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Abstract

In order to obtain the correct predictive behaviour of a kinetic model, it is crucial to have

an accurate and complete set of parameter values. Lack of information regarding these

parameters from wet lab experiments has held back the successful use of such models.

Therefore these parameters have to be estimated computationally to feature a complete

description of the model. In this thesis I propose a novel parameter estimation framework

combining different existing approaches with a newly proposed filtering technique for

the successful estimation of these unknown parameter values. The framework includes

a constrained extension of the square-root unscented Kalman filter to estimate the

parameter values within a biologically meaningful parameter space. This framework is

capable of addressing both the issues of structural and practical non-identifiablity before

performing the final estimation of the parameters. The constrained square-root unscented

Kalman filter (CSUKF), guarantees numerical stability by ensuring positive definiteness

of the covariance matrix. The CSUKF takes into consideration one of the common

features of biological models, noise. Noise is introduced in two ways, in the system

due to the uncertainty in the model and in the measurement data due to the inaccuracy

in the method or device used to collect the data. By representing the dynamic system

as a state space model, the CSUKF jointly estimate the states and the parameters of the

non-linear dynamic systems. This makes it possible for the CSUKF to estimate both the

parameter values and the hidden variables. CSUKF uses the general probability theory

to estimate the parameter values of biological models where reasoning under uncertainty

is essential. An identifiability analysis module is included in the framework to identify

the non-identifiable parameters. Wherever possible the problem of non-identifiability

is resolved through additional, and/or more accurate, measurement data. To assist in

resolving the issue, the framework includes ranking of the parameters, determination

of the correlation and functional relationship of non-identifiable parameters with other

parameters. Finally, when it is not possible to solve the parameter non-identifiability

through standard methods, the informed prior is formulated for the unique estimation of

parameters even in the presence of non-identifiability. This framework is successfully

applied to estimate parameters for three published biological models, the glycolysis

model in yeast, the sucrose accumulation model in sugarcane culm tissue and a gene

regulatory network.
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Chapter 1

Introduction and literature review

1.1 Overview

The study of living organisms is a very important task as it makes it possible for us

to understand life on earth. It enables us to recognize the functionality of organisms

that have the capacity to grow and reproduce, and to respond to different stimuli.

To understand how the cell and its components work, biologists have studied its

biochemistry, the DNA and RNA structure, the protein structure and how the translation

and transcription shapes this structure along with its functionality in metabolism.

Through all of this, a theoretical concept of how the interaction of different elements in a

cell form a network has been developed [Klipp 2005]. However, in order to have a better

understanding of the mechanisms underlying the different functionalities of a living cell,

a systematic approach, investigating the composition and molecular biology of single

cells, is required. In 2001, Kitano coined the term for this systematic approach, systems

biology [Kitano 2001]. Systems biology helps to better understand the functionality

of the cell, how cellular processes are regulated and how cells react to environmental

perturbations. In order to have a coordinated study of the cellular network and its

interaction, systems biology integrates computational methods with high-throughput

experimental techniques [Klipp 2005]. One of the major limitations to this technique is to

transform system-level data into systems-level understanding [Bray 2003]. Mathematical

models play a central role in addressing this task by integrating experimental data with

theoretical approaches [Kitano 2002b]. Systems biology combines experimental design

with data collection, data processing and mathematical modelling. Starting with an open

question regarding the system under investigation, an initial model is deployed with the

knowledge gathered from experimentation. This model is used to make a prediction,

which can either be verified or proven wrong with a different set of experimental data. If

the model simulation does not agree with this different set of experimental data, the model

has to be refined accordingly. This would result in a new prediction which must still agree

with the experimental data or further be refined. This iterative process continues until a

good agreement is reached between the experimental data and the model predictions.
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Figure 1.1: Network diagram of Higgins-Sel‘kov oscillator. The supply rate of the

substrate, X, is v0, the conversion of substrate to product Y occurs at a rate of v1 and

product Y is consumed at a rate of v2.

These mathematical models have the potential to provide both an experimentally testable

hypothesis as well as a prediction of cellular functionality.

Mathematical modelling approaches range from basic stoichiometric models

to fine grained mechanistic models or kinetic models. Stoichiometric models are

time independent static models. These are basic models and their study does not

reveal the functional operation of the cell [Nikolaev 2006]. Thus stoichiometric

modelling alone is not sufficient to make predictions about the interaction between

different cellular components that could be modified to create a network with new

functionalities. At the other extreme, kinetic models give the most detailed and complex

mathematical representation of a biological system. Kinetic modelling builds on the

network stoichiometry incorporating the dynamic interactions between the different

components of the network. In a kinetic model, biological systems are usually

represented by a system of ordinary differential equations (ODEs). These ODEs represent

the change of species concentration over time. These changes in the concentrations are

driven through rate laws, which are mathematical expressions that represent the internal
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Figure 1.2: Dynamic behaviour of Higgins-Selḱov oscillator. The value of the parameters

are k1 = k2 = 1.1, and different values of parameter k3. a) Converging, with k3 = 0.6, b)

diverging with k3 = 1.6 and, c) oscillating with k3 = 1.1.
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reaction mechanism as a function of species concentrations and parameters. These model

parameters play a critical role in describing the dynamics of the model. Therefore to have

an accurate model of the system it is necessary to have a complete and accurate set of

parameter values.

To illustrate the importance of these parameters to a kinetic model, the Higgins-

Selḱov oscillator [Sel’kov 1968] is given as an example. This model represents a

glycolytic oscillator mainly studied in yeast, describing the dynamic and biochemical

properties of the enzyme phosphofructokinase [Hess 1979]. The model describes an

enzymatic reaction with substrate inhibition and product activation [Sel’kov 1968]. As

depicted in Figure 1.1, the network has one substrate, X, one product, Y and three

parameters, k1, k2, k3. The fluxes, vi, are represented by the following rate laws,

v0 = k1

v1 = k2[X][Y]
2 (1.1)

v2 = k3[Y]

The model consists of two ODEs, that describe the temporal behaviour of the concentra-

tions of substrate X and product Y. Substituting the rate law that corresponds with each

flux into the ODEs yields:

d[X]

dt
= k1 − k2[X][Y]2 (1.2)

d[Y]

dt
= k2[X][Y]

2 − k3[Y]

To illustrate the significance of even small changes to a single parameter, the network is

simulated three times. In each simulation parameters k1 and k2 are kept unchanged (at a

value of 1.1), while the value for parameters k3 is set to 0.6, 1.6, and 1.1, respectively. As

can be seen in Figure 1.2 this small variation of a single parameter has profound effects

on the dynamics of the system. In each case the X and Y are set to start with the same

initial concentrations. This clearly illustrates the crucial role of accurate quantitative

information for the model parameters in order to have the correct dynamic behaviour of

the model [Ingram 2006].

While the importance of having a complete and accurate parameter set is clear, the

availability can not always be guaranteed. It is possible to measure only a fraction of

the kinetic parameters due to high cost, difficulty and limitations of current technical

resources associated with biological experiments. The remaining parameters have to be
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estimated through computational methods. These methods determine the values of the

parameters in an indirect fashion from the measurement of other quantities. Parameters

are then determined so as to minimize an error measurement between the simulated

data (as generated by the model) and the corresponding measurement data. In dynamic

biological models, the measurement data usually come in the form of time-series data and

is often incomplete. Thus it is not uncommon to lack a sufficient amount of measurement

data to make an unbiased estimation using traditional parameter estimation methods.

Moreover biochemical networks are often multimodal, meaning that they have multiple

solutions, due to high non-linearity and their dynamic nature [Sun 2008]. Traditional

optimizers have a tendency of getting stuck in local optima instead of finding global

optima [Sun 2008]. Furthermore although measurement errors can be incorporated into

the observation equation of these optimization methods, they do not consider the process

noise within the system equations. Considering these limitations a dynamic recursive

estimator with the capability of efficiently handling both the process and measurement

noise would be a better choice for the estimation of parameters in biological models.

The Kalman filter (KF) has the capability of using noise-corrupted measurement data

and other inaccuracies to estimate the parameter values in a recursive manner. Thus

the KF may perform more efficiently in these situations compared to the conventional

parameter estimation methods. As the Kalman filter is an extension of the Bayesian

solution, it can approximate the probability density function and can cope with multi-

modality, asymmetries and discontinuities [Julier 2004]. This filter is very powerful as it

can perform estimation even when the precise knowledge of the model is not available

or the measurement data is incomplete [Welch 2006], which is often the case with

biological models. This means that the Kalman filter can take into consideration both the

process noise and the measurement noise. One other common phenomenon in biology

that increases the difficulty of the estimation task are the presence of hidden variables,

i.e. variables that cannot be measured directly. With the technique of joint state and

parameter estimation, KF can function jointly to estimate the parameters as well as these

hidden variables. One major drawback of the Kalman filter is that it can only function

with linear systems. As a result different non linear extensions of the Kalman filter have

been proposed among which the two most widely used are the extended Kalman filter

(EKF) and the unscented Kalman filter (UKF). Among these two non linear extensions,

UKF has the better estimation accuracy and the difference in approach to handling non-

linearity [Merwe 2001, Leven 2004] makes UKF a more robust estimation method than

EKF [van der Merwe 2004].
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Another difficulty that severely limits successful parameter estimation in any kind

of model is the model’s identifiability property. This property addresses the question

of whether it is at all possible to determine a unique solution for an unknown parameter

within the constraints of the mathematical model and the available measurement data. For

a non-identifiable model, different sets of parameter values would agree equally well with

the measurement data. If model parameters are non-identifiable, i.e. not well determined,

then consequently the model predictions are unreliable. If this is the case then it may

not be possible to address the underlying biological question, thus reducing any value

that may be derived from the model. It is reasonable to perform parameter estimation

only when the identifiability of the parameters has been ensured. Identifiability depends

on the model structure, available measurement data, the corresponding level of error

and the optimization method used for estimation. Non-identifiability arising due to the

model structure is called structural non-identifiability, while non-identifiability due to

measurement data is called practical non-identifiability. Structural non-identifiability

is mostly due to over parametrization of the model, manifesting functionally related

parameters. For example if θ1 and θ2 are functionally related, say θ1.θ2−20 = 0, then it is

not possible to estimate both parameters simultaneously, as there could be a large number

of different values for θ1 and θ2 that will satisfy this relationship. However if functional

relationships between parameters can be identified it would assist in solving the structural

non-identifiability. Before conducting the identifiability analysis it is useful to know the

sensitivity of the parameters with respect to the system. A ranking based on sensitivity

reveals which parameters have a high impact on the system model and therefore have a

high importance in the identifiability analysis. These high-ranking parameters need to be

estimated with high confidence to make sure that the model is behaving as expected. This

sensitivity based ranking also performs an initial identifiability analysis by determining

the linear relationship between the coefficients of the sensitivity matrix. However,

parameters that are linearly independent in the sensitivity coefficient can still be non-

identifiable, but this cannot be determined during the ranking method. Furthermore it

also cannot determine the practical non-identifiability. As a result a detailed identifiability

analysis is necessary to find both structural and practical identifiability for all parameters.

To conduct a successful parameter estimation it is crucial to first resolve parameter

non-identifiability. If parameters are found to be structurally non-identifiable then there

are two approaches to solve this non-identifiability. The first approach is to acquire direct

measurement data of the currently non observable variables (the species concentration

that was so far not measured directly) or measurement of different combinations of non
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observables. This would change the function describing the relationship between the

state variables and the observables and can thus define the change of each parameter

individually. If no such measurement is possible then the second approach is to measure

the specific structurally non-identifiable parameter. When it is not possible to measure

all the structurally non-identifiable parameters, then the measurement of high rank

parameters needs to be made available whereas the low rank parameters can be set to

a nominal value. If none of these measurements are possible then the model has to be

changed to combine these functionally related parameters, for example combing two non-

identifiable parameters to have an identifiable combination. Practical non-identifiability

is caused due to limited measurement data or error in measurement data. To solve this

non-identifiability more measurement data or measurement data with less error needs to

be incorporated in places where there is high uncertainty in the parameter values. All of

these steps need to be performed recursively until all parameters are judged to be both

structurally and practically identifiable.

Unfortunately it is not always possible to have more measurement data to solve either

structural or practical non-identifiability. Furthermore simplification of the model might

significantly limit the model’s capability for generating a predictive behaviour and by

extension to answer the open question properly. To overcome this limitation a novel

solution exploiting the concept of Bayesian inference is incorporated into this framework.

In contrast to the frequentist approach (traditional optimization techniques) to estimation,

Bayesian inference can be obtained despite the presence of non-identifiability, if an

informative prior is available [Rannala 2002, Samaniego 2010]. As the Kalman filter

and each of its non-linear variants can be considered to be dynamic Bayesian networks,

these property of using informed prior of Bayesian inference can be applied to CSUKF.

This will allow CSUKF to have a unique parameter estimation for a model which is non-

identifiable from the perspective of likelihood.

To further discuss the issues related to parameter identifiability analysis and their

successful determination of accurate values key sub topics are elaborated in the next

sections.

1.2 Introduction to biological models

Biologists have long been investigating the components and interactions of single cells.

These studies include investigations into the functionality of individual parts of the cell,

how different components develop and how they function in different situations. Recently

a more systematic view of biological processes has emerged by integrating different fields
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of biology in order to have a more detailed picture of cellular functionality [Klipp 2005].

This allows the scientists to make a prediction on the outcome of complex processes

such as the effect of light intensity on plant metabolism [Stitt 2010]. These models can

be regarded as a ”virtual laboratory”, building up a characteristic equation of the system

and giving insight into the functional design principals of cellular activity [Steuer 2006].

Systems biology integrates experimental methods and data processing with math-

ematical models. Modelling in biology deals with the methods for describing bio-

logical phenomena in mathematical terms [Klipp 2005]. These models and computer

simulations assist in understanding the intrinsic behaviour of biological systems and

make predictions about the changes of the system with external perturbations and

environmental interactions. There exist a variety of approaches for mathematical

modelling. Different models can be chosen to describe different phenomena of the same

system. When addressing a specific biological question it is important to select the

appropriate approach. Based on the availability of data and desired analysis, modelling

can be broadly categorized into bottom-up modelling and top-down modelling. In the

bottom-up approach the base elements of the system are studied in greater detail and

linked together in many levels to form a complete top-level system. In the top-down

approach a birds eye view of the system is first formulated and then refined progressively

in greater detail until the model specification is reduced to its base elements.

Several points need to be considered for the successful construction of a dynamic

model [Chou 2008]. First, as most biological models are non-linear, the model must

capture this non-linearity. Second, the model should capture the dynamic responses of

the system. Third, it requires the ability to capture the interaction at different levels of

components. Fourth, stochasticity might come into play when the particle numbers are

low and therefore the fundamental laws of kinetics no longer apply. Finally as biological

reactions occur across different compartments, the model should be able to capture this

compartmentalization. When considering these features together the modelling process

becomes extremely complex. Therefore simple methods are needed to strike a balance

between the validity of the system, goals of the modelling and mathematical suitability.

Mathematical modelling can be based on a) interactions alone, b) constraints and

stoichiometry, and c) detailed reaction mechanisms [Stelling 2004].

1.2.1 Interaction-based modelling

Interaction based modelling is dependent on the most basic feature of any network, that is

the pattern of input-output interaction between different components. It does not take into
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consideration any type of reaction stoichiometry or velocity. These networks facilitate the

system level understanding of sub systems independently by introducing modularity. In

this interaction based modelling, scale free network topology paralleling the structure of

complex engineered system is described using graph theory [Barabasi 2004]. However,

the applications of such networks are limited as they only give topological information.

1.2.2 Stoichiometry-based modelling

A metabolic network is like a set of nodes connected with directed edges and can be

represented with matrices. Stoichiometric models translate the network topology into a

matrix describing metabolic interactions of the network. Each element’s sign represent

the inflow (positive) or outflow (negative) of a specific metabolite, and the value denotes

the unit of metabolite that is converted by a reaction. If a reaction does not have any

impact on a metabolite then the corresponding cell will have a value of zero. This

stoichiometric matrix is denoted with N. The reaction rates of the network are, v and

the metabolite concentration are, [X]. The change of metabolite concentration [X] with

respect to time t are denoted with a set of ODEs,

d[X]

dt
= N · v (1.3)

Each ODE represents an individual reaction, taken together they represent the full set of

reactions in the model [Heinrich 1996, Stephanopoulos 1998]. This type of modelling

is used to calculate the reaction rates of an enzymatic reaction v. If the number of

reactions (equations) is equal to the number of metabolites, then they can be easily

calculated by assuming a steady state of the reaction. At a steady state the fluxes remain

constant and the rate of change of a metabolite concentration is zero. Thus the left hand

side of Equation (1.3) becomes zero and the system of ODEs reduces to a system of

linear equations which can be solved directly for the unknown fluxes. However in the

case where the system is under-determined, i.e. there are more unknowns than linearly

independent equations, additional information is required to solve in the steady state.

In order to better work with under-determined cases, constraint based tools such

as flux balance analysis (FBA) and those including labelling experiments, metabolic

flux analysis (MFA), have been developed. In FBA additional constraints are added to

the model in order to make the system determined [Stelling 2004, Chou 2008]. These

constraints are based on considering additional hypotheses to yield a flux distribution for

a specific condition, for eg. maximization of yield/growth rate. Rather than applying

predetermined constraints to the system, MFA is a method based on the use of stable
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isotopic labelling to provide additional experimental data [Wiechert 2001]. Among

different stable isotopes, methods based on 13C isotope labelling are most widely used to

explain the cells central metabolism. In 13C MFA the intracellular flux is determined by

considering the reversibility of reactions without making any predictions on metabolic

energy states [Wiechert 1996]. Although this kind of modelling is useful in making

experimentally testable predictions such as the viability of testing the knock-out, by itself

it is not sufficient to uniquely calculate intracellular fluxes [Steuer 2008]. Neither does

it take into consideration the dynamic nature of the network. Considering the dynamic

behaviour displayed in biological systems, the inability to incorporate dynamics into the

model limits the applicability of stoichiometry based modelling in predicting network

functionality [Steuer 2008].

1.2.3 Kinetic modelling

Kinetic modelling is the most detailed and complex approach in systems biology

[Schallau 2010]. It is a mathematical modelling approach that is guided by the detailed

mechanism in metabolisms and gene regulation. It describes quantitative dynamics of the

network by incorporating kinetic properties with the known stoichiometry of a pathway

[Chou 2008]. Such a detailed model helps to formulate a correct, experimentally testable

hypothesis, investigate the design principles of cell functions and predict dynamic

changes in metabolite and protein concentrations [Steuer 2006].

Construction of a kinetic model. The first step towards developing a kinetic model

of a metabolic network is to identify the nodes (e.g. metabolites), their connectivity

and the individual interaction behind each of these connections. These interactions are

represented by enzymatic reactions. Next the network is defined through a system of

ODEs defining the rate of change of a species [X], or d[X]
dt
. Based on the stoichiometry,

these ODEs are formulated as the sum of the reaction rates (the flux, vi of the enzymatic

reaction) that are producing the species minus the sum of the reaction rates that are

consuming the species. Each reaction rate may be formulated with a rate law, a

mathematical description of a type of reaction. For example, the kinetic rate law of

an enzymatic reaction in a metabolic network may be formulated as a mass action or

Michaelis-Menten rate law. These rate laws are calculated depending on metabolite

concentration and parameters such as the binding constant, Km, or the maximal velocity,

Vmax, of a reaction. For a gene regulatory network they are dependent on the strength

of promoter site, transcription factor and ribosomal binding site strengths, together with

many other parameters. Once defined, the set of ODEs for the network may be used
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Figure 1.3: Kinetic modelling of a cellular network. (a) Schematic diagram of a network

where X1 and X2 represent the metabolites. (b) The reaction mechanism. In reaction

r1, X1 is imported, in reaction r2 X1 is converted to X2 and in r3 X2 is consumed.

c) The rate laws, As an input v1 is a zero order kinetic, v2 is formulated with the

Michaelis-Menten rate law and v3 with the simple mass action formula.The parameters

are k1, k2, Km and vmax . (d) Stoichiometric matrix of the network. Each column

represents a flux and each row a metabolite. (e) The complete mathematical model of

the network with a set of ODEs.

to simulate and predict the behaviour of the network. Figure 1.3 gives an overview of

a kinetic model for a simple metabolic network. Figure 1.3 (a) illustrates the simple

network composed of a linear pathway with two intermediate substrates. The fluxes are

denoted vi, where v1 defines the import of X1, v2 defines the conversion of X1 to 2 units

of X2, and v3 exports X2. Figure 1.3 (b) describes this network in terms of its reactions.

Figure 1.3 (c) gives the specific rate law for each of the fluxes. From the reactions, the

stoichiometry of the network is described in Figure 1.3 (d). The full kinetic model is

given in Figure 1.3 (e) with the complete set of the ODEs that describe this network. The

same principle of kinetic modelling can be applied to other biological networks, such as

gene regulatory networks where the metabolites would be replaced with protein and/or
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mRNA concentrations.

The complexity of biological networks and the limited knowledge of the underlying

mechanisms and their associated parameters has inhibited the success of kinetic mod-

elling. As most biological models are formulated as non-linear ODEs, the parameter

optimization techniques are more difficult compared to a linear model. Furthermore they

exhibit multi-modality (i.e. multiple optimum solutions, which cause the algorithms

to converge to local minima [Singh 2006]). Stiffness, characteristics of differential

equations that cause numerical instability unless the step size is taken to be extremely

small, adds to the complexity, as the ODEs need to be solved repeatedly during the

parameter estimation procedure. Non-identifiability of parameters further increases the

difficulty of estimating a non redundant parameter set.

The understanding of complex genotype and phenotype relationships play a vital role

in the understanding of the organism. It defines how the actual set of genes of an organism

results to its observable expression of characters and traits [Mehmood 2011, Miko 2008].

Due to the number of molecular components in the cell and their non-linear interactions it

is only possible to identify this relationship through accurate mechanistic computational

modelling [Jamshidi 2009]. Thus the aim of this thesis is to develop a framework to

accurately and efficiently estimate the unknown parameter values in order to overcome

the bottleneck in kinetic modelling. In this framework I use filtering techniques from

control theory in which the biological system is represented as a state-space model.

Details of state-space modelling are described in the following section.

1.3 State-space model

State-space modelling is a mathematical representation of a system that originates from

control engineering. In this model a physical system is represented as a set of input,

output and state variables related by first-order differential equations. The state variables

represent the current value of internal elements of the system state at any given time. This

system representation of first-order differential equations is collectively known as the

state equation, and explicitly accounts for state variables. The state equation describes

the relationship between the system’s input and current state with its future state. The

state variables change independent of the output of the system. The state variables are

not always measured directly, but rather through the observation equation they can be

derived from the current system state together with the current measured input/output

data. The observation equation shows the relationship between the system state and its

input with the output. Together the state equation and the observation equation, forms the
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state-space equation which ultimately forms the state-space model. There is no unique

formulation of the state-space equations for a particular system, however state-space

modelling is a convenient way to model both linear and non-linear dynamic systems

with multiple inputs and outputs, as is the case for biological models.

1.3.1 Linear State-space modelling

Linear dynamic systems are mathematically represented with linear differential equa-

tions. For a system with inputs, u ∈ Rm, outputs, y ∈ Rq, and state variables, x ∈ Rn, the

state-space definition for a linear time invariant system (a system whose output does not

depend explicitly on time) can be written as,

ẋ(t) = Ax(t) + Bu(t) (1.4)

y(t) = Cx(t) + Du(t) (1.5)

where A ∈ Rn×n is the state transition matrix determining the dynamics of the system.

B ∈ Rn×q is the input matrix, determining how the system input u effects the system

change. If the state change is independent of either the current state or the system output,

then the corresponding matrix, A or B, would be zero. C ∈ Rm×n is the output matrix

that defines the relationship between the system input and the system output. Finally

D ∈ Rm×q is the feed-forward matrix. In the absence of any direct feedthrough to the

system model, D is zero. Given the state vector and the input at time t Equation (1.4)

determines the rate of change of state and Equation (1.5) determines the output of the

system. In other words, given an initial state x(t0) and input u(t) for t0 ≤ t < t f , the

system output y(t) and the state x(t) for t0 ≤ t < t f can be computed.

In order to perform the state-space calculation with a digital computer, the system

needs to be discretized. Discretization transfers the process of a continuous model into

its discrete counterpart. This is generally performed as a first step to ensure that the

model is suitable for numerical implementation. Using discrete data sets, the discretized

versions of Equation (1.4) and (1.5) are

x(k) = Adx(k − 1) + Bdu(k) (1.6)

y(k) = Cx(k) + Du(k) (1.7)

where k denotes the iteration number. The ”d” subscript for matrix A and B is used

to denote the discrete form of these matrices, which are calculated through piecewise
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operations as

Ad = eAT (1.8)

Bd =

∫ T

0

eAτdτB (1.9)

where T is the sampling interval. The C and D matrix remain the same in the discrete

system as in continuous system. If the continuous-time state transition matrix A is non-

singular, then its inverse can be used to define Bd

Bd = A−1(Ad − I)B (1.10)

where I represents the identity matrix. The matrices in a continuous time system and a

discrete system are different due to the difference in the underlying equation representing

the system. Linear differential equations are used to represent the continuous-time system

where as discrete systems are described by difference equations.

The model represented by these equations does not consider the noisy nature of the

system or the measurement. To introduce noise into the state-space equations a stochastic

description of the method is needed. The following equation is formulated in order to

represent the state-space model in a discrete-time process that is governed by the linear

stochastic difference equation

x(k) = Adx(k − 1) + Bdu(k) + w(k) (1.11)

y(k) = Cx(k) + Du(k) + e(k)

w(k) is the process noise and e(k) is the measurement noise. Both of these noises are

assumed to be Gaussian white noise (a discrete-time stochastic process whose terms are

uncorrelated, Gaussian and all with zero mean), having the probability density function

[Welch 2006]

p(w) ∼ N(0,Q) (1.12)

p(e) ∼ N(0,R) (1.13)

where Q is the process noise covariance matrix and R is the measurement noise

covariance matrix.
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1.3.2 Non-linear State-Space modelling

The dynamics of linear systems are restricted. Typically they do not represent real

life applications accurately, as most real life applications tend to be highly non-linear.

Therefore non-linear state-space models are needed to describe more realistic processes

with complex dynamic behaviour. Non-linear continuous time state-space models can be

described using a set of non-linear system equations, and represented as

ẋ(t) = F(x(t), u(t)) + w(t) (1.14)

y(t) = H(x(t), u(t)) + e(t) (1.15)

This general form is similar to the linear state-space representation except that the state

transition process and observation processes are defined with functions instead of linear

combinations (matrices). The state transition is defined by a non-linear function F,

where the current state and exogenous known input vector are the parameters of the

function. The observation equation that maps the time series measurement from the

states variables and exogenous input is defined by function H, the non-linear observation

function. Similar to the linear stochastic system, a zero mean uncorrelated Gaussian

process noise with covariance Q is added to the state transition function to describe

the uncertainties in the model. For uncertainty in the data uncorrelated Gaussian

measurement noise with covariance R is added to the observation of the state through

function H [van der Merwe 2004]. Larger entries in the Q matrix denote uncertainty

in the accuracy of the model and larger entries in the diagonal of matrix R denotes

uncertainty in the measurement [Lillacci 2010]. For a system with no exogenous input

the state-space equation would be

ẋ(t) = F(x(t)) + w(t) (1.16)

y(t) = H(x(t)) + e(t)

This non-linear state-space representation is suitable for modelling real life scenarios,

in particular biological phenomena. Throughout this thesis all biological systems are

represented in this form.

1.3.3 Non-linear state-space modelling of a biological network

The non-linear dynamics of biological systems are efficiently described using a non-

linear state-space representation. This representation formulates the processes of a
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biological network with a set of ordinary differential equations(ODEs), a convenient

and powerful method to capture the dynamics of a biological system [dÁlchè Buc 2010].

To develop this state-space representation it is required to identify the variables which

are categorized as input, output and state variables as well as their components and

interactions. State equations define the evolution of these state variables over time.

In a biological network these state variables generally represent the concentration of

species, such as metabolites or proteins. The state equations represent the rate laws

through which these concentration changes over time. Though these state variables

are essential for the dynamics of the system, they are not always directly accessible

directly via measurements, and thus are called hidden variables. The observation function

relates the state variables with the output variables through which they can be observed.

These observation equations describe how the concentration of these species are observed

through different measurements. One other important factor in these systems is the

parameters that defines the rate coefficient such as maximal enzyme activity or affinity

of the enzyme of a metabolic network. Many of these parameters are hard to measure

in wet-lab experiments and therefore need to be estimated in silico. One of the main

objectives of this thesis is to estimate these parameter values. Taking these parameters

into consideration, the biological network can then be represented through a continuous-

time non-linear state-space model as

ẋ = F(x, θ, u, t) + w(t), x(t0) = x0

y = H(x, u) + e(t)
(1.17)

where x = [x1, x2, x3, . . . , xn] represents the species concentration (state vector), t is

the time, θ = [θ1, θ2, . . . θm] represents the kinetic parameters [Quach 2007], w(t) is the

process noise and e(t) is the measurement noise. The initial state vector (i.e. species

concentration), is denoted x0. The observation equation, H, when added to the noise

e(t), produces the observed or output variable, y, from the current state, x. It is often

the case in real life applications that the process and measurement noises are additive

[van der Merwe 2004]. For this reason, both the process and measurement noise are

considered additive in the model rather than incorporating them into the state equations.

With deterministic models of a biological system it is often the case that the

continuous time process is estimated using discrete time measurement data. The

continuous time state can be cast into a discrete time non-linear state-space equation
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through the function f and x(tk) = x(k) for k ≥ 0 [Quach 2007],

fk(x(k); θ, u) = x(k) +

∫ tk+1

tk

F(x(τ), u, θ)dτ (1.18)

x(k + 1) = fk(x(k), u, θ) + w(k) (1.19)

Throughout this work it is this discrete form of states-space models that is used in the

estimation of the state variables.

1.4 Parameter Estimation

The motivation behind developing data-driven models in biological systems is to shed

light on the different functionality of living cells and how they can be influenced

towards certain behaviour [Balsa-Canto 2008]. These models provide a complete view

of dynamic interactions between different intracellular pathways. In order to have a

correct predictive behaviour it is important to have a full and accurate set of parameters.

However models in systems biology are disproportionate in the relatively small amount

of available data compared to the relatively large number of parameters in the rate

laws [Liebermeister 2006]. As a result very few parameters can be obtained either

from literature or experimental data. Even when parameters are available they tend

to be determined with large uncertainty or under environmental conditions different to

the current experiment. In some cases determination of these parameters in vivo is

just impracticable [Diego 2010]. Therefore the values of these parameters need to be

predicted computationally. Successful and accurate estimation of these parameter values

is a critical part of modelling in systems biology [Ashyraliyev 2009, Sanders 2009].

Parameter estimation in biological models is challenging as the available experimen-

tal data are sparse and corrupted with noise. Furthermore the value of model parameters

may range over many orders of magnitude, the estimation method might get stuck in

local minima or it might roam around a very flat parameter space. What is required

is an efficient parameter estimation method having the capability of dealing with these

problems.

Depending on the characteristics of experimental data, parameter estimation methods

can be categorized in to two types, steady state and time series. A system is in steady

state when the system properties are no longer changing, that is, the rate of change of the

system state over time is zero or dx
dt
= 0. Data gathered at this stage is called steady state

data. Parameter estimation methods using steady state data are based on experiments

where they try to measure the response of a system after a small perturbation around
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steady state. In biological systems it is easier to experimentally measure the steady state

data in vivo. However, due care needs to be taken to ensure that the system has reached

steady state before data is collected. With steady state data it is often not possible to

accurately estimate parameters as the data does not describe the dynamics of the system.

Its wide use is mainly due to the comparative experimental simplicity.

Time series data gives a sequence of data points measured at specific time intervals

during the transitional period of a dynamic system. This time series data is collected

before the system reaches steady state, i.e. dx
dt
, 0. Time series data gives a more

detailed picture of the system, as it describes the dynamic relationship between different

intracellular biochemical processes. Parameter estimation algorithms, especially the

recursive methods, perform with much higher accuracy when they estimate parameters

based on time series data, as parameter values can be adjusted at each time step to more

properly represent the dynamics of the measurement data. The flip side is that it is much

more difficult to measure this data from biological experiments compared to steady state

data. However with the ongoing development of high throughput experimental devices

and methods, such comprehensive data is becoming available. These tools can even

generate time-series data under different conditions such as with different gene knock-

out experiments [Chou 2008], making time series data the de facto standard for in silico

parameter estimation.

In this thesis I model the biological processes using non-linear state-space modelling,

where the system is described by the (ODE) presented in Equation (1.17). This type

of model describes the evolution of a cellular component over time. At the molecular

level the variables, or states, are the concentration of a chemical component such as

metabolite or protein concentration. The parameters represent the components which

remain constant over the dynamics of the state such as the binding affinity of the

Michaelis-Menten rate law (Km) or inhibition constant (Ki). Parameter estimation

tries to estimate the unknown value of these constants. In recent years the devel-

opment of an efficient parameter estimation technique has been the thrust of increas-

ing research [Moles 2003, Schaber 2011, Lillacci 2010, dÁlchè Buc 2010, Quach 2007,

Ashyraliyev 2009, Balsa-Canto 2008, Chou 2008, Rodriguez-Fernandez 2006a, Diego 2010,

Sun 2008, Moles 2003, Rodriguez-Fernandez 2006b, Schenkendorf 2011, Jia 2011]. In

this section I will describe two of the main approaches to non-linear optimization in

addition to the filtering approach.



18 Chapter 1. Introduction and literature review

1.4.1 Non-linear Optimization

In non-linear optimization the parameter estimation method is formulated with differen-

tial algebraic constraints where the objective function is derived as the weighted distance

between the model prediction and experimental data [Moles 2003, Baker 2010].

j =

∫ t

0

(ymes(t) − ypre(θ, t))TW(t)(ymes(t) − ypre(θ, t))dt (1.20)

The task is to minimize the objective function, j, over the time series data where θ is

the vector of parameters that the optimization problem is supposed to estimate. The

objective function is a weighted sum of squared errors, where the error is given as the

difference between the experimental or measured data, ymes, and the simulated value

ypre, at the start of the current iteration. A weighting matrix, W, is used to vary the

effect of individual differences. The inverse of the standard deviation of the measurement

data is commonly used for the weights, reducing the effect of less precise measurement

data from the objective function calculation. The minimization of the objective function

is an inverse problem, that is, it tries to estimate the parameters from the measured

data compared to a forward approach where all model information is used to generate

measurement data. Figure 1.4 gives an overview of this optimization. The optimizing

function receives measurement data from the measurement unit and simulated data from

the biological model, generated using the current estimate of the parameter values. The

optimization algorithm tries to minimize Equation (1.20), by iteratively updating the

estimated parameter values, until the specified stop criteria has been reached.

Optimization methods are classified as either local or global. Local methods

find a solution that is optimal within a neighbouring set of solutions but might not be

the global optima. Due to their non-linear and constrained nature, biological models

are quite often multimodal, meaning that multiple local minima exist. If sufficiently

close to some minima, local methods will quickly converge. However, they often

get stuck in local minima and are unable to find better optima, let alone global

minima [Rodriguez-Fernandez 2006a]. Global optimization methods search throughout

the parameter space for the best minimum value of the objective function. The

downside of global optimization algorithms is that there is no proof of convergence

[Ashyraliyev 2009].

Next I will briefly describe these two general classes together with some of the more

widely used algorithms.



1.4. Parameter Estimation 19

Figure 1.4: General scheme of the optimization method. Simulated data comes from the

model, and measurement data comes from the measurement unit. The optimization is

repeated until a pre-defined condition is met.

1.4.1.1 Local Optimization

The two most common methods of local optimization are the gradient search method

and the direct search method. The gradient search method finds an optima when the

calculated gradient of the objective function approaches zero, i.e. a plateau. The direct

search method tries to find the minimum by bracketing the solution and rejecting any

point that is not adjacent to the lowest functional values.

Gradient search method. Gradient based methods are all descent methods. These

methods search for the local minimum of the objective function, j, by taking steps

proportional to the negative of the gradient of that function,− ▽ j at the current position

[Ashyraliyev 2009]. In doing so it first finds a descent direction dy = − ▽ j and

takes a step αdy towards that direction, where α is the step size [Kaj 2004, Wang 2008,

Ashyraliyev 2009]. This step size can vary with each iteration. The selection of α, i.e.

how far the step should be in the direction of dy, is determined through a line search.

This method starts from an arbitrary initial point y(0) and then follows the gradient until

it reaches the solution. This iterative procedure can be described mathematically as

y(k + 1) = y(k) − αk ▽ j(yk) (1.21)
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Newton’s Method. Newton’s method also known as Newton-Raphson method, is

an iterative 2nd order numerical method that attempts to find the optima of a real valued

function. It calculates the Hessian (2nd order derivatives) along with the gradient of the

function to find the critical point at which the gradient of the function is zero. Thus this

method is analogous to Newton root finding method.

Gradient based non-linear least square problem. In the case of minimizing a

sum of square errors of a function, within a gradient based search method, least square

can be applied. This method attempts to minimize the norm of the objective function.

For solving such problems Newton’s method is replaced with the Gauss Newton method

so that the Hessian is not needed.

Levenberg-Marquardt method (LM). This method combines the advantages of

steepest descent method with the Newton method [Marquardt 1963]. It tries to find

the local minima of a function expressed in the form of sum of squares. It uses the

minimization along the direction of the gradient to obtain its operating stability and uses

a quadratic model to speed up the process of convergence to the vicinity of the minimum.

1.4.1.2 Global optimization

Global optimization methods can be broadly classified as deterministic, stochastic

and metaheuristic. Deterministic methods can guarantee global minima for relatively

small problem sizes. However as computational complexity increases rapidly for large

problems, no deterministic method can find the global minimum in finite time for such

problems. As biological models have large number of unknown parameters, these

methods do not perform well in such large scale problems [Rodriguez-Fernandez 2006a].

Stochastic methods are probabilistic in nature and can locate the vicinity of global

solutions in modest computational time. These methods can be successfully paired with

local methods [Banga 2003].

Lastly, metaheuristic methods are used to iteratively improve the candidate solution

with regard to a given measure of quality. These methods diversify the search over the

solution space by swapping between different fitness landscapes. This swapping is done

through intensification where the search is performed carefully around good solutions and

diversification, which deals with the search of unvisited regions. Many of the algorithms

in this class involve some form of stochasticity to accelerate the search [Hoos 2004].

Though metaheuristic-based methods do not guarantee that a global optimization is ever

found, they are the most successful when balancing computational complexity and the

overall convergence of the algorithms [Rodriguez-Fernandez 2006a].
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In this thesis a comparison is made between the most widely used global optimization

algorithms and the most widely used non-linear extensions of Kalman Filter including the

proposed filtering method. These global optimization algorithms, simulated annealing

(SA), genetic algorithm (GA), evolutionary programming (EP) and particle swarm

optimization (PSO) will be briefly described in the reminder of this section. All of these

algorithms with the exception of SA are metaheuristic-based, while SA is stochastic

based. The description of the Filtering techniques can be found in section 1.5.1.1 and

onwards.

Simulated Annealing (SA). Simulated Annealing is a stochastic optimization

algorithm proposed by Kirkpatrick et al. (1983) [Kirkpatrick 1983]. The name derives

from annealing in metallurgy, a physical process involving the heating and controlled

cooling of a material to increase the energy of its crystals to yield the desired properties.

In this method each point of the search space corresponds to a state of some physical

system, and the objective function captures the internal energy of the system in that state.

The algorithm starts with a high temperature indicating equal probability of all states or

parameter vectors distributed over the parameter space. Then the temperature is slowly

decreased based on a cooling schedule to come up with a new distribution of parameters.

By allowing heating, i.e., additional energy in the system that allows uphill move, this

method eliminates the problem of getting stuck in local minima.

Evolutionary Computation (EC). Evolutionary computation is a class of algo-

rithms based on the principles of biological evolution. In EC each potential solution of

the parameter vector is considered as the population and the new population is generated

through reproduction, selection, mutation and survival of the fittest [Eiben 2008].

The algorithm starts by generating random parameter vectors (a population of

random individuals). The fitness of each of these individuals is measured through their

corresponding objective function (higher is better). The selection process assigns each

individual a probability to indicate their chance of being selected in the next generation

relative to their fitness values, a higher fitness value results in a higher probability of

selection. Crossover and mutation are then used to create new individuals. The crossover

or recombinant operator selects the parents and makes the crossover between them to

generate children (the new population). Mutation operates on one candidate and mutates

it to make sure that the new population is not too similar to the parent population. In this

manner a new set of candidate solutions are created. These new candidates then compete

for their place with the old ones to be selected in the next generation, i.e. survival of the

fittest. Two of the most popular algorithms in this class are, evolutionary programming
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(EP) and genetic algorithm (GA).

The main difference between evolutionary programming and genetic algorithms is in

how each goes about generating a new population. EP uses only mutation whereas GA

uses both crossover and mutation for generating new candidate solutions.

Particle Swarm Optimization (PSO) A second biologically inspired optimization

method is particle swarm optimization (PSO) proposed by Kennedy and Elberhart (1995)

[Eberhart 1995]. This algorithm imitates the social behaviour and movement dynamics of

insects, birds and fish. Like EC, PSO randomly generates parameter vectors as candidate

solutions (a random population) and dubs them as particles. These particles have a

position and velocity in the search space. The algorithm makes changes to the position

and velocity, so that the particles move around the search space in order to optimize the

solution of a problem. The movement of the particles is influenced by knowledge of their

own best position combined with information of their neighbour’s best position. This

makes the swarm tend to move towards the global optimum.

Other global optimization methods A large number of global optimization

methods have been developed. Banga et al. [Banga 2003] provides a good overview

of many of these algorithms.

A number of hybrid approaches have been developed to combine the advantages of

both the global and local optimization algorithms. These approaches combine global

optimization methods with local ones. They utilizes the global optimization method to

determine the vicinity of the global minima and then use local search methods to quickly

converge to the minima [Balsa-Canto 2008, Hedar 2002, Pedamallu 2008]. For example,

SA takes a long time to reach the global minima, but it reaches to the vicinity of the global

optima fairly quick. When SA is combined with other local optimization algorithms it

yields a considerable saving in computational effort.

Bayesian methods have also drawn a lot of interest in parameter estimation as they

can extract information from noisy or uncertain data [Lillacci 2010]. The advantages of

such methods are that they can estimate a whole probability distribution of a parameter

rather than making a point estimation.
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1.5 Parameter estimation as non-linear sate estimation

Recently parameter estimation has been addressed in the framework of control theory

using state observers [Lillacci 2010]. In this way the parameter estimation problem is

formulated as a state estimation problem and filtering techniques are applied to perform

this state estimation [Denis 2003]. Details on filtering techniques and their estimation

strategies can be found in the next section.

Non-linear state estimation is the method of estimating the hidden variables of a

system. Hidden variables are those that are not directly observed, but rather inferred from

observed or measured variables. An optimal set of these hidden states is thus derived

from a set of noisy and incomplete measurement data where the process model and/or

the measurement model are non-linear. Whenever a state estimation is required from

noisy measurement data, a state estimator is applied to fuse the measurement data from

different sources to derive an optimal estimate of this state [Julier 1997].

The state-space definition can be extended to facilitate simultaneous state and

parameter estimation by treating the parameters to be estimated as augmented states

[Jazwinski 1970]. These parameters are constant values in the model, i.e. their rate of

change with respect to time is 0. In treating these parameters as an additional state vector

(with a 0 rate of change), it is possible to extend the state-space definition to include them

[Lillacci 2010]. Thus by treating the parameters as functions of time instead of constants,

the parameter estimation problem is converted into a state estimation problem which can

be addressed within the framework of control theory. The extended system is described

by

ẋ = F(x, θ, u, t) + w(t), x(t0) = x0

θ̇ = 0

θ(t) = θ0, t ≥ t0

y(t) = H(x, t) + e(t)















































(1.22)

In the equations, F and H represent the non-linear state and observation function,

respectively, both corrupted with noise. The state vector x is then augmented to make

xaug = [θ1 . . . θl x1 . . . xm] having the dimension n = l+m where l is the state dimension

and m is the parameter dimension. For simplicity the augmented state vector xaug will be

refereed to as x from this point unless otherwise specified. This state extension tries to

identify the initial value for θ that when used would generate the observed output y. As

the rate of change for θ is 0, θ(t) = θ0 for all t ≥ t0. To make the representation of the

final non-linear state-space suitable for numerical evaluation and implementation with
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Figure 1.5: Graphical representation of a dynamic state-space model with their

probabilistic inference

discrete data, the non-linear state-space model is discretized. The function f represents

the discretized form of the state function in Equation (1.18). As the rate of change

for the parameters are zero, they are not integrated rather taken directly as f (θ) = θ0.

The measurement function h takes the discrete state from f to calculate the value of the

observables. The final non-linear discrete state-space equation is

x(k) = f (x(k − 1), u) + w(k) (1.23)

y(k) = h(x(k), u) + e(k)

In Equation (1.23) the augmented state-space variable, x, represents both the parameters

and the state variables of the model and k is the iteration number. As mentioned

earlier, the augmented state variable will be referred to as the state variable and simply

denoted x(k). A non-linear state estimation problem is mainly addressed in probabilistic

view [Schön 2006]. As discussed in the literature [van der Merwe 2004], a probabilistic

inference (estimation based on probability) of a state in a non-linear discrete dynamic

system can be described using a dynamic state-space model such as the one shown in

Figure 1.5.

The state variable x(k), with an initial probability density function (pdf) p(x(0)),

evolves over time as a partially observed first order Markov process according to

the conditional probability distribution p(x(k)|x(k − 1)) [van der Merwe 2004]. The

observations y(k) are conditionally independent of other observations given the state

variable x(k) at the current step. These observations are generated according to the

conditional pdf p(y(k)|x(k)). When a system is represented with a state-space model as in

Equation (1.23), then the state transition density, p(x(k)|x(k − 1)), would be completely

specified by f and the process noise pdf. The observation function, h, and observation

noise pdf specifies the observation probability density, p(y(k)|x(k)). In a Bayesian
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framework, the posterior density of the state given all the observations p(x(k)|y(1 : k)),

yields the complete solution for the probabilistic inference problem. It calculates the

optimal estimate of the state through the conditional mean as x̂(k) = E[x(k)|y(1 : k)]. For

an optimal state estimation from a non-linear model it is necessary to have a complete

description of conditional probability density [Julier 1997, Kandepu 2007]. Generally

different filtering techniques are being applied for the propagation of this probability

density function. These filtering techniques are central to the statistical problem of state-

space modelling and try to estimate the states using the probability density function

[Koyama 2010].

1.5.1 Filtering techniques

As the name implies a filter is anything that can be used to extract usable information

from noisy data. As applied to state estimation, filtering techniques address the problem

of estimating the hidden states from noisy measurement data. In kinetic models of a

biological network, these filters can be used to estimate metabolite concentrations that are

not directly measurable due to a lack of appropriate methods or instruments to measure

the concentrations. Filters can also be used to estimate the parameters of these kinetic

models when represented with an augmented state-space equation.

Having a stochastic state process and a related observation process at discrete time

steps k = 0, 1, 2, . . . n, the filtering technique aims at estimating the state, x(k), by

applying a Bayesian approach given the sequence of observations, y(1), . . . , y(k). In

other words filtering tries to find the posterior distribution of states given all observation

data, p(x(k)|y(1 : k)). When the state follows a Markov process having a transition

density p(x(k)|x(k − 1)) with initial density p(x(0)) [Koyama 2010], the Bayes formula

for recursive filtering becomes:

p(x(k)|y(1 : k)) =
p(y(k)|x(k))p(x(k)|y(1 : k − 1))

∫

p(y(k)|x(k))p(x(k)|y(1 : k − 1))dx(k)
(1.24)

The solution of Equation (1.24) is extremely general and incorporates multi-modality,

discontinuities and asymmetries. However it requires the propagation of the full pdf. But

as the form of the pdf is not restricted, it cannot be described using a finite number of

parameters [Julier 2004] which is applicable for any form of the pdf. Furthermore, it is

extremely complicated to evaluate the multi-dimensional integral for the normalizing

constant [Press 1992, van der Merwe 2004]. For this reason the application of this

approach has been limited, typically requiring some kind of approximation. To avoid this
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inherent limitation of this method, alternative estimators have been developed. Among

these, the most widely used is the Kalman filter (KF) [Julier 2004].

1.5.1.1 Kalman filter (KF)

The Kalman filter was proposed by R. E. Kalman in 1960 and describes the recursive

solution to the discrete data linear filtering problem [Kalman 1960]. The Kalman filter

provides an optimal minimum mean squared error (MMSE) estimate for linear system

dynamics and observation models [Julier 1997]. It uses only the first two moments

(mean and covariance) to update its state estimate. Although this gives a simple

representation of the states, the compromise between computational complexity and

representational flexibility provides sufficient information for most types of operational

activities [Julier 2004]. As both the mean and covariance are linearly transformable

quantities, they can be maintained effectively when transformed through linear state-

space and measurement equations [Julier 2004].

The Kalman filter estimates the state of a process in a manner described as feedback

control. It first estimates the process state at one point in time and then obtains feedback

in the form of noisy measurements. This process of estimation is divided into two sets

of equations, time update equations and measurement update equations, i.e. a predictor

corrector process [Welch 2006]. The time update equations, the predictor, calculate the

a priori estimate of the next time step by projecting forward the mean and covariance

estimate of the state from the current time step. The measurement update equations, the

corrector, calculate the a posteriori estimate by incorporating the measurement data into

the a priori estimate for a specific time step.

For a discrete time controlled process the state and measurement equations are defined

as

x(k) = Ax(k − 1) + Bu(k − 1) + w(k − 1) (1.25)

y(k) = Cx(k) + e(k) (1.26)

where w and e represents the process and measurement noise, A is the state transition

matrix, B the input and C the output matrix. This system considers that there is no

feedthrough in the system and therefore matrix D is zero. Detail explanation of matrix

A, B,C are given in section 1.3.1. For the Kalman filter the initial estimate of the state
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and error covariance are:

x̂(0) = E[x(0)] (1.27)

P(0) = E[(x(0) − x̂(0))(x(0) − x̂(0))T ] (1.28)

here x(0) is the value of the state-space vector and P(0) the covariance at iteration 0.

The expectation operator E is taken to calculate the average of the random variable

corresponding to its probabilities. Then the predictor-corrector equations are:

1) time update (predictor) Before the measurement data is available the a priori

mean and covariance of the state is calculated as

x̂−(k) = Ax̂(k − 1) + Bu(k − 1) (1.29)

P−(k) = AP(k − 1)AT + Q (1.30)

where Q represents the process noise covariance.

2) measurement update (corrector) When the measurement data y(k) is available

the Kalman gain K is first calculated followed by the posterior state and covariance

estimate as follows

K(k) = P−(k)HT (HP−(k)HT + R)−1 (1.31)

x̂(k) = x̂−(k) + K(k)(y(k) − Hx̂−(k)) (1.32)

P(k) = (I − K(k)H)P−(k) (1.33)

Steps 1 and 2 are then repeated to iteratively improve the estimate of the state x(k).

The Kalman Filter only works when both the process and measurement models are

linear. Unfortunately this is not the case with most real life applications. Instead system

dynamics and observation equations are non-linear which necessitated the development

of non-linear extensions to the Kalman filter [Julier 1997]. The two most widely used

non-linear extension are the extended Kalman filter and the unscented Kalman filter.

1.5.1.2 Extended Kalman Filter (EKF)

The extended Kalman filter (EKF) can estimate the states when the state dynamics and/or

the observation dynamics are non-linear. The EKF does this by utilizing the Kalman

filter after linearizing the non-linear system around the previous mean and covariance

estimate [Ribeiro 2004]. Although EKF has been the de facto standard for non-linear
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dynamic systems, it has several drawbacks [Julier 2004]. The linearized approximation

can be very poor if the error propagation cannot be well estimated with the linearized

transformation. Determining this approximation can be very difficult as it depends on

the transformation, the current mean and the covariance value. Furthermore the Jacobian

is required to exist, which is not guaranteed. For a discontinuous system or a system

with a singularity it would not be possible to calculate the Jacobian and the filtering

technique fails. Additionally EKF does not account the probabilistic spread of the prior

state distribution when linearizing the process and observation model. This results in an

inaccurate approximation of the posterior statistics when the non-linearity in the prior

distribution is high [van der Merwe 2004]. Finally, even when available the Jacobian

calculation is computationally expensive and error prone.

1.5.1.3 Unscented Kalman Filter (UKF)

The unscented Kalman filter (UKF) takes a different approach in state estimation for

the non-linear systems [Merwe 2001]. It does so without having to calculate any

linearization steps and having an equivalent performance to the KF applied to a linear

system [Julier 1997]. Instead of calculating the Jacobian (as required by EKF) the

UKF uses a statistical linearization technique that utilizes a linear regression by drawing

’n’ points from the prior distribution of the random variable [van der Merwe 2004].

It is more accurate than EKF as it considers the spread of the random variable

[van der Merwe 2004]. At the core of the UKF is the unscented transformation (UT)

which uses a set of deterministically chosen weighted points, called sigma points,

to parametrize the mean and covariance of a probability distribution [Julier 1995,

Julier 1996, Julier 1997, Julier 2000, Julier 2004, van der Merwe 2004].

The main idea behind UT is that it is easier to approximate a Gaussian probability

distribution with a fixed number of parameters than to approximate an arbitrary non-

linear function [Julier 1996]. This leads to a parameterization that captures the same

mean and covariance while permitting the direct propagation of information through an

arbitrary non-linear transformation. This is achieved by generating a discrete distribution

having the same first and second moments using a minimum number of points where

each of the points can be directly transformed [Julier 1996, Julier 1997]. The statistics

of the transformed points can be used to calculate the mean and covariance of the non-

linear transformation. For an n-dimensional Gaussian distribution having the covariance

matrix P, the sigma point selection scheme calculates the minimum number of sigma

points based on the column or row of the symmetric matrices ±
√
nP. This set of sigma

points has zero mean but the current state mean x̄ value can be added with each of
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these sigma points to generate 2n symmetric points matching the prior distribution of

the current state x̄. This method differs from the particle filter algorithm in that the

sigma points are chosen deterministically, not randomly. One of the problems with this

selection scheme is that as the dimension of the state-space (n) increases, the radius

of the sphere bounding all sigma points also increases. While this does not affect the

accuracy of the mean and covariance estimates, it does affect the cost of sampling non-

local effects where locality is defined through the probabilistic spread of x summarized

by its covariance [van der Merwe 2004, Julier 2002]. If the non-linearity is severe, this

may lead to difficulties. One solution is a scaling scheme where by the sigma points are

chosen as ±
√
(n + λ)P, λ = α2(n + κ) − n [van der Merwe 2004], where α and κ are the

two scaling parameter.

Thus the UKF uses the UT to select the sigma points to calculate the mean and

covariance of the non-linear transformed state random variables and then the Kalman

filter is used to make the recursive estimation of the state.

In UKF the noise sources can be augmented into the equation or can be considered

additive. For the biological problem the process noise and measurement noise are

considered to be purely additive as it is widely believed that white noise need not

be augmented into the system state and non-augmented UKF yields similar results

[Wan 2001]. However, when additive noise is considered, a new set of sigma points has

to be redrawn to efficiently incorporate the effect of additive process noise [Wu 2005].

The covariance of these noise sources are added to the state covariance with a simple

additive procedure [van der Merwe 2004]. To estimate an n dimensional state vector, the

complexity of UKF is O(n3). With the case of additive noise the equations for UKF are

as follows

Initialization

State vector: x̂(0) = E[x(0)] (1.34)

Covariance matrix: P(0) = E[(x(0) − x̂(0))(x(0) − x̂(0))T ] (1.35)

Weight Initialization:

Wm
0 =

λ

n + λ
, Wc

0 =
λ

n + λ
+ (1 − α2 + β) (1.36)

Wm
i = Wc

i =
λ

2(n + λ)
, i = 1 . . . , 2n (1.37)
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For k ∈ {1, . . . ,T }
Sigma point calculation

X(k − 1) =
[

x̂(k − 1) x̂(k − 1) +
√
(n + λ)P(k − 1)

x̂(k − 1) −
√
(n + λ)P(k − 1)

]

(1.38)

Time update

Xa(k|k − 1) = f [X(k − 1), u(k − 1)] (1.39)

x̂−(k) =

2n
∑

i=0

Wm
i Xa

i (k|k − 1) (1.40)

P−(k) =

2n
∑

i=0

Wc
i [Xa

i (k|k − 1) − x̂−(k)][Xa
i (k|k − 1) − x̂−(k)]T + Q (1.41)

Sigma points are redrawn accounting for the effect of additive process noise.

Xy(k|k − 1) = [x̂−(k) x̂−(k) +
√

(n + λ)P−(k)

x̂−(k) −
√

(n + λ)P−(k)] (1.42)

Y(k|k − 1) = h[Xy(k|k − 1)] (1.43)

ŷ−(k) =

2n
∑

i=0

Wm
i Yi(k|k − 1) (1.44)

Measurement update equations

Pyy(k) =

2n
∑

i=0

Wc
i [Yi(k|k − 1) − ŷ−(k)][Yi(k|k − 1) − ŷ−(k)]T + R (1.45)

Pxy(k) =

2n
∑

i=0

Wc
i [Xi(k|k − 1) − x̂−(k)][Yi(k|k − 1) − ŷ−(k)]T (1.46)

K(k) = Pxy(k)(Pyy(k))−1 (1.47)

x̂(k) = x̂−(k) +K(k)(y(k) − ŷ−(k)) (1.48)

P(k) = P−(k) − K(k)Pyy(k)KT (k) (1.49)

In the equations Q and R are respectively the process and measurement noise covariance

matrices. The three parameters that need to be determined are κ, α, β. To guarantee

that the covariance matrix remains positive definite, κ is choosen to be non-negative.

As the specific value of κ is otherwise not crucial it is possible to select κ = 0. The
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spread of the sigma points has a lower bound to guarantee positive semi-definiteness

of the covariance matrix. At the same time, increase of this spread with the dimension

of the state-space will also cause problems due to the sampling of non-local features

of a highly non-linear model [Orderud 2006]. Therefore a tuning parameter α is used

to arbitrarily control the spread of the sigma points, while guaranteeing positive semi-

definiteness of the covariance matrix. β is used to incorporate the knowledge of the

higher order moments of the distribution and needs to be a non-negative number. For a

Gaussian distribution the optimal value is β = 2 [van der Merwe 2004].

1.6 Identifiability Analysis

Given a mathematical model together with available input and output data, identifiability

analysis aims at finding out whether it is really possible to estimate the value of the

unknown parameters uniquely [Quaiser 2009]. Identifiability analysis is particularly

significant as it determines the extent to which a particular model is suitable for the

deduction of data as performed by a parameter estimation algorithm [Cobelli 1980].

It is therefore reasonable to limit parameter estimation to only those parameters that

are identifiable. Identifiability analysis can be divided into two categories, structural

identifiability and practical identifiability. This section starts with the discussion of

structural identifiability analysis, for which several notions have been proposed in the

literature. A brief review of the most widely used notions are given below.

A model is said to be globally or structurally identifiable if a unique value can

be found for each parameter so that the model reproduces the simulated or measured

value(s), under ideal, i.e. noise free conditions. Thus structural identifiability is directly

related to the model structure. Few methods have been developed for the structural

identifiability of non-linear models [Balsa-Canto 2010], and are further categorized into

two sub-groups [Geffen 2008]. In the first group, the problem of identifiability analysis

is treated as a problem of observability analysis, considering parameter estimation

problem as a state estimation problem [Denis-Vidal 2001, Xia 2003, Pohjanpalo 1978,

Vajda 1989, Ljung 1994]. The second group of methods address structural identifia-

bility by checking for linear or non-linear functional relationships between parameters

through simulation, optimization and parameter estimation [Hengl 2007, Quaiser 2009,

Müller 2002].

In 1989, Vajda et al. extended the approach of similarity transformation to non-

linear systems theory and used local state isomorphism to verify necessary conditions for

structural identifiability [Vajda 1989]. In 1994, Ljung et al. demonstrated how structural
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identifiability can be analyzed using methods from differential algebra. In this work the

problem of structural identifiability was reduced to a question of whether it is possible

to rearrange the model structure into a linear regression [Ljung 1994]. Pohjanpalo

developed a widely used power series method, assuming that the derivatives of the

observations with respect to time are unique and can be represented by a Maclaurin series

expansion [Pohjanpalo 1978]. Quaiser et al. developed an eigenvalue based method that

checks whether there is a functional relationship between the parameters by analysing

the covariance matrix [Quaiser 2009]. For identifiability analysis Hengl et al. used the

mean optimal transformation approach to determine functional relationships between

parameters and concluded that functionally related parameters are not identifiable

[Hengl 2007].

In control theory, the structural identifiability of a model is mainly addressed in terms

of models’ observability [Lillacci 2010]. Observability tries to answer the question of

whether it is possible to know the dynamic behaviour of the state-space variable given

only the system output. A system is observable if for any initial state x(0) and any final

time point t > 0 the initial state can be uniquely determined from the system output

data [Simon 2006]. If the initial state x(0) can be determined from system output, then

starting from x(0), any state of the variable may be determined recursively. In control

theory, the parameters are represented as state variables (albeit constant in time) dθ
dt
= 0.

Observability analysis is performed with the introduction of the observability matrix. To

generate the observability matrix a linear time-invariant, discrete-time system in the state-

space is considered as x(k+1) = Ax(k) where x(0) = unknown and measurement equation

y(k) = Cx(k) where, x ∈ Rn and y ∈ Rp. n measurement values would be sufficient, to

determine the initial (n dimensional) state vector x(0) = x0 from the measurement data.

The following sequence of equations formulate the observability matrix

y(0) = Cx(0)

y(1) = Cx(1) = CAx(0)

y(2) = Cx(2) = CAx(1) = CA2x(0)

...

y(n − 1) = Cx(n − 1) = CAn−1x(0)































































(1.50)
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The matrix form will then be
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(np)×n

x(0) = Obx(0) (1.51)

where Ob is the observability matrix. As per the linear algebra rule, a system of linear

algebraic equations with n unknowns, has a unique solution if the rank of the system

matrix is n. According to that definition the initial condition x0 is uniquely determined

if the rank of the observability matrix Ob is n, i.e. rank(Ob) = n. In the non-linear

case system, the observation space Ob
s is defined as the space containing all repeated

lie derivatives (a lie derivative defines the change of a vector field along another vector

field).

For a linear system the initial state, x0, can be uniquely determined and thus the

system is observable if the rank of Ob is full. Similarly, a non-linear system is locally

observable at x0 if O
b has rank n [Karl 2010].

The main drawback with the methods in structural identifiability is poor scalability

with the problem size. The resulting equations quickly grow to be too complicated even

for relatively small problems [Chis 2011b]. Furthermore, observability analysis is limited

to structural non-identifiability, providing no analysis of practical non-identifiability.

Practical non-identifiability depends on the amount and accuracy of the measurement

data. This identifiability analysis determines whether a unique solution of the parameters

is possible given the erroneous measurement data. [Guedj 2007] used the Fisher

information matrix for the evaluation of the impact of the experimental condition and then

a statistical approach to deal with the issue of practical non-identifiability. Brockmann et

al. used local sensitivity functions for practical identifiability analysis of a biofilm model

[Brockmann 2008].

However none of these methods have been shown to be sufficient for both structural

and practical identifiability analysis on all types of biological models. Raue et al.

proposed profile likelihood based identifiability analysis using the likelihood based

confidence interval. Among the available methods for identifiability analysis in large

models this has been one of the most efficient [Raue 2009].

In this thesis the parameter estimation problem has been considered as a state

estimation problem where the general approach to address parameter identifiability is
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in the framework of observability. However, biological models tend to be quite large

where the observability analysis is not feasible due to its highly complex nature. In

this thesis this parameter identifiability is addressed with a profile likelihood based

approach instead of an observability based approach, which substantially simplifies the

identifiability analysis.

1.7 Dissertation overview

One of the major challenges in the computational modelling of biological systems is

the determination of model parameters. As only a fraction of these parameters can be

measured experimentally, the rest have to be estimated through computational methods.

In spite of the advancements in the development of different parameter estimation

methods to date, and despite individual advantages, none have emerged as a fully

general purpose estimator in terms of accuracy, efficiency and reliability for estimating

parameters of biological models. Although filtering techniques, specifically UKF,

have proven to be efficient for parameter estimation in a large number of applications

[Li 2004, Zheng 2009, Quach 2007, Qi 2011, Malcolm 2009, Zhu 2008, Rajeswari 2009,

Zheng 2009], they still suffer from numerical instability unless the covariance matrix

is positive definite. Furthermore there is no general technique for the introduction of

constraints into the estimation of UKF. A Square-Root variation of UKF solves the

numerical stability but still does not have the capability of adding constraints. At the same

time, identifiability analysis has been addressed in control theory from the perspective

of observability, within the framework of Kalman filter and its non-linear variants.

This analysis is very complicated due to the size and non-linear structure of biological

models. Furthermore, this method can only identify structural non-identifiability and

does not shed light on practical non-identifiability. This creates a need for an efficient

identifiability technique when using such filtering techniques.

Therefore to develop an improved method for parameter identifiability analysis and

estimation using Kalman filter theory, this work proposes a complete framework of

parameter estimation. This framework consists of a modified version of the square root

unscented Kalman filter, one that is more effective and can consider the biological reality

of the parameter space. This algorithm is named the constrained square-root unscented

Kalman filter (CSUKF). In addition to the development of a new estimation algorithm the

framework also incorporates a data based identifiability analysis approach. This approach

is a profile likelihood based identifiability analysis proposed by Raue (2009). This

approach is complementary to CSUKF, making it more mathematically tractable with
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increasing model complexity than observability based analysis. Necessary modifications

to CSUKF were made to ensure a successful incorporation of this identifiability analysis.

In order to facilitate the solution of parameter non-identifiability, methods to rank

the parameters through sensitivity analysis, identify the linearly correlated parameters

and finding functional relationship between the parameters have been included in the

framework. Different properties of CSUKF are used to aid in calculating all these

functions. These analysis helps to identify points where more measurement data would

help in solving the parameter non-identifiability. However, situations may arise where no

more measurement of parameter or species concentration is possible. Simplification of

the model through lumping the parameters might also not be possible as they are vital for

the predictive behaviour of the model. In that case, the informative prior is used to ensure

that an estimation can be obtained despite the fact that a model is not identifiable in the

frequentists approach. In contrast to the frequentist approach to estimation, Bayesian

inference can be obtained despite the presence of non-identifiability if an informative

prior is available [Rannala 2002, Samaniego 2010]. As the Kalman filter and its non-

linear variants can be considered as a dynamic Bayesian network, this identifiability

property of Bayesian inference, given the informative prior can also be applied to CSUKF

to have a unique parameter estimation values for a model which is non-identifiable from

the perspective of likelihood. The complete framework is then implemented in MATLAB

and applied to three published biological model to estimate their parameter values.

The thesis is organized as follows: chapter 2 is one of the core chapters of this

dissertation and covers the theoretical development of the complete framework in detail.

Section 2.2 derives the numerically efficient and stable variant of UKF that incorporates

constraints into state estimation, called CSUKF. All the mathematical details and the

complete algorithm as well as it applicability for state estimation of a biological model are

described in this section. Section 2.3 discusses the theoretical aspects of the orthogonal

based ranking method that is employed by the framework to rank the model parameters

according to their importance. The profile likelihood based identifiability analysis is

investigated in section 2.4. This section also explains the necessary modifications made

to CSUKF for use with this identifiability analysis. Section 2.5 focuses on the methods

to determine the correlation and functional relationship between parameters which will

help in solving the non-identifiability of the system. In cases when it is not possible to

solve the non-identifiability of the parameters, they are treated with informed prior in

Bayesian inference in order to have a unique estimation, which is detailed in section 2.6.

In chapter 3 the major results and their general implication on the biological model
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are discussed by applying the framework for parameter estimation on three previously

published biological models. Finally in chapter 4 the conclusion is drawn and a direction

for future research are given.



Chapter 2

The parameter estimation framework

Parameter estimation is one of the daunting tasks in computational modelling. This is

even more so when it comes to modelling biological systems, due to: high intercon-

nectivity, non-linearity and a lack of measurement data both in terms of quality and

quantity [Kitano 2002a]. The main objective of this thesis is to develop a complete

parameter estimation framework based around a novel non-linear filtering technique.

The filtering technique is a constrained extension of the square-root unscented Kalman

filter (SR-UKF). A very important and often overlooked aspect to parameter estimation

is the identifiability of the parameters. This novel filtering technique in combination

with a variety of conventional algorithms are combined into a single framework to

analyse the parameter identifiability. This identifiability analysis suggests possible

solutions to the parameter non-identifiability problem. Thus the complete framework

ensures a successful estimation of the unknown parameter values after resolving the non-

identifiability.

At the core of this framework lies the novel parameter estimation method, the

constrained square-root unscented Kalman filter or CSUKF. This is a modified version

of the (SR-UKF) and addresses parameter estimation in the form of state estimation,

while handling the constraints within the state estimation. Profile likelihood based

identifiability analysis is integrated with CSUKF as part of the framework to implement

structural and practical identifiability analysis. A ranking of the parameters is also

performed, describing the impact of each of the parameters to the model output as well as

their estimability based on linear independence on the sensitivity coefficient. Correlation

analysis is used to determine linear relationships between parameters, while non-linear

functional relationships between the parameters are identified through the mean optimal

transformation approach. Identifying these relationships reduces the number of non-

identifiable parameters through their functional relationship [Cobelli 1980]. Removing

non-identifiable parameters that are functionally linked leads to a more successful

parameter estimation of the simplified model. The parameter estimation framework

presented in this thesis incorporates all these function for the successful estimation of

parameters.
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Figure 2.1: Complete parameter estimation framework. For different calculations the

identifiability analysis module uses the optimized data of the parameter estimation

module.

2.1 Overview of parameter estimation framework

The complete framework is depicted in Figure 2.1. It is divided into two modules,

1) the identifiability analysis module and 2) the parameter estimation module. The

identifiability analysis in this framework uses a data driven method requiring an initial

set of parameter values to start the analysis. The arrow from the parameter estimation

module to the identifiability analysis module illustrates this initial set of parameter values

computed by the CSUKF supplied to the identifiability analysis module to start the

identifiability analysis. The basis of the identifiability analysis is the calculation of the

profile likelihood of these parameters. This module attempts to resolve parameter non-

identifiability through multiple steps based on ranking of the parameters, their correlation

and functional relationship.

After resolving parameter non-identifiability, the arrow from the identifiability analy-

sis module to the parameter estimation module returns the identifiable parameter subsets

to the estimation module. The CSUKF then begins its basic operation of estimating the

parameters starting with small random values. This estimation is repeatedly refined until

the predefined stop criteria, such as the number of iterations, or in case the objective

function reaches a stable value or numerical threshold. Once determined the optimized

parameters are combined with the model yielding the optimized model.
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Figure 2.2: Identifiability analysis module. This module conducts the identifiability

analysis of the parameters, including the ranking and identifies the correlation and the

non-linear functional relationship between the parameters. The initial set of parameter

values used in this module comes from the CSUKF in the parameter estimation module.

2.1.1 Identifiability analysis module

Figure 2.2 describes the identifiability analysis module in detail. The major functionality

of the identifiability analysis are the profile likelihood based identifiability analysis,

calculation of the ranking, determination of the correlation between parameters and

identification of the non-linear functional relationships among the parameters. The

identifiability analysis module starts with an initial set of optimized parameter values

calculated by the parameter estimation module. In the identifiability analysis module, this

data is first processed by the profile likelihood based structural and practical identifiability

analysis sub-module to determine which, if any, parameters are non-identifiable. In

addition to generating the initial optimal parameter set, this sub-module also makes use

of CSUKF to generate the profile likelihood of the parameters. A sensitivity based

analysis is then conducted for ranking the parameters according to their importance.

This method uses a sensitivity matrix which is calculated locally at each iteration step of
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the CSUKF. Next the correlation and functional relationship sub-modules try to identify

the repetitive relationships between the parameters. The strategy is to first deduce the

relationship between a high ranking and a low ranking non-identifiable parameter. Where

possible, non-identifiable parameters with a high ranking should be replaced by values

from wet-lab experiments. Then low ranking parameters are re-evaluated using these new

values to determine if they are still non-identifiable. When additional wet lab data is not

available, low ranking parameters are set to small nominal values as the lower sensitivity

of these parameters have a minimal effect on the system output, then re-evaluate non-

identifiability of the high ranking parameters [Yao 2003]. If high ranking parameters

continue to be non-identifiable without determined functional relations, the model has

to be reformulated so as to reduce the number of states and parameters as outlined

in [Chis 2011b]. In this way the structural non-identifiability problem may be solved,

and the model simplified. Solving the practical non-identifiability problem requires an

increase in data accuracy or increase in the number of data points in a time series or

both. In biological systems it is often the case that these solutions are not available

for solving non-identifiability. Furthermore simplification of the model is not always

feasible as it leads to a model without the required predictive behaviour. In these cases

the Bayesian treatment of non-identifiability is applied. When the informative prior is

available, Bayesian inference makes possible a unique estimation of parameter values

which are non-identifiable in the frequentists approach [Samaniego 2010]. As CSUKF

is a variation of the dynamic Bayesian inference, the CSUKF can supply the informative

prior to make a unique prediction of parameters.

2.1.2 Parameter estimation module

Parameter estimation in kinetic models suffers from numerous difficulties due to the

nature of such models. These models incorporate system noise due to the uncertainty

in the model description during the mathematical formulation of the biological network.

Noise hinders most conventional parameter estimation methods. Furthermore it is

not always possible to directly measure all the variables in a kinetic model due

to the limitation in the measurement method or device. Such variables are called

hidden variables. For example, the activity level of regulatory protein in a gene

regulatory network cannot be measured directly with currently available techniques

[Nachman 2004] and thus they are considered as hidden variables. These hidden

variables lead to rather complex cost functions that are to be minimized for the estimation

of the parameters [Sitz 2002] and cause problems for the conventional estimation
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Figure 2.3: Parameter estimation module. CSUKF iteratively estimates parameter

values by minimizing the difference between the noisy simulated data and the noisy

measurement data

methods. Moreover, in such models only a small portion of noise corrupted measurement

data is available from which parameters are to be estimated. This thesis proposes a

constrained extension of square-root unscented Kalman filter, CSUKF, to be used as the

parameter estimation module which lies at the core of the framework. This filtering

technique tries to estimate the parameter values by minimizing the mean squared error.

It takes into consideration both the system noise and measurement noise during the

estimation of these parameters. Like any other filtering technique CSUKF has the ability

to remove unwanted noise from the desired data. It utilizes the power of representing

dynamic systems through state space models. It uses the general probability theory to

estimate the parameter values of these biological models. Additionally, the CSUKF

can also make prediction of hidden variables, which would have an influence on the

calculation of the mean squared error. Figure 2.3 illustrates this module, centred on the

CSUKF, which is discussed in detail in the next section.
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2.2 Constrained Square Root Unscented Kalman Filter

(CSUKF)

The Kalman filter (KF) performs state estimation by propagating the probability dis-

tribution function of the system states over time, taking into consideration the model

uncertainties and measurement uncertainties. A major drawback of KF and its variants

is that there is no general mechanism for incorporating constraints on the state space

[Vachhani 2006, Kandepu 2008]. In biological systems the state constraints can be

important to 1) include prior information about the state value ranges into the estimation

process and 2) to make the state values biologically relevant, such as the metabolite

concentrations are always positive or the binding constant of a Michaelis-Menten rate

law cannot have negative values. Parameters in a biological model must be constrained

to vary within a biophysically plausible range (e.g., within the range of diffusion limited

rates). Therefore it is important to incorporate state constraints into the estimation

process.

In control theory state constraints [Kandepu 2008] typically refer to the state space

boundaries. A widely used technique to ensure state constraints is the moving horizon

estimator (MHE) [Rao 2003]. MHE formulates the state estimation problem as a non-

recursive constrained quadratic program [Teixeira 2008]. But as this process is non-

recursive and solves a quadratic program at each step, it is in general computation-

ally less efficient [Vachhani 2006, Kandepu 2008]. An interval constrained unscented

transformation (ICUT) proposed by [Vachhani 2006] is considered to be an efficient way

for introducing the state inequality constraints into the state estimation process through

constrained sigma point selection. In this approach the sigma points that are outside the

feasible region are projected onto the constrained state space boundary [Vachhani 2006].

In this thesis I propose a novel filtering technique, the constrained square-root

UKF (CSUKF), that combines the interval constrained unscented transformation (ICUT)

[Vachhani 2006] with the square-root UKF [Merwe 2001], to solve the problem of

constrained state estimation. This ensures a numerically stable constrained estimation

of the unknown parameter values utilizing the benefits of the unscented Kalman filter.

In the basic UKF the Choleskey decomposition of the covariance matrix (P) is

calculated at each iteration. For stability P must be a positive semi-definite matrix,

which means that its square root, which can be computed by Cholesky factorization,

is a triangular matrix. When the process noise covariance (Q) is sufficiently small,

meaning that the process is well known, then the rounding error may cause P to become
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numerically unstable, e.g. by making it negative-definite or by having negative diagonal

entries. Merwe et al, (2001) proposed a square-root implementation of the UKF, which

instead of calculating the Cholesky decomposition at each iteration, propagates the

triangular matrix form of the covariance matrix at each step of sigma point calculation

[Merwe 2001]. By maintaining the covariance in the form of a triangular matrix the

state covariance matrix remains positive semi-definite ensuring the numerical stability of

the filtering algorithm. The algorithm proposed in this thesis modifies this efficient and

numerically stable filtering algorithm to include the state constraints into the estimation.

In CSUKF, the state function is denoted as f and the observation function is denoted

as h. The states at time update step are the a priori estimate which is denoted with a

superscript − and states on measurement update stage is the a posteriori estimate. The

sigma point matrix X used in iteration k is based on the results of the previous iteration,

k − 1, and is denoted X(k|k − 1). From the previous iteration the posterior mean x̂(k − 1)
and square-root of the covariance P(k − 1), of the estimated states are required for this

calculation. These sigma points are propagated through the state function f to create

the a priori transformed sigma point Xa(k|k − 1) at iteration k. The a priori mean value

estimation using Xa(k|k − 1) is denoted as x̂−(k) and the final or a posteriori mean value

estimation is denoted as x̂(k).

2.2.1 Interval constrained unscented transformation

It is assumed that for an n dimensional state vector x the state constraints at iteration k

for all k ≥ 0 is represented by a box with the following equation

L(k) ≤ x(k) ≤ U(k) (2.1)

where1 L ∈ Rn is the vector of lower limits and U ∈ Rn is the vector of upper limits of

the constrained boundary2. The values of these boundaries are assumed to be known. If

any element of the state vector x is unbounded the corresponding boundary is set to ±∞
as appropriate. This constraint information is incorporated during the time-update step

when the sigma points are calculated. If these sigma points fall outside the boundary,

they are projected back to the boundary of the nearest feasible region. This method

of selecting constrained sigma points for a two dimensional state variable, x ∈ R2, is

depicted in Figure 2.4. The sigma points outside the boundary (the dotted lines) are

1For notational clarity the iteration index k has been removed
2Constraints can be varied at each iteration. Also different constraint boundaries can be set for different

state variables
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Figure 2.4: Unconstrained and constrained sigma points, constraints indicated by dashed

lines. a) Illustrates the covariance ellipse (solid line) with unconstrained sigma points (⋄)
and mean x0. Here two of the four unconstrained sigma points x3 and x4 lie outside of the

the boundary. In b) The covariance ellipse (dotted line) calculated with the constrained

sigma points (⋆). The sigma points that were previously outside of the boundary in (a)

are projected onto the boundary, resulting in the modified covariance ellipse as well as

the shift in the constrained mean (x0).

projected back onto the constraint boundary. The resulting selection of sigma points

are non-symmetrically distributed on the ellipse, thus the weights need to be adjusted

accordingly. The sigma points are then propagated through the non-linear transformation

and the state estimation is made through a modified square-root UKF. This modification

of the square-root UKF is made to ensure the adaptability of the algorithm in case of non-

symmetric negative weights. Since the estimated state may still violate the constraints, in

which case it would be projected onto the constrained boundary before starting the next

iteration. The mean and covariance calculated with the constrained sigma points now

include the information on the constraints, which increases accuracy of the filter estimate

in a biological sense.

2.2.2 Sigma point selection method

Based on the present state covariance matrix, 2n+1 sigma points are generated, satisfying

the following equation

L ≤ X(k|k − 1) ≤ U (2.2)

For the sigma point selection method the same approach as outlined by [Vachhani 2006]

is taken. In their approach the matrix S =
[√

P −
√
P
]

is defined as the direction

of the sigma points where P is the state estimation covariance matrix. However since

in CSUKF, the square-root of the state estimation covariance matrix is propagated at

each iteration instead of the full form of the covariance matrix, it is not necessary to
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calculate this square-root at each iteration. Instead this step direction matrix is defined

as the square-root of the state covariance matrix, V , propagated at each iteration of the

constrained square root UKF. At iteration k, the step size, ζ is selected as

ζ j , min(col j(Θ)), (2.3)

Θ(i, j) ,



































√
n + λ if S (i, j) = 0

min
(√

n + λ,
Ui(k)−x̂i(k−1)

S (i, j)

)

if S (i, j) > 0

min
(√

n + λ,
Li(k)−x̂i(k−1)

S (i, j)

)

if S (i, j) < 0

where n is the state dimension, i = 1, . . . , n and j = 1, . . . , 2n [Vachhani 2006]. The step

size
√
n + λ is a regular step size for the UT [Merwe 2001]. This step size is selected

when it does not cause the sigma points to violate the constraint boundary. However if

it does violate the constraint boundary then the step size is selected in a way so that the

sigma points lie on the boundary when the step size is multiplied by the corresponding

directional element and added to the state estimate x̂(k − 1). The value of the scaling

factor is λ = α2(n + κ) − n, as a scaled UT selection is being used. The value of α and

κ are the same as described at the end of section 1.5.1.3 and [Julier 2002]. However it

can also be chosen to any small random number. The sigma point matrix contains 2n + 1

sigma points (column) for the n state variables (rows). In this definition indexing starts

at 0 for convenience.

X =



















x̂(k − 1) j = 0

x̂(k − 1) + ζ jcol j(S ) 1 ≤ j ≤ 2n
(2.4)

At iteration k these sigma points are calculated from the prior state estimation of k−1.
The first sigma point is the state estimate x̂(k−1). Next 1, · · · , n sigma points are selected

by adding the state estimate x̂(k−1) with the multiplication of step size and direction. The

next n + 1, · · · , 2n sigma points are generated by subtracting the product of step size and

direction from the state estimate x̂(k − 1). Sigma points generated with this method may

not be symmetric, that is they may not all be equidistant from x̂(k − 1). Consequently

the weights associated with these sigma points cannot be equally distributed. Instead

they must be calculated in a way that if the state variables are sufficiently far from

the constraint boundary, the weights should correspond to that regular form of UT as
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mentioned in section 1.5.1.3. Otherwise the weights are chosen such that the weights

vary linearly with the step size,

W0 = b, (2.5)

W j = aζ j + b, j = 1, . . . , 2n (2.6)

The equation outlined by [Vachhani 2006] is modified in order to solve for a and b. From

the general weighting scheme of UT as described in section 1.5.1.3 and in [Julier 1996]

it is known that the weights must sum to 1, therefore

2n
∑

j=0

W j = b +

2n
∑

j=1

(aζ j + b)

1 = aTζ + (2n + 1)b

where Tζ =

2n
∑

j=1

ζ jand

2n
∑

j=0

W j = 1

a =
1 − (2n + 1)b

Tζ
(2.7)

From Equation (2.5) it is known that b is independent of the step size ζ. Therefore, b will

take the value of W0 from the regular UKF,

b =
λ

n + λ
(2.8)

Substituting for b into Equation (2.7) yields,

a =
1 − (2n + 1) λ

(n+λ)

Tζ

=
n + λ − 2nλ − λ

Tζ(n + λ)

=
n(1 − 2λ)
Tζ(n + λ)

(2.9)

So the final value of a and b are defined as

a =
n(1 − 2λ)

(n + λ)
(

∑2n
j=1 ζ j

) (2.10)

b =
λ

n + λ
(2.11)
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As the scaling factor for the sigma points selection have been used it is needed to add

1 − α2 + β with Wc
0 to take the effect of the scaling factor into the weights. The weights

are thus formulated as

Wm
j = Wc

j =
[

b a × ζ1:2n + b
]

, j = 0 . . . , 2n (2.12)

Wc
0 = Wc

0 + (1 − α2 + β) (2.13)

2.2.3 CSUKF formulation

In general UKF estimates the state variables by propagating the sigma points through

the non-linear dynamic functions f and g. However UKF suffers from numerical

instability when the process error covariance matrix Q is small, the square-root UKF

(SR-UKF) tries to solve this problem by propagating the Cholesky factored square-root

form of the covariance matrix P at each iteration. This UKF extension ensures equal

or marginally better estimation accuracy with the added benefit of ensuring numerical

stability [van der Merwe 2004]. Like SR-UKF, CSUKF make use of QR decomposition,

Cholesky factor updating and pivot-based least squares. QR decomposition is used

during the time update step of CSUKF to calculate the prior Cholesky factor of the

compound matrix formed with the positively weighted sigma points and the matrix

square-root of the additive process noise. For the negatively weighted sigma points

the Cholesky factor is downdated using the Cholesky factor update. The same two

approaches are used to update the prior of the square-root of the observation error

covariance Vy. Finally the Kalman gain K(k) is calculated using the pivot-based least

squares method. Before going into the details of the filtering technique first a brief

overview of these three technique used in CSUKF is given.

QR decomposition: For A ∈ Rm×n, QR decomposition produces an m × m

orthogonal matrix O, whose columns are orthogonal unit vectors, and an invertible m× n
upper triangular matrix G satisfying

A = OG (2.14)

The upper triangular G, represents the transpose of the Cholesky factor of a matrix i.e.

if A is the Cholesky factor of a matrix B, that is if B = AAT then G will represent the

transpose of this Cholesky factor meaning GTG = AAT . In case of m ≥ n, the bottom

(m − n) rows of the upper triangular matrix consist entirely of zeroes where it would be

safe to take only the n × n elements.
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Cholesky factor updating: The QR decomposition is applied to a compound

matrix formed with the square-root of the sigma point weights and process noise

covariance matrix. As the weights in the constrained sigma point selection can take

negative values the square-root of this negative numbers cannot be taken directly as this

will result in a complex number. To incorporate the effect of these weights it is needed

to update the Cholesky factor with ′−′. This is done by applying the Cholesky factor

updating or cholupdate function. If for P = S S T where S is the Cholesky factor of

matrix P then updating Cholesky factor S with the value of X with a ′−′ would lead to

P = P − XXT (2.15)

This calculation is denoted as

S̃ = cholupdate(S , X,′ −′) (2.16)

If X is a matrix having m columns then the cholupdate function will make m consecutive

updates of the Cholesky factor using m number of columns of matrix X.

Efficient least squares: To calculate the value of the Kalman gain K it is needed

to solve an overdetermined least square problem Ax = b. This is solved with a QR

decomposition method with pivoting. This method is roughly the same as INV(A) ∗ b,
except it is computed in a different way.

2.2.4 Constrained square-root state estimation

For the constrained square-root UKF implementation the state covariance matrix is first

initialized as E[(x(0) − x̂(0))(x(0) − x̂(0))T ] and the matrix square root is once calculated

via a Cholesky factorization, V(0) = chol
[

E[(x(0) − x̂(0))(x(0) − x̂(0))T ]
]

. Then at each

iteration of CSUKF, k > 0, V(k) is propagated instead of the full covariance matrix P(k)

where V(k)V(k)T = P(k). This would avoid the need to refactorize P(k) at each iteration.

As the weights in the constrained sigma point calculation are asymmetric they may vary

in magnitude and sign, i.e. they can be positive or negative. So the calculation of the

square-root factor of the covariance matrix needs to be decomposed into two parts, one

for all the weightsWc
j
having positive value denoted as V pos(k) and one for all the weights

Wc
j
having a negative value denoted as Vneg(k). This propagated Cholesky factor is then

used directly to calculate the sigma points. To facilitate this decomposition two index
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sets are defined as

I+ = { j|WC
j ≥ 0}

I− = { j|WC
j < 0} (2.17)

The following decomposition of the covariance matrix by the UKF explains the decom-

position of V

P(k) =

( 2n
∑

j=0

Wc
j

(

X j(k|k − 1) − x̂(k)
)(

X j(k|k − 1) − x̂(k)
)T

)

+ Q

=

( 2n
∑

j=0

√

Wc
j

(

X j(k|k − 1) − x̂(k)
)
√

Wc
j

(

X j(k|k − 1) − x̂(k)
)T

)

+
√

Q
√

QT

=
∑

j∈I+

√

Wc
j

(

X j(k|k − 1) − x̂(k)
)
√

Wc
j

(

X j(k|k − 1) − x̂(k)
)T

+
√

Q
√

QT

−
∑

j∈I−

√

|Wc
j
|
(

X j(k|k − 1) − x̂(k)
)

√

|Wc
j
|
(

X j(k|k − 1) − x̂(k)
)T

Any weights can have negative values. The decomposition then can be rearranged as

P(k) =
[
√

Wc
j

(

X j(k|k − 1) − x̂(k)
) √

Q
]

j∈I+































√

Wc
j

(

X j(k|k − 1) − x̂(k)
)

√
Q































j∈I+

−
[

√

|Wc
j
|
(

X j(k|k − 1) − x̂(k)
)

√

|Wc
j
|
(

X j(k|k − 1) − x̂(k)
)T ]

j∈I−

= V pos(k)
(

V pos(k)
)T

− Vneg(k)
(

Vneg(k)
)T

(2.18)

The QR decomposition is applied because V pos(k) ∈ Rn×3n produces a computationally

undesirable matrix, as it increases the number of columns [Terejanu 2008]. QR-

decomposition is used to express V pos(k) in terms of an orthogonal matrix O and an

upper triangular matrix GT ∈ Rn×n. So for the positive Wc
j
the equation can be written as

[
√

Wc
j

(

X j(k|k − 1) − x̂(k)
) √

Q
]T

= OGT (2.19)

It can be verified that at each iteration k the covariance matrix P(k) can be calculated

from the propagated V pos(k) and Vneg(k) through this O(G)T according to the following
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equation

P(k) = GOTOGT −
(

Vneg(k)
)

Vneg(k)T

P(k) = GGT −
(

Vneg(k)
)

Vneg(k)T , as O is orthogonal OTO = I (2.20)

From Equation (2.20) it can be seen that the full covariance matrix can be recovered from

the upper triangular matrix generated during QR decomposition. This justifies the use of

this method for updating the square-root factor. Therefore for the positive weights only

the upper triangular matrix of the QR decomposition is taken as

G = qr(V pos) (2.21)

To include the effect of Vneg(k) at each iteration in the square-root calculation a rank-1

downdate to Cholesky factorization is performed

V(k) = cholupdate(G,Vneg(k),′ −′) (2.22)

This approach is applied to update the square-root factor in both the time-update and

measurement-update step. The Kalman gain K is calculated as

K(k) =
Pxy(k)

(

(

Vy(k)
)T

Vy(k)

) (2.23)

where Pxy(k) is the cross-correlation matrix and Vy(k) is the measurement updated

covariance matrix. Lastly with the measurement data y(k), the state estimation and the

square-root factor of the estimation covariance is calculated as

x̂(k) = x̂−(k) + K(k)
(

y(k) − ŷ−(k)
)

(2.24)

V(k) = cholupdate(V−(k),K(k)Vy(k),
′ −′) (2.25)

If individual values of the estimated state, x̂(k), violate the constraints, those values

would be projected onto the constraint boundary. Despite this the covariance ellipse

may still extend beyond the constraint boundary. However this does not pose a problem

as the sigma points calculated from this covariance in the next iteration would again

be projected onto the constraint boundary. The sigma points are propagated through

the state function f and the weighted mean and covariance of the transformed sigma
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points are then calculated. Sigma points are regenerated before transforming through the

measurement function h to capture the effect of the additive noise. The weights are also

recalculated at this step.

CSUKF uses the classical KF update during the measurement update step and does

not assimilate the constraint information during the calculations of mean and covariance

at this step. This will make CSUKF computationally faster than the algorithms where

interval constraint is also imposed on the measurement update step. But this will

not compromise the accuracy of CSUKF. This conclusion is based on the work of

[Teixeira 2008] where they reviewed seven different algorithms with different approaches

to constraint handling at the measurement-update stage. The approaches they considered

are a) classical KF update where no constraint is incorporated, b) constrained Kalman

update and, c) the sigma point constrained update. All of these algorithms have interval-

constrained UT in the time-update stage. These algorithms were then used to estimate

the state variable of a gas-phase reversible reaction. The work showed that, with a

good initialization of the state variables, the algorithm without any constraint update

on the measurement stage, interval constrained UKF (IUKF), has the best accuracy

of estimating the state variables. Although with poor initialization, the performance

slightly deteriorates, it still remains within the four best ones. The CPU processing

time of this algorithm, is the best among all these seven algorithms. This showed

that a computationally fast filtering technique with good accuracy can be achieved with

constrained sigma point calculation only at the time update step and without making any

constrained KF update at the measurement update step.

Initialization

The state-space vector and the square-root factor of the estimation covariance matrix are

initialized with the expected value of the state vector as

x̂(0) = E[x(0)] (2.26)

V(0) = chol

{

E

[(

x(0) − x̂(0)
)(

x(0) − x̂(0)
)T ]

}

(2.27)
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For k ∈ {1, . . . ,T }:
The sigma points satisfying L ≤ X(k|k − 1) ≤ U, are selected as

X =



















x̂(k − 1) j = 0

x̂(k − 1) + ζ jcol j(S ) 1 ≤ j ≤ 2n
(2.28)

where X is based on the direction, S = [V(k − 1) − V(k − 1)].
The step size, ζ is calculated as

ζ j , min(col j(Θ)), (2.29)

Θ(i, j) ,



































√
n + λ if S (i, j) = 0

min
(√

n + λ,
Ui(k)−x̂i(k−1)

S (i, j)

)

if S (i, j) > 0

min
(√

n + λ,
Li(k)−x̂i(k−1)

S (i, j)

)

if S (i, j) < 0

The weights are calculated as

Wm
0 = b (2.30)

Wc
0 = b + (1 − α2 + β) (2.31)

Wm
j = Wc

jaζ j + b, 1 ≤ j ≤ 2n (2.32)

where

a =
n(1 − 2λ)

(n + λ)(
∑2n

j=1 ζ j)
(2.33)

b =
λ

n + λ
(2.34)

Time update

Xa(k|k − 1) = f [X(k|k − 1), u(k)] (2.35)

x̂−(k) =

2n
∑

j=0

Wm
j Xa

j(k|k − 1) (2.36)

Gx(k) = qr
{[

√

Wc
j

(

Xa
j(k|k − 1) − x̂−(k)

) √

Q
]

j∈I+

}

, I+ = { j|Wc
j ≥ 0}(2.37)

Vneg
x (k) =

[

√

|Wc
j
| (Xa

j(k|k − 1) − x̂−(k))
]

j∈I−
, I− = { j|Wc

j < 0} (2.38)
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The prior cholesky factor is found by performing a downdate of the positive and negative

square roots

V−x (k) = cholupdate(Gx(k),Vneg
x (k),′ −′) (2.39)

Measurement update

To incorporate the additive process noise, in the measurement update stage, sigma points

are redrawn and unconstrained weights are calculated

Xy(k|k − 1) = [x̂−(k) x̂−(k) +
√

(n + λ)V−x (k)

x̂−(k) −
√

(n + λ)V−x (k)] (2.40)

Wm
0 =

λ

n + λ
(2.41)

Wc
0 =

λ

n + λ
+ (1 − α2 + β) (2.42)

Wm
j = Wc

j =
λ

2(n + λ)
, j = 1 . . . , 2n (2.43)

now the measurement update is performed as

Y(k|k − 1) = h[Xy(k|k − 1)] (2.44)

ŷ−(k) =

2n
∑

j=0

Wm
j Y(k|k − 1) (2.45)

Gy(k) = qr
{[

√

Wc
j
(Y j(k|k − 1) − ŷ−(k))

√
R
]

j∈I+

}

, I+ = { j|Wc
j ≥ 0} (2.46)

Vneg
y (k) =

[

√

|Wc
j
| (Y j(k|k − 1) − ŷ−(k))

]

j∈I−
, I− = { j|Wc

j < 0} (2.47)

Vy(k) = cholupdate(Gy(k),V
neg
y (k),′ −′) (2.48)

For all index j = 0, . . . , 2n for which the value ofWc
j
is negative.

Pxy(k) =

2n
∑

j=0

Wc
j [Xa

j(k|k − 1) − x̂−(k)][Y j(k|k − 1) − ŷ−(k)]T (2.49)

K(k) = Pxy(k)/(Vy(k))
TVy(k) (2.50)

x̂(k) = x̂−(k) + K(k)
(

y(k) − ŷ−(k)
)

(2.51)

Here y(k) is the measurement data. The square-root factor of the estimation covariance
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(a) (b)

Figure 2.5: Selection of sigma points in the presence of constrain boundary. The dashed

line represents the boundary. It shows how the sigma points are projected onto the

boundary in case they violate it. The number on each of the sigma points represent

their corresponding weights

matrix Vk is then updated as

V(k) = cholupdate
{

V−(k),K(k)Vy(k),
′ −′

}

(2.52)

2.2.5 State estimation with CSUKF

To verify the applicability and accuracy of CSUKF this algorithm is first applied for the

state estimation of the Higgins-Selḱov oscillator. As described in section 1.1 this model

has three parameters k1, k2, k3 and two state variables X and Y where X is the substrate

and Y is the product. The system is discretized with a sampling interval of 0.25 seconds

with a total simulation time of 25 second. Process noise with a covariance of 10−3I is

added to the system states. This experiment assumes that only the additive time series

data of the state variables, i.e. X+Y is available as the measurement data. The covariance

of the measurement noise is calculated from the statistics of the random noise which is

added to the simulated data to generate the synthetic measurement data. The lower bound

of the constraint is set ot 0.13 and the upper bound is set tos 2.9 for both states. In this

experiment the state is initialized to some random numbers close to [0.1 4.5]. As these

values fall outside the boundary they are projected on the boundary which makes the

initial state value to be [0.13 2.9]. The estimation process is run 50 times to generate

the estimation statistics presented in Table 2.1. Figure 2.5 illustrates how the sigma points

progress when projected to the constraint boundary. In Figure 2.5a the sigma point X2
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State variable Mean value Standard deviation Actual value

X 0.25 0.008 0.25

Y 2.00 0.029 2.00

Table 2.1: The average estimated value along with the standard deviation obtained after

running CSUKF 50 times to estimate X and Y

falls outside of the boundary (the dashed red line) and is consequently projected onto the

boundary, in Figure 2.5b. The sigma points in Figure 2.5a are symmetric and therefore the

weights are also symmetric. In Figure 2.5b the sigma points are not symmetric around the

current mean value which is consistent with regular UKF [Teixeira 2008] in the presence

of constraints. Due to this non-symmetric distribution of the sigma points, the weights

also have to be adjusted accordingly. From Figure 2.5b it can be seen that the weighted

mean of the constrained sigma points (⋆) deviates from the mean of the unconstrained

sigma points (�). This variation has also been noticed in [Teixeira 2010]. Moreover as the

probability distribution function is not truncated, part of the covariance ellipse calculated

from the projected sigma points might also fall outside of the constrain boundary. This

is not a problem when the actual state value is far from the boundary. However if the

mean of the state value is close to the constrained boundary then this might create a ping-

pong effect, meaning that if the state estimation value is moving towards the boundary,

this effect would push it away again. [Teixeira 2008] reported that for constrained UKF,

the state estimation will always stay within the constrain boundary. This is also the case

for CSUKF, where the estimated state values are always within the boundary, due to the

introduction of this constrained selection scheme of sigma points. This should make the

CSUKF estimation more biologically meaningful.

Figure 2.6a and 2.6b show the true and estimated states trajectory of X and Y using

CSUKF for a single run. For the sake of clarity in the estimation performance the

simulated trajectory is plotted along with the actual state trajectory instead of (X + Y). In

both figures, the black dotted line represents the actual state trajectory and the red straight

line represents the state estimation.

The CSUKF estimate converges to the true state value as the time progresses, despite

selecting the initial state vector outside of the constraint boundary. This convergence

is true for all 50 runs of CSUKF for this state estimation, as summarized in Table 2.1,

giving a clear indication of high accuracy of CSUKF. In this algorithm the square-root

form of the covariance matrix was propagated at each iteration which ensures numerical

stability of the algorithm [van der Merwe 2004]. One of the limitations of the CSUKF is
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Figure 2.6: Estimated state trajectory for the Higgins-Selḱov oscillator using CSUKF

with an initial state estimate far from the constrain boundary.

that when the state estimate is very close to a boundary, then the weighted sample mean

might not be equal to the current estimate which might give rise to a biased estimate. This

is also mentioned for constraints with regular UKF [Vachhani 2006]. A careful selection

of constraints may solve this problem.

2.3 Orthogonal-based parameter ranking

In a model not all parameters have the same level of importance. Some parameters have

high sensitivity, for which a small change will have a large impact on the model output.

Other parameters have low sensitivity meaning they can be varied without having much

impact on the model output. Consequently, parameters with high sensitivity need to be

estimated accurately while parameters with low sensitivity can, if necessary, be fixed to

a small arbitrary number.

The proposed framework utilizes the orthogonal based parameter ranking method

introduced by Yao et al. [Yao 2003, McAuley 2010]. This method was chosen

to calculate the ranking in a more accurate and robust way. This is a data-based

method since the ranking is dependent on the calculation of the parameter estimations.

Specifically the ranking of parameters is made by analysing their sensitivity towards

the system output. A sensitivity matrix is formed to measure the effect of a change in

the parameter on the change in the system output. This effect is measured through the

sensitivity coefficient. The sensitivity coefficient is an element in the sensitivity matrix

which is calculated by taking the partial derivative of the system state output with respect
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to each of the model parameters. Based on the sensitivity coefficient the parameters

are ranked from most estimable to least estimable. In addition to the sensitivity of the

parameters, the orthogonal method also considers linear independence of the parameters

during the ranking. Parameters that are linearly correlated in their sensitivity coefficient

are difficult to estimate.

2.3.1 Sensitivity matrix calculation

The sensitivity matrix Za has p columns, one for each of the model parameters and n

rows, for the number of data points available for parameter estimation. If d different

output variables are available, measured m times, then the number of rows are n = d ×m.
The sensitivity matrix Za is defined as,

Za =
∂X

∂θ
=











































za11 za12 · · · za1p

za21 za22 · · · za2p
...

. . .
...

za
n1 zn2 · · · zanp











































(2.53)

where X denotes the vector of output elements, θ represents the parameter vector and

za
i, j
=

∂xi
∂θ j
. In order to effectively compare the coefficients a scaled sensitivity coefficient

matrix Z is defined as

zi, j =
∂xi

∂θ j
.
θ̂ j

x̂i
(2.54)

where θ̂ j represents the current estimate of parameter θ j and x̂i is the estimated value of

the ith state variable.

A conventional solution of Z can be obtained if the analytical solution of Equa-

tion (2.54) exists [Yue 2006]. However this is a rarity in non-linear biological systems

[Yue 2006]. As a result, the Z has to be solved numerically for each iteration. Two of

the most commonly used numerical methods are finite difference method (FDM) and

decoupled direct method (DDM) [Yue 2006]. DDM suffers from numerical stability in

some form of its implementation and needs to be used carefully [Rabitz 1983]. Therefore,

this work applies the central difference (CD) method, a form of FDM, to calculate

zi, j from the difference of the forward and reverse perturbation. This method is the

most widely used [Hakami 2003] and straightforward in its implementation as only the

calculation of the state variables are needed [Yue 2006]. Applying CD yields,

zi, j =
xi(θ j + ∆θ j) − xi(θ j − ∆θ j)

2∆θ j
(2.55)
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In this approach, the choice of the step size ∆θ j plays an important role as the numerical

value obtained through CD is highly dependent on the value of this step size. A variable

step size results in a calculation where the sensitivity matrix captures more detailed

information. In this implementation, the square root of the corresponding diagonal

element of the estimation error covariance matrix is chosen as the step size, which gives

∆θ j =
√

P j, j or ∆θ j = V j, j for CSUKF. This ensures that the step size is reset for each

iteration and remains within the feasible parameter range of the perturbed system. It has

been shown that the accuracy error of this numerical calculation reduces linearly with

reduction in step size [Brennan 2011]. As the CSUKF estimation error decreases at each

iteration with the incorporation of new information, it is expected that choosing the step

size in this manner increases the accuracy of the numerical calculation for CD. Choosing

the parameter values within one standard deviation, ensures a relatively small step sizes

as well. This makes the standard deviation a feasible choice for the step size.

2.3.2 Orthogonal based ranking

Orthogonal based ranking is a method that ranks the parameters by analysing how strong

a parameter influences one or more of the measured responses. It iterates over each of the

columns of Z to select the column with the highest sum of squared value. As each of the

columns corresponds to individual parameters, this represents the parameter having the

highest impact on the model output. The selected column is then added as a column to the

matrix EL (L denoting the iteration number). At each iteration new columns are added

to EL in order from the highest to lowest sensitivity of the parameters. For example

at iteration four the matrix E will have four columns sorted according to the order of

sensitivity. As the selected column of matrix Z might be correlated with another, some

form of orthogonalization of the columns in matrix Z is needed to rank the influences of

the individual parameters on the responses. After a parameter is chosen, the net influence

of each of the remaining parameters on the selected parameter is adjusted by regressing

the original columns of Z on to the column associated with the most estimable parameter

(denoted as ẐL). The residual matrix, RsL, is calculated by measuring the orthogonal

distance between Z and the regression matrix ẐL. The column with the highest sum of

squared value in the residual matrix, denoted CsL, is chosen as the next most estimable

parameter. It considers the parameters that are linearly independent in the sensitivity

coefficient to be estimable. The reason is that if the sensitivity of one parameter is linearly

dependent on some or all of the other parameters then the change of this parameter can

be represented by the change of some or all of those parameters. The steps are repeated
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until all iterations are finished or a specific cutoff value of CsL is reached.

Algorithm

1. Calculate the sensitivity matrix Z as discussed in section 2.3.1.

2. Calculate the sum of squared values of each column of Z and choose the column

with the highest value as the most estimable.

3. Add the chosen column to EL where L = 1 for the first iteration. With increasing

number of iterations the size of EL matrix grows as columns from Z are added to

EL.

4. Calculate an orthogonal projection ẐL for the column that exhibits the highest

independence to the vector space spanned by EL

ẐL = EL(E
T
LEL)

−1ET
LZ (2.56)

5. As a measure of independence the residual matrix RsL = Z − ẐL is calculated.

6. The sum of squares value for each column of the RsL matrix is calculated, resulting

in the vector CsL. The column corresponding to the largest sum of squares is

chosen for the next estimable parameter.

7. Select the corresponding column in Z and augment it with the matrix EL by

marking the new column.

8. Iterate steps 4-7 until the cut-off value is reached or until all the parameters have

been ranked and selected to be identifiable.

This orthogonalization based ranking method is very similar to the multiple regression

method forward selection. The forward selection method starts with no variables in the

model and includes them one by one if they are statistically significant. This method uses

a threshold value as the stopping criteria for the addition of variables. The cut-off value

in the orthogonal algorithm is analogous to this threshold value used by forward selection

[Yao 2003]. The choice of the cut-off value of the stop criteria is somewhat arbitrary and

depends on individual applications. In their work, [Yao 2003] choose the cut-off value of

0.04. However they concluded that this cut-off value depends on the level of noise in the

experiments and for an imperfect model structure a higher cut-off value would lead to a

more appropriate result. Taking their conclusion into consideration the cut-off value are
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also varied here depending on the model complexity.

This sensitivity based analysis is similar to the structural identifiability analysis in

the sense that it tries to identify parameters which do not change linearly with the

perturbation (the sensitivity coefficients are not linearly dependent). It is also close

to practical identifiability analysis as it requires pre-specified parameter values to start

which could be either a nominal value or an actual estimate and it also requires the

number and location of measurement time points [Miao 2011]. Thus to carry out the

ranking of parameters, it is necessary to first have the estimate of the pre-specified

parameter values. This sensitivity based ranking method explains, if a parameter has

a high sensitivity then it is much important for the system behaviour and therefore has

a high rank. A well known fact in systems biology is that not all of the parameters

have equal sensitivity and only a small subset of parameters have a higher influence in

the model behaviour [Ryan 2007, Schenkendorf 2011]. Once identified this small subset

needs to be estimated accurately while the remaining parameters can be set to small

random values.

2.4 Profile likelihood based identifiability analysis using

CSUKF

Parameter identifiability has so far been addressed from the perspective of observability

with the Kalman filter and its non-linear extensions. However since the computational

complexity of these observability based methods increase with non-linearity and model

size, this analysis is not well suited for non-linear biological models. To better suit

biological models, profile likelihood based parameter identifiability analysis is integrated

into CSUKF, instead of using the more common observability based method.

[Raue 2009] proposed a method for identifiability analysis based on likelihood

confidence intervals generated from the profile likelihood trajectory. This profile

likelihood trajectory is calculated for each parameter, θi, along the minimum of the χ2(θ)

with respect to all other parameters θ j,i. In this manner it explores the parameter space

of each of the parameters in the direction of the least increase of χ2(θ). In order to

calculate this confidence interval it is necessary to have the asymptotic χ2 distribution

of the profile likelihood which follows a χ2 distribution with d f degrees of freedom.

Justification for the integration of this method with CSUKF lies with the fact that the

Kalman filter can have a likelihood interpretation with equations derived from a chi-

square merit function. The Kalman filter is known as a recursive least squares (RLS)

filter whereas the χ2 merit function is a maximum likelihood function and the fitting
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criteria for a χ2 process is known as least squares fitting. According to [Thacker 1998],

the Kalman filter equations can also be derived from χ2 merit function. The Kalman filter

is used to extend the likelihood estimation for cases where some of the state variables are

not directly observed [Holmes 2004]. Thus the profile likelihood based identifiability

analysis can also be applied using CSUKF.

2.4.1 The Profile Likelihood

In profile likelihood the unknown parameter vector θ ∈ Rn is partitioned as θ = (ψ, η)

where ψ is the 1-dimensional parameters of interest and η is (n-1)-dimensional nuisance

parameter. Nuisance parameters are those parameters which are not of direct interest but

must be accounted for in order to have a successful analysis of the parameter of interest.

The parameter of interest is kept at a fixed value and the nuisance parameters are varied

to have a maximum likelihood estimation (MLE). Then

plψ = max
η

ln(ψ, η) (2.57)

is called the profile likelihood of ψ.

2.4.2 Asymptotic Confidence Interval

The confidence interval (CI) σ is an interval estimate determined by the position of its

upper and lower endpoints to indicate the reliability of that estimate. A (1-α)CI of a

parameter estimate consists of all those values that are to be considered valid by an α-

level hypothesis analysis. In other words the true value of a parameter estimate will fall

within the (1-α)CI with probability greater than or equal to (1-α) [Neale 1997].

The most widely used confidence interval calculated in maximum likelihood estima-

tion (MLE) is the asymptotic confidence intervals. In an asymptotic confidence interval

the CI of a estimated parameter θi is calculated as

σi = θ̂i ±
√

χ2(d f , 1 − α).Ci,i (2.58)

where χ2(d f , 1 − α) represents the 1 − α quantile χ2 distribution with d f degrees of

freedom. Ci,i is the variance from the covariance matrix calculated using the information

matrix of MLE l() [Raue 2011]. The information matrix is evaluated at the maximum of

the likelihood surface. This information matrix reflects the curvature of the likelihood

function in infinitely large samples [Reid 2007, Neale 1997] which is calculated by

calculating the Hessian (
∂2logl(θ)

∂θi∂θ j
) matrix at the maximum. Although this approach of
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calculating the CI enjoys simplicity and speedy computation, it is less accurate when the

sample sizes are small. The information matrix assumes the likelihood to be quadratic in

form, which poses a constraint when calculating the CI if the likelihood is not symmetric.

The information matrix fits a parabola (a quadratic function) with the log-likelihood and

assumes the fitted parabola to be the log likelihood itself, which may overestimate the

confidence interval and give erroneous results [Schaber 2011, Schenkendorf 2009].

In an asymptotic confidence interval, the mean and variance of the result need to

be calculated. Even if the mean and variance are calculated accurately, for example

using the sigma point method of CSUKF, to calculate the CI the probability distribution

is assumed to be normal. This assumption of a normal distribution of the maximum

likelihood estimator works well when the sample size is large. However there is no

precise definition of how large a sample needs to be in order to consider it to be sufficient,

as this is dependent on the model [Fisher 1922]. For small sample sizes the normality of

the probability distribution might not be enough.

2.4.3 Likelihood based confidence interval

Graphically a smooth likelihood function is a parabola whose top represents the

Maximum Likelihood Estimator (MLE). The curvature of the graph provides an estimate

of the inverse of the variance-covariance of the MLE [Murphy 2000]. Instead of

calculating the CI from the curvature of the ML, likelihood based confidence intervals

are calculated from the profile likelihood. Here the approximated confidence interval of

parameter θ is defined as

{θ|2[l(θ̂) − l(θ)] < χ2(d f , 1 − α)} (2.59)

In Equation (2.59) l(θ̂) is the MLE of θ and l(θ) is the log-likelihood defined for values

of θ in the parameter space [Venzon 1988]. The difference mentioned in Equation (2.59)

between the objective function evaluated at the optimal point and the objective function

evaluated keeping one parameter fixed follows a a χ2 distribution with d f degrees of

freedom according to the following equation

{θ ∈: χ2(θ) − χ2(θ̂) < χ2(d f , 1 − α)} (2.60)

The border of Equation (2.60) represents the likelihood based confidence interval

[Raue 2009, Raue 2011]. Depending on the value of the degree of freedom (df), two

types of confidence intervals emerge. If d f is considered to be one, then it results in
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(a) (b) (c)

Figure 2.7: Parameter Identifiability Analysis (adopted from [Raue 2009]). The dotted

line represents the profile likelihood χ2(θ1) value and the straight line is the threshold at

χ2(d f , 1 − α). (a) Defines the structural non-identifiability as the profile likelihood line

is flat. (b) Defines the practical non-identifiability where the profile likelihood goes to

∞ for either θ → ∞ or θ → −∞. (c) An identifiable parameter, where θ has a finite

confidence interval for both high and low values from the global minimum

point-wise confidence intervals and when d f is equal to the number of parameters then it

is simultaneous confidence interval.

2.4.4 Structural identifiability analysis

A parameter θi is structurally identifiable if it can be estimated uniquely from the

model structure. If not then it is structurally non-identifiable. The profile likelihood

approach manifests a flat profile likelihood trajectory for a structurally non-identifiable

parameter (Figure 2.7a). A structural non-identifiability is dependent only on the

model structure and its parameterization, and is independent of the amount or accuracy

of the experimental data. Structural non-identifiability is specifically caused by the

insufficient mapping of the states with the measurement data that arises due to redundant

parametrization in the solution of observables [Raue 2009]. This mapping causes the χ2

value to remain constant as any change in the parameters does not have an impact on the

value of the objective function. This redundant parametrization results in functionally

related parameters. For example, in the equation θ1θ2 − 20 = 0, parameter θ1 and θ2 are

functionally related, that is g(θsub) = 0 and they can be varied within themselves without

having any impact on the observables y(ti, θ). As a result no unique solution is possible for

these parameters. The profile likelihood of such parameters are flat and their likelihood

based confidence interval are infinite meaning that they are structurally non-identifiable

as can be seen in Figure 2.7a .
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2.4.5 Practical identifiability analysis

In contrast to structural identifiability, practical identifiability analysis answers whether

it is possible to uniquely identify a parameter from a set of experimental data considering

the amount and quality of the data [Raue 2011, Quaiser 2009]. For a practical non-

identifiable parameter, the profile likelihood flattens out and would not cross the χ2

threshold of the likelihood confidence interval (discussed in section 2.4.2) for either

increasing or decreasing or both values of parameter θ (Figure 2.7b). A practical

non-identifiability might arise due to insufficient measurement data or data with too

much noise [Balsa-Canto 2010, Raue 2011]. In the case of a practical non-identifiable

parameter, the likelihood based confidence interval of an estimate θ̂i is infinitely extended

in the increasing or decreasing direction of θi as been described in Figure 2.7b. As a result

the χ2 stays below the χ2(d f , 1 − α) for a d f degrees of freedom. For a parameter to be

practical non-identifiable it is not necessary for the confidence interval to be infinite in

both the directions. It might happen that either σ− or σ+ is infinite, but not both.

2.4.6 Implementation of identifiability analysis with CSUKF

Using the representation of χ2 in vector form and the notations from the CSUKF

derivation, the χ2 merit function for the kth iteration of the CSUKF can be written as

χ2(k) = (y(k) − ŷ−(k))R−1(y(k) − ŷ−(k))T (2.61)

The χ2 value of a complete CSUKF run is then

χ2 =

n
∑

k=1

(y(k) − ŷ−(k))R−1(y(k) − ŷ−(k))T (2.62)

where n is the number of data points, R is the observation error covariance matrix, y(k)

is the vector of observation data and ŷ−(k) is the current estimate of the observed state

variables.

The identifiability analysis begins with the best set of parameter values found after

the first complete run of the CSUKF. In this first run, CSUKF tries to estimate all the

unknown parameters after initializing them to a small random number. This estimation

also includes those parameters that turn out afterwards to be non-identifiable. During

the calculation of the profile likelihood it is possible that a parameter set with a lower

objective function is found. In this case the profile likelihood calculation is restarted
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with the newly found best set of values. A specific step size (which is initially 10% of

the current value) is then added iteratively with the global minimum point of a specific

parameter θi to create the positive profile likelihood trajectory. The same approach is

taken for the calculation of the profile likelihood trajectory for the negative values where

the step size is deducted iteratively.

During the calculation of the profile likelihood, one parameter is always kept fixed

and the maximization is performed over the nuisance parameters. In CSUKF the system

noise covariance matrix Q and measurement noise covariance matrix R are generated

considering all parameters to be free and to be estimated. It is necessary to remove

the effect of the fixed parameter variance from these covariance matrices during the

calculation of the profile likelihood value. This can be done by striking out the rows

and columns corresponding to the fixed value from the inverse of the covariance matrix.

The following steps are performed to generate that matrix

1. Take the inverse of the covariance matrix.

2. Delete the jth row and column of the inverted matrix, where j is the index of the

fixed parameter.

3. Take the inverse of the modified matrix for the covariance matrix without the effect

of the variance of the fixed parameter.

This removes the effect of the fixed parameter from the covariance matrix [Baker 2001].

The step size is used to increase or decrease the parameter values iteratively to calculate

the objective function while keeping the jth parameter fixed at this point and running

the estimation over the remaining parameters. This calculation is performed until a pre

specified stop criteria is met. In the experiments mentioned in this thesis, the stop criteria

is 100 iterative runs on both the increasing and decreasing direction of the parameter

values. These χ2 values are then plotted against the logarithmic value of each of the

parameters in the direction matrix. Analysis of these plots yields the structural and

practical non-identifiable parameters. These plots also help to calculate the likelihood

confidence interval for the identifiable parameters. If a global minimum of a parameter θi

is represented with θi0 then the upper bound of the confidence interval of this parameter

is the value at point j where θi j > θi0 and where the profile likelihood trajectory crosses

the χ2 threshold with d f degrees of freedom. Similarly the lower bound of this parameter

is where the value at point j is θi j < θi0, and where the profile likelihood trajectory θi j

crosses the χ2 threshold.
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2.5 Determining correlation and functional relationship

between parameters

2.5.1 Correlation between parameters

Parameters that are highly correlated are not identifiable. Therefore finding this

correlation helps to determine the non-identifiable parameters. Fernandez et. al.

calculated the correlation matrix of the parameter estimates from the Fisher information

matrix (FIM) [Rodriguez-Fernandez 2006b]. The inverse of the FIM gives an estimation

of the lower bound of the covariance matrix according to the Cramèr−Rao inequality

[Kay 1993]. From this covariance matrix the correlation coefficients can be calculated.

However if the models are non-linear with respect to the parameters then FIM may

lead to a poor approximation of this covariance matrix [Schenkendorf 2009]. In this

framework, the correlation coefficient is calculated from the square-root of the covariance

matrix generated by CSUKF during the parameter estimation process. If V represents

the square-root of the estimation covariance matrix then the covariance matrix can be

easily obtained as Pθ = VVT . The covariance matrix calculated using this sigma point

method is highly accurate and does not need to calculate any gradients or the Jacobian

[Schenkendorf 2009]. The correlation coefficient between θi and θ j can then be calculated

as

corr(i, j) =
P(i, j)

√

P(i,i)P( j, j)

(2.63)

2.5.2 Determining functional relationship between parameters

In this thesis the mean optimal transformations [Hengl 2007], a non-parametric bootstrap-

based algorithm, is used to determine the functional relationship between the parameters.

This method is able to determine the non-linear relationship between parameters. It is

based on the optimal transformation of the dependent (response) variable and a set of

independent (predictor) variables. This transformation is estimated by the non-parametric

regression method alternating conditional expectation (ACE) [Breiman 1985]. This

transformation uncovers the non-linear relationship between the variables. The strength

of ACE lies in the fact that it can recover functional form of the relationship even for

complicated ones [Wang 2004]. As it is non-parametric an initial guess concerning the

underlying functional form of the relations is not required.

In ACE the response variables Yace are replaced by functions ξ(Yace) and the

predictor variables Xace
1 , · · · , Xace

n are replaced by φ(Xace
1 ), · · · , φ(Xace

n ) [Breiman 1985].
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The general form of an ACE regression model is

ξ(Yace) = α +

n
∑

i=1

φ(Xace
i ) + ε (2.64)

An optimization is then performed iteratively to estimate functions, φi and ξ by

minimizing the error variance that is not explained by the transformed dependent variable

on the sum of transformed independent variables defined as

ε2(ξ, φ1, · · · , φp) = E{[ξ(Yace) −
p

∑

i=1

φi(X
ace
i )]}2 (2.65)

The final φ(Xace
i

) and ξ(Yace) after the minimization are estimates of the optimal

transformations.

In the mean optimal transformation approach, [Hengl 2007] proposed a test function

Hace
k

that interprets the optimal transformation as a functional relationship between the

variables. This test function states that if Hace
i1 ≤ T thr

1 the response parameter θi1 on

the left hand side does not have any functional relationship with any other parameter

θk, k ∈ {i1, · · · , in}. To test the whole group of parameters, the mean of Hace
k

, H̄ace(θi, θk)

is calculated which is then used to identify whether a given set of parameter has enough

information to establish a relationship. If H̄ace(θi, θk) > T thr
2 then a strong relationship

exists between parameter θi and the parameters in vector θk where T thr
1 and T thr

2 are

thresholds defined as T thr
1 = 0.01 and T thr

2 = 0.07. Finally it returns a p × p matrix

where p is the number of parameter with either a zero or one as an entry in the cell. If

there is one in a cell then there is a functional relationship between the two parameters

mentioned in the row and the column corresponding to the cell.

2.6 Treatment of non-identifiability with informed prior

Situations might arise in biological models where it is not possible to perform additional

measurement in order to solve the non-identifiability of parameters. Furthermore

simplification of the model may also not be possible when it will significantly reduce

the model’s desired predictive capability. In these scenarios neither the frequestists nor

any classical statistical methods may be used as they are incapable of estimation in the

presence of non-identifiable parameters [Neath 1997, Rannala 2002, Samaniego 2010].

Classical approaches like least squares estimation, likelihood require parameters to be

identifiable before proceedings into estimation [Neath 1997]. Because of the absence of

identifiability in these approaches, they are not able to distinguish between two or more
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possible sets of parameter values on the basis of observed data. In contrast to the classical

approach, Bayesian methods can provide point estimates of the parameters without

solving this non-identifiability if the informative prior distribution can be provided.

The Bayesian paradigm using proper priors has no difficulty in treating non-

identifiable parameters. Identifiability is more of a problem of model specification rather

than one of inference and therefore Bayesian inference can produce a unique estimate

of parameters even in the presence of non-identifiability [Samaniego 2010]. Bayesian

inference for a parameter starts by stipulating a prior distribution on the parameters of

interest. This prior distribution is then updated on the basis of available observation data

to generate a posterior distribution on which the inference is finally based. The data

available to estimate a non-identifiable parameter are defective in the sense that they do

not provide enough information to uniquely estimate these parameters. However the data

may still be informative for Bayesian inference to determine the posterior distribution

of these parameters. The Kalman filter and its non-linear variants can be derived within

a Bayesian framework [Chen 2003] as it is considered as one of the simplest dynamic

Bayesian networks. Therefore this Bayesian treatment of non-identifiability can also

be adapted to CSUKF for making point estimation of the parameters without solving

the non-identifiability of the parameters, an approach that has no classical counterpart.

The next section discusses how identifiability of parameters are addressed using the

probability distribution function (PDF) and how a proper prior can solve parameter non-

identifiability.

2.6.1 Parameter identifiability with PDF

To describe parameter identifiability in the view of probability distribution, the variables

are first defined, X as the vector of observed random variable, θ as the set of parameter

values and p to be the conditional probability distribution of X given parameter θ. Now

if there exists some θ1 , θ2 satisfying

p(X|θ1) = p(X|θ2) (2.66)

then the parameters of the model are adjudged to be not identifiable. Equation (2.66)

says that at least any two sets of parameter values θ1 and θ2 produces the exact same

probability distribution of the observable, i.e. all possible sets of observations have the

same probability for any two different sets of parameter values [Rannala 2002]. Having

this probability distribution, it is not possible to uniquely distinguish these two parameter

sets from the observation data. The result is that the parameters sets are non-identifiable.
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2.6.2 Informative prior for Bayesian inference

An informative prior can be used to perform a legitimate Bayesian inference for the

parameters even if they are non-identifiable. The following example is used to illustrate

this principle. Given a parameter vector θ with two elements β(1), β(2) is considered

available. Now the case with two sets of θ with different parameter values, where

θ1 = {β(1)1 , β
(2)
1 } and θ2 = {β(1)2 , β

(2)
2 } is considered. For this parameter vector if the

likelihood is a function of β(1) + β(2) only, then it is impossible to separately identify β

values. Now if an informed prior for β(1) assigns β(1) = ywith probability one then θ1 = θ2

is possible if and only if β(2)
1
= β

(2)
2
. This makes the model identifiable. Thus Bayesian

inference is possible even for the models which are non-identifiable from the perspective

of likelihood, if an informative prior is available. However this specific fact is not by itself

sufficient enough to trust the solution from the Bayesian inference. Bayesian inference of

a parameter might not represent its true value. If not dealt with care, Bayesian inference

will not converge to an acceptable close to the true value of a parameter θ even as the

sample size n goes to infinity [Samaniego 2010].

2.6.3 Informed prior in CSUKF

The CSUKF is a non-linear extension of Kalman filter, as such it can be derived within

the framework of Bayesian inference. As a result the Bayesian treatment of non-

identifiability can also be applied when using CSUKF. For this treatment it is needed to

assign the informed prior to the parameters before starting the actual estimation process.

There are a number of parameters in CSUKF that can be selected for a priori knowledge.

They are the initial state, x(0), the initial estimation covariance matrix, P(0), the process

noise covariance matrix, Q, the measurement noise covariance matrix, R, and the UT

scaling parameters, α, β, κ. The scaling parameters α, β and κ only affects the higher

order terms and have little effect on the estimation accuracy. The two parameters of

CSUKF that can be used to introduce the informed prior, is the initial state assumption

x(0) and the initial estimation covariance matrix P(0). The other two parameters that can

have a higher impact are the state noise covariance matrix Q and the measurement noise

covariance matrix R. R is generally known from the noise model of the measurement data.

Therefore Q can be initialized in order to introduce the prior information to CSUKF.

In CSUKF this proper prior is being formulated by informatively initializing the state

variable x(0), the estimation error covariance matrix P(0) and the state noise covariance

matrix Q. The information from the parameter ranking can be used to formulate this

informative prior for the parameters. As the high rank parameters have a much higher
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influence on the system output, they are considered to be estimated with higher precision

in the model. Therefore during the initialization of the P(0) and Q(0) the high rank

parameters are initialized with low variances. For the low rank parameters P(0) and Q(0)

is initialized with high variances. Variance for the parameters which are deemed to be

non-identifiable through the orthogonal method are also initialized with high values. This

variance initialization is done chronologically with the ranking. In this case as there is

no information on the state variables, they can be initialized to small random number.

If two sets of data are available, one from the mutant and one from the wildtype, then

the mutant data can be used to formulate the initial estimation on the state variables and

their covariance matrix which can then be used to formulate the informative prior for the

estimation with the wildtype data.
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Application of the framework

The primary focus of the proposed framework is the successful estimation of the

unknown parameter values of biological kinetic models. To verify the accuracy and ap-

plicability of the proposed framework, it is implemented and used to estimate parameters

in a number of previously published biological models. At first the applicability and

accuracy of the estimation algorithm, CSUKF, is confirmed by estimating the parameters

in a very simple kinetic model composed of the reactions of the upper part of glycolysis

in yeast [Hynne 2001, Klipp 2005]. The statistics generated from the results of this

estimation is then compared with some widely used global optimization algorithms as

well as the two widely used non-linear extensions of the Kalman filter. The applicability

of the algorithm is then tested using a fairly large kinetic model of sucrose accumulation

in the sugar cane culm tissue developed by Rohwer et al. [Rohwer 2001, Uys 2007].

During this test the estimation runs into the problem of parameter non-identifiability

which are then addressed with the proposed framework. Using this framework the non-

identifiable parameters are first determined and then solved before going for the final

estimation. The framework also proposes an alternative way of estimating the parameters

without solving the non-identifiability. This alternative solution uses the proper prior

distribution of the state variables to have a unique estimation of the parameter values

even in the presence of non-identifiability. This approach is verified with the sugar

cane culm model as well as with a Gene regulatory network supplied by the DREAM6

Estimation of Model Parameters Challenge [Prill 2010]. Each of these biological models

are represented using the state-space model described in Equation (1.17). The problem

of parameter estimation in these models are formulated as a state estimation problem,

described in Equation (1.22), then discretized to the final state space representation shown

in Equation (1.23).

To evaluate the framework synthetic data is obtained from simulating the model and

are used as the measurement data. This synthetic data is generated by first running the

model simulation with a known parameter set and then a white Gaussian noise is added

with the simulated data. At first, it may seem unusual to use such data as it seems that all

the parameters are known beforehand. However this is not the case, as the information
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Figure 3.1: Schematic diagram of the simplified glycolysis model (adapted

from [Klipp 2005]). Abbreviations are as follows Gluc6P: glucose-6-phosphate;

Fruc6P: fructose-6-phosphate; Fruc1,6P2 : fructose-1,6-bisphosphate; ATP: adenosine-

triphosphate; ADP: adenosine-diphosphate; AMP:adenosine-monophosphate. The flux,

vi denotes the ith reaction represented by rate laws depending on their enzymatic

reactions. Details of the rate laws can be found in the A.2.

is lost between the movement of the parameter values to simulate the synthetic data and

then returning to parameters via estimation [Chen 2010]. This kind of synthetic data

plays a critical role in the development and the validation of most numerical algorithms.

The numerical tool-kit MATLAB is used for the implementation of the framework. The

biological models are also coded in MATLAB as a system of ODEs. For comparison with

four widely used global optimization algorithm, the upper part of glycolysis of yeast is

also modelled in Copasi [Hoops 2006] in addition to MATLAB.

3.1 Glycolysis model from yeast

The first application of CSUKF is to estimate parameters in a relatively simple kinetic

model of the upper part of glycolysis in yeast. [Klipp 2005] simplified the glycolysis

model originally developed by [Hynne 2001]. This model is restricted to just the first

four reactions of glycolysis, as shown in Figure 3.1 accounting for the adenylates ATP,

ADP and AMP. This model explains the degradation of glucose in the process of yielding

energy and building blocks for cellular processes. In the model there are 15 parameters.

In this model, if a reaction A → B is determined by flux vi then the parameters,

maximal velocity Vmax and enzyme affinity for reaction Km are defined as Vmax,i and Km,i

in the rate laws, where i represents the reaction number. Among these 15 parameters

four parameters are chosen for estimation using the synthetic time series data of the

metabolite concentrations. These four parameters are k2, V
f

max,3, Vmax,4 and k8r. Their
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actual values are 2.2600, 140.2820, 44.7287 and 133.3300 mmol/ml respectively. The

glucose concentration are kept fixed at 12.8174mmol/ml while all the other metabolite

concentrations are free to vary throughout the simulation to generate a set of time-series

data. The metabolite concentrations are initially set to zero and the energy currency as

ATP = 2.1, ADP = 1.4, AMP = 0.1 mmol/ml. This experiment has assumed that the

measurement data of all metabolites, whose concentration are changing over time, are

available.

Experimental setup The experiment begins by integrating the ODEs over a time

interval from zero to 25 seconds with all the parameters considered to be known.

The ODE45 function (a numerical Runge-Kutta method for numerical integration)

of MATLAB is used to solve the ODEs. The simulated time-series data y of the

metabolite concentrations are used to generate synthetic measurement data ynoisy by

adding uncorrelated white noise ε0 with it, ynoisy = max[0, y + 0.2 ∗ r ∗ y] where y is

the simulated measurement data and ε0 is defined as ε0 = 0.2 ∗ r ∗ y where r is a random
variable having normal distribution with zero mean and one standard deviation. ynoisy has

a random variation of 20% of the actual measurement data. Finally the measurement data

is clipped to zero if it goes below zero. Sampling at an interval of ∆t = 0.25 second gives

a time series with 101 data points.

3.1.1 Comparison of global optimization algorithm

Before going into a detailed analysis of CSUKF, the first experiment performs a compar-

ison between four of the most widely used global optimization algorithms to estimate the

parameters of this model. This analysis is made in order to have a better understanding

on the performance and working principles of these algorithms, which in turn aid in the

implementation of CSUKF. The four algorithms are evolutionary programming (EP),

genetic algorithm (GA), simulated annealing (SA) and particle swarm optimization

(PSO). All of these algorithms have some form of stochasticity. For real problems

stochastic global optimization methods have been shown to arrive at relatively good

solutions in moderate computational time, whereas deterministic methods have proven

to be too expensive computationally [Moles 2003, Rodriguez-Fernandez 2006b]. Copasi

is used for this comparison as these algorithms are already been implemented in Copasi

and building the model in this software is straight forward. The optimization parameters

chosen as the default values in Copasi are given in Table 3.1. The experiment chooses

these default parameters of copasi as they are mostly used by the experimentalists. This

also ensures equal starting points for all four algorithms.
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Algorithm
Number of

Generations

Population

Size

Random

Number

Generator

Seed

EP 200 20 1 0

GA 200 20 1 0

Start

Temperature
Cooling

Factor
Tolerance

SA 1 0.85 1E-06 1 0

Iteration

Limit
Swarm Size Std. Dev.

PSO 2000 50 1E-06 1 0

Table 3.1: Setup of the optimization parameters used for the comparison.

Algorithm

Parameter

Name Mean Std. Dev. Median

CPU Time

(second)

EP k2 2.675 1.685 2.247 1, 104.62

V
f

max,3
130.276 44.631 140.571

Vmax,4 163.501 1, 032.808 44.970

k8r 112.375 49.446 133.316

GA k2 7.493 0.014 7.495 640.76

V
f

max,3 0.025 0.026 0.019

Vmax,4 0.008 0.007 0.006

k8r 0.020 0.037 0.016

SA k2 2.165 0.334 2.249 84, 540.14

V
f

max,3 115.746 44.715 140.616

Vmax,4 2.72E + 23 7.94E + 23 44.890

k8r 122.010 50.265 133.500

PSO k2 2.256 0.048 2.249 16, 359.82

V
f

max,3 137.744 20.201 140.616

Vmax,4 45.525 4.469 44.890

k8r 133.460 0.278 133.500

Table 3.2: Results obtained by repeating the computation of the four algorithms in the

case study model 100 times (CPU time is for total 100 runs). Statistics of the data are

calculated from this 100 runs. CPU time is the total time that it took to run each of the

methods 100 times.
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Each algorithm run 100 times for statistical analysis of the optimization results. These

results are summarized in Table 3.2. From Table 3.2 it can be seen that among the two

EC algorithms, the performance of EP is better than that of GA. Although GA has much

smaller standard deviations, its estimated mean values are far from the original values.

The higher accuracy in EP could be due to the reproduction operator which carries

more information and efficient than GA [Chiong 2007]. [Fogel 1995] also reported that

EP outperforms GA on obtaining the mean solution from an optimization problem by

minimizing the objective function. However the mean value of EP is still far from

the actual value, this may be due to a known limitation of such algorithms, that they

can get stuck in local minima if proper algorithmic parameters are not chosen, yielding

solutions that are often not optimal [Hewlett 2007]. In contrast the median values from

EP closely approximates the actual value, which makes this algorithm still applicable

to the parameter estimation. The average objective function value of EP, 12.35, also

suggested a better result compare to the average objective function value of GA, 206.18.

The performance of SA is similar to that of EP except for parameter Vmax,4 where it

has a very large mean and standard deviation. This makes SA even worse than EP.

When results from each of the 100 runs for SA are analysed individually, it is found

that about quarter of those runs have an extreme outlier where the parameter value

for Vmax,4 is more than E + 20. The objective function value with these outliers are

also very high. If statistics are calculated after removing these outliers, the estimation

accuracy dramatically improves for all the parameters with mean value of 140.62 and

standard deviation of 0.006 for Vmax,4. The accuracy for SA also improves, if the

estimation is introduced with noise free synthetic measurement data as was shown in

[Baker 2010]. This gives an indication that the noise in the measurement data is causing

SA to get stuck in local optimums and causing this big outlier values. Similarly Hart

et al. showed that the evolutionary algorithms have higher probability of success than

simulated annealing after sufficiently large number of functional evaluations [Hart 1996].

However the median value for all the four parameters is similar to that of EP. But the time

taken by SA to reach this accuracy is very high which makes this algorithm infeasible for

large parameter estimation algorithms. This is a known problem of SA that it can reach

the vicinity of the global optima quite quickly but then moves slowly when approaching

the optima [Banchs 1997]. Compared to the other three global optimization algorithms

PSO performs the best. The average objective function value, 0.606, also indicates the

improved performance of PSO. The reason is that PSO utilizes a significantly different

information sharing mechanism than the other algorithms. In PSO, only the information
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from the best particle is distributed and the evolution only targets the best solution

[Jones 2006]. Furthermore PSO has the advantage that it can escape from local minima

[Wachowiak 2010]. But the time taken by PSO, while not as long as SA, is still very high

compared to GA and EP. This could be due to the high number of functional evaluations

required for PSO to converge to a solution as reported in [Wachowiak 2010] or it could

be due to the settings of the control parameters of the algorithm for which appropriate

settings is key to success [Jones 2006]. While the control parameters are kept unchanged

throughout for proper comparability, their performance may vary significantly if non-

default options are used [Elizabeth 2004]. The problem remains that the selection of the

values for the control parameters, that would ensure the algorithms best performance is

not intuitive. Therefore it would be much easier for the typical users to go with the default

options in which case this comparison result would give a vital clue on the performance

of the algorithms for these users.

3.1.2 Applying CSUKF to the glycolysis model

Having illustrated the applicability and accuracy of CSUKF for state estimation in

chapter 2.2.5, the focus here is on applying CSUKF to the parameter estimation of

the upper part of the glycolysis model. CSUKF is completely implemented within

MATLAB. For this parameter estimation experiment the model is also written in

MATALB. As a first model for testing parameter estimation with the CSUKF, this model

is chosen for its relative simplicity. The same four parameters are selected that were used

for the algorithm comparison problem in the previous section. These four parameters are

selected purposefully for the large spreads of their magnitudes, from V
f

max,3 = 140.282,

the largest parameter, to k2 = 2.26, the smallest. As described in the experimental setup

section, synthetic measurement data is generated for this experiment. The unknown

parameters are initialized with a small random number between zero and one. The

simulated time-series data with the estimated parameters are generated by integrating

the ODEs of the model at a step size of 0.25 seconds over 25 seconds, for a total of

101 data points. The constraints on the metabolite concentration and the parameter

values are defined to be zero for the lower bound and 500 for the upper bound. The

parameters are converted to time invariant states, changing the parameter estimation

problem into a state estimation problem as mentioned in Equation (1.22). The process

noise covariance matrix has also to be initialized with augmented noises of the parameters

and the state variables. For the parameter values, the diagonal elements of the process

noise covariance matrix, Q, is initialized with 20% variation of the initial parameter
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values θ(0) i.e. diag(Q) = 0.2 ∗ θ(0). Similarly for the state variables, a 20% variation

from the initial state values (which is already randomly initialized), x(0), is incorporated,

diag(Q) = 0.2 ∗ x(0). The measurement noise covariance matrix R is initialized with the

same ε0 used to generate the synthetic measurement data, i.e. with a random variation

of 20% of the actual measurement data. The CSUKF adjusts the parameter values by

adjusting the state covariance matrix to minimize the mean-squared error between the

simulation data and the measurement data. This process continues in an iterative manner

until the system reaches a steady state (i.e. where the metabolite concentration no longer

changes over time).

Results To obtain representative statistics of the estimation, the experiment is

repeated 100 times. The results as summarized in Table 3.3, show that the estimated

value of the parameters closely and consistently approximate the original value. A

representative example (run 3) of the parameter estimation is illustrated in Figure 3.2.

The dashed lines represent the true parameter value and the solid lines correspond to

estimation trajectory. As can be seen in the figure, the estimation trajectories of all the

four parameters closely approach to their actual values. This figure illustrates how even

when the estimation is started far from the true value, the algorithm quickly zeros in on

the value range and then gradually converges to the actual values, for parameters with

both high and low values. This confirms the flexibility of CSUKF with regards to the

magnitude of the parameters.

Parameter

Name

Actual

Value

Estimation

Average Std. Dev.

k2 2.260 2.260 0.076

V
f

max,3 140.282 140.235 0.592

Vmax,4 44.729 44.742 0.266

k8r 133.330 133.330 0.387

Table 3.3: Summary statistics of the parameter estimation values obtained from CSUKF.

For each estimated parameter, the mean and standard deviation are calculated from 100

runs. In each run the parameters were initialized with small random numbers between 0

and 1.

A closer view of one of the parameter trajectories, V
f

max,3, is shown in Figure 3.3

(corresponding to run 5). In this close up it is possible to see the standard deviations
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Figure 3.2: Parameter estimation trajectory from a representative sample run (run 3) of

the recursive estimation of the parameter values. The dashed lines represent the actual

parameter values and the solid lines represent the corresponding estimation trajectory.

throughout the refinement of the estimation. Like before the dashed line represents the

actual parameter value and the solid line represents the estimation trajectory. The vertical

bar on the trajectory shows the estimation standard deviation calculated from the diagonal

element of the square-root estimation covariance matrix V at each 10th time step. As can

be seen from the figure the estimation standard deviation decreases with each iteration

step. It starts with much high value at the beginning and then decreases as the estimation

reaches the actual value. Similar behaviour has also been observed in case of UKF as

described in [Quach 2007]. In order to test whether the selection of the initial value of

the parameters has any impact on the estimation accuracy, the CSUKF is repeatedly run

30 times, initializing the parameters with different random values between 0.01 to 20

including the endpoints. In all the runs CSUKF estimated the parameters with similar

accuracy mentioned in Table 3.3.

This experiment chooses flat priors (uninformed priors) for state distribution. How-
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Figure 3.3: Estimation trajectory of V
f

max,3 from a representative sample run (run 5)

with standard deviation. The dashed line represents the actual value and the solid line

represents the estimation trajectory. The vertical bar represents the standard deviation.

For visibility and ease in analysis plotting begins with the 10th sampling point and the

standard deviation is given for every 10th sampling point.

ever a more elaborate prior distribution could be used with the CSUKF in order to

favour meaningful regions of the parameter and state space. The impact of such

informative priors has been demonstrated for two different models in sections 3.4 and 3.5.

Moreover as constraints can be added into CSUKF, this algorithmmay yield results which

emphasize biological relevance. One other advantage of CSUKF is its simultaneous

computation of the square-root of the variance of the estimator where it might not

otherwise be straightforward to compute due to the complexity of the model.

A comparison was made between the constrained square-root unscented Kalman filter

and the two other widely used non-linear extensions of the Kalman filter, the extended

Kalman filter and, the (regular) unscented Kalman filter. Table 3.4 quantifies the average

of the estimation results obtained from this comparison together with the previous results

from the four global optimization algorithms, EP, GA, SA, PSO. Each of these algorithms

is run 50 times. In each run the parameters are initialized with small random number

between 0 and 1. As can be seen from the table, CSUKF outperforms the four global

optimization algorithms either in accuracy, in time or both.
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Algorithm

Parameter

Name

Actual

Value Mean Std. Dev.

Total time

(second)

EP k2 2.26 3.043 2.123 697.94

V
f

max,3
140.282 130.923 53.152

Vmax,4 44.7287 252.103 1, 457.136

k8r 133.33 117.811 47.018

GA k2 2.26 7.495 0.014 327.28

V
f

max,3 140.282 0.026 0.024

Vmax,4 44.7287 0.007 0.005

k8r 133.33 0.024 0.042

SA k2 2.26 2.148 0.412 43, 311.26

V
f

max,3 140.282 119.213 43.958

Vmax,4 44.7287 2.29E + 23 7.01E + 23

k8r 133.33 119.730 55.072

PSO k2 2.26 2.250 3.78E − 05 8, 044.39

V
f

max,3 140.282 140.616 0.003

Vmax,4 44.7287 44.890 0.0004

k8r 133.33 133.500 0.003

EKF k2 2.26 3.579 0.028 169, 699.07

V
f

max,3 140.282 92.645 0.209

Vmax,4 44.7287 36.129 0.144

k8r 133.33 120.048 0.343

UKF k2 2.26 2.264 0.030 4, 363.57

V
f

max,3 140.282 140.310 0.454

Vmax,4 44.7287 44.709 0.160

k8r 133.33 133.330 0.324

CSUKF k2 2.26 2.269 0.075 4, 361.32

V
f

max,3 140.282 140.239 0.679

Vmax,4 44.7287 44.730 0.279

k8r 133.33 133.327 0.383

Table 3.4: Comparison of CSUKF to EKF, UKF, EP, GA, SA and PSO. Results are the

average from running each algorithm 50 times, however the time is the total time for each

algorithm to complete all 50 runs. The same noisy data was used for all algorithms. The

unknown parameters were initialized to a small random value between 0 and 1 for each

run of each algorithm.

Although the two EC algorithms run much faster than CSUKF, its estimation accuracy
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is far below CSUKF. The performance of SA is quite low considering accuracy because

of the presence of outliers. This has been discussed in section 3.1.1. On the other

hand PSO has similar accuracy to CSUKF, but requires longer time. The accuracy of

UKF is similar to that of CSUKF. This is consistent with the work of Rudolph van der

Merwe where they confirmed that the square-root UKF has equal to marginally better

estimation accuracy than UKF [van der Merwe 2004]. But with CSUKF constraints can

be introduced in to the estimation, which is not possible with UKF [Kandepu 2007]. The

performance of both CSUKF and UKF exceeds that of the EKF. This agrees with the

results of other similar works like [Merwe 2001, Kandepu 2007]. To test whether the

performance of both EKF and UKF are dependent on the starting values these algorithms

are run with multiple starting values chosen in the similar fashion as mentioned for

CSUKF, ranging from 0.01 to 20. It has been observed in the experiment that the

estimation performance of EKF is dependent on the starting values of the parameters.

When the parameters are initialized with values less than one they do not reach the actual

value for any of the four parameters. However, EKF does converge to the actual values

when the parameters are initialized to any value greater than one. Although the UKF

generally performs similar to CSUKF when the parameters are initialized with small

random numbers between 0.01 and one. If the parameters are initialized very close to

zero, the estimation is inconsistent, even resulting in negative values for the parameters.

Furthermore, UKF suffers from numerical instability if parameters are initialized with

high values. To accurately determine the numerical stable range for UKF, additional

experiments are performed with a direct search of the initial values, and it is found

that UKF is stable when initialized with all parameter values between 0.01 and 5. The

average running time of CSUKF is also marginally better than the UKF. This is due to

the propagation of the square-root of the estimation covariance matrix, P, eliminating

the Cholesky decomposition of P at each iteration. Despite this difference, both CSUKF

and UKF have a similar run time. In terms of the run time, EKF is the computationally

most expensive method of the three. As the profiling in Matlab explains, this is due

to the calculation of linearization or the Jacobian in the state space equation. This

conforms with the literature, that the requirement to explicitly calculate Jacobians is a

major bottleneck for complex functions in EKF [Madhumita 2010]. This run time is

expected to rise as the model grows bigger. Taken together, the advantages, flexibility,

speed and most importantly accuracy of CSUKF makes it the clear choice for parameter

estimation in biological models.
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Figure 3.4: Schematic diagram of the sucrose accumulation model of sugar cane culm

tissue. Abbreviations are as follows Suc: sucrose; Suc6P: sucrose-6-phosphate; HexP

(fructose 6-phosphate and UDP-glucose); Fru: fructose; Glc: glucose. The subscript

’ex’ stands for extracelullar and the subscript ’vac’ stands for vacuolar. The Hexose

phosphate pool was considered as an equilibrium block. The numbered v’s denote the

reactions which are represented by rate laws, details of which can be found in A.1

3.2 Sucrose accumulation model in the sugar cane culm

tissue

To verify that the algorithm works for relatively large models, the CSUKF was applied

to parameter estimation of the second case model, the kinetic model for sucrose

accumulation in the sugar cane culm tissue [Rohwer 2001, Uys 2007]. This model helps

to assess the biochemical control of sucrose accumulation and futile cycling in sugarcane.

This model allows for the potential of different manipulation strategies to enhance sucrose

accumulation and to select the most promising ones. This is a typical medium scale

model in systems biology. The schematic diagram of the model is given in Figure 3.4.

Experimental setup In this model the structure of the network is mathematically

formulated as a set of ODEs. The model consists of 54 parameters from which 12

parameters are selected to be estimated corresponding to the 12 parameters that Rohwer

estimated in his work [Rohwer 2001]. List of these 12 parameters can be found in

Table 3.5. Each of the 12 parameters is initialized to a small random number between zero

and one. The remaining 42 parameters are known and kept fixed during the estimation.

The five metabolites that are considered to be explicit variables, i.e. whose concentrations
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are changing over the time are Fru, Glc, HexP, Suc6P and Suc. The rest of the

metabolite concentrations are considered constant. These five metabolites have an initial

concentration of Fru = Glc = HexP = S uc6P = S uc = 1. As with the other models,

this experiment also assumes that the measurement data for all the changing metabolites

are available. Synthetic data, corrupted with noise, as described in section 3.1, is

again generated as the measurement data. This model requires a much longer time to

reach steady state, so the time interval used to generate the time series data is adjusted

accordingly, zero to 2340 seconds with a step size of ∆t = 10 second. The process

noise covariance matrix, Q, and the measurement noise covariance matrix R is setup

using the same method described in section 3.1.2. In this experiment a sensitivity based

ranking of the parameters is coupled with CSUKF to find the most estimable parameters.

This method performs identifiability analysis based on the orthogonality of the sensitivity

matrix [Yao 2003]. Global identifiability cannot be generally guaranteed for non-linear

models, thus this sensitivity based analysis is used to determine the probability that the

parameters are identifiable [Berit 2008]. This sensitivity analysis considers two features

that govern the estimability of the parameters. First, it considers the strength of the

influence of a parameter on one or more of the measured responses. Second, it considers

the correlation between the effect of the parameters on the model predictions.

Results Table 3.5 summarizes these results with the estimation from 50 runs of

CSUKF along with the ranking of the parameters chosen from the most common ranking

of those 50 runs. The full algorithm of this ranking method is described in section 2.3.

The selection of the stop criteria of this algorithm is crucial. In their work [Yao 2003]

used heuristics for their stop criteria of the selection of the identifiable parameters. We

also used heuristics to find that Max(CL) < 0.004 was a reasonable stopping criteria. This

stopping criteria is used throughout these experiments. The standard deviation of seven

parameters in the estimation was higher than 100% of their mean values for this model as

described in Table 3.5. Furthermore, six parameters have a mean value that is more than

one standard deviation apart from the actual value. All these indicates a poor performance

of the CSUKF for parameter estimation in this model. This performance is due to several

of the parameters being non-identifiable, thus allowing their values to vary within a wide

range. As can be seen in Table 3.5 Vmax6r has the highest rank, and correspondingly this

parameter also has the highest magnitude in the sensitivity coefficient matrix. However

one point to note is that this sensitivity depends on the initial value of the parameters

and in some cases has high sensitivity at the beginning stages of the estimation, which

then decreases as the estimation approaches the actual value. This dependence of the
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Parameter Name Actual value
CSUKF

Ranking
Mean Std. Dev.

ki1Fru 1 1.00 0.01 4

ki2Glc 1 1.00 0.009 9

ki3G6P 0.1 0.67 1.46 5

ki4F6P 10 0.63 0.85 NI

ki6S uc6P 0.07 0.45 0.77 8

ki6UDPGlc 1.4 0.32 0.40 3

Vmax6r 0.2 0.34 0.67 1

km6UDP 0.3 4.73 3.45 6

km6S uc6P 0.1 5.97 4.58 2

ki6F6P 0.4 0.65 1.06 NI

Vmax11 1 0.28 0.19 7

km11S uc 100 21.43 21.82 NI

Table 3.5: Parameter estimation results and parameter ranking from the application of

CSUKF to the sugarcane model. The mean and standard deviation of the estimated

parameters is calculated from 50 repetitions. The ranking is chosen to be the most

commonly occurring rankings from the 50 runs. The NI stands for Non-identifiable.

In each repetition the parameters are randomly initialized to values between zero and

one.

sensitivity coefficients on the initial parameter values has been previously described in

[Yao 2003]. Additionally the sensitivity is time varying with the dynamics of the model

as previously reported in the work of [Yue 2006]. The three parameters found to be

non-identifiable, i.e. those for which a unique solution cannot be found are, ki4F6P,

ki6F6P and km11S uc. This could be due to a functional relationship of these parameters

between themselves or among the others. An exhaustive functional analysis of km11S uc

with each of the other parameters individually reveals that km11S uc has a strong linear

relationship with parameter Vmax11 as shown in Figure 3.5a. A hyperbolic relationship

can also be seen between ki3G6P and ki4F6P, illustrated in Figure 3.5b. However, similar

analysis was not able to find a simple relationship directly between ki6F6P and any one

of the other identifiable parameters. But, this parameter was found to have a very low

sensitivity towards the state variables which kept this parameter from being selected as

estimable. As explained by [Yao 2003, McAuley 2010], changing the stop criteria to a

different value may cause this parameter to become identifiable. This proved to be the

case when the value of the stop criteria was reduced to 0.0004. Having directly dealt
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Figure 3.5: Functional relationships between parameters. a) Linear; the relationship

between Vmax11 and km11S uc. b) near hyperbolic; the relationship between ki3G6P and ki4F6P.

with these three parameters the actual value of ki4F6P, ki6F6P and km11S uc are considered to

be known through biological experiments.The estimation process is thus repeated after

removing these previously non-identifiable parameters from the estimation procedure.

The CSUKF is again executed 50 times. To make a comparison on the estimation

performance for the remaining nine parameters, UKF, genetic algorithm (GA) and non-

linear least squares (NLSQ) are also applied, each running 50 times. The SimBiology

toolkit (in MATLAB) implementation of the later two algorithms with the default settings

are used for this comparison. The results are summarized in Table 3.6. As can be

seen from the table, CSUKF estimates some of the parameter values with low standard

deviation. However five high rank parameters still have large standard deviation (more

than 50% of their mean values), specifically the two parameters km6UDP (150% of the

mean value) and km6S uc6P (88% of the mean value). These two parameters also suffered

from high standard deviation when they were previously estimated with the full set

of 12 parameters. Although the sensitivity method determines these parameters to be

identifiable, the high variation is contradictory to this. An explanation is that although

these parameters have no linear dependency, a higher order dependency might still exist

which this method does not consider. In [Yao 2003] it was shown that this sensitivity

method would identify parameters as estimable even when they are highly functionally

correlated, unless they have an exact linear relationship in the sensitivity coefficient. In

other words, parameters selected using this method are biased by linear independence.

Parameters that have non-linear functional relationship with each other might still be

considered to be identifiable [Yue 2006]. A similar conclusion is reached by Floor et



86 Chapter 3. Application of the framework

Parameter Name
CSUKF UKF GA NLSQ

Mean Std. Mean Std. Mean Std. Mean Std.

ki1Fru 1.00 0.01 1.00 0.01 0.97 0.15 0.99 0.007

ki2Glc 1.00 0.009 1.00 0.008 1.00 0.09 0.99 0.001

ki3G6P 0.14 0.04 0.12 0.02 0.85 0.69 0.1 0.01

ki6S uc6P 0.85 0.98 0.88 1.25 0.94 0.72 1.35 2.135

ki6UDPGlc 0.55 0.51 1.45 0.12 0.97 0.74 1.29 0.305

Vmax6r 0.60 1.01 1.11 1.36 0.86 0.56 3.27 4.932

km6UDP 5.32 8.03 0.03 0.56 0.9 0.55 0.89 1.747

km6S uc6P 8.71 7.67 -2.36 2.53 0.88 0.62 0.78 1.77

Vmax11 1.00 0.005 0.99 0.001 1.04 0.29 0.99 0.001

Table 3.6: Comparison of parameter estimation methods. The mean and standard

deviation from 50 repetitions for each of the estimation methods, CSUKF, UKF, GA and

NLSQ are presented for the nine identifiable parameters. The values of the three non-

identifiable parameters are considered to be known. In each repetition of each method,

the identifiable parameters are randomly initialized to small values between zero and one.

al. in their work on a non-linear dynamic model of submerged arc silicon [Berit 2005].

An alternative reason for this high variance could be that as this method only considers

the identifiability within a finite set of points in the parameter space, the individual

parameters within this set might have a very large domain, which subsequently causes a

large variation within the individual parameters. This means that although the parameters

are indeed identifiable, they are poorly resolved. From the table it can be seen that

parameter ki1Fru, ki2Glc, ki3G6P and Vmax11 are identified equally well in all the algorithms

except GA. Compared to the other algorithms GA has higher standard deviation for these

four parameters agreeing to the conclusion in section 3.1.1. From the above discussion

it can be concluded that sensitivity analysis alone is not complete enough to make a

conclusion regarding the nature of identifiability of the model. There is a clear indication

that among the nine parameters found to be identifiable by the sensitivity method, some

are still non-identifiable. Thus to make a more complete and accurate analysis, profile

likelihood based identifiability are additionally considered.

3.3 Application of the complete framework

In this section, the complete parameter estimation framework is used to develop a

unique estimated parameter set for the sugarcane model. As discussed in the previous

section, orthogonal based sensitivity analysis cannot fully determine the non-identifiable
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parameters. To overcome these limits and to generate a complete structural and practical

parameter identifiability analysis, a profile-likelihood based identifiability analysis is

incorporated. In this approach parameter identifiability is investigated by calculating

the profile likelihood of the parameters. In this framework the CSUKF is used to

calculate this profile likelihood. This approach can be considered as an alternative to the

more computationally expensive observability based analysis, the most commonly used

identifiability analysis in control theory [Farina 2006, Lillacci 2010]. A variation on the

synthetic measurement data is made by taking a time interval of [0 2340] seconds with

step size of 10 seconds to generate the measurement data. To begin the profile likelihood

analysis it is necessary to first find the current optimum value of the parameters. The

CSUKF is applied to find this set of global optimum values. If a new, better, set of

parameter values are found at any time during the profile likelihood calculation; the

program is restarted with the new optimum value. A good model to data agreement

is found with an objective function value of χ2 = 90.271 for 12 parameters with 234 data

points. The maximal and minimal step size is adjusted depending on the parameters and

their profile likelihood values. If the profile likelihood is not reasonable smooth, a smaller

step size is chosen. A larger step size is chosen if the iteration stops prematurely because

of reaching the maximal number of iterations. Figure 3.6 depicts the result of the profile

likelihood analysis for these 12 parameters using a confidence interval of 95%. Defining

∆α = χ
2(d f , 1−α), the point-wise confidence interval threshold for 95% confidence level

is thus ∆α = 3.84 and simultaneous confidence interval threshold is ∆α = 21.03.

As depicted in Figure 3.6, the parameters ki1Fru, ki2Glc, ki6UDPGlc and Vmax11 are the

identifiable parameters because they have a finite likelihood based confidence interval in

both increasing and decreasing direction of the parameter values. This basic principle

of identifiability has been described by Raue et al. in his work [Raue 2009, Raue 2011].

Parameters km6UDP and km6S uc6P are structurally non-identifiable because they each have

a flat profile likelihood. This explains the reason for the high standard deviation in the

estimation result previously reported in both Table 3.5 and Table 3.6. High standard

deviation for structural non-identifiable parameters have already been reported in other

works, such as Hengl et al., where they observed high standard deviation for structurally

non-identifiable parameters in parameter estimation of a non-linear dynamical model

for the endocytosis of the erythropoietin receptor [Hengl 2007]. This is due to the fact

that these parameters can take any value within a wide and possibly infinite range, and

yet still reach the same global optimum. structural non-identifiability is mostly due

to the over-parametrization of the model, that is the model has more parameters than
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Figure 3.6: Profile likelihood based parameter identifiability analysis. The solid line

represents the profile likelihood trajectory versus parameter, with the parameter values in

log scale. In each plot the dotted lines represent the two thresholds. The lower threshold

is the 95% point wise confidence interval and the upper threshold is the 95% simultaneous

confidence interval. If the profile likelihood of a parameter crosses the threshold line for

both high and low values then the parameter is identifiable. A horizontal (i.e. flat) profile

likelihood indicates structural non identifiability, while crossing the threshold(s) on only

one side indicates practical non identifiability.
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can be estimated from the data [Chis 2011a]. As this model has two structurally non-

identifiable parameters it indicates that the model is somehow over-parametrized. Over-

parametrization might be due to a functional relationship between one parameter with any

other parameters of the model [Rannala 2002]. To make these parameters structurally

identifiable additional measurement data is needed through different mapping of the

observation function for the hidden variables.

In Figure 3.6, the parameters ki3G6P, ki4F6P, ki6S uc6P, Vmax6r, ki6F6P and km11S uc are

shown to be practically not identifiable, as their likelihood-based confidence region is

infinitely extended in either increasing or decreasing parameter values. This means that

they cannot be reliably estimated with acceptable accuracy from the available noisy

measurement data [Raue 2009, Raue 2010, Miao 2011]. Among these six practically

non-identifiable parameters, three were previously determined to be non-identifiable

using the orthogonal method. As the sensitivity based method is similar to the practical

analysis approach [Miao 2011], this result also illustrates the accuracy of the profile

likelihood based method for identifying practically non-identifiable parameters. As per

definition parameters having a functional relationship are structurally non-identifiable

[Hengl 2007, Raue 2009]. By that definition km11S uc was supposed to be structurally non-

identifiable because it is linearly dependent on Vmax11 as shown in Figure 3.5a. But profile

likelihood analysis found it to be practically non-identifiable but structurally identifiable.

The reason is depicted in Figure 3.7a where the change of parameters Vmax11 is plotted

for different values of km11S uc used in the calculation of the profile likelihood of km11S uc

in a log-log plot. From Figure 3.7a it can be seen that while for higher values of km11S uc

(log10(km11S uc) > 0 ) they form a linear relationship, this does not hold for smaller values

of km11S uc. Figure 3.7b plots the change of parameter k3G6P along the value of ki4F6P

used for profile likelihood calculation of ki4F6P. They show a linear relationship between

−2.4 and −4 for log10(ki4F6P), the trajectory remains almost constant for the other values

illustrating that there is no obvious relationship between the two parameters at these

values.

After identifying all non-identifiable parameters it is necessary to solve this non-

identifiability, before proceeding with the identification procedure. The first approach

to solve structural non identifiability is to have qualitatively more measurement data to

change the observable mapping function as shown by Raue et al. [Raue 2009, Raue 2011]

in their example model. The second approach is applied to functionally related

parameters. In this approach, where possible, the higher ranked parameter needs to be

measured and the lower ranked parameter(s) can be estimated. If the measurement of
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Figure 3.7: Relationship between the change of parameters in respect to the different

values of the other parameters calculated during profile likelihood calculation. The plot

is log-log scale. a) The plot of Vmax11 versus km11S uc. b) The plot of ki4F6P versus k3G6P.

this high rank parameter is not possible due to wet lab constraints, then the alternative

approach would be to estimate the high rank parameter while keeping the low rank

parameter(s) fixed to a nominal value as suggested by [Yao 2003]. Since low rank

parameters have lower sensitivity, they would not effect the model trajectories as much

as the high rank parameter. In this example, the second approach is applied here. The

identifiability analysis identified km6UDP and km6S uc6P to be structurally non-identifiable.

This gives a hint that these two parameters might have a functional relationship with the

other parameters. However, the method does not explicitly state which parameters those

might be. In order to identify the functional relationship between these two parameters

and any other parameters, the mean optimal transformations approach (MOTA) was

applied using the profile likelihood estimation data of km6UDP and km6S uc6P individually

[Hengl 2007]. MOTA identified a functional relationship between km6UDP, ki3G6P and

Vmax6r. When applied to km6S uc6P, a functional relationship was found with Vmax6r. To

solve structural non identifiability of both km6UDP and km6S uc6P, direct measurement of

Vmax6r is considered here as it has a functional relation with both km6DUP and km6S uc6P and

also it has a very high rank (ranking 1).

As practical non-identifiability occurs mostly due to insufficient amount and quality of

experimental data, this can be solved by increasing the amount and quality of measured

data [Raue 2009, Raue 2011]. The observables along a practical non-identifiability

changes only negligible, but the model behaviour in terms of internal states might change

strongly. High variation on the model trajectories of these states along the profile
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likelihood of the practically non-identifiable parameters would give the points where

the uncertainty in a specific parameter has the largest impact on the model uncertainty

[Raue 2010]. Improving measurement data at these points would solve the practical non-

identifiability [Raue 2009].

Another reason for practical non identifiability would be a correlation between

parameters [Faller 2003, Rodriguez-Fernandez 2006b]. In this case the flattening out

of the likelihood of a practically non-identifiable parameter could continue along the

correlated parameters. If measurement data for any of the highly correlated parameters is

available, the non-identifiability of the related parameters would be solved. A similar

approach has also been described in the work of Guedj et al. where they analysed

the practical identifiability of a dynamic model of HIV through the correlation of the

parameters [Guedj 2007]. Recall that CSUKF estimates both the mean and the square-

root of the covariance at each iteration. The square-root of the covariance matrix can

then be used to calculate the correlation coefficient matrix. Using the correlation matrix

and the built in MATLAB function ’corrcoef’ any significant correlations among the

parameters are found. This analysis found a strong correlation between ki3G6P and ki4F6P.

An accurate value for either of these two parameters would solve the practical non

identifiability of the second. As ki4F6P has already been shown to be non-identifiable

during the orthogonal based ranking method, measurement of this parameter would

help to resolve the non-identifiability of both these parameters. The correlation method

also found ki6F6P to be significantly correlated with Vmax6r and ki6UDPGlc. Among these

three parameters Vmax6r has already been selected for measurement. We select ki6F6P for

measurement considering the same reason for which ki4F6P is measured.

To solve the practical non-identifiability of km11S uc, the state trajectories of Fruc and

Suc are plotted against the profile likelihood values of km11S uc in Figure 3.8a and 3.8b

respectively. This trajectory reveals spots where the uncertainty of θ has the largest

impact on the model. Thus it suggests points of measurement data at which enhancement

in the precision or increase in the data points would improve parameter identification. It

can be seen from both figures that there is a large variation between state trajectories, for

Fruc between time point 50 to 2000 and for S uc between 30 and 2000. This suggests that

having more measurement data of the states may solve the practical non-identifiability

of km11S uc because this measurements might bring the parameter out of the flat χ2 value.

Therefore new synthetic measurement data over the same time interval, but with a time

step of 0.25 seconds is generated. This approach was successfully used by Raue et al.

to solve the practical non-identifiability in their example application of the JAK-STAT
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Figure 3.8: Trajectory of a) Fruc and b) Suc along the values of km11S uc used during the

calculation of the profile likelihood. Places of larger variability denotes points where

measurement of a species would efficiently estimate the parameter

Parameter

Name

Obtained Value σ+ σ− Original

Value

ki1Fru Estimated 0.999 1.191 0.181 1

ki2Glc Estimated 1.001 2.07 0.4 1

ki3G6P Estimated 0.1 0.111 0.099 0.1

ki4F6P Measured 10.00 - - 10

ki6S uc6P Estimated 0.05 0.094 0.01 0.07

ki6UDPGlc Estimated 1.16 2.32 0.05 1.4

Vmax6r Measured 0.2 - - 0.2

km6UDP Estimated 0.4 0.63 0.18 0.3

km6S uc6P Estimated 0.16 0.56 0.06 0.1

ki6F6P Measured 0.4 - - 0.4

Vmax11 Estimated 0.99 1.451 0.089 1

km11S uc Estimated 99.59 102.48 96.70 100

Table 3.7: Final parameter values with confidence intervals after solving all non-

identifiability problems. To achieve this, three non-identifiable parameters (ki4F6P, Vmax6r

and ki6F6P) were explicitly measured and the rest were estimated.
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Figure 3.9: Simulation of the dynamics states in sugarcane culm model. a) Simulation

based on the estimated parameter values. b) Simulation based on the actual parameter

values.

signalling pathway [Raue 2009]. In that application they analysed the model states x

along the profile likelihood of the practical non-identifiable parameter p3 to determine

the measurement data needed to solve this practical non-identifiability. As species x2 and

species x3 had large variations on their trajectory they measured the fraction of dimerized

pSTAT(x3) relative to total phosphorylated STAT(x2 + x3) in cytoplasm.

Table 3.7 summarizes the final estimation results for all parameters together with their

confidence intervals. The estimated values all closely approach the original value and all

the original values lie within the confidence intervals of the estimation. This illustrates

that after resolving parameter non-identifiability, CSUKF can estimate parameters with

both high and low magnitude equally well. With the estimated parameter values in hand

the dynamics of the sugarcane model states were simulated. The results of this simulation

are illustrated in Figure 3.9a, while Figure 3.9b shows the same state dynamics generated

using the original parameter values. As can be seen the dynamics in both cases show the

same behaviour. They are presented separately as when plotted together the dynamics

of the two cases cannot be discerned. Therefore it can be concluded that the framework

estimated the parameters with high accuracy and the estimated parameter values represent

the real dynamics of the model.

3.4 Using the informed prior

Despite the most sophisticated measurement techniques and powerful measurement

devices developed to measure in-vivo biological data, efficient methods to measure
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biochemical parameters are still limited [Maerkl 2007]. Even after immense development

in the measurement devices of time series data, these datasets are most often noisy and

incomplete due to the model complexity and the limitation of measurement techniques

[Jia 2011]. Thus it may not be possible to always measure parameter values directly

nor to have more data points in the time-series data, in order to solve parameter non-

identifiability. To overcome this limitation, the Bayesian treatment is applied to non-

identifiability. As the CSUKF is an extension of dynamic Bayesian inference, the CSUKF

is used to provide this solution. Using this approach the CSUKF can uniquely estimate

the parameter values even in the case of non-identifiability, provided that an informed

prior distribution for the parameters has been defined. The CSUKF is based on a Gaussian

distribution for both the model and prior pdf, which belongs to the exponential family,

thus the conjugate prior distribution can be used to define this prior. This leads to the same

form of the transformed pdf [Suzdaleva 2007]. An example of a similar treatment of non-

identifiable parameters can be found in the work of Lindley and El-Sayyad where they

used Bayesian inference to estimate parameters subject to a linear functional constraint

[Lindley 1968]. In this thesis I first applied this approach to the previous sugarcane model

and then to a gene regulatory network with 29 parameters to be estimated.

In this experiment the prior information into the distribution is introduced through

the square-root of the covariance matrix for the initial state estimation matrix, V and the

state noise covariance matrix, Q. Results from the ranking of the parameters are used

to formulate this informed prior. Both the V and Q matrices are first initialized on the

basis of the rank of the parameters. For V , the high ranking parameters are initialized

with low standard deviations as they are more sensitive towards the model and can be

determined more confidently, while the low ranking parameters were initialized with

high standard deviations. Similarly the matrix Q was initialized with the square of these

standard deviation values. The state variables are again initialized with small random

numbers, between zero and one. Table 3.8 summarizes the parameter estimation results

for all the 12 parameters of the sugarcane model using the informed prior distribution.

All parameters were estimated with unique values where the highest standard deviation

was for ki4F6P having the value 1.16 which is 18% of its estimated mean value. However

the estimation accuracy is not equally good for all the parameters as six parameters have

relative percent error more than 100%. This result could be due to the fact that although

Bayesian estimation can uniquely estimate parameter values, it does not guarantee the

accuracy of the estimation, as explained by [Samaniego 2010]. However successful

estimation with generally low standard deviations conceptually proves the hypothesis
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Parameter Name Original Value Estimation Std. Dev.

ki1Fru 1.00 1.00 0.0100

ki2Glc 1.00 1.00 0.0100

ki3G6P 0.10 0.16 0.0080

ki4F6P 10.00 6.26 1.1600

ki6S uc6P 0.07 0.25 0.0010

ki6UDPGlc 1.40 0.14 0.0005

Vmax6r 2.00 0.07 0.0003

km6UDP 0.30 4.69 0.0550

km6S uc6P 0.10 3.49 0.0100

ki6F6P 0.40 0.93 0.0050

Vmax11 1.00 1.03 0.0200

km11S uc 100.00 104.64 2.1200

Table 3.8: Result of all the 12 parameter estimation using informed prior. 100 runs of the

estimation was made to calculate the statistics.

that the framework can uniquely estimate parameters even in the presence of non-

identifiability.

3.5 Gene regulatory network

To verify the applicability of the proposed framework to a wide variety of biological

models, in particular where it is not possible to acquire additional measurements, the

framework is applied to estimate the parameters of a gene regulatory network. The

first model in Dream6 estimation of model parameters challenge is selected for this

experiment [Prill 2010, Schneider 2011]. The purpose of this challenge was twofold, first

to develop, improve and apply optimization methods for parameter estimation. Second

to propose an efficient experimental design that is specifically suited for complex models

with limited and noisy data. The schematic diagram of the model is given in Figure 3.10.

The model assumes linear kinetics for mRNA degradation and protein synthesis and

degradation. mRNA synthesis is typically modelled using Hill-type kinetics with one

or two regulatory inputs. Each regulatory input works as an inhibitory or an activating

input. A constant rate of transcription is assumed when there is no regulatory input to a

gene. In the network depicted in Figure 3.10, lines connecting protein coding sequences

with proteins represent a protein production process. For simplicity the two steps in

protein production process, the transcription and translation, are not explicitly shown
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Figure 3.10: Schematic diagram of the gene regulatory network. Abbreviations are as

follows, as: activator binding site; rs: repressor binding site; rbs: ribosomal binding

site; prom: promoter; cod: protein coding sequence; prot: protein. The v’s denote the

activation and repression reactions. Details of the rate laws can be found in the A.3

in the figure but they are included in the mathematical formulation. The transcription

process is modelled using a single rate equation which is expressed as a sum of the

transcription activity of all activators (as) in a specific promoter region multiplied by the

product of the transcriptional activity of all the repressor (rs) binding sites in the same

region. The rate of production of protein is given by linear rate equations multiplying the

ribosomal strength with the transcription rate.

The contest provides a limited amount of microarray data which gives time-courses of

all mRNAs as a start up data. In addition it also provides the network topologies and

mathematical descriptions of the models at the start up. To reflect the actual scientific

practice, additional experimental can be bought later on. Those are the time-course

data for mRNA and proteins in response to different network perturbations namely gene

deletion, siRNA-mediated knock-down and change of RBS activity.

The model had a total of 30 parameters 29 of which are to be estimated. Only the mRNA

degradation rate constant is kept fixed to a value of one. Though the values of all protein

degradation rate constants are identical they are unknown and consequently must be

estimated. The remaining parameters, the two regulation process parameters, activation

Kd and repression h, the promoter strength and the ribosomal binding site strength, have

to be estimated.
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The gene regulatory network involves a number of biological mechanisms for which

measurement values are rarely available, such as chromatin, transcription and so on.

Parameter estimation in the presence of such hidden variables is a difficult task due to

the complex formulation of the objective function. CSUKF has the ability to jointly

estimate parameters and the hidden variables or unobserved states in a gene regulatory

network. In this experiment the only data available is the time-series data for all mRNAs

and protein abundance for wild type and mutant with increase of RBS4 activity by 100%.

The main focus in this experiment is to determine a unique solution utilizing the proper

prior of the probability distribution, despite parameters found to be non-identifiable in

the conventional sense.

Experimental setup The measurement data is provided over the interval from zero

to 20 seconds with a step size of one second. The Dream6 organizers used a noise model

ynoisy = max[0, y+0.1× r1+C× r2×y] to simulate this synthetic noisy measurement data,

where y is the simulated value, r1 and r2 are Gaussian random variables with standard

deviation of one and C = 0.2. The lower bound of the constraint was set at 10−8 and

the upper bound was set at 100. The parameters are initialized to small random numbers

between zero and one. Experiments with two phases are conducted for the estimation

with informed prior. First the CSUKF is used to estimate parameters with the mutant

data of high RBS4 activity, specifying the prior distribution of the model parameters

based on their ranking. The point estimate and covariance matrix from this experiment

is then used to form the informative prior for the final phase of estimation with the wild

type data.

3.5.1 First phase experiment

With the RBS4 mutant data, the first phase of experiment is conduced which is again

divided into two stages. In the first stage the ranking of the parameters are calculated

using the method described in section 2.3.2. With no information of the pdf at the start

of the experiment, the diagonal of both the state-estimation covariance matrix, P, and

process noise covariance matrix, Q, are initialized with small random numbers between

0.001 to 0.1. The measurement noise covariance matrix R is initialized according to the

noise model discussed in section 3.5. In the second stage this ranking is used to formulate

the initial state estimation covariance matrix P and the process noise covariance matrix

Q. Table 3.9 lists the ranking of the parameters and the corresponding standard deviations

used to formulate the informed prior. In both the estimations the parameters are initialized

to small random numbers as no information on the parameter values were available.



98 Chapter 3. Application of the framework

Parameter Name Ranking Initialized Std. Dev.

rbs4 strength 1 0.001

pro6 strength 2 0.002

v8 h 3 0.003

pro1 strength 4 0.004

pro5 strength 5 0.005

pro3 strength 6 0.006

pro2 strength 7 0.007

pro4 strength 8 0.008

rbs6 strength 9 0.009

rbs5 strength 10 0.01

v5 h 11 0.011

v7 Kd 12 0.012

v6 Kd 13 0.013

p degradation rate 14 0.014

v4 h 15 0.015

v7 h 16 0.016

rbs1 strength 17 0.017

rbs3 strength 18 0.018

v6 h 19 0.019

v8 Kd 20 0.02

v3 h 21 0.021

rbs2 strength 22 0.022

v5 Kd 23 0.023

v2 h 24 0.024

v1 Kd 25 0.025

v2 Kd 26 0.026

v3 Kd 27 0.027

v1 h 28 0.028

v4 Kd 29 0.029

Table 3.9: Ranking and standard deviation of the parameters used for formulating the

informed prior. The standard deviations are used to initialize the diagonal entry of the

matrix V and Q.
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3.5.2 Second phase experiment

In the second phase of the experiment the informative prior is formulated from the

information gathered in the first phase. The parameter values and the estimation

covariance matrix calculated in the first phase of the parameter estimation is used to

form the informative prior pdf for the second phase of the estimation. In this experiment

the wildtype data is used as the measurement data. The parameters other than the ones

involved in the increase of RBS4 activity (initialized to half of the mean value) are

initialized to the values with small random perturbation around the mean values of the

first phase experiment. The square root of the P matrix is initialized to the values of

the final V matrix of the first phase estimation. The state error covariance matrix Q is

initialized with the same matrix formulated with ranking used in the first phase. The

measurement noise covariance matrix R is initialized according to the noise model as

described in section 3.5. The experiment is repeated 50 times.

Table 3.10 summarizes the results of the parameter estimation performed both with

and without the informed prior. The results present the mean and standard deviation from

performing each estimation 50 times. It can be seen from this table that the estimated

values reach closer to the actual value even after random initialization, indicating a

higher estimation accuracy in the experiment when using the informed prior compared

to the estimation accuracy without informed prior. This accuracy could be due to

the use of two sets of data, the wild type and the mutant. However, this increase in

accuracy is still not satisfactory enough as six parameters have percent relative error

more than 100%. Huang et al. also reported such unsatisfactory fitting for some of

the subjects in their Bayesian inference procedure with informed prior to study HIV

dynamics [Huang 2006]. The estimation result conducted with informed priors could

estimate parameters more concisely with low standard deviations (maximum standard

deviation is of pro4 strength with 60% of the mean value) compared to the estimation

with no informed priors (maximum standard deviation for three parameters go beyond

100% of the mean value). This low standard deviation indicates that the framework

can uniquely estimate the parameter values of the model in the presence of informative

prior. Huang et al. also had similar result of low standard deviation in the estimation

[Huang 2006]. Therefore it can be summarized that the informed prior helps to uniquely

estimate the parameter values of this model with higher accuracy. This illustrates the

applicability of the proposed method of using informed prior for CSUFK to uniquely

estimate parameters of a kinetic model. Additional work still needs to be done to increase

the estimation accuracy, that is get as close as to the actual value which will decrease the
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relative percent error. This would be one of the main foci of future work.

With Informed Prior Without Informed Prior

Parameter Name

Actual

value Estimate Std. Dev. Estimate Std. Dev.

p degradation rate 0.8 0.85 0.05 0.72 0.27

pro1 strength 3.0 3.04 0.05 2.94 0.15

pro2 strength 8.0 5.85 0.47 6.66 2.58

pro3 strength 6.0 7.12 0.68 9.14 4.43

pro4 strength 8.0 2.93 1.78 1.50 1.87

pro5 strength 3.0 3.03 0.07 3.46 0.80

pro6 strength 3.0 3.27 0.03 3.27 0.54

rbs1 strength 3.9 3.98 0.23 3.33 1.41

rbs2 strength 5.0 5.94 0.33 4.82 2.18

rbs3 strength 5.0 5.13 0.32 4.31 1.56

rbs4 strength 1.0 1.46 0.29 1.29 0.81

rbs5 strength 5.0 5.23 0.31 3.77 1.56

rbs6 strength 5.0 5.03 0.28 4.55 1.64

v1 Kd 1.0 1.54 0.18 1.40 1.62

v1 h 4.0 2.54 0.92 2.98 2.36

v2 Kd 1.0 1.87 0.15 1.17 0.74

v2 h 2.0 3.74 1.28 3.32 2.09

v3 Kd 0.1 0.56 0.18 0.61 0.31

v3 h 2.0 4.05 0.34 2.99 2.20

v4 Kd 10.0 8.04 1.12 7.17 3.10

v4 h 4.0 2.49 0.42 2.97 2.06

v5 Kd 1.0 2.22 0.41 2.16 1.52

v5 h 1.0 1.20 0.08 1.27 0.29

v6 Kd 0.1 0.28 0.02 0.64 0.57

v6 h 2.0 3.20 0.39 5.55 3.07

v7 Kd 0.1 0.26 0.02 0.48 0.28

v7 h 2.0 2.78 0.35 5.34 3.03

v8 Kd 0.2 0.41 0.30 2.14 2.40

v8 h 4.0 1.77 0.33 1.12 0.50

Table 3.10: Estimation results with and without the informed prior. The results are

presented as the mean and standard deviation for each estimated parameters, calculated

with 50 repetitions.
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Conclusion and outlook

Mathematical models of biological networks help to understand the functional and

physical interactions between different parts of a cell. Although different kinds of

mathematical models have been developed, detailed kinetic models have been the most

effective, due to their ability to describe a more detailed and fine-grained picture of the

mechanism of the network. These kinetic models heavily depend on accurate parameter

values to correctly simulate the behaviour of the original system. However a lack of

information on the parameter values from wet lab experiments derails the successful use

of kinetics for biological models. This necessitates the use of efficient computational

methods to estimate the missing parameter values. Numerous computational methods

have been developed in recent times to successfully estimate these parameter values.

Most of these estimation methods are based on minimizing the difference between the

observed and the simulated quantities. Due to the non-convex nature of the parameter

estimation problem for most biological models, the majority of conventional parameter

estimation methods do not guarantee that an optimal solution is ever found and often

fail to arrive at satisfactory solutions. The partially observable nature of biological

systems further complicates the use of conventional methods for the estimation problem.

Finally the non-identifiability issue of the parameters due to the structure of the model

and complexity in achieving good measurement data, with respect to both quantity and

quality, further inhibits the applicability of conventional methods. This thesis focuses on

the development of a framework that can handle all of these complexities of parameter

estimation, more efficiently than the conventional methods. This framework proposes

a novel approach to parameter identification combining a newly proposed filtering

technique with existing approaches for successful parameter estimation of the kinetic

models. It considers both the system and measurement noises during the estimation

which is an important feature for all biological models. As reasoning under uncertainty

is essential in biological models, the proposed framework has the strength of addressing

the parameter estimation problem through general probability theory. It also uses the

power of representing partially observable dynamic system through state space models

to facilitate the estimation of these parameter values. This framework consists of two
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modules, one, the parameter estimation module and the other, the identifiability analysis

module. The parameter estimation module consists of a novel filtering technique based on

the extension of SQ-UKF, the constrained square-root unscented Kalman filter (CSUKF).

The CSUKF provides an efficient, numerically stable filtering technique capable of

making the estimation within a constrained parameter space. This method considers the

noise in the system due to the uncertainty in the model and the noise in the measurement

data due to the inaccuracy in the measurement method or device. The CSUKF applies

a widely used concept in engineering for parameter estimation, to jointly estimate the

states of the non-linear dynamic systems and the parameters. The efficiency of this

method has been demonstrated with the state estimation of the Higgins-Sel’kov oscillator

and parameter estimation of the upper part of glycolysis model. When applied to the

state estimation of the Higgins-Sel’kov oscillator from the combined measurement data,

the estimation converges quickly to the actual state value. During the estimation of the

four parameter values of the glycolysis model CSUKF performs with an high accuracy

with the extra benefit of ensuring numerical stability of the algorithm. CSUKF also

showed independence on the initial starting values when tested with different random

values between 0.01 and 20 in this experiment. The second module is the parameter

identifiability analysis module. This module consists of a profile likelihood based

identifiability analysis used to identify both the structural and practical non-identifiable

parameters. This module also makes use of an orthogonal ranking method to identify

the parameters having the highest influence on the model states. This sensitivity based

ranking helps to find the parameters that need to be estimated with higher accuracy.

It also includes methods for correlation and functional relationship identification in

order to identify dependency relationships between parameters. To uniquely estimate

these parameters these relationship must first be resolved. The integration of all

these information helps in solving the non-identifiability of the parameters. This has

been demonstrated for the parameters of the sugarcane culm model. Initially CSUKF

was applied in this model to find out the parameters that are identifiable based on

orthogonality and also to rank the parameters depending on their importance. These

analysis found 3 out of 12 parameters to be non-identifiable. The thorough identifiability

analysis using the profile likelihood based method confirmed this result by determining

these three parameters to be practically non-identifiable. This profile likelihood method

also identified three more parameters to be practically non-identifiable as well as two

other parameters to be structurally non-identifiable. The measurement data of three

parameters ki4F6P, Vmax6r and ki6F6P as well as more data points in the time series of
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S uc and Fruc were considered to be available in order to solve these non-identifiability.

However, the general ability to solve parameter non-identifiability is hampered if it is not

possible to collect extra measurement data, which is often the case in biological models.

In this case, an informed prior from Bayesian inference theory can be used to uniquely

estimate the parameter values, even in the presence of non-identifiability. As CSUKF

is considered to be a variant of Bayesian inference, this treatment of non-identifiability

is used in conjunction with CSUKF for the unique estimation of the parameters in this

framework. This informed prior is formulated with the help of the information from

different parts of the identifiability analysis module. The performance of this estimation

has been demonstrated by estimating the parameters from the sugarcane model and the

gene regulatory model. When applied to the sugarcane model, it estimates ten parameters

with low standard deviation ≤ 0.01 and two parameters with relatively high standard

deviation (for ki4F6P, 18% of its mean value and for km11S uc, 2% of its mean value). When

applied to the gene regulatory model all the parameters were estimated with considerably

low standard deviation. Having lower standard deviation for the parameters estimated

using the CSUKF with informed prior indicates less variance in their estimation and thus

conceptually validating the hypothesis that the parameters can be uniquely estimated

using CSUKF when informed prior is used. However in both the experiments the

estimation result using the informed prior does not reach equally well to the actual value

for all the parameters. This indicates that further improvement needs to be made in this

approach to make it more efficient.

The framework developed in this thesis would help to estimate the unknown

parameter values of a model in a more efficient and robust way by solving the non-

identifiability of the parameters through different approaches included in the framework.

This work makes it possible to have more accurate biological models through identifying

the parameter values within a biologically significant range at the same time considering

the uncertainty in the model and data. It also includes an approach that uniquely estimates

the parameters in cases where it is not possible to solve the non-identifiability. All these

features make the framework robust enough to be used in large and sparse biological

models.

While conducting extensive research in the field of parameter identifiability and

estimation, a number of issues related to this research arose. Although not central to

the research conducted in this thesis, answering these open questions might provide a

breakthrough in their respective fields. A brief summary of the most interesting questions

are presented.
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• Flux calculation with dynamic labelling: The framework proposed in this thesis

could be applied to other fields of biological models such as determining fluxes

from 13C non-stationary labelling data. Dynamic 13C metabolic flux analysis,

represents biological systems with ODEs for isotopic transient phases and produces

time-series data. This framework fits perfectly with the flux calculation in these

systems. At the same time this framework would also help to solve one of

the critical bottlenecks of such isotopic non-stationary MFA which is the the

flux non-identifiability problem. It can also be used to determine accurate flux

confidence intervals which would make it easier to interpret the flux results for

physiological significance. More generally the framework can be used for any

estimation purposes where time-series data is available.

• Adaptive CSUKF: One of the aspects not directly addressed in this thesis, is

the initialization of the process and measurement noise distribution. In the thesis

they are mostly initialized from knowledge of the model or calculated from the

noise model of the measurement data. However precise knowledge on this noise

distributions specially for the process noise Q would help in the accuracy of the

estimation, specifically formulating the informed prior for uniquely estimating

the parameters. Adaptive methods can estimate noise covariance at the same

time as estimating the parameter values, which would automatically tune the

filter parameters to match the original statistics. This adaptive method might be

formulated in fuzzy logic, by modifying the maximum-likelihood principle to

approximate the error covariance matrix or on a master-slave basis, where the

master works as a regular UKF to estimate states or parameters and the slave

estimates the diagonal of the noise covariance matrix for the master.

• CSUKF with non-Gaussian posteriors: Extending this framework for modelling

the posterior distribution with heavily tailed density functions, such as the student-

t distribution, would make the framework applicable to a large number of

applications. Currently the CSUKF only propagates the mean and covariance of

the Gaussian posterior and updates on the Kalman filter. Propagating heavy tailed

distribution is not straight forward in CSUKF as only the mean and covariance

would not propagate this distribution. It would also need to propagate the fourth

order moments, which would require a modifications in the sigma points.

• Scaling parameters: In this thesis the CSUKF was not tested with different values

of the scaling parameters. There are some guidelines provided in the literature for
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the values of the scaling parameter which were used in this thesis but no definitive

criterion was set to judge their values. These scaling parameters can also be made

adaptive to adjust in conjunction with the parameter estimation.

• Enhancing accuracy when used with informed prior: When it is not possible

to have more measurement data either qualitatively or quantitatively then the

framework tries to determine a unique estimation of parameter values by using the

informed prior. However, when using the informed prior, the framework focuses

on providing a unique estimation but not on the accuracy of the estimation. As a

result, in some cases the estimation accuracy drops for some of the parameters as

shown in Table 3.8 and 3.10. Extensive research on improving the accuracy while

uniquely estimating parameters in the presence of non-identifiability is needed to

make this framework more efficient.

• Use in synthetic biology: Synthetic biology aims at engineering biological

systems for specific biotechnological or biomedical purposes. As synthetic biology

shares some of the common problems of systems biology, the proposed framework

can be used to engineer synthetic biological systems by inferring both structural

and parametric information.

The above lists provide a portion of the most promising research opportunities on

this parameter estimation framework in terms of their potential benefit to the research

community. Part of it is already planned to carry out in the existing group, specifically

to apply this framework in the dynamic tracer experiments. With small modifications

the complete framework can be applied to various fields solving a large paradigm of

problems in and out of biology.
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A.1 Rate law of the Sugarcane culm model

Rate laws used in the Sugarcane calm model, developed as Rohwer et al. [Rohwer 2001]

v1 = Vmax1

[Fruex]

km1Fru,ex
(

1 + [Fru]
ki1Fru

)

+ [Fruex]

v2 = Vmax2

[Glcex]

km2Glc,ex
(

1 + [Glc]
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+ [Glcex]
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v5 =

(
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v11 = Vmax11

[S uc]

km11S uc + [S uc]

The ODEs are:

d[Glc]

dt
= v2 − v3 + v9

d[Fru]

dt
= v1 − v4 − v5 − v8 + v9

d[HexP]

dt
= v3 + v4 + v5 − 2v6 − v8 − v10

d[S uc6P]

dt
= v6 − v7

d[S uc]

dt
= v7 + v8 − v9 − v11

A.2 Rate law of the Glycolysis model

Rate laws used in Glycolysis model, proposed in [Klipp 2005]

v1 =
Vmax,1[ATP]

K1ATP

v2 = k2[ATP][Gluc6P]

v3 =

V
f
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+
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2
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(
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v5 = k5[Fruc1, 6P2]

v8 = k8 f [ATP][AMP] − k8r([ADP])2

The ODEs are:

d[Gluc6P]

dt
= v1 − v2 − v3

d[Fruc6P]

dt
= v3 − v4

d[Fruc1, 6P2]

dt
= v4 − v5

d[ATP]

dt
= −v1 − v2 − v4 + v6 − v7 − v8

d[ADP]

dt
= v1 + v2 + v4 − v6 + v7 + 2v8

d[AMP]

dt
= −v8

A.3 Rate law of the Gene regulatory network

as1 =
(

p1

v2 kd
)v2 h

(1 +
p1

v2 kd
)v2 h

as2 =
(

p1

v1 kd
)v1 h

(1 +
p1

v1 kd
)v1 h

as3 =
(

p1

v3 kd
)v3 h

(1 +
p1

v3 kd
)v3 h
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rs1 =
1

1 + (
p6

v5 kd
)v5 h

rs2 =
1

1 + (
p5

v8 kd
)v8 h

rs3 =
1

1 + (
p4

v6 kd
)v6 h

rs4 =
1

1 + (
p2

v4 kd
)v4 h

rs5 =
1

1 + (
p4

v7 kd
)v7 h

r1 = pro1 strength

r2 = pp1 mrna degradation rate ∗ pp1 mrna

r3 = rbs1 strength ∗ pp1 mrna

r4 = p1 degradation rate ∗ p1

r5 = pro2 strength ∗ ((as1) ∗ (rs1))

r6 = pp2 mrna degradation rate ∗ pp2 mrna

r7 = rbs2 strength ∗ pp2 mrna

r8 = p2 degradation rate ∗ p2

r9 = pro3 strength ∗ ((as3) ∗ (rs4))
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r10 = pp3 mrna degradation rate ∗ pp3 mrna

r11 = rbs3 strength ∗ pp3 mrna

r12 = p3 degradation rate ∗ p3

r13 = pro4 strength ∗ ((as2) ∗ (rs2))

r14 = pp4 mrna degradation rate ∗ pp4 mrna

r15 = rbs4 strength ∗ pp4 mrna

r16 = p4 degradation rate ∗ p4

r17 = pro5 strength ∗ (rs3)

r18 = pp5 mrna degradation rate ∗ pp5 mrna

r19 = rbs5 strength ∗ pp5 mrna

r20 = p5 degradation rate ∗ p5

r21 = pro6 strength ∗ (rs5)

r22 = pp6 mrna degradation rate ∗ pp6 mrna

r23 = rbs6 strength ∗ pp6 mrna

r24 = p6 degradation rate ∗ p6

The naming of the variables are, as: activator binding site, rs: repression binding site,

rbs: ribosomal binding site strength, pro: promoter strength, p: protein concentration,

pp: protein production process. The ODEs of the model are:
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d(pp1 mrna)

dt
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= r7 − r8

d(pp3 mrna)

dt
= r9 − r10

d(p3)

dt
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dt
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dt
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dt
= r17 − r18

d(p5)

dt
= r19 − r20

d(pp6 mrna)

dt
= r21 − r22

d(p6)

dt
= r23 − r24
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