გ

Tobias Brauner, Christoph Wagner and Kurt Merzweiler*

The crystal structure of Hexakis(diethylamido) dimolybdenum, Mo₂(NEt₂)₆

https://doi.org/10.1515/ncrs-2021-0138 Received April 12, 2021; accepted April 26, 2021; published online May 18, 2021

Abstract

 $C_{24}H_{60}Mo_2N_6$, trigonal, $R\overline{3}$ (no. 148), a = 16.7680(8) Å, c = 9.7523(4) Å, V = 2374.7(2) Å³, Z = 3, $R_{gt}(F) = 0.0205$, $wR_{ref}(F^2) = 0.0517$, T = 213 K.

CCDC no.: 2080037

The molecular structure is shown in the figure (Hydrogen atoms were omitted for clarity).

Source of material

Mo₂(NEt₂)₆ was synthesized from LiNEt₂ and MoCl₃(THF)₃ [1] by a slightly modified method according to Chisholm Table 1: Data collection and handling.

Crystal:	Yellow needle
Size:	0.56 imes 0.07 imes 0.07 mm
Wavelength:	Mo K_{α} radiation (0.71073 Å)
μ:	0.81 mm ⁻¹
Diffractometer, scan mode:	STOE IPDS 2, ω-scan
θ_{\max} , completeness:	26.0°, >99%
N(hkl) _{measured} , N(hkl) _{unique} , R _{int} :	7139, 1039, 0.062
Criterion for I_{obs} , $N(hkl)_{gt}$:	$I_{\rm obs}$ > 2 $\sigma(I_{\rm obs})$, 1007
N(param) _{refined} :	49
Programs:	SHELX [11, 12], Olex2 [13],
	Diamond [14], X-Area [15]

et al. [2]. Yellow single crystals of $Mo_2(NEt_2)_6$ were obtained by sublimation at 150 °C and 10^{-5} mbar.

¹**H-NMR** (400 MHz, C₆D₆): δ [ppm] = 1.11 (t, 36H, CH₃ ³ $J_{(HH)}$ = 7.0 Hz); 3.50 (q, 24H, CH₂ ³ $J_{(HH)}$ = 7.0 Hz), ¹³**C-NMR** (100 MHz, C₆D₆): δ [ppm] = 15.5 (s, 12 C, CH₃); 51.9 (s; 12 C; CH₂).

Experimental details

Details of the crystal structure determination are collected in Table 1 and the results of structure calculation are listed in Table 2 with atomic coordinates.

The hydrogen atoms were placed on calculated positions and refined with a riding model. Their $U_{\rm iso}$ values were set to 1.2 $U_{\rm eq}$ for CH₂ groups and 1.5 for CH₃ groups of the parent carbon atoms.

Comment

Since the first synthesis of Mo₂(CH₂SiMe₃)₆ around five decades ago [3], a large number of Mo₂R₆ compounds comprising Mo–Mo triple bonds were synthesized and characterized by X-ray diffraction methods [4]. However, in the case of dialkylamide derivatives Mo₂(NR₂)₆ X-ray structure determinations apart from that of the parent compound Mo₂(NMe₂)₆ [5] are still rare. Some more structural data are available from complexes with μ_2 -bridging bis-amido ligands like Mo₂(R'NCH₂CH₂NR')₃ (R' = Me [6],

This work is licensed under the Creative Commons Attribution 4.0

^{*}Corresponding author: Kurt Merzweiler, Naturwissenschaftliche Fakultät II, Institut für Chemie, Martin-Luther-Universität Halle Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany, E-mail: kurt.merzweiler@chemie.uni-halle.de. https://orcid.org/ 0000-0001-6349-347X

Tobias Brauner and Christoph Wagner, Naturwissenschaftliche Fakultät II, Institut für Chemie, Martin-Luther-Universität Halle Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle (Saale), Germany. https://orcid.org/0000-0001-6141-351X (C. Wagner)

 Table 2: Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²).

Atom	x	у	Z	U _{iso} */U _{eq}
Мо	0.6667	0.3333	0.44755 (2)	0.02368 (11)
Ν	0.73519 (10)	0.46460 (10)	0.49924 (15)	0.0315 (3)
C1	0.76858 (15)	0.48126 (14)	0.6415 (2)	0.0414 (4)
H1	0.7292	0.4263	0.6961	0.050*
H2	0.7624	0.5322	0.6789	0.050*
C2	0.86725 (17)	0.50409 (19)	0.6573 (3)	0.0597 (6)
H3	0.8843	0.5141	0.7534	0.072*
H4	0.8738	0.4534	0.6229	0.072*
H5	0.9071	0.5594	0.6056	0.072*
C3	0.76863 (14)	0.54991 (13)	0.4211 (2)	0.0401 (4)
H6	0.7527	0.5344	0.3244	0.048*
H7	0.8359	0.5854	0.4277	0.048*
C4	0.72989 (19)	0.61003 (16)	0.4690 (3)	0.0585 (6)
H8	0.7549	0.6651	0.4128	0.070*
H9	0.6633	0.5761	0.4605	0.070*
H10	0.7467	0.6272	0.5640	0.070*

R' = i - Pr[7]), and mixed organyl/dialkylamide ligands, e.g. $Mo_2R'_2(NMe_2)_4$ (R' = benzyl, *o*-tolyl, *p*-tolyl [8], ethyl [9]).

The preparation of the title compound $Mo_2(NEt_2)_6$ was reported in 1976 [2]. Pale yellow single crystals suitable for X-ray diffraction were grown by sublimation in high vacuum.

Mo₂(NEt₂)₆ crystallizes in the trigonal system, space group $R\overline{3}$ with three formula units per unit cell. The crystal structure consists of discrete molecules Mo₂(NEt₂)₆ without any unusual short intermolecular contacts. The Mo₂(NEt₂)₆ units are situated around a crystallographic center of inversion (Wyckoff site 3*a*). The asymmetric unit comprises one third of the molecule with the Mo atom situated on the $\overline{3}$ axis and the remaining atoms at general positions. Thus, the Mo₂(NEt₂)₆ unit exhibits crystallographically imposed S₆ point symmetry, which implies a staggered conformation of the Mo(NEt₂)₃ fragments. Generally, the staggered conformation is preferred for Mo₂R₆ compounds with terminally binding ligands R [4]. In the case of μ_2 -bridging ligands steric strain usually forces eclipsed arrangements, i.e. Mo₂(RNCH₂CH₂NR)₃ [10] (R = Me [5], i–Pr [6]).

Mo₂(NEt₂)₆ exhibits a Mo–Mo distance of 2.2277(4) Å which is close to that in Mo₂(NMe₂)₆ (2.21(2) Å) [1]. Comparable distances are found in the dimolybdenum hexaalkoxides Mo₂(OR)₆ R = CH₂^tBu [9] with 2.222(2) Å and R = C(CF₃)₂CH₃ [10] with 2.2263(4) Å. Furthermore, the Mo–N distances (1.9723(1) Å) and the N–Mo–N angles (113.70(4)°) are in accordance with the observations in Mo₂(NMe₂)₆ (1.97(2)–2.00(1) Å and (113.5(2)–115.2(2)°). Like in the case of the NMe₂ derivative, the nitrogen atoms adopt a nearly planar coordination (sum of the angles around N: 359.6°).

The dihedral angle between the Mo₂N plane and NC₂ plane is 16° and thus markedly larger than in case of Mo₂(NMe₂)₆ (0.3–3.6°). Obviously, this is a result of increased steric crowding in the NEt₂ derivative. The orientation of the ethyl groups with respect to the Mo–Mo triple bonds allows for a differentiation into proximal and distal groups. In the case of the proximal ethyl groups the Mo–N–C angles (133.1(1)°) are significantly larger than in the distal case (114.0(1)°). Similar disparities were observed for Mo₂(NMe₂)₆ (132° and 116°, resp.) [2].

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: We acknowledge the financial support within the funding programme Open Access Publishing by the German Research Foundation (DFG).

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

- Stoffelbach F., Saurenz D., Poli R. Improved peparations of molybdenum coordination compounds from tetrachlorobis(diethyl ether)molybdenum(IV). *Eur. J. Inorg. Chem.* 2001, 2001, 2699–2703.
- Chisholm M. H., Cotton F. A., Frenz B. A., Reichert W. W., Shive L. W., Stults B. R. The molybdenum-molybdenum triple bond. 1. hexakis(dimethylamido)dimolybdenum and some homologs preparation, structure, and properties. *J. Am. Chem. Soc.* 1976, *98*, 4469–4476.
- Huq F., Mowat W., Shortland A., Skapski A. C., Wilkinson G. Crystal structure of hexakis(trimethylsilylmethyl)dimolybdenum. J. Chem. Soc. D 1971, 1079–1080, https://doi.org/10.1039/c29710001079.
- Chisholm M. H., Hollandsworth C. B. X₃M = MX₃ compounds of molybdenum and tungsten. In *Multiple Bonds Between Metal Atoms*; Cotton F. A., Murillo C. A., Walton R. A., Eds.; Springer Science and Business Media Inc.: New York, 2005; pp. 203–210.
- 5. Blatchford T. P., Chisholm M. H., Folting K., Huffman J. C. Tris(N,N'-dimethylethylenediamido)dimolybdenum M \equiv M, A metallopropellane with a near-eclipsed central molybdenum nitride (Mo₂N₆) moiety. *Inorg. Chem.* 1980, *19*, 3175–3176.
- Armstrong W. H., Bonitatebus P. J. Crystal structure of tris(diisopropylethylenediamido)dimolybdenum(III) (Mo–Mo), C₄₈H₁₀₈Mo₄N₁₂. Z. Kristallogr. N. Cryst. Struct. 1999, 214, 241–242.
- 7. Chetcuti M. J., Chisholm M. H., Folting K., Haitko D. A., Huffman J. C., Janos J. 1,2–Dibenzyl- and 1,2-diaryltetrakis(dimethylamido) dimolybdenum and -ditungsten compounds $M_2R_2(NMe_2)_4 M \equiv M$, structural effects of Me_2N -to– $M \pi$ bonding. J. Am. Chem. Soc. 1983, 105, 1163–1170.
- 8. Chisholm M. H., Haitko D. A., Folting K., Huffman J. C. Preparation and characterization of 1,2-dialkyl compounds of dimolybdenum and ditungsten of formula $M_2R_2(NMe_2)_4$ M = M. J. Am. Chem. Soc. 1981, 103, 4046–4053.

- Chisholm M. H., Cotton F. A., Murillo C. A., Reichert W. W. The molybdenum-molybdenum triple bond. 2. Hexakis(alkoxy) dimolybdenum compounds: preparation, properties and structural characterization of hexakis(neopentoxy) dimolybdenum. *Inorg. Chem.* 1977, *16*, 1801–1808.
- 10. Bittner C., Ehrhorn H., Bockfeld D., Brandhorst K., Tamm M. Tuning the catalytic alkyne metathesis activity of molybdenum and tungsten 2,4,6-trimethylbenzylidyne complexes with fluoroalkoxide ligands $OC(CF_3)_n Me_{3-n}$ (n = 0–3). *Organometallics* 2017, *36*, 3398–3406.
- 11. Sheldrick G. M. SHELX integrated space-group and crystalstructure determination. *Acta Crystallogr.* 2015, *A71*, 3–8.
- 12. Sheldrick G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8.
- Dolomanov O. V., Bourhis L. J., Gildea R. J., Howard J. A. K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341.
- 14. Brandenburg K. Visual crystal structure information system. (Ver. 4.6.4); Crystal Impact: Bonn, Germany, 2020.
- 15. X-AREA; STOE & Cie GmbH: Darmstadt (Germany), 2016.