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Abstract: Agglomeration in spray fluidized bed (SFB) is a particle growth process that improves
powder properties in the chemical, pharmaceutical, and food industries. In order to analyze the
underlying mechanisms behind the generation of SFB agglomerates, modeling of the growth process
is essential. Morphology plays an imperative role in understanding product behavior. In the present
work, the sequential tunable algorithm developed in previous studies to generate monodisperse
SFB agglomerates is improved and extended to polydisperse primary particles. The improved
algorithm can completely retain the given input fractal properties (fractal dimension and prefactor)
for polydisperse agglomerates (with normally distributed radii of primary particles having a standard
deviation of 10% from the mean value). Other morphological properties strongly agreed with the
experimental SFB agglomerates. Furthermore, this tunable aggregation model is integrated into
the Monte Carlo (MC) simulation. The kinetics of the overall agglomeration at various operating
conditions, like binder concentration and inlet fluidized gas temperature, are investigated. The
present model accurately predicts the morphological descriptors of SFB agglomerates and the overall
kinetics under various operating parameters.

Keywords: agglomeration; morphology; Monte Carlo; tunable aggregation model; polydisperse
primary particles

1. Introduction

The comprehensive morphological characterization of agglomerates is becoming in-
creasingly important in the chemical, food, and pharmaceutical industries, as well as in
research. This is due to the dependence of functional properties on the microscopic struc-
ture leading to different macroscopic features, like density, flowability, and strength [1].
Therefore, techniques to produce particles that allow control of the agglomerate morphol-
ogy are highly desirable. In this regard, agglomeration in a spray fluidized bed (SFB) is a
particle growth process that enhances the physical properties of small particles [2]. In this
process, particles are fluidized through the air, also used as a drying agent. The surface
of the fluidized particles is wetted by binder droplets sprayed through a nozzle. After
successful collisions of the fluidized particles with each other, liquid bridges are formed.
Water contained in the liquid bridges evaporates and leads to the formation of solid bonds
between the primary particles in an agglomerate. The morphology of formed agglomerates
is similar to that of a blackberry [3].

In order to understand and analyze the mechanisms behind the generation of porous
particles bigger than the original particles, modeling of the growth process is crucial. Macro-
scopically, population balance equations are commonly used [4,5], and microscopically,
Monte Carlo (MC) models [6–10] and discrete element methods coupled with or without
computational fluid dynamics [11–15] are used. The focus of the present work is on the
modeling of SFB agglomeration operated in batch mode. In this work, the overall SFB
agglomeration, consisting of several micro-scale mechanisms, is simulated using the MC
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method. This method is employed to describe random mechanisms on a microscale, by
creating a scaled-down virtual SFB granulator. This approach is similar to the technique
used by Terrazas et al. [16], Dernedde et al. [7], and Singh and Tsotsas [9,10].

Morphological analysis of the agglomerates is necessary to capture the temporal
growth of particles during agglomeration. It plays a crucial role in evaluating the various
underlying mechanisms on a microscale behind the agglomeration process. Agglomerates
are polymorphic and are characterized using fractal properties such as prefactor and fractal
dimension, porosity, and coordination number. An increasing interest in investigating the
morphology of aggregates has stimulated the exploration for numerical algorithms that
could provide results similar to experimental findings. From the plethora of aggregation
algorithms in the literature, the particle–cluster tunable aggregation model predicts SFB
agglomerates quite well. An overview of the tunable aggregation model developed over
the years is given in [10]. The first tunable aggregation algorithm was introduced by [17].
Subsequently, several other studies have proposed different tunable algorithms to gen-
erate aggregates. However, only the fractal dimension was preserved in most of these
studies [18–20]. In order to determine the morphology of an agglomerate, both fractal
dimension and prefactor must be correctly ascertained [21,22].

A notable exception is an algorithm proposed by Filippov et al. [23], which could
preserve both fractal dimension and prefactor. This algorithm was further extended and
adapted in various fields to investigate the morphology of fractal aggregates [10,24–28].
Relatively compact SFB agglomerates were observed in the experiments [29]. However,
these SFB agglomerates with a combination of large prefactor k, with large fractal dimension
D f (cf. Table A1) cannot be reconstructed using the original versions of the algorithms
presented in the past. This is due to the limitation of the prefactor at higher fractal
dimension. Singh and Tsotsas [10] developed a tunable sequential aggregation (TSA)
algorithm to reconstruct the SFB agglomerate corresponding to its fractal properties. The
TSA model reconstructed SFB agglomerates that are composed of monodisperse primary
particles by tuning their fractal properties [10]. Regardless of each agglomerate having
a variable fractal dimension in the TSA model, generated agglomerates resembled the
experimental agglomerates from [29]. This model was further adapted and extended in
Singh and Tsotsas [27] to investigate the influence of polydisperse primary particles on
SFB agglomeration. However, the fractal properties (D f and k) of agglomerates with a
standard deviation of σ = 0.1Rp (also corresponding to the experimental data) were not
accurately retained.

In the present study, the fractal tunable aggregation algorithm from Singh and Tsot-
sas [27] is improved to reconstruct SFB agglomerates comprising of polydisperse spherical
primary particles. Morphological parameters of the agglomerates obtained by employing
this tunable aggregation algorithm are validated by the experimental data. Additionally,
this aggregation algorithm is integrated into the MC simulation scheme to evaluate both,
formation kinetics and morphology of SFB agglomerates produced under several operating
parameters (binder concentration and inlet fluidized gas temperature).

2. Numerical Simulations

A comprehensive constant volume Monte Carlo (CVMC) model, introduced and
validated in the previous works [9,10,16,30], was adapted here to simulate the SFB ag-
glomeration in batch mode of operation. The CVMC model is stochastic in nature and
is event-driven, with collisions between fluidized particles in SFB as the main event. It
provides the link between the real system and the CVMC representation. The CVMC
simulations were performed in MATLAB with self-programmed codes.

The simulation framework of CVMC, integrated with several micro-scale mechanisms,
is given in Figure 1. The simulation cell, initially consisted of 1000 primary particles, was
treated as a scaled-down virtual SFB agglomerator. The number of particles in the simula-
tion cell varied according to the process, such as breakage or agglomeration, whichever
prevailed during the simulation. In the case of agglomeration, when the particle number
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in the simulation cell becomes half, the periodic regulation of the particles is made by
doubling the particle population.
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Figure 1. CVMC simulation framework for SFB agglomeration.

At the start of the simulation, droplet deposition and particle collisions were set on
instantaneously. The deposition of binder droplets takes place randomly on the particles
(initially primary particles and later on agglomerates). Droplet drying occurs instantly after
droplet deposition in SFB agglomeration. The reduction of the deposited liquid layer and,
finally, the droplet loss is entirely because of the drying of the liquid binder droplet. Due to
the droplet loss, the agglomeration rate is decreased. An agglomerate is formed when a
successful collision occurs on the wet surfaces of primary particles. In order to capture the
morphology of the agglomerate formed, each agglomerate is generated five times with the
help of the aggregation model. The morphological properties of the agglomerates were then
calculated and averaged over those five realizations. The CVMC simulation framework is
briefly described in Appendix A. Further elaboration and validation of sub-models in the
context of the CVMC simulation can be found in [30]. The aggregation model is presented
in detail in the following section. The breakage model was taken from [27].

2.1. Aggregation Model

Basically, different kinds of aggregation models can be achieved by varying certain al-
gorithm aspects. These can be classified into four categories: particle trajectories, aggregate
formation, simulation lattice, and algorithm tuning [10,20].

Sticking probability and fractal properties are the two significant tuning parameters
affecting the algorithm of particle aggregation. Sticking probability is the probability
with which entities adhere to the main cluster [10,31]. The sticking probability is classed
as one when the sticking of an entity takes place after every single collision with the
main cluster. The resulting aggregates have a fractal structure and are tenuous with high
porosity. The evaluated fractal dimension is close to 2.2, leading to the diffusion-limited
aggregation model [32]. Sticking probability decreases as the number of collisions required
to successfully aggregate the entities into the main cluster increases. The value of sticking
probability can decrease to almost zero. The generated aggregates are then densely packed
like a cube (on-lattice) or sphere (off-lattice). The evaluated fractal dimension is close to 3.0.
This formation technique is called reaction-limited aggregation model [33].

Another tuning parameter is fractal properties, fractal dimension (D f ) and prefactor
(k), of an aggregate. These are extracted using the scaling power law that provides the
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relationship between the number of primary particles of the agglomerates, Np, to their
radii of gyration, Rg,

Np = k
(

Rg

Rp

)D f

. (1)

Here, Rp is the mean radius of primary particles in an agglomerate. Assuming that
the power law according to Equation (1) holds, primary particles are added to a cluster
with a goal to achieve exact fractal properties. This aggregation process is named as the
fractal tunable aggregation model.

2.1.1. Sticking Probability Model

The sticking probability model is an on-lattice particle–cluster monodisperse ag-
gregation model. A detailed algorithm of this model is given in [10,28]. A series of
agglomerates consisting of spherical primary particles ranging from 5 to 100 in a step of
5 were generated by means of this model with a sticking probability of one. Then, the
same series of agglomerates were developed at different values of the sticking probability
(Ps = 0.001, 0.01, 0.05, 0.1, 0.5, 0.7). Morphological descriptors, like fractal properties
(fractal dimension and prefactor) and porosity (arithmetic mean over the series) of each
series were evaluated. Each series of agglomerates was generated 10 times, and evaluated
morphological descriptors are plotted in Figures 2 and 3. The interquartile range (difference
between the 75th and 25th percentile) for each series is represented by a box in Figures 2
and 3. The median is indicated by the horizontal bar (highlighted in red) inside the box.
The largest and lowest data points are represented by the horizontal bars (highlighted in
black) at the top and bottom of the box, respectively. The outliers are indicated by a red
plus sign. Figure 2 shows that the fractal dimension increased and the prefactor decreased
as the sticking probability decreased.
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A similar procedure was used to evaluate the porosity, calculated by the radius of
gyration method, at various sticking probabilities. Figure 3 shows that with decreasing
sticking probability, porosity also decreased. The lowest porosity obtained with this model
is equivalent to the highest porosities examined for the largest SFB agglomerates in [34].
However, this porosity was still higher than the average porosity (around 0.6) of real SFB
agglomerates examined in [34]. Moreover, as expected, the computation time to generate
an agglomerate at a lower sticking probability increased for only a marginal change in the
morphology [10,28].

The sticking probability model, being an on-lattice model, meant the generated ag-
glomerates were more efficient. However, more realistic agglomerates can be generated by
an off-lattice model (on a short scale) [5].

2.1.2. Fractal Tunable Aggregation Model

The basic framework of the tunable aggregation model is taken from the Huygens–
Steiner theorem, which is used to calculate the moment of inertia of complex bodies. It
states that any two parts of an arbitrary system (with total mass, M and radius of gyration,
Rg) satisfy the equation

MR2
g = M1R2

g1 + M2R2
g2 +

M1M2

M
T2, (2)

where M1 and M2 are the masses of the two parts, T is the distance between their centers
of mass and Rg1 and Rg2 are the radii of gyration calculated by means of the scaling power
law (given in Equation (1)).

Thus, by preserving both D f and k, Equation (2) can be used to aggregate two clusters
(or primary particle and aggregate) with at least one contact point and no overlapping
between primary particles from the two adjoining clusters. For the new aggregate, T is
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determined by substituting the value of Rg from Equation (1) into Equation (2) and upon
rearranging, it becomes

T2 =
M2Rp

2

M1M2

(
N
k

) 2
D f −

MRp
2

M2

(
N1

k

) 2
D f −

MRp
2

M1

(
N2

k

) 2
D f

, (3)

such that, N = N1 + N2 and M = M1 + M2.
Equation (3) is the generalized equation for polydisperse cluster–cluster aggregation

and is the same as given in [25]. Considering particle–cluster monodisperse aggregation,
Equation (3) is simplified as

T2 =
N2Rp

2

N − 1

(
N
k

) 2
D f −

0.6NRp
2

N − 1
− NRp

2
(

N − 1
k

) 2
D f

. (4)

The radius of gyration of a solid sphere (considered in the middle term of
right-hand side of Equation (4)) is not equivalent to its physical radius as used
in [10,23,24,27]. Equation (4) is the corrected correlation for generating any particle–cluster
monodisperse aggregate.

In the present work, a particle–cluster off-lattice modified polydisperse tunable se-
quential aggregation (MPTSA) algorithm is used. Polydisperse primary particles normally
distributed with a given mean radius (Rp) and standard deviation are sequentially added
for given fractal properties (D f and k) as following:

1. The radii of primary particles are normally distributed for a given number of primary
particles (Np).

2. The center of a 3D simulation space is allotted to the first primary particle from
the distribution.

3. Randomly, a point on the spherical surface of the first particle is selected and the
second primary particle is brought into contact with it.

4. Due to the prefactor limitation of the tunable sequential algorithm, as described in
detail in [10], the input fractal properties (D f and k) are tuned (D f ,t and kt = 1) using
the correlation given by Singh and Tsotsas [10],

D f ,t = D f

(
ln Np

1

ln Np
k

)
. (5)

5. The center of the third and subsequent particles is on a sphere of radius T, which is
obtained by modifying Equation (3) as,

T2 =

(
∑N

i=1 Mp,i

)2
Rp

2

Mp,N

((
∑N

i=1 Mp,i

)
− Mp,N

) (N)
2

D f ,t −
0.6
(

∑N
i=1 Mp,i

)
Rp,N

2((
∑N

i=1 Mp,i

)
− Mp,N

) −

(
∑N

i=1 Mp,i

)
Rp

2

Mp,N
(N − 1)

2
D f ,t . (6)

Here, N is from 3 to Np, Rp,N is the radius of primary particle selected sequentially
from the radius distribution and Mp,N is the mass of the primary particle calculated
from the corresponding radius. A schematic representation of the algorithm can be
seen in Figure 4.

6. A point is randomly selected on the surface of the sphere (of radius T), and the
conditions for contact and overlap are checked.

7. The new particle is attached to the growing cluster (initially with two particles), if
there is contact without overlapping.

8. Steps 5–7 are repeated until the condition N = Np is satisfied.
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Figure 4. An illustration of the MPTSA algorithm with solid spheres as polydisperse primary particles
(Np = 5; red for the smallest (197 µm) and yellow for the largest (340 µm) primary particle) and a
hollow sphere of radius T for the addition of a sixth primary particle.

An illustration of this algorithm is shown in Figure 5 by generating an agglomerate
(with Np = 100). The input fractal parameters are D f = 2.5 and k = 1.5, and radius of
primary particles normally distributed (with Rp = 260 µm and σ = 52 µm). The radius of
gyration of the agglomerate is determined from the formulation given by [35],

Rg =

√
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(
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. (7)
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Figure 5. An exemplary agglomerate (with Np = 100; red for the smallest (122 µm) and yellow for
the largest (396 µm) primary particle) generated using the MPTSA model (with Rp = 260 µm and
σ = 52 µm).

Previous particle–cluster tunable aggregation models [10,23,24,27] assumed the radius
of the primary particle as its radius of gyration in Equation (3), which has been correctly
used in the present work (Equation (4)). In our previous work [24,27], an assumption was
made in the algorithm (T, (Equation (4)) regarding the mass of the individual polydisperse
primary particles. The masses of polydisperse primary particles were assumed the same.
This assumption is replaced in the present work by introducing the masses of individual
primary particles (T, (Equation (6)), similar to the algorithm proposed in [25]. However,
the algorithm from [25] was not able to generate agglomerates resembling real SFB agglom-
erates, like those from [29]. The reason could be combinations of large D f with small k
(prefactor limitation) in [25].
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The limitation of prefactor is also resolved in the MPTSA model by tuning the fractal
dimension at a fixed prefactor using the correlation derived by Singh and Tsotsas [10].
This correlation was based not only on the porosity correlation of agglomerates with
monodisperse primary particles, but also on the power law; we know that the power
law depends on the mean radius of the primary particle in an aggregate and not on the
individual radius. Thus, the tuning fractal dimension correlation (Equation (5)) can be
extended to aggregates with polydisperse primary particles.

Figure 6 shows the simulation time required to generate agglomerates with monodis-
perse primary particles in increments of 50 from 50 to 250 using the MPTSA model. D f
is taken from 1.8 to 3 in steps of 0.1 and k is fixed at 1. An agglomerate with 100 poly-
disperse spherical primary particles takes less than 1 s to generate on a typical personal
computer (with 4 cores, 4 GB RAM, and 3.4 GHz processor). The modified polydisperse
tunable sequential aggregation (MPTSA) model is computationally faster than previous
models [10,27].
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3. Results and Discussion
3.1. Validation of MPTSA Model

The experimental SFB agglomerates examined by Dadkhah [29] were used to validate
the MPTSA model. The primary particles used in her experiments were glass beads, with
hydroxypropylmethylcellulose (HPMC) in an aqueous solution as the binder. All her
experiments with various morphological descriptors obtained are briefly presented in
Appendix B.

The radii of the glass beads were measured with Camsizer and showed a Gaussian
distribution with a standard deviation of about 10% of the mean particle radius. The find-
ings of Dadkhah’s experiments tabulated in Table A1 and measured by X-ray tomography
indicate that the primary particles evaluated for individual agglomerates were normally
(Gaussian) distributed with a standard deviation of 30 µm and 3 µm (i.e., 10% and 1% of
mean radius of the primary particle) for experiments A and B, respectively.
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Accordingly, for experiments A and B, a standard deviation of 26 µm and 2.6 µm,
respectively, has been used in combination with a mean radius of 260 µm to generate
the Gaussian distribution of the primary particles in the MPTSA model. Based on this
distribution, a series of agglomerates with the number of primary particles ranging from 20
to 250 at a regular increment of 5 have been constructed by employing the MPTSA model.
The input values of fractal dimension and prefactor are taken from Table A1 for respective
experiments. The radius of gyration for each agglomerate generated with the MPTSA
model has been calculated using Equation (7). Then, it is averaged over five realizations
and plotted on a double logarithmic scale, given in Figure 7, against the number of primary
particles for each experiment. D f and k of the series of agglomerates (constructed by
means of the MPTSA model) are calculated from the power law relationship on a double
logarithmic scale for the entire sample. This evaluation method is consistent with the
evaluation method of Dadkhah et al. [36].
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Exp. B (b).

Figure 7 shows the fractal properties obtained using the power law for agglomerates
generated by employing the MPTSA model, denoted as output, are preserved accurately
compared to the corresponding input fractal properties for Exp. A and Exp. B, respectively.
The power law is perfectly satisfied in both cases, with R2 = 1 for the output (generated
using the MPTSA model) and for the respective input fractal properties. Moreover, the
extracted fractal properties (output) are almost identical for experiment B with a standard
deviation of 1% of mean radius (σ = 2.6 µm) and also for Exp. A with σ = 26 µm.
The retention of the fractal properties and resemblance with the power law is excellent,
validating the model. Furthermore, the extracted fractal properties (D f = 2.45 and k = 1.75)
for Exp. A from the MPTSA model are more accurate than the extracted fractal properties
(D f = 2.48 and k = 1.56) from Singh and Tsotsas [27] with the corresponding, same input
fractal properties (D f = 2.45 and k = 1.76).

3.2. MPTSA Model

Several agglomerates were constructed by means of the MPTSA model by varying
the number of primary particles in a range from 20 to 250 with a step size of 5. The input
fractal properties (D f and k) required by the MPTSA model for each trial were taken from
the respective experiment according to Table 1. It can be seen from Table A1, as well as
Figure A1, that the radii of the primary particles determined by Dadkhah were actually
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normally distributed with a standard deviation of around 10% of the mean radius. Cor-
respondingly, the radii of primary particles were normally distributed with Rp = 260 µm
and σ = 26 µm (10% of the mean radius) and were used in the MPTSA model.

Table 1. Morphological descriptors evaluated using the MPTSA model for different experiments.

Experiment set A B C D E

Temperature (°C) 60 30 90 60 60
Binder (wt.%) 2 2 2 6 10

Experimental results for each trial [34]

D f [-] 2.45 2.31 2.94 2.24 2.09
k [-] 1.76 2.01 0.98 1.96 2.24
Average εagg [-] 0.57 0.62 0.53 0.58 0.63
Average MCN [-] 3.32 3.10 4.02 2.92 2.87

MPTSA model results for each trial (averaged over 5 realizations)

D f [-] 2.45 2.31 2.94 2.24 2.09
k [-] 1.75 2.00 0.98 1.96 2.24
Average εagg [-] 0.66 0.69 0.57 0.74 0.78
Average MCN [-] 3.70 3.54 4.30 3.34 3.25

The morphological descriptors were determined and averaged over five realizations
for agglomerates generated from the MPTSA model. Fractal properties (D f and k) of the
agglomerates were obtained by means of the power law relationship (Equation (1)) on a
double logarithmic scale for the entire sample. This evaluation technique is consistent with
the method used in [10,34]. The porosity of the agglomerate (εagg) was calculated from the
radius of gyration method. For each agglomerate in a series, values of porosity and mean
coordination number (MCN) were calculated, then arithmetically averaged for the series,
then averaged over five realizations, and finally, listed in Table 1. This procedure is also
consistent with the technique used in evaluating the tomography data by Dadkhah [29].

Morphological descriptors obtained with the MPTSA model are better than those
obtained by Singh and Tsotsas [10] and are in close affinity with the experimental values [34].
The fractal properties were preserved accurately. A slight deviation in the average porosity
and MCN results from the MPTSA model was due to the sample of agglomerates used in the
experiments [29] (i.e., about 25 agglomerates selected randomly), while in simulations, the
primary particles ranged from 20 to 250 with a regular increment of 5 (i.e., 47 agglomerates
in equal intervals). However, morphological changes in the agglomerates generated by the
MPTSA model at different operating parameters were in great accordance with the real
agglomerates from [34].

3.3. CVMC Model

Experiments from Table A1 have been simulated for 10 min by means of the CVMC
model. Corresponding experimental parameters and simulation parameters are the same
as in [9,10,27] and are summarized in Table 2. Agglomerates were generated using the
MPTSA model. Primary particles were distributed normally with a mean radius of primary
particles, Rp = 260 µm, and σ = 26 µm. Input fractal properties (D f and k) for the
MPTSA model were calculated using the empirical correlations developed in [9,10] by
inserting binder concentration and inlet temperature of fluidized gas for respective trials
from Table A1.
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Table 2. Simulation and experimental parameters.

Bed mass Mbed 500 g
Primary particle density ρp 2500 kg/m3

Binder density ρl 998.5–1024.0 kg/m3

Binder volumetric flow rate
.

Ml 200 g/h
Gas (dry) mass flow rate

.
Mg 130 kg/h

Mean primary particle radius Rp 260 µm
Droplet diameter Dd 80 µm
Collision frequency prefactor Fcoll 10 1/m
Fluidization velocity uo 1.912 m/s
Particle surface asperities height ha 10 µm
Particle restitution coefficient e 0.8 -
Binder contact angle θ 40 ◦

3.3.1. Agglomerate Kinetics

Time is an important factor and is shown in Table 3 and in Figure 8. In Table 3, the
growth rate is evaluated using the present CVMC simulation with the MPTSA model and
compared with experiments [29] and previous CVMC simulation with the polydisperse
TSA model [27]. With the help of the overall growth rate, kinetics of the process at different
binder concentrations, and inlet temperatures is expressed.

Table 3. The overall growth rate of different experiments and corresponding simulations by employ-
ing the present CVMC model and the CVMC model from [27] after 10 min.

rG (µm/s)

Trial A B C D E

Present CVMC model 1.08 1.78 0.81 3.55 5.02
CVMC model from [27] 1.18 1.85 0.79 3.84 5.89
Experiment [29] 1.07 1.15 0.63 3.79 8.20
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The overall growth rate in Table 3 is calculated using:

rG =
Ragg,32,t − Rp

t
. (8)
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Here, Ragg,32,t is Sauter mean radius of the particle population in the simulation cell at
the end of the process (i.e., 10 min), Rp is the mean radius of primary particles, and t is the
duration of the trial. The radius of the formed agglomerates is calculated using surface
area equivalent sphere,

Ragg =

(Asur f ,CH

4π

)0.5

, (9)

where Asur f ,CH is the surface area calculated with the convex hull method, by generating
the agglomerates from the MPTSA model.

Figure 8 shows the temporal growth, expressed in terms of the relative agglomerate
radius (ratio of Sauter mean radius of the particle population and the initial radius) over
time, for different experiments by means of the CVMC model. It can be assessed from
Figure 8 (and also from Table 3) that; the growth rate decreased as the temperature of
the inlet fluidized gas increased (Exp. B, A, and C with increasing temperature). The
reason behind this is that at a higher temperature of the fluidizing gas, the drying of the
binder droplets is faster. The droplet size decreases as the temperature increases and the
probability of particles colliding at wet areas decreases. As a result, the agglomeration rate
decreased. Additionally, droplet loss was also very pronounced at high temperatures. This
also leads to a reduction in the agglomeration rate.

With increasing binder concentration (from Exp. A, to Exp. D, and finally to Exp.
E), the viscosity of the binder droplet increases and it becomes easier to fulfill the Stokes
criterion during impact on wet surfaces. A higher proportion of the collision energy
is dissipated by a more viscous liquid. Consequently, the agglomeration growth rate
increases, as depicted in Figure 8. The overall kinetics under different operating conditions
is decreased slightly by implementing the improved aggregation model (MPTSA) compared
to our previous work [24,27].

3.3.2. Agglomerate Morphology

The morphology of the agglomerates is also influenced by changing the process
parameters. Figure 9 shows the largest agglomerates formed in different experiments at the
end of the simulation (i.e., after 10 min). As concluded in Section 3.3.1, the agglomeration
rate is highest for Exp. E and lowest for Exp. C. This can also be seen in Figure 9 with
respect to the number of primary particles in respective agglomerates.
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largest primary particle, Rp,max) formed after 10 min of CVMC simulations for different experiments.

With increasing temperature (from Exps. B to A and, finally, to C), the binder droplets
become smaller due to faster drying. The liquid bridges formed after successful particle
collisions by smaller droplets are also smaller and easier to break. In order to stabilize the
formed agglomerates, more bridges are necessary, resulting in more compact structures.
Therefore, at high temperatures, the fractal dimension is higher and the agglomerate
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porosity is lower, which in turn reduces the radius of the final formed agglomerates,
making them more compact.

The influence of increasing the binder concentration (from Exps. A to D and, finally,
to E) on the morphology can also be explained. Binder with a high concentration is more
viscous and the bridges formed are stronger than those with a low concentration. At high
binder concentration, the agglomerates formed have a high probability of surviving in
the SFB as they are loosely arranged in space. Due to the loose arrangement of primary
particles, the agglomerates are large, porous, and tenuous. Therefore, at high binder
concentration, the fractal dimension is smaller and the agglomerate porosity is higher.

The particle size distributions for different experiments after 10 min of CVMC simula-
tions are shown in Figure 10. At high temperature, the agglomerates formed are small, so
PSD is narrower and is shifted to the left with increasing temperature from experiments B to
A and, finally, to C. On the contrary, PSD is always broader at low fractal dimensions. The
reason behind this is the formation of large and porous agglomerates with high porosity.
Therefore, PSD is shifted to the right with increasing binder mass fraction from experiments
A to D and, finally, to E. These distributions are consistent with the experimental results of
Dadkhah [29].
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4. Conclusions

The tendency of the sticking probability model to generate agglomerates with exces-
sively high porosities motivated us to develop a model that could better tune morphological
descriptors. Therefore, a modified polydisperse tunable aggregation model has been devel-
oped using the correct expression to calculate the distance of the new approaching particle.
The numerical algorithm of the MPTSA model to reconstruct the SFB agglomerates with
polydisperse primary particles is based on power law and radius of gyration. The influence
of polydispersity cannot be depicted entirely using the power law, since it is based on the
mean radius of the primary particles in an agglomerate.

Fractal properties (D f and k) were accurately preserved for agglomerates with a
standard deviation of 10% from the mean primary particle size, which roughly corresponds
to the available experimental results. The morphological properties of agglomerates
examined by Dadkhah have been investigated in detail by means of the MPTSA model.
Irrespective of each agglomerate having tuned fractal dimension in the MPTSA model,
fractal properties extracted for reconstructed agglomerates were better than those provided
by previous aggregation models [10,27] and agreed exactly with the fractal properties of
experimental agglomerates [29]. Other morphological parameters, like mean coordination
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number and porosity obtained from the MPTSA model, were also better as compared
to those provided by previous aggregation models [10,27] and strongly agreed with the
experiments. The MPTSA model is not based on any forces and, therefore, can be easily
used to mimic the morphology of aggregates ranging from nanoscale to macro-scale.

In order to investigate the growth kinetics of the process, this structure formation
algorithm has been integrated with the comprehensive stochastic simulation framework
(CVMC). The present CVMC simulation, with the improved polydisperse tunable se-
quential aggregation model, satisfactorily predicts the morphological descriptors of SFB
agglomerates as well as the overall growth kinetics of SFB agglomeration under various
operating parameters. The overall kinetics does not differ significantly after the imple-
mentation of the improved aggregation model, but the morphology is mimicked better as
compared to previous models [10,27].

Present work could serve as a foundation to further investigate the growth kinetics
and morphology of soft and/or porous agglomerates. This study might also be extended
to examine the morphological properties of heteroagglomerates that consist of more than
one type of primary particle.
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Appendix A. CVMC Model after Singh, A.K. and Tsotsas, E., 2022

After every collision event, the time step is computed using

tstep =
1

fcoll
, (A1)

with the collision frequency [30]

fcoll = Fcoll

(
1 −

∅exp

∅ f ix

)(
∅exp

∅ f ix

)2

u0, (A2)

where Fcoll is the collision frequency prefactor, ∅ f ix and ∅exp are the solid volume fractions
of the fixed bed and the expanded bed, respectively, u0 is the fluidization velocity. ∅ f ix is
assumed to be 0.61. ∅exp is calculated using [2],

∅exp = 1 −
(

18Rep + 0.36Rep
2

Ar

)0.21

. (A3)

Here, Rep is Reynolds number and Ar is Archimedes number. These are particle
dimensionless numbers adopted from [2,16].

Binder droplets (with HPMC binder in aqueous solution) are continuously deposited
on the fluidized particles. The CVMC model is related to the real process by the concentra-
tion of droplets per unit time and primary particle (γ) inside the simulation box and the
actual process. γ in the real process is

γ =

.
Ml

Mbed

ρp

ρl

(
Dp

Dd

)3
, (A4)
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where
.

Ml is spray mass flow rate, Mbed is bed mass, ρp and ρl are densities of primary
particle density and liquid, respectively, Dp and Dd are diameter (twice the mean radius,
Rp) of primary particle and droplet, respectively. Deposition of a liquid droplet on a particle
depends on its surface energy and contact angle. At a contact angle θ = 0◦, the deposited
droplet spreads out entirely and forms a film layer. For θ > 0◦, it partially wets the surface
of the particle and takes the form of a spherical cap with a base radius

a =

(
3Vd
π

sin3 θ

2 − 3 cos θ + cos3 θ

) 1
3

, (A5)

and initial height

h0 = a
(

sin θ

1 + cos θ

)
. (A6)

A contact angle made by the binder droplet deposited on the non-porous glass beads
used as primary particles is taken as θ = 40◦. Deposited droplet on the particle (initially
primary particle and later agglomerate) evaporates immediately and eventually solidifies.
Drying of deposited droplets is modeled using temporal reduction of droplet height as

h = h0 −
2
3

ρg

ρw

M̃w

M̃g

β

1 − cos θ

(
P∗

v
P

− ỹg

)[
1

1 − cos θ
− 1

3

]−1
t, (A7)

where M̃g and M̃w, and ρg and ρw, are the molar masses and mass densities of gas (air)
and water, respectively, β is the mass transfer coefficient; P and P∗

v are the system pressure
and the saturation vapor pressure, respectively. ỹg, is the molar fraction of water in the gas
phase and is calculated from gas moisture content Yg,

ỹg =
Yg

Yg −
(

M̃w/M̃g

) . (A8)

In order to obtain Yg, it is assumed that the SFB is perfectly mixed and that the amount
of water evaporated from the binder droplets at any time is always equal to the amount of
water sprayed through the nozzle.

Coalescence between agglomerates or primary particles occurs when their initial
kinetic energy is less than the energy due to the viscosity of the liquid binder layer of the
droplet. The critical conditions to dissipate the kinetic energy through a viscous layer were
first derived in [37] in terms of Stokes number

Stcoal =
2Maggsuc

3πµl Daggs2 . (A9)

Here uc is particle collision velocity, µl is the binder viscosity as a function of binder
concentration [27], Maggs and Daggs are combined mass and diameter of colliding particles
of unequal size, respectively, and calculated using:

Maggs =
2Magg1Magg2

Magg1 + Magg2
, (A10)

Daggs =
2Dagg1Dagg2

Dagg1 + Dagg2
. (A11)

Two colliding particles will coalesce if the actual Stokes number is smaller than the
critical Stokes number [38]

St∗coal =

(
1 +

1
e

)
ln
(

h
ha

)
. (A12)
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Particle collisions within the fluidized bed promote not only coalesce, but also break-
age of already formed agglomerates is seen. Breakage of an agglomerate happens when
the Stokes deformation number

Stde f =
ρagguc

2

2σT
(A13)

is greater than the critical Stokes deformation number

St∗de f = 2St∗coal . (A14)

Here σT is calculated from Singh and Tsotsas [27]

σT =
9µlucMCN

(
1 − εagg

)2

4Dpεagg
, (A15)

where, MCN and εagg are mean coordination number and porosity of the agglomerate,
respectively. These quantities are obtained by generating the agglomerate using the
MPTSA model.

Particle collision velocity (uc) is a significant parameter in determining the Stokes
numbers. In this present work, uc is chosen randomly by assuming a normal distribution
of particle velocity with a standard deviation of 0.1 m/s and a mean value of 0.5u0. This
coarse assumption of particle collision velocity was taken from the previous work [30],
where it described the experimental results quite successfully. Further optimization is
possible, but beyond the scope of this study.

Appendix B. Experiments of Dadkhah, M., 2014

A laboratory-scale fluidized bed agglomerator was used in the experiments of Dad-
khah [29]. The height and the inner diameter of the agglomerator were 450 mm and
152 mm, respectively. A two-fluid nozzle in top spray configuration was used and was
located 150 mm above the air distributor plate. Droplets consisted of Hydroxypropyl-
methylcellulose (HPMC) binder dissolved in water, injected through the nozzle.

Table A1. Experimental findings for each trial.

A B C D E

Temperature [°C] 60 30 90 60 60
Binder [wt.%] 2 2 2 6 10

D f [-] 2.45 2.31 2.94 2.24 2.09
k [-] 1.76 2.01 0.98 1.96 2.24

Average εagg [-] 0.57 0.62 0.53 0.58 0.63
Average MCN [-] 3.32 3.10 4.02 2.92 2.87

Evaluated agglomerates 25 28 22 24 24
Rp [µm] (321.2 236.8) (317.3 303.3) (298.6 210.4) (342.9 229.5) (332.0 300.3)

Mean Rp [µm] 288.2 309.3 257.3 285.3 312.4
Standard deviation of Rp [µm] 30 3 33 32 9

Five experiments with glass beads as primary particles were carried out to investigate
the influence of process parameters (initial binder concentration and inlet fluidized gas
temperature). The experiments are listed in Table A1, where Exp. A is the reference
experiment with a binder concentration of 2% and inlet fluidized gas temperature of 60 ◦C.
Binder concentration is increased from 2% in Experiment A to 6% in Experiment D and
finally to 10% corresponding to Experiment E. Inlet temperature of the fluidized gas is
varied from 30 ◦C to 60 °C and finally to 90 ◦C that corresponds to experiments B, A and
C, respectively.

The morphological descriptors (D f , k, average εagg, average MCN) determined for
different experiments are also listed in Table A1. For each experiment, these descriptors
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were derived by examining about 24 agglomerates (the exact number of agglomerates
examined for each experiment is given in Table A1).

The sphericity of the non-porous glass beads was very high (0.98). Size distributions
of glass beads were measured with Camsizer and are shown in Figure A1. The radii of
glass beads have a normal distribution with a standard deviation of around 10% from the
mean radius of 260 µm. Radii of glass beads were also determined from X-ray tomography
data of individual agglomerates from different experiments and are listed in Table A1
(and in Figure A1; for experiment A). The standard deviation of the primary particle
radius from X-ray tomography data agrees with the Camsizer data, i.e., it is around 10%
of the arithmetic mean radius for all the experiments except Exps. B and E with 1% and
3%, respectively.
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