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Summary 

In areas of intensive wheat cultivation Septoria tritici blotch (STB), caused by the 

ascomycete fungus Mycosphaerella graminicola (anamorph: Septoria tritici), is one of 

the most important foliar diseases. Severe yield losses are incurred by reduction of 

the photosynthetic active area due to necrotization of the leaves. M. graminicola is a 

hemibiotrophic pathogen that spreads in the field via splash-borne dispersal of 

conidia (pycnidiospores) from asexual fruiting bodies. Field populations of M. 

graminicola are genetically diverse, with additional variation occurring during the 

growing season. Fungicides such as strobilurins and triazoles lost their effectiveness 

in managing STB own to the development of resistances in the fugal population. 

Thus, breeding is an essential component in this disease control.  

The objective of this study was the detection of qualitative and quantitative STB 

resistance sources in the progeny of the doubled haploid population Solitär x 

Mazurka. Solitär has shown the highest STB field resistance among registered 

German cultivars with high stability of resistance over time. Its resistance has a 

quantitative character at which disease is reduced but not completely absent. For the 

genetic analysis of STB resistance the doubled haploid population derived from a 

cross between Solitär - late heading, tall, outstanding field resistance to several 

diseases - and the STB susceptible Hungarian cultivar Mazurka – early flowering, 

short, highly tolerant to drought and frost - was established. The population consists 

of 137 lines which were covered with 779 molecular markers (162 SSR, 512 DArT 

and 105 AFLP) and one phenotypic marker for awnedness. For QTL mapping a 

reduced map of 252 molecular markers and one phenotypic marker was used. The 

entire map covered all 21 wheat chromosomes and altogether 2,887 cM of the wheat 

genome. 

To identify qualitative resistance sources in the Solitär x Mazurka doubled haploid 

population, first the parents were screened with a worldwide set of 30 different M. 

graminicola isolates in the seedling stage. Both wheat genotypes clearly 

differentiated in their response to STB for the majority of isolates. On average Solitär 

showed lower percentage of disease severity. Due to the distinct response observed 

in the parental genotypes, isolates IPO323, IPO99015, IPO92034, Hu1 and Hu2 

(resistance donor = Solitär) as well as isolates IPO90015 and BBA22 (resistance 

donor = Mazurka) were chosen to analyze the doubled haploid lines for STB seedling 
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resistance. Solitär conferred resistance to isolate IPO323, governed by Stb6 on 

chromosome 3AS, as well as to IPO99015, IPO92034, Hu1 and Hu2 controlled by a 

QTL on chromosome 1BS, possibly corresponding to Stb11 or Stb2. Quantitative 

disease resistance loci, each with small effect, were detected on chromosomes 3B, 

6B, 3D and 4B. QTL confer either specific resistance against pycnidia formation (3B), 

necrotization of leaf area (4B) or both disease parameters (3D, 6B). Resistance of 

Mazurka to IPO90015 and BBA22 was caused by a QTL located in a region on 4AL 

which harbors Stb7 or Stb12. Furthermore, Mazurka conferred quantitative 

resistance against IPO92034 with specificity to necrotic leaf area located on 

chromosome 1A. Pairwise epistatic interactions were reliably detected with five 

isolates. Although their contributions to the total variance are generally low, the 

genotypic effect of the QTL x QTL interaction of 4AL (Stb7 or Stb12) and 3AS (Stb6) 

made up almost 15 % of disease expression. On the one hand inheritance of STB 

resistance is conferred by isolate-specific genes. Resistance response of Stb genes 

to single fungal genotypes is nearly complete and shows a gene-for-gene interaction. 

On the other hand STB resistance is inherited by the joint action of genes with minor 

effects. The results suggest a complex inheritance of resistance to STB in the 

seedling stage in terms of isolate-specificity and resistance mechanisms, which have 

implications for marker-assisted breeding in an attempt to pyramid STB resistance 

genes. 

In a QTL mapping approach of six environments and four locations, STB field 

resistance was studied in previously developed population. The doubled haploid lines 

differed in diseased leaf area as well as time to heading and plant height. QTL for 

time to heading have been identified on chromosomes 1D and 7B, both positions 

coincide with that of known QTL for earliness per se. Reduced height genes Rht-B1 

and Rht8, both conferred by Mazurka, were responsible for differences in plant 

height. Apart from time to heading only plant height correlated positive with STB 

resistance (r = 0.47) and was henceforward considered as covariate in the genetic 

analyses. To draw a holistic picture of STB resistance in the Solitär x Mazurka 

doubled haploid population, efficacy of detected Stb genes and QTL identified in the 

seedling stage has to be validated under natural infection conditions. Surprisingly, 

none of the isolate-specific genes Stb6, Stb11/Stb2 identified in Solitär, and 

Stb7/Stb12 detected in Mazurka effected STB field resistance. Also none of the 

isolate-specific quantitative disease resistance sources were involved in the control 
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of field resistance. Adaptations of the fungal M. graminicola population to the 

identified Stb genes and QTL as well as seedling specificity are assumed. 

With a multi-environmental QTL mapping approach five loci for quantitative disease 

resistance were identified on chromosomes 5A, 6D and 7D. Together with QTL x 

QTL interactions 20 % of the genotypic variance in STB field resistance is explained 

by the detected loci. QTL x environment interactions were minor. None of the 

previously identified isolate-specific resistance sources in the population contributed 

to the superior field resistance of Solitär. However, correspondences with sources for 

STB field resistance in other genetic backgrounds were found. Further studies with 

locally adapted isolates might confirm adaptations to single Stb genes in the fungal 

population and characterize the identified QTL for STB field resistance in more detail. 

This study sheds light on the genetic control of STB seedling resistance against 

single isolates and under field conditions. To infer from seedling to field resistance 

was not possible in the case of the Solitär x Mazurka doubled haploid population. In 

conclusion, the efficacy of isolate-specific seedling resistance sources has to be 

confirmed in field studies under the pressure of the complex fungal populations 

before they are successful utilized in breeding programs. 
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Zusammenfassung 

In Gebieten mit intensivem Weizenanbau hat sich die Septoria-Blattdürre, verursacht 

durch den ascomyceten Pilz Mycosphaerella graminicola (anamorph: Septoria tritici), 

zu einer der bedeutendsten Blattkrankheiten entwickelt. Durch Nekrotisierung des 

Blattgewebes wird die Photosyntheseleistung der Weizenpflanzen herab gesetzt, 

was zu schweren Ertragsverlusten führen kann. M. graminicola zeichnet sich durch 

eine hemibiotrophe Lebensweise aus. Die Verbreitung der Krankheit im 

Pflanzenbestand erfolgt durch die in asexuellen Fruchtkörpern des Pilzes (Pyknidien) 

gebildeten Kondiden (Pyknidiosporen). Durch sexuelle Rekombination, welche auch 

im Laufe der Vegetationsperiode stattfindet, ist die im Feld natürlich auftretende M. 

graminicola Population genetisch divers. Die Effektivität von fungiziden Wirkstoffen 

wie Strobilurine und Triazole ist durch Resistenzbildung auf Seiten der Pilzpopulation 

zunehmend eingeschränkt. Somit stellt die Züchtung von resistenten 

Winterweizensorten eine essentielle Komponente zur Kontrolle der Septoria-

Blattdürre dar.  

Ziel der vorliegenden Arbeit war die Lokalisierung von qualitativen und quantitativen 

Resistenzquellen gegenüber der Septoria-Blattdürre in der Solitär x Mazurka 

doppelhaploid Population. Unter den registrierten deutschen Sorten zeigte Solitär, 

seit ihrer Einführung im Jahr 2004, die besten Resistenzeigenschaften gegen die 

Septoria-Blattdürre im Feld. Zur genetischen Analyse der Septoria-Blattdürre 

Resistenz wurde die doppelhaploid Population aus Solitär – spät blühend, hoch 

gewachsen - und der anfälligen ungarischen Sorte Mazurka – frühzeitig, niedrig 

gewachsen - erstellt. Die Population besteht aus 137 Genotpyen, deren Genom mit 

insgesamt 779 molekularen Markern (162 SSR, 512 DArT und 105 AFLP) und einem 

phänotypischen Marker für Begrannung abgedeckt wurde. Zur Kartierung von 

quantitativen Loci zur Resistenzkontrolle wurde eine reduzierte genetische Karte, 

bestehend aus 252 molekularen Markern und dem phänotypischen Marker 

verwendet. Mit der erstellten Karte der Solitär x Mazurka doppelhaploid Population 

konnten auf 2,887 cM alle 21 Chromosomen des Weizengenoms abgedeckt werden. 

Zur Identifizierung von qualitativen Resistenzquellen wurden zunächst mit 30 

verschiedenen M. graminicola Isolaten beide Eltern einem Pathogenitätstest im 

Keimlingsstadium unterzogen. Auf einen Großteil der Isolate reagierten die Sorten 
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mit einer klaren Differenzierung in “resistent” und “anfällig”. Im Mittel über alle Isolate 

wurde Solitär allerdings weniger befallen als Mazurka. Aufgrund einer deutlichen 

Differenzierung der beiden Eltern wurden die Isolate IPO323, IPO99015, IPO92034, 

Hu1 und Hu2 (Resistenzträger = Solitär) sowie die Isolate IPO90015 und BBA22 

(Resistenzträger = Mazurka) für die Analyse der doppelhaploid Linien im 

Keimlingsstadium ausgewählt.  

Solitär zeigte Resistenz gege das Isolat IPO323, die von dem bereits 

charakterisierten Resistenzgen Stb6 auf Chromosom 3AS gesteuert wird. Außerdem 

vererbte Solitär eine Resistenz gegen IPO99015, IPO92034, Hu1 und Hu2, welche 

durch ein QTL auf Chromosom 1BS kontrolliert wird und möglicherweise mit Stb11 

oder Stb2 korrespondiert. Loci für quantitative Krankheitsresistenzquellen wurden auf 

den Chromosomen 3B, 6B, 3D und 4B lokalisiert. Diese erklärten jeweils nur einen 

Teil der phänotypischen Varianz und zeigen geringe Effekte auf die 

Resistenzausprägung. Entweder war die Resistenzantwort spezifisch und reduzierte 

die Bildung von Pyknidien (3B) beziehungsweise verringerte die nekrotisierte 

Blattfläche (4B) oder beeinflusste beide Krankheitssymptome (3D, 6B). Die durch 

Mazurka vererbte, nahezu vollständige Resistenz gegen die Isolate IPO90015 und 

BBA22, wurde durch ein QTL auf Chromosom 4AL hervorgerufen und korrespondiert 

mit Stb7 oder Stb12. Zudem vermittelte Mazurka eine, auf Chromosom 1A 

lokalisierte, quantitative Resistenz gegen Isolat IPO92034, welche spezifisch mit 

einer Reduktion der nekrotisierten Blattfläche verbunden war. Epistatische 

Wechselwirkungen zwischen QTL wurden mit fünf Isolaten identifiziert. Ihr Beitrag an 

der gesamten, phänotypisch erklärbaren Varianz war generell gering. Die Interaktion 

zwischen dem QTL auf Chromosom 3AS (Stb6), welches epistatisch mit dem auf 4AL 

(Stb7/Stb12) identifizierten QTL interagierte, verringerte beide untersuchten 

Krankheitssymptome um nahezu 15 %. Einerseits wurde die Keimlingsresistenz 

gegen die Septoria-Blattdürre durch isolat-spezifische Gene kontrolliert - hierbei war 

die Resistenzantwort nahezu vollständig und zeigte den Charakter einer Gen-für-Gen 

Wechselwirkung. Andererseits wurde die Krankheit durch das Zusammenwirken 

mehrerer Gene mit geringfügigen Effekten gesteuert. Die Ergebnisse deuten auf eine 

komplexe Vererbung der Keimlingsresistenz gegen einzelne Septoria-Blattdürre 

Isolate in der untersuchten Population hin. Die Isolatspezifität der identifizierten QTL, 

das Auftreten von QTL x QTL Interaktionen, sowie die Beteiligung verschiedener 

Resistenzmechanismen haben Auswirkungen auf die Marker gestützte Selektion. Für 

eine erfolgreiche Pyramidisierung von Resistenzgenen bzw. QTL müssen die 
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genannten Einflussfaktoren beachtet werden. 

Die Feldresistenz gegen Septoria-Blattdürre wurde mit Hilfe einer QTL Studie in 

sechs Umwelten und vier Standorten untersucht. In der Solitär x Mazurka 

doppelhaploid Population wurden neben der befallenen Blattfläche auch der 

Zeitpunkt des Ährenschiebens sowie die Pflanzenhöhe erfasst. Je ein QTL auf den 

Chromosomen 1D und 7B beeinflusste den Zeitpunkt des Ährenschiebens, wobei 

sich  beide Positionen mit bekannten QTL für das Merkaml „earliness per se“ 

deckten. Die Variation in der Pflanzenhöhe wurde durch die beiden Gene für 

Kurzstrohigkeit Rht-B1 und Rht8, vererbt durch Mazurka, gesteuert. Hierbei 

korrelierte nur die Pflanzenhöhe positiv mit der Resistenz (r = 0,47) und wurde 

fortwährend als Kovariable in der gegentischen Resistenzanalyse betrachtet. 

Insgesamt konnten fünf QTL auf den Chromosomen 5A, 6D und 7D für die Variation 

in der Feldresistenz verantwortlich gemacht werden. Diese erklärten zusammen mit 

den QTL x QTL Wechselwirkungen 20 % der genotypischen Varianz. QTL x Umwelt 

Interaktionen zeigten einen vernachlässigbaren Einfluss. Keine der vorher in der 

Solitär x Mazurka doppelt haploiden Population identifizierten, isolat-spezifischen 

Quellen für Septoria-Blattdürre Resistenz, hatte einen Einfluss auf die Feldresistenz. 

Anpassungen der Erregerpopulation an die im Keimlingsstadium identifizierten Stb 

gene und QTL, sowie sämlingsspezifische Resistenz werden als warscheinlich 

angenommen.  

Zusammenfassend wird die Feldresistenz gegen die Septoria-Blattdürre weniger 

durch die Wirkung einzelner Resistenzgene, als vielmehr durch das Zusammenspiel 

mehrerer Gene mit jeweils geringem Effekt hervorgerufen. Pathogenitätstest mit lokal 

angepassten Pilzisolaten können die identifizierten QTL für Feldresistenz genauer 

charakterisieren. Anpassungen der Erregerpopulation an isolatspezifische 

Resistenzgene könnten zudem mit solchen Untersuchungen validiert werden. Die 

hier voliegenden Studie konnte erfolgreich Licht auf die Steuerung der Septoria-

Blattdürre Resistenz auf Basis von Einzelisolaten sowie unter Feldbedingungen 

werfen. Die isolatspezifischen Resistenzquellen waren im Fall der Solitär x Mazurka 

doppelhaploid Population gegen die lokal angepassen Erregerpopulationen nicht 

wirksam. Bevor isolatspezifische Keimlingsresistenzen erfolgreich in der 

Pflanzenzüchtung Verwendung finden, muss zuvor deren Wirksamkeit in Feldstudien 

nachgewiesen werden. 
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1 General introduction 

1.1 Wheat (Triticum aestivum L.) – The pressure of fungal diseases  

The hexaploid bread wheat Triticum aestivum L. belongs together with corn and rice 

to the three fundamentally important major crops for human nutrition worldwide (FAO 

2012). In consideration of the ongoing worldwide climatic change assurance for safe 

food production against biotic stress like diseases caused by pathogens challenges 

plant breeders worldwide. Especially in intensive crop growing areas like Germany 

with narrow crop rotations the buildup of pathogens and pests is encouraged (Freyer 

2003). Additionally, the costs for plant protection in those systems are high; the most 

efforts have to be done by fungicides (Anonymous 2012). Under the pressure of 

European agricultural policy pesticide application rates have to be decreased 

(Directive 2009/128/EC of the European Parliament and of the Council) and common 

used fungicides like azoles might be forbidden in near future (Regulation No 

1107/2009 of the European Parliament and of the Council). Consequently, farmers 

will have to face strong cuts in wheat productivity caused by fungal diseases 

(Schmitz et al. 2010).  

In Germany winter wheat is the major crop grown on 3.2 Mio hectares (ha) of arable 

land with a production of 25 Mio tons (t) per year which primary flow in the milling and 

baking industry. In comparison to the world average of 3.0 tons per hectare (t/ha) 

German farmers harvest in average 7.2 t/ha (FAO 2012). From 1966 to 2007 - a 

period of forty years - German winter wheat yields have been enhanced on average 

by 31 kilogram per ha and year (kg/ha/a) attributed by cultivar improvement alone 

(Ahlemeyer and Friedt 2012a; b). For comparison, over the same period in Germany 

the increase in grain yield on the farm level achieved by the combined action of high 

yielding cultivars and application of improved agrochemicals (fertilization, plant 

protection) has been estimated at 100 kg/ha/a (FAO 2012). Modern cultivars exhibit a 

shorter plant stature, are earlier ripen, show less lodging and are more resistant to 

important wheat diseases like powdery mildew, leaf rust and Septoria tritici blotch 

(STB) than older cultivars (Ahlemeyer and Friedt 2012b). These breeding inventions 

made the intensive production systems with high inputs of nitrogen fertilizer only 

possible (FAO 2012). Parallel the usage of agrochemicals increased (Anonymous 

2012) and facilitated yield improvement. Accordingly, 30 % of the yield improvement 

was contributed by breeding and 70 % by production intensification (Ahlemeyer and 

Friedt 2012b). But intensive production systems are also vulnerable. A single 
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mutation in the fungal genome of Mycosphaerella graminicola the causal agent of 

STB provoked a complete resistance against strobilurins – until that day a very 

effective fungicide to manage STB and other diseases like powdery mildew and leaf 

rust. This development increased the use of tirazoles and enhanced the selection 

pressure towards tolerant M. graminicola genotypes (Cools and Fraaije 2008). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Distribution of German winter wheat cultivars corresponding to their susceptibility 

classification by the Bundessortenamt (Anonymous 2010) for the three most frequent leaf 

diseases Septoria tritici blotch (Mycosphaerella graminicola; n=120), leaf rust (Puccinia 

triticina, n=117) and powdery mildew (Blumeria graminis; n=119); (1: no symptoms; 9: 

symptoms fully expressed) 

 

Plant breeders create crossing populations of high genetic variability by the use of 

existing resistance sources in cultivars, accessions or wild ancestors of wheat.  

Selection processes develop new cultivars which should be high yielding, resistant to 

the most occurring diseases and of good baking quality. The most important wheat 

diseases in northern Europe are (i) powdery mildew (Blumeria graminis), leaf rust 

(Puccinia triticina), yellow rust (Puccinia striiformis), STB (Mycosphaerella 

graminicola) and DTR (Drechslera tritici repentis) affecting the leaves; (ii) Fusarium 
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head blight (Fusarium spec.) and Septoria nodorum blotch (Phaeosphaeria nodorum) 

affecting the ears as well as (iii) eyespot (Pseudocercosporella herpotrichoides), 

take-all (Gaeumannomyces graminis var. tritici) affecting the roots. In Germany and 

whole northern Europe STB turns to be the most frequent wheat disease with yield 

losses up to 30 % in susceptible cultivars (Eyal et al. 1987, LfL 2004). 
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Fig. 2 Acreage of seed multiplication of the ten most important wheat cultivars in Germany 

and their corresponding Septoria tritici blotch (STB) score. Scores 1, 2 and 7 to 9 were 

absent. (1: no symptoms; 9: symptoms fully expressed) (Anonymous 2010) 

 

Only moderate STB resistant cultivars are available in Germany. The Federal Plant 

Variety Office in Germany (Bundessortenamt), responsible for cultivar registration, 

classifies every year the susceptibility of registered cultivars to different wheat 

diseases on a one to nine scale (1: no symptoms; 9: symptoms fully expressed). 

Long resistance breeding to powdery mildew and leaf rust resulted in cultivars with 

resistance classification of one and two (Fig. 1). However, regarding STB, resistance 

classification of registered cultivars starts with a value of three what can be 
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interpreted as moderate resistant. As long as fungicides for managing STB are 

available yield potential can be exploited also with a susceptible cultivar. Additionally, 

highly resistant cultivars often do not exhibit the same yield as susceptible cultivars 

under intensive field management (Singh et al. 1991). Taking a look at the ten most 

important cultivars, which account for more than 50 % of the wheat area in Germany, 

susceptible cultivars with scores greater than four dominate (Fig. 2). Reasons for the 

minor acceptance of STB resistant cultivars on the farm level might be first the trade-

off between yield and resistance and second the availability of effective fungicides. 

However, resistance breeding to STB remains to be the most suitable way to ensure 

high yields under conditions where (i) a less amount of fungicides is applicable e. g. 

due to political decisions (ii) fungicides are not effective due to adaptations of the 

fungal population (iii) the yield losses associated with resistance are less than the 

costs of a fungicide treatment. 

1.2 The Triticum aestivum – Mycosphaerealla graminicola pathosystem 

Triticum species can be classified into three groups based upon their ploidy level 

(Fig. 3; Kilian et al. 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Taxonomy of the most important Triticum species and genome information (van 
Slageren 1994) 

 

By allopolyploidization of the A genome of Einkorn (T. monococcum) and the B 

Kingdom   Plantae 

Order  Poales   

Family  Poaceae 

Genus  Triticum 

 

Ploidy   2n = AA = 14  4n = AABB = 28  6n = AABBDD = 42   

Species T. monococcum T. turgidum    T. aestivum 
     ssp. dicoccum  ssp. aestivum 
      
     T. turgidum    T. aestivum 
     ssp. durum   ssp. spelta 
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Kingdom   Fungi 

Phylum   Ascomycota  

Class   Loculoascomycetes  

Order  Dothideales   

Family  Mycosphaerellaceae 

Genus  Mycosphaerella  

Species  M. graminicola 
 anamorph:Septoria tritici 
 

genome, which certainly originates from the Sitopis section of Aegilops (Kilian et al. 

2007), the tetraploid forms arose from which Emmer (T. turgidum ssp. dicoccum) got 

domesticated. The hexaploid wheat developed by allopolyploidization of tetraploid 

Emmer (T. turgidum ssp. dicoccum) with the D genome of Aegilops tauschii (Kilian et 

al. 2010).  

The ascomycete fungus Mycosphaerella graminicola (anamorph: Septoria tritici) is 

the causal agent of Septoria tritici blotch (Fig. 4). It attacks bread and durum wheat 

as well as their ancestors Einkorn (T. monococcum) (Jing et al. 2008), Emmer (T. 

turgidum var. dicoccum) and Agilops ssp. (McKendry and Henke 1994). A co-

evolution of M. graminicola and wheat is supposed to have happened in the Fertile 

Crescent (Stukenbrock et al. 2007). The fungus developed formae speciales on 

wheat, barley, rye, oat and other grasses including Lolium and Holcus spp. (Eyal 

1999). Grass weeds may act as disease foci out of field boundaries (Brokenshire 

1975).  

Fig. 4 Taxonomy of M. graminicola 

 

 

 

 

 

 

 

 

 

 

 

 

M. graminicola has a hemibiotrophic mode of living. An initial period of biotrophic 

growing – energy is derived from living cells – is followed by a necrotrophic phase – 

energy is derived from killed cells (Perfect and Green 2001). After incubation time of 

48 h at ≥ 85 % relative humidity the fungus penetrates the stomata, passes the sub-

stomatal cavity and reaches the mesophyll cells. From here it starts colonization by 

strictly intercellular growth. No haustoria-like structures for feeding are possessed. 

Hyphae stay in close contact to mesophyll cells and obtain nutrients from the plant´s 

apoplast. After 8 to 10 days post inoculation (dpi) the fungus begins to attack 
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mesophyll cells and cell collapses appear as chlorotic areas on the leaf surface 

which develop to necrotic lesions. Induced by the release of nutrients, fungal 

biomass increases massive. This occurs especially in sub-stomatal cavities where 

“baskets” are formed which develop to pycnidia, the asexual fruiting bodies (Kema et 

al. 1996c). In vitro - on agar dishes or in nutrient solutions - the fungus grows as a 

yeast-like mass or as a filamentous mycelium (Orton et al. 2011). This makes it easy 

to multiply and use M. graminicola in artificial inoculation experiments. 

Besides Northern Europe all wheat growing regions where high humidity and 

moderate temperature conditions occur are affected by STB, like parts of the United 

States, Mediterranean countries, Ethiopia and the Fertile Crescent. The word field 

populations of M. graminicola possess a high genetic diversity due to gene flow on a 

global scale by air borne ascospores, frequent sexual recombination and large 

effective population sizes with more than 60 genotypes per square meter (Zhan et al 

2003). Isolates of M. graminicola represent single genotypes in the fungal population 

usually gained out of the asexual fungal fruiting bodies. 

Fig. 5 Life cycle of M. graminicola (Palmer and Skinner 2002) 

 

The disease cycle of M. graminicola (Fig. 5) begins with air-borne ascospores 

discharged from mature sexual fruiting bodies (pseudothecia) on stubbles remained 

from the pre-season crop and on plant debris in autumn (Suffert et al. 2011). 

Ascospores discharge was also observed during the growing season (June/July) in 

Europe (Kema et al. 1996b; Hunter et al. 1999; Eriksen and Munk 2003). 

Dispersion in the canopy mainly occurs via pycnidiospores released by the asexual 
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fruiting bodies (pycnidia) and dispersed via rain-splash. After a long latent period of 

21 to 28 days after infection – depending on cultivar, temperature and humidity - 

disease initiates with the appearance of water-soaked, chlorotic, ambiguous spots on 

leaves which develop into irregular necrotic lesions. These necrotic leaf regions bear 

small black pycnidia scattered within the entire lesion. Pycnidia often appear in rows 

since they form in sub-stomatal cavities (Palmer and Skinner 2002).  

Fig. 6 STB symptoms on a wheat flag leaf 

In the field STB can be confused with 

Phaeosphaeria (Stagnospora) nodorum, which also 

produces necrotic lesions and pycnidia on leaves. 

Both fungi co-exist on the same plant. However, 

necrotic lesions caused by Stagnospora nodorum, 

the causal agent of Glum blotch, are more common 

on sheaths and glumes. A clear distinction can be 

made by morphological analysis of pycnidiospores, 

which are more than ten times as long as wide in 

the case of M. graminicola (Eyal 1999). Epidemics 

of STB are favored by prolonged periods of wet 

weather and moderate temperatures. Optimal 

conditions of 20 to 25 °C and relative humidity ≥ 

85 % promote penetration. However, in susceptible 

cultivars infection conditions do not seem to be limiting factors. This is consistent with 

the ability of the fungus to tolerate interruptions of humid periods (Shaw 1991; Gough 

and Lee 1985). A reduction of the photosynthetic capacity leads to severe yield 

losses in the field up to 30-50 % (M. graminicola and Stagnospora nodorum) (Eyal 

1981). Conspicuously yield losses were observed when STB becomes severe on the 

flag leaf and second leaf (Lovell et al. 1997) due to a reduction of photosynthetic 

capacity in the grain filling period.  

Fungicides are widely used to control STB but loss of efficacy due to resistance 

development, high costs, growing awareness of health and environmental impact will 

minimize their application in future. With the introduction of QoI fungicides or quinone 

outside inhibitors (called strobilurins) this new class raised to the most applied 

fungicide in cereals (Bartlett et al. 2002). But a single mutation in the fungus of a 

glycine to alanine at base 143 in the cytochrome b protein sequence (G143A) led to 
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a loss of strobilurin efficacy only a few years after its release. Torriani et al. (2009) 

demonstrated that this mutation took place in genetically and geographically 

independent backgrounds in Europe, increased by fungicide selection and wind 

dispersed ascospores. Since that date sterol demethylation-inhibitors (DMI) are the 

backbone of STB control. But a shift to triazols (fungicide component that belongs to 

the DMIs) resistant fungal isolates have been observed in European monitoring 

programs (Cools and Fraaije 2013). Regulation 1107/2009 of the European Union 

concerning placing of plant protection products on the market will impact chemical 

control of STB by azoles which are at a risk of regulatory exclusion due to their 

association with endocrine activity (Kjærstad et al. 2010). In high-input management 

systems the risk of STB epidemics are reducible by (i) primarily reduction of infected 

debris, volunteer plants and weeds (ii) chemical control with fungicides and (iii) 

genetic control with STB resistant cultivars. 

1.3 Inheritance of Septoria tritici blotch resistance  

Inheritance of STB resistance is controlled by either single genes with a near-

complete resistance response (Tab. 1) following gene for gene interactions (Brading 

et al. 2002) or quantitatively with incomplete resistance response and involvement of 

multiple genes each having minor effects (Jlibene et al. 1994; Simon and Cordo 

1998, Tab. 2). Stb1, identified in the winter wheat cultivar Bulgaria 88 (Rillo and 

Caldwell, 1966), was the first STB resistance gene analyzed (Wilson 1985), and 

deployed in commercial cultivars in the 1970s. Stb2 and Stb3 originally found in 

cultivars Veranopolis and Israel 493 were used as resistance sources in worldwide 

breeding programs. However, only Stb2 was introduced in commercial cultivars 

(Goodwin 2007) and is the first gene for which a recessive inheritance was identified 

(Goodwin and Thompson 2011). Cultivar Tadinia, released 1985 was grown in 

California with low infestation of STB, controlled by Stb4, but lost its resistance 15 

years later (Jackson et al. 2000; Somasco et al. 1996). Parallel to the identification of 

Stb genes one to four, progress has been made in understanding host-pathogen 

interactions (Eyal et al. 1987; Kema et al. 1996a; Brown et al. 2001).         
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Tab. 1 Septoria tritici blotch resistance genes (Stb) in the respective hexaploid spring and winter wheat cultivar used for identification and mapping 
along with their chromosomal positions and flanking marker(s) in the wheat genome  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a
 These lines also carry Stb6 

b 
These lines also carry Stb6 and Stb7 

c
 Quantitative resistance response 

d
 specifically expressed in the adult plant stage 

Stb gene Cultivar source Chromosomal 
position 

Flanking markers(s) Reference 

Stb1 Bulgaria 88a 5BL Xgwm335 Adhikari et al. 2004c 

Stb2 Veranopolis a 1BS Xwmc406; Xbarc008 Liu et al. 2013 

Stb3 Israel 493 a 7AS Xwmc83 Goodwin et al. 2008 

Stb4 Tadinia a 7DS Xgwm111 Adhikari et al. 2004b 

Stb5 CS Synthetic 7D a 7DS Xgwm44 Arraiano et al. 2001b 

Stb6 Flame 3AS Xgwm369 Brading et al. 2002 

Stb7 Estanzuela Federal 4AL Xwmc313; Xwmc219 McCartney et al. 2003 

Stb8 W7984 (Synthetic) 7BL Xgwm146; Xgwm577 Adhikari et al. 2003 

Stb9 Courtot 2B XksuF1; Xfbb226 Chartrain et al. 2009 

Stb10 KK4500 b 1D Xgwm603; Xgwm458 Chartrain et al. 2005a 

Stb11 TE9111 b 1BS Xbarc008 Chartrain et al. 2005b 

Stb12 KK4500 b 4AL Xwmc313; Xwmc219 Chartrain et al. 2005a 

Stb13 Salamouni 7BL Xwmc369 McIntosh et al. 2007 

Stb14 Salamouni 3BS Xwmc500 McIntosh et al. 2007 

Stb15 Arina a 6AS Xpsr904 Arraiano et al. 2007a 

Stb16qc 
M3 (Synthetic) 3DL Xbarc125; Xbarc128 Ghaffary et al. 2012 

Stb17d 
M3 (Synthetic) 5AL Xgwm617; Xhbg247 Ghaffary et al. 2012 

Stb18 Balancea 6DS Xgpw3087; Xgpw5176 Ghaffary et al. 2011 

[Geben Sie ein Zitat aus dem Dokument oder die 

Zusammenfassung eines interessanten Punktes 

ein. Sie können das Textfeld an einer beliebigen 

Stelle im Dokument positionieren. Verwenden Sie 

die Registerkarte 'Textfeldtools', wenn Sie das 

Format des Textfelds 'Textzitat' ändern möchten.] 

[Geben Sie ein Zitat aus dem Dokument oder die 

Zusammenfassung eines interessanten Punktes 

ein. Sie können das Textfeld an einer beliebigen 

Stelle im Dokument positionieren. Verwenden Sie 

die Registerkarte 'Textfeldtools', wenn Sie das 

Format des Textfelds 'Textzitat' ändern möchten.] 
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Tab. 2 QTL for Septoria tritici blotch resistance mapped in hexaploid wheat and T. 
monoccocum (Einkorn), developmental stage at which disease was scored (A= adults, S= 
seedlings), disease parameter scored (P = pycnidial covered leaf area; N = leaf area covered 
with necrosis, Px = pycnidial density), chromosomal location, closest linked marker(s), 
phenotypic variance explained, resistance carrier, fungal material used for identification and 
putative resistance gene assumed by the reference authors or according to the 
corresponding Stb gene position out of the literature 

QTL name A / 
S 

Disease 
para-
meter 

Chromo
-some 

position 

Closest 
marker(s) 

Phenotypic 
variance 
explained 

(%)     

Resistance 
source 

Fungal 
material 

Stb 
candi-
date 
gene

 

Reference 

QStb.lsa_fb-1A A
b 

P 1A Xwmc0312 <10 Florett mixture  
Risser et al. 

2011 

StbWW2449, 
1842,2451 

S, A P,Px 1BS 
Xbarc008, 
Xwmc230 

S: >60 
A: 30-40 

WW2449, 
1842, 2451 

79.2.1A 
Stb11, 
Stb2 

Raman et al. 
2009 

not named S P 1BS 
wPt-2019, 
Xbarc008 

>60 Apache IPO87016 
Stb11, 
Stb2 

Ghaffary et 
al. 2011 

QStb.lsa_fb-1B A
b 

P 1B Xwmc0419 <10 Biscay mixture 
Stb11, 
Stb2 

Risser et al. 
2011 

QStb.ipk.-1D S P 1DS Xksud14d 20-30 
W7984 
(Synthetic) 

IPO92067; 
IPO93014 

Stb10 
Simón et al. 

2004a 

QStb.risø-2B A
b 

P 2BL Xwmc175b 20-30 Senat mixture Stb9 
Eriksen et al. 

2003 

QStb.lsa_af-2B A
b 

P 2B Xcfd276 10-20 Arina mixture  
Miedaner et 

al. 2012 

QStb.lsa_fb-2B A
b 

P 2B XP2553-222 10-20 Biscay mixture  
Risser et al. 

2011 

QStb.ipk-2D S P 2DS Xcdo405a 20-30 Opata 85 
IPO92067; 
IPO93014 

 
Simón et al. 

2004a 

QStb.risø-3A.1 S P 3AS Xgwm369 >60 Senat 
IPO323; 
Risø97-86 

Stb6 
Eriksen et al. 

2003 

not named A P,N 3AS wPt-0836 >60 Balance IPO323 Stb6 
Ghaffary et 

al. 2011 

QStb.risø-3A.2 S, A
c 

N 3AS 
Xwmc505, 
Xwmc388a 

20-30 Senat 
IPO323; 
Risø97-86; 
mixture 

 
Eriksen et al. 

2003 

QStb.risø-3B S N 3BS 
M62/P38-
373 

10-20 Senat Risø97-86  
Eriksen et al. 

2003 

QStb.lsa_af-3B A
b 

P 3B Xgwm131 10-20 Arina mixture  
Miedaner et 

al. 2012 

QStb.lsa_fb-3B A
b 

P 3B Xstb10 <10 Florett mixture  
Risser et al. 

2011 

QStb.ipk-3D A P 3DL Xbcd515 10-20 
W7984 
(Synthetic) 

IPO92067 Stb16q 
Simón et al. 

2004a 

QStb.wai-3D S N+P
d 

3DL Xwmc169b 20-30 
CPI133872 
(Synthetic) 

79.2.1A Stb16q 
Zwart et al. 

2010 

QStb.lsa_tb-4A A
b 

P 4AL XwPt-5434 <10 Tuareg mixture Stb12 
Risser et al. 

2011 

QStb.lsa_tb-4B A
b 

P 4B Xwmc0238 <10 Tuareg mixture  
Risser et al. 

2011 

QStb.lsa_fb-4B A
b 

P 4B XwPt-8092 <10 Florett mixture  
Risser et al. 

2011 

QStb.lsa_tb-4D A
b 

P 4D Xgwm0129 <10 Tuareg mixture  
Risser et al. 

2011 

QStb.lsa_fb-5B A
b 

P 5B XwPt-4577 <10 Biscay mixture  
Risser et al. 

2011 

QStb.lsa_af-5B A
b 

P 5B Xpsr574 <10 Arina mixture  
Miedaner et 

al. 2012 
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Tab. 2 continued 

 

a
 phenotypic variance explained not indicated by the authors 

b 
infection with an isolate mixture in the field solely in the adult plant stage  

c 
seedling stage: IPO323 and Risø97-86; adult plant stage: isolate mixture 

d
 discrete scale; taking lesion color, size and pycnidia density under consideration 

 

The first gene-for-gene relationship has been identified between the cultivar Flame 

and the Dutch M. graminicola isolate IPO323 (Brading et al. 2002). Stb5 was the first 

gene mapped with a single isolate in a synthetic hexaploid line on chromosome 7DS 

providing resistance to a broad-spectrum of M. graminicola isolates (Arraiano et al. 

2001a; b) on the global scale (Ghaffary 2011) but was not introduced into a 

QTL name A / 
S 

Disease 
para-
meter 

Chromo-
some 

position 

Closest 
marker(s) 

Phenotypic 
variance 
explained 

(%) 

Resistance 
source 

Fungal 
material 

Stb 
candi-
date 
gene

 

Reference 

QStb.risø-6B.1 S N 6BS M48/P32-112 10-20 Senat IPO323  
Eriksen et 
al. 2003 

QStb.risø-6B.2 S,A N, P 6BC 
Xwmc397, 
Xwmc341 

>60 Senat 
Risø97-86; 
mixture 

 
Eriksen et 
al. 2003 

QStb.ipk-6B S P 6BS Xksuh4b 20-30 
W7984 

(Synthetic) 
IPO92067; 
IPO93014 

 
Simón et al. 

2004a 

QStb.psr-6B-1 A P 6B StaMct.200A 20-30 Riband 
IPO94269 ; 
IPO98011; 
IPO290 

 
Chartrain et 

al.2004b 

QStb.lsa_tb-6B A
b 

P 6B XwPt-6286 10-20 Tuareg mixture  
Risser et al. 

2011 

QStb.lsa_fb-6D A
b 

P 6D Xcfd0013 10-20 Florett mixture Stb18 
Risser et al. 

2011 

QStb.lsa_af-6D A
b 

P 6D Xgdm14 <10 Arina mixture  
Miedaner et 

al. 2012 

TmStb1 S P 7A
m 

Xbarc174 >60 
MDR043 
(Einkorn) 

IPO323 Stb3 
Jing et al. 

2008 

QStb.lsa_fb-7A A
b 

P 7A Xbarc0108 <10 Florett mixture Stb3 
Risser et al. 

2011 

QStb.risø-7B A
b 

P 7B M49/P11-229 10-20 Senat mixture Stb8 
Eriksen et 
al. 2003 

QStb.ipk-7B A
b 

P 7BL Xksud2a 10-20 
W7984 

(Synthetic) 
IPO93014 Stb8 

Simón et al. 
2004a 

QStb.lsa_tb-7B A
b 

P 7B Xwmc0517 10-20 Tuareg mixture  
Risser et al. 

2011 

QStb.ipk-7D1
a 

S N,P 7DS Xgwm0111 NA 
‘CS’ 

(T.a.s.7D) 
FALP0103 

Stb4, 
Stb5 

Simón et al. 
2010 

QStb.ipk-7D2
a 

A N,P 7DS Xgwm1220 NA 
‘CS’ 

(T.a.s.7D) 
FALP0103  

Simón et al. 
2010 

QStb.psr-7D-1 S P 7DS 
Xcdo475b, 
Xswm5 

10-20 Arina IPO92006  
Arraiano et 
al. 2007a 

QStb.lsa_fb-7D A
b 

P 7D XwPt-7842 <10 Biscay mixture  
Risser et al. 

2011 

not named S P 7DS Xgwm111 20-30 Apache 
IPO98046; 
IPO98022 

Stb4 
Ghaffary et 

al. 2011 

not named S P 7DL wPt-1859 <10 Apache IPO89011  
Ghaffary et 

al. 2011 
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commercial cultivar. Since now mapping of isolate-specific Stb genes progressed and 

molecular markers linked to Stb genes were identified. In 2004 the previously 

identified genes Stb1 to Stb4 were mapped by Adhikari et al. (2004a-c). Map location 

of Stb3 was revised from chromosome 6D to 7A after validation in different wheat 

populations (Goodwin et al. 2008). Recently, Stb2 was relocated from chromosome 

3B to 1B, where also Stb11 has been mapped. It is not clear yet if Stb2, Stb11 and 

QTL mapped on chromosome 1B (see Tab. 2) are different but closely linked, allelic 

or the same gene (Liu et al. 2013). Stb6 first described by Brading et al. (2002) was 

identified in a wide range of cultivars and is one of the most widespread Stb genes in 

Europe (Arraiano and Brown 2006; Brown et al. 2001). Subsequently Stb7 to Stb15 

were mapped in segregating populations of commercial cultivars, synthetic wheats 

and breeding lines with advanced STB resistance like Kavkaz-K4500 L.6.A.4 

(KK4500) and TE9111. More recently Stb16q, the first Stb gene exhibiting a 

quantitative resistance response, and Stb17, the first Stb gene specifically expressed 

in the adult plant stage, were identified both in a synthetic hexaploid wheat line with 

single isolates (Ghaffary et al. 2012). Stb18 was mapped in the French winter cultivar 

Balance conferring resistance to five M. graminicola isolates (Ghaffary et al. 2011).  

Parallel to the identification of isolate-specific Stb genes sources for quantitative 

disease resistance were detected with quantitative trait loci (QTL) mapping 

approaches (Tab. 2). In comparison to complete resistance contributed by most 

isolate-specific Stb genes, quantitative resistance is incomplete and conditioned 

usually by multiple genes with small effects that can interact with the environment 

and each other (Doerge 2002). In terms of STB, quantitative resistance is 

characterized by a reduction of disease development and fungal dispersion in the 

plants. To find loci for quantitative disease resistance in a segregating population, 

associations between molecular marker genotypes and trait phenotypes are 

calculated statistically (Doerge 2002). Phenotypic variance (VP) within a population is 

the result of genetic variance (VG) and environmental variance (VE). The relationship 

can be summarized as follows (Falconer and Mackay 1996; Lynch und Walsh 1998): 

VP = VG + VE 

Due to polygenetic inheritance of quantitative traits a QTL explains only a part of the 

genetic variance, even when no environmental interaction exists. Phenotypic 

variance of a QTL usually ranges between a few percent and more than 60 %. A so 

called major QTL generally accounts for 20-25 % or more of the phenotypic variance 

explained (Mackay et al. 2009). Separation of QTL and Stb genes is often not 



 

General introduction 

22 

unambiguous. Detected QTL are often found in regions where Stb genes have been 

identified (Tab. 2). Recent changes in the nomenclature of Stb genes approved the 

addition of a “q” as a suffix where phenotypic data do not unequivocally show that a 

single gene underlies resistance (Ghaffary et al. 2012).  

Until now 41 QTL conferring resistance to STB are described in the literature (Tab. 

2). Phenotypic variance explained by each QTL was below 10 % (13 QTL), between 

10 and 20 % (12 QTL), between 20 and 30 % (8 QTL), more than 60 % for 6 QTL 

and for 2 QTL no details were available. With the inoculation of locally adapted 

isolate mixtures in the adult plant stage, a high number of QTL were detected, each 

explaining only a small part of the phenotypic variance (Eriksen et al. 2003; Miedaner 

et al. 2012; Risser et al. 2011). But also isolate-specific resistance is controlled by 

quantitative loci explaining 30 % or less of the phenotypic variance (Eriksen et al. 

2003; Simón et al. 2004a; Chartrain et al. 2004b; Arraiano et al. 2007a; Zwart et al. 

2010). Also in Einkorn (T. monococcum), an ancestor of hexaploid wheat, a source 

for STB resistance located on chromosome 7Am has been identified (Jing et al. 

2008). Its chromosomal location is in accordance to Stb3 in hexaploid wheat 

(Goodwin et al. 2008). In studies on synthetic hexaploid wheat Stb8, Stb16q, Stb17, 

Stb5 and five QTL were identified (Tab. 1 and 2). Substitution lines with synthetic 

wheat also implement further sources for isolate-specific resistance on chromosomes 

5A and 5D in Synthetic 6x which have not been further analyzed (Simón et al. 2012). 

Since Stb genes and QTL have been located on each of the three wheat genomes 

and on near all of the seven homologous chromosomes, the three ancestors of 

wheat seem to have their own set of Stb genes (Goodwin and Thompson 2011). 

1.4 Efficacy of Septoria tritici blotch resistance  

Efficacy of a Stb gene has been considered as the capacity to confer resistance to a 

wide range of M. graminicola isolates under artificial inoculation conditions (Ghaffary 

2011) and/or under natural inoculation in the field  (= field resistance) (Arraiano et al. 

2009). Apart from the adult plant specific gene Stb17, all Stb genes were shown to 

assign resistance in the seedling and adult plant stage. Among 94 cultivars those 

carrying Stb5 were most effective against European M. graminicola isolates and 

those carrying Stb15 against a global set of isolates. Cultivars carrying Stb9 and Stb6 

were not effective to the majority of tested French isolates (Ghaffary 2011). In the 

adult plant stage under field conditions among Stb9, Stb6 and Stb15 only Stb6 has 

been associated with a reduction in diseased leaf area in a set of 226 wheat lines 
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and cultivars (Arraiano et al. 2009). Stb6 was in focus of several studies and is after 

Stb15 the most widespread Stb gene in present breeding programs (Brown et al. 

2001; Chartain et al. 2005c; Arraiano and Brown 2006; Ghaffary 2011). Since some 

cultivars carrying Stb6 have been found to be susceptible under field conditions it is 

assumed that Stb6 may also confer partial resistance or is linked to another gene 

conferring partial resistance (Arraiano et al. 2009; Arraiano and Brown 2006; 

Chartrain et al. 2005a). Another way to detect single Stb gene efficacy would be the 

development of near-isogenic lines for each Stb gene in a susceptible background. 

Goodwin and Thompson (2011) began to backcross Stb1-Stb8 in susceptible wheat 

cultivars. However, the presence of additional QTL with minor effects in the Stb gene 

donors induced an erosion of resistance during backcrossing and enhanced the 

needed number of backcrosses.  

In comparison to most Stb genes, a dependency of resistance expression on plant 

development exists for STB resistance QTL (Eriksen et al. 2003). In most cases 

efficacy of an isolate-specific QTL identified in the seedling stage was neither 

validated in the adult plant stage nor under natural inoculation in the field. With one 

exception, Raman et al. (2009) validated the isolate-specific QTL on chromosome 

1BS in the seedling stage in three mapping populations by artificial inoculation in 

field. In contrast, Simón et al. (2004a) could not validate isolate-specific seedling 

resistance in the adult plant stage. Due to the results of a pathogenicity assay, 

Ghaffary (2011) describes a differential response pattern in the seedling and adult 

plant stage depending on the isolate tested. Out of 161 genotype x isolate 

interactions 42 were seedling specific and only 10 adult plant specific. In 109 

interactions no specificity to the plant developmental stage was observed; 28 

interactions showed resistance and 81 susceptibility.  

Most Stb genes confer near-complete resistance; such genes are also termed as R-

genes, only Stb16q shows a quantitative resistance response. When the product of a 

host plant R-gene has recognition specificity for a compound produced by a 

pathogen avirulence (Avr) gene, disease resistance is observed. But Avr-genes tend 

to mutate, especially when sexual recombination takes place during the vegetation 

period like in M. graminicola populations. Host plants are disabled to recognize the 

pathogen and can be infected. This effect is described as R-gene lost of efficacy (St. 

Clair 2010).  

Such lost of efficacy has been taken place with Stb4 in the year 2000 in parts of the 

USA (Jackson et al. 2000). STB resistance of cultivar Gene, carrying Stb6 (Chartrain 
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et al. 2004a) and Stb4 (Cowger et al. 2000), was nearly complete at its release in the 

early 1990s but broke down rapidly. A clear adaptation of M. graminicola isolates to 

two commercial cultivars of which both probably carry Stb4 and one cultivar an 

additional quantitative STB resistance was observed. Resistance of both cultivars 

eroded over years of growing in wide areas. However, at least some of the resistance 

maintained. Quantitative resistance was much more durable than the complete 

resistance of cultivar Gene (Krenz et al. 2008).  

Durable resistance is not certainly accompanied with quantitative genetic inheritance. 

Resistance that remains effective, even when the cultivar possessing it is widely 

grown, was described as durable by Johnson in 1981. Some examples for mono-

genetically inherited durable fungal resistance genes are Mlo against powdery 

mildew in barley; rym4/rym5 conferring resistance to Barley mild mosaic virus and 

Barley yellow mosaic virus type 1; Lr34 against the three biotrophic fungi leaf rust, 

stripe rust and powdery mildew; Yr36 conferring resistance against stripe rust and 

Pch1; the resistance gene against eyespot on wheat. Lr34 and Yr36 express 

incomplete adult plant resistance and have been approved to be single genes due to 

cloning and sequencing approaches (Miedaner and Korzun 2012). In summary, 

quantitative disease resistance can also be inherited by single genes. Stb16q 

conferred resistance to two M. graminicola isolates explaining 60 % and 30 % of the 

phenotypic variance in the seedling and in the adult plant stage, respectively 

(Ghaffary et al. 2012).  

Until now only Stb1 can be regarded as durable because it provided resistance to 

cultivars grown over a wide range in area and time. None of the other Stb genes 

have been proven to be durable because either they haven’t been used successfully 

in breeding programs or commercial cultivars were not grown over a longer time 

period or finally broke down (Stb4). The highly resistant breeding lines KK4500 and 

TE9111 carry at least four (Stb6, Stb7, Stb10, Stb12) (Chartrain et al. 2005a) and 

three (Stb6, Stb7, Stb11) (Chartrain et al. 2005b) Stb genes, respectively and also 

unknown isolate-specific resistance. However, these breeding lines have not been 

introduced in the commercial market to show whether pyramiding genes is also 

successful in the term of durability. Quantitative isolate non-specific resistance seems 

to be worthwhile to select on and was successful for resistance breeding against 

powdery mildew in wheat (Miedaner and Korzun 2012).  

For all 18 Stb genes closely linked molecular markers are available (Tab. 1) and 

might be used for marker assisted breeding purposes. But in most instances these 
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markers are not feasible in elite breeding material (Miedaner and Korzun 2012) and 

their use is restricted due to adaptation processes of the fungal populations (Cowger 

et al. 2000).  

1.5 Phenotyping of Septoria tritici botch resistance 

The availability of molecular marker data and beyond considering the next generation 

sequencing techniques, the disentanglement of the genome proceeds continuously 

(Berkman et al. 2012). Admittedly, adequate phenotyping techniques are missing 

especially when traits are difficult to determine like disease infestation (Tester and 

Langridge 2010). Studying STB resistance has been undertaken on different levels 

considering plant age (seedling, adult plant), plant structure (single leaf, single plant, 

and canopy) and plant environment (petri dish, growth chamber, greenhouse, and 

field). For artificial inoculation blastospores of single isolates or mixtures of isolates 

with known virulence structure were sprayed on the plants (Kema et al. 1996a). 

Under field conditions the natural occurring fungal population was utilized for STB 

infection (Arraiano et al. 2009). More often mixtures of diverse M. graminicola 

isolates, more or less adapted to a specific environment, were sprayed in field trials 

to test STB resistance (Jackson et al. 2000). The advantages of seedling tests in the 

greenhouse in comparison to adult plant tests or field trials are obvious. More 

genotypes can be scored on a smaller area in a shorter time period, in subsequent 

experiments, as no vernalization is required yielding in quick results. To ensure a 

sufficient infection process seedlings have to be kept in the dark at near 100 % 

humidity for 48 h after inoculation. Afterwards a day/night rhythm with a moderate 

light intensity for 16 hours, a temperature regime of 18/22 °C and a humidity of 70 % 

is utilized. Usually the first leaves are inoculated and STB symptoms are scored 21 

dpi (Kema et al 1996a). Also detached seedling leaf assays exist (Arraiano et al. 

2001a) but are difficult to handle and need a good touch of the experimenter.  

The long symptomless phase is a bottleneck in STB resistance analysis. In 

comparison, leaf rust (Puccinia triticina) takes only two weeks for symptom 

development (Singh 1992). To overcome this effect Adhikari et al. (2004d) developed 

a fluorescence real-time PCR assay to quantify fungal biomass in the leaves. Already 

12 – 15 dpi fungal biomass quantity differed between resistant and susceptible 

cultivars. But this method has not become a standard for STB phenotyping because 

it is too expensive and laborious (Goodwin and Thompson 2011).  

Symptoms of STB are necrotic blotches on which the typical black pycnidia are 
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formed (Kema et al. 1996a). Pycnidia formation is conditioned on cell collapse but 

not necessarily on necrotic tissue (Kema and van Silfout 1997). As necrosis reduces 

the leaf area for assimilation and the pycnidia are responsible for disease dispersion 

both parameters are scored as leaf area covered with necrosis and necrotic leaf area 

bearing pycnidia on a quantitative scale. Additionally, disease development can be 

assessed by scoring necrotic leaf area and pycnidial coverage several times starting 

with 18 dpi to calculate of the area under the disease progress curve (AUDPC) 

(Chartrain et al. 2004b, 2005c). Both disease parameters are suggested to be under 

different genetic control (Kema et al. 1996a; b), as proven by Ghaffary et al. (2011) 

who found isolate-specific QTL which control either necrotic leaf area or pycnidial 

coverage. However, in some studies only pycnidial coverage (Chartrain et al. 2005a-

c; Arraiano et al. 2007a; Arraiano and Brown 2006; Ghaffary et al. 2012) or necrotic 

leaf area (Simón et al. 2001) was scored. To describe the level of sporulation as 

quantitative character of STB infection the amount of pycnidia in necrotic lesions was 

scored as pycnidia density (Cowger et al. 2000; Adhikari et al. 2003; Raman et al. 

2009) which correlated strongly with pycnidial coverage (Adhikari et al. 2003). 

Adhikari et al. (2003; 2004a-c) calculated a disease index by multiplying scores of 

pycnidial coverage and density. But no genetic basis for pycnida density has been 

identified yet (Adhikari et al. 2003; 2004a). Likewise pycnidial coverage and necrotic 

leaf area are interrelated more (Brown et al. 2001; Simón et al. 2010) or less 

(Chartrain et al. 2005b) with an underlying isolate-specificity (Simón et al. 2010; 

Ghaffary et al. 2012). As the dimension of necrotic leaf area is also influenced by 

environmental factors during the experiment, pycnidial coverage provided the most 

efficient data for mapping STB resistance (Ghaffary et al. 2011). 

Under epidemiological aspects the period between inoculation and symptom 

appearance (latency period) seems to be crucial. Ghaffary et al. (2011b) determined 

additionally to the quantitative scoring of necrotic leaf area and pycnidial coverage in 

the seedling stage the latency period of both parameters. QTL with minor effects on 

the observed traits were detected on chromosomes 5A and 2B.  

To understand the T. aestivum - M. graminicola pathosystem holistically, adult plant 

tests are needed because specificity of resistance to plant developmental stages has 

been observed (Kema et al. 1996c, Ghaffary et al. 2012). Adult plant resistance was 

studied either on single plants in the greenhouse (Adhikari et al. 2004a; Simón et al. 

2001), in the field (Simón et al. 2004b) or in outside polytunnels (Chartrain et al. 

2004b; Arraiano et al. 2001b). STB resistance on the canopy level was scored in field 
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plots (Brown et al. 2001; Somasco et al. 1996; Miedaner et al. 2012). Field 

inoculations were conducted after the flag leaves had been fully unrolled with 

additional sprinkler irrigation (Ghaffary 2011) or at a cloudy day with high humidity 

(Risser et al. 2011) to ensure the infection. 

In field experiments pycnidial coverage and necrotic leaf area are more difficult to 

distinguish than in the seedling tests. With the presence of other diseases (Arraiano 

et al 2009) or early senescence (Brown et al. 2001) necrotic leaf area cannot be 

determined confidently. Most field experiments assessed only disease severity of 

STB symptoms on the flag leaf (STB lesions) (Ghaffary et al. 2012; Eriksen et al. 

2003). Only Brown et al. (2001) distinguished between pycnidial coverage and 

necrotic leaf area. In studies of isolate-specific adult plant resistance also natural 

inoculation should be accounted for in order to separate it from the isolate-specific 

reaction. 

Disease escape occurs when a susceptible host does not become infected even 

under favorable environmental conditions because of separation from the present 

virulent pathogen by space or time (Agrios 2005). The advantage of artificial field 

inoculation is that disease escape like plant height and heading date can be avoided 

albeit its right accomplishment is crucial for confidential results. Especially in 

populations segregating for disease escape artificial inoculation has to be timed 

according to the particular maturity of each genotype (Adhikari et al. 2004a; Ghaffary 

et al. 2011). More difficult is the separation of disease escape and STB resistance in 

field experiments with natural inoculation of the locally occurring M. graminicola 

population. Assuming that asexual pycnidiospores are mainly dispersed via rain-

splash in the canopy (Ponomarenko et al. 2011), taller plants tend to be more 

resistant because higher leaf levels have to be climbed up by the fungus. Earlier 

cultivars tend to be more diseased because the flag leaf which amounts for the main 

assimilate production is affected by a longer time period than later heading cultivars 

(Shaw and Royle 1993). Both, plant height and heading date, may influence STB 

resistance but follow independent segregation patterns (Somasco et al. 1996; Arama 

et al. 1999; Simon et al. 2005) and must therefore considered as disease escape. 

The possibility of artificial inoculation in the field should equal effects of plant height 

and heading date when the flag leaves are treated. But even in studies with repeated 

artificial inoculations, correlations to either plant height or heading date or both 

parameters occurred (Eriksen et al. 2003; Arraiano et al. 2006; Schilly et al. 2011). 

Such relationships to morpho-physiological traits might be due to environmental 
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factors like humidity at inoculation and subsequent weather conditions. 

Epidemiological factors like development stage at inoculation and effects of spore 

accumulations on early genotypes through repeated inoculation events are known to 

be problematic at Fusarium head blight resistance studies (Mesterhazy et al. 1978). 

Furthermore, the natural infection may establish better on semi-dwarf genotypes and 

falsify the results of an artificial inoculation. Arraiano et al. (2009) observed the 

contribution of disease escape traits plant height, leaf spacing, leaf morphology and 

heading date to STB resistance on more than 200 wheat lines under natural infection 

in the field. The authors supported a positive correlation between plant height and 

STB resistance previously identified in several studies (van Beunigen and Kohli 

1990; Simon et al. 2004b; 2005). The presence of different Rht genes influences STB 

resistance. Wheat lines carrying Rht-D1b (former Rht2) were found to be more 

resistant than lines carrying Rht-B1b (former Rht1) (Baltazar et al. 1990). In 

conclusion correlations of STB resistance and plant height dependent on the 

absolute maximum and the range between maximum and minimum value for plant 

height as well as the presence of Rht genes but without any genetic linkage or 

pleiotropy to STB resistance (Simón et al. 2012).  

Another difficulty in identifying sources for STB resistance is to classify a phenotype 

as susceptible or resistant. Due to the quantitative character of STB symptom 

development, the presence of several possible symptom characteristics (necrotic leaf 

area, pycnidial coverage, pycnidial density) and numbers of experimental methods 

(seedlings, detached leaves, single adult plants, field trials) it is not easy to keep 

comparability of phenotypic classes as long as no consistent methodology has been 

stated (Arraiano and Brown 2006; Ghaffary 2011). Phenotypic classes were often 

chosen arbitrary (Adhikari et al. 2004c; Brading et al. 2002) or according to different 

rating scales (Rosielle 1972; Zwart et al. 2010). The chosen phenotypic classification 

did not match consequently the allelic segregation of the associated markers 

(Adhikari et al. 2003; 2004a-c) what is also known as phenotyping versus genotyping 

problem (Dowell et al. 2010). In QTL mapping approaches no need for phenotype 

classification exists. In STB resistance studies the assumption of normal distributed 

phenotypes is often violated. For example when a spike in the phenotype distribution 

occurs or the normal-distribution is skewed (Zwart et al. 2010; Eriksen et al. 2003) 

and data cannot be transformed (Risser et al. 2011). However, statistical models exist 

to overcome these difficulties (Broman 2003).  
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1.6 Aims and key aspects 

The scope of this thesis was the identification of qualitative and quantitative 

resistance sources in the winter wheat doubled haploid population Solitär x Mazurka 

by a QTL mapping approach.  

Solitär has shown the highest STB field resistance among registered German 

cultivars (Anonymous 2009) with high stability of resistance over time (Schilly et al. 

2011). Its resistance has a quantitative character at which disease is reduced but not 

completely absent. For the genetic analysis of STB resistance a doubled haploid 

population derived from a cross between Solitär - late heading, tall, outstanding field 

resistance to several diseases - and the STB susceptible Hungarian cultivar Mazurka 

– early flowering, short, highly tolerant to drought and frost - was established.  

In Chapter 2.1 the parents of the Solitär x Mazurka doubled haploid population were 

screened for STB resistance in the seedling stage with a worldwide set of 30 different 

M. graminicola isolates to identify such which differentiate the parental genotypes. In 

assessment of disease severity, pycnidial coverage and necrotic leaf area were 

distinguished to detect differences in the inheritance of both traits. The objectives 

were (i) to analyze resistance response of the doubled haploid lines to the selected 

fungal isolates (ii) to map QTL for isolate-specific STB resistance and (iii) to calculate 

QTL x QTL interactions to reveal a complete view on the genetic architecture of 

seedling resistance. Furthermore, molecular markers utilizable for marker assistant 

selection should be identified. 

In Chapter 2.2 inheritance of STB resistance under natural infection conditions was 

observed in a multi-environmental field trial. The influence of plant height and 

heading date, which are known disease escapes, should be determined. The 

objectives were (i) to analyze field resistance of the doubled haploid lines in a multi-

environmental field trial (ii) to map QTL for STB field resistance and QTL x 

environment interactions under consideration of disease escape and (iii) to 

investigate the effectiveness of the in Chapter 2.1 identified isolate-specific QTL in 

the field.  
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2 Original Papers 

2.1 The genetic architecture of seedling resistance to Septoria tritici blotch in the 

winter wheat doubled-haploid population Solitär x Mazurka 

 

Published in:  
Molecular Breeding 29:813-830 in 2012 

 

Christiane Kelm, S. Mahmod Tabib Ghaffary, H. Bruelheide, Marion S. Röder, Sebastian 

Miersch, W. Eberhard Weber, Gert HJ Kema, Bernhard Saal  

Abstract 

Breeding for resistance to Septoria tritici blotch (STB), caused by Mycosphaerella 

graminicola (anamorph: Septoria tritici), is an essential component in controlling this 

important foliar disease of wheat. Inheritance of seedling resistance to seven worldwide 

pathogen isolates has been studied in a doubled haploid (DH) population derived from a 

cross between the field resistant cv. Solitär and the susceptible cv. Mazurka. Multiple 

quantitative trait locus (QTL) mapping revealed major and minor genetic effects on resistance 

as well as several epistatic relationships in the seedling stage. Solitär conferred resistance to 

isolate IPO323, governed by Stb6 on chromosome 3A, as well as to IPO99015, IPO92034, 

Hu1 and Hu2 controlled by a QTL on chromosome arm 1BS, possibly corresponding to Stb11 

and minor QTL on chromosomes 1B, 3D, 6B and 7D. Resistance of Mazurka to IPO90015 

and BBA22 was caused by a QTL located in a region on 4AL which harbours Stb7 or Stb12. 

QTL specific to pycnidial coverage on 3B and specific to necrosis on 1A could be discovered 

for isolate IPO92034. Pairwise epistatic interactions were reliably detected with five isolates. 

Although their contributions to the total variance are generally low, the genotypic effect of the 

QTL by QTL interaction of 4AL (Stb7 or Stb12) and 3AS (Stb6) made up almost 15% of 

disease expression. Altogether, the results suggest a complex inheritance of resistance to 

STB in the seedling stage in terms of isolate-specificity and resistance mechanisms, which 

bear implications for marker-assisted breeding in an attempt to pyramid STB resistance 

genes. 

 

Keywords 

Triticum aestivum; Mycosphaerella graminicola; Septoria tritici blotch; resistance; QTL; 

epistasis 
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2.2 Inheritance of field resistance to Septoria tritici blotch in the wheat doubled-

haploid population Solitär x Mazurka 

Published in: 

Euphytica 194:161-176 in 2013 

 

Christiane Kosellek, Klaus Pillen, James C. Nelson, W. Eberhard Weber, Bernhard Saal  

Abstract 

Breeding for field resistance to Septoria tritici blotch (STB), caused by Mycosphaerella 

graminicola (anamorph: Septoria tritici) is the most suitable strategy for controlling this 

important disease of wheat. Although many Stb genes for resistance to single pathogen 

isolates have been identified in wheat, knowledge of their efficiency against natural fungal 

populations is lacking. In a quantitative-trait-locus (QTL) mapping approach in six 

environments and four locations, field resistance to STB was studied in a doubled-haploid 

population derived from a cross between the field-resistant cultivar Solitär and the 

susceptible cultivar Mazurka. After plant height as a disease escape trait was accounted for, 

five QTL with effects on STB resistance on chromosomes 5A, 6D and 7D explained 20% of 

the genotypic variance, while QTL x environment interactions were minor. Field resistance 

was conferred exclusively by alleles from Solitär, which was previously shown to carry the 

isolate-specific genes Stb6 and Stb11 as well as minor QTL detected with seven fungal 

isolates. Surprisingly, neither the Stb6 nor Stb11 isolate-specific genes nor minor QTL 

previously detected in Solitär were found to be involved in its field resistance. The study 

suggests that resistance breeding for STB should not rest solely on the deployment of Stb 

genes. Field tests are indispensable to show their efficacy and durability and to identify genes 

of partial field resistance to STB.  

Keywords: Triticum aestivum, Septoria tritici blotch, Mycosphaerella graminicola, field 

resistance, QTL  
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3 General discussion and future prospects 

3.1 The genetic architecture of Septoria tritici blotch resistance in the Solitär x 

Mazurka doubled haploid population 

Resistance that remains effective, even when the cultivar possessing it is widely grown, was 

described as durable by Johnson in 1981. Solitär is, since its release in 2004, the most 

resistant winter wheat cultivar in Europe with a stable STB resistance response over years 

and locations (Schilly et al. 2011). Solitär and the STB susceptible cultivar Mazurka showed 

isolate-specific STB resistance in the seedling stage. To verify identified isolate-specific 

resistances the Solitär x Mazurka doubled haploid population was developed, and at first 

covered with 178 SSR and AFLP as well as one phenotypic marker (Chapter 2.1). To 

increase genome coverage the genetic map was augmented with 512 DArT markers, 

altogether the entire map comprised 779 molecular markers (162 SSR, 512 DArT and 105 

AFLP) ) and one phenotypic marker for awnedness (Chapter 5; Fig. A1). A high number of 

DArT markers tended to cluster along chromosomes. These markers could not be ordered 

accurately, given the single recombination event taking place in a doubled haploid line and 

the limited number of lines. We accordingly used a reduced map for QTL analyses; this 

comprised 252 molecular markers (120 SSR, 95 DArT, 37 AFLP loci) and one phenotypic 

marker. In the course of the augmentation with DArT markers the previously identified 

isolate-specific QTL for STB resistance (Chapter 2.1) were re-evaluated (Chapter 5, Tab. 

A1). To determine the efficacy of identified isolate-specific resistance against the natural M. 

graminicola population the doubled haploid population was analyzed in a multi-environmental 

trial. Under consideration of plant height as disease escape, only Solitär was identified to 

carry STB field resistance loci (Chapter 2.2, Tab. 3). Genetic regions with effects on isolate-

specific resistance in Solitär did not fit field resistance QTL (Fig. 7). Until now this is the first 

report of genetic inheritance of isolate-specific resistance and field resistance against STB in 

Solitär.  
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Fig. 7 Location of Septori tritici blotch field and seedling resistance QTL in the genetic map of the 
Solitär x Mazurka doubled haploid population and known Stb genes on the respective chromosomes. 
Isolate-specific QTL for pycnidial covered leaf area (unfilled bars) and necrotic leaf area (textured 
bars) were detected with seven single isolates in the seedling stage. LOD profiles of QTL detected in 
six locations in the field with and without plant height as a covariate. Horizontal lines indicate 
significance thresholds of P = 0.05 and P = 0.1 (dotted line). Locations of QTL for plant height and 
heading are drawn as filled bars. Bar size indicates 1.5-LOD support interval.  
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Solitär carries two isolate-specific QTL on chromosomes 3A and 1B which can be attributed 

to Stb genes; and quantitative disease resistance on chromosomes 3B, 6B, 3D and 4B. QTL 

confer either specific resistance against pycnidia formation (3B), necrotization of leaf area 

(4B) or both disease parameters (3A, 1B, 3D, 6B) (Chapter 5, Tab. A1). QTL with specificity 

to plant development were identified previously (Eriksen et al. 2003; Ghaffary et al. 2012) and 

indicate different operation modes of resistance.  

The phenotypic distribution pattern in resistance to IPO323 for both pycnidial coverage and 

necrotic leaf area showed a clear peak of resistant genotypes what implies the action of a 

single gene (Chapter 5, Fig. A2). The QTL on the short arm of chromosome 3A linked to 

Xgwm369 can be assigned to Stb6, one of the most frequent Stb genes in European 

germplasm (Brown et al. 2001). Stb6 confers seedling and adult plant resistance to IPO323 

as well as resistance in the field against the natural occurring M. graminicola population 

(Arraiano et al. 2009). The QTL identified on the short arm of chromosome 1B can either be 

Stb11, allelic to Stb11 or a different unknown Stb gene. Recently Stb2, first identified in 

cultivar Veranopolis and mapped on chromosome 3B (Adhikari et al. 2004a), has been 

relocated to the short arm of chromosome 1B (Liu et al. 2013). Whether Stb2, Stb11 and 

further QTL identified in the same genomic region on 1BS (Raman et al. 2009; Ghaffary et al. 

2011) refer to the same gene is not clear yet. Each Stb gene or QTL has been detected in 

different mapping populations with different M. graminicola isolates and due to a paucity of 

shared molecular markers it is impossible to draw a clear conclusion. Resistance response of 

Stb2 seems to be recessively inherited (Goodwin and Thompson 2011). Stb11 and Stb2 both 

have been identified in DH populations where dominance has been assumed (Chartrain et al. 

2005b; Adhikari et al. 2004b). A simple replication of the original cross which segregated for 

Stb11 would shade light on the respective inheritance pattern. A recessive inheritance of 

Stb11 will be expected when the F1 generation would be susceptible and the F2 generation 

would segregate into a 1 (resistant lines) : 3 (susceptible lines) phenotypic ratio. Liu et al. 

(2013) stated that the “quantitative character” of Stb11 explaining 50 % of the phenotypic 

variance in the seedling stage (Chartrain et al. 2005a) could be used to discriminate Stb2 

from Stb11 and further QTL on 1BS. Resistance response of Stb2 differentiated clearly in 

resistant and susceptible phenotypes in the adult plant stage (Liu et al. 2013). QTL on 1BS 

explained 90 % of the phenotypic variance in the seedling but only 38 % in the adult plant 

stage in three mapping populations with a single M. graminicola isolate (Raman et al. 2009). 

The QTL identified by Ghaffary et al. (2011) wth isolate IPO87016 in the seedling stage 

explained > 60 % of the phenotypic variance (Chapter 1, Tab. 2). The QTL on chromosome 
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1B identified in Chapter 2.1 was only detected in the seedling stage but with four different M. 

graminicola isolates (IPO99015, IPO92034, Hu1 and Hu2). In the Solitär x Mazurka doubled 

haploid population the phenotypic effect varied with the isolate from 14 % (Hu1) to 69 % 

(IPO99015) (Chapter 5, Tab. A1). The right-skewed phenotypic distribution of resistance 

response against IPO92034 indicates the activity of multiple loci. In the presence of multiple 

loci, phenotypic variance explained by each single QTL is lower in comparison to the activity 

of a unique QTL. However, continuously distributed phenotypes are not necessarily the 

consequence of the action of multiple loci. Unfavorable environmental conditions during 

disease development might influence resistance response of the doubled haploid lines 

differentially. This was suspected for resistance against the Hungarian isolate Hu1 where a 

continuous phenotypic distribution was detected. Common pathogenicity analyses of the 

single isolates on the segregating populations previously utilized to identify resistance on 

chromosome 1B are required to differentiate Stb11, Stb2 and QTL on 1BS.  

Environmental conditions were shown to influence resistance expression in the seedling 

stage and thereby decrease the proportion of phenotypic variance explained (St. Clair 2010). 

Besides Solitär also the susceptible parent Mazurka, showed isolate-specific resistance to 

single M. graminicola isolates in the seedling stage. Mazurka carries one isolate-specific QTL 

on chromosomes 4A which can either be attributed to Stb7 or Stb12 and quantitative disease 

resistance on chromosomes 1A, conferring specific resistance against necrotization of leaf 

area (Chapter 5, Tab. A1). Resistance response of Stb7/Stb12 against IPO90015 explained 

50 % of the phenotypic variance. At the same chromosomal location on 4AL resistance 

against the German isolate BBA22 and the Dutch isolate IPO323 has been identified. Like 

resistance responses of the doubled haploid lines to Hu1 and Hu2, unfavorable conditions 

during disease development of BBA22 might increase environmental influence and decrease 

phenotypic variance explained by Stb7/Stb12. In response to IPO323 the QTL on 

chromosome 4A was hypostatic to Stb6 on chromosome 3A. The effect of Stb7/Stb12 was 

masked by Stb6; only in genotypes where Stb6 was not present, activity of Stb7/Stb12 has 

been recognized. In comparison to genotypes which carried the Solitär allele on 4A and the 

Mazurka allele on 3A, genotypes which carried on both loci the Mazurka allele showed a 

decrease in mean pycnidial coverage. Hereby, the single effect of Stb7/Stb12 was not 

unambiguously distinguishable from the interaction effect of Stb7/12 and Stb6. The effect of 

Stb7/Stb12 against IPO323 is rather low whereas resistance response against IPO90015 

shows a qualitative character (Chapter 2.1). An epistatic effect of Stb6 was also recognized 

in the Apache x Balance wheat mapping population in the seedling stage (Ghaffary et al. 
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2011). Stb18, located on chromosome 6D and conferring resistance to four different 

M .graminicola isolates, was found to be hypostatic to Stb6 when inoculated with IPO323.  

Environmental effects during disease development, isolate-specific resistance response and 

the presence of multiple loci which additionally can interact with each other influence the 

phenotypic variance explained by isolate-specific STB resistance QTL. Thus, differentiation in 

minor and major QTL or in QTL and Stb gene is not reasonable when comparing single QTL 

effects. 

In the attempt to explain quantitative disease inheritance one hypothesis indicates, that 

quantitative resistance loci are weak forms of R-genes. The co-localization of R-genes and 

loci for quantitative disease resistance gives evidence that allelic variants of R-genes might 

account for a proportion of quantitative resistance. R-genes are defined as single genes 

conferring qualitative complete resistance (Poland et al. 2008). But exceptions of this 

definition exists, like Lr34 and Yr36 which express quantitative resistance and have been 

approved to be single genes due to cloning and sequencing approaches (Miedaner and 

Korzun 2012). Furthermore, mutations in the pathogen might erode effectiveness of R-genes 

and convert a complete resistance response to a quantitative one (Poland et al. 2008). In the 

Solitär x Mazurka doubled haploid population Stb7/Stb12 exhibits a different resistance 

response in dependency of the tested isolate. Likewise, QTL for STB resistance were found 

in the same chromosomal region as known Stb genes (Chapter 5, Tab A1).  

For a holistic few on STB resistance inheritance the Solitär x Mazurka doubled haploid 

population was tested under natural inoculation pressure in six environments (Chapter 2.2). 

One aim was to verify efficacy of previously identified Stb genes and resistance QTL under 

the pressure of locally adapted M. graminicola populations. No Stb gene (Stb6; Stb11/Stb2; 

Stb7/Stb12) or QTL conferring seedling resistance in Solitär and Mazurka were confirmed in 

the field trials. Two reasons which might be responsible for this discrepancy are described. 

First, the Stb genes/ QTL identified in Chapter 2.1 are seedling specific with no effects in the 

adult plant stage. Second, adaptation of the local M. graminicola population induced a lost of 

efficacy of the previously identified isolate-specific Stb genes and QTL in the Solitär x 

Mazurka doubled haploid population.  

Stb6 (Arraiano and Brown 2006, and Stb11/Stb2 (Raman et al. 2009; Liu et al. 2013) were 

effective in both the seedling and adult plant stage. Genotypes carrying Stb6 were shown to 

confer also field resistance (Arraiano et al. 2009). However, effects of Stb6 were not 

consistent and depend strongly on the cultivar. Also Stb2 showed effects on field resistance 
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and was introduced in commercial cultivars (Goodwin 2007). Single isolate efficacy of Stb11 

against the fungal M. graminicola population is not known. To test the Solitär x Mazurka DH 

lines with the selected seven single fungal isolates also in the adult plant stage would give a 

clear answer to the questioned seedling or adult plant specificity of the defected QTL. 

Approaches which try to develop isogenic lines for certain Stb genes in the same genetic 

background are underway (Goodwin and Thompson 2011). These lines will allow testing 

single Stb gene efficacy against local adapted field populations of M. graminicola or against a 

wide range of single isolates. Fungal adaptation can also be confirmed by testing single 

isolates of the local fungal population on a set of wheat cultivars which differ in Stb genes 

(differential set) (Ghaffary et al. 2012). The lost of Stb gene efficacy due to adaptations of M. 

graminicola isolates has been detected for Stb4 (Jackson et al. 2000; Krenz et al. 2008). 

Stb7/Stb12 carried by Mazurka is already not efficient because Mazurka is susceptible to the 

fungal population in field trials in Germany. Solitär, which carries STB field resistance, was 

susceptible to six out of seven single isolates sampled in Germany (Chapter 2.1). This 

implies that also STB resistance of Solitär can get inefficient after a certain period of growing.  

Field resistance of Solitär is quantitative and inherited by five QTL on chromosomes 5A, 6D 

and 7D which, together with the QTL x QTL interactions, explain 20 % of the phenotypic 

variance. Quantitative STB resistance inheritance was also detected in four winter wheat 

populations infected with a mixture of adapted M. graminicola isolates (Miedaner et al. 2012; 

Risser et al 2011). Five QTL explained between 3 and 24 % of the phenotypic variance 

(Miedaner et al. 2012).  

One of the three QTL detected on chromosome 7D had the largest effects on STB resistance 

and were detected in four out of six environments. QTL on chromosomes 5A and 6D were 

only identified in single environments (Chapter 2.2, ESM 2 Fig. 3). Differences in virulence 

spectra of the local occurring M. graminicola populations are expected. However, a relative 

low genetic diversity of the fungal population among fields of the same region is described 

(Linde et al. 2002). Furthermore, the infestations with other diseases like leaf rust or powdery 

mildew could also have altered STB symptom expression in the field trials (Orton 2012; 

Brokenshire 1974).  

The QTL on chromosome 7D is located close to a cluster of Stb genes (Adhikari et al. 2004b; 

Arraiano et al. 2001b) and isolate-specific QTL (Arraiano et al. 2007a; Simón et al. 2010; 

Ghaffary et al. 2011). QTL on chromosome 5A is located close to Stb17 (Ghaffary et al. 

2012), the first named Stb gene expressed specifically at the adult plant stage and the only 
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source for STB resistance on chromosome 5A. Except for Stb18, which is mapped ~ 60 cM 

apart from the QTL for STB field resistance no QTL has been mapped on 6D (Goodwin 2007). 

QTL for STB field resistance in the Solitär x Mazurka doubled haploid population were 

identified while accounting for plant height as a covariate. The influence of heading date was 

excluded as covariate due to the low relationship between STB symptoms and plant 

development. Disease escape is a common phenomenon in STB field trials (Eriksen et al. 

2003; Arraiano et al. 2009). The best procedure is to exclude disease escape e.g. by 

choosing a similar plant height of both crossing partners what let expect only a low variation 

of this trait in the offspring. Solitär and also other sources for STB resistance like the Swiss 

cultivar Arina (Risser 2010) is taller than most of the high yielding but STB susceptible wheat 

cultivars with which a cross is most suitable. The second best option is what has been done 

in this study; to use plant height as source of disease escape as a covariate in the genetic 

analyses of STB resistance.  

A complex genetic architecture of STB resistance inheritance has been identified in the 

Solitär x Mazurka doubled haploid population. Isolate-specific qualitative and quantitative 

resistance sources accounted primarily for seedling resistance in both parents. But isolate-

specific resistance sources detected in the seedling stage were not effective in field 

resistance. While accounting for plant height, superior STB field resistance of Solitär is 

inherited by quantitative resistance sources. Those were only detected in Solitär. Interactions 

between detected Stb genes (solely in the seedling stage) as well as QTL x QTL interactions 

were identified in the seedling tests as well as in the field trials. However, interactions had 

only minor effects on resistance response. Without knowledge of the local M. graminicola 

population no final conclusion of fungal adaptations to Stb genes presented in Solitär are 

possible. A greater number of doubled haploid lines and molecular markers might enhance 

the resolution in mapping quantitative resistance in Solitär.  

3.1  Future prospects in Septoria tritici blotch resistance breeding 

Beyond identification of STB resistance genes/QTL also possible gene functions and 

interactions with other fungal resistance sources should be considered. This knowledge could 

enhance the breeding success. Evidence for isolate-specific gene action in dependence of 

necrosis/pycnidia formation and under epistasis is feasible in STB resistance inheritance 

(Kema et al. 1996a; Ghaffary et al. 2011; 2012). M. graminicola is able to penetrate 

susceptible and resistant hosts, resistance response starts after the fungus has entered the 

plant. M. graminicola seems to overcome the first line plant defense which recognizes basal 
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fungal components like chitin via so called effectors. These effectors again are recognized by 

products of R-genes and trigger an immunity response. In contrast to resistance against 

biotrophic fungi, host-specific toxins function as effectors in necrotrophic fungi. M. 

graminicola is classified as a hemibiotrophic fungus which shows an endophytic-like and a 

necrotrophic growing phase. It is not clear whether M. graminicola produces toxins to 

introduce cell collapse like Stagnospora nodorum (Liu et al. 2004). Resistance to M. 

graminicola concentrates on a deceleration of fungal growth and prevention of pycnidia 

formation (Kema 1996c). Possibly, Stb6 and Stb7/Stb12 are active short after penetration of 

M. graminicola through the stomata, thereby preventing programmed cell death (PCD) and 

slow down fungal growth. The pycnidia-specific QTL on chromosome 3B could interfere at a 

later stage of pycnidia formation and maturation by inhibiting fungal synthesis of reactive 

oxygen species (Shetty et al. 2003).  

Common clusters of resistance genes against STB and biotrophic fungi like yellow rust, leaf 

rust, and powdery mildew are described on chromosomes 1BS (Liu et al. 2013; Bariana et al. 

2002; Schnurbusch et al. 2004) and 7DS (Krattinger et al 2009). IPO323 has been shown to 

hijack plant resistance signaling against biotrophic fungi of a STB susceptible host by 

accelerating PCD (Hammond-Kosack and Rudd 2008; Keon et al. 2007). Biotrophic and 

necrotrophic fungi react differently to PCD; usually biotrophs are inhibited by the 

hypersensitive reaction (HR), whereas necrotrophic pathogens are able to utilize it (Keon et 

al. 2007). To induce susceptibility, host receptors are required which recognize fungal toxins 

and start the immunity response usually applied against biotrophic fungi (Hok et al. 2010). It 

has been shown, that a STB susceptible host infected with dead and unviable M. graminicola 

spores and additionally inoculated with living Blumeria graminis f.sp. tritici spores, reduced 

the colonization with powdery mildew (Orton 2012). Mutation might induce a loss of function 

in the host receptor or toxin sensitivity gene which prevents the recognition process and so 

PCD (Hok et al. 2010). Loss of function of genes for susceptibility will lead to a resistance 

response that inherits recessively like assumed for Stb2 (Goodwin and Thompson 2011). In 

barley, a mutation of the recessively inherited susceptible locus Mlo conferred a durable 

resistance to all races of Blumeria graminis f.sp. tritici (Büschges et al. 1997). In comparison 

to the mlo-derived resistance, Stb2 does not confer resistance to all M. graminicola isolates 

tested but at least to a broad-spectrum of them (Ghaffary 2011). Chromosome 5BS, which 

carries resistance genes against yellow rust and powdery mildew, seems to possess also 

genes, which either promote susceptibility or suppress resistance to STB (Arraiano et al. 

2007b). Genes that response on one hand with resistance to biotrophic fungi and on the 
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other hand with susceptibility against necrotrophic fungi seem to encode similar protein 

pattern as shown for a susceptibility gene in Arabidopsis (Hok et al. 2010; Sweat et al. 2008). 

A mutation in a R-gene against a biotrophic fungus might result in a resistance locus for a 

necrotrophic fungus or in the case of STB, against the necrotrophic growth step of M. 

graminicola. To prove this hypothesis for the Triticum aestivum L. – M. graminicola 

pathosystem the genetic sequences of Stb genes and genes against biotrophic fungi have to 

be compared. Until now no Stb gene has been cloned and sequenced yet. Also not all Stb 

genes are clustered with R-genes for biotrophic fungi. This may be an indication for different 

types of resistance genes against STB. More attention in identification and analysis of 

susceptible genes will certainly improve STB breeding for durable, broad-spectrum 

resistance. But this approach would require a cloning of promising susceptible genes and a 

gene silencing procedure afterwards what is not yet feasible today for STB (Hok et al. 2010).  

Marker-assisted selection (MAS) has been effective for the implementation of large effect 

alleles with known association to a molecular marker in breeding lines (Zhong et al. 2006; 

Miedaner and Korzun 2012). Certainly, for STB resistance and Stb gene pyramidization MAS 

have until now not been feasible. One reason is that available molecular markers linked to 

Stb genes are not useful in different genetic backgrounds (Miedaner and Korzun 2012). 

Knowledge of efficacy of single Stb genes against the natural M. graminicola population 

seems to be crucial before starting MAS and pyramidization approaches (Goodwin and 

Thompson 2011). Furthermore, occurrence of non-additive interactions like they are proven 

for Stb6 and Stb7/Stb12 in this study as well as for Stb6 and Stb18 by Ghaffary et al. (2011) 

have to be considered when combining Stb genes and QTL for STB resistance. Under the 

rapid development of sequencing techniques (Poland et al. 2012) the identification of 

molecular markers linked to Stb genes or QTL seems the less challenging mission in STB 

resistance breeding. Thus, reliable phenotyping methods are getting more and more 

important. Versatile phenotyping methods for STB resistance are available (Chapter 1.5). 

The declaration of a standard method, adjusted for the seedling and adult plant stage, would 

considerably facilitate the identification of new sources for STB resistance.  

STB field resistance of Solitär has shown to be quantitatively inherited by QTL each having 

small effects on resistance response. Using biparental populations to identify such QTL may 

have some disadvantages like missing level of allelic diversity, high costs of population 

generation, small population sizes, need of validation of discovered QTL and usage of 

stringent significance thresholds (Jannink et al. 2010). A promising alternative to use small 

effective QTL in breeding is genomic selection (GS; Meuwissen et al. 2001). Genome-wide 
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marker coverage is utilized to predict genotypic values for quantitative traits. One advantage 

of GS is that there is no need for previous identification and mapping of QTL. Statistical 

methods enable the simultaneous estimation of all marker effects. In comparison MAS 

utilizes only a small number of markers for selection. The frequency of phenotyping events 

can be reduced because selection is based rather on genotypic data than on phenotypic data. 

Corresponding to the development of GS models for adult plant resistance to stem rust 

(Rutkoski et al. 2011), GS models for STB field resistance could be developed. At first a 

population of individuals with variation in STB field resistance would be used for GS model 

training. Isolate-specific seedling resistance of the training population should be known to 

ensure that field resistance can be evaluated without the confounding effects of Stb genes. 

Phenotyping of the training population should be done under high disease pressure and the 

presence of isolates which lead to efficacy lost of existing Stb genes.  

With phenotypic data resistant candidate individuals will be selected and together with 

the genotypic data marker effects will be estimated for the whole training population. By 

combination of marker effect estimates and the marker data of the selection candidates, 

genomic estimated breeding values (GEBVs) will be calculated. A GEBV can be defined as 

the sum of all marker effects included in the model for an individual and used as selection 

criterion. Thus total additive genetic variance is captured with genome-wide marker coverage 

and effect estimates. Once the GS model has been built it can be utilized in the breeding 

material for selection. Using GEBVs for selection of quantitative traits has been proved a high 

accuracy in simulation studies (Meuwissen et al. 2001) as well as in empirical studies of corn 

(Zhao et al. 2012) and wheat (Heffner et al. 2011, Poland et al. 2012).  
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Tab. A1 QTL and QTL-by QTL-interactions for Septoria tritici blotch (means of three experiments) to seven M. graminicola isolates in the seedling stage 
identified in the Solitär x Mazurka doubled-haploid population by multiple QTL mapping  

Isolate Disease 

parameter
a 

QTL /  

QTL pair
b 

Resistance 

Donor
c 

Position(s) 

(cM)
d 

Nearest marker / 

marker pair 

QTL 

Heritability
e 

(%) 

Genotypic 

Effect
f 

(%) 

F-value
 g

 Putative 

gene 

IPO90015 PYC QStb.4AL M 14 Xwmc313 49.4 12.5 166.1  *** Stb7/Stb12 

  QStb.1B.b:QStb.2AL S:M; M:S 102:12 Xgwm820.1B: Xgwm1151 3.2 6.1 10.5  **  

 NEC QStb.4AL M 14 Xwmc313 74.2 25.9 NA  Stb7/Stb12 

IPO323 PYC QStb.3AS S 42 Xgwm369 67.8 19.5 139.3
 h

  *** Stb6 

  QStb.4AL M 18 Xwmc313 14.4 6.4 29.9
 h

  *** Stb7/Stb12 

  QStb.3AS:QStb.4AL S:M 42:18 Xgwm369:Xwmc313 4.8 13.0 20.0
 h

  ***  

 NEC QStb.3AS S 42 Xgwm369 81.7 43.2 276.6  *** Stb6 

  QStb.4AL M 18 Xwmc313 5.2 7.5 17.4  *** Stb7/Stb12 

  
QStb.3AS:QStb.4AL S:M 42:18 Xgwm369:Xwmc313 1.5 13.9 10.5  **  

IPO99015 PYC QStb.1B.a S 66 wPt-5745 68.9 12.7 354.5  *** Stb2/Stb11 

  QStb.3DS S 54 Xgwm1243 4.5 3.5 22.8  ***  

 NEC QStb.1B.a S 66 wPt-5745 66.4 22.0 381.5  *** Stb2/Stb11 

  QStb.3DS S 54 Xgwm1243 8.6 8.7 49.5  ***  

5
 A

p
p

e
n

d
ix
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Tab. A1 continued 

a
  PYC = pycnidial coverage, NEC = necrotic leaf area  

b
 QTL name described by chromosome or chromosome arm; a lower-case character indicates different QTL on the same chromosome 

c
 single QTL allele, QTL-by-QTL interaction allele combination(s) conferring resistance; S = cv. Solitär; M = cv. Mazurka 

d
 QTL position(s) determined by refined MQM analysis  

e
 QTL heritability defined as phenotypic variance explained by the QTL or QTL-by-QTL interaction 

f 
QTL effect was estimated as the difference in the mean between the two homozygous QTL genotypes 

g 
 ** P = 0.01; *** P = 0.001 ; 

h 
estimated single QTL effect and QTL-by-QTL interaction effect 
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 h

  *** Stb14 

  QStb.1B.a S 68 wPt-5745 14.4 5.5 19.2
 h

  *** Stb2/Stb11 

  QStb.6B.a S 76 wPt-3581 10.3 4.1 13.7
 h

  ***  

  QStb.3B:QStb.6B.a S:S 30:76 E35M52_129:wPt-3581 4.0 6.6 10.6
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Fig. A1 Genetic map of the Solitär x Mazurka doubled haploid population covered with 779 molecular markers. Bold and underlined  
markers were used for QTL mapping (Chapter 2.2)  
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Fig. A2 Phenotypic distributions for mean pycnidial coverage (PYC %) and necrotic leaf area 
(NEC %) in the seedling stage (mean of 3 replicates) of Solitär, Mazurka and their doubled 
haploid offspring (IPO isolates: n = 128; Hu1: n=130; Hu2, BBA22: n=131). 
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Fig. A2 continued 
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