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Abstract: The aim of this paper is to present experimental data and the constitutive model for the
inelastic behavior of polyoxymethylene in wide strain rate and temperature ranges. To capture the
non-linearity of the stress responses for both loading and unloading regimes, the composite model
of inelastic deformation is utilized and further developed. The equivalent inelastic strain rate is
described by the Prandtl–Eyring law, while the temperature dependence is characterized by the
modified Arrhenius-type law. Generalized equivalent stress and the flow rule are formulated to
capture pressure sensitivity, transverse strain and volumetric strain responses. The results obtained
by the constitutive law are compared with experimental data for stress vs. axial strain from standard
tension tests as well as with axial and transverse strains measured by digital image correlation. The
developed composite model is able to capture the non-linearity of stress–strain curves for complex
loading paths within the small strain regime. For higher strains, apart from geometrically non-linear
theory, evolution laws for the volume fraction of the constituents should be modified and calibrated.
For the small strain regime, the inelastic dilatation is negligible. For higher axial strain values, a
decrease in Poisson’s ratio under tension and increase in it under compression are observed. The
Drucker–Prager-type equivalent stress and the developed flow rule provide a better description of
both the transverse and volumetric strains than that of the classical von Mises–Odqvist flow rules.

Keywords: polyoxymethylene; rate-dependent inelasticity; composite model; inelastic dilatation

1. Introduction

Polymer materials are widely used in various engineering fields. An important group
of these materials are crystalline polymers, which have especially valuable properties be-
cause of their morphology. As the crystallinity increases, the strength and stiffness values,
as well as the melting point, increase. Polyoxymethylene (POM) belongs to the class of
thermoplastics with crystalline structures. POM is widely applied to high-performance
components, because it exhibits higher stiffness, higher ultimate strength and better creep
resistance than those of other thermoplastics, e.g., polyethylene and polypropylene. The
consumer electronics industry, chemical equipment and mechanical engineering are impor-
tant areas of application [1]. POM is frequently used in metal–plastic joints; for example,
safety-relevant elements for chassis ball joints are made from POM. POM and other ther-
moplastics are frequently used as matrix materials in composites reinforced by short
fibers [2–4].

To reduce expensive prototype tests during design or construction optimization, finite
element analysis of components is usually performed. The key step in structural analysis
is to develop a reliable constitutive model that is able to the reflect basic features of ma-
terial behavior under multi-axial stress and deformation states. Among many available
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approaches, the unified constitutive models provide an accurate description of processes
such as plasticity, creep, stress relaxation, cyclic hardening/softening and ratcheting. Ap-
proaches to develop unified constitutive models are discussed in [5–7], among others. The
main ingredients include the constitutive equation for the inelastic deformation rate tensor
and the evolution equations for internal state variables, for example, the backstress tensor
for kinematic hardening.

For polymers, the unified constitutive models were introduced by [8,9] based on the
overstress concept. Overstress, also called viscous stress, is the difference between the
Cauchy stress tensor and the backstress tensor. The latter is a state variable that enters the
constitutive equation for the inelastic deformation rate and is defined by the evolution
equation. The overstress-type models were applied and calibrated against experimental
data for POM in [10].

Alternatively, rheological models are widely applied to characterize the mechanical
behavior of polymeric materials. In [11], a four-element rheological model is proposed to
describe primary, secondary and tertiary creep stages of POM considering finite strains.
In [12], a six-element rheological model is utilized to describe creep under both static and
cyclic loadings.

Although a variety of approaches are available for modeling POM, most of them
are usually limited to narrow ranges of stresses, strain rates, temperatures and specific
loading paths. For example, the constitutive models presented in [10] are calibrated to
room temperature, while in [12], the creep behavior for the fixed temperature of 60 ◦C is
analyzed. The aim of this study is to analyze experimental data on the tensile behavior of
POM in a wide range of strain rates and temperatures as well as developing a constitutive
model for use in the structural analysis of components. In addition to the previous work,
we address the following problems:

• To analyze the behavior of POM, displacement-controlled tensile tests with load-
ing/unloading regimes under different rates and temperatures are performed, and
families of stress–strain curves for different strain rates and temperatures are gener-
ated.

• Inelastic responses of thermoplastic polymers usually exhibit pressure sensitivity and
inelastic dilatation. To analyze inelastic dilatation, digital image correlation (DIC)
measurements of transverse strains are performed.

• Polymers exhibit non-linear loading/unloading behavior and strain rate sensitivity,
even at room temperature. Although many available constitutive models, for example
rheological models, are able to describe non-linearities under constant and monotonic
loading, predictions of non-linear unloading responses are usually not accurate. In
our study, we apply and develop a composite model of inelastic deformation to
characterize the inelastic behavior of POM for both loading and unloading regimes.

To keep the model assumptions transparent, in this study, small strains in the sense
of geometrically linear theory are assumed. For the small strain regime, the strains in the
uni-axial specimens are uniform over the gage length. Thus, the resulting model can be
applied to the analysis of structures subjected to small local strains.

2. Basic Features of Material Behavior

In the following section, we discuss the basic features of the material behavior based
on our experimental data as well as data from the literature. Strain-controlled tensile tests
were performed on standard DIN EN ISO 527 specimens from POM 01-010 (Delrin 500 NC
10r) for temperature levels of −20 ◦C, 20 ◦C, 40 ◦C, 60 ◦C and 80 ◦C. For each temperature
level, families of stress–strain curves for the four strain rates (0.0001%/s, 0.001%/s, 0.01%/s
and 0.1%/s) up to the maximum strain value of 5% were obtained from tests. In addition,
unloading after reaching the strain value of 1%, with the same absolute value of the strain
rate, was performed. For the selected temperature and strain rate levels, transverse strains
were measured for both loading and unloading regimes by applying DIC.
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Semicrystalline polymers exhibit the significant rate dependence of the tensile behav-
ior. As an example, Figure 1 illustrates stress–strain curves for strain rates of 0.0001%/s,
0.001%/s and 0.01%/s at T = 80 ◦C. The strain rate sensitivity of the flow stress is well
approximated by the exponential function of the strain rate, as illustrated in Figure 1.
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In contrast to metals and alloys, semicrystalline polymers usually show non-linear
behavior under unloading regimes. Figure 2 illustrates two stress–strain curves obtained at
T = 80 ◦C for the constant strain rates of 0.001%/s and 0.1%/s. In addition, loading curves
up to the strain value of 1% and subsequent unloading curves under the same rates are
presented. Significant non-linearity of the unloading regimes, even for the small strains,
are observed. Non-linearity of the unloading curves is enhanced as the maximum strain
increases [10]. Furthermore, the shape of the unloading curves significantly depends on
the rate of unloading. Stress–strain curves for POM, obtained for the same loading rate but
different unloading rates, are presented in [10].
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Figure 2. Loading and unloading stress-strain curves for POM at T = 80 ◦C and different strain rates.

In contrast to metals, the inelastic behavior of polymers is pressure sensitive. Further-
more, change in volume within the inelastic range is usually observed. As shown in [13], for
POM at room temperature, the dilatation attains considerable values at moderate and large



Materials 2021, 14, 3667 4 of 17

axial strains (for the strain values higher than 5%). Furthermore, the Poisson ratio usually
decreases with an increase in the axial strain under tension. For several semicrystalline
polymers, experimental data on transverse strains are presented in [14]. For POM, the
decrease in the Poisson ratio was observed in creep tests. The results of measurements
applying DIC are discussed in [12].

3. Constitutive Model
3.1. Composite Model of Inelastic Deformation

For the basic features of the morphology in crystalline polymers, we refer the reader
to [15]. Figure 3 provides a sketch of the spherulite microstructure and the composition of
individual spherulites.
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As many micro-mechanical simulations show, the stress and deformation states in-
side the spherulites are highly heterogeneous. Indeed, due to the specific structure, the
central zone of the spherulite is more stiff than the remaining part is. After the loading,
stress concentration and localized inelastic flow in the center of spherulite are usually
observed [16,17]. Furthermore, twisted lamellae (Figure 3) are composed of cluster units
including amorphous and crystalline zones with significantly different (elastic and inelastic)
material properties. Micro-mechanical analyses of representative volumes with an ideal-
ized spherulitic microstructure and specific boundary conditions are presented in [16–18],
among others. The results illustrate that inelastic deformation is highly heterogeneous with
different levels of inelastic strains in different microstructural zones. In order to perform
a micro-mechanical analysis, constitutive models for amorphous and crystalline zones,
as well as non-local cohesive models for their interactions, must be specified. Although
the properties of amorphous and crystalline constituents are well known [18,19], the non-
local interaction rules remain under discussion. Furthermore, micro-mechanical models
are computationally expensive and, therefore, not suitable for the structural analysis of
components.

An alternative approach is to develop a composite model (also known as a gener-
alized rheological model or phase mixture model). The basic idea is to approximate the
heterogeneous material as a mixture with two or more components (constituents or phases)
with different material properties. For stress tensors of each component, phenomenological
constitutive equations are formulated. Applying the mixture and interaction rules, the con-
stitutive model of the macroscopic material behavior is developed. The material properties
on the microscale, for example, properties of amorphous and crystalline zones, are not
required. Instead, basic macroscopic tests, e.g., tension, compression and torsion, as well as
tests with loading/unloading regimes, must be performed to generate the experimental
data and to identify constitutive functions and material parameters.

The composite model was originally proposed in [20] to describe elastic, plastic and
creep deformation in a unified manner. Recently, composite models are widely used to
capture the inelastic behavior of many materials under complex loading paths. Examples
of metals and alloys are presented in [21–25], among others. Phase mixture models for
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polymers are applied, for example, in [26–28], where amorphous and crystalline phases are
considered.

To explain the basic idea, let us approximate the heterogeneous deformation of POM
by two constituents. We refer to the constituents as a and b. The constituent a is “soft”
and applied to model soft regions of the material, including lamellae near the boundaries
of spherulite and the amorphous zones. The “hard” constituent is used to characterize
regions close to central parts of spherulite, with higher stiffness and higher resistance
against inelastic flow. Figure 4 qualitatively illustrates the stress responses of hard and soft
constituents during strain-controlled loading and unloading regimes.

5 of 17

0

2

4

-1

0 0.2 0.4 0.8 10.6

ε, %

σ/σ0

exp. data
composite

soft constituent a

hard constituent b

T = 80◦C

Figure 4. Stress responses under strain controlled loading and unloading regimes

polymers are applied, for example, in [26–28], where amorphous and crystalline phases147

are considered.148

To explain the basic idea let us approximate the heterogeneous deformation of149

POM by two constituents. We specify the constituents by a and b. The constituent a150

is called ”soft” and applied to model soft regions of the material including lamellae151

near the boundaries of spherulite and the amorphous zones. The ”hard” constituent is152

used to characterize regions close to central parts of spherulite, having higher stiffness153

and higher resistance against inelastic flow. Figure 4 illustrates qualitatively the stress154

responses of hard and soft constituents during strain controlled loading and unloading155

regimes. In the considered example, the hard constituent behaves nearly linear elastic156

having higher Young’s modulus and higher flow stress. In contrast, the soft constituent157

exhibits non-linear behavior after the beginning of loading and has much lower value158

of the Young’s modulus and lower value of the flow stress. Applying the mixture rule,159

the complex non-linear loading/unloading profile of the real material can be approx-160

imated by the composite model, as shown in Fig. 4. After removing the load in the161

inelastic regime, residual stresses remain in constituents. The corresponding values162

are designated in Fig. 4 by points (tensile stress in the constituent a and compressive163

stress in the constituent b). These internal stresses determine the subsequent material164

response, for example if the material is reloaded, and are responsible for many effects of165

inelastic behavior, for example Bauschinger effect, ratcheting, creep recovery, etc. The166

volume fractions of constituents can be assumed to be dependent on time and/or on the167

inelastic deformation in order to characterize changes in materials microstructure. By a168

change of variables the constitutive equation with the backstress tensor can be derived169

from the composite model, e.g. [22,23]. Therefore, the composite approach provides170

the generalization of the overstress concept, widely used for modeling mechanical re-171

sponses of polymers.172

In what follows, we approximate the behavior of POM by the composite model173

with two components. For the sake of simplicity and with regard to the small strains,174

the volume fraction of constituents will be assumed constant.175

Figure 4. Stress responses under strain-controlled loading and unloading regimes.

In the considered example, the hard constituent behaves nearly linearly, and the
elastic has a high Young’s modulus and high flow stress. In contrast, the soft constituent
exhibits non-linear behavior after the beginning of loading and has much lower values
of Young’s modulus and flow stress. Applying the mixture rule, the complex non-linear
loading/unloading profile of the real material can be approximated by the composite
model, as shown in Figure 4. After removing the load in the inelastic regime, residual
stresses remain in constituents. The corresponding values are designated in Figure 4 by
points (tensile stress in the constituent a and compressive stress in the constituent b). These
internal stresses determine the subsequent material response; for example, if the material is
reloaded, they are responsible for many effects of inelastic behavior, such as the Bauschinger
effect, ratcheting and creep recovery. The volume fractions of constituents can be assumed
to be dependent on time and/or on the inelastic deformation in order to characterize
changes in the material’s microstructure. By changing the variables, the constitutive
equation with the backstress tensor can be derived from the composite model, e.g., [22,23].
Therefore, the composite approach provides the generalization of the overstress concept,
which is widely used for modeling mechanical responses of polymers.
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Below, we approximate the behavior of POM using the composite model with two
components. For the sake of simplicity and with regard to the small strains, the volume
fraction of constituents is assumed constant.

3.2. Constitutive and Evolution Equations

For the stress tensor σσσ of the composite, the following mixture rule is applied:

σσσ = ηaTTTa + (1− ηa)TTTb = σσσa + σσσb, (1)

where TTTa and TTTb are effective stress tensors of constituents, σσσa and σσσb are partial stress
tensors, and ηa is the volume fraction of the soft constituent.

For the deformation rate tensor DDDk, k = a, b, the following additive decompositions in
the elastic DDDel

k and inelastic DDDin
k parts are applied:

DDDk = DDDel
k + DDDin

k (2)

For small strains and rotations, the rates of the deformation tensors are the time derivatives
of linearized strain tensors εεεk such that

DDDk = ε̇εεk, εεεk = εεεel
k + εεεin

k (3)

For the strain tensors, the following iso-strain rule is assumed:

εεεa = εεεb (4)

For the stress tensors, the following generalized Hooke’s law is utilized:

σσσk = λktr εεεel
k III + 2µkεεεel

k , k = a, b, (5)

where λk and µk are Lamé’s constants of k-th constituent and III is the second-rank unit
tensor (basic rules of the direct tensor calculus are given in [7,29,30], among others). Taking
the time derivatives of Equation (5) and applying Equation (2), we obtain the following
equations for the stress rates in constituents:

σ̇σσk = λktr (DDDk −DDDin
k )III + 2µk(DDDk −DDDin

k ) (6)

In order to derive the constitutive equations for the inelastic parts of the deformation rate
tensors, we follow the flow rule as proposed by [31,32]

DDDin
k =

∂Wk
∂σσσk

, (7)

where the scalar valued function Wk(σσσk) plays the role of the inelastic potential. In order to
specify the potential, the equivalent stress σeqk

(σσσ) is introduced. Taking into account that
Wk(σσσk) = W(σeqk

(σσσk)), the flow rule (7) can be formulated as follows:

DDDin
k = ε̇εεin

k =
∂Wk
∂σeqk

∂σeqk

∂σσσk
= ε̇eqk

∂σeqk

∂σσσk
, ε̇eqk

=
∂Wk
∂σeqk

(8)

For isotropic materials, the equivalent stress is a function of three invariants of the stress ten-
sor. Examples of equivalent stress formulations for various materials are discussed in [7,33],
among others. In this study, we apply the following expression for the equivalent stress::

σeqk
=





σvMk φk

(
σmk

σvMk

)
σvMk > 0

0 σvMk = 0
, (9)
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where σmk =
1
3

tr σσσ is the mean (hydrostatic) stress,

σ2
vMk

=
3
2

tr sss2
k

is the von Mises equivalent stress, and sssk = σσσk − σmk III is the stress deviator. The stress state
function φk(x) is defined as follows:

φk(x) =
Ωk(x) + |Ωk(x)|

2
, Ωk(x) = (1− ξk) + 3ξkx, x =

σmk

σvMk

The weighting factor ξk, 0 ≤ ξk ≤ 1 is introduced to consider pressure sensitivity. For
σvMk 6= 0 and Ωk >, the equivalent stress (9) is a linear combination of the von Mises
equivalent stress and the hydrostatic stress as proposed by [34]. The Drucker–Prager-type
yield criterion is applied in [13] for modeling the inelastic behavior of POM. With the
equivalent stress (9), the flow rule (8) provides the following constitutive equation:

ε̇εεin
k = ε̇eqk

1 + sgnΩk
2

[
(1− ξk)

3
2

sssk
σvMk

+ ξkIII
]

, k = a, b, (10)

For ξk = 0, the classical von Mises–Odqvist flow rule, valid for inelastically incompressible
materials, follows from Equation (10).

For the equivalent inelastic strain rate, the following Prandtl–Eyring law is applied:

ε̇eqk
(σeqk

, Hk, T) = d0k (T) sinh
(

σeqk

σ0k Hk

)
, (11)

where d0k (T) is a function of the temperature and σ0k is the material parameter to be
identified from experimental data. The hardening internal state variable Hk is introduced
to consider the resistance against inelastic flow. The corresponding evolution equation is
assumed as follows:

Ḣk = CHk

(
H∞k − Hk

)
ε̇eqk

, Hk(0) = 1 (12)

where CHk and H∞k are material parameters.
With Equations (1)–(5), the following constitutive model for the composite is derived

σσσ = σmIII + sss, σm = K(εV − εin
V ), sss = 2G(εεε− εεεin), (13)

where K = Ka + Kb is the bulk modulus and G = Ga + Gb is the shear modulus. With
Young’s modulus Ek and Poisson’s ratio νk, the bulk and shear moduli are computed as
follows:

Kk =
Ek

3(1− 2νk)
, Gk =

Ek
2(1 + νk)

(14)

εV is the volumetric strain, and εεε is the deviatoric part of the strain tensor defined as
follows:

εV = tr εεε, εεε = εεε− 1
3

εVIII

The inelastic parts of the volumetric strain and of the strain deviator are computed as fol-
lows:

εin
V = (1− δK)ε

in
Va

+ δKεin
Vb

, εεεin = (1− δG)εεε
in
a + δGεεεin

b , (15)

where
δK =

Kb
K

, 1− δK =
Ka

K
, δG =

Gb
G

, 1− δG =
Ga

G
, (16)
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and
ε̇in

Vk
=

1 + sgnΩk
2

3ξk ε̇eqk
(σeqk

, Hk, T),

ε̇εεin
k =

1 + sgnΩk
2

3
2
(1− ξk)ε̇eqk

(σeqk
, Hk, T)

sssk
σvMk

, k = a, b
(17)

3.3. Model Reduction

For the application of the composite model, it is reasonable to reduce the number of
material properties to be determined from experimental data. In our analysis, let us assume
Poisson’s ratios of the components to be the same, νa = νb = ν. In this case δK = δG = δE,
where

δE =
Eb
E

, E = Ea + Eb

With Equations (13) and (15), the tensor of inelastic strains can be introduced as follows:

εεεin = (1− δE)εεε
in
a + δEεεεin

b (18)

For the weighting factors ξk, we assume

ξa = ξb = ξ

This assumption leads to the same pressure sensitivity and inelastic dilatation in the
components. Furthermore, from our analysis of experimental data, it follows that the
hardening saturation parameters H∞k can be assumed to be the same

H∞a = H∞b = H∞

The temperature dependencies of the inelastic behavior in Equation (11) are specified as
follows:

d0k (T) = ε̇0k R(T), (19)

where ε̇0k are material parameters, and R(T) is a function of temperature.

4. Model Calibration
4.1. Uni-Axial Stress State

In order to calibrate the model, let us consider the following uni-axial stress state:

σσσ = σeee⊗ eee, (20)

where σ is the uni-axial stress and the unit vector eee designates the direction of loading. The
partial stress tensors are computed as follows:

σσσk = σkeee⊗ eee + σkT(III − eee⊗ eee), k = a, b, (21)

where σk are axial normal stresses and σkT are transverse normal stresses in constituents.
From Equations (20) and (21), the following relations can be derived:

σ = σa + σb, σaT + σbT = 0 (22)

The values of transverse normal stresses σkT are usually much lower than the axial stress
values and can be neglected in the first step of model calibration (the finite element
simulations of the tensile test show that the absolute values of transverse stresses are less
than 0.02|σ|). The strain states are characterized by the following tensors:

εεε = εeee⊗ eee + εT(III − eee⊗ eee), εεεk = εkeee⊗ eee + εkT(III − eee⊗ eee), k = a, b, (23)
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where ε and εk are the longitudinal strains and εT and εkT are the transverse strains.
For the stress and strain states defined by Equations (20), (21) and (23), the constitutive
Equations (1)–(12) take the following form

σk = Ek(ε− εin
k ), k = a, b,

ε̇in
k =

1 + sgnΩk
2

d0k (T) sinh
(

σeqk

σ0k Hk

)
[(1− ξ)sgn(σk) + ξ],

Ḣk = CHk (H∞ − Hk)|ε̇in
k |,

σeqk
= |σk|

Ωk + |Ωk|
2

, Ωk = (1− ξ) + ξsgn(σk)

(24)

With Equations (20)–(24), the stress and the inelastic strain of composite are computed as
follows:

σ = E(ε− εin), εin = (1− δE)ε
in
a + δEεin

b (25)

For any given strain-controlled loading path ε(t), where t is the time variable, the constitu-
tive Equation (25) and the evolution Equation (24)2 and (24)3 can be integrated with respect
to the time providing the stress response σ(t). With the available experimental data for
σ(t), the material parameters and the function of temperature R can be identified.

For the loading in the tensile regime, we set σk > 0. Equations (24)2 and (24)3 take the
following form

ε̇in
k = d0k (T) sinh

(
σk

σ0k Hk

)
,

Ḣk = CHk (H∞ − Hk)ε̇
in
k

(26)

Let us assume that a steady-state flow regime exists, such that σ̇k = 0, σ̇ = 0, Ḣk = 0. In
this case, the stresses and the hardening variables attain the asymptotic values σk = σfk

,
σ = σf and Hk = H∞, where σfk

and σf are flow stresses. Setting the rates of the stresses to
zero, Equations (24)1 and (25) yield

ε̇in
k = ε̇in = ε̇

From Equation (26)1, the following relationships between the strain rate and the flow
stresses can be obtained:

ε̇ = d0k (T) sinh
(

σfk

σ0k H∞

)
(27)

4.2. Identification Procedure

In order to identify the material parameters, the following step-by-step procedure
is applied

1. Smooth experimental data and compute stress rates;
2. Identify the Young’s modulus as a function of temperature;
3. Compute inelastic strains and strain rates for each temperature and strain rate level;
4. Identify flow stresses as functions of strain rate and temperature;
5. Identify parameters in the composite model from families of stress–strain curves for

different strain rates and temperature levels;
6. Identify Poisson’s ratios (elastic and inelastic) and the parameter ξ from transverse

strains, measured by DIC.

Figure 5 illustrates the normalized Young’s modulus as a function of the absolute
temperature, where ERT is the Young’s modulus at room temperature.
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where AE, BE and CE are material parameters.202

In a steady-state flow regime, the hyperbolic sine functions in Eqs (27) can be ap-

proximated by the exponents as follows

ε̇

ε̇0k
R(T)

=
1

2
exp

(
σfk

σ0k
H∞k

)
(29)

With

σf = σfa
+ σfb

and Eqs (29) the following relationship between the strain rate and flow stress can be
derived

ε̇

ε̇0R(T)
=

1

2
exp

(
σf

σ0

)
, (30)

where

σ0 = σ0a H∞a + σ0b
H∞b

, σ0 ln ε̇0 = σ0a H∞a ln ε̇0a + σ0b
H∞b

ln ε̇0b

Figure 6 shows the strain rate as a function of the flow stress. To normalize the strain
rates the following generalized Arrhenius functions of temperature is applied

R(T) = exp
(
− α

T

){
1 + exp

[
−(α − αL)

(
1

T∗
− 1

T

)]}
, (31)

where α, αL and T∗ are material parameters. We observe that the exponential function203

of stress (30) and the generalized Arrhenius functions of temperature (31) approximate204

the strain rate sensitivity for a wide range of temperatures with satisfactory accuracy.205

To identify the material parameters in the composite model the stress-strain curves206

under loading and unloading regimes for each strain rate and temperature were ap-207

plied. As an example, Fig. 7 shows the experimental data and the results of calibration208

for stress responses under monotonic loading with different strain rates and temper-209

ature levels of 20◦C and 80◦C. The results of calibration for loading and unloading210

regimes are presented in Fig. 8. The results show that the developed composite model211

with the introduced constitutive functions of stress and temperature is able to predict212
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provide summaries on the values of identified material parameters.214

Figure 5. Normalized Young’s modulus vs. temperature.

This dependence is approximated by the following relation:

E(T) = AE + BET + CET3, (28)

where AE, BE and CE are material parameters.
In a steady-state flow regime, the hyperbolic sine functions in Equation (27) can be

approximated by the exponents as follows:

ε̇

ε̇0k R(T)
=

1
2

exp
(

σfk

σ0k H∞k

)
(29)

with
σf = σfa + σfb

and Equation (29), the following relationship between the strain rate and flow stress can be
derived:

ε̇

ε̇0R(T)
=

1
2

exp
(

σf
σ0

)
, (30)

where
σ0 = σ0a H∞a + σ0b H∞b , σ0 ln ε̇0 = σ0a H∞a ln ε̇0a + σ0b H∞b ln ε̇0b

Figure 6 shows the strain rate as a function of flow stress. To normalize the strain rates, the
following generalized Arrhenius functions of temperature is applied:

R(T) = exp
(
− α

T

){
1 + exp

[
−(α− αL)

(
1
T∗
− 1

T

)]}
, (31)

where α, αL and T∗ are material parameters.
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Table 1: Material parameters in the composite model

Component a Component b

Parameter Unit Value Parameter Unit Value
Ea MPa 1536 Eb MPa 1907

d0a - 2.239 · 10−9 d0b
- 1.396 · 10−22

σ0a MPa 1.263 σ0b
MPa 1.131

CHa s 486.823 CHb
s 168.462

Figure 6. Normalized strain rate vs. flow stress.

We observe that the exponential function of stress (30) and the generalized Arrhenius
functions of temperature (31) approximate the strain rate sensitivity for a wide range of
temperatures with satisfactory accuracy.

To identify the material parameters in the composite model, the stress–strain curves
under loading and unloading regimes for each strain rate and temperature were applied.
As an example, Figure 7 shows the experimental data and the results of calibration for
stress responses under monotonic loading with different strain rates and temperature levels
of 20 ◦C and 80 ◦C.
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Figure 7. Stress-strain curves under monotonic loading with different strain rates. (a) 20◦C, (b)

80◦C

Table 1: Material parameters in the composite model

Component a Component b

Parameter Unit Value Parameter Unit Value
Ea MPa 1536 Eb MPa 1907

d0a - 2.239 · 10−9 d0b
- 1.396 · 10−22

σ0a MPa 1.263 σ0b
MPa 1.131

CHa s 486.823 CHb
s 168.462

Figure 7. Stress–strain curves under monotonic loading with different strain rates: (a) 20 ◦C; (b) 80 ◦C.

The results of calibration for loading and unloading regimes are presented in Figure 8.
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Table 2: Material parameters for temperature dependencies

Parameter Unit Value

AE MPa −3.692 · 103

BE
MPa

K
45.316

CE
MPa

K3
−2.442 · 10−4

4.3. Transverse Strain and Inelastic Dilatation215

Based on the results of the transverse strain measurements from DIC within the
range of small longitudinal strains less than 1%, the following approximation of the

Poisson’s ratio was established

ν(T) = Aν + BνT + CνT3, (32)

where Aν, Bν and Cν are material parameters. Figure 9 illustrates the normalized Pois-216

son’s ratio as a function of the absolute temperature, where νRT is the corresponding217

value at room temperature. For the considered temperature range, Eq. (32) is applica-218

ble to approximate the data with satisfactory accuracy.219

The transverse strains of the constituent εTk
and the transverse strain of composite

εT can be computed as follows

εT = εel
Tk

+ εin
Tk

= − ν

E
σ + εin

Tk
, εT = εel

T + εin
T = − ν

E
σ + εin

T , (33)

Figure 8. Stress-strain curves under monotonic loading and unloading with different strain rates at
80 ◦C.

The results show that the developed composite model with the introduced constitutive
functions of stress and temperature is able to predict the tensile behavior in a wide range
of strain rates and temperatures. Tables 1 and 2 provide summaries on the values of the
identified material parameters.

Table 1. Material parameters in the composite model.

Component a Component b

Parameter Unit Value Parameter Unit Value

Ea MPa 1536 Eb MPa 1907
d0a - 2.239 · 10−9 d0b - 1.396 · 10−22

σ0a MPa 1.263 σ0b MPa 1.131
CHa s 486.823 CHb s 168.462

Table 2. Material parameters for temperature dependencies.

Parameter Unit Value

AE MPa −3.692 · 103

BE
MPa

K
45.316

CE
MPa
K3 −2.442 · 10−4
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4.3. Transverse Strain and Inelastic Dilatation

Based on the results of the transverse strain measurements from DIC within the range
of small longitudinal strains less than 1%, the following approximation of the Poisson’s
ratio was established:

ν(T) = Aν + BνT + CνT3, (32)

where Aν, Bν and Cν are material parameters. Figure 9 illustrates the normalized Poisson’s
ratio as a function of the absolute temperature, where νRT is the corresponding value at
room temperature. For the considered temperature range, Equation (32) is applicable to
approximate the data with satisfactory accuracy.
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Let us introduce the inelastic Poisson’s ratios as follows

νin
k = −

εin
Tk

εin
k

(34)

With Eqs (18) and (34) the transverse strain of the composite can be related to the longi-

tudinal strains of constituents as follows

εin
T = −(1 − δE)ν

in
a εin

a − δEνin
b εin

b (35)

From the constitutive equations (10) we obtain

νin
k = − ξ − 0.5(1− ξ)sgnσk

ξ + (1 − ξ)sgnσk
, (36)

For monotonic loading (tensile or compressive) the stresses in constituents have the

same sign and sgnσk = sgnσ. In this case Eq. (36) is simplified as follows

νin
a = νin

b = − ξ − 0.5(1− ξ)sgnσ

ξ + (1 − ξ)sgnσ
, (37)

With νin
a = νin

b = νin, Eq. (35) yields

εin
T = −νin[(1 − δE)ε

in
a + δEεin

b ] = −νinεin (38)

From Eqs (33), (37) and (38) the transverse strain is computed as follows

εT = −ν
σ

E
− νin

(
ε − σ

E

)
, νin = − ξ − 0.5(1− ξ)sgnσ

ξ + (1 − ξ)sgnσ
(39)

For the volumetric strain εV = ε + 2εT we obtain

εV = (1 − 2ν)
σ

E
+ (1 − 2νin)

(
ε − σ

E

)
(40)

The inelastic Poisson’s ratio νin is not a material property, since it depends on the kind

of the stress state. It is related to the weighting factor ξ according to Eq. (39)2. This

relation follows according to the assumed equivalent stress (9) and the flow rule (10).
In the case of tension we have

νin =
1

2
(1 − 3ξ), (41)

Figure 9. Normalized Poisson’s ratio vs. temperature.

The transverse strains of the constituent εTk and the transverse strain of composite εT
can be computed as follows:

εT = εel
Tk

+ εin
Tk

= − ν

E
σ + εin

Tk
, εT = εel

T + εin
T = − ν

E
σ + εin

T , (33)

Let us introduce the inelastic Poisson’s ratios as follows:

νin
k = −

εin
Tk

εin
k

(34)

With Equations (18) and (34), the transverse strain of the composite can be related to the
longitudinal strains of constituents as follows:

εin
T = −(1− δE)ν

in
a εin

a − δEνin
b εin

b (35)

From the constitutive Equation (10), we obtain

νin
k = − ξ − 0.5(1− ξ)sgnσk

ξ + (1− ξ)sgnσk
, (36)

For monotonic loading (tensile or compressive), the stresses in constituents have the same
sign and sgnσk = sgnσ. In this case, Equation (36) is simplified as follows:

νin
a = νin

b = − ξ − 0.5(1− ξ)sgnσ

ξ + (1− ξ)sgnσ
, (37)
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With νin
a = νin

b = νin, Equation (35) yields

εin
T = −νin[(1− δE)ε

in
a + δEεin

b ] = −νinεin (38)

From Equations (33), (37) and (38), the transverse strain is computed as follows:

εT = −ν
σ

E
− νin

(
ε− σ

E

)
, νin = − ξ − 0.5(1− ξ)sgnσ

ξ + (1− ξ)sgnσ
(39)

For the volumetric strain εV = ε + 2εT, we obtain

εV = (1− 2ν)
σ

E
+ (1− 2νin)

(
ε− σ

E

)
(40)

The inelastic Poisson’s ratio νin is not a material property since it depends on the kind of
stress state. It is related to the weighting factor ξ according to Equation (39)2. This relation
follows according to the assumed equivalent stress (9) and the flow rule (10). In the case of
tension, we have

νin =
1
2
(1− 3ξ), (41)

while for the uni-axial compression

νin =
1
2

1 + ξ

1− 2ξ
(42)

Many materials, for example, metals and alloys, exhibit negligible change in volume in the
course of inelastic deformation. With ξ = 0, Equations (17)1 and (15) yield ε̇in

Vk
= 0 and

ε̇in
V = 0. Furthermore, Equation (39)2 provides νin = 0.5 independently on the kind of stress

state.
Several tension tests with DIC measurements of strains were performed under selected

temperature and strain rate levels for longitudinal strains up to 5%. As an example, the
results for T = 40 ◦C and ε̇ = 0.1%/s are presented in Figure 10.

Figure 10a illustrates the transverse strain vs. longitudinal strain. For the comparison,
the straight line corresponding to the linear elastic behavior with εT = −νε is presented.
With an increase in loading, the actual curve deviates from the linear elastic regime such that
|εT| < νε. Therefore, with an increase in inelastic deformation, the actual Poisson’s ratio
decreases. The decrease in Poisson’s ratio is documented in [14] for several semicrystalline
polymers. Applying Equation (39) with ξ = 0.067, the transverse strain vs. longitudinal
strain can be described with satisfactory accuracy, as shown in Figure 10a. 14 of 17
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Figure 10. Experimental data for POM from tension tests at 40◦C and DIC measurements. (a)

transverse strain vs axial strain, (b) volumetric strain vs axial strain

while for the uni-axial compression
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From the results of DIC measurements, the change in volume of the uni-axial spec-234

imen can be approximately evaluated. Figure 10(b) illustrates the volumetric strain,235

computed by the formula εV = ε + 2εT, as a function of the longitudinal strain. For236

the comparison, the plots of Eq. (40) for νin = 0.4, ξ = 0.067 and νin = 0.5, ξ = 0237

are presented. The assumption of inelastic incompressibility leads to inaccurate results238

for the change in volume, in particular for axial strains ε > 0.02. With the equivalent239

stress (9) and the flow rule (10) the results are closer to experimental data. However,240

the non-linearity of the actual volumetric strain vs axial strain response is not captured241

accurately.242

In [10,13] experimental data for POM samples subjected to compression are dis-243

cussed. Axial stress vs axial strain curves as well as volumetric strain vs axial strain244

curves are presented. Figure 11 illustrates the experimental data for the transverse245

strain and the volumetric strain. The results of computations with Eqs (39) and (40) are246

presented. With ξ = 0.0085 the predictions by the constitutive model agree well with247

experimental data. The actual experimental values for the transverse strain lie above248

the straight line corresponding to the elastic regime, Fig. 11(a). This indicates, that the249

Poisson’s ratio increases in the course of inelastic deformation under compression. This250

Figure 10. Experimental data for POM from tension tests at 40 ◦C and DIC measurements.
(a) Transverse strain vs. axial strain; (b) volumetric strain vs. axial strain.
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From the results of DIC measurements, the change in volume of the uni-axial specimen
can be approximately evaluated. Figure 10b illustrates the volumetric strain, computed
by the formula εV = ε + 2εT, as a function of the longitudinal strain. For comparison,
the plots of Equation (40) for νin = 0.4, ξ = 0.067 and νin = 0.5 ξ = 0 are presented.
The assumption of inelastic incompressibility leads to inaccurate results for the change in
volume, in particular for axial strains ε > 0.02. With the equivalent stress (9) and the flow
rule (10), the results are closer to the experimental data. However, the non-linearity of the
actual volumetric strain vs. axial strain response is not captured accurately.

In [10,13], experimental data for POM samples subjected to compression are discussed.
Axial stress vs. axial strain curves as well as volumetric strain vs. axial strain curves are
presented. Figure 11 illustrates the experimental data for the transverse strain and the
volumetric strain.
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Figure 11. Experimental data for POM from compression tests at 20◦C, after [13]. (a) transverse

strain vs axial strain, (b) volumetric strain vs axial strain
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Figure 11. Experimental data for POM from compression tests at 20 ◦C from [13]. (a) Transverse
strain vs. axial strain; (b) volumetric strain vs. axial strain.

The results of computations with Equations (39) and (40) are presented. With ξ =
0.0085, the predictions by the constitutive model agree well with experimental data. The
actual experimental values for the transverse strain lie above the straight line corresponding
to the elastic regime, as shown in Figure 11a. This indicates that the Poisson’s ratio increases
in the course of inelastic deformation under compression. This feature is well reproduced
by Equation (39) with ξ = 0.0085. If we assume νin = 0.5, the volumetric strain approaches
the asymptotic steady-state flow value, as shown in Figure 11b. Compared to this, the
absolute value of the volumetric strain decreases, as shown by both the experimental data
and the prediction of Equation (40).

It should be noted that the parameter ξ is also responsible for the pressure sensitivity
and the tension compression asymmetry. For ξ = 0, the model provides the same behavior
under tension and compression. With the identified low values of ξ, only a weak differ-
ence in tensile and compressive curves can be expected for the considered strain range.
Therefore, the equivalent stress (9) should be refined in the future. To this end, a system-
atic experimental analysis of both the volumetric deformation and pressure sensitivity is
required.

5. Conclusions

The aim of this study was to analyze experimental data for the inelastic response of
POM in a wide range of strain rates and at various temperatures as well as developing
and calibrating the constitutive model for the material’s behavior. The composite model of
inelastic deformation was applied and further developed to capture the non-linearity of
the stress responses for both loading and unloading regimes. To consider the transverse
strain and the volumetric strain responses, the Drucker–Prager-type equivalent stress
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formulations were combined with the Odqvist flow rule. The predictions by the constitutive
law were compared with experimental data from stress vs. axial strain curves as well as
with strain measurements from DIC. Based on the results, we may conclude the following:

• The developed composite model is able to capture the non-linearity of stress–strain
curves for loading and unloading paths within the small strain regime (axial strains
up to 5%). For higher strains, apart from geometrically non-linear theory, several
model assumptions should be refined. In particular, for the volume fraction of the
constituents, appropriate evolution laws should be formulated and calibrated.

• The Prandtl–Eyring constitutive function of stress (11) is well applicable to describe
the strain rate sensitivity in a wide range, from 10−4%/s to 0.1%/s.

• To capture the temperature dependence of tensile behavior from −20 ◦C to 80 ◦C, the
generalized Arrhenius functions of temperature (31) are required.

• For the small strain regime (axial strains up to 1–2%), the inelastic dilatation is small
and can be neglected. For higher axial strain values, the decrease in Poisson’s ratio
under tension and increase it under compression are observed.

• The Drucker–Prager-type equivalent stress (9) and the flow rule (10) provide a better
description of both the transverse and volumetric strains than that of the classical
von Mises–Odqvist flow rules. However, for higher values of the axial strain, the
non-linearity of the actual volumetric strain vs. axial strain response is not accurately
captured. Furthermore, the tension compression asymmetry is underestimated.

Further studies should be related to the systematic experimental research of the
material response for moderate and large strains in order to refine the constitutive model:

• Non-linearity of stress responses for loading/unloading paths under different strain
rates should be analyzed.

• The applicability of the model to the lower strain rate regimes of creep and stress
relaxation should be examined.

• Systematic analysis of experimental data on transverse strains based on DIC mea-
surements for a wide range of axial stains under tension and compression should
be performed.
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