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Abstract: Finding a sustainable mobility solution for the future is one of the most competitive
challenges in the logistics and mobility sector at present. Policymakers, researchers, and companies
are working intensively to provide novel options that are environmentally friendly and sustainable.
While autonomous car-sharing services have been introduced as a very promising solution, an
innovative alternative is arising: the use of self-driving bikes. Shared autonomous cargo-bike fleets
are likely to increase the livability and sustainability of the city, as the use of cargo-bikes in an on-
demand mobility service can replace the use of cars for short-distance trips and enhance connectivity
to public transportation. However, more research is needed to develop this new concept. In this
paper, we investigate different rebalancing strategies for an on-demand, shared-use, self-driving
cargo-bikes service (OSABS). We simulate a case study of the system in the inner city of Magdeburg
using AnyLogic. The simulation model allows us to evaluate the impact of rebalancing on service
level, idle mileage, and energy consumption. We conclude that the best proactive rebalancing strategy
for our case study is to relocate bikes only between neighboring regions. We also acknowledge the
importance of bike relocation to improve service efficiency and reduce fleet size.

Keywords: fleet management; autonomous bikes; future mobility; vehicle rebalancing

1. Introduction

The move towards sustainable and livable cities has become urgent and is needed
to ensure a better future for the next generation. One main issue in urban cities is street
traffic. Policymakers, researchers, and companies are all investigating novel ways and
solutions to make the city a better place for living, with less pollution, less congestion, and
fewer accidents. Recently, the research has introduced the use of shared autonomous cars
to reduce resources, energy consumption, and urban parking space [1,2]. The overarching
promise is to provide the user with an on-demand, door-to-door trip enabling a new level
of individual mobility. However, this idea is challenged by some recent studies demon-
strating that such mobility services increase the mileage traveled in urban agglomerations
and subsequently increase congestion and energy consumption [3,4]. Hence, fleets of au-
tonomous cars, which are neither in private use nor in shared operation, would contribute
to the sustainability or livability of a city. As Millard-Ball [5] points out, autonomous cars
could even foster a move backwards in the direction of car-friendly cities, with strong street
separations between cars and active modes of transport.

Most recent concepts of sustainable cities such as the human scale [6] or the 15 min
city [7], in accordance with the New Urban Agenda [8], clearly show that the emphasis
in urban planning is on calming streets, reducing the need for cars, promoting walking
and biking, and enabling everyday activities such as meeting people, chatting, gardening,
playing etc., to regularly occur on the streets. In this context, a solution was suggested to
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enhance the city’s sustainability, which consists of using a shared, autonomous cargo-bike
fleet. Self-driving cargo bikes offer on-demand, door-to-door mobility through autonomous
driving to the point of demand and can be also used for the first and last mile of pub-
lic transportation (PT). This encourages people to cycle and pushes them to shift from
cars to PT. They also improve the livability and sustainability of the city compared to
shared autonomous vehicles (SAVs), as explained in Assmann et al. [9]. Indeed, shared
autonomous cargo bikes allow for a reduction in street traffic through the use of cycling
paths, as well as the space needed for parking, as bikes are generally smaller in size. In
addition, autonomous bikes have the advantage that they can be driven manually when
used by a passenger (the bike is powered through pedaling), contrary to SAVs, which are
100% based on autonomous driving. The manual drive allows for an important reduction
in energy consumption, as long rides are defined as when a customer is using the bike.
Furthermore, the cargo bike has the advantage of offering a storage space that allows for
further substitutions of trips that would normally require a car (e.g., shopping, smaller
transport). At present, cargo-bike sharing has shown a strong potential to reduce motorized
traffic in a city [10,11]. In contrast to conventional bike-sharing, it enables the transport of
errands, kids, equipment, and others. Therefore, it widens the scope of bike-sharing and
enables a much higher substitution of motorized trips. Different companies and researchers
have concentrated on the development of autonomous micro-vehicles and robots that can
drive on sidewalks (and, subsequently, on mixed-used streets) and can be used for urban
delivery [12]. These technologies have already been adopted for bikes, as Baum et al. [13]
points out. In order to utilize the potential of cargo bike-sharing, it makes sense to integrate
autonomous driving functionalities. This would enable the same on-demand, door-to-door
service standards, utilize the potential to substitute car traffic, and widen the scope of
conventional bike-sharing.

In this paper, we aim to study the use of autonomous bikes as a means of on-demand,
shared-use, self-driving bikes services (OSABS). This system is currently under devel-
opment by the authors and a research team at the University of Magdeburg [14]. It is
based on the use of a three-wheeled electric cargo-bikes to ensure a good balance with the
autonomous driving mode. The bike can be also used as an e-assisted bike in a manual
mode. Figure 1 illustrates the basic concept of OSABS. A customer can request a bike
via smartphone. The operation management (OM) center will choose a suitable bike (if
available) for the customer’s request. The bike will autonomously ride to the point of
demand within a given service time. The customer unlocks the bike and manually rides
it to the desired destination. When they have arrived, the customer leaves the bike, and
the OM center will decide on the next destination. The bike can drive autonomously
to the next customer, a waiting station (to park close to future demands), or a charging
station (for battery charging). The choice of the next task depends on the fleet management
algorithms that were implemented. An optimized fleet management strategy allows for
efficient coordination between demand and the bike fleet. It forms the necessary basis for
a holistic evaluation of whether the concept of OSABS is economically viable in contrast
with conventional bike-sharing and shared autonomous car fleets.

The aim of this work is to investigate fleet management strategies to find the best
balance between customer satisfaction and cost reduction for OSABS. On the one hand,
customers want quick and reliable access to bikes, which can result in a large fleet and
frequent rebalancing. On the other hand, fleet operators are interested in the economic
viability of their service, and consequently aim to reduce energy (mainly from idle traveling)
and fleet costs as much as possible. Finding a favorable balance for both parties allows for
the sustainable use of the service. To achieve this, we consider three different rebalancing
strategies, paying particular attention to the tradeoffs facing fleet owners. Since OSABS
is an entirely new system and there is no empirical data to evaluate the system, we chose
the simulation study as our methodology to understand the operational insights of the
system. Moreover, the simulation study provides fundamental knowledge about the
interaction of various elements, improving and optimizing the architecture of complex
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systems. Therefore, to examine and evaluate the strategies on a meaningful scale, we
implement them in an agent-based simulation model.

Figure 1. The basic concept of OSABS [9].

The remainder of this paper is organized as follows. In Section 2, we review a
collection of the relevant publications on vehicle relocation problems. Section 3 describes
the simulation environment and the developed relocation strategies. In Section 4, we
present the results of the different tested scenarios. Section 5 discusses the simulation
outcomes. Section 6 concludes by highlighting key findings and future research initiatives.

2. Literature Review
2.1. Vehicle Relocation Problem

The vehicle relocation (also called dispatching or rebalancing) problem is very widespread,
and has different types in practice. Typical applications of vehicle rebalancing include
car-sharing [15–17] and bike-sharing systems [18,19], Autonomous Mobility-on-Demand
(AMoD) services [20,21], and emergency services (e.g., ambulances [22,23], police cars [24]).
The formulation and resolution of the problem depend strongly on the context and the
application field. For example, for ambulance relocation, this generally consists of solving
a maximum coverage problem [25]. In addition, some constraints may exist, such as
the fact that the ambulances are only relocated after serving a demand, and they are
not allowed to move from one waiting location to another when empty [22]. For the
conventional bike-sharing system, the dispatching problem mainly consists of relocating
bicycles from oversupplied to undersupplied regions. A vehicle (usually a truck) should
visit oversupplied stations (or points) to pick up bikes and drop them off in stations where
there is a lack of bikes. The rebalancing (or repositioning) problem can be perceived as a
pickup-and-delivery capacitated vehicle-routing problem [18]. The aim is to determine
the best route for each truck and the number of bikes to load or unload at each visited
station, so that we maximize the customer satisfaction in the overall system. We distinguish
between four major categories of the repositioning problem [26,27]:

• The static and deterministic repositioning problem (SDRP): where all the inputs are
known beforehand with certainty. This is the case for the bike relocation, which is
operated overnight and does not integrate demand forecasting. It can be viewed as a
static, many-to-many pickup and delivery problem. We can find a survey of the static
bicycle repositioning problem in [28].
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• The static and stochastic repositioning problem (SSRP): where the inputs arepartially
known, with a defined probability. One example is the maximum expected covering
problem (MEXCLP), which was applied to solve the relocation of medical service
vehicles [29]. A probability function was included to consider the possibility that a
requested vehicle is not available because of previous demands.

• The dynamic and deterministic repositioning problem (DDRP): where the problem
is solved periodically (or in real-time) but the future input is unknown and there is
no stochastic information. The value of inputs is known only when they appear. One
example is the ambulance relocation problem solved by [30], where the dispatching
problem should be solved each time a request appears.

• The dynamic and stochastic repositioning problem (DSRP): where the input is stochas-
tic information, and the problem is solved in real-time. One application is the intraday
bike-sharing rebalancing, which considers the upcoming demand during the day [31].

In our work, we consider a dynamic and stochastic problem where the future demand
is available as a function of time. We also consider a station-based system. However, unlike
the conventional bike-sharing system, no vehicle is needed to perform the rebalancing task.
Our bikes can drive autonomously from one station to another to meet the upcoming de-
mand. From the management perspective, the operation of our system could be compared
to autonomous car fleets, mainly as a part of the AMoD services. For this reason, we will
focus on the literature on on-demand autonomous vehicles, as the relocation operation is
similar to our service.

2.2. Shared Autonomous Vehicles Fleet Management

With the growing popularity of shared mobility services and the fast advancement of
autonomous-driven technology, there is an increasing research interest in the fleet man-
agement of SAV services. Hence, multiple studies in the literature attempt to investigate
different strategies and policies. For a taxonomy on SAV fleet management problems, the
reader can refer to [32]. In this work, we mainly focus on research that can be adapted to
our case study. According to Narayanan et al. [33], we could classify SAV systems based
on three characteristics: (i) booking type (ii) sharing system, and (iii) integration type.
According to this classification, OSABS is a part of the on-demand, shared-use independent
services. In this section, we review papers that examine similar systems to OSABS, typically
autonomous mobility, on-demand (AMoD) services.

The autonomous driving technology opens up new opportunities for AMoD services
to dynamically manage their fleets. One major challenge is the adequate distribution of
the fleet of vehicles with the customer demand, which is usually asymmetric across the
network and over time. Consequently, it is necessary to relocate idle vehicles according
to future demand to guarantee service availability. However, complete information about
upcoming requests is not granted. Thus, historical data are generally used to obtain
statistical information that allows for an estimation of future demand. According to Weikl
and Bogenberger [34], we can differentiate between two main rebalancing strategies:

• User-based strategies: for this type, the customer is given incentives to move from
an area of high demand to an area of low demand where there is an offer. These
incentives could be a free ride, a lower price, or extra free time.

• Operator-based strategies: these consist of relocating vehicles with the intervention
of the system manager. The rebalancing operation is performed based on a criterion
reflecting the statistics calculation of demand and supply in the different stations
or areas in the system. The criteria could be, for example, the number of available
and needed vehicles, a calculated index, or waiting times. These strategies are the
most studied in the literature. We can find various papers with different assumptions
regarding the type of network, reservation structure, and fleet characteristics. Many
studies consider a grid network, where the operating area is devided into blocks
and the imbalance of each block is evaluated. Thereafter, vehicles should move from
surplus blocks to deficit blocks. Fagnant and Kockelman [35] implemented four
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strategies in a subsequent order for each relocation period. First, they spread idle
vehicles according to block balance. Second, they moved excess idle vehicles (any
with more than two per zone) to zones unoccupied by idle vehicles. Chen et al. [36]
built from the framework in [35] to investigate the operations of a SAV fleet under
various vehicle range and charging infrastructure assumptions. Winter et al. [20]
simulated an AMoD service on a generic grid network to study the impact of five
different rebalancing policies for idle vehicles on parking needs, passenger waiting
time, and empty mileage. The limit of such a network is that the traveling cost is
roughly estimated. They assume that vehicles move from one grid to another at a
fixed cost. Other papers consider a graph network where stations are nodes and
the edges represent the traveling cost. Spieser et al. [37] extended a linear program
formulation from [38] to compare the relocation that only responds to the current
state of the system, the relocation that integrates future demand estimation, and the
relocation with certain demand information. The demand destination is assumed to
be known. Tsao et al. [39] studied the rebalancing of an AMoD system with uncertain
travel demand forecasts. They formulated the problem as an integer program and
developed a relaxed approach to solving it. Azevedo et al. [40] solved a linear program
each hour to find the number of vehicles that move from an oversupplied station to
an undersupplied station while minimizing the traveling cost. These different models
mainly concern the periodic relocation, which occurs in each defined period T, and
ignores the possible relocation between periods when a vehicle becomes idle.
To the best of our knowledge, only two papers were found where a road network was
used. Wallar et al. [41] presented a method to divide the operating area into a set of
relocation regions and estimate the demand in each region. The rebalancing algorithm
optimizes the relocation of idle vehicles between these regions using integer linear
programming. Marczuk et al. [42] adopted the same formulation as in [40] to analyze
the importance of rebalancing the system fleet size and the customer waiting time.
Few papers considered a real network (maps) in their simulation. Winter et al. [21]
used the map from Open Street Map (OSM) and compared three proactive rebalancing
heuristics for SAVs under parking constraints. Brendel et al. [43] used Google Maps to
examine and adapt existing carsharing rebalancing policies for SAVs. They combined
operation-based relocation (ObR) strategies (relocation between stations) and user-
based relocation (UbR) strategies (relocation after rental) in one model to show the
positive impact of UbR on the number of served customers.

To conclude, there are many publications on relocation algorithms for autonomous
vehicles, and there are also many attempts to simulate such services. To date, all of them use
specific simplifications and assumptions, mainly regarding the network type, the routing,
and the demand profiles. In summary, those assumptions include the following points:

• Most papers only evaluate periodic relocation. The immediate relocation after rental is
considered in only one paper, with the limitation that only one rebalancing operation
is possible for the bike when it becomes idle (either periodic or after rental). In this
paper, we extend the work of Brendel et al. [43] by allowing for multiple rebalancing
operations for the bike.

• Many studies consider open requests, where the customer demand never quits the
system if it is not fulfilled. We assume that this representation cannot reflect the
real-world case, as the customer cannot wait for too long. In our simulation model,
we reject each request that cannot be satisfied within a 10 min waiting time.

• Vehicle routing is not explicitly simulated on a real road network but roughly esti-
mated in a regional manner. Most papers work on a complete graph with a relatively
small number of nodes. In this work, we use a detailed routing with a real road
network, based on an Open Street Map. Unlike the SAVs, our bikes use the bicycle
lanes and have a limited speed of 25 km/h. In addition, each routing mode (manual
and autonomous mode) has its own requirements. Thus, we developed our specific
routing calculation according to the system requirements.
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• For SAVs, the destination of the customer at the time of renting the vehicle is assumed
to be known, as the customer books a defined trip. This facilitates fleet optimization
and the calculation of the fleet imbalance for the coming period. In our case, the
customer books a bike. The trip duration and the customer’s destination are unknown
till the customer leaves the bike.

• Operational constraints, such as parking and recharging, are rarely simulated, as in
this work.

• The demand profiles used are generally computer-generated demands, which do
not accurately capture the complex distribution of origins and destinations in a real
transport system. In this work, a detailed population-based demand pattern is used,
which imitates the real biking demand in high temporal and spatial detail.

• Small demand and fleet sizes are mostly used in the simulation scenario to manage
computational time. Those scalings have unclear effects on the accuracy of the results.
In this work, we simulate full demand and calculate the needed fleet size.

The contribution of this work is the development and evaluation of various fleet
management strategies, which capture these different assumptions. The comparison of
different policies allows for a better understanding of our system and helps to choose
an adequate strategy. With the long-term goal of proving the economic viability of OS-
ABS, it is important to perform the rebalancing operation efficiently, in order to avoid
unnecessary costs.

3. Simulation Setup

This section describes the simulation environment in which our developed fleet
management strategies will be evaluated.

3.1. Demand Generation

Fleet management strategies for autonomous fleets are generally evaluated in simpli-
fied graphs. Thus, their transferability to possible real-world applications is limited, due
to a lack of realism in the routing and demand input. We aim to overcome this by basing
our simulation on a real-world city with its original street network. The city of choice for
our evaluations is the city of Magdeburg, Germany. This is a medium-sized city which, on
the one hand, is big enough to represent the different urban forms of a city. On the other
hand, it is not too large, keeping computing efforts on a reasonable scale. We will simulate
OSABS in this operational area. For this purpose, we need to define the demand for trips
with autonomous cargo bikes.

Several approaches in the literature provide a framework for the creation of demand
scenarios for conventional bike-sharing systems. According to [44], these models can be
grouped into two main categories: demand rebalancing and demand forecasting models.
The latter can be further divided into city-level (e.g., [45]), cluster-level (e.g., [46]), and
station-level (e.g., [47]) demand prediction models [48]. However, a major proportion of
these models uses the existing data of already-implemented conventional bike-sharing
systems to predict demand in the given system. There are approaches to introduce bike-
sharing systems in cities where such systems do not yet exist [49,50]. Still, OSABS include
some particularities, making it difficult to compare them with existing systems.

Therefore, we developed an approach to determine the demand for the new mobility
concept in a temporally and spatially disaggregated manner. We then applied this to the
city of Magdeburg. In the first step, a survey of mobility needs is conducted and evaluated
concerning the city-wide usage potential of autonomous cargo bikes. The potential is
calculated as usage likelihood, expressed as a modal split for the entire city. In our case,
the survey is for the city of Magdeburg and provided us with the probability that road
users replace each conventional mode of transport (cars, foot, bike, public transport) with
OSABS. In addition, the survey was used to determine the distance that respondents would
be willing to travel with an autonomous cargo bike.
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Secondly, the resulting usage likelihood is spatially disaggregated. For spatial dis-
aggregation, we used existing traffic data from well-established and widely used traffic
demand models. According to [51], cross-section counts were carried out to determine
the composition and distribution of traffic volumes. This involves recording the vehicles
or people that pass through a specific area during a defined survey period. To ensure
a representative representation of the traffic situation, such surveys were carried out on
specific survey days: Tuesday and Thursday. The other days were unsuitable because there
are comparatively high traffic volumes (Monday and Friday) or some service areas are
closed in the afternoon or all day (Wednesday, Saturday, and Sunday) (see [51]). These
survey days are also referred to as normal working days or statistical traffic days. For our
purpose, the traffic data were provided by the municipality of Magdeburg. The data were
available in the form of origin–destination pairs (OD pairs) for four different modes of
transport per statistical traffic day. The OD pairs describe both the traffic flow between the
individual zones (interzonal flow) and the traffic flow within the respective traffic zone
(intrazonal flow). In our case, those are statistical zones of approx. 80,000 inhabitants. We
used the modal split and stated distance limits to calculate the OSABS demand of each OD
pair. Thus, we can calculate the traffic volumes of autonomous cargo bikes between all
zones for one statistical day.

In our third step, the resulting demand between the OD pairs is temporally disaggre-
gated. This was carried out to enable the prediction of usage per hour. For this purpose,
we derived usage patterns from an existing conventional bike-sharing system in the city
of Hamburg [52]. Since OSABS are still operated with bikes, we assumed similar usage
patterns and applied them to the new system. Therefore, we derived both daily and weekly
profiles for the use of the conventional bike-sharing system to temporally disaggregate the
demand of a statistical day to the demand per hour, and distribute this over a week.

The resulting hourly distribution of bookings for each day of the week is shown in
Appendix A (Table A1). In addition to the time- and space-related influencing variables,
seasonal effects were also taken into account when creating the demand for an entire
year, since, according to [53], these have a significant influence on the use of bike-sharing
systems. For this purpose, we extended the usage data of the conventional system with
weather data. These include hourly data on temperature, precipitation and wind speed,
and can be retrieved from the open-data portal of the German Weather Service (https:
//opendata.dwd.de/, accessed on 19 May 2021).

With the help of a regression analysis, we then determined the influence of the
respective weather variables on the use of the bike-sharing system. Using these influencing
factors and an arbitrary weather dataset, we could first model the influence of weather
on daily or weekly OSABS demand. In addition, this allowed us to scale hourly demand
between OD pairs as a function of the prevailing weather conditions over an arbitrarily
long period of time. Thus, per OD pair, we could model the daily, weekly and yearly
profile of OSABS demand, while the randomization of demand was possible through the
application of different weather scenarios. The approach is summarized below in the form
of a flowchart (Figure 2).

An extract of the resulting demand for a statistical traffic day is shown in Figure 3. The
figure represents the hourly interzonal and intrazonal traffic flow between traffic zone 11
(city-center district with a high density of restaurants and pubs) and traffic zone 41 (univer-
sity district). The upper bar chart describes the traffic flows starting from zone 15, while
the lower chart describes the traffic flows starting from zone 41. In addition, Appendix A
(Table A1) shows the hourly distribution of bookings for each day of the week.

https://opendata.dwd.de/
https://opendata.dwd.de/
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Figure 3. Example of the Origin-Destination flows.

3.2. Model Description

In order to understand the insights of the OSABS, we developed an agent-based
simulation model using Anylogic based on our conceptual model presented in [54]. The
developed conceptual model represents the key elements of OSABS, which are: demand
scenarios, order management, operational aspects (bikes and stations), and output in-
dicators where we calculate the performance indicators. Vasu Dev et al. [55] presented
a detailed description of the simulation testbed for the OSABS. The process flow of the
simulation model is as follows:
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• Demand generation: we generated the demand data as an origin–destination pair for
each region. We fed these demand data as an input to the simulation model, which
schedules the customer arrivals. The customer arrives at a random location in the
origin region. Then, the customer generates the request for the autonomous cargo
bike with the constraints of a 10-min waiting time.

• Matching request: The matching algorithm receives the customer request and checks
for available cargo bikes from the fleet near the customer location. It assigns the
suitable cargo bike to the customer if available, based on the route calculation.

• Route calculation: The routing algorithm generates the best possible bike route for the
selected bike to the customer. Anylogic has an inbuilt routing engine that can provide
an online route for the bike. However, we developed a custom route provider using
the Graphhopper routing engine to provide autonomous routing and manual routing
for our cargo bike. Graphhopper is an open-source java routing engine, which parses
OpenStreetMap data and allows for caluclation of the shortest path algorithm between
two points [56]. Given two coordinations, GraphHoppers allows the best route for
the chosen vehicle profile to be found, considering the chosen weight function. We
developed two vehicle profiles, one for the autonomous mode and one for the manual
mode, as the routes and the energy consumption differs between the two modes. For
a reliable routing, we parsed the specific cycling paths our cargo bike can use using
tGraphhopper, by avoiding footways, platforms, pedestrians, steps, and non-paved
routes. We also defined the speed of the bike depending on the type of surface tag and
highway tag in OSM. To calculate the best route, we implemented our own weighting
function, which allows us to determine the route with less energy consumption.

• Bike movement: The cargo bike drives autonomously to the assigned customer. As
the customer has the destination region information, the customer drives manually to
the random destination location using the manual routing mode.

• Rebalancing: Once the customer reaches the destination, he or she drops the cargo
bike. If there is a nearby request, then the bike moves directly to the next customer;
otherwise, the chosen rebalancing strategy relocates the bike to the suitable wait-
ing station.

• Output indicators: As an output of the simulation, we collect a list of statistics includ-
ing the number of customer requests, the number of customers served, service level,
time utilization of the cargo bike with the customer and without the customer, energy
consumption during autonomous driving and manual driving.

This case study focuses on the autonomous cargo-bike sharing system. We consider
the inner city of Magdeburg as the operational area, which contains 14 zones, named
regions. The area chosen for our simulation was selected based on the real traffic data
provided by the municipality of Magdeburg. Since the operational area is located in the city
center, there is a high traffic density in combination with the traffic distribution, favoring
the use of alternative mobility concepts. Table 1 shows both the distribution of the distances
traveled and the shares of the respective means of transport depending on the distance.
As can be seen, the share of trips covered on foot is the highest. However, with increasing
distance, the shares of other modes of transport, especially motorized individual transport
and public transport, significantly increase. This can be observed for trips with a distance
of more than one kilometer, whose share is notably larger compared to trips with a distance
of less than one kilometer.

Table 1. Traffic distribution in the operational area.

Distance d
(km)

Share
Distance (%)

Share Foot
(%)

Share Bike
(%)

Share Public
Transport (%)

Share Car
(%)

0 ≤ d < 1 18.32 75.26 9.54 9.95 5.24
1 ≤ d < 2 58.74 62.11 11.65 16.35 9.88
2 ≤ d < 3 12.84 39.52 18.29 27.36 14.82

d ≥ 3 10.10 20.69 21.64 31.48 26.18
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Anylogic provides an inbuilt Geographic Information System (GIS) map. We created
the regions on the top layer of the GIS map using a shapefile obtained from Magdeburg’s
traffic department. Figure 4 shows the Graphical User Interface (GUI) of the simulation
model, which visualizes the operational area, including cargo bikes, stations, and Key
Performance Indicator (KPI) dashboard and process logic.

Figure 4. Operational area inner-city Magdeburg.

3.3. Fleet Management Strategies

Fleet management is a vital component in the efficiency of OSABS. It defines how
bikes are assigned to the customer. We refer to this using the matching problem. It also
allows for a redistribution of the bikes in the network to optimize the system. This is
called the rebalancing (or relocation) problem. In this paper, we aim to test and evaluate
different rebalancing strategies. The matching component will be the subject of further
studies. For this work, we implemented a first-in-first-out (FIFO) strategy that assigns the
best available bike in the 10-min area (in terms of the less energy-consuming route) to each
customer. It is important to mention that we prioritize serving the current requests in the
rebalancing operation. This means that, if a bike is on its way to a waiting station and a
request appears in the surroundings, the bike could be assigned to this customer’s request,
and the rebalancing operation cancelled. We do not consider open requests. If no available
bike can reach the customer in less than 10 min, then the request is rejected.

For the rebalancing component, we distinguish between two types of relocation:

• Relocation after rental: refers to the rebalancing operation applied when a bike be-
comes idle after serving a customer.

• Periodic relocation: refers to the rebalancing operation which occurs each period T to
distribute bikes between the different stations according to future demand.

Both types require the implementation of the following steps:

1. Stations distribution: We need to discretize the operating area into a set of rebalancing
regions (cells) and locate a station in each region. In this work, we adopt the same
discretization of statistical cells, for two reasons. First, because the demand scenarios
are defined according to the statistical cells. The second reason is that each statistical
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cell can be covered in 10 min if we place a station in its center. Therefore, we have
placed 14 stations (a station in the center of each region).

2. Demand estimation: Predicting upcoming demand has been recognized as an im-
portant task [57]. However, as we aim to test different relocation strategies and are
not interested in evaluating or developing novel forecasting methods, we assume
that we know the mean of the demand distribution (generated according to poisson
distribution). This assumption has no impact on our comparison study.

3. Imbalance calculation: For each relocation type, we have a specific imbalance calculation.
The imbalance for periodic relocation: For each region i, at the period T, we define
the periodic imbalance PIi(T) according to Equation (1).

PIi(T) = Ni(T)− Di(T) (1)

where:

• Ni(T): Number of bikes at the beginning of the period T in the cell i.
• Di(T): Estimated number of bikes needed for the current period in the region i.

The imbalance for relocation after rental: For each region i, and for each period T, we
calculate the imbalance according to the Equation (2).

Pi(t) = Ni(t)− Di(t) (2)

where:

• For each period T, T <= t < T + 1
• Ni(t): Number of bikes available at t in the region i. This value is updated each

time a bike from the region i is assigned to a customer (We decrease the value by
1) or a bike is relocated to the station of region i (we increase the value by 1).

• Di(t): Estimated number of bikes needed at t till the end of the current period
T. The value of Di(t) is updated continuously (it decreases when requests
are appearing).

4. Bike relocation: we assign each idle bike to a station using imbalance calculation. We
have defined three different rebalancing strategies and one reference case where no
rebalancing strategy is applied:

• No Relocation: this is the case where less idle mileage is traveled, where we do
not consider the future demand. For the periodic relocation, no action is needed.
However, for the relocation after rental, we move the bike to the waiting station
of the customer destination region (bikes need to always be in a waiting station).

• Relocation in the vicinity: for this strategy, bikes can move only to neighbor-
ing regions. For the periodic relocation, we relocate bikes from a region with
oversupply to undersupplied regions in its vicinity only. The priority is given
to the region with the highest deficit in the neighborhood. For relocation after
rental, the bike should stay in the customer destination region if it has already a
negative imbalance; otherwise, it moves to the region with the highest deficit in
the vicinity, If no region has a deficit, the bike is assigned to the waiting station
of the destination region.

• Relocate to any undersupplied cell: in this case, we mainly relocate bikes based
on the imbalance value. Each region with an undersupply can get bikes from
any region with an oversupply (even if it is distant). However, this operation is
optimized by selecting the nearest available bike to the undersupplied region.
After the rental, the bike should stay in the customer destination region if it
has already a negative imbalance. Otherwise, it goes to the region with the
biggest deficit.

• Mixed relocation: here, we combine the strategies “Relocation in the vicinity”
and “relocation to any”. For cells with a significant undersupply (imbalance ≥ 5),
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relocation is possible from any cell. However, for cells with a moderate under-
supply (imbalance < 5), only relocation from neighboring cells is allowed.

In total, we can create 16 scenarios from the combination of these rebalancing strategies.
In this first study, we are interested in evaluating the following scenarios: no relocation,
relocation to vicinity, relocation to any and mixed relocation. We apply the same strategy
for both periodic relocation and relocation after rental.

4. Case Study Results
4.1. Simulation Settings

In order to evaluate the different rebalancing strategies within OSABS, we use the
agent-based simulation model developed in the Anylogic Professional 8.6 version. The
operational area of OSABS is defined as the 14 regions of Magdeburg (Germany), which
constitute the city core (see Figure 4). We run the experiments using a computer Intel
(R) i9 CPU @2.40 GHz with 32.0 GB of RAM. The fleet size was initially determined so
that we serve, on average, 94% of requests during rhw peak hour in the case where the
no-rebalancing strategy is applied. The bikes are initially distributed over the network
according to the distribution of demand between the regions. The periodic rebalancing is
carried out every hour.

We evaluate OSABS through the following set of indicators:

• Global service level: percentage of served requests.
• Service level during peak hours: the service level in the evening peak (between 18 h

and 19 h).
• Empty vehicle mileage Traveled (VMT) for relocation: total mileage driven to redis-

tribute bikes (for relocation purposes) in km.
• Empty mileage Traveled for relocation per bike in km.
• Energy consumption for relocation: the energy consumed for relocation operation

in kWh.
• Energy consumption for relocation per bike in kWh.

The generation of requests in Anylogic is stochastic and follows an exponential dis-
tributed interarrival time with a mean = 1/arrival rate. Thus, multiple simulation runs are
required to guarantee a stable estimation for the average values of our KPIs. The minimum
number of required runs of MNR(n) was calculated for the standard deviation s(n) of the
decisive KPI, as described in Equation (3), based on n initial simulation runs [58] :

MNR(n) = d(
s(n) ∗ tn−1,1−α/2

x̄ ∗ ε
)2e (3)

where:

• x̄ is the sample mean.
• ε allowable percentage error of the estimate.
• t is the inverse of Student’s t CDF evaluated at 1− α/2 with n− 1 degrees of freedom.
• α is the level of significance.

In all cases, the service level is the decisive KPI. Based on n = 10, α = 0.1 and ε = 0.1,
MNR is between 6 to 10 runs per scenario. For the following tests, we perform 10 runs
per scenario.

Initially, we simulate 24 h (a typical statistical day) for the three relocation strate-
gies and calculate the average number of periodic rebalancing operations. We conclude
that nearly 90% of requests and 90% of relocation actions occur between 06:00 a.m. and
09:00 p.m. (Figure 5). As the simulation is time-consuming and multiple runs are required
per scenario, we limited the test runs between 06:00 a.m. and 09:00 p.m.
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Figure 5. Evolution of demand and rebalancing operations during the day.

Finally, by analysing the hourly distribution of bookings for each day of the week, we
can see that there are two main different demand patters (Figure 6): one for the working
days (from Monday to Friday) and one for the weekend (Saturday, Sunday). Consequently,
we will conduct our experiments on Wednesday, where there is the highest demand in the
evening peak hour, and Saturday.
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Figure 6. Hourly distribution of bookings for a week.

4.2. Simulation Results
4.2.1. Simulation of Working Day

As the main KPI is the service level, we evaluate the average hourly service level for
the different strategies (Figure 7).
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Figure 7. Variation of the service level during the day for 110 bikes.

As we can see in Figure 7, the average service level for the reference case and the three
relocation strategies is higher in the morning peak than in the evening peak. This is an
expected outcome, as the demand per hour is highest in the evening peak for our simulated
day. We can also observe that the different proactive rebalancing strategies outperform
the “No rebalancing” case in the phase of the morning peak (between 07:00 a.m. and
09:00 a.m.). While the service level for the “No rebalancing” strategy decreases from
7:00 a.m., it remains at 100% for the three other strategies till 8 a.m. This is an indicator
that bike rebalancing is particularly valuable when low-demand phases are followed by
high-demand phases. We also notice the importance of relocation in the abate phase (From
10:00 a.m. to 05:00 p.m.). The service level of the “no rebalancing” case keeps decreasing,
while the service level for the proactive relocation strategies increases. The relocation
operation allows for the convenient redistribution of bikes after a high-demand phase,
consequently achieving demand satisfaction in the different regions. The three relocation
strategies achieve comparable service level results during the different hours of the day.

The outcome for the rest of the KPIs for the different scenarios is presented in terms of
average values in Table 2.

Table 2. Average KPIs for the different rebalancing strategies.

Relocation
Strategy

Relocation
VMT (km)

Relocation
VMT per Bike

(km)

Relocation
Energy (kWh)

Relocation
Energy per Bike

(kWh)

No rebalancing 3100.785 28.189 107.154 0.974
To vicinity 4736.338 43.058 155.249 1.411

To any 5736.59 52.151 176.198 1.602
Mixed rebalancing 5474.413 49.767 173.315 1.576

As expected, the no-rebalancing case outperforms the proactive relocation strategies in
terms of energy consumption and mileage traveled. When we do not relocate idle bikes, at
least 14 km per bike could be saved, which corresponds to about 0.5 kWh for the simulated
scenarios. Among the proactive rebalancing strategies, the “to vicinity” strategy allows the
best results to be achieved, since shorter and fewer trips are performed when we relocate
bikes only to the neighboring regions. The worst KPI outcomes are obtained by the “to
any” strategy, which is the result of excessively spatially distributing the bikes.
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As we can see in Figure 7, the initial fleet is oversized, especially for the rebalancing
strategies, as about 98% of requests are fulfilled during peak hours. Thus, we also tested
the four scenarios for different fleet sizes in order to determine the minimum number of
bikes required for each relocation strategy. The variation in global service level and service
level during peak hours are correspondingly presented in Figures 8 and 9.
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Figure 8. Variation in the service level according to the fleet size.
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Figure 9. Variation in the service level during peak hours according to the fleet size.

As a first summary of the results, we observe that the three proactive relocation
strategies allow for a reduction in the fleet size to only 90 bikes, while serving 94% of the
demand during peak hours, with a decrease of about 15% compared to the no-rebalancing
strategy (about 105 bikes are needed). This reduction is very valuable, especially when the
fleet is a huge investment, as in our case. We also notice that the three strategies have the
same performance in terms of service level, and this can also be confirmed by the hourly
service level, with 90 bikes (Figure 10).
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Figure 10. Variation of the service level during the day for 90 bikes.

This decrease in the number of bikes comes with a trade-off. For a large fleet, the
bikes are abundant and there is less need to redistribute them; even when a rebalancing is
needed, the trips are habitually short. However, when the fleet size is small, bikes need to
rebalance often and, thus, a slight increase occurs in the rebalancing mileage traveled per
bike (Figure 11) and the energy consumed for rebalancing per bike (Figure 12). However,
for the total mileage traveled and energy consumption, we notice a slight decrease when
the fleet size is reduced (Figures 13 and 14). With the “to-vicinity” strategy, the total energy
consumed for rebalancing is equal to 135,475 kWh. This corresponds to an increase of about
30 kWh compared to the energy consumed with the “no-rebalancing” strategy, to achieve a
94% service level with 105 bikes. Unsurprisingly, the “to-any” strategy performs the worst
in terms of resource use. It leads to an increase of about 28% in the mileage traveled and
18% in energy consumption compared to the “to-vicinity” strategy. The performance of the
“mixed” strategy is always in between the two other proactive relocation strategies.
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Figure 11. Rebalancing mileage traveled per bike for different fleet sizes.
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Figure 12. Energy consumption for rebalancing per bike for different fleet sizes.

3000

4000

5000

6000

9095100105110

 Fleet size

R
eb

al
an

ci
n

g
 m

il
ea

g
e 

[k
m

] 

Mixed rebalancing No rebalancing To any To vicinity

Figure 13. Rebalancing mileage traveled for different fleet sizes.
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Figure 14. Rebalancing energy consumption for different fleet sizes.

4.2.2. Weekend Simulation

We simulated our system for Saturday, with different fleet sizes. As we can see in
Figure 15, the minimum fleet size required for the “No rebalancing” case is around 95 bikes.
However, we can reduce the fleet to less than 75 bikes if we apply a relocation strategy,
while ensuring a service level above 94%.
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Figure 15. Variation of the service level for different fleet sizes for Saturday.

However, there was an increase in the mileage traveled and the energy consumption
when opting for rebalancing (Figures 16 and 17). The most efficient proactive relocation
strategy is, as expected, the “To vicinity” strategy. On average, it consumes 14% less energy
compared to the “To any” strategy and 11% less compared to the “mixed” relocation. We
can also observe that the total mileage traveled and energy consumption significantly
decreased for all strategies when the fleet size decreases. With 75 bikes, the rebalancing
operation consumes only 107 kWh, on average, when applying the “To vicinity” strategy.
However, for the “No rebalancing” case, our system needs 95 bikes and consumes around
90 kWh for the same service level. There is an obvious trade-off between the fleet size
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reduction (by implementing a rebalancing strategy) and the energy consumption reduction
(by avoiding relocation operations).
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Figure 16. Rebalancing mileage traveled for different fleet sizes (Saturday).
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Figure 17. Rebalancing energy consumption for different fleet sizes (Saturday).

The mileage traveled per bike and the energy consumed per bike are nearly constant,
even when decreasing the fleet size for the different strategies, as shown in Tables 3 and 4.
In this scenario, the mileage traveled per bike increases by at least 14 km, on average, when
applying a rebalancing strategy. We also found approximately the same difference in the
energy consumption as the workday scenario (about 500 Wh between the “no rebalancing”
case and the “to vicinity” strategy).
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Table 3. Average mileage traveled per bike for the different rebalancing strategies with different fleet
sizes (in km).

Relocation Strategy 95 Bikes 90 Bikes 85 Bikes 80 Bikes 75 Bikes

No rebalancing 27.2 26.74 28.24 28.41 28.76
To vicinity 43.52 44.2 44.53 45.43 43.98

To any 56.16 55.17 55.18 55.01 52.93
Mixed rebalancing 52.34 51.82 53 51.26 51.14

Table 4. Average energy consumption per bike for the different rebalancing strategies with different
fleet sizes (in kWh).

Relocation Strategy 95 Bikes 90 Bikes 85 Bikes 80 Bikes 75 Bikes

No rebalancing 0.94 0.93 0.98 0.99 1
To vicinity 1.42 1.44 1.45 1.47 1.43

To any 1.7 1.68 1.69 1.68 1.62
Mixed rebalancing 1.62 1.61 1.65 1.6 1.6

4.3. Cost Analysis

Several papers in the literature have defined the operational cost of AMoD services
and evaluated the fleet management strategies accordingly [2,37,59]. Introducing financial
indicators such as energy cost, cost of a lost request, and bicycle depreciation value allows
for a better comparison between the different strategies and helps stakeholders more easily
make a decision. In our case, we ignored the cost of a lost request but we considered the
service level when comparing the different strategies. As we are studying a novel system,
which is still under development, complete and exact data on costs are not available at
present. However, based on talks with industry experts and our best knowledge of the
current market prices, we assume the list of costs given in Table 5. The charging station cost
corresponds to a station with five chargers. The cost of a waiting station is ignored because
there no infrastructure is needed for its implementation. We also calculate the cost per
hour for the different fixed costs, based on a depreciation value of 10 years for the charging
station and 4 years for our bike. As the bike is equipped with expensive technology and
cameras that protect it from theft and violence, we estimate a higher lifespan than the
actual one for electric bikes (generally between 1 and two years [60,61]).

Table 5. Bike and charging station cost assumptions.

Bike Capital Bike
Maintenance

Charging
Station Imple-

mentation

Charging
Station

Maintenance

Electricity
(per kWh)

Costs in € 30,000 € 300 €/month 45,000 € 150 €/month 0.3 €/kWh
Costs per
hour in € 0.856 € 0.417 € 0.514 € 0.208 €

We calculate the energy consumption costs and the total fixed costs for the four
different rebalancing cases (Table 6). The different values are for our 15-h simulation. For
the no-rebalancing case, we use the values obtained for a fleet size of 105 bikes, because
this is the required fleet size to achieve a service level of 94%, while the required size is
90 bikes for the three proactive rebalancing strategies. We differentiate between the two
types of energy consumption. The first one is the energy consumed when the bike is in use
in either the manual mode (when the customer is driving) or by the autonomous mode
(for rebalancing purposes or when the bike is driving to a customer). The second type
is the energy consumed when the bike is idle (our bike also consumes energy when it is
idle because it has sensors and cameras and should always be connected to a server). The
second type increases when the bike usage decreases, as is the case when no rebalancing
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strategy is implemented. Following our first study, we concluded that we need 10 charging
stations for our current implementation.

Table 6. Fixed and variable costs for the different rebalancing options.

Rebalancing
Strategy

In-Use Energy
Consumption

in kWh

Idle Energy
Consumption

in kWh

Energy
Consumption

Costs
Fleet Size Fixed Costs

No rebal-
ancing 412.553 479.668 267.667 € 105 2113.014 €

To vicinity 464.963 349.095 244.217 € 90 2070.844 €
To any 522.414 338.20 258.184 € 90 2084.811 €
Mixed 497.808 342.937 252.223 € 90 2078.85 €

Finally, we can conclude the total costs and a cost per trip (Table 7).

Table 7. Total costs for the different rebalancing options.

Rebalancing
Strategy Total Costs Number of Satisfied

Trips Cost per Trip

No rebalancing 2380.681 € 8072 0.295 €
To vicinity 2070.844 € 8017 0.258 €

To any 2084.811 € 8014 0.260 €
Mixed 2078.85 € 8013 0.259 €

As we can see, the “To vicinity” strategy has the lowest cost per trip. The difference be-
tween the three proactive strategies is very minimal. However, we can notice an important
difference between the “no rebalancing” case and the rest of the strategies. This confirms
the importance of fleet reduction in order to minimize costs. Indeed, as our bike constitutes
a huge investment, opting for a relocation strategy that allows for fleet reduction and the
efficient use of resources can be the best choice for stakeholders. It is important to highlight
that our cost per trip does not include costs such as marketing, insurance, website hosting,
and administrative costs. These costs are hard to estimate before implementing OSABS.
For this reason, we can not compare the cost per trip of our system to the conventional
bike-sharing system, where only the operative cost per trip was estimated as 0.6 € for
the traditional bike-sharing system and 1.06 € for the electrical bike-sharing system [60].
Instead, we can compare the cost of rebalancing based on the data given in [60] for the
traditional bike-sharing and the electrical bike-sharing. Table 8 states the rebalancing cost
of our “to vicinity” strategy and other bike-sharing systems.

Table 8. Comparison of rebalancing costs of different bike-sharing systems.

Bike-Sharing System Rebalancing Costs per Hour and Bike

OSABS 0.03 €/h-bike
Traditional 0.028 €/h-bike
Electrical 0.09 €/h-bike

As we can see, OSABS rebalancing costs can be compared to the conventional system.
Our costs are slightly higher than traditional bike-sharing but we can also estimate higher
revenues, because we intend to have additional revenue channels to cover the cost differ-
ence. Compared to the electrical bike-sharing systems, we can see that OSABS performs
better in terms of relocation costs.

5. Discussion

In this section, we discuss the presented outcomes and outline their limitations. First,
this paper presents an approach to implement and compare different relocation strategies
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for AMoD services. This approach could easily be applied to other types of mobility where
a proactive rebalancing operation is needed.

Second, it is important to analyze the simulation results with a holistic view of the
different associated factors. Evidently, for fixed fleet size, the rebalancing operation leads
to higher empty mileage traveled (and, consequently, higher energy consumption) in the
system. However, as shown in the evaluation results, rebalancing allows us to significantly
lower the number of bikes in the system (by over 15% for the same service level). The
decrease in fleet size implies significant financial benefits thanks to the lower investments,
maintenance costs and energy consumption. The amount of energy saved needs to be
determined by life-cycle assessment in future work. These benefits might be even larger
when we also consider the environmental advantages. A smaller fleet results in less street
congestion and fewer parking spaces for waiting and charging stations.

Third, we believe that the cost analysis is not conclusive, as the costs may differ
considerably from one city to another [62] and strictly depend on the implemented system,
the area, and the demand profiles [63]. To the best of our knowledge, data for German
cities are, unfortunately, not available in the literature. For OSABS, we estimate high
operational costs compared to the conventional system. However, it can confer additional
benefits by modifying the user’s behavior and enhancing the attractiveness of bike-sharing.
As mentioned in [63], we could have different bike-sharing systems in the same area for
different target groups and with different business models. For example, the electrical bike-
sharing system costs more than the traditional bike-sharing but makes the bike-sharing
more attractive, and the increase in infrastructure could be compensated by a larger and
more balanced demand [60]. The same applies to OSABS, which is estimated to attract more
users thanks to the system reactivity and the possibility of a door-to-door bike-sharing
option. Indeed, OSABS not only can be considered as an alternative to cars for short trips
but also can enhance the transition from cars to public transportation for mid-to-long
trips. It facilitates the connection to public transport stations and can be used as a first-
or last-mile mobility option. Furthermore, it would be worth comparing OSABS and
AMoD services in terms of their external costs. As, for instance, Cavill et al. [64], Gössling
and Choi [65], Koning and Conway [66] point out, biking benefits an economy or society
through better health and other factors. Cars, however, impose costs on a society through
air pollution, health issues and accidents. Although OSABS may not be viable from an
operator perspective, they are likely to beneficial from a public perspective. However,
this needs more investigation and sound assessments of the external costs of OSABS
and AMoDs.

Fourth, we should highlight that we ran the experiments for only two demand scenar-
ios in the inner city of Magdeburg. Thus, the results must be interpreted considering the
context of the study area and the demand patterns. We simulated the system for a dense
and small area, where the bike can move from one region to another in 2–3 min and the
demand is mainly concentrated in the central region. In this setting, the relocation to a
vicinity strategy has proven to be the most efficient in terms of service level and energy
consumption. However, if we consider a larger area, where we have distant clusters of
demand, a different strategy could perform better. For example, including the outer city
areas in our study would stress the importance of rebalancing to meet customer demands
in the suburbs. Indeed, in the morning peak hour, the demand is in the inner city, where we
will have a lot of bikes; however, if we need more bikes in the outer city, there is no supply.
In this case, the rebalancing “To vicinity” may lead to poor performances as the outer city is
distant from the inner-city regions, and thus cannot follow the demand pattern. However,
the strategy “To any” and “mixed” may perform better and ensure a good service level.
Certainly, the rebalancing distance will increase, but we will satisfy more customers and
the manual km (the kilometers driven by the customer, which is a source of revenue for
our service) will also increase. A dynamic pricing strategy could be tested and studied
for this scenario, in which we propose a higher price for the outer regions, as we need a
larger rebalancing effort to satisfy demand. This case also emphasizes the need for OSABS,
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as bikes can move autonomously and dynamically according to the upcoming demand,
unlike conventional bike-sharing systems, which are currently not viable for such regions.
The evaluation of relocation strategies with different cities and case studies will be the
subject of future research.

Fifth, in this work, we ignored the need for the bikes to charge their batteries. As has
been studied by Chen et al. [36], the choice of the charging policy and vehicle range has
a major impact on the system performance. Thus, an advanced model with battery and
charging integration is under development. The next work will aim to optimize charging
and fleet management jointly.

Finally, the demand information used in the rebalancing algorithm is the same as the
one integrated into the demand generation module, which is not the case in the real world.
A sophisticated forecasting algorithm for rebalancing should be implemented and tested in
order to present a more realistic model. A deep learning-based approach could be used
to predict demand location and time [67], and the rebalancing algorithm assigns bikes
accordingly. Further work could also be done to optimize rebalancing by forecasting the
customer destination.

6. Conclusions

Through this work, we investigate and provide a better knowledge of a novel mobility
service: OSABS. We address the problem of fleet relocation. Our aim is to optimize fleet
management for this new service by increasing its efficiency and reducing investment
costs, which are relatively high for a self-driving system. The simulation of our case study
with three different strategies for periodic rebalancing and after rental rebalancing allows
us to quantify the impact of each one on the service level and in terms of resource use,
compared to a reference case of “no rebalancing”. Among the three proactive rebalancing
strategies, redistributing bikes within the vicinity of the current region achieves the best
performance, with low energy consumption, low mileage traveled, and a high service
level. In contrast, strategies aiming to relocate bikes more often lead to lower performances
in terms of the resources used, with no advantage in the service level. These findings
were also strengthened by the cost analysis, where the “to vicinity” strategy achieved the
smallest cost per trip for a given service level.

This study affirms the rebalancing’s potential in the improvement of service efficiency
and reduction in fleet size. In addition, it contributes to the field of SAV fleet management
research by extending the scope of existing studies to other mobility services, such as
autonomous bikes or micro-vehicles, with more realism. This study allowed us to draw
some conclusions for OSABS regarding the most suitable rebalancing strategy. However,
the simulated model is very simplified and could be extended further. We can add more
complexity by considering in-advance booking, a heterogeneous fleet, or dynamic prices.
Furthermore, in this research, we considered OSABS independently from other mobility
services. With this limitation, we miss the potential gains that may arise through integrating
our service with public transportation. A future research direction consists of the evaluation
of OSABS for more complex deployment options, such as a multi-modal transportation
service or a last-mile solution.
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Appendix A

To determine the probability of a demand occurring at a given time, the booking data
of an existing bike-sharing system from 2014 to 1016 are analyzed. For this purpose, the
8,941,470 bookings that occurred during the observation period are first subdivided based
on the days of the week on which they occurred. Subsequently, the share of bookings in
a respective hour, of the total bookings of the individual weekday, is determined. The
resulting distribution is shown in the following table.

Table A1. Hourly share of demand.

Share

Time Monday Tuesday Wednesday Thursday

0–1 1.08% 1.21% 1.40% 1.67%
1–2 0.69% 0.72% 0.87% 1.03%
2–3 0.39% 0.37% 0.44% 0.60%
3–4 0.27% 0.23% 0.27% 0.39%
3–4 0.23% 0.16% 0.19% 0.26%
5–6 0.39% 0.35% 0.34% 0.37%
6–7 1.27% 1.38% 1.25% 1.28%
7–8 4.40% 4.98% 4.72% 4.55%
8–9 8.37% 9.24% 8.92% 8.54%
9–10 5.10% 5.49% 5.33% 5.26%

10–11 3.15% 3.15% 3.10% 3.11%
11–12 3.56% 3.43% 3.36% 3.50%
12–13 4.75% 4.71% 4.69% 4.85%
13–14 5.20% 4.97% 5.01% 5.13%
14–15 5.20% 4.87% 4.88% 5.03%
15–16 6.23% 5.82% 5.71% 5.89%
16–17 7.90% 7.47% 7.47% 7.42%
17–18 10.48% 9.98% 9.88% 9.50%
18–19 10.65% 10.14% 10.11% 9.66%
19–20 7.49% 7.23% 7.36% 7.18%
20–21 4.95% 5.04% 5.16% 5.00%
21–22 3.57% 3.78% 3.79% 3.75%
22–23 2.77% 3.08% 3.23% 3.27%
23–24 1.91% 2.19% 2.51% 2.78%

https://data.deutschebahn.com/dataset/data-call-a-bike/resource/0fcce4dd-7fc6-43f8-a59c-983a7945f8ba.html
https://data.deutschebahn.com/dataset/data-call-a-bike/resource/0fcce4dd-7fc6-43f8-a59c-983a7945f8ba.html
https://data.deutschebahn.com/dataset/data-call-a-bike/resource/0fcce4dd-7fc6-43f8-a59c-983a7945f8ba.html
https://opendata.dwd.de/
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Table A1. Cont.

Share

Time Friday Saturday Sunday

0–1 2.09% 3.52% 3.69%
1–2 1.47% 2.97% 3.42%
2–3 0.93% 2.15% 2.65%
3–4 0.63% 1.53% 1.99%
4–5 0.41% 1.10% 1.50%
5–6 0.43% 0.80% 1.11%
6–7 1.16% 0.62% 0.82%
7–8 3.98% 0.78% 0.86%
8–9 7.43% 1.46% 1.29%
9–10 4.81% 2.69% 2.33%

10–11 3.16% 3.86% 3.57%
11–12 3.63% 5.27% 4.88%
12–13 4.94% 6.43% 6.41%
13–14 5.60% 7.33% 7.66%
14–15 5.94% 7.75% 8.42%
15–16 6.66% 7.77% 8.52%
16–17 7.82% 7.38% 8.28%
17–18 8.51% 7.48% 8.05%
18–19 7.93% 6.96% 7.08%
19–20 6.45% 6.22% 5.86%
20–21 5.18% 5.16% 4.24%
21–22 4.01% 3.98% 3.04%
22–23 3.48% 3.36% 2.48%
23–24 3.33% 3.43% 1.85%
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