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Abstract

Flow and transport in the subsurface are determined by the structural hetero-

geneity of natural porous media. Connectivity is known to be an important

facet of structural heterogeneity that has to be captured adequately in order to

facilitate or improve model predictions on diverse physical processes in porous

formations. Connectivity is a broad concept that can be either understood as

a structural property of a domain that describes the existence of a path for

�ow and transport from one location to another or as a functional property of

a domain with respect to e�ective hydraulic behavior.

This thesis presents some novel insights into the approaches to quantify

structural connectivity and the complex relationship between structural and

functional connectivity in the realm of vadose zone hydrology. The central

question to be addressed is, whether structural complexity can be reduced to

some meaningful connectivity metrics that facilitate the prediction of e�ective

hydraulic behavior. To this end, some well-established references heterogene-

ity models with distinct di�erences in structural connectivity are introduced.

Various structural connectivity metrics are surveyed by their capability to cap-

ture morphological di�erences between the reference models. This comprises

metrics like the autocovariance function, Minkowski functions, chord length

distributions, local percolation probability and the pair connectivity function.

By means of the stochastic reconstruction paradigm it is demonstrated that

a combined multi-point statistics including Minkowski functions and chord

length distribution is able to reproduce structural connectivity with low com-

putational e�ort.

The reference heterogeneity models and their stochastically reconstructed

counterparts are then compared in terms of functional connectivity for di�er-

ent processes and states. This comprises two-dimensional numerical experi-

ments on stationary single-phase �ow, transport of a conservative tracer and

hydraulic non-equilibrium during in�ltration into an unsaturated soil. Func-

tional connectivity metrics for each investigated process will be introduced,

that all relate the e�ective behavior to some expectation value derived from

the underlying parameter �eld. In order to do so, e�ective non-equilibrium

is introduced as a novel concept that quanti�es the decoupling of averaged



water content and matric potential at the in�ltration front caused by pref-

erential �ow. A critical question is how to de�ne averaged, transient state

variables at the larger scale. Flux-weighted averaging of soil matric potential

is especially suited in this regard, since it conserves hydraulic non-equilibrium

during upscaling. Thus, e�ective hydraulic non-equilibrium is determined by

the di�erence between dynamic and equilibrium water retention and can be

interpreted towards the energy dissipation due to funneling of water into pref-

erential �ow paths.

It is demonstrated that a good reproduction of structural connectivity also

entails a good reproduction of functional connectivity metrics. Thus, the inves-

tigated multi-point statistics carry some predictive power of e�ective hydraulic

behavior. However, structural connectivity a�ect upscaled �ow, transport and

hydraulic non-equilibrium behavior di�erently. Flow connectivity is more sen-

sitive to the continuity of highly conductive paths, whereas transport con-

nectivity is more a�ected by the morphology of the �ux pattern. Hydraulic

non-equilibrium, in turn, depends on a delicate balance between vertical and

lateral �ux components. Thus, functional connectivity has to be considered as

a process and state-dependent concept.

keywords: connectivity metrics, stochastic reconstruction, stationary �ow,

solute transport, hydraulic non-equilibrium, upscaling



Zusammenfassung

Fluss und Transport in natürlichen porösen Medien werden durch die Struk-

turheterogenität des Untergrunds bestimmt. Konnektivität ist ein wichtiger

Aspekt jener Strukturheterogenität, welcher richtig erfasst werden muss, um

Modelvorhersagen zu verschiedenen physikalischen Prozessen in porösen Me-

dien zu ermöglichen oder zu verbessern. Konnektivität ist ein breit gefasster

Begri�, der entweder als Struktureigenschaft eines Raumes aufgefasst werden

kann, welche die Existenz eines Pfades für Fluss und Transport beschreibt, oder

als funktionale Eigenschaft bezogen auf das e�ektive hydraulische Verhalten

eines Raumes.

Die vorliegende Arbeit präsentiert neue Erkenntnisse über die quantita-

tive Beschreibbarkeit von Strukturkonnektivität und die komplexe Beziehung

zwischen struktureller und funktionaler Konnektivität in Bezug auf die Hy-

drologie der ungesättigten Zone. Das Hauptaugenmerk dieser Arbeit ist, in

wie fern eine komplexe Struktur auf wenige aussagekräftige Konnektivitäts-

maÃe reduziert werden kann, welche eine Vorhersage des e�ektiven hydraulis-

chen Verhaltens ermöglichen. Zu diesem Zweck, werden einige gut de�nierte

Referenzheterogenitätsmodelle mit deutlichen Unterschieden bezüglich ihrer

Stukturkonnektivität eingeführt. Verschiedende StrukturkonnektivitätsmaÃe

werden anhand ihrer Eignung verglichen morphologische Unterschiede der Ref-

erenzmodelle wiederzugeben. Der Vergleich umfasst so verschiedene MaÃe wie

Autokovarianz, Minkowski-Funktionen, Sehnenlängenverteilung, lokale Perko-

lationswahrscheinlichkeit und paarweise Konnektivitätsfunktion. Mittels sto-

chastischem Rekonstruktionsansatz wird demonstriert, dass eine kombinierte

Mehrpunktstatistik bestehend aus Minkowski-Funktionen und Sehnenlängen-

verteilung ausreicht um Strukturkonnektivität mit geringem rechnerischen Auf-

wand reproduzieren zu können.

Die Referenzheterogenitätsmodelle und ihre stochastisch rekonstruierten Ge-

genstücke werden anschlieÃend hinsichtlich funktionaler Konnektivität für ver-

schiedene Prozesse und Zustände verglichen. Hierfür werden zweidimension-

ale, numerische Experimente zu stationärem gesättigtem Fluss, konservativem

Sto�transport und hydraulischem Ungleichgewicht bei In�ltration in einen

ungesättigten Boden durchgeführt. Es werden funktionale KonnektivitätsmaÃe



für jeden Prozess eingeführt, die stets auf dem Verhältnis zwischen e�ektiv-

en hydraulischen Verhalten und einem Erwartungswert beruhen, welcher aus

Eigenschaften des zu Grunde liegenden Parameterfeldes abgeleitet wird. Um

dies zu erreichen, wird e�ektives Ungleichgewicht als ein neues Konzept einge-

führt, welches die Entkopplung von gemitteltemWassergehalt und gemitteltem

Matrixpotenzial an der In�ltrationsfront aufgrund von präferenziellem Fluss

beschreibt. Eine kritische Frage dabei ist, wie sich die ZustandsgröÃen während

transienter Bedingungen mitteln lassen. Das �ussgewichtete Potenzialmittel

stellt sich diesbezüglich als besonders geeignet heraus, da es hydraulisches Un-

gleichgewicht während des Upscalings konserviert. Folglich, kann e�ektives hy-

draulisches Ungleichgewicht als die Diskrepanz zwischen dynamischer und Gle-

ichgewichtswasserretention beschreiben werden. Dies lässt sich ferner als ein

MaÃ für Energiedissipation aufgrund von Flussbündelung in präferenziellen

FlieÃbahnen interpretieren.

Es zeigt sich dass eine gute Reproduktion von Strukturkonnektivität auch

zu einer guten Reproduktion funktionaler KonnektivitätsmaÃe führt. Folglich,

besitzen die untersuchten Mehrpunktstatisken tätsächlich eine gewisse Vorher-

sagekraft von e�ektiven hydraulischen Verhalten. Es stellt sich jedoch auch

heraus, dass Strukturkonnektivität e�ektive Fluss-, Transport- und Ungle-

ichgewichtsmerkmale in unterschiedlichem AusmaÃ beein�usst. Flusskonnek-

tivität reagiert emp�ndlich auf die Kontinuität schneller FlieÃbahnen, wohinge-

gen Transportkonnektivität eher auf allgemeinen Formeigenschaften des FlieÃfeldes

beruht. Hydraulisches Ungleichgewicht hängt wiederum von einem emp�ndlichen

Gleichgewicht aus vertikalen und lateralen Flusskomponenten ab. Somit muss

funktionale Konnektivität als ein Prozess- und zustandsabhängiger Begri�

aufgefasst werden.

Schlagwörter:Konnektivitätsmaÿe, stochastische Rekonstruktion, stationär-

er Fluss, Sto�transport, hydraulisches Ungleichgewicht, Upscaling
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Publications

The present doctoral thesis is partly based upon the following publication:

Schlüter, S., Vogel, H.-J., 2011. On the reconstruction of structural and

functional properties in random heterogeneous media. Advances in Water

Resources 34 (2), 314�325.

In particular, this includes Sections 3.1, 3.2, 4.1 and some parts of the

discussion and conclusions in Chapter 5 and 6. Yet, the content has been re-

worked in terms of (i) a new set of hydraulic parameters that is consistent with

the rest of the thesis, (ii) additional realizations for each heterogeneity model

to broaden the statistical basis, (iii) extended information on methodological

aspects and (iv) occasionally also new �gure styles.



Chapter 1

Introduction

1.1 Scope of the thesis

Spatial heterogeneity is an ubiquitous feature of natural porous media and a

source for the most interesting and complex phenomena in water and solute

movement in the subsurface. During the past half-centenary a large body of

literature has evolved that substantially improved our understanding of the ef-

fects of subsurface heterogeneity on e�ective �ow and transport behavior. The

enduring challenge and motivation is to characterize subsurface heterogeneity

in such a manner, that it facilitates or improves model predictions on diverse

physical processes in porous formations.

The advancements in this respect can be divided into three main phases

(de Marsily et al., 2005; Renard and Allard, 2011). In the �rst phase, spatial

heterogeneity was modeled as a mosaic of homogeneous regions typically de-

noted as facies, strata or horizons in their respective �elds. The delineation of

these homogeneous regions was typically based upon maps and �eld surveys

and equivalent properties were estimated from averages of a limited number

of measurements or from model calibration. The second phase started with

the introduction of geostatistics and stochastic approaches to subsurface hy-

drology (Matheron, 1967; Freeze, 1975; Bakr et al., 1978; Delhomme, 1979).

The small scale variability of material properties was by then considered as

a key feature, that had to be represented properly in a statistical sense. The

frequency distribution and the covariance of permeabilities, also denoted as

second-order statistics, served as a basis to thoroughly represent the struc-

1



1.1. Scope of the thesis 2

ture of heterogeneous aquifers. Simplifying assumptions like a log-normal fre-

quency distribution of permeabilities and a Multigaussian heterogeneity model

facilitated a series of analytical solutions for �ow and transport problems in

groundwater (Dagan, 1986, 1989; Gelhar, 1986, 1993) and the vadose zone (Yeh

et al., 1985; Mantoglou and Gelhar, 1987). The appeal of the Multigaussian

heterogeneity model is its parsimony, since spatial variability is fully captured

by the variance of log-normal permeabilities and the correlation length, which

covers the characteristic spatial scale of variability. However, the Multigaus-

sian assumption entails some restrictions on the morphology of the underlying

structure, especially the low connectivity of extreme values like barriers of low

permeability and channels of high permeability, that are frequently violated by

natural porous formations. The awareness of this shortcomings lead to a third

phase in which the connectivity of subsurface structures came into focus (Jour-

nel and Deutsch, 1993; Gómez-Hernández and Wen, 1997). Pioneering studies

demonstrated that even though heterogeneity �elds share identical second-

order statistics hydraulic behavior can di�er vastly depending on its connec-

tivity characteristics (Sánchez-Vila et al., 1996; Wen and Gómez-Hernández,

1998; Vogel, 2000; Zinn and Harvey, 2003). Since then new studies are con-

tinuously being published that aim at an improved statistical description of

spatial connectivity by adapting methods from such diverse scienti�c �elds

as petroleum engineering, condensed matter physics or image processing and

many neighboring �elds like geomorphology, surface hydrology and landscape

ecology. Recently, a comprehensive review on these advancements with focus

on groundwater hydrology was provided by Renard and Allard (2011). This

thesis adopts this line and presents some novel insights into the approaches

to quantify structural connectivity and to model the e�ects of connectivity on

functional behavior in the realm of vadose zone hydrology.

Some clari�cation on terms and concepts is necessary in the �rst place. The

meaning of connectivity is intuitively clear from our everyday experiences. Yet,

it lacks a rigorous mathematical de�nition and is rather a context-dependent

concept. Most of the de�nitions reoccurring in literature can be grouped into

two categories, static and dynamic connectivity (Renard and Allard, 2011).

The �rst refers to the spatial distribution of parameters tacitly assuming that

it does not change with time. It can then be broadly de�ned as the existence of
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a path for �ow and transport from one location to another. Two-point statis-

tics like the autocovariance function belong to this group. The term two-point

means that the probability of a certain value at one location is deduced from

a known value at a second location. This turns out to be a weak connectiv-

ity metric, since the structure between the two locations is not addressed, i.e.

whether there exists a connected path between the two locations or not. A cor-

rective in this regard are provided by multi-point statistics and concepts from

percolation theory that will be introduced in the course of this thesis. Some

authors prefer the term statistical or structural connectivity over static connec-

tivity to omit the temporal aspect and highlight the fact that it solely depends

on the underlying structure (Knudby and Carrera, 2005; Schaap et al., 2008).

The second category, dynamic connectivity, comprises metrics that character-

ize functional behavior with respect to a certain physical process. Typically,

the upscaled functional behavior of the domain of interest is evaluated and

related to some reference value derived from known properties of the under-

lying heterogeneous parameter �eld. The most intensively studied case is the

e�ective saturated conductivity of a block with small scale heterogeneity (Wen

and Gómez-Hernández, 1996; Renard and De Marsily, 1997). The ratio of this

e�ective saturated conductivity and the geometric mean of local conductivities

may serve as a �ow connectivity metric that nicely re�ects the degree of chan-

neling due to preferential �ow (Knudby and Carrera, 2005; Le Goc et al., 2010).

Dynamic metrics for one process cannot be translated to another process. It

was demonstrated that metrics of �ow connectivity derived from the e�ective

saturated conductivity and metrics of transport connectivity derived from the

relation between early and mean solute arrival are in fact weakly correlated

(Knudby and Carrera, 2005, 2006). On top of that, dynamic metrics depend

on the state of the system and the applied boundary conditions. This is crucial

for non-linear systems like the vadose zone where e.g. e�ective �ow properties

change dramatically with the degree of saturation. From here on dynamic con-

nectivity and functional connectivity will be used as synonyms and renamed

as e.g. �ow or transport connectivity when the process is stressed.

A functional connectivity metric will be linked to some extent to a struc-

tural connectivity metric, depending on whether or not the structural features

that govern the observed functional behavior are adequately captured. This
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Figure 1.1: Scheme of the causal link between structural and functional connectivity.

situation is depicted schematically in Figure 1.1. One realization of three

di�erent heterogeneity models are depicted side by side. Each possesses a dif-

ferent internal structure at least from a visual point of view. These images

shall resemble a parameter �eld that serves as a model domain to simulate a

physical process, say solute movement. All simulations operate with identi-

cal initial conditions and boundary conditions and yet, as far as the upscaled

solute transport behavior is concerned, the simulations results will be quite

di�erent which is depicted with some �ctive breakthrough curves. The f(x)

"structure function" represents a �ctive structural connectivity metric. One

the one hand it can be considered as suitable metric, since it is able to dis-

tinguish between the two structures represented by the brown and magenta

signatures that also exhibit vastly di�erent solute transport properties. On the

other hand, the predictive power is limited, since the e�ective solute transport

depicted in light blue, is di�erent, even though the structure functions f(x)

are identical. The opposite scenario may also occur: In spite of di�erent f(x),

two parameter �elds might evoke identical e�ective transport behavior. This

raises the questions what minimum amount of morphological description is

required to predict e�ective hydraulic behavior in heterogeneous structures. A

conclusive answer is not only appealing from an academic perspective, but also

practically relevant: Following the counter clockwise approach in Figure 1.1

is elegant and computationally e�cient, whereas the clockwise, brute-force

approach of a numerical simulation is computationally more demanding. De-
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tailed information on speci�c transport patterns is obtained though, but this

is even irrelevant when the focus is on averaged, e�ective behavior.

Simulating heterogeneity �elds by means of stochastic reconstruction has

proven to be a versatile validation tool to explore the causal link between struc-

tural heterogeneity and e�ective hydraulic behavior (Allard and HERESIM

Group, 1993; Ouenes et al., 1994; Koltermann and Gorelick, 1996; Carle and

Fogg, 1997; Deutsch and Journel, 1998; Yeong and Torquato, 1998; Talukdar

et al., 2002; Strebelle, 2002; Okabe and Blunt, 2005; �Capek et al., 2009; Jiao

et al., 2009; Mariethoz et al., 2010). The rationale is to measure a structural

connectivity metric on a heterogeneity model of interest and to generate a

new stochastic model obeying exactly this metric while other properties are

random. The outcome then can be validated by (i) visual inspection, i.e.

whether realizations of the original and the reconstructed heterogeneity mod-

els resemble each other, by (ii) structural connectivity metrics not included in

the reconstruction or by (iii) functional connectivity metrics, i.e. comparing

the functional connectivity metrics of the reference and the stochastic model

to check whether some metric is really capturing structural features that steer

the functional response. This strategy will be followed in this thesis, too.

In a �rst exercise steady-state �ow and transport simulations under satu-

rated conditions will serve as basis for functional metrics. By this, compara-

bility with previous �ndings from groundwater hydrology (Zinn and Harvey,

2003; Knudby and Carrera, 2005; Le Goc et al., 2010) is possible. These stud-

ies explored the impact of structural heterogeneity on e�ective hydraulic con-

ductivity and solute dispersion at single-phase �ow. Zinn and Harvey (2003)

started from a two-dimensional Multigaussian heterogeneity model for which

the e�ective permeability is known to equal the geometric mean of local perme-

abilities and solute transport is known to display Fickian behavior. A special

feature of the Multigaussian heterogeneity model is that locations with medium

permeability values have highest continuity, whereas locations of low and high

permeability remain isolated (Journel and Deutsch, 1993; Gómez-Hernández

and Wen, 1997). Then, the authors applied a so-called absolute value transfor-

mation that altered the internal structure towards highest continuity of barriers

with low permeability or highest continuity of channels with high permeability,

while univariate and bivariate distributions of the permeability �eld remain un-
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changed. Numerical simulations demonstrated that e�ective permeability de-

creases in the presence of low permeability barriers, whereas it increases in the

presence of high permeability channels. Moreover, macrodispersion starts to

become non-Fickian in connected structures of high permeability, i.e. it cannot

be described with an e�ective convection-dispersion equation anymore. That

is to say, the structure with isolated regions of low permeability surrounded by

a well-connected pattern of high permeability evokes physical mobile-immobile

domain mass transfer exhibiting faster arrival and longer tailing. These �nd-

ings are in line with many �eld experiments in highly heterogeneous aquifers

(Fogg, 1986; Poeter and Townsend, 1994; Harvey and Gorelick, 2000; LaBolle

and Fogg, 2001). Knudby and Carrera (2005) elaborated on the same het-

erogeneity models and numerical experiments and compared various, easily

obtainable indicators of e�ective �ow and transport behavior by their ability

to describe the aforementioned changes in hydraulic behavior due to di�er-

ent structural connectivity. That is, indicators of �ow connectivity describe

the �ow rate increase caused by preferential �ow paths, whereas indicators

of transport connectivity estimate the existence of fast paths allowing early

solute arrival. Moreover, they surveyed indicators of structural heterogeneity

with regard to their informative value on connectivity. Remarkably, the cor-

relation between indicators of structural connectivity and functional connec-

tivity is low. Moreover, the dependence between �ow and transport indicators

is weak which is why they concluded that functional connectivity is a process

dependent concept.

Since then the work has been extended to unsaturated media with the same

heterogeneity models at hand (Neuweiler and Cirpka, 2005; Neuweiler and Vo-

gel, 2007). Also, unsaturated hydraulic conductivity turns out to depend on

structural connectivity. Moreover, the e�ective hydraulic conductivity could

be satisfactorily predicted from empirical upscaling formulas based on struc-

tural connectivity metrics of the underlying parameter �eld (Samouëlian et al.,

2007).

All numerical studies mentioned above have been based on the assumption

of stationary �ow. However, focusing only on steady-state properties is a re-

striction without a cause. In fact, Knudby and Carrera (2006) explored in

another numerical groundwater study the bene�t of using apparent di�usivity
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as a functional connectivity metric for e�ective non-equilibrium behavior. In

short, apparent di�usivity is an indicator of transient hydraulic behavior that

describes how fast a pressure change is propagated through a domain. The

authors demonstrate that the correlation between structural connectivity and

apparent di�usivity is higher than the correlation between structural connec-

tivity and indicators of stationary properties like e�ective permeability or early

solute arrival in a stationary �ow �eld. Moreover, the correlation between ap-

parent di�usivity and either �ow or transport connectivity is higher than the

sole correlation between �ow and transport connectivity. Hence, the authors

concluded that apparent di�usivity accounts both (i) for structural connectiv-

ity e�ects controlling the average plume movement (via e�ective permeability)

and (ii) for structural connectivity e�ects not linked to the e�ective medium

properties that control the progression of the solute front.

In the course of this thesis, this approach will be extended towards unsatu-

rated conditions. While abrupt pressure changes do rarely occur in an aquifer

unless it is enforced by a pumping test, in the vadose zone these are quite fre-

quent due to the relatively fast changing, external forcing at the atmospheric

boundary. A notorious example is rapid water in�ltration into a dry soil during

a heavy rainstorm. Structural heterogeneity in soils is known to cause prefer-

ential �ow into macropores during such an event (Beven and Germann, 1982;

Roth et al., 1991; Ghodrati and Jury, 1992; Flury et al., 1994; Hendrickx and

Flury, 2001; Clothier et al., 2008). Thereby, quick in�ltration into macropores

bypasses a large proportion of the soil, which entails hydraulic non-equilibrium

at the in�ltration front. This means that water content and water potential in

a given control volume, are not in equilibrium according to some equilibrium

water retention curve (Jarvis, 2007; Vogel et al., 2010a). That is to say, aver-

aged state variables in a heterogeneous control volume comprising water �lled

macropores and a surrounding dry matrix diverge from an equilibrium reten-

tion curve and relaxes back to another equilibrium state, when the in�ltration

front has passed the control volume entirely. Since �ow paths adapt to the

structural heterogeneity of the porous medium, there is a direct link between

structure and non-equilibrium. The question arises, whether structural con-

nectivity tends to increase or decrease the degree of hydraulic non-equilibrium.

To this end, new indicators of functional connectivity will be introduced that



1.2. Objectives 8

are capable of describing hydraulic non-equilibrium and can be compared to

connectivity metrics of the underlying structure.

As Figure 1.1 implies these new metrics have to be deduced from averaged

state variables, i.e. the average water content and the average matric poten-

tial in a given control volume. This substitution of a heterogeneous domain

of local properties by an averaged homogeneous one, with so-called equivalent

or e�ective properties is also denoted as upscaling (Rubin, 2003; Vereecken

et al., 2007). Equivalent or e�ective means that the functional response to

some applied boundary conditions are identical for the heterogeneous domain

and the upscaled homogeneous domain. Since in�ltration is predominantly a

vertical process averaging across a control volume with large horizontal ex-

tent is feasible whereas a high vertical resolution must be maintained (Vogel

et al., 2010a). Hence the upcoming task will be to upscale a two-dimensional

in�ltration study into a one-dimensional e�ective model such that hydraulic

non-equilibrium is conserved during upscaling. If successful, we can quantify

the e�ective hydraulic non-equilibrium and relate it to other metrics of interest.

1.2 Objectives

The motivation of this thesis is that e�ective hydraulic behavior is not only

governed by the variance and the spatial correlation of a heterogeneous pa-

rameter �eld, but also by the connectivity of the underlying structure. This

induces the hypothesis that structural connectivity can be reduced to some

meaningful metrics that facilitate the prediction of e�ective hydraulic behav-

ior. Hence, the objective of this work is to test this hypothesis and to �nd out

what structural connectivity metrics this would be.

The feature of interest in this thesis will be local zones of high hydraulic

conductivity, from now on denoted as high-K zones. Accordingly, structural

connectivity of a heterogeneous domain describes the existence of continuous

high-K paths between distant locations. Di�erent heterogeneity models with

high and low connectivity of high-K zones will serve as reference structures

at which the capability of various structural connectivity metrics to capture

di�erent degrees of connectivity can be tested. Some of them measure local

properties of the structure with minimum e�ort and within short ranges only,
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whereas others measure global properties of the entire structure at higher com-

putational cost. Then, the aforementioned stochastic reconstruction paradigm

will be applied to generate stochastic structures that exactly reproduce these

short-range connectivity metrics. Subsequently, the long-range connectivity of

high-K zones will be compared between the reference models and the recon-

structed models.

The causal link between structural and functional connectivity will be ex-

plored by several numerical experiments. Averaging the simulation outcome

yields e�ective hydraulic behavior with respect to di�erent physical processes

such as (i) stationary, single-phase �ow, (ii) transport of a conservative tracer

in a steady-state �ow �eld and (iii) hydraulic non-equilibrium during in�l-

tration. Functional connectivity metrics will be introduced for each process.

Finally, a comparison between structural and functional connectivity metrics

between di�erent reference and reconstructed heterogeneity models provides

the foundations to comment on the hypothesis.

1.3 Outline

This thesis is based on theoretical considerations and numerical simulations

in the realm of vadose zone hydrology. Chapter 2 provides the theoretical

foundations in this regard. The fundamental equations for water �ow and

solute transport in the unsaturated zone are introduced �rst. Then, Miller

similarity is explained, which serves as a simple and yet �exible concept to

incorporate soil heterogeneity into hydraulic modeling. Finally, averaging of

state variables under stationary and transient conditions is elucidated, which

is a prerequisite to calculate e�ective hydraulic properties.

Chapter 3 provides all details on the methodology of the thesis. A com-

parison between three di�erent heterogeneity models comes �rst together with

a description of how to generate them. These will serve as reference het-

erogeneity models with distinct di�erences in structural connectivity. In the

following, these structural di�erences are assessed by various structural con-

nectivity metrics, all exhibiting a di�erent ability to detect connectivity. Sub-

sequently, simulated annealing is introduced as a global optimization method

for stochastic reconstruction of the above mentioned reference heterogeneity
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models. Both the general functioning and the speci�c parameter settings of the

applied optimization method is explained. Afterwards the setup of two numer-

ical experiments is delineated in detail. The �rst comprises a combination of

stationary gravity �ow under saturated conditions and a subsequent transport

experiment of a non-sorptive tracer within that steady-state �ow �eld. Visual

di�erences in �ow patterns due to the underlying structural heterogeneity are

already discussed here. The second numerical experiment is an in�ltration

study in which hydraulic non-equilibrium is evoked. Here, it is demonstrated

that the choice of the averaging procedure of state variables has severe implica-

tions on the e�ective description of hydraulic non-equilibrium. It is proposed

that �ux-weighted averages of matric potential result in an equivalent potential

that conserves hydraulic non-equilibrium during upscaling. The chapter ends

with an introduction of functional connectivity metrics, which are based on the

e�ective �ow and transport properties in the �rst experiment and on e�ective

hydraulic non-equilibrium in the second experiment. The steady-state �ow and

transport connectivity metrics are only brie�y discussed and compared, since

they are already well-established. The non-equilibrium connectivity metric,

however, is explained in detail, since this is a novel approach which quanti�es

the di�erence between equilibrium and non-equilibrium water retention.

Chapter 4 compiles all results that are necessary to tackle the working

hypotheses stated above. First, the outcome of stochastic reconstruction of two

di�erent reference heterogeneity models are surveyed. This comprises a visual

inspection whether the reference structures and the reconstructed counterparts

look alike and an additional validation by structural connectivity metrics that

capture long-range connectivity features. This allows for a classi�cation on

the suitability of di�erent local connectivity metrics to reproduce structural

connectivity. Secondly, functional connectivity metrics for �ow and transport

are compared between the reference and the reconstructed structures. This

provides an answer on whether or not di�erences in long-range connectivity

directly translate into di�erences in e�ective hydraulic behavior. Finally, the

degree of e�ective hydraulic non-equilibrium during in�ltration is compared

between all three reference heterogeneity models. This is underpinned with

additional hydrological and morphological properties of the in�ltration front.
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Chapter 5 includes a comprehensive discussion on the results. First,

the impact of short-range, structural properties on structural and functional

connectivity is analyzed by a detailed inspection of structural artifacts from

stochastic reconstruction. Then, the results of the in�ltration study are dis-

cussed from di�erent perspectives: (i) a �nal critique on a novel approach

to quantify hydraulic non-equilibrium is made by comparing it to observa-

tions from �eld and lab experiments, (ii) the impact of structural connectivity

on e�ective hydraulic non-equilibrium is interpreted and (iii) the relation be-

tween functional connectivity metrics for �ow, transport and hydraulic non-

equilibrium is assessed.

Finally, Chapter 6 reconsiders the working hypothesis that have been

stated in the beginning. In the �rst place, it provides a �nal statement on

which which structural properties contain su�cient information on connectiv-

ity to predict �ow, transport and hydraulic non-equilibrium. Furthermore, the

relationship between e�ective hydraulic behavior is �nally being judged. The

thesis ends with an outlook on future perspectives of the developed methods.
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Chapter 2

Theoretical background

2.1 Vadose zone hydrology

A porous medium is composed of solid matter and the pore space in between.

In unsaturated soils this pore space is partly �lled by air and water. The ratio

of water volume to total volume de�nes the water content θ, which depends

on the prevailing matric potential ψ. This matric potential expresses energy

density of water due to capillary forces. It is de�ned as the amount of work

per unit quantity of pure water that is required to remove an in�nitesimal

quantity of water (Hillel, 1998). Matric potential ψm and gravitational po-

tential ψz constitute total hydraulic potential ψ. Hydraulic potential is an

energy density [J m−3] which is equivalent to pressure [Pa]. This pressure is

frequently expressed in terms of an equivalent height of a water column [m]

and then denoted as hydraulic head. Head units are more convenient for some

equations, which is why they will be used in this study. A unique and highly

non-linear relationship between water content θ and pressure head hm exists

that is denoted as water retention curve or soil water characteristic θ(hm).

However, this uniqueness is only ful�lled, if (i) the solid matter is rigid, (ii)

the soil water is stagnant and (iii) hysteresis is neglected. Di�erent models

exist that describe θ(hm) by empirical parameterizations, of which the van

Genuchten model (van Genuchten, 1980) is most frequently used:

Θ(h) = {1 + [α|hm|]n}−1+1/n (2.1)

13
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where Θ = (θ − θr)/(θ − θs) is water saturation, θs and θr are saturated and

residual water content and α and n are shape parameters, referring to the air-

entry point and steepness in saturation decline, respectively. Under saturated

conditions all pores are water-�lled and a unique value of hydraulic conduc-

tivity Ks exists that solely depends on pore architecture. In unsaturated soil,

however, hydraulic conductivity is a non-linear function of water saturation

and varies by orders of magnitude as �ow is restricted to the water-�lled pores.

Again, various expression exist to describe unsaturated conductivity K as a

function of Θ. Most common is the Mualem formulation (Mualem, 1976) in

combination with eq. 2.1:

K(Θ) = KsΘ
τ
{

1−
[
1−Θn/(n−1)

]1−1/n
}2

(2.2)

where Ks is saturated conductivity and τ is a tortuosity parameter that

controls the decline in K(Θ). According to Darcy's Law K is a proportionality

factor with unit of a velocity [ms−1] that relates gradients in hydraulic head,

as the driving force, with the resulting �ux that it evokes. Combining this

fundamental relationship with the conservation of mass results in Richards

equation, which is the standard equation for dynamics of water �ow in soil.

Formulated in terms of hydraulic head it reads

C (hm;x) ∂thm −∇· [K (hm;x) [∇hm + z]] = 0, (2.3)

where C (hm;x) is the local water capacity at location x de�ned as the

derivative of the water retention curve C(hm) = ∂θ/∂hm, K (hm;x) is the local

unsaturated conductivity and z is elevation. The highly non-linear functions

C (hm;x) and K (hm;x) are parameterized in the Mualem- van Genuchten

formulation as described above. This equation is only valid if (i) the air-�lled

pore space is continuous and (ii) hm and θ are in local equilibrium at some

point on the water retention curve.

In terms of solute transport two di�erent mechanisms of solute displace-

ment need to be considered. One component is the convective transport pro-

portional to the water �ux, the other is the dispersive displacement including

hydrodynamic dispersion as written below. Adding up both and imposing

mass conservation results in the convection-dispersion equation
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θ∂tCw + j∇Cw −∇ [Deff∇Cw] = 0 (2.4)

where Cw is the solute concentration in water, j is water �ux and Deff is

e�ective dispersion comprising molecular di�usion and hydromechanic disper-

sion. Sorption is not considered in this formulation.

2.2 Miller similarity

In groundwater hydrology spatial heterogeneity of the aquifer manifests itself

in local variations of saturated hydraulic conductivity. However, vadose zone

hydrology has to cope with highly non-linear relations between saturation, wa-

ter potential and unsaturated hydraulic conductivity. A Miller similar medium

provides a simple and yet �exible heterogeneity model to this end (Roth, 1995;

Nielsen et al., 1998; Vereecken et al., 2007) and has been used for various pur-

poses in vadose zone modeling (Roth and Hammel, 1996; Samouëlian et al.,

2007; Vogel et al., 2010a). The original intention of Miller similitude was to

provide a simple model for hysteresis in homogeneous, isotropic media by lin-

ear scaling relations, in order to accommodate observations that the hydraulic

behavior of an unsaturated medium depends on the water dynamics (Miller

and Miller, 1956). Yet, this hysteresis model can also be restated as a model

for spatial heterogeneity in that the scaling factor is considered to be a random

function in space (Roth, 1995). Miller similarity refers to similarity of pore

morphology and states that the porosity is constant everywhere and the local

pore size distribution is shifted from a characteristic mean pore size r∗ towards

smaller or larger mean pore radii r by a scaling factor χ = r/r∗ (Miller and

Miller, 1956). Hence, this extended heterogeneity model consists of a single

scaling factor varying in space and two reference functions, the soil water char-

acteristic h∗m(θ) and the unsaturated conductivity function K∗(θ). The con-

stitutive scaling relations are hm(θ) = χ−1h∗m(θ) and K(θ) = χ2K∗(θ). This is

in line with hm ∝ 1/r in the Young-Laplace equation and K ∝ r2 according to

Pouseuilles' law. Assuming a log-normal pore size distribution in soil, log(χ)

is normally distributed with an expectation 〈log(χ)〉=0 and a given standard

deviation σχ. Setting the standard deviation of log(χ) to σχ=0.75 and the

hydraulic parameters to thetas = 0.32, θs = 0.03, α = 0.023 cm−1, n=4.2,
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Ks=2.22×10−5ms−1 and τ = 0.5 leads to the hydraulic functions depicted in

Figure 2.1.
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Figure 2.1: Water retention curve (left) and conductivity function (right) for the reference

parametrization of a Miller medium (log(χ) = 0) and with a scaling factor of±{1, 2}σχ. Left:
circles of di�erent size represent the shift in local θ(χ) at a pressure head of hm = −40 cm.

The color code represents log(χ), whereas the size represents the frequency ωχi
. Right:

symbols represent 〈K(hm)〉 at di�erent potentials for the three heterogeneity models.

The scaling factor a�ects hm(θ) by shifting the air-entry pressure (indicated

by α) while the logarithmic steepness of the curve (n) is preserved, as the

width of the log-normal pore size distribution remains unchanged. The impact

of the scaling factors on K(hm) is twofold: a shift in air-entry pressure and in

saturated conductivity, implying e.g. that a coarser material has a higher Ks

but reaches its air-entry point at higher pressure heads. The other symbols in

Figure 2.1 are explained in the next section, when averaging of state variables

is considered.

More elaborate similarity concepts exist, which relax some conditions of

Miller and Miller (1956) towards variable porosity or independent scaling fac-

tors for θ(hm) and K(θ) for a better representation of �eld observations (War-

rick et al., 1977; Vogel et al., 1991; Nielsen et al., 1998; Vereecken et al., 2007).
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However, since the focus of this study is on theoretical foundations of spatial

heterogeneity model simplicity is considered more bene�cial.

2.3 Averaging of state variables

Up to this point Miller similarity has been introduced as a theoretical concept

to express local variability in the hydraulic functions θ(hm) and K(θ) by a sin-

gle scaling factor χ. Moreover, di�erent models of spatial heterogeneity will be

presented that all treat χ as a random function in space but di�er qualitatively

in the spatial connectivity of χ. Numerical experiments will demonstrate the

impact of spatial connectivity on e�ective hydraulic behavior. As Figure 1.1

indicates, the interest typically lies in the impact of small-scale heterogeneity

on the averaged hydraulic behavior at a larger scale and far less on speci�c �ow

and transport patterns. To give a practical example: it is much more impor-

tant to know how fast or whether at all a surface-applied contaminant leaches

into groundwater after a heavy rain event than to know the speci�c location

of the �rst arrival. Therefore, this section demonstrates how state variables

θ, hm, j, Cw and the material properties α, n and K can be represented at a

larger scale. The procedure to average detailed spatial information on state

variables in a domain into representative values at a coarser representation

of the same domain is also denoted as upscaling (Vereecken et al., 2007). In

the following, the label 〈·〉 will indicate an upscaled, e�ective state variable

obtained from direct averaging and the subscript eff will indicate an upscaled

material property obtained from �tting. As �ow and transport in the vadose

zone are predominantly oriented in the vertical direction, the focus here is to

calculate averaged state variables along horizontal transects perpendicular to

the principal �ow direction.

Since water volume is an additive property, the averaged water content

within a control volume (or area or line) is easily obtained as the arithmetic

mean of all local θ values, i.e all pixels values in a digitized θ image. Con-

sidering the entire Miller medium as a control volume (or area) where the

frequency distribution of scaling factors is known, the mean water content at

a given pressure equals the area-weighted average of all scaled water contents

(Samouëlian et al., 2007; Vogel et al., 2010a):
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〈θ(hm)〉 =
∑
i

ωiθ(hm, χi) (2.5)

where i identi�es all scaling factors χi occurring in the domain, θ(hm, χi) is

the scaled water content, ωi is the probability density of the scaling factor χi
with

∑
i ωi = 1. Figure 2.1 depicts an example of how 〈θ(hm)〉 is calculated

at hm = −40 cm. The grey circles depict θ(hm, χi) with di�erent grey tones

depending on χi and di�erent size depending on ωχi
. Calculating 〈θ(hm)〉

at various pressure heads renders the equilibrium water retention curve of

the medium under static conditions depicted in orange. Hence, heterogene-

ity merely needs to be addressed in terms of frequency distribution of scaling

factors irrespective its spatial arrangement. As indicated in Fig. 2.1, the vari-

ability in log(χ) results in a broadened pore spectrum. As a consequence, the

e�ective hydraulic parameters of the entire soil changes from n=4.2 for the ref-

erence parametrization to neff=2.30 and α = 0.023 cm−1 to αeff = 0.031 cm−1

for the chosen set of hydraulic parameters, whereas θeff
s and θeff

r remain unaf-

fected. Averaging of solute concentrations in water Cw is also straightforward,

since it is a capacitive property, too. Hence, the e�ective concentration 〈Cw〉
in a given domain equals the arithmetic mean of local Cw-values within that

domain. In principle, averaged water �uxes j within a control volume could

also be calculated as an arithmetic mean of local j-values. However, �ux is

not a scalar but a vector with di�erent directional components. The problem

is relaxed by the aforementioned fact, that the interest lies only in the verti-

cal �uxes jz across a horizontal transect, for which the arithmetic mean again

applies.

On the contrary, the e�ective K(hm)eff is more di�cult to determine, as it

is an emergent property of the entire domain and depends on the spatial ar-

rangement of scaling factors. Therefore, we simulate gravity �ow at di�erent

pressure heads, calculate K(hm)eff directly from steady-state �ux rates 〈jz〉
and set hm to the imposed boundary condition, disregarding the weak internal

variability in the pressure �eld. The acronyms MG, CB and MP in Figure 2.1

represent di�erent heterogeneity models as discussed below. The di�erence in

K(hm)eff between them demonstrates the impact of spatial arrangement on ef-

fective conductivity. The higher connectivity in the CB and MP heterogeneity

as compared to MG heterogeneity leads to an increase in e�ective Keff
s , which
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is in line with former studies (Zinn and Harvey, 2003; Knudby and Carrera,

2005; Le Goc et al., 2010). The unsaturated conductivity is also higher in the

wet range, whereas the order changes under dry conditions. As Eq. 2.1 and

2.2 do not allow for di�erent neff , the e�ective K(hm)eff values are �tted by a

spline function .

An assumption underlying Richards equation is that water potential and

water content are always in equilibrium locally with a well de�ned conductivity

at a given saturation. The required constitutive relations are given by the water

retention curve θ(hm) and the hydraulic conductivity function K(θ). Due to

the heterogeneous distribution of material properties, every location has its

own speci�c water characteristic and conductivity function. The challenge

is to determine an e�ective potential within a heterogeneous control volume

during transient �ux.

Since hydraulic head h is the sum of pressure head hm and gravitational

head hz and �ow in the vadose zone is predominantly orientated in verti-

cal direction, the control volume typically reduces to a horizontal plane with

constant gravitational head hz and variable pressure heads hm. Thus, in two-

dimensional space the task reduces to determine the average pressure head

〈hm〉 at a horizontal control line. If water is in hydrostatic equilibrium, hm is

constant within a horizontal plane and we can apply the averaging rules for

θ and K as explained above to arrive at a complete description of hydraulic

properties. This operation is also valid for steady-state equilibrium under grav-

ity �ow, provided local variations in potential are negligible (de Rooij, 2011).

However, during transient conditions averaging across heterogeneous control

volumes becomes a di�cult task, because averaging of water potential is not

clear but is still a matter of debate (Korteland et al., 2009; de Rooij, 2011).

So far, no averaging approach is available that has been proven to be valid

under transient conditions, particularly when gradients in hydraulic head are

steep. Yet, hydraulic gradients are the driving force of water �ow and need

to be adequately represented in simpli�ed upscaled models. In the follow-

ing we compare four di�erent averaging techniques for pressure head and we

discuss their suitability to represent hydraulic non-equilibrium in an e�ective

one-dimensional model:
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arithmetic mean In the lack of any other physical justi�cation one could

adapt to the averaging rule already applied to water contents and calcu-

late the arithmetic mean of local pressure heads:

〈hm〉a =
1

L

∫
L
hmdL ≡

1

n

n∑
i

hm,i (2.6)

written as an integral for a continuous domain and as a summation for

a discretized domain, respectively, where i is the location identi�er and

n is the amount of all pixels along the control line with width L. Note

that in continuous space the control line has no vertical extent, wheres

in discretized space the extent equals the size of a pixel. It has been

previously applied by Zehe et al. (2006) and is also denoted as volume

averaging (de Rooij, 2011). This approach is questionable, since the

physical meaning of an arithmetic average with respect to the driving

force at the larger scale is not clear.

θ-weighted mean It has been suggested that the involved volume of water

has to be considered for averaging in order to conserve potential energy

during upscaling (Whitaker, 1986; Gray, 2002; de Rooij, 2011). Thus,

an intrinsic phase average was de�ned:

〈hm〉θ =

∫
L θhmdL∫
L θdL

≡
∑n
i θihm,i∑n
i θi

(2.7)

Herewith, the local pressure heads are weighted by the local water con-

tent. However, pressure head refers to the energy required to remove an

in�nitesimal small volume of water at a given state. Thus, this energy

density cannot be attributed to the total volume of water and hence, the

θ-weighted mean might not be an appropriated choice.

maximum An averaged value of pressure head is intended to be used as the

driving force for water �ow in a Richards-type model at the larger scale.

Recently (Vogel et al., 2010a) proposed to use the maximum pressure

head within a planar control volume

〈hm〉max = ‖hm‖∞ ≡ max{hm,1, . . . , hm,n} (2.8)
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because this determines the minimum energy required to extract water

from that volume.

�ux-weighted mean We might assume that the water volume �owing across

a horizontal plane within a heterogeneous medium is proportional to the

drop in some averaged head across this plane. A way to represent this

average head is to consider the �ux-weighted mean potential:

〈hm〉j =

∫
L jzhmdL∫
L jzdL

≡
∑n
i jz,ihm,i∑n
i jz,i

(2.9)

where jz,i is the vertical �ux density at the sub-compartments i. Hence,

the �ux weighted potential (short for �ux density weighted potential)

integrates spatial variations in local water potential and spatial variations

in local water �uxes. As a result, only those locations where the irregular

front has already passed the control line do contribute to the upscaled

average pressure head.

In the remainder of the thesis, these four averaging methods for pressure

head will be compared by their impact on upscaled hydraulic behavior during

hydraulic-non-equilibrium.
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Chapter 3

Methods

3.1 Quanti�cation of structural heterogeneity

3.1.1 Heterogeneity models with di�erent connectivity

Analytic solutions for e�ective hydraulic properties under saturated (Dagan,

1986; Gelhar, 1986) and unsaturated conditions (Yeh et al., 1985; Mantoglou

and Gelhar, 1987) typically assume a Multigaussian heterogeneity model. This

implies not only a normal frequency distribution function of parameter values

(i.e. log-values of hydraulic conductivity), but also that the correlation struc-

ture of these values is the same above and below the mean value. That is

to say, spatial statistics like the indicator variogram at given grey thresholds

are identical for a �eld and its inverse. As a consequence, extreme values are

always situated on isolated spots, whereas values around the mean have the

highest continuity (Journel and Deutsch, 1993; Gómez-Hernández and Wen,

1997). This is, however, quite a restrictive assumption and frequently dis-

proved by nature. A prominent example are macropore networks generated by

biological activity with high conductivities assembled along elongated chan-

nels that are much longer than the correlation length of matrix heterogeneity

(Shipitalo and Butt, 1999; Jarvis, 2007; Zehe et al., 2010). To demonstrate the

impact of connectivity features we set up three di�erent types of heterogeneity

�elds that are almost identical in terms of two-point statistics but di�erent in

topology (Fig. 3.1).

23
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Figure 3.1: One realization of a Multigaussian random �eld (MG, left), a recon�gured �eld

with high values assembles along connected bands (CB, middle) and �eld with Multigaussian

background heterogeneity superposed by vertically oriented macropores (MP, right).

The grey values g represent the logarithm of scaling factors log(χ) in a

Miller-similar medium. The �rst �eld corresponds to the classical Multigaus-

sian (MG) model with a Gaussian autocovariance function and a correlation

length of 0.025 the image length. It is generated by means of a Fourier trans-

form of the autocovariance function (Robin et al., 1993). In the second model

the entire image is recon�gured according to the method of Vogel (2002) also

used by Zinn and Harvey (2003). In short, by taking the absolute di�erence of

any pixel to the mean and inverting the result, extreme values are assembled

into connected bands (CB) of high continuity. As this operation changes the

correlation length, a new MG with the altered correlation length has to be cre-

ated. In the third model only a small proportion of the MG image is modi�ed

by inserting 5 vertical channels of extreme values at random locations, with

a size of 0.012×0.5 the image length and assuming vertical periodicity. This

geometry shall mimic the distinct anisotropy of macropores (MP) in soil. The

CB and MP model di�er not only in that the CB model is perfectly isotropic,

it also exhibits much higher local bonding of high-K zones in comparison to

the rather isolated channels in the MP model. By matching the histogram

of the CB and MP model with that of the MG model (normal score trans-

form), all heterogeneity models share the same normal frequency distribution

of gray values. The same heterogeneity models have already successfully been

applied in the past to determine the impact of structural connectivity on water

�ow and solute transport under saturated, stationary conditions (Knudby and

Carrera, 2005; Le Goc et al., 2010).
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3.1.2 Structural connectivity metrics

Two-Point Statistics

The histogram and the autocovariogram are fundamental one- and two-point

statistics to describe the variability of a property itself and the variability in

space. These distribution are depicted in Figure 3.2 for a comparison between

the MG and the CB heterogeneity model. For now, the MP heterogeneity

model is ignored, since it won't be examined by stochastic reconstruction in

the next sections. The frequency distribution of grey values g one the left hand

side is identical for all realizations of both models, as this has been enforced by

the generation process. Dividing the autocovariance by the variance yields the

autocorrelation function on the ride hand side. The two models di�er slightly.

The autocorrelation at small distances is smaller for the CB model since the

bands are rather thin and exhibit steep gradients towards the surrounding

matrix, whereas long-range correlation is slightly higher due to the continuity

of the bands. The integral of the autocorrelation function is denoted as cor-

relation length or integral scale. This correlation length is always the same

for each pair of a CB and a MG realization. As Figure 3.2 shows, there is

however some inevitable variability in the long-range correlation among many

realizations.
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Figure 3.2: Comparison of 30 realizations of the MG and CB heterogeneity model by means

of the histogram (left) and the autocorrelation function (right). Shaded area represents

standard deviation. Separation distance is scaled by the image size. Grey value is normalized

by (g − 〈g〉)σ−1
g ).
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Evidently, the correlation length is not sensitive to connectivity features,

since the autocorrelation only covers information at two distant points, without

addressing the space in between. The extension from two-point to multiple-

point statistics is an obvious step to improve the characterization of structural

properties including connectivity. This was already proposed some decades

ago (Journel and Alabert, 1989; Allard and HERESIM Group, 1993). In the

following we introduce some well-established multiple-point statistics all mea-

suring hydraulically relevant features by di�erent means. Since these methods

are based on binary domains we take advantage of the level set approach (Vo-

gel, 2002; Samouëlian et al., 2007; Renard and Allard, 2011). Thereby, the grey

scale image is successively segmented by increasing threshold values resulting

in a stack of indicator maps (i.e. binary images) that are evaluated separately.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

h
e
ig

h
t 
[m

]

width [m]

 0  0.2  0.4  0.6  0.8  1

width [m]

0

0.2

0.4

0.6

0.8

1

h
e
ig

h
t 
[m

]

Figure 3.3: Binary images of the MG (top) and the CB structure (bottom) in Figure 3.1

thresholded at the percolation threshold of the MG structure (left) and the CB structure

(right). White (black) areas represent grey values higher or equal (lower) than the threshold.

Figure 3.3 depicts two level sets each for the realization of a MG and CB

heterogeneity model depicted in Figure 3.1. The grey thresholds gt are chosen

such that the set of white pixels is exactly at the percolation threshold in the

MG image (left) and the CB image (right), respectively. A structure is said

to percolate if a continuous path between two opposite borders exists in the
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foreground phase (white). The percolation threshold of the CB image is at a

higher grey threshold due to the continuity of bright bands.

Minkowski functions

It is appealing to quantify complex structures by a limited set of morpho-

logical descriptors. Minkowski functionals Mk provide a formidable means to

this end (Mecke, 2000). For two-dimensional structures they include covered

area (M0), boundary length between background and foreground (i.e. black

and white) (M1), and the Euler number as a topological measure describing

connectivity (M2). The Euler number counts the number of isolated objects

minus the number of redundant connections. Thus it takes negative values for

well connected structures and positive values for patterns in which the objects

stay rather isolated. Minkowski functionals are additive. When cutting a bi-

nary domain into parts, the sum of the partial contributions still equals the

global value with respect to Mk. The elementary cell for which this additive

statement still holds is a 2x2 cell. Consequently, the Minkowski functionals

can be calculated very e�ciently from the frequency distribution of local pixel

con�gurations in terms of the possible values [0, 1]. Precisely, the frequency

of 16 possible con�gurations within a 2x2 pixel neighborhood are counted by

a single loop throughout the entire image, which reduces the Minkowski func-

tionals to a compact four-point statistic. The di�erent functionals are directly

inferred from this frequency distribution of local con�gurations by attribut-

ing speci�c weights to each con�guration. For implementation details the

reader is referred to Ohser and Mücklich (2000), Mantz et al. (2008) or Vo-

gel et al. (2010b). Taking into account the aforementioned level set approach

each Minkowski functional can be expressed as a function of threshold value

gt applied to the grey scale image. The resulting functions Mk(gt) are termed

Minkowski functions (Vogel et al., 2002; Samouëlian et al., 2007; Vogel et al.,

2010b). Figure 3.4 depicts the Euler number as a function of threshold value

for the two reference images. It has been shown by Mecke and Wagner (1991)

that the zero crossing of the Euler number corresponds approximately to the

percolation threshold, where a continuous path connecting the boundaries of

the image can be found.
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Figure 3.4: Comparison of Euler numbers as a function of threshold for the MG and the

CB structure for 30 realizations each. Shaded area represents standard deviation. Grey

threshold is normalized by (gt − 〈g〉)σ−1
g ).

The sigmoidal shape, together with the zero crossing exactly at the mean

grey value is typical for classical Multigaussian images. The CB image however

is characterized by a shifted zero crossing towards higher grey values, which

re�ects the better connectedness of the bands in the range between µ− σ and

µ+ σ leading to more loops within the network and less isolated objects. The

high positive peak at brighter grey values indicates that the thin bands are

cut abruptly into a multitude of small isolated pieces. In the following we will

focus on the Euler number as a topological connectivity metric. It should be

noted, however, that the four-point statistic also includes area density and the

boundary length density as additional morphological metrics that describe the

regularity of a structure.

Chord length distribution

Chord length is de�ned as the distance between two intersections of a line

with the two-phase boundary (Roberts and Torquato, 1999). Thus, the chord

length distribution summarizes the ensemble of all linear chords occurring in

an image. This is in contrast to ordinary two-point statistics, where only the

endpoints of an imaginary line are considered. The chord length distribution
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is phase speci�c, in that the distributions for both phases are independent.

The chord length distribution (or the closely related lineal path function) has

been successfully used for stochastic reconstruction in various former studies

as a suitable tool to assess clustering within complex structures (Roberts and

Torquato, 1999; Manwart et al., 2000; Talukdar et al., 2002; �Capek et al., 2009).

Since connectedness is evaluated along lineal test lines it only possesses limited

information on connectivity. In Figure 3.5 the chord length distributions of

both phases along the principal axes are compared for the two reference images.

Thereby, the grey threshold gt was chosen to be at the zero crossing of the Euler

number for the CB image.
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Figure 3.5: Left: Comparison of the two-phase two-directional chord length distribution

for 30 realizations of the MG and CB structure thresholded at the zero-crossing of Euler

numbers of CB structure (1 -white phase, 0 - black phase). Shaded are represents standard

deviation. Chord length is scaled by the image size. Right: Mean chord length of white and

black level sets as a function of grey threshold. Grey threshold is normalized by (gt−〈g〉)σ−1
g

The CB image di�ers from the MG image in that the white phase has a

pronounced peak at small chords while long chords are less frequent. This is

because the bands are rather thin and very curvilinear. Also within the black

phase the chord lengths are systematically shifted towards lower chord lengths

due to fragmentation by the elongated bands. Evidently, the chord length

distribution nicely re�ects the size distribution of structural features as visually

observed in Fig. 3.3. Similar to the correlation length a mean chord length

(chord length integral scale) can be calculated by integrating the frequency

over all lengths. Following again the level set approach Figure 3.5 compares
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these mean chord lengths as a function of grey threshold for both reference

structures. The striking di�erence between the CB and the MG structure is

the mean chord length of the background (black phase) which is signi�cantly

shorter for the CB image compared to the MG image in the range from µ to

µ+2.5σ. In contrast, the mean chord lengths for the foreground is very similar

for both images. This re�ects the insensitivity of the foreground chord lengths

with respect to connectivity. Antoine et al. (2009) came to similar conclusions.

Local percolation probability

A structure is deemed to percolate, if a continuous path between two opposing

sides (or locations) exists. Percolation theory is the most direct approach to

quantify connectivity and has proven to be a powerful tool especially when

disorder in the structure is high (Hunt, 2001). In contrast to the other afore-

mentioned multi-point statistics, percolation is a global feature that can not

be captured by local evaluation. Hilfer (2002) proposed the concept of local

percolation probability to evaluate percolation properties of heterogeneous bi-

nary structures as a function of the size of subsamples. If L is the side length

of a squared subset of a 2D image, than pβ(L) denotes the probability that the

phase β = {0, 1} exhibits a continuous percolating path within the subset. It

is obtained by evaluating all possible subsets of size L. The local percolation

probabilities for the two reference images are compared in Figure 3.6.

The threshold gt chosen to generate the underlying binary images corre-

sponds to the zero crossing of Euler numbers within the MG images, indicat-

ing that the image contains just as much redundant loops within clusters as

there are separate clusters within the image. This zero crossing is a formidable

estimate for the percolation threshold, which means that at higher thresholds

the set of brighter pixels would not percolate anymore. The mean percolation

probability of 0.5 found for MG images irrespective the window size demon-

strates that the structure is right at the percolation threshold. In contrast, all

CB images percolate at this threshold once the subsample covers a represen-

tative area.

Since global percolation is a binomial feature the corresponding standard

deviation converges to σ =
√
p(1− p) at the right end of Figure 3.6. At small

window sizes the local percolation probability approaches the porosity of the
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Figure 3.6: Comparison of local percolation probabilities (mean and standard deviation)

as a function of window size for 30 realizations of the MG and CB structure thresholded at

the percolation threshold of the MG structure. Window size is scaled by the image size.

underlying indicator map, which is identical for both structures and all real-

izations. The rather quick divergence into states of critical percolation and

perfect percolation for the MG and the CB structure, respectively, indicates

the potential of this measure to quantify connectivity. In former studies, local

percolation probability turned out to be an excellent validation tool for struc-

tural connectivity (Manwart et al., 2000; Talukdar et al., 2002; Okabe and

Blunt, 2005; �Capek et al., 2009). However, it is di�cult to use it for stochastic

reconstruction, since percolation by de�nition is a global feature, and thus,

can not be evaluated on a local basis. This, however, is critical to maintain

time e�ciency during the reconstruction process.

Pair connectivity function

It has been demonstrated above that the mean chord length can hardly be

interpreted towards connectivity. This is because it only considers, if there is

a straight connection between two locations x and (x+h). Thus, the undulating

pathways of the CB images cannot be captured. To better assess connectivity

it appears more adequate to consider the probability that x and (x + h) are
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linked by a continuous path of neighboring pixels (denoted with x ↔ x + h)

within the subset of all pixels belonging to phase β in the domain Ω. This

corresponds to the pair connectivity function τ(h) as de�ned by Allard and

HERESIM Group (1993):

τ(h) = {x↔ x+ h | x ∈ β, x+ h ∈ Ω} (3.1)

This connectivity statistics combines the continuous path concept from per-

colation theory with the well-established lag-dependence as it is used e.g. in

the autocovariance function. It has also been successfully applied as a vali-

dation tool for structural connectivity in former studies (Western et al., 2001;

Knudby and Carrera, 2005; Antoine et al., 2009). For implementation details

the reader is referred to Western et al. (2001). Note that the pair connectivity

function is in close accordance to the two-point cluster function that had been

previously de�ned by Torquato et al. (1988). Figure 3.7 depicts the pair con-

nectivity function for the two reference structures. The images were binarized

at the percolation threshold of the CB structures, so that the results remain

comparable to the chord length distributions in Figure 3.5.
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Figure 3.7: Left: pair connectivity function τ(h) for the MG and CB structure thresholded

at the percolation threshold of the CB structure. Right: connectivity length as a function of

grey threshold gt. Shaded area represents standard deviation. Separation distance is scaled

by the image size. Grey value is normalized by (g − 〈g〉)σ−1
g ).

Since the MG images do not percolate at the given threshold, τ(h) decays

approximately exponentially (Allard and HERESIM Group, 1993; Western

et al., 2001). For distances smaller than 2 correlation lengths (i.e. 0.05 × image
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size) the CB images have smaller τ(h) values than the MG structures simply

because of their �ligree geometry. However, τ(h) does not converge to zero

but to the area fraction of the percolating cluster. Similar to the correlation

length and the mean chord length, one can de�ne a mean connectivity range by

integrating τ(h) over all distances. This provides a single connectivity length

as a function of grey threshold similar to the mean chord lengths presented

above. The increased connectivity for the CB structure in the range between

µ and µ + σ is clearly demonstrated in Fig. 3.7. This compares well with

lower Euler numbers in that range. At higher thresholds gt above µ + σ, the

connected bands fall apart evoking even smaller connectivity lengths than the

compact objects of the standard MG structure. The connectivity function τ(h)

must be evaluated within long ranges in order to fully capture large clusters.

This makes it computationally ine�cient for image reconstruction by global

optimization. Therefore, it will not be used for stochastic reconstruction but

only as a validation tool for structural connectivity. Despite of the bene�ts of

a directional connectivity function reported by Western et al. (2001) we choose

the omni-directional connectivity function, in order to stay comparable to the

local percolation probability, that also accounts for any connection between

opposite borders in one direction even if it is partly oriented backwards.

3.2 Stochastic reconstruction of structural het-

erogeneity

3.2.1 Simulated annealing

The stochastic reconstruction is performed via an extremely �exible global

optimization method termed simulated annealing (Kirkpatrick et al., 1983;

Yeong and Torquato, 1998). It is a Markov chain Monte Carlo method that is

especially suited to incorporate information from di�erent sources, both sta-

tistical (soft data) or measured (hard data) (Koltermann and Gorelick, 1996;

Goovaerts, 1997; Deutsch and Journel, 1998). An energy function E is de�ned

to express the di�erence between n prede�ned reference functions f provided

by our reference images ref and those of the reconstructed (simulated) im-

ages sim. The structural connectivity metrics introduced in the last section
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will serve as these prede�ned reference functions. These metrics are directly

measured at the reference images, which contain the structural features that

shall be reproduced. With n > 1 a multi-objective optimization problem is

faced. As reference statistics fn we choose the autocovariance function, the

frequency distribution of local 2x2 con�gurations (i.e. all Minkowski function-

als) as a function of grey threshold gt and the four-directional two-phase chord

length distribution also as a function of grey threshold gt. The orthogonal

and diagonal chords are evaluated separately to accommodate the impact of

a di�erent separation distance between adjacent pixels. Each of the statistics

fn has its own speci�c weight an that controls the relative importance for the

optimization process. Thus, the energy function reads

E =
∑
n

gtmax∑
gt=0

an[f refn (gt)− f simn (gt)]
2. (3.2)

Since no hard data (i.e. measured values at speci�c locations) are used a

purely unstructured random image serves as starting point for the reconstruc-

tion (initial image). Then single pixels are changed iteratively and the energy

is recalculated. Thereby fast updating is aspired. This is possible for the

reference metrics used here, since local changes can be attributed directly to

the image statistics without recalculating the statistic for the entire domain.

Goovaerts (1997) provides useful implementation details for fast updating us-

ing the example of semivariograms. Each pixel change is followed by a de-

cision whether the perturbation is accepted according to the Metropolis rule

(Metropolis et al., 1953).

pk =


1 : if∆Ek ≤ 0

e−∆Ek/Tm : if∆Ek > 0
(3.3)

If the energy decreases the change k is always accepted. However, if the

energy increases it is only accepted with a certain probability. This prevents

the optimization from getting stuck in local minima. The temperature Tm
controls the acceptance probability and bestowed the term annealing upon the

optimization method in analogy to controlled cooling of metals. An exponen-

tial cooling scheme,

Tm = T0e
(λ−1)(m+1) , (3.4)
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is used such that a global optimum is achieved as fast as possible. Tm is

reduced by a factor λ by the end of every Markov chain m, that is after a

prede�ned number of perturbations, which is either an acceptance target kacc
(e.g. as many accepted perturbations as pixels in the image) or a maximal

number of attempts kmax (in the order of 10 times kacc) (Deutsch and Journel,

1998). The starting temperature T0 is adjusted to a desirable mean acceptance

probability for the �rst Markov chain of 〈pm0〉 ≈ 0.5. Adapting λ dynamically

to the rate of convergence allows for balance between fast convergence an

avoidance of local minima (Ouenes et al., 1994; Talukdar et al., 2002).

λ = Max

[
λmin,Min

(
λmax,

Emin

〈E〉

)]
(3.5)

The minimum and maximum allowable reduction factors can be speci�ed

empirically to improve convergence, e.g λmin = 0.7, λmax = 0.95. Reduction

factors within that range are determined according to the ratio of mean energy

〈E〉 and minimal energy Emin within the completed Markov chain. A stopping

criteria of the annealing process is the number of Markov chains reaching kmax
usually set to 2 or 3 (Deutsch and Journel, 1998).

3.2.2 Reconstruction details

The ensemble of possible realizations of simulated images all ful�lling the same

reference statistics is typically enormous. By starting from di�erent initial

images of unstructured noise and choosing the locations of perturbations at

random only some realizations of reconstructed images su�ce to evenly sample

that ensemble. Thirty images will be collected for each reconstruction model.

To cover the possible variability within the reference heterogeneity model, the

reference statistics for each reconstruction was obtained from a di�erent real-

ization of an MG or CB image.

All images have a size of 256x256 pixels with a grey scale of 8-bit. By

equidistant classi�cation the color space is reduced from 256 to 32 to reduce

the computational e�ort of reconstruction, that is gtmax = 32 in Eq. 3.2.

Moreover, computation time is saved by reproducing distant-dependent metrics

like the autocovariance and the chord length distribution only along principal

directions and up to a maximum distance of about eight correlation lengths.
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In case of bi-objective reconstruction the weights an were set to equalize the

energy contribution of the two reference functions at the start of reconstruction.

Periodic boundary conditions are assumed for reconstruction, i.e a chord might

connect opposite boundaries of the image.

There are di�erent schemes to choose a new grey value for each perturba-

tion. Typically, a grey value is sampled randomly from a proposal distribution

which is either uniform, Gaussian around the old value or equals the posterior

frequency distribution as obtained from the reference image. Here, a rather

heuristic scheme of a uniform proposal distribution within the grey value range

of all neighbors is applied in order to achieve quick convergence. This de�nitely

violates the ergodicity principle of sampling the entire parameter space (Besag

et al., 1995) necessary to �nd the global optimum. But this is not critical since

the exponential cooling scheme inhibits this as well and the interest is on near

optimal solutions anyway.
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Figure 3.8: Evolution of energy log10(E) and acceptance rate pk for a single-objective

optimization of Minkowski functions. Initial energy is set to log10(E)=0.

Figure 3.8 depicts the evolution of the energy E and the acceptance rate

pk for an optimization run, in which the frequency distribution of local 2x2
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con�gurations (i.e. all Minkowski functionals) as a function of grey threshold

gt of a MG heterogeneity model is reconstructed. The initial energy is set

to 1 and the values are plotted after periods of k=65536 iterations, i.e. the

number of pixels in the image. The overall decrease in energy is about 8

orders of magnitude, which is achieved after roughly 8.5×106 iterations within

125 s computation time. The development of pk demonstrates some interesting

details. In the beginning, when pk is high, only 2-3 periods su�ce to reach

the acceptance target kacc=65536 in order to terminate one Markov chain m

and adjust the temperature Tm+1 for the next Markov chain. This is because

the mean acceptance probability of the �rst Markov chain 〈pm0〉 is adjusted
to 0.5. The temperature reduction e�ects an abrupt decrease in pk. As the

optimization evolves, more and more periods are necessary to reach kacc in

order to start a new Markov chain. Finally, kmax is reached sooner than kacc,

as pk falls below 0.1 and the optimization ceases after two additional Markov

chains. The characteristic increase in pk between 2-3×106 iterations is a special

feature of optimization of Minkowski functions and does not show up for the

other structural connectivity metrics. However, overall energy reduction is

comparable for all connectivity metrics.

3.3 Setup of numerical experiments

3.3.1 Stationary �ow and transport

Structural heterogeneity manifests itself in many facets of which the interest

in this study is structural connectivity. Any functional behavior of a heteroge-

neous �eld might serve as an additional test, whether di�erences in structural

connectivity assessed by one of the structural connectivity metrics above di-

rectly translate into di�erent functional behavior. This requires that other

features of structural heterogeneity do not di�er and that identical initial and

boundary conditions are applied to the investigated process. Here, we adapt

to previous studies that use a combination of �ow and solute transport (Zinn

and Harvey, 2003; Knudby and Carrera, 2005; Le Goc et al., 2010) to test for

functional connectivity. The rationale is that the connectivity of high-K areas
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might directly a�ect the amount of channeling, i.e. concentration of water �ux

in preferential �ow paths, and as a consequence, also solute spreading.

A Miller similar medium introduced in Section 2.2 with a reference pa-

rameterization of θs = 0.32, θs = 0.03, α = 0.023 cm−1, n = 4.2, Ks =

2.22 × 10−5 ms−1, τ = 0.5 and a standard deviation of log-scaling factors

log(χ) at σχ = 0.75 will serve as a model domain for two di�erent numeri-

cal experiments. The �rst experiment involves the MG and CB heterogeneity

model only, whereas the second involves all heterogeneity models (MG,CB and

MP) introduced in Section 3.1.1.

The �rst numerical experiment comprises a comparison of e�ective conduc-

tivity and solute arrival times in a stationary �ow �eld for the two-dimensional

MG and CB reference heterogeneity models, and their reconstructed counter-

parts. The experiment adapts to the two-step procedure of Zinn and Harvey

(2003) so that results can be compared. In a �rst simulation step, saturated

gravity �ow is simulated with the Richards equation (Eq. 2.3). This is achieved

by starting from a constant initial pressure head of hm = 0 cm and applying

constant Dirichlet boundary conditions of hm = 0 cm at the upper and lower

boundary. As a consequence, gravitation becomes the major driving force and

the �ow �eld will adapt to the paths of lowest �ow resistance. At hm = 0 cm

the connected bands are saturated and are highly conductive, so that struc-

tural connectivity is expected to control the hydraulic response. The size of

the domain is set to 1×1 m. The simulations are performed by the µφ software

package (Ippisch et al., 2006). The grid is implemented in a cell-centered �nite

volume scheme. The solver uses an implicit Euler scheme in time and a full

upwinding scheme in space. An algebraic multigrid solver solves the linear

equations. The time step is adapted automatically.

The stationary �ux �eld for the realizations of the MG and CB heterogeneity

model in Figure 3.1 are depicted in Figure 3.9 (top). The network of �ow

channels adapts to the underlying structure by local funneling of water into

highly conductive regions. However, once a channel is established it persists

over a large scale since it carries enough water to penetrate local spots of lower

permeability (Roth, 1995; Le Goc et al., 2010).

In a second step, solute transport is modeled with the convection-dispersion

equation (Eq. 2.4), without considering sorption and molecular di�usion. Ini-
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Figure 3.9: Magnitude of steady-state �ux density (top) and solute concentration (bottom)

after in�ltration of 0.5 pore volumes of solute for one realization of the MG (left) and CB

(right) heterogeneity model depicted in Fig. 3.1.

tially, the domains contains no solute. Then, a constant unit solute concentra-

tion is applied at the upper boundary as a step input so that solute enters the

medium according to the local �ux at the upper boundary and moves down-

wards like in Fig. 3.9 (bottom). A di�erence in Keff between the two media is

corrected for in Figure 3.9 by plotting the solute patterns for a certain solute

volume that has entered the domain (0.5 pore volumes) instead of a certain

point in time. Figure 3.9 indicates that the CB heterogeneity model evokes a

higher density of preferential �ow paths and as a consequence also less variabil-

ity in the penetration depth of solute �ngers. Finally, the output concentration

at the lower boundary is monitored over time.

3.3.2 In�ltration

The second numerical experiment aims at the water dynamics during near-

saturated in�ltration into a previously dry soil. Initially hydraulic equilibrium

prevails with a hydraulic head of h = −100 cm through out the entire domain.

A free drainage boundary condition is applied to the lower boundary, evoking
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a unit gradient across the boundary. At the upper boundary a Neumann-type

condition (�ux boundary condition) is applied, with a constant in�ltration rate

of j0 = 2.22 × 10−5 ms−1. This value corresponds to the saturated hydraulic

conductivity of the reference parameterization of the Miller medium. The

type of the upper boundary condition is important. In the �rst experiment a

Dirichlet-type boundary condition is used to impose a head gradient between

opposite borders, in order to investigate the impact of connectivity on e�ective

hydraulic behavior at saturation. This choice has been made to stay compa-

rable to other studies with a focus on groundwater hydrology, where this is an

appropriate adaptation to natural conditions. In vadose zone hydrology, how-

ever, the upper boundary is controlled by the atmosphere and it is governed

by �uxes such as precipitation and evaporation. Due to a constant head at

the upper boundary water would enter the domain proportionally to local K

values and a higher connectivity of high-K zones would result in an increased

e�ective permeability (Sánchez-Vila et al., 1996; Wen and Gómez-Hernández,

1998; Zinn and Harvey, 2003; Knudby and Carrera, 2005). With a constant

�ux boundary condition, however, water is forced to enter the soil uniformly

and local pressure heads near the surface adapt accordingly. As the �ux rate is

�xed, the e�ective permeability must not change with a modi�ed connectivity

but the hydraulic head is expected to adapt.
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Figure 3.10: Pressure head after 70 min of in�ltration with j0 = 2.22×10−5 ms−1. The

underlying heterogeneity �elds correspond to Fig. 3.1 (MG-left, CB-middle, MP-right). The

white lines mark the depth in which the state variables are averaged (solid) and the location

of the maximum gradient in �ow direction for each pixel column (dashed).

Figure 3.10 highlights di�erences in the morphology of the in�ltration front

between the MG, CB and MP structures in Figure 3.1 by means of pressure

heads after 70 min of in�ltration. For further analysis water content θ, pressure
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head hm and vertical �ux density jz at every pixel location along the control

line in the middle of the pro�le (solid line) is monitored over time and averaged

according to Section 2.3. Moreover, the location of the front is estimated via

the maximum pressure gradient in �ow direction for each pixel column (dashed

lines).

3.4 Functional connectivity metrics

3.4.1 Channeling and solute spreading

The �ux and solute patterns in Figure 3.9 already demonstrated an impact

of structural connectivity on local patterns of water and solute displacement.

On top of that, structural connectivity also a�ects the e�ective behavior of

the entire domain as can be seen from the solute breakthrough curves in Fig-

ure 3.11. Solute transport in the CB structure di�ers from the MG image in

a pronounced early arrival. Evidently, the increased structural connectivity in

the CB heterogeneity model leads to an increased e�ective hydraulic conduc-

tivity that merely shifts the breakthrough curve towards earlier arrival times.

In addition, the slope of concentration increase is higher, which is also re�ected

by the peak and the skewness of concentration change.
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Figure 3.11: Comparison of breakthrough curves (left) for 30 realizations of the MG

and CB heterogeneity model and its derivative with respect to time (right). Shaded areas

represent standard deviation
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It is appealing too condense all information on stationary �ow and transport

behavior into a few indicator values that can be easily compared for di�erent

heterogeneity models. Knudby and Carrera (2005) surveyed various candidates

for �ow connectivity and transport connectivity metrics alongside structural

connectivity metrics and observed di�erent responses of �ow and transport

connectivity to changes in structural connectivity. Speci�cally, �ow connectiv-

ity indicators are more controlled by the continuity of preferential �ow paths

whereas transport connectivity is seemingly more controlled by the thickness

of these paths (Knudby and Carrera, 2006). The following indicators proved

to be best suited to describe �ow connectivity and transport connectivity and

have been used in others studies since (Le Goc et al., 2010; Bianchi et al.,

2011):

CF = Keff/Kgeom (3.6)

CT = tave/t5 (3.7)

where Keff is the e�ective saturated conductivity as obtained from the mea-

sured �ux rate and the imposed pressure gradient between opposite borders.

The subscript s for saturated is omitted here. Kgeom is the geometric mean of

local K values, tave is the average solute arrival time as obtained from the �rst

moment of a break through curve and t5 is the time when 5% of the applied

solute pulse has arrived the outlet. Note that t5 and tave in Eq. 3.7 have to be

adjusted to a step input, since they are originally de�ned for a solute pulse. CF

takes advantage of Matheron's theorem (Matheron, 1967) for saturated media,

stating that e�ective permeability of a Multigaussian permeability �eld equals

the geometric mean of local permeabilities. Hence, CF values higher than one

indicate an increased e�ective permeability as compared to a frequently used

reference case, inferring a tendency towards preferential �ow. CT also relates

an estimator of preferential transport with a suitable reference. It re�ects the

ratio of early arrival to the mean arrival of a solute. The �rst is only controlled

by the fastest proportion of a solute plume, whereas the second is mainly af-

fected by Keff . Swapping the numerator and denominator ensures an increase

of CT with accelerated early arrival.
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Fig. 3.12 depicts CT and CF for 30 realizations of the MG and a CB het-

erogeneity model. On average, the MG heterogeneity model has an CF of 1

which is in line with analytical predictions and a CT of 1.69. The CB model

evokes an increase in CF by roughly 30% due to a higher Keff value. Moreover,

a CT value at 1.91 indicates a slightly more pronounced early solute arrival as

compared to bulk arrival. The increase in CF due to a CB transform is well

in line with previous �ndings (Zinn and Harvey, 2003; Knudby and Carrera,

2005; Le Goc et al., 2010), whereas the increase in CT is contradictory to the

decrease or indi�erence reported previously (Knudby and Carrera, 2005; Le

Goc et al., 2010). This however, stems from the fact that the present MG

heterogeneity model is already adjusted to the smaller correlation length of

the CB heterogeneity model which also reduces CT for MG model, whereas in

the other studies it was not.

3.4.2 Hydraulic non-equilibrium

In the in�ltration study the local state variables θ and hm are not constant

in time anymore like in the stationary �ow simulations, but change suddenly

when the in�ltration front traverses. The passage of the in�ltration front en-

tails a state change from low θ and hm values to high θ and hm values and

the speci�c dynamics is governed by local material properties. This dynam-

ics can be thought of as a trajectory within the (θ, hm)-space. Since θ and



3.4. Functional connectivity metrics 44

hm are always in local equilibrium, the trajectory will always lie on top of a

well-de�ned water retention curve resulting from the given reference parame-

terization and a given Miller scaling factor at that location. That is to say, a

dot in Fig. 3.13(left) will never leave the trajectory of a given scaling factor

χ represented by di�erent shades of grey. However, the focus is not on local

states but on an e�ective state representing an entire depth. Thus, θ and hm
need to be averaged according to the equations in Section 2.3. Fig. 3.13(left)

depicts all local (θ, hm)-pairs within the control line of the MG structure in

Fig. 3.10 after 70 min of in�ltration. Since the in�ltration front has traversed

the control line only partly, some locations are already wetted, whereas others

still remain at their initial state. As a consequence, the soil in that depth is said

to be in hydraulic non-equilibrium. In this case, averaging of pressure head

becomes a delicate issue and will lead to di�erent results of 〈hm〉 depending
on the method applied.
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Figure 3.13: Evolution of averaged pressure heads at a horizontal control line at the passage

of an in�ltration front. Values represent the mean of 30 realizations of a MG heterogeneity

model. The notation is according to eq. 2.6-3.8. Meaning of other curves is according to

Fig. 2.1

Fig. 3.13(right) depicts the mean (〈θ〉, 〈hm〉)-trajectories of 30 MG realiza-

tions for the entire simulation period. Depending on the averaging procedure

for hm we �nd di�erent trajectories within the (θ, hm)-space during the pas-

sage of an in�ltration front. All trajectories start at a certain point on the

thick orange e�ective water retention curve corresponding to the initial condi-
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tions at hydraulic equilibrium in the depth of the control line. During passage

of the in�ltration front the curves diverge due to the di�erent calculation of

〈hm〉. Subsequently, the trajectories rejoin when a new steady-state �ux is

reached behind the front. The θ-weighted pressure heads remain close to the

e�ective water characteristic, suggesting that in spite of soil heterogeneity the

in�ltration front moves uniformly like in piston �ow. The front is of course

irregular and the indi�erence arises because the dynamics of weighting factors

adapt to the equilibrium water characteristic. At arithmetic averaging the

contribution of every local hm to the mean remains constant. Thus, at the

early arrival of the front a steep increase in pressure heads is smeared out by

unchanged pressure heads at other location in that depth. At �ux-weighted

averaging
∑
j is zero at hydraulic equilibrium, so that 〈hm〉j is actually not

de�ned initially. At the onset of non-equilibrium, only those locations where

the front has traversed the control line exclusively contribute to the average,

leading to a steep increase in pressure heads. This e�ects an apparent delay in

〈θ〉 as compared to 〈hm〉. The behavior of the maximum pressure head is quite

similar at the beginning. However, 〈hm〉max does not relax towards the equilib-
rium water retention curve, whereas 〈hm〉j does, as soon as the entire front has

passed the control line. From this observations it can be concluded that the

�ux-weighted pressure head 〈hm〉j is superior to all other averaged pressure

heads for two reasons: (i) it is suited to describe hydraulic non-equilibrium

as the front passes and (ii) it relaxes to the equilibrium water retention curve

under steady-state conditions. Furthermore, this macroscopic behavior is in

accordance with experimental observation where it has frequently been found

that the water content is lagging behind the pressure head (Topp et al., 1967;

Vachaud et al., 1972; Wildenschild et al., 2001). As pointed out in Figure 3.13,

〈hm〉j also has the merit that the magnitude of non-equilibrium ζ may be quan-

ti�ed as the area enclosed by the upscaled non-equilibrium and equilibrium

water characteristic.

ζ =
∫
θ
(〈hm〉j − heq

m(〈θ〉))d〈θ〉 (3.8)

where heq
m(〈θ〉) is the pressure head that would adjust to the actual water

content at hydraulic equilibrium, including hydrostatic equilibrium as a spe-

cial case. The integral is solved by numerical integration over all times steps
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in which 〈hm〉j and heq
m(〈θ〉) deviate. For this purpose rescaling of hydraulic

non-equilibrium is necessary, due to the following reason: The frequency dis-

tribution of scaling factors along the control line of each realization is not

perfectly log-normal. Therefore, the start and convergence point of the dy-

namic water retention curve do not superimpose with the equilibrium curve

as de�ned for the entire domain. As a consequence, the integration limits for

hydraulic non-equilibrium are ill-de�ned. By rescaling, the state variables are

corrected towards values that would have appeared for log(χ) ∼ N(0, σχ). This

rescaling is also denoted as functional normalization (Vereecken et al., 2007)

and is explained in detail in Appendix A. When pressure heads are recalcu-

lated into matric potentials and multiplied with the horizontal cross sectional

area A passed by the in�ltration front, the physical meaning of the resulting

quantity ζ · A might be interpreted as the energy per in�ltration depth [J/m]

corresponding to the amount of viscous energy dissipation due to funneling of

water in high �ux channels (Kleidon and Schymanski, 2008; Zehe et al., 2010).

Consequently, ζ may serve as a functional connectivity metrics that quanti�es

the degree of channeling due to structural heterogeneity. It is zero for a uni-

form front propagation and increases with �ux concentration in channels that

causes a delayed relaxation of head gradients.
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Results

4.1 Stochastic Reconstruction

4.1.1 Single- and Multi-objective optimization

In Section 3.2 simulated annealing has been introduced as an optimization

method to stochastically reconstruct heterogeneity �elds that obey a given

structural connectivity metric. Several of these structural connectivity metrics

have been introduced in Section 3.1.2. In the following we will visually compare

the reconstruction results of four di�erent structural connectivity metric: the

autocovariance as a simple two-point statistic (2p) and various multi-point

statistics which are the Minkowski functions (mf), the chord length distribution

(cl) and a combination of mf and cl (mp). The �rst three can be denoted

as single-objective optimization since only one connectivity metric has been

reproduced, whereas the last is a multi-objective optimzation problem. In fact,

also the 2p and cl reconstructions call for a multi-objective optimzation, since

the frequency distribution of grey values (histogram) also has to be reproduced,

whereas it is directly included in the Minkowski functions (mf) via the area

fraction of the foreground phase in every level set.

Only the MP and the CB heterogeneity models are involved as reference

images for stochastic reconstruction, since they ful�ll the requirements to be (i)

isotropic and to (ii) have characteristic scales much smaller than the image size.

The MP heterogeneity in turn is excluded, because the vertical macropores

span half the image length, which would call for expensive optimization of

47
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long-range correlation and chords lengths. Moreover, they introduce some

anisotropy, which is not the focus of this study.

As Figure 4.1 indicates, the two-point statistics serve as a thorough de-

scription of the MG structure. The reconstruction result for the CB structure

is statistically nearly identical, however, connectivity features are not repro-

duced for the reasons discussed previously. The two multi-point statistics that

we use as reference statistics for reconstruction are sensitive to di�erent struc-

tural properties. While Minkowski functionals including the Euler number

address the topology of a complex structure, this is not the case for chord

length distributions. In contrast, the chord length distributions describes the

size distribution of clusters, while the Minkowski functionals as integral prop-

erties are not sensitive to this feature. These di�erences become evident in

Figure 4.1. There the results of reconstruction are compared for each type

of statistics supplemented with a combination of both. Matching only the

Minkowski functionals obviously leaves to much freedom for the size of the

evolving objects, since the compact 2x2 statistic contains no information on

spatial correlation of the reference heterogeneity model. In contrast, repro-

ducing the chord length distribution for both phases at all thresholds in four

directions (horizontal, vertical, 2 diagonals) adequately reproduces the spatial

correlation as well as the elongated morphology of connected bands. Note

however, that the bands appear more fragmented than in the reference image

at least from a visual point of view. Another morphological deviation from the

reference images are some rectilinear structures caused by the reconstruction

process. More directional artifacts emerge when the diagonal chord lengths

are not considered. Therefore, the two-fold increase in computational cost

by reconstructing chord lengths in four direction is justi�ed (�Capek et al.,

2009). Note that conditioning the reconstruction solely on the chord length

distribution of the background phase leads to comparably well reconstruction

results, while the reconstruction of connected bands completely fails if only

the foreground is used. This implies that the chord length distribution of

the foreground phase (the bands) does indeed not contribute too much ad-

ditional morphological information as it has been previously stated (Antoine

et al., 2009). Finally, the combination of both multi-point statistics leads to

an improved reconstruction which resembles the reference image visually.
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Figure 4.1: One realization of stochastic reconstruction of a MG heterogeneity model

(left) and a CB heterogeneity model (right) with four di�erent structural connectivity met-

rics. From top to bottom: autocovariance (2p), Minkowski functions (mf), chord length

distribution (cl) and combined multi-point statistics (mp).
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4.1.2 Estimators of Structural Connectivity

Local Percolation Probability

Any connectivity metric that was not included in the reconstruction process

and that is deemed to contain some valuable structure information can be

used as a test statistic for validation. Local percolation probability is espe-

cially suited to test for structural connectivity. It provides a comprehensive

description of connectivity which has not been used as a reference statistic

for reconstruction. The binary images required to calculate local percolation

probabilities were obtained by choosing the grey threshold such that the Euler

number is zero. The resulting binary images are deemed to be most sensitive

to connectivity features. In Figure 4.2 (left) we compare the local percola-

tion probability of the reference MG image, with those from simulated images

matching two-point and multi-point statistics.
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Figure 4.2: Local percolation probability for 30 realizations of MG structures (left) and

the CB structures (right) for binary images at the speci�c percolation threshold of the MG

and CB images (ref - reference, mf -Minkowski functions, cl - chord length distributions, mp -

combined multi-point statistics, 2p - two-point statistics). Shaded area represents standard

deviation of the reference set. Window size is scaled by the image length.

In case of the MG heterogeneity model, local percolation properties of all

reconstructed images are in good agreement with the reference images. The

local percolation properties for the CB image in Figure 4.2 (right) turns out to

di�er considerably. Again the starting point is located at the area fraction of

pixels brighter than the percolation threshold. The reconstructed images based
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on two-point statistics (2p) or individual multi-point statistics (mf,cl) quickly

drop to completely non-percolating states as soon as the window size gets

bigger than the length of the isolated objects. The combination of Minkowski

functions and chord lengths signi�cantly (mp) improves the reproduction of

percolation properties. The fraction of percolating windows compares well for

window sizes up to 1/10 of the domain size corresponding to 4 correlation

lengths but then decreases to a non-zero fraction signi�cantly smaller than the

reference value.

Pair connectivity function

Figure 4.3 (left) shows the good reconstruction of mean connectivity ranges

for reconstructed MG images using multi-point statistics as well as two-point

statistics.
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Figure 4.3: Mean connectivity range as a function of grey value threshold for reference

and reconstructed images of the MG structure. Notation is according to the Figure 4.2 .

Note the reduced abscissa for thresholds.

This is di�erent for the CB structure shown in Figure 4.3 (right) where two-

point statistics is clearly not sensitive to long range connectivity. This is also

true for reconstructions based on Minkowski functions or chord lengths only.

The combination of both, however leads to a signi�cantly better reproduction

of connectivity length. Yet, the mean connectivity length is lower than the

reference values in a small interval with the highest discrepancy around the

percolation threshold.
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4.2 Steady-state �ow and transport

4.2.1 Estimators of functional connectivity

Now that di�erent capability of various structural connectivity metrics to re-

produce long-range connectivity of high-K zones has been identi�ed, the ques-

tion arises whether this also translates to the functional connectivity metrics

CF and CT. That is to ask: Does the reconstructed heterogeneity model re-

produce e�ective �ow and transport behavior of the reference heterogeneity

models? If this is the case, then the speci�c structural connectivity metric

used for stochastic reconstruction is deemed to capture structural connectivity

su�ciently well. In turn, if the resulting images from stochastic reconstruction

reproduce only one or none of the processes well then the structural features

that govern functional connectivity are insu�ciently captured.
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Figure 4.4: Comparison of �ow and transport connectivity indicators CF and CT between

the reference heterogeneity model and the reconstructions for the MG structure (left) and the

same for the CB structure (right): reference (ref), semivariogram (2p), Minkowski functions

(mf), chord length distribution (cl) and combined multi-point statitics (mp).

To this end, we simulate the steady-state �ow and transport experiments

for 30 realizations generated from single- and multi-objective stochastic recon-

struction, calculate the indicators of �ow and transport connectivity, CF and

CT, that were introduced in Section 3.4 and compare them with the indicator

values of the reference heterogeneity models. Figure 4.4 depicts the CF and

CT value of every realization from the reference model and the various recon-

structions for the MG heterogeneity model (left) and the CB heterogeneity
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model (right). For the MG heterogeneity model on the left �ow connectivity,

as estimated by the CF indicator, is reproduced well by all structural con-

nectivity metrics. The fact that on average all reconstructed heterogeneity

models have a CF value close to one, suggests that they all ful�ll the premise

of Matheron's theorem (Matheron, 1967) which is the symmetry of indicator

variograms around the mean. That is to say, they all behave Multigaussian. In

addition, the CT indicator is well reproduced by the 2p heterogeneity model

reconstructed from two-point statistics. In fact, the reference MG images

have been generated from the histogram and the autocovariance function only,

which then has been reconstructed from the 2p -statistic again. Any di�er-

ence between the two CT averages, can therefore only be a consequence of

poor reconstruction or too few realizations. On average, the mf heterogeneity

�elds reconstructed from Minkowski functions exhibit a slight overestimation

of CT values. Evidently, spatial correlation is not well addressed by a com-

pact four-point statistic (mf) which inevitably leads to more spatial disorder

resulting in increased solute spreading. Spatial correlation is assessed indi-

rectly by a chord length distribution and yet on average the cl heterogeneity

�elds exhibits slightly to low CT values, which suggests that the structural

heterogeneity tends to be too regular. Finally, the combination of Minkowski

functions and chord length distribution in the mp heterogeneity model results

in equal CT values like the reference and the 2p heterogeneity model.

The right hand side of Figure 4.4 depicts the �ow and transport connectivity

indicators for the reference and reconstructed CB models. On average, none of

the reconstructed models matches the CF and CT values of the reference. The

2p heterogeneity model yields the poorest match, since it remains at values

observed for the MG reference. The Minkowski functions (mf) lead to a small

increase in both CT and CF as compared to two-point statistics (2p). The

chord length distribution (cl) especially improves the CF values, indicating

channelized, preferential �ow. The combined multi-point statistic (mp) leads

to an equally good reproduction �ow connectivity and the best match in solute

spreading behavior indicated by CT.
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4.2.2 Solute breakthrough curves

To substantiate the �ndings of the functional connectivity indicators CF and

CT, we compare the mean breakthrough curves of 30 realizations for each

reference structure and each reconstruction model. In Figure 4.5 (left) the

cumulative breakthrough curves of the standard MG structure is depicted to-

gether with those of the reconstructed �elds.
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Figure 4.5: Breakthrough curve for 30 realizations of the reference MG (left) and CB

(right) structures and the mean breakthrough curve of the corresponding reconstructions.

Shaded area represents standard daviation in the reference break through curve. Notation

is according to the last �gures.

There are almost no di�erences in transport behavior between the reference

MG structure and the reconstructed �elds using two-point statistics (2p). The

combined multi-point statistics (mp) exhibit almost identical breakthrough

curves. The reconstruction from Minkowski functions (mf) yields too high

early solute arrival, whereas the late time tailing behavior is adequately repro-

duced. The reconstructions from chord length distribution (cl) indeed exhibits

a slightly too low dispersivity, which already has been deduced from the CT

indicators.

The transport behavior of the CB images and their reconstructions are com-

pared in Figure 4.5 (right). The solute arrival for the two-point reconstructions

(2p) is clearly delayed. The extension towards Minkowski functions (mf) or

chord lengths (cl) both improves the results. However, a good agreement is

only obtained by the combination of both morphological descriptors. The dif-
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ference to the reference structure becomes as small as the variability among

di�erent realizations. This implies that transport behavior can be reasonably

well predicted from Minkowski functions and two-phase four-directional chord

length distributions.

4.3 Hydraulic non-equilibrium during in�ltration

4.3.1 Heterogeneity e�ects on front propagation

The numerical in�ltration experiment comprises hydrostatic equilibrium (h =-

100 cm) at the beginning, a free drainage condition at the lower boundary and

a constant irrigation rate (j0 =2.22×105 ms−1) at the upper boundary that

equals the reference saturated conductivity of the Miller medium. The �ux

across the horizontal transect at 0.5 m depth as a function of time is depicted

in Fig. 4.6.
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Figure 4.6: Evolution of mean vertical �ux density at the control line for the di�erent

heterogeneity models (MG- Multigaussian, CB- connected bands, MP - macropores) and a

homogeneous �eld with e�ective parametrization (e�). Mean (line) and standard deviation

(shaded area) of 30 realizations each.

Due to the �ux BC the steady-state �ux value is equal for all heterogeneity

models and is dictated by the boundary condition. However, stationary con-
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ditions indicated by 〈jz〉/j0 = 1 have not yet been established after 3 h. This

is partly due to the free drainage condition at the lower boundary that decel-

erates the dynamics towards the steady state once the front has approached

the lower boundary. The onset of �ux is sooner, when the structure evokes

funneling of water into channels of fast �ow. Of course this is the case for every

heterogeneity model as compared to the homogeneous reference case and little

surprisingly it is most pronounced in presence of macropores. However, it is

interesting to see that the temporal di�erence in early onset of �ux between

the Multigaussian and the connected band heterogeneity model is negligible.

Yet, the two heterogeneity models di�er in that the �ux increase over time

is steeper in the presence of connected bands. Without further information

it is unclear whether this stems from di�erent front morphologies, di�erent

front speeds or di�erent pressure gradients across the front. To disentangle

these di�erent sources one has to look at the two determining factors of �ux

separately. According to the Buckingham-Darcy law for one-dimensional �ow,

jz = −K(θ)

(
dhm
dz

+ 1

)
(4.1)

these are the hydraulic gradient (dhm/dz+ 1) and the unsaturated conduc-

tivity K(θ). The dynamics of these two factors are depicted in Figure 4.7 in

terms of averaged, e�ective values at the control line.

The left hand side shows the averaged, vertical gradient in hydraulic head

〈dhm/dz + 1〉 either obtained from jz-weighted averages of hydraulic head

(solid lines) or from θ-weighted averages (dashed lines). The jz-weighted mean

hydraulic gradients are supposed to be most sensitive to early front arrival since

the contribution of no �ow areas along the transect remain zero. Consequently,

the peak gradients coincide with the initiation of �ux in Figure 4.6. For the θ-

weighted averages, in turn, the peak gradients coincide with the main passage

of the front. Figure 4.7 demonstrates that the steeper �ux increase in the CB

structure as compared to the MG structure is not evoked by higher hydraulic

gradients. Hence, Eq. 4.1 implies that 〈θ〉 and thus K(θ) has to increase faster.

This is corroborated by the right hand side of Figure 4.7. The early peak

gradient and the early increase in 〈θ〉 by the MP heterogeneity model again

demonstrates that the control depth is reached much earlier by the in�ltration

front in presence of vertical macropores.
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Figure 4.7: Left: Evolution of averaged, vertical gradients in hydraulic head 〈dhm/dz+1〉
at the control line for the di�erent heterogeneity models (MG- Multigaussian, CB- connected

bands, MP - macropores) and a homogeneous �eld with reference parametrization (e�). Solid

(dotted) lines represent jz-weighted (θ-weighted) averages. Right: Evolution of averaged

water contents 〈θ〉 for the same heterogeneity models (30 realizations each).

4.3.2 Heterogeneity e�ects on hydraulic non-equilibrium

Figure 4.8 demonstrates that the CB heterogeneity and the MP heterogeneity

in�uence hydraulic non-equilibrium towards di�erent directions.

Taking the MG model behavior as a reference, elongated macropores pro-

voke an increased non-equilibrium behavior whereas isotropically connected

bands tend to reduce it. The proper explanation may lie in the �ux patterns

at the front depicted in Figure 4.9. The CB heterogeneity evokes the highest

density of high-�ux channels and because of their omni-directional orientation

also the best lateral redistribution of water, causing the �ux to be relatively

high everywhere at the front. The MP model in turn produces distinct funnel-

ing of water into a few isolated high-K channels. A high concentration of �ux

in the tip of the front hinders the soil to quickly saturate everywhere so that

mean saturation is lowest at a given transient pressure. When the front has

passed the control line entirely, �ux-weighted pressure heads arrive at the equi-

librium retention curve for all heterogeneity models. At this last stage pressure

heads still increase to some extent until every heterogeneity model ceases at

a di�erent steady-state value. This last-stage behavior could have also been

modeled adequately with intrinsic phase averages 〈hm〉θ. At steady state a
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Figure 4.9: Magnitude of �ux density after 70 min of in�ltration with j0 =

2.22×10−5 ms−1. The underlying heterogeneity �elds correspond to Fig. 3.1 (MG-left,

CB-middle, MP-right). The white lines mark the depth in which the state variables are

averaged (solid) and the location of the maximum gradient in �ow direction for each pixel

column (dashed).
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particular e�ect of the applied �ux BC appears: A well-connected structure

may remain less saturated in order to allow for the same �ux, as compared to

a poorly connected structure.

4.3.3 Heterogeneity e�ects front morphology

Until now, hydraulic non-equilibrium has only been elaborated with respect to

state variables. A logical supplement may lie in spatial information on non-

equilibrium, particularly in the shape of the in�ltration front. Fig. 3.10 depicts

the position of the front after 70 min of in�ltration for one model realization

each. It is determined as the location of maximum head gradient in downward

direction along every pixel column 〈dhm/dz+1〉max. A simple indicator of front

irregularity may be calculated as the standard deviation of front position σ〈z〉
around the mean front depth 〈z〉 = 〈z〈dhm/dz+1〉max〉, as it is done in Figure 4.10.
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Figure 4.10: Front spreading for di�erent heterogeneity models (MG,CB,MP) expressed

as the standard deviation of locations with maximum vertical head gradient plotted against

mean depth of the maximum gradient. Mean (line) and standard deviation (shaded area)

of 30 realizations each. The vertical line marks the depth of the control line.

Evidently, the higher irregularity in the MP heterogeneity model as com-

pared to the MGmodel is consistent with the increased hydraulic non-equilibrium.

The CB model, in turn, does not evoke changes in front irregularity, as far as
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the variability in locations of maximum hydraulic head gradient is concerned.

For a better understanding of a potential causal link between front spread-

ing and hydraulic non-equilibrium, some insights on their relation might be

helpful. To this end, we compare them in Fig. 4.11.
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Figure 4.11: Comparison between hydraulic non-equilibrium and front irregularity for

every realization. Big symbols respresent averages. Notation is according to the last �gures.

Figure 4.11 con�rms the general agreement between the spatial and hy-

draulic aspect of non-equilibrium. Both are a�ected towards the same direc-

tion by connectivity modi�cations. However, the trend is not linear. Moreover,

there is a considerable amount of noise in the data that may stem from too

short travel distances or from an improper choice of non-equilibrium and front

morphology estimators.

4.3.4 Time-dependency of hydraulic non-equilibrium

For this reason we set up some additional statistics on hydraulic and spatial

non-equilibrium, which have a special focus on the time-dependency of non-

equilibrium. Fig. 3.10 suggests that front irregularity is not perfectly normal

distributed around a given mean depth. In that case higher moments than
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just σz may carry some additional information. Another robust measure on

front irregularity is the fraction of pixels along the control line, that have

already been traversed by the front. Furthermore, the enclosed area between

the dynamic and equilibrium water characteristic in Fig. 3.13 is substituted

by the time-dependent di�erence in �ux-weighted pressure head and the static

counterpart 〈hm〉j − heq
m(〈θ〉) at the given saturation 〈θ〉 or the deviation of

dynamic saturation from equilibrium saturation 〈θ〉 − θeq(〈hm〉j) at the given
pressure head 〈hm〉. In Fig. 3.13 they correspond to vertical and horizontal

distances, respectively. These additional statistics are compared in Fig. 4.12.
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Figure 4.12: Evolution of the deviation of dynamic pressures (left) and dynamic water

contents (right) from an equilibrium state as a function of the proportion of the control line

that has already been traversed by the front. Lines represent mean values of 30 realizations

each. Notation is according to the last �gures.

The left �gure illustrates the distinct two-stage behavior in the evolution of

dynamic pressure heads at hydraulic non-equilibrium. First, there is a quick

excursion of �ux-weighted pressure heads, that is caused by a small percent-

age of the front, more precisely the �rst tip arriving at the given depth. At

the second stage an almost linear relaxation towards equilibrium sets in. The

maximum pressure deviation occurs at equal shares for all heterogeneity mod-

els, indicating that the width of the fastest advancing channel of the front is

similar. Seemingly, the fraction at which the peak occurs depends on the corre-

lation length and the heterogeneity of Miller medium σχ which are equal for all
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heterogeneity models, but not on the connectivity. Yet, the maximum pressure

excursion is di�erent for MG,CB and MP. This points out to a higher degree of

funneling and thus a di�erent concentration of �ux in equally narrow channels.

The evolution of non-equilibrium saturation is depicted on the right hand side

of Fig. 4.12. Evidently, the shape is also skewed but the transition of the two

stages is smoother. In the CB model saturation non-equilibrium is lowest due

to the highest density of high-�ux channels and the lateral redistribution of

water therein.



Chapter 5

Discussion

5.1 Structural connectivity as a concept

In Chapter 1 the question has been raised, what minimum amount of morpho-

logical description is required to capture structural connectivity in a represen-

tative way, so that it facilitates the prediction of e�ective hydraulic behavior

in heterogeneous structures. By means of stochastic reconstruction it has been

tested, whether local metrics that measure connectivity over short ranges are

already su�cient to reproduce structural connectivity of the entire structure.

The success depend strongly on the speci�c metric:

The autocovariance function re�ects the correlation between two distant

points in a heterogeneous �eld and does not address possible connections be-

tween them. As a consequence, there is virtually an in�nite number of con�gu-

rations without a connection between distant points and only a few "ordered"

con�gurations where a connected path exists (Journel and Deutsch, 1993).

Only in a very special case, namely the Multigaussian heterogeneity model,

spatial correlation happens to coincide with structural connectivity because

the long-range connectivity of high-K zones is at minimum.

Minkowski functions are obtained from pixel con�gurations in a 2×2 pixel

neighborhood. As a consequence, any spatial feature outreaching this compact

neighborhood is not captured. Although the Euler number of high-K zones,

their area fraction and their boundary length with the background is repro-

duced for every level set, connectivity of high-K zones over long ranges does

63
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not arise as an emergent property. Again, this is because the probability of a

disordered pattern of clusters in a purely random structure is overwhelming.

A corrective in this regard is to consider chord length distributions. Thereby,

the thickness of high-K zones is reproduced along four principal directions (hor-

izontal, vertical, 2×diagonal). However, this is only informative, when these

zones exhibit a (i) compact, convex shape or (ii) a rather arti�cial morphology

of a straight, concave pattern aligned to the principal directions. This is not

ful�lled by the connected high-K bands in the CB heterogeneity model since

they are concave and rather curvilinear. Hence, reproducing the chord length

distribution of the foreground phase only, does not su�ce to reproduce struc-

tural connectivity. However, if one assesses the chord length distribution of

the background phase, some valuable information is achieved. This is because

a higher degree of structural connectivity inevitably leads to a higher frag-

mentation of the background phase irrespective the morphology of the high-K

zones.

Finally, the combination of Minkowski functions and chord length distribu-

tions results in the best reproduction of structural connectivity. This becomes

especially evident for the CB structure at level sets close to the percolation

threshold and has been demonstrated by means of local percolation probabil-

ity and mean connectivity lengths. This is because the information content of

both metrics is complementary: chord length distributions provide information

on local attributes, in particular the fragmentation of the background phase

by local clustering of high-K zones, whereas Minkowski functions additionally

shape the structure by enforcing global mean attributes like the overall bound-

ary length with the background and the global topology of the foreground in

terms of Euler numbers.

However, even this combined multi-point statistics did not result in a per-

fect reproduction of structural connectivity. The reason for this shortcoming

is depicted in Figure 5.1. The level set images demonstrate that the elongated

bands in the reconstructed CB structures are not as continuous as in the refer-

ence CB structure. The reconstructed bands are interrupted at some points so

that the connectivity of clusters is impaired and percolation probability of high-

K zones is reduced. Figure 5.1 also depicts the improved resemblance of shape

attributes of the bands by additional optimization of Minkowski functions in
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Figure 5.1: Level set of the reference (left) and reconstructed CB structures (cl-middle,

mp-right) thresholded at the percolation threshold of the reference structure

the combined mp heterogeneity model as compared to the cl heterogeneity

model only.

From these results some conclusions can be drawn. First, a combination of

di�erent multi-point statistics is necessary to thoroughly describe the connec-

tivity of a complex structure. Secondly, local connectivity metrics may su�ce

to reproduce structural connectivity in random structures in a computation-

ally e�ective way, if one is willing to accept a minor reduction of connectivity

due to small gaps. Essentially, this also implies that structural connectivity

is an emergent property of the entire domain that describes how the local

morphology of structures a�ects the existence of continuous paths over long

ranges. Recent studies have demonstrated that even further improvement in

reproduction of structural connectivity is possible, yet with the disadvantage

of higher computational cost. For instance, the pair connectivity function, also

denoted as two-point cluster function, can be reconstructed directly by means

of a complex upgrading scheme (Jiao et al., 2009). A simpli�ed approach is

to utilize it indirectly as a control statistic for readjustment of reconstruction

parameters (�Capek et al., 2009). Another avenue is to abandon structural con-

nectivity metrics completely and focus on the direct reproduction of patterns

(Okabe and Blunt, 2005; Mariethoz et al., 2010). In essence, this equals the

optimization of pixel con�gurations as it is done for Minkowski functions, yet

within much larger neighborhoods.
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5.2 Relation between structural and functional

connectivity metrics

The motivation of this thesis has been the hypothesis that structural connec-

tivity is an important feature of spatial heterogeneity that governs the e�ective

hydraulic behavior of the subsurface. Consequently, one objective of this work

has been to explore the causal links how di�erences in structural connectiv-

ity evoke di�erences in functional connectivity. The hydraulic behavior of the

reconstructed heterogeneity models is especially suited to examine these re-

lationships. In general, the results for steady-state �ow and solute transport

corroborate the causal link between structural and functional connectivity. It

turns out that a good reproduction of structural connectivity also results in a

good reproduction of hydraulic behavior. Likewise, a poor reproduction also

entails a mismatch in indicators of functional connectivity. For the MG hetero-

geneity model the low connectivity of high-K zones could be reproduced easily

by all structural connectivity metrics, which also resulted in a good �t of e�ec-

tive hydraulic conductivity and solute arrival times. For the CB heterogeneity

model with high connectivity of high-K zones an improved reproduction of

structural connectivity resulted in an improved reproduction of preferential

�ow and early solute arrival. The small gaps between high-K clusters that im-

paired a perfect reproduction of structural connectivity also entail a reduction

in e�ective conductivity, whereas transport conductivity remains almost un-

a�ected. One possible interpretation is that the evolution of �ow networks in

heterogeneous media is not solely determined by structural percolation prop-

erties. In addition the heterogeneous pressure �eld tends to bridge local spots

of reduced conductivity by increasing the local head gradients. Hence, the

overall �ux patterns does not change as compared to an imaginary �eld with-

out these gaps, which is why transport connectivity remains rather una�ected.

This is in line with the �ndings of Knudby and Carrera (2006), suggesting that

transport connectivity is less a�ected by the continuity of highly conductive

channels but more sensitive to other shape attributes like the width of these

channels, which is identical for the reference and reconstructed images.
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5.3 Critique on �ux-weighted pressure heads

The second numerical experiment examined the in�uence of structural connec-

tivity on transient hydraulic behavior during in�ltration with particular regard

to e�ective hydraulic non-equilibrium. This is achieved by �ux-weighted av-

eraging of pressure heads, which conserves hydraulic non-equilibrium during

upscaling. This is because the �ux-weighted pressure head integrates spatial

variations in local pressure heads and spatial variations in local water �uxes.

Flux-weighted averages of pressure heads can be used to set up a dynamic

water characteristic, where the averaged pressure head and water content in a

given control volume decouple at the in�ltration front (Vogel et al., 2010a).
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Figure 5.2: Vertical pro�le of averaged pressure heads 〈hm〉j (left) and averaged water

contents 〈θ〉 (right) for three di�erent heterogeneity models at 0 h (squares), 0.5 h (circles),

1 h (triangles), 1.5 h (pentagons) and 2 h (rhombs). Symbols represent mean values of 30

realizations each. Grey lines represents a homogeneous material with e�ective parametriza-

tion.

This decoupling is nicely re�ected by the averaged 1D in�ltration pro�les in

Figure 5.2. Apparently, the in�ltration front advances faster with respect to

pressure heads as compared to water contents. This e�ect is in line experimen-

tal observations (Topp et al., 1967; Vachaud et al., 1972; Wildenschild et al.,

2001). Moreover, Figure 5.2 again stresses the impact of structural connectiv-
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ity on the speed of the in�ltration front and the �nal saturation behind the

front. The decoupling of averaged state variables comprises two distinct pro-

cesses: a quick excursion from equilibrium water retention curve followed by

a gradual relaxation towards a new equilibrium under steady-state conditions.

That is to say, there is one con�guration of local state variables that can be

achieved rapidly given the spatial structure of the material, and another one

that corresponds to the energetic optimum. This corresponds to the initial ex-

citation leading to hydraulic non-equilibrium followed by a relaxation towards

the equilibrium conditions. The decoupling of water content and pressure head

during non-equilibrium has been introduced by Ross and Smettem (2000) who

suggested a simple linear kinetic of the water content towards equilibration:

∂tθ = −θ − θ
eq

τ
(5.1)

where θ and θeq are the dynamic and equilibrium water content and τ is

a relaxation parameter. This derivative describes an instantaneous onset of

non-equilibrium and an exponential relaxation in time towards a new equilib-

rium saturation. Figure 5.3 demonstrates that this behavior is actually not

true for this simulated in�ltration study. Both, dynamic pressure heads and

dynamic water contents show a formation of non-equilibrium which is not in-

stantaneous but evolving in time with almost the same rates as the relaxation

to equilibrium afterwards. The relaxation is more parabolic than exponential.

This discrepancy has two reasons: (i) The linear kinetic in eq. 5.1 does not

claim general validity, but was rather chosen for its simplicity and because it

reproduced �eld observations quite well (Ross and Smettem, 2000). (ii) Using

Richards equation restrains hydraulic non-equilibrium in comparison to nat-

ural conditions. In reality, dynamic e�ects of moving interfaces at the pore

scale might evoke an additional decoupling of hm and θ (Schultze et al., 1999;

Wildenschild et al., 2001, 2005; Weller et al., 2011) that reinforces qualitatively

di�erent non-equilibrium dynamics.

Apparent drawbacks of �ux-weighted pressure heads are that (i) the weight-

ing factor is not a scalar but a vector and that (ii) the average becomes ill-

de�ned under complete no-�ow conditions. Both are not critical. Since (i) the

interest normally lies in an adequate representation of water dynamics with

an 1D-e�ective model, we take only the directional component into account
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Figure 5.3: Evolution of the deviation of dynamic pressures (left) and dynamic water

contents (right) from an equilibrium state as a function of time for di�erent heterogeneity

models (MG -Multigaussian, CB - connected bands, MP -macropores). Lines represent mean

values of 30 realizations each.

that is oriented in the direction of the 1D-model (normally vertical). Further-

more, (ii) under static conditions hydraulic heads are constant everywhere in

the horizontal plane and the equilibrium water retention curve is valid. In

summary, �ux-weighted averaging of pressure heads is a promising approach

to e�ectively describe hydraulic behavior in heterogeneous soils under highly

transient �ow conditions. Obtaining the necessary information from �eld ob-

servations is not feasible with current technology. However, its application in

numerical experiments may help to improve the model kinetics as originally

proposed by Ross and Smettem (2000) and ultimately to couple the kinetics

with structural parameters.

5.4 Impact of connectivity on hydraulic non-equi-

librium

At �rst sight the results presented with respect to connectivity are quite contra-

dictory. Even though the long-range connectivity of high-K zones is increased
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in the CB and the MP model as compared to the standard MG heterogeneity

model the MP model causes an enhancement in hydraulic non-equilibrium,

whereas the CB heterogeneity model tends to reduce it. Evidently, the dif-

ference in the spatial arrangement of high-K zones evokes this opposite trend.

In the CB model the increased lateral redistribution of water due to a higher

lateral connectivity smooths front irregularities and reduces hydraulic non-

equilibrium. This is in line with (Knudby and Carrera, 2006), who examined

the same heterogeneity model and elaborated a causal link between structural

connectivity and apparent di�usivity. The extreme anisotropy of the high-K

channels in the macropore model instead, enforces concentration of �ux in a

few channels with high continuity (Le Goc et al., 2010), which evokes a dis-

tinct non-equilibrium behavior. The question is, how these �ndings relate to

natural conditions. In real soil anisotropy of macropores with a strong vertical

orientation is rather the rule than the exception, as they are typically com-

posed of root channels and earthworm burrows. A fast movement of water in

macropores that bypasses the soil matrix is extensively studied in literature

(Jarvis, 2007; Clothier et al., 2008; Köhne et al., 2009) and also denoted as

a preferential �ow. The results presented here con�rm an increased hydraulic

non-equilibrium due to preferential �ow in macropores and provide new means

to quantify it.

5.5 Relation between functional connectivity met-

rics

For a �nal comment on the relationship between �ow, transport and non-

equilibrium connectivity metrics the numerical experiment on stationary single

phase �ow and transport of a conservatvie tracer is also carried out for the MP

heterogeneity model. The indicators of functional connectivity are compared

in Figure 5.4.

First of all, the di�erent amount of scatter in the data demonstrates that

a representative elementary volume (REV) (Bear, 1972) strongly depends on

the process and the underlying structure. The coe�cient of variation is sim-

ilar for the MG and CB heterogeneity model for all processes considered and

increases from CF (CVMG = 0.030, CVCB = 0.039) to CT (CVMG = 0.062,
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Figure 5.4: Comparison of e�ective hydraulic non-equilibrium and e�ective saturated con-

ductivity via ζ and CF (left) and e�ective solute spreading via CT (right) for the MG, CB

and MP model.

CVCB = 0.054) and is highest for ζ (CVMG = 0.108, CVCB = 0.110) because it

is measured after a shorter distance. The macropores in the MP heterogeneity

enhance the variation only slightly for �ow (CVMP = 0.058) but consider-

ably for transport (CVMP = 0.495), whereas for ζ it is even slightly reduced

(CVMP = 0.092) in comparison to the other heterogeneity models.

Secondly, the fact that the MP heterogeneity model enhances all three func-

tional connectivity metrics, whereas the CB heterogeneity model does not,

corroborates previous �ndings that functional connectivity is a process and

state-dependent concept (Knudby and Carrera, 2005, 2006; Renard and Al-

lard, 2011).
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Chapter 6

Conclusions

6.1 What constitutes structural connectivity?

Spatial heterogeneity of soils has many facets. One of them is the spatial con-

nectivity of highly conductive zones within the soil. The objective of this work

has been to �nd some meaningful metrics of structural connectivity that facil-

itate the prediction of e�ective hydraulic behavior. In order to do so, several

local metrics that capture the amount of short-range connectivity by di�erent

means (autocovariance, Minkowski functions, chord length distribution) have

been used to reproduce two di�erent reference heterogeneity models (Multi-

gaussian heterogeneity, connected bands heterogeneity) by means of stochastic

reconstruction. The success of reproduction has then been validated by other

metrics that capture the structural connectivity of the entire structure (local

percolation probability, pair connectivity function).

It turns out that an increase in short-range connectivity of high-K zones

indeed entails an improvement of structural connectivity over long ranges.

In other words, long-range structural connectivity in stochastic structures

emerges from the local morphology of high-K clusters. It was demonstrated

that the combination of chord length distributions and Minkowski functions

is a promising means to measure structural connectivity at low computational

cost. This is because the two metrics provide complementary information:

the �rst measures the local morphology of clusters whereas the second mea-

sures their global topology and regularity. A shortcoming of these combined

multi-point statistics are some small gaps in the connected bands heterogene-
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ity model that can be detected and removed by more complex connectivity

metrics that measure long-range connectivity directly at higher computational

cost.

Strictly speaking, this conclusion is only valid for the investigated set of

random structures. As far as deterministic structures are considered, a long-

range connectivity is not necessarily linked to short-range connectivity. This

has been demonstrated by the macropore heterogeneity model. Structural

features in natural porous media are not random but evolve from deterministic

processes. These processes tend to produce patterns in which the high-K

zones like root channels, earthworm burrows or gravel lenses persist over long

distances but may establish only poorly connected networks.

6.2 What governs functional connectivity?

The predictive power of a structural connectivity metric on e�ective hydraulic

behavior is only assured, when it captures those features of a complex structure

that actually govern the speci�c process. That is to say, di�erences in e�ective

hydraulic behavior must be linked to a comparable di�erence in a structural

connectivity metric assuming equality in all other space, material and process

attributes, whereas equal e�ective hydraulic behavior has to come along with

equal values of structural connectvity metric. This causal link has proved true

for steady-state �ow and transport of a conservative tracer in random porous

media. Here, equal structural connectivity of the reference Multigaussian het-

erogeneity model and its stochastically reconstructed counterparts entail equal

indicator values of �ow and transport connectivity for the two models. More-

over, for the connected bands heterogeneity model a di�erence in structural

connectivity between the reference and the reconstructions evoke also a dif-

ference in �ow and transport connectivity. However, both are not a�ected to

the same degree. This is because �ow connectivity is more sensitive to the

continuity of high-K zones, whereas transport connectivity is more sensitive to

general spatial arrangement of the �ux �eld.

The numerical experiment on hydraulic non-equilibrium during in�ltration

clearly falsi�ed a simple causal link between structural and functional connec-

tivity. Here, e�ective hydraulic non-equilibrium serves as a functional con-
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nectivity metric that quanti�es the deviation between dynamic and static wa-

ter retention due to preferential �ow. It turns out that di�erences in struc-

tural connectivity might either reduce or enhance hydraulic non-equilibrium

depending on a delicate balance of downward and lateral �ux components.

In�ltration into connected bands tends to reduce non-equilibrium because the

omni-directional channels allow for higher lateral �ux and a quick depletion

in head gradients in a horizontal control volume. Isolated, vertically oriented

macropores, however, enforce hydraulic non-equilibrium, because the �ux is

concentrated in a few anisotropic channels and lateral equilibration is reduced.

Here emerges an apparent inconsistency: the increased structural connectiv-

ity in the MP heterogeneity model as compared to the Multigaussian reference

leads to an increase in all investigated functional connectivity metrics, whereas

in the CB heterogeneity model it does not. This is an additional evidence that

functional connectivity is a process and state-dependent concept (Knudby and

Carrera, 2005, 2006; Renard and Allard, 2011).

6.3 Outlook

In this thesis the impact of connectivity on soil hydraulic behavior has been

investigated by theoretical considerations and numerical simulations. An im-

portant questions remains: How can real world applications bene�t from these

�ndings. That is to say, how can we incorporate connectivity into soil hy-

draulic modeling? To begin with, is it necessary at all? There are some

plausible scenarios, when structural connectivity is not important for the hy-

draulic behavior of a pedon, an agricultural plot or even an entire catchment.

First of all, this includes situations in which the subsurface is only weakly

heterogeneous. Secondly, there are subsurface bodies in which the structural

connectivity of a feature of interest, say preferential �ow paths or low-K bar-

riers, is low, due to its small volume fraction or its actual morphology. In

these situations some conservative assumption on spatial heterogeneity may

su�ce to predict hydraulic behavior. Note, however, that structural features

in soil often stem from deterministic processes, like sedimentation, desiccation,

biological activity, etc., which in fact tend to produce connected structures.

Thirdly, even in the presence of high structural connectivity, the soil can be
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in a state in which the features of interest are not active. For instance, after

a small rain event a previously dry topsoil typically remains unsaturated and

macropores do not contribute to �ow. Thus, their structural connectivity does

not a�ect in�ltration. Same applies to upward �ow during evaporation.

In summary, connectivity is important when (i) the soil heterogeneity is at

a level at which the spatial arrangement of subsurface features starts to im-

pact e�ective behavior and (ii) the soil hydraulic conditions favor this impact.

In these occasions incorporation of connectivity into soil hydraulic modeling

may improve model predictions. Then, a feasible strategy for a quantitative

assessment of connectivity is to gather information at a two di�erent scales

(Vogel and Roth, 2003; Vereecken et al., 2007; Renard and Allard, 2011). At

the small scale many soil cores can be collected in order to measure physical

properties in the lab and many small-scale �eld experiments can be performed

at di�erent locations for a statistical evaluation of soil heterogeneity that facil-

itates a prediction of e�ective hydraulic behavior. At a larger scale the actual,

e�ective hydraulic behavior (e.g. tile drain out�ow, groundwater level changes,

contaminant breakthrough) is monitored. Both sources of information can be

compared and interpreted towards functional connectivity metrics. This strat-

egy already permits a decision on which heterogeneity models can be excluded

because of a mismatch between predictions and observations as it has been

demonstrated in groundwater studies (Kerrou et al., 2008; Fernàndez-Garcia

et al., 2010; Bianchi et al., 2011). However, it does not allow for an exact

localization of spatial features. Ideally, functional connectivity metrics could

be used directly to condition a stochastic model of structural connectivity by

distributed measurements and hydraulic tomography. However, some addi-

tional information to condition a representative model of the subsurface can

be gathered with less e�ort. This comprises the interpretation of existing soil

survey data and representative soil pro�les at the site (Hammel et al., 1999;

Deurer et al., 2001; Coquet et al., 2005; Vogel et al., 2006), but also a di-

rect measurement of structural heterogeneity in soil by means of geophysical

measurements at the �eld scale (Vereecken et al., 2004; Rubin and Hubbard,

2005).

A promising perspective provided by this study is a new conceptual model

of hydraulic non-equilibrium in soil. With dynamic averaging of state variables
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1D e�ective non-equilibrium behavior can be modeled under rapidly changing

boundary conditions through decoupling of water content and pressure heads.

It has been brie�y described how the approach of Ross and Smettem (2000) to

incorporate non-equilibrium dynamics into Richards equation could possibly

be improved. The next step is to really compare that improved 1D model with

the 2D numerical results along the lines of Vogel et al. (2010a). However, some

open questions remain, e.g. the de�nition of a non-equilibrium conductivity

term. Moreover, the introduction of a new conceptual model calls for a com-

parison with other established, conceptual non-equilibrium water �ow models

(two-domain, dual-permeability, etc.) to stress its bene�ts and drawbacks.

Yet, this is certainly out of scope of this thesis.
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Appendix A

Functional normalization

The frequency distribution of scaling factors along the control line of each

realization is not perfectly log-normal. Therefore, the average water content

at the line 〈θ〉line for a given 〈ψm〉j does not coincide with the e�ective water

rentention curve of the entire domain even under hydrostatic conditions or

at hydrodynamic equilibrium. As a consequence, the start and convergence

point of the dynamic water retention curve do not superimpose with the equi-

librium curve so that the integration limits for hydraulic non-equilibrium are

ill-de�ned. This problem can be resolved by functional normalization.

Functional normalization is typically applied to coalesque many experimen-

tal observations of ψm and θ measured at a set of soil samples into a single

water retention curve (Nielsen et al., 1998; Vereecken et al., 2007). The ref-

erence retention curve is determind by least square regression analysis. That

is, the reference hydraulic parameters and a speci�c scaling factor χ for every

sample has to be determined by an optimization algorithm. In a numerical ex-

periment, however, the reference water retention curve is already known from

the beginning. Thus, a normalized, average water content 〈θ〉norm can be easily

obtained by (i) applying Eq. 2.1 with the reference parametrization (n,α, θr, θs)

to every local matric potential ψm,i along the control line and (ii) calculating

the arithmetic mean of these local, normalized water contents:

〈θ〉norm − θr
θs − θr

=
1

n

n∑
i

{1 + [α|ψm,i|]n}−1+1/n (A.1)

where i is the location identi�er and n is the amount of all pixels along the

control line. However, the objective is not to coincide with the reference water
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retention curve, but with the e�ective water retention curve of the entire Miller

medium. Hence, α and n have to be substituted by the e�ective parameters

〈α〉 and 〈n〉. Thus the modi�ed equation reads

〈θ〉eff − θr
θs − θr

=
1

n

n∑
i

{
1 + [〈α〉|ψm,i|]〈n〉

}−1+1/〈n〉
(A.2)

These e�ective parameters 〈α〉 and 〈n〉 have to be determined beforehand,

by (i) calculating e�ective water contents for the entire Miller medium 〈θ(ψm)〉
for many ψm and (ii) �tting an instance of Eq. 2.1 to the data by applying

a standard optimization algorithm, e.g. Levenberg-Marquardt (Press et al.,

1992).
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Figure A.1: Functional renormalization of averaged water contents at a horizontal control

line for the MG heterogeneity model in Fig. 3.1. 〈θ〉line,〈θ〉norm and 〈θ〉eff are the original

and normalized averages of water content at the control line after 70 min (left) or for the

entire experiment (right).

Figure A.1 demonstrates the performance of functional normalization. The

〈θ〉 − 〈ψm〉 trajectories on the right hand side show that the integration limits

for e�ective hydraulic non-equilibrium ζ become clearly de�ned again by func-

tional normalization. The snapshot at 70 min on the left hand side illustrates

that solely 〈θ〉 is rescaled while 〈ψm〉j remains una�ected.
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