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Simple Summary: Approximately 60% of all melanomas are associated with a constitutive activating
BRAF mutation. Inhibition of BRAF downstream signaling by targeted therapies significantly im-
proved patient outcomes. However, most patients eventually develop resistance. Here we identified
miR-129-5p as a novel tumor suppressor in BRAF mutated melanoma, which expression is increased
during response to BRAF inhibition, but repressed in an EZH2 dependent manner during activated
BRAF signaling. Overexpression of miR-129-5p decreases melanoma cell proliferation and improves
response to BRAF inhibition by targeting SOX4. Taken together our results emphasize SOX4 as a
potential therapeutic target in BRAF driven melanoma which could be attacked by pharmaceutically.

Abstract: Many melanomas are associated with activating BRAF mutation. Targeted therapies by
inhibitors of BRAF and MEK (BRAFi, MEKi) show marked antitumor response, but become limited
by drug resistance. The mechanisms for this are not fully revealed, but include miRNA. Wishing
to improve efficacy of BRAFi and knowing that certain miRNAs are linked to resistance to BRAFi,
we wanted to focus on miRNAs exclusively associated with response to BRAFi. We found increased
expression of miR-129-5p during BRAFi treatment of BRAF- mutant melanoma cells. Parallel to
emergence of resistance we observed mir-129-5p expression to become suppressed by BRAF/EZH2
signaling. In functional analyses we revealed that miR-129-5p acts as a tumor suppressor as its
overexpression decreased cell proliferation, improved treatment response and reduced viability of
BRAFi resistant melanoma cells. By protein expression analyses and luciferase reporter assays we
confirmed SOX4 as a direct target of mir-129-5p. Thus, modulation of the miR-129-5p-SOX4 axis
could serve as a promising novel strategy to improve response to BRAFi in melanoma.

Keywords: melanoma; BRAF mutation; miRNAs; therapy resistance

1. Introduction

Melanoma is the most lethal form of skin cancer with an increasing incidence [1]. Stage
IV melanoma has a poor prognosis for patients, with a 5-year survival probability of less
than 5–25%, if untreated [2,3]. Progression of a majority of cutaneous melanomas depends
on oncogenic, partially mutually exclusive somatic mutations involving BRAF (50–60%),
NRAS (20–26%), TP53 (19%), or PTEN (12%) [4–8]. The most common BRAF mutation is
the V600E (90%) substitution, which constitutively activates aberrant BRAF signaling [9].

During the last decade, BRAF-mutant melanomas have become amenable to new tar-
geted therapies based on initially BRAF inhibitor (BRAFi) and now on its combination with
a MEK inhibitor (MEKi). Introduction of combinatory BRAFi/MEKi therapies improved
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patient outcomes significantly [10–12]; however, most patients eventually develop resis-
tance mechanisms towards these targeted therapies [13]. Several molecular mechanisms
are involved in the acquisition of BRAFi resistance. The most frequent one encompasses
reactivation of the MAPK pathway, commonly through NRAS mutations [14], alterations in
BRAF splicing [15] or amplification [16,17] and less often by alterations of MEK1/2 [18]. Al-
ternatively, in some patients, the PI3K/AKT pathway, a secondary signaling route becomes
hyper-activated [19]. Adaptive resistance to MEKi likewise is acquired by reactivation of
MAPK signaling (e.g., ERK) or activation of parallel signaling pathways (e.g., PI3K, STAT
and Hippo signaling pathways) [20]. Yet, a considerable proportion of BRAFi resistant
tumors (40%) displays mechanisms of resistance that have not been fully revealed [21,22].

To identify novel strategies for improving efficacy of BRAFi in melanoma, it would be
helpful to find molecular mechanisms of resistance, which can be modified or reverted.

There is evidence that miRNAs are involved in the development of resistance in
melanoma treatment to targeted therapies [23]. MicroRNAs are small noncoding RNAs
(20–22 nt) which post-transcriptionally regulate protein expression. To this end miRNAs
guide the RNA-induced silencing complex (RISC) to a complementary seed sequence in the
3′untranslated region (3′UTR) of target mRNAs [24]. Binding of the miRNA-RISC reduces
the efficacy of protein translation and induces destabilization and cleavage of the targeted
mRNA [25]. MicroRNAs are involved in development or progression of cancer, but obviously
also in mechanisms of drug resistance in leukaemia and in various solid cancers [26–30]. They
could present potential therapeutic targets, by the use of chemically modified complementary
RNA molecules, such as locked nucleic acids (LNAs) or miRNA mimics [31–34].

Thus, there is promise to investigate this group of molecular factors in more detail to define
novel mechanisms of resistance, which could later on serve as potential therapeutic targets.

In melanoma, the expression of miR-7 [35], miR-126-3p [36] and miR-579-3p [37] is
significantly reduced in BRAFi resistant cell lines, while their overexpression increases the
sensitivity to BRAFi. In contrast, miR-34a, miR-100 and miR-125b were highly expressed in
resistant melanoma cells and inhibition of those miRNAs restores the sensitivity of BRAFi
resistant cells [38]. The miRNA family miR-204-5p and miR-211-5p are the most investi-
gated, but most controversially discussed miRNAs associated with tumor progression and
BRAFi resistance in melanoma. Both are induced by BRAFi treatment and their expres-
sion remains increased in cells resistant to BRAFi [39–41]. Moreover, enforced expression
miR-211-5p contributes to BRAFi resistance by directly targeting DUSP6, which modu-
lates the DUSP6-ERK5 signaling axis and promotes BRAFV600E driven melanoma growth
and BRAFi/MEKi inhibitor resistance [40]. Vitiello et al. reported a context dependent
function of miR-204 and miR-211. They show that in melanotic melanoma miR-211 targets
EDEM1 [41], which potentiates Vemurafenib induced pigmentation, resulting in a limited
Vemurafenib efficacy. miR-204 was shown to inhibit melanoma cell motility by targeting
AP1S in amelanotic melanoma [41].

These findings illustrate that specific miRNAs are involved in alternative mechanisms
of BRAFi resistance and that their manipulation can partially restore sensitivity to BRAF
targeted therapies.

While microRNAs have been linked mostly to resistance to BRAFi in melanoma, we
wanted to identify miRNAs associated specifically with response to BRAFi. We found that
miR-129-5p was most strongly induced after Vemurafenib treatment in parental BRAF
mutated melanoma cells, but not in the corresponding BRAFi resistant cells, normal
melanocytes or BRAF wildtype melanoma cells. Subsequently, we investigated the tran-
scriptional regulation of miR-129-5p downstream of constitutive active BRAF signaling
and the biological function of miR-129-5p in BRAF mutated melanoma, as well as BRAFi
resistance. Further, we wanted to identify a direct target of miR-129-5p, which mediates
melanoma progression and BRAFi resistance.

The results of our study demonstrate that EZH2 dependent repression of miR-129-5p
is solved by BRAFi/MEKi treatment thereby modulating BRAFi resistance and melanoma
progression via targeting SOX4.
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2. Materials and Methods
2.1. Data Sets

The published datasets GSE94423 [41], GSE98314 and GSE50509 [22] were obtained
from GEO DataSets (https://www.ncbi.nlm.nih.gov/gds accessed on 22 April 2021). For
GSE98314 and GSE50509 gene expression data were normalized using the cubic spline
function. TCGA expression data (log2(RPM + 1) of miR-129-5p and EZH2 mutation status of
melanoma samples were used from the cancer genome atlas (https://www.cancer.gov/tcga
accessed on 22 April 2021).

2.2. Cell Culture

Normal human epidermal melanocytes (NHEM) were isolated from foreskin tissues
and cultured in medium 254 (Cascade Biologics®) including human melanocyte growth
supplement (HMGS) and 1% penicillin-streptomycin. Melanoma cell lines (A375, WM35,
WM902B, WM9, MV3 and SK-Mel30) were cultured in DMEM supplemented with 10%
fetal calve serum (FCS) and 1% penicillin-streptomycin. All cells were incubated at 37 ◦C
and 5% CO2. Resistant cell lines A375R, WM35R, WM902BR and WM9R were generated by
treating parental BRAFV600E mutant melanoma cell lines with increasing concentrations
of Vemurafenib (PLX4032; LC-Laboratories, Woburn, MA, USA). Cells with the ability to
grow in 2 µM or in 10 µM Vemurafenib were described as resistant and maintained in
continuous presence of 2 µM or 10 µM Vemurafenib. For MEK inhibitor treatment we used
Trametinib (LC-Laboratories, Woburn, MA, USA) with indicated concentrations. EZH2
inhibition was performed by Tazemetostat (EPZ-6438) (Selleckchem, Houston, TX, USA).

2.3. miRNA Detection by Quantitative Real-Time PCR

Total RNA was extracted from cells using the TriFast™ reagent (Peqlab). The miRNA
quantification was performed by qRT-PCR using TaqMan® MicroRNA Reverse Transcrip-
tion Kit and TaqMan® Universal Master Mix II following the manufacturer’s instructions.
For normalization RNUB6 expression was used. TaqMan® miRNA assays for RNUB6 and
hsa-miR-129-5p were obtained from Thermo Fisher Scientific.

2.4. Transcriptional Analysis by qRT-PCR

The total RNA was isolated using TriFast™ reagent (Peqlab). Reverse transcrip-
tion was performed by M-MLV Reverse Transcriptase using oligo(dT)18-primer (Thermo
Fisher Scientific, Waltham, MA, USA). For quantitative RT-PCR we used PowerUp™
SYBR™Green master mix (Thermo Fisher Scientific, Waltham, MA, USA) following the
manufacturer’s instructions. qPCRs were performed on QuantStudio™ 5 Real-Time
PCR Systems. Real-time quantitative PCR assay was performed to detect the relative
expression level of SOX4 (forward 5′-GGTCTCTAGTTCTTGCACGCTC-3′ and reverse 5′-
CGGAATCGGCACTAAGGAG-3′) with GAPDH (forward 5′-ACCACAGTCCATGCCAT
CAC-3′ and reverse 5′-TCCACCACCCTGTTGCTGTA-3′) as endogenous control. The
relative expression levels were calculated with the 2−∆∆Ct method and experiments were
repeated at least in three independent triplicates.

2.5. DNA Constructs and siRNA

For miR-129-5p overexpression miR-129 sequence was cloned into the pcDNA6.2-
GW/EmGFP-miR plasmid using the BLOCK-iT Pol II miR RNAi Expression Vector Kit
(Invitrogen). The following oligonucleotide sequences were used: miR-129-top, 5′-TGCTGC
TTTTTGCGGTCTGGGCTTGCGTTTTGGCCAC TGACTGACGCAAGCCCAGAGCAAA
AAG-3′ and miR-129-bottom, 5′-CCTGCTTTTTGCTCTGGGCTT GCGTCAGTCAGTGGC
CAAAACGCAAGCCCAGACCGCAAAAAG-3′. The correct assembly of the vectors was
verified by sequencing. pmiRZip-129-5p construct (Cat# MZIP129-5p-PA-1) for miR-129-
5p inhibition and control vector pmiRZip-scr (Cat#MZIP000-PA-1) were obtained from
System Biosciences (Mountain View, CA, USA). SOX4 siRNA was obtained from Qiagen
(Hilden, Germany).

https://www.ncbi.nlm.nih.gov/gds
https://www.cancer.gov/tcga
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2.6. Transfections

Transfection to A375 and WM35 cells was performed with Lipofectamine 3000 reagent
(Invitrogen) or Amaxa Cell line Nucleofector Kit V (LONZA) following the manufac-
turer’s instructions. Positive transfected cells were sorted by FACS, blasticidin (pCDNA6.2-
constructs) or puromycin (miRZIP-constructs) selection.

2.7. Immunoblot Snalyses

Cells were lysed using a RIPA buffer for 30 min at 4 ◦C. Protein extracts were resolved
by SDS–PAGE, blotted to nitrocellulose membranes and probed with the following antibod-
ies: anti-GAPDH (Cat#2118), anti-EZH2 (Cat#5246), anti-H3 (Cat#4499), anti-H3K27me3
(Cat#9733), anti-ERK1/2 (Cat#4695) and anti-phosphoERK1/2 (Cat#4377) all from Cell
Signaling Technology (Danvers, MA, USA) and anti-SOX4 (Cat#LS-C499849) from LSBio
(Eching, Germany). For antibody detection we used anti-rabbit IgG-HRP (Cat#7074, Cell
Signaling Technology, Danvers, MA, USA).

2.8. Cell Viability Assay

The number of viable cells was determined by CellTiter-Glo® Luminescent Cell Viabil-
ity Assay (Promega). Cells (5000 per well) were seeded in 96-weell plates. After 24 h the
cells were treated with 0.4 µM Vemurafenib or DMSO as control for at least 72 h. Cell via-
bility was documented by TECAN plate reader following the manufacturer’s instructions.

2.9. Cell Growth Assay

For growth curves, 1× 105 of respective cells were seeded in each well of a 6-well plate
and cell numbers were determined over the time periods indicated by using a Neubauer
counting chamber.

2.10. Cell Cycle Analysis

For cell cycle analysis, cells were trypsinized and fixed with 70% ice-cold ethanol for
30 min on 4 ◦C, washed twice with PBS and resuspended in 200 µL PI (from 50 µg/mL
stock solution, abcam). Stained cells were analyzed on a BD FACS Scan cytometer using
CellQuest software (BD Biosciences, Franklin Lakes, NJ, USA).

2.11. 3D Spheroid Growth Assay

For melanosphere formation, 5000 cells were seeded in a 3D culture-qualified 96-
well spheroid formation plate (Cat#650970, Greiner). Spheroids were formed for 96 h
before treatment. The growth of 3D spheroid cultures was assessed 96 h after seeding
(0 h) and a following initial Vemurafenib treatment (1 µM) for 72 h, 96 h and 144 h.
Melanospheres were photographed at indicated time points with a Keyence BZ-X810
fluorescence microscope and sphere areas were determined using ImageJ software.

2.12. Luciferase Reporter Assay

To confirm miR-129-5p binding to SOX4 3′UTR we used luciferase reporter clone for
human SOX4 3′UTR (HmiT017630-MT06, Genecopoeia) and luciferase control reporter
construct (CmiT000001-MT06, Genecopoeia). Constructs were transfected in A375 (ctrl)
and A375 miR129-5p (overexpression) cells 24 h after seeding. The relative Luciferase
activity was measured 48 h after transfection using Luc-Pair Duo-Luciferase Assay Kits 2.0
(Genecopoeia) following the manufacturer’s instructions.

2.13. Statistical Analyses

Statistical analyses were performed with GraphPad Prism. Student’s t-test was used
for independent or paired samples to determine the statistical significance of experimental
results. A p-value of 0.05 or less was considered significant. The results were represented
as the average ± standard deviation from at least three independent experiments.
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3. Results
3.1. Expression of miR-129-5p Increases during BRAFi and MEKi Treatment

To identify miRNAs associated with response or resistance to BRAFi and MEKi treat-
ment we reanalyzed a published next generation data set (GSE94423) [41]. To this end,
we compared the miRNA expression of parental A375 cells treated with Vemurafenib
to three different conditions: parental A375 cells treated with DMSO, a resistant clone
of A375 cells (A375R) treated with Vemurafenib and A375R treated with DMSO. In our
analysis we found 71 miRNAs upregulated (log2 fold change >1; p≤ 0.05) and 137 miRNAs
downregulated (log2 fold change <−1; p ≤ 0.05) in parental A375 cells treated with Vemu-
rafenib (Figure 1A). One of the miRNAs which were induced the most after Vemurafenib
treatment was miR-129-5p (Figure 1A). We could confirm our data analysis by virtue of a
second published dataset (GSE98314) encompassing 11 BRAF mutated cell lines treated
with BRAFi (Dabrafenib) or BRAFi/MEKi (Dabrafenib/Trametinib) and DMSO treated
controls: when we performed a comparative analysis, we found that miR-129 expression is
induced under BRAFi or BRAFi/MEKi in 10 out of 11 cell lines (Figure 1B).

Figure 1. miR-129-5p expression is increased during BRAFi and MEKi treatment. (A) Volcano plot of miRNAs differentially
expressed in BRAFi treated A375 cells vs. a group of three different conditions: A375 treated with DMSO and a resistant
clone of A375 cells (A375R) treated with Vemurafenib or DMSO (GSE94423). Red dots represent significant differentially
expressed miRNAs (log2 fold change: ≥1; ≤−1; p ≤ 0.05). (B) Analyses of the miR-129 expression in eleven BRAF mutated
melanoma cell lines treated with DMSO (control), Dabrafenib or a combination of Dabrafenib and Trametinib (treated).
Expression data are shown as cubic spline function normalized values. (C) qRT-PCR analyses of miR-129-5p after BRAFi
(0.4 µM Vemurafenib, 24 h) in BRAF mutation associated cell lines (A375, WM35, WM902B, WM9), BRAFi resistant cell lines
(A375R, WM35R, WM902BR, WM9R), normal human epidermal melanocytes (NHEM) and BRAF wildtype melanoma cell
lines (MV3, SK-MEL30). (D) qRT-PCR for miR-129-5p expression after MEK inhibition by 10 nM Trametinib for 48 h on
parental sensitive (A375, WM35) and the corresponding resistant BRAF mutated cell lines (A375R, WM35R). Bars represent
average ± standard deviation of at least three independent experiments. * p ≤ 0.05; ** p ≤ 0.01.
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In order to confirm these in silico findings we performed qRT-PCR of BRAF mutated,
treatment sensitive melanoma cell lines (A375, WM9, WM35 and WM902B) and found that
miR-129-5p expression was increased after Vemurafenib treatment. The respective BRAF
resistant cell lines (A375R, WM9R, WM35R and WM902BR (Supplementary Figure S1),
as well as BRAF wildtype melanoma cell lines (MV3, SK-Mel30) and normal human
epidermal melanocytes (NHEM) showed no significant change in miR-129-5p expression
after Vemurafenib treatment (Figure 1C).

Further analyses demonstrated that expression of miR-129-5p was additionally in-
creased during treatment with MEKi (Trametinib) (Figure 1D) also in BRAFi resistant
cell lines (A375R, WM35R) (Figure 1D). Combinatory treatment with Vemurafenib and
Trametinib also induces the expression of miR-129-5p (Supplementary Figure S2).

Taken together these results strongly suggest that miR-129-5p expression is mediated
by BRAF/MEK pathway signaling.

3.2. miR-129-5p Expression Decreases During Emergence of Resistance to BRAFi

Having demonstrated that miR-129-5p expression is mediated by constitutive active
BRAF/MEK signaling in BRAF mutated melanoma, we investigated its expression during
long term BRAFi or MEKi treatment. Therefore, A375 and WM35 cell lines were treated
with Vemurafenib or Trametinib for a periode of 20 days. Culture medium containing the
inhibitors was exchanged every 48 h.

The treatment initially resulted in morphological changes of the melanoma cells:
Initially both BRAFi and MEKi treated cells became spindle-shaped and ceased to prolifer-
ate, reflecting the antineplastic response. Then cells treated with BRAFi regained initial
morphology and increased proliferation at days 10–15, indicating emerging resistance to
treatment. Trametinib treated cells showed a prolonged treatment response (Figure 2A,
Supplementary Figure S3). Next, we analyzed the expression of miR-129-5p at specific time
points by qRT-PCR. Expression of miR-129-5p strongly increased in the first days during
treatment with Vemurafenib and declined to almost the initial expression levels at day 20
(Figure 2B); this time course correlated with the morphological changes and the initially
interrupted and finally resumed proliferation of the cells reflecting emergence of resistance.

Trametinib treatment delivered similar results, only that induction of miR-129-5p
expression was stronger compared to BRAFi treatment and that the decrease of miR-129-5p
expression did not reach the initial level by day 20 of treatment (Figure 2C). When we
investigated Vemurafenib resistant cell lines (A375R, WM35R), we observed a reduced
expression of miR-129-5p compared to parental cell lines (A375, WM35) (Figure 2D). We
could evaluate this association of miR-129-5p levels with the response to Dabrafenib
or Vemurafenib also found in the published data set (GSE50509) of melanoma tumor
samples from patients before starting Dabrafenib or Vemurafenib and at the time of tumor
progression: here, the levels of miR-129-5p in untreated melanoma samples were equal
to samples of treatment resistant and progressive melanoma (Figure 2E). Our results
demonstrate that miR-129-5p expression is induced in cells responsive to Vemurafenib or
Trametinib treatment, but inhibited during treatment resistance.

3.3. EZH2 Suppresses miR-129-5p Expression Downstream of Constitutive Active
BRAF Signaling

Since miR-129-5p expression in various cancer entities (e.g., endometrial cancer,
breast cancer and gastric cancer) is mediated by EZH2 [42–44], an epigenetic modula-
tor of H3K27me3 and DNA methylation [45,46], we investigated if EZH2 is mediated by
BRAF/MEK pathway inhibition. Western blot analyses revealed that BRAFi (Vemurafenib),
as well as MEKi (Trametinib), treatment decreased EZH2 protein levels in BRAF mutated
cell lines (A375, WM35) (Figure 3A). We also demonstrated that even in BRAFi resistant
cell lines (A375R, WM35R), MEK inhibition reduced EZH2 protein expression, while BRAF
inhibition did not (Figure 3A). Consequently, we analyzed if inhibition of EZH2 induces
miR-129-5p expression in BRAF mutated cell lines. Inhibition of EZH2 with the specific
inhibitor EPZ-6438 (EPZ) significantly increased miR-129-5p expression in BRAF mutated
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melanoma cell lines (A375, WM35), even in BRAFi resistant cell lines (A375R, WM35R).
In comparison, normal melanocytes (NHEM) and BRAF wildtype melanoma cell lines
(MV3, SK-Mel30) displayed no induction of miR-129-5p expression (Figure 3B). Reanalysis
of a published dataset (GSE98314) revealed that treatment with the BRAFi Dabrafenib
decreased EZH2 expression in 11 different BRAF mutated melanoma cell lines (Figure 3C)
and we found a significant inverse correlation of EZH2 and miR-129 expression (r = −0.46;
p = 0.029) (Figure 3D). Additionally, the subset of the BRAF mutated melanoma cohort
of the cancer genome atlas (TCGA) harboring an EZH2 silent mutation, showed a highly
significant enforced miR-129-5p expression compared to BRAF mutated melanoma patients
with EZH2 wildtype (Figure 3E).

Figure 2. miR-129-5p expression decreases during emergence of resistance to BRAFi. (A) A375 cells were treated with
Vemurafenib or Trametinib every second day for a period of 20 days. Images were taken at indicated time points. Scale bars
represent 200 µm. (B,C) Expression of miR-129-5p was analysed by qRT-PCR during permanent BRAF (B) or MEK (C) in-
hibition over 20 days in two BRAF mutated melanoma cell lines (A375 and WM35). (D) qRT-PCR expression analyses of
miR-129-5p in A375/WM35 compared to the corresponding BRAFi resistant cell line (A375R/WM35R). (E) Analysis of
miR-129-5p expression in the data set GSE50509 comparing untreated melanoma samples and samples at tumor progression
during BRAFi treatment. Bars represent average ± standard deviation of at least three independent experiments.
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Figure 3. miR-129-5p is repressed by BRAF/EZH2 pathway. (A) Western blot analyses of EZH2 in sensitive and resistant
A375 and WM35 cells after BRAF and MEK inhibition. GAPDH immunoblot was used for normalization. (B) miR-129-5p
expression of BRAF mutated cell lines (A375, WM35), corresponding BRAFi resistant cell lines (A375R, WM35R), normal
human epidermal melanocytes (NHEM) and BRAF wildtype melanoma cell lines (MV3, SK-Mel30) after inhibition of EZH2
by EPZ (48 h). (C) Analysis of EZH2 expression in 11 BRAF mutated melanoma cell lines after BRAFi or BRAFi/MEKi
compared to DMSO treated cells (control) (GSE98314). (D) Pearson correlation of EZH2 and miR-129-5p expression
(GSE98314). Data are presented as cubic spline function normalized values. (E) Comparison of miR-129-5p expression
in BRAF mutated melanoma patients with and without EZH2 mutation (TCGA). Values are presented as log2(RPM+1).
(F) qRT-PCR analyses of miR-129-5p expression in A375 cells after DNA methylation inhibition by decitabine for 72 h.
Bars represent average ± standard deviation of at least three independent experiments. n.s., not significant; * p ≤ 0.05;
** p ≤ 0.01; *** p ≤ 0.001.

To confirm that EZH2 is involved in transcriptional regulation of miR-129-5p, we ana-
lyzed H3K27me3 of Vemurafenib treated A375 and WM35 cells. Because we observed no
changes in H3K27me3 after BRAFi treatment (Supplementary Figure S4), we investigated
if miR-129-5p expression is controlled by DNA methylation, an epigenetic mechanism
mediated by EZH2. Therefore, we analyzed miR-129-5p expression after DNA methylation
inhibition by decetabine (DAC) and found a significant miR-129-5p induction in BRAF
mutated A375 cells (Figure 3F).

Taken together these results indicate that EZH2 mediates miR-129-5p expression
downstream of constitutive active BRAF signaling.

3.4. miR-129-5p Acts as Tumor Suppressor In Vitro and in a 3D Spheroid Model

Having established that miR-129-5p is induced during BRAFi and MEKi response
and mediated by EZH2 downstream of constitutive active BRAF signaling, we subse-
quently studied the biological function of miR-129-5p on proliferation of BRAF mutated
melanoma cells: miR-129-5p overexpression reduced proliferation of melanoma cell line
A375, whereas knockdown of miR-129-5p by a miRZip-129-5p construct significantly in-
creased proliferation (Figure 4A). Since, miR-129-5p expression was upregulated during
BRAFi or MEKi treatment in sensitive, but not in resistant cells, we wondered if regulation
of miR-129-5p could mediate potentially therapeutic effects in terms of overcoming resis-
tance. Therefore, we performed viability assays for A375 cells with either knockdown or
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overexpression of miR-129-5p during BRAFi treatment. MiR-129-5p knockdown increased
viability of Vemurafenib treated A375 cells (A375 scr IC50: 0.25 µM vs. A375 miRZip-129
IC50: 1.15 µM) (Figure 4B), while its overexpression improved the treatment response of
BRAFi resistant A375R cells (A375R scr IC50: 4.37 µM vs. A375R miR-129-5p IC50: 3.87 µM)
(Figure 4C). In cell cycle analyses we found, that inhibition of miR-129-5p function through
expression of a miRZip-129 construct in A375 cells increased the number of cells in the
S/G2 phase during Vemurafenib treatment compared to A375 scr (Figure 4D). Interestingly,
the cell cycle distribution of A375 miRZip-129 under BRAFi treatment cells was similar to
A375R cells (Figure 4D). In contrast, untreated A375 miRZip-129 and scr cells showed an
equivalent cell cycle that was different from A375R cells (Supplementary Figure S5A).

Figure 4. miR-129-5p acts as a tumor suppressor. (A) Proliferation Assay of A375 cells overexpressing miR-129-5p (A375
miR-129) and knockdown miR-129-5p (A375 miRZip-129) compared to parental A375 (control). (B) BRAFi treatment
response of miR-129-5p knockdown cells (A375 miRZip-129) and (C) BRAFi resistant cells overexpressing miR-129-5p
(A375R miR-129) using cell viability assay. (D) Cell cycle distribution of sensitive parental A375 cells and their corresponding
Vemurafenib resistant clone (A375R) compared to miR-129-5p knockdown cells (A375 miRZip-129). (E) Representative
photographs of spheroid growth after initial Vemurafenib treatment (1 µM) were taken at indicated time points. Scale bar
represents 500 µm. Spheroid area was measured of at least 5 spheroids using ImageJ software. Bars represent average of at
least three independent experiments. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.
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To approach the question if such effects are relevant in situ we used a 3D spheroid
model. While A375 scr control cells and miR-129-5p knockdown cells formed intermediate
ragged spheroids, cells overexpressing miR-129-5p lost the ability to form spheroids and
loosely accumulated (Figure 4E). When treated with Vemurafenib the spheroid size of A375
scr control cells and A375 miR-129-5p knockdown cells shrank and the surface became
smoother. Spheroid area was reanalyzed 72 h, 96 h and 144 h after Vemurafenib treatment.
A375 cells with miR-129-5p knockdown showed a significant stronger and faster spheroid
growth compared to A375 control cells (Figure 4E; Supplementary Figure S5B,C).

Our results reveal miR-129-5p as a tumor suppressor in melanoma and that its repres-
sion attenuates BRAFi response.

3.5. SOX4 is a Targeted by miR-129-5p During BRAFi Response

To understand the molecular function of miR-129-5p, we performed in silico anal-
yses to predict potential targets mRNAs of genes, which were known to be involved in
melanoma progression and drug resistance. One potential target of miR-129-5p is SOX4,
which was reported to induce cell proliferation [47] and to mediate BRAF inhibitor resis-
tance in melanoma [48]. SOX4 harbors three putative miR-129-5p binding sites in its mRNA
3′ UTR (Figure 5A). When we analyzed SOX4 expression after BRAF inhibitor treatment,
we found an inverse correlation of SOX4 mRNA and SOX4 protein levels. SOX4 mRNA
was significantly increased (Figure 5B), while the protein levels were decreased after BRAF
inhibition in A375 and WM35 cell lines (Figure 5C). To verify that SOX4 protein decrease
caused by Vemurafenib was mediated by induction of miR-129-5p, we transfected A375
cells with a miRZip-129 construct, to block miR-129-5p function. Treatment of those cells
with Vemurafenib still decreased SOX4 protein, however blocking miR-129-5p through
miRZip-129 partially attenuated SOX4 reduction caused by Vemurafenib (Figure 5D). Since
EZH2 inhibition induced miR-129-5p expression, we hypothesize that EZH2 inhibition
mediates SOX4 protein level. In support of this hypothesis we found that treatment of
A375 and WM35 cells with EZH2 inhibitor resulted in decreased SOX4 protein levels
(Figure 5E). To identify the function of miR-129-5p in post-transcriptional SOX4 regulation,
we overexpressed miR-129-5p in A375 and WM35 cells. In Western blot analyses, we
determined a decreased SOX4 protein level in miR-129-5p overexpressing melanoma cell
lines (Figure 5F).

To prove the direct binding of miR-129-5p to the SOX4 3′UTR we performed luciferase
reporter assays in A375 cells. Luciferase activity decreased after miR-129-5p overexpression
(Figure 5G), which indicates the direct binding of miR-129-5p to the SOX4 3′UTR.

To validate that SOX4 influences emergence of BRAFi resistance, we measured SOX4
protein levels in BRAFi sensitive (A375, WM35) and resistant (A375R, WM35R) cells. In
western blot analyses BRAFi resistant cells showed an increased SOX4 protein expression
compared to the parental cells (Figure 5H). Furthermore, SOX4 knockdown by siRNA
resulted in an improved BRAF inhibitor response of BRAFi resistant cells (A375R sictrl
IC50: 33.8 µM vs. A375R siSOX4 IC50: 23.2 µM) (Figure 5I).

Thus, these results demonstrate that SOX4 is a direct target of miR-129-5p dur-
ing melanoma response to BRAFi and they indicate that SOX4 mediates resistance to
BRAFi treatment.
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Figure 5. miR-129-5p targets SOX4. (A) miR-129-5p and its three predicted binding sites at the 3’UTR in SOX4. (B) SOX4
mRNA expression and (C) protein expression after BRAFi treatment in A375 and WM35 cells. (D) SOX4 protein level was
compared in BRAFi treated (Vem) or untreated (DMSO) A375 cells with miR-129-5p knockdown (miRZip-129) or scramble
control (scr). (E) Western blot of SOX4 protein in A375 or WM35 cells after EZH2 inhibition by EPZ (48 h; 2 µM). (F) SOX4
protein levels in A375 and WM35 cells overexpressing miR-129-5p or scramble control. (G) Luciferase reporter assay was
performed in A375 cells. Cells were co-transfected with SOX4 3′UTR luciferase reporter construct (pLuc-SOX4 3′UTR) or
control (pLuc-ctrl.) and miR-129-5p expression construct (miR-129) or control (ctrl.) respectively. Luciferase activity was
analysed after 24 h. (H) Western blot analyses of SOX4 in parental and corresponding BRAFi resistant A375 and WM35 cells.
(I) Viability assay of BRAFi treated A375R cells after SOX4 knockdown by siRNA or control. Cells were treated for 96 h.
Bars represent average of at least three independent experiments. * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001.

4. Discussion

We showed by both in silico and in vitro analyses that miR-129-5p is induced by BRAFi
or MEKi treatment exclusively in melanoma cell lines with BRAF mutations, and not in
primary normal human epidermal melanocytes (NHEMs), BRAF wildtype melanoma
cells or BRAFi resistant melanoma cells. This BRAFi-mediated increase of miR-129-5p
expression is then dynamically reduced with the emergence of resistance. Mechanistically,
we were able to show that the miR-129-5p repression was mediated by EZH2, a down-
stream effector of BRAF. Our study provides evidences that miR-129-5p acts as a tumor
suppressor improving the response to BRAFi and inhibiting the proliferation of melanoma
cells by targeting SOX4. Due to these results we conclude that miR-129-5p is an important
molecular regulator of response to BRAFi, which is repressed by downstream signaling
pathways of constitutively active BRAF in melanoma.

The expression of several miRNAs in melanoma is altered by BRAFi and MEKi
treatment [41,49,50] and reprogramming of miRNA expression is involved in the emergence
of drug resistance in BRAF mutated melanoma [51]. Thus far, the miR-204, miR-211, as well
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as miR-410-3p, were shown to be induced by BRAF or MEK inhibitor and to contribute
to resistance to BRAF inhibitor in melanoma by enhancing the activity of downstream
pathways, such as MEK or ERK [39,40,50]. In contrast to these three miRNAs, miR-129-5p,
was not only induced during response to BRAFi or MEKi treatment, but also decreased
when the cells developed resistance. In addition without treatment miR-129-5p expression
was reduced in BRAFi resistant cell lines compared to parental cells. These results were
also supported by our in silico findings, that miR-129 has comparable expression levels in
samples of progressive melanomas both prior to treatment with Dabrafenib or Vemurafenib
and at time of tumor progression (GSE50509 dataset). Our results thus reveal that miR-129-
5p expression correlates strongly with the response to BRAFi/MEKi in melanoma.

Previous studies showed that miR-129 is downregulated in melanoma tissues [52] and
several different cancer entities compared to normal tissues [43,53–57]. In breast cancer [43],
endometrial cancer [42] and gastric cancer [44] repression was mediated by epigenetically
modifications of H3K27 trimethylation or DNA methylation. Both processes are regulated
by the epigenetic modifier EZH2 [45,46]. EZH2 expression is associated with high pro-
liferation rates and aggressive tumor subgroups of cutaneous melanoma [58]. It controls
melanoma growth and metastasis through silencing of distinct tumor suppressors [59,60].
Of note EZH2 was also shown as a mediator of treatment resistance in BRAF mutated
melanoma [61,62]. We have now demonstrated that, in melanoma, EZH2 represses miR-
129-5p, dependent on constitutive active BRAF signaling. After treatment of BRAF mutated
melanoma cells with BRAFi or MEKi, we observed a reduction of EZH2 protein as well
as mRNA, as shown previously for melanoma [62,63]. Additionally, specific inhibition of
EZH2 induces miR-129-5p expression in BRAF mutated melanoma cell lines, independent
from their BRAFi response status, while BRAF wildtype cells and normal melanocytes
show no changes of expression. In silico, miR-129 and EZH2 expression during treatment
correlated inversely with administration of BRAF inhibitor (GSE98314). This correlation
could not be determined in the melanoma cohort of the cancer genome atlas (TCGA,
https://www.cancer.gov/tcga, accessed on 22 April 2021), because these patients had
not received BRAFi or MEKi. However, miR-129-5p expression was elevated in BRAF
mutated melanoma patients harboring EZH2 missense or silencing mutations compared
to wildtype EZH2. This provides further evidence that, in melanoma, EZH2 mediates
miR-129-5p expression downstream of constitutive active BRAF signaling. Although previ-
ous studies showed a reduction of H3K27me3 during treatment with BRAFi or MEKi in
melanoma [62,63] we could not confirm these changes in our experiments. These different
results may be explained by using low doses of treatment (0.4 µM Vemurafenib or 10 nM
Trametinib) or shorter treatment times (48 h). Treatment with the cytosine analogue Cytara-
bine (AraC), which inhibits DNA methylation, a process also mediated by EZH2 [45,59],
induces miR-129-5p expression. Our results and the previously described repression of
miR-129 via EZH2 in different entities by DNA methylation or histone modification [43,64]
let us conclude, that in BRAF mutated melanoma suppression of miR-129-5p is mediated
via EZH2 downstream of constitutive active BRAF signaling.

Our functional analyses demonstrate that miR-129-5p inhibits cell proliferation, cell
cycle progression and that it mediates BRAFi response in BRAF mutated melanoma. This
is in line with previous in vitro studies reporting that miR-129-5p acts as tumor suppressor
in lung cancer [65], gastrointestinal cancer [55,57,66,67], esophageal squamous cell carci-
noma [68,69], hepatocellular cancer [70], cervical cancer [71], breast cancer [43,72], and
glioblastoma [73].

We reveal that miR-129-5p overexpression improves response to BRAFi of resistant
melanoma cells, while knockdown of miR-129-5p in parental cells shows the opposite effect.
These results are supported by our finding that miR-129-5p expression is decreased during
emergence of resistance. While other studies also found that repression of miR-129-5p
modulates resistance to multiple drugs (e.g., chemotherapeutic, such as 5-Fluorouracil,
Gemcitabine and Adriamycine, as well as antibody therapy, such as Trastuzumab) in
several cancers, e.g., gastric cancer [44], breast cancer [43,74,75], ovarian cancer [76], and
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bladder cancer [77], our study, for the first time, reports on miR-129-5p as mediator of
BRAFi response in melanoma.

Having elaborated that miR-129-5p functions as tumor suppressor and mediates
BRAF inhibitor treatment response, we investigated potential target genes, known to be
involved in melanoma progression and drug resistance. SOX4 seemed a likely fitting can-
didate, since it is not only induced during melanoma progression and promotes melanoma
proliferation by AKT signaling activation [47], but also mediates to BRAFi in melanoma
through regulation of IGF-1R [48]. Our results reveal that BRAFi treatment induces SOX4
mRNA, but reduces SOX4 protein, which implicates a posttranscriptional regulation. By a
luciferase reporter assay, we confirmed SOX4 as direct target of miR-129-5p. SOX4 was
also observed to be a target of miR-129-5p in breast cancer [43], esophageal carcinoma [69],
chondrosarcoma [54] or cervical cancer [71], in which miR-129-5p mediated repression of
SOX4 was associated with reduced cancer cell progression.

We then demonstrated that knockdown of SOX4 by applying a siRNA resulted in an
improved response of BRAFi resistant cells towards Vemurafenib treatment, comparable
to miR-129-5p overexpression. This result indicates that miRNA-mediated mechanisms
of resistance could indeed be amenable to therapeutic modifications, e.g., by agomiRs or
mimics. However, tissue distribution and targeted cell delivery is still an obstacle for the
systemic therapeutic approach [31,32].

Additional putative targets of miR-129-5p that are associated with drug resistance in
cancers are ABC transporters (ABCB1, ABCC5, ABCG1) [44] and RUNX1 [78]. For RUNX1
we could not prove a posttranscriptional regulation by miR-129-5p in BRAF associated
melanoma (data not shown). Further research should investigate if ABC transporters
act as additional targets of miR-129-5p in the context of BRAF/MEK inhibitor resistance
in melanoma.

Since SOX4 controls EZH2 expression by direct promotor binding [79] and SOX4/EZH2
are shown to interact as co-repressors on tumor suppressive miR-31 in invasive esophageal
cancer cells [80], we hypothesize a regulatory network in BRAF mutated melanoma, in
which constitutively activated BRAF signaling induces SOX4 and EZH2 expression, result-
ing in miR-129-5p repression (Figure 6). During BRAF/MEK inhibition, EZH2 is reduced,
which releases the epigenetic repression of miR-129-5p. The elevated miR-129-5p inhibits
SOX4 protein translation, resulting in a reduction of proliferation and improved treatment
response (Figure 6). The emergence of resistance by reactivation of BRAF downstream or
bypass pathways reinforces EZH2 resulting in repression of miR-129-5p.

Taken together our results emphasize SOX4 as a potential therapeutic target in BRAF
driven melanoma which could be attacked by pharmaceutically, e.g., by miR-129-5p mimics.
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Figure 6. BRAF/EZH2 signaling represses miR-129-5p inhibition of SOX4 thereby modulating BRAFi
resistance in melanoma.

5. Conclusions

Targeted therapies, e.g., BRAFi improved patient outcomes in BRAF mutated mela-
noma. Emergence of resistance to these therapies is an obstacle urgent to overcome. To
this end, we wanted to investigate whether miRNAs enhance response to BRAF inhibition.
In this study we identified the tumor suppressor miR-129-5p to be induced during BRAF
inhibition. Finally, we found that miR-129-5p decreases melanoma cell proliferation and
improves response to BRAFi by targeting SOX4.

Taken together our results emphasize miR-129-5p, as well as SOX4, as potential
therapeutic targets in BRAF-driven melanoma.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13102393/s1, Supplemental Figure S1. Establishment of Vemurafenib resistant cell
lines; Supplemental Figure S2. miR-129-5p expression is increased after BRAFi/MEKi combinatory
treatment; Supplemental Figure S3. Cell morphology of WM35 during long term BRAFi and MEKi
treatment; Supplemental Figure S4. H3K27me3 after BRAFi and MEKi; Supplemental Figure S5.
miR-129-5p acts as tumor suppressor. Supplemental Materials: original western blot pictures.
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