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Zusammenfassung 

 

Die vorliegende Arbeit beschäftigt sich mit DNA Elementen, die häufig und in ihrer Länge variabel in 
den meisten Genomen vorkommen, den Mikrosatelliten. Im ersten Teil der Arbeit werden neue 
Mikrosatelliten Loci für die Erdhummel Bombus terrestris charakterisiert, um in dieser und anderen 
Hummelarten genutzt zu werden. Im zweiten Teil werden diese und weitere Mikrosatelliten benutzt, 
um das Genom der Erdhummel zu kartieren. Es konnte eine saturierte genetische Karte für die 16 
Kopplungsgruppen (Chromosomen) erstellt werden, die als Basis für Genkartierung, Genom-
Assemblierung und für den Vergleich von Rekombinationsraten dient. In einer weiteren Studie wurde 
die evolutionäre Dynamik von Mikrosatelliten in Dipteren und Hymenopteren untersucht und 
verglichen, wodurch eine schnellere Genomevolution in letzteren ersichtlich wurde. Im letzten Teil 
wird eine neue Methode vorgestellt, die auf kleinen Next-Generation-Sequencing Plattformen SNPs 
Genotypisierung erlaubt. 

 

 

 

Abstract 

 

The presented thesis has its focus on common and in their length length variable DNA elements 
which are present in most genomes: the microsatellites. In the first part of the thesis, novel 
microsatellite loci for the buff-tailed bumblebee Bombus terrestris are developed and characterized 
to be available for this and other bumblebee species. In the second part, these and further 
microsatellites are used to map the genome of the buff-tailed bumblebee. It was possible to 
saturated the genetic map and detect all 16 expected linkage groups (chromosomes), which can 
serve as a basis for gene mapping, genome assembly and the comparison of recombination rates. In 
the next study, the evolutionary dynamics of microsatellites was investigated in Diptera and 
Hymenoptera. This showed a faster rate of genome evolution in the latter. In the last part a novel 
method for genotyping by sequencing on small scale next generation sequencing platform is 
presented. 
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General Introduction 

 

Hymenoptera and Eusociality 

Hymenoptera – “bees, wasps and ants” – are the third largest order of insects in terms of species 

numbers (Grimaldi & Engel 2005), but reach an even higher proportion in terms of biomass, mainly 

attributed to species which evolved an eusocial lifestyle. “Social insects account for just 2% of all insect 

species, but more than half the total insect biomass” (Wilson & Southwood 1990). Ants alone weigh 

about as much as all human beings combined (Hölldobler & Wilson 1990). Of all eusocially organized 

organisms in general, the insect order Hymenoptera comprises the vast majority of the species by far. 

Today bees, wasps and ants arebgenera with  most competitive species  animal that dominate many 

terrestrial ecosystems, especially in tropical regions (Grimaldi & Engel 2005). They are the main 

predators of invertebrates, the main pollinators of flowering plants and, because of their abundance, a 

major food source for entomophagous animals (Wilson 1971). Their enormous success is largely 

attributed to extreme adaptations in behavior and morphology. Their large societies are headed by a single 

or just a few individuals (queens) which monopolize reproduction over the other members of the society 

(workers). Workers are typically behaviorally and morphologically very different from the queen caste 

and contribute in a seemingly altruistic fashion to the overall colony fitness. Workers usually refrain from 

reproduction in response to behavioral and chemical signals of the queen(s) and are typically sterile. 

However, the reproductive division of labor is not entirely absolute, and workers can occasionally evade 

the control of the queen (Bourke 1988; Ross & Matthews 1991; Peeters 1991; Bloch & Hefetz 1999; 

Peeters & Liebig 2000; Lopez-Vaamonde et al. 2009; Seeley 2010; Huth-Schwarz et al. 2011). 

The regulation of these eusocial societies and the caste system is an extraordinary example of 

phenotypic plasticity. Worker and sexual offspring can have identical genetic information, yet they 

develop into individuals, which can be very different in behavior and morphology. Whereas primitively 

eusocial species usually show little caste differentiation, the highly advanced species like leaf cutter or 

army ants are most extreme with distinct sub-castes within the worker caste (Hölldobler & Wilson 1990; 

Hunt 2007; Jaffé et al. 2007; Seeley 2010). 

The altruistic behavior of the worker caste and its regulation has gained considerable attention in 

scientific research. It is a puzzling issue as it seems to be in conflict with Darwin's theory of evolution by 

natural selection (Darwin 1859). However, noe classical inclusive fitness theory plausibly explained how 

altruism can be an evolutionary stable strategy based on relatedness of the individuals in a colony 

(Hamilton 1964). Nevertheless, ever since this remained to be  a controversially discussed subject 

(Queller et al. 1993; Queller & Strassmann 1998; Hunt & Amdam 2005; Hughes et al. 2008; Boomsma 

2009; Nowak et al. 2010; Abbot et al. 2011; Strassmann et al. 2011; Boomsma et al. 2011; Ferriere & 

Michod 2011; Herre & Wcislo 2011; Gardner & Ross 2013). In spite of potential alterative expelanations  

recent studies suggested that haplodiploidy and (ancestral) monogamy in Hymenoptera (Hughes et al. 
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2008; Gardner & Ross 2013) play a key role in the evolution and maintenance of sociality by enhancing 

relatedness among the offspring of an individual. This might have facilitated the repeated and 

independent evolution  of sociality in several groups of Hymenoptera – wasps (Vespidae), ants 

(Formicidae) and several groups within the Apoidea (Crabronidae, Allodapidae, Halictidae, Apidae) 

(Hughes et al. 2008). 

As mentioned above, Hymenoptera are haplodiploid insects in which fertilized eggs develop into 

diploid females and unfertilized haploid eggs develop into males (Figure 1a). In consequence, the female 

workers in a colony are super-sisters, unless the queen is multiply mated, as they possess the identical 

chromosomal set as the father. Thus, the relatedness among sibs is higher, namely 0.75 on the average, 

than it would be in diploid-diploid organisms offspring (Figure 1b). 

 

Figure 1 crossing scheme for haplodiploid organisms with complementary sex determining locus (alleles 

A, B and C) (a) and diploid organisms (b) 

 
 

Because only very few individuals reproduce eusocial Haymenoptera exhibit a low effective 

populations size (Zayed 2004; Bromham & Leys 2005; Jaffé et al. 2010). This results in increased genetic 

drift – a random loss of genetic diversity – playing a major role in the molecular evolution in these 

species. The reduced genetic variance should in turn reduce the effect of natural selection (Lynch 2007). 

One way to enhance the effective population size, genetic diversity, and thus also more efficient  

selection, is polygyny or polyandry, which is found in various ant and bee species (Hölldobler & Wilson 

1990; Kraus et al. 2005; Hughes et al. 2008; Seeley 2010). Also an increase the recombination frequency 

can contribute to an enhanced genetic diversity (Charlesworth et al. 2009; Betancourt et al. 2009) which 

could be shown for various eusocial species, once the appropriate molecular tools had been developed 

(Beye et al. 2006; Wilfert et al. 2006; Sirviö et al. 2006, 2011; Weinstock et al. 2006). 

A milestone was the comprehensive mapping and sequencing of the honeybee Apis mellifera genome 

in 2006 (Weinstock et al. 2006; Solignac et al. 2007). which triggered extensive research on genetic 

mechanisms underlying social behavior and its consequences in the rather new field of sociogenomics 

(Rueppell et al. 2006; Münch et al. 2008; Zayed & Whitfield 2008; Kucharski et al. 2008; Amdam et al. 

2010; Graham et al. 2011; Flores & Amdam 2011; Havukainen et al. 2011; Page et al. 2012; Rangberg et 

al. 2012). Moreover, it was shown that this highly eusocial species exhibited an extremely high 

recombination rate, among the highest in the animal kingdom (Beye et al. 2006). Another particularity 

was a very high AT content of the genome and the low frequency of retro-transposable elements, only 

containing a small fraction of R2 long interspersed repeats (Weinstock et al. 2006). The substitution rates 

in orthologous protein coding genes suggested a slower genome evolution than in Diptera (Weinstock et 

al. 2006) which contradicted other findings (Bromham & Leys 2005). This is interesting since a high 

recombination rate and strong genetic drift should have a strong impact on genome evolution (Bromham 

& Leys 2005; Lynch 2007; Charlesworth et al. 2009; Charlesworth 2009). 
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 The recent publication of draft whole genome sequences from several ant species (Bonasio et al. 
2010; Suen et al. 2011; Smith et al. 2011a; b; Wurm et al. 2011; Nygaard et al. 2011; Gadau et al. 2012) 
and preliminary results from other bee species (Kim Worley et al., unpublished, Baylor College of 
Medicine, pers. communication) so far indicated some commonalities among these species. Apart from 
high recombination rates – known for two ant and two bee species, they also exhibit high genomic AT 
contents. However, the majority of the sequenced Hymenoptera species belong to the ants, hence 
comparative results might be phylogenetically biased. Only one bee species was sequenced so far (A. 
mellifera) and although it is a valuable source for molecular data, it has certain limits. In many aspects, 
the honeybee is highly adapted and thus rather derived. Therefore any expansion of the molecular 
resources for additional bee species, especially those species which show a more primitive organization, 
would greatly facility our understanding of the mechanisms underlying genome evolution since it opens 
new possibilities for comparative sociogenomic analyses. 

 
 

The bumblebee Bombus terrestris 
Among the almost 250 species of bumblebees, the majority are primitively eusocial species (Williams 

1998). Their usually annual colonies are independently founded by a single female. Compared to the 
advanced eusocial honeybee Apis mellifera or some stingless bee societies, bumblebee colonies are much 
smaller and differences between castes are much less prominent, often merely behavior based (Plowright 
& Laverty 1984; Goulson 2003). 

Although bumblebees are globally distributed, the majority of species occurs in temperate or cold 
climates for which they seem to be well adapted. In many ecosystems they can be of great relevance for 
the reproductive success of flowering plants as they are efficient pollinators which are also active at low 
temperatures. Due to manmade changes in the landscape, many species are declining to the extent of 
becoming locally extinct (Darvill et al. 2006; Ellis et al. 2006; Goulson et al. 2008). 

Two species, Bombus terrestris (Figure 2) and B. impatiens gained economic importance for their 
pollination service in crop production (Willmer et al. 1994; Morandin et al. 2001; Velthuis & van Doorn 
2006). This and other aspects of their biology triggered a wide range of studies, especially on B. terrestris 
(Larrere & Couillaud 1993; Estoup et al. 1995a; Hoshiba et al. 1995; Goulson & Darvill 2004; Wilfert et 
al. 2007b; Petit et al. 2007; Kraus et al. 2009; Whitehorn et al. 2009; Schlüns et al. 2010). Their similar, 
but simpler organization and the relatively close phylogenetic position to the honeybees, makes the 
bumblebees an attractive emerging model system. This is reflected by initiated efforts to sequence the 
genomes of B. terrestris and B. impatiens (Kim Worley, Baylor College of Medicine & P Schmid-
Hempel, ETH Zürich, pers. communication). 

 
Figure 2 The bufftailed bumblebee Bombus terrestris (picture: M. Betley) 

 
 
However, so far the availability of molecular resources for Bombus terrestris was limited. A number 

of molecular markers, RAPD, RFLP, AFLP and microsatellites (Estoup et al. 1993, 1995a; b, 1996; 
Gadau et al. 2001; Reber-Funk et al. 2006; Murray et al. 2008) had been available and were employed for 
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generating two coarse genetic maps (Gadau et al. 2001; Wilfert et al. 2006). Recently, an EST and a BAC 

library were published (Wilfert et al. 2009; Sadd et al. 2010). 

The first genetic map for B. terrestris (Gadau et al. 2001) used RAPD markers to map the sex 

determining locus. The second map (Wilfert et al. 2006) used AFLP and a small number of SSR markers 

to map the genome in order to be allow subsequent QTL linkage studies. Both maps lacked completeness 

and compatibility to some extent. RAPD markers are in general notoriously difficult to reproduce and 

there is no sequence information associated with them. The second map did not cover the complete 

genome, indicated by 21 linkage groups for 18 chromosomes (Hoshiba et al. 1995). In addition the 

density of markers was low and the majority was AFLP markers, which, although having some sequence 

information from the primers, are less suitable for further analyses on a genomic level. 

 Thus it was highly desirable to generate a comprehensive genetic map for this emerging model 

species. This would provide a basis for more robust QTL linkage mapping with higher resolution, it 

would provide comprehensive insights into the genome organization and more interestingly, it would 

yield an estimate of the genome-wide recombination rate. Furthermore it will be valuable for supporting 

the ongoing genome sequence project. With a genetic map, generated with markers with sequence 

information, it is possible to place sequences, contigs or scaffolds on chromosomes and potentially 

orientate them. This allows a subsequent analysis of the relationship between genetic and physical 

distance on a chromosomal or local scale which might indicate recombination hot- or cold spots. It also 

allows for interspecies comparisons of structure and organization on a chromosomal or genomic level. 

In this thesis, these issues were addressed by developing new microsatellite loci, presented by 

publication I, as molecular markers in a sufficiently high density to produce a map of the B. terrestris 

genome to unambiguously determine all chromosomal linkage groups, presented by publication II. In 

addition to supporting the assembly of the bumblebee genome, these markers also might prove useful for 

population genetic studies in B. terrestris or other bumblebee species. The aim is to create the first 

comprehensive genetic map for this species, to derive the recombination rate and to compare genome 

structures with other species. This map will be the basis for many further genetic studies including 

genome assembly, population genomics, quantitative linkage mapping and so forth. 

Mapping the bumblebee genome with microsatellite markers has the advantage of provided sequence 

information for each mapped marker. This way it is possible to find orthologous loci in other, related 

species‟ genomes such as the honeybee Apis mellifera, and investigate their positional relationships in 

order to shed light on their genome evolution. Orthologous loci further can be used to investigate 

evolutionary properties of microsatellites as such, since they provide information on characteristics, 

presence as such or absence. 

 

 

Microsatellites and their evolutionary conservation 

Microsatellites or simple sequence repeats (SSRs) have become state-of-the-art markers for a large 

number of studies in population genetics, QTL mapping, genome mapping, conservation genetics, mating 

biology and so forth (Estoup et al. 1995a; Solignac et al. 2004; Kraus et al. 2005; Lattorff et al. 2007; 

Wilfert et al. 2007a; Moritz et al. 2007; Jaffé et al. 2007, 2010). 

Microsatellites are repetitive DNA sequences, small sequence motifs which are tandemly repeated. 

These motifs are usually 1 to 6 bp long and can be found in all eukaryotic organisms (Goldstein & 

Schlötterer 1999; Schlötterer 2000; Ellegren 2004). Their high within species variability and usefulness as 

a population genetic marker is owed to a high rate of slippage mutation which is frequently giving rise to 

multiple alleles of different length per locus (Figure 3a,b) (Leclercq et al. 2010). 

 

Figure 3 alleles of a microsatellite with different numbers of repeat units (a), schematic of replication 

slippage mutation (b). 

 
 



~ 5 ~ 

 

The widespread consensus is that these sequences are typically non-coding and selectively neutral. 

Their mutation rates are much higher than in other sequences, and thus it was expected, that these 

sequences have a high turnover during evolution. However, some recent studies could show that non-

coding DNA sequences and also microsatellites can be conserved over evolutionary time scales 

(Keightley et al. 2005; Buschiazzo & Gemmell 2006, 2009, 2010; Sun et al. 2009). It is intriguing that 

such “neutral” sequences are retained in genomes for many million years of separate evolution. Although 

this was partially known for quite some time – indicated by successful cross-species usage of 

microsatellite loci (Vaiman et al. 1994; FitzSimmons et al. 1995; Primmer et al. 1996; Reber-Funk et al. 

2006; Barbará et al. 2007) – only recently available genome scale data analyses comprehensively showed, 

that conservation of microsatellites can be substantial. But again, so far this has been shown only for a 

limited number of vertebrate species (Buschiazzo & Gemmell 2010). 

For insects, no genome-wide studies on evolutionary conservation are available. This is partly 

attributed to the lack of genome sequences, which only became available very recently. Apart from the 

honeybee, the flour beetle and the silkworm, there were only some species of Drosophila and mosquitos 

which had been sequenced. But during the last few years, further draft genome sequences from 

Drosophila species and numerous Hymenopterans were published. The relatively closely related species 

among the Diptera and Hymenoptera, made it especially feasible for identifying and characterizing 

orthologous microsatellite loci. There was the expectation of rather short evolutionary lifespans of these 

„neutral‟ markers. Surprisingly this had to be reconsidered after comparison of orthologous loci between 

Bombus terrestris and Apis mellifera (presented in publication II, as part of this thesis). Many 

microsatellite repeats were still present in both species, although they separated about 100 million years 

ago (Michener & Grimaldi 1988; Cameron & Mardulyn 2001; Grimaldi & Engel 2005; Danforth et al. 

2006; Engel 2006; Hines 2008; Whitfield & Kjer 2008). Thus, a comprehensive analysis across many 

species will be most informative. 

Microsatellites have high mutation rates (Schlötterer 2000; Leclercq et al. 2010) which gives rise to 

different alleles within short evolutionary times, hence their usefulness for discriminating individuals and 

populations. Although the dynamics of this variability is certainly interesting, it should reduce their value 

for studies over long evolutionary timescales (Buschiazzo & Gemmell 2009; Sun et al. 2009). However, 

the presence or absence of a microsatellite repeat as such, irrespective of its allelic state, could be used as 

a characteristic of genome evolution over longer evolutionary time scales. 

Whereas identifying microsatellites repeats is easy and fast (Benson 1999; Mayer et al. 2010; Mayer 

2011), finding orthologous loci is more of a challenge. In a recent study on vertebrates, homologous 

regions between genomes were used to scan for repeats (Buschiazzo & Gemmell 2010). Such data are not 

available for insects, thus, a novel approach is necessary. A method independent from previous 

knowledge of homology would further reduce a potential bias in the analyses, since such conserved 

regions might be under certain selective constraints and hence lead to less reliable conclusions. Apart 

from helping to find and understand evolutionary constraints and patterns for microsatellite repeats, these 

orthologous loci could be exploited as a source for comparative genomics. First, rates of the loss of 

repeats, derived from the amount of conserved loci, could be used to infer and compare rates of genome 

evolution. Second, they could be used as a toolkit for studying genome-wide structural differences 

between species, synteny of genomic regions or be employed for genome sequence assembly 

improvements by comparing closely related species. 

In the third publication of this thesis, these issues were addressed by developing a novel approach to 

identify and compare conserved microsatellites in several Diptera and Hymenoptera genomes. This was 

then used to compare rates of genome evolution and to find patterns of conservation for certain types of 

these repeats. Dated phylogenies were used for the species used in this study, to relate the conservation of 

microsatellites to divergence time. The latter aspect is particularly important as it is a potential source of 

erroneous results. Species might differ considerable in certain biological aspects, thus molecular clocks 

might not tick at uniform rates (cf. Bromham & Leys 2005), thus the number of evolutionary relevant 

events might differ per unit time. In consequence, additionally to the genomic information life history 

data were used to correct the datasets on rates of evolution, an asset which has not been explored in many 

such studies, although it might provide a more complete view on the subject. 
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Alternative molecular markers and new technologies 

Microsatellites undoubtedly had a huge impact on molecular ecology and genetic studies on a 

population and genomic scale. However, new sequencing technologies have been developed and these 

next generation or high throughput systems reduced the expense of sequencing dramatically (Metzker 

2010; Mardis 2011; Glenn 2011; Quail et al. 2012) (Figure 4b,c). Their further refinement and improved 

capacity and efficiency, the development of new bioinformatics algorithms for data analyses and 

exploding usage of next generation sequencing technologies (Figure 4a) revolutionized the field of 

molecular ecology, population genetics and genomics. Studies can now densely cover whole genomes 

with single nucleotide polymorphisms (SNPs) and/or process large numbers of samples. This opened 

many new avenues for more comprehensive and previously hardly possible studies. An example would be 

whole genome re-sequencing for population genetic analysis of whole genomes on a base-pair resolution 

to extract regions of balancing or purifying selection, selective sweeps, QTLs, whole genome 

associations, copy number variation, transposable element activity, recombination breakpoints or genome 

rearrangements. 

 

Figure 4 Exponential increasing number of finished genome sequences (A) and the cost of sequencing 

(B,C) (copyright Estevezj, Wikimedia Commons) 

 
 

However, if genomes are too large, whole genome sequences are not available or high resolution is 

combined with large numbers of desired markers or samples, it is still a challenge to conduct such 

projects both in terms of labor and a financial intensity. For many studies at the population genomic level 

it is sufficient have highly reduced information on the genome. Markers are needed that saturate the 

genome at sufficient density to reveal all coding regions in the genome.  In order to lower the complexity 

of a genome – to get a reduced representation of a genome – and thus decreasing the amount of DNA to 

be sequenced, various methods to prepare the sequencing libraries have been developed (Van Orsouw et 

al. 2007; Tassell et al. 2008; Baird et al. 2008; Andolfatto et al. 2011; Elshire et al. 2011; Peterson et al. 

2012; Wang et al. 2012). All of them are based on the use of restriction endonucleases and/or size 

fractioning. Although they were successfully used in numerous studies (Davey et al. 2011; Luca et al. 

2011; Baxter et al. 2011; Ma et al. 2012; Wang et al. 2013), the sequencing effort remains still rather 

high, especially to cover certain shared regions in all samples. For many studies, especially in population 

genetics and molecular ecology, high numbers of markers are not essential, but rather require a large 

sample size. In addition, new benchtop-type next generation sequencing machines (e.g. Ion Torrent, 
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MiSeq) have limited capacity and thus are not well suited for methods based on large genome libraries 

(Loman et al. 2012). The small platform would profit if we could enrich the informative markers in the 

libraries to be screened. 

To overcome these shortcomings, a new method of library preparation was developed as part of this 

thesis to meet requirements of research studies, as well as adapt to the capacities of benchtop sequencers 

(although this does not exclude large scale platforms). Using simple and well established techniques, now 

the complexity of genomic libraries can be reduced reliably. The method generates a reduced 

representation of the genome which generates sequences distributed over a genome without bias and in a 

reproducible fashion so that a large overlap between samples can be gained. It is very flexible and can 

easily be adapted to the requirements of the study, whether it is low numbers of sequences for simple 

population genetic analyses or genome scale studies. Although it has similarities with other techniques, 

the advantages in this new approach might make this a valuable method for future research in the whole 

field of population genetics and genomics. 

 

 

Study questions (papers) 

I. Development and evaluation of new microsatellite loci as molecular markers in Bombus 

terrestris and other bumblebees. 

II. Generation of a genetic linkage map for the B. terrestris genome with a sufficient number of 

markers to saturate it, determine recombination rate, and compare the genome structures with the 

related species Apis mellifera, for which a genetic linkage map is available as well. 

III. Comparative study on the evolutionary conservation of microsatellites in insect genomes, 

identification possible patterns and comparison of rates of genome evolution in Hymenoptera 

and Diptera. 

IV. Development of a new method to adapt next generation sequencing, especially with benchtop 

machines, for genome and/or population scale identification and genotyping of SNPs as 

alternative molecular markers for population genetics on large sample numbers or genome scale 

mapping. 
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Abstract 
 
We present details and characteristics of 123 novel polymorphic microsatellite DNA loci for Bombus 
terrestris. Thirty-four of these loci have been tested in nine other Bombus species and 25 of them showed 
polymorphisms in at least one species. These microsatellite DNA loci together with the already 
established 60 loci will be useful for characterizing wild and managed populations of B. terrestris and 
other Bombus species as well as for detailed genetic studies in including mapping studies and genome 
annotations. 
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II. A second generation genetic map of the bumblebee Bombus terrestris (Linnaeus, 
1758) reveals slow genome and chromosome evolution in the Apidae. 
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Abstract 
 
Background: The bumblebee Bombus terrestris is an ecologically and economically important pollinator 
and has become an important biological model system. To study fundamental evolutionary questions at 
the genomic level, a high resolution genetic linkage map is an essential tool for analyses ranging from 
quantitative trait loci (QTL) mapping to genome assembly and comparative genomics. We here present a 
saturated linkage map and match it with the Apis mellifera genome using homologous markers. This 
genome-wide comparison allows insights into structural conservations and rearrangements and thus the 
evolution on a chromosomal level. 

Results: The high density linkage map covers ~ 93% of the B. terrestris genome on 18 linkage groups 
(LGs) and has a length of 2’047 cM with an average marker distance of 4.02 cM. Based on a genome size 
of ~ 430 Mb, the recombination rate estimate is 4.76 cM/Mb. Sequence homologies of 242 homologous 
markers allowed to match 15 B. terrestris with A. mellifera LGs, five of them as composites. Comparing 
marker orders between both genomes we detect over 14% of the genome to be organized in synteny and 
21% in rearranged blocks on the same homologous LG. 

Conclusions: This study demonstrates that, despite the very high recombination rates of both A. mellifera 
and B. terrestris and a long divergence time of about 100 million years, the genomes’ genetic architecture 
is highly conserved. This reflects a slow genome evolution in these bees. We show that data on genome 
organization and conserved molecular markers can be used as a powerful tool for comparative genomics 
and evolutionary studies, opening up new avenues of research in the Apidae. 
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III. Patterns of evolutionary conservation of microsatellites (SSRs) suggest a faster 
rate of genome evolution in Hymenoptera than in Diptera. 
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Abstract 
 
Microsatellites, or simple sequence repeats (SSRs), are common and widespread DNA elements in 
genomes of many organisms. However, their dynamics in genome evolution is unclear, whereby they are 
thought to evolve neutrally. More available genome sequences along with dated phylogenies allowed for 
studying the evolution of these repetitive DNA elements along evolutionary time scales. This could be 
used to compare rates of genome evolution. We show that SSRs in insects can be retained for several 
hundred million years. Different types of microsatellites seem to be retained longer than others. By 
comparing Dipteran with Hymenopteran species, we found very similar patterns of SSR loss during their 
evolution, but both taxa differ profoundly in the rate. Relative to divergence time, Diptera lost SSRs twice 
as fast as Hymenoptera. The loss of SSRs on the Drosophila melanogaster X-chromosome was higher 
than on the other chromosomes. However, accounting for generation time, the Diptera show an 8.5-fold 
slower rate of SSR loss than the Hymenoptera, which, in contrast to previous studies, suggests a faster 
genome evolution in the latter. This shows that generation time differences can have a profound effect. A 
faster genome evolution in these insects could be facilitated by several factors very different to Diptera, 
which is discussed in light of our results on the haplodiploid D. melanogaster X-chromosome. 
Furthermore, large numbers of SSRs can be found to be in synteny and thus could be exploited as a tool 
to investigate genome structure and evolution. 
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Abstract 
 
We present RESTseq, an improved approach for a cost efficient, highly flexible and repeatable 
enrichment of DNA fragments from digested genomic DNA using Next Generation Sequencing platforms 
including small scale Personal Genome sequencers. Easy adjustments make it suitable for a wide range of 
studies requiring SNP detection or SNP genotyping from fine-scale linkage mapping to population 
genomics and population genetics also in non-model organisms. We demonstrate the validity of our 
approach by comparing two honeybee and several stingless bee samples. 
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General Discussion 

 

The bumblebee, Bombus terrestris became an emerging model system, and is the focus of many 

studies concerning most diverse biological aspects. The work presented in this thesis (Stolle et al. 2009, 

2011), provided a significant contribution with respect to the genome of this species. The first saturated 

genetic linkage map for the genome of the buff-tailed bumblebee filled an important knowledge gap 

(Colgan et al. 2011; Schmieder et al. 2012; Kidner & Moritz 2013; Stolle et al. 2013; Leboeuf et al. 

2013). B. terrestris is now the second bee species and one of the few Hymenopterans which have their 

genomes mapped (Sirviö et al. 2006, 2011b; Solignac et al. 2007; Werren et al. 2010). Apart from 

advances in coverage and density of the genetic map compared to previous, incomplete studies (Gadau et 

al. 2001; Wilfert et al. 2006), the usage of newly developed microsatellite marker provided the base tool 

kit for numerous further investigations. Not only can quantitative trait loci be mapped more precisely, the 

map and its markers proved most important to anchor and orientate sequences within the ongoing 

bumblebee genome project (Kim Worley, Baylor College of Medicine) also allowing for more robust 

estimates of the genomic recombination rate. Many of the novel markers have already been used in 

various subsequent studies of other species (An et al. 2011; Cook 2011; Huth-Schwarz et al. 2011a; b; 

Cerna & Straka 2012; Jha & Kremen 2013). 

The sequence information from flanking regions of the microsatellites further allowed for other 

studies. Due to sequence similarities, orthologous loci were detected in the genome of the related 

honeybee and subsequently yielded the surprising result of a high degree of conservation of chromosomal 

structures (Stolle et al. 2011). While this is expected in closely related species, such a degree of 

conservation between the bumblebee and the honeybee was striking since both species separated about 

100 million years ago. It was also striking that microsatellite repeats themselves were apparently 

conserved to some extent, given their neutral and highly mutative nature. 

The comparative approach used in (Stolle et al. 2011) was adapted in (Stolle et al. 2013) for a 

comprehensive comparative study in several insect genomes, providing new insights about the 

evolutionary conservation of microsatellites. This showed for the first time that such putatively neutral 

sequences can be retained in invertebrate genomes for many million years. The latter fact made 

microsatellites a powerful tool for comparing rates of genome evolution in (mostly) social Hymenoptera 

and Diptera. An important aspect of the presented work and its findings was the consideration of life 

history characteristics of the analyzed species. Unlike in many other studies where rates of evolution are 

calculated based on universal molecular clocks, it was possible to show in the presented analysis, that 

biological traits can have a profound impact on the obtained results. After correcting for generation time, 

a characteristic for which data were available for all the species, the results of a much faster loss of 

microsatellite loci suggested a faster genome evolution in Hymenoptera. This result is likely to be more 

robust than previous estimates in which authors (including myself) did not include generation time and 

therefore came to opposite but probably less relevant conclusions (Weinstock et al. 2006; Stolle et al. 

2011). 

Social Hymenoptera are characterized by an extremely low effective populations size of an order of 

magnitude lower than in Diptera (Drosophila, Aedes, Culex, Anopheles) because only very few 

individuals reproduce. As a consequence it is expected that the resulting high genetic drift is causing an 

accelerated molecular evolution (Betancourt et al. 2002; Lynch 2007). This was actually proposed and 

shown in another study (Bromham & Leys 2005). However, microsatellites probably can be considered as 

largely neutrally evolving and thus have the advantage over coding sequences with selection constraints, 

to be less affected by genetic drift effects. Drift would act randomly on all alleles of a microsatellite, not 

biased towards specific allele lengths which should lead to the extinction of a microsatellite locus, thus 

drift could not explain the observed differences. The results from the study presented in publication III 

(Stolle et al. 2013) which built upon publications I and II (Stolle et al. 2009, 2011) provided the first 

empirical evidence based on putatively neutral markers to support a faster evolution in social species. The 

neutral markers are the main difference to the study of (Bromham & Leys 2005), in which other 

sequences were used and no correction for generation time was made. Despite similar conclusions, the 

results based on the microsatellites suggest that, although drift might influence molecular evolution of 



~ 74 ~ 
 

coding regions, social Hymenoptera might have faster rates of genome evolution than other organisms 

due to other factors. 

Some of the analyzed Hymenoptera evolved multiple mating probably also as a strategy to increase 

genetic variability at the colony and at the population level (Kraus et al. 2005; Jaffé et al. 2007; Rueppell 

et al. 2012). It is likely that this facilitates also higher efficacy of selection, which otherwise is expected 

to be low due to high genetic drift (Lynch 2007). However, this adaptation is only known for some social 

Hymenoptera species such as the honeybee (Kraus et al. 2005), others not (Schmid-Hempel & Schmid-

Hempel 2000; Huth-Schwarz et al. 2011b). Since such a phenomenon would act on selection and drift as 

discussed above, it seems to be unlikely that it would have a large effect on the loss of neutral 

microsatellite markers. 

Another factor which can influence different rates of genome evolution might be the recombination 

rate. High recombination rates have repeatedly been reported to be drivers for genome evolution (Hudson 

1994; Lynch 2007; Mancera et al. 2008; Charlesworth et al. 2009; Betancourt et al. 2009; Kent et al. 

2012). Empirical studies on genomic recombination frequencies are limited to a few species only thus far. 

However, a number of previous studies reported elevated rates for social insects compared to other non-

social species (Beye et al. 2006; Sirviö et al. 2006, 2011a; b; Solignac et al. 2007; Wilfert et al. 2007; 

Meznar et al. 2010). As far as known, the honeybee exhibits the highest recombination rate in animal 

kingdom. With almost 16 cM/Mb it is an order of magnitude higher than in humans (0.6), nematodes 

(0.5) or fruit flies (3.8) (Lynch 2007; Wilfert et al. 2007). Other social species with such data available, 

two ants and a wasp, also have rates much higher than these non-socials. The results presented in this 

thesis (Stolle et al. 2011) further support the proposed relationship of sociality and elevated genomic 

recombination rates. For Bombus terrestris, if the genome size of 250 Mb from the final assembly (Kim 

Worley, Baylor College of Medicine) of the bumblebee genome is used. the estimate for the genomic 

recombination frequency is 8 cM/Mb. 

It could thus be possible, that elevated recombination frequencies have evolved in social species to 

enhance selection efficacy in compensation for the small effective population sizes and high genetic drift 

(Hudson 1994; Lynch 2007; Mancera et al. 2008; Charlesworth et al. 2009; Betancourt et al. 2009; Kent 

et al. 2012). This is also supported by studies in Drosophila in which adaptations at the level of protein 

sequence (purifying selection or positive selection) is compromised in regions of low recombination 

(Presgraves 2005; Haddrill et al. 2007) such as the dot chromosome in Drosophila (Betancourt et al. 

2009). Hence, although the explicit underlying mechanisms remain unclear, higher recombination rates 

provide an explanation for the difference between rates of genome evolution in Diptera and Hymenoptera 

as detected by neutral microsatellites. 

However, despite such high recombination frequencies, the detected high level of structural 

conservation between genomes of the honeybee and bumblebee (Stolle et al. 2011) is still puzzling and 

unexpected. Elevated rates of recombination would be expected to elevate structural evolution. Why this 

was not observed in the bees is uncertain. It was reported for the genome of the honeybee that it contains 

an extremely low amount of transposable elements (Weinstock et al. 2006). In consequence, an impact of 

mobilized elements or inter-element recombination (due to high sequence similarity between copies of the 

same element) on chromosomal structure should be low and might offer an explanation for the structural 

conservation found (Lynch 2007; Novick et al. 2011). 

The interplay of microsatellites with recombination rate, population structure and genome evolution, 

however, requires more detailed research in order to find correlative relationships and to unravel the 

highly complex molecular mechanisms underlying mutational and evolutionary processes of 

microsatellite repeats (Ellegren 2000). Yet a limited number of publications attempted to shed light on 

these interactions. For bacteria it was shown, that recombination lead to deletions in a tri-nucleotide 

microsatellite (Jakupciak & Wells 2000; Hashem et al. 2004). For birds it was found that mutational rates 

vary between sexes implying a potential influence from sexual selection, and that longer repeats are more 

prone to mutations (Anmarkrud et al. 2011). In humans, levels of slippage mutations leading to length 

polymorphism of microsatellite loci were shown to be not influenced by recombination rate (Payseur & 

Nachman 2000) but influenced by SNPs and InDels (Ellegren 2000; Brandström et al. 2008). In yeast, 

CA microsatellites were found to promote multiple cross-overs and to influence strand-exchange during 

recombination (Gendrel et al. 2000). In addition it was shown that there are differences between mitotic 
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and meiotic replication. The investigated microsatellites were less stable during meiosis. In conclusion, 

the knowledge about the molecular interplay of recombination and microsatellites is very incomplete. It 

appears to be important for future studies, to investigate and consider the influences of differences in 

mitotic and meiotic activities of germ-line cells and gametogenesis in males and females in multiple 

species on microsatellite and genome evolution. Such differences might have significant, thus far 

overlooked effects. This was already outlined by detected differences regarding male/female germ-line 

cell dynamics and their relation to the Drosophila X-chromosome evolution (Bauer & Aquadro 1997; 

Bachtrog 2008). And given the very long lifespans of the reproductive caste (queens) in social insects (cf. 

Page & Peng 2001; Lopez-Vaamonde et al. 2009; Parker 2010), the germ-cell line dynamics should 

receive more research attention. 

Irrespective of the mechanisms behind different rates of genome evolution, the results presented in the 

publications of this thesis suggest a faster genomic evolution rate in social Hymenoptera than non-social 

species. It is proposed that recombination rate might play an important role. However, further studies are 

required and are under way in order to draw more comprehensive conclusions. Comparative analyses 

such as presented in this thesis, could greatly benefit from similar investigations in other organisms, 

social and non-social. 

The technical advances in the recent few years open new opportunities for studying recombination and 

genome evolution in many more species. Although microsatellites are very robust and powerful 

molecular markers, especially for genetic linkage mapping as they exhibit high allelic variance, although 

they proved to be a very valuable tool in the presented studies (Stolle et al. 2009, 2011, 2013), they have 

limitations. Their development and utilization still requires much work and financial effort. With new 

methodological approaches such as presented in the last paper of this thesis (Stolle & Moritz), it is more 

feasible to use single nucleotide polymorphisms (SNPs) as alternative markers. By sequencing and 

irrespective of available sequence data, it is possible to generate and genotype SNPs in larger quantities at 

lower costs. This will greatly facilitate the analyses of many more species regarding recombination and 

rates of evolution und much shorter time. 
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