2633	315	13089,4	10751,9	-	-	~ 1	-	~ 1	-	12055,1	Pi < AtPi
567,1694	318	17403,2	10959,3	-	-	~ 1	-	~ 1	-	26535,7	Pi < AtPi
174,0648	321	14930,2	15561,1	-	-	-	-	~ 1	-	 12842,2	Pi < AtPi
421,2360	324	25134,1	23594,3	-	-	~ 1	-	~ 1	-	28549,4	Pi < AtPi
422,2217	343	15264,5	14768,0	~ 1	-	~ 1	-	~ 1	-	18784,5	Pi < AtPi
439,2345	378	73385,3	43521,1	-	-	-	-	~ 1	-	42464,9	Pi < AtPi

473,2535	382	28177,5	13493,7	-	-	-	-	~ 1	-	15653,2	Pi < AtPi
223,2144	386	2,2	2,8	-	-	-	-	~ 1	~ 1	2,3	Pi < AtPi
267,2036	386	2,2	2,6	-	-	-	-	~ 1	~ 1	2,3	Pi < AtPi
333,1742	386	2,1	2,4	~ 1	-	-	-	~ 1	~ 1	~ 1	
311,1919	386	2,1	2,4	-	-	-	-	~ 1	~ 1	2,3	Pi < AtPi
231,1826	392	2,3	2,7	-	-	-	-	~ 1	-	-	

Tab. 7. 15: Gewebevergleich der differentiellen Massensignale des Mediums At < m im positiven Modus gemessen.

				Blätter	Wurze	ln Myze	el	Eluate At	vs. AtPi	Eluate	m vs. Pi	Eluate At	:Pi vs. Pi
	RT	FC	FC										
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC	FC	FC		FC		FC		FC	
155,0144	88	3,5	2,9	-	-	-		-		2,0	Pi < m	-	
241,0671	251	2,5	2,5	-	~ 1	-		~ 1		~ 1		2,8	Pi > AtPi
240,0996	270	2,1	3,1	-	-	-		~ 1		~ 1		3,1	Pi > AtPi
228,0993	280	2,9	3,6	-	-	-		~ 1		~ 1		4,2	Pi > AtPi
324,1390	438	2,5	2,1	-	-	~ 1		~ 1		~ 1		2,2	Pi > AtPi
279,0882	460	3,0	2,3	-	-	-		~ 1		~ 1		2,9	Pi > AtPi
301,1734	460	4,5	3,1	~ 1	~ 1	~ 1		~ 1		~ 1		4,6	Pi > AtPi
323,1568	460	3,9	2,3	~ 1	~ 1	~ 1		~ 1		~ 1		3,3	Pi > AtPi
338,2244	492	4,7	2,6	-	-	-		~ 1		4,3	Pi < m	~ 1	Pi < AtPi

Tab. 7. 16: Gewebevergleich der differentiellen Massensignale des Mediums At < m im positiven Modus gemessen.

				Blätte	٢	Wurzeln		Myzel	Eluate At	vs. AtPi	Eluate	em vs. Pi	Eluate	e AtPi vs. Pi
	RT	FC	FC			FC								
[<i>m/z</i>]	[sek]	ESet 1	ESet 2	FC		FC		FC	FC		FC		FC	
277,1012	309	4,3	2,5	~ 1		~ 1		~ 1	~ 1		~ 1	Pi < m	~ 1	Pi > AtPi
213,1575	351	6,7	4,0	-		-		-	-		~ 1	Pi < m	4,5	Pi > AtPi

239,1366	357	3,0	2,4	-	-	-	~ 1	~ 1	Pi < m	2,7	Pi > AtPi
221,1277	359	2,0	2,1	-	-	-	-	~ 1	Pi > m	-	
237,1215	359	2,3	2,9	-	-	-	~ 1	~ 1	Pi > m	~ 1	Pi > AtPi
197,1633	384	2,3	2,2	-	-	-	~ 1	~ 1	Pi < m	~ 1	Pi > AtPi
261,1578	396	3,7	3,9	-	-	-	~ 1	~ 1	Pi < m	5,6	Pi > AtPi
610,3377	402	3,6	2,0	-	-	-	~ 1	~ 1	Pi < m	~ 1	Pi > AtPi
395,2460	410	2,8	2,3	-	-	-	~ 1	~ 1	Pi < m	~ 1	Pi > AtPi
255,2040	433	7,7	2,6	-	-	-	-	~ 1	Pi < m	4,0	Pi > AtPi
577,3466	460	9,6	7,5	-	-	-	~ 1	~ 1	Pi < m	11,5	Pi > AtPi
599,3273	460	7,6	5,4	-	-	-	~ 1	~ 1	Pi < m	8,8	Pi > AtPi
277,1881	460	4,4	3,4	-	-	-	~ 1	~ 1	Pi < m	4,6	Pi > AtPi
345,1728	460	2,6	2,5	~ 1	~ 1	~ 1	~ 1	~ 1	Pi < m	2,7	Pi > AtPi
299,1688	460	2,7	2,6	~ 1	~ 1	~ 1	~ 1	~ 1	Pi < m	3,0	Pi > AtPi
367,1535	460	2,5	2,4	~ 1	~ 1	~ 1	~ 1	~ 1	Pi < m	2,7	Pi > AtPi

7.1.5 Gewebevergleich der differentiellen LC-MS Massensignale des Pi vs. m Mediums

Tab. 7. 17: Gewebevergleich der differentiellen Massensignale des Mediums Pi > m im positiven Modus gemessen.

			Blätter	Wurzeln	Myze	el	Eluate At v	/s. AtPi	Eluate m vs	s. Pi	Eluate AtP	i vs. Pi
	RT	FC										
[<i>m/z</i>]	[sek]	ESet 1	FC	FC	FC		FC		FC		FC	
152,0571	53	2,4	~ 1	~ 1	~ 1	Pi < AtPi	~ 1		11,3	At > m	2,8	Pi < AtPi
306,0971	62	201260,7	~ 1	~ 1	-		2,0	At > AtPi	4537125,5	At > m	11,2	Pi < AtPi
328,0776	66	340765,3	~ 1	~ 1	-		~ 1		271280,9	At > m	~ 1	
490,1294	70	26494,9	-	-	-		-		-		~ 1	
211,1040	76	299547,5	-	-	-		230539,0	At < AtPi	-		~ 1	
298,0954	151	4,7	-	-	-		~ 1		-		6,6	Pi > AtPi
136,0599	151	250026,5	-	-	-		~ 1		-		5,8	Pi > AtPi

346,1152	152	35744,9	-	-		-	-		-	35660,4	Pi > AtPi
162,0528	162	30311,2	~ 1	-		-	31906,9	At < AtPi	-	~ 1	
244,1475	166	39727,7	-	-		-	51468,1	At < AtPi	-	~ 1	
139,0377	167	6,4	-	~ 1		-	-		-	~ 1	
121,0264	167	58785,6	-			-	-		-	~ 1	
391,0982	169	2,2	~ 1	~ 1		-	~ 1		-	~ 1	
246,1637	180	18,2	-			-	-		-	~ 1	
541,1393	182	2,8	-	~ 1		-	-		-	~ 1	
115,0511	182	30133,0	-			-	-		-	30076,0	Pi > AtPi
219,0612	182	42480,8	~ 1	~ 1		-	-		-	~ 1	
133,0634	182	33470,0	-	3,4	At < AtPi	-	~ 1		-	~ 1	
432,2705	203	2,3	-	-		-	~ 1		-	~ 1	
688,3748	218	30392,1	-	-		-	802917,9	At < AtPi	-	14,1	Pi < AtPi
290,0964	223	44914,1	-	-		-	50137,5	At < AtPi	-	1,1	Pi < AtPi
129,0668	225	46595,8	-	~ 1		-	-		-	2,5	Pi > AtPi
147,0767	226	2,6	-	~ 1		-	-		-	2,4	Pi > AtPi
386,1278	230	2,0	~ 1	-		-	6,7	At < AtPi	~ 1	3,8	Pi < AtPi
128,0597	256	131019,6	~ 1	~ 1		-	~ 1		-	4,0	Pi > AtPi
133,0954	256	3,5	~ 1	-		-	-		-	2,3	Pi > AtPi
143,0838	256	747151,3	-	-		-	149089,4	At < AtPi	-	4,4	Pi > AtPi
145,0976	256	165315,1	-	-		-	-		-	3,3	Pi > AtPi
161,0944	256	1302029,1	-	-		-	215176,1	At < AtPi	-	4,9	Pi > AtPi
189,0882	256	555754,8	-	~ 1		-	~ 1		-	5,9	Pi > AtPi
208,0609	256	186995,8	~ 1	-		-	-		-	4,5	Pi > AtPi
211,0744	256	3,2	-	~ 1		-	~ 1		-	3,4	Pi > AtPi
229,0809	255	840633,4	-	~ 1		-	-		-	6,6	Pi > AtPi
247,0917	256	37,8	-	~ 1		-	~ 1		-	7,9	Pi > AtPi
302,1015	255	106183,7	-	63367,3	At < AtPi	-	-		-	4,2	Pi > AtPi
320,1116	255	6,9	-	-		-	-		-	5,7	Pi > AtPi
327,1380	255	48211,5	~ 1	-		-	-		-	3,3	Pi > AtPi

329,1167	255	518810,5	~ 1	2,0	At < AtPi	-	-		-	11,4	Pi > AtPi
338,1226	255	385039,9	~ 1	~ 1		-	~ 1		-	10,4	Pi > AtPi
345,1450	255	61329,6	-	~ 1		-	-		-	2,6	Pi > AtPi
432,1622	255	273574,8	-	~ 1		-	-		-	9,3	Pi > AtPi
473,1728	255	84677,0	~ 1	~ 1		-	-		-	2,6	Pi > AtPi
487,1587	255	63222,6	~ 1	~ 1		-	-		-	2,1	Pi > AtPi
711,2644	255	99580,3	-	-		-	-		-	10,6	Pi > AtPi
421,2890	257	86798,1	-	-		-	109144,6	At < AtPi	-	~ 1	
403,2784	257	94846,2	-	-		-	120323,9	At < AtPi	-	~ 1	
385,2647	258	32143,7	-	-		-	61935,0	At < AtPi	-	~ 1	
315,1730	303	397655,4	-	-		-	~ 1		~ 1	~ 1	
161,0947	331	187034,6	~ 1	~ 1		-	215176,1	At < AtPi	-	2,6	Pi > AtPi
143,0831	331	133549,3	-	-		-	149089,4	At < AtPi	-	3,6	Pi > AtPi
455,2711	384	63276,4	-	-		-	84725,2	At < AtPi	-	~ 1	
455,2693	396	59572,7	-	-		-	-		-	~ 1	
317,1372	408	3,1	-	-		-	3,1	At < AtPi	~ 1	5,6	Pi < AtPi
401,2589	414	47146,3	-	-		-	67307,1	At < AtPi	-	~ 1	

Tab. 7. 18: Gewebevergleich der differentiellen Massensignale des Mediums Pi > m im negativen Modus gemessen.

			Blätter	Wurz	eln	Myzel	Eluate At	vs. AtPi	Eluate	m vs. Pi	Eluate A	tPi vs. Pi
	RT	FC										
[<i>m/z</i>]	[sek]	ESet 1	FC	FC		FC	FC		FC		FC	
384,9364	26	2,2	-	-		-	~ 1		-		~ 1	
316,9519	26	2,2	-	-		-	3,7	At < AtPi	-		~ 1	
267,0454	41	3,9	-	-		-	5,5	At < AtPi	-		~ 1	
926,2679	45	4,0	-	-		-	~ 1		-		~ 1	
266,0967	53	17,4	-	-		-	~ 1		119,1	At > m	3,0	Pi < AtPi
297,0448	167	14845,2	-	-		-	-		-		8,2	Pi > AtPi
137,0325	167	63749,5	-	2,0	At < AtPi	-	~ 1		-		2,4	Pi > AtPi

413,1215	182	21008,8	-	~ 1		-	-		-		21009,0	Pi > AtPi
195,0740	182	88120,6	-	-		-	29958,1	At < AtPi	-		2,9	Pi > AtPi
254,1096	198	11117,7	-	-		-	~ 1		-		~ 1	
285,1377	199	21543,2	-	-		-	40043,8	At < AtPi	-		~ 1	
131,0792	199	42097,3	-	-		-	36,0	At < AtPi	-		2,1	Pi < AtPi
353,1050	222	34534,0	~ 1	-		-	~ 1		-		~ 1	
165,0639	222	97626,5	~ 1	2,0	At < AtPi	-	2,4	At < AtPi	-		~ 1	
147,0537	222	53800,7	-	-		-	~ 1		-		~ 1	
248,0997	223	14053,7	-	-		-	16730,6	At < AtPi	-		~ 1	
266,1101	223	26024,3	-	-		-	36534,8	At < AtPi	-		~ 1	
209,0898	225	98458,6	-	-		-	~ 1		-		4,8	Pi > AtPi
229,0354	243	18817,9	-	-		-	-		-		2,0	Pi > AtPi
225,1106	255	3,1	~ 1	-		-	-		-		2,5	Pi > AtPi
709,2449	256	16637,7	-	-		-	-		-		3,4	Pi > AtPi
715,2628	256	55723,0	-	I		-	-		-		6,4	Pi > AtPi
223,1059	256	2782196,4	~ 1	-		-	265997,1	At < AtPi	-		4,1	Pi > AtPi
469,1848	256	367987,1	~ 1	-		-	22726,3	At < AtPi	-		5,1	Pi > AtPi
159,0894	256	23554,9	-	-		-	-		-		3,2	Pi > AtPi
659,2276	258	77451,4	-	I		-	~ 1		-		3,0	Pi > AtPi
681,2052	258	12393,3	~ 1	~ 1		-	-		-		2,0	Pi > AtPi
309,1077	295	3,5	~ 1	I		-	2,9	At < AtPi	~ 1		~ 1	
329,1665	296	33868,7	-	-		-	~ 1		-		~ 1	
265,1192	323	3,9	-	I		-	~ 1		-		~ 1	
309,1072	323	4,5	~ 1	~ 1		-	~ 1		~ 1		~ 1	
329,2383	335	2,6	-	~ 1		-	~ 1		5,4	At > m	2,1	Pi < AtPi
251,1386	416	2,4	-	-		-	~ 1		-		~ 1	
268,1555	443	2,9	-	~ 1		-	~ 1		~ 1		~ 1	
555,2816	444	3,8	-	~ 1		-	~ 1		~ 1		~ 1	
553,2816	444	3,9	-	~ 1		~ 1	~ 1		~ 1		~ 1	
265.1553	444	3.1	~ 1	~ 1		~ 1	~ 1		~ 1		~ 1	

293,1848	526	3,0 ~ 1	~ 1	~ 1	~ 1	~ 1	2,9	Pi > AtPi
421,2269	539	2,8 -	~ 1	~ 1	~ 1	~ 1	~ 1	

Tab. 7. 19: Gewebevergleich der differentiellen Massensignale des Mediums Pi < m im positiven Modus gemessen.

			Blätter	Wurzeln	Myzel	Eluate At v	s. AtPi	Eluate m vs	. Pi	Eluate AtF	vi vs. Pi
	RT	FC									
[<i>m/z</i>]	[sek]	ESet 1	FC	FC	FC	FC		FC		FC	
235,1161	42	2,0	-	-	-	~ 1		~ 1		~ 1	
254,1564	58	2,2	-	~ 1	-	~ 1		~ 1		~ 1	
195,1101	58	2,2	-	-	-	~ 1		~ 1		~ 1	
320,1676	58	179391,5	-	-	-	84055,0	At > AtPi	~ 1		-	
120,0785	79	20,1	~ 1	-	-	-		3,4	At < m	-	
310,1234	79	5,1	-	~ 1	-	-		~ 1		-	
155,0146	87	2,0	-	-	-	-		3,5	At < m	-	
582,3176	133	504108,4	-	-	-	~ 1		~ 1		-	
304,6327	134	115014,0	-	-	-	-		3,2	At < m	-	
211,1368	137	2,1	-	-	-	~ 1		~ 1		~ 1	
230,1152	141	112786,5	-	-	-	-		~ 1		-	
146,0530	147	25,4	~ 1	~ 1	-	~ 1		~ 1		-	
188,0678	147	5,8	~ 1	~ 1	-	~ 1		~ 1		~ 1	
545,2872	149	274611,9	-	-	-	~ 1		~ 1		-	
320,1867	153	77830,7	-	-	-	-		~ 1		-	
355,7049	153	62363,9	-	-	-	-		~ 1		-	
414,2295	153	158817,3	-	~ 1	~ 1	-		~ 1		-	
244,1257	154	391350,6	-	-	-	-		~ 1		-	
522,7560	156	77022,6	-	-	-	-		77071,5	At < m	-	
233,1251	157	75092,2	-	-	-	~ 1		~ 1		-	
313,6796	157	64637,4	-	-	-	-		~ 1		-	

360,6819	157	31,6	-	-	-	~ 1		~ 1		-	
720,3576	157	91771,0	-	-	-	~ 1		~ 1		-	
425,7177	158	118805,9	-	-	-	~ 1		~ 1		-	
289,1525	158	51635,1	-	-	-	~ 1		~ 1		-	
678,3135	159	257304,5	-	-	-	~ 1		~ 1		-	
646,3270	162	81176,0	-	-	-	-		~ 1		-	
528,2863	164	76941,5	-	-	-	~ 1		~ 1		-	
263,1337	165	2,3	-	-	-	~ 1		~ 1		-	
213,1201	165	11,0	-	~ 1	-	~ 1		~ 1		-	
373,2720	165	78867,3	-	-	-	~ 1		~ 1		-	
459,2248	166	91424,8	-	-	-	-		~ 1		-	
440,2409	169	201807,5	-	-	-	~ 1		~ 1		-	
371,2195	170	110759,0	-	-	~ 1	~ 1		~ 1		-	
261,1198	170	11,5	~ 1	-	~ 1	~ 1		~ 1		-	
578,7856	170	163748,9	-	-	-	-		3,3	At < m	-	
380,1885	171	82452,7	-	-	-	~ 1		~ 1		-	
276,1319	173	3,0	-	-	-	~ 1		~ 1		-	
245,1781	174	51476,6	-	-	-	~ 1		~ 1		-	
399,2266	175	114466,2	-	-	~ 1	-		~ 1		-	
549,2421	175	288525,9	-	~ 1	-	~ 1		~ 1		-	
477,1916	177	281452,6	~ 1	-	-	~ 1		~ 1		-	
455,2100	177	614047,5	-	-	-	~ 1		~ 1		-	
271,1707	177	115357,2	-	-	-	2,7	At > AtPi	~ 1		-	
215,1353	177	423864,9	-	-	-	~ 1		~ 1		-	
449,2001	177	72905,8	-	-	~ 1	~ 1		~ 1		-	
427,2143	177	132181,5	-	-	-	~ 1		~ 1		-	
635,2960	177	152732,5	-	~ 1	-	-		~ 1		-	
217,0964	178	2,4	-	-	-	~ 1		~ 1		-	
295,1576	180	54519,0	-	-	-	~ 1		2,2	At > m	140061,6	Pi < AtPi
383,2199	180	93567,0	-	-	-	~ 1		~ 1		-	

560,2798	181	106652,7	~ 1	-	-	-		~ 1		-	
472,2686	183	186376,7	-	-	-	~ 1		~ 1		-	
446,2478	183	63621,2	-	~ 1	~ 1	-		~ 1		-	
496,7495	185	90262,2	-	-	-	~ 1		~ 1		-	
415,2187	187	390940,6	-	-	-	-		3,5	At < m	-	
714,3614	187	50896,9	-	-	-	-		7,8	At < m	-	
630,3168	187	513116,1	-	~ 1	-	~ 1		~ 1		-	
245,1796	187	172689,1	-	-	-	~ 1		~ 1		14,0	Pi < AtPi
525,2600	190	164331,5	-	-	-	~ 1		~ 1		-	
682,8075	191	55605,9	-	-	-	-		~ 1		-	
837,4349	193	35512,4	-	-	-	~ 1		~ 1		-	
997,5047	193	47968,5	-	-	-	~ 1		~ 1		-	
305,1529	194	58864,5	~ 1	~ 1	~ 1	~ 1		~ 1		-	
321,6220	193	35746,3	-	-	-	-		35748,0	At < m	-	
455,2108	194	220323,3	-	-	-	~ 1		~ 1		-	
475,2462	194	131016,5	-	-	-	-		~ 1		-	
553,3267	193	466104,7	-	-	-	~ 1		~ 1		-	
597,2815	194	275567,8	-	-	-	~ 1		~ 1		-	
604,2923	193	1112388,2	-	-	-	~ 1		3,4	At < m	-	
619,2712	194	100858,1	~ 1	-	-	~ 1		~ 1		-	
738,3642	194	45536,9	-	-	-	~ 1		~ 1		-	
169,0734	198	3,3	-	-	-	4,1	At > AtPi	~ 1		~ 1	
197,1241	199	3,6	-	-	-	~ 1		~ 1		-	
243,1301	199	347615,5	-	-	-	~ 1		~ 1		-	
328,2120	198	49401,4	-	-	-	~ 1		~ 1		-	
447,2434	199	62756,4	-	-	-	-		~ 1		-	
488,2448	198	14,9	-	-	-	-		~ 1		-	
628,3171	199	153163,6	-	-	-	~ 1		153171,3	At < m	-	
714,8475	198	81634,8	-	-	-	~ 1		~ 1		-	
725,8376	198	61131,1	-	-	-	~ 1		~ 1		-	

351,1953	202	138901,6	-	~ 1	-	~ 1	~ 1		-	
397,2019	202	229999,3	-	-	-	~ 1	~ 1		-	
419,1867	202	196539,6	-	~ 1	-	~ 1	~ 1		-	
560,2663	203	226124,9	-	-	-	~ 1	~ 1		-	
652,3917	208	139122,0	-	-	-	~ 1	~ 1		-	
607,3633	209	61473,9	-	-	-	~ 1	~ 1		-	
373,2336	211	40095,8	-	-	~ 1	~ 1	~ 1		-	
635,3336	212	1013209,0	-	-	-	~ 1	~ 1		-	
657,3158	212	543962,6	-	-	-	~ 1	~ 1		-	
337,1423	212	356444,9	-	~ 1	-	~ 1	~ 1		-	
658,3167	212	244766,3	-	-	-	~ 1	~ 1		-	
489,2600	213	89660,2	-	-	~ 1	-	~ 1		-	
514,2802	214	232944,7	-	-	-	~ 1	~ 1		-	
669,3784	214	63407,7	-	-	-	~ 1	5,9	At < m	-	
229,1459	214	4,5	~ 1	~ 1	-	~ 1	~ 1		56333,1	Pi > AtPi
277,1150	215	123684,7	-	-	-	~ 1	~ 1		-	
425,2662	216	133982,1	-	-	-	~ 1	~ 1		-	
553,3280	216	562063,6	-	-	-	~ 1	~ 1		-	
684,3818	218	152513,7	-	-	-	~ 1	~ 1		-	
659,3282	218	186684,2	-	-	-	~ 1	~ 1		-	
342,2273	218	37869,1	-	-	-	~ 1	2,0	At > m	-	
755,3880	222	288316,0	-	-	-	~ 1	~ 1		-	
397,1697	223	106946,1	-	~ 1	-	~ 1	~ 1		-	
668,3513	225	129442,2	-	-	-	~ 1	~ 1		-	
326,2000	229	572109,0	-	-	-	~ 1	~ 1		-	
635,3313	230	299547,8	-	-	-	-	 -		-	
559,3351	232	130382,5	-	-	-	~ 1	 ~ 1		-	
439,2857	236	1306925,3	-	-	-	~ 1	~ 1		-	
324,2202	236	116066,6	-	-	-	~ 1	~ 1		-	
627,3408	246	6,9	-	-	-	~ 1	~ 1		-	

530,2885	254	58999,5	-	-	-	~ 1	~ 1		-	
435,2090	254	2,0	~ 1	-	~ 1	~ 1	~ 1		~ 1	
338,2241	491	4,3	-	-	~ 1	~ 1	4,7	At < m	~ 1	
399,1760	509	2,4	-	~ 1	~ 1	~ 1	~ 1		-	

Tab. 7. 20: Gewebevergleich der differentiellen Massensignale des Mediums Pi < m im negativen Modus gemessen.

		Blätter	Wurzeln	Myzel	Eluate At vs. AtPi	Eluate m vs. Pi	Eluate AtPi vs. Pi	
	RT	FC						
[<i>m/z</i>]	[sek]	ESet 1	FC	FC	FC	FC	FC	FC
267,0814	49	3,1	-	-	-	~ 1	2,5 At > m	2,8 Pi < AtPi
580,3053	133	50369,4	-	-	-	~ 1	~ 1	-
543,2759	149	36614,6	-	-	-	~ 1	~ 1	-
412,2225	154	38150,2	-	-	-	~ 1	~ 1	-
607,2099	156	10382,9	-	-	-	-	~ 1	-
291,1055	157	2,9	-	-	-	~ 1	~ 1	-
718,3438	157	21940,3	-	-	-	~ 1	~ 1	-
328,1572	164	10692,8	-	-	-	-	~ 1	-
371,2699	165	10621,4	-	-	-	~ 1	~ 1	-
453,2004	177	300038,1	~ 1	-	-	~ 1	~ 1	-
475,1812	177	42487,2	~ 1	-	-	~ 1	~ 1	-
381,1833	177	18796,9	~ 1	~ 1	-	~ 1	9,6 At > m	150142,1 Pi < AtPi
425,2053	177	35264,5	~ 1	~ 1	-	~ 1	~ 1	-
470,2615	183	11759,6	-	-	-	-	~ 1	-
628,3036	187	40659,0	-	-	-	~ 1	~ 1	-
523,2514	190	57356,9	-	-	-	~ 1	~ 1	-
602,2799	193	72683,8	-	-	-	~ 1	4,0 At < m	-
551,3167	194	30317,3	-	-	-	~ 1	~ 1	-
453,2011	194	75003,6	~ 1	-	-	~ 1	~ 1	-

595,2698	194	87892,2	-	-	-		~ 1		~ 1	-	
617,2526	194	14950,5	-	-	-		~ 1		~ 1	-	
241,1277	199	233597,3	-	-	-		~ 1		~ 1	-	
197,1383	199	33206,7	-	-	-		~ 1		~ 1	-	
417,1785	202	11925,7	-	-	-		-		~ 1	-	
395,1978	202	135626,7	-	~ 1	-		2,1	At > AtPi	~ 1	-	
338,1773	205	14015,5	-	-	-		-		~ 1	-	
439,2217	206	14108,2	-	-	-		~ 1		~ 1	-	
551,2798	210	16798,2	-	-	-		~ 1		~ 1	-	
633,3217	212	301495,9	~ 1	-	-		~ 1		~ 1	-	
512,2718	214	45383,5	-	-	-		~ 1		~ 1	-	
275,1114	215	7,1	-	~ 1	-		~ 1		~ 1	-	
551,3167	216	39050,3	-	-	-		~ 1		~ 1	-	
682,3713	217	12957,3	-	-	-		~ 1		~ 1	-	
753,3714	222	45139,9	-	-	-		~ 1		~ 1	-	
666,3402	225	14010,3	-	-	-		~ 1		~ 1	-	
557,3265	232	13439,5	-	-	-		~ 1		~ 1	-	
354,2074	250	18247,7	-	-	-		~ 1		~ 1	-	
187,1058	256	2,1	-	-	-		~ 1		~ 1	-	
377,1632	489	2,5	-	-	-		~ 1		~ 1	-	
309,1795	489	2,9	~ 1	~ 1	~ 1		~ 1		~ 1	~ 1	
353,2041	510	2,5	~ 1	~ 1	~ 1		~ 1		~ 1	~ 1	
397,2284	523	2,5	~ 1	~ 1	2,0	Pi > AtPi	~ 1		~ 1	~ 1	
441,2528	533	2,2	~ 1	~ 1	~ 1		~ 1		~ 1	~ 1	
485,2764	539	2,3	-	-	~ 1		~ 1		~ 1	~ 1	
529,2997	544	2,9	-	-	-		~ 1		~ 1	-	

7.1.6 Gewebevergleich der differentiellen LC-MS Massensignale des Pi vs. AtPi Mediums

		DIVIG			N 4				N (Electro Di con con		
RT FC		Blatter	vvurzein	INIYZEI	IVIYZEI		at vs. Atpi	Eluate A	At VS. M	Eluate Pl vs. m		
[RI	FC	50	50	50		F 0		50		50	
[<i>m</i> / <i>z</i>]	[sek]	ESet 1	FC	FC	FC	Г	FC		FC		FC	
345,1170	26	2,3	-	-	-		~ 1		~ 1		~ 1	
265,1096	26	2,5	~ 1	-	~ 1		2,9	At > AtPi	~ 1		~ 1	
299,1135	26	2,2	~ 1	-	~ 1		2,4	At > AtPi	~ 1		~ 1	
219,1220	26	2,1	-	-	-		2,3	At > AtPi	~ 1		~ 1	
281,1015	26	2,0	-	-	-		2,0	At > AtPi	~ 1		~ 1	
183,0669	26	2,2	-	-	-		2,5	At > AtPi	~ 1		~ 1	
122,0690	26	2,5	-	-	~ 1		2,5	At > AtPi	~ 1		~ 1	
381,0729	29	3,6	~ 1	~ 1	~ 1		~ 1		~ 1		~ 1	
365,1012	29	2,2	-	~ 1	2,5	Pi > AtPi	2,1	At > AtPi	~ 1		~ 1	
707,2121	31	3,8	-	-	~ 1		~ 1		~ 1		~ 1	
362,0905	32	2,9	-	~ 1	~ 1		6,6	At > AtPi	~ 1		~ 1	
193,0442	70	2,0	-	-	-		1,0	At > AtPi	2,3	At < m	~ 1	
285,0733	85	2,1	-	-	-		2,1	At > AtPi	~ 1		~ 1	
308,1126	86	2,3	-	-	-		~ 1		~ 1		~ 1	
136,0600	151	5,8	-	-	-		~ 1		-		250026,5	Pi > m
297,0987	151	2,7	-	-	-		4,3	At > AtPi	~ 1		~ 1	
346,1152	152	35660,4	-	-	-		-		-		35744,9	Pi > m
281,1031	152	2,7	~ 1	~ 1	-		3,9	At > AtPi	~ 1		~ 1	
115,0511	182	30076,0	-	-	-		-		-		30133,0	Pi > m
433,1832	214	2,7	-	-	-		2,3	At > AtPi	~ 1		~ 1	
229,1397	216	56333,1	-	-	-		~ 1		~ 1		4,5	Pi < m
427,1059	218	3,1	~ 1	-	-		~ 1		~ 1		~ 1	
129,0668	226	2,5	-	~ 1	-		~ 1		-		46595,8	Pi > m

Tab. 7. 21: Gewebevergleich der differentiellen Massensignale des Mediums Pi > AtPi im positiven Modus gemessen.
147,0766	226	2,4	-	~ [·]	1	-	-		-		2,6	Pi > m
241,0665	251	2,8	-	~ '	1	-	~ 1		2,5	At < m	~ 1	
128,0596	256	4,0	-	-		-	~ 1		-		131019,6	Pi > m
133,0953	256	2,3	~ 1	-		-	-		-		3,5	Pi > m
143,0835	256	4,4	-	-		-	149089,4	At < AtPi	-		747151,3	Pi > m
145,0977	256	3,3	-	-		-	-		-		165315,1	Pi > m
161,0936	256	4,9	-	-		-	215176,1	At < AtPi	-		1302029,1	Pi > m
189,0882	256	5,9	-	-		-	~ 1		-		555754,8	Pi > m
208,0609	256	4,5	~ 1	-		-	-		-		186995,8	Pi > m
211,0748	256	3,4	-	-		-	~ 1		-		3,2	Pi > m
229,0811	256	6,6	-	-		-	-		-		840633,4	Pi > m
247,0923	255	7,9	-	-		-	~ 1		-		37,8	Pi > m
302,1017	255	4,2	-	-		-	-		-		106183,7	Pi > m
320,1117	255	5,7	-	-		-	-		-		6,9	Pi > m
327,1388	255	3,3	~ 1	-		-	-		-		48211,5	Pi > m
329,1170	255	11,4	-	-		-	-		-		518810,5	Pi > m
338,1228	255	10,4	~ 1	~ '	1	-	~ 1		-		385039,9	Pi > m
345,1449	255	2,6	-	~ '	1	-	-		-		61329,6	Pi > m
432,1617	255	9,3	-	-		-	-		-		273574,8	Pi > m
473,1727	255	2,6	~ 1	~ '	1	-	-		-		84677,0	Pi > m
487,1590	255	2,1	-	-		-	-		-		63222,6	Pi > m
711,2646	255	10,6	-	-		-	-		-		99580,3	Pi > m
240,0995	270	3,1	-	~ `	1	-	~ 1		2,1	At < m	~ 1	
256,0945	270	2,2	-	-		-	~ 1		~ 1		~ 1	
250,0821	280	53584,0	-	-		-	~ 1		-		~ 1	
228,0993	280	4,2	-	-		-	~ 1		2,9	At < m	~ 1	
161,0950	331	2,6	-	-		-	-		-		187034,6	Pi > m
143,0832	331	3,6	-	-		-	-		-		133549,3	Pi > m
288,2884	389	4,1	~ 1	~ '	1	~ 1	~ 1		~ 1		~ 1	
295,1857	402	2,1	-	-		-	~ 1		2,1	At < m	~ 1	

314,1582	402	2,9	-	-	-	~ 1	3,1	At < m	~ 1
317,1671	402	2,6	~ 1	~ 1	~ 1	~ 1	~ 1		~ 1
279,1873	433	2,2	-	-	-	~ 1	4,7	At < m	~ 1
324,1389	437	2,2	-	-	~ 1	~ 1	2,5	At < m	~ 1
611,3045	460	47581,6	-	-	-	-	56830,6	At < m	~ 1
539,2664	460	2,3	-	-	-	-	2,4	At < m	~ 1
437,2532	460	52816,4	-	-	-	-	54847,7	At < m	~ 1
595,3255	460	2,7	-	-	-	~ 1	2,5	At < m	~ 1
301,1733	460	4,6	~ 1	~ 1	~ 1	~ 1	4,5	At < m	~ 1
323,1566	460	3,3	~ 1	~ 1	~ 1	~ 1	3,9	At < m	~ 1
279,0892	460	2,9	-	-	-	-	3,0	At < m	~ 1
259,0916	460	45343,0	-	-	-	-	4,4	At < m	~ 1
249,1773	461	64473,9	-	~ 1	~ 1	~ 1	2,2	At < m	~ 1

Tab. 7. 22: Gewebevergleich der differentiellen Massensignale des Mediums Pi > AtPi im negativen Modus gemessen.

			Blätter	Wurze	In	Myzel	Eluate At	vs. AtPi	Eluate At	vs. m	Eluate Pi vs	s. m
	RT	FC										
[<i>m/z</i>]	[sek]	ESet 1	FC	FC		FC	FC		FC		FC	
341,1128	30	2,2	-	-		~ 1	4,6	At > AtPi	~ 1		~ 1	
377,0880	30	4,4	-	-		~ 1	3,6	At > AtPi	~ 1		~ 1	
404,1062	31	2,8	~ 1	2,5	At < AtPi	~ 1	3,3	At > AtPi	~ 1		~ 1	
469,0200	32	3,9	-	-		-	3,7	At > AtPi	~ 1		~ 1	
235,1270	44	2,3	~ 1	~ 1		-	2,1	At > AtPi	~ 1		~ 1	
297,0449	167	8,2	-	-		-	-		-		14845,2	Pi > m
137,0326	167	2,4	-	2,0	At < AtPi	-	~ 1		-		63749,5	Pi > m
413,1215	182	21009,0	-	~ 1		-	-		-		21008,8	Pi > m
195,0742	182	2,9	-	-		-	29958,1	At < AtPi	-		88120,6	Pi > m
209,0896	225	4,8	-	-		-	~ 1		-		98458,6	Pi > m
229,0355	243	2,0	-	-		-	-		-		18817,9	Pi > m

709,2449	256	3,4 -		-	-	-		-		16637,7	Pi > m
715,2624	256	6,4 -		-	-	-		-		55723,0	Pi > m
469,1847	256	5,1 ~ 1	1	-	-	22726,3	At < AtPi	-		367987,1	Pi > m
223,1060	256	4,1 ~ 1	1	-	-	265997,1	At < AtPi	-		2782196,4	Pi > m
159,0895	256	3,2 -		-	-	-		-		23554,9	Pi > m
659,2270	258	3,0 -		-	-	~ 1		-		77451,4	Pi > m
332,9754	313	5,0 -		-	-	~ 1		~ 1		~ 1	
156,9959	313	2,3 -		-	-	-		~ 1		~ 1	
154,9979	313	2,9 -		~ 1	-	~ 1		~ 1		~ 1	
321,1172	328	14186,6 -		-	-	~ 1		15200,6	At < m	~ 1	
149,0682	328	12221,0 ~ ⁻	1	-	-	-		-		~ 1	
213,1565	351	4,5 -		-	-	-		6,7	At < m	~ 1	
239,1357	357	2,7 -		-	-	~ 1		3,0	At < m	~ 1	
309,1400	384	3,7 -		-	-	-		3,5	At < m	~ 1	
261,1569	396	5,6 -		-	-	~ 1		3,7	At < m	~ 1	
587,3522	402	3,2 -		-	-	-		3,6	At < m	~ 1	
255,1992	433	4,0 -		-	-	-		7,7	At < m	~ 1	
577,3462	460	11,5 -		-	-	~ 1		9,6	At < m	~ 1	
599,3272	460	8,8 -		-	-	~ 1		7,6	At < m	~ 1	
233,1973	460	3,6 -		-	-	-		3,6	At < m	~ 1	
609,3340	460	10805,8 -		-	-	-		8,2	At < m	~ 1	
277,1880	460	4,6 ~ 1	1	~ 1	~ 1	~ 1		4,4	At < m	~ 1	
346,1757	460	2,6 -		-	-	~ 1		2,7	At < m	~ 1	
299,1688	460	3,0 ~ 1	1	~ 1	~ 1	~ 1		2,7	At < m	~ 1	
345,1723	460	2,7 ~ 1	1	~ 1	~ 1	~ 1		2,6	At < m	~ 1	
367,1535	460	2,7 ~ 1	1	~ 1	~ 1	~ 1		2,5	At < m	~ 1	
435,1371	460	2,1 -		-	-	-		-		~ 1	
261,1576	461	5,5 -		-	-	-		4,6	At < m	~ 1	
275,1717	482	10037,2 -		-	-	~ 1		2,1	At < m	~ 1	
293,1846	526	2,9 ~ 1	1	~ 1	~ 1	2,4	At > AtPi	~ 1		3,0	Pi > m

Tab. 7. 23: Gewebevergleich der differentiellen Massensignale des Mediums Pi < AtPi im positiven Modus gemessen.

			Blätter	· Wurzelr	1	Myzel	Eluate At vs.	AtPi	Eluate At vs	. m	Eluate Pi vs	. m
	RT	FC										
[<i>m/z</i>]	[sek]	ESet 1	FC	FC		FC	FC		FC		FC	•
203,0497	29	2,1	-	-		~ 1	3,9	At < AtPi	~ 1		~ 1	
136,0606	47	4,2	~ 1	~ 1		-	3,6	At > AtPi	4,7	At > m	~ 1	
252,1055	48	5,9	-	-		-	~ 1		553493,2	At > m	-	
268,1025	53	3,3	~ 1	-		-	~ 1		4,7	At > m	~ 1	
152,0571	53	2,8	~ 1	~ 1		~ 1	~ 1		11,3	At > m	2,4	Pi > m
306,0968	61	11,2	~ 1	~ 1		-	2,0	At > AtPi	4537125,5	At > m	201260,7	Pi > m
368,0982	61	42807,7	-	~ 1		-	2,1	At > AtPi	93208,4	At > m	-	
386,1065	61	2,3	-	~ 1		-	~ 1		68507,3	At > m	-	
347,0734	61	2,0	~ 1	~ 1		-	~ 1		169353,7	At > m	-	
206,0467	61	2,5	-	~ 1		-	~ 1		95499,2	At > m	-	
354,1189	62	2,1	-	-		-	~ 1		-		-	
381,2045	68	2,5	-	-		-	~ 1		~ 1		~ 1	
168,0426	69	114241,0	-	-		-	~ 1		131064,2	At > m	-	
359,2236	74	3,9	-	-		-	3,6	At < AtPi	-		-	
277,0888	76	7,0	-	-		-	~ 1		-		-	
268,0784	78	2,3	-	~ 1		-	~ 1		-		-	
150,0741	85	59371,5	-	-		-	~ 1		-		-	
202,1039	99	60866,7	-	-		-	50636,7	At < AtPi	-		-	
220,1141	99	145758,4	-	-		-	95317,4	At < AtPi	-		-	
242,0965	99	14,1	-	~ 1		-	220410,4	At < AtPi	-		-	
192,0742	100	51925,4	-	-		-	~ 1		68695,1	At > m	-	
315,0918	103	2,6	-	-		-	~ 1		-		~ 1	
342,1974	115	2,2	-	-		-	208845,7	At < AtPi	-		-	
192,1377	137	5,7	~ 1	-		-	~ 1		134100,9	At > m	-	
302,1921	139	3,2	-	-		-	~ 1		3,8	At > m	~ 1	

392,0965	144	594675,1	~ 1	~ 1		-	~ 1		493094,1	At > m	-	
306,0974	144	50113,2	~ 1	~ 1		-	~ 1		41824,2	At > m	-	
195,0637	144	42361,9	-	-		-	~ 1		-		-	
275,1067	151	2,2	-	-		-	2,1	At < AtPi	~ 1		-	
224,0754	153	54142,3	-	-		-	~ 1		-		-	
256,1034	156	2,1	~ 1	~ 1		-	3,3	At > AtPi	101246,2	At > m	-	
259,1116	156	5,3	~ 1	2,3	At > AtPi	-	~ 1		10,3	At > m	~ 1	
302,1900	160	2,1	-	-		-	~ 1		3,8	At > m	~ 1	
365,1182	166	57952,4	~ 1	~ 1		-	~ 1		59035,6	At > m	-	
287,1065	174	134681,5	~ 1	~ 1		-	~ 1		149534,3	At > m	-	
212,1248	174	80829,8	~ 1	~ 1		-	~ 1		98416,1	At > m	-	
229,1488	174	170584,5	~ 1	~ 1		-	~ 1		183106,1	At > m	-	
450,2101	174	2,6	-	-		-	~ 1		-		-	
147,0530	175	2,2	-	-		-	~ 1		-		-	
136.0724	180	2,2	-	-		-	~ 1		-		-	
		,										
295,1591	180	140061,6	-	-		-	~ 1		2,2	At > m	54519,0	Pi < m
295,1591 261,0815	180 180	140061,6 3,2	-	-		-	~ 1 5,3	At < AtPi	2,2 -	At > m	54519,0 ~ 1	Pi < m
295,1591 261,0815 319,0866	180 180 181	140061,6 3,2 3,0	- - -	- - -		- - -	~ 1 5,3 5,1	At < AtPi At < AtPi	2,2 - -	At > m	54519,0 ~ 1 ~ 1	Pi < m
295,1591 261,0815 319,0866 405,1685	180 180 181 181	140061,6 3,2 3,0 229663,1	- - - ~ 1	- - - ~ 1		- - - -	~ 1 5,3 5,1 ~ 1	At < AtPi At < AtPi	2,2 - - 180351,3	At > m At > m	54519,0 ~ 1 ~ 1 -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699	180 180 181 181 181	140061,6 3,2 3,0 229663,1 43716,4	- - - ~1 ~1	- - - ~ 1 2,4	At < AtPi	- - - -	~ 1 5,3 5,1 ~ 1 ~ 1	At < AtPi At < AtPi	2,2 - - 180351,3 53110,3	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311	180 180 181 181 181 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8	- - ~ 1 ~ 1 -	- - - ~ 1 2,4 -	At < AtPi	- - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0	At < AtPi At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906	180 180 181 181 181 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3		- - - ~ 1 2,4 - -	At < AtPi	- - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1	At < AtPi At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158	180 180 181 181 181 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7	- - ~ 1 ~ 1 - - -	- - - ~ 1 2,4 - - -	At < AtPi	- - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6	At < AtPi At < AtPi At < AtPi At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121	180 180 181 181 181 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4	- - ~ 1 ~ 1 - - - - - -	- - - ~ 1 2,4 - - - - - - -	At < AtPi	- - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4	At < AtPi At < AtPi At < AtPi At < AtPi At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662	180 180 181 181 181 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1		- - - ~ 1 2,4 - - - - - - - -	At < AtPi	- - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0	At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - - - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662 573,2737	180 180 181 181 181 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1 13,3	- - ~ 1 ~ 1 - - - - - - - - - - - -	- - - - - 2,4 - - - - - - - - - - - - - - - - -	At < AtPi	- - - - - - - - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0 17,6	At < AtPi At < AtPi	2,2 - - 180351,3 53110,3 - - - - - - - - - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662 573,2737 307,0772	180 181 181 181 188 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1 13,3 227257,5		- - - - - - - - - - - - - - - - - 10,8	At < AtPi	- - - - - - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0 17,6 ~ 1	At < AtPi At < AtPi	2,2 - 180351,3 53110,3 - - - - - - - - - - - - -	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662 573,2737 307,0772 206,5626	180 180 181 181 181 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1 13,3 227257,5 102899,1		- - - - - 2,4 - - - - - - - - - - - - 10,8 ~ 1	At < AtPi	- - - - - - - - - - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0 17,6 ~ 1 ~ 1 ~ 1	At < AtPi At < AtPi	2,2 - 180351,3 53110,3 - - - - - - - - - 158279,9	At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - - - - - - - - - -	Pi < m
295,1591 261,0815 319,0866 405,1685 238,0699 534,9311 326,1906 370,7158 552,3121 670,3662 573,2737 307,0772 206,5626 411,1175	180 181 181 181 188 188 188 188 188 188	140061,6 3,2 3,0 229663,1 43716,4 159243,8 3,3 3,7 2,4 72480,1 13,3 227257,5 102899,1 500736,1		- - - - - 2,4 - - - - - - - - - - 10,8 ~ 1 ~ 1 ~ 1	At < AtPi	- - - - - - - - - - - - - - - - - - -	~ 1 5,3 5,1 ~ 1 ~ 1 210393,0 ~ 1 102229,6 106719,4 149576,0 17,6 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1	At < AtPi	2,2 - - 180351,3 53110,3 - - - - - - - 158279,9 793002,5	At > m At > m At > m At > m At > m At > m At > m	54519,0 ~ 1 ~ 1 - - - - - - - - - - - - -	Pi < m

441,1299	191	41384,7	-	-		-	~ 1		45149,9	At > m	-	
247,1015	192	2,8	-	-		-	4,5	At < AtPi	-		~ 1	
163,0723	192	45086,8	~ 1	~ 1		-	~ 1		41630,8	At > m	-	
263,1311	192	4,0	-	-		-	~ 1		-		2,5	Pi < m
406,1571	193	54122,4	~ 1	~ 1		-	~ 1		-		-	
718,3530	194	86084,0	-	-		-	177436,3	At < AtPi	-		-	
249,0732	195	75058,2	~ 1	5,2	At < AtPi	-	~ 1		-		-	
390,1156	195	102978,8	-	5,6	At < AtPi		4,9	At < AtPi	-		-	
268,0797	196	260389,4	-	~ 1		-	~ 1		279349,7	At > m	-	
245,1797	196	14,0	-	-		-	5,0	At < AtPi	~ 1		172689,1	Pi < m
582,2869	196	116828,0	-	-		-	152118,9	At < AtPi	-		-	
620,6314	197	190759,9	-	-		-	330307,8	At < AtPi	-		-	
130,0625	203	140120,5	-	~ 1		-	~ 1		164972,1	At > m	-	
148,0717	203	40842,0	-	~ 1		-	~ 1		48986,4	At > m	-	
160,0733	203	183955,8	-	~ 1		-	~ 1		251636,6	At > m	-	
231,0482	205	109646,8	~ 1	~ 1		-	~ 1		84444,3	At > m	-	
249,0607	204	56009,3	~ 1	~ 1		-	~ 1		-		-	
275,0809	205	53076,0	~ 1	-		-	~ 1		44767,0	At > m	-	
277,1097	204	2,3	-	-		-	3,8	At < AtPi	-		-	
301,1230	205	2,7	~ 1	~ 1		-	~ 1		79729,2	At > m	-	
305,1146	205	2,7	~ 1	~ 1		-	~ 1		90258,3	At > m	-	
340,1545	205	76210,3	~ 1	~ 1		-	~ 1		~ 1		-	
342,1029	205	95126,0	~ 1	~ 1		-	~ 1		71262,9	At > m	-	
345,1122	205	54,0	~ 1	~ 1		-	~ 1		1729152,0	At > m	-	
402,1274	203	3,1	~ 1	-		-	~ 1		-		-	
479,1007	204	49691,0	~ 1	~ 1		-	~ 1		-		-	
498,0917	203	40409,0	~ 1	~ 1		-	~ 1		31040,1	At > m	-	
503,1650	204	70924,8	-	~ 1		-	~ 1		-		-	
513,2899	205	5,0	-	-		-	124415,0	At < AtPi	-		-	
527,3084	202	7,4	-	-		-	245397,3	At < AtPi	-		-	

667,2346	205	44644,0	~ 1	~ 1		-	-	~ 1		-		-	
683,2030	205	51925,0	~ 1	~ 1		-	-	~ 1		-		-	
437,1041	208	87036,6	~ 1	~ 1		-	-	~ 1		-		-	
592,1629	209	78383,8	-	~ 1		-	-	~ 1		118192,8	At > m	-	
444,1372	210	2,1	-	-		-	-	~ 1		-		-	
655,3634	211	47942,2	-	-		-	9	90374,5	At < AtPi	-		-	
358,1692	211	2,5	-	-		-	-	~ 1		-		~ 1	
400,1066	212	42297,9	~ 1	~ 1		-	-	~ 1		44726,9	At > m	-	
418,1343	215	53969,0	-	2,2	At < AtPi	-	-	~ 1		-		-	
120,0781	215	76552,8	-	-		-	-	~ 1		~ 1		-	
491,1686	216	236437,3	~ 1	~ 1		-	-	~ 1		191636,7	At > m	-	
279,1638	216	305610,7	-	-		-	-	~ 1		2,1	At > m	-	
595,1623	216	39163,7	~ 1	~ 1		-	-	~ 1		-		-	
215,1068	217	66647,8	-	-		-	-	~ 1		-		-	
275,0952	217	2,0	-	-		-	-	~ 1		-		-	
437,1397	217	2,7	-	~ 1		-	-	~ 1		-		-	
688,3773	218	14,1	-	-		-	-	~ 1		-		30392,1	Pi > m
347,1608	218	7,0	~ 1	~ 1		-	-	~ 1		5,5	At > m	-	
372,1524	219	2,8	-	-		-	Ę	5,7	At < AtPi	-		-	
379,0979	223	77069,0	~ 1	~ 1		-	-	~ 1		65549,4	At > m	-	
340,1601	224	3,0	-	-		~ 1	-	~ 1		~ 1		~ 1	
313,1491	227	2,7	-	-		-		2,4	At < AtPi	~ 1		-	
210,0902	228	83204,6	~ 1	~ 1		-	-	~ 1		70669,6	At > m	-	
393,0765	229	2,6	~ 1	27,0	At < AtPi	-	3	3,1	At < AtPi	-		-	
433,1122	230	63362,5	~ 1	-		-	-	~ 1		63173,1	At > m	-	
386,1278	230	3,8	~ 1	~ 1		-	6	6,7	At < AtPi	~ 1		2,0	Pi > m
460,1198	230	184858,2	-	~ 1		-	-	~ 1		358245,6	At > m	-	
180,0642	230	27752,6	-	-		-	-	~ 1		-		-	
399,1379	232	142174,3	-	-		-	-	~ 1		210335,1	At > m	-	
441,1322	233	400120,0	~ 1	~ 1		-	-	~ 1		571410,0	At > m	-	

461,2382	234	2,3	-	-		~ 1	3,9	At < AtPi	-		-	
467,1863	241	132613,9	-	~ 1		-	~ 1		135532,8	At > m	-	
387,1226	248	55017,2	~ 1	~ 1		-	~ 1		85268,4	At > m	-	
511,1759	249	3,0	-	-		-	5,0	At < AtPi	-		-	
212,1037	251	3,9	-	-		-	~ 1		168501,2	At > m	-	
243,0847	253	2,6	-	-		-	~ 1		-		~ 1	
390,1532	253	10,0	-	-		-	~ 1		640370,2	At > m	-	
410,1237	255	1037242,6	-	-		-	4,1	At < AtPi	277973,4	At > m	-	
328,1577	255	2,1	-	-		-	~ 1		~ 1		~ 1	
393,1616	255	45722,1	~ 1	-		-	~ 1		-		-	
524,1745	256	39960,1	-	~ 1		-	~ 1		89503,9	At > m	-	
268,0792	258	261494,0	-	~ 1		-	~ 1		294909,8	At > m	-	
390,1166	259	132530,6	-	-		-	3,5	At < AtPi	-		-	
250,0685	259	108871,3	-	~ 1		-	3,6	At < AtPi	32619,1	At > m	-	
138,1251	264	34433,4	~ 1	~ 1		-	~ 1		-		-	
224,1055	264	227998,8	~ 1	~ 1		-	~ 1		189873,3	At > m	-	
202,1235	264	133086,9	~ 1	~ 1		-	~ 1		94287,2	At > m	-	
124,0372	268	39789,9	-	-		-	4,3	At < AtPi	-		-	
407,1282	276	181303,6	~ 1	~ 1		-	~ 1		184671,6	At > m	-	
504,2332	278	30667,6	~ 1	3,2	At > AtPi	-	~ 1		38906,9	At > m	-	
453,2098	279	2,0	-	-		-	~ 1		-		~ 1	
342,1383	280	3,4	-	-		-	3,5	At < AtPi	-		~ 1	
288,1026	285	53660,7	-	~ 1		-	~ 1		-		-	
607,2110	285	28261,6	-	-		-	~ 1		64415,7	At > m	-	
329,1526	286	60171,5	~ 1	-		-	~ 1		92058,4	At > m	-	
455,1269	298	65446,9	-	-		-	~ 1		-		-	
333,1279	299	29,3	-	-		-	~ 1		-		-	
545,1576	318	395215,7	-	11,3	At < AtPi	-	~ 1		243803,6	At > m	-	
267,0841	318	98860,3	-	~ 1		-	~ 1		59114,4	At > m	-	
401,1775	324	54397,5	~ 1	~ 1		-	~ 1		67071,0	At > m	-	

411,1004	336	279797,3	-	-	-		~ 1		-		-	
256,0772	363	168485,4	~ 1	~ 1	-		~ 1		-		-	
463,2278	378	157790,9	-	~ 1	-		~ 1		251105,8	At > m	-	
391,2068	383	2,3	-	-	-		~ 1		3,3	At > m	-	
149,0213	408	4,7	-	-	-		~ 1		-		-	
317,1356	408	5,6	-	-	~ 1		3,1	At < AtPi	~ 1		3,1	Pi > m
497,2813	422	230747,6	~ 1	-	-		1236399,3	At < AtPi	-		-	
353,2054	533	3,8	-	-	-		2,0	At < AtPi	-		~ 1	
327,2336	534	2,6	~ 1	~ 1	~ 1		~ 1		~ 1		~ 1	
341,2603	570	2,8	~ 1	~ 1	~ 1		~ 1		~ 1		~ 1	
425,2127	574	7,1	~ 1	~ 1	~ 1		~ 1		-		3,1	Pi < m
329,2388	588	2,0	-	~ 1	-		~ 1		~ 1		~ 1	

Tab. 7. 24: Gewebevergleich der differentiellen Massensignale des Mediums Pi < AtPi im negativen Modus gemessen.

			Blätter	Wurzeln	Myzel	Eluate At vs	s. AtPi	Eluate At vs	. m	Eluate P	i vs. m
	RT	FC									
[<i>m/z</i>]	[sek]	ESet 1	FC	FC	FC	FC		FC		FC	
266,0967	53	3,0	-	-	-	~ 1		119,1	At > m	17,4	Pi > m
334,0813	53	2,3	-	-	-	~ 1		48068,6	At > m	-	
555,1371	54	9,2	-	-	-	~ 1		35953,5	At > m	-	
215,0638	56	7,9	-	-	-	~ 1		-		-	
295,0914	61	3,0	-	~ 1	-	~ 1		73297,0	At > m	-	
382,0851	62	2,4	-	~ 1	-	~ 1		26174,2	At > m	-	
357,2178	69	2,8	-	-	-	84884,2	At < AtPi	-		-	
241,0906	80	20,6	-	-	-	~ 1		24,9	At > m	-	
225,0953	94	2,1	-	-	-	~ 1		-		-	
530,1258	96	4,3	-	-	-	~ 1		38158,6	At > m	-	
218,1109	99	8,7	-	-	-	37,6	At < AtPi	-		-	
393,0388	103	2,0	-	-	-	~ 1		-		~ 1	

554,1354	133	2,7	-	-		-	~ 1		44009,0	At > m	7907,2	Pi > m
478,0885	141	11379,1	-	~ 1		-	~ 1		-		-	
154,0231	146	41276,1	-	-		-	~ 1		-		-	
545,1263	152	2,7	-	-		-	~ 1		7,7	At > m	~ 1	
399,1023	161	12568,9	-	~ 1		-	~ 1		-		-	
175,0694	165	23607,3	-	-		-	21105,8	At < AtPi	-		-	
129,0642	169	34104,0	-	-		-	~ 1		-		-	
261,1414	169	68391,1	-	-		-	~ 1		-		-	
492,1035	172	97891,0	~ 1	2,1	At < At	Pi -	36,8	At < AtPi	-		-	
264,0905	173	2,1	-	-		-	6,9	At < AtPi	-		-	
227,1471	174	15707,2	~ 1	~ 1		-	~ 1		23440,3	At > m	-	
165,0289	179	2,4	-	-		-	~ 1		-		-	
327,1143	180	70198,3	~ 1	~ 1		-	4,5	At > AtPi	195806,6	At > m	-	
293,1537	180	11520,9	~ 1	-		-	~ 1		2,2	At > m	-	
427,1817	181	11685,0	-	~ 1		-	~ 1		18327,5	At > m	-	
381,1802	181	150142,1	~ 1	~ 1		-	~ 1		-		18796,9	Pi < m
236,0650	184	12586,3	-	34,	5 At < Atl	Pi -	~ 1		-		-	
157,0588	190	21383,6	-	-		-	22184,3	At < AtPi	-		-	
739,2015	196	15619,6	~ 1	~ 1		-	~ 1		17745,8	At > m	-	
131,0796	199	2,1	-	-		-	36,0	At < AtPi	-		42097,3	Pi > m
525,3007	202	6,6	-	-		-	18670,6	At < AtPi	-		-	
496,0791	203	69070,7	~ 1	~ 1		-	~ 1		52134,9	At > m	-	
443,1557	203	15515,7	~ 1	-		-	~ 1		17223,2	At > m	-	
165,0635	203	42243,0	~ 1	~ 1		-	~ 1		32632,3	At > m	-	
321,1231	205	31010,7	~ 1	~ 1		-	~ 1		30418,0	At > m	-	
343,1076	205	29143,0	~ 1	~ 1		-	~ 1		26415,1	At > m	-	
643,2402	205	32504,3	~ 1	~ 1		-	~ 1		44562,2	At > m	-	
665,2218	205	42388,9	~ 1	~ 1		-	~ 1		39270,9	At > m	-	
277,1374	205	46,9	~ 1	~ 1		-	~ 1		-		-	
235,1274	205	96823,0	~ 1	~ 1		-	~ 1		103898,9	At > m	-	

369,1239	208	49713,7	~ 1	~ 1		-	~ 1		46221,5	At > m	-	
416,1230	215	11569,0	~ 1	~ 1		-	~ 1		-		-	
381,1791	216	25482,6	~ 1	~ 1		-	~ 1		23873,1	At > m	-	
491,1721	216	11000,8	~ 1	~ 1		-	~ 1		-		-	
423,1901	216	145727,8	~ 1	~ 1		-	~ 1		133323,0	At > m	-	
467,1766	216	23481,0	~ 1	~ 1		-	~ 1		23999,7	At > m	-	
277,1601	216	15,8	-	-		-	~ 1		-		-	
593,1482	217	44575,0	~ 1	~ 1		-	~ 1		41686,5	At > m	-	
311,1203	223	12052,3	~ 1	~ 1		-	~ 1		-		-	
577,1521	230	25855,2	~ 1	~ 1		-	~ 1		29710,1	At > m	-	
443,1939	241	90095,7	-	~ 1		-	~ 1		91309,4	At > m	-	
144,0538	249	5,1	-	-		-	~ 1		3,9	At > m	-	
264,0955	258	17867,4	-	6,1	At < AtPi	-	~ 1		-		-	
485,2024	266	67073,3	-	~ 1		-	~ 1		110269,7	At > m	-	
327,1287	275	18055,3	~ 1	-		-	2,0	At > AtPi	8,2	At > m	-	
339,1376	276	53493,5	~ 1	~ 1		-	~ 1		65796,3	At > m	-	
583,2152	285	20777,2	-	-		-	~ 1		44798,2	At > m	-	
415,1984	286	10316,9	-	-		-	~ 1		11658,6	At > m	-	
207,1474	286	17099,5	-	-		-	~ 1		19186,8	At > m	-	
437,2396	289	29764,7	-	~ 1		-	~ 1		32317,0	At > m	-	
403,1073	290	14689,1	-	-		-	~ 1		-		-	
307,1607	303	11198,9	-	-		-	~ 1		4,1	At > m	-	
281,1498	305	524089,1	-	-		-	~ 1		198374,9	At > m	-	
479,2496	307	32788,9	~ 1	~ 1		-	~ 1		36207,2	At > m	-	
505,2680	315	12055,1	-	~ 1		-	~ 1		13089,4	At > m	-	
227,1366	317	25793,3	-	-		-	~ 1		-		-	
567,1679	318	26535,7	-	~ 1		-	~ 1		17403,2	At > m	-	
174,0639	320	12842,2	-	-		-	~ 1		14930,2	At > m	-	
421,2352	323	28549,4	-	~ 1		-	~ 1		25134,1	At > m	-	
329,2381	335	2,1	-	~ 1		-	~ 1		5,4	At > m	2,6	Pi > m

293,1811	338	13937,3	-	3,3	At < AtPi	~ 1	~	· 1	-		-	
455,2283	338	11768,6	-	-		-	~	· 1	-		-	
422,2196	343	18784,5	~ 1	~ 1		-	~	· 1	15264,5	At > m	-	
411,2044	345	10739,1	-	-		-	~	· 1	13876,8	At > m	-	
405,2404	365	15358,0	-	~ 1		-	~	· 1	12744,5	At > m	-	
323,1591	377	10458,7	-	-		-	~	· 1	10690,4	At > m	-	
439,2344	378	42464,9	-	-		-	~	· 1	73385,3	At > m	-	
277,1853	378	28905,8	-	~ 1		~ 1	~	· 1	6,3	At > m	-	
473,2537	382	15653,2	-	-		-	~	· 1	28177,5	At > m	-	
413,2186	383	16862,9	-	-		-	~	· 1	26099,7	At > m	-	
223,2137	385	2,3	-	-		-	~	· 1	2,2	At > m	~ 1	
311,1918	385	2,3	-	-		-	~	· 1	2,1	At > m	~ 1	
267,2028	385	2,3	-	-		-	~	· 1	2,2	At > m	~ 1	
205,1669	393	13709,8	~ 1	-		-	~	· 1	-		-	

7.2 MS/MS Messungen

Die Auswertungen der MS/MS Messungen für die differentiellen Massensignale der Medien At > m und AtPi > At (im positiven und negativen Modus) der LC-MS Analysen wurden mit dem Programm Data Analysis (Bruker, Bremen) durchgeführt.

Die Abstände zwischen den einzelnen Fragmenten wurden mit Hilfe der Data Analysis (Bruker, Bremen) Software bestimmt, dabei durfte der Fehler nicht größer als 10 ppm sein. Für die Summenformelbestimmung war die Toleranz ebenfalls maximal 10 ppm. Weiterhin sollte in der Kalkulation der Summenformel die Anzahl an Sauerstoff-, Stickstoff-, Schwefel- und Phosphoratomen nicht größer sein als die Anzahl der Kohlenstoffatome.

Es konnte nicht für alle Massensignale ein MS/MS Fragmentmuster erstellt werden. Dies könnte daran liegen, dass das Massensignal nicht das Mutterion ([M + H]⁺ bzw. [M - H]⁻) war. Desweiteren könnten die Stoßenergien von 15 eV, 25 eV und 40 eV nicht ausreichend gewesen sein, um einige Moleküle zu fragmentieren. Bei manchen Molekülen war die niedrigste angewendete Stoßenergie von 15 eV zu hoch, so dass das Molekülion in viele kleine Fragmente gespalten wurde, die dann nicht mehr als Fragmente des Massensignals zu detektieren waren. Konnten keine Fragmente eines Moleküls generiert werden, wurde dies mit "-" gekennzeichnet. Es wurde trotzdem versucht eine Summenformel zu bestimmen.

7.2.1 MS/MS Messungen der differentiellen Massensignale des Mediums AtPi > At

Tab. 7. 25: Fragmentierung der differentiellen LC-MS Massensignale im positiven Modus des Mediums AtPi > At. Die Fragmente wurden durch MS/MS Läufe mit 15 eV, 25 eV und 40 eV gewonnen. In grau sind die identifizierten Massensignale mit ihrem Namen dargestellt.

			15 eV		25 eV		40 eV			
	RT	FC		Intesität		Intesität		Intesität	Mögliche	
[<i>m/z</i>]	[sek]	ESet 1	Fragment	[%]	Fragment	[%]	Fragment	[%]	Annotierung	Mögliche Summenformel
226,9452	26	63952,1	226,9697	9,6	226,9676	6,8				$C_7H_3N_2O_5S^+/C_6H_3N_4O_2S^+$
					208,9532	6,7			226 - H ₂ O	
			205,6449	25,2						
			197,1308	24,3	197,1312	8,4				
			182,9016	100	182,9028	100	182,9015	44,4		
					169,8939	7,7	169,8934	15,3		
			159,9693	20,5						
			154,0847	35,7	154,9063	61,6	154,9058	100	182 - CO	
			141,9575	19,1					159 - H₂O	$C_4NO_3S^+/C_3N_3S_2^+$
					138,9115	15,8	138,9115	25,6	182 - CO ₂	
219,0184	27	5,5	-		-		-			
527,1430	29	102691,2	527,1646	100	527,1622	100	527,157	4,5	[M + H]⁺	$C_{16}H_{27}N_6O_{14}^+/C_{24}H_{31}O_{11}S^+$
			365,1143	5,4	365,1091	52,5	365,1078	100	[M + H - Glc] ⁺	$C_{10}H_{17}N_6O_9^+/C_{18}H_{21}O_6S^+$
					347,0927	6,5	347,0931	6,6	$[M + H - Glc - H_2O]^+$	
203,0461	29	3,9	203,0604	5,1	203,0538	8,5	203,054	9	[M + H - 2Glc] ⁺	$C_4H_7N_6O_4^+/C_{12}H_{11}OS^+$
124,0324	41	2,3	124,0398	100	124,039	100	-		[M +H]⁺	$C_6H_6NO_2^+$
Nicotinsäure										
973,3014	41	21322,4	973,3242	89	973,3242	4,2			[M + H] ⁺	$C_{43}H_{57}O_{25}^{+}$
811,2491	41	4,2	811,2567	23	811,2586	7,1			[M + H - Glc] ⁺	$C_{37}H_{47}O_{20}^{+}$
649,2012	41	2,7	649,2096	39,6	649,2076	13,5			[M + H - 2 Glc] ⁺	$C_{31}H_{37}O_{15}^{+}$
			487,1598	62,7	487,1578	32,1			[M + H - 3 Glc] ⁺	$C_{25}H_{27}O_{10}^+$
			325,1068	100	325,1055	100	325,1066	100	[M + H - 4 Glc]⁺	$C_{19}H_{17}O_5^+$
			163,0533	6,6	163,052	4,4			[M + H - 5 Glc]⁺	$C_{13}H_7^+$
359,2179	77	3,6	359,2200	100						$C_{22}H_{31}O_4^+/C_{12}H_{27}N_{10}O_3^+$

			342,1959 288,1823 270,1722 242,6572 197,1249	40,9 24,2 26,6 13,9 28,6	288,1803 270,1699 227,1294 197,122	7,7 16,5 9,3 23,3	197,1216	8,8	288 - H ₂ O	
			172,0893	34,8	172,088	33,3				
			171,1033	47,8						
			154,0784	49,2	154,0779 126,0852	100 9,6	154,0779 126,0831	100 23,3	$C_{10}H_{21}O_4$ 154 - CO	$C_{12}H_{10}^{+}$
211,1008	78	230539,0	211,092	100	211,096	100	-			
381,2030	78	2,7	-		381,2122 197,1278 154,0844	100 10,1 19	381,2136 197,1314 154,0868	19,9 71,1 100		
					10 1,00 1 1		10 1,0000			$C_9H_{17}N_4O_4S^+/C_{12}H_{13}N_4O_4^+$ oder $C_{11}H_{17}O_8^+$ oder
277,0870	80	63483,1	-	100	277,0955 259,0824 233,1047 215,0912 197,1282 189,1139 172,0888 154,0853 152,0559 136,0601 123,0768	56,2 11,6 6,3 11,3 10,5 7,7 7,6 21,3 19,5 100 10,1	277,069 136,0626	9,5 100	$[M + H]^{+}$ $[M + H - H_{2}O]^{+}$ $[M + H - CO_{2}]^{+}$ $[M + H - H_{2}O - CO_{2}]^{+}$ $215 - H_{2}O$ $233 - CO_{2}$ $172 - H_{2}O$ $154 - H_{2}O$	$C_{12}H_{21}O_3S_2^+$
220,1117 202,1007 Pantothensäu	102 102 re	95317,4 50636,7	220,1103 202,1019 184,093	100 25 11,5	220,1099 202,1016 184,0927 142,0816 124,0713 116,0305	11 32,7 29 21,8 29 16,4	124,07	45	[M + H] ⁺ [M + H - H ₂ O] ⁺ [M + H - 2 H ₂ O] ⁺ 184 - C ₂ H ₂ O 142 - H ₂ O	$C_9H_{18}NO_5^+$ $C_9H_{16}NO_4^+$ $C_9H_{14}NO_3^+$ $C_7H_{12}NO_2^+$ $C_7H_{10}NO^+$

194

242.0943	102	220410.4	90,0521	15,4	103,0725 98,0213 90,0515 85,062 72,041	18,2 25,5 100 14,5 25,5	98,0212 95,0461 90,0511 85,0625 72,0416 70,0259 67,0509 57,0694	65 35 60 25 100 80 50 25	[M + H + Na]⁺	$C_{5}H_{11}O_{2}^{+}$ $C_{4}H_{4}NO_{2}^{+}$ $C_{6}H_{7}O^{+}$ $C_{3}H_{8}NO_{2}^{+}$ $C_{5}H_{9}O^{+}$ $C_{3}H_{6}NO^{+}$ $C_{9}H_{18}NO_{5}Na^{+}$
342.1924	122	208845.7	-		342.204	90				$C_{16}H_{28}N_{3}O_{5}^{+}$
- , -		,			288,193	28,5				$C_{13}H_{26}N_{3}O_{4}^{+}$
					270,1836	20			288- H ₂ O	
					197,1296	54,6	197,1292	25,4		
					172,0985	48,7	172,098	11,8		$C_8H_{14}NO_3^+$
					154,0848	100	154,085	100	172 - H ₂ 0	$C_8H_{12}NO_2^{-1}$
260 2020	115	2.7	260 1095	100	260 1059	100	126,0878	60,9	$154 - CO/C_2H_4$	
360,2030	145	2,7	360,1985	20	360,1958	30.8			[IVI + F] [M + H - H O] ⁺	
			213 1425	20 16	342,0304	30,0				
			210,1120	10	198.127	23.1				
					172,0304	69,2	172,0893	100		
					,	,	154,0813	93,8	172 - H₂O	
							86,0901	43,8		
							72,0845	31,3		
275,1039	165	41	275 1117	100	075 4445	100				
		1,1	275,1117	100	275,1115	100	-		[M + H] ⁺	$C_{12}H_{19}O_7$
	100	-, -	259,1416	1,77	275,1115 259,128	100	-		[M + H] ⁺	$C_{12}H_{19}O_7$
	100	.,.	259,1416 217,1047	1,77 1,46	275,1115 259,128 217,1052	100 5 18,9	-		$[M + H]^{+}$ $[M + H - C_2H_2O_2]^{+}$	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$
		1,1	273,1117 259,1416 217,1047	1,77 1,46	275,1115 259,128 217,1052 175,0857	100 5 18,9 2,6	-		$[M + H]^{+}$ $[M + H - C_2H_2O_2]^{+}$	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$
		.,.	259,1416 217,1047 154,0838	1,77 1,46 0,69	275,1115 259,128 217,1052 175,0857 154,0857	100 5 18,9 2,6 2,8	-		[M + H] ⁺ [M + H - C₂H₂O₂] ⁺	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$
252 1028	201	117788.0	259,1416 217,1047 154,0838	1,77 1,46 0,69	275,1115 259,128 217,1052 175,0857 154,0857 123,0776	100 5 18,9 2,6 2,8 5	-		[M + H] ⁺ [M + H - C ₂ H ₂ O ₂] ⁺	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$
252,1028	201	117788,0	259,1416 217,1047 154,0838 - - 149,0229	100 1,77 1,46 0,69	275,1115 259,128 217,1052 175,0857 154,0857 123,0776 - 149,0223	100 5 18,9 2,6 2,8 5 72 3	- -		$[M + H]^{+}$ $[M + H - C_2H_2O_2]^{+}$ $[M + H]^{+}$	$C_{12}H_{19}O_7^+$ $C_{10}H_{17}O_5^+$ $C_{10}H_{17}O_5^+$

			121,0256	22,2	111 0076	100			$[M + H - CO/C_2H_4]^+$	$C_7H_5O_2^+/C_6HO_3^+$
004.0700	000	5.0	114,020	10	114,0276	100				
261,0798	203	5,3	-		-		-			$C_{19}H_{9}N_{4}O$
319,0832	207	5,1	319,0923	100	319,0951	100			[M + H] ⁺	$C_{19}H_{15}N_2OS^{-}$
			289,1212	3	289,12	22,9				
			234,0396	5,4	234,0394	19,7				
			220,06	5,1	220,0601	32				$C_{15}H_{10}NO^+$
			171,0991	15,2	171,0998	40,8				
					154,0889	28,6				
252,0751	214	2,5	-		-		-			$C_{14}H_{10}N_{3}O_{2}^{+}$
,		,								$C_7H_{10}N_2O_0S^{+/}C_{10}H_{15}N_2O_0^{+}$
307.0742	220	5.5	307.0847	100	-		-			oder $C_{10}H_{15}O_2S^+$
001,0112		0,0	185 0442	27.6						$C_{0}H_{0}N_{0}O_{7}^{+/}C_{4}O_{0}H_{0}S^{+}$
			145 031	42						
247 1003	226	4.5	-	74	-		-			CurHuN ⁺
247,1000	220	-,0								$C_{15} H_{11} N_4$
261 1160	222	16	261 1272	100	261 1202	27.1			[NA , L]+	$C_{10} = 1_{21} + 4_{4} + 5_{2} + 5_{14} + 1_{17} + 1_{2} + 5_{3}$
201,1100	200	4,0	201,1275	100	201,1303	27,1				
			000 4004	40.0	243,1130	11,9			$[101 + H - H_2O]$	
			233,1321	10,9					$[WI + H - CO/C_2H_4]^{*}$	
			223,0978	26,2						
									[M + H - H ₂ O -	
			215,1219	19,3	215,1205	11,6			$[C_2H_4]^+$	
					187,1222	13,1				
					170,0735	12,1	170,0705	61,9		
					145,0543	10,3				
						,	130.0639	66.4		
			120.0801	21.6	120.0803	100	120.0792	100		
670.3584	233	149576.0	670.385	100	670.3836	19.6	670.3725	7.2		
0.0,000.			010,000		401 2034	21.2	401 2096	24.2		
					101,2001	21,2	101,2000	<i></i> 1, <i>_</i>		$C_{22}H_{22}N_{2}^{+/}C_{22}H_{22}NO_{4}^{+}$
			330 1735	26.0	330 160/	100	330 1600	100		oder $C_{2}H_{2}N_{2}S^{+}$
			550,1755	20,9	550,1034	100	270 1010	50		
							210,1019	30		
							197,1236	32,3		
							154,0835	22,1		

370,7132	235	102229,6	-		-		-			
552,3077	235	106719,4	-		-		-			
245,1777	237	5,0	245,1767	100			-		[M + H]⁺	$C_{12}H_{25}N_2O_3^+$
Leu-Leu			227,1745	3,1					[M + H - H ₂ O] ⁺	$C_{12}H_{23}N_2O_2^+$
			199,1801	15,4					[M + H - H ₂ O - CO] ⁺	$C_{11}H_{23}N_2O^+$
			132,1003	7,7	132,1004	8,9				$C_{6}H_{14}NO_{2}^{+}$
			86,093	57,7	86,0919	100				$C_5H_{12}N^+$
390,1109	238	4,9	390,122	34,7						
			267,0883	46,5						
			249,0775	95,7	249,0779	44,1			267 - H ₂ O	
			194,0832	13,5						
			145,0493	4,1						
			124,0374	100	124,0376	100	124,0375	100		
718,3445	240	177436,3	718,3486	100	718,3434	100	718,3125	11,3	[M + H] ⁺	
					700,3686	3,8			[M + H -H ₂ O] ⁺	
			629,3153	18,3	629,3057	57,7	629,2952	11,3		
					611,2837	6,2	611,3001	8,8	629 - H ₂ O	
			516,2054	6,7	516,2218	98,5	516,218	87,5		
							498,2017	21,3	516- H ₂ O	
					488,208	4,6	488,2326	20		
					417,1447	23,1	417,1468	100		
					399,1535	8,5	399,1385	93,8	417- H ₂ O	
					346,1292	7,7	346,1209	22,5		
							328,1088	28,8	346 - H ₂ O	
					302,1883	5,4	302,1913	8,8		
							272,1525	16,3		
							245,0732	18,8		
							213,1612	8,8		
402,1220	243	6,0	-		402,1307	100			[M + H] ⁺	$C_{16}H_{24}N_3O_7S^+$
					349,1859	36,7	349,1847	100		
					319,092	25,5				
					300,0973	29,8				
									[M + H - Cystein-	
					154,085	9,9	154,0857	9,1	Glutamat] ⁺	$ C_8H_{12}NO_2^+ $

7 Anhan	g
---------	---

534,9275	243	210393,0	-		-		-			
573,2693	244	17,6	573,2836	100	-		-			
			407,0983	72,6						
			389,0855	40					389 - H ₂ O	
			231,0927	30						
			171,1067	54,8						
			143,1127	45,5					171 - CO	
277,1126	246	3,8	277,1195	100	277,1191	17,3			[M + H] ⁺	$C_{10}H_{21}N_4OS_2^+/C_9H_{17}N_4O_6^+$
					233,1682	11,5			[M + H - CO ₂] ⁺	
			262,0678	40,8	262,0663	17,4				
			120,0798	60,3	120,0813	100	120,08	100		
386,1504	247	4,8	386,155	82,6					[M + H] ⁺	$C_{16}H_{24}N_{3}O_{8}^{+}$
245,1299	247	4,5	245,138	100	245,1397	100	245,1372	25,7	$[M + H - C_4 H_3 N_3 O_3]^+$	$C_{12}H_{21}O_5^+$
			227,1213	9,8					245 -H ₂ O	
					189,1116	10	189,1118	22,9		$C_9H_{17}O_4^{+}$
			187,1242	32,3					215 - CO/C ₂ H ₄	
			177,0451	8,7	474 4040	4 5	474 4000		$205 - CO/C_2H_4$	
					171,1019	15	171,1002	45,7	189- H ₂ O	
							150,075	17,1		
			1 40 0000	100	1 40 00	100	125,0952	100		
			149,0602	100	149,06	100	149,0013	100	$177 - CO/C_2 \Pi_4$	$C_9 \Pi_9 O_2$
							107,0004	17,1	120- H ₂ U	
							97,1000	02,9		
2/2 1001	257	267072.0					03,0000	17,1		
343,1001	207	20/0/3,0	-		-		-			
										$C_{25}\Pi_{47}N_6O_4S$ oder
527 2040	257	249115.0			527 2020	15.9	527 2202	167		$C_{26}\Pi_{47}\Pi_{4}O_{5}S$ odei
527,5049	231	240113,0	-		527,5029	15,0	521,2295	10,7		$C_{28} I_{43} I_{6} O_{4}$
					138 2755	100			$C H N O^{+}$	$C_{23} I_{40} I_{3} O_{3} O_{3} O_{40} O_{1}^{+}$
					410 2804	26.3				
						20,5				Cu-HayNaOaS ⁺ oder
					343 2003	53	343 1972	100	438 - CcHoN	$C_{40}H_{07}N_{4}O_{0}^{+}$
					0.0,2000	0,0	325,1855	10,3		- 13 ^{-12/1} 4 - 2

					254,1502	13,7	254,1492 226,1505 189,123 155,0801	82 25,6 19,2 46,2	343 - C ₃ H ₇ NO ₂ / C ₂ H ₇ N ₃ O	$C_{14}H_{24}NOS^{+}/C_{17}H_{20}NO^{+}$
582,2840	261	153563,8	582,2975	37,2	582,3064	15,9				
			497,2637	100	497,2633	100				
			279,1198	51,1						
			245,1203	49,4						
			230,1079	41,6						
					154,0769	60,8	154,0769	100		
620,6250	261	323989,4	-		-		-			
513,2880	263	126192,6	513,2657	25,1	-		-			
			343,1888	100						
358,1645	266	3,1	358,1785	100	358,1756	84,4				$C_8H_{24}N_9O_7^+/C_{19}H_{24}N_3O_4^+$
					330,1792	9,2			$[M + H - CO/C_2H_4]^+$	
			327,2044	8,8						
			273,1252	8,7	273,1232	100	273,1223	100		$C_7H_{21}N_4O_7^+/C_{19}H_{17}N_2^+$
			245,1273	4,2					273- CO/C ₂ H ₄	
			133,0845	6,3						
418,1289	276	2,8	418,13	100	418,1462	25				
			152,0521	98	152,0531	100	152,0504	100		$C_5H_6N_5O^+$
655,3558	277	91506,3	655,3174	81,4	-		-			
			407,1943	30,2						
			377,184	100					407 - CH ₂ O	
			358,1765	27,2						
			279,1356	87						
			211,1298	7						
290,0944	278	50071,6	290,1017 272,1465 259,1012	100 27,2 20,3	290,1283	45,4	290,1072	22,4		$C_{15}H_{16}NO_5^{+\prime}C_{16}H_{12}N_5O^+$ oder $C_{19}H_{16}NS^+$ oder $C_{16}H_{20}NS_2^+$

			227,1844 208,1331	17 60,5	208,1341	70,6				
			190,1233 143,097	31 15,7	202,1085 190,1251	49,5 100	190,1213	100	208 -H ₂ O	$C_{12}H_{16}NO^+$
				- ,						$C_{14}H_{22}N_5O_7^+$ oder
372,1447	279	5,7	372,1548	100	372,1551	100	372,1675	13,2	[M + H] ⁺	$C_{15}H_{26}N_5O_2S_2^+$
					287,1012	44,6	287,1045	50,9		
					273,1228	53,9	273,1233	100	$[M + H - C_4 H_5 NO_2]^+$	$C_{10}H_{17}N_4O_5^{+\prime}C_{11}H_{21}N_4S_2^{+\prime}$
			261,1612	4,8						
			233,1673	4	233,1639	5,3	233,0712	14,8	261-N ₂	
			205,0845	63,3	205,0843	69,4	205,0853	29,8	273 - C ₃ H ₄ N ₂	$C_7H_{13}N_2O_5^+/C_8H_{17}N_2S_2^+$
					188,0685	7,6	188,0688	76,4		
					154,084	3,6				
					120,0777	4,3	120,0797	29,6	154-H ₂ O ₂	
333,1009	286	2,6	333,1137	100	333,1149	18				
					259,0824	16,6				
			245,1366	10,1	245,1333	18,4				
			169,0876	4,2						
					146,0717	8,3	146,0743	18,7		$C_6H_{12}NO_3^+$
			120,0584	6,1	120,0574	100	120,0569	100	146 - C ₂ H ₂	$C_4H_{10}NO_3^+$
340,1560	293	2,6	340,1655	100	340,1676	61,4				
			278,1671	14,5	278,1672	100	278,1659	100	-	
							294,1604	23	278 - O	
										$C_{19}H_{20}N_3O_6^+$ oder
386,1230	294	6,7	386,1278	100	386,1311	100	386,1362	3,3		$C_{12}H_{28}N_5O_3S_3^{-1}$
					301,0807	14	301,0805	5,6		
					007 000 4	05	007 0000	7.0		$C_{15}H_{15}N_2O_4$ oder
					287,0984	25	287,0963	7,8	$386 - C_4 H_5 NO_2$	$C_8H_{23}N_4OS_3$
					216,0264	3	216,0283	17,8		
070 4704	000	0.4	070 4005	400	202,0472	22,5	202,0463	100		
372,1791	296	3,1	372,1825	100	372,1837	100	372,1888	13,6		$G_{15}H_{26}N_5O_6$
					287,1348	20,1	454 0000	00.0		
					154,0782	28,3	154,0809	60,3		

			144,0413	7,7	144,0414	9,2	144,0377	100		$C_4H_6N_3O_3^+$
313,1453	297	2,4	313,1565	53,2	313,1661	1,7				$C_{18}H_{21}N_2O_3^+$
			267,1509	9,2						
			193,0488	2,8	193,0491	3				
			166,0861	25,6	166,0853	5,6			[M + H - C₀H₀NO] ⁺	$C_{0}H_{12}NO_{2}^{+}$
			133,0823	15.5	133,0649	2,4				0 12 2
			120,0784	100	120,0787	100	120,0786	100	166 - CH ₂ O ₂	$C_8H_{10}N^+$
393,0710	298	92670,0	393,0839	100	393,089	9,5	-			$C_{18}H_{17}O_{10}^{+}$
			355,1897	16,6						
			315,1752	7,2						
			271,0453	50,8	271,0437	44,4				
			239,0921	73,7	239,0911	100				$C_{12}H_{15}O_5^+$
			202,0871	30,7						
					176,0935	23,1				
			169,6139	17,5						
			147,5987	25,8						
			125,5854	25,2						
688,3708	300	811724,9	688,3839	100						
			650,8681	18,8						
			595,8454	35,8	595,8502	10				
							453,2446	36,3		
							425,2462	38,4	453 -CO	
							340,1579	100		
			329,1748	78,7	329,1766	100	329,1767	73		$C_{20}H_{25}O_4^+/C_{16}H_{21}N_6O_2^+$
							323,1319	60,8		
			283,1326	4,8	283,1359	18,5	283,1393	81,9		
			254,145	7,5	254,1439	21,6	254,1421	54,4		
							212,0978	84,9		
							198,086	39,7		
			186,078	3,7	186,0827	5,4				
			158,0836	2,7	158,087	7,8			186 - CO	
							155,0752	62,2		
461,2318	313	4,0	461,246	100	461,2466	100	461,2561	8,1		$C_{28}H_{33}N_2O_4^+$
			423,1575	4	423,1603	7,7				

			376,1905 277,1102 263,1393	4,4 8,8 9,1	376,1903 277,1523 263,1411	46,9 49,3 13,4	376,1872	25,2	$[M + H - C_4H_7NO]^+$ $[M + H - C_{13}H_{12}O]^+$	$C_{24}H_{26}NO_3^+$ $C_{15}H_{21}N_2O_3^+$
			229,1509	5,4						
					192,1037	29,1	192,1043	100	376 - C ₁₃ H ₁₂ O	$C_{11}H_{14}NO_{2}^{+}$
511,1702	332	5,0	511,188	100	511,1884	100	511,1857	33,6		
			443,2417	12,2			400 4000	70.0		
					112 1552	1/1	420,1202	12,2		
			407 0007	60.3	412,1552	14,1	412,1317	100		
			301 0708	21 1						
			331,0730	21,1			327 0966	94.8		
			326.2092	31.9	326.2102	14.3	027,0000	54,0		
				0.,0		,•	313.117	37.2		
			303,0721	29,9			,	,		
			,				283,1079	30,5		
							228,0643	64,3		
			177,1122	12,5	177,1115	6,1				
			133,0854	15	133,085	12,6				
161,0903	340	219191,6	161,0918	100	161,0924	100				C ₁₁ H ₁₃ O ⁺
					146,0654	36,8				
143,0797	340	150595,4			143,078	31,6			[M + H - H ₂ O] ⁺	$C_{11}H_{11}^{+}$
			133,0957	8,7	133,0953	63,1				$C_{10}H_{13}^{+}$
					131,0796	36,8	131,0433	40,8		$C_{10}H_{11}^{+}$
			119,0821	5,2	119,0814	73,7	405 0054	70.4		
					105,0662	84,2	105,0651	73,1		
					91,0522	16,8	91,0506	20.1		
							79,0308	29.9		
410,1156	347	4,1	410,1183	38,1				_0,0	[M + H] ⁺	$C_{18}H_{16}N_7O_5^+/C_{17}H_{20}N_3O_9^+$
			392,1063	2,8					[M -H₂O] ⁺	C ₁₈ H ₁₄ N ₇ O ₄ ⁺ /C ₁₇ H ₁₈ N ₃ O ₈ ⁺
			267,0784	13,6					-	$C_{15}H_{11}N_2O_3^+$
			249,068	51,4	249,0688 186,0505	7,8 3,5			267 - H ₂ O	$C_{15}H_{9}N_{2}O_{2}^{+}$

			144,0421	100	144,0414	100	144,0397	100		
			126,028	3,6	126,0292	15,7	126,0289	40,4	144 - H₂O	
							113,02	5,2	126 -CH	
390,1089	354	3,6	390,1223	100	390,1231	4,3			[M + H] ⁺	$C_{20}H_{16}N_5O_4^+$
			268,0833	38,1	268,0828	29			$[M + H - C_7 H_6 O_2]^+$	$C_{13}H_{10}N_5O_2$
250,0652	355	3,6	250,0728	27,4	250,0722	23,7			268- H ₂ O	$C_{13}H_8N_5O$
			232,0619	9,5					250 - H ₂ O	$C_{13}H_6N_5$
					228,0664	22,4			-	
			205,086	2,9	205,0833	3,6				
			124,0378	28,6	124,0375	100	124,0372	100		
421,2807	360	109589,8	421,2902	100	421,2938	100	-		[M + H] ⁺	$C_{20}H_{41}N_2O_7^+$
403,2724	360	120787,0	403,2863	99,5	403,2884	91,3	-		421- H ₂ O	$C_{20}H_{39}N_2O_6^+$
385,2591	360	59358,7	385,2765	96,9	385,2765	85,4			403- H ₂ O	$C_{20}H_{37}N_2O_5^+$
			367,265	33,8	367,2628	47,8			385- H ₂ O	$C_{20}H_{35}N_2O_4^+$
			349,2547	18,1	349,2543	47			367- H ₂ O	$C_{20}H_{33}N_2O_3^+$
			331,2413	12,2	331,2441	23,3			349- H ₂ O	$C_{20}H_{31}N_2O_2^+$
			303,1964	25,1	303,1975	31,9				
			301,1813	12,5	301,181	56,1				
			285,1849	8,8	285,1878	30,4			303-H ₂ O, 301 - O	
			265,1581	4,3	265,1605	26,4				
					224,1086	53,8			331 -C₅H ₁₇ NO	$C_{15}H_{14}NO^{+}$
					189,1635	7,4				
					161,0962	8,6				
					133,0942	4,5				
412,0941	371	19632,1	412,1046	100	412,1037	15,5	-			$C_{21}H_{18}NO_8^+/C_{22}H_{14}N_5O_4^+$
			391,1853	41,6						
			289,0712	90,1	289,0733	100				
					273,1115	86,7			412- C ₅ HNO ₄ ???	$C_{16}H_{17}O_4^+/C_{17}H_{13}N_4^+$
					133,0844	88,9			273- C ₁₀ H ₄ O/C ₉ H ₄ N ₂	$C_6H_{13}O_3^+/C_8H_9N_2^+$
390,1102	372	5,4	390,1148	31,8	390,2491	7,8			$[M + H]^{+}$	$C_{20}H_{16}N_5O_4^+$
			267,082	27,3					$[M + H - C_6H_5NO_2]^+$	$C_{14}H_{11}N_4O_2^+$
			249,0693	27,3	249,0712	7,5				
124,0329	372	4,3	124,0365	100	124,0354	100	124,0353	100	267 - C ₈ H ₅ N ₃	$C_6H_6NO_2^+$
					105,0312	7,4	105,0309	11,2		

	0.70	~~~~~					1		ra a 1.13±	
342,1738	373	33287,3	342,1698	100	342,173	52,7	-		[M + H] ⁺	$C_{14}H_{24}N_5O_5^{-}/C_{15}H_{29}N_9O^{-}$
			273,1577	21,9	273,1581	100			$[M + H - C_3H_3NO]^+$	$C_{11}H_{21}N_4O_4^+/C_{12}H_{17}N_8^+$
342,1346	380	3,0	342,1349	100	342,1468	16,8	-		[M + H]⁺	$C_{19}H_{20}NO_5^+/C_{20}H_{16}N_5O^+$
			273,1606	7,5	273,16	100				
			257,0837	13,9	257,0793	35,1				
			243,1058	34,3	243,1008	53,2				
431,2211	388	2,2	431,2213	100	431,235	31			[M + H] ⁺	$C_{27}H_{31}N_2O_3^+$
			346,1794	4,4	346,1818	14,6				
					332,2023	14,8				
					,				[M + H -	
			247.1461	8.9	247.1467	100			$[C_{9}H_{12}N_{2}O_{3}]^{+}$	
			, -	- , -	179,1199	18.6	179.1181	48.4		- 13 13
					162,0919	19.8	162,091	100		
			133,0845	8.9	133.0834	7.9	,			
307,1748	425	74484.0	-	0,0	-	.,•	-			$C_{20}H_{22}N_2O^+$
315,1526	485	2.1	315,1596	100	315,1612	100	-		[M + H] ⁺	$C_{10}H_{22}O_4^+$
0.0,.010		_,.	0.0,.000		265,1798	14			[]	- 13: 123 - 4
					187,0749	18,9			$[M + H - C_7 H_{12} O_2]^+$	$C_{12}H_{11}O_{2}^{+}$
149,0170	515	4,9	149,022	100	149,0237	31,8	-		[M + H] ⁺	$C_8H_5O_3^+$
,		,	121,0274	25,5	121,0237	100			ÎM + H - CO]⁺	$C_7H_5O_2^+$
				,						$C_{18}H_{21}O_5^+$ oder
317.1278	515	3.1	317.128	100	317.1376	100	-			$C_{14}H_{17}N_6O_3^+/C_{13}H_{21}N_2O_7^+$
,		,	,		261,0645	10.6				
					245.0711	3.2				
401.2445	521	67307.1	401.257	100	401.257	100	-		[M + H] ⁺	$C_{21}H_{27}O_7^+$
,	•=•	,.	383.2471	9.2	383.2559	46			$[M + H - H_2O]^+$	-213/ - /
			365.2372	12	365.241	38.6			383- H ₂ O	
			287.1897	10.2	287,1946	66				
			269,1773	6,9	269,1835	82			287 - H ₂ O	
			251,1733	5.4	251,1697	46.8			269 - H ₂ O	
497.2718	523	1282790.8	497.3172	100	497.3123	100	419.3082	25.1	$[M + H]^{+}$	$C_{28}H_{41}N_4O_4^+$
,								_0,1	[M + H -	- 20+14 - 4
			298,2782	26.5	298,2773	58,7	298,276	100	$[C_{10}H_5N_3O_2]^+$	$C_{18}H_{36}NO_{2}^{+}$
			227,201	54,8	227,2019	26,7	227,2011	85,6	298 - C₄H ₉ N	$C_{14}H_{27}O_{2}^{+}$

463,2631	570	2,0	-		-		-			
327,2198	585	2,3	-		-		-		[M + H] ⁺	$C_{22}H_{31}O_2^+$
619,3834	595	2,3	-		-		-			
575,3580	596	2,2	575,3699	14,5	575,3712	24,4	575,3748	100		
							437,2291	2,9		
							375,1934	17,8		
							353,2084	3,2		
							331,1734	3,4		
			301,1383	100	301,137	100	301,1353	46,8		$C_{19}H_{17}N_4^+/C_{18}H_{21}O_4^+$
							271,1424	3,1		
							245,074	3,2		
							149,0178	4,4		
531,3334	597	2,0	-		-		-			
353,1979	598	2,1	-		-		-			

Tab. 7. 26: Fragmentierung der differentiellen LC-MS Massensignale im negativen Modus des Mediums AtPi > At. Die Fragmente wurden durch MS/MS Läufe mit 15 eV, 25 eV und 40 eV gewonnen. In grau sind die identifizierten Massensignale mit ihrem Namen dargestellt.

			15 eV		25 eV		40 eV			
				Intesität		Intesität		Intesität	Mögliche	Mögliche
[<i>m/z</i>]	RT [sek]	FC ESet 1	Fragment	[%]	Fragment	[%]	Fragment	[%]	Annotierung	Summenformel
378,9190	25	2,3	242,9438 212,9102 194,9078 174,956 158,9786 146,9653	28,4 3,7 3,1 100 12,1 4,7	174,9538 146,9581	100 71,7	146,9611	100	212 - H₂O 174 - CO	
316,9482	25	3,7	-		-		-			
248,9609	26	3,3	-		-		-			
267,0411	40	5,5	267.0216	51,3					[M - H] ⁻	$C_{10}H_{3}N_{8}O_{2}^{-}$
			122.0174	100					[M - H -	$C_3N_5O^2$

									C ₇ H ₃ N ₃ O] ⁻	
548,3367	44	2,1	548,3312	100	548,3267	100	548,3318	33		
					304,1856	5,1	304,185	100		$C_{13}H_{26}N_{3}O_{5}^{-}$
							286,1848	46,6		
							268,1596	22,9		
							230,1462	29,5		
218,1044	102	37,6	218,0995	12,5	-		-			$C_{10}H_{12}N_5O^{-1}$
			146,0815	100						
358,2024	145	2,6	358,1964	100	358,1962	28,1	-		[M - H] ⁻	$C_{16}H_{28}N_3O_6^-$
			340,1847	10,9	340,1858	15,9			[M - H - H ₂ O] ⁻	$C_{16}H_{26}N_{3}O_{5}^{-}$
					322,1783	3,3			340 - H ₂ O	$C_{16}H_{24}N_{3}O_{4}$
					296,1986	3,6				
					256,1255	11,4				
					238,1178	3			256 - H ₂ O	
			230,1489	10,8	230,1488	100			[M - H - C ₆ H ₈ O ₃] ⁻	$C_{10}H_{20}N_{3}O_{3}^{-}$
					212,139	21,7			230 - H ₂ O	$C_{10}H_{18}N_3O_2^{-1}$
					186,1602	9,9				
175,0626	180	21105,8	175.0804	100	-		-			
			146.9717	32,2						
			131.0754	19						
			115.0357	27,1						
264,0901	195	6,9	264.1021	100	-		-		[M - H] ⁻	$C_{15}H_{10}N_{3}O_{2}^{-}$
			220.0688	43,7					[M - H - CH₄O] ⁻	$C_{13}H_6N_3O^-$
492,1128	202	36,8	492,1036	100	492,0999	29,3				
			428,1036	21,9	477,0788	33				
					428,1037	100				
					299,0493	4,5				
					274,9876	9,5	274,9953	25,4		
					259,016	16,4	259,0166	51,7		
			234,0801	3,2	234,0789	75	234,07	100		$C_{13}H_8N_5^{-1}$
195,0677	207	29958,1	195,064	100	-		-			$C_{11}H_7N_4^{-1}$
			175,0403	19,3						

			131,0515 113.0038	40,1 20,9						
157,0521	219	22184,3	-	- / -	-		-			$C_7H_9O_4/C_8H_5N_4$
285,1367	230	40043,8	285.1498	99,6					[M - H] ⁻	C ₁₄ H ₂₁ O ₆ /C ₁₁ H ₁₃ N ₁₀
131,0731	230	36,0	131.0682	100	131,0837	100	131,1086	100		
525,3145	257	18670,6	525,3028	100	525,3012	100				
			484,147	29,1	484,1371	31,1				
			341,1842	5,5	341,1801	70,1				
			297,1928	3,8	297,1919	76,8	297,1978	100	341 - CO ₂	
					279,1787	18,2			297 - H ₂ O	
165,0574	271	2,4	165.0557	27,8	165,0722	2,7				$C_6H_5N_4O_2/C_5H_9O_6$
			147.0438	100	147,0598	58			165 - H₂O	$C_6H_3N_4O^{-}/C_5H_7O_5^{-}$
			119.0472	32,1	119,0597	10			147 -CO	$C_5H_3N_4/C_4H_7O_4$
					117,0435	34,1	117,0834	100		
266,1077	278	36534,8	266.1440	52,1					[M - H] ⁻	C ₉ H ₁₂ N ₇ O ₃ ⁻ /C ₁₃ H ₁₆ NO ₅ ⁻
248,0960	278	16730,6	248.1302	100					[M - H - H ₂ O] ⁻	$C_9H_{10}N_7O_2^{-}/C_{13}H_{14}NO_4^{-}$
			136.0455	37,1						
171,0685	289	2,8	171.0576	10,3					[M - H] ⁻	$C_5H_7N_4O_3^-$
			146.9497	4,8						
			127.0597	100	127,0622	100			[M - H - CO ₂] ⁻	$C_4H_7N_4O^-$
469,1943	340	22726,3	469,1817	41,8						
			289,0987	5,6			381,1266	2,9		
							319,0764	4		
							291,0775	6,2	319 - CO	
							265,0646	20,4	291 - C ₂ H ₂	
			245,0786	6,9	245,0779	4,1	245,0577	3,2		
223,1008	340	265997,1	223,097	100	223,0992	2,2	223,0966	80,3		$C_{12}H_{15}O_{4}^{-}$
			203,0712	7,1	203,068	3,5	203,0705	9,3		$C_{12}H_{11}O_{3}^{-}$
			159,0809	54,4	159,0808	100	159,0806	53,1	203 - CO ₂	$C_{11}H_{11}O^{-}$
			147,0795	2,8	147,078	10,4				
			143,0836	2,4	143,0845	14,4				
			133,0656	18,3	133,0654	48,5	133,063	17,6	159 - C ₂ H ₂	

			131,0853	13	131,0844	57	131,0834	14,8	159 - CO	
					129,0696	43,9	129,0669	100	159 - CH ₂ O	
309,1063	418	3,1	309,1017	100						$C_{15}H_{13}N_6O_2$ $/C_{14}H_{17}N_2O_6^{-1}$
			227,1277	50,5	227,1256	48,6				
			178,9655	74,6	178,963	18,1				
					146,1634	50,9			178 - O ₂	
					127,1097	100	127,1157	100		
251,1005	443	2,3	251.1106	100	251,1284	100	-			C ₁₃ H ₁₅ O ₅ ⁻ /C ₁₄ H ₁₁ N ₄ O ⁻
			154.9739	12,8	154,9941	49				
			120.9565	4,8	120,9696	50				
315,1639	512	2,1	315,1596	100			-			$C_{19}H_{23}O_4^{-1}$
			297,1535	8						
			285,1465	40,2	285,1454	100				
					269,1124	57				
			265,1563	17,7						
			257,1147	38,9	257,1138	30,4				
			223,1919	28,3						
			195,1344	20,7						
			174,954	19,9						

7.2.2 MS/MS Messungen der differentiellen Massensignale des Mediums At > m

Tab. 7. 27: Fragmentierung der differentiellen LC-MS Massensignale im positiven Modus des Mediums At > m. Die Fragmente wurden durch MS/MS Läufe mit 15 eV, 25 eV und 40 eV gewonnen. In grau sind die identifizierten Massensignale mit ihrem Namen dargestellt.

			15 eV		25 eV		40 eV			
	RT			Intesität		Intesität		Intesität	Mögliche	Mögliche
[<i>m/z</i>]	[sek]	FC	Fragment	[%]	Fragment	[%]	Fragment	[%]	Annotierung	Summenformel
136,0609	46	4,7	136,0577	100	136,0578	100	136,0599	100		$C_5H_6N_5^+$

							119,032	23,9		
300,1270	50	251625,1	-		-		-			
557,1495	54	55433,8	557,1564	54						
			446,1101 1	00	446,1105	21,3				
			348,0699 4	8,2	348,0706	36,1				
			290,0848 2	1,7	290,0877	24,5				
			268,1039 2	2,7		·				
152,0571	54	11,3	152,056 52	2,8	152,0568	100	152,0553	100		$C_4H_{10}NO_5^+/C_5H_6N_5O^+$
			135,0257 2	0,3	135,025	90			152 - NH₃	
297,0980	59	2,2	297,1032 1	00	297,1028	47,1			[M + H] ⁺	$C_8H_{17}N_4O_8^+$
					279,0925	2,6			$[M + H - H_2O]^+$	$C_8H_{15}N_4O_7^+$
269,1039	59	2,5	269,1077	6,1	269,1071	15,7				
					251,0971	3,7			269 - H₂O	
					233,0888	4,6			251 - H₂O	
					221,0864	4,5	221,0875	2,8		
					205,1453	7,3				
					188,1174	6,6	188,1153	11	205 - NH₃	
			122,0691	6,3	122,069	100	122,0691	100	188 - CO	$C_6H_8N_3^+$
306,0989	61	4537125,5	-		306,0981	5,8			[M + H]⁺	$C_{15}H_{16}NO_6^+/C_{16}H_{12}N_5O_2^+$
									$[M + H - C_4 H_8 O/$	$C_{11}H_8NO_2^+$
					186,0571	9,6	186,0568	3,9	$C_5H_4N_4]^+$	
144.0467	64	2.0			1 4 4 0 4 5 7	100	111 015	100		
144,0467	01	2,9			144,0457	100	144,045	50.4	$100 - U_2 \Pi_2 U$	$C_9\Pi_6NO$
					120,0329	24,5	126,0329	50,4	144 - H ₂ U	C ₉ Π₄N
					113,0269		113,0264	50,0		
247.0700	64	400252.7			112,0191	35,2	112,0191	100	120 - CH ₂	
347,0728	61	169353,7	-		-		-			
200,0000	01	93246,4	-		-		-			
360,1063	61	00007,3	-		-		-			
306,0970	61	93206,4	-		-		-			
334,0923	10	05400.2	-		-		-			
200,0409	02	90499,2	-		-		-			
289,1367	62	84859,3	-		-		-			

336,1076	62	71415,6	-	-		-			
328,0783	67	271280,9	328,084 100	328,0855	19,2			[M + H] ⁺	$C_{17}H_{14}NO_{6}^{+}$
			288,1938 9,4	288,1939	18				
			270,1836 4,7	270,1832	16,1	270,1864	4,5	288 - H ₂ O	
			197,1299 5,5	5 197,1292	48	197,1304	26,7		
			172,0979 10,5	5 172,099	21,3	172,0963	6,6		$C_8H_{14}NO_3^+$
			154,085 10,5	5 154,0856	100	154,0853	100	172 - H₂O	$C_8H_{12}NO_2^+$
			146,0609 3,5	5 146,054	11,3	146,0585	13,4		
168,0431	70	131064,2	-	-		-		[M + H] ⁺	$C_{11}H_6NO^+$
383,1094	80	221309,0	-	-		-			
507,1624	80	123544,7	507,1528 6,4	ł					
			285,077 18,4	285,0764	42,2	285,0781	22,1		
			267,0784 100	267,0807	100	267,08	49,1		
265,0765	80	1168166,9	265,0816 61,8	3 265,0798	84,6				$C_{12}H_{13}N_2O_5^+$
				245,0864	25,3	245,0868	22,2		
				232,0786	100	232,0779	88,3		
				222,0705	46,6				
				199,0987	15,7	199,0978	100		
			149,0314 24,2	2 149,0809	16,8				
						147,0778	68,8		
262,0665	80	226624,9	-					[M + H]⁺	$C_{13}H_{12}NO_5^+/C_{14}H_8N_5O^+$
504,1534	80	117194,4	-						
192,0748	101	68695,1	192,08 100) –				[M + H]⁺	$C_9H_{10}N_3O_2^+$
130,0632	121	118942,4	130,0634 100) -				[M + H]⁺	C ₉ H ₈ N ⁺
556,1489	133	64863,8	-						
192,1380	137	134100,9	192,1421 100)				[M + H]⁺	$C_{12}H_{18}NO^+$
			175,1158 16	5				[M + H - NH ₃] ⁺	
			157,105 2,6	5					
			128,1416 49,4	ŀ				157 - H ₂ O	
392,0969	144	493094,1	392,0998 100	392,0979	29,1			[M + H]⁺	C ₁₈ H ₁₈ NO ₉ ⁺
				374,0861	3,8			$[M + H - H_2O]^+$	$C_{18}H_{16}NO_{8}^{+}$
			348,1099 5,5	348,1076	6,5			[M + H - CO ₂] ⁺	C ₁₇ H ₁₈ NO ₇ ⁺

			306,0985 9,2 144,0443 14,2	2 306,0993 231,049 187,0596 186,0563 144,0439 126,0326	27,1 4,2 4,4 5,4 100 16,9	186,0577 144,0441 126,0328	13 100 69,2	348 - C ₂ H ₂ O 306 - C ₃ H ₇ O ₂ 231 - CO ₂ 231 - CHO ₂ 187 - NH ₃ 144 - H ₂ O	$\begin{array}{c} C_{15}H_{16}NO_{6}^{+} \\ C_{12}H_{9}NO_{4}^{+} \\ C_{11}H_{9}NO_{2}^{+} \\ C_{11}H_{8}NO_{2}^{+} \\ C_{9}H_{6}NO^{+} \\ C_{9}H_{4}N^{+} \end{array}$
256,1039	156	101246,2	-					[M + H] ⁺	$C_{19}H_{14}N^{+}/C_{14}H_{14}N_{3}O_{2}^{+}$
259,1112	156	10,3	259,1117 100) -				[M + H]⁺	$C_{19}H_{15}O^{+}$
			245,0905 13,8	3				$[M + H - CH_2]^+$	
			229,152 7,9						
365,1210	167	59035,6	365,1218 100	365,123	80			[M + H]⁺	$C_{19}H_{17}N_4O_4^+$
			345,0996 3,2	2					
				288,1922	21,4				
			277,1468 3,3	3					
				270,1779	24,2			288 - H ₂ O	
			249,1558 5	249,1584	15,3				
			225,1093 8,9	225,1127	28,4				
				205,6419	22				
				197,1296	45,1	197,1305	44,3		
			172,098 3,9	172,0996	29,5				
			154,0876 4,1	154,0845	100	154,0848	100	172 - H ₂ O	$C_8H_{12}NO_2^+$
				136,0715	17,5			154 - H ₂ O	
212,1253	174	98416,1	-						
287,1075	174	149534,3	-	-		-			
295,1582	180	2,2	295,1639 41,8	5				[M + H]⁺	$C_{16}H_{19}N_6^+/C_{15}H_{23}N_2O_4^+$
			278,1388 7,6	5				[M + H - NH ₃] ⁺	
			252,0809 32,9						
			181,0838 6	5					
			149,058 24,1	149,0595	18,4	149,0577	25,4		
			136,074 100	136,0736	100	136,0746	100		
				119,048	11,6	119,0473	58,6	136 - NH₃	
351,1031	180	137487,6	-	-		-			

389,1208	181	48716,7	389,1313	10,9						
			283,0719	100	283,0719	60,4				
			167,093	26,4	167,0928	44,4	167,0916	13,8		
			152,0556	80,1	152,0554	100	152,0554	100		
238,0703	181	53110,3	-		-		-		[M + H]⁺	$C_{12}H_8N_5O^+/C_{11}H_{12}NO_5^+$
405,1722	181	180351,3	405,1714	100	405,1724	100	-			
			237,1044	3,6						
			223,0926	5,4	223,0905	17,4				
			195,0977	2,9	195,0959	5,7			223 - CO	
			160,071	6						
152,0553	182	66154,0	-		-		-		[M + H]⁺	$C_5H_6N_5O^+$
614,7726	182	58269,5	-		-		-			
411,1192	190	793002,5	411,1223	100	411,1219	32,7			[M + H]⁺	$C_{21}H_{19}N_2O_7^+$
			268.08	87	268 0795	41 4	268 0784	12 7	[M + H -	CueHuNOs ⁺
			200,00	0,1	200,0700	, .	200,0701	12,1	C ₉ H₅NO] ⁻	
			250,0686	3,4	250,0698	22,6	250,0672	2,9	268 - H ₂ O	$C_{12}H_{12}NO_5^+$
					232,0607	2,8			250 - H ₂ O	$C_{12}H_{10}NO_4^+$
					186,0568	4	186,0557	9,6	232 - CH ₂ O ₂	$C_{11}H_8NO_2^+$
			144,0443	14,4	144,0445	100	144,0442	100	186 - C ₂ H ₂ O	C ₉ H ₆ NO ⁺
					124,0351	13,6	124,035	61,5		
206,0621	191	734542,7	206,0667	100						$C_8H_8N_5O_2^+/C_7H_{12}NO_6^+$
			186,0584	4,2						
			144,0469	26,6	144,0466	31,1	144,0468	30		
			126,0357	27,7	126,0355	37,5	126,0355	89,8	144 - H ₂ O	
124,0373	191	201132,3	124,0375	69,3	124,0374	100	124,0377	100		$C_6H_6NO_2^+$
					113,0267	3,2	113,0273	19,5	126 - CH	
250,0699	191	47528,1	-		-		-			$C_{13}H_8N_5O^+$
441,1323	191	45149,9	-		-		-			
391,1127	196	86622,7	391,1192	3,9						
			268,0831	100	268,0822	100	268,083	17,1		$C_{12}H_{14}NO_6^+/C_{13}H_{10}N_5O_2^+$
			249,0768	8,1	249,0791	3,8				
			210,112	2,9						

						154,0859	3,7	
			124,0375 19,	3 124,0369	38,1	124,0371	00	
268,0799	196	279349,7	268,083 10	268,0832	28,8			$C_{12}H_{14}NO_{6}^{+}$
			244,0861	5				
			226,0802 4,	7				
			209,0799	5				
			124,0368 16,	2 124,038	100	124,0371 ⁻	00	$C_6H_6NO_2^+$
160,0735	203	251636,6	160,0728 57,	3 160,0706	5,3		[M + H] ⁺	$C_7H_{12}O_4^+$
145,0500	203	239441,7	145,0487 10	0 145,0479	26,6		$[M + H - CH_3]^+$	$C_6H_9O_4^+$
				129,0523	75		145 - O	
			128,0449 35,	2 128,0446	34,1	128,0445 ·	00 145 - OH	
117,0550	203	44416,8	117,0529 55,	1 117,0526	100	117,0521 6	5,4 145 - CO	$C_5H_9O_3^+$
148,0717	203	48986,4	-	-		-		
130,0630	203	164972,1	-	-		-		
498,0926	203	31040,1	498,1113 25,	5				
			453,2035 54,	6 453,202	40,1			
			418,1326 24,	7				
			378,2022 15,	7 387,2046	24,2			
			152,0569 10	0 152,0538	100	152,0566	00	$C_5H_6N_5O^+$
149,0585	204	89792,5	-	-		-	$[M + H]^+$	$C_9H_9O_2^+$
342,1040	205	71262,9	-	-		-		
345,1126	205	1729152,0	345,1146 10	345,1125	100		[M + H]⁺	$C_{22}H_{17}O_4^+$
				311,0998	8,4	311,0942 ·	$00 \left[M + H - H_2 O_2 \right]^+$	
			301,1238 1	1 301,1241	34,7		[M + H - CO ₂] ⁺	$C_{21}H_{17}O_2^+$
				293,0879	21	293,0857 6	7,1 311 - H ₂ O	
				271,0428	9,8			
				259,112	15,8		301 - C ₂ H ₂ O	C ₁₉ H ₁₅ O ⁺
				241,0968	5		259 - H ₂ O	$C_{19}H_{13}^{+}$
231,0489	205	84444,3	-				[M + H]⁺	$C_{10}H_7N_4O_3^+$
301,1235	205	79729,2	301,131 64,	3 301,1333	31,9	-	[M + H]⁺	$C_{15}H_{17}N_4O_3^+/C_{14}H_{21}O_7^+$
				220,9911	45,3			
			205,0979 46,	3				

					195,0116	22,9				
			193,1404	100						
					177,001	44,2			195 - H₂O	
			144,1014	50	144,045	29,8				
					127,0772	100			144- OH	
592,1635	209	118192,8	592,1744	100	592,175	13,3			[M + H]⁺	
			400,1283	53,3	400,127	61,4				
			353,1561	5,4						
			323,1408	15,5	323,1479	10,5	323,1447	13,1		
			295,1178	40	295,1181	29,1	295,116	37,3		
			238,0715	9	238,0728	35,7	238,0732	7,5		$C_{11}H_{12}NO_5^+/C_{12}H_8N_5O^+$
			220,0622	19,2	220,0627	100	220,0631	21,3	238 - H ₂ O	$C_{11}H_{10}NO_4^+/C_{12}H_6N_5^+$
			193,0515	4,2	193,0511	39,3	193,0512	100	220 - CHN	$C_{10}H_9O_4^+/C_{11}H_5N_4^+$
428,2008	209	3,4	428,2034	100	428,2056	70			[M + H] ⁺	$C_{17}H_{35}NO_9P^+$
Glycero-Ph	lospory	/lcholin			410,1913	20,8			$[M + H - H_2O]^+$	$C_{17}H_{32}NO_8P^+$
									410 -	
			184,0767	5,7	184,0714	100	184,0767	100	$C_{12}H_{20}NO_5$	$C_5H_{12}O_3P^+$
							104,1087	5,4	184 - PO₃H	$C_5 H_{11}^+$
400,1077	212	44726,9	400,1098	100	-				[M + H] ⁺	$C_{21}H_{14}N_5O_4^+$
			355,0423	4,7						-
			257,0697	5,9						
			239,0577	17					257 - H2O	$C_{12}H_7N_4O_2^+$
			144,0466	32,8						
			116,0678	4,2						
491,1709	216	191636,7	491,1777	100	491,178	100	491,1742	17,5	[M + H]⁺	
			447,1882	5,2	447,1876	53,4	447,1915	18,5	$[M + H - CO_2]^+$	
			343,0935	42,6	343,0957	26,2				
			152,0565	9,1	152,056	11,5	152,0568	100		
412,2048	216	215500,4	412,2061	100	412,2049				[M + H]⁺	
			394,1938	4,9	394,1949				[M + H - H2O]	
							315,0939	6,5		
							283,0966	11	315 - O ₂	

						255,1051	7,5	283 - NO		
						229,1395	17,4			
			184,0725 6,7	184,0715		184,0714	100		$C_7H_{10}N_3O_3^+/C_5H_{12}O_3P^+$	
			152,0532 8,2	152,0522		152,0532	28,7	184 - CH ₄ O		
279,1617	216	2,1	279,1677 100						$C_{15}H_{23}N_2O_3^+$	
			166,0853 56,7	166,0839	45,1				$C_9H_{12}NO_2^+$	
			149,0586 25,7					166 - NH₃	$C_9H_9O_2^+$	
			120,0769 14,3	120,0781	100	120,0751	100			
152,0552	217	70479,7	152,0604 76,2	152,0551	42,9			[M + H]⁺	$C_5H_6N_5O^+$	
			135,0378 100	135,0244	100					
494,1409	217	66570,3	-	-		-				
343,0904	217	134931,8	-	-		-				
347,1621	218	5,5	347,1697 100	347,1702	100	347,1753	100			
			213,1602 15	5						
			185,1634 15	185,1164	1,3			213 - CO		
				166,0867	0,8					
				154,0849	0,6	154,0852	44,6			
379,0990	223	65549,4	379,1018 100	379,1045	100			[M + H]⁺	$C_{18}H_{19}O_9^+$	
			335,1111 10,9	335,1129	60,3			$[M + H - CO_2]^+$	$C_{17}H_{19}O_7^+$	
				293,1026	24,1			335 - C ₂ H ₂ O	$C_{15}H_{17}O_{6}^{+}$	
				237,1123	11,6					
			209,1133 7,2	209,1142	28,7			237 - CO		
			191,066 7,7	191,0694	19,5				$C_{11}H_{11}O_3^+$	
			124,0377 3,5	124,0387	21,5	124,0365	100			
210,0901	228	70669,6	-	-		-		[M + H]⁺	$C_{14}H_{12}NO^{+}$	
460,1204	230	358245,6	460,1229 100	460,1219	75,6					
268,0800	230	107268,4	268,0806 7,1	268,0807	100	268,0744	21,6		$C_{12}H_{14}NO_{6}^{+}$	
				250,069	8,1			268 - H2O		
			229,1514 3,1	229,1515	4,8					
			193,0476 3,2	2 193,0472	84,6	193,0483	100		$C_{10}H_9O_4^+$	
						178,0244	6,2	193 - CH3		
				124,0349	7,8	124,0349	13,2			
399,1384	232	210335,1	399,1439 1	00	399,1447	100				
----------	-----	----------	-------------	-------------	----------	-------------	----------	--------------	------------------------	--
					379,0583	3 15 6	217 1000	27		
					317,1895	15,6	317,1898	37		
			000 4540	4	220 4544	10	232,1359	100		
			229,1340	,⊺ ⊥⊿	229,1544	10 1				
			210,091	-,4	210,0927	10,4	202 0574	07.4		
					202,0609	19	202,0374	27,1		
					151 095	10	170,0070	00 74 7		
444 4007	222	571410.0	441 1000 1	00	134,005	4,2	104,0000	04,1		
441,1337	233	571410,0	441,1303	00	441,1301	145	441,130	04, I 100		
					339,1020	14,5	339,1004	7 1		
			224.226		320,2032	0,5	320,2040	7,1		
			324,220	,4 . 7	324,2274	4,0	279,0005	20		
			229,1552), <i>1</i>	229,1323	0,0 10.1	229,1347	23,9 21 2		
			211,142	.,9	211,1410	10,1	211,1400	21,3 47 E	$229 - \Pi_2 \cup$	
242 1521	220	00017 4	242 1571 1	00	103,1401	3,5	103,1405	47,5	211 - 00	
342,1521	238	92317,4	342,1571	00	342,1501	12,0				$C_{17}\Pi_{20}N_5O_3$
			268,0843	43	268,0833	41,8			[M + H - C₄H₁₀O]⁺	$C_{13}H_{10}N_5O_2^+$
			250.0732 40	6.6	250.0717	39.8			268 - H ₂ O	$C_{13}H_8N_5O^+$
			232.0623	.2	,-	, -			250 - H ₂ O	- 13 0 3 -
			- ,	,	193,0848	18,1			2 - Z -	
			124,0386 13	8,8	124,0374	100	124,0381	100		
467,1860	242	135532,8	467,1947 1	00	467,1943	100	467,1952	100		
					321,1343	8,4	321,1309	87		
			277,1076	',1	277,1055	6				
			251,128 34	,7	251,1277	43,5	251,1269	91,3		C ₁₄ H ₁₉ O ₄ ⁺ /C ₁₅ H ₁₅ N ₄ ⁺
			239,0929 1	,8	239,0921	13,5				
			223,0919	3,3						
212,1037	251	168501,2	212,1122 1	00	-		-			
335,1071	253	467243,3	335,109 1	00	335,1132	50,2	-			
					249,1452	17,2				
			185,0406	20	185,04	100				

216

640370,2 5 53367,3 5 277973,4	390,1587 247,1161 229,1054 144,0445 - 410,1289 267,0866 249,0762	100 5,3 7,2 34,6 100 9,4	390,1573 247,1159 229,1059 144,0453 126,0327 - 410,1308	11,3 4,6 23 100 5,5 67	229,1039 186,0556 144,0445 126,0323 -	3,1 3,9 100 29,7	$[M + H]^{+}$ $[M + H - C_{8}H_{5}N_{3}] +$ $247 - H_{2}O$ $229 - C_{2}H_{5}N$ $186 - C_{2}H_{2}O$ $144 - H_{2}O$ $[M + H]^{+}$	$C_{21}H_{20}N_5O_3^+$ $C_{13}H_{15}N_2O_3^+$ $C_{13}H_{13}N_2O_2^+$ $C_{11}H_8NO_2^+$ $C_9H_6NO^+$ $C_9H_4N^+$
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 7 9 7 3,4 5 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7	247,1161 229,1054 144,0445 - 410,1289 267,0866 249,0762	5,3 7,2 34,6 100 9,4	247,1159 229,1059 144,0453 126,0327 - 410,1308	4,6 23 100 5,5 67	229,1039 186,0556 144,0445 126,0323 -	3,1 3,9 100 29,7	$[M + H - C_8H_5N_3] + 247 - H_2O 229 - C_2H_5N 186 - C_2H_2O 144 - H_2O [M + H]^+$	$C_{13}H_{15}N_2O_3^+$ $C_{13}H_{13}N_2O_2^+$ $C_{11}H_8NO_2^+$ $C_9H_6NO^+$ $C_9H_4N^+$
5 53367,3 5 277973,4	247,1161 229,1054 144,0445 - 410,1289 267,0866 249,0762	5,3 7,2 34,6 100 9,4	247,1159 229,1059 144,0453 126,0327 - 410,1308	4,6 23 100 5,5 67	229,1039 186,0556 144,0445 126,0323 -	3,1 3,9 100 29,7	$C_8H_5N_3]+$ 247 - H ₂ O 229 - C ₂ H ₅ N 186 - C ₂ H ₂ O 144 - H ₂ O [M + H] ⁺	$C_{13}H_{15}N_{2}O_{3}^{+}$ $C_{13}H_{13}N_{2}O_{2}^{+}$ $C_{11}H_{8}NO_{2}^{+}$ $C_{9}H_{6}NO^{+}$ $C_{9}H_{4}N^{+}$
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 3 6 7,3 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	229,1054 144,0445 - 410,1289 267,0866 249,0762	7,2 34,6 100 9,4	229,1059 144,0453 126,0327 - 410,1308	23 100 5,5 67	229,1039 186,0556 144,0445 126,0323 -	3,1 3,9 100 29,7	247 - H_2O 229 - C_2H_5N 186 - C_2H_2O 144 - H_2O [M + H_1^+	$\begin{array}{c} C_{13}H_{13}N_{2}O_{2}^{+} \\ C_{11}H_{8}NO_{2}^{+} \\ C_{9}H_{6}NO^{+} \\ C_{9}H_{4}N^{+} \end{array}$
5 53367,3 5 277973,4	144,0445 - 410,1289 267,0866 249,0762	34,6 100 9,4	144,0453 126,0327 - 410,1308	100 5,5 67	186,0556 144,0445 126,0323 -	3,9 100 29,7	229 - C_2H_5N 186 - C_2H_2O 144 - H_2O [M + H] ⁺	$C_{11}H_8NO_2^+$ $C_9H_6NO^+$ $C_9H_4N^+$
5 53367,3 5 277973,4	- 410,1289 267,0866 249,0762	34,6 100 9,4	144,0453 126,0327 - 410,1308	100 5,5 67	144,0445 126,0323 -	100 29,7	$186 - C_2H_2O$ 144 - H_2O IM + H1 ⁺	$\begin{array}{c} C_9H_6NO^+\\ C_9H_4N^+\\ \end{array}$
5 53367,3 5 277973,4	- 410,1289 267,0866 249,0762	100 9,4	126,0327 - 410,1308	5,5 67	126,0323 -	29,7	144 - H ₂ O [M + H] ⁺	$C_9H_4N^+$
5 53367,3 5 277973,4	- 410,1289 267,0866 249,0762	100 9,4	- 410,1308	67	-		$[M + H]^{+}$	
5 277973,4	410,1289 267,0866 249,0762	100 9,4	410,1308	67			[]	$U_{14}H_{14}NU^{\circ}$
	267,0866 249,0762	9,4					[M + H]⁺	$C_{15}H_{24}NO_{12}^{+}/C_{16}H_{20}N_{5}O_{8}$
	249,0762		267,0863	6,6			[M + H - C₂H₀NO₅]⁺	$C_{13}H_{15}O_6^+/C_{14}H_{11}N_4O_2^+$
	111 0105	13,4	249,0763	32,1			267 - H ₂ O	$C_{13}H_{13}O_5^+/C_{14}H_9N_4O^+$
	144,0405	40,8	144,0466	100	144,0468	100	_	
			126,0352	6,3	126,035	23	144 - H ₂ O	
89503,9	524,1814	5,3					[M + H] ⁺	
294909,8	268,0824	100	268,0823	100	268,0823	48,1		C ₁₂ H ₁₄ NO ₆ ⁺ /C ₁₃ H ₁₀ N ₅ O ₂ ⁺
	250,072	7,7	250,0718	24,9	250,0712	19,5	268 - H₂O	
	232,0614	10,1	232,0611	22,6	232,0653	4,8	250 - H ₂ O	
			190,0509	8	190,0503	10,7		
			155,0693	3,4	147,0433	16,4		
			124,0378	10,2	124,0373	100		
189873,3	224,1092	100	-		-		[M + H]⁺	$C_{15}H_{14}NO^{+}$
	209,0831	2,5						
	160,1085	5,5						
94287,2	202,1267	100	202,1232	40	-		[M + H]⁺	$C_{13}H_{16}NO^+$
	171,1283	4,5						
	163,1481	2,9						
	138,1264	41	138,1259	100				
	121,0996	<u>3,</u> 5	121,0988	23,2				
184671,6	407,1355	100	407,1339	100	-			
	363,1421	8,7	363,1427	84				
	189873,3 94287,2 184671,6	189873,3 224,1092 209,0831 160,1085 94287,2 202,1267 171,1283 163,1481 138,1264 121,0996 184671,6 407,1355 363,1421	189873,3 224,1092 100 209,0831 2,5 160,1085 5,5 94287,2 202,1267 100 171,1283 4,5 163,1481 2,9 138,1264 41 121,0996 3,5 184671,6 407,1355 100 363,1421 8,7	190,0509 155,0693 124,0378 189873,3 224,1092 100 209,0831 2,5 160,1085 5,5 94287,2 202,1267 100 1138,1264 41 138,1259 121,0996 3,5 121,0988 184671,6 407,1355 100 407,1339 363,1421 8,7 363,1427 22	190,0509 8 155,0693 3,4 124,0378 10,2 189873,3 224,1092 100 209,0831 2,5 160,1085 5,5 94287,2 202,1267 100 163,1481 2,9 138,1264 41 138,1259 121,0996 3,5 121,0988 23,2 184671,6 407,1355 100 407,1339 100 363,1421 8,7 363,1427 84	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

7 Anhang	
----------	--

					321,1335	18,1			
			210,1181	4,2					
			177,1121	7,2					
			155,0982	5,5					
			133,0833	8,2	133,0846	14,4			
504,2337	278	38906,9	504,2425	100			-	[M + H]⁺	
			486,227	8,4				$[M + H - H_2O]^+$	
			429,2113	10	429,2096	21,7			
			375,1968	30,7					
			357,1859	52,6	357,1859	100		375 - H ₂ O	
			309,0758	13	309,0753	98,1			
399,1949	284	117030,0	399,196	100	399,1976	22,8			
			237,1437	23,7	237,1442	100	237,1435 10	0	$C_{11}H_{27}N_8O_8^+/C_{10}H_{17}N_6O^+$
			221,1133	5,8					
329,1526	286	92058,4	329,159	100	329,1523	24,3	-		$C_{16}H_{25}O_7^+/C_{12}H_{21}N_6O_5^+$
			313,1089	11,9					
			301,1076	3,5					
			285,1127	7				313 - CO	
			273,0915	3,1					
			253,0851	7	253,0864	100		285 - CH₄O	
					225,0935	57,1		253 - CO	
			185,0413	8,7					
545,1576	318	243803,6	-						
463,2286	378	251105,8	463,2317	100	463,2315	100			
					301,1758	87,8	301,176		$C_{15}H_{21}N_6O^+/C_{14}H_{25}N_2O_5^+$

Tab. 7. 28: Fragmentierung der differentiellen LC-MS Massensignale im negativen Modus des Mediums At > m. Die Fragmente wurden durch MS/MS Läufe mit 15 eV, 25 eV und 40 eV gewonnen.

			15 eV		25 eV		40 eV			
	RT			Intensität		Intensität		Intensität	Mögliche	Mögliche
[<i>m/z</i>]	[sek]	FC	Fragment	[%]	Fragment	[%]	Fragment	[%]	Annotierung	Summenformel
266,0970	53	119,1	266,0859	100	266,0879	21,6			[M - H] ⁻	$C_{10}H_{12}N_5O_4^{-1}$
					176,0546	13	176,0562	8,7	[M - H -	$C_7H_6N_5O^-$
									$[C_{3}H_{6}O_{3}]^{-}$	
			150,0398	23,4	150,0411	100	150,0420	51,4	$176 - C_2 H_2$	$C_5H_4N_5O^-$
					133,0157	26,5	133,0151	100	150 - NH₃	C₅HN₄O ⁻
555,1392	54	35953,5	-		-		-			
295,0922	61	73297,0	295,0844	39,1			-			$C_{13}H_{15}N_2O_6/C_{14}H_{11}N_6O_2$
			249,1311	78,4						
			219,0712	36,6						
			158,9799	100	158,9797	100				
382,0850	61	26174,2	-		-		-			
350,0956	61	48949,0	350,0965	100	-		-			
			179,0581	48,6						
			161,0493	11,9					179 - H ₂ O	
			143,0360	7,8					161 - H ₂ O	
595,1355	76	6,4	-		-		-			
241,0905	80	24,9	-		-		-			$C_{17}H_9N_2^{-1}$
530,1260	97	38158,6	-		-		-			
554,1367	133	44009,0	554,1396	98,5	554,1377	83				
					419,0920	32,7				
					321,0509	24,6	321,0486	26,8		
							293,0424	18,8	321 - N ₂	
			242,9465	100			-		_	
							195,0091	25.9		
					134,0491	100	134,0496	100		
530.1263	136	13468.6	-		-		-			
545,1275	152	7,7	545,1244	100	545,1218	81,1				

					499,2523	100	499,2428	34,4		
					440.0044	00.0	455,2344	30		
					419,0944	80,6	040 4000	50		
					405 0007	00.4	213,1220	52		
0074404	474	00440.0			125,0387	60,4	125,0391	100		
227,1481	1/4	23440,3	-		-		-			$C_{10}H_{19}N_4O_2$
395,1005	180	19192,1	395,0970	100	395,0888	3,6				
			349,0912	28,7	349,0895	13,2				
327,1154	180	195806,6	327,1079	84,2	327,1085	100	327,1071	22,9		$C_{14}H_{19}N_2O_7^{-1}$
			191,0345	17,3	191,0362	8,1	191,0334	25,8		$C_{10}H_7O_4/C_{11}H_3N_4$
							176,0119	100	191 - CH₃	
					165,0565	6	165,0541	62,5		
					147,0462	6,1	174,0484	51,6	165 - H₂O	
427,1843	181	18327,5					-			
			381,1774	100	381,1771	54,8				
			235,1202	8,4	235,1200	100				
739.2038	196	17745.8	739.2093	100	739.2127	100				
,		,.	593,1418	57.4	593,1659	80.8	593,1517	100		
			,			,-	430.0920	67.5		
					329.0764	61.8	,	,-		
					307 0937	52.1				
					001,0001	02,1	284 0367	57 6		
			277 1260	93.6	277 1366	62 5	204,0007	07,0		CueHu-On ⁻
1/3 1578	203	17223.2	-	55,0	-	02,0	_			
406 0901	203	52124.0			-		-			
490,0601	203	22622.2	-		-		-			
105,0037	203	32032,3	-	1.0	-		-			
000,2220	205	39270,9	005,22	1,0						
0 40 4070	005	004454	387,09	4,7						
343,1079	205	26415,1	343,10	100	343,1024	34,1			387 - CO ₂	
				. -			319,1021	69,8		
			317,12	29	317,1223	100				
							301,0919	50,4	319 - H ₂ O	

					299,1110	12,1		317 - CO ₂	
			277,12	11,7					
					275,1135	13	275,1120 100		
					257,1001	7,1	257,1007 62,5	275 - H ₂ O	
							235,1191 14,6		
							217,1075 5,9	235 - H ₂ O	
							183,0278 8,2		
643,2431	205	44562,2	-		-		-		
321,1255	205	30418,0			-		-		$C_{24}H_{17}O^{-}/C_{19}H_{17}N_{2}O_{3}^{-}$
			235,11	100					
277,1384	205	83,4	277,15	5,4			-	[M - H] ⁻	$C_{12}H_{17}N_6O_2/C_{11}H_{21}N_2O_6$
235,1276	205	103898,9	235,11	100	235,1165	100		$[M - H - C_2 H_2 O]^{-1}$	$C_9H_{19}N_2O_5/C_{10}H_{15}N_6O^{-1}$
			192,07	14,6					
			165,05	27,8	165,0559	100			
			121,07	12,3	121,0682	40,6		165 - CO ₂	
369,1251	208	46221,5	369,12	100			-	[M - H] ⁻	$C_{18}H_{17}N_4O_5/C_{17}H_{21}O_9$
			327,11	78,2				$[M - H - C_2H_2O]^{-1}$	C ₁₆ H ₁₅ N ₄ O ₄ ⁻ /C ₁₅ H ₁₉ O ₈ ⁻
			309,09	54,2	309,1044	10		327 - H ₂ O	C ₁₆ H ₁₃ N ₄ O ₃ ⁻ /C ₁₅ H ₁₇ O ₇ ⁻
			277,14	26,8					
			262,07	20,5	262,0746	38,7			
			249,06	15,9				262 - CH	
			235,11	41,7	235,1215	100		369 - C ₇ H ₃ O ₃	C ₁₁ H ₁₅ N ₄ O ₂ ⁻ /C ₁₀ H ₁₉ O ₆ ⁻
			165,05	8,6	165,0564	23,7			
			147,04	8,5				165 - H ₂ O	
423,1913	216	133323,0	423,19	72				[M - H] ⁻	$C_{19}H_{27}N_4O_7^{-1}$
381,1808	216	23873,1	381,18	100	381,1812	38,1		$[M - H - C_2H_2O]^{-1}$	$C_{17}H_{25}N_4O_6$
			321,11	3				381 - C ₃ H ₈ O	$C_{14}H_{17}N_4O_5$
			277,13	8,5				321 - CO ₂	$C_{13}H_{17}N_4O_3$
			235,12	35	235,1233	100	235,1196 100	277 - C ₂ H ₂ O	$C_{11}H_{15}N_4O_2$
			217,11	4,1	217,1085	2,8		235 - H ₂ O	$C_{11}H_{13}N_4O^{-1}$
467,1796	216	23999,7	-		-		-	_	
593,1501	216	41686,5	593,14	100	593,1490	100			

	[551,13	12,1						
			507,12	13,7	507,1354	14				
					465,1302	15,9	465,1333	15,3		
					447,0951	33,8	447,0970	19,7		
					431,0934	47,5				
							430,0914	78,4	447 - OH	
							285,0425	100		
			275,10	54,5	275,1055	56,2	275,1043	24,6		
577,1560	230	29710,1	577,15	96,6	577,1680	52,4	-			
					431,1011	93,7				
			297,14	100	297,1424	100				
443,1958	241	91309,4	-		-		-			
485,2038	266	110269,7	485,20	100	485,2230	4,8	-			
			443,18	79	443,1904	75				
					297,1353	100				
					273,0756	44,4				
										$C_{24}H_{19}O_2/C_{20}H_{15}N_6$ oder
339,1399	275	65796,3	-		-		-			$C_{19}H_{19}N_2O_4^{-1}$
583,2159	285	44798,2	-		-		-			
207,1479	286	19186,8	-		-		-			$C_{12}H_{19}N_2O^{-1}$
479,2492	307	36207,2	479,25	49	479,2562	4,7	-			
			437,23	44,5	437,2350	13,6				
			411,09	57,7	365,0944	64,6				
			365,09	50,6	349,1263	15,6				
			349,12	100	291,1796	28,9				
			281,14	72,5	281,1428	100				
			271,19	38,6	271,1898	18,4				
505,2633	315	13089,4	-		-		-			
567,1694	318	17403,2	-		-		-			
174,0648	321	14930,2	174,05	100	174,0573	33,6			[M - H] ⁻	C ₁₀ H ₈ NO ₂
			159,03	15,7	159,0347	13,6			[M + H - CH ₃] ⁻	$C_9H_5NO_2^-$
1										

					131,0445	4,7				
			115,04	4,7	115,0428	32,1	115,0451	100	131 - O	
421,2360	324	25134,1	421,20	100	421,2248	67			[M - H] ⁻	
					403,2044	7			[M - H - H₂O] ⁻	
					377,2217	5,1			[M - H - N₂O] ⁻	
			349,11	22,6		-				
			281,12	50,8	281,1369	100	281,1396	100		
					257,1695	4,2				
							249,1840	4,6		
							233,1551	7,9	249 - CH ₄	
									257 - 2 H₂O,	
					221,1487	17,8	221,1512	22,1	249 - C ₂ H ₄	
					145,0594	26	145,0627	35,3		
					127,0514	5	127,0535	16,4	145 - H ₂ O	
422,2217	343	15264,5	422,21	100	422,2187	100			[M - H] ⁻	$C_{22}H_{32}NO_7^{-1}$
					404,2047	27,2			[M - H - H ₂ O] ⁻	
					293,1798	35,5				
					249,1860	22,5	249,1887	46,3	293 - CO ₂	
							221,1569	100	249 - C ₂ H ₄	
					146,0459	11,1	146,0524	19,5		
					128,0350	33,5	128,0361	60,4	146 - H ₂ O	$C_5H_6NO_3^-$
439,2345	378	73385,3	439,23	6,1			-			
			277,18	100	277,1835	100				
					257,1560	44,5				
473,2535	382	28177,5	473,23	100			-			$C_{27}H_{37}O_7/C_{28}H_{37}O_7$
			425,21	19,8						
			401,21	95,1	401,2258	42,3			473 - C ₃ H ₄ O ₂	$C_{24}H_{33}O_5/C_{25}H_{29}N_4O^{-1}$
			353,19	23,5	353,2061	100				
			309,19	14,4	309,2054	5,4			353 - N ₂ O	
			259,15	4,9	259,1607	5,7				
223,2144	386	2,2	-		-		-			$C_{14}H_{27}N_2^{-1}$
267,2036	386	2,2	267,20	33,3	267,1891	9,4				$C_{15}H_{27}N_2O_2^{-1}$

			223,21	100	223,2002	100			267- CO ₂	$C_{14}H_{27}N_2^{-1}$
333,1742	386	2,1	333,16	100	333,1775	18,1			[M - H] ⁻	$C_{13}H_{25}N_4O_6^-$
			315,15	53,4	315,1546	88,9			[M - H - H ₂ O] ⁻	
			291,15	77,9	291,1600	100				
					263,1646	35,1			291 - CO	
			259,16	7,9			259,1675	100		
			241,14	72,4	241,1416	14,7			259 - H ₂ O	
					197,1536	8,8			241 - CO ₂	
311,1919	386	2,1	311,18	54,6					[M - H] ⁻	$C_{16}H_{27}N_2O_4/C_{17}H_{27}O_5$
			293,17	9,3					[M - H - H ₂ O] ⁻	
			267,19	100	267,1976	7,4			[M - H - CO ₂] ⁻	C ₁₅ H ₂₇ N ₂ O ₂ /C ₁₆ H ₂₇ O ₃
			249,18	7,3	249,1872	4	249,1886	10,2	267 - H ₂ O	
			241,14	18						
			223,20	96,1	223,2071	100	223,2075	100	267 - CO ₂	$C_{14}H_{27}N_2^{-}/C_{15}H_{27}O^{-}$
							207,1750	13,2	249 - C ₂ H ₂ O	
231,1826	392	2,3	231,17	100	231,1755	100	-			$C_{10}H_{23}N_4O_2/C_{11}H_{23}N_2O_3$

7.3. GC-MS Spektren

Tab. 7. 29: Auflistung der differentiellen Metabolitencluster, die in den GC-MS Analysen detektiert wurden. Es ist für das jeweilige Metabolitencluster die Clusterzeit und das zugehörige Spektrum aufgelistet. Konnte die Verbindung identifiziert werden, ist der Name aufgeführt. Die nicht identifizierten Metabolitencluster wurden mit Unbekannte 1-76 nummeriert.

Name	Clustertime	Spektrum
Unbekannte 28	1013,86	92:2238 93:4199 106:18909
Unbekannte 41	1021,39	76:849 80:892 87:738 103:836 115:3070 118:10188
Unbekannte 40	1032,26	211:1486 261:1764 353:1196
4-Hydroxy-	1068,98	87:1244 88:1031 101:1163 102:1140 103:842 117:9793 118:1431 119:999 131:1506 133:3100 190:2513
benzoesäure (2TMS)		191:3032 192:1083 219:1088

4-Hydroxy-	1069,18	87:1265 88:1048 101:1038 102:1118 103:748 115:663 117:11610 118:1430 119:895 129:549 131:1366
benzoesäure (2TMS)		134:763 135:559 190:2936 191:3635 192:951 193:599 219:1120
Unbekannte 64	1077,25	77:3489 91:1709 106:2409 107:3041 108:1777 134:7433 135:4283
Unbekannte 49	1097,52	80:1064 100:1080 154:4813 155:946
Alanin (2TMS)	1108,3	76:1509 77:1025 84:1225 85:1073 86:5255 87:1856 88:1339 94:1419 100:6484 101:3573 102:2633
		103:3188 114:1226 115:1711 116:90617 117:11384 118:3792 119:1135 128:1550 130:1357 131:2676
		132:1488 133:4384 134:987 144:1036 190:7572 191:1690 192:1127 218:2110
2-Furansäure (1TMS)	1136,75	85:814 95:6313 96:1066 97:1018 125:9884 126:2145 127:1127 169:4665 170:1287 184:1366
Unbekannte 46	1175,78	131:939 133:864 159:3623 160:856
Unbekannte 20	1181,99	82:1390 89:3222 99:1376 114:793 115:687 189:1514 200:1507
Unbekannte 56	1213,93	115:795 131:1687 133:709 248:785
Unbekannte 24	1218,62	76:2418 77:1617 82:3752 84:3327 85:2587 86:3119 89:6754 98:1777 99:3679 100:21519 101:2380
		102:1928 115:2715 128:2102 140:772 156:53034 157:6666 158:2931 189:3759 200:5384 216:4847
Unbekannte 68	1224,43	139:999 169:3524 170:1286
Unbekannte 39	1229,99	84:958 139:1459 212:794 227:2324 228:831
Unbekannte 71	1237,32	96:804 102:877 116:2016 197:733
Urea (2TMS)	1242,65	85:608 87:923 99:2393 100:1371 101:1088 115:569 116:506 117:448 130:1164 131:1184 132:863 133:803
		146:1326 171:1389 173:819 189:8784 190:1639 191:922
Unbekannte 47	1246,33	83:834 129:1286 143:991 159:4321 160:832
Unbekannte 22	1247,88	86:948 96:1321 100:4241 114:2376 127:1561 128:1047
Unbekannte 03	1251,47	105:766 135:459 179:807
Benzoesäure (1TMS)	1252	76:70089 77:909785 78:60945 80:1167 81:2403 82:1336 83:3516 84:1085 85:3737 86:1998 89:25313
		91:16318 92:4137 93:5251 94:1271 95:3824 96:12924 97:1915 98:1302 100:2558 101:2261 102:1100
		104:13306 105:999794 106:74628 107:9811 108:1221 109:2463 112:995 114:2834 116:14049 118:2513
		119:12576 120:3479 121:15100 122:2674 123:1388 128:1033 129:1357 131:3629 132:1412 133:4534
		134:6964 135:634685 136:85754 137:24902 138:2121 150:2206 151:1452 163:3990 164:2995 165:1217
		169:991 170:1186 174:1079 175:1038 178:5712 179:1220234 180:175630 181:53667 182:4744 185:1076
		193:22205 194:87668 195:14376 196:4148
Unbekannte 30	1258,65	76:929 77:1313 82:2249 83:1343 84:1022 85:936 87:1315 89:4425 90:961 91:813 98:987 99:948 100:811
		110:1415 113:1753 114:7864 115:1176 119:1012 129:2507 130:1001 141:1538 142:1131 143:1589 216:856
		231:1082
Unbekannte 13	1283,76	101:3031 129:2021 175:4675 218:4037

2-Desoxyribose	1283,9	81:3380 99:903 111:895 113:943 127:985 143:828 155:3067 156:959 157:999 169:3041 170:3282 171:1127
(2TMS)		
Nicotinsäure (1TMS)	1298,22	76:14574 77:31904 78:228048 80:1753 81:1754 82:1324 83:3576 84:2174 85:1380 86:1158 90:7356
		91:1538 92:2230 93:3726 94:2695 95:1806 96:1560 104:1393 105:22245 106:192909 107:14602 108:2475
		109:2802 110:1529 120:4013 121:1389 122:4816 123:1548 134:1874 135:1979 136:227349 137:29340
		138:9120 150:2071 151:1333 162:1639 164:1852 179:2001 180:406454 181:56576 182:17739 183:2656
		194:3883 195:12377 196:2488
Bernsteinsäure	1318,96	76:1351 77:883 112:2322 116:829 129:3204 130:1023 131:898 133:1052 172:1047 173:912 247:2008
(2TMS)		248:949
Unbekannte 35	1336,4	81:6242 82:784 83:1411 85:850 88:784 89:1604 96:982 103:1630 105:764 115:1372 116:890 117:1327
		119:1795 131:1722 133:5516 134:1061 135:1004 175:1163 177:1192 189:2458 190:804 191:3495 192:1011
		193:4130 194:1235 195:741 205:2529 206:961 207:7117 208:1752 209:1140 221:37065 222:8489 223:4802
		224:1054 289:2788 290:957 291:698
Unbekannte 38	1349,35	77:1427 84:992 89:2924 93:1238 98:2105 101:906 103:1282 114:963 116:1078 171:730 184:1049 212:923
Unbekannte 66	1364,34	97:3649 115:755 117:1584 129:1370 130:717 131:1111 132:1022 145:746 157:733 187:1492 196:804
		206:953 215:1781
Unbekannte 31	1364,98	108:1122 152:1426 166:1180 167:1098 240:4069 241:1208 242:816 254:744
Serin (3TMS)	1373,25	76:414 86:510 88:767 89:519 100:4455 101:965 102:544 103:2160 114:589 115:981 116:1752 117:1007
		119:589 130:526 131:932 132:1516 133:3024 134:653 135:460 158:468 159:498 160:412 172:553 174:1035
		175:359 188:1701 189:775 190:607 203:1226 204:16680 205:3452 206:1536 216:675 218:10669 219:2157
		220:1049 278:1646 279:543 306:752
Serin (3TMS)	1373,31	100:2440 103:1321 116:1110 132:1043 133:2131 203:882 204:7303 205:1879 206:979 218:4655 219:1290
		278:1119
Unbekannte 45	1424,01	94:654 103:942 129:707 167:840 169:1495 234:2175
Unbekannte 16	1438,27	77:1162 89:769 103:922 133:1357 163:1040 207:1844
3,5-	1464,84	76:699 83:762 89:965 95:860 96:886 103:939 133:1988 163:1476 207:2102 212:880 287:1273
Dimethylbenzoesäure		
(1TMS)		
Unbekannte 51	1481,7	115:725 129:1090 133:906
Unbekannte 60	1494,59	79:3524 83:709 129:712 143:720 301:878
Adipinsäure (2TMS)	1510,67	76:2396 83:2723 85:906 86:1150 99:1145 101:1128 103:1084 111:5752 112:919 115:989 116:1312
		117:2192 129:3311 130:1331 131:1214 133:1501 141:3254 142:1046 143:810 157:963 159:1903 172:2735
		173:993 185:1180 204:1164 217:1485 275:2793 276:918

Pyroglutamat (2TMS)	1535	77:1157 80:866 82:1167 83:1074 84:2604 85:2385 86:3444 97:730 98:1519 99:1502 100:3465 101:1173
		102:1134 103:1112 110:1247 112:3321 113:1354 114:2036 115:1377 117:1759 121:1424 126:1156 130:774
		131:2301 132:1131 133:4259 134:1154 140:3920 141:2249 142:1823 154:1482 155:1238 156:71477
		157:9864 158:4766 168:1033 174:1056 214:1299 218:1167 228:1262 230:9141 231:2391 232:4519
		258:7794 259:2031 260:1268
Pyroglutamat (2TMS)	1535,55	76:3679 77:1648 80:937 81:492 82:1462 83:1301 84:5047 85:4354 86:6732 89:620 94:873 96:736 97:878
		98:2173 99:2503 100:8210 101:2016 102:1295 103:1704 105:715 110:1491 111:770 112:7326 113:2087
		114:3728 115:2427 117:3393 119:1192 121:2537 126:1481 127:855 128:956 129:1259 130:1321 131:4982
		132:1917 133:10134 134:1661 135:1028 139:678 140:9004 141:4066 142:3235 143:1081 144:738 150:818
		151:477 154:2219 155:1795 156:203858 157:27122 158:9795 168:1290 170:774 172:757 173:473 174:1503
		175:455 185:533 186:760 188:1007 190:697 191:375 202:1553 203:597 204:665 214:1914 215:740
		216:1553 218:3465 220:522 228:1551 229:602 230:23648 231:4971 232:16718 233:3566 234:1463
		258:20710 259:4559 260:2050 273:1000 306:745
Unbekannte 69	1545,1	103:1214 174:955 185:867 258:1196
Unbekannte 37	1545,17	85:1070 105:838 129:685
Unbekannte 02	1557,05	80:551 91:513 94:535 95:1487 96:5552 97:837 105:332 106:753 107:752 122:603 123:631 124:1449
		125:6952 126:898 130:850 146:2728 227:418
Unbekannte 19	1599,81	76:995 81:1201 87:920 101:2085 105:906 113:1158 115:853 116:1101 117:1885 119:3344 127:1064
		129:802 131:2020 133:11618 134:2552 135:1580 141:1038 161:8136 162:1692 213:1296 221:5788
		222:1459 223:939 235:1705 275:2222
3-Phenyl-Lactatsäure	1603,46	78:1564 91:18563 92:2179 103:3960 104:2961 115:1289 121:1280 131:3244 135:1643 177:1057 178:920
(2TMS)		190:758 193:23203 194:4586 195:1457 204:1231 205:1742 219:2329 220:4744 267:2772 295:2292
Unbekannte 52	1633,7	89:754 97:1890 115:803 125:1280 133:684 187:1529
Unbekannte 15	1638,34	76:12097 77:1767 84:2740 86:1670 87:7954 88:1570 89:845 90:722 99:933 100:2897 101:7955 102:2171
		103:2803 104:1048 113:1321 114:1624 115:1736 116:2514 117:4072 118:1727 119:1405 128:6662
		129:2111 130:7826 131:20761 132:5848 133:8078 134:2897 135:1537 142:1722 143:1292 144:720
		145:1048 150:2833 151:1186 156:2852 157:1067 158:2853 159:6111 160:1811 161:3694 162:1006 189:884
		205:1621 206:2256 207:974 217:918 218:1656 219:3220 220:1874 221:1715 230:2685 232:2482 233:5911
		234:1783 246:19207 247:5044 248:6280 249:81058 250:17810 251:7956 252:1584 261:1723 277:1657
		323:2169 348:2445 350:878 351:6497 352:2339 353:1593 363:1495 366:2806 367:1258
Unbekannte 09	1638,58	76:7240 84:1760 85:536 86:877 87:4476 88:791 89:473 98:461 99:495 100:2240 101:4473 102:1122
		103:1595 112:457 113:773 114:900 115:1004 116:1370 117:2331 118:974 119:687 128:4863 129:1377
		130:4428 131:11462 132:3289 133:4394 134:1477 135:709 140:644 142:889 144:419 145:461 150:1599

		151:594 156:1596 157:550 158:1593 159:3484 160:878 161:2083 174:526 203:473 204:692 205:811
		206:1229 207:490 216:499 218:1063 219:1763 220:969 221:838 230:1478 231:513 232:1282 233:3124
		234:805 246:15108 247:3460 248:3621 249:42698 250:9450 251:4305 252:776 261:748 263:379 277:711
		323:1003 348:1337 349:526 350:450 351:3369 352:1138 353:630 363:790 366:1367
Unbekannte 08	1638,73	104:530 143:715 146:569 235:588 320:437
4-Hydroxy-	1642,62	76:7048 77:5109 78:2601 80:827 81:1686 82:884 83:3206 84:855 85:3167 87:1544 89:6458 90:3305
benzoesäure (2TMS)		91:12406 92:10350 93:4085 94:849 95:3369 96:1499 97:2287 98:789 99:1119 101:1074 102:1068 103:4120
		104:3913 105:7456 106:1436 107:3201 109:1901 111:1617 115:2778 116:901 117:2029 118:2166 119:4571
		120:3447 121:5018 122:4854 123:2483 125:946 126:10629 129:963 131:2216 133:7112 134:2467 135:9607
		136:2475 137:2025 143:1006 145:1040 150:3521 151:16359 152:2932 153:1208 157:1145 163:1982
		165:2268 166:2499 167:952 177:2059 178:932 179:11718 180:2083 181:2451 191:2866 192:1251
		193:41910 194:17383 195:6452 196:1192 207:6462 208:1549 209:1826 217:2837 221:1465 223:52903
		224:18926 225:9314 226:1618 237:1613 267:73298 268:22844 269:11734 270:2369 281:4385 282:20424
		283:8193 284:3374
Unbekannte 14	1645,9	76:1523 77:853 81:1017 82:1007 83:896 86:1806 93:1109 94:1317 95:6174 96:41878 97:4631 98:884
		100:10021 101:2662 102:1554 103:1541 106:691 107:1239 108:1321 109:1003 115:1245 117:1586 118:997
		119:1073 122:1065 123:1061 124:1008 125:1000 126:1451 128:659 130:3020 131:2627 132:5314 133:4774
		134:1870 135:1426 136:906 140:1413 144:1090 146:1064 150:964 151:776 153:703 158:1029 159:1251
		160:1476 163:929 164:1620 165:1663 166:1010 167:1928 174:1459 181:1673 182:1702 195:992 196:5121
		197:41603 198:8198 199:2214 203:3018 204:986 209:1130 218:50251 219:10770 220:4888 221:1095
	4004 70	2/1:5312 2/2:2065 2/3:1003 299:15/5
Asparagin (31MS)	1694,73	76:496 77:340 101:406 114:492 115:660 116:3547 117:827 125:372 128:459 130:663 131:886 132:1855
		133:884 141:775 159:522 188:1264 189:487 202:752 204:555 215:707 216:442 218:785 231:2357 232:807
Link algorate CC	4007.00	258:517 275:574 333:493
Unbekannte 65	1697,83	89:663 103:915 115:1256 129:816 131:906 133:852
Unbekannte 34	1715,76	77:3390 103:1300 151:840 225:1389 313:2889 314:1252 315:867 317:1686 367:2984 368:1223 369:836
2-Phosphoglycerat	1762,33	76:786 77:1696 79:1268 83:1324 85:1998 103:834 107:2346 111:779 133:5371 134:961 135:1077 151:4023
(4TMS)		166:1716 167:877 179:862 181:4849 182:1121 183:949 195:3812 196:1193 209:1685 211:893 224:2128
		225:807 299:6692 300:1791 301:893 314:3729 315:1023
Ornithin (3TMS)	1774,23	86:1410 100:1017 130:1391 131:1247 142:2652 174:6581 175:1683 176:975 186:1833 244:1112 348:1247
Unbekannte 70	1781,21	103:3589 167:867 210:1152
Unbekannte 11	1809,94	89:2824 103:3051 117:950 129:1672 131:1026 133:2127 159:1230 217:8520 218:2300 219:1506 257:2754
		258:1142 289:1053 379:1898

Unbekannte 12	1825,37	88:1166 89:3856 103:4903 117:1573 129:2254 131:1628 133:3098 143:1200 159:1351 169:857 189:1465
		199:1251 217:11625 218:2727 219:1760 230:978 233:1131 257:4467 258:1737 289:1630 379:2780
		380:1287
Unbekannte 33	1831,1	91:985 101:2164 102:881 104:1263 115:1918 116:1280 117:1403 130:872 133:2485 135:971 163:1467
		177:1167 179:16068 180:3567 181:1285 191:1420 193:2222 203:1725 205:1189 217:937 220:4667
		221:1537 253:1283 292:1723 293:1053
Unbekannte 29	1848,53	78:2550 91:1766 102:1465 103:3499 104:3016 118:1407 119:2386 132:1786 161:2989 162:1221 191:4430
		192:1101 205:3441 206:1546 220:7658 221:3830 222:1632 265:4593 266:1727
Unbekannte 59	1881,06	111:727 220:774 226:1055
Fructose (1MEOX)	1908,17	76:1636 77:922 82:1614 83:853 84:9563 85:2614 86:1081 87:2222 88:3769 89:27228 90:2550 91:1339
(5TMS)		98:1137 99:1917 100:6335 101:8044 102:2975 103:262480 104:24545 105:11849 106:844 111:777 112:554
		113:3426 114:4497 115:3197 116:3205 117:46940 118:4838 119:5689 120:725 121:490 126:2053 127:1396
		128:2087 129:17611 130:4452 131:15829 132:2819 133:56239 134:7003 135:4076 136:513 140:795
		141:780 142:2711 143:4693 144:1304 145:2851 146:1491 150:1935 151:872 152:508 154:687 155:699
		156:1596 157:4903 158:2482 159:2204 160:1078 161:1359 162:451 163:6456 164:1146 165:743 168:805
		169:485 170:691 171:530 172:12284 173:9494 174:2701 175:5669 176:1083 177:2993 178:579 179:516
		180:774 186:1733 187:1632 188:3332 189:25267 190:5744 191:14577 192:2732 193:1633 194:371 198:884
		199:406 200:2264 201:6530 202:5808 203:4020 204:22056 205:42746 206:9384 207:8037 208:1559
		209:732 214:2865 215:1152 216:5479 217:174817 218:34959 219:15895 220:2873 221:11810 222:2718
		223:1642 228:1104 229:1446 230:3449 231:4155 232:1597 233:1047 235:1839 240:1103 242:1165 243:694
		244:3245 245:1073 246:1357 247:2320 248:895 249:586 254:550 256:3404 257:1034 258:692 260:9355
		261:2932 262:7173 263:6390 264:1742 265:1554 268:577 270:886 272:513 274:706 275:1070 276:2593
		277:28814 278:8358 279:4165 280:948 288:2780 289:941 290:677 291:12002 292:4272 293:2176 294:625
		300:884 302:2851 303:1678 304:1130 305:2886 306:1386 307:134197 308:37886 309:18806 310:3725
		311:936 318:3854 319:3415 320:1394 321:626 328:655 330:2236 331:850 332:1678 333:2475 334:3195
		335:4982 336:1859 337:776 344:669 345:553 350:1634 351:673 358:480 360:428 364:16857 365:5456
		366:2723 367:768 376:1253 378:702 379:462 392:545 393:1038 394:508 402:563 420:470 464:827
		466:1070 492:634 554:1454 555:777 569:633
Fructose (1MEOX)	1908,22	76:2755 77:2456 80:1064 81:1364 82:2763 83:1846 84:11341 85:3557 86:1905 87:3534 88:5021 89:34838
(5TMS)		90:3718 91:2384 94:1125 95:977 96:1070 97:1311 98:2117 99:3166 100:7860 101:10590 102:5137
		103:316506 104:29656 105:14945 106:1812 107:948 109:1092 110:1599 111:1873 112:2055 113:5030
		114:5789 115:4625 116:4790 117:57892 118:6467 119:7576 120:1543 124:1034 125:1184 126:3424
		127:2415 128:3378 129:22834 130:6105 131:20762 132:6377 133:70328 134:9462 135:5537 136:1325
		137:1291 138:1002 139:1027 140:1796 141:2466 142:3994 143:9627 144:2462 145:4673 150:3113

		151:1961 152:1418 154:1776 155:2175 157:6903 158:4037 159:3515 160:2380 161:2948 162:1375
		163:8396 164:2406 165:2051 166:1180 167:1207 168:1920 169:1390 170:1879 171:2359 172:16868
		173:13041 174:4466 175:7192 176:2323 177:4519 178:2791 179:1911 180:1948 181:1358 182:1388
		183:935 184:2020 185:1297 186:3393 187:2731 188:4512 189:32646 190:7740 191:19815 192:4563
		193:3511 194:1519 195:883 196:1416 197:1002 198:2124 200:3727 201:9207 202:14940 203:6264
		204:27326 205:49085 206:11356 207:10396 208:2684 209:1812 210:1175 212:1427 213:1759 214:4702
		215:2590 216:9931 217:239748 218:48196 219:22325 220:4790 221:14644 222:3781 223:3897 224:1194
		225:997 226:1427 227:1242 228:2365 229:2899 230:5495 231:7068 232:3182 233:4334 234:1372 235:3646
		236:1648 237:1758 238:1304 240:2265 241:1171 242:2368 243:1944 244:5170 245:2666 246:3343
		247:5547 248:3028 249:1520 253:1218 254:2844 255:1528 256:6015 257:2145 258:1951 260:11541
		261:4354 262:9125 263:9318 264:3522 265:2925 266:2049 267:1265 268:1487 269:1385 270:2337
		271:1552 272:1393 274:2312 275:2798 276:4818 277:40976 278:12559 279:6570 280:2545 281:1342
		286:2683 287:1897 288:4645 289:2383 290:2781 291:15119 292:5672 293:3790 294:1680 295:1483
		300:2251 301:2374 302:4657 303:3517 304:2768 305:4453 307:190439 308:53460 309:27686 310:6409
		311:2706 312:1613 314:1261 316:1445 317:1565 318:5167 319:5208 320:4123 321:1984 322:1150
		328:1966 329:1723 330:4466 331:2269 332:3769 333:4551 334:5336 335:8671 336:4077 337:2396
		338:2390 342:2122 343:1454 344:1865 345:1594 346:1786 348:2016 350:3597 351:2370 352:1638
		358:1790 359:1745 360:2431 362:1471 364:24669 365:8360 366:4870 367:2202 373:1371 374:1465
		376:2980 377:1866 378:2983 379:1619 388:973 390:3571 391:2384 392:1693 393:2782 394:2077 402:1780
		403:1911 404:1291 420:1594 434:2308 435:1316 448:2569 464:2187 465:2684 466:2210 467:1444
		492:1593 493:2487 554:2987 555:2206 556:1609 569:3094 570:1781
Unbekannte 01	1908,52	184:469 314:416 377:570 390:619 465:452
Unbekannte 53	1908,69	79:1349 153:1379 298:1224 433:1357 538:1200
Glucose (1MEOX)	1936,81	76:3029 78:1084 80:1327 81:2348 82:3362 83:2830 84:2631 85:2786 86:4891 87:3359 88:3620 89:34323
(5TMS)		90:3649 91:2623 93:938 94:1185 96:1888 97:2114 98:2009 99:5179 100:8273 101:12062 102:9873
		103:81872 104:8657 105:19139 106:3092 107:1798 110:1609 111:2242 112:2353 113:3599 114:10026
		115:6139 116:9354 117:57201 118:6670 119:6780 120:1770 121:2045 124:1465 125:1379 126:2795
		127:3456 128:4452 129:38939 130:10513 131:20543 132:4539 133:51165 134:7903 135:7878 136:2246
		137:1024 138:2651 139:2032 140:1657 141:2281 142:4392 143:11754 144:2959 145:7405 150:3752
		151:2421 152:1588 153:1230 154:1886 155:3336 156:3374 157:24495 158:9070 159:7604 160:128253
		161:21905 162:7305 163:15472 164:2471 165:1879 166:1145 167:1206 168:2282 169:2750 170:3740
		171:2782 172:3458 173:5204 175:12882 176:3377 177:5158 178:1779 179:2509 180:3113 181:2416
		182:2620 183:1745 184:2425 185:2971 186:4087 187:2650 188:4173 189:35855 190:10134 191:24672
		192:3646 193:4918 194:2077 195:1123 196:1677 197:1080 198:2050 199:2549 200:3059 201:3824

		202:2559 203:5512 204:40693 205:420668 206:44533 207:45878 208:4883 209:2430 210:4176 211:1566
		212:1604 213:2422 214:3930 215:4209 216:12512 217:88084 218:19707 219:10350 220:6037 221:10273
		222:3372 223:2338 224:2512 225:1498 226:1306 227:1241 228:2845 229:21692 230:7718 231:15220
		232:5045 233:6401 234:5066 235:2690 236:1475 237:1478 240:2416 241:1725 242:4246 243:3838
		244:5008 245:6917 246:5265 247:4074 248:3965 249:1740 253:1184 254:1867 255:1409 256:3206
		257:2320 258:2169 259:3295 260:3278 261:2246 262:7979 263:3496 264:2480 265:2718 266:1512
		267:1155 268:2242 269:4551 270:3187 271:3601 272:4356 273:11428 274:9886 275:9076 276:3562
		277:9988 278:5194 279:3196 280:1826 281:1888 284:4460 285:4877 286:3927 287:1720 288:1772
		289:1558 290:3302 291:23169 292:7396 293:4515 294:2072 295:1305 296:1175 298:1123 300:4595
		301:2500 302:2913 303:2075 304:2854 305:11858 306:6513 307:11396 308:4113 309:2691 310:1622
		314:1502 315:1977 316:1636 317:4313 319:270331 320:78356 321:39250 322:9436 323:3596 324:1537
		328:1528 329:1623 330:2346 331:3057 332:2862 333:3047 334:2321 336:1974 342:1285 343:3836
		344:2798 345:2537 346:1764 356:1128 358:4277 359:2108 360:1702 362:3368 363:5275 364:9373
		365:5471 366:3073 367:1684 374:4326 375:2445 376:3876 377:2308 378:1499 379:1721 389:1819
		390:2531 391:2139 393:2011 405:1014 420:1525 432:1520 433:1437 448:2303 449:1545 450:2039
		464:2985 465:1885 466:3154 467:1781 468:1337 480:1646 523:2021 554:2590
Glucose (1MEOX)	1937,18	76:4225 77:2215 79:1033 80:822 81:1062 82:4660 83:4100 84:1615 85:3850 86:7867 87:4474 88:5046
(5TMS)		89:55565 90:4769 91:2941 96:642 97:1526 98:1987 99:4606 100:15451 101:21121 102:11652 103:181111
		104:17666 105:42336 106:4276 107:1796 110:1030 111:2010 112:2780 113:4892 114:19711 115:10129
		116:9633 117:119444 118:12216 119:11759 121:861 125:717 126:2681 127:5094 128:7301 129:77965
		130:19325 131:38479 132:7232 133:100648 134:13679 135:8428 136:955 138:673 139:670 140:1165
		141:2314 142:5906 143:20249 144:3495 145:13139 150:5080 151:2306 152:1162 153:626 154:1247
		155:1794 156:1974 157:54026 158:14143 159:7922 160:305113 161:48602 162:14522 163:15509 164:2525
		165:1646 166:638 167:458 168:2294 169:2897 170:1590 171:1121 172:4420 173:8853 174:4316 175:10690
		176:2194 177:7766 178:1506 179:953 180:962 181:768 182:846 184:651 185:1166 186:5280 187:2192
		188:2338 189:61348 190:18053 191:28800 192:5312 193:3275 194:782 195:485 196:1028 198:1571
		200:3103 201:5551 202:2633 203:7937 204:96860 205:436520 206:86776 207:45084 208:8935 209:2466
		210:5817 211:1125 212:1033 213:522 214:1918 215:6259 216:27613 217:210339 218:44755 219:19748
		220:4413 221:18493 222:4516 223:2536 224:643 226:611 227:537 228:2921 229:47505 230:15525
		231:31152 232:9049 233:10590 234:7780 235:2223 237:753 240:2235 241:1199 242:2115 243:4220
		244:7949 245:3245 246:7585 247:3977 248:1712 249:946 253:523 254:1067 256:3670 257:1442 258:873
		259:1884 260:2477 261:1483 262:15872 263:4116 264:1714 265:3002 266:913 267:612 268:2231 269:6697
		270:2677 271:1450 272:936 273:587 274:16082 275:5082 276:3527 277:20662 278:9534 279:4240
		280:1231 281:544 286:1123 288:964 289:1087 290:2861 291:52117 292:15117 293:8263 294:2119

		300:6431 301:1868 302:2755 303:1375 304:3034 305:26617 306:11689 307:23406 308:6763 309:3022
		310:724 314:755 316:1123 317:1484 319:651642 320:189481 321:92645 322:18666 328:894 330:2118
		331:3164 332:2474 333:2929 334:1333 335:732 336:1360 342:923 343:5351 344:2635 345:2068 346:1002
		347:584 348:669 350:801 351:550 358:2376 359:1137 360:867 364:17321 365:8267 366:3608 367:1138
		368:435 374:5577 375:1951 376:5567 377:1861 378:998 379:839 389:1298 390:2080 391:834 392:694
		393:1009 394:495 420:876 421:767 432:822 433:846 434:682 448:2080 449:906 450:613 464:3540
		465:1503 466:4446 467:1781 468:864 480:983 481:496 523:665 554:1379 555:749
Unbekannte 23	1946,97	76:1533 77:1589 80:1057 81:1110 82:1691 83:1014 84:1258 85:1619 86:2729 87:1793 88:1793 89:11753
		90:1842 91:1555 95:1055 96:1354 97:2128 98:1428 99:2135 100:3223 101:6533 103:23153 104:2979
		105:5915 106:1716 107:1102 110:1325 111:1673 112:1661 113:2281 114:4645 115:3518 116:3652
		117:19774 118:3036 119:3136 120:1224 121:1027 124:1190 126:2017 127:1876 128:2176 129:18206
		130:4641 131:6425 132:2095 133:19760 134:3587 135:2948 136:1229 138:1497 140:1187 141:1628
		142:3052 143:7191 144:2013 145:3230 146:1718 150:1836 151:1486 152:1029 153:1138 154:1644
		155:1546 156:1944 157:6238 158:4437 159:2943 160:21655 161:5745 162:2473 163:5708 164:1943
		165:1521 168:2106 169:1797 170:1690 171:2813 172:1683 173:2237 174:2757 175:7625 176:2123
		177:2882 178:1383 179:1262 180:1239 181:1439 182:1414 183:1111 184:1248 185:1476 186:1905
		188:4910 189:21519 190:4801 191:4819 192:1631 193:2147 196:1452 198:1515 199:1748 200:3491
		201:1984 202:1424 204:3018 205:96862 206:19368 207:12703 208:3043 209:1668 210:1681 212:2178
		213:1457 214:1649 215:2053 217:3882 218:1767 219:3672 220:1790 221:4265 222:1980 223:1429 226:967
		228:1564 229:1423 230:2216 231:3365 232:1788 233:2033 234:1976 235:1339 237:1316 240:1347
		241:1308 242:1775 243:1648 244:2057 245:3557 246:1717 248:1007 249:1841 254:1467 255:1345
		256:1468 257:1422 258:2590 259:6225 260:2996 261:1971 262:1531 263:1984 270:1440 271:2158
		272:5773 273:19396 274:6126 275:3540 276:1590 284:1749 285:1987 286:2071 287:1825 288:1483
		289:1177 290:1294 291:1209 300:1682 301:2335 302:2165 303:1627 305:1512 318:1460 330:1222
		333:1628 344:1313 347:1495 359:1296 362:3041 363:7193 364:3058 365:2112 375:1427 386:902 387:954
		388:1078 391:1813 418:1360 419:927 420:918 507:1458 508:2084 509:1652 510:1048
Unbekannte 42	1951,11	91:5008 97:2898 116:14727 119:16921 131:9759 132:4648 161:15776 174:14714 192:5684 203:14110
		219:15494 220:4912 235:2809 299:1786
Unbekannte 21	1972,22	77:1778 98:938 152:766 390:1192 508:1032
Unbekannte 32	1974,1	83:849 84:2801 85:1118 86:884 87:1211 88:1970 89:7907 90:1448 91:1043 99:1106 100:1598 101:3265
		102:1266 103:26129 104:4184 105:2149 111:863 113:1176 114:1543 115:1521 116:2147 117:9196
		118:1697 119:1966 125:810 126:1321 127:1039 128:1299 129:4568 130:3252 131:4550 133:8987 134:1945
		135:1595 141:843 142:1663 143:4125 144:1248 145:1155 146:890 154:1008 155:908 156:1544 157:1601
		158:1943 159:2159 160:1299 161:1197 163:3169 164:1238 165:1061 168:1280 169:1105 170:1325

		171:1501 172:2075 173:1566 174:1699 175:3184 176:1160 182:743 184:1096 186:1095 187:1117 188:2601
		189:7322 190:2213 191:1944 193:1157 196:918 198:991 199:965 200:2111 201:1362 202:1265 203:1283
		204:3474 205:13317 206:3376 214:1180 215:1229 216:1349 217:2777 218:1154 228:1131 229:1100
		230:1942 231:2321 232:1290 242:1218 243:1095 244:1731 245:1220 246:1218 247:1447 256:1670
		257:1033 258:1691 259:3213 260:1614 261:1094 262:1011 263:1229 271:1105 272:2485 273:1770
		274:1051 275:1115 284:1078 285:1291 286:1135 287:1594 288:3924 289:3570 290:1535 301:951 302:1147
		311:1062 312:2187 313:1054 314:848 317:1780 318:3433 329:1057 330:2053 331:1058 332:952 333:997
		343:1318 344:1080 347:967 360:1166 374:1056 402:1703 403:965 420:1501 492:1345
Unbekannte 26	1980,51	76:19460 77:20684 78:9885 79:14110 80:2769 81:2336 82:2863 83:1714 84:3723 85:6605 86:3567 87:2519
		88:4042 89:27072 90:4570 91:43201 92:5835 93:1372 94:2066 95:3151 96:1079 97:2684 98:2853 99:6498
		100:4869 101:50984 102:14980 103:47621 104:11975 105:47293 106:8229 107:1720 108:1714 110:5707
		111:3848 112:2262 113:6373 114:4379 115:50999 116:29771 117:66243 118:18780 119:48346 120:7871
		121:1893 122:2071 123:2174 124:2077 125:3839 126:5374 127:4406 128:39667 129:54967 130:93731
		131:88116 132:42761 133:120036 134:26481 135:20704 136:4371 137:2818 138:2275 139:1089 140:2894
		141:7975 142:11408 143:116564 144:42577 145:69001 146:9707 150:3805 151:2553 152:1353 153:2505
		154:3021 155:4135 156:3591 157:8024 158:6870 159:25826 160:10760 161:23933 162:2891 163:46492
		164:10583 165:2105 166:1103 167:2686 168:5400 169:16346 170:8292 171:14490 172:7102 173:13448
		174:6858 175:27603 176:15542 177:63489 178:11702 179:4190 180:4408 181:2396 182:3440 183:3144
		184:2972 185:5180 186:3692 187:6515 188:9867 189:32538 190:19415 191:115921 192:9121 193:7969
		194:1969 195:3393 196:3431 197:2770 198:3692 199:3658 200:5092 201:19853 202:8719 203:12391
		204:34901 205:58898 206:12014 207:935273 208:72885 209:20720 210:3336 211:3111 212:2849 214:5149
		215:7264 216:5596 217:57232 218:26961 219:186314 220:132843 221:1006442 222:42801 223:12997
		224:2556 225:2823 226:3834 227:3981 228:7721 229:4556 230:7447 231:21967 232:6598 233:13728
		234:88667 235:45228 236:10194 237:5860 240:2857 241:2361 242:4137 243:4134 244:8658 245:21808
		246:1550 247:6529 248:3011 250:2067 251:1445 253:2017 254:1177 255:5861 256:13112 257:6058
		258:9032 259:18131 260:4175 261:2897 262:9140 263:10779 264:3845 265:3636 267:1290 268:3154
		269:2062 270:3898 271:7441 272:15920 273:9500 274:5676 275:4761 276:2357 278:2170 279:1278
		281:22422 282:7383 283:3153 284:6041 285:2921 286:4950 287:4819 288:12396 289:23185 290:8840
		291:4918 292:52643 293:18722 294:10011 295:2643 296:1446 297:2967 298:2661 299:2169 300:2571
		301:2999 302:5489 303:2780 304:4232 305:5200 306:1777 307:13666 308:4694 309:2279 311:4613
		312:5320 313:6033 314:4028 315:2146 317:7688 318:13091 319:5946 320:3462 321:2087 328:1909
		329:4721 330:10472 331:5365 332:4648 333:4467 334:2487 335:20025 336:6742 337:4585 338:1426
		342:2446 343:5693 344:6218 345:3321 346:2531 348:2861 349:1878 350:3227 357:1612 360:4003
		361:1953 372:2302 374:2751 376:2879 386:3491 388:2509 389:1962 401:2591 402:6373 403:3760

		417:2113 418:4702 419:3131 420:4012 421:2153 422:2057 425:10406 426:4096 427:2301 476:1929
		477:2320 478:2195 492:2513 507:1679 508:3352
Unbekannte 72	1981,72	355:1202 356:2001 370:1543 373:2085 446:1854
Unbekannte 73	1982,3	87:26072 127:54644 310:9901
Pantothensäure	2018,4	77:1031 83:993 98:1440 102:1159 104:1091 115:1026 116:1184 117:2309 129:1760 130:1058 143:1226
(3TMS)		144:1478 145:1341 146:1006 157:2342 158:925 159:1545 201:1499 247:1876 261:1101 291:4259 292:1440
		293:982 420:1578
1-(4-Hydroxy-3-	2035,43	86:1296 100:1113 116:1285 130:935 144:956 172:650 174:7313 175:1759 176:1040 188:1246 232:837
methoxyphenyl)-		290:1410
1,2,3-Propanetriol		
(4TMS)		
Scopoletin (1TMS)	2058,72	79:986 91:894 206:2018 234:4112 264:2073
Unbekannte 10	2068,98	76:1707 77:1384 81:1681 85:1639 86:1749 87:1603 88:1734 89:30656 90:2886 91:2815 99:1986 100:16911
		101:7992 102:6368 103:30265 104:3286 105:3944 111:1472 113:2741 115:3576 116:5131 117:13958
		118:2071 119:3444 127:1663 128:1996 129:25734 130:5085 131:11910 132:6748 133:22543 134:3412
		135:2440 141:1265 142:2330 143:5863 144:1656 145:3132 146:2046 150:2309 155:2006 157:5021
		158:2045 159:1973 160:2843 161:1771 163:3253 169:3550 171:1709 172:5221 173:2219 174:2078
		175:2675 177:2041 187:1697 188:1497 189:15786 190:4224 191:15407 192:3183 193:2131 196:1032
		201:1535 203:5697 204:305124 205:70107 206:27727 207:6230 208:1580 215:2181 216:1924 217:71448
		218:20051 219:8682 220:56547 221:13976 222:5545 223:1530 229:2860 230:3883 231:4083 232:2005
		233:8144 234:2289 235:1596 242:1314 243:6212 244:2486 245:1912 246:1280 259:4423 260:1427
		261:1086 270:1664 274:2038 277:1314 278:1361 291:6716 292:2563 293:1569 294:1250 304:1858
		305:6565 306:2486 307:2262 317:1790 318:1420 319:68316 320:20327 321:9914 322:2394 331:1810
		332:1712 333:1879 361:2153
Unbekannte 50	2107,38	76:1114 104:1140 223:988
Unbekannte 54	2114,82	85:641 103:925 133:811 269:836
Unbekannte 63	2122,58	91:755 115:899 135:675 204:722 307:1605 322:2150
Myo-Inositol (6TMS)	2133,69	81:446 99:337 101:731 103:2697 104:378 113:462 115:464 116:793 117:1006 119:540 127:479 129:7007
		130:945 131:3366 132:581 133:6380 134:999 135:718 143:2688 144:449 145:469 150:589 157:534 159:370
		161:561 175:850 177:458 189:2312 190:3305 191:12111 192:2459 193:1338 203:956 204:15540 205:3924
		206:1626 207:1519 208:422 217:28055 218:5592 219:2711 220:490 221:3662 222:977 223:531 230:1264
		231:665 243:701 265:4837 266:1417 267:722 278:1048 291:12818 292:3576 293:2498 294:656 304:1456
		305:28614 306:9584 307:4752 308:1095 317:742 318:15637 319:6430 320:2995 321:821 343:619 345:535

		367:2018 368:846 369:543 378:438 379:682 380:417 392:773 393:1709 394:734 395:484 419:695 432:3759
		433:2931 434:1509 435:609 507:1633 508:817
Myo-Inositol (6TMS)	2135,09	76:6861 77:4414 78:1266 79:3093 80:1027 81:13151 82:1688 83:8325 84:1497 85:7680 86:1712 87:7918
		88:3098 89:5419 91:1699 93:989 95:1487 97:2425 98:2121 99:9139 100:2027 101:23934 102:9111
		103:147138 104:14491 105:11302 106:1427 107:1299 109:4098 111:10813 112:2182 113:14703 114:2700
		115:12393 116:19861 117:33183 118:5141 119:18721 120:2705 121:2028 125:3504 126:2343 127:17119
		129:335391 130:40198 131:138528 132:21027 133:323714 134:45570 135:28075 136:2932 137:1867
		139:2876 140:1605 141:9277 142:9823 143:101834 144:12726 145:15752 150:19011 151:9082 152:1649
		153:4946 154:2093 155:9738 156:6860 157:24198 158:4043 159:10371 160:2698 161:29755 162:5337
		163:11451 164:2138 165:1856 167:2225 168:1346 169:8475 170:2249 171:3487 172:1860 173:9393
		174:2563 175:31013 176:5741 177:22406 178:3719 179:3431 180:1323 181:4685 182:1636 183:3125
		185:5870 186:1728 187:5001 189:83553 190:108413 191:933035 192:167861 193:81724 194:10114
		195:3115 197:1712 199:2618 200:1693 201:11590 202:4352 203:41396 204:648091 205:157509 206:61941
		207:71434 208:14735 209:7988 210:1790 211:1579 213:3149 214:1569 215:22048 217:2147264
		218:415660 219:181366 220:25208 221:198645 222:44299 223:24679 224:4116 225:2017 227:3738
		228:3771 229:10122 230:56907 231:31762 232:9321 233:3773 235:6582 236:1945 237:2435 239:6524
		240:1877 241:3231 242:2750 243:35723 244:8797 245:14319 246:3581 247:2793 248:970 249:4595
		250:1623 251:1614 253:1505 255:9949 256:2745 257:6271 258:1873 259:1396 261:1440 263:3986
		265:474527 266:118232 267:62432 268:11194 269:3968 270:2196 271:11808 272:3118 273:2145 275:3101
		276:1606 277:13269 278:27090 279:13583 280:5110 281:2839 289:8255 291:416916 292:118923
		293:117258 294:27616 295:11065 296:2456 301:2081 302:2303 303:10670 305:2714070 306:785315
		307:389157 308:79431 309:19552 310:3165 313:2064 315:2259 316:4194 318:1487430 319:602316
		320:257836 321:65463 322:14720 323:2929 327:4275 328:2029 329:6836 330:2948 331:17240 332:6591
		333:3328 334:1393 341:1327 342:2814 343:44227 344:15244 345:23928 346:6832 347:3299 352:4502
		353:1777 354:1137 359:2347 360:1940 365:6945 367:188896 368:64779 369:35850 370:8766 371:2965
		372:797 377:1530 378:10754 379:23529 380:11560 381:6054 382:2159 391:5718 392:26202 393:125873
		394:47504 395:24760 396:6448 397:2337 403:1402 404:2745 405:7706 406:12042 407:11344 408:4741
		409:2276 417:14753 418:6678 419:40821 420:15125 421:8200 422:2500 423:1128 432:306133 433:236564
		434:110539 435:42041 436:11749 437:3096 479:1389 507:94399 508:44135 509:26024 510:8381 511:2759
		522:3701 523:2049 524:1502 597:1279
Unbekannte 43	2158,81	115:803 117:815 131:883 133:743 143:742 145:918 157:997 287:2228 288:1461
Unbekannte 55	2232,42	83:701 105:813 129:692 174:792
Unbekannte 27	2366,58	200:726 214:948 216:1379 241:679 315:1406 432:1291

Unbekannte 67	2424,52	101:811 117:1541 133:1036 205:999 315:3070 316:1120 329:1547 419:1192 533:1047
Unbekannte 25	2482,26	76:1524 79:788 80:1271 81:1382 82:1282 83:1434 84:2352 85:7050 86:1251 87:1662 88:6394 89:4738
		90:1108 91:1250 92:1254 93:1032 97:5540 98:8305 99:14416 100:2092 101:4964 102:1758 103:22814
		104:3458 105:2259 109:919 111:1719 112:8962 113:2966 114:1196 115:1962 116:2089 117:7049 118:1238
		119:1836 124:3799 125:25487 126:200468 127:18799 128:12269 129:11373 130:2162 131:5944 132:1243
		133:9742 134:1967 135:1783 140:1279 141:1402 142:2123 143:5872 144:1387 145:1557 150:1219
		151:1196 155:1307 156:1093 157:2683 158:1101 159:1110 163:1048 169:4073 170:1136 171:1023
		173:1253 174:973 175:1377 177:1142 180:972 183:989 184:1204 185:1171 189:6490 190:1636 191:4346
		192:1298 193:1031 199:930 200:5256 201:1713 202:1197 203:1910 204:3008 205:2029 207:1426 214:1085
		215:6644 216:2167 217:141945 218:29271 219:13815 220:2892 221:2230 229:2049 230:8591 231:4280
		232:1595 233:1068 243:2290 244:1180 245:1163 257:2655 258:1272 259:1054 270:2537 271:2224
		272:1222 273:1169 274:969 291:1369 305:1364 319:2142 320:1364 345:1185 346:1413 347:1032 361:6239
		362:2129 363:1475 398:4398 399:1560 400:2836 401:1343 402:1008 432:1183 488:1817 489:1181
		490:15899 491:8293 492:4838 493:1567 578:1137
Unbekannte 07	2492,02	77:3546 103:1914 105:14850 106:1990 117:1159 129:1413 133:1244 135:1027 179:2473 191:1282
		204:3029 205:1215 217:6326 218:1998
Unbekannte 18	2492,24	77:2197 103:1665 106:1493 117:1054 129:1450 133:1133 135:927 179:2433 204:2540 217:3360 218:2168
		219:1054
Unbekannte 58	2558,36	78:928 103:1100 106:2238 133:980 160:992 204:1668 217:1588 218:795 238:1914 352:1034
Unbekannte 36	2603,19	79:1045 89:985 91:2311 103:2653 104:1718 115:1297 116:936 117:2109 118:1952 119:28598 120:3676
		129:2051 131:1174 133:1737 134:818 135:1057 169:1058 173:1769 189:1459 191:1867 204:5953 205:1741
		206:1264 217:3745 218:1805 219:1077 221:1137 231:1012 233:3037 234:1098 243:739 259:1119 263:1749
		287:982 291:733 331:5050 332:2172 333:1291
2-Deoxyadenosin	2658,56	76:1220 81:3488 84:2938 85:1881 86:1186 87:1457 89:1617 99:2425 100:1461 101:3182 102:931
(3TMS)		103:10513 104:2038 105:1383 109:996 110:1568 111:2417 113:1425 115:1256 116:1337 117:3127
		119:1388 123:1214 125:1051 127:1273 129:2383 131:2369 133:3505 134:1384 136:1027 137:1376
		138:1479 142:1409 143:1616 145:2242 150:1063 151:1132 155:1984 157:1158 161:1039 162:2047 163:964
		164:3715 165:4760 166:2103 169:1906 170:1784 171:1834 175:1086 176:2194 177:1313 180:2095
		189:2858 190:2069 191:2363 192:27651 193:5212 194:2218 202:1284 204:1360 205:1280 206:4601
		207:22871 208:13696 209:4289 210:1542 217:2815 218:10827 219:3479 220:2027 221:1139 232:1793
		233:1633 234:3544 235:1251 236:11767 237:4376 238:2070 245:1002 246:1137 262:1082 264:2219
		266:1336 279:1371 280:2021 308:727 334:1555 349:1539 362:1207 364:1580 452:2927 453:1400 467:4210
		468:2305 469:1335

Unbekannte 62	2703,9	77:683 103:730 133:687 204:962 217:863
Saccharose (8TMS)	2717,92	76:14944 77:9277 78:2140 79:4783 80:2759 81:45793 82:5424 83:13726 84:2912 85:16757 86:3897
		87:18777 88:12342 89:45000 90:5125 91:5314 92:1148 93:2271 94:1867 95:3821 96:1822 97:10892
		98:3927 99:18865 100:4569 101:56685 102:29555 103:829365 104:79566 105:36976 106:3042 107:2365
		108:1195 109:27020 110:3365 111:15185 112:4147 113:41853 114:10406 115:27960 116:34961
		117:224967 118:24732 119:28063 120:3845 121:3260 123:2063 125:7360 126:4231 127:29407 129:685168
		130:92457 131:149824 132:26835 133:228558 134:33635 135:25443 136:3918 137:3037 138:1144
		139:16075 140:7089 141:32921 142:37153 143:120433 144:18149 145:39149 150:23989 151:17845
		152:3629 153:18638 154:9056 155:90103 156:22615 157:144998 158:21867 159:27444 160:5415
		161:20400 162:5218 163:34119 164:6377 165:5005 166:2913 167:12285 169:615802 170:97309 171:59515
		172:9538 173:38819 174:8582 175:34719 176:7931 177:34623 178:6743 179:6007 180:2328 181:15098
		182:6864 183:46329 184:8388 185:17593 186:4342 187:17484 189:252140 190:58718 191:405471
		192:75352 193:40719 194:6642 195:4529 196:1712 197:5219 198:2429 199:31616 200:6650 201:25251
		202:16803 203:108714 204:315500 205:232495 206:61577 207:53497 208:11514 209:7049 210:1798
		211:3637 212:1388 213:6492 214:2731 215:84255 217:2764096 218:618468 219:280297 220:50147
		221:106904 222:25678 223:15824 224:3490 225:3433 226:1388 227:24120 228:9390 229:157625
		230:175918 231:147167 232:43749 233:61124 234:18136 235:8789 236:2568 237:2819 238:1410 239:6881
		240:2710 241:47647 243:537432 244:126628 245:156957 246:42806 247:56368 248:13485 249:7656
		250:1925 251:1720 252:1438 253:3018 254:2019 255:23135 256:10312 257:164119 258:42104 259:83701
		260:19834 261:10106 262:3081 263:13192 264:4208 265:19582 266:5654 267:4642 268:1856 269:4649
		271:830649 272:201191 273:107804 274:22399 275:14720 276:3953 277:16908 278:12258 279:7501
		280:2938 281:3854 282:1634 283:2695 284:1774 285:3174 286:1411 287:6153 288:4943 289:22486
		291:115070 292:39746 293:45197 294:13130 295:6628 296:2028 297:2549 299:1641 301:3094 302:1838
		303:24393 304:23494 305:126196 306:58715 307:34127 308:11081 309:4495 310:4149 311:2578 312:982
		313:1954 314:1025 315:3896 317:57784 318:28614 319:434312 320:151175 321:75317 322:20263
		323:6145 324:1587 325:1622 327:2151 328:1256 329:3943 331:230294 332:75866 333:52581 334:15666
		335:11453 336:4041 337:2531 338:1024 341:2221 342:1354 343:5848 345:77058 346:28169 347:44063
		348:16103 349:10607 350:3649 351:1961 355:3864 356:2733 357:2719 359:12044 361:4022990
		362:2079903 363:984264 364:216289 365:69631 366:14859 367:5404 368:1611 369:1344 371:1288
		373:9766 374:8433 375:4602 376:2374 377:8350 378:9187 379:9997 380:4532 381:4102 382:1695
		383:1217 387:1679 389:1230 391:2578 392:2311 393:6532 394:2916 395:2748 396:1280 399:1247
		401:1496 403:1324 405:5687 406:3080 407:3386 408:1502 409:1222 417:2276 418:1242 419:2253
		420:1291 421:4816 422:2663 423:1887 424:866 427:1244 429:2149 431:2431 432:1307 433:6845 434:3847
		435:41150 437:974130 438:370133 439:200715 440:58095 441:18284 442:4157 443:1327 449:3746

		450:46188 451:327939 452:137167 453:72628 454:22265 455:7251 456:1957 463:10276 464:11077			
		465:5318 466:3947 467:6736 468:3113 469:2031 477:1099 481:4479 482:2163 483:1391 517:1451			
		521:1054 525:1609 565:1937 566:1121			
Unbekannte 17	2727,49	103:1140 115:1140 117:865 129:1421 130:1185 131:1158 133:875 189:1091 191:1836 204:3983 205:1904			
		206:1353 217:3973			
Unbekannte 57	2729,14	77:708 495:845			
α,α-Trehalose	2817,84	76:3618 79:1151 81:11871 82:1660 83:2838 84:798 86:1184 87:4531 88:1855 89:13996 90:1658 91:1095			
(8TMS)		93:735 95:1293 97:2846 98:1158 99:6100 100:1242 101:18230 102:5740 103:151314 104:23957 105:10943			
		106:955 109:7325 110:1007 111:4393 112:1272 113:15962 114:3587 115:8276 116:15700 117:66208			
		118:9872 119:10450 120:1293 121:877 123:761 125:1833 126:1336 127:7868 129:150137 130:30591			
		131:46112 132:10125 133:41486 134:11138 136:1308 139:3976 140:1660 141:6941 142:8595 143:34632			
		144:5022 145:14277 150:8348 151:4678 152:1174 153:5010 154:2494 155:35945 156:6805 157:38922			
		158:6617 159:8758 160:1746 161:7157 162:1823 163:13165 164:2243 166:891 167:3162 169:151813			
		170:31082 171:19749 172:2895 173:18149 174:3492 175:15533 176:3157 177:13565 178:2579 179:2292			
		181:4049 183:12039 184:2458 185:4148 186:1425 187:4981 189:112714 190:43682 191:356467 192:99681			
		193:33853 194:5859 195:2302 197:1850 198:786 199:10284 200:2162 201:7039 202:5679 203:50240			
		204:170247 205:104915 206:37597 208:4619 209:2845 210:836 213:2200 215:12755 217:313098			
		218:134245 219:75735 220:14579 221:25132 222:9222 223:5900 224:1399 227:7361 228:3376 229:51952			
		230:29578 231:46559 232:13545 233:36884 234:12058 235:5060 236:1445 237:1200 239:1848 241:18299			
		242:8831 243:164863 244:42125 245:49379 246:11042 247:14866 248:3200 249:2586 254:976 255:5357			
		256:2777 257:24095 258:6233 259:19405 260:5244 261:2976 263:18689 264:4831 265:13348 266:3475			
		267:2517 269:1625 271:212611 272:49532 273:28862 274:5247 275:3985 276:1375 277:3772 278:6032			
		279:8578 280:2927 281:1717 282:824 285:1221 287:6415 288:2374 289:9651 290:9869 291:83998			
		292:25067 293:14070 294:2756 297:1219 301:1126 303:5174 304:13685 305:79912 306:33574 307:16893			
		308:4547 309:1957 313:1416 315:1745 317:30604 318:14131 319:136857 320:42408 321:21626 322:5170			
		323:1895 329:2116 331:125696 332:48297 333:28988 334:7744 335:4175 336:1739 343:2032 344:1927			
		345:22577 346:8135 347:8346 348:2779 349:4554 350:1834 351:1311 357:1112 361:1114709 362:536951			
		363:310953 364:77760 365:20250 366:4103 367:1258 373:4075 374:1680 375:1264 377:14976 378:7925			
		379:8477 380:3676 381:1803 385:692 391:1161 393:5800 394:2879 395:1526 405:2899 406:2251 407:3238			
		408:1537 409:1352 417:892 419:1056 421:1455 433:1515 435:20318 436:8844 437:5190 438:2171			
		450:3067 451:16173 452:6903 453:4316 454:1722 463:6682 464:3485 465:1933 466:1584 467:1014			
		468:595 475:1179 481:856 553:1203 565:3311 566:1865			
Unbekannte 48	2823,56	139:1287 179:980 191:1060 194:1031 218:1006 223:934 248:1093 293:1230 299:1133 313:1176 320:1222			
		1355:842 382:1365			

Unbekannte 04	2830,93	103:805 131:409 133:545 191:450 193:445 195:862 204:666 217:1218 267:578 361:2158 362:795		
Unbekannte 06	2830,99	77:1633 135:4994 207:12676		
Unbekannte 61	2866,25	77:750 103:733 217:780		
Unbekannte 44	2926,56	77:860 78:1456 89:1268 91:1047 103:6031 104:3972 105:1385 115:801 116:1138 117:2378 119:1350 129:3096 130:901 131:2484 132:5481 133:2766 143:1163 159:953 161:1567 162:3391 163:1351 169:1072 173:1872 177:2874 189:2051 190:785 191:2630 192:948 193:2099 194:2001 195:945 203:1199 204:18318 205:5658 206:8145 208:967 217:7416 218:2939 219:1620 220:1470 221:22458 222:5589 223:2872 231:1237 233:2993 234:1062 243:1051 251:4064 263:1607 291:1364 294:1794 295:1185 305:1524		
Unbekannte 05	3081,35	93:1.4239 332.1994 333.1309 339.1696 361.1130 91:642 103:2665 105:430 116:664 117:1006 119:1095 129:2060 130:485 131:1551 132:570 133:1336 134:585 135:898 143:538 155:423 157:425 161:708 162:636 163:432 169:1252 189:793 191:1745 192:793 193:623 204:3380 205:1926 206:748 207:766 217:4314 218:1256 219:897 221:910 223:582 229:549 230:508 231:575 235:700 243:1374 244:553 245:538 251:617 252:881 271:1221 272:440 291:574 293:893 294:770 295:459 305:1035 309:802 319:817 324:4579 325:1430 326:733 331:672 361:4997 362:1621 363:924 450:1438 451:826 452:592		

7.4 zusätzliche Experimentdaten

Zusätzliche Daten für 3.2.4 Test auf wachstumsfördernden Effekt durch Eluatzugabe (Abb. 3. 10).

Tab. 7. 30: Frischgewicht in mg pro Pflanze nach Zugabe von aufkonzentriertem Medium. Zwei Wochen alte Pflanzen wurden mit einer einfachen (At Eluat AtPi 1x) oder zweifachen (At Eluat AtPi 2x) Konzentration an aufkonzentrierten AtPi Medium oder Medium von At Pflanzen (At Eluat At) über vier Wochen behandelt. Anschließend wurden die Pflanzen geerntet und das Gewicht bestimmt. n = 3, (außer At Eluat At n = 4).

	Blätter [mg]	Wurzeln [mg]
At Eluat At	43,5 ± 2,71	2,20 ± 0,59
At Eluat AtPi 1x	40,17 ± 8,22	2,15 ± 0,11
At Eluat AtPi 2x	48,24 ± 1,02	0,88 ± 0,08