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1. Introduction 

Chromosomes consist of DNA, associated proteins and RNA together forming 

chromatin. Chromatin is traditionally subdivided into hetero- and euchromatin, 

according staining intensities with DNA-dyes (Heitz, 1929). Heterochromatin is 

enriched with repetitive and non-coding DNA and strongly condensed, while 

euchromatin is less condensed and characterized by marks typical for ‘open’ or 

‘active’ chromatin (Grewal and Elgin, 2002). 

DNA is highly compacted during nuclear divisions visible as defined chromosomes 

during metaphase. Histones play a decisive role for this DNA condensation. 

Typically, two molecules each of the major histones H2A, H2B, H3 and H4 form an 

octameric nucleosome core around which DNA is wrapped. Further DNA 

condensation is mediated by association of the ‘linker histone’ H1 to DNA between 

nucleosomes. Moreover, histones are crucial for diverse epigenetic mechanisms. 

They are manifold post-translationally modified (methylation, acetylation, 

phosphorylation, ubiquitination, sumoylation, ADP-ribosylation, deimination und 

proline-isomerisation) mainly in their variable N-terminal part (Kouzarides, 2007).  

Additionally, there is a variety of histone variants involved in diverse processes; e.g. 

H2AZ functions as ‘border element’ between eu- and heterochromatin in yeast 

(Raisner et al., 2005) or mediates the thermosensory response on the global 

chromatin level in Arabidopsis thaliana (Kumar and Wigge, 2010), H2AX is involved 

in DNA double strand break repair (Lowndes and Toh, 2005), H3.3 is frequently 

associated with actively transcribed genes (Ahmad and Henikoff, 2002). The 

centromeric histone H3 variant cenH3 is found in centromeric nucleosomes (Allshire 

and Karpen, 2008). 

 

1.1 Centromere, the locus of kinetochore assembly 

The centromere, a specialized chromosomal locus, is traditionally defined as the 

primary constriction of a condensed metaphase chromosome. Transiently a multi-

protein complex (kinetochore) assembles at centromeres that interacts with spindle 

microtubules mediating faithful transmission of the genetic material during mitosis 
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and meiosis. Kinetochore proteins are responsible for sister chromatid cohesion, 

chromosome movement and cell cycle regulation (Dorn and Maddox, 2012). 

Establishment and maintenance of active centromeres is primarily based on the 

presence of cenH3, originally termed CENP-A (mammalian centromere protein A; 

Earnshaw and Rothfield, 1985). CenH3 replaces H3 in centromeric nucleosomes and 

thus marks centromeres epigenetically initiating kinetochore formation (Kalitsis and 

Choo, 2012). Although centromere function is conserved in eukaryotes (Houben and 

Schubert, 2003), the centromeric DNA composition is highly variable and except for 

budding yeast (Clarke and Carbon, 1985) centromeric DNA sequences are neither 

required nor sufficient for centromere identity (Kalitsis and Choo, 2012). 

Nevertheless, often plant centromeres contain distinct satellite DNA sequences and 

families of long terminal repeat (LTR) retrotransposons (Ty3/gypsy elements of the 

CRM clade) (Houben and Schubert, 2003; Neumann et al., 2011).  

 

1.2 The centromere-specific histone H3 variant cenH3 

CenH3 has a rather conserved C-terminus known as histone fold domain including 

the loop1 region (also known as CAT-(CENP-A targeting) domain), while the N-

terminus is more variable in size and amino acid composition between species 

(Henikoff and Dalal, 2005) (Fig 1).  

 

Figure 1 The centromere-specific histone H3 variant cenH3: The N-terminus is highly variable in terms 

of amino acid composition and length, while the C-terminus is highly conserved except the loop1 

region (also known as CAT-Domain). A) Schematic structure of the conserved C-terminus known as 
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histone fold domain. Highlighted the variable loop1 region; exemplified amino acid sequence of the 

loop1 region of A. thaliana cenH3 shown. B) Immunolocalization of cenH3 at the monocentric 

centromeres of Hordeum bulbosum (modified according to Sanei et al., 2011). CenH3 (red) and DNA 

(blue). 

The loop1 region is required for cenH3 centromere targeting (Black et al., 2004; 

Lermontova et al., 2006) while the N-terminus is required for interaction with 

kinetochore components in yeast (Chen et al., 2000). Absence of cenH3’s N-terminus 

allows its targeting, recruitment of kinetochore proteins, and does not affect severely 

mitosis in A. thaliana (Lermontova et al., 2006; Ravi et al., 2010; Lermontova et al., 

2011). However, the N-terminal part is essential for meiotic cenH3 loading in plants 

(Lermontova et al., 2011; Ravi et al., 2011). 

 

1.3 Regulation of cenH3 

As a key player in active centromeres, cenH3 expression and its centromeric 

turnover need to be tightly regulated at the transcriptional and post-translational level. 

Any error in this hierarchy can have deleterious effects; i.e. centromere inactivation, 

dicentric chromosome formation, neocentromere formation, ectopic kinetochore sites, 

etc. (Allshire and Karpen, 2008; Torras-Llort et al., 2009; Kalitsis and Choo, 2012).  

CenH3 overexpression in various species (Van Hooser et al., 2001; Vermaak et al., 

2002; Tomonaga et al., 2003; Heun et al., 2006; Lam et al., 2006) may have harmful 

effects due to ectopic non-centromeric incorporation. Mice and A. thaliana 

heterozygous cenH3 mutants are viable and fertile, whereas homozygous mutants 

are embryo-lethal (Howman et al., 2000; Ravi and Chan, 2010). Drosophila 

homozygous cenH3 embryo mutants show severe mitotic defects and die during 

embryogenesis (Blower et al., 2006). RNAi-mediated depletion of cenH3 in 

Caenorhabditis elegans embryos led to severe mitotic defects, while meiosis was 

unaffected (Monen et al., 2005). Thus, apparently cenH3 is not required for meiotic 

segregation in C. elegans (Monen et al., 2005). A. thaliana cenH3 RNAi 

transformants showed a reduced number of mitotic divisions and reduced fertility due 

to meiotic segregation errors inversely correlating with the remaining endogenous 

cenH3 amount (Lermontova et al., 2011). No T-DNA insertion lines within the cenH3 
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coding region are available for A. thaliana indicating that cenH3 is an essential gene 

needed for viability and any knock-out of cenH3 is lethal.  

Ravi and Chan (2010) complemented a heterozygous A. thaliana cenH3 null mutant 

(cenh3-1) with various cenH3 gene constructs (Ravi et al., 2010) allowing functional 

studies of cenH3 in segregating progenies without endogenous cenH3.  

 

1.3.1 Loading of cenH3 

After DNA replication, the amount of histones is diluted by half. Canonical histones 

are loaded parallel to DNA synthesis, while some histone variants are integrated in a 

replication-independent manner (Ransom et al., 2010). Centromeric deposition of 

cenH3 occurs during anaphase/telophase to mid-G1 in metazoans (Jansen et al., 

2007; Schuh et al., 2007), during G2 in plants, protozoans and fission yeast 

(Lermontova et al., 2006; Dubin et al., 2010; Lando et al., 2012) and during S phase 

in budding yeast (Pearson et al., 2004).  

 

1.3.2 Transcriptional regulation of cenH3 

Various studies showed a strict regulation of cenH3 expression and its centromeric 

loading. CenH3 overexpression (Van Hooser et al., 2001; Vermaak et al., 2002; 

Tomonaga et al., 2003; Heun et al., 2006; Lam et al., 2006) and cenH3 expression 

driven by the S phase-specific histone H3 promoter (Shelby et al., 1997) resulted in 

its ectopic non-centromeric incorporation and can lead to severe segregation errors. 

Proteolytic cenH3 regulation contributes to centromere-restricted incorporation 

(Moreno-Moreno et al., 2006; Ranjitkar et al., 2010). Specific chaperones such as 

HJURP (Dunleavy et al., 2009; Shuaib et al., 2010), loading and maintenance factors 

(Stellfox et al., 2012) and a distinct (peri-)centromeric chromatin environment 

(Bergmann et al., 2012) are important for centromere activity. Hence, the interplay of 

cell cycle stage-specific expression regulation together with proteolytic degradation 

and interaction with chaperones and loading/maintenance factors of cenH3 likely 

determines establishment and maintenance of kinetochores at functional 

centromeres. 
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In silico studies of the upstream region of the putative A. thaliana cenH3 promoter 

(cenH3pro) indicated two potential E2F transcription factors (TFs) binding sites 

(GCGGGAAA: -163 bp and -115 bp upstream of ATG) (Lermontova et al., 2006).  

In A. thaliana eight E2F/DP TFs members are found; classified into three typical 

E2Fs (E2Fa,b,c), two dimerization proteins (DPa,b), and three atypical E2Fs 

(E2Fd/DEL2, E2Fe/DEL1, E2Ff/DEL3) (Mariconti et al., 2002). Typical E2Fs are 

involved in the G1-to-S and G2-to-M transition (Sabelli and Larkins, 2009). E2Fa and 

E2Fb transcriptionally activate genes related to cell division (De Veylder et al., 2002; 

Magyar et al., 2005; Sozzani et al., 2006), while E2Fc represses genes related to cell 

proliferation and mediates the interplay between cell division and endoreduplication 

(del Pozo et al., 2002; del Pozo et al., 2006). Typical E2Fs form heterodimers (with 

DPa or DPb) in a cell cycle stage-dependent manner for target binding. 

Retinoblastoma-related (RBR) protein binds transiently in a hypophosphorylated 

state typical E2Fs thus inhibiting their TF activity. CYCD3;1 in complex with CDKA;1 

regulates cell-cycle entry by RBR phosphorylation (Nakagami et al., 2002). RBR-

phosphorylation releases RBR-bound E2Fs that in turn can now regulate their 

targets. Also, E2F-RBR complexes recruit chromatin remodelling repressive enzymes 

to E2F-responsive promoters (Luo et al., 1998; van den Heuvel and Dyson, 2008). 

On the contrary, atypical E2Fs act in a DP- and RBR-independent manner and 

repress transcription (Mariconti et al., 2002). However, whether they compete with 

typical E2Fs for binding sites or whether they actively repress E2F targets genes is 

unclear (Berckmans and De Veylder, 2009). Atypical E2Fs play a role in regulation of 

endocycle, cell size, proliferation and DNA-damage response (Berckmans and De 

Veylder, 2009). 

 

1.3.3 Post-translational regulation of cenH3 

Data concerning post-translational modifications of cenH3 are limited. In 

Saccharomyces cerevisiae cenH3 methylation of arginine 37 (R37) is required for 

kinetochore integrity and chromosome segregation (Samel et al., 2012). Recently, 

acetylation during G1/S of lysine 124 of human cenH3 (K124) was found (Bui et al., 

2012). In conjunction with histone H4 K79 acetylation it may play a structural role; i.e. 

acetylation of nucleosomal cenH3 might loosen the DNA-histone association and 
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therefore may increase accessibility of cenH3 nucleosomes to modifying or 

interacting proteins (Bui et al., 2012). 

The best studied epigenetic cenH3 modification is phosphorylation of serine 7 of 

human cenH3. Various studies showed cell cycle-dependent S7 phosphorylation 

during mitosis by Aurora kinase A (Kunitoku et al., 2003), B (Zeitlin et al., 2001b; 

Zeitlin et al., 2001a), and C (Slattery et al., 2008), which is essential for kinetochore 

function and correct chromosome alignment. Cell cycle-dependent phosphorylation of 

maize cenH3 at serine 50 was described and it is thought to play a similar role as S7 

phosphorylation of human cenH3 (Zhang et al., 2005). However, further post-

translational modifications of plant cenH3s are not yet found.  

 

1.4 Holocentric chromosomes 

Most studied organisms possess one single size-restricted centromere per 

chromosome, the primary constriction. Such chromosomes are referred to as 

monocentric. However, in some green algae, protozoans, invertebrates, and plants 

so-called holocentric chromosomes with dispersed centromeres along chromosomes 

occur, suggesting that holocentricity has arisen independently several times via 

convergent evolution (Dernburg, 2001; Guerra et al., 2010; Melters et al., 2012). 

Holocentricity is possibly more common than so far reported. Surprisingly, so far no 

vertebrates with holocentric chromosomes are described.  

In flowering plants (angiosperms), holocentric chromosomes are found among the 

monocots Cyperaceae (sedges), Juncaceae (rushes) (Malheiros et al., 1947; 

Hakansson, 1958), and Chionographis (Tanaka, 1977) as well as in dicot genera 

such as Cuscuta subgenus Cuscuta (Pazy and Plitmann, 1995), Drosera (Sheikh et 

al., 1995), or in the nutmeg tree Myristica fragrans (Flach, 1966).  

 

1.4.1 Holocentric species: Chromosome structure and genome organization  

In case of holocentric chromosomes, microtubules attach to almost the entire (Greek: 

holo-) poleward surface of chromatids and no distinct primary constriction is visible at 
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metaphase. During anaphase, this holokinetic attachment leads to sister chromatid 

migration to opposite poles parallel to each other as linear bars. On the contrary, in 

case of monokinetic attachment to a distinct kinetochore, sister chromatids move to 

the poles at anaphase, with the centromere leading, as V-shaped structures (Fig 2).  

Besides observation of a distinct chromosome appearance, only few studies have 

been conducted on holocentric plants. Most of these described chromosome 

morphology and kinetics during mitosis and meiosis as well as DNA and chromatin 

properties (Lima-De-Faria, 1949; Mola and Papeschi, 2006; Guerra et al., 2010). A 

holokinetic chromosome organization is thought to enable a greater genomic 

plasticity; i.e. after DNA double strand breaks resulting chromosome fragments may 

be maintained and reintegrated elsewhere. 

Despite the strikingly different centromere distribution between mono- and holocentric 

species, similar kinetochore components are found in both active centromere types 

and centromere functions are mainly conserved (Maddox et al., 2004; Nagaki et al., 

2005; d'Alencon et al., 2011). However, for holocentrics centromere-specific DNA 

sequences have not yet been reported even in the genome-sequenced holocentric 

animals C. elegans (Consortium, 1998; Gassmann et al., 2012) and Bombyx mori 

(Xia et al., 2008; d'Alencon et al., 2010). In nematodes cenH3 is sequence-

independent loaded (Gassmann et al., 2012) and centromeres are formed sequence 

independent (Howe et al., 2001). It is thought that the role of DNA sequences at 

centromeres is rather to provide a structural basis than sequence specificity. 

 

Figure 2 Mitotic anaphase behaviour of mono- and holocentric chromatids (modified according to 

Heckmann and Houben, 2013). Positions of centromeres and tubulin fibers are shown in red and 

green, respectively. 
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Heterochromatin-forming repeats are typically found in monocentric chromosomes at 

centromeres, telomeres, nucleolar organizers, subterminal, and interstitial regions 

(Schmidt and Heslop-Harrison, 1998). The genome organization is mirrored by the 

distribution of epigenetic marks; i.e. post-translational histone modifications or DNA 

methylation. Different histone marks, particularly distinct methylated isoforms of 

histone H3, are associated with either eu- or heterochromatin (Fuchs et al., 2006). 

For instance, H3K9me2 is uniformly distributed in monocentric chromosomes of plant 

species with large genomes (1C > 500 Mbp) while smaller genomes as that of A. 

thaliana show enrichment of H3K9me2 at preferentially pericentromeric hetero-

chromatin. Independent of genome size, H3K4me2 is associated with euchromatin 

along chromosome arms. In monocentric chromosomes the genome size significantly 

influences the distribution of histone methylation marks associated with regions being 

transcriptionally less active (Houben et al., 2003; Fuchs et al., 2006). Interestingly, 

entire mitotic chromosomes of Luzula (Gernand et al., 2003; Nagaki et al., 2005) and 

of Rhynchospora tenuis (Guerra et al., 2006) display phosphorylated histone 

H3S10/S28 in a cell cycle-dependent manner, indicating a chromosome wide 

‘pericentromere-like’ structure (Houben et al., 2007). However, there are no studies 

dealing with typical eu- and heterochromatin histone marks and their chromosomal 

distribution for holocentric plant chromosomes. 

In C. elegans and Luzula nivea cenH3 is distributed along mitotic chromosomes 

correlating with active centromeres similar as in species with monocentric 

chromosomes (Buchwitz et al., 1999; Nagaki et al., 2005). During mitotic metaphase, 

holokinetic centromeres are light microscopically visible as continuous axial line 

along each sister chromatid, except for the cenH3-negative chromosome termini 

(Buchwitz et al., 1999; Moore et al., 1999; Nagaki et al., 2005). CenH3 signals are 

dispersed in interphase nuclei and are visible as various small foci along early 

prophase chromosomes (Moore et al., 1999; Nagaki et al., 2005). In L. nivea the 

chromosome regions associated with cenH3 appear as a groove-like structure during 

metaphase (Nagaki et al., 2005). It was proposed that centromere extension may 

have caused an outer centromeric groove along each sister chromatid (Nagaki et al., 

2005).  
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1.4.2 Meiosis in monocentric chromosome species 

Meiosis is a key event for stable sexual reproduction. A single round of DNA 

replication (meiotic S phase) is followed by two rounds of chromosome segregation 

(meiosis I and II) generating haploid gametes.  

In meiosis I, homologous chromosomes are separated (reductional division), 

whereas in meiosis II, sister chromatids are separated (equational division). Thus, 

four haploid gametes are generated. The significance of meiosis is two-fold: First, it 

facilitates genetic variation (independent assortment of homologous chromosomes 

and regulated genetic exchange by homologous recombination). Second, it reduces 

the chromosome number, which is needed to maintain somatic diploidy after fusion of 

male and female haploid gametes. 

Prophase I consists of lepto-, zygo-, pachy- and diplotene during which various 

crucial events take place. Replicated homologs undergo synapsis mediated by a 

transient proteinaceous structure, the synaptonemal complex (SC). Along homologs 

a linear protein axis, the axial element (AE), is formed, to which chromatin loops are 

attached (Dobson et al., 1994). One typical AE-associated protein is Asy1 (Sanchez-

Moran et al., 2008). Parallel to homolog recognition during lepto- to zygotene, the 

AEs now called lateral elements (LEs), become physically closely connected by 

polymerization of specific protein(s), named transverse filaments (TF), that span the 

gap between chromosome axes. A typical TF protein is Zyp1 (Higgins et al., 2005). 

Synapsis, finished at pachytene, leads finally to the fully formed tripartite SC that is 

specifically disassembled during diplotene/zygotene. At diakinesis the SC is fully 

degraded and bivalents start to separate, except at cross-over sites that physically 

connect the homologs (Page and Hawley, 2004). 

During prophase I, when homologs are tightly connected, homologous recombination 

occurs initiated by DNA double strand breaks (Osman et al., 2011). Meiotic DNA 

double strand break repair can result in exchange of genetic material between non-

homologous sisters (cross-over, CO), cytologically detectable as chiasmata (inter-

homolog connection) after pachytene. Transition from pro- to metaphase I is defined 

as diakinesis. After prophase I, bivalents condense and align at metaphase I plate. 

Alignment and separation of homologs at anaphase I depend on COs and sister 
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chromatid cohesion. During anaphase I, arm cohesion is lost while centromeric 

cohesion is maintained, thus still linking sister chromatids. 

Meiosis I is followed by a typically rather short interphase, the interkinesis. However, 

there are species with either prolonged or lacking interkinesis. Some plants skip 

telophase I and interkinesis and proceed immediately into meiosis II. The second 

meiotic division is cytologically similar to a mitotic division. Centromeric cohesion is 

released allowing the sisters to be pulled to opposite poles, during a so-called 

equational division, forming tetrads of four haploid spores. 

 

1.4.3 Holocentric chromosomes and meiosis 

During meiosis, cohesion between monocentric sister chromatids is released in two 

steps: i) along chromosome arms during meiosis I, ii) at sister centromeres during 

meiosis II. Defined regional centromeres provide a basis for co-orientation of sister 

chromatids at meiosis I and protect cohesins from degradation before anaphase II 

(Sakuno and Watanabe, 2009). 

Holocentrics are challenged by various problems during meiosis that need to be 

differently solved as in monocentrics. If spindle fibers would attach all along 

holocentric chromosomes, a recombined chromatid would be pulled to opposite poles 

on both sides of a persisting CO (Fig 3). 

 

Figure 3 The problem of meiotic recombination within holocentric chromosomes (modified according 

to d’Erfurth et al., 2009). Spindle fibers (arrowed) from different poles would attach on either side of a 

cross-over and pull a recombined chromatid to opposite poles during the first meiotic division. 
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Thus, holocentrics cannot rely on a single predefined centromere site to regulate 

sister chromatid co-orientation and the two-step loss of cohesion during meiosis. As 

one adaption holocentrics restrict CO frequency per homolog to one or two distal to 

terminal CO (Nokkala et al., 2004).  

 

Figure 4 Schematic model of meiosis in species with (A) monocentric or (B, C) holocentric 

chromosomes (according to Heckmann and Houben, 2013). B) Meiosis in holocentrics with functional 

monocentric chromosomes (C. elegans; Maddox et al., 2004; Monen et al., 2005) or C) functional 

holocentric chromosomes (e.g. Luzula (Nordenskiold, 1962; Kusanagi, 1973) or mealybugs (Bongiorni 

et al., 2004)).  

In principle, two options exist to deal with holocentricity and meiosis: ‘Functional 

monocentricity’ during meiosis and ‘inverted meiosis’ (Fig 4). In the first case, 

holocentric chromosomes act as monocentric ones; i.e. microtubule attachment to a 

restricted chromosomal region. Data from C. elegans suggest that active meiotic 

kinetochores are cenH3-independently formed at one chromosome terminus during 

meiosis I and at the opposite one during meiosis II in a CO-dependent manner 

(Albertson and Thomson, 1993; Maddox et al., 2004; Monen et al., 2005). Thus, in 

nematodes with no distinct predefined site for cohesion protection, the site of a single 

CO determines where active kinetochores are formed as well as where cohesion will 



 

 12

be kept and where released during meiosis (Schvarzstein et al., 2010). Second, 

holocentric bivalents align at metaphase I in such a manner that non-sister 

chromatids of homologs rather than homologous chromosomes segregate at 

anaphase I. Thus, the first meiotic division is equational and the second one is 

reductional, i.e. cytological an inverted sequence of meiotic events compared to the 

typical reductional-equational sequence observed in monocentrics. Inverted meiosis 

is thought to occur e.g. in the grass genus Luzula (Nordenskiold, 1962; Kusanagi, 

1973) and the mealybug Planococcus citri (Bongiorni et al., 2004).  

Our knowledge on meiosis of holocentrics is so far mainly based on light-microscopic 

observations in few plant species, e.g. L. elegans (Nordenskiold, 1962; Kusanagi, 

1973), R. tenuis (Guerra et al., 2010), and different species of the genera Cuscuta 

[e.g. (Pazy and Plitmann, 1987, 1994; Guerra and Garcia, 2004)], Eleocharis [e.g. 

(Hakansson, 1954; da Silva et al., 2005; Vanzela et al., 2008)], Chionographis 

(Tanaka, 1980) and Carex [e.g. (Hoshino and Okamura, 1994; Hoshino and 

Waterway, 1994)], as well as various non-plant species [e.g. (Nokkala et al., 2004, 

2006; Viera et al., 2009)]. Only for nematodes with functionally monocentric meiotic 

chromosomes, molecular data are available (Howe et al., 2001; Monen et al., 2005). 

 

1.4.4 Meiosis in the holocentric plant species Luzula elegans 

Meiotic studies have been performed in the wood-rush L. elegans Lowe (formerly L. 

purpurea) taking advantage of its low number and large size of chromosomes 

(Malheiros et al., 1947; Kusanagi, 1962; Nordenskiold, 1962). The data suggest an 

inverted sequence of meiotic events in this species. 

After prophase I, interstitial COs are found which are not visible anymore at 

metaphase I. Due to a single terminal chiasma homologs typically form a rod bivalent 

at metaphase I. The bivalents lie flat on the equational plate perpendicular to the 

spindle pole; chromatids are auto-oriented, reminiscent of mitotic chromosomes. 

During anaphase I, non-sister chromatids of a rod-like bivalent move towards the 

same pole most likely linked by persisting terminal(ized) chiasma(ta). The association 

via terminal(ized) chiasmata is often termed ‘chiasma terminalisation’ (Nordenskiold, 

1962; Bongiorni et al., 2004) based on the idea that an initial chiasma ‘moves’ during 
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meiosis I from its original location to the end of the homolog. However, ‘chiasma 

terminalisation’ has been challenged in monocentric and holocentric meiosis (Viera et 

al., 2009). Rather terminal chiasmata are later released than interstitial ones. During 

telophase I, however possibly persisting chiasmata are released in L. elegans. Until 

metaphase II alignment, homologous non-sister chromatids are associated along 

their length. During metaphase II, chromatids are aligned and segregate to opposite 

poles. Hence, meiosis seems to be inverted from a cytological point of view in L. 

elegans; displaying an equational first and a reductional second division (Fig 4).  
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2. Aim of this study 

In 2009, at the beginning of the experimental work for this thesis, it was assumed that 

the molecular composition of kinetochores is conserved between mono- and 

holocentric organisms (Oegema and Hyman, 2006). Therefore, emphasizing the idea 

that in addition to studies of monocentric chromosomes studies of holocentric 

chromosomes can provide understanding both conserved and diverged features of 

centromere structure and function. 

In species with holocentric chromosomes the genome organization as well as the 

chromosome structure and behaviour during mitosis and meiosis have been 

extensively investigated only in the nematode Caenorhabditis elegans. Similar 

studies in plants were missing. 

Knowledge on the transcriptional regulation including potential transcription factors 

was not available for cenH3. Also, potential post-translational modifications of cenH3 

(in plants) and the responsible enzymes were nearly unknown. 

Thus, the aim was to study centromere organization in the monocentric plant species 

Arabidopsis thaliana from a molecular point of view, focussing on the regulation of 

cenH3, and to study the genome organization as well as behaviour of holocentric 

chromosomes during mitotic and meiotic division of Luzula elegans. 

 

 

 

 

 

 

 

 



 

 15

3. Results and Conclusions 

3.1 Regulation of cenH3 in Arabidopsis thaliana 

Studies in various organisms revealed that the level of cenH3 needs to be tightly 

regulated in order to guarantee correct centromere function. At the beginning of this 

study, data on the transcriptional and post-translational regulation of cenH3, 

particularly in plants, were limited.  

 

3.1.1 Transcriptional regulation of cenH3 in A. thaliana 

It was asked whether there is a correlation between the incorporation in (late) G2 of 

cenH3 into centromeric nucleosomes and its expression. The fact that E2Fs regulate 

target genes cell cycle-dependently (Berckmans and De Veylder, 2009) and the close 

vicinity of potential E2F binding sites upstream the cenH3 ATG (Lermontova et al., 

2006), qualified cenH3 as a potential E2F-target gene. Initial work on the 

transcriptional regulation of cenH3 supported this idea (Heckmann, 2009). 

Therefore, three questions were asked: Is cenH3 transcribed through the entire cell 

cycle or only shortly prior to its deposition? Is cenH3 expressed only in meristematic 

and dividing cells or constitutively in all tissues? How is cenH3 transcriptionally 

regulated and which transcription factors (TFs) are involved? 

To figure out the transcriptional regulation of A. thaliana cenH3 and its role for 

functional centromeres, the structure and activity of the A. thaliana cenH3 promoter 

(cenH3pro) and its regulation by E2F TFs was studied (Heckmann et al., 2011a). 

Various cenH3pro::GUS reporter gene constructs showed that cenH3pro is active in 

dividing tissues, that already 512 bp of cenH3pro are sufficient, while longer 

fragments enhance reporter gene expression, and that intragenic regulatory 

elements within the second intron confer regular expression in root meristems. 

Different approaches showed that cenH3 is an E2F target; i) ChIP with E2F-specific 

antibodies, ii) transient coexpression of a cenH3pro reporter construct with all E2F 

TFs, iii) stable overexpression of E2Fs, and iv) mutagenesis of the two E2F binding 
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sites present in cenH3pro. Transient expression and stable overexpression of E2Fs 

demonstrated that cenH3 is induced by E2Fa and E2Fb, while E2Fc decreased 

cenH3pro activity in planta. Mutation of the two E2F binding sites of the A. thaliana 

cenH3pro led surprisingly to an increased cenH3pro activity, indicating E2F-mediated 

transcriptional repression of cenH3pro; particularly depending on the more upstream 

E2F binding site (E2F2). This repression might be based on the interplay of typical 

and atypical E2Fs in a cell cycle stage-dependent manner and/or the interaction of 

typical E2Fs with the retinoblastoma-related (RBR) protein. 

The data suggest that E2Fs are likely involved in differential transcriptional regulation 

of cenH3 versus H3 (H3 promoters lack E2F sites). This cenH3 regulation might be 

conserved, since E2F-mediated transcriptional regulation is conserved between 

species, and since E2F sites are also found in human and Drosophila cenH3pro 

regions. 

 

3.1.2 Post-translational regulation of cenH3 in A. thaliana 

Data on post-translation cenH3 modifications in plants are sketchy. It is known that 

maize cenH3 undergoes phosphorylation (Zhang et al., 2005). Likely, this mark might 

play a similar role for kinetochore function and chromosome alignment as the cell 

cycle-dependent phosphorylation of Serine7 of human cenH3 by Aurora kinases 

(Zeitlin et al., 2001b; Zeitlin et al., 2001a; Kunitoku et al., 2003).  

Initial Bimolecular Fluorescence Complementation (BIFC) experiments (Susann 

Hesse and Dmitri Demidov, unpublished) showed a physical association of the 

Arabidopsis homologous AtAurora1 and AtcenH3. Therefore, it was asked whether 

AtcenH3 undergoes phosphorylation; and if so, at which residue(s)? Are Aurora 

kinases involved in cenH3 phosphorylation in plants? And which physiological role 

plays this potential mark in planta? 

To figure out, whether AtcenH3 undergoes AtAurora-mediated phosphorylation, 

recombinant AtcenH3 (Fig 5) and AtAurora1 and 3 (Fig 6) were generated 

(Heckmann et al., unpublished).  
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Figure 5 Production of recombinant A. thaliana cenH3 in Escherichia coli. A, B) Various bacterial 

strains and cenH3-expressing plasmids (kindly provided by Dmitri Demidov) were tested for their 

capacity to express recombinant cenH3 either fused to a 6xHIS- (A) or to a GST-tag (B) and analyzed 

on a Coomassie gel. C, D) Western Blotting: Anti-cenH3 antibody for the HIS- and GST-tagged cenH3 

variants (C, D), and either an anti-HIS (C) or anti-GST (D) antibody, respectively. Expected size: ~22-

23 kDa for HIS-cenH3 (~19 kDa cenH3 and ~3-4 kDa HIS) and ~44-45 kDa for GST-cenH3 (~19 kDa 

cenH3 and ~25 kDa GST). Note, besides expected size of recombinant GST-cenH3 (delimited by 

black boxes in D) additional bands were detected likely corresponding to degradation products of 

recombinant cenH3. Thus, after optimization of conditions (induction time, temperature, purification, 

etc.), only HIS-cenH3 (clone 8; delimited by red box in C) was further analyzed (Fig 6).  

Both, AtAurora1 and 3, phosphorylate recombinant AtcenH3 in vitro (Fig 6, black 

box). As shown before (Demidov et al., 2009), AtAuroras can undergo auto-

phosphorylation in vitro (Fig 6, red box).  

 

Figure 6 AtcenH3 undergoes AtAurora-mediated phosphorylation in vitro. AtAurora kinases 

phosphorylate recombinant cenH3 (black box) in vitro. Purified protein samples used for the kinase 
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assay are shown (right). Expected size: cenH3 (~23 kDa, see Fig 5), ~60 kDa for GST-AtAurora1 (~35 

kDa AtAurora1 and ~25 kDa GST) and ~63 kDa for GST-AtAurora3 (~38 kDa AtAurora3 and ~25 kDa 

GST). Bacterial strains expressing recombinant AtAurora1 or AtAurora3 were kindly provided by Dmitri 

Demidov. Note autophosphorylation of AtAurora3 (red box). 

To work out which residue(s) of AtcenH3 undergo(es) AtAurora-mediated 

phosphorylation, recombinant in vitro phosphorylated AtcenH3 was supplied to mass 

spectrometry analysis (kindly performed by Janusz Debski, Warsaw, Poland; and 

Johanna Lehne, Göttingen, Germany). Unfortunately, both MS-studies failed to 

determine the residue(s) which undergo(es) phosphorylation. Most likely, the non-

radioactively labelled/phosphorylated fraction of recombinant cenH3 protein was not 

sufficient for MS-based detection.  

Next, AtcenH3 was studied in silico for potential AtAurora-specific serine (S) or 

threonine (T) phosphorylation sites (minimal Aurora recognition motif in plants: X B 

(B) T/S, where X is any low molecular weight (e.g. Alanine) and B is any basic amino 

acid; personal communication by Dmitri Demidov). Based on in silico analysis, 11 

peptides allowing the discrimination between all potential sites were used as 

AtAurora3 substrate in a radioactive kinase assay (assay performed by Dmitri 

Demidov) (Fig 7). The strongest AtAurora3-mediated phosphorylation signal was 

found for peptide 4 carrying serine 65 (S65) (Fig 7).  

 

Figure 7 AtAurora3 phosphorylates AtcenH3 at Serine 65 in vitro. A) AtcenH3-specific peptides 

according to their position within AtcenH3. B) 11 peptides discriminating all potential AtAurora-specific 

phosphorylation sites of AtcenH3 were used as kinase assay substrate. C) AtAurora3 peptide-based 
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kinase assay: Peptide 4 (red box) carrying serine 65 showed the highest phosphorylation intensity; 

position of peptide 4 (S65) within AtcenH3 highlighted in red (A). 

Serine 65 of AtcenH3 might functionally correspond to S50 phosphorylation of maize 

cenH3. Also, S65 is in the N-terminal cenH3 part, which varies from other H3 forms. 

As the N-terminal region is essential for the meiotic process (Lermontova et al., 2011; 

Ravi et al., 2011), a functional role of S65 phosphorylation particularly during meiosis 

is likely. Currently, generation of a S65ph-specific peptide antibody of cenH3 is in 

progress for studying the dynamics and occurrence of this mark in planta.  

To study the physiological role of AtcenH3 phosphorylation in planta, various 

constructs were generated mimicking hypo- or hyperphosphorylation of S65; i.e. S65 

was modified to alanine (hypo-phosphorylation) or aspartate (hyper-phosphorylation). 

Plasmids kindly provided by Simon Chan (plasmid ‘100’ containing the endogenous 

cenH3 locus used successfully to complement cenh3-1 (Ravi et al., 2010)) and by 

Inna Lermontova (plasmid ‘EYFP-cenH3’ containing a 35S-driven EYFP-cenH3 

expression cassette (Lermontova et al., 2006)) were the source to generate S65-

mutated versions of cenH3.  

Localization and dynamics of S65-mutated cenH3s will be studied in A. thaliana 

plants which were transformed with constructs constitutively overexpressing S65ph-

mimicking cenH3 variants fused to EYFP.  

The physiological role of cenH3S65ph in planta will be studied in transformed cenh3-

1 plants (kindly provided by Simon Chan). Heterozygous cenh3-1 plants, screened 

before transformation via cleaved amplified polymorphic sequence (CAPS) analysis 

for heterozygous according to Ravi et al. (2010), have been transformed with 

constructs containing the endogenous cenH3 locus expressing S65ph-mimicking 

cenH3 variants, to point out whether S65ph-mimicking cenH3s complement cenh3-1. 

Currently, analysis of this transgenics is in progress. 
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3.2 Genome organization, mitosis and meiosis of Luzula elegans 

Kinetochore functions and its molecular compositions are conserved among mono- 

and holocentric species (Oegema and Hyman, 2006), stressing the idea that studies 

of holocentric chromosomes can help to understand chromosome structure and 

function as well as centromere biology. There are no detailed studies on holocentric 

chromosomes in plants with regard to genome organization and mitotic and meiotic 

chromosome behaviour. Thus, L. elegans (Juncaceae) was selected for the study of 

holocentric species’ due to its low number of large chromosomes.  

 

3.2.1 Genome and higher order chromatin organization of L. elegans 

In general, the structure of monocentric chromosomes of higher plants is 

characterized by distinct eu- and heterochromatic regions. Distribution of 

heterochromatin depends on organism’s genome size.  

It was asked whether the composition of holocentric chromosomes displays similar 

characteristics as monocentric ones (Heckmann et al., 2013). In particular: Does 

interplay between centromere and large-scale genome organization exist? How are 

repetitive sequences and epigenetic marks distributed in holocentric chromosomes? 

Do centromere-specific sequences exist in holocentric chromosomes?  

To study the repetitive DNA fraction and epigenetic marks in L. elegans, Illumina 

sequencing combined with bioinformatic and cytogenetic approaches was applied. 

The genome (3.81 Gbp/1C) contains 61% highly repetitive DNA (Fig 9a). There was 

a high diversity of satellite DNA; i.e. thirty seven distinct sequence families were 

identified. By far the most dominant repeat fraction (~33% of the genome) was the 

Angela clade of Ty1/copia LTR-retrotransposons. An expansion of Ty1/copia (Angela 

clade) and of satellite sequences most likely resulted in the exceptionally large 

genome of L. elegans compared to other members of the genus with a nuclear DNA 

content ranging from 0.26-1.99 Gbp/1C (Bennett and Leitch, 2010).  
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Figure 8 Distribution of satellite DNA sequences in L. elegans (modified according to Heckmann et al., 

2013). A) FISH: LeSAT28 and 63 (red) localized individually relative to a 45S rDNA probe (green) and 

relative to each other (LeSAT28: green; LeSAT63: blue). Mitotic metaphase chromosomes are 



 

 22

morphologically not distinguishable (similar size). LeSAT28 and 63 allowed their discrimination, 

although the minor LeSAT28 signal on chromosome 2 was not always detectable. B) Karyogram 

based on probes used in (A). C) FISH: Various LeSATs (red) together with LeSAT28 (green) and 63 

(blue) and resulting ideograms. Size bar = 10 µm. Chromosome ends (grey-shaded) in schematic 

ideograms represent defined terminal (non-centromeric) chromosome regions. Terminal counted 

satellite clusters indicated by asterisks (see D). To guarantee a distinction between centromeric and 

non-centromeric chromosome regions only clusters within terminal ~5% of chromosome ends were 

counted as non-centromeric, i.e. both terminal regions represent ~10% of total chromosome length. 

Note, the centromere discontinuing at each subterminal chromosome end represents on average 75% 

of metaphase chromosome length (Heckmann et al., 2011b; Heckmann et al., 2013). Thus, the 

percentage of non-centromeric clusters might be underestimated. D) FISH signals of satellites 

classified into centromeric and non-centromeric clusters according to (C). Out of 122 identified satellite 

clusters, 39 localized in terminal non-centromeric chromosome regions while 83 localized in interstitial 

centromeric regions. Considering that terminal non-centromeric regions represent only ~10% of total 

chromosome length, abundance of satellite clusters is in these regions on average 4.2-fold higher than 

in interstitial centromeric regions. *The relative cluster abundance is calculated based on the absolute 

values of satellite clusters in non-centromeric and centromeric regions considering their different 

lengths. 

Twenty newly-identified satellite sequences were localized in situ (Fig 8). A 

karyogram allowing the discrimination between the 3 equally-sized chromosome 

pairs based on these probes was established (Fig 8). Most satellite sequences were 

found on all three pairs of chromosomes. However, also chromosome-specific 

families labeling two chromosome pairs (LeSAT23, 25, 27, 28, 36 and 99), or one 

chromosome pair only (LeSAT43 and 63) were detected. 

Satellite repeats showed a tendency of clustering towards the centromere-free 

chromosome ends in L. elegans (Fig 8 c,d). Terminal enrichment of repetitive DNA 

seems to be a common feature of holocentric autosomes (Heckmann and Houben, 

2013), possibly indicating a correlation between holocentricity and terminally enriched 

satellite DNA. A mutual exclusion of heterochromatin and centromere function could 

be the reason for clustering of repetitive DNA at centromere-free chromosome ends. 

Alternatively, terminal heterochromatin might be involved in the physical end-to-end 

association of homologous chromosomes manifested as rod- or ring-bivalents during 

meiosis (Heckmann and Houben, 2013). Data on meiosis in L. elegans support this 

idea (see 3.2.3). 
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Figure 9 Genome organization of L. elegans (modified according to Heckmann et al., 2013). A) 

Repetitive DNA composition of the genome. B) LTR-retrotransposons are uniformly dispersed. Note 

interstitial centromere-atypical clustering (arrows) of Ty3/gypsy elements. C) No distinguishable large-

scale patterns of early and/or late DNA replicating domains and of D) DNA methylation detectable. 

Size bar = 10 µm (or else indicated). 

LTR-retrotransposons are uniformly dispersed along chromosomes (Fig 9b). 

Surprisingly, neither typical centromere-associated LTR retrotransposons (Ty3/gypsy 

of the CRM clade) were found nor any satellite DNA revealed a distribution pattern 

reflecting the almost chromosome-wide centromere distribution in Luzula. Apparently, 

similar as in C. elegans (Gassmann et al., 2012), no centromere-specific repetitive 

sequences were found in L. elegans. CenH3 may be associated with a centromere-

specific chromatin status rather than with typical centromeric sequences in L. 

elegans. Therefore, L. elegans chromosomes likely consist of centromeric chromatin 

interspersed by non-centromeric chromatin. It is tempting to speculate, that the more 

a centromere expands, the less important is the primary DNA sequence and the 

more important becomes a centromere-specific chromatin status or organization.  
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Figure 10 Distribution of typical eu- (H3K4me2) and heterochromatin (H3K9me2 and H3K27me3) 

associated post-translational histone H3 modifications in L. elegans (according to Heckmann et al., 

2013). Left: Fluorescence Wide Field Microscopy (WFM). Middle: Structured Illumination Microscopy 

(SIM). Right: Enlargements of the regions delimited by the white boxes. DNA (blue), histone marks 

(red and green). Size bar = 1 µm. 

Epifluorescence microscopy revealed on mitotic chromosomes a uniform distribution 

of eu- and heterochromatin-typical epigenetic marks and of early and/or late DNA 

replicating domains (Figs 9c, d and 10). Super-high resolution microscopy revealed 

distinct sub-units of different chromatin states (Fig 10).  

An intermingled arrangement of eu- and heterochromatin throughout holocentric 

genomes might be favored by the almost chromosome-wide distribution of 

centromeric chromatin. Apparently, the large-scale organization differs between 

mono- and holocentric chromosomes (Fig 11).  
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Figure 11 Model of chromatin and centromere arrangement in holocentrics vs. monocentrics and 

according to genome size (according to Heckmann et al., 2013).  

 

3.2.2 Mitosis in L. elegans 

Initial data obtained for the closely related species L. nivea indicated a longitudinal 

centromere-like groove along each holocentric sister chromatid (Nagaki et al., 2005). 

To confirm a distinct holocentric chromosome architecture, structure and dynamics of 

mitotic holocentric L. elegans chromosomes were studied. It was asked whether 

holocentric chromosomes of different origin and of different size are characterized by 

similar specific features (Heckmann et al., 2011b). 
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Figure 12 Mitotic chromosomes of L. elegans (modified according to Heckmann et al., 2011). A) 

Longitudinal centromeric groove along each sister chromatid except at chromosome ends. i, ii) 

Immunostaining, iii) scanning electron microscopy (FIB/FESEM: focused ion beam milling/field 

emission scanning electron microscope; back-scattered electron (BSE) signals) and iv) a cross-section 

model of L. elegans mitotic metaphase chromosomes; DNA blue, cenH3 red, and tubulin green. No 

structural boarder was found between sister chromatids (dotted line). B) Chromosome bending: i) 

CenH3- and tubulin-immunolabeling and ii) model of chromosome bending at metaphase/anaphase 

transition (cenH3 red, tubulin green, DNA blue). C) Terminal NOR position. i) FISH: 45S rDNA (green), 

telomeres (red), DNA (blue). ii) Model of two possible NOR locations (green) in holocentrics and 

resulting microtubule interaction. In case of an interstitial NOR, a mutual exclusion of NOR and 

centromere position would generate a quasi ‘di-holocentric’ chromosome. In case of a twist between 

sister chromatids within the less condensed interstitial NOR the same chromatid (left and right the 

NOR) could be pulled to opposite poles during divisions, causing anaphase bridges and subsequently 

chromosome breaks. 
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Light microscopic and ultra-structural investigations showed that mitotic L. elegans 

chromosomes display a longitudinal centromeric groove along each sister chromatid 

to which cenH3 and microtubules co-localize, except at chromosome ends (Fig 12a). 

At metaphase/anaphase transition, chromosomes are bent to a sickle-like shape 

likely mediated by microtubule forces and possibly facilitating movement of large 

holocentric chromatids (Fig 12b). A single 45S-rDNA locus, situated distal to 

Arabidopsis-telomere repeats, was localized at the end of one chromosome pair. A 

terminal centromere-free NOR may ensure mitotic chromosome stability (Fig 12c).  

 

3.2.3 Meiosis in L. elegans 

Early studies in L. elegans (formerly named L. purpurea) suggested an inverted order 

of meiotic sequences, i.e. an equational first and reductional second meiotic division 

(Kusanagi, 1962; Nordenskiold, 1962). However, no studies were conducted on the 

meiotic centromere distribution in Luzula or any other holocentric plant chromosomes 

to support holocentricity during meiosis and to confirm the occurrence of inverted 

meiosis. It was asked whether L. elegans shows holocentricity during meiosis, 

performs inverted meiosis, and to what degree meiosis in L. elegans differs from that 

in monocentric chromosome species (Heckmann et al., in preparation). 

 

Figure 13 Synaptonemal complex (SC) and axis formation during prophase I in L. elegans. Immuno-

detection of the SC-associated protein Zyp1 and of the axial element-associated protein Asy1 using 

anti-Arabidopsis Zyp1 and anti-Arabidopsis Asy1. Antibodies kindly provided by Chris Franklin. 

Early prophase I events in L. elegans are cytologically similar to that in other species, 

as indicated by presence of synaptonemal complex (Zyp1 signals) and by axis 

formation (Asy1 signals) (Fig 13). L. elegans chromosomes are holocentric 
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throughout meiosis (Fig 14, 15). Besides C. elegans, that shows restricted kinetic 

activity (functional monocentric chromosomes) and does not require cenH3 and 

CENP-C during meiosis (Monen et al., 2005), in no other holocentric chromosome 

species the meiotic centromere organization has been traced. 

At diakinesis only two predominant bivalent configurations are apparent, rod- or ring-

like structures (Fig 14). Rod-like bivalents show a puffed end-to-end association. This 

connection between homologs is free of cenH3. FISH with Arabidopsis-type telomere 

sequences and with 45S rDNA showed that the puffed end displays in some cases a 

cross-shaped configuration reminiscent of a terminal chiasma involving the NOR or 

telomeres (Fig 14). In case of a twist between associated homologs, a cross-shape 

configuration would also be expected within this region. Alternatively, a twist within 

this region might explain why a cross-shape configuration is not always apparent.  

 

Figure 14 L. elegans chromosomes during the first meiotic division. Immunolabeling with cenH3 (red) 

reveals holocentric rod- and ring-like bivalents during diakinesis. Rod-bivalents show an end-to-end 

association free of cenH3 (arrow, inset). FISH with a Arabidopsis-type telomere (red) and a 45S rDNA 

(green) probe indicates cross-shaped (arrows) FISH signals and FISH with a satellite DNA (green) and 

a Arabidopsis-type telomere (red) probe shows chromatin stretches (arrow), in both cases within the 

region between telomeres of the end-to-end associated homologs. CenH3- (red) and tubulin-

immunolabeling (green) from metaphase I until telophase I shows that meiotic chromosomes are 

holocentric and separation of sister chromatids occurs at meiosis I due to holokinetic activity along the 

length of individual chromatids; i.e. an equational first division during which sister chromatids rather 
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than homologous chromosomes are separated. Interestingly, the two sister kinetochores per homolog 

behave as two distinct functional units during metaphase I: four individual linear kinetochores per 

bivalent are visible. DAPI-stained metaphase I chromosomes show a pronounced centromeric groove 

structure along each sister chromatid (inset, arrows indicate 2 grooves along the 2 sister chromatids of 

one homologous chromosome). FISH with Arabidopsis-type telomere (red) and satellite DNA (green) 

probes shows that terminal satellite DNA is involved in the end-to-end association of homologs during 

meiosis I and that the association of non-sister chromatids is chromatin-based. Arrow indicates 

stretched satellite DNA (inset) between telomeres of two non-sister chromatids at telophase I (picture 

kindly provided by Maja Jankowska). 

FISH showed that the 45S rDNA and terminal satellite DNA, cytologically distal the 

Arabidopsis-type telomeres, are involved in the end-to-end association of homologs 

during meiosis I (Fig 14). A satellite DNA-containing chromatin protrusion might 

mimic the morphological chromosome end while telomeres are at the physical DNA 

end as speculated for the terminal 45S rDNA (Heckmann et al., 2011b). However, 

terminal repetitive DNA is a common feature in holocentric autosomes (Heckmann 

and Houben, 2013). Thus, terminal heterochromatin facilitating the end-to-end 

association of homologs might be needed to deal with holocentricity during meiosis. 

Finally, if chiasmata are restricted to chromosome ends, most of the chromosome 

regions would not recombine. Taken into account that early prophase I events (when 

COs are induced) are cytologically similar to other species, it is likely that COs are 

established along chromosomes while finally possibly only terminal chiasmata 

persist. However, the question remains how to resolve interstitial chiasmata under 

maintenance of terminal ones? Alternatively, more likely ‘sticky’ terminal 

heterochromatin may enable an achiasmatic end-to-end association of homologs. 

At metaphase/anaphase I transition, from the top view (with respect to metaphase I 

plate), bivalents appear rod-like, whereas from the side view they occur mainly U-

shaped (Figs 14, 16). The predominant occurrence of rod bivalents suggests that one 

end-to-end connection within a ring bivalent gets preferentially resolved. The U-

shape of rod bivalents is likely mediated by spindle forces comparably to the sickle-

shape mitotic chromosomes at metaphase/anaphase transition (Fig 12b; Heckmann 

et al., 2011b). Microtubules attach to cenH3-containing chromatin along nearly the 

entire chromosome axes of the linear bivalents (Fig 14). From meta- until telophase I 

chromosomes are highly condensed and show a pronounced centromeric groove 

along each sister chromatid (Fig 14, metaphase I inset). 
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Contrary to a monopolar centromere orientation in monocentrics, sister kinetochores 

of L. elegans behave as two distinct functional units during meiosis I mediating 

bipolar attachment to microtubules. Hence, four individual linear kinetochores are 

formed instead of two fused focal kinetochores (Fig 14). Whereas in monocentrics 

sister chromatid cohesion is released in a two-step way (first along chromosome 

arms during meiosis I and second at centromeres during meiosis II), in L. elegans 

sister chromatid cohesion is released along holocentric chromosomes with the 

possible exception at the end-to-end association between non-sister chromatids. 

Thus, sister chromatid separation occurs at meiosis I due to holokinetic activity along 

the length of individual chromatids. Therefore, sister chromatids are separated rather 

than homologous chromosomes. It is unknown whether the end-to-end association of 

non-sister chromatids during anaphase and telophase I is based on persisting 

chiasmata, terminal cohesion or other mechanisms. The association seems to be 

chromatin-based mediated by satellite DNA in L. elegans (Fig 14). Thus, observed 

chromatids are most likely connected at telophase I (Fig 14) via heterochromatin 

threads (satellite DNA) similar to achiasmatic heterochromatin threads found during 

Drosophila oocyte meiosis (Hughes et al., 2009). 

During a rather short interkinesis, association of non-sister chromatids along their 

length occurs; i.e. connection between non-sister chromatids is established most 

likely by an achiasmatic cohesion mechanism. This would guarantee that until 

meiosis II non-sister chromatids become associated. FISH experiments (Fig 15) 

indicated alignment of homologous non-sister chromatids (pair wise distribution of 

45S rDNA signals). The association along the entire length of non-sister chromatids 

persists until anaphase II (Fig 15). Whether known cohesion proteins such as Rec8 

are involved in the re-establishment of cohesion after meiosis I is unknown.  

At anaphase II associated non-sister chromatids are separated in a mitosis-like 

second meiotic division. At metaphase II holokinetic (cenH3 signals along the entire 

chromatid length) non-sister chromatids align perpendicular to the spindle axis at the 

equational plate and microtubules are attached all along their length (Fig 15). Notable 

metaphase II chromosomes are smaller (highly condensed) than mitotic ones. At 

anaphase II the two non-sister chromatids segregate holokinetically to opposite poles 

(Fig 15). Four daughter cells, each with a haploid set of chromosomes, are finally 

generated after formation of nuclear envelope and of cell wall during telophase II.  
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Figure 15 L. elegans chromosomes during the second meiotic division and the first pollen mitosis. 

Metaphase II: FISH with 45S rDNA (green) and Arabidopsis-type telomere (red) probes demonstrates 

association of homologous non-sister chromatids along their length. Immunolabeling with cenH3 (red) 

and tubulin (green) shows that holocentric non-sister chromatids are separated at metaphase 

II/anaphase II via holokinetic spindle attachment. Tetrads at first pollen mitosis show holocentric 

chromosomes after immunolabeling with anti-cenH3 (red) and anti-tubulin (green).  

From the present data, the first meiotic division in L. elegans seems to be equational 

and the second meiotic division reductional. Thus, our observation supports the 

assumption that Luzula chromosomes perform an inverted sequence of meiotic 

events (inverted meiosis) in order to deal with holocentricity during meiosis (Fig 16). 

 

Figure 16 Structural model of meiotic chromosomes in L. elegans. Chromosomes are shown from the 

side and the top view (with respect to the metaphase plate) for better understanding. Holocentric U-

shaped bivalents (homologs are end-to-end associated) align at metaphase I in such a manner that 

sister chromatids rather than homologous chromosomes are separated during meiosis I. During 
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meiosis II, associated non-sister chromatids are holokinetically separated. Therefore, the first meiotic 

division is equational and the second one is reductional. Hence, an inverted sequence of meiotic 

events from a cytological point of view compared to the typical reductional-equational sequence 

observed in monocentric organisms takes place. 

However, in future the following questions need to be addressed: How is the meiotic 

recombination process regulated in L. elegans and what keeps the homologs 

together at their ends during meiosis? Are cross-overs randomly distributed or 

restricted to chromosome termini? Does a delayed resolution of terminal chiasmata 

ensure the correct separation of sister chromatids at meiosis I? Are cohesins 

involved in the end-to-end association of non-sister chromatids after metaphase I or 

other mechanisms? How is the alignment of non-sister chromatids realized at meiosis 

II, are cohesins involved?  

To address these questions, a variety of available plant meiotic antibodies (kindly 

provided by various researchers; Arabidopsis Asy1, Zyp1C, MLH1, MSH4, RPa1a, 

Scc3, and Sgo1 and Zea maize Asy1, Am1, Zip1, and Sgo1) known to recognize 

proteins involved in meiotic kinetochore formation, recombination and cohesion was 

tested for cross-reactivity in L. elegans. Unfortunately, most antibodies did not cross-

react with L. elegans, suggesting either a restricted conservation of protein similarity 

or, less-likely, that the corresponding homologs are not expressed in L. elegans. Only 

in case of Asy1 and Zyp1 (Fig 13) distinct immunolabeling patterns were observed 

similar to those described for species with monocentric chromosomes. Therefore, 

identification of corresponding genes in L. elegans based on deep sequencing of the 

meiotic transcriptome is currently in progress. After gene identification corresponding 

antibodies will be raised and used for immunostaining.  
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4. Summary 

I) The transcriptional and post-translational regulation of the centromere-specific 

histone H3 (cenH3) was studied in Arabidopsis thaliana. 

The A. thaliana cenH3 promoter (cenH3pro) proved to be active in dividing tissues 

(Heckmann et al., 2011a). Just 512 bp upstream of the transcriptional start site are 

sufficient for reporter gene expression. Regulatory elements within the second intron 

confer regular expression in root meristems. That E2F transcription factors regulate 

cenH3 was shown by (i) ChIP with E2F-specific antibodies, ii) plants stably overex-

pressing E2Fs, iii) transient co-expression of E2Fs and a cenH3pro reporter construct 

and iv) mutagenesis of the two E2F binding sites within cenH3pro. E2F-mediated 

transcriptional regulation of cenH3 seems to be conserved between organisms. 

AtAurora1 and 3 phosphorylate AtcenH3 in vitro; AtAurora3 phosphorylates Atcenh3 

at serine65 (Heckmann et al., unpublished). Experiments to elucidate the biological 

role of AtcenH3S65ph are initiated. An AtcenH3S65ph-specific antibody was 

generated and various A. thaliana transformants mimicking hypo- or 

hyperphosphorylation of S65 have been generated. 

 

II) The genome organization with special emphasis on the repetitive DNA 

composition and the chromatin properties as well as the behaviour of holocentric 

chromosomes during mitosis and meiosis were studied in the plant Luzula elegans. 

The L. elegans genome (3.81 Gbp/1C) consists of 61% highly repetitive DNA with the 

Angela clade of Ty1/copia LTR-retrotransposons being the dominant repeat fraction 

(Heckmann et al., 2013). 37 distinct satellite DNA sequence families were identified. 

Twenty of them were localized in situ and a karyogram based on these probes was 

generated discriminating the 3 equally sized chromosome pairs. Satellite sequences 

are enriched at centromere-free chromosome ends, while LTR retrotransposons are 

uniformly dispersed along chromosomes. Terminal enriched repetitive DNA 

commonly found in holocentric autosomes (Heckmann and Houben, 2013) may 

ensure mitotic chromosome stability and/or correct meiosis. Centromere-specific 

repetitive sequences were not found in L. elegans. Post-translational histone H3 
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modifications and DNA methylation were uniformly distributed and no obviously late 

replicating regions were found. Super-high resolution microscopy revealed distinct 

intermingled units of different chromatin types. The data suggest a different genome 

organization for species with holo- versus such ones with monocentric chromosomes. 

Instead of a 'diffuse' centromere organization along holocentric chromosomes, mitotic 

L. elegans chromosomes display a centromeric groove along each sister chromatid 

except at chromosome ends (Heckmann et al., 2011b). Chromosomes bend during 

metaphase/anaphase transition likely mediated by microtubule forces. A single 45S-

rDNA locus is localized at the end of one chromosome pair distal to Arabidopsis-type 

telomere repeats and might ensure mitotic stability of the NOR-bearing chromosome.  

Meiotic L. elegans chromosomes are holocentric throughout meiosis (Heckmann et 

al., in preparation). During early prophase I, meiosis proceeds as in other species. 

However, only end-to-end associated bivalents are observed at metaphase I. This 

connection is likely mediated by terminal satellite DNA and/or cross-over. Sister 

kinetochores behave as two distinct functional units during meiosis I mediating 

bipolar microtubules attachment contrasting the sister centromere fusion of 

monocentric chromosomes. Sister chromatids rather than homologous chromosomes 

are separated during anaphase I. Subsequently, association of non-sister chromatids 

occurs leading to half-bivalents at metaphase II, followed by a mitosis-like second 

meiotic division. The data suggests an equational first and a reductional second 

meiotic division. Thus, L. elegans chromosomes likely perform an inverted meiosis.  
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5. Zusammenfassung 

I) Die transkriptionelle and post-translative Regulierung des zentromer-spezifischen 

Histons H3 (cenH3) wurde in Arabidopsis thaliana studiert.  

Der A. thaliana cenH3 Promoter (cenh3pro) wirkt in teilungsaktiven Geweben 

(Heckmann et al., 2011a). Bereits 512 bp strangaufwärts des Transkriptionsstarts 

reichen aus für eine Reportergenexpression. Regulatorische Elemente innerhalb des 

zweiten Introns vermitteln eine reguläre Expression in Wurzelmeristemen. Dass E2F 

Transkriptionsfaktoren cenH3 regulieren wurde gezeigt durch (i) ChIP mit E2F-

spezifischen Antikörpern, ii) stabil E2F-überexprimierende Pflanzen, iii) transiente 

Co-Expression von einem cenh3pro Reporterkonstrukt und E2Fs und iv) Mutagenese 

beider E2F-Bindestellen im cenh3pro. E2F-vermittelte transkriptionelle cenH3 

Regulierung scheint zwischen Organismen konserviert zu sein. 

AtAurora1 und 3 phosphorylieren AtcenH3 in vitro; AtAurora3 phosphoryliert AtcenH3 

an Position Serin 65 (Heckmann et al., nicht publiziert). Experimente um die 

biologische Rolle von AtcenH3S65ph aufzuklären sind initiiert. Dazu wurden ein 

AtcenH3S65ph-spezifischer Antikörper und mehrere A. thaliana Transformanten die 

eine Hypo- oder Hyperphosphorylierung von S65 nachahmen generiert. 

 

II) Die Genomorganisation, vor allem die Komposition der repetitiven DNA und die 

Chromatineigenschaften, sowie das Verhalten von holozentrischen Chromosomen 

während der Mitose und Meiose wurden in der Pflanze Luzula elegans untersucht. 

Das L. elegans Genom (3,81 Gbp/1C) besteht zu 61% aus hoch-repetitiver DNA mit 

der Angela Klade von Ty1/copia LTR-Retrotransposons als dominierendes repetitives 

Element (Heckmann et al., 2013). 37 unterschiedliche Familien von Satelliten-DNA 

wurden identifiziert. 20 von diesen wurden in situ lokalisiert und basierend darauf 

wurde ein Karyogram erzeugt, welches die mikroskopische Unterscheidung der 3 

gleichgroßen Chromosomenpaare erlaubt. Satellitensequenzen sind angereichert an 

zentromer-freien Chromosomenden, wohingegen LTR-Retrotransposons 

gleichmäßig entlang der Chromosomen verstreut sind. Terminal angereicherte 

repetitive DNA, gewöhnlich in holozentrischen Autosomen zu finden (Heckmann and 
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Houben, 2013), könnte mitotische Chromosomenstabilität und/oder eine korrekte 

Meiose ermöglichen. Es wurden keine zentromer-spezifischen repetitiven Sequenzen 

gefunden. Post-translative Histon H3 Modifikationen und DNA-Methylierung waren 

gleichmäßig im Genom verteilt und es wurden keine auffällig spät-replizierenden 

Regionen gefunden. Super-hoch auflösende Mikroskopie zeigte eine distinkte 

Vermischung unterschiedlicher Chromatinformen. Die Daten deuten eine 

unterschiedliche Genomorganisation in Spezies mit holozentrischen gegenüber 

denen mit monozentrischen Chromosomen an. 

Anstelle einer 'diffusen’ Zentromerorganisation sind mitotische Chromosomen von L. 

elegans durch eine zentromerische Furche entlang der Schwesterchromatiden außer 

an den Chromosomenden gekennzeichnet (Heckmann et al., 2011b). Während des 

Überganges von der Metaphase zur Anaphase zeigen Chromosomen eine U-Form 

wahrscheinlich bedingt durch Mikrotubulikräfte. Der 45S-rDNA Lokus ist bevorzugt 

am Chromosomenende und könnte mitotische Stabilität von NOR-Chromosomen 

ermöglichen.  

Meiotische L. elegans Chromosomen sind holozentrisch während der gesamten 

Meiose (Heckmann et al., in Vorbereitung). Während der frühen Prophase I läuft die 

Meiose ab wie in anderen Spezies. Am Ende der Metaphase I sind jedoch nur noch 

End-zu-End assoziierte Bivalente zu beobachten. Diese Verbindung wird 

wahrscheinlich durch terminale Satelliten-DNA und/oder Cross-over vermittelt. 

Schwesterkinetochore verhalten sich wie zwei eigenständige funktionelle Einheiten 

und vermitteln einen bipolaren Mikrotubuliansatz während der Meiose I. Im 

Gegensatz zu der Situation in monozentrischen Arten werden in L. elegans 

Schwesterchromatiden anstelle von homologen Chromosomen während der 

Anaphase I getrennt. In der Metaphase II kommt es zur Assoziation von nicht-

Schwesterchromatiden, gefolgt von einer mitosegleichen zweiten meiotischen 

Teilung. Die Daten deuten eine ausgleichende erste und eine reduzierende zweite 

meiotische Teilung an. Daher durchlaufen L. elegans Chromosomen wahrscheinlich 

eine invertierte Meiose. 
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