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1. Introduction

Multiferroics, defined as materials with at least two coexisting ferroic orders like ferro-
electric, ferroelastic, ferromagnetic and ferrotoriodic orders, have recently attracted
enormous research activities [1, 2]. In most cases, the term multiferroic refers to
the materials that display cross-correlations between magnetic and electric proper-
ties. In particular, the coexistence of (anti)ferroelectricity and (anti)ferromagnetism
in a single phase is of interest for memory and logic device applications. Hence,
both magnetization and polarization can independently encode information in a sin-
gle multiferroic bit. Moreover, the magnetic order can be triggered by an applied
electric field while ferroelectric order is changed by an external magnetic field. The
appearance of ferroelectric and magnetic properties in a single phase poses a chal-
lenge for a theoretical description because one has to include the coupling between
the corresponding order parameters or their microscopic counterparts, respectively.
In such systems, long-range magnetic order takes place as a result of interactions
between magnetic moments in the crystal lattice where ferroelectricity is commonly
originated from a structural change of the underlying lattice itself and/or the inter-
action of electric dipole moments. In fact, ferroelectricity occurs due to a lack of
inversion symmetry within the crystal structure. Ferroelectric materials are charac-
terized by a spontaneous polarization that can be reversed or reoriented by applying
an electric field, and a ferromagnet has a spontaneous and switchable magnetization.
The spontaneous polarization and magnetization are the order parameters which
become nonzero when the material is cooled below the related phase transition tem-
peratures. In narrower sense, the magnetoelectric effect is the phenomenon inducing
magnetization (polarization) by applying an external electric (magnetic) field.
Impressive sign of the interest in the multiferroic and magnetoelectric field of research
has been observed in the online database ISI Web of knowledge [3] by the rapid
increase in publications as depicted in Fig. 1.1.
In spite of the great progress in studying multiferroic materials experimentally, there
is a current debate on adequate theoretical descriptions. The illustration of mag-
netism, ferroelectricity and their coupling using many body approaches and quantum
or classical statistical analysis are promising ways in understanding the macroscopic
properties such as the temperature-dependent order parameters based on the micro-
scopic behavior included in the elementary excitations and their damping.
Although ab-initio approaches have significantly contributed to the recent progress
in this area, the applicability is limited to the zero temperature behavior and hence
to the ground state properties. The method of thermodynamic Green’s function is
an appropriate analytical tool to study complex many body systems at finite temper-
ature. This method allows us to find the dispersion relation of the elementary exci-
tations of the underlying quantum model, and moreover the temperature-dependent
macroscopic quantities like magnetization and polarization. Notably, the poles of the
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Figure 1.1. – Publications per year indexed in the ISI Web of knowledge database
with ’Multiferroic’ and ’Magnetoelectric’ as a keyword [3] from 1990-2012.

Green’s function are identified with the spectrum of the excitations.

Since ferromagnetism and ferroelectricity in reduced dimensions provide a drastic in-
crease of the storage density of random access memories (RAM), nanoscale materials
have attracted extensive attentions. The anticipated benefit depends on whether the
phase transition and the polarized low temperature state still exist when the system
is scaled down up to less than 100 nm. The challenge in low dimensional finite struc-
tures concerns the synthesis, the experimental characterization of their size-dependent
properties as well as the theoretical description. In regard to this, multiferroicity at
the nanoscale emerged as a vital research field. In such multifunctional materials, the
manner in which the properties scale with the structure size as well as the coupling
behavior with size reduction, are especially considerable for any potential applica-
tion and their theoretical studies are of high importance. The main objective of the
present thesis is the theoretical description of multiferroic materials by emphasizing
the different mechanism in bulk systems compared to thin films and nanostructures.

This thesis consists of three main parts. The first part is dealing with the intro-
duction of fundamental concepts of ferroelectricity, magnetism, and their coupling in
multiferroic materials. In addition, the method of Green’s function will be presented
as a basis for the subsequent chapters.

The second part describes the multiferroicity in bulk materials. The Hamiltonian of
a typical system consists of two subsystems that are coupled to each other through a
coupling term which can be determined based on symmetry arguments. The classes
of models studied are the Heisenberg model and the Ising model in a transverse
field under inclusion of anharmonic lattice interactions. Based on quantum mod-
els we are interested in the statistical and thermodynamic behavior of multiferroic
systems. Using the Green’s function technique, the dispersion relation of the ele-
mentary excitation of the underlying quantum model, their damping and moreover,
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the temperature-dependent macroscopic quantities such as magnetization and po-
larization, will be calculated. Especially, the influence of spin-phonon interaction,
the single-ion anisotropy and the ion doping effect as well as external magnetic and
electric fields on the spin-wave dispersion relation and the related phonon modes are
studied in detail.
In the third part, the behavior of nanosized multiferroic systems is analyzed. In
particular, we explain the origin of multiferroicity in those materials which do not
show this property at their bulk state. The final chapter of the thesis contains the
summary of the current work as well as outlooks.





2. Basics

2.1. Ferroelectricity

The ferroelectric effect was discovered in 1920 by Joseph Valasek, who obtained hys-
teresis curves for Rochelle salt analogous to the hysteresis curves of ferromagnetism
[4]. In March 1935 potassium dihydrogen phosphate (KDP), KH2PO4 was found
to be ferroelectric with a critical temperature of about 123 K by Busch and Scher-
rer [5] where its isomorphs also contains the properties of ferroelectricity. The first
phenomenological theory was proposed in 1940 by Müller to describe the relations be-
tween piezoelectric, anomalous dielectric and elastic behaviors of Rochelle salt [6–9].
In 1941, Slater introduced the first significant microscopic theory of phase transitions
based on the model of hydrogen bonds to explain the behavior of KH2PO4 [10]. After
1941, the third major ferroelectric substance, barium titanate BaTiO3, was discov-
ered [11]. Barium titanate was the first man-made perovskite ferroelectric material
in ceramic form. In the following years several isomorphs of BaTiO3 were found to
behave also as ferroelectrics. In 1949, Devonshire published a theory on the phase
transition mechanism of BaTiO3 [12]. His theory has deepened the understanding on
the behavior of BaTiO3 and has initiated the thermodynamic theory in ferroelectric-
ity. A major breakthrough in the study of ferroelectricity came from Cochran [13]
and Anderson [14] via the soft modes description of ferroelectricity in the perovskite.
The development of the ferroelectric soft mode theory occupied the duration from
1959 to 1970. From 1980 until now, many ferroelectrics have been discovered and
research activity has rapidly increased.

Typically, materials demonstrate ferroelectricity below the Curie temperature, TC ,
and are paraelectric above this phase transition temperature. Ferroelectric (FE) ma-
terials are characterized by a reversible spontaneous macroscopic polarization which
is the electric dipole moment per unit volume. By applying an external electric field
the direction of the polarization can be reversed.

The most prominent features of ferroelectric properties are hysteresis and nonlinearity
in the relation between the polarization P and the applied electric field E. Dielectric
materials exhibit a linear relationship between polarization and electric field. On the
other hand, paraelectric materials, show a more enhanced non-linear dependence. In
this case, the slope of the polarization curve which represents the electric permittivity
is not constant as in dielectrics but is a function of the external electric field. These
features are shown in Fig. 2.1. In addition to the switchable polarization, these ma-
terials exhibit other functional properties, including piezoelectricity, pyroelectricity,
and non-linear dielectric behavior. Due to the unique combination of these properties
researchers and engineers have been focusing on ferroelectric materials application in
electronic devices such as sensors, infrared detectors, microwave phase filters and,
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Figure 2.1. – Schematic hysteresis loop of the electric field dependency of the (a)
Dielectric polarization, (b) Paraelectric polarization, (c) Ferroelectric polarization.

ultimately, non-volatile memories [15].

2.1.1. Ferroelectric materials and their properties

Ferroelectric crystals often show several transition temperatures and domain struc-
ture hysteresis, as much as ferromagnetic crystals. The phase transition of ferro-
electrics is generally a structural phase transition which involves the displacement of
ions so that crystals or crystallites exhibiting ferroelectric phenomena must be non-
centrosymmetric. By performing the symmetry operations, crystals can be classified
into 32 point groups. Among these 32 point groups, 11 of them possess a center
of symmetry, and the remaining 21 are non-centrosymmetric. 20 of these 21 point
groups are piezoelectric crystal classes. It is discovered that only 10 out of the 20
piezoelectric crystal classes have a unique polar axis and exhibit spontaneous polar-
ization. One can conclude that all ferroelectric crystals are piezoelectrics, but the
opposite is not true.
Above the Curie temperature, TC the system is in its centrosymmetric paraelectric
phase. As the temperature decreases, the material undergoes either a first or a second
order phase transition and becomes ferroelectric. The spontaneous polarization is
the order parameter of ferroelectric materials which appears below the transition
temperature. The most important feature of first order phase transition is that the
order parameter jumps discontinuously to zero at TC . In case of a second order
transition, the polarization exhibits a continuous change from one phase to another
one. Fig. 2.2 shows typical cases of the variation of spontaneous polarization with
temperature for the first and second order phase transition at zero field.
When the temperature is in the vicinity of the Curie point, the ferroelectric materials
show anomalies in the dielectric, elastic, thermal and other thermodynamic properties
[16] and is accompanied with changes in the shape of the crystal unit cell [17]. For
example, the dielectric constant in most ferroelectric crystals has an abnormally large
value (up to 104 ∼ 105 ) near TC [18]. This phenomenon is usually called dielectric
anomaly and is considered to be the basic feature of ferroelectric materials. Fig. 2.3
schematically shows the temperature variation of the dielectric constant of BaTiO3.
The Curie temperature for BaTiO3 is 393.15 K. The nature of the paraelectric-
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Figure 2.2. – The change of spontaneous polarization, P with temperature T for (a)
Second order and (b) First order phase transition.

Figure 2.3. – The spontaneous polarization and dielectric constant ε(T ) of BaTiO3

crystal. εc is the dielectric constant along the polar axis and εa is perpendicular to
the axis. Adapted from [19, 20].

ferroelectric transition and whether the polarization at T < TC develops continuously
or discontinuously is well explained based on Landau-Devonshire Theory. Further
information can be found in related text books [16, 21].

2.1.2. Different type of ferroelectrics

Ferroelectrics can be divided into two main groups, displacive and order-disorder ones
according to the phenomenological behavior of the crystals. This way of classifying
ferroelectric materials is discussed in details by Lines and Glass [16]. Displacive fer-
roelectrics exhibits the polarization due to the ionic displacements of certain atoms
in the crystal lattice which leads to a change in crystal symmetry. The most typi-
cal displacive ferroelectric is perovskite type, with a general chemical formula ABX3.
This structure is adopted by many oxides as ABO3. A perovskite has a cubic crystal
structure in a high-temperature phase. ’A’ site cation occupies the cubic corner po-
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sitions, ’B’ atoms reside at the body center, while oxygen atoms are located at the
face centers. The whole structure is formed by linking the vertices of the oxygen oc-
tahedral. The cavities are mainly occupied by the ’A’ atoms. The oxygen octahedron
has three four-fold axes, four three-fold axes and six two-fold axes. The polarization
occurs when ’B’ is displaced from the cubic center along any of these symmetry axes.
For example, SrTiO3 undergoes a displacive phase transition where the TiO6 octahe-
dra make a small rotation about [001] axis. Similarly, in CaTiO3 and MgSiO3, the
octahedra tilt by different amounts about all three axes. Another type of displacive
phase transition is seen in PbTiO3. In paraelectric phase, Pb, O and Ti atoms occupy
corners, face centered and body centered sites of cubic, respectively. At room tem-
perature, the tetragonal crystal structure has the ionic displacement which is parallel
in the polar phase of the oxygen octahedral during para-ferro phase transition [22].
During the phase transition, the oxygen atoms and Ti4+ cations in PbTiO3 shift in the
same direction relative to the Pb2+ cations. Pb atoms possess larger size compared
to Ti atoms in the octahedral interstitial position, so Ti ions have small range of
stability. Thus, the minimum energy can only be reached if Ti ion position is off-
centered in surrounding of six oxygen ions as illustrated in Fig. 2.4. The random
position of Ti ion in one of these six possible minimum energy sites will result in the
spontaneous polarization.

Figure 2.4. – Perovskite structure PbTiO3 (a) in its centrosymmetric phase and (b)
its possible ferroelectric phase.

In comparison with the displacive one, the mechanism of the order-disorder ferro-
electrics is more complex. The prototype order-disorder class of ferroelectrics includes
crystals in which the spontaneous polarization results from the ordering of the ion’s
proton in the structure. There are two major groups of order-disorder ferroelectrics.
The first one consists of elements, such as phosphates, sulphates, cyanides, where the
spontaneous polarization appears as a result of the ordering of protons in the hydro-
gen bonds. They are known as hydrogen-bonded ferroelectrics. The second group
consists of tartrates, potassium nitrate, sodium nitrate, where spontaneous polariza-
tion is caused by the arbitrary ordering of radicals, which takes place from hindered
rotation.
The typical examples of order-disorder ferroelectrics are sodium nitrite NaNO2,
triglicine sulphate (TGS) (CH2NH2COOH)3·H2SO4 and potassium dihydrogen phos-
phate KH2PO4 (KDP). KDP is tetragonal above 124 K with a non-centrosymmetric
space group 14̄2d. Below 124 K it is in orthorhombic ferroelectric phase with space
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group Fdd2 . The crystal structure consists of K+ ions and tetrahedral PO4
3-

groups.
The P5+ ions are located at the centers of these tetrahedral groups. The key part of
the crystal structure is the three dimensional network of PO4

3-
groups linked by the

O-H...O hydrogen bonds to the adjacent PO4
3-

group. Two upper atoms of one PO4
3-

tetrahedron are joined to the lower oxygen atoms of two other tetrahedrons, while
two lower oxygen atoms of the tetrahedron are joined to the upper oxygen atoms of
another two tetrahedrons [16, 20, 23]. The schematic representation of KDP is shown
in Fig. 2.5. The ordering of the protons on the hydrogen bonds in the KDP does not

Figure 2.5. – Schematic diagram of the hydrogen bond system in KH2PO4 (KDP)
crystals. The PO4

3-
groups with hydrogen bonds link to the nearest PO4

3-
groups

adapted from [24].

directly contribute to the spontaneous polarization of the crystal, but the interaction
of protons with K+ and P5+ ions causes the displacement of the K+ and P5+ ions
that induces the spontaneous polarization.
Although two limiting cases of ferroelectric materials are introduced, it is not always
easy to draw a line between them. In 1963 de Gennes suggested that one can use
Cochran’s theory to characterized these two special ferroelectric cases by the occur-
rence of a soft mode behavior [25]. To investigate the soft mode dynamics of these
systems it is only necessary to consider the rearrangements of a few atoms in the
unit cell and treat the rest of the crystal lattice as a heat bath. We are not going
into details and will just assume that the model Hamiltonian describing the struc-
tural phase transition will consists of a sum of single-particle contributions and an
interaction part

H =
∑
i

[
1

2

P 2
i

2m
+ V (Qi)

]
− 1

2

∑
i,j

vijQiQj. (2.1)

The properties of the system described by this model Hamiltonian depend on the
shape of the single-particle potential V(Q). The potential field in the order-disorder
ferroelectrics, is anharmonic. It has a maximum at Q=0 indicating that this position
is unstable. We assume that V(Q) is a double-well potential. Such situations are
often found in a hydrogen-bonded systems where the proton can move between two
equilibrium sites in the hydrogen bond potential. The proton sits in one of the wells
and the bonding energy is the same in either way. Above TC , the proton distribution
in the potential wells is disordered and random between the two equilibrium positions
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along the bond length. Below TC , the potential barrier is too high compared to
the interaction between neighbors. As a result, the atoms prefer to remain near
to the minima of the wells and the distribution becomes ordered. There will be
a larger fraction of protons in one side of the well than in the other one. When
the spontaneous polarization increases with the degree of ordering of these protons,
the hydrogen ion does not contribute to the spontaneous polarization because the
displacement in hydrogen bond is perpendicular to the ferroelectric axis. However,
the ordered state of proton induces displacements of KDP along the c-axis that causes
the dipole moment.

Figure 2.6. – Ordering sequence in the displacive and order-disorder limit.

Although in displacive ferroelectrics the potential in which the nuclei moves is slightly
anharmonic, one can use a double-well potential representation as well to interpret
the system. Due to the harmonicity, V(Q) has a single minimum. It can be considered
as if the atoms spend more time on the same side of the origin. If the interactions
between neighboring state are strong enough they can lead to a destabilization of
the position at Q=0 which means that particles are able to vibrate about the origin.
These two cases are sketched in Fig. 2.6.
The underlying model for this two-level system is the Ising model in a transverse field
(TIM). This model is explained in more detail in the following.

2.1.3. Transverse Ising model. A microscopic model for
ferroelectrics

We are interested in a qualitative understanding of the physics governing the behavior
of ferroelectric materials. To this aim, we present a model which allows a microscop-
ical description for the ferroelectric materials. The analogy between ferromagnetism
and ferroelectricity has long been recognized. It was first pointed out by de Gennes
[25], and Blinc [26] that the spin-like description of hydrogen-bonded (KDP-type)
ferroelectrics can be introduced based on the tunneling model, known as the Ising
model in a transverse field (TIM). The transverse field represents the proton tunneling
between the two equilibrium positions of the protons within the O-H-O bonds.
For every two-level system, all particle operators can be expressed in terms of spin-1

2

operators known as Pauli operators. Considering the polarization direction along the
z-axis, states with Bz = ±1

2
are described by pseudospins which refer to a mapping

of the two equivalent positions in the well and the interchange between both posi-
tions onto spin-1

2
operators and have nothing to do with a real spin. In the field
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of ferroelectrics, this pseudospin theory has been widely applied to the theoretical
studies on ferroelectric films and superlattices in order to explain theoretically the
experimentally observed transition properties. Furthermore, the TIM is also applied
to displacive type FE such as BaTiO3 [27, 28]. In the case of a very small tunneling
frequency with respect to the interaction constant, one may use the TIM as a model
for order-disorder FE without tunneling motion (e.g. for NaNO2, TGS). Therefore
the TIM can be applied to describe the electric polarization in many types of ferro-
electrics. The Hamilton of the Ising model in a transverse field in real space reads
[25, 26, 29]

H = −2Ω
∑
i

Bx
i −

1

2

∑
i,j

J ′ijB
z
iB

z
j . (2.2)

Bz and Bx are the pseudospins operators. Bx is the tunneling operator which repre-
sents a jump into the other well of the bond. Ω is the tunneling frequency between
the two wells. It describes the dynamic strength of the system. The z-components of
pseudospins at neighboring lattice sites i and j interact via the interaction parameter
J ′ij which depends on the distance between them. The interaction strength is deter-
mined by the lattice parameters, the lattice symmetry and the number of nearest
neighbors.
The sum is performed over all lattice points of the infinite extended bulk material.
For light ions and especially for protons in H-bonded materials, tunneling probability
can be quite large. For a very deep double-well there are only two degenerate states
near the bottom of each well. This degeneracy is lifted by the quantum mechanical
tunneling between the minima.
The expectation value 〈Bz〉 measures the difference between the occupation of the
left and right equilibrium site. The difference in the occupation between the sym-
metric and antisymmetric energy state is given by 〈Bx〉. The better understanding
of the ferroelectric materials is obtained by including higher order terms in Eq. (2.2)
[30, 31]. Although the transverse Ising model is one of the simplest quantum mod-
els, the straightforward exact treatment of the transverse Ising model with the space
dimension greater than one is very demanding. The Ising model has been applied
to various physical systems such as cooperative Jahn-Teller systems and strongly
anisotropic magnetic materials in the transverse field. More details about possible
applications of this model can be found in reviews by Blinc and Zeks [26] and Stinch-
combe [32].

2.1.4. Ferroelectrics at nanoscale

Recent advances in science and technology of ferroelectrics result in the development
of micro- and nanoscale ferroelectric structures. As structure dimensions are get-
ting smaller, ferroelectric materials exhibit a pronounced size effect manifesting itself
in a significant deviation of the properties of nanoscaled structures from the bulk
properties. In this sense, surface energy cannot be neglected in small volumes and
long-range dipole interaction is significantly modified in confined geometries. It also
depends on whether a ferroelectric is confined in one-, two-, or all three-dimensional
structures. In 1944, Onsager [33] showed that in the two-dimensional lattice described
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by the Ising model a monolayer of non-oriented dipoles became oriented as a result
of the first order phase transition. Many years later, experimental studies [34] con-
firmed the conclusion that ferroelectricity might still exist in ferroelectric films with
the thickness equal to just several unit cells. The size effect in ferroelectrics manifests
itself with the reduction in the sample geometrical dimensions by a decrease in the
remanent polarization, dielectric permittivity and phase transition temperature, in-
crease in the coercive field, changes in the domain structure and other properties. In
addition, noticeable size effect should be also taken in to account since for example
transition temperature and spontaneous polarization decrease upon the reduction in
the physical dimensions of ferroelectric structures [35].
Parameter which plays an important role in the estimation of the range where the
size effects are expected to be significant is the correlation length which describes
the width of the domain wall. Although the continuum theories are expected to
be valid only at the scales much larger than the lattice constant, many of the size
effects down to the nanoscale can be explained by thermodynamic approach using
Landau-Ginzburg-Devonshire (LGD) formalism with proper boundary conditions.
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2.2. Magnetism

2.2.1. Magnetic order

Magnetic properties are exhibited by many substances. The magnetic moment of the
electrons determine the magnetic nature of the material. These moments are origi-
nated from the spin of electrons and electron orbital angular momentum. A change in
the moments is induced by an applied magnetic field. Magnetic moment per unit vol-
ume is known as magnetization. Based on their magnetic properties, these materials
are classified into weakly magnetic (paramagnetism (PM) and diamagnetism (DM))
and strongly magnetic (ferromagnetism (FM); antiferromagnetism (AFM) and ferri-
magnetism (FIM)). Our treatment will deal with the theoretical problems involving
the latter case.

The occurrence of magnetism in transition metal oxides is mainly due to the magnetic
moments of the electrons in the partially filled shells. The non-zero spin angular
momentum associated with an unpaired electron, an electron that occupies an orbital
of an atom singly rather than as part of an electron pair, gives rises to a magnetic
moment. Ferromagnetic materials like transition metals, exhibit parallel alignment
of magnetic moments to one another giving net spontaneous magnetization even in
the zero magnetic field. In an antiferromagnet, equal magnetic spins are aligned
antiparallel, as a result the material shows no net magnetic moment. Transition
metal oxides are a good examples of AFM materials. Ferrimagnetism is a special case
of antiferromagnetism, consisting antiparallel unequal moments, resulting in a non-
zero net magnetization. This behavior is observed in complex salts of the transition
elements like MnO or Fe2O3.

Antiferromagnetic materials can be found in two different phases, commensurate
phase in which the periodicity of the spins is linked to the crystal structure, or in-
commensurate phase where a magnetic periodicity is not a rational divisor of the
interatomic spacing. Examples of commensurate antiferromagnetic order for simple
cubic crystal is shown in Fig. 2.7. These collinear structures are known as A-type,
describing antiferromagnetically coupled ferromagnetic ab-planes, the Neel antiferro-
magnetic G-type order, or C-type with antiferromagnetically coupled ferromagnetic
chain along the c-axis. There is also an unusual E-type antiferromagnetic structure
where the material behaves as quasi-two-dimensional antiferromagnet within ab-plane
and exhibits ferromagnetic correlations along the c-direction [36]. In addition, there
are incommensurate spin structures where non-collinear spin configurations may oc-
cur due to competing exchange interactions or by applying external magnetic fields.
The first incommensurate phases were discovered in magnetic systems where the mag-
netic order has a helical structure with a pitch that does not have a rational relation
to the underlying lattice. More examples of incommensurate antiferromagnetic or-
der are sinusoidally modulated spin density waves, and cycloidal order, in which the
spins change orientation along the propagation direction inside a circular or ellipsoidal
envelope (Fig. 2.8).
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Figure 2.7. – (a) A-type, (b) G-type, (c) C-type and (d) E-type commensurate anti-
ferromagnetic order.

Figure 2.8. – (a) Sinusoidal and (b) Cycloidal incommensurate antiferromagnetic
order.

2.2.2. Magnetic frustration

In a square lattice, the system can easily find an ordered structure of spins to satisfy
antiferromagnetism. In some other materials, where the free spins are arranged in
a triangular or tetrahedral pattern, there is no way to simultaneously satisfy all of
the magnetic interactions. In these materials, magnetic order is said to be frustrated.
Frustration occurs when there is no possible spin configuration that can satisfy a
number of competing exchange interactions and minimize the ground state energy.

A simple 2D example of triangular lattice is shown in Fig. 2.9. Only two out of the
three spins can align antiparallel, the third spin lacks a preferred direction along which
to point because of competing interactions with its neighbors. Unlike the cases of
ferromagnetism and antiferromagnetism, in frustrated materials, the minimum-energy
state may be composed of magnetic moments arranged in a more complex pattern,
such as repeating spirals (helimagnetism), frozen into random orientations with no
long-range order as in spin glasses, or form an incommensurate order. Alternatively,
there may be an enormous number of equally favorable ground states, so that no
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particular state stabilizes and the magnetic moments freely fluctuate down to the
temperatures available in the laboratory (spin liquid). It also could be the case that
magnetic order only achieved at extremely low temperatures due to some symmetry-
breaking transition as in spin ice.

Figure 2.9. – (a) Antiparallel alignment of the magnetic moments in a square lattice
and (b) Frustration of magnetic order in triangular lattice.

2.2.3. Exchange interactions

The interaction between magnetic moments is of two types; exchange interaction
and dipolar interaction. Ferromagnetism requires a strong force to create the atomic
moments and to stabilize the parallel orientation of neighboring moments. A ferro-
magnetic order established by magnetostatic dipole interaction would be destroyed
by temperatures of the order of one Kelvin. The strong force which is responsible for
creating and stabilizing spontaneous magnetization is the exchange interaction. The
origin of exchange interaction can not be explained classically. It is a pure quantum
mechanical phenomena, also it is purely electrostatic in nature. It is a direct conse-
quence of the Pauli’s principle, which forbids fermions to occupy the same quantum
state. So, double occupancy of an orbital is possible for antiparallel spins (↑↓) but
forbidden for parallel spins (↑↑). As a result, the average separation of electrons, r,
will be larger for parallel spins than antiparallel spins. The inter-electron Coulomb
repulsion energy ( e2

4πε0r
) is smaller for parallel than antiparallel spins. Hence the par-

allel alignment is favored by Coulomb interaction. Depending on the system under
consideration, this quantum mechanical coupling responsible for cooperative mag-
netism is described in different ways. A direct overlap of electronic wave functions
of the magnetic neighboring atoms is called a direct exchange interaction, which re-
quires different symmetry properties from the spatial and spin parts of the electronic
wave function. The direct exchange is a short-range coupling, and the overlap of the
neighboring magnetic ions orbitals is rarely sufficient to produce a robust long-range
magnetic order.
In many substances the atoms which strongly interact magnetically are quite def-
initely separated from each other by intervening non-magnetic ions. Such indirect
exchange interaction is called superexchange and first suggested by Hendrik Kramers
in 1934 [37]. It originates from admixture of excited states of cations with a ground
state of an anion. This is best illustrated by the insulating magnetic MnO crystal
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which strongly coupled Mn2+ ions are separated by a non-magnetic O2− ion directly
between them. It is reasonable to allow a considerable admixture of the state in which
at least one p electron from oxygen has gone into an s or d state on Mn2+, thus the
oxygen is paramagnetic and can enter into magnetic interactions.
In the case of a parallel orientation of the magnetic moments located at the metal
centers, no delocalization occurs, which makes the antiferromagnetic alignment ener-
getically favorable. However, hopping requires a nonzero overlap between the involved
atomic orbitals. For p and d orbitals, the hopping depends on the bond angles. Based
on a symmetry relations and electron occupancy of the overlapping atomic orbitals
in the presence of the Pauli exclusion principle, a set of semi-empirical principles
were developed which is known as the Goodenough-Kanamori rules [38, 39]. It states
that superexchange interactions are antiferromagnetic between overlapping orbitals
of magnetic ions that are each half-filled, but they are ferromagnetic when the elec-
tron transfer is from a half-filled cation to another cation with empty orbital or from
a filled to a half-filled orbital. The other mechanism proposed by Clarence Zener

Figure 2.10. – Sketched mechanism for (a) Superexchange illustrated for MnO. The
interaction between the magnetic Mn atoms is mediated by the diamagnetic oxygen
though the overlap of the metal’s 3d and oxygen’s 2p orbitals. (b) Double exchange
in mixed-valence manganites. Two electrons are transferred simultaneously, one
from a bridging O2− anion to the Mn4+ center and one from a Mn3+ center to the
O2− anion. Adapted from [40].

[41], is a type of a magnetic exchange that may arise in an environment containing
ions of more than one oxidation state. For example in case of manganites, the mixed
valence, Mn3+ and Mn4+, leads to ferromagnetic double exchange. Electrons on each
Mn ion are aligned according to Hund’s rules. Due to hybridization with the oxygen
electrons, the spin-up electron jumps from Mn3+ to O2− and from O2− to Mn4+. At
the end of the hopping process, an electron has moved between the neighboring metal
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ions, retaining its spin. Both donating and receiving ions have to be ferromagnetically
aligned. Otherwise, the hopping is impossible due to the Pauli exclusion principle.
The ability to hop reduces the kinetic energy. Hence the overall energy saving can
lead to ferromagnetic alignment of neighboring ions. This model seems to be similar
to superexchange. However, in superexchange, a ferromagnetic or antiferromagnetic
alignment occurs between two atoms with the same valence (number of electrons);
while in double exchange, the interaction occurs only when one atom has an extra
electron compared to the other.
Another domain of exchange interactions is antisymmetric superexchange known as
Dzyaloshinskii-Moriya exchange interaction which can occur whenever the site sym-
metry of the interacting ions is uniaxial. It should be mentioned that other exchange
mechanisms exist apart from those described above which can be found in literature
[42].

2.2.4. Hamiltonian model

Insulating magnetic material is described as assemblies of spins located at crystal
lattice sites [43]. The interaction between the localized magnetic moments at different
sites is given by the exchange interaction Jij. In case of short range interaction the
coupling is restricted to nearest neighbors. For more complicated spin alignments we
discuss in this thesis other exchange couplings, see chapter 3. Whereas the exchange
coupling favors the ordering of the moments, the temperature tends to prevent such
an alignment. The competition between thermal effects and exchange interaction
allows the occurrence of the spontaneous magnetisation only for T < TN , where TN

is a well defined sharp transition temperature. For T > TN the magnetic moments
are thermally disordered and there is no net magnetization. The simplest model
describing strongly interacting localized magnetic moments is due to Heisenberg and
Frenkel. The Hamiltonian of the Heisenberg model has the following form

H1 = −1

2

∑
i,j

JijSiSj − gµB
∑
i

BiSi . (2.3)

Bi is the local magnetic field acting on the i-th spin. Here the exchange coupling Jij
is often considered as a phenomenological parameter describing the coupling between
two spins or magnetic moments represented by the spin operators Si and Sj. A pos-
itive exchange coupling favors a parallel orientation while a negative J is responsible
for an antiferromagnetic order.
In the absence of an external magnetic field, the magnetization M tends to lie along
one or several axes in the magnetic solid, called the easy axes. The energy that is
required to rotate the magnetization into any different direction from these preferred
axes is determined by magnetic anisotropy. The influence of the crystal structure of
a substance on its magnetic properties also manifests itself in the dependence of the
magnetic properties on the direction along which they are measured. In other words,
magnetic substances exhibit magnetocrystalline anisotropy. The magnetocrystalline
anisotropy can be represented in different forms due to the symmetry group of the
magnetic lattice [44]. In uniaxial ferromagnet which has one easy axis, the single-ion
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anisotropy is modeled by

H2 = −
∑
i

Ki(Si)
2 . (2.4)

In a further approximation, one may consider only an effective anisotropy field, HA

which is described by

HA = −gJ
µB
~
BA

∑
i

Szi . (2.5)

In particular, this term is applied to uniaxial antiferromagnets.
The weak ferromagnetic properties of some compounds are known to be produced
from spin canting. This prediction was made by Dzyaloshinskii within the framework
of symmetry argument. A possible microscopic mechanism was proposed by Moriya,
who declared that the required form can be realized by an antisymmetric microscopic
coupling between two localized magnetic moments Si and Sj. This argument is
formulated in the form of Eq. (2.6) and known as Dzyaloshinskii-Moriya interaction
(DMI).

H3 = −1

2

∑
i,j

Dij(Si × Sj) . (2.6)

DM interaction resembles the form of antisymmetric superexchange interaction and
induced by a relativistic spin-orbit coupling. Since this term is proportional to the
vector product of spin operators, it is non-zero just for non-collinear spin configura-
tions. Dij is Dzyaloshinskii-Moriya vector and proportional to the strength of spin-
orbit coupling. DMI plays an important role in the theory of the magnetoelectric
effect especially in those multiferroic materials with non-collinear magnetic structure
[45, 46].

2.2.5. Magnetism at nanoscale

At present, magnetism of nanoscale materials is a vital research field because of its
relevance for technological applications in state of the art and future magnetic devices.
The properties of nanosized magnets differ substantially from the bulk counterparts
due to the increasing role of the surface spins as the particle size is decreased. The
antiferromagnetic nanoparticle systems below their Neel temperature provide a par-
ticularly interesting case since any observed ferromagnetic-like moment must result
from uncompensated surface spins and therefore becomes a direct measurement of the
properties of the attractive surface atoms/spins. Temperature dependent magnetic
effects of the surface spins lead to several very interesting phenomena like super-
paramagnetism, magnetic hysteresis, exchange bias and interparticle interactions. A
detailed understanding of these complex but interesting properties are very essential
to study the presence and role of magnetic nanoparticles in several areas of science
and technology including spintronics, biomedical research, and catalysis. for more
information see [47].
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2.3. Multiferroics

Based on Maxwell’s famous equations which were derived in 1865, one expect the
coupling between magnetism and electricity in condensed matter. In 1894 Curie
mentioned the possibility of an intrinsic correlation between magnetic and electric
properties on the basis of symmetry considerations [48]. This coupling has been
shown to occur in a small class of materials named magnetoelectric multiferroics.
The magnetoelectric effect was analyzed intensively in the 1950s and 1960s and sev-
eral compounds have been studied such as Pb(Fe1/2Nb1/2)O3, Pb(Fe1/2Ta1/2)O3, and
Pb(Fe2/3W1/3)O3, where the two former compositions were found to be ferroelectric
and antiferromagnetic [49, 50]. Nickel iodine boracite Ni3B7O13I was the first com-
pound for which simultaneous onset of ferroelectricity and weak ferromagnetism was
observed to occur below 61 K [51]. Later, many more boracite compositions revealed
both ferroelectric and ferromagnetic behavior. But due to the weakness of the mag-
netoelectric coupling in most materials and the difficulties of using it in applications,
research activities in this field have desponded for a couple of years. The study of
multiferroics was revived by the theoretical investigation of Hill [52] who discussed the
conditions required for ferroelectricity and ferromagnetism to be compatible in oxides,
and by the discoveries of new mechanisms of ferroelectricity in perovskite TbMnO3,
hexagonal YMnO3, RMn2O5, and Ni2V3O8 [53–56]. It was also promoted by the
recent developments in thin film growth techniques and in experimental methods for
observing magnetic and electronic domains [2, 57].
The term multiferroic was introduced by Schmid in 1994 to define materials that
exhibits two or more primary ferroic properties such as ferromagnetism, ferroelectric-
ity, ferroelasticity or ferrotoroidicity in the same phase [58]. Later, the utilization of
this term has been expanded to include materials that exhibit any type of long-range
magnetic ordering together with spontaneous polarization.

Figure 2.11. – (a) The cross-coupling of properties in a material (b) Multiferroic
materials combine magnetic and ferroelectrical properties. Adapted from [59].

However, in the simultaneous presence of long-range ordering of magnetic moments
and electric dipoles, polarization can be induced by applying a magnetic field. Ma-
terials which are shown such a property called magnetoelectrics. Generally speaking,
the magnetoelectric effect is the appearance of a magnetization (polarization) with
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the application of an electric (magnetic) field. Thermodynamically, this effect can be
understood based on Landau theory, obtained from the expansion of the free energy
of a material in powers of the applied magnetic B and the electric field E, i.e.

F (E,H) =F0 + PiEi +MiBi +
1

2
εijEiEj +

1

2
µijBiBj

+ αijEiBj +
1

2
βijkEiBjBk +

1

2
γijkBiEjEk + . . . ,

(2.7)

where εij is the dielectric permittivity and µij is the magnetic permeability. Since the
electric field E and magnetic field B are vectors, the linear magnetoelectric suscep-
tibility, shown by αij, is a tensor. This quantity which corresponds to the induced
polarization or magnetization, is designated to the linear magnetoelectric (ME) effect.
Higher order ME effects, βijk and γijk are the bilinear ME susceptibility tensors. The
corresponding polarization Pi and the magnetization Mi are obtained by minimizing
the free energy. Under time reversal symmetry, dielectric quantities are symmetric
and magnetic quantities are antisymmetric. Conversely, the magnetisation and mag-
netic field are invariant under spatial inversion while there would be a change of sign
in electric polarization as well as electric field (Fig. 2.12). As a result, the linear
magnetoelectric effect only occurs for a material which breaks both time and spatial
inversion symmetry. For the first time, Dzyaloshinskii [60] showed explicitly the vi-
olation of time-reversal symmetry in antiferromagnetic Cr2O3, this was followed by
experimental confirmation by Astrov [61]. All linear magnetoelectric materials con-

Figure 2.12. – The effect of spatial inversion and time reversal on (a) Ferromagnets,
(b) Ferroelectrics and (c) Multiferroics. Adapted from Eerenstein et al. [62].

tain the linear term αijEiHj, but this does not necessarily mean that they are multi-
ferroic. For example, Cr2O3 is magnetoelectric but not ferroelectric. The opposite is
also true; not all multiferroics are necessarily magnetoelectric. Schmid discusses the
close connection between magnetoelectric coupling and crystal symmetries in depth
in several papers [63, 64].
It is hard to find intrinsic multiferroic materials containing proper ferroelectrics, where
structural instability together with the electronic pairing is the main driving force of
polar state, since the mechanisms driving ferroelectricity and ferromagnetism are
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generally incompatible. Most ferroelectrics are transition metal oxides with empty d-
shells. On the contrary, magnetism usually requires a transition metal with a partially
filled d-shell, as the spins of electrons occupying completely filled shells add to zero
and do not participate in magnetic ordering. Therefore, alternative mechanisms are
required to combine these two properties. Recently, various multiferroic materials
have been discovered in which a polar state is induced by different types of ordering;
these are known as improper ferroelectrics [1].
While the presence of localized electrons in the partially filled ionic shells and the
exchange interactions between related spins is the origin of magnetic order in mag-
nets, several microscopic sources of ferroelectricity are found to be responsible for
ferroic order. Accordingly, one may expect different types of multiferroics. In gen-
eral, multiferroic materials can be divided in two main groups. The first group, called
type-I multiferroics, are single phase materials having widely separated ferroelectric
and magnetic ordering temperatures with rather weak coupling. A single phase ma-
terials in which a particular type of magnetic order such as spiral or cycloidal or even
collinear magnetic structures causes ferroelectricity known as type-II multiferroics.

2.3.1. Type-I multiferroics

In type-I multiferroics which are more numerous, ferroelectricity and magnetism are
generated from different ions and appear largely independent of one another. As a
result, the coupling between these two quantity is considerably weak. Besides, the
Curie temperature is well above Neel temperature and the spontaneous polarization
P is often rather large (of order 10 - 100 µC

cm2 ). This class of multiferroics can be
divided into different subclasses due to the number of possible microscopic origins for
ferroelectricity [65].
One of the probable origin of ferroelectricity can be the presence of a transition metal
with empty d shells in a perovskite structure, just as in BaTiO3. Another possibility
is ordering of highly polarized lone pairs of bismuth or lead in specific direction in
compounds like BiFeO3 and PbVO3. Lone pairs are two outer 6s electrons that do
not participate in chemical bonds.
Ferroelectricity due to charge ordering, often observed in transition metal compounds,
especially those which contain transition metal ions with different valence [66]. In
case that charge ordering process breaks spatial inversion symmetry, the resulting
state can have a net dipole moment. This may happen when both sites and bonds
turn out to be inequivalent.
Lastly, we consider the presence of ’geometric’ ferroelectricity in hexagonal mangan-
ites RMnO3 (R=Ho, Lu, Y) that appears because of the structural phase transition at
high temperature. Here, ferroelectricity is caused by the tilting of the MnO5 bipyra-
mids. This tilting occurs to provide closer packing and the necessary symmetry
reduction as a result of phase transition.
An early approach taken by Smolenskii et al. [50] proposed the doping of param-
agnetic cations into known non-magnetic ferroelectric compounds. In the case of
perovskites, this gives a B-site that contains both a cation with an empty d-shell
for ferroelectricity and a cation with a partially filled d-shell for magnetization. For
example, Pb(Mn0.5Nb0.5)O3 and Pb(Fe0.5Nb0.5)O3. The resulting spontaneous po-



22 2. Basics

larization and magnetization in these complex perovskites were similar to the ferro-
magnetoelectric properties that were known in the boracites. However, this type of
materials tends to have rather low Curie or Neel temperatures as a result of dilution
of the magnetic ions. Due to their strong magnetoelectric effects, we mostly focus
on type-II multiferroics. A more complete discussion of type-I multiferroics can be
found in related articles and reviews [59, 65].

2.3.2. Type-II multiferroics

In type-II multiferroics the macroscopic electric polarization is directly caused by
either an electronic degree of freedom such as spin, charge and orbital ordering or a
complex lattice distortion. This means that a strong magnetoelectric coupling must
exist between the two orders. However, due to the improper nature of ferroelectricity,
the magnitude of polarization is much lower than that of a type-I multiferroics (of
order 10−2 µC

cm2 ). The wide interest in these materials is not because of the strong
coupling, rather, it is the high sensitivity of electric properties to the applied magnetic
fields. The most well known example of type-II multiferroic with non-collinear spin-
spiral structure is TbMnO3, in which the magnetic field can strongly influence the
electric polarization. The polarization can be rotated by 90 degrees by applying an
external magnetic field in a specific direction [53]. The application of a magnetic field
also enhances the dielectric constant by as much as 500% in the case of DyMnO3.

In parallel to the development of multiferroics of spiral (helical) spin order, another
type of multiferroics with collinear magnetic structure has also been received at-
tention. Polarization can appear in these frustrated materials as a consequence of
exchange-striction. The most prominent example of this group is TbMn2O5 where
the polarization direction changed by 180◦ with applied field, and a field alternating
between +1.5 and -1.5 Tesla leads to corresponding oscillations in the polarization
[55]. These two microscopic mechanisms of magnetically-induced ferroelectricity give
rise to two different forms of phenomenological magnetoelectric coupling which will
be explained in the following section.

2.3.3. Magnetoelectric coupling in type-II multiferroics

The onset of ferroelectricity in this type of multiferroics is correlated to spin frustra-
tion. The first class of type-II multiferroics are those with spiral magnetic order. Like
any other magnetic ordering, the magnetic spiral spontaneously breaks time-reversal
symmetry. In addition, it breaks inversion symmetry by inverting the direction of
spin rotation when the sign of all coordinates are reversed. Thus, the symmetry
of the spiral state allows for a simultaneous presence of electric polarization. The
mechanism of magnetically induced ferroelectricity in these frustrated structures has
been studied using microscopic and phenomenological approaches. The microscopic
mechanism involving magnetically induced ionic displacements in spiral ferroelectrics
was presented by Katsura et al. by taking into account the spin orbit coupling in
the superexchange interaction between nearest neighbor spins [67]. In this case, the
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electric polarization has such a form

P ∝ rij ×
[
Si × Sj

]
(2.8)

for neighboring spins Si and Sj separated by a vector rij. Being proportional to the
vector product of spins, polarization arises only in non-collinear spin ordering. This
form of coupling between spins and polarization is similar to the form of DMI. Here
the non-collinear spins act back on the lattice to create the lattice distortion that
induces ferroelectricity. Hence, the Katsura’s picture is sometimes called the inverse
Dzyaloshinskii-Moriya effect, as proposed by Sergienko et al. [45].
Based on the phenomenological approach, it is possible to obtain the form of the
coupling of the electric polarization P to the magnetization M using general symmetry
arguments [60]. The invariance upon the time reversal, t −→ -t, transforms P −→ P
and M −→ -M. As a result, the lowest order magnetoelectric coupling term has to be
quadratic in M. On the other hand, the symmetry with respect to the spatial inversion,
x −→ -x, upon which P −→ -P and M −→ M, is preserved when the coupling of a
uniform polarization to an inhomogeneous magnetization is linear in P and contains
one gradient of M. Hence, in the case of a spatially inhomogeneous spin configuration
the above symmetry argument allows for the third order magnetoelectric coupling
term in the Landau free energy [68, 69]

Φmf (r) = γ · (∇M)2 + P · {γ′[M(∇ ·M)− (M · ∇)M] + . . . } . (2.9)

Here r, P and M are spatial coordinate, polarization and magnetization,γ and γ′ are
the coupling coefficients as well. If we assume that in the absence of magnetism
the system shows no instability towards ferroelectricity, we are allowed to only keep
the quadratic term in the electric part of thermodynamic potential, Φf (P ) = P 2

2χf
,

where χf is the dielectric susceptibility in the absence of magnetization. For cubic
crystals, the allowed form of the magnetically induced electric polarization is obtained
by minimization of the free energy with respect to P

P = γ′χe[(M · ∇)M−M(∇ ·M)] . (2.10)

For example, in the case of spin-spiral structure which is expressed by

M = S1e1 cos(Q · x) + S2e2 sin(Q · x), (2.11)

the polarization is
P = γ′χeS1S2(e3 ×Q) . (2.12)

Here Q is the propagation vector of the spiral. This equation is so similar to Eq. (2.8)
where P is proportional to the cross product of spins in different lattice sites. One can
conclude that the Katsura et al. model is a microscopic interpretation of Mostovoy
phenomenological analysis [68]. Therefore, the spin-orbit interaction can be consid-
ered as the origin of the coupling between the magnetic and ferroelectric orders in
these type of multiferroics.
The spin-orbit coupling is not the only possible way towards the magnetism-induced
ferroelectricity. The collinear spin arrangements can induce polarization without con-
sidering the spin-orbit interaction. In this type of frustrated magnetic structure, po-
larization can appear via the exchange-striction associated with symmetric superex-
change coupling plus charge-ordered state. To explain the related mechanism, we
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consider a one-dimensional Ising chain with competing ferromagnetic nearest neigh-
bor (NN) exchange J1 and antiferromagnetic next nearest neighbor (NNN) exchange
J2, i.e.

H = J1

∑
i

Si · Si+1 + J2

∑
i

Si · Si+2 . (2.13)

For J2 ≥| J1 | /2 the ground state configuration corresponds to ↑↑↓↓ state. In this
case, the exchange-striction together with the symmetric superexchange interaction
shortens the bonds between the parallel spins, while lengthening those between the
antiparallel spins. Consequently, spatial inversion symmetry is lost and an electric
polarization may arise along the chain direction, as it shown schematically in Fig. 2.13.
In the case of J2 ≥| J1 | /4, due to the competition between ferromagnetic and
antiferromagnetic order, the magnetic subsystem becomes frustrated and develops a
spiral structure [70].

Figure 2.13. – The magnetoelectric mechanism for collinear magnetic structures.
(a) One-dimensional chain with alternating charges and ↑↑↓↓ spin structure, (b)
Magnetostriction effect, which shortens the ferromagnetic bonds and generates a
ferroelectric polarization. Taken from [59].

Most members of this class of multiferroics possess complicated magnetic structure
which hardly can be explained using such a simplified picture. We will discuss some
of these components in more detail in the following chapters.
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2.4. Double-time Green’s function method

The double time Green’s function approach is widely used in statistical mechanics
because it is an effective method of calculating the observable macroscopic proper-
ties of the system as well as the microscopic quantities like the expectation values
and correlation functions, without an explicit knowledge of the partition function
[43, 44, 71]. The other advantage of this method is that the results obtained are ap-
plicable to a wide range of temperatures and enables the treatment of systems with
arbitrary spin. We shall follow Bogolyubov and Tyablikov [43] and use the double-
time retarded Green’s function which is very convenient for applications in statistics
as they can be analytically continued in the complex plane. One can uses Matsubara’s
temperature-dependent Green’s functions in statistical mechanics, which are appar-
ently less convenient than the temperature- and time-dependent Green’s functions.

2.4.1. The equation of motion

Let A(t) and B(t′) be some operators in the Heisenberg representation

A(t) = e
i
~HtA(0)e−

i
~Ht , B(t′) = e

i
~Ht

′
B(0)e−

i
~Ht

′
, (2.14)

H is the Hamiltonian of the system in the grand-canonical ensemble

H = H − µN̂ . (2.15)

µ is the chemical potential and N is the operator of the total number of particles.
In general, the operators A and B are second quantized operators. The equation of
motion for these operators has the form

i~
∂A(t)

∂t
= [A(t),H] = A(t)H−HA(t) . (2.16)

The double-time retarded Green’s function is defined by

GAB(t, t′) = 〈〈A(t);B(t′)〉〉 = − i
~

Θ(t− t′)〈[A(t), B(t′)]〉 . (2.17)

The step function Θ is written in the following way

Θ(t) =

∫ t

−∞
eεt
′
δ(t′)dt′ (ε −→ +0) . (2.18)

It results

Θ(t− t′) =

{
1 t > t′

0 t < t′
(2.19)

and
dΘ(t)

dt
= δ(t) . (2.20)

In the case of statistical equilibrium, one can shows that the Green’s function depends
only on the difference between the time arguments

GAB(t, t′) = GAB(t− t′) . (2.21)
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The Green’s functions are determined by their equation of motion

i~
∂GAB(t− t′)

∂t
= δ(t− t′)〈[A(t), B(t′)]〉+ 〈〈[A(t),H] | B(t′)〉〉 . (2.22)

In more general cases, the right hand side of Eq. (2.22) contains the double-time
Green’s functions of higher order, for which a new equation of motion can be written.
Therefore, instead of a closed set of equations we obtain an infinite chain of equations
involving Green’s functions of successively higher orders. To solve this hierarchy, we
impose boundary conditions for t. The form of these conditions can be extracted
from the Green’s function definition (Eq. (2.17)). It is more convenient to use the
Fourier transforms of the Green’s functions

E〈〈A | B〉〉E = ~〈[A,B]〉+ 〈〈[A,H] | B〉〉E . (2.23)

Thus, we are no longer dealing with a differential equation, but instead with a purely
algebraic equation. Besides, the boundary conditions are in the form of spectral rep-
resentations of the Green’s functions. We note that the appearance of infinite chains
of coupled equations is unavoidable for the system of interacting particles. In this
case, approximation schemes are necessary to express high-order Green’s functions as
a product of Green’s functions of lower order.

2.4.2. Spectral representation

The Green’s functions have a spectral representation which enables us to find the
correlation function. We shall represent the time correlation function by 〈A(t)B(t′)〉
which can be written as

〈A(t)B(t′)〉 =
1

Ξ
Tr{e−βHA(t)B(t′)}

=
1

Ξ

∑
n

〈En | e−βHA(t)B(t′) | En〉

=
1

Ξ

∑
n,m

〈En | B | Em〉〈Em | A | En〉e−βEneβ(En−Em)×

× exp

[
− i
~

(En − Em)(t− t′)
]

, Ξ = Tr(e−βH) .

(2.24)

Ξ is the grand-canonical partition function. In analogy to the above calculation, one
get the other correlation function

〈B(t′)A(t)〉 =
1

Ξ

∑
n,m

〈En | B | Em〉〈En | A | En〉e−βEn × (2.25)

× exp

[
− i
~

(En − Em)(t− t′)
]
. (2.26)

Time-correlation functions are an effective and intuitive way of representing the dy-
namics of a system. We now define the spectral density, which is important in the
following considerations

SAB(t, t′) =
1

2π
〈[A(t), B(t′)]〉 . (2.27)



2.4. Double-time Green’s function method 27

Inserting Eq. (2.24) and Eq. (2.26) into Eq. (2.27) and do the related Fourier transfor-
mation, we end up with the so-called spectral representation of the spectral density

SAB(E) =
~
Ξ

∑
n,m

〈En | B | Em〉〈Em | A | En〉e−βEn(eβE + 1)δ(En − Em + E) . (2.28)

The argument of the δ-function contains the possible excitation energies of the system.
With this, the spectral representation of retarded Green’s function obtain

GAB(E) =

∫ ∞
−∞

dE ′
SAB(E ′)

E − E ′ + i0+
. (2.29)

The singularities of these functions are identical with the excitation energies of the
system. Considering the spectral density as a real quantity, we get

SAB(E) = − 1

π
ImGAB(E) . (2.30)

2.4.3. Spectral theorem

The relation between the correlation function and the related Green’s function is
given by the spectral theorem

〈B(t′)A(t)〉 =
1

~

∫ ∞
−∞

dE
SAB(E)

eβE − ε
e−

i
~E(t−t′) + C (2.31)

= lim
δ→0+

i

~

∫ ∞
−∞

e−
i
~E(t−t′)G(E + iδ)−G(E − iδ)

eβE − ε
dE + C . (2.32)

The constant C can be determined from the limiting case which is to be carried out
in a complex plane

lim
E→0+

EG
(ε)
AB(E) = (1− ε)~C, ε = ±1 . (2.33)

G
(+)
AB(E) and G

(−)
AB(E) are the commutator or anticommutator Green’s functions de-

fined as

G
(−)
AB(E) =

~
Ξ

∑
n,m

〈En | B | Em〉〈Em | A | En〉e−βEn
eβ(En−Em) + 1

E − (En − Em)
, (2.34)

G
(+)
AB(E) =

~
Ξ

En 6=Em∑
n,m

〈En | B | Em〉〈Em | A | En〉e−βEn
eβ(En−Em) − 1

E − (En − Em)
. (2.35)

Using spectral theorem, as in Eq. (2.32), one can calculate correlation functions with
the help of the Green’s functions. These functions characterize the structure of the
system and provide more detailed information than thermodynamic quantities. In
the next chapters, the application of Green’s function technique to investigate the
properties of multiferroic systems will be presented. In the forthcoming chapters we
work with natural unit where ~ = kB = 1.





3. Theoretical study of multiferroic
bulk systems

3.1. General Hamiltonian for multiferroics

In this chapter, the elementary excitations, the damping and the resulting macro-
scopic quantities such as magnetization and polarization of different multiferroic sys-
tems will be analyzed using Green’s function technique. Especially the influence of
spin-phonon interaction, the effect of ion doping and the single ion anisotropy will be
studied. Furthermore, we focus on the effect of external magnetic and electric fields
on the spin wave dispersion and the related phonon modes. We consider the model
Hamiltonian

H = Hm +Hf +Hmf , (3.1)

where Hm, Hf and Hmf describe the magnetic part, the ferroelectric part and the
coupling between these two subsystems. Here, we mainly concentrate on those type
of multiferroics where the spin configuration in their frustrated magnetic structures is
responsible for the appearance of ferroelectricity. The magnetic part Hm is expressed
by the Heisenberg spin Hamiltonian with two competing coupling parameters namely
the nearest neighbor ferromagnetic interaction J > 0, denoted as ij, and next nearest
neighbor antiferromagnetic exchange interaction J̃ > 0, indicated by < ij >

Hm = −1

2

∑
i,j

JijSi · Sj +
1

2

∑
<i,j>

J̃ijSi · Sj −
∑
i

Di(S
z
i )2 − h

∑
i

Szi . (3.2)

D (D < 0) is the single-site anisotropy parameter, | D |< J and h = gµBB where
B is the external magnetic field. It is appropriate to introduce spin-ladder operators
S± = Sx ± iSy leading to

Hm = −1

2

∑
i,j

Jij(S
+
i S
−
j +Szi S

z
j ) +

1

2

∑
<i,j>

J̃ij(S
+
i S
−
j +Szi S

z
j )−

∑
i

Di(S
z
i )2−h

∑
i

Szi .

(3.3)
The ferroelectric behavior is based on the Ising model in a transverse field (TIM), the
relevance of which was discussed in section 2.1.3. The Hamiltonian reads

Hf = −1

2

∑
i,j

J ′ijB
z
i ·Bz

j − 2Ω
∑
i

Bx
i − µE

∑
i

Bz
i . (3.4)

Here E represents the external electric field and µ is electron mobility. Because both
mean values 〈Bz〉 and 〈Bx〉 are nonzero in the ordered phase, it is appropriate to
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introduce a new coordinate system rotating the original one by an angle ν in the xz-
plane. Following the calculations for magnetic system, we introduce step operators
B+
i and B−i . In case of a spin 1

2
system, the operators are equal to the Pauli operators

bi, b
+
i and Bz

i = 1
2
−ρi. Accordingly, the averaged values 〈B+

i 〉 and 〈B−i 〉 are nonzero.
These expressions are omitted by a rotation of the spin operatorsBx′

i

By′

i

Bz′
i

 =

cos ν 0 − sin ν
0 1 0

sin ν 0 cos ν

Bx
i

By
i

Bz
i

 . (3.5)

Hence the component based on the new operators are defined as

Bx′

i = (
1

2
− ρi ) sin ν +

1

2
(bi + b†i ) cos ν ,

By′

i =
i

2
(b†i − bi),

Bz′

i = (
1

2
− ρi) cos ν − 1

2
(bi + b†i ) sin ν , ρj = b†ibi .

The angle ν is determined in such a manner that 〈Bx′〉 = 0 after rotation, provided the
system is within the range TC ≤ T . The last term in Eq. (3.1) describes the coupling
between the magnetic and the ferroelectric subsystems. It should be emphasized
that various mechanisms of this ME coupling were predicted for both single phase
multiferroics and composite materials involving ferroelectric and magnetic phases. It
is of fundamental interest to understand how such a coupling comes about and what
is the microscopic mechanism behind the ME coupling in multiferroics.
Due to [72, 73] type I multiferroics allow a biquadratic coupling in spin operator S
and pseudospin operators B

Hmf = −
∑
i,j

∑
k,l

KijklB
z
kB

z
l Si · Sj . (3.6)

The use of biquadratic coupling between the pseudospins and magnetic moments
implies that the magnetic and ferroelectric orderings have independent mechanisms.
In particular, this generally leads to different transition temperatures for the two
subsystems, TC >> TN , and the ME coupling is small, for example in hexagonal
RMnO3 and BiFeO3. Katsufuji et al. [74] found that the changes in dielectric and
magnetic properties of the hexagonal ferroelectromagnet RMnO3 are dominated by
the pair correlation of the nearest neighbor Mn ions, < SiSj >. Thus, for the coupling
of intrinsic spin and polarization, there are sufficient reasons for proposing such a
biquadratic ME coupling term.
For improper multiferrics where the ferroelectricity is driven by the magnetic ordering,
the relevant magnetoelectric coupling Hmf is given by

Hmf = −
∑
i,j,r

KijrB
z
rSi · Sj . (3.7)

In these Multiferroics, the transition temperatures are nearly of the same order,
TN ≥ TC , and the ME coupling is stronger compared to the biquadratic case.
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Here K is the coupling constant between the magnetic and the electric order param-
eters. The underlying physical mechanism of the coupling is that the cooperative
alignment of magnetic moments at a certain temperature is the reason for the po-
larization. The ME coupling in this group of multiferroics should be invariant with
respect to spacial inversion. As mentioned before, the magnetization is odd under
time reversal whereas the polarization changes its sign for spatial inversion. If the
system already has broken inversion symmetry, lower-order coupling by the form of
Eq. (3.7) is possible. This coupling corresponds to the phenomenological treatment
of Mostovoy [68], see Eq. (2.10) where the coupling is given by PṀ(∇Ṁ).

3.2. Calculation of the Green’s functions

The method of Green’s function was introduced in section 2.4. Here, we introduce
another method proposed by Tserkovnikov [75] for the approximate calculation of
the Green’s functions. The system’s Hamiltonian consists of the non-interacting term
(H0) and the interacting part (H1). In the Heisenberg representation, the operator
B(t) satisfies the equation of motion

i
dBq(t)

dt
= εqBq + Jq(t) . (3.8)

Here [B,H0] = εB and J = [B,H1] are the flux operator corresponding to B. The
equation of motion for the Green’s function is

i
d

dt
〈〈Bq(t);B

†
q〉〉 = δ(t)〈[Bq, B

†
q ]∓〉+ εq〈〈Bq(t);B

†
q〉〉 − iΘ(t)〈[Jq(t), B†q ]∓〉 . (3.9)

[B,B†]∓ = BB†∓B†B is the commutator or anticommutator chosen for convenience.
Eq. (3.9) can be represented in the form

i
d

dt
〈〈Bq(t);B

†
q〉〉 = δ(t)〈[Bq, B

†
q ]∓〉+ [εq +Rq(t)]∓〈〈Bq(t);B

†
q〉〉,

Rq(t) =
〈[Jq(t), B†q ]∓〉
〈[Bq(t), B

†
q ]∓〉

=
〈[[Bq(t), Hq1(t)], B†q ]∓〉
〈[Bq(t).B

†
q ]∓〉

.
(3.10)

The exact solution of Eq. (3.9) is

〈〈Bq(t);B
†
q〉〉 = Gq(t) = −iΘ(t)〈[Bq, B

†
q ]〉exp(−itEq(t)) . (3.11)

The related complex energy is

Eq(t) = εq −
i

~t

∫ t

0

t′dt′
(
〈[Jq(t), Jq†(t′)]∓〉
〈[Bq(t), B

†
q(t′)]∓〉

−
〈[Jq(t), B†q(t)]∓〉〈[Bq(t), Jq

†(t′)]∓〉
〈[Bq(t), B

†
q(t′)]∓〉2

)
.

(3.12)
In this case the time-independent term

εq =
〈[[B†q , H], Bq]〉
〈[B†q , Bq]〉

(3.13)



32 3. Theoretical study of multiferroic bulk systems

is the soft mode energy in the generalized Hartree-Fock approximation. The second
term in Eq. (3.12) represents the associated damping, which is connected to the
damping of the modes.
For the ferroic subsystem, the operators B and B† are defined as

Bq =

bqb†q
ρq

 , B†q = (b†q, b−q, ρ−q) . (3.14)

The retarded Green’s function in matrix form is

Gq(t) = −iΘ(t)〈[Bq(t), B
†
q ]〉 =

 〈〈bq(t); b†q〉〉 〈〈bq(t); b−q〉〉 〈〈bq(t); ρ−q〉〉
〈〈b†−q(t); b†q〉〉 〈〈b

†
−q(t); b−q〉〉 〈〈b

†
−q(t); ρ−q〉〉

〈〈ρq(t); b†q〉〉 〈〈ρq(t); b−q〉〉 〈〈ρq(t); ρ−q〉〉

 .

(3.15)
In the first step we consider only G11 to be non-zero. The Fourier transformation of
Eq. (3.11) reads

Gq(E) =

∫ ∞
−∞

Gq(t)e
iEtdt , ImE ≥ 0 . (3.16)

To calculate the polarization of the system under study one needs to find the corre-
lation function 〈b†qbq〉. Based on the spectral theorem we can write

〈b†qbq〉 =

∫ ∞
−∞

n(E)Sq(E)dE , n(E) = (eβE − 1)−1

Sq(E) = − 1

π
ImGq(E + iε) =

1

2π

∫ ∞
−∞

e−ε(t)eiEt〈[bq, b†q]〉dt .
(3.17)

So

〈b†qbq〉 =
2

N
P
∑
q

1

exp(βEf (q))− 1
. (3.18)

For spin 1
2

one get P = 1
2
− 〈b†qbq〉. As a result

P =
1
2

1 + 2
N

∑
q

1
exp(βEf (q))−1

, (3.19)

which can be written as

P = 〈σP 〉 =
1

2N

∑
q

tanh
Ef (q)

2kBT
. (3.20)

The transverse pseudospin-wave energy Ef (q) and the damping Γf are calculated
beyond the RPA

Ef (q) = 2Ω sin ν +
1

2
P cos2 νJ ′eff (0)− 1

4
P sin2 νJ ′eff (q) + µE cos ν

− 1

PN

∑
k

(
cos2 νJ ′eff (q− k)− 1

2
sin2 νJ ′eff (k)

)
< b†kbk > . (3.21)
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Γf (q) =
π

2N2

∑
k,p

[(
V (k,q− k) + V (q− p− k,p + k)

)2

+
[
n̄(p)

(
P + n̄(p + k) + n̄(q− k)

)
− n̄(p + k)n̄(q− k)

]
×δ
(
Ef (q− k) + Ef (p + k)− Ef (p)− Ef (q)

)]
.

(3.22)

n̄(k) = 〈B−kB
+
k 〉, V (k,q− k) = J ′eff (k) cos2 ν − 0.5J ′eff (q− k) sin2 ν. The coupling

term is given by Eq. (3.6). Consequently, J ′eff = J ′0 + 2K(〈S−q S+
q 〉+ 〈SzqSzq 〉). Within

the generalized Hartree-Fock approximation the rotation angle ν is determined by
the condition 〈[bk, H]〉 = 0. This ensures a minimization of the free energy [103,114]
for the field free case cos ν = 0, ν = π

2
, if T ≥ Tc ,

sin ν = 4Ω
JeffP

= Pc

P
, if T ≤ Tc .

The magnetic correlation function 〈S−S+〉 and the magnetization M= 〈σM〉 = 〈Sz〉
are calculated from the spin Green’s function in a similar way

1

M
=

1

N

∑
q

coth(
βEm(q)

2
) . (3.23)

Em is the spin-wave energy taking into account all correlation functions

Em(q) =
1

2M

1

N

∑
k

(Jeff (k)− Jeff (q− k) + J̃eff (k)

−J̃eff (q− k))(2〈SzkSz−k〉 − 〈Szq−kS+
q−k〉) + 2MD + gµBB .

(3.24)

D is the single-site anisotropy parameter and M is the magnetization. Due
to the ME coupling the exchange interaction constant is also renormalized to
Jeff = J + 2KP 2 cos2 ν and correspondingly J̃ . Calculations are possible using
Eq. (3.7) where for example the renormalized exchange interaction constant will be
Jeff = J +KP cos ν.
The analytical expressions for the excitation energies in Eqs. (3.21) and (3.24) are
obtained without any approximation, the correlation functions are observed from the
spectral theorem. By the numerical calculations we have made the following approx-
imation in J ′eff and in Eq. (3.24): the longitudinal correlation function < SzSz > is
decoupled to < Sz >< Sz >. The approximations are consistent with the strong ME
coupling mechanism. The spin-wave damping is calculated to

Γm(k) =
2M

N2

∑
p,q

[(
J2
eff (k,q,p) + J̃2(k,q,p) +D2

)
k

×
[
N̄(p)

(
1 + N̄(p + q) + N̄(k− q)

)
− N̄(p + q)N̄(k− q)

]
×δ
(
Em(k− q) + Em(p + q)− Em(p)− Em(k)

)]
.

(3.25)
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N̄(q) = 〈S+
q S
−
q 〉 is the spin correlation function which is obtained via the spectral

theorem. Using the Hamiltonians Eq. (3.2), Eq. (3.4), Eq. (3.7), for instance and
solving the equation of motion for the Green’s function one can find directly the
dispersion relation. For the magnetic subsystem let us define the Green’s function by

Gm
lm(t− t′) ≡ 〈〈S+

l (t);S−m(t′)〉〉 = −iΘ(t− t′)〈[S+
l (t) , S−m(t′) ]〉 . (3.26)

Following the method of the equation of motion for the Green’s functions which
is introduced in section 2.4, and using the appropriate commutation relations, the
Green’s function is written as

Em〈〈S+
l ;S−m〉〉 = 〈[S+

l , S
−
m]〉+ 〈〈[S+

l ;H];S−m]〉〉 . (3.27)

[S+
l , H] = [S+

l , Hm] + [S+
l , Hmf ]. Throughout this thesis, a system of units is used

such that ~ = 1. Within the rotated system we have
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+
i S

z
l +

1

2

∑
i

Jil
(
S+
l S

z
i + Szi S

+
l

)
+
∑
r

J̃rlS
+
r S

z
l

−1

2

∑
r

J̃rl
(
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z
r + SzrS
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l

)
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Szi S
+
i δil −D

∑
i
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z
i δil − h

∑
i

S+
i δil

−
∑
i,j

Kijl

(
(
1

2
− ρj) cos ν +

1

2
(b†j + bj) sin ν

)
(S+

l S
z
i + Szi S

+
l ) .

(3.28)

It results

Em〈〈S+
l ;S−m〉〉 =2〈Sz〉 −

∑
i

Jil

(
〈〈S+

i S
z
l ;S−m〉〉 −

1

2

(
〈〈S+

l S
z
i ;S−m〉〉+ 〈〈Szi S+

l ;S−m〉〉
))

+
∑
r

J̃rl

(
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r S
z
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m〉〉 −
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2
(〈〈S+

l S
z
r ;S−m〉〉+ 〈〈SzrS+
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−2
∑
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Kijl(
1

2
− 〈ρ〉) cos ν +

1

2

(
〈〈S+

l S
z
i ;S−m〉〉+ 〈〈Szi S+

l ;S−m〉〉
)

−D
(
〈〈S+

l S
z
i ;S−m〉〉+ 〈〈Szi S+

l ;S−m〉〉
)
− h〈〈S+

l ;S−m〉〉 .
(3.29)

This equation is still exact. However, it cannot be solved exactly since there exist
higher order Green’s functions on the right-hand side. There are several decoupling
methods, mean field approximation (MFA) where fluctuations are completely ignored,
Hartree-Fock approximation and random phase approximation (RPA), also known as
the Tyablikov approximation. Based on RPA assumption we allow to neglect the
correlations between S+ on one lattice site and Sz on another lattice site and replace
the operator Szi by its thermodynamic expectation value 〈Szi 〉 [76]

〈〈Szl S+
i ;S−m〉〉 ≈ 〈Szl 〉〈〈S+

i ;S−m〉〉 . (3.30)

This decoupling procedure is the aspect of the theory. The justification is the ac-
ceptive results obtained with this method. Further, we can assume translational
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symmetry of the lattice. As a result, all averages are independent of the lattice site
index

〈Szi 〉 = 〈Sz〉 . (3.31)

Also because of translational invariance we can Fourier transform our Green’s func-
tions with respect to the reciprocal lattice. Thus, Eq. (3.29) simplifies to

Em〈〈S+
q ;S−q 〉〉 =2〈Sz〉+

〈Sz〉(J0 − Jq − J̃0 + J̃q −D
)

−2K0(
1

2
− 〈ρ〉

)
〈Sz〉 cos ν − h

)〈〈S+
q ;S−q 〉〉 .

(3.32)

Therefore

Gm
q (E) =

2M

E − Em(q)
, M = 〈Sz〉,

Em(q) =M
[
J0 − Jq + J̃q − J̃0 −D − 2K0P cos ν

)]
− h .

(3.33)

Here Em is the spin-wave energy of the magnetic subsystem modified by the magne-
toelectric coupling K0. Due to MEC the spectrum includes both the magnetization
M as well as the polarization P . Following Callen’s calculation [77] for arbitrary spin
S, one can write

〈Szq 〉 = SBs(β, S,Em), (3.34)

where Bs is the well known Brillouin function. Hence the magnetization reads

M =
1

N

∑
q

[
(S + 0.5) coth[(S + 0.5)βEm(q)]− 0.5 coth(0.5βEm(q))

]
. (3.35)

The analysis of the ferroelectric subsystem is more complex. Different to the magnetic
case the Green’s function is a matrix abbreviated as G

(f)
lm (t)(

〈〈bl; b†m〉〉 〈〈bl; bm〉〉
〈〈b†l ; b†m〉〉 〈〈b

†
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)
≡
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(f)11
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(f)12
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(f)21
lm G

(f)22
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)
.

Using RPA we get this matrix equation

Ef ·

(
G

(f)11
q G

(f)12
q

G
(f)21
q G

(f)22
q

)
=

(
2P 0
0 −2P

)
+

(
εq

11 εq
12

εq
21 εq

22

)(
G

(f)11
q G

(f)12
q

G
(f)21
q G

(f)22
q

)
, (3.36)

where

εq
11 = 2Ω sin ν + J ′0P cos2 ν −K0 cos νM2 − 1

2
J ′qP sin2 ν + µE cos ν,

εq
12 = −1

2
J ′qP sin2 ν,

εq
21 = −εq12 εq

22 = −εq11 .

(3.37)

Eq. (3.36) reads in components

EG(f)αβ(q, E) = Iαβ +
∑
γ

ΓαγG(f)γβ(q, E) , (3.38)
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which results in
G(f)µβ(q, E) =

∑
α

(X−1)αµIαβ , (3.39)

where X is

X =

(
E − εq11 −εq12

−εq21 E − εq22

)
, (3.40)

and

X−1 =
1

detT
·
(
E − εq22 εq

21

εq
12 E − εq11

)
. (3.41)

Now, we are able to calculate the Green’s function components. For instance G
(f)11
q

is

G(f)11
q =

P
[
E − εq22

](
E − εq11

)(
E − εq22

)
−
(
εq12εq21

) . (3.42)

By defining

E1,2(q) =
(εq

11 + εq
22)±

√
(εq11 + εq22)2 − 4(εq11εq22 − εq12εq21)

2
, (3.43)

we write G
(f)11
q as

G(f)11
q =

P
[
E − εq22

](
E − E1

)(
E − E2

) ,
G(f)11
q = P

 εq
E − E1

−
ε′q

E − E2

, (3.44)

εq =
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2
√

(εq11)2 − (εq12)2
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εq
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2Ef (q)
+

1

2
,

ε′q =
E2 − εq22
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√

(εq11)2 − (εq12)2 − εq22

2
√

(εq11)2 − (εq12)2
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εq
11

2Ef (q)
− 1

2
.

(3.45)

Ef (q) =
√

(εq11)2 − (εq12)2 ≡ E1 ≡ −E2. Based on the definition of spectral density

Sq(E) = − 1

π
ImG(f)

q (E + iη) = P
εqδ(E − E1)− ε′qδ(E − E2)

, (3.46)

one obtains the correlation function according to

〈b†ibj〉 =
1

N

∑
q

exp(−iq(Ri −Rj))

∫
Sq(E)

exp(βE)− 1
dE . (3.47)

We find,

〈b†ibi〉 =
P

N

∑
q

( εq
exp(βE1)− 1

−
ε′q

exp(βE2)− 1

)
. (3.48)
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Inserting Eq. (3.45) in Eq. (3.48) we end up with

〈b†ibi〉 =
P

N

∑
q

( ε11
q

Ef (q)
coth

βEf (q)

2
− 1
)
≡ 〈ρ〉 . (3.49)

By the definition P = 1
2
− 〈ρ〉, the polarization reads

P =
1

2
N

∑
q

( ε11q
Ef (q)

coth βEf (q)
2

) . (3.50)

To find M and P for the system we obtain the angle ν based on 〈
[
bq, H

]
〉 = 0. This

results in the equation A〈bq〉+B〈b†q〉+C = 0 where A, B and C are coefficients. We
know 〈bq〉 = −〈b†q〉. Further, 〈bq〉 = 0 is required leading to C = 0.

C = (−2Ω cos ν +
1

2
PJ ′0 sin ν cos ν)P − 1

2
K0P sin ν〈sz〉2 + µPE sin ν , (3.51)

and

P cos ν(−2Ω +
1

2
PJ ′0 sin ν) =

1

2
PK0 sin ν〈sz〉2 + µEP sin ν . (3.52)

Considering P cos(ν) ≡ P̃ , we have

P̃ (−2Ω +
J ′0
2

tan νP̃ ) = P̃ (
K0

2
M2 + µE) tan ν , (3.53)

tan ν =
4Ω

J ′0P̃ −K0M2 + 2µE
. (3.54)

The angle ν is determined in such a manner that the polarization is zero provided
the system is within the range TC ≤ T ≤ TN and the magnetoelectric coupling is not
relevant. This technical trick reflects the improper nature of the ferroelectricity. We
replace P with P̃ in all related equations.
After solving the above equations we find the polarization using P = P̃

cos ν
. Consider-

ing bcc structure, the q-dependency of couplings are as follows

Jq = zJ cos(
1

2
qxa) cos(

1

2
qya) cos(

1

2
qza),

J̃q =
1

3
z′J̃(cos(2qxa) + cos(2qya) + cos(2qza)),

J ′q = zJ ′ cos(
1

2
qxa) cos(

1

2
qya) cos(

1

2
qza) ,

(3.55)

where z = 8 is the number of nearest neighbors and z′ = 6 is the number of next
nearest neighbors. Furthermore, we have J0 = zJ , J̃0 = z′J̃ and J ′0 = zJ ′ where
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J̃ = αJ . Knowing TC and TN , one can find the approximate value for the exchange
interaction based on the following analytical formulas

kBTN =
S(S + 1)zJ

3F ( J̃
J

)
,

J ′0
4Ω

= 1/N

∑
k 1− 1/2γk√

1− γk
coth(

Ω

T

√
1− γk) .

(3.56)

Assuming a lattice constant a = 1 we find

F (α) =
v

(2π)3

∫ π

−π

d3q

(1− J(q)
J(0)

)− z′

z
α(1− J̃(q)

J̃(0)
)
, α =

J̃

J
. (3.57)

Here we find the energy spectrum together with the magnetization and polarization of
the system. In next sections we use these analytical results to predict and analyze the
behavior of the different multiferroics systems by choosing appropriate Hamiltonians.
In section 3.3, we demonstrated that the analytical results obtained in this section
are relevant for the magnetoelectric behavior in rare-earth manganite. Moreover, by
extending these calculations the role of spin-phonon coupling in this group of materials
will be studied. Furthermore, a realistic model for such complicated structures will be
presented. We also show how one can insert impurities into multiferroic Hamiltonian
and we discuss the relevant consequences on the phase diagram of MnWO4. predict
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3.3. The magnetoelectric effect in rare-earth
manganite

There is currently a great effort in understanding the microscopic nature of the cou-
pling between ferroelectric and magnetic ordering in a large class of manganese oxides
known as RMnO3 and RMn2O5, with rare-earth R = Y, Tb, Dy, etc. [52]. Regard-
less the innovative aspects, the underlying detailed mechanism of the multiferroics
is under a permanent debate for many years [1, 59, 65]. Although the majority
of magnetoelectric effects observed in rare-earth manganites are best described by
Dzyaloshinskii-Moriya interaction, the appearance of a nontrivial polarization P in
magnetic phase of RMn2O5 (R = Tb, Y, Dy, and Bi), suggesting that a different
mechanism is involved in the interaction between the ferroelectricity and magnetism.

Based on experimental results, RMn2O5 belong to the space group Pbam, which
meets the spatial-inversion symmetry and thus would exclude ferroelectricity because
of the lack of this symmetry breaking. One known microscopic mechanism to invoke
ferroelectricity include lattice distortion (exchange-striction) and redistribution of
electron density in response to the spin ordering. Such processes occur locally in
all magnetic materials. However, only when a spin ordering breaks the inversion
symmetry these local electric dipoles sum up to a macroscopic electric polarization. To
explain the observed ferroelectricity in RMn2O5 theoretically one may expect that at
low temperatures a lattice distortion occurs, reducing the crystal symmetry to Pb21m
and giving rise to a polarization along the b-axis, but until now no direct evidence has
been presented. The nature of ferroelectricity is studied based on calculations of the
ferroelectric polarization predicted by different microscopic coupling mechanisms. So
far, two distinct scenarios have been proposed which already discussed in section 3.1.

Many of the recently discovered multiferroic materials, such as TbMnO3, show cy-
cloidal spin order attributed to frustration due to competing interactions [53, 78].
In these systems, non-collinear magnetic orders break inversion symmetry and give
rise to polarization via the antisymmetric Dzyaloshinskii-Moriya interaction. On the
other hand, a configuration of collinear spins breaking the inversion symmetry can
induce polarization via a mechanism based on the isotropic Heisenberg exchange and
a magnetostrictive coupling of spins to a polar lattice mode. First-principles calcula-
tions of the ground state as well as structural, electronic, and magnetic properties of
multiferroic TbMn2O5 by Wang et al. [79] reveal that the ferroelectricity in TbMn2O5

is driven by the non-centrosymmetric antiferromagnetic ordering, without invoking
the spin-orbit coupling and non-collinear spins. Similar arguments are also presented
by [80, 81]. As a result, the material should possess a strong MEC. The kind of MEC
is responsible for the sensitivity of the system to applied magnetic fields and may
lead to a new class of functional materials. Moreover, the primary order parameter in
this type of multiferroics is magnetization and the electrical polarization is at least an
order of magnitude lower than in proper ferroelectrics. In spite of a broad variety of
effects occurring in multiferroic materials, a detailed analysis of underlying quantum
models is still lacking. Therefore our goal is to propose and to analyze a microscopic
model for rare-earth manganites.
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3.3.1. Structure of RMn2O5

The crystal structures of RMn2O5 were first well established by Bertaut et al. [82]
and independently by Abrahams and Bernstein [83] and then later by many other
authors [80, 81, 84–86]. At high temperatures, these isostructure insulators belong to
the orthorhombic space group of Pbam, with four RMn2O5 formula units per primitive
cell, where Mn3+ (S = 2) ions surrounded by oxygen pyramids and Mn4+ (S = 3/2)
ions surrounded by oxygen octahedra (Fig. 3.1). Both the Mn4+, Mn3+ and in some
components R3+, have magnetic moments, giving rise to complex magnetic orderings.

Figure 3.1. – A view of the crystal structure of TbMn2O5 along the z-axis. Sketched
using [87].

3.3.2. Simplified structure and analytical representation

Here we follow the mechanism suggested by [81] which can be successfully applied to
a large class of ferroelectric materials. The Hamiltonian Hm consists of the isotropic
Heisenberg exchange interaction J and J̃ , which represent NN and NNN couplings in
Eq. (3.2). In this part, we neglect the effect of single-ion anisotropy. As pointed out
in [88], compare also [89], the magnetic excitations in the multiferroic material are
different. Within a numerical simulation, the authors have identified five different ex-
change coupling parameters appearing in the Heisenberg spin Hamiltonian. Following
[80], the exchange interactions between neighboring Mn3+ and Mn4+ ions are all anti-
ferromagnetic. As a result, magnetic frustration must exist in the smallest closed loop
of Mn spins consisting of five magnetic ions. Therefore, zigzag chains of frustrated
spins exist in a direction parallel to the a-axis as it is illustrated in Fig. 3.2(a). In the
framework of an analytical calculation, we have simplified the model as depicted in
Fig. 3.2(b). It comprises the frustrated magnetic subsystem represented by Eq. (3.2).
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Figure 3.2. – (a) Mn-spin configuration in RMn2O5 structure showing frustration,
(b) Typical sketch of a frustrated spin system with nearest neighbor ferromagnetic
interaction and next nearest neighbor antiferromagnetic coupling.

The two different couplings J and J̃ in this equation reflect the competition between
different magnetic orders which leads to frustration. The further analysis is done
taking into account the q dependency of couplings, see Eq. (3.55). Let us make a
technical remark. Although the geometry of the lattice of RMn2O5 is quite complex,
we have used a bcc structure for simplicity. The reason is that in our approach the
geometrical structure is primarily included by the wave vector dependency of the
coupling parameters. Moreover, numerical simulations indicate that the results will
not change drastically using an orthorhombic structure.
The ferroelectric behavior is modeled by the Ising model in a transverse field
(Eq. (3.4)). The last term in Eq. (3.1) describes the coupling between the mag-
netic and the ferroelectric subsystems. Here, the coupling between the ferroelectric
and the magnetic subsystems includes a quadratic coupling in the magnetic order pa-
rameter and a linear one in the ferroelectric order parameter. The underlying physical
mechanism of the coupling is that the cooperative alignment of magnetic moments
at a certain temperature is the reason for the polarization. The excitation spectrum
offers a gap due to the MEC. The model will be extended by inclusion the coupling
of external electric and magnetic fields. We demonstrate that the magnetization is
affected by an electric field and the polarization by the corresponding magnetic field.

3.3.3. Excitation spectrum, magnetization and polarization in
manganites

In this section the numerical results of our theoretical calculations will be presented
based on the Green’s functions calculation in section 3.2. The following model pa-
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rameters are used for the ferroelectric and the magnetic subsystem: TC = 38 K, TN

= 43 K, J ′0 = 75 K, Ω = 0.2 K, J0 = 54 K, J̃ = 18.5 K, K0 = -7 K, s = 1/2.
The spin assume to be S = 2. These values are appropriate for TbMn2O5 [81]. The
analysis is focused on the magnetization obtained by Eq. (3.35), the polarization,
Eq. (3.50), and the spin-wave frequency according to Eq. (3.33). The temperature

Figure 3.3. – Temperature dependence of the (a) Magnetization M (b) Spin-wave
energy Em for zero wave vector with J ′0 = 75 K and K0 = −7 K.

dependence of the magnetization M is shown in Fig. 3.3(a). Notice that the calcula-
tion of the magnetization is based on the spin-wave energy of the magnetic subsystem
Em which is given in Eq. (3.33). The temperature-dependent spin-wave energy Em

at zero wave vector is shown in Fig. 3.3(b). In both figures 3.3(a) and 3.3(b) the
MEC between the two order parameters is manifested as a kink at the ferroelectric
phase transition temperature TC . This discontinuity in M and Em characterizes
the mutual influence between ferroelectric and magnetic ordering. A simple physical
picture behind this effect could be related to an energy transfer from the magnetic
phase to the polar phase. This energy is necessary to establish the new ferroelectric
phase. Since TC < TN , the electric subsystem is not able to influence the magnetic
one above TC . The two phases coexist only below TC . Such a cusp-like anomaly at
the ferroelectric critical temperature is obtained experimentally for example in the
magnetic susceptibility [90] in TbMn2O5 and in the magnetization [91–93] of RMn2O5

and orthorhombic RMnO3.
The kink is a strong indication for the magnetoelectric effect. The measured specific
heat shows kinks at the critical temperatures TC and TN in DyMn2O5 [94]. As
shown in Fig. 3.3(b) the magnetic excitation offers a novel softening behavior around
TC . The polarization P decreases with increasing temperature and vanishes at the
critical temperature TC which is depicted in Fig. 3.4. The polarization offers a phase
transition at TC where above TC the system is disordered and reveals no ferroelectric
order. Notice that the spontaneous polarization P exists below TC where the system is
likewise magnetically ordered. Such a behavior is characteristic for multiferroics. The
effect and the relevance of the magnetoelectric coupling K0, introduced in Eq. (3.7),
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Figure 3.4. – Dependence of the polarization P on the temperature for J ′0 = 75 K
and K0 = −7 K.
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Figure 3.5. – Dependence of the polarization P for different magnetoelectric couplings
K0 = −3 K (solid); K0 = −7 K (dot); K0 = −10 K (dash); for J ′0 = 75 K.

on the polarization P is demonstrated in Fig. 3.5. In case the coupling strength K0 is
varied the polarization is also changed. With increasing coupling K0 the polarization
P is enhanced and the phase transition temperature TC grows, too. Consequently
the kink in the magnetization M and energy Em at TC is shifted towards TN , while
for larger K0 it vanishes, compare Fig. 3.6(a) and Fig. 3.6(b). The magnetic phase
transition temperature TN remains unchanged by K0. The spin-wave energy Em(q) is
also changed by the magnetoelectric coupling K0. The result for a fixed temperature
is shown in Fig. 3.7.
In the same manner the spin-wave dispersion at zero wave vector is varied for different
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Figure 3.6. – Temperature dependence of the (a) Magnetization M and (b) Spin-wave
energy Em for different magnetoelectric couplings K0 = −3 K (solid); −7 K (dot);
−10 K (dash).

MEC which is shown in Fig. 3.6(b). The dispersion relation Em(q) increases with the
wave vector q, see Fig. 3.7. If the MEC is absent the energy is typically zero at q = 0
(solid curve). Due to the non-vanishing MEC the system develops an energy gap at
zero wave vector which increases with increasing of the magnetoelectric coupling K0,
see dot and dash curve in Fig. 3.7. The MEC breaks the continuous symmetry of
the magnetic subsystem and the related Goldstone mode becomes massive, i.e. the
dispersion relation reveals a gap at zero wave vector.
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Figure 3.7. – Wave vector dependence of the spin-wave energy Em for different
magnetoelectric coupling constant: K0 = 0 K (solid); −7 K (dot); −10 K (dash).

3.3.4. Observation of magnetoelectric effect

One advantage of multiferroic material is the possibility to trigger the polarization
by an external magnetic field h and the magnetization by an external electric field
E. Therefore our Hamiltonian Eq. (3.1) has to be supplemented by external field.
The couplings of both external fields to the spins and to the pseudospins, are linear,
respectively. The strong MEC can be seen by studying the influence of an applied
electric field on the magnetic properties, see Fig. 3.8. It is shown that the increase of
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Figure 3.8. – Temperature dependence of the magnetization M for different electric
fields E: E = 0 K (solid); E = 1 K (dot); E = 5 K (dash).

the electric field E leads to an enhancement of the magnetization M mainly in the
temperature range TC ≤ T ≤ TN . Whereas TN remains unchanged for small couplings
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K0, the ferroelectric phase transition temperature TC is enhanced. The kink is shifted
to higher temperatures, near to TN , and for larger E-values the kink disappears. The
reason is that the electric field shifts the phase transition temperature TC to higher
values and the distance between TC and TN shrinks. The saturation magnetization
remains likewise unchanged indicating that the magnetic domains do not increase
in size. From here we conclude that the domains are just reoriented by the electric
field. The calculations suggest that for sufficient high electric field strengths the
polarization becomes larger as the magnetization and hence TC > TN , then the kink
disappears. This theoretical finding should be confirmed by experiments with higher
electric fields. Here we present the results for small electric fields. The influence of an
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Figure 3.9. – Magnetic field dependence of the polarization P for different tempera-
tures: T = 24 K (solid); T = 30 K (dot); T = 35 K (dash).

external magnetic field h on the polarization P is shown in Fig. 3.9. The polarization
is enhanced with an increasing external magnetic field h. The higher the temperatures
the stronger are the changes, compare blue dash curve in Fig. 3.9. Such a behavior
is in agreement with the experimental data for TmMn2O5 [95], MnWO4 [96] and of
orthorhombic YMnO3 [97]. The strong MEC is evident in TbMn2O5 [55], the upward
jump in the dielectric constant at TC transition is pushed to higher temperatures if
a magnetic field is applied. Using our method we find that the ferroelectric phase
transition temperature TC and the related excitation Ef increase with increasing
magnetic field h. Hence the electric phase in the multiferroic compounds RMn2O5

can be controlled by an external magnetic field and the dielectric properties turn out
to be highly susceptible to such applied fields.
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3.4. Phonon excitations in multiferroic RMn2O5

Since in the past phonons and their coupling with other degrees of freedom have
played a crucial role in understanding classic ferroelectrics, one should expect that
they have a great impact on magnetoelectric multiferroics. Recent investigations us-
ing Raman and infrared (IR) spectroscopy, by transmittance and reflectance measure-
ments, have demonstrated the importance of phonon effects in multiferroics. There
is an experimental evidence for a strong spin-phonon coupling in RMn2O5 [98, 99].
The experimental results show pronounced phonon anomalies around the magnetic
and electric phase transition temperatures [93, 100–104]. These anomalies are at-
tributed to the multiferroic character of the materials. Raman phonons in RMnO3

orthorhombic and hexagonal manganites have been studied by [105] as a function of
the rare-earth ion and the temperature.

The sign and the magnitude of such anomalous phonon shifts seem to be correlated
with the ionic radius of the multiferroic RMn2O5 [101]. The phonon excitation be-
comes a zone-center transverse optical phonon mode known as soft mode in case
that R is Bi and shows significant enhancement in the phonon frequency (phonon
hardening) if the rare-earth part is Dy. An intermediate behavior is observed for
Eu. Based on the temperature dependence of the far-IR transmission spectra of mul-
tiferroic YMn2O5 and TbMn2O5 single crystals, the occurrence of electromagnons
was reported in RMn2O5 compounds by [106]. The phonon energy and its damping
are different for diverse compounds. So varying selection rules for electromagnons in
RMn2O5 and RMnO3 suggest different magnetoelastic coupling mechanisms in the
multiferroic systems. Molecular-spin dynamic studies of electromagnons in RMn2O5

are discussed in [107]. The so-called shell model lattice dynamic calculations are pro-
posed in [108] for RMn2O5 (R = Ho, Dy) materials. Here spin-phonon couplings have
been taken into account. Theoretically the influence of phonons is studied in [109].

The exchange-striction induces a biquadratic interaction between spins and transverse
phonons. More recently, the spin-phonon coupling in multiferroic Mn compounds were
analyzed in a classical spin model [110]. The new aspect focused on in the present
section is the calculation of the phonon spectrum within a microscopic model for
RMn2O5.

3.4.1. The model Hamiltonian considering phonon effects

The Hamiltonian of the whole system is introduced in Eq. (3.1). The magnetic part,
Hm, and the MEC term are Eqs. (3.2) and (3.7). Due to the complexity of the
manganites the ferroelectric behavior is described within our analytical approach by
both order-disorder and displacive type aspects. The order-disorder properties are
characterized by pseudospins in the frame of an Ising model in a transverse field [26],
while the displacive behavior is characterized by lattice distortions. Therefore, Hf is

Hf = Hph +Htim ,
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Hph =
1

2

∑
k

(PkP−k + ω2
(0)kQkQ−k)

+
1

3!

∑
k,k1

B(k, k1)QkQ−k1Qk1−k

+
1

4!

∑
k,k1,k2

A(k, k1, k2)Qk1Qk2Q−k−k2Q−k1+k ,

(3.58)

Htim = −1

2

∑
i,j

J ′ijB
z
i B

z
j − 2Ω

∑
i

Bx
i . (3.59)

The first part of Hph represents the harmonic part of the lattice distortions in terms
of the normal coordinate Qk, the momentum Pk and the harmonic phonon frequency
ω(0)k of the lattice mode with wave vector k. The remaining terms describe the
anharmonic interactions, where the third order coupling is given by B(k, k1) and the
quartic one by A(k, k1, k2). In terms of phonon creation and annihilation operators
the normal coordinate and the momentum are expressed by

Qk = (2ω(0)k)
−1/2(ak + a†−k) , Pk = i(

ω(0)k

2
)1/2(a†k − a−k) . (3.60)

The ferroelectric subsystem is considered typically in a rotated frame as we discussed
before. The MEC in Eq. (3.7) describes the direct influence of the magnetic order
parameter on the secondary polar order parameter. However both subsystems are
simultaneously influenced by lattice distortions. Hence the model has to be completed
by spin-phonon interactions. Such a spin-phonon coupling had been already discussed
within the pseudospin approach in [26]. As pointed out, the main effect comes from
the modulation of an internal crystal field. Following that approach and former
studies for ferroelectric thin films in [111] as well as for multiferroic materials in
[112], the pseudospin-phonon coupling Hfph can be expressed in terms of normal
displacement coordinates Q, compare Eq. (3.58). The total interaction is written in
the form

Hfph = −
∑
k

F (f)(k)QkB
z
−k −

1

2

∑
kk1

R(f)(k, k1)QkQ−k1B
z
k1−k ,

Hmph = −
∑
k

F (m)(k)QkS
z
−k −

1

2

∑
kk1

R(m)(k, k1)QkQ−k1S
z
k1−k .

(3.61)

Here the first term Hfph models the coupling between the ferroelectric order parameter
and the phonons, while the second term Hmph is responsible for the coupling between
phonons and magnetic spins. We are aware that higher order couplings, quadratic
in spins or pseudospins, can be also taken into account. Such terms seem to be
irrelevant in searching the occurrence of a polarization due to magnetic ordering.
The complete Hamiltonian will be analyzed in the subsequent section using Green’s
functions. The different terms denote spin-phonon interaction effects arising from
the first and second powers in the relative displacement of lattice site away from
equilibrium. F (q) = F̄ (q)/(2ω0

q )
1/2 and R(q, p) = R̄(q, p)/(2ω0

q )
1/2(2ω0

p)
1/2 designate

the amplitudes for coupling of phonons to the spin excitations in first and second
order, respectively.
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3.4.2. Green’s functions and phonon excitation spectrum

Similar to the calculation in section 3.2, for the magnetic subsystem one gets

Gm
q (E) =

2M

E − Em(q)

Em(q) =M
[
J0 − Jq + J̃q − J̃0 −K0 cos ν (

1

2
− 〈ρ〉

)]
+F (m)(0)〈Q〉+R(m)(0)〈Q2〉 .

(3.62)

Here Em is the spin-wave energy of the magnetic subsystem modified by the mag-
netoelectric coupling K0 and the magnetic spin-phonon interaction F(m) and R(m).
Similarly, additional terms would appear in the energy components of Eq. (3.37)

εq
11 =2Ω sin ν + J ′0P cos2 ν −K0 cos νM2 − 1

2
J ′qP sin2 ν +

+F (f)〈Q〉 cos ν +
1

2
R(f)〈Q2〉 cos ν,

εq
12 =− 1

2
J ′qP sin2 ν , εq

21 = −εq12 , εq
22 = −εq11 .

(3.63)

According to section 3.2, the pseudospin excitation energy is given by

Ef (q) =
√

(ε11
q )2 − (ε12

q )2 . (3.64)

These equations lead to the same definition for polarization and magnetization
(Eq. (3.50) and Eq. (3.35)) with some modifications in the excitation energies.

The phononic part is also described by a Green’s function matrix denoted as G
(ph)
q (t)(

〈〈aq; a†q〉〉 〈〈aq; aq〉〉
〈〈a†q; a†q〉〉 〈〈a†q; aq〉〉

)
≡

(
G

(ph)11
q G

(ph)12
q

G
(ph)21
q G

(ph)22
q

)
. (3.65)

This set of Green’s functions fulfills the following equation of motion

ω〈〈aq(t); a†q(t′)〉〉 = 〈[aq, a†q]〉+ 〈〈[aq, H]; a†q〉〉, (3.66)

where [aq, H] = [aq, Hph] + [aq, Hmph] + [aq, Hfph]. The related calculations can be
found in appendix. The equation of motion reads

ω ·

(
G

(ph)11
q G

(ph)12
q

G
(ph)21
q G

(ph)22
q

)
=

(
1 0
0 −1
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+
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$q
21 $q

22

)(
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,
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1

2
Āq〈Q2〉 − 1

2
MR̄(m)(q)− 1

2
PR̄(f)(q) cos ν ,

$q
12 = B̄q〈Q〉+

1

2
Āq〈Q2〉 − 1

2
MR̄(m)(q)− 1

2
PR̄(f)(q) cos ν ,

$q
11 −$q

12 = ω0 ,

$q
21 = −$q

12 , $q
22 = −$q

11 .

(3.67)
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Furthermore we have defined B̄(q) = B(q)
(2w0

q)
and Ā(q) = A(q)

(2w0
q)

and correspondingly

R̄(f) and R̄(m) which designate the amplitudes for coupling phonons to the (pseudo)
spin-wave excitations in first and second order, respectively. From here we drive the
phonon dispersion relation as

ω(q) =
√

($q
11)2 − ($q

12)2 . (3.68)

The renormalized phonon excitation energy is given by the poles of the related Green’s
function and reads

ω2
q = ω2

0 + 2ω0

(
B̄q〈Q〉+

1

2
Āq〈Q2〉 − 1

2
MR̄(m)(q)− 1

2
R̄(f)(q)P cos ν

)
. (3.69)

Let us stress that the renormalized phonon frequency in Eq. (3.69) is apart from the
coupling parameters determined by the magnetization M and the polarization P .
Those macroscopic quantities like magnetization and polarization can be also found
using Green’s function. To find the excitation energies one needs the quantity of 〈Q〉
where 〈Q〉 ∝ 〈a〉. In order to find 〈a〉 we calculate 〈[aq, H]〉 = 0. Nq = 〈a†qaq〉 is the
phonon correlation function. We write

〈[aq, H]〉 =ω0〈a〉+
1

2
B̄0(ω0)−

1
2 (〈aa†〉+ 〈a†a〉)︸ ︷︷ ︸

(2N+1)

+
1

6
Ā0(2ω0)−1

[
(〈a〉+ 〈a†〉)(3N + 1)

]
−R̄M(0)〈Sz〉(〈a〉+ 〈a†〉)− R̄F (0)(〈a〉+ 〈a†〉)(1

2
− 〈ρ〉) cos ν

−F̄M(0)〈sz〉 − F̄F (0)(
1

2
− 〈ρ〉) cos ν ,

(3.70)

if〈a〉 = 〈a†〉 then

〈[aq, H]〉 =ω0〈a〉+
1

2
B̄0(ω0)−

1
2 (2N + 1) +

1

3
Ā0(2ω0)−1〈a〉(3N + 1)

−2R̄M(0)〈Sz〉〈a〉 − 2R̄F (0)〈a〉(1

2
− 〈ρ〉) cos ν − F̄M(0)〈sz〉

−F̄F (0)(
1

2
− 〈ρ〉) cos ν ,

(3.71)

and

〈a〉 =
−1

2
B̄0(2N + 1) +MF̄M(0) + F̄F (0)P cos ν

ω0 + Ā0(2N + 1)− 2MR̄M(0)− 2PR̄F (0) cos ν
, (3.72)

follows.

3.4.3. Phonon modes and their influence on magnetization and
polarization

In the previous section we found an analytical expression for the phonon excitation
of the multiferroic material (Eq. (3.69)). The spectrum is determined by the mag-
netization M , the polarization P , the anharmonic phonon interactions B̄q, Āq as well
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as the various spin-phonon coupling parameters R̄(m) and R̄(f). In this section the
results will be discussed and compared with experimental observations. Depending
on the sign of the spin-phonon interaction constant R, see Eq. (3.61), the phonon
frequencies become either harder or softer. The actual behavior depends on the in-
teraction between the ferroic subsystems and hence it is a material-specific property.
In BiMnO3 and YCrO3 one observes an interaction between the ferromagnetic and
the ferroelectric subsystem, whereas YMnO3 and BiFeO3 offer a coupling between an
antiferromagnetic and ferroelectric systems [52]. As demonstrated in [113] BiCrO3

films exhibit a multiferroic coupling between antiferroelectricity and antiferromag-
netism (or weak ferromagnetism). Following this line we have analyzed the influence
of the magnetic and the ferroelectric subsystem as well as the MEC on the phonon
excitation energy.

L+et us emphasize the anomalies around the ferroelectric and magnetic phase tran-
sitions. The numerical calculations for the optical phonon energy are based on the
following model parameters which are relevant for TbMn2O5 [81]: TC = 38 K, TN

= 43 K, J ′0 = 75 K, K0 = -7 K, s = 1/2, S = 2, ω0 = 96.3 cm−1. The anharmonic

interaction parameters are estimated to be A = −1 cm−1, B = 0.5 cm−1, F
(m)
0 =

F
(f)
0 = 4 cm−1 . In principle, the spin-phonon interaction constant R can be positive

or negative leading to hardening or softening of the phonon mode, respectively. The
measured temperature dependence of the phonon mode in TbMn2O5 reveals a soft-
ening of that mode [55] which suggests a negative coupling parameter R < 0. This
means that the mode frequencies decrease rapidly as the temperature approaches
the ferroelectric phase transition from below. In the opposite case (R > 0) the
phonon mode becomes harder. A softening of the phonon mode at zero-wave vec-
tor ω(q = 0, T ) with increasing temperature is also observed for DyMn2O5, BiMn2O5

[102] and EuMn2O5 [103]. The frequency of the mode versus the temperature is shown
in Fig. 3.10. The harmonic phonon energy ω0 introduced in Eq. (3.58) is renormalized
due to the anharmonic spin-phonon and phonon-phonon interaction terms and be-
comes temperature-dependent. The phonon excitation is obtained in Eq. (3.69). The
spin-phonon interactions are dominant at low temperatures, whereas at higher tem-
peratures, above TN , there remains only the anharmonic phonon-phonon coupling.
Totally the phonon energy decreases slightly. The dispersion relation in Fig. 3.10
shows two kinks at the the ferroelectric phase transition temperature TC = 38 K and
at the magnetic transition TN = 43 K. The first anomaly occurs when the ferroelec-
tric order disappears. As above TC the ME coupling K0 is irrelevant, the kink in
the dispersion relation is a direct consequence of the ME coupling. The second kink
reflects the influence of the magnetic order on the phonon energy. The frequency shift
below TC is mainly originated in the anharmonic spin-phonon interactions introduced
in Eq. (3.61). Let us remind that the spin-phonon coupling comes from the exchange
interaction Jij = J(ri− rj) (and J̃ij, compare Eq. (3.2) as well as J ′ij, see Eq. (3.58)).

Assuming the interaction depends on the actual lattice coordinates they can be ex-
panded with respect to the phonon displacements ui and uj. Hence the spin-phonon
coupling parameters are determined by the first and second order derivatives of the
related exchange coupling Jij. The results shown in Fig. 3.10 are in agreement with ex-
perimental observations in different RMn2O5 compounds [93, 100–104]. In TbMn2O5
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Figure 3.10. – Temperature dependence of the phonon energy ω0 for TbMn2O5 with

K0 = −7 K , R
(m)
0 = −0.35 cm−1 , R

(f)
0 = −0.45 cm−1 , F

(m)
0 = F

(f)
0 = 4 cm−1. The

bare phonon frequency is ω0 = 96.3 cm−1. The mode shows a softening behavior
for negative spin-phonon coupling R.

a small increase will be observed in the phonon curve between TC and TN [101].
Such a behavior can be reproduced in our approach if a positive coupling R(m) > 0 is
assumed within the temperature interval TC ≤ T ≤ TN . A hardening of the phonon
mode is reported in HoMn2O5 [100], which is consistent with our studies adopting
positive spin-phonon couplings R(f) > 0 and R(m) > 0, see Fig. 3.11. The mentioned
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Figure 3.11. – Temperature dependence of the phonon energy ω0 for TbMn2O5 with

K0 = −7 K,R
(m)
0 = 0.70 cm−1,R

(f)
0 = 0.90 cm−1, F

(m)
0 = F

(f)
0 = 4 cm−1. The mode

offers hardening for positive spin-phonon coupling R.

anomalies at TC and TN are also reproduced. The ME coupling parameter is intro-
duced in Eq. (3.7). The effect of the magnetoelectric coupling constant K0 between
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the magnetic and electric subsystems is shown in Fig. 3.12. As shown the phonon
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Figure 3.12. – Temperature dependence of the phonon mode energy for different
magnetoelectric coupling K0 = −3 K (black/lower curve);K0 = −7 K (red/middle
curve);K0 = −10 K (blue/upper curve).

energy depends on the ME coupling K0 in a significant manner. The kink at TC is
shifted to higher temperatures, i.e. TC is increased for stronger ME coupling. The
magnetic phase transition temperature TN remains unchanged by the ME coupling
K0 [114].
Let us remark that there is an experimental evidence for different coupling strengths
and even for different coupling mechanisms compare to what we discussed here be-
tween the magnetic and the ferroelectric subsystems. So the replacement of Y atoms
by magnetic Ho atoms in YMnO3 leads to a stronger suppression of the thermal con-
ductivity [115]. Another study in [116] predicts that the polarization in orthorhombic
HoMnO3 with biquadratic ME coupling would be enhanced by up to two orders of
magnitude with respect to that in orthorhombic TbMnO3. In that compound the
ME interaction term is linear in the electrical dipole moments.
The phonon energy is very sensitive to the anharmonic spin-phonon interaction con-
stants R(m) and R(f). The situation is depicted in Fig. 3.13. The phonon energy
increases strongly with increasing R(m) below TN , see Fig. 3.13(a), or with R(f) be-
low TC , in the multiferroic phase, compare Fig. 3.13(b). Synchrotron X-ray studies
give evidence of lattice modulation in the ferroelectric phase of YMn2O5 [117], how-
ever the atomic displacements seem to be extremely small. Moreover, several phonons
in TbMn2O5 exhibit explicit correlations to the ferroelectric properties of these mate-
rials [101]. The magnetization and polarization in multiferroic substances are affected
by such external electric or magnetic fields. The influence of an external magnetic
field h = gµBB, see Eq.(3.2), on the polarization P is demonstrated experimentally
in TmMn2O5 [95], in MnWO4 [96] and in orthorhombic YMnO3 [97]. The strong
ME coupling in these materials can be illustrated by studying the influence of an ap-
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(a) ω(q = 0, T,R(m))
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(b) ω(q = 0, T,R(f))

Figure 3.13. – Temperature dependence of the phonon energy for different (a)
Spin-phonon couplings: R(m) = −0.45 K (black/lower curve); R(m) = −0.70 K
(red/middle curve);R(m) = −0.95 K (blue/upper curve); (b) Pseudospin-phonon
couplings: R(f) = −0.45 K (black/lower curve); R(f) = −0.90 K (red/middle
curve);R(f) = −1.25 K (blue/upper curve).

plied magnetic field on the phonon spectrum. The result of our calculation is shown in
Fig. 3.14. The phonon energy ω increases with increasing magnetic field h. Significant
changes of the phonon energy due to magnetic fields are reported for orthorhombic
TbMnO3 [118] and for hexagonal HoMnO3 [119]. Experimental data for RMn2O5

are still missing. Both phase transitions are indicated by the corresponding kinks in
the phonon energy. For higher temperatures beyond 45 K we find no peculiarities.
Fig. 3.14 shows that under the influence of a magnetic field the phase transition tem-
peratures TC and TN are altered, where the effect is more pronounced for TC as a
further indication of the magnetoelectric behavior. So the phase transition tempera-
ture TC is enhanced by about 4− 5 K. These changes are very sensitive to the model
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Figure 3.14. – Phonon energy versus temperature for different external magnetic field:
h = 0 (black/lower curve), h = 1 K (read curve), h = 5 K (blue curve), h = 10 K
(green curve) .

parameters. The increase of TC with the magnetic field h and a vanishing kink at
TN is observed in [120]. The dependence of the phonon frequency on the magnetic
field is depicted in Fig. 3.15.
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Figure 3.15. – Phonon frequency versus the magnetic field at fixed temperature,
T = 30 K .

As expected, the phonon excitation energy for wave vector q is enhanced when the
field is increased. As remarked in [121] the effect of a magnetic field or hydrostatic
pressure are strongly dependent on the R atom in the RMn2O5 systems. The com-
pression of these materials is supposed to be equivalent to applying a magnetic field
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[122]. In [99, 123] it has been shown that the coupling between the magnetic orders
and the dielectric properties in multiferroic RMn2O5 (R = Ho, Dy, Tb) is mediated
by the lattice distortion. The mentioned compounds have different ionic sizes. Hence
the thermal expansion data display specific differences of the lattice strains. In case R
stands for Ho and Dy then a contraction appears along the c-axis, while one observes
an expansion along the a- and b-axis at TC . The opposite behavior is observed for Tb.
The origin of this fact is due to the different spin modulations along the c-axis. The
spin-lattice coupling leads to different stress in the lattice. As demonstrated in the
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Figure 3.16. – Temperature dependence of the (a) Magnetization and (b) Phonon
mode energy for changed spin-phonon coupling: R(m) = 7.5 cm−1, R(f) = 1.5 cm−1

(blue) , R(m) = 4.5 cm−1, R(f) = 7.5 cm−1 (red) , R(m) = 0.70 cm−1, R(f) = 0.90
cm−1 (black).

previous section, the Green’s function technique allows also to calculate macroscopic
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quantities like the magnetization M and the influence of the phonon degrees of free-
dom on M . The results are shown in Fig. 3.16. In Fig. 3.16(a) one finds the influence
of the spin-phonon coupling on the magnetization M(T ). Increasing the spin-phonon
coupling parameter R(m) the magnetization decreases. The magnetic transition tem-
perature TN is lowered accordingly. In Fig. 3.16(b) the phonon energy is represented
as function of the temperature with different (pseudo) spin-phonon couplings. The
phonon excitation energy increases strongly when the spin-phonon coupling R(m) is
enhanced. In the same manner the magnetization is slightly decreased. Obviously, the
lattice degrees of freedom affect the magnetization and the phonon spectrum. Thus,
for rare-earth R=Tb the system offers a tensile strain. The ordered Mn magnetic
moments are suppressed at high pressure. The kink at TC is due to the ME coupling
and can be observed again. Our results are in agreement with the experimental data
for orthorhombic BiMnO3 and LuFe2O4 [124, 125]. There are no data available for
the influence of pressure on the magnetic properties of MF RMn2O5 systems. For
the polarization the influence of the coupling is not very pronounced. The effect is
clearly stronger for the magnetization than for the polarization.
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3.5. Extended Heisenberg model for asymmetric
zigzag structures in RMn2O5

As we already discussed in previous section, the family of manganese oxides with gen-
eral formula RMn2O5 (R = rare-earth, Bi, and Y) have provided a new and different
perspective in the field of multiferroics due to very complex magnetic and ferroelectric
phase transitions upon temperature variation. Regarding the magnetic properties of
these compounds, some works have been devoted to the determination of their mag-
netic structures using powder neutron diffraction [126, 127]. The analysis shows that
the magnetic structures of the RMn2O5 series mainly differ in their periodicity along
the c-axis, which is determined by the radius of R. In orthorhombic RMn2O5, the
spins of the Mn4+ and Mn3+ ions and the R3+ moments are coupled via the predomi-
nantly antiferromagnetic (AFM) superexchange interactions giving rise to a complex
magnetic phase diagram. This crystal structure is best described by considering ab-
planes and a c-axis stacking, as shown in Fig. 3.17. Such a complex structure results
in five different magnetic interactions which can be identified between neighboring
spins [81].
Along c, Mn4+ atoms interact via direct exchange and weak superexchange with two
inequivalent interactions (J1, through the R layer, J2 through the Mn3+ layer). The
Mn4+ also linked to Mn

3+
O5 pyramids either through their pyramidal base corners

(J3) or through the pyramid apex (J4). J3 and J4 are both of the superexchange
type and are controlled by Mn4+−O−Mn3+ bond angles (∼ 131◦ for J3 and ∼ 123◦

for J4), which is close to the critical angle between FM and AFM according to the
Goodenough-Kanamori-Anderson (GKA) rules [38, 128]. Finally, the pyramids are
linked together by their base edges (J5). The configuration parallel to c, involving
interactions J1 and J2, is determined only by the radius of the rare-earth cation. In
the ab-plane the nearest neighbor interaction along the a-axis (J4, J5) is stronger
than that along the b-axis (J3, J5). This results in zigzag AFM chains parallel to
the a-axis mediated by J4 > 0 and J5 > 0. J3 is then close to zero, and alternates
between FM and AFM, linking the AFM chains [81]. The arrangement of Mn spins
within the ab-plane, which are responsible for magnetism, is essentially insensitive to
R. So with a good approximation one can consider J1 = J2.

Figure 3.17. – Crystal structure of RMn2O5 in the paraelectric phase, projected on
the ab-plane (left panel) and bc-plane (right panel). Taken from [121].
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RMn2O5 materials form frustrated magnets. As it is shown in Fig. 3.17 the Mn
spins are arranged in the five-spin loop; Mn4+-Mn3+-Mn3+-Mn4+-Mn3+. The nearest
neighbor magnetic coupling in the loop is of the antiferromagnetic type, favoring
antiparallel alignment of the neighboring spins. However, because of the odd number
of spins in one loop, a perfect antiparallel spin configuration cannot be possible,
eventually leading to the frustrated complex magnetic structure [59]. Because of the
complex magnetic interactions and the MEC, RMn2O5 compounds undergo several
magnetic and associated electric phase transitions upon temperature fluctuation and
external stimuli. Below T2DICM ' 43 K a two dimensional incommensurate (2DICM)
manganese magnetic structure forms with propagation vector q = (qx, 0, qz). At
TCM ' 38 K, the magnetic propagation locks into a commensurate phase (CM) with
q = (0.5, 0, 0.25). Then unusually at TLT−2DICM ' 25 K, there occurs a re-entry into
a second incommensurate phase at low temperature (LT-2DICM). For those members
with magnetic rare-earth ions (i.e. excluding Y, Bi or La) a final transition occurs at
TRE ' 10 K into the LT-2DICM phase, marking the onset of spontaneous rare-earth
ordering.

To investigate the thermodynamic properties of these materials, we simplified the
complex magnetic structure by the model shown in Fig. 3.2(b). However, the main
mechanism for the appearance of a nontrivial polarization P in RMn2O5 (R = Tb,
Y, Dy, and Bi) has been attributed to exchange-striction among frustrated Mn spin
networks [81].

Figure 3.18. – (a) Spin configuration of RMn2O5, (b) Projected on the ab-plane.

In this section, building upon experimental facts and the space group symmetry, we
will propose a more realistic model to study the properties of antiferromagnetic zigzag
spin chain of two different Mn4+ and Mn3+ magnetic ions as it shown in Fig. 3.18.
Here, we will present our first results for these rather complex structures which had
bin studied before only by ab-initio calculations. We demonstrate that the Heisenberg
model can be extended in a manner that it incorporates such more complex magnetic
order like zigzag structures.
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3.5.1. Analytical representation of multiferroics with asymmetric
zigzag spin chain

The most important element controlling ferroelectricity is the in-plane components of
the magnetic structure. The spin configuration in the ab-plane is shown in Fig. 3.18.
It can be seen that two zigzag chains per unit cell of AFM-coupled nearest neighbor
Mn4+ and Mn3+ run in a direction parallel to the a-axis. The electrical polarization
is proportional to the scalar product of spins in different zigzag chains. The electrical
polarization is always directed along the b-axis by symmetry. The spin configura-
tion within the ab-plane of the commensurate phases is essentially the same for each
system; the radius of R determines the sign of the magnetic exchange between adja-
cent planes. We investigate the system by considering two ferromagnetic zigzag spin
chains consist of two different magnetic ion which are coupled antiferromagnetically
as it shown in Fig. 3.19 forming an antiferromagnetic asymmetric zigzag spin chain.
Mn3+ and Mn4+ ions denoted as A and B. These chains are coupled to each other
through Mn4+ ions with the exchange interactions J1 = J2 in c-direction.

Figure 3.19. – Antiferromagnetic asymmetric zigzag chain consisting of two ferro-
magnetic spin chains of different spin magnitude.

The Hamiltonian of magnetic subsystem in a-direction can be presented as

Hm = −1

2

∑
i,j

∑
α,β

∑
νµ

Jνµiα,jβ(Sνiα · S
µ
jβ) . (3.73)

The J’s represent the nearest neighbor spin interactions. i, j refer to lattice sites. α, β
represent the two ferromagnetic chains, introduced as ’a’ and ’b’. ν, µ show Mn3+

and Mn4+ sublattices denoted as A and B, respectively. These indexes allow us to
take in to account the complex exchange interactions that are expected.
Along the b-direction, TbMn2O5 exhibits a charge and spin ordering that can
schematically be denoted as a chain of Mn4+

↑ −Mn3+
↓ −Mn3+

↑ −Mn4+
↑ which is re-

peated along this direction. In the undistorted Pbam structure, the distances d ↑↑
(between Mn3+

↑ and Mn4+
↑) and d ↓↑ (between Mn3+

↓ and Mn4+
↑ ) are the same.

In Pb21m structure d ↑↑< d ↓↑, which optimizes the double exchange energy and
causes ferroelectricity.
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Although the structure must be polar in the ferroelectric phase, experimental data
does not provide direct evidence for the lowering of symmetry from Pbam to Pb21m
and any low temperature deviation from Pbam symmetry is very small [80]. This is
consistent with the extremely weak nature of the polarization, two or three orders of
magnitude smaller than in typical ferroelectrics, which is not expected to give large
atomic displacements.
The ferroelectric subsystem was considered by defining polarization operators P in
b-direction.

Hf =
1

2

∑
i,j

LijP
(b)
i P

(b)
j . (3.74)

This polar part offers no phase transition. The ferroelectric phase transition is trig-
gered by inclusion of the coupling term which is responsible for the improper fer-
roelectricity in these materials. The polarization is obtained by minimizing of the
free energy considering H = Hf + Hmf as a Hamiltonian. The related coupling
Hamiltonian can be written as

Hmf = −1

2

∑
α,β

∑
i,j,r

KijrP
(b)
r JABiαjβ(1− 2δαβ)SAiα · SBjβ . (3.75)

Here P(b) reflexes the direction of polarization.

3.5.2. Green’s Function calculation

Considering the appropriate commutation relations

[S+ϕ
lγ , S

+ν
iα S

−µ
jβ ] =2S+ν

iα S
zµ
jβ δγβδϕµδlj,

[S+ϕ
lγ , S

zν
iαS

zµ
jβ ] =− SzνiαS

+µ
jβ δγβδϕµδlj − S

+ν
iα S

zµ
jβ δγαδϕνδli,

(3.76)

the Green’s function reads

ωGϕ+φ−

γΓ (q) =2〈szφΓ 〉δγΓδϕφ +
∑
α,γ

−Jϕναγ (q)〈Szφγ 〉G
ν+φ−

αΓ (q) + Jϕναγ (0)〈Szνα 〉G
ϕ+φ−

γΓ (q)

−1

2

[
2Kq+q′〈P 〉

(
JABαγ (q′)GA+φ−

αΓ (q)− JABβγ (q′)GB+φ−

βΓ (q)
)
〈Szϕα 〉

−K0〈P 〉
(
JABαγ (0)〈SzAα 〉+ JABβγ (0)〈SzBβ 〉

)
Gϕ+φ−

γΓ (q)

−2

(
2Kq+q′〈P 〉JABγγ (q′)〈Szϕγ 〉

(
GA+φ−

γΓ (q)−GB+φ−

γΓ (q)
)

−K0〈P 〉JABγγ (0)
(
〈SzAγ 〉+ 〈SzBγ 〉

)
Gϕ+φ−

γΓ (q)

)]
.

(3.77)

It can be written as

ω ·


GA+A−
aa GA+A−

ab GA+B−
aa GA+B−

ab

GA+A−

ba GA+A−

bb GA+B−

ba GA+B−

bb

GB+A−
aa GB+A−

ab GB+B−
aa GB+B−

ab

GB+A−

ba GB+A−

bb GB+B−

ba GB+B−

bb

 =


2〈SzA〉 0 0 0

0 −2〈SzA〉 0 0
0 0 2〈SzB〉 0
0 0 0 −2〈SzB〉
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+
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 ,

where

ε11
q = (J6(0)− J6(q) + J5(0))〈SzA〉+

(
J3
↑↑(0) + J3

↑↓(0) + J4(0)
)
〈SzB〉

+Kq+q′〈P 〉J3
↑↑(q

′)〈SzA〉 −
1

2
K0〈P 〉

[
J3
↑↑(0)− J3

↑↓(0)
]
(〈SzA〉+ 〈SzB〉) = −εq22,

εq
12 = J5(q)〈SzA〉+Kq+q′〈P 〉J3

↑↓(q
′)〈SzA〉 = −εq21,

εq
13 = −J3

↑↑(q)〈SzA〉 −Kq+q′〈P 〉J3
↑↑(q

′)〈SzA〉 = −εq24,

εq
14 =

(
J3
↑↓(q) + J4(q)

)
〈SzA〉 −Kq+q′〈P 〉J3

↑↓(q
′)〈SzA〉 = −εq23,

εq
31 = −J3

↑↑(q)〈SzB〉+Kq+q′〈P 〉J3
↑↑(q

′)〈SzB〉 = −εq42

εq
32 =

(
J4(q) + J3

↑↓(q)
)
〈SzB〉+Kq+q′〈P 〉J3

↑↓(q
′)〈SzB〉 = εq

41,

εq
33 = (J4(0) + J3

↑↑(0) + J3
↑↓(0))〈SzA〉+ (J1(0)− J1(q))〈szB〉

−Kq+q′〈P 〉J3
↑↑(q

′)〈SzB〉 −
1

2
K0〈P 〉

[
J3
↑↑(0)− J3

↑↓(0)
]
(〈SzA〉+ 〈SzB〉) = −εq44,

εq
34 = −Kq+q′〈P 〉J3

↑↓(q
′)〈SzB〉 = −εq43 .

(3.78)

The exchange interactions are defined in Table 3.1. Here JAAaa ≡ J6 represents the
NNN interaction between two Mn3+ ions. All these quantities are positive. The sign
of AFM interactions are considered in the formulas.

Table 3.1. – Different exchange parameters in Eq. (3.77) in accordance to Fig. 3.18.

JBBaa(bb) JABaa(bb) JABab(ba) JABab(ba) JAAab(ba) JAAaa(aa)

J1, J2 J3
↑↑ J3

↑↓ J4 J5 J6

To find the excitation energy, we solve∣∣∣∣∣∣∣∣
ω − ε11

q ε12
q ε13

q ε14
q

ε21
q ω − ε22

q ε23
q ε24

q

ε31
q ε32

q ω − ε33
q ε34

q

ε41
q ε42

q ε43
q ω − ε44

q

∣∣∣∣∣∣∣∣ = 0

This leads to ±ω1 and ±ω2 as shows in the appendix. Following Eq. (3.39) the
GA+A−
aa (q) ≡ G11

q reads

G11
q =

I11
(
ω3 + Aω2 +Bω + C

)
(ω − ω1)(ω + ω2)(ω − ω2)(ω + ω2)

. (3.79)

A, B and C are coefficients which can be found in appendix as well. Eq. (3.79) is
simplified as

G11
q = I11

(
Γ1

ω − ω1

+
Γ2

ω + ω1

+
Γ3

ω − ω2

+
Γ4

ω + ω2

)
. (3.80)
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Comparing Eq. (3.77) and Eq. (3.80) one gets

Γ1 + Γ2 + Γ3 + Γ4 = 1,

Γ1ω1 − Γ2ω1 + Γ3ω2 − Γ4ω2 = A,

− Γ1ω
2
1 − Γ2ω

2
2 − Γ3ω

2
1 − Γ4ω

2
1 = B,

− Γ1ω1ω
2
2 + Γ2ω1ω

2
2 − Γ3ω

2
1ω2 + Γ4ω

2
1ω2 = C.

(3.81)

Γ1−Γ4 will be found using Cramer rules. These quantities are given in the appendix.
There are two different magnetic ions in this compound with spin amounts bigger than
one. Thus in order to calculate the related magnetization we need a more general
formula. For this purpose we solve

〈(Sz)m〉S(S + 1)− 〈(Sz)m+1〉 − 〈(Sz)m+2〉 = 〈n〉
(

2〈Sz(Sz − 1)m〉

+ 〈[(Sz − 1)m − Smz ] · [S(S + 1)− Sz − S2
z ]〉
)
, m = 0, 1..., 2S − 1,

and 〈(Sz)2S+1〉 =
2S∑
m=0

am〈(Sz)m〉 .

(3.82)

Considering 〈Sz〉 = SM , the magnetizations of A and B sublattices are

S = 2 −→M1 =
10n3 + 15n2 + 9n+ 2

5(n4 + 2n3 + 2n2 + n) + 1
,

S =
3

2
−→M2 =

5n2 + 5n+ 3
2

4n3 + 6n2 + 4n+ 1
,

n ≡ 〈n〉 =
1

N

∑
q

(
Γ1(q)

eβω1 − 1
+

Γ2(q)

e−βω1 − 1
+

Γ3(q)

eβω2 − 1
+

Γ4(q)

e−βω2 − 1
) .

(3.83)

The magnetization of the whole system is

M =| M1 +M2

2
| . (3.84)

Using phenomenological approach we calculate the polarization. The free energy is

F = −kBT ln(Z), (3.85)

where Z is the partition function. Minimizing the free energy with respect to P
(b)
l we

get

χ〈P 〉 = −1

2

∑
α,β

∑
i,j,l

KijlJ
AB
iαjβ(1− 2δαβ)〈SAiα · SBjβ〉 . (3.86)

In a first approximation by considering only z-z correlation function, this expression
is simplified to

〈P 〉 =
1

χ

∑
i,j

Kijl(| J3
↑↓ − J3

↑↑ |)〈SZA〉〈SZB〉, (3.87)

which reflects the origin of ferroelectricity. In case J3
↑↓ = J3

↑↑, the polarization will be
vanishes as it expected.
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3.6. Ion doping effects in multiferroic MnWO4

In this last part of section 3, devoted to bulk multiferroics, we analyze doping ef-
fects which are quite relevant for the understanding of experimental observations and
technical applications. The calculation is performed for multiferroic MnWO4 which
offers frustration in a zigzag structure. Different quasi-degenerate low energy mag-
netic structures can be found in a frustrated system. These structures compete for
the ground state. As a result, a frustrated system shows high sensitivity of mag-
netic and ferroelectric phases to small perturbations in form of external magnetic
fields [78, 129, 130] or pressure [122, 131, 132]. Chemical substitutions have also been
shown to change the multiferroic properties of various compounds [133, 134]. It is
therefore of interest to study the effects of substitutional doping in a multiferroic
system that allows for the replacement of the major magnetic ion with a variety of
other magnetic or non-magnetic ions with the aim of tuning the magnetic exchange
coupling and anisotropy parameters and the subtle interaction between different frus-
trated magnetic and ferroelectric orders.

A unique material that does already exist in nature is the mineral Huebnerite,
MnWO4 which not only exhibits multiferroic properties at low temperature but also
shows rich magnetic phases via chemical substitutions [135, 136]. The compound
crystallizes in a monoclinic structure with the space group P2/c. The details of the
magnetic structures have been revealed in neutron scattering experiments [137, 138].
The building blocks of MnWO4 are MnO6 octahedra containing Mn2+ ions and WO6

octahedra containing diamagnetic W6+(d0) ions. The MnO6 octahedra share edges
to form zigzag MnO4 chains along the c-direction (see Fig. 3.20(a)), and the WO6

octahedra form zigzag WO4 chains along the c-direction (see Fig. 3.20(b)). The
three-dimensional (3D) structure of MnWO4 is obtained from these MnO4 and WO4

chains on sharing their octahedral corners (see Fig. 3.20(c)). Thus, in MnWO4, layers
of magnetic Mn2+ ions parallel to the bc-plane alternate with layers of diamagnetic
W6+ ions parallel to the bc-plane along the a-direction. The Mn spins form different
frustrated orders upon decreasing temperature. At TN = 13.5 K, a sinusoidal mag-
netic order with an incommensurate (ICM) modulation is established. The magnetic
order parameter in this AF3 phase is defined by the modulation vector in reciprocal
space, Q3 = (−0.214, 0.5, 0.457) [138]. The Mn spins are collinear and lie in the ac-
plane at an angle of 35◦ with the a-axis. At slightly lower temperature, T2 = 12.6 K,
the spins tilt toward the b-axis and form a (non-collinear) helical structure. The
magnetic modulation vector in this AF2 phase is the same as in the AF3 phase,
Q2 = Q3. With further decreasing temperature, below T1 = 7.5 K, the Mn spins un-
dergo another phase transition to a frustrated commensurate (CM) AF1 phase with
the propagation vector Q1 = (−0.25, 0.5, 0.5). The latter spin structure corresponds
to the ↑↑↓↓ modulation that is characteristic for frustrated magnetic systems with
competing nearest and next-nearest neighbor exchange interactions. The loss of in-
version symmetry due to the helical spin ordering at AF2 phase induce polarization
in MnWO4, thus T2 is also the ferroelectric critical temperature TC . The polarization
vector is parallel to the monoclinic b-axis: P = (0, Pb, 0). Pb is relatively small. It
takes a maximal value ( 50 µC/m2) at around T1, and then monotonously decreases
and vanishes at around TC [78]. Other phases display no sign of FE activity. The
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Figure 3.20. – Perspective views of (a) A zigzag MnO4 chain, (b) A zigzag WO4 chain,
and (c) The three-dimensional (3D) arrangement of the MnO4 and WO4 chains in
MnWO4. Taken from [139].

close proximity of three different magnetic phases proves the existence of significant
frustration in the magnetic system. This means that MnWO4 has spin frustration
in the exchange interactions within each c-chain and between the c-chains along the
a-direction. It further suggests a high degree of sensitivity to small changes of the
microscopic exchange interactions and anisotropy parameters. This can be achieved
by substituting Mn by other transition metals. MnWO4 is a perfect candidate since it
forms stable compounds when Mn is completely replaced by Fe [140], Co, Ni [141], or
Zn [142]. The replacement of the Mn2+ (spin 5/2) by Fe2+ (spin 2), Co2+ (spin 3/2),
or the non-magnetic Zn will change the magnetic exchange interactions, the single
ion anisotropy, and it will introduce disorder into the Mn spin system [143]. The
spin-lattice coupling is strong in this compound. We are aware that doping effects
have an influences on lattice dynamics and therefore, spin-lattice coupling should be
considered in more detail following the line proposed in section 3.4 Such an approach
is the goal of future studies.

3.6.1. An effective Hamiltonian for doped frustrated zigzag chain.

Here, we study the ion doping effects on different transition temperatures in the
MF compound MnWO4 based on a microscopic model introduced in section 3. By
ion doping due to the different radii between the doping ions and the host ions
there appear different strains, which lead to changing of the exchange interaction
constants. We denote them in the defect sites with the index d. In dependence on
the strain - tensile or compressive - they can be smaller or greater compared to the
case without strain, without ion doping or defects. Several theoretical studies based
on ab-initio methods have been done to explain the origin of ferroelectricity in this
material [144, 145]. We assume that the ferroelectricity is related to the frustrated
spin structure which is given by the Heisenberg Hamiltonian with NN and NNN AFM
exchange interaction within the zigzag spin chain as it shown in Fig. 3.21. In the case
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Figure 3.21. – Schematic representation of frustrated magnetic zigzag chain of
MnWO4.

without defects, Eq. (3.2) describes the interaction between the Mn-ions in MnWO4.
By replacing some of the Mn-ions with different doping ions, the situation would be
similar to a ferrimagnet with two sublattices, so Eq. (3.2) describes the interaction
between the Mn-ions in the new strained lattice, then we must add a Heisenberg term
which describes the interaction between the Co ions, and a term for the description of
the interaction between the Mn-Co ions. Considering the dopant the related magnetic
Hamiltonian reads

Hm =− 1

2

∑
i,j

[(1− x)JMn(i, j)SMn
i · SMn

j − xJd(i, j)Sdi · Sdj + xJMn−d(i, j)SMn
i · Sdj ]

−
∑
i

[DMn
i (Szi

Mn)2 +Dd
i (S

z
i
d)2].

(3.88)

In addition, Hmf gives the coupling between the magnetic and the electrical subsys-
tems in MnWO4 which is in the form of Eq. (3.7). Using the Green’s function method
we calculate the polarization P , magnetization M , and the critical temperatures TC

and TN as the temperatures where P and M vanish. The relative polarization P
obtain from Eq. (3.20) while the relative magnetization M for arbitrary spin value S
is introduced in Eq. (3.35) with the spin-wave energy in Eq. (3.24).

3.6.2. Discussions of the phase diagrams

From the model presented in previous section we can obtain the properties around
the magnetic and ferroelectric critical temperatures, TN and TC , and in the phase
where magnetic and ferroelectric properties coexist. Moreover, taking into account
the single-ion anisotropy this model can be applied in the whole temperature interval
and can describe the correct dependence of TN , TC and T1 on the Fe- and Co-ion
doping concentration.
At first, we study the influence of doping with the non-magnetic ions Zn2+ and Mg2+.
Their radii (0.88 and 0.86 Å) are larger compared to the ion radius of Mn2+ (0.81 Å).
This leads to tensile strain and to smaller magnetic and electric exchange interaction
constants Jd < J , J ′d < J ′. The results for the critical temperatures TN (black curve)
and TC (red curve) for Mn1-xZnx WO4 are shown in Fig. 3.22. It can be seen that
they decrease with increasing the Zn-concentration. This is in agreement with the
experimental data of Chaudhury et al. [136] and Meddar et al. [139]. For Mg-doping
the behavior is comparable.
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Figure 3.22. – Zn-concentration dependence x of the (black) magnetic TN and (red)
ferroelectric TC transition temperatures in Mn1−xZnxWO4 with JMn = -12.2 K,
JMn
d = 0.8JMn, DMn

d = DMn = -5 K, JZn−Mn = -6 K, J ′d = 0.8J ′ = 8 K.

By the Fe and Co-doping we observe the opposite result for the magnetic transition
temperature TN . The ionic radii of Fe2+ and Co2+ (75 and 79 Å) are smaller in
comparison to the Mn-ion radius. This leads to a compressive strain, i.e. to Jd > J .
In Fig. 3.23 is demonstrated the Fe-concentration (x) dependence of the magnetic
transition temperature TN (black curve), it increases with increasing of x. A similar
dependence was obtained also for Co-doping. The increase of TN is stronger compared
to the Fe-doping, because exchange energies for Co2+ are typically much larger than
for Fe2+. This behavior is experimentally reported by many authors [96, 135, 136,
143]. For the ferroelectric transition temperature TC (red curve) we obtain a small
decrease with increasing Fe- and Co-ion doping concentration.

In order to explain the experimentally observed differences in the T1 behavior by
Fe- and Co-ion doping, we must take into account the single-ion anisotropy D [27–
29, 68, 135, 146–148]. The substitution of magnetic transition metal (TM) Fe2+ (S
= 2) or Co2+ (S = 3/2) ions for Mn2+ (S = 5/2), which introduces extra Mn-TM
(JMn−Fe < 0, JMn−Co > 0) and TM-TM (TM = Fe, Co, JFe−Fe > 0, JCo−Co > 0)
spin interactions, along with a different local magnetic anisotropy D determined by
the TM2+ ions, modifies the phase competition. Additively, there is a competition
between the influence of the exchange interaction constant J , which enhances the
magnetization, TN and the spin-wave energy, and D, which reduces them [148].

It is also important that the single-ion anisotropy is of different sign for Fe and Co
and that in Fe is at least one order of magnitude larger than in Co [149, 150]. In
the case of the Fe-doping (Fig. 3.23) all this leads to an increasing the transition
temperature T1 (blue curve) which reaches the ferroelectric TC curve, i.e. the Fe-
doping would stabilize the AF1 order. Contrary, by the Co-ion doping (Fig. 3.24) T1

(blue curve) would decrease with increasing Co-concentration, i.e. it would suppress
the AF1 state and stabilize the spin-spiral AF2 magnetic structure. This behavior is in
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Figure 3.23. – Fe-concentration (x) dependence of the transition temperatures (black)
TN , (red) TC and (blue) T1 in Mn1−xFexWO4 with JMn = -12.2 K, JMn

d = 1.2JMn,
DMn
d = 0.8DMn, JFe = 30 K, DFe = -24 K, JFe−Mn = -21 K.
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Figure 3.24. – Co-concentration dependence x of the transition temperatures (black)
TN , (red) TC and (blue) T1 in Mn1−xCoxWO4 with JMn = -12.2 K, JMn

d = 1.5JMn,
DMn
d = 1.4DMn, JCo = 49.5 K, DCo = 12 K, JCo−Mn = 30 K.

agreement with that reported in [96, 135, 136, 143]. Moreover, in MnWO4, as in many
other multiferroics, the spin-phonon interaction is strong and plays an important role
[151, 152]. Therefore, it must be taken into account in order to obtain correct results.
It would contribute also to clarify whether the origin of the polarization is electric or
ionic.



4. Theoretical study of multiferroic
thin films and nanostructures

Nowadays, the formation and fabrication of very small structures and the charac-
terization of their functional properties at the nanoscale are demanding tasks. In
between, the field of multiferroics is notably of interest, since the effect of size reduc-
tion on the magnetic and ferroelectric properties is not necessarily the same. In such
multifunctional materials, the manner in which the properties scale with the struc-
ture size as well as how the coupling behaves when size is decreased, are particularly
important for any potential application.

Multiferroic thin films and nanostructures have been produced using a wide variety of
growth techniques including sputtering, spin coating, pulsed laser deposition, molec-
ular beam epitaxy, and more. Thin films including the hexagonal manganites and Bi
and Pb based perovskites are the most studied single phase multiferroics. One of the
earliest multiferroic to be investigated in thin film form was the hexagonal manganite
YMnO3(YMO) [153]. Although the thin film and bulk properties of YMO are quali-
tatively similar, the thin film samples typically show a reduction in the ferroelectric
polarization and dielectric response compared with the corresponding single crystal
values.

Experimental results reveal that thin film multiferroics can exhibit a large sponta-
neous polarization as well. The magnetic properties can also be significantly different
from those of the bulk. Perovskite-structure bismuth ferrite is the most studied single-
component multiferroic. BiFeO3 has long been known to be a G-type antiferromag-
net. It reveals a spontaneous polarization of 6.1 µCcm−2 along the [111]-direction.
In 2003, Wang et al. reported enhancements of polarization and related properties
in heteroepitaxially constrained thin films of BFO [154]. Most importantly, this re-
port indicated a magnetoelectric coupling coefficient as high as 3 V cm Oe−1 at zero
field as well as intensification of the polarization up to 90 µCcm−2 at room tem-
perature and enhanced thickness-dependent magnetism compared to bulk samples.
Enhanced multiferroicity could also exist on the nanoscale. Large coupling effects
have been observed as well; for example in nanopillar heterostructures, switching of
the ferroelectric polarization by an applied electric field leads to a reversal of the mag-
netization direction [155]. In spite of sufficient experimental findings a microscopic
model describing the situation is still missing. Here we investigate a theoretical model
to explain the multiferroics thin films and nanoparticles behavior.
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4.1. General Hamiltonian for multiferroics in low
dimensions

Similar to the bulk model, the Hamiltonian of the whole system is comprises of three
parts

H = Hm +Hf +Hmf . (4.1)

For a film consisting of n layers parallel to its surface, the effective spin Hamiltonian
has the form

Hm = −
∑
α,β

∑
i∈α,j∈β

Jαi,βj[S
+
αiS
−
βj + SzαiS

z
βj]−

∑
α

∑
i

Dαi(S
z
αi)

2 − h
∑
α

∑
i

Szαi .

(4.2)
Our calculations are related to a rectangular coordinate system. The x-axis coincides
with the normal direction of the film and the z-axis with the quantization axis of our
spin system. Sγαi denotes the γ-component of the spin operator Sαi, at the lattice
point Rαi. The first index α characterizes each layer (α = 1, 2,. . . , N), the
second index i a lattice point in the layer α. The external magnetic field is denoted
as h = gµBB.
Hf is the electric part which given by TIM (Eq. (3.4)). Recently the applicability
of this model was extended to thin films [111, 156] and nanoparticles [157]. The
magnetoelectric coupling is Hmf described either by Eq. (3.6) or (3.7) based on the
behavior of the system. Surface and size effects in multiferroelectric nanoparticles and
thin films modify the interaction parameter between nearest neighbors for bulk and
surface components. Likewise the tunneling frequency Ω in Eq. (3.4) is different for
bulk and surface atoms. This can be included by different coupling parameters for the
free surface layers, denoted by Ωs and Js and Ds, respectively. The related parameters
for the bulk are written as Ωb, Db and Jb. The exchange interaction Jij = J(ri − rj)
depends on the distance between the spins, i.e. on the lattice parameter, on the lattice
symmetry and on the number of next nearest neighbors. This is very important for
investigations of surface and ion doping effects. The Curie temperature is connected
with the exchange interaction constant. The Hamiltonian of the TIM includes both

Figure 4.1. – Scheme for a ferroelectric thin film with three layers.

bulk and surface properties reads

Hf = −1

2

∑
α,β

∑
i∈α,j∈β

J ′αi,βjB
z
αiB

z
βj − 2Ωα

∑
i,α

Bx
αi . (4.3)

As in the pure bulk case, a new coordinate system is reached by rotating the original
one with the angle ν in the xz-plane. The three dimensional system of N layers in
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Figure 4.2. – Array of nanoparticles composed of different shells. Each sphere repre-
sents a spin situated in the center, where (a) Consists of one central spin plus N=1
shell, (b) N=2, (c) N=3, and (d) N=4 [158].

z-direction on a simple cubic lattice is shown schematically in Fig. 4.1. The layers
are numbered by n = 1, ...N, where the layers n = 1 and n = N represent the two
surfaces of the system with the modified coupling parameters Js and Ωs. The bulk is
established by the remaining (N - 2) layers.
The study of materials with no translational symmetry is greatly detained by a lack
of detailed knowledge of its structure. A good starting point for the discussion of the
arrangement of atoms is the packing of spheres. A nanoparticle is defined by fixing
the origin at a certain (pseudo) spin in the center of the particle and including all
other (pseudo) spins within the particle into shells as it shown in Fig. 4.2. The shells
are numbered by n′ = 0, ..., N , where n′ = 0 denotes the central spin and n′ = N
represents the surface shell of the system. Hence the number N is a measure of the
extension of the NP. The real size of the NP is obtained by multiplying N with the
lattice constant. The surface effects are included by different coupling parameters
within the surface shell and within the bulk, denoted with the indices ’s’ and ’b’,
respectively. Similarly, the magnetoelectric coupling is introduced as

Hmf = −
∑
α,β

∑
i,j,r,f

KαβB
z
αrB

z
βfSαi · Sβj . (4.4)

4.2. Green’s function approach to thin films

We introduce the double-time temperature-dependent retarded Green’s function
G(t− t′) for thermodynamical equilibrium as

Gϕmφl(t− t′) = 〈〈S+
ϕm(t);S−φl(t

′)〉〉 . (4.5)

This Green function satisfies the equation of motion

i
dGϕmφl

dt
= δ(t− t′)〈[S+

ϕm, S
−
φl]〉+ 〈〈[S+

ϕm, H];S−φl〉〉 . (4.6)
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Here H = Hm +Hmf . Using RPA, the explicit form of the equation of motion is

〈〈S+
ϕm;S−φl〉〉 = 2〈Szϕm〉δϕφδlm − 2

∑
α

∑
i∈α

Jeffαiϕm〈Szϕm〉〈〈S+
αi;S

−
φl〉〉+

2
∑
α

∑
i∈α

Jeffαiϕm〈Szαi〉〈〈S+
ϕm;S−φl〉〉,

Jeff = J + 2Kαβ〈Brα〉〈Bfβ〉 cos να cos νβ .

(4.7)

Taking into account the periodic boundary conditions in the film plane, the quantity
〈Szϕm〉 is independent of the index m and we can expand the Fourier transform into
a two dimensional Fourier series

Gϕmφl(ω) =
1

N ′

∑
K‖

eik‖(Rm−Rl)Gϕφ(K‖, ω) . (4.8)

Here N ′ is the number of sites in any of the lattice planes, Rm represents the position
vectors of site m; k‖ is a two-dimensional wave vector parallel to the surface. The
summation is taken over the two dimensional first Brillouin zone. From Eq. (4.7) we

get a system of N equations for the N unknown quantities G
k‖
ϕφ (ϕ = 1,2, . . . , N),

which can be rewritten in the following matrix form

H(ω)G(k‖, ω) = R, (4.9)

H can be expressed as:

H =


ω − V1 k1 0 0 0 0 . . .
k2 ω − V2 k2 0 0 0 . . .
0 k3 ω − V3 k3 0 0 . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 kN ω − VN

 , (4.10)

with

Kn =2Jeff
(b)

⊥ (k‖)〈Szϕ〉 , n = 1, 2, ....., N ,

V1 =h+ 2
[
〈Sz1〉[Jeff

(s)

‖ (0)− Jeff (s)

‖ (k‖)] + Jeff
(s)

⊥ (0)
∑

<α, 6=1>

〈Szα〉
]
,

Vϕ =h+ 2
[
〈Szϕ〉[Jeff

(b)

‖ (0)− Jeff (b)

‖ (k‖)] + Jeff
(b)

⊥ (0)
∑

<α, 6=ϕ>

〈Szα〉
]
,

VN =h+ 2
[
〈SzN〉[Jeff

(s)

‖ (0)− Jeff (s)

‖ (k‖)] + Jeff
(s)

⊥ (0)
∑

<α, 6=N>

〈Szα〉
]
,

m̄q‖ =〈S−q‖S
+
q‖
〉 , ϕ = 2, 3, ....., n− 1 ,

(4.11)

where the underlined indices are fixed. Here Jeff‖ denotes the exchange integral

between neighboring lattice points situated in the same layer, whereas Jeff⊥ stands
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for the exchange integral of two lattice points lying in neighboring layers. In the
following, we consider these two quantities to be equivalent.

Jeff‖ (k‖) =
1

N ′

∑
m∈ϕ,i∈ϕ

Jeff‖ (i,m)eik‖(Ri−Rm),

Jeff⊥ (k‖) =
1

N ′

∑
m∈ϕ,i∈ϕ+1

Jeff⊥ (i,m)eik‖(Ri−Rm) .
(4.12)

In order to obtain the solutions of the matrix Eq. (4.9), we introduce the two-
dimensional column matrices, Gm and Rm, where the elements are given by (Gn)m =
Gmn and (Rn)m = Pnδmn, so that Eq. (4.9) yields

H(ω)Gn = Rn. (4.13)

From Eq. (4.13), Gnn(ω) is obtained as

Gnn(ω) =
|Hnn(ω)|
| H(ω) |

. (4.14)

The quantity |Hnn(ω)| is the determinant made by replacing the n-th column of the
determinant |H(ω)| by Rn. Em

n , are the poles of the Green‘s function Gnn(ω), can be
calculated by solving |H(ω)| = 0. The thermal average of a spin in the n-th layer for
arbitrary magnitude of S is given by Eq. (3.35)

〈Mn〉 =
1

N ′

∑
k‖

[
(S + 0.5) coth[(S + 0.5)βEm

n (k‖)]− 0.5 coth(0.5βEm
n (k‖))

]
. (4.15)

The total relative magnetization reads

M =
1

N

N∑
n=1

Mn . (4.16)

In a similar way, for the ferroic subsystem the matrix components of Eq. (4.10) are

kn =J ′effn Pn sin2 νn, n=1,...,N,

Vn =2Ωn sin νn +
1

2
PnJ

′eff
n cos2 νn −

PnJ
′eff
n

4
sin2 νnγ(k‖) + J ′effn−1Pn−1 cos2 νn−1

+J ′effn+1Pn+1 cos2 νn+1 −
J ′effn

PnN

∑
q‖

[γ(q‖) cos2 νn − 0.5γ(k‖ − q‖) sin2 νn]n̄n(q‖)

−
J ′effn−1

Pn−1N

∑
q‖

γ(q‖) cos2 νn−1n̄n−1(q‖)−
J ′effn+1

Pn+1N

∑
q‖

γ(q‖) cos2 νn+1n̄n+1(q‖),

J ′effn =J ′n + 2Kn(〈S+S−〉+ 〈SzSz〉)n, γ(k‖) =
1

2
(cos(kxa) + cos(kya)),

n(q‖) =〈b†q‖bq‖〉.
(4.17)
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Here we have J ′1 ≡ J ′N = J ′s, J
′
n = J ′b for n = 2, 3, 4, ..., N − 1, Ω1 = ΩN = Ωs,

Ωn = Ωb (n = 2, 3, 4, ..., N − 1), J ′0 = J ′N+1 = 0. The quantity Pn(T ) is the relative
polarization in each layer n in the direction of the mean field and is equal to 2〈Bz〉.
The correlation function is

〈b†k‖bk‖〉n =
Pn
2

[ PnJ ′effn

2Ef
n(k‖)

(1− 0.5 sin2 νnγ(k‖)) coth
Ef
n

2T
− 1
]
. (4.18)

Hence, the relative polarization in the n-th layer is given by

Pn =
(PnJ ′eff

2N

∑
k‖

1− 0.5 sin2 νnγ(k‖)

Ef
n

coth
Ef
n

2T

)−1

. (4.19)

The solution for Eq. (4.19) has to be evaluated numerically. Due to the assumption
of symmetrical surfaces, there are 1

2
N layer polarizations. Eq. (4.19) must be solved

self-consistently.
In order to investigate the phonon spectrum and take into account the experimentally
obtained strong spin-phonon coupling observed in some multiferroics, we have to
include the following terms in the Hamiltonian in Eq. 4.1

H ′ = Hph +Hmph +Hfph . (4.20)

The first term Hph contains the lattice vibrations, Hfph and Hmph describe the in-
teraction of the pseudospins of the ferroelectric subsystem and of the magnetic spins
with the phonons. These terms are very important in order to explain the experimen-
tal data of Raman and IR spectroscopy lines in multiferroics. For the approximate
calculation of the phonon Green’s function we follow the line proposed in [75]. The
retarded phonon Green’s function 〈〈ai(t); a†j(0)〉〉 has a matrix form define as

H =


ω − (W1 − iΓ1) k1 0 0 0 0 . . .

k2 ω − (W2 − iΓ2) k2 0 0 0 . . .
0 k3 ω − (W3 − iΓ3) k3 0 0 . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 kN ω − (WN − iΓN )


with

Kn =2Pn cos νnR
f
n +MnR

m
n , n = 1, 2, ....., N ,

WN =ω0(k‖) +Bn(k‖)〈Qn(k‖)〉δk‖,0 + 0.5
∑
q‖

An(k‖,q‖)(2N̄n(q‖) + 1)

−0.5Pn cos νnR
f
n(k‖)−MnR

m
n (k‖),

〈Qn(k‖)〉 =

(
0.5Pn cos νnF

f
n (k‖) +MFm

n (k‖)−
1

N ′

∑
q‖

Bn(k‖,q‖)[2N̄n(q‖) + 1]

)
×

(
ω0(k‖)− 0.5Rf

n(k‖)pn cos νn +
1

N ′

∑
q‖

An(k‖,q‖)[2N̄n(q‖) + 1]

)−1

,

N̄n(q‖) = 〈a+
q‖
a−q‖〉 .

(4.21)
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The damping is defined as

Γn = Γph−phn + Γm−phn + Γf−phn . (4.22)

Γm−phn and Γf−phn is the damping part which comes from the spin-phonon and
pseudospin-phonon interaction and Γph−phn is the phonon damping due to the phonon-
phonon anharmonic interaction. We have

Γph−phn =
9π

N ′

∑
q‖

B2
n(k‖,q‖)

[
N̄n(q‖)− N̄n(k‖ − q‖)

]
{δ
[
ωn(q‖)− ωn(k‖ − q‖)− ωn(q‖)

]
−δ
[
ωn(k‖ − q‖)− ωn(q‖)− ωn(k‖)

]
}+

16π

N ′2

∑
q‖,p‖

A2
n(k‖,q‖,p‖){N̄n(p‖)

×
[
1 + N̄n(q‖) + N̄n(p‖ + k‖ − q‖)

]
− N̄n(q‖)N̄n(p‖ + k‖ − q‖)}δ

[
ωn(q‖)

+ωn(p‖ + k‖ − q‖)− ωn(p‖)− ωn(k‖)
]
,

(4.23)

Γm−phn =
4πM2

N ′

∑
q‖

(Fm
n )2(k‖,q‖)(m̄q − m̄q‖−k‖)δ

[
Em
n (q‖ − k‖)− Em

n (q‖)− ωn(k‖)
]

+
4πM2

N ′2

∑
q‖,p‖

(Rm
n )2(k‖,q‖)

(
m̄n(q‖)− m̄n(p‖)

)
{
[
1 + N̄n(k‖ + p‖ − q‖)

]
δ
[
Em
n (p‖)

−Em
n (q‖)− ωn(k‖ + p‖ − q‖) + ωn(k‖)

]
+ N̄n(q‖ − p‖ − k‖)δ

[
Em
n (p‖)− Em

n (q‖)

+ωn(k‖) + ωn(q‖ − k‖ − p‖)
]
}+

π

N ′2

∑
q‖,p‖

(Rm
n )2(k‖,q‖,p‖)〈Szn〉4δq‖,0δp‖,0

×{δ
[
Em
n (p‖)− Em

n (q‖)− ωn(k‖ + p‖ − q‖) + ωn(k‖)
]
− δ
[
Em
n (p‖)− Em

n (q‖)

+ωn(q‖ − k‖ − p‖) + ωn(k‖)
]
} ,

(4.24)

and

Γf−phn =
πPn sin2 νn

4
(F f

n )2(k‖)δ[E
f
n(k‖)− ωn(k‖)] +

πPn cos2 νn

N ′2

∑
q‖,p‖

(Rf
n)2(k‖,q‖){n̄n(p‖)

[1 + N̄n(q‖) + n̄n(p‖ + k‖ − q‖)]− N̄n(q‖)n̄n(p‖ + k‖ − q‖)}δ[ωn(q‖)− Ef
n(p‖)

+Ef
n(p‖ + k‖ − q‖)− ωn(k‖)] +

πPn sin2 νn
4N ′

∑
q‖

(Rf
n)2(k‖,q‖){[N̄n(q‖)

−n̄n(k‖ − q‖)]δ[ωn(q‖)− Ef
n(k‖ − q‖)− ωn(k‖)] + [1 + N̄n(q‖) + n̄n(k‖ − q‖)]×

δ[ωn(q‖) + Ef
n(k‖ − q‖) +−ωn(k‖)]} .

(4.25)
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For the phonon energy in the n-th layer we obtain

ω2
n(k‖) =[ω0(k‖)]

2 − 2ω0(k‖)

(
Pn cos νn

2
Rf
n(k‖) +M2Rm

n (k‖)

− 1

2N

∑
q‖

An(k‖,q‖)[2N̄n(q‖) + 1]−Bn(k‖)〈Qn(k‖)〉δk‖0
)
.

(4.26)

Considering phonon effects, the interaction J′eff in Eq. (4.17) should be replaced by

J ′eff = J ′eff +
2F f

0 F
f
k δk0

ωk − P cos νRf
k + 0.5Ak

, (4.27)

which is now temperature-dependent. The anharmonicity phonon-phonon parameter
A(k‖) will decrease the effective exchange coupling J ′eff , while the pseudospin-lattice

coupling constants F f (k‖) and Rf (k‖) will increase its value. This should applies in
a similar way to the magnetic exchange interaction, J.

4.3. Green’s function approach to nanoparticles

Due to the lack of translational invariance in nanosized systems, the Green’s function
calculation has to be performed in the real space. As a result, the average is defined
in the conventional way as

〈Sz〉 =
TrSzexp(−βH)

Trexp(−βH)
. (4.28)

Following the same approach as the one in bulk and thin film systems, we consider a
system of two sublattices as Eq. (4.1). The magnetic Hamiltonian is simply reads

Hm = −1

2

∑
i,j

Jij(S
+
i S
−
j + Szi S

z
j )−

∑
i

Di(S
z
i )2 − h

∑
i

Szi . (4.29)

The relative magnetization M is observed

M = 〈Sz〉 =
1

N

∑
n

[
(S + 0.5) coth[(S + 0.5)βEm

n ]− 0.5 coth(0.5βEm
n )
]
, (4.30)

where N is the number of shells. Em
n is the energy of elementary spin excitations of a

given shell. Considering Eq. (3.6) is a coupling Hamiltonian, for the spin-excitation
energies we obtain the following expression in the generalized Hartree-Fock approxi-
mation taking into account all correlation functions

Em
ij =

( 2

N

∑
m

Jeffim (〈S−mS+
i 〉+ 2〈SzmSzi 〉)δij − 2Jeffij (〈S−i S+

j 〉+ 2〈Szi Szj 〉)

+ 2Di(2〈Szi Szi 〉 − 〈S−i S+
i 〉)δij + 2gµBH〈Szi 〉δij

)
/2〈Szi 〉δij, (4.31)
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where N is the number of lattice sites and Jeffij = Jij + 2KPiPj cos νi cos νj. If we
neglect the transverse correlation functions 〈S−i S+

j 〉 and decouple the longitudinal
correlation functions 〈Szi Szj 〉 −→ 〈Szi 〉〈Szj 〉 we obtain the energy in RPA

Em
ij = gµBHδij +

2

N

∑
m

Jeffim 〈Szm〉δij − 2Jeffij 〈Szi 〉+ 2Di〈Szi 〉δij . (4.32)

The rotated Hamiltonian for the ferroic subsystem is written in the form

Hf =− 2Ω
∑
i

(
Pi sin ν +

1

2
(bi + b†i ) cos νi

)
− 2µE

∑
i

(
Pi cos νi −

1

2
(bi + b†i ) sin νi

)
−1

2

∑
i,j

J ′i,j
(

cos νi cos νjPiPj − cos νi sin νj(Pib
†
j + Pibj)

+
1

4
sin νi sin νj(b

†
i + bi)(b

†
j + bj)

)
.

(4.33)

The equation of motion in RPA reads

Ef〈〈bl; b†m〉〉 ≡ EfGlm =2〈Pl〉δlm +
(
2Ωl sin νl + 2µE cos νl +

∑
j

J ′efflj cos νl cos νj〈Pj〉

+
1

2

∑
j

J ′efflj sin νl sin νj〈blb†j〉
)
Glm

−1

2

∑
j

J ′efflj

(
sin νl sin νj〈Pl〉+ 2 cos νj cos νl〈blb†j

)
Gjm .

(4.34)

This system of equations which will be treated in matrix representation in accordance
with Eq. (4.9), has to be solved numerically. The soft-mode energy of the n-th shell,
is obtained from

Ef
n = 2Ωn sin νn +

1

N

∑
i

J ′effin cos νn cos νi〈Bz
i 〉+ µE cos νn , (4.35)

where J ′effij = J ′ij + 2K(〈S+
i S
−
j 〉 + 〈Szi Szj 〉). Contrary to the bulk system, here one

has to solve the coupled set of Eq. (4.34) in order to find the excitation energies and
the on-site polarization. The damping of the spin-wave is

Γn =
π

4

∑
i

J ′effil

2
(cos νl cos νi− 0.5 sin νl sin νi)

2n̄i(1− n̄i)δ(ωl−ωi +ωi−ωl) . (4.36)

The rotation angle νl is given by

〈[bl, H]−〉 = 〈Pl〉
(

2Ω cos νl − 2µE sin νl − sin νl
∑
i

J ′effil Pi cos νi

)
= 0 , (4.37)

and leads to

tan νl =
2Ωl∑

i

J ′eff il cos νi〈Pi〉+ 2µE
. (4.38)
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This relation is valid in both regims, above (ν = π/2) and below the phase transition
temperature TC . The relative polarization Pn for the n-th shell in the rotated frame,
taking only the diagonal term of (4.34) into account, reads

Pn =
1

2
tanh

Ef
n

2T
. (4.39)

Here Ef
n is the transverse excitation energy, i.e. the soft mode energy of the n-th

shell. The interaction energy J ′ni is determined by the interaction within each shell
and the averaged number of nearest neighbors. In the following sections, we apply
our model to explain the experimental behavior observed in multiferroic thin films
and nanoparticles.
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4.4. The magnetoelectric effect in double-perovskite
thin films

As a new development of multiferroic materials, double-perovskite multiferroic com-
pounds of the form A2BB

′O6 have been theoretically and experimentally designed.
The unit cell of double-perovskite structure is twice that of perovskite. The transi-
tion metal atoms B and B′ are in the center of alternating oxygen octahedras. The
cation A occupies the interstices between the octahedras (Fig. 4.3). To this group of
material belong Bi2NiMnO6 (BNMO), Bi2FeMnO6 (BFMO), Bi2CoMnO6 (BCMO)
and Bi2FeCrO6 (BFCO). Especially in BNMO the Bi3+ ion, located at the A site in
the perovskite structure, gives rise to a structural distortion at Tc = 485 K which
leads to ferroelectricity. On the other hand the B- and B′-site ordering of the Ni2+

and Mn4+ ions, respectively in a rock-salt configuration gives rise to a ferromagnetic
behavior at the lower critical temperature (TN = 140 K) [159]. Further experimental
studies of BNMO thin films have confirmed the strong coupling between magnetic
and ferroelectric phases [160–162]. Other studies of multiferroic Bi2FeCrO6 (BFCO)
thin films have offered a similar behavior [163–165].

Figure 4.3. – Crystal structure of Bi2 NiMnO6. The blue octahedra correspond to
NiO6 and the red octahedra correspond to MnO6. Bi ions are shown in yellow
spheres. The monoclinic unit cell is superimposed. Taken from [166].

The first density functional studies for BNMO and Y2NiMnO6 (YNMO) have been
presented in [167] and more recently in [168]. Temperature-dependent Raman mea-
surements in BNMO thin films [169] reveal a softening below 140 K and a step-like
anomaly in between 420-490 K of the main Raman peak frequency. This observation
provides a strong evidence for the multiferroic behavior of the material. Furthermore,
the results for thin films are similar to those of bulk materials. Infrared reflectance
spectra of Bi2FeCrO6 thin films, reported in [170], yields similar results. One observes
some phonon anomalies near to the phase transition.
In this section, we focus on the spin-phonon coupling. We demonstrate that such
a coupling is quite relevant in the double-perovskite structure. In particular, the
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influence of the magnetoelectric coupling on phonon excitation and its damping is
analyzed.

4.4.1. The analytical representation of double-perovskite
multiferroics

The Hamiltonian for the materials characterized above is written as a summation of
Eq. (4.20) and Eq. (4.1). The electric part Hf , the magnetic subsystem Hm and the
coupling Hmf are considered following Eqs. (4.2), (4.3) and (4.4). Because BNMO
offers a great difference between the two critical temperatures we suggest likewise a
biquadratic magnetoelectric coupling between the two order parameters. The cou-
pling term implies that the magnetic and the ferroelectric subsystems are subjected
to independent ordering mechanism which is manifested by well separated transi-
tion temperatures Tc � TN which is also relevant for BFO [171] as we discussed
before. There is an evidence for a strong (pseudo) spin-lattice coupling in the double-
perovskite multiferroics [169, 170, 172], therefore the total Hamiltonian in (4.1) is
supplemented by the additional part

H ′ = Hph +Hfph +Hmph (4.40)

representing the phonon part. Here Hph describes the lattice vibrations in terms of the
normal coordinates Qi and the related frequency ωi0 as in Eq. (3.58). The remaining
contributions Hfph and Hmph comprise the coupling between the pseudospins of the
ferroelectric subsystem and of the magnetic spins with the phonons. This spin-phonon
coupling is introduced in Eq. (3.61).
The complete system is analyzed by retarded Green’s functions. Especially the
phonon part is studied with the function defined by

Gij(t) =� ai(t); a
†
j(0)�= −iΘ(t)〈[ai(t), a†j(0)]〉. (4.41)

Due to the coupling of the phonons to the electric as well as to the magnetic subsystem
the phonon excitation energy is characterized by the polarization P , the magnetiza-
tion M and the spin-phonon coupling parameters R(f) and R(m). The polarization
and the magnetization are calculated self-consistently from the corresponding Green’s
functions for the ferroelectric and magnetic subsystem. In the same manner as the
dispersion relation of the phonon system we get also the damping of the phonons
according to Eq. (4.9).

4.4.2. Phonon modes and damping

Now let us present the numerical results based on our analytical findings. To this
aim the following model parameters, appropriate for BNMO, are used: TN = 140 K
and Tc = 485 K for the bulk system, Jb = 58 K, J ′b = 310 K, Ωb = 2 K, Kb = 50
K, F f

b = Fm
b = 6 cm−1, Rm

b = −10 cm−1, Rf
b = −50 cm−1, Ab = −5 cm−1, Bb =

0.5 cm−1, ω0 = 610 cm−1, S = 1 for the Ni-ions and S = 3/2 for the Mn-ions.
The index b is related to the bulk material whereas s characterizes the surface. For
simplicity we assume nearest neighbor exchange interaction and take J ′ij = J ′(s),



4.4. The magnetoelectric effect in double-perovskite thin films 81

Jij = J (s), R(s) on the surface of the thin film and J ′ij = J ′(b), Jij = J (b), R(b) in
the bulk. They can be enhanced or reduced compared to the bulk values. Because
the anharmonic spin-phonon interaction parameters R(f) or R(m) are related to the
second derivative of J ′ij or Jij [111] it results also a change of the spin-phonon coupling
on the surface. The exchange interaction constants are calculated from their relation
to the critical temperatures. The magnetoelectric coupling constant K is obtained
indirectly from the expression for the exchange coupling Jij and J ′ij after calculation
of the renormalized exchange interaction constants. The phonon-phonon interaction
parameters follow from fitting the experimental data above the critical temperatures
where the spin-phonon interactions vanish. The spin-phonon interaction constants are
obtained from the experimental data at low temperatures, where the phonon-phonon
interactions play only a minor role. In Fig. 4.4 the temperature dependence of the
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Figure 4.4. – Temperature dependence of the phonon energy in BNMO thin films
with j(s) = 52 K, J ′(s) = 290 K, Rm(s) = −8cm−1, RF (s) = −45cm−1 for external
magnetic field, h = 0 K (black), 10 K (red), 20 K (blue).

phonon energy of a BNMO thin film with N = 7 layers is shown. The phonon energy
decreases with an increase of the temperature T . Such a softening is reported for
BNMO thin films in [169] and BFCO thin films [170]. Below the magnetic transition
TN the system exhibits magnetic and ferroelectric properties. Fig. 4.4, black curve ,
illustrates clearly the coupling between the electric and magnetic properties below TN ,
which is manifested as a kink at the magnetic phase transition temperature TN = 123
K. This anomaly can be explained as an influence of vanishing magnetic ordering on
the structural and the electric ordering in the system. Because of TN << TC , the
magnetic system cannot influence the electric one above TN , the two phases coexist
only below TN .
A similar small kink in the dielectric constant is observed in BNMO thin films in
[160] indicating the interplay between ferromagnetic and ferroelectric interactions.
The anomaly is attributed also to the strong anharmonic spin-phonon coupling char-
acterized by the coupling R(m). In case R(m) = 0 the kink disappears. Generally the
kink can be considered as an evidence that the spin-lattice coupling is modified due
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to the magnetoelectric effect. Obviously the magnetic exchange energy is enhanced
when the magnetic ions shift their positions. This effect is particularly strong near
to or below the magnetic phase transition and may result in structural anomalies
and a change of the dielectric properties. A smaller kink is observed at the Curie
temperature TC due to anharmonic pseudospin-phonon interaction characterized by
the coupling R(f). In the same manner one gets a softening of the phonon mode
in BNMO near TC . Above TC the pseudospin-phonon interaction disappears and
consequently only the anharmonic phonon-phonon interaction remains. In that case
the phonon mode decreases very slowly and it is nearly temperature independent.
The phonon damping Γ, related to the width of the Raman peaks, increases with
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Figure 4.5. – Temperature dependence of the phonon damping in BNMO thin films
with J (s) = 52 K, J ′(s) = 290 K, Rm(s) = −8cm−1 , Rf(s) = −45cm−1 for h= 0 K
(black), 10 K (red), 20 K (blue).

increasing temperature. Around the magnetic transition temperature TN = 123 K
one observes again a kink in Γ, see Fig. 4.5 (black curve). The damping grows up in
case the anharmonic spin-phonon interaction constant R(m) is enhanced.
A feature of the magnetoelectric effect is the ability to control the system by external
electric and magnetic fields. In Figs. 4.4 and 4.5 we demonstrate that the phonon
energy increases with an increasing magnetic field whereas the phonon damping
decreases with h, see red and blue curves.

4.4.3. The thickness dependence of the phase transition
temperatures

Both Figs. 4.4 and 4.5 suggest that the critical temperatures TC and TN for BNMO
thin films are smaller compared to the bulk case. In Fig. 4.6 we present the thickness
dependence of the phase transition temperatures based on our model. The critical
temperature decreases with decreasing film thickness. For seven layers the temper-
ature is fixed by TN = 123 K. A similar decrease of TC is also reported for BNMO
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Figure 4.6. – Thickness dependence of the phase transition temperatures (a) TN (b)
TC in BNMO thin films.

thin films in [160] and for BNMO nanoparticles in [173] with TN = 122 K.
To our understanding the model proposed is also applicable to other materials like
Bi2M(1)M(2)O6 (TC >> TN), where the two magnetic ions M(1)M(2) could be Fe -
Mn, Co - Mn, Fe - Cr. In case the Yttrium atoms in the compound Y2MNO is
subjected to a distortion similar to the Bi in BNMO we expect that our model is also
useful for that material. As far as we know an experimental verification for Y2MNO
is still missing. So we would suggest to test the predictions of our model for Y2MNO.
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4.5. The origin of magnetism in ferroelectric ABO3

nanoparticles

Ferroelectric oxides ABO3 in which A is an alkali or rare-earth element, and B may
represent different transition metals, such as SrTiO3 (STO), BaTiO3 (BTO), PbTiO3

(PTO), KTaO3 (KTO), LiNbO3 (LNO) with a perovskite structure are widely used
in the fields of non-linear optics, pyroelectric detectors, electro-optical modulators,
thin film capacitors, and optical memories [16, 18]. Because their properties depend
not only on its chemical composition but also on its structure, shape, and size, it
has been found that reduction of the grain size to the nanoscale leads to distinct
properties from those of the bulk [157].

Very recently, it has been shown from both experiments and theory that the ferro-
electric materials ABO3 (A = K, Li; B = Ta, Nb or A = Ba, Sr, Pb; B = Ti) become
multiferroic when it is downsized to nanoscale [174–179]. These nanoparticles will be
considered in the present section, and especially the origin of the magnetism using
spin Hamiltonian models will be investigated. KTO single crystal is an archetypal
incipient ferroelectric in which a long-range ferroelectric order does not establish at
low temperatures owing to quantum fluctuations [16]. Skoromets et al. [180] reported
a strong evidence of the ferroelectric phase transition near 60 K revealed by terahertz
spectroscopy and microwave permittivity measurements of a polycrystalline KTO
thin film on (0001) sapphire substrate. The optical properties of KTO nanocrys-
talline were investigated by Zhou et al. [181]. Photoluminescence studies exhibits
that a broad blue light emission band peaking at about 490 nm was observed at room
temperature. Oxygen vacancies should be responsible for this emission peak.

Anion vacancy driven magnetism in incipient ferroelectric STO and KTO nanoparti-
cles is reported by Eliseev et al. [174]. Oxygen vacancies are observed in LTO [182]
and LNO [183]. Very recently, it has been shown from both experiments and ab-
initio calculations that the ferroelectric material STO becomes multiferroic when it is
made at the nanoscale [174, 175, 184]. First principle prediction of vacancy-induced
magnetism in non-magnetic perovskite SrTiO3 is reported by Shein and Ivanovskii
[185]. The role of the oxygen vacancies on the photoluminescence of nanocrystalline
STO is investigated by Zhang et al. [186]. While ferroelectricity in proper ABO3

ferroelectrics (which are often called classic ferroelectrics, such as BTO) is expected
to diminish with the particle size reduction [187, 188], ferromagnetism cannot occur
in its bulk form [52]. For example, bulk pure BTO, without defects or doping ions
shows ferroelectric, but not magnetic properties. Based on their analytical results,
Eliseev et al. [174] predicted that undoped nanoparticles of incipient ferroelectrics
without any magnetic ions can become ferromagnetic even at room temperatures due
to the inherent presence of a new type of magnetic defects with spin S = 1, namely
oxygen vacancies, where the magnetic triplet state is the ground state in the vicinity
of the surface (magnetic shell), while the non-magnetic singlet is the ground state
in the bulk material (non-magnetic core). Cao et al. [189] have studied the vacancy
induced magnetism in BTO (001) thin films based on density functional theory.

Recently, Shimada et al. [190] have investigated the possible origin of ferromagnetism
in PTO containing vacancies by performing first-principles calculations. Previously,
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the static and dynamic properties of KDP-type and BTO-type ferroelectric nanopar-
ticles is reviewed [157]. Another interesting aspect is the recent observation that
typical ferroelectric materials such as BTO and PTO become multiferroic when they
are prepared at the nanoscale. However, apart from a density functional calculation
for BTO, STO, and PTO [174, 189, 190] a well accepted theoretical description of the
ferroic properties of nanocrystalline ABO3 is of interest. We propose an alternative
approach, a microscopic treatment using spin Hamiltonians.
It is suitable to predict measurable properties prior to experiments, and comparing
with powerful many body calculations such as first principles density functional the-
ory or Monte Carlo simulations. Our aim is explaining the origin of ferroelectric
perovskite ABO3 (A = K, Li; B = Ta, Nb or A = Ba, Sr, Pb; B = Ti) nanopar-
ticles analytically. We put emphasis on the surface and bulk contributions to the
polarization and magnetic saturation after considering O-octahedral vacancies sur-
rounding the B sites in ABO3 systems, which in the case of spins Hamiltonian are
easily modeled by changing the local spin and pseudospins as a consequence of the
new considered valences of the nonstoichiometric compounds.

4.5.1. Extended Heisenberg model for materials with different
valence states

Due to the oxygen stoichiometry, i.e., the appearance of oxygen vacancies at the
surface of the nanoparticles, we include into our model (a) resulting valences (of A
or B site) and their corresponding stable spin states; (b) the mixture of different of
such spin states, which are defined by the different orbital occupancies; (c) resulting
interactions coupling the stabilized spins and therefore defining specific ordering and
microscopic order parameters. Since the ferroelectricity in ABO3 is originated from
the off-centering of the Ti (or Ta) ions with respect to the cubic perovskite crystal
we assume as the simplest model that there are two positions of the Ti (or Ta) atoms
in a double-well potential. These two states are mapped on the Bz-component of a
pseudospin operator in TIM.
The magnetic properties of ABO3 nanoparticles are analyzed using the Heisenberg
model for the resulting different valence states on the surface composed of the ions on
the B site. Therefore, we have two magnetic subsystems which can interact. Then,
terms must be included to describe the interaction between the equal spin ions and a
third for the interaction between the different valence ions, with different spin values

Hm = −1

2

∑
i,j

J1(i, j)ST i
3+

i .ST i
3+

j − 1

2

∑
i,j

J2(i, j)ST i
2+

i .ST i
2+

j

− 1

2

∑
i,j

J3(i, j)ST i
3+

i .ST i
2+

j −
∑
i

Di(S
z
i )2, (4.42)

Jij is the exchange integral between the nearest neighbors of the ions at the site B, for
instance the Ti3+ and/or Ti2+ (Ta4+ and/or Ta3+) ions, D (D < 0) is the single-site
anisotropy parameter, | D |< J .
In principle, the coexistence of spontaneous electric polarization and a finite satura-
tion magnetization could give rise to a multiferroic behavior such in the ferroelectric
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ABO3 nanoparticles. The full Hamiltonian must include a magnetoelectric coupling
term in analogy to other multiferroic systems.

4.5.2. Size effects on magnetization and polarization in spherical
ferroelectric nanoparticles

Using the Green’s function technique we have calculated the size dependence of the
polarization P in KTO nanoparticles based on Eq. (4.39). Ef

n are the transverse
pseudospin excitations of the n-th shell which are given in Eq. (4.35). The average
magnetization for arbitrary magnitude of S is given by Eq. (3.35).
Now we will present our numerical results. First we consider the polarization P in
spherical KTO nanoparticles. Due to the changed number of next neighbors on the
surface and the reduced symmetry, the exchange interaction constant for the ABO3

nanoparticles can take different values on the surface compared to the bulk. We
assume J ′s < J ′b for the exchange interaction constant [156]. It can be seen (Fig. 4.7,
black curve) that P decreases with a decreasing particle size N and vanishes at a
critical value Nc = 3.
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Figure 4.7. – Size dependence of the polarization P (black) and magnetization M
(red) of a KTO nanoparticle for T = 50 K and different exchange interactions:
(black) J ′s = 0.5J ′b, Ωs = Ωb, (red) Js = 2Jb, Ds = Db.

The distance between the shells is approximated by the lattice parameter a in KTO
(a = 3.94 Ȧ) according to Hao et al. [191] the critical size is Nc ≈ 12 nm. This is in
qualitative agreement with many experimental data for ferroelectric ABO3 nanopar-
ticles [157]. In principle various critical sizes of phase transitions in the range from
4.5-25 nm [157] have been reported. The inconsistency of Nc can be ascribed to the
difficulty in measurements, moreover to factors such as defects, impurities and more.
Nc depends also on the shape of the nanoparticle.
We will consider the differences in the properties of bulk and nanosized ferroelec-
tic ABO3 materials, the origin of ferroelectricity and ferromagnetism, for example
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in KTO. In usual perovskite-based ferroelectrics, the ferroelectric distortion occurs
due to the displacement of B-site cation (Ta5+) with respect to the oxygen octahedral
cage. Here the transition metal ion (Ta5+ in KTO) requires an empty d shell since the
ferroelectric displacement occurs due to the hopping of electrons between Ta d and
O p atoms. This normally excludes any net magnetic moment because magnetism
requires partially filled d shells of a transition metal. Practically, all ferroelectric
perovskites contain transition metal ions with an empty d shell, such as Ti4+, Ta5+,
W6+. Ferroelectricity in these systems is caused by the off-center shifts of the transi-
tion metal ion, which forms strong covalent bonds with one (or three) oxygens, using
their empty d states. The presence of real d electrons in dn configurations of mag-
netic transition metals suppresses this process, preventing ferroelectricity in magnetic
perovskites. This so-called ’d0 versus dn problem’ was one of the first to be studied
theoretically at the beginning of the recent revival of multiferroics [52, 192]. Each
oxygen vacancy on the surface is expected to donate two electrons to the empty d
state of a single Ta5+(3d0) ion to produce a Ta3+(5d2) ion with S = 1 or one electron
each to two Ta4+ ions, probably situated on either side of the oxygen vacancy, to
make them Ta4+(5d1) ions with S = 1/2.
In order to obtain the magnetic properties in KTO nanopartilces and in accordance
with the experimental data, we have assumed that the oxygen vacancies which appear
in the surface shell, lead to the appearance of Ta3+ (S = 1). In the other shells there
are the non-magnetic Ta5+ ions, i.e. we also assume that ferromagnetism is arising
from the oxygen vacancies at the surface and ferroelectricity from the core. Nanopar-
ticles have a much greater surface to volume ratio than bulk materials. The increased
surface to volume ratio with decreasing nanoparticle size means surface atoms have a
much greater effect on chemical and physical properties of a nanoparticle. With de-
creasing the particle size the number of the oxygen vacancies at the surface increases
and therefore the Ta3+ ions in the surface shell increase, too, whereas the number of
the non-magnetic core shells with the non-magnetic Ta5+ ions decreases. We have
calculated the magnetization M of KTO nanoparticles. The results for a surface
exchange interaction constant which are greater than the bulk value, (Js > Jb) are
shown in Fig. 4.7, red curve. The anisotropies play an important role in nanostruc-
tures which are considered in [148].
We assume that the value of the surface anisotropy Ds is equal to that in the bulk Db.
For a quantitative agreement with the experimental data, Ds 6= Db must be taken into
account. We obtain that with decreasing particle size, below a critical size Nc = 7 a
small ferromagnetism appears, which increases with decreasing particle size, whereas
the polarization decreases (black curve), i.e. in an intermediate size interval KTO
nanoparticles demonstrate multiferroic properties - coexistence of ferroelectricity and
ferromagnetism. The appearance of the ferromagnetism, of a stable ferromagnetic
ground state requires a minimum of oxygen vacancies or a minimum of Ta ions with
S 6= 0. This leads to this critical size Nc = 7. In analogy to the critical size Nc = 3
where the polarization vanishes and depends on the substance we assume that the
critical size is also different for the different materials and depends on the model
parameters. It seems that the Ta4+-ions in LTO are stable only at temperature T
near or smaller than 77 K. Therefore, the contribution of the Ta3+ to the appearance
of the magnetism in LTO and KTO is probably more important than that of Ta4+.
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Figure 4.8. – Size dependence of the polarization P (black) and magnetization M
(red) of a STO nanoparticle for T = 95 K and different exchange interactions: (black)
J ′s = 0.5J ′b, Ωs = Ωb, (red) Js = 2Jb, Ds = Db.

We conclude that the observed ferromagnetism is intrinsic to the nanoparticles and
is not due to any magnetic impurity phase or any other artefact.

Recently, Diaz-Moreno et al. [193] have observed the multiferroic response of
nanocrystalline lithium niobate LiNbO3 (LNO) also due to oxygen vacancies. They
have measured ferroelectric and ferromagnetic hysteresis loops. Nb5+ is a non-
magnetic ion. Based on our microscopic approach in this case such vacancies lead
to the appearance of different valence states composed of Nb4+ and/or Nb3+ which
are paramagnetic (electron configuration 4d1, electron spin S = 1/2). They cause a
nonzero magnetization in an external magnetic field which decreases with increasing
particle size.

Further, we have considered STO nanoparticles and have calculated the size depen-
dence of the polarization P for Js < Jb [148]. It is observed that P decreases with
decreasing particle size N to vanish at a critical value Nc = 3 (Fig. 4.8, black curve).
This is in agreement with many experimental data [148, 188, 194]. We will now con-
sider the origin of magnetism in STO nanoparticles. The oxygen vacancies at the
surface cause the formation of Ti3+(d1) or Ti2+(d2) ions with nonzero net spin (S =
1/2 and S = 1, respectively [195, 196]). We assume that with decreasing particle size
where the number of oxygen vacancies at the surface increases, the number of Ti2+

and T3+ ions on the surface is also increased leading to small ferromagnetism. The
presence of the mixed valence state of the Ti-ions due to point defects could also be
the origin of the observed room temperature ferromagnetism in TiO2 nanoparticles
[177].

The results for the magnetization in STO nanoparticles taking into account the inter-
actions between the Ti2+ ions on the surface with Js > Jb are shown in Fig. 4.8, red
curve. The magnetization decreases with increasing the particle size and vanishes at
a critical size. The critical size should be enhanced by increasing external magnetic
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field. Comparing the two curves, for the polarization and the magnetization, we can
conclude that with increasing particle size P increases and for bulk STO there ex-
ists only the ferroelectricity. But with decreasing particle size, below a critical size
Nc = 8, a weak ferromagnetism appears. The smaller the particle size is the higher is
the saturation magnetization. The effect that larger particles lead to a lower magneti-
zation is consistent with the suggestion that surface defects decrease with increasing
particle size. Again we obtain that ferroelectricity and ferromagnetism coexist in
an intermediate size interval in STO nanoparticles. This is in agreement with the
obtained multiferroic properties in STO nanoparticles [174, 184]. The origin of the
observed multiferroism in BTO and PTO nanoparticles [176–179, 195] is of the same
nature as discussed above for STO nanoparticles.
The magnetic properties of BTO are analyzed for the resulting different valence states
on the surface composed of Ti3+ or Ti2+. Different to many oxides the exchange
coupling is positive as it was explained previously by [176, 195]. Contrary to the
ferroelectric case, the surface exchange interaction Js is assumed to be larger as the
related bulk coupling Jb. The result for M depending on the NP size N is depicted as
red curve in Fig. 4.10 in case of Ti3+ on the surface with S = 1/2. The temperature is
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Figure 4.9. – Size dependence of the polarization P (black) and magnetization M
(red) of a BTO-NP for T = 300K, J ′b = 700K, Ωb = Ωs = 10K, Jb = 344K, S = 1
(Ti2+), and different exchange interactions: (black) J ′s = 0.5J ′b, (red) Js = 2Jb.

assumed to be T = 300 K. The magnetization increases with decreasing particle size
above a critical size Nc, which is in qualitative agreement with the experimental data
presented in [176]. The critical size depends on the model parameters. Comparing
the two curves for the polarization (black curve) and the magnetization (red curve)
we argue that ferroelectricity exists also for bulk material whereas the magnetization
disappears. However, with decreasing size a weak ferromagnetic behavior is observed
below a critical size of Nc ' 8. The magnetization increases with decreasing particle
size, while the polarization decreases. In an intermediate size interval the BTO-NP
offer multiferroic properties characterized by the coexistence of a finite polarization
and magnetization. Fig. 4.9 shows the magnetization for S = 1, i.e. originated
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from magnetic Ti2+ ions on the surface. The result is quite similar to Fig. 4.10,
indicating that the mechanism for the appearance is the same as for Ti3+ ions. The
ferromagnetism is stronger compared to the case of Ti2+. Because in that case the
shells are smaller the magnetization disappears for a lower critical size Nc and as
a consequence the polarization becomes higher. For a further clarification of the
situation we suggest to study experimentally the influence of an external electrical
field on the magnetic properties or vice versa the influence of a magnetic field on the
electric properties which is one of the important features of multiferroics compounds.
Such a measurement should give more evidence of the magnetoelectric coupling in
BTO or PTO nanoparticles. The result for the polarization is shown as black curve
in Fig. 4.10.
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Figure 4.10. – Size dependence of the polarization P (black) and magnetization M
(red) of a BTO-NP for T = 300 K, Jb = 700 K, Ωb = Ωs = 10 K, Jb = 250 K, S = 1/2
(Ti3+), and different exchange interactions: (black) J ′s = 0.5J ′b, (red) Js = 2Jb.

The polarization is enhanced with increasing shell number N and becomes saturated
for large NP-size. The observation is in agreement with experimental data presented
in [157, 187, 188]. Mangalam et al. [195] have carried out magnetic measurements of
BTO samples with 60 nm, 100 nm and 2 µm. While the sample on the nanometer
scale reveals clearly ferromagnetism at room temperature the sample of µm scale
shows a diamagnetic behavior as it is also expected for the bulk BTO material. The
smaller the particle size is the higher is the saturation magnetization. The effect
that larger particles lead to a lower magnetization is consistent with the suggestion
that surface defects decrease with increasing particle size. As argued in [195] the
observed ferromagnetism in such BTO-NP can be correlated with the presence of
oxygen vacancies at the surface of the NP. So positron annihilation studies in BTO-
NP reveal a lower annihilation rate of positrons with the 2p electrons of oxygen in
the sample of 100 nm and 60 nm in comparison to the bulk system. This observation
indicates the presence of oxygen vacancies [195]. Each oxygen vacancy is expected to
donate two electrons to the empty d-state of a single Ti4+(d0) ion in order to produce
a Ti2+ (d2) ion with spin S = 1.
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Figure 4.11. – Size dependence of the polarization P (black) and magnetization M
(red, blue) of a ferroelectric ABO nanoparticle for T = 95 K and different exchange
interactions: (black) J ′s = 2J ′b, Ωs = Ωb, (red) Js = 2Jb, Ds = Db, (blue) Js = 4Jb,
Ds = Db.

An alternative mechanism is that each oxygen electron goes to different Ti4+ ions
and generate two Ti3+ ions in state d1 with spin S = 1/2 [195, 196]. With decreasing
particle size the number of oxygen vacancies increases and hence the number of Ti2+

or Ti3+ ions is also enlarged. This enhancement of Ti ions with nonzero spin give
rise to a weak ferromagnetism. Probably there is also the creation of a mixed valence
state composed of an superposition of both states d2 and d1. The presence of the
mixed valence state of the Ti-ions due to point defects could be also the origin for
the observed room temperature ferromagnetism in TiO2 NP suggested in [177, 197].

Finally, we have proved the stability of the ferromagnetic and antiferromagnetic states
in the presence of oxygen vacancies in the STO nanoparticle. We have calculated the
magnetic energy from Eq. (4.31) for ferromagnetic and antiferromagnetic exchange
interaction constants J and have found that the ferromagnetic state is lower in en-
ergy both in the bulk and at surface. A similar result is reported and discussed by
Mangalam et al. [195].

In some ferroelectric nanostructures, such as KNO3 thin films [198, 199] or triglycine-
sulphate (TGS) films [200, 201], it is observed that the Curie temperature and the
polarization increases with decreasing thickness. In this case we use Js > Jb [148, 202]
and obtain the results shown in Fig. 4.11. The polarization and the magnetization
decrease with increasing particle size. Below Nc the nanoparticle is multiferroic.
Above a critical Nc the magnetization vanishes and the nanoparticle remains only
ferroelectric. Experimental data does not exist for these materials.

Theoretical investigations based on density functional theory [174, 175, 189, 190]
have discussed mainly the density and energies of states of BTO, STO, and PTO
nanostructures. The magnetization hysteresis M(H) is obtained by Zhang et al. [175]
and Mangalam et al. [195] whereas the polarization hysteresis loop P(E) and the
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temperature dependence of the dielectric constant ε(T ) are reported in [194]. Some
of the authors [174, 175, 189, 190] have reported that not only O vacancy but also
Ti vacancy induces ferromagnetism but by different mechanisms [174, 175, 189, 190].
Using first-principles simulations, a strong coupling between a surface polar phonon
and spin in nanocrystalline BaTiO3 is shown, result in a magnetocapacitance effect
observed at room temperature, which can open up possibilities of new electromagneto-
mechanical devices at the nanoscale [195].



5. Conclusions and perspectives

5.1. Conclusions

The thesis is focused on a theoretical investigation of materials possessing two or
more kinds of ferroic orders in a single phase. Such multiferroic systems are under
permanent debate both experimentally and theoretically. In particular, we analyzed
systems in which ferromagnetic or antiferromagnetic phases coexist with a ferroelec-
tric phase. In an analytical approach, the system consists of two subsystems which
are interconnected by symmetry allowed coupling terms. The main classes of models
representing the related subsystems are different realizations of the Heisenberg model
and the Ising model in a transverse field. Furthermore, additional phonon degrees
of freedom are included. In this thesis we have proposed microscopic models in or-
der to explain the origins of the ME effect in the different multiferroic compounds.
To this aim, two strategies were investigated; the ME coupling is taken to be either
biquadratic or linear in P and quadratic in M. The biquadratic coupling between
the pseudospins and magnetic moments implies that the magnetic and ferroelectric
ordering have independent mechanism. In particular, this generally leads to different
transition temperatures for the two subsystems. The model can be applied to mul-
tiferroic substances where TC >> TN , for example, hexagonal RMnO3 and BNMO.
For the other multiferroic compounds, like MnWO4 or RMn2O5 where ferroelectric-
ity exists only in a magnetically ordered state and TC is lower but close to TN , the
multiferroic nature arises from the magnetically induced ferroelectricity. Thus, in
these materials ferroelectric polarization is induced by striction through exchange in-
teraction between different magnetic ions. Considering the appropriate coupling, the
analytical calculations were done in the framework of double-time Green’s function
technique for different multiferroics. Let us summarize the main results obtained in
this work.

• In section 3.3 the investigation was concentrated on type-II multiferroics ob-
served in rare-earth components. Such systems exhibit a linear magnetoelectric
coupling and both ferroic phases offers well separated phase transition temper-
atures. The aim was to study the influence of the MEC on the multiferroic
behavior. The presented quantum model is based on the Heisenberg spin model
with competing ferromagnetic and antiferromagnetic order. The interplay be-
tween these two couplings mechanisms leads to a collinear magnetic structure
which is frustrated. The ferroelectric subsystem is characterized by the Ising
model in a transverse field. The magnetoelectric coupling is quadratic in the
magnetization and linear in the polarization. For TC < T < TN the system
offers conventional Goldstone modes, i.e., gapless spin-wave excitations. The
MEC breaks the continuous symmetry of the Heisenberg model and hence the
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dispersion relation is altered and shows a gap for zero wave vector. The effect
is the stronger the higher the MEC is. The appearance of ferroelectricity at
TC is induced by the MEC, where the ferroelectric phase is manifested by a
kink in the dispersion relation. Likewise the magnetization is changed in the
vicinity of TC . The effect can be observed for different strengths of the MEC.
Finally, the multiferroic system is subjected to external electric and magnetic
fields. We find that the polarization increases with growing magnetic field, i.e.,
the ferroelectric subsystem can be influenced by a magnetic field. In the same
manner the magnetization alters due to an external electric field. Our results
suggest that for sufficient high electric fields the phase transition temperature
TC is shifted to higher values. This effect should be observed in experiments.

• A further goal was to identify the role of phonons in magnetoelectric effects in
RMn2O5. Here, the ferroelectric subsystem is characterized by both displacive-
like couplings manifested by lattice distortions and order-disorder-like elements
expressed in terms of pseudospins. As a consequence of the detailed charac-
terization of both subsystems, the coupling between the ferroic phases is not
only given by a direct magnetoelectric coupling but additionally by spin-phonon
couplings. To be specific, we have introduced two kinds of spin-phonon cou-
plings, the magnetic dominated as well as the ferroelectric dominated ones. We
focused on the influence of the various couplings on the phonon spectrum of the
multiferroic system. Due to the magnetoelectric coupling the harmonic phonon
mode is renormalized and becomes temperature-dependent. Both phase tran-
sitions are manifested by a kink in the phonon spectrum at the corresponding
transition temperatures.

The behavior of the modified phonon mode is strongly influenced by the spin-
phonon coupling. For positive couplings the mode becomes harder whereas for
negative coupling the mode becomes softer. In the latter case we showed that
the phonon spectrum is very sensitive to a change of the magnetic spin-phonon
coupling, while for different couplings the kink in the dispersion relation is
maintained. In the same manner, the ferroelectric pseudospin-phonon coupling,
relevant for T < TC , alters the phonon spectrum. The phonon mode is affected
by an external magnetic field, i.e. the phonon frequency can be triggered by
a magnetic field. We also found that the magnetization is influenced by the
spin-phonon coupling in such a manner that an increase of the coupling leads
to a decrease of the magnetization.

• Materials like RMn2O5 offers a very complicated magnetic zigzag structure
which had been up to now resisted to an analytical description based on a rea-
sonable Hamiltonian. In this thesis (section 3.5) the conventional Heisenberg-
model is significantly extended to incorporate the complex magnetic structure
at least approximately. Such an approach is to the best of our knowledge a
first attempt in this field and should be developed further. The main mecha-
nism for the appearance of a nonzero polarization P in those materials has been
attributed to exchange-striction among frustrated Mn spin networks [81]. Build-
ing upon experimental facts and the space group symmetry, we have generalized
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the Heisenberg-model to study the properties of such asymmetric antiferromag-
netic zigzag spin chains of two different Mn4+ and Mn3+ magnetic ions. The
ferroelectric subsystem was considered by defining polarization operators. The
polar system is given by a Hamiltonian which does not reveal a separate phase
transition (improper ferroelectricity). Instead of that the ferroelectric phase is
triggered exclusively by the coupling to the magnetic part. In particular, the
polarization is given by spin-spin correlation functions.

• As experimentally observed, the multiferroic properties of various components
can be changed by chemical substitutions. Therefore, we have investigated the
doping effects of non-magnetic and magnetic substitution at the Mn site on
the phase transition temperatures of MnWO4. We conclude that depending on
the ionic radius of the doping ions, i.e., on the exchange interaction constants
in the defect sites, the magnetic phase transition temperature can be smaller
(for non-magnetic Zn or Mg ions) or larger (for transition metal Fe or Co ions)
compared to the case without defects. The differences in the Fe- and Co-doping
concentration dependence of T1, the temperature in which the phase transition
to a frustrated commensurate AF1 phase occurs, is due to the different sign of
the single-ion anisotropy.

• Multiferroic thin films and nanostructures also attract lots of attention since
their properties differ from bulk materials. In this thesis (section 4.4) the phys-
ical properties of double-perovskite BNMO thin film multiferroic were studied
based on a microscopic model. In particular, the phonon frequency and its
damping were analyzed. The phonon spectrum reveals a kink at the magnetic
phase transition temperature indicating a strong evidence for a magnetoelectric
coupling. Furthermore, the phonon mode is controlled by an external magnetic
field. To our understanding, the model proposed is also applicable to other ma-
terials like Bi2M(1)M(2)O6 (Tc >> TN), where the two magnetic ions M(1)M(2)
can be Fe-Mn, Co-Mn, Fe-Cr. We expect the efficiency of our model, in case the
Yttrium atoms in the compound Y2MNO are subjected to a distortion similar
to the Bi in BMNO. As far as we know, an experimental verification for Y2MNO
is still missing. Therefore we would suggest to test the predictions of our model
for Y2MNO.

• Another related problem in the field of multiferroics is the oxygen vacancy
induced ferromagnetism in ferroelectric perovskite ABO3. Using an analytical
approach we find the size dependence of the polarization and magnetization. We
have shown that ferromagnetic properties which lead to multiferroic properties
in KTO and LTO nanoparticles could be due to the oxygen vacancies at the
surface and to the appearance of mixed valence state of Ta4+ and/or Ta3+ ions
on the surface with nonzero net spin. This leads to a week ferromagentism
which is an intrinsic effect to the nanoparticles and does not arise from any
magnetic impurity phases or any other artefact.

The polarization decreases with decreasing particle size, whereas the magne-
tization increases below a critical particle size. We obtained that in an inter-
mediate size interval the ferroelectric nanoparticles are multiferroic where the
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bulk material is only ferroelectric. A similar discussion explains the origin of
ferromagnetism in BTO, STO and LNO nanoparticles. These results suggest
the possibility of implementing magnetoelectric coupling in conventional ferro-
electric materials.

It will be of interest to observe experimentally the influence of an external elec-
trical field on the magnetic properties or the influence of a magnetic field on
the electric properties which is one of the important characteristics of multifer-
roic compounds. This would be the evidence of the magnetoelectric coupling
and will contribute to the clarification of its mechanism in perovskite ABO3

nanoparticles. Let us remark that our approach can be also used to analyze
ferroelectric ABO3 nanoparticles doped with transition metal ions like Fe, Mn,
Co or Ni. There are recent experimental studies in order to obtain multiferroic
properties in these substances, for example see [202, 203].

5.2. Perspectives

As a future aspect, one can investigate the complete phase diagram of the multiferroic
materials to picture a more realistic theoretical understanding of their behavior. For
instance, in the RMn2O5 series of multiferroics, the significance of the exchange-
striction model in the commensurate phase has been made clear. Nevertheless, the
exact mechanism behind the low temperature magnetoelectric phenomena remains a
subject of debate. Besides, the appearance of Dzyaloshinskii-Moriya interaction at
low temperature as well as the magnetic ordering of the R3+ moments which occurs
below 10 K should be considered in this temperature interval.
Furthermore, we consider a uniform domain in our calculations. However, formation
of domains is the feature of any ferroic order. Domain walls may play an impor-
tant role towards the application of multiferroics to practical devices according to
their small size as well as the fact that their location can be controlled [204]. The
net magnetic moments at ferroelectric domain walls may potentially be manipulated
by applied electric fields, indicating a magnetoelectric coupling at domain walls in
single-phase multiferroics [205]. This aspect which stimulate new correlation phenom-
ena can be considered as well. Additionally, exploring analytically the mechanism of
the functional charge transport properties in multiferroics, as well as the use of semi-
conducting multiferroic oxides for thermoelectric generation , will arouse considerable
interest and development.
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• Following the Eq. (3.66), we expand Hph in terns of ladder operators, a and a†
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Using the appropriate commutation relations
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• Solving determinant of Eq. (3.5.2), we end with
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which give us the excitation energies, ±ω1 and ±ω2.
• The constant in Eq. (3.77) are
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